
Oracle® Fusion Middleware
Securing WebLogic Web Services for Oracle
WebLogic Server

12c (12.2.1.4.0)
E90851-02
January 2023

Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server, 12c (12.2.1.4.0)

E90851-02

Copyright © 2007, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

Conventions viii

 What's New in This Guide

New and Changed Features for 12c (12.2.1.2.0 and later) x

New and Changed Features for 12c (12.2.1.1.0) x

New and Changed Features for 12c (12.2.1) x

1 Overview of Web Services Security

What Type of Security Should You Configure? 1-1

Thread Safety 1-1

2 Configuring Message-Level Security

Overview of Message-Level Security 2-1

Web Services Security Supported Standards 2-2

Web Services Trust and Secure Conversation 2-2

Web Services SecurityPolicy 1.2 2-3

Main Use Cases of Message-Level Security 2-3

Using Policy Files for Message-Level Security Configuration 2-4

Using Policy Files With JAX-WS 2-5

WS-Policy Namespace 2-5

WS-SecurityPolicy Namespace 2-5

Version-Independent Policy Supported 2-5

Using the SHA-256 Secure Hash Algorithm 2-6

Update the Predefined SHA-1 Policies to SHA-256 2-7

Using the Extended Algorithm Suite (EAS) 2-10

Configuring Simple Message-Level Security 2-12

iii

Configuring Simple Message-Level Security: Main Steps 2-13

Ensuring That WebLogic Server Can Validate the Client's Certificate 2-15

Updating the JWS File with @Policy and @Policies Annotations 2-15

Setting the uri Attribute 2-15

Setting Additional Attributes 2-16

Example of Using the @Policy and @Policies JWS Annotations 2-16

Loading a Policy From the CLASSPATH 2-18

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair 2-18

Updating a Client Application to Invoke a Message-Secured Web Service 2-20

Invoking a Web Service From a Client Running in a WebLogic Server Instance 2-23

Example of Adding Security to a JAX-WS Web Service 2-24

Creating and Using a Custom Policy File 2-32

Configuring the WS-Trust Client 2-33

Supported Token Types 2-33

Configuring WS-Trust Client Properties 2-34

Obtaining the URI of the Secure Token Service 2-34

Configuring STS URI for WS-SecureConversation: Standalone Client 2-35

Configuring STS URI for SAML: Standalone Client 2-35

Configuring STS URI Using WLST: Client On Server Side 2-36

Configuring STS URI Using Console: Client On Server Side 2-36

Configuring STS Security Policy: Standalone Client 2-37

Configuring STS Security Policy Using WLST: Client On Server Side 2-38

Configuring STS Security Policy: Using the Console 2-38

Configuring the STS SOAP and WS-Trust Version: Standalone Client 2-39

Configuring the SAML STS Server Certificate: Standalone Client 2-39

Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS 2-40

Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message
Protections 2-44

Configuring and Using Security Contexts and Derived Keys 2-49

Specification Backward Compatibility 2-50

WS-SecureConversation and Clusters 2-51

Updating a Client Application to Negotiate Security Contexts 2-51

Associating Policy Files at Runtime Using the Administration Console 2-53

Using Security Assertion Markup Language (SAML) Tokens For Identity 2-54

SAML Token Overview 2-54

Using SAML Tokens for Identity: Main Steps 2-55

Specifying the SAML Confirmation Method 2-56

Specifying the SAML Confirmation Method (Proprietary Policy Only) 2-57

Sample of SAML 1.1 Bearer Token Over HTTPS 2-60

Configuring SAML Attributes in a Web Service 2-60

Using SAML Attributes: Available Interfaces and Classes 2-60

iv

Using SAML Attributes: Main Steps 2-62

SAML Attributes Example 2-62

Associating a Web Service with a Security Configuration Other Than the Default 2-73

Valid Class Names and Token Types for Credential Provider 2-74

Using System Properties to Debug Message-Level Security 2-74

Using a Client-Side Security Policy File 2-75

Associating a Policy File with a Client Application: Main Steps 2-75

Updating clientgen to Generate Methods That Load Policy Files 2-76

Updating a Client Application To Load Policy Files (JAX-RPC Only) 2-77

Using WS-SecurityPolicy 1.2 Policy Files 2-79

Transport-Level Policies 2-79

Protection Assertion Policies 2-80

WS-Security 1.0 Username and X509 Token Policies 2-81

WS-Security 1.1 Username and X509 Token Policies 2-82

WS-SecureConversation Policies 2-84

SAML Token Profile Policies 2-87

Choosing a Policy 2-90

Unsupported WS-SecurityPolicy 1.2 Assertions 2-91

Using the Optional Policy Assertion 2-92

Configuring Element-Level Security 2-93

Define and Use a Custom Element-Level Policy File 2-94

Adding the Policy Annotation to JWS File 2-95

Implementation Notes 2-96

Smart Policy Selection 2-97

Example of Security Policy With Policy Alternatives 2-97

Configuring Smart Policy Selection 2-99

How the Policy Preference is Determined 2-99

Configuring Smart Policy Selection in the Console 2-100

Understanding Body Encryption in Smart Policy 2-100

Smart Policy Selection for a Standalone Client 2-101

Multiple Transport Assertions 2-102

Example of Adding Security to MTOM Web Service 2-102

Files Used by This Example 2-102

SecurityMtomService.java 2-103

MtomClient.java 2-105

configWss.py Script File 2-108

Build.xml File 2-111

Building and Running the Example 2-113

Deployed WSDL for SecurityMtomService 2-114

Example of Adding Security to Reliable Messaging Web Service 2-118

Overview of Secure and Reliable SOAP Messaging 2-118

v

Overview of the Example 2-118

How the Example Sets Up WebLogic Security 2-119

Files Used by This Example 2-120

Revised ReliableEchoServiceImpl.java 2-121

Revised configWss.py 2-121

Revised configWss_Service.py 2-122

Building and Running the Example 2-123

Securing Web Services Atomic Transactions 2-123

Proprietary Web Services Security Policy Files (JAX-RPC Only) 2-125

Abstract and Concrete Policy Files 2-126

Auth.xml 2-127

Sign.xml 2-127

Encrypt.xml 2-128

Wssc-dk.xml 2-129

Wssc-sct.xml 2-130

3 Configuring Transport-Level Security

Configuring Transport-Level Security Through Policy 3-1

Available Transport-Level Policies 3-2

Prerequisite: Configure SSL 3-3

OPSS Keystore Service Supported 3-4

Configuring SSL: Main Steps 3-4

Configuring Two-Way SSL for a Client Application 3-5

Configuring Transport-Level Security Through Policy: Main Steps 3-6

Example of Configuring Transport Security for JAX-WS 3-7

One-Way SSL (HTTPS and HTTP Basic Authentication Example) 3-7

Persisting the State of a Request over SSL (JAX-WS Only) 3-12

Example of Getting SSLSocketFactory From System Properties 3-12

Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC Only) 3-14

Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only) 3-15

4 Configuring Access Control Security (JAX-RPC Only)

Configuring Access Control Security: Main Steps 4-1

Updating the JWS File With the Security-Related Annotations 4-3

Updating the JWS File With the @RunAs Annotation 4-5

Setting the Username and Password When Creating the Service Object 4-6

A Using Oracle Web Services Manager Security Policies

Overview of OWSM Security Policies A-1

vi

Which OWSM Policies Are Supported for Java EE Web Services? A-1

When Should You Use OWSM Security Policies? A-1

Interoperability Between WebLogic Web Service Policies and OWSM Policies A-6

Attaching OWSM Security Policies to JAX-WS Web Services A-8

Attaching OWSM Security Policies Using the Administration Console A-8

Refreshing the Cache After Attaching Policies A-11

Attaching OWSM Security Policies to JAX-WS Web Service Clients A-12

Disabling a Globally Attached OWSM Policy A-12

Configuring Policies A-13

Overriding the Policy Configuration for the Web Service Client A-13

Monitoring and Testing the Web Service A-14

vii

Preface

This documentation describes the Oracle WebLogic Server domains and how the
domains are configured.

Audience
This documentation is a resource for security software developers who secure
WebLogic web services for Oracle WebLogic Server that includes configuring
transport- and message-level security.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

ix

What's New in This Guide

The following topics introduce the new and changed features of WebLogic web
services security and provides pointers to additional information.

New and Changed Features for 12c (12.2.1.2.0 and later)
For Oracle Fusion Middleware 12c (12.2.1.2.0 and later), this document does not
contain any new or changed features. For a comprehensive listing of the new
WebLogic Server features introduced in this release, see What's New in Oracle
WebLogic Server.

New and Changed Features for 12c (12.2.1.1.0)
When using digital signatures, the WebLogic Server web service security policies
include a set of policies that support an Extended Algorithm Suite (EAS) policy as
required by the FIPS-140-2 certification. For more information, see Using the
Extended Algorithm Suite (EAS).

New and Changed Features for 12c (12.2.1)
The JAX-RPC API is deprecated in WebLogic Server as of release 12.2.1.

What's New in This Guide

x

1
Overview of Web Services Security

The chapter describes how to configure security for WebLogic web services.
This chapter includes the following sections:

• What Type of Security Should You Configure?

• Thread Safety

For definitions of unfamiliar terms found in this and other books, see the Glossary.

What Type of Security Should You Configure?
Message-level security includes all the security benefits of SSL, but with additional flexibility
and features. Message-level security is end-to-end, which means that a SOAP message is
secure even when the transmission involves one or more intermediaries. The SOAP
message itself is digitally signed and encrypted, rather than just the connection. And finally,
you can specify that only individual parts or elements of the message be signed, encrypted,
or required.Transport-level security, however, secures only the connection itself. This means
that if there is an intermediary between the client and WebLogic Server, such as a router or
message queue, the intermediary gets the SOAP message in plain text. When the
intermediary sends the message to a second receiver, the second receiver does not know
who the original sender was. Additionally, the encryption used by SSL is "all or nothing":
either the entire SOAP message is encrypted or it is not encrypted at all. There is no way to
specify that only selected parts of the SOAP message be encrypted. Message-level security
can also include identity tokens for authentication.

Transport-level security secures the connection between the client application and
WebLogic Server with Secure Sockets Layer (SSL). SSL provides secure connections by
allowing two applications connecting over a network to authenticate the other's identity and
by encrypting the data exchanged between the applications. Authentication allows a server,
and optionally a client, to verify the identity of the application on the other end of a network
connection. A client certificate (two-way SSL) can be used to authenticate the user.

Encryption makes data transmitted over the network intelligible only to the intended recipient.

Transport-level security includes HTTP BASIC authentication as well as SSL.

Access control security answers the question "who can do what?" First you specify the
security roles that are allowed to access a web service; a security role is a privilege granted
to users or groups based on specific conditions. Then, when a client application attempts to
invoke a web service operation, the client authenticates itself to WebLogic Server, and if the
client has the authorization, it is allowed to continue with the invocation. Access control
security secures only WebLogic Server resources. That is, if you configure only access
control security, the connection between the client application and WebLogic Server is not
secure and the SOAP message is in plain text.

Thread Safety
JAX-RPC clients and JAX-WS clients are not thread safe.

1-1

The generated JAX-RPC client stubs are thread-safe by default. However, as soon as
you enable SSL, the client stubs are no longer thread-safe.

See Are JAX-WS client proxies thread safe? for more information and workarounds
regarding JAX-WS thread safety.

Chapter 1
Thread Safety

1-2

http://cxf.apache.org/faq.html#FAQ-AreJAXWSclientproxiesthreadsafe%3F

2
Configuring Message-Level Security

The chapter describes how to configure message-level security for your WebLogic web
service using Java API for XML Web Services (JAX-WS) and Java API for XML-based RPC
(JAX-RPC).
This chapter includes the following sections:

• Overview of Message-Level Security

• Main Use Cases of Message-Level Security

• Using Policy Files for Message-Level Security Configuration

• Configuring Simple Message-Level Security

• Updating a Client Application to Invoke a Message-Secured Web Service

• Example of Adding Security to a JAX-WS Web Service

• Creating and Using a Custom Policy File

• Configuring the WS-Trust Client

• Configuring and Using Security Contexts and Derived Keys

• Associating Policy Files at Runtime Using the Administration Console

• Using Security Assertion Markup Language (SAML) Tokens For Identity

• Associating a Web Service with a Security Configuration Other Than the Default

• Valid Class Names and Token Types for Credential Provider

• Using System Properties to Debug Message-Level Security

• Using a Client-Side Security Policy File

• Using WS-SecurityPolicy 1.2 Policy Files

• Choosing a Policy

• Unsupported WS-SecurityPolicy 1.2 Assertions

• Using the Optional Policy Assertion

• Configuring Element-Level Security

• Smart Policy Selection

• Multiple Transport Assertions

• Example of Adding Security to Reliable Messaging Web Service

• Securing Web Services Atomic Transactions

• Proprietary Web Services Security Policy Files (JAX-RPC Only)

Overview of Message-Level Security
Message-level security specifies whether the SOAP messages between a client application
and the web service invoked by the client should be digitally signed or encrypted, or both. It

2-1

also can specify a shared security context between the web service and client in the
event that they exchange multiple SOAP messages. You can use message-level
security to assure:

• Confidentiality, by encrypting message parts

• Integrity, by digital signatures

• Authentication, by requiring username, X.509, or SAML tokens

See Configuring Simple Message-Level Security for the basic steps you must perform
to configure simple message-level security. This section discusses configuration of the
web services runtime environment, as well as configuration of message-level security
for a particular web service and how to code a client application to invoke the service.

You can also configure message-level security for a web service at runtime, after a
web service has been deployed. See Associating Policy Files at Runtime Using the
Administration Console for details.

Note:

You cannot digitally sign or encrypt a SOAP attachment.

Web Services Security Supported Standards

Note:

Standards Supported by WebLogic Web Services is the definitive source of
web service standards supported in this release.

WebLogic web services implement the following OASIS Standard 1.1 Web Services
Security (WS-Security 1.1 (http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wss) specifications, dated February 1, 2006:

• WS-Security 1.0 and 1.1

• Username Token Profile 1.0 and 1.1

• X.509 Token Profile 1.0 and 1.1

• SAML Token Profile 1.0 and 1.1

These specifications provide security token propagation, message integrity, and
message confidentiality. These mechanisms can be used independently (such as
passing a username token for user authentication) or together (such as digitally
signing and encrypting a SOAP message and specifying that a user must use X.509
certificates for authentication).

Web Services Trust and Secure Conversation
WebLogic web services implement the Web Services Trust (WS-Trust 1.3) and Web
Services Secure Conversation (WS-SecureConversation 1.3) specifications, which

Chapter 2
Overview of Message-Level Security

2-2

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

together provide secure communication between web services and their clients (either other
web services or standalone Java client applications).

The WS-Trust specification defines extensions that provide a framework for requesting and
issuing security tokens, and to broker trust relationships.

The WS-SecureConversation specification defines mechanisms for establishing and sharing
security contexts, and deriving keys from security contexts, to enable the exchange of
multiple messages. Together, the security context and derived keys potentially increase the
overall performance and security of the subsequent exchanges.

Web Services SecurityPolicy 1.2
The WS-Policy specification defines a framework for allowing web services to express their
constraints and requirements. Such constraints and requirements are expressed as policy
assertions.

WS-SecurityPolicy defines a set of security policy assertions for use with the WS-Policy
framework to describe how messages are to be secured in the context of WSS: SOAP
Message Security, WS-Trust and WS-SecureConversation.

You configure message-level security for a web service by attaching one or more policy files
that contain security policy statements, as specified by the WS-SecurityPolicy specification.
See Using Policy Files for Message-Level Security Configuration for detailed information
about how the web services runtime environment uses security policy files.

For information about the elements of the Web Services SecurityPolicy 1.2 that are not
supported in this release of WebLogic Server, see Unsupported WS-SecurityPolicy 1.2
Assertions.

Main Use Cases of Message-Level Security
The implementation of the Web Services Security: SOAP Message Security specification
supports the following use cases:

• Use X.509 certificates to sign and encrypt a SOAP message, starting from the client
application that invokes the message-secured web service, to the WebLogic Server
instance that is hosting the web service and back to the client application.

• Specify the SOAP message targets that are signed, encrypted, or required: the body,
specific SOAP headers, or specific elements.

• Include a token (username, SAML, or X.509) in the SOAP message for authentication.

• Specify that a web service and its client (either another web service or a standalone
application) establish and share a security context when exchanging multiple messages
using WS-SecureConversation (WSSC).

• Derive keys for each key usage in a secure context, once the context has been
established and is being shared between a web service and its client. This means that a
particular SOAP message uses two derived keys, one for signing and another for
encrypting, and each SOAP message uses a different pair of derived keys from other
SOAP messages. Because each SOAP message uses its own pair of derived keys, the
message exchange between the client and web service is extremely secure.

Chapter 2
Main Use Cases of Message-Level Security

2-3

Using Policy Files for Message-Level Security Configuration
You specify the details of message-level security for a WebLogic web service with one
or more security policy files. The WS-SecurityPolicy specification provides a general
purpose model and XML syntax to describe and communicate the security policies of a
web service.

Note:

Previous releases of WebLogic Server, released before the formulation of the
WS-SecurityPolicy specification, used security policy files written under the
WS-Policy specification, using a proprietary schema for security policy. This
proprietary schema for security policy is deprecated, and it is recommended
that you use the WS-SecurityPolicy 1.2 format.

This release of WebLogic Server supports either security policy files that
conform to the WS-SecurityPolicy 1.2 specification or the web services
security policy schema first included in WebLogic Server 9, but not both in
the same web service. The formats are mutually incompatible.

For information about the predefined WS-SecurityPolicy 1.2 security policy
files, see Using WS-SecurityPolicy 1.2 Policy Files.

The security policy files used for message-level security are XML files that describe
whether and how the SOAP messages resulting from an invoke of an operation should
be digitally signed or encrypted. They can also specify that a client application
authenticate itself using a username, SAML, or X.509 token.

You use the @Policy and @Policies JWS annotations in your JWS file to associate
policy files with your web service. You can associate any number of policy files with a
web service, although it is up to you to ensure that the assertions do not contradict
each other. You can specify a policy file at both the class- and method level of your
JWS file.

Note:

If you specify a transport-level security policy for your web service, it must be
at the class level.

In addition, the transport-level security policy must apply to both the inbound
and outbound directions. That is, you cannot have HTTPS for inbound and
HTTP for outbound.

This section describes the following topics:

• Using Policy Files With JAX-WS

• WS-Policy Namespace

• WS-SecurityPolicy Namespace

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-4

• Version-Independent Policy Supported

• Using the SHA-256 Secure Hash Algorithm

• Using the Extended Algorithm Suite (EAS)

Using Policy Files With JAX-WS
For maximum portability, Oracle recommends that you use WS-Policy 1.2 and OASIS WS-
SecurityPolicy 1.2 with JAX-WS.

WS-Policy Namespace
WebLogic Server supports WS-Policy 1.2 with the following namespace:

http://schemas.xmlsoap.org/ws/2004/09/policy

Note:

WebLogic Server also supports WS-Policy 1.5 (now a W3C standard) with the
following namespace: http://www.w3.org/ns/ws-policy

WS-SecurityPolicy Namespace
The following OASIS WS-SX TC Web Services SecurityPolicy namespace is supported:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
In addition to this new version of the namespace, WebLogic Server continues to support the
following Web Services SecurityPolicy namespace:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
In most of the cases, the policy assertions are identical for either namespaces, with the
following exceptions.

• Trust10 and Trust13 assertion. Both Trust10 and Trust13 assertions are supported.

• SC10SecurityContextToken and SC13SecurityContextToken, as described in
Specification Backward Compatibility.

• Derived Key using different WSSC versions (200502, 1.3).

Version-Independent Policy Supported
This version of WebLogic Server supports version-independent policy. You can combine
protocol-specific policies such as WS-SecurityPolicy and WS-ReliableMessaging policy that
are based on different versions of the WS-Policy specification. At runtime, the merged policy
file then contains two or more different namespaces.

There are three versions of WS-SecurityPolicy in this release of WebLogic Server:

• (1) WS-SecurityPolicy 1.2 OASIS standard.

• (2) WS-SecurityPolicy 1.2, as included in WebLogic Server 10.0.

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-5

http://schemas.xmlsoap.org/ws/2004/09/policy
http://www.w3.org/ns/ws-policy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

• (3) Proprietary format WebLogic Server 9.x-style policies (deprecated).

You can mix and match any version of WS-Policy with (1), (2), or a combination of (1)
and (2). However, you cannot mix and match (3) with (1) or (2) and with different
versions of WS-Policy.

The version match possibilities are shown in the following Version-Independent
Matrix table.

Table 2-1 Version-Independent Matrix

Security Policy Versions WS-Policy 1.5 WS-Policy 1.2 WS-Policy 1.5 AND
WS-Policy 1.2

WS-SecurityPolicy 1.2 OASIS standard Y Y Y

WS-SecurityPolicy 1.2 (WebLogic Server
10.0)

Y Y Y

WS-SecurityPolicy 1.2 OASIS standard AND
WS-SecurityPolicy 1.2 (WebLogic Server
10.0)

Y Y Y

WebLogic Server 9.x-style Y Y N

WebLogic Server 9.x-style AND WS-
SecurityPolicy 1.2 OASIS standard or WS-
SecurityPolicy 1.2 (WebLogic Server 10.0)

N N N

If the client program wants to know what version of the policy or security policy is
used, use the versioning API to return the namespace and versioning information.

Using the SHA-256 Secure Hash Algorithm
The WebLogic Server web service security policies support both the SHA-1 and much
stronger SHA-2 (SHA-256) secure hash algorithms for hashing digital signatures. In
addition to the SHA-2 secure hash algorithm, FIPS 140-2 mode requires a stronger
digital signature method algorithm which is supported by extended algorithm suite
policies. See Using the Extended Algorithm Suite. If digital signatures in the FIPS-140
mode are not required in your environment, then you can use the SHA-256 policies.

Note:

SHA-1 Secure Hash Algorithm is not supported in FIPS mode. See Enabling
FIPS Mode in Administering Security for Oracle WebLogic Server.

The predefined web service security policies select which specific algorithm they use
in the <sp:AlgorithmSuite> element.

WebLogic Server includes policies such as Wssp1.2-2007-Wss1.1-X509-
Basic256Sha256.xml that specifically use the SHA-256 secure hash algorithm, as
shown in Table 2-2.

If an SHA-256 version of a policy you want to use exists, use it instead of the older
SHA-1 version.

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-6

Note:

For maximum security, Oracle recommends the use of SHA-256 instead of SHA-1,
where possible.

If you already use the older SHA-1 version of a policy, Oracle recommends that you
update your web service to use the SHA-256 version.

Table 2-2 Using the SHA-256 Policies

Instead of this SHA-1 policy ...Use this SHA-256 policy

Wssp1.2-2007-Https-
UsernameToken-Plain.xml

Wssp1.2-2007-Https-UsernameToken-Plain-
Basic256Sha256.xml

Wssp1.2-2007-Wss1.1-X509-
Basic256.xml

Wssp1.2-2007-Wss1.1-X509-Basic256Sha256.xml

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-X509-
Basic256.xml

Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-
Basic256Sha256.xml

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-X509-
Basic256.xml

Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-
UsernameToken-Plain-X509-Basic256Sha256.xml

Wssp1.2-2007-Saml1.1-
SenderVouches-Wss1.1.xml

Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1-
Basic256Sha256.xml

Wssp1.2-2007-Saml2.0-
SenderVouches-Wss1.1.xml

Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1-
Basic256Sha256.xml

Wssp1.2-2007-Saml2.0-
Bearer-Https.xml

Wssp1.2-2007-Saml2.0-Bearer-Https-
Basic256Sha256.xml

Update the Predefined SHA-1 Policies to SHA-256
The predefined policies listed in this section use SHA-1 for hashing digital signatures. This
hashing algorithm might not meet your current or future security needs, as outlined in the
NIST Special Publication 800-131A, "Transitions: Recommendation for Transitioning the Use
of Cryptographic Algorithms and Key Lengths".

If you use any of these policies, Oracle recommends that you:

1. Use the predefined policy as a template to create a custom policy. See Creating and
Using a Custom Policy File for information on creating a custom policy file.

The policy files are located in ORACLE_HOMEoracle_common/modules/
com.oracle.webservices.wls.wls-soap-stack-impl.jar. Within
com.oracle.webservices.wls.wls-soap-stack-impl.jar, the policy files are located
in /weblogic/wsee/policy/runtime.

2. Edit the custom policy to change the algorithm suite to SHA-256. To do this, change the
algorithm suite inside the policy.

From:

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-7

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>
</wsp:Policy>
</sp:AlgorithmSuite>

To:

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256Sha256/>
</wsp:Policy>
</sp:AlgorithmSuite>

3. Use the custom policy in your web service.

4. Edit the client-side policy to match. The client and web service must use the same
hashing algorithm; <AlgorithmSuite> must be the same on both sides. Otherwise,
the web service rejects the request message sent from the client.

SAML Policies
The following predefined policies use the SHA-1 algorithm. Change them as described
in this section to instead use SHA-256.

• Wssp1.2-2007-Saml1.1-Bearer-Wss1.1.xml
• Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.0.xml
• Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.1-Asymmetric.xml
• Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.1-IssuedToken.xml
• Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.0.xml
• Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml
• Wssp1.2-2007-Saml2.0-Bearer-Wss1.1.xml
• Wssp1.2-2007-Saml2.0-HolderOfKey-Wss1.1-Asymmetric.xml
• Wssp1.2-2007-Saml2.0-HolderOfKey-Wss1.1-IssuedToken.xml
• Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml
• Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1-Asymmetric.xml

Wss1.0 Policies
The following predefined policies use the SHA-1 algorithm. Change them as described
in this section to instead use SHA-256.

• Wssp1.2-2007-Wss1.0-UsernameToken-Digest-X509-Basic256.xml
• Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml
• Wssp1.2-2007-Wss1.0-X509-Basic256.xml
• Wssp1.2-Wss1.0-UsernameToken-Digest-X509-Basic256.xml
• Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic256.xml
• Wssp1.2-Wss1.0-X509-Basic256.xml
• Wssp1.2-Wss1.0-X509-EncryptRequest-SignResponse.xml

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-8

• Wssp1.2-Wss1.0-X509-SignRequest-EncryptResponse.xml

Wss1.1 Policies
The following predefined policies use the SHA-1 algorithm. Change them as described in this
section to instead use SHA-256.

• Wssp1.2-2007-Wss1.1-DK-X509-SignedEndorsing.xml
• Wssp1.2-2007-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml
• Wssp1.2-2007-Wss1.1-UsernameToken-Digest-DK.xml
• Wssp1.2-2007-Wss1.1-UsernameToken-Digest-EncryptedKey.xml
• Wssp1.2-2007-Wss1.1-UsernameToken-Digest-X509-Basic256.xml
• Wssp1.2-2007-Wss1.1-UsernameToken-Plain-DK.xml
• Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey.xml
• Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-Basic256.xml
• Wssp1.2-2007-Wss1.1-X509-Basic256.xml
• Wssp1.2-Wss1.1-DK.xml
• Wssp1.2-Wss1.1-DK-X509-Endorsing.xml
• Wssp1.2-Wss1.1-EncryptedKey.xml
• Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml
• Wssp1.2-Wss1.1-UsernameToken-DK.xml
• Wssp1.2-Wss1.1-X509-Basic256.xml
• Wssp1.2-Wss1.1-X509-EncryptRequest-SignResponse.xml
• Wssp1.2-Wss1.1-X509-SignRequest-EncryptResponse.xml

Secure Conversation Policies
The following predefined policies use the SHA-1 algorithm. Change them as described in this
section to instead use SHA-256.

• Wssp1.2-2007-Wssc1.3-Bootstrap-Https.xml
• Wssp1.2-2007-Wssc1.3-Bootstrap-Https-BasicAuth.xml
• Wssp1.2-2007-Wssc1.3-Bootstrap-Https-ClientCertReq.xml
• Wssp1.2-2007-Wssc1.3-Bootstrap-Https-Saml1.1-Bearer.xml
• Wssp1.2-2007-Wssc1.3-Bootstrap-Https-UNT.xml
• Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml
• Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml
• Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1-Saml1.1-Bearer.xml
• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-Saml1.1-SenderVouches.xml
• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-Basic256.xml
• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml1.1-SenderVouches.xml

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-9

• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml2.0-Bearer.xml
• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-UsernameToken-Plain-

EncryptedKey.xml
• Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

Using the Extended Algorithm Suite (EAS)

When using digital signatures, the WebLogic Server web service security policies
include a set of policies that support an Extended Algorithm Suite (EAS) as required
by the FIPS-140-2 certification. You can attach one of these EAS policies to your web
service when FIPS 140-2 certification is required. Alternatively, if one of the policies do
not satisfy the requirements of your environment, you can edit the algorithm suite in an
existing policy and use that instead.

The standard algorithm suites supported in WebLogic Server web services policies,
and the abbreviations used in the algorithm suite tables, are defined in the WS-
SecurityPolicy 1.3 specification, which is available at http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-
complete.html#_Toc325573605.

The extended algorithm suite policies, such as Wssp1.2-2007-Wss1.1-X509-
Eas256.xml, use a stronger hash algorithm of SHA-256 and stronger signature method
algorithm.

Extended Algorithm Suite Signature Values lists the symmetric signature (Sym Sig)
and asymmetric signature (Asym Sig) values, and the associated algorithm URIs, for
the extended algorithm suite policies.

Table 2-3 Extended Algorithm Suite Signature Values

Property
Algorithm

Value/
Abbreviation

Algorithm URI

[Sym Sig] HmacSha256

http://www.w3.org/2000/09/xmldsig#hmac-sha256

[Asym Sig] RsaSha256

http://www.w3.org/2000/09/xmldsig#rsa-sha256

The XML signatures for RSA-SHA256 and HMAC-SHA256 are defined in the w3c
XML Security Algorithm Cross-Reference specification, which is available at:

http://www.w3.org/TR/xmlsec-algorithms/.

Table 2-4 lists the algorithm suites for the extended algorithm suite policies.

Table 2-4 Algorithm Suites for Extended Algorithm Suite Policies

Algorithm
Suite

Diges
t

Encry
ption

Symm
etric
Key
Wrap

Asymme
tric Key
Wrap

Encrypte
d Key
Derivatio
n

Symmetr
ic
Signatur
e

Asymm
etric
Signatur
e

Signature
Key
Derivation

Minimum
Signature
Key Length

Basic256Exn
256

Sha2
56

Aes25
6

KwAes
256

KwRsaOa
ep

PSha1L2
56

HmacSha
256

RsaSha2
56

PSha1L192 256

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-10

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html#_Toc325573605
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html#_Toc325573605
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html#_Toc325573605
http://www.w3.org/2000/09/xmldsig#hmac-sha256
http://www.w3.org/2000/09/xmldsig#rsa-sha256
http://www.w3.org/TR/xmlsec-algorithms/

Table 2-4 (Cont.) Algorithm Suites for Extended Algorithm Suite Policies

Algorithm
Suite

Diges
t

Encry
ption

Symm
etric
Key
Wrap

Asymme
tric Key
Wrap

Encrypte
d Key
Derivatio
n

Symmetr
ic
Signatur
e

Asymm
etric
Signatur
e

Signature
Key
Derivation

Minimum
Signature
Key Length

Basic192Exn
256

Sha2
56

Aes19
2

KwAes
192

KwRsaOa
ep

PSha1L1
92

HmacSha
256

RsaSha2
56

PSha1L192 192

Basic128Exn
256

Sha2
56

Aes12
8

KwAes
128

KwRsaOa
ep

PSha1L1
28

HmacSha
256

RsaSha2
56

PSha1L128 128

TripleDesExn
256

Sha2
56

TripleD
es

KwTripl
eDes

KwRsaOa
ep

PSha1L1
92

HmacSha
256

RsaSha2
56

PSha1L192 192

Basic256Exn
256Rsa15

Sha2
56

Aes25
6

KwAes
256

KwRsa15 PSha1L2
56

HmacSha
256

RsaSha2
56

PSha1L192 256

Basic192Exn
256Rsa15

Sha2
56

Aes19
2

KwAes
192

KwRsa15 PSha1L1
92

HmacSha
256

RsaSha2
56

PSha1L192 192

Basic128Exn
256Rsa15

Sha2
56

Aes12
8

KwAes
128

KwRsa15 PSha1L1
28

HmacSha
256

RsaSha2
56

PSha1L128 128

TripleDesExn
256Rsa15

Sha2
56

TripleD
es

KwTripl
eDes

KwRsa15 PSha1L1
92

HmacSha
256

RsaSha2
56

PSha1L192 192

The predefined web service security policies select which specific algorithm they use in the
<sp:AlgorithmSuite> element.

Note:

The extended algorithm suite policies can also be used in non-FIPS mode for
increased security. However, since they use their own namespace for the algorithm
suite, there may be interoperability issues with other platforms, if the target platform
does not support the extended algorithm suite assertion. Consider the following
before using the extended algorithm suite policies:

• If you have web services that require FIPS 140-2 certification, then use the EAS
policies.

• If you have new web services that do not need to interoperate with other
platforms but you want increased security, you can use the EAS policies.

For all other web services, you need to assess the security risk, interoperability, and
backward compatibility before converting any policy to an EAS policy.

You can either use the EAS policies as is or identify an existing policy without EAS and
modify the algorithm suite as shown:

1. Use an existing policy to create a custom policy, see Creating and Using a Custom Policy
File.

The policy files are located in ORACLE_HOME/oracle_common/modules/
com.oracle.webservices.wls.wls-soap-stack-impl.jar. Within
com.oracle.webservices.wls.wls-soap-stack-impl.jar, the policy files are
located in /weblogic/wsee/policy/runtime.

Chapter 2
Using Policy Files for Message-Level Security Configuration

2-11

2. Edit the custom policy to change the algorithm suite to FIPS-140-2. To do this,
change the algorithm suite inside the policy.

From

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256Sha256/>
</wsp:Policy>
</sp:AlgorithmSuite>

To

<sp:AlgorithmSuite>
<wsp:Policy>
<orasp:Basic256Exn256 xmlns:orasp="http://schemas.oracle.com/ws/
2006/01/securitypolicy"/>
</wsp:Policy>
</sp:AlgorithmSuite>

3. Use the custom policy in your web service.

4. Edit the client-side policy to match. The client and web service must use the same
hashing algorithm; <AlgorithmSuite> must be the same on both sides. Otherwise,
the web service rejects the request message sent from the client.

Configuring Simple Message-Level Security
This section describes how to configure simple message-level security for the web
services security runtime, a particular WebLogic web service, and a client application
that invokes an operation of the web service. In this document, simple message-level
security is defined as follows:

• The message-secured web service uses the predefined WS-SecurityPolicy files to
specify its security requirements, rather than a user-created WS-SecurityPolicy
file. See Using Policy Files for Message-Level Security Configuration for a
description of these files.

• The web service makes its associated security policy files publicly available by
attaching them to its deployed WSDL, which is also publicly visible.

• The web services runtime uses the out-of-the-box private key and X.509 certificate
pairs, store in the default keystores, for its encryption and digital signatures, rather
than its own key pairs. These out-of-the-box pairs are also used by the core
WebLogic Server security subsystem for SSL and are provided for demonstration
and testing purposes. For this reason Oracle highly recommends you use your
own keystore and key pair in production. To use key pairs other than out-of-the-
box pairs, see Using Key Pairs Other Than the Out-Of-The-Box SSL Pair.

Chapter 2
Configuring Simple Message-Level Security

2-12

Note:

If you plan to deploy the web service to a cluster in which different WebLogic
Server instances are running on different computers, you must use a keystore
and key pair other than the out-of-the-box ones, even for testing purposes. The
reason is that the key pairs in the default WebLogic Server keystore,
DemoIdentity.jks, are not guaranteed to be the same across WebLogic Servers
running on different machines.

If you were to use the default keystore, the WSDL of the deployed web service
would specify the public key from one of these keystores, but the invoke of the
service might actually be handled by a server running on a different computer,
and in this case the server's private key would not match the published public
key and the invoke would fail. This problem only occurs if you use the default
keystore and key pairs in a cluster, and is easily resolved by using your own
keystore and key pairs.

• The client invoking the web service uses a username token to authenticate itself, rather
than an X.509 token.

• The client invoking the web service is a stand-alone Java application, rather than a
module running in WebLogic Server.

Later sections describe some of the preceding scenarios in more detail, as well as additional
web services security uses cases that build on the simple message-level security use case.

It is assumed in the following procedure that you have already created a JWS file that
implements a WebLogic web service and you want to update it so that the SOAP messages
are digitally signed and encrypted. It is also assumed that you use Ant build scripts to
iteratively develop your web service and that you have a working build.xml file that you can
update with new information. Finally, it is assumed that you have a client application that
invokes the non-secured web service. If these assumptions are not true, see:

• Developing JAX-WS Web Services for Oracle WebLogic Server

• Developing JAX-RPC Web Services for Oracle WebLogic Server

Configuring Simple Message-Level Security: Main Steps
To configure simple message-level security for a WebLogic web service:

1. Update your JWS file, adding WebLogic-specific @Policy and @Policies JWS
annotations to specify the predefined policy files that are attached to either the entire web
service or to particular operations.

See Updating the JWS File with @Policy and @Policies Annotations, which describes
how to specify any policy file.

2. Recompile and redeploy your web service as part of the normal iterative development
process.

See Developing WebLogic Web Services in Developing JAX-WS Web Services for
Oracle WebLogic Server and Developing WebLogic Web Services in Developing JAX-
RPC Web Services for Oracle WebLogic Server.

3. Create a keystore used by the client application. Oracle recommends that you create one
client keystore per application user.

Chapter 2
Configuring Simple Message-Level Security

2-13

You can use the Cert Gen utility or keytool utility (http://docs.oracle.com/
javase/8/docs/technotes/tools/windows/keytool.html) to perform this step.
For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities
in Administering Security for Oracle WebLogic Server.

4. Create a private key and digital certificate pair, and load it into the client keystore.
The same pair will be used to both digitally sign the client's SOAP request and
encrypt the SOAP responses from WebLogic Server.

Make sure that the certificate's key usage allows both encryption and digital
signatures. Also see Ensuring That WebLogic Server Can Validate the Client's
Certificate for information about how WebLogic Server ensures that the client's
certificate is valid.

Note:

Oracle requires a key length of 1024 bits or larger.

You can use the Keytool utility (http://docs.oracle.com/javase/8/docs/
technotes/tools/windows/keytool.html) to perform this step.

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities
in Administering Security for Oracle WebLogic Server.

5. Using the WebLogic Server Administration Console, create users for
authentication in your security realm.

See Securing Resources Using Roles and Policies for Oracle WebLogic Server.

6. Update your client application by adding the Java code to invoke the message-
secured web service.

See Using a Client-Side Security Policy File.

7. Recompile your client application.

See Developing JAX-WS Web Services for Oracle WebLogic Server and
Developing JAX-RPC Web Services for Oracle WebLogic Server for general
information.

See the following sections for information about additional web service security uses
cases that build on the basic message-level security use case:

• Using Key Pairs Other Than the Out-Of-The-Box SSL Pair

• Creating and Using a Custom Policy File

• Configuring and Using Security Contexts and Derived Keys

• Associating Policy Files at Runtime Using the Administration Console

• Using Security Assertion Markup Language (SAML) Tokens For Identity

• Invoking a Web Service From a Client Running in a WebLogic Server Instance

• Associating a Web Service with a Security Configuration Other Than the Default

See Using System Properties to Debug Message-Level Security for information on
debugging problems with your message-secured web service.

Chapter 2
Configuring Simple Message-Level Security

2-14

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

Ensuring That WebLogic Server Can Validate the Client's Certificate
You must ensure that WebLogic Server is able to validate the X.509 certificate that the client
uses to digitally sign its SOAP request, and that WebLogic Server in turn uses to encrypt its
SOAP responses to the client. Do one of the following:

• Ensure that the client application obtains a digital certificate that WebLogic Server
automatically trusts, because it has been issued by a trusted certificate authority.

• Create a certificate registry that lists all the individual certificates trusted by WebLogic
Server, and then ensure that the client uses one of these registered certificates.

See SSL Certificate Validation in Administering Security for Oracle WebLogic Server.

Updating the JWS File with @Policy and @Policies Annotations
Use the @Policy and @Policies annotations in your JWS file to specify that the web service
has one or more policy files attached to it. You can use these annotations at either the class
or method level.

Note:

If you specify a transport-level security policy for your web service, it must be at the
class level.

In addition, the transport-level security policy must apply to both the inbound and
outbound directions. That is, you cannot have HTTPS for inbound and HTTP for
outbound.

See Loading a Policy From the CLASSPATH for an additional policy option.

The @Policies annotation simply groups two or more @Policy annotations together. Use the
@Policies annotation if you want to attach two or more policy files to the class or method. If
you want to attach just one policy file, you can use @Policy on its own.

The @Policy annotation specifies a single policy file, where it is located, whether the policy
applies to the request or response SOAP message (or both), and whether to attach the policy
file to the public WSDL of the service.

Setting the uri Attribute
Use the uri attribute to specify the location of the policy file, as described below:

• To specify one of the predefined security policy files that are installed with WebLogic
Server, use the policy: prefix and the name of one of the policy files, as shown in the
following example:

@Policy(uri="policy:Wssp1.2-2007-Https-BasicAuth.xml")

If you use the predefined policy files, you do not have to create one yourself or package it
in an accessible location. For this reason, Oracle recommends that you use the
predefined policy files whenever you can.

Chapter 2
Configuring Simple Message-Level Security

2-15

See Using Policy Files for Message-Level Security Configuration for information
on the various types of message-level security provided by the predefined policy
files.

• To specify a user-created policy file, specify the path (relative to the location of the
JWS file) along with its name, as shown in the following example:

@Policy(uri="../policies/MyPolicy.xml")

In the example, the MyPolicy.xml file is located in the policies sibling directory of
the one that contains the JWS file.

• You can also specify a policy file that is located in a shared Java EE library; this
method is useful if you want to share the file amongst multiple web services
packaged in different Java EE archives.

Note:

In this case, it is assumed that the policy file is in the META-INF/policies
or WEB-INF/policies directory of the shared Java EE library. Be sure,
when you package the library, that you put the policy file in this directory.

To specify a policy file in a shared Java EE library, use the policy prefix and then
the name of the policy file, as shown in the following example:

@Policy(uri="policy:MySharedPolicy.xml")

See Creating Shared Java EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Server for information on creating shared
libraries and setting up your environment so the web service can find the shared
policy files.

Setting Additional Attributes
You can also set the following attributes of the @Policy annotation:

• direction specifies whether the policy file should be applied to the request
(inbound) SOAP message, the response (outbound) SOAP message, or both. The
default value if you do not specify this attribute is both. The direction attribute
accepts the following values:

– Policy.Direction.both

– Policy.Direction.inbound

– Policy.Direction.outbound

• attachToWsdl specifies whether the policy file should be attached to the WSDL file
that describes the public contract of the web service. The default value of this
attribute is false.

Example of Using the @Policy and @Policies JWS Annotations
The following example shows how to use the @Policy and @Policies JWS
annotations, with the relevant sections shown in bold:

Chapter 2
Configuring Simple Message-Level Security

2-16

Example 2-1 Using @Policy and @Policies Annotations

package wssp12.wss10;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Policy;
import weblogic.jws.Policies;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.Oneway;

/**
 * This web service demonstrates how to use WS-SecurityPolicy 1.2
 * to enable message-level security specified in WS-Security 1.0.
 *
 * The service authenticates the client with a username token.
 * Both the request and response messages are signed and encrypted with X509
 certificates.
 *
*/
@WebService(name="Simple", targetNamespace="http://example.org")
@WLHttpTransport(contextPath="/wssp12/wss10",
 serviceUri="UsernameTokenPlainX509SignAndEncrypt")
@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")
public class UsernameTokenPlainX509SignAndEncrypt {

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml")})
 public String echo(String s) {

 return s;
 }

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri="policy:Wssp1.2-2007-Sign-Wsa-Headers.xml")})
 public String echoWithWsa(String s) {
 return s;
 }

 @WebMethod
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",
 direction=Policy.Direction.inbound)
 @Oneway
 public void echoOneway(String s) {
 System.out.println("s = " + s);
 }

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wss1.0-X509-Basic256.xml",
direction=Policy.Direction.inbound),
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",
direction=Policy.Direction.inbound)
 })
 @Oneway
 public void echoOnewayX509(String s) {

Chapter 2
Configuring Simple Message-Level Security

2-17

 System.out.println("X509SignEncrypt.echoOneway: " + s);
 }
}

The following section of the example is the binding policy for the web service,
specifying the policy:

@WebService(name="Simple", targetNamespace="http://example.org")
@WLHttpTransport(contextPath="/wssp12/wss10",
 serviceUri="UsernameTokenPlainX509SignAndEncrypt")
@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")

In the example, security policy files are attached to the web service at the method
level. The specified policy files are those predefined with WebLogic Server, which
means that the developers do not need to create their own files or package them in the
corresponding archive.

The Wssp1.2-2007-SignBody.xml policy file specifies that the body and WebLogic
system headers of both the request and response SOAP message be digitally signed.
The Wssp1.2-2007-EncryptBody.xml policy file specifies that the body of both the
request and response SOAP messages be encrypted.

Loading a Policy From the CLASSPATH
This release of WebLogic Server includes a 'load policy as resource from
CLASSPATH' feature. This feature allows you to copy a policy file to the root directory
of your Web application and then reference it directly by its name (for example,
mypolicy.xml') from an @POLICY annotation in your JWS file.

To enable this feature, start WebLogic Server with -
Dweblogic.wsee.policy.LoadFromClassPathEnabled=true
If you enable this feature, be aware of the following caveat: If you were to then move
the policy file to the WEB-INF/policies directory, the same 'mypolicy.xml' reference in
the @POLICY annotation will no longer work. You would need to add the policy prefix
to the @POLICY annotation; for example, 'policy:mypolicy.xml'.

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair
In the simple message-level configuration procedure, documented in Configuring
Simple Message-Level Security, it is assumed that the web services runtime uses the
private key and X.509 certificate pair that is provided out-of-the-box with WebLogic
Server; this same key pair is also used by the core security subsystem for SSL and is
provided mostly for demonstration and testing purposes. In production environments,
the web services runtime typically uses its own two private key and digital certificate
pairs, one for signing and one for encrypting SOAP messages.

The following procedure describes the additional steps you must take to enable this
use case.

1. Obtain two private key and digital certificate pairs to be used by the web services
runtime. One of the pairs is used for digitally signing the SOAP message and the
other for encrypting it.

Although not required, Oracle recommends that you obtain two pairs that will be
used only by WebLogic web services. You must also ensure that both of the
certificate's key usage matches what you are configuring them to do. For example,
if you are specifying that a certificate be used for encryption, be sure that the

Chapter 2
Configuring Simple Message-Level Security

2-18

certificate's key usage is specified as for encryption or is undefined. Otherwise, the web
services security runtime will reject the certificate.

Note:

Oracle requires that the key length be 1024 bits or larger.

You can use the Cert Gen utility or the keytool utility (http://docs.oracle.com/
javase/8/docs/technotes/tools/windows/keytool.html) to perform this step. For
development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities in
Administering Security for Oracle WebLogic Server.

2. Create, if one does not currently exist, a custom identity keystore for WebLogic Server
and load the private key and digital certificate pairs you obtained in the preceding step
into the identity keystore.

If you have already configured WebLogic Server for SSL, then you have already created
an identity keystore that you can also use in this step.

You can use WebLogic's ImportPrivateKey utility and the keytool utility (http://
docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html) to perform
this step. For development purposes, the keytool utility is the easiest way to get started.

See Creating a Keystore and Creating a Keystore Using ImportPrivateKey in
Administering Security for Oracle WebLogic Server.

3. Using the WebLogic Server Administration Console, configure WebLogic Server to locate
the keystore you created in the preceding step. If you are using a keystore that has
already been configured for WebLogic Server, you do not need to perform this step.

See Configuring Keystores for Production in Administering Security for Oracle WebLogic
Server.

4. Using the WebLogic Server Administration Console, create the default web service
security configuration, which must be named default_wss. The default web service
security configuration is used by all web services in the domain unless they have been
explicitly programmed to use a different configuration.

See Create a Web Service Security Configuration in the Oracle WebLogic Server
Administration Console Online Help.

5. Update the default web services security configuration you created in the preceding step
to use one of the private key and digital certificate pairs for digitally signing SOAP
messages.

See Specify the key pair used to sign SOAP messages in Oracle WebLogic Server
Administration Console Online Help. In the procedure, when you create the properties
used to identify the keystore and key pair, enter the exact value for the Name of each
property (such as IntegrityKeyStore, IntegrityKeyStorePassword, and so on), but
enter the value that identifies your own previously-created keystore and key pair in the
Value fields.

6. Similarly, update the default web services security configuration you created in a
preceding step to use the second private key and digital certificate pair for encrypting
SOAP messages.

Chapter 2
Configuring Simple Message-Level Security

2-19

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

See Specify the key pair used to encrypt SOAP messages in Oracle WebLogic
Server Administration Console Online Help. In the procedure, when you create the
properties used to identify the keystore and key pair, enter the exact value for the
Name of each property (such as ConfidentialityKeyStore.
ConfidentialityKeyStorePassword, and so on), but enter the value that identifies
your own previously-created keystore and key pair in the Value fields.

Updating a Client Application to Invoke a Message-Secured
Web Service

When you update your Java code to invoke a message-secured web service, you
must load a private key and digital certificate pair from the client's keystore and pass
this information, along with a username and password for user authentication if so
required by the security policy, to the secure WebLogic web service being invoked.

If the security policy file of the web service specifies that the SOAP request must be
encrypted, then the web services client runtime automatically gets the server's
certificate from the policy file that is attached to the WSDL of the service, and uses it
for the encryption. If, however, the policy file is not attached to the WSDL, or the entire
WSDL itself is not available, then the client application must use a client-side copy of
the policy file; for details, see Using a Client-Side Security Policy File.

Example 2-2 shows a Java client application under JAX-RPC that invokes the
message-secured WebLogic web service described by the JWS file in Updating the
JWS File With the Security-Related Annotations. The client application takes five
arguments:

• Client username for client authentication

• Client password for client authentication

• Client private key file

• Client digital certificate

• WSDL of the deployed web service

The security-specific code in the sample client application is shown in bold (and
described after the example):

Example 2-2 Client Application Invoking a Message-Secured Web Service
Under JAX-RPC

package examples.webservices.security_jws.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;
import java.security.cert.X509Certificate;
/**
 * Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class SecureHelloWorldClient {
 public static void main(String[] args) throws Throwable {

Chapter 2
Updating a Client Application to Invoke a Message-Secured Web Service

2-20

 //username or password for the UsernameToken
 String username = args[0];
 String password = args[1];
 //client private key file
 String keyFile = args[2];
 //client certificate
 String clientCertFile = args[3];
 String wsdl = args[4];
 SecureHelloWorldService service = new SecureHelloWorldService_Impl(wsdl + "?
WSDL");
 SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();
 //create credential provider and set it to the Stub
 List credProviders = new ArrayList();
 //client side BinarySecurityToken credential provider -- x509
 CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile, keyFile);
 credProviders.add(cp);
 //client side UsernameToken credential provider
 cp = new ClientUNTCredentialProvider(username, password);
 credProviders.add(cp);
 Stub stub = (Stub)port;
 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int validateErr){
 return true;
 }
 });
 String response = port.sayHello("World");
 System.out.println("response = " + response);
 }
}

The main points to note about the preceding code are:

• Import the WebLogic security TrustManager API:

import weblogic.security.SSL.TrustManager;
• Import the following WebLogic web services security APIs to create the needed client-

side credential providers, as specified by the policy files that are associated with the web
service:

import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

• Use the ClientBSTCredentialProvider WebLogic API to create a binary security token
credential provider from the client's certificate and private key:

 CredentialProvider cp =
 new ClientBSTCredentialProvider(clientCertFile, keyFile);

• Use the ClientUNTCredentialProvider WebLogic API to create a username token from
the client's username and password, which are also known by WebLogic Server:

cp = new ClientUNTCredentialProvider(username, password);
• Use the WSSecurityContext.CREDENTIAL_PROVIDER_LIST property to pass a List object

that contains the binary security and username tokens to the JAX-RPC Stub:

stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders)

Chapter 2
Updating a Client Application to Invoke a Message-Secured Web Service

2-21

For JAX-WS, you might code this as follows:

import javax.xml.ws.BindingProvider;
:
Map<String, Object> requestContext = ((BindingProvider)
port).getRequestContext();
requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders);

• Use the weblogic.security.SSL.TrustManager WebLogic security API to verify
that the certificate used to encrypt the SOAP request is valid. The web services
client runtime gets this certificate from the deployed WSDL of the web service,
which in production situations is not automatically trusted, so the client application
must ensure that it is okay before it uses it to encrypt the SOAP request:

stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 return true;
 }
 });

For JAX-WS, you might code this as follows:

requestContext.put(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
int validateErr) {
 return true;
 }
 });

This example shows the TrustManager API on the client side. The web service
application must implement proper verification code to ensure security.

Example 2-3 shows the same Java client application under JAX-WS that invokes the
message-secured web service. The JAX-WS specific code in the sample client
application is shown in bold.

Example 2-3 Client Application Invoking a Message-Secured Web Service
under JAX-WS

package examples.webservices.security_jaxws.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import javax.xml.ws.BindingProvider;
import java.util.List;
import java.util.Map;
import java.util.ArrayList;
import java.security.cert.X509Certificate;/**
 * Copyright © 1996, 2010, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class SecureHelloWorldJaxwsClient {
 public static void main(String[] args) throws Throwable {
 //username or password for the UsernameToken
 String username = args[0];
 String password = args[1];

Chapter 2
Updating a Client Application to Invoke a Message-Secured Web Service

2-22

 //client private key file
 String keyFile = args[2];
 //client certificate
 String clientCertFile = args[3];
 String wsdl = args[4];
 SecureHelloWorldService service = new SecureHelloWorldService_Impl(wsdl + "?
WSDL");
 SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();
 //create credential provider and set it to the request context
 List credProviders = new ArrayList();
 //client side BinarySecurityToken credential provider -- x509
 CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile, keyFile);
 credProviders.add(cp);
 //client side UsernameToken credential provider
 cp = new ClientUNTCredentialProvider(username, password);
 credProviders.add(cp);
 Map<String, Object> requestContext = ((BindingProvider)
port).getRequestContext();
 requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 requestContext.put(WSSecurityContext.TRUST_MANAGER, new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 return true;
 }
 });
 String response = port.sayHello("World");
 System.out.println("response = " + response);
 }
}

Invoking a Web Service From a Client Running in a WebLogic Server
Instance

In the simple web services configuration procedure, described in Configuring Simple
Message-Level Security, it is assumed that a stand-alone client application invokes the
message-secured web service. Sometimes, however, the client is itself running in a
WebLogic Server instance, as part of an EJB, a servlet, or another web service. In this case,
you can use the core WebLogic Server security framework to configure the credential
providers and trust manager so that your EJB, servlet, or JWS code contains only the simple
invoke of the secured operation and no other security-related API usage.

The following procedure describes the high level steps you must perform to make use of the
core WebLogic Server security framework in this use case.

1. In your EJB, servlet, or JWS code, invoke the web service operation as if it were not
configured for message-level security. Specifically, do not create a CredentialProvider
object that contains username or X.509 tokens, and do not use the TrustManager core
security API to validate the certificate from the WebLogic Server hosting the secure web
service. The reason you should not use these APIs in your client code is that the web
services runtime will perform this work for you.

2. Using the WebLogic Server Administration Console, configure the required credential
mapping providers of the core security of the WebLogic Server instance that hosts your
client application. The list of required credential mapper providers depends on the policy
file that is attached to the web service you are invoking. Typically, you must configure the
credential mapper providers for both username/password and X.509 certificates. See
Valid Class Names and Token Types for Credential Provider for the possible values.

Chapter 2
Updating a Client Application to Invoke a Message-Secured Web Service

2-23

Note:

WebLogic Server includes a credential mapping provider for username/
passwords and X.509. However, only username/password is configured
by default.

3. Using the WebLogic Server Administration Console, create the actual credential
mappings in the credential mapping providers you configured in the preceding
step. You must map the user principal, associated with the client running in the
server, to the credentials that are valid for the web service you are invoking. See
Configuring a WebLogic Credential Mapping Provider in Administering Security for
Oracle WebLogic Server.

4. Using the WebLogic Server Administration Console, configure the core WebLogic
Server security framework to trust the X.509 certificate of the invoked web service.
See Configuring the Certificate Lookup and Validation Framework in Administering
Security for Oracle WebLogic Server.

You are not required to configure the core WebLogic Server security framework, as
described in this procedure, if your client application does not want to use the out-of-
the-box credential provider and trust manager. Rather, you can override all of this
configuration by using the same APIs in your EJB, servlet, and JWS code as in the
stand-alone Java code described in Using a Client-Side Security Policy File. However,
using the core security framework standardizes the WebLogic Server configuration
and simplifies the Java code of the client application that invokes the web service.

Example of Adding Security to a JAX-WS Web Service
This section provides a simple example of adding security to a JAX-WS web service.
The example attaches four policies:

• Wssp1.2-2007-SignBody.xml
• Wssp1.2-2007-EncryptBody.xml
• Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml
• Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml
The examples include extensive inline comments in the code.

Example 2-4 shows the web service code.

Note:

This web service implements attachToWsdl=false, and therefore the web
service client needs to load a client-side version of the policy, as shown in
Example 2-5.

Example 2-4 Web Service SignEncrypt.java

package signencrypt;

import java.io.File;

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-24

import weblogic.jws.Policies;
import weblogic.jws.Policy;
import weblogic.jws.security.WssConfiguration;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.soap.MTOM;

import com.sun.xml.ws.developer.SchemaValidation;

/**
 *
 * Webservice which accepts a SOAP Message which is Signed And
 * Encrypted Uses the WS-Policy 1.2
 */

@WebService(name = "SignEncrypt", portName = "SignEncryptPort", serviceName =
"SignEncrypt", targetNamespace = "http://signencrypt")
@BindingType(value = "http://schemas.xmlsoap.org/wsdl/soap/http")
// Domain Level WebserviceSecurity Configuration
@WssConfiguration(value = "Basic-UNT")
@MTOM()
//@SchemaValidation

public class SignEncrypt {

 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri = "policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-
Basic128.xml",
attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */

 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 @WebMethod()
 public String echoString(String input) {
 String result = "[SignEncrypt.echoString]: " + input;

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-25

 System.out.println(result);
 return result;
 }

 @WebMethod()
 public String echoStringWithoutSecurity(String input) {
 String result = "[SignEncrypt.echoString]: " + input;
 System.out.println(result);
 return result;
 }

 @WebMethod()
 public byte[] echoStringAsByteArray(String data) {
 System.out.println("echoByteArray data: " + data);
 byte[] output = data.getBytes();
 System.out.println("Output Length : " + output.length + " Output: " +
output.toString());
 return data.getBytes();
 }

 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri = "policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-
Basic128.xml",
attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */

 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 @WebMethod()
 public byte[] echoByteArrayWithSecurity(byte[] inputData) {
 System.out.println("echoByteArrayWithSecurity data: " + inputData.length + "
bytes");
 return inputData;
 }

 @WebMethod()
 public byte[] echoByteArray(byte[] inputData) {
 System.out.println("echoByteArray data: " + inputData);
 return inputData;
 }

 @WebMethod()

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-26

 public DataHandler getDataHandler(String fileName) {

 DataHandler handler = null;
 try {
 File file = new File(fileName);
 System.out.println("file: " + file.getCanonicalPath() + ", " + file.getPath());

 FileDataSource fileDataSource = new FileDataSource(file);
 handler = new DataHandler(fileDataSource);

 } catch(Exception e) {
 System.out.println("Error Creating Data Handelr: " + e.getMessage());
 }

 return handler;

 }

 @WebMethod()
 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri = "policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-
Basic128.xml", attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */
 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 public DataHandler getDataHandlerWithSecurity(String fileName) {

 DataHandler handler = null;
 try {
 File file = new File(fileName);
 System.out.println("file: " + file.getCanonicalPath() + ", " + file.getPath());

 FileDataSource fileDataSource = new FileDataSource(file);
 handler = new DataHandler(fileDataSource);

 } catch(Exception e) {
 System.out.println("Error Creating Data Handelr: " + e.getMessage());
 }

 return handler;

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-27

 }

}

As noted, the web service implements attachToWsdl=false, and therefore the web
service client needs to load a client-side version of the policy. Example 2-5 shows an
example of using the weblogic.jws.jaxws.ClientPolicyFeature class to load client-side
policies.

The example includes extensive inline comments.

Example 2-5 SOAClient.java

package signencrypt.client;
import weblogic.jws.jaxws.ClientPolicyFeature;
import weblogic.jws.jaxws.policy.InputStreamPolicySource;
import weblogic.security.SSL.TrustManager;
import weblogic.wsee.policy.runtime.BuiltinPolicyFinder;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.wsee.security.util.CertUtils;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;

import soa.client.Bpelprocess1ClientEp;
import soa.client.BPELProcess1;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceFeature;
import javax.xml.ws.soap.MTOMFeature;

public class SOAClient {

 private final static boolean debug = true;

 private final static String endpointURL =
 "http://....com:8001/soa-infra/services/default/soa/bpelprocess1_client_ep";
 private final static String certsDir = "C:/webservices/server/keystores";

 private final static String serverKeyStoreName = "default-keystore.jks";
 private final static String serverKeyStorePass = "...";
 private final static String serverCertAlias = "alice";
 private final static String serverKeyPass = "...";

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-28

 private final static String username = "weblogic";
 private final static String password = "...";

 private final static String fileName =
 "C:/webservices/farallon/owsm-interop/mtom.JPG";

 private final static String outputFileName =
 "C:/webservices/farallon/owsm-interop/output.jpg";

 private final static String[] clientPolicyFileNames =
 {
 "./policy/Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml",
 "./policy/Wssp1.2-2007-SignBody.xml",
 "./policy/Wssp1.2-2007-EncryptBody.xml" };

 private BPELProcess1 port = null;

 /**
 * Create the Stub/Port and set the Stub/Port with Client Side Security Policy
 * Feature and MTOM Feature.
 * @throws Exception
 */

 private void createStubWithClientPolicy() throws Exception {

 URL url = new URL(endpointURL + "?WSDL");

 QName serviceName =
 new QName("http://xmlns.oracle.com/SOASecurity/soa/BPELProcess1",
 "bpelprocess1_client_ep");

 Bpelprocess1ClientEp service = new Bpelprocess1ClientEp(url, serviceName);

 QName operationName =
 new QName("http://xmlns.oracle.com/SOASecurity/soa/BPELProcess1", "process");

 ClientPolicyFeature policyFeature = new ClientPolicyFeature();

 // Set the Client Side Policy on the operation with QName <operationName>

policyFeature.setEffectivePolicyForOperation(operationName, new
InputStreamPolicySource(getPolicyInputStreamArray(clientPolicyFileNames)
));
 MTOMFeature mtomFeature = new MTOMFeature();

 WebServiceFeature[] features = { policyFeature, mtomFeature };
 // WebServiceFeature[] features = { mtomFeature };
 //WebServiceFeature[] features = {policyFeature};

 port = service.getBPELProcess1Pt(features);
 }

 /**
 * Setup the Client Port/Stub used to invoke the webservice with Security
 *
 * @throws Exception
 */
 private void setUp() throws Exception {
 createStubWithClientPolicy();
 /**

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-29

 * Get the Server Public Certificate to Encrypt the Symmetric Key or the
 * SOAP Message
 */
 /**
 * Get the Server Public Certificate to Verify the Signature of the
 * Symmetric Key or the SOAP Message
 */
 X509Certificate serverCert =
 (X509Certificate) CertUtils.getCertificate(
 certsDir + "/" + serverKeyStoreName, serverKeyStorePass,
 serverCertAlias, "JKS").get(0);
 List<CredentialProvider> credProviders =
 new ArrayList<CredentialProvider>();
 /*
 * Set up UserNameToken
 */
 credProviders.add(new ClientUNTCredentialProvider(username.getBytes(),
 password.getBytes()));
 Map<String, Object> rc = ((BindingProvider) port).getRequestContext();
 /*
 * For Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml
 * there is no need to specify the client side public certificate and
 * private key as this is a symmetric key use case. serverCert is used to
 * encrypt the Symmetric Key/Keys
 */
 rc.put(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT, serverCert);
 rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 rc.put(WSSecurityContext.TRUST_MANAGER, new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 System.out.println("Validating Server Certificate");
 return true;
 }
 });

 }
 /**
 * Returns an array of InputStreams of the policy files
 *
 * @param policyNames
 * @return array of InputStreams of Policy's
 * @throws FileNotFoundException
 */
 private InputStream[] getPolicyInputStreamArray(String[] policyNames)
 throws FileNotFoundException {
 InputStream[] inpStreams = new InputStream[policyNames.length];
 for (int k = 0; k < policyNames.length; k++) {
 System.out.println("policy name: " + policyNames[k]);
 inpStreams[k] = getPolicyInputStream(policyNames[k]);
 }
 return inpStreams;
 }
 /**
 * Returns an InputStream of the policy file
 *
 * @param myPolicyName
 * @return
 * @throws FileNotFoundException
 */
 private InputStream getPolicyInputStream(String myPolicyName)

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-30

 throws FileNotFoundException {
 return new FileInputStream(myPolicyName);
 }
 /**
 * Invoke the webservice at endpointURL
 *
 (http://....:9003/soa-infra/services/default/soa/bpelprocess1_client_ep)
 *
 * @throws Exception
 */
 private void invokeProcess() throws Exception {
 InputStream inputstream = null;
 OutputStream outputstream = null;
 try {

 File file = new File(fileName);
 File outputFile = new File(outputFileName);

 inputstream = new BufferedInputStream(new FileInputStream(file));
 int bytesAvailable = -1;
 int counter = 0;
 int bytesRead = 0;
 int fileSize = (int) file.length();

 byte[] fileInBytes = new byte[fileSize];

 bytesRead = inputstream.read(fileInBytes);
 System.out.println("bytesRead: " + bytesRead + ", fileSize: " + fileSize + "
fileInBytes: " + fileInBytes.length);

 byte[] result = port.process(fileInBytes);
 /*byte[] input = "Hello".getBytes();
 System.out.println("input length : "+ input.length);

 byte[] result = port.process(input);*/
 if (!outputFile.exists()) {
 outputFile.createNewFile();
 }

 outputstream = new BufferedOutputStream(new FileOutputStream(outputFile));

 if (result != null) {
 System.out.println("Result Length: " + result.length);
 } else {
 System.out.println("result is null");
 }
 outputstream.write(result);

 // System.out.println(result);
 } catch (Exception e) {
 System.out.println("Error Creating Data Handler: " + e.getMessage());
 } finally {

 if (inputstream != null) {
 inputstream.close();
 }

 if (outputstream != null) {
 outputstream.close();
 }
 }

Chapter 2
Example of Adding Security to a JAX-WS Web Service

2-31

 }
 public static void main(String[] args) {
 try {
 SOAClient client = new SOAClient();
 client.setUp();
 //client.createStubWithClientPolicy();
 client.invokeProcess();
 } catch (Exception e) {
 System.out.println("Error calling SOA Webservice: " + e.getMessage());
 if (debug) {
 e.printStackTrace();
 }
 }
 }
}

Creating and Using a Custom Policy File
Although WebLogic Server includes a number of predefined web services security
policy files that typically satisfy the security needs of most programmers, you can also
create and use your own WS-SecurityPolicy file if you need additional configuration.
See Using Policy Files for Message-Level Security Configuration for general
information about security policy files and how they are used for message-level
security configuration.

Note:

Use of element-level security always requires one or more custom policy files
to specify the particular element path and name to be secured.

When you create a custom policy file, you can separate out the three main security
categories (authentication, encryption, and signing) into three separate policy files, as
do the predefined files, or create a single policy file that contains all three categories.
You can also create a custom policy file that changes just one category (such as
authentication) and use the predefined files for the other categories (Wssp1.2-2007-
SignBody.xml, Wssp1.2-SignBody.xml and Wssp1.2-2007-EncryptBody, Wssp1.2-
EncryptBody). In other words, you can mix and match the number and content of the
policy files that you associate with a web service. In this case, however, you must
always ensure yourself that the multiple files do not contradict each other.

Your custom policy file needs to comply with the standard format and assertions
defined in WS-SecurityPolicy 1.2. Note, however, that this release of WebLogic Server
does not completely implement WS-SecurityPolicy 1.2. See Unsupported WS-
SecurityPolicy 1.2 Assertions. The root element of your WS-SecurityPolicy file must be
<Policy>.

The following namespace declaration is recommended in this release:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
. . .
</wsp:Policy>

Chapter 2
Creating and Using a Custom Policy File

2-32

WLS also supports other namespaces for Security Policy. For example, the following two
namespaces are also supported:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"
>
. . .
</wsp:Policy>

or

<wsp:Policy
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
. . .
</wsp:Policy>

You can also use the predefined WS-SecurityPolicy files as templates to create your own
custom files.

Configuring the WS-Trust Client
WebLogic Server implements a WS-Trust client that retrieves security tokens from a Security
Token Service (STS) for use in Web Services Security. This WS-Trust client is used internally
by the client side WebLogic Server web service runtime.

You can configure the WS-Trust client as follows:

• Through properties on the web service client stub for a standalone web service client.

• Through MBean properties for a web service client running on the server.

In releases prior to 10g Release 3 (10.3) of WebLogic Server, the WS-Trust client could use
only security tokens from an STS that was co-located with a web service and hosted by
WebLogic Server. However, the STS now need only be accessible to the WS-Trust client; it
does not need to be co-located.

The WS-Trust client in prior releases supported only WS-SecureConversation tokens. It now
also supports SAML tokens.

Supported Token Types
Web Service Secure Conversation Language (WS-SecureConversation) and SAML tokens
are supported. The tokens have the following namespace and URI:

• For WS-SecureConversation 1.3:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

• For WS-SecureConversation 1.2:

http://schemas.xmlsoap.org/ws/2005/02/sc
http://schemas.xmlsoap.org/ws/2005/02/sc/sct

• For SAML 1.1:

urn:oasis:names:tc:SAML:1.0:assertion

Chapter 2
Configuring the WS-Trust Client

2-33

Supported confirmation method are sender-vouches, holder-of-key, and bearer.
Symmetric holder-of-key is not supported.

• For SAML 2.0:

urn:oasis:names:tc:SAML:2.0:assertion

Supported confirmation methods are sender-vouches, holder-of-key and bearer.
Symmetric holder-of-key is not supported.

Configuring WS-Trust Client Properties
You set some of the configuration properties specifically for the WS-Trust client; others
are determined through configuration information generally present for a web service
client. For example, the type of token retrieved is determined by the security policy of
the web service that the web service client is invoking.

The properties that you can explicitly set and the token type they apply to are as
follows.

• STS URI (WS-SecureConversation and SAML)

• STS security policy (SAML)

• STS SOAP version (SAML)

• STS WS-Trust version (SAML)

• STS Server Certificate (SAML)

This section describes the following topics:

• "Obtaining the URI of the Secure Token Service"

• "Configuring STS URI for WS-SecureConversation: Standalone Client"

• "Configuring STS URI for SAML: Standalone Client"

• "Configuring STS URI Using WLST: Client On Server Side"

• "Configuring STS URI Using Console: Client On Server Side"

• "Configuring STS Security Policy: Standalone Client"

• "Configuring STS Security Policy Using WLST: Client On Server Side"

• "Configuring STS Security Policy: Using the Console"

• "Configuring the STS SOAP and WS-Trust Version: Standalone Client"

• "Configuring the SAML STS Server Certificate: Standalone Client"

Obtaining the URI of the Secure Token Service
There are three sources from which the WS-Trust client can obtain the URI of the
secure token service (STS). The order of precedence is as follows:

• The URI for the STS, as contained in the sp:Issuer/wsa:Address element of the
token assertion in the web service's security policy.

• A configured STS URI.

• The co-located STS URI. This is the default if there is no other source (WS-
SecureConversation only).

Chapter 2
Configuring the WS-Trust Client

2-34

Note:

The URI for the STS, as contained in the sp:IssuedToken/sp:Issuer/wsa:Address
element of the token assertion in the web service's security policy is supported on
the STS URI only for getting the SAML token, and is not supported for getting the
Secure Conversation token in this release.

For example, the following assertion for STS URI is not supported for obtaining the
Secure Conversation token (SCT):

<sp:IssuedToken
IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
<sp:Issuer>
<a:Address>http://example.com/STS</a:Address>
</sp:Issuer>
. . .
</sp:IssuedToken>

Configuring STS URI for WS-SecureConversation: Standalone Client
For WS-SecureConversation, if the STS is co-located with the service there is no need to
configure the STS URI. However, when the STS and the service do not share the same port,
for example the service uses an HTTP port and the STS uses an HTTPs port, you need to
configure the STS URI.

The following code example demonstrates setting the STS URI on a client stub under JAX-
RPC. The example assumes that the location of the STS URI is already known to the client.

String wsdl = "http://myserver/wsscsecuredservice?wsdl";
WsscSecuredService service = new WsscSecuredService_Impl(wsdl);
WsscSecured port = service.getWsscSecuredSoapPort();
Stub stub = (Stub) port;
String sts = "https://myserver/wsscsecuredservice";
stub._setProperty(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_WSSC, sts);

The following code example demonstrates setting the STS URI on a client stub under JAX-
WS.

String wsdl = "http://myserver/wsscsecuredservice?wsdl";
WsscSecuredService service = new WsscSecuredService_Impl(wsdl);
String sts = "https://myserver/wsscsecuredservice";
WsscSecured port = service.getWsscSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();
context.put(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_WSSC, sts)

Configuring STS URI for SAML: Standalone Client
When the STS is used for retrieving the SAML token, the STS is not co-located with the
service and there is no default STS URI. You must configure the STS URI in this case.

The following code example demonstrates setting the STS URI for SAML on a client stub
under JAX-RPC. The example assumes that the location of the STS URI is already known to
the client.

Chapter 2
Configuring the WS-Trust Client

2-35

String wsdl = "http://myserver/wssecuredservice?wsdl";
WssecuredService service = new WsSecuredService_Impl(wsdl);
WsSecured port = service.getWsSecuredSoapPort();
Stub stub = (Stub) port;
String sts = "https://stsserver/standaloneSTS/saml/STS";
stub._setProperty(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_SAML, sts);

The following code example demonstrates setting the STS URI for SAML on a client
stub under JAX-WS.

String wsdl = "http://myserver/wsssecuredservice?wsdl";
WsSecuredService service = new WsSecuredService_Impl(wsdl);
String sts = "https://stsserver/standaloneSTS/saml/STS";
WsscSecured port = service.getWsSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();
context.put(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_SAML, sts)

Configuring STS URI Using WLST: Client On Server Side
Example 2-6 demonstrates using the WebLogic Scripting Tool (WLST) to create a
credential provider for the WS-Trust client and then configuring the STS URI, as
indicated by bold text.

The provider class name can be one of the following:

• weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider
• weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider
• weblogic.wsee.security.saml.SAMLTrustCredentialProvider
Example 2-6 Configuring STS URI Using WLST

userName = sys.argv[1]
passWord = sys.argv[2]
host = sys.argv[3]+":"+sys.argv[4]
sslhost = sys.argv[3]+":"+sys.argv[5]
url="t3://"+ host connect(userName, passWord, url)
edit()
startEdit()
defaultWss = cmo.lookupWebserviceSecurity('default_wss')
#Create credential provider for SCT Trust Client
wtm = defaultWss.createWebserviceCredentialProvider('trust_client_sct_cp')
wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider'
)

wtm.setTokenType('sct_trust')
cpm = wtm.createConfigurationProperty('StsUri')
cpm.setValue("https://" + sslhost + "/standaloneSTS/wssc13/STS")
save()
activate(block="true")
disconnect()
exit()

Configuring STS URI Using Console: Client On Server Side
Configuring the STS URI through the WebLogic Server Administration Console allows
the decision about which URI to use to be made at runtime, and not during the web
service development cycle.

Chapter 2
Configuring the WS-Trust Client

2-36

Follow these steps to configure the STS URI through the Console:

1. Create a web services security configuration, as described in the Oracle WebLogic
Server Administration Console Online Help. This creates an empty configuration.

2. Edit the web services security configuration to create a credential provider, as described
in the Oracle WebLogic Server Administration Console Online Help:

• On the Create Credential Provider tab, enter the following:

– A provider name, which is your name for this MBean instance.

– The provider class name, which can be

weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider

or

weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider

or

weblogic.wsee.security.saml.SAMLTrustCredentialProvider
– The token type, which is a short name to identify the token. For example, sct or

saml.

3. Select Next.

4. Enter the name/value pairs for the STS URI.

5. Select Finish.

6. On the Security Configuration General tab, set the value of the Default Credential
Provider STS URI.

The Default Credential Provider STS URL is the default STS endpoint URL for all WS-
Trust enabled credential providers of this web service security configuration.

Configuring STS Security Policy: Standalone Client
The following code example demonstrates setting the STS security policy on a client stub,
under JAX-RPC, as indicated in bold.

import weblogic.wsee.message.WlMessageContext;
. . .
String wsdl = "http://myserver/samlsecuredservice?wsdl";
SamlSecuredService service = new SamlSecuredService_Impl(wsdl);
SamlSecured port = service.getSamlSecuredSoapPort();
Stub stub = (Stub) port;
InputStream policy = loadPolicy();
stub._setProperty(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

The following code example demonstrates setting the STS security policy on a client stub,
under JAX-WS, as indicated in bold.

import weblogic.wsee.message.WlMessageContext;
. . .
String wsdl = "http://myserver/wsssecuredservice?wsdl";
WsSecuredService service = new WsSecuredService_Impl(wsdl);
WsscSecured port = service.getWsSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();

Chapter 2
Configuring the WS-Trust Client

2-37

InputStream policy = loadPolicy();
context._setProperty(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

Configuring STS Security Policy Using WLST: Client On Server Side
Example 2-7 demonstrates using WLST to create a credential provider for the default
web services security configuration, and then configuring the STS security policy, as
indicated by bold text. The value for the StsPolicy property must be either a policy
included in WebLogic Server (see Using WS-SecurityPolicy 1.2 Policy Files) or a
custom policy file in a Java EE library (see Creating and Using a Custom Policy File).

Example 2-7 Configuring STS Security Policy Using WLST

userName = sys.argv[1]
passWord = sys.argv[2]
host = sys.argv[3]+":"+sys.argv[4]
sslhost = sys.argv[3]+":"+sys.argv[5]
samlstsurl = sys.argv[6]
url="t3://"+ host
print "Connect to the running adminSever"
connect(userName, passWord, url)
edit()
startEdit()
defaultWss = cmo.lookupWebserviceSecurity('default_wss')

#Create credential provider for SAML Trust Client

wtm = defaultWss.createWebserviceCredentialProvider('trust_client_saml_cp')
wtm.setClassName('weblogic.wsee.security.saml.SAMLTrustCredentialProvider')
wtm.setTokenType('saml_trust')
cpm = wtm.createConfigurationProperty('StsUri')
cpm.setValue(samlstsurl)
cpm = wtm.createConfigurationProperty('StsPolicy')
cpm.setValue("Wssp1.2-2007-Https-UsernameToken-Plain")
save()
activate(block="true")
disconnect()
exit()

Configuring STS Security Policy: Using the Console
Perform the following steps to configure the STS security policy using the console:

1. Create a web services security configuration, as described in the Oracle WebLogic
Server Administration Console Online Help. This creates an empty configuration.

2. Edit the web services security configuration to create a credential provider, as
described in the Oracle WebLogic Server Administration Console Online Help:

• On the Create Credential Provider tab, enter the following:

– A provider name, which is your name for this MBean instance.

– The provider class name, which can be

weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider

or

weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider

Chapter 2
Configuring the WS-Trust Client

2-38

or

weblogic.wsee.security.saml.SAMLTrustCredentialProvider
– The token type, which is a short name to identify the token. For example, sct or

saml.

3. Select Next.

4. Enter the name/value pairs for the STS policy.

5. Select Finish.

Configuring the STS SOAP and WS-Trust Version: Standalone Client
For a SAML STS, you need to configure the WS-Trust version only if it is not the default (WS-
Trust 1.3). The supported values for WSEESecurityConstants.TRUST_VERSION are as follows:

• http://docs.oasis-open.org/ws-sx/ws-trust/200512 (WS-Trust 1.3)

• http://schemas.xmlsoap.org/ws/2005/02/trust
You also need to configure the SOAP version if it is different from the SOAP version of the
target web service for which you generated the standalone client. (See Interface
SOAPConstants (http://docs.oracle.com/javase/8/docs/api/javax/xml/soap/
SOAPConstants.html) for the definitions of the constants.) The supported values for
WSEESecurityConstants.TRUST_SOAP_VERSION are as follows:

• javax.xml.soap.SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE (as per http://
schemas.xmlsoap.org/soap/envelope/)

• javax.xml.soap.SOAPConstants.URI_NS_SOAP_1_2_ENVELOPE (as per http://
www.w3.org/2003/05/soap-envelope)

Example 2-8 shows an example of setting the WS-Trust and SOAP versions.

Example 2-8 Setting the WS-Trust and SOAP Versions

// set WS-Trust version
stub._setProperty(WSEESecurityConstants.TRUST_VERSION, "http://docs.oasis-open.org/ws-
sx/ws-trust/200512");
// set SOAP version
stub._setProperty(WSEESecurityConstants.TRUST_SOAP_VERSION,
SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE);

Configuring the SAML STS Server Certificate: Standalone Client
For a SAML STS, you need to configure the STS server X.509 certificate if you use a
message-level policy to protect the request and response between the STS server and the
WS-Trust client. (If you use a transport-level policy, you do not need to configure the STS
server certificate.)

Example 2-9 shows an example of setting the STS server certificate under JAX-RPC,
assuming the location of the STS sever certificate is known.

Example 2-9 Setting STS Server Certificate under JAX-RPC

// import
import weblogic.wsee.security.util.CertUtils;
import java.security.cert.X509Certificate;
import weblogic.wsee.jaxrpc.WLStub;
. . .

Chapter 2
Configuring the WS-Trust Client

2-39

http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2005/02/trust
http://docs.oracle.com/javase/8/docs/api/javax/xml/soap/SOAPConstants.html
http://docs.oracle.com/javase/8/docs/api/javax/xml/soap/SOAPConstants.html
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope

// get X509 Certificate
String stsCertLocation = "../../cert/WssIP.cer";
X509Certificate stsCert = CertUtils.getCertificate(stsCertLocation);
// set STS Server Cert
stub._setProperty(WLStub.STS_ENCRYPT_CERT,stsCert);

Example 2-10 shows the same example of setting the STS server certificate under
JAX-WS. The JAX-WS specific code in the example is shown in bold.

Example 2-10 Setting STS Server Certificate under JAX-WS

// import
import weblogic.wsee.security.util.CertUtils;
import java.security.cert.X509Certificate;
import weblogic.wsee.jaxrpc.WLStub;
. . .

// get X509 Certificate
String stsCertLocation = "../../cert/WssIP.cer";
X509Certificate stsCert = CertUtils.getCertificate(stsCertLocation);
// set STS Server Cert
context.put(WLStub.STS_ENCRYPT_CERT,stsCert);

Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS
You can configure a client application to use WS-Trust to retrieve the SAML 2.0 bearer
token from STS, and then use the SAML token for authentication on the bootstrap
message on secure conversation.

In this scenario, transport-level message protection is used for WS-Trust message
exchange between a client and the SAML STS, as well as the bootstrap message on
secure conversation. A public key and private key are not required for this standalone
client.

The policy for the service side is similar to the predefined WS-Policy file
Wssp1.2-2007-Wssc1.3-Bootstrap-Https-UNT.xml, except the following
<sp:SupportingTokens> is used in the policy instead:

<sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
</sp:SupportingTokens>

The policy that is used to protect the WS-Trust message between the WS-Trust client
and the remote STS server is a copy of the packaged security policy file
Wssp1.2-2007-Https-UsernameToken-Plain.xml, which uses username token for
authentication in transport-level message protection.

Chapter 2
Configuring the WS-Trust Client

2-40

Note:

When using transport-level security policy to protect the bootstrap message of
secure conversation, the WS-Trust messages exchanged between the WS-Trust
client and the remote STS must also use transport-level security policy to protect
the WS-Trust messages.

When invoking the web service from the client, it is similar to a standard client application that
invokes a message-secured web service, as described in "Using a Client-Side Security Policy
File". The major difference is that you need to configure two STS endpoints: one for the
retrieved SAML token, and another for getting the Security Context Token (SCT) for Secure
Conversation.

Example 2-11 shows a simple example of a client application invoking a web service under
JAX-WS that is retrieving a SAML token via WS-Trust. It is associated with a security policy
that enables secure conversations by using HTTPS transport-level protection. The sections in
bold are relevant to security contexts and are described after the example:

Example 2-11 Client Application Using WS-Trust and WS-SecureConversation with
HTTPS

package examples.webservices.samlwsschttps.client;

import weblogic.security.SSL.TrustManager;
import weblogic.wsee.message.WlMessageContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.saml.SAMLTrustCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.security.util.CertUtils;
import com.sun.xml.ws.developer.MemberSubmissionAddressingFeature;
import java.security.cert.X509Certificate;
import javax.xml.ws.*;
import javax.xml.namespace.*;
import javax.net.ssl.HttpsURLConnection;
import java.net.URL;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class TravelAgencyClient {

 public static final String STS_POLICY = "StsHttpsUntPolicy.xml";
 static {
 HttpsURLConnection.setDefaultHostnameVerifier(new MyHostnameVerifier());
 try {
 String defaultTrustStore = new File(TravelAgencyClient.class.getResource("/
cacerts").getFile()).getCanonicalPath();
 System.out.println("Default trustStore:\t" + defaultTrustStore);
 System.setProperty("javax.net.ssl.trustStore", defaultTrustStore);
 } catch (IOException e) {
 System.out.printf("can't find default trusted keystore");

Chapter 2
Configuring the WS-Trust Client

2-41

 }
 }

 public static void main(String[] args) throws Exception {
 TravelAgencyClient client = new TravelAgencyClient();
 String wsscStsURL = System.getProperty("wsscStsURL");
 System.out.println("WSSC StS URL \t" +
wsscStsURL);
 String samlStsURL = System.getProperty("samlStsURL");
 System.out.println("StS URL \t" + samlStsURL);
 String hotelWsdlURL = System.getProperty("hotelWsdlURL");
 System.out.println("Hotel Service WSDL URL \t" + hotelWsdlURL);

 String hotelResult = client.callWsscHotelService("Travel Agency client to
Hotel Service", wsscStsURL,hotelWsdlURL, samlStsURL);
 System.out.println("Hotel Service return value: -->"+hotelResult);
 }

 public String callWsscHotelService(String hello,
 String wsscStsURL,
 String hotelWsdlURL,
 String samlStsURL) throws Exception{

 HotelService service = new HotelService(new URL(hotelWsdlURL),
 new QName("http://wsinterop.org/samples", "HotelService"));

 IHotelService port = service.getIHotelServicePort(new
MemberSubmissionAddressingFeature());

 BindingProvider provider = (BindingProvider)port;
 this.configurePort(provider, wsscStsURL, samlStsURL);

 try {
 // for securie conversation, it can call twice
 String s1 = port.getName(hello);
 String s2 = port.getName(hello + " --- " + s1) ;
 WSSCClientUtil.terminateWssc((BindingProvider)port);
 return s2;
 } catch (Exception ex) {
 ex.printStackTrace();
 throw new RuntimeException("fail to call the remote hotel service!", ex);
 }
 }

 private void configurePort(BindingProvider provider, String wsscStsURL, String
samlStsURL) throws Exception {

 Map context = provider.getRequestContext();
 InputStream policy = getPolicy(STS_POLICY);
 context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);
 if (null != wsscStsURL) {
 context.put(WLStub.WST_STS_ENDPOINT_ON_WSSC, wsscStsURL);
 }
 context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, samlStsURL);
 context.put(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 return true;
 }

Chapter 2
Configuring the WS-Trust Client

2-42

 });
 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 context.put(com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER, new
MyHostnameVerifier());
 }

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new SAMLTrustCredentialProvider());
 credProviders.add(getClientUNTCredentialProvider());
 return credProviders;
 }
 private static CredentialProvider getClientUNTCredentialProvider() throws Exception {
 String username = System.getProperty("target.username", "Alice");
 String password = System.getProperty("target.password", "Password1");
 return new ClientUNTCredentialProvider(username.getBytes(),
 password.getBytes());
 }
 private InputStream getPolicy(String policyName) {
 String resName = '/' + this.getClass().getPackage().getName().replace('.', '/') +
'/' + policyName;
 InputStream stsPolicy = this.getClass().getResourceAsStream(resName);
 if(stsPolicy == null) {
 throw new RuntimeException("STS policy is not correctly set!");
 }
 return stsPolicy;
 }
 public static class MyHostnameVerifier implements javax.net.ssl.HostnameVerifier {
 public boolean verify(String hostname, javax.net.ssl.SSLSession session) {
 return(true);
 }
 }
}

Note the following points in this example:

• Configure the policy for message protection between the remote STS and WS-Trust
client:

context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);
• The bootstrap is protected by transport-level policy, and you need to set the STS

endpoint address for secure conversation:

context.put(WLStub.WST_STS_ENDPOINT_ON_WSSC, wsscStsURL);
• Set the STS endpoint address for SAML STS:

context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, samlStsURL);
• For transport-level protection, you need to configure the hostname verifier:

context.put(com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER, new
MyHostnameVerifier());

• Set the SAML Trust Credential Provider to handle the remote SAML token retrieval:

credProviders.add(new SAMLTrustCredentialProvider());
• Set the client user name token provider to use the client's user name and password to

exchange the SAML token via the WS-Trust call:

Chapter 2
Configuring the WS-Trust Client

2-43

credProviders.add(getClientUNTCredentialProvider());

Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1
Message Protections

Similar to Example 2-11, you can configure a client application to use WS-Trust to
retrieve the SAML 2.0 bearer token from STS, and then use the SAML token for
authentication on the bootstrap message on secure conversation. However, instead of
using HTTPS transport-level message protection, it uses WS-Security 1.1 message-
level protection, and HTTPS configuration is not required.

In this scenario, the STS server's X.509 certificate is used to protect the WS-Trust
message exchange between the client and the SAML STS, and the server's X.509
certificate is used to protect the bootstrap message on secure conversation. A public
key and private key are not required for this standalone client.

The policy for the service side is similar to the packaged WS-Policy file Wssp1.2-2007-
Wssc1.3-Bootstrap-Wss1.1.xml, except that it uses a SAML 2.0 token for
authentication in the bootstrap message instead of the client's X.509 certificate. That
is, it uses a <sp:SignedSupportingTokens> assertion with a SAML token inside the
policy instead of using a <sp:SignedEndorsingSupportingTokens> assertion.

The entire secure conversation policy is as follows:

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SecureConversationToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:BootstrapPolicy>
 <wsp:Policy>
 <sp:SignedParts>
 <sp:Body/>
 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/
addressing"/>
 <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireDerivedKeys/>

Chapter 2
Configuring the WS-Trust Client

2-44

 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:Policy>
 </sp:BootstrapPolicy>
 </wsp:Policy>
 </sp:SecureConversationToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>

Chapter 2
Configuring the WS-Trust Client

2-45

 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust13>
 <wsp:Policy>
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp:Policy>
 </sp:Trust13>
</wsp:Policy>

The policy that is used to protect the WS-Trust message between the WS-Trust client
and the remote STS server is a copy of packaged security policy Wssp1.2-2007-
Wss1.1-UsernameToken-Plain-EncryptedKey.xml, which uses the username token for
authentication and WS-Security 1.1 message-level security.

The entire security policy is as follows:

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">

Chapter 2
Configuring the WS-Trust Client

2-46

 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedEncryptedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:SignedParts>
 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
 <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
</wsp:Policy>

Note:

When using message-level security policy to protect the bootstrap message of
secure conversation, the WS-Trust messages exchanged between the WS-Trust
client and the remote STS must also use message-level security policy to protect
the WS-Trust messages. Mixing transport- and message-level security policy is not
supported.

When invoking a web service from the WS-Trust client, the configurations are mostly similar
to the previous example. The major differences are:

• You need to configure two encryption certificates: one is the certificate of the STS for
SAML token retrieval, and the other is the certificate for the server.

• Configuring the service STS endpoint address for secure conversation is not required.
When the bootstrap message is not protected by transport-level security, by default the
STS endpoint address is the same as the service endpoint address for security
conversation.

• The SSL configuration is not required.

Example 2-12 shows a simple example of a client application invoking a web service under
JAX-WS that is retrieving a SAML token via WS-Trust. It is associated with a security policy
that enables secure conversations by using WS-Security 1.1 message-level security. The
sections in bold are relevant to security contexts and are described after the example:

Example 2-12 Client Application Using WS-Trust and WS-SecureConversation
without HTTPS

package examples.webservices.samlwssc.client;

import weblogic.security.SSL.TrustManager;
import weblogic.wsee.message.WlMessageContext;

Chapter 2
Configuring the WS-Trust Client

2-47

import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.saml.SAMLTrustCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.security.util.CertUtils;
import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
import com.sun.xml.ws.developer.MemberSubmissionAddressingFeature;

. . .

public class TravelAgency1Client {

 public static final String STS_POLICY = "StsWss11UntPolicy.xml";

 public static void main(String[] args) throws Exception {
 TravelAgencyClient client = new TravelAgencyClient();
 String stsURL = System.getProperty("stsURL");
 System.out.println("StS URL \t" + stsURL);

 String hotelWsdlURL = System.getProperty("hotelWsdlURL");
 System.out.println("Hotel Service WSDL URL \t" + hotelWsdlURL);
 String hotelResult = client.callWsscHotelService("Travel Agency client
to Hotel Service", stsURL, hotelWsdlURL);
 System.out.println("Hotel Service return value: -->" + hotelResult);
 }

 public String callWsscHotelService(String hello,
 String stsurl,
 String hotelWsdlURL) throws Exception {

 HotelService service = new HotelService(new URL(hotelWsdlURL),
 new QName("http://wsinterop.org/samples", "HotelService"));

 IHotelService port = service.getIHotelServicePort(new
MemberSubmissionAddressingFeature());

 BindingProvider provider = (BindingProvider) port;
 this.configurePort(provider, stsurl);

 try {
 // for secure conversation, it can call twice
 String s1 = port.getName(hello);
 String s2 = port.getName(hello + " --- " + s1);
 WSSCClientUtil.terminateWssc((BindingProvider)port);
 return s2;
 } catch (Exception ex) {
 ex.printStackTrace();
 throw new RuntimeException("fail to call the remote hotel service!",
ex);
 }
 }

 private void configurePort(BindingProvider provider, String stsurl) throws
Exception {

 Map context = provider.getRequestContext();
 InputStream policy = getPolicy(STS_POLICY);
 context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);
 context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, stsurl);

Chapter 2
Configuring the WS-Trust Client

2-48

 context.put(WLStub.STS_ENCRYPT_CERT, getStsCert());
 context.put(WLStub.SERVER_ENCRYPT_CERT, getServerCert());
 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE,
WLStub.POLICY_COMPATIBILITY_MSFT);
 }

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new SAMLTrustCredentialProvider());
 credProviders.add(getClientUNTCredentialProvider());
 return credProviders;
 }

 . . .

 private static X509Certificate getServerCert() throws Exception {
 String defaultServerCert = new File(
TravelAgency1Client.class.getResource("/Bob.cer").getFile()).getCanonicalPath();
 String certName = System.getProperty("target.serverCert",
 defaultServerCert);
 X509Certificate cert = CertUtils.getCertificate(certName);
 return cert;
 }
}

Note the following points in this example:

• Configure the STS Server certificate for message protection between the remote STS
and WS-Trust client:

context.put(WLStub.STS_ENCRYPT_CERT, getStsCert());
• Configure the STS Server certificate for message protection of the bootstrap message of

secure conversation:

context.put(WLStub.SERVER_ENCRYPT_CERT, getServerCert());
• Optionally, if the service is a Microsoft .NET WCF service, then set the

WLStub.POLICY_COMPATIBILITY_PREFERENCE flag to WLStub.POLICY_COMPATIBILITY_MSFT
for interoperability:

context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE,
WLStub.POLICY_COMPATIBILITY_MSFT);

Configuring and Using Security Contexts and Derived Keys
Oracle provides the following predefined WS-SecurityPolicy files to configure security
contexts and derived keys:

• WS-SecureConversation 1.2 (2005/2) specification:

– Wssp1.2-Wssc200502-Bootstrap-Https.xml
– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml
– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

• WS-SecureConversation 1.3 versions of the WS-SecureConversation 1.2 (2005/2) policy
files:

Chapter 2
Configuring and Using Security Contexts and Derived Keys

2-49

– Wssp1.2-Wssc1.3-Bootstrap-Https.xml
– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml
– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml

• Additional WS-SecureConversation 1.3 policy files:

– Wssp1.2-Wssc1.3-Bootstrap-Https-BasicAuth.xml
– Wssp1.2-Wssc1.3-Bootstrap-Https-ClientCertReq.xml

• WS-SecureConversation 1.4 policies:

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-
Basic256.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-
Basic256Sha256.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-Saml1.1-SenderVouches.xml
– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml1.1-SenderVouches.xml
– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml2.0-Bearer.xml
– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-UsernameToken-Plain-

EncryptedKey.xml
It is recommended that you use the predefined files if you want to configure security
contexts, because these security policy files provide most of the required functionality
and typical default values. See WS-SecureConversation Policies.

Note:

If you are deploying a web service that uses shared security contexts to a
cluster, then you are required to also configure cross-cluster session state
replication. See Failover and Replication in a Cluster in Administering
Clusters for Oracle WebLogic Server.

Code or configure your application to use the policy through policy annotations, policy
attached to the application's WSDL, or runtime policy configuration.

Specification Backward Compatibility
WebLogic web services implement the Web Services Trust (WS-Trust 1.3) and Web
Services Secure Conversation (WS-SecureConversation 1.3) specifications. Take note
of the following differences from the WS-SecureConversation version of 02/2005:

• The Web Services Secure Conversation (WS-SecureConversation 1.3)
specification requires a token service to return wst:RequestedSecurityToken to the
initiating party in response to a wst:RequestSecurityToken. One or more
wst:RequestSecurityTokenResponse elements are contained within a single
wst:RequestSecurityTokenResponseCollection.

This differs from the previous version of the specification, in which
wst:RequestSecurityTokenResponse was returned by the token service.

Chapter 2
Configuring and Using Security Contexts and Derived Keys

2-50

The token service can return wst:RequestSecurityTokenResponse if the service policy
specifies the SC10SecurityContextToken, as described in the next bullet item.

• The WS-SecurityPolicy 1.2 Errata document describes the following change to
SecureConversationToken Assertion:

<sp:SC10SecurityContextToken />

changes to

<sp:SC13SecurityContextToken />

sp:SC10SecurityContextToken continues to be supported only when used with the WS-
SecureConversation version of 02/2005.

WS-SecureConversation and Clusters
WS-SecureConversation is pinned to a particular WebLogic Server instance in the cluster. If a
SecureConversation request lands in the wrong server, it is automatically rerouted to the
correct server. If the server instance hosting the WS-SecureConversation fails, the
SecureConversation will not be available until the server instance is brought up again.

Updating a Client Application to Negotiate Security Contexts
A client application that negotiates security contexts when invoking a web service is similar to
a standard client application that invokes a message-secured web service, as described in
Using a Client-Side Security Policy File. The only real difference is that you can use the
weblogic.wsee.security.wssc.utils.WSSCClientUtil API to explicitly cancel the secure context
token.

You can configure the SCT expiration value by setting SCT lifetime property. The SCT
expiration value is then used to time out the SCT. When the timeout is reached, the web
services runtime on the client side automatically renews the SCT. The web services runtime
automatically cancels the unused secure context token when the timeout is reached.

Note:

WebLogic Server provides the WSSCCLientUtil API for your convenience only; the
web services runtime automatically cancels the secure context token when the
configured timeout is reached. Use the API only if you want to have more control
over when the token is cancelled.

Example 2-13 shows a simple example of a client application invoking a web service under
JAX-RPC that is associated with a predefined security policy file that enables secure
conversations; the sections in bold that are relevant to security contexts are discussed after
the example:

Example 2-13 Client Application Using WS-SecureConversation

package examples.webservices.wssc.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;
import weblogic.wsee.security.wssc.utils.WSSCClientUtil;

Chapter 2
Configuring and Using Security Contexts and Derived Keys

2-51

import weblogic.wsee.security.util.CertUtils;
import javax.xml.rpc.Stub;
import java.util.List;
import java.util.ArrayList;
import java.security.cert.X509Certificate;

/**
 * Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class WSSecureConvClient {
 public static void main(String[] args) throws Throwable {

 String clientKeyStore = args[0];
 String clientKeyStorePass = args[1];
 String clientKeyAlias = args[2];
 String clientKeyPass = args[3];
 String serverCert = args[4];
 String wsdl = args[5];

 WSSecureConvService service = new WSSecureConvService_Impl(wsdl);
 WSSecureConvPortType port = service.getWSSecureConvServicePort();

 //create credential provider and set it to the Stub
 List credProviders = new ArrayList();

 //use x509 to secure wssc handshake
 credProviders.add(new ClientBSTCredentialProvider(clientKeyStore,
clientKeyStorePass, clientKeyAlias, clientKeyPass));

 Stub stub = (Stub)port;

 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils.getCertificate(serverCert));
 stub._setProperty(WlMessageContext.SCT_LIFETIME_PROPERTY, new Long(2 * 60 *
60 * 1000L));
// set to 2 hrs (Default is 30 minutes.)

 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
 //need to validate if the server cert can be trusted
 return true;
 }
 }
);

 System.out.println (port.sayHelloWithWSSC("Hello World, once"));
 System.out.println (port.sayHelloWithWSSC("Hello World, twice"));
 System.out.println (port.sayHelloWithWSSC("Hello World, thrice"));

 //cancel SecureContextToken after done with invocation
 WSSCClientUtil.terminateWssc(stub);
 System.out.println("WSSC terminated!");

 }
}

The points to notice in the preceding example are:

Chapter 2
Configuring and Using Security Contexts and Derived Keys

2-52

• Import the WebLogic API used to explicitly terminate the secure context token:

import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
• Set a property on the JAX-RPC stub that specifies that the client application must encrypt

its request to WebLogic Server with the given WebLogic Server's public key:

stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils.getCertificate(serverCert));

• Set a property on the JAX-RPC stub that specifies the Security Context Token (SCT)
timeout value:

stub._setProperty(WlMessageContext.SCT_LIFETIME_PROPERTY, new Long(2 * 60 * 60 *
1000L));

Note:

Setting the SCT lifetime value is optional. The default value is set to 30
minutes. Setting a shorter SCT lifetime value is more secure, but requires
renewing the SCT more frequently. Setting a longer SCT lifetime requires
renewing the SCT less frequently, and it stays in memory longer if not explicitly
terminated.

• Use the terminateWssc() method of the WSSClientUtil class to terminate the secure
context token:

WSSCClientUtil.terminateWssc(stub);

Associating Policy Files at Runtime Using the Administration
Console

The simple message-level configuration procedure, documented in Configuring Simple
Message-Level Security, describes how to use the @Policy and @Policies JWS annotations
in the JWS file that implements your web service to specify one or more policy files that are
associated with your service. This of course implies that you must already know, at the time
you program your web service, which policy files you want to associate with your web service
and its operations. This might not always be possible, which is why you can also associate
policy files at runtime, after the web service has been deployed, using the WebLogic Server
Administration Console.

You can use no @Policy or @Policies JWS annotations at all in your JWS file and associate
policy files only at runtime using the WebLogic Server Administration Console, or you can
specify some policy files using the annotations and then associate additional ones at runtime.

At runtime, the WebLogic Server Administration Console allows you to associate as many
policy files as you want with a web service and its operations, even if the policy assertions in
the files contradict each other or contradict the assertions in policy files associated with the
JWS annotations. It is up to you to ensure that multiple associated policy files work together.
If any contradictions do exist, WebLogic Server returns a runtime error when a client
application invokes the web service operation.

To use the Console to associate one or more WS-Policy files to a web service, the WS-Policy
XML files must be located in either the META-INF/policies or WEB-INF/policies directory of

Chapter 2
Associating Policy Files at Runtime Using the Administration Console

2-53

the EJB JAR file (for EJB implemented web services) or WAR file (for Java class
implemented web services), respectively.

See Attach a WS-Policy file to a Web Service in the Oracle WebLogic Server
Administration Console Online Help for detailed instructions on using the WebLogic
Server Administration Console to associate a policy file at runtime.

Using Security Assertion Markup Language (SAML) Tokens
For Identity

This section describes using SAML tokens for identity. The following topics are
described:

• SAML Token Overview

• Using SAML Tokens for Identity: Main Steps

• Specifying the SAML Confirmation Method

• Sample of SAML 1.1 Bearer Token Over HTTPS

• Configuring SAML Attributes in a Web Service

SAML Token Overview
The SAML Token Profile 1.1 (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-
spec-os-SAMLTokenProfile.pdf) is part of the core set of WS-Security standards, and
specifies how SAML assertions can be used for web services security. WebLogic
Server supports SAML Token Profile 1.1, including support for SAML 2.0 and SAML
1.1 assertions. SAML Token Profile 1.1 is backwards compatible with SAML Token
Profile 1.0.

Note:

SAML Token Profile 1.1 is supported only through WS-SecurityPolicy.

Previous releases of WebLogic Server, released before the formulation of the
WS-SecurityPolicy specification, used security policy files written under the
WS-Policy specification, using a proprietary schema for security policy.
These earlier security policy files support SAML Token Profile 1.0 and SAML
1.1 only.

In the simple web services configuration procedure, described in Configuring Simple
Message-Level Security, it is assumed that users use username tokens to
authenticate themselves. Because WebLogic Server implements the SAML Token
Profile 1.1 (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SAMLTokenProfile.pdf) of the Web Services Security specification, users can also
use SAML tokens in the SOAP messages to authenticate themselves when invoking a
web service operation, as described in this section.

Use of SAML tokens works server-to-server. This means that the client application is
running inside of a WebLogic Server instance and then invokes a web service running
in another WebLogic Server instance using SAML for identity. Because the client

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-54

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

application is itself a web service, the web services security runtime takes care of all the
SAML processing.

In addition to this server-to-server usage, you can also use SAML tokens from a standalone
client via WS-Trust, as described in Configuring the WS-Trust Client.

Note:

It is assumed in this section that you understand the basics of SAML and how it
relates to core security in WebLogic Server. For general information, see Security
Assertion Markup Language (SAML) in Understanding Security for Oracle
WebLogic Server.

It is also assumed in the following procedure that you have followed the steps in
Configuring Simple Message-Level Security and now want to enable the additional
use case of using SAML tokens, rather than username tokens, for identity.

Using SAML Tokens for Identity: Main Steps
To use SAML tokens for identity:

1. Make sure that the SAML providers you need are configured and add the appropriate
partner entries. This step configures the core WebLogic Server security subsystem. For
details, see the following sections in Administering Security for Oracle WebLogic Server:

• Configuring a SAML Identity Assertion Provider

• Configuring a SAML Credential Mapping Provider

Note:

You will need to configure both SAML 1.1 and SAML 2.0 security providers
if you want to enable both versions of SAML for use with the SAML Token
Profile.

When configuring SAML 2.0 partner entries, you must use the endpoint
URL of the target web service as the name of the partner for both
WSSIdPPartner and WSSSPPartner entries. Specify the URL as HTTPS if
SSL will be used.

2. If you will be using policies that involve signatures related to SAML assertions (for
example, SAML Holder-of-Key policies) where a key referenced by the assertion is used
to sign the message, or Sender-Vouches policies where the sender's key is used to sign
the message, you need to configure keys and certificates for signing and verification.

For the Holder-of-Key scenarios, the signature from the client certificate is to prove that
the client has possession of the private key that the SAML token references. For the
Sender Vouches scenarios, the signature from the client certificate is to guarantee that
the message with the SAML token is generated by the sender.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-55

Note:

These keys and certificates are not used to create or verify signatures on
the assertions themselves. Creating and verifying signatures on
assertions is done using keys and certificates configured on the SAML
security providers.

If you are using SAML Bearer policies, protection is provided by SSL and
the PKI Credential Mapping provider is not needed.

If you are using SAML tokens from a standalone client via WS-TRUST,
the tokens are passed in via the web service client stub, not via the PKI
Credential Mapping provider.

a. Configure a PKI Credential Mapping provider on the sending side, and
populate it with the keys and certificates to be used for signing.
setKeypairCredential creates a keypair mapping between the
principalName, resourceid and credential action and the keystore alias and
the corresponding password.

pkiCM.setKeypairCredential(
type=<remote>, protocol=http,
remoteHost=hostname, remotePort=portnumber, path=/ContextPath/
ServicePath,
username, Boolean('true'), None,
alias, passphrase)

The first (String) parameter is used to construct a Resource object that
represents the endpoint of the target web service. The userName parameter is
the user on whose behalf the signed web service message will be generated.
The alias and passphrase parameters are the alias and passphrase used to
retrieve the key/certificate from the keystore configured for the PKI Credential
Mapping provider. The actual key and certificate should be loaded into the
keystore before creating the KeypairCredential.

b. Add the same certificates to the Certificate Registry on the receiving side, so
they can be validated by the web service security runtime:

reg.registerCertificate(certalias, certfile)

Specifying the SAML Confirmation Method
The WS-SecurityPolicy implies, but does not explicitly specify, the confirmation method
for SAML assertions. Consider the following general guidelines:

• For WSS1.0 Asymmetric Binding, if the SamlToken assertion is inside the
<sp:AsymmerticBinding> assertion, then the Holder of Key confirmation method is
used.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:EndorsingSupportingTokens> assertion, then the Holder of Key confirmation
method is used.

See Table 2-13 for examples of predefined policies that use Holder of Key
confirmation.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-56

• For WSS1.0 Asymmetric Binding, if the SamlToken assertion is inside
<sp:SignedSupportingTokens>, then the Sender Vouches confirmation method is used.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:SignedSupportingTokens> assertion, and the <sp:X509Token> is used in the
<sp:EndorsingSupportingTokens> assertion, then the Sender Vouches confirmation
method is used.

For Transport Binding, two-way SSL with client certification is required for the Sender
Vouches confirmation method. Use transport-level security as described in Configuring
Transport-Level Security in this case.

See Table 2-13 for examples of predefined policies that use Sender Vouches
confirmation.

• For transport-level security, if the SamlToken assertion is inside <sp:SupportingTokens>,
then the Bearer confirmation method is used. Use transport-level security as described in
Configuring Transport-Level Security in this case.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:SignedSupportingTokens> assertion, and there is no
<sp:EndorsingSupportingTokens> assertion, then the Bearer confirmation method is
used.

See Table 2-13 for examples of predefined policies that use Bearer confirmation.

Specifying the SAML Confirmation Method (Proprietary Policy Only)
This section describes how to specify the SAML confirmation method in a policy file that uses
the proprietary schema for security policy.

Note:

SAML V1.1 and V2.0 assertions use <saml:SubjectConfirmation> and
<saml2:SubjectConfimation> elements, respectively, to specify the confirmation
method; the confirmation method is not directly specified in the policy file.

When you configure a web service to require SAML tokens for identity, you can specify one of
the following confirmation methods:

• sender-vouches
• holder-of-key
• bearer
See SAML Token Profile Support in WebLogic web services, as well as the Web Services
Security: SAML Token Profile (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SAMLTokenProfile.pdf) specification itself, for details about these confirmation methods.

1. Use a security policy file that specifies that SAML should be used for identity. The exact
syntax depends on the type of confirmation method you want to configure (sender-
vouches, holder-of-key).

To specify the sender-vouches confirmation method:

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-57

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

a. Create a <SecurityToken> child element of the
<Identity><SupportedTokens> elements and set the TokenType attribute to a
value that indicates SAML token usage.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and
specify sender-vouches.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-
saml-token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</
wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

To specify the holder-of-key confirmation method:

a. Create a <SecurityToken> child element of the
<Integrity><SupportedTokens> elements and set the TokenType attribute to a
value that indicates SAML token usage.

The reason you put the SAML token in the <Integrity> assertion for the
holder-of-key confirmation method is that the web service runtime must
prove the integrity of the message, which is not required by sender-vouches.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and
specify holder-of-key.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">
 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-58

 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 IncludeInMessage="true"
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-
token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
</wsp:Policy>

c. By default, the WebLogic web services runtime always validates the X.509 certificate
specified in the <KeyInfo> assertion of any associated WS-Policy file. To disable this
validation when using SAML holder-of-key assertions, you must configure the web
service security configuration associated with the web service by setting a property
on the SAML token handler. See Disable X.509 certificate validation when using
SAML holder_of_key assertions in Oracle WebLogic Server Administration Console
Online Help for information about how to do this using the WebLogic Server
Administration Console.

See Creating and Using a Custom Policy File for additional information about
creating your own security policy file. See Web Services Security Policy Assertion
Reference in WebLogic Web Services Reference for Oracle WebLogic Server for
reference information about the assertions.

2. Update the appropriate @Policy annotations in the JWS file that implements the web
service to point to the security policy file from the preceding step. For example, if you
want invokes of all the operations of a web service to SAML for identity, specify the
@Policy annotation at the class-level.

You can mix and match the policy files that you associate with a web service, as long as
they do not contradict each other and as long as you do not combine OASIS WS-
SecurityPolicy 1.2 files with security policy files written under Oracle's security policy
schema.

For example, you can create a simple MyAuth.xml file that contains only the <Identity>
security assertion to specify use of SAML for identity and then associate it with the web
service together with the predefined Wssp1.2-2007-EncryptBody.xml and Wssp1.2-2007-
SignBody.xml files. It is, however, up to you to ensure that multiple associated policy files
do not contradict each other; if they do, you will either receive a runtime error or the web
service might not behave as you expect.

3. Recompile and redeploy your web service as part of the normal iterative development
process.

See Developing WebLogic Web Services in Developing JAX-RPC Web Services for
Oracle WebLogic Server.

4. Create a client application that runs in a WebLogic Server instance to invoke the main
web service using SAML as identity. See Invoking a Web Service From a Client Running
in a WebLogic Server Instance for details.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-59

Sample of SAML 1.1 Bearer Token Over HTTPS
This release of WebLogic Server includes a SAML 1.1 Bearer example with a
standalone client. This example is available in the WebLogic Server installation in
WLS_HOME\samples\server\examples\src\examples\webservices\saml\bearer11ssl
.

This is an example of SAML 1.1 Bearer with a standalone client. It demonstrates the
minimum configuration and setup with WS-Trust to use a SAML assertion for
authentication of a web service application. The example contains two WebLogic
Server instances, which host the FlightService web service and STSHttpsUNT.java
used as a Security Token Service (STS), respectively.

The client TravelAgencyClient does not have a public/private key pair and gets the
SAML token from the STS for authentication, with transport level message protection.

Configuring SAML Attributes in a Web Service
A SAML assertion is a piece of data produced by a SAML authority regarding either an
act of authentication performed on a subject, attribute information about the subject, or
authorization data applying to the subject with respect to a specified resource.

The SAML specification (see http://www.oasis-open.org) allows additional,
unspecified information about a particular subject to be exchanged between SAML
partners as attribute statements in an assertion. A SAML attribute assertion is
therefore a particular type of SAML assertion that conveys site-determined information
about attributes of a Subject.

Attribute data is of type String.

Attributes are often name/value pairs (for example name=position, value=team lead),
with multiple values being possible, but there is no requirement that they follow this
model.

SAML attributes can be examined on the target partner service, and they can be used
as extra information for authentication or authorization.

Use of SAML attributes works server-to-server. This means that the client application
providing the attributes is running inside of a WebLogic Server instance. It then
invokes a web service running in the same or other WebLogic Server instance to
consume the attributes. Because the client application is itself a web service, the web
services security runtime takes care of all the SAML processing.

Using SAML Attributes: Available Interfaces and Classes
You can use the classes and interfaces listed in Table 2-5 to implement SAML
attributes. See Java API Reference for Oracle WebLogic Server.

Table 2-5 SAML Attribute Classes and Interfaces

Interface or Class Description

weblogic.wsee.security.sa
ml.SAML2CredentialProvide
r

Credential Provider for SAML 2.0 assertions.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-60

http://www.oasis-open.org

Table 2-5 (Cont.) SAML Attribute Classes and Interfaces

Interface or Class Description

weblogic.wsee.security.sa
ml.SAMLCredentialProvider

Credential Provider for SAML 1.1 assertions.

weblogic.wsee.security.sa
ml.SAMLAttributeStatement
Data

This interface represents the attributes in a single attribute
statement. For SAML 1.1 and 2.0.

weblogic.wsee.security.sa
ml.SAMLAttributeStatement
DataImpl()

This class represents the attributes in a single attribute
statement. For SAML 1.1 and 2.0.

weblogic.wsee.security.sa
ml.SAMLAttributeData

SAML attribute Info interface that can be either SAML 1.1 or
SAML 2.0 attribute.

weblogic.wsee.security.sa
ml.SAMLAttributeDataImpl(
)

Class that implements
weblogic.wsee.security.saml.SAMLAttributeData.

weblogic.wsee.security.sa
ml.SAMLAttributeStatement
DataHelper

Helper function to get the SAMLAttributeStatementData
object

Of the classes and interfaces listed in Table 2-5, the SAMLAttributeData interface deserves
additional mention. The SAMLAttributeData interface supports both SAML 1.1 or SAML 2.0
attributes. It has the methods shown in Table 2-6.

Table 2-6 SAMLAttributeData Methods

Method Description

getAttributeName() Get the attribute name.

getAttributeNameFormat() Get the attribute name format (for SAML 2.0 only).

getAttributeFriendlyName() Get the Attribute friendly name.

getAttributeValues() Get the collection of attribute values.

isSAML20() Check if this is a SAML 2.0 attribute. Return true if it is a SAML
2.0 attribute, false otherwise

setAttributeName(String
attributeName)

Set the attribute name.

setAttributeNameFormat(Stri
ng attributeNameFormat)

Set the attribute name format.

setAttributeFriendlyName(St
ring attributeFriendlyName)

Set the attribute friendly name.

setAttributeValues(Collecti
on<String> attributeValues)

Set the collection of attribute values.

addAttributeValue(String
attributeValue)

Add one attribute value.

getAttributeNameSpace() Get the namespace of the attribute. This is for SAML 1.1 only.

setAttributeNameSpace(Strin
g attributeNameSpace)

Set the namespace of the attribute. This is for SAML 1.1 only.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-61

Table 2-6 (Cont.) SAMLAttributeData Methods

Method Description

getSAML2AttributeInfo() Get a SAML 2.0 attribute info object from this object.

getSAMLAttributeInfo() Get a SAML 1.1 attribute info object from this object.

isEmpty() Check if this attribute data element does not have values.

Using SAML Attributes: Main Steps
The SAML2CredentialProvider and SAMLCredentialProvider classes provide
mechanisms to add attributes into SAML assertions via the web service context.

On the SAML partner, you then use the
SAMLAttributeStatementDataHelper.getSAMLAttributeStatementData method to
map attributes from incoming SAML assertions based on the web service context.

To do this:

• The SAML2CredentialProvider or SAMLCredentialProvider (on the SAML Identity
Provider site) determines the attributes to use and how to package them.

Implement both the SAMLAttributeStatementData and SAMLAttributeData
interfaces to package the attributes.

• The SAML partner uses the WebServiceContext to get the attributes, and
determines what to do with them.

Use the SAMLAttributeStatementDataHelper class to get the
SAMLAttributeStatementData object, from which you get the SAMLAttributeData
object.

SAML Attributes Example
This section describes a simple application that implements SAML attributes for SAML
2.0. This example is available in the WebLogic Server installation in
WLS_HOME\samples\server\examples\src\examples\webservices\saml\saml20sv.

Example 2-14 shows an example of a web service (the "client") running on a
WebLogic Server instance.

This web service adds four attributes to the WebServiceContext. The first attribute has
no value; the second uses a static value. The values for attributes three and four are
computed based on the authenticated Subject.

Example 2-14 Web Service That Adds Attributes to the WebServiceContext

@WebService(serviceName = "ProxyService", name = "IProxy", targetNamespace =
"http://www.oracle.com/2008/12/interop")
 public class ProxyService{

 @WebMethod(operationName = "Echo")
 @WebResult(name = "EchoResponse")
 public String echo(@WebParam(name = "EchoRequest")String hello,
 @WebParam(name = "partenerWsdlURL") String
partenerWsdlURL){
 try{

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-62

 PartnerService service =
 new PartnerService(new URL(partenerWsdlURL),
 new QName("http://www.oracle.com/2008/12/
interop", "PartnerService"));

 IPartner port = service.getIPartnerPort();
 BindingProvider provider = (BindingProvider) port;
 Map context = provider.getRequestContext();
 context.put(WLStub.SAML_ATTRIBUTE_ONLY, "True");

 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 String result = port.echo(hello);
 return result+" I'm ProxyService Echo!\n";

 } catch(Exception ex){
 throw new RuntimeException(ex);
 }
 }

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new MySAMLCredentialProvider1());

 return credProviders;
 }

 /**
 * This Credential Provider is for SAML 2.0 Sender Vouches
 */

 private static class MySAMLCredentialProvider1 extends SAML2CredentialProvider {

 public SAMLAttributeStatementData getSAMLAttributeData(Subject subject) {

 System.out.println(" Providing SAML Attributes from
MySAMLCredentialProvider1 for Subject =" + subject);
 // There are four types of attributes in this test

 SAMLAttributeStatementData attributes = new
SAMLAttributeStatementDataImpl();

 String xmlns = "www.oracle.com/webservices/saml/test";
 // 1. The attribute without value

 SAMLAttributeData attribute1 = new SAMLAttributeDataImpl();
 attribute1.setAttributeName("test.no.value.attribute");
 // Friendly name is optional. It is set in this example.
 attribute1.setAttributeFriendlyName("Type 1 - No Value");
 attribute1.setAttributeNameSpace(xmlns);
 attributes.addAttributeInfo(attribute1);

 // 2. Static attribute that has static value

 SAMLAttributeData attribute2 = new SAMLAttributeDataImpl();
 attribute2.setAttributeName("test.static.attribute");
 attribute2.setAttributeFriendlyName("Type 2 - Static Attribute");
 attribute2.setAttributeNameSpace(xmlns);
 attribute2.addAttributeValue("static.attribute.value");
 attributes.addAttributeInfo(attribute2);

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-63

 // 3. Subjust dependent attributes

 SAMLAttributeData attribute3 = new SAMLAttributeDataImpl();
 attribute3.setAttributeName("test.subject.dependent.attribute");
 attribute3.setAttributeFriendlyName("Type 3 - Subject Dependent
Attribute");
 attribute3.setAttributeNameSpace(xmlns);
 if (hasUser("Alice", subject)) {
 attribute3.addAttributeValue("Alice A");
 } else if (hasUser("Bob", subject)) {
 attribute3.addAttributeValue("Bob B");
 } else {
 attribute3.addAttributeValue("Hacker X");
 }
 attributes.addAttributeInfo(attribute3);

 // 4. Multiple value attributes

 SAMLAttributeData attribute4 = new SAMLAttributeDataImpl();
 attribute4.setAttributeName("test.multi.value.attribute");
 attribute4.setAttributeFriendlyName("Type 4 - Multi-Value
Attribute");
 attribute4.setAttributeNameSpace(xmlns);
 if (hasUser("Alice", subject)) {
 attribute4.addAttributeValue("Team Lead");
 attribute4.addAttributeValue("Programmer");
 } else if (hasUser("Bob", subject)) {
 attribute4.addAttributeValue("System Admin");
 attribute4.addAttributeValue("QA");
 } else {
 attribute4.addAttributeValue("Hacker");
 attribute4.addAttributeValue("meber of unkown");
 }
 attributes.addAttributeInfo(attribute4);
 return attributes;
 }

 private static boolean hasUser(String user, Subject subject) {
 if (null == user || null == subject) {
 return false;
 }
 Set principals = subject.getPrincipals();
 if (null == principals || principals.isEmpty()) {
 return false;
 }
 for (Iterator it = principals.iterator(); it.hasNext();) {
 Object obj = it.next();
 if (obj instanceof Principal) {
 Principal p = (Principal) obj;
 // System.out.println("principal =[" + p + "]");
 if (user.equals(p.getName())) {
 return true;
 }
 } else if (obj instanceof WLSPrincipal) {
 WLSPrincipal principal = (WLSPrincipal) obj;
 // System.out.println("principal =[" + principal + "]");
 if (user.equals(principal.getName())) {
 return true;
 }
 }

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-64

 }
 return false;
 }

 }

}

This example invokes the SAMLAttributeStatementDataImpl() class to get an
SAMLAttributeStatementData object, and then invokes SAMLAttributeDataImpl() to get a
SAML2AttributeStatementInfo object.

The SAMLAttributeData class supports both SAML 2.0 and 1.1, and in this example uses
SAML 2.0. SAMLAttributeDataImpl() is shown in Example 2-15.

Example 2-15 SAMLAttributeDataImpl Implementation

package weblogic.wsee.security.saml;

import com.bea.security.saml2.providers.SAML2AttributeInfo;
import weblogic.security.providers.saml.SAMLAttributeInfo;

import java.util.Collection;
import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;

/**
 *
 */
public class SAMLAttributeDataImpl implements SAMLAttributeData {
 public static final String SAML_2_0_ATTRNAME_FORMAT_BASIC =
SAML2AttributeInfo.ATTR_NAME_FORMAT_BASIC;

 /**
 * the name of the attribute
 */
 private String attributeName;

 private String attributeNameSpace;
 /**
 * the name format of the attribute for SAML 2.0. Defaults to basic.
 */
 private String attributeNameFormat = SAML_2_0_ATTRNAME_FORMAT_BASIC;
 /**
 * the friendly name of the attribute, this is for SAML 2.0 only.
 */
 private String attributeFriendlyName;
 /**
 * the values of the attribute.
 */
 private Collection<String> attributeValues;
 /**
 * is a SAML 2.0 attribute info
 */
 private boolean isSAML20;

 public SAMLAttributeDataImpl() {

 }

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-65

 public SAMLAttributeDataImpl(String attributeName, Collection<String>
attributeValues) {
 this.attributeName = attributeName;
 this.attributeValues = attributeValues;
 }

 public SAMLAttributeDataImpl(String attributeName, String
 attributeNameFormat, String attributeFriendlyName, String namespace,
 Collection<String> attributeValues) {
 this.attributeName = attributeName;
 this.attributeNameFormat = attributeNameFormat;
 this.attributeFriendlyName = attributeFriendlyName;
 this.attributeValues = attributeValues;
 this.attributeNameSpace = namespace;
 }

 public SAMLAttributeDataImpl(SAML2AttributeInfo saml2AttributeInfo) {
 if (null == saml2AttributeInfo) {
 throw new IllegalArgumentException("Null SAML2AttributeInfo found ");
 }
 this.attributeName = saml2AttributeInfo.getAttributeName();
 this.attributeNameFormat = saml2AttributeInfo.getAttributeNameFormat();
 this.attributeFriendlyName =
saml2AttributeInfo.getAttributeFriendlyName();
 this.attributeValues = saml2AttributeInfo.getAttributeValues();
 this.isSAML20 = true;
 }

 public SAMLAttributeDataImpl(SAMLAttributeInfo samlAttributeInfo) {
 if (null == samlAttributeInfo) {
 throw new IllegalArgumentException("Null SAMLAttributeInfo found ");
 }
 this.attributeName = samlAttributeInfo.getAttributeName();
 this.attributeNameSpace = samlAttributeInfo.getAttributeNamespace();
 this.attributeValues = samlAttributeInfo.getAttributeValues();
 this.isSAML20 = false;
 }

 /**
 * get the attribute name
 *
 * @return string of the attribute name
 */
 public String getAttributeName() {
 return attributeName;
 }

 /**
 * set the attribute name
 *
 * @param attributeName string of the attribute name
 */
 public void setAttributeName(String attributeName) {
 if (null == attributeName) {
 throw new IllegalArgumentException("attributeName cannot be null");
 }
 this.attributeName = attributeName;
 }

 /**
 * get the attribute name format for SAML 2.0 only

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-66

 *
 * @return String of the attribute name format,
default is SAML_2_0_ATTRNAME_FORMAT_BASIC for SAML 2.0. Null for SAML 1.1.
 */
 public String getAttributeNameFormat() {
 return attributeNameFormat;
 }
 /**
 * set et the attribute name format
 *
 * @param attributeNameFormat String of the attribute name format
 */
 public void setAttributeNameFormat(String attributeNameFormat) {
 this.attributeNameFormat = attributeNameFormat;
 }
 /**
 * get the Attribute Friendly Name
 *
 * @return String of the Attribute Friendly Name
 */
 public String getAttributeFriendlyName() {
 return attributeFriendlyName;
 }
 /**
 * set the Attribute Friendly Name
 *
 * @param attributeFriendlyName the Attribute Friendly Name
 */
 public void setAttributeFriendlyName(String attributeFriendlyName) {
 this.attributeFriendlyName = attributeFriendlyName;
 }
 /**
 * get the Attribute Value
 *
 * @return collection of attribute values
 */
 public Collection<String> getAttributeValues() {
 return attributeValues;
 }
 /**
 * set collection of attribute values
 *
 * @param attributeValues collection of attribute values to be set
 */
 public void setAttributeValues(Collection<String> attributeValues) {
 this.attributeValues = attributeValues;
 }
 /**
 * add one attribute value
 *
 * @param attributeValue String of attribute value to be added
 */
 public void addAttributeValue(String attributeValue) {
 if (this.attributeValues == null) {
 this.attributeValues = new ArrayList();
 }
 if (null == attributeValue) {
 this.attributeValues.add("");
 } else {
 this.attributeValues.add(attributeValue);
 }

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-67

 }
 /**
 * add attribute values
 *
 * @param newAttributeValues collection of attribute values to be added
 */
 public void addAttributeValues(Collection<String> newAttributeValues) {
 if (this.attributeValues == null || this.attributeValues.isEmpty()) {
 this.setAttributeValues(newAttributeValues);
 return;
 }
 if (null == newAttributeValues || newAttributeValues.isEmpty()) {
 this.attributeValues.add("");
 return;
 }
 Iterator iter = newAttributeValues.iterator();
 while (iter.hasNext()) {
 this.attributeValues.add((String) iter.next());
 }
 }
 /**
 * get the namespace of the Attribute. This is for SAML 1.1 only.
 *
 * @return string of attribute namespace
 */
 public String getAttributeNameSpace() {
 return attributeNameSpace;
 }
 /**
 * set attributeNameSpace. This is for SAML 1.1 only.
 *
 * @param attributeNameSpace attributeNameSpace to be set
 */
 public void setAttributeNameSpace(String attributeNameSpace) {
 this.attributeNameSpace = attributeNameSpace;
 }
 /**
 * set this data object to SAML 2.0 attribute object
 * @param saml20 true if it is a SAML 2.0 attribute data
 */
 public void setSAML20(boolean saml20) {
 this.isSAML20 = saml20;
 }
 /**
 * check if this is a SAML 2.0 Attributes
 *
 * @return true if it is a SAML 2.0 attribute, false otherwise
 */
 public boolean isSAML20() {
 return isSAML20;
 }
 /**
 * get a SAML2AttributeInfo object from this object
 *
 * @return SAML2AttributeInfo for SAML 2.0
 */
 public SAML2AttributeInfo getSAML2AttributeInfo() {
 SAML2AttributeInfo sai = new SAML2AttributeInfo();
 sai.setAttributeFriendlyName(this.attributeFriendlyName);
 sai.setAttributeName(this.attributeName);
 if (null == this.attributeNameFormat ||

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-68

this.attributeNameFormat.length() ==0) {
 sai.setAttributeNameFormat(SAML_2_0_ATTRNAME_FORMAT_BASIC);
 } else {
 sai.setAttributeNameFormat(this.attributeNameFormat);
 }
 sai.addAttributeValues(this.attributeValues);
 return sai;
 }
 /**
 * get a SAMLAttributeInfo object from this object
 *
 * @return SAMLAttributeInfo for SAML 1.1
 */
 public SAMLAttributeInfo getSAMLAttributeInfo() {
 SAMLAttributeInfo sai = new SAMLAttributeInfo();
 if (null == this.attributeNameSpace) {
 sai.setAttributeName(this.attributeName, "");
 } else {
 sai.setAttributeName(this.attributeName, this.attributeNameSpace);
 }
 sai.setAttributeValues(this.attributeValues);
 return sai;
 }
 /**
 * This method will add all attribute values into the first SAMLAttributeData
 object, and return a single SAMLAttributeData object.
 * Please note that the attribute name will not be verified in this method.
 *
 * @param attributeList SAMLAttributeData objects to be merged
 * @return a single SAMLAttributeData object
 */
 static public SAMLAttributeData consolation(List<SAMLAttributeData>
 attributeList) {
 if (null == attributeList || attributeList.size() == 0) {
 return null;
 }
 if (attributeList.size() == 1) {
 attributeList.get(0);
 }
 SAMLAttributeData data = attributeList.get(0);
 for (int i=1; i < attributeList.size(); i++) {
 data.addAttributeValues(attributeList.get(i).getAttributeValues());
 }
 return data;
 }
 /**
 * Check if this attribute data element does not have vlaues
 * @return true if the data is empty, no values; false otherwise
 */
 public boolean isEmpty() {
 if ((null == this.attributeValues) || (this.attributeValues.isEmpty())) {
 return true;
 }
 if (this.attributeValues.size() == 1) {
 Object a[] = this.attributeValues.toArray();
 if ("".equals(a[0])) {
 return true;
 }
 }
 return false;
 }

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-69

 /**
 * Return a String for the array of value String, concatenated with "; "
 * @return a string for all values
 */
 public String valuesToString(String existing) {
 if ((null == this.attributeValues) || (this.attributeValues.isEmpty())) {
 return existing;
 }
 Object a[] = this.attributeValues.toArray();
 if (this.attributeValues.size() == 1) {
 if (a[0] == null) {
 return existing;
 }
 if (existing == null) {
 return (String) a[0];
 } else {
 return existing + "; " + (String) a[0];
 }
 }
 StringBuffer sb = new StringBuffer();
 if (existing != null) {
 sb.append(existing);
 }
 for (int i=0; i < a.length; i++) {
 sb.append("; ");
 if (a[i] != null) {
 sb.append((String) a[i]);
 }
 }
 return sb.toString();
 }
 public String toString() {
 StringBuffer sb = new StringBuffer();
 sb.append("Name=" + this.attributeName);
 if (isSAML20()) {
 if (null != this.attributeFriendlyName) {
 sb.append(" FriendlyName=" + this.attributeFriendlyName);
 }
 } else {
 if (null != this.attributeNameSpace) {
 sb.append(" Namespace=" + this.attributeNameSpace);
 }
 }
 String value = this.valuesToString(null);
 if (null != value) {
 sb.append(" Value=" + value);
 }
 return sb.toString();
 }
}

Example 2-16 shows the PartnerService code that determines if the web service
context has attributes, and then gets them. This example relies on the
SAMLAttributeStatementDataHelper class, which is shown in Example 2-17.

The predefined policy used in this example, Wssp1.2-2007-Saml2.0-SenderVouches-
Wss1.1.xml, is described in Table 2-13.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-70

Example 2-16 Web Service That Gets Attributes From the WebServiceContext

package jaxws.interop.saml;

import weblogic.jws.Policies;
import weblogic.jws.Policy;
import weblogic.wsee.util.AccessException;
import weblogic.wsee.security.saml.SAMLAttributeStatementData;
import weblogic.wsee.security.saml.SAMLAttributeStatementDataHelper;
import weblogic.wsee.security.saml.SAMLAttributeData;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;

/**
 * ID Propagation using SAML 2.0 token [sender-vouches] with message protection (WSS
11) .
 *
 * This example will work for canned policy like:
 * - Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml
 */

@Policies(
 {
 @Policy(uri = "policy:Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml")
 }
)
@WebService(serviceName = "PartnerService", name = "IPartner", targetNamespace =
"http://www.oracle.com/2008/12/interop")
public class PartnerService{
 @Resource
 WebServiceContext ctx;

 @WebMethod(operationName = "Echo")
 @WebResult(name = "EchoResponse")
 public String echo(@WebParam(name = "EchoRequest")String hello){
 try {
 this.checkSamlAttributesFromRequestMesasge();
 return hello+"! I'm PartnerService for SAML 2.0 SenderVouches WSS1.1!\n";
 }catch(Exception ex){
 throw new RuntimeException(ex);
 }
 }

 private void checkSamlAttributesFromRequestMesasge() throws AccessException {

 SAMLAttributeStatementData attributes =
SAMLAttributeStatementDataHelper.getSAMLAttributeStatementData(ctx);
 if (null == attributes) {
 throw new AccessException("No SAML Attributes Data found");
 }

 SAMLAttributeData testData =

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-71

attributes.getAttributeInfo("test.no.value.attribute");
 if (null == testData) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.no.value.attribute\"");
 }
 if (!attributes.hasAttributeInfo("test.no.value.attribute")) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.no.value.attribute\"");
 }
 if (!attributes.hasAttributeInfo("test.static.attribute")) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.static.attribute\"");
 }
 if (!
attributes.hasAttributeValue("test.static.attribute","static.attribute.value")) {
 throw new AccessException("Missing or wrong SAML Attribute Value of
\"static.attribute.value\" for attribute \"test.static.attribute\" ");
 }
 if (!
attributes.hasAttributeValue("test.subject.dependent.attribute","Alice A")) {
 throw new AccessException("Missing or wrong SAML Attribute Value of
\"Alice A\" for attribute - \"test.multi.value.attribute\" ");
 }
 if (!
attributes.hasAttributeValue("test.multi.value.attribute","Programmer")) {
 throw new AccessException("Missing or wrong SAML Attribute Value on
\"Programmer\" for attribute \"test.multi.value.attribute\" ");
 }
 if (!attributes.hasAttributeValue("test.multi.value.attribute","Team
Lead")) {
 throw new AccessException("Missing or wrong SAML Attribute Value on
\"Team Lead\" for attribute \"test.multi.value.attribute\" ");
 }
 }
}

Example 2-17 shows the SAMLAttributeStatementDataHelper class, which is a helper
function that gets the SAMLAttributeStatementData object.

Example 2-17 SAMLAttributeStatementDataHelper Helper Function

package weblogic.wsee.security.saml;

import weblogic.wsee.jaxws.framework.jaxrpc.SOAPMessageContext;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.jws.JwsContext;
import weblogic.xml.crypto.wss.WSSecurityContext;
import com.sun.xml.ws.api.message.Message;
import com.sun.xml.ws.api.message.Packet;
import com.sun.xml.ws.api.server.WSWebServiceContext;

import javax.xml.ws.WebServiceContext;
import javax.xml.rpc.handler.MessageContext;

/**
 * Helper function to get the SAMLAttributeStatementData object
 */
public class SAMLAttributeStatementDataHelper {

 public static SAMLAttributeStatementData
getSAMLAttributeStatementData(WebServiceContext context) {

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

2-72

 final Packet request = ((WSWebServiceContext) context).getRequestPacket();

 WSSecurityContext securityCtx = (WSSecurityContext) request.invocationProperties
 .get(WSSecurityContext.WS_SECURITY_CONTEXT);
 SAMLAttributeStatementData samlAttributes = null;
 if ((securityCtx != null) && (securityCtx.getMessageContext() != null)) {
 samlAttributes = (SAMLAttributeStatementData)
securityCtx.getMessageContext().getProperty(WLStub.SAML_ATTRIBUTES);
 }
 return samlAttributes;
 }

 public static SAMLAttributeStatementData getSAMLAttributeStatementData(JwsContext
context) {

 MessageContext msgCtx = context.getMessageContext(); // this is for JAX-RPC
 SAMLAttributeStatementData attributes = (SAMLAttributeStatementData)
msgCtx.getProperty(WLStub.SAML_ATTRIBUTES);

 return attributes;
 }

}

Associating a Web Service with a Security Configuration Other
Than the Default

Many use cases previously discussed require you to use the WebLogic Server Administration
Console to create the default web service security configuration called default_wss. After
you create this configuration, it is applied to all web services that either do not use the
@weblogic.jws.security.WssConfiguration JWS annotation or specify the annotation with
no attribute.

There are some cases, however, in which you might want to associate a web service with a
security configuration other than the default; such use cases include specifying different
timestamp values for different services.

To associate a web service with a security configuration other than the default:

1. Create a Web Service Security Configuration in the Oracle WebLogic Server
Administration Console Online Help with a name that is not default_wss.

2. Update your JWS file, adding the @WssConfiguration annotation to specify the name of
this security configuration. See weblogic.jws.security.WssConfiguration in the WebLogic
Web Services Reference for Oracle WebLogic Server for additional information and an
example.

Chapter 2
Associating a Web Service with a Security Configuration Other Than the Default

2-73

Note:

If you are going to package additional web services in the same Web
application, and these web services also use the @WssConfiguration
annotation, then you must specify the same security configuration for
each web service. See weblogic.jws.security.WssConfiguration in the
WebLogic Web Services Reference for Oracle WebLogic Server.

3. Recompile and redeploy your web service as part of the normal iterative
development process.

See Invoking Web Services in Developing JAX-WS Web Services for Oracle
WebLogic Server and Developing WebLogic Web Services in Developing JAX-
RPC Web Services for Oracle WebLogic Server.

Note:

All web services security configurations are required to specify the same
password digest use. Inconsistent password digest use in different web
service security configurations will result in a runtime error.

Valid Class Names and Token Types for Credential Provider
When you create a security configuration, you need to supply the class name of the
credential provider for this configuration. The valid class names and token types you
can use are as follows:

• weblogic.wsee.security.bst.ClientBSTCredentialProvider. The token type is
x509.

• weblogic.wsee.security.unt.ClientUNTCredentialProvider. The token type is
ut.

• weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider. The
token type is sct.

• weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider. The
token type is sct.

• weblogic.wsee.security.saml.SAMLTrustCredentialProvider. The token type is
saml.

Using System Properties to Debug Message-Level Security
The following table lists the system properties you can set to debug problems with
your message-secured web service.

Chapter 2
Valid Class Names and Token Types for Credential Provider

2-74

Table 2-7 System Properties for Debugging Message-Level Security

System Property Data Type Description

weblogic.xml.crypto.dsig.verbos
e

Boolean Prints information about digital
signature processing.

weblogic.xml.crypto.encrypt.ver
bose

Boolean Prints information about encryption
processing.

weblogic.xml.crypto.keyinfo.ver
bose

Boolean Prints information about key resolution
processing.

weblogic.xml.crypto.wss.verbose Boolean Prints information about web service
security token and token reference
processing.

Using a Client-Side Security Policy File
The section Using Policy Files for Message-Level Security Configuration describes how a
WebLogic web service can be associated with one or more security policy files that describe
the message-level security of the web service. These policy files are XML files that describe
how a SOAP message should be digitally signed or encrypted and what sort of user
authentication is required from a client that invokes the web service. Typically, the policy file
associated with a web service is attached to its WSDL, which the web services client runtime
reads to determine whether and how to digitally sign and encrypt the SOAP message request
from an operation invoke from the client application.

Sometimes, however, a web service might not attach the policy file to its deployed WSDL or
the web service might be configured to not expose its WSDL at all. In these cases, the web
services client runtime cannot determine from the service itself the security that must be
enabled for the SOAP message request. Rather, it must load a client-side copy of the policy
file. This section describes how to update a client application to load a local copy of a policy
file.

Example 2-5 shows an example of using a client-side policy file from a JAX-WS web service.

The client-side policy file is typically exactly the same as the one associated with a deployed
web service. If the two files are different, and there is a conflict in the security assertions
contained in the files, then the invoke of the web service operation returns an error.

You can specify that the client-side policy file be associated with the SOAP message request,
response, or both. Additionally, you can specify that the policy file be associated with the
entire web service, or just one of its operations.

Associating a Policy File with a Client Application: Main Steps
The following procedure describes the high-level steps to associate a security policy file with
the client application that invokes a web service operation.

It is assumed that you have created the client application that invokes a deployed web
service, and that you want to update it by associating a client-side policy file. It is also
assumed that you have set up an Ant-based development environment and that you have a
working build.xml file that includes a target for running the clientgen Ant task.

Chapter 2
Using a Client-Side Security Policy File

2-75

See Invoking Web Services in Developing JAX-WS Web Services for Oracle
WebLogic Server and Invoking a Web Service from a Stand-alone Client: Main Steps
in Developing JAX-RPC Web Services for Oracle WebLogic Server.

1. Create the client-side security policy files and save them in a location accessible
by the client application. Typically, the security policy files are the same as those
configured for the web service you are invoking, but because the server-side files
are not exposed to the client runtime, the client application must load its own local
copies.

See Creating and Using a Custom Policy File for information about creating
security policy files.

2. Update the build.xml file that builds your client application.

3. Update your Java client application to load the client-side policy files

4. Rebuild your client application by running the relevant task. For example:

prompt> ant build-client
When you next run the client application, it will load local copies of the policy files that
the web service client runtime uses to enable security for the SOAP request message.

Note:

If you have a web services operation that already have a security policy (for
example, one that was set in the WSDL file that was stored when generating
the client from the server policy), then when you use this procedure to
programmatically set the client-side security policy, all previously-existing
policies will be removed.

Updating clientgen to Generate Methods That Load Policy Files
For JAX-RPC, set the generatePolicyMethods attribute of the clientgen Ant task to
true to specify that the Ant task should generate additional getXXX() methods in the
implementation of the JAX-RPC Service interface for loading client-side copies of
policy files when you get a port, as shown in the following example:

 <clientgen
 wsdl="http://ariel:7001/policy/ClientPolicyService?WSDL"
 destDir="${clientclass-dir}"
 generatePolicyMethods="true"
 packageName="examples.webservices.client_policy.client"/>

See Updating a Client Application To Load Policy Files (JAX-RPC Only) for a
description of the additional methods that are generated and how to use them in a
client application.

JAX-WS Usage

For JAX-WS, you use the weblogic.jws.jaxws.ClientPolicyFeature class to
override the effective policy defined for a service.
weblogic.jws.jaxws.ClientPolicyFeature extends
javax.xml.ws.WebServiceFeature.

Chapter 2
Using a Client-Side Security Policy File

2-76

Updating a Client Application To Load Policy Files (JAX-RPC Only)
When you set generatePolicyMethods="true" for clientgen, the Ant task generates
additional methods in the implementation of the JAX-RPC Service interface that you can use
to load policy files, where XXX refers to the name of the web service.

You can use either an Array or Set of policy files to associate multiple files to a web service. If
you want to associate just a single policy file, create a single-member Array or Set.

• getXXXPort(String operationName, java.util.Set<java.io.InputStream> inbound,
java.util.Set<java.io.InputStream> outbound)
Loads two different sets of client-side policy files from InputStreams and associates the
first set to the SOAP request and the second set to the SOAP response. Applies to a
specific operation, as specified by the first parameter.

• getXXXPort(String operationName, java.io.InputStream[] inbound,
java.io.InputStream[] outbound)
Loads two different arrays of client-side policy files from InputStreams and associates the
first array to the SOAP request and the second array to the SOAP response. Applies to a
specific operation, as specified by the first parameter.

• getXXXPort(java.util.Set<java.io.InputStream> inbound,
java.util.Set<java.io.InputStream> outbound)
Loads two different sets of client-side policy files from InputStreams and associates the
first set to the SOAP request and the second set to the SOAP response. Applies to all
operations of the web service.

• getXXXPort(java.io.InputStream[] inbound, java.io.InputStream[] outbound)
Loads two different arrays of client-side policy files from InputStreams and associates the
first array to the SOAP request and the second array to the SOAP response. Applies to
all operations of the web service.

Use these methods, rather than the normal getXXXPort() method with no parameters, for
getting a web service port and specifying at the same time that invokes of all, or the specified,
operation using that port have an associated policy file or files.

Note:

The following methods from a previous release of WebLogic Server have been
deprecated; if you want to associate a single client-side policy file, specify a single-
member Array or Set and use the corresponding method described above.

• getXXXPort(java.io.InputStream policyInputStream);
Loads a single client-side policy file from an InputStream and applies it to both the SOAP
request (inbound) and response (outbound) messages.

• getXXXPort(java.io.InputStream policyInputStream, boolean inbound, boolean
outbound);

Chapter 2
Using a Client-Side Security Policy File

2-77

Loads a single client-side policy file from an InputStream and applies it to either
the SOAP request or response messages, depending on the Boolean value of the
second and third parameters.

Example 2-18 shows an example of using these policy methods in a simple client
application; the code in bold is described after the example.

Example 2-18 Loading Policies in a Client Application

package examples.webservices.client_policy.client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
import java.io.FileInputStream;
import java.io.IOException;
/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the ClientPolicyService web service.
 *
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException, IOException {
 FileInputStream [] inbound_policy_array = new FileInputStream[2];
 inbound_policy_array[0] = new FileInputStream(args[1]);
 inbound_policy_array[1] = new FileInputStream(args[2]);
 FileInputStream [] outbound_policy_array = new FileInputStream[2];
 outbound_policy_array[0] = new FileInputStream(args[1]);
 outbound_policy_array[1] = new FileInputStream(args[2]);
 ClientPolicyService service = new ClientPolicyService_Impl(args[0] + "?
WSDL");
 // standard way to get the web service port
 ClientPolicyPortType normal_port = service.getClientPolicyPort();
 // specify an array of policy files for the request and response
 // of a particular operation
 ClientPolicyPortType array_of_policy_port =
service.getClientPolicyPort("sayHello",
inbound_policy_array, outbound_policy_array);
 try {
 String result = null;
 result = normal_port.sayHello("Hi there!");
 result = array_of_policy_port.sayHello("Hi there!");
 System.out.println("Got result: " + result);
 } catch (RemoteException e) {
 throw e;
 }
 }
}

The second and third argument to the client application are the two policy files from
which the application makes an array of FileInputStreams (inbound_policy_array
and outbound_policy_array). The normal_port uses the standard parameterless
method for getting a port; the array_of_policy_port, however, uses one of the policy
methods to specify that an invoke of the sayHello operation using the port has
multiple policy files (specified with an Array of FileInputStream) associated with both
the inbound and outbound SOAP request and response:

Chapter 2
Using a Client-Side Security Policy File

2-78

ClientPolicyPortType array_of_policy_port =
 service.getClientPolicyPort("sayHello", inbound_policy_array, outbound_policy_array);

Using WS-SecurityPolicy 1.2 Policy Files
WebLogic Server includes a number of WS-SecurityPolicy files you can use in most web
services applications. The policy files are located in ORACLE_HOMEoracle_common/modules/
com.oracle.webservices.wls.wls-soap-stack-impl.jar. Within
com.oracle.webservices.wls.wls-soap-stack-impl.jar, the policy files are located in /
weblogic/wsee/policy/runtime.

There are two sets of these policies. In most of the cases, they perform identical functions,
but the policy uses different namespace.

The first set has a prefix of "Wssp1.2-2007-". These security policy files conform to the
OASIS WS-SecurityPolicy 1.2 specification and have the following namespace:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 >

The second set carries over from WebLogic Server version 10.0 and has the prefix
"Wssp1.2-":

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"
 >

Oracle recommends that you use the new policy namespace, as those are official
namespaces from OASIS standards and they will perform better when interoperating with
other vendors. The old policies having the prefix of "Wssp1.2-" are mainly for users who want
to interoperate with existing applications that already use this version of the policies.

The following sections describe the available WS-SecurityPolicy 1.2 policy files:

• Transport-Level Policies

• Protection Assertion Policies

• WS-Security 1.0 Username and X509 Token Policies

• WS-Security 1.1 Username and X509 Token Policies

• WS-SecureConversation Policies

• SAML Token Profile Policies

In addition, see Choosing a Policy and Configuring Smart Policy Selection for information
about how to choose the best security policy approach for your web services implementation
and for information about WS-SecurityPolicy 1.2 elements that are not supported in this
release of WebLogic Server.

Transport-Level Policies
These policies require use of the https protocol to access WSDL and invoke web services
operations:

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-79

Note:

If you specify a transport-level security policy for your web service, it must be
at the class level.

In addition, the transport-level security policy must apply to both the inbound
and outbound directions. That is, you cannot have HTTPS for inbound and
HTTP for outbound.

Table 2-8 Transport Level Policies

Policy File Description

Wssp1.2-2007-
Https.xml

One way SSL.

Wssp1.2-2007-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if
the Authorization header is not present in the request.

Wssp1.2-2007-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Wssp1.2-2007-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-2007-Https-
UsernameToken-
Plain-
Basic256Sha256.xml

Same as Wssp1.2-2007-Https-UsernameToken-Plain.xml but
uses a stronger hash algorithm of Sha-256.

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if
the Authorization header is not present in the request.

Wssp1.2-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Protection Assertion Policies
Protection assertions are used to identify what is being protected and the level of
protection provided. Protection assertion policies cannot be used alone; they should
be used only in combination with X.509 Token Policies. For example, you might use
Wssp1.2-2007-Wss1.1-X509-Basic256.xml together with Wssp1.2-2007-
SignBody.xml. The following policy files provide for the protection of message parts by
signing or encryption:

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-80

Table 2-9 Protection Assertion Policies

Policy File Description

Wssp1.2-2007-
SignBody.xml

All message body parts are signed.

Wssp1.2-2007-
EncryptBody.xml

All message body parts are encrypted.

Wssp1.2-2007-Sign-
Wsa-Headers.xml

WS-Addressing headers are signed.

Wssp1.2-SignBody.xml All message body parts are signed.

Wssp1.2-
EncryptBody.xml

All message body parts are encrypted.

Wssp1.2-Sign-Wsa-
Headers.xml

WS-Addressing headers are signed.

Wssp1.2-2007-
SignAndEncryptWSATHea
ders.xml

WS-AtomicTransaction headers are signed and encrypted.

Wssp1.2-2007-Wsp1.5-
SignAndEncryptWSATHea
ders.xml

WS-AtomicTransaction headers are signed and encrypted. Web Services
Policy 1.5 is used.

WS-Security 1.0 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of WS-
Security 1.0:

Table 2-10 WS-Security 1.0 Policies

Policy File Description

Wssp1.2-2007-Wss1.0-
X509-Basic256.xml

Mutual Authentication with X.509 Certificates. The message is signed
and encrypted on both request and response. The algorithm of Basic256
should be used for both sides.

Wssp1.2-2007-Wss1.0-
UsernameToken-Digest-
X509-Basic256.xml

Username token with digested password is sent in the request for
authentication. The encryption method is Basic256.

Wssp1.2-2007-Wss1.0-
UsernameToken-Plain-
X509-Basic256.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted with
server's public key. The client also signs the request body and includes its
public certificate, protected by the signature in the message. The server
signs the response body with its private key and sends its public
certificate in the message. Both request and response messages include
signed time stamps. The encryption method is Basic256.

Wssp1.2-Wss1.0-
UsernameToken-Plain-
X509-Basic256.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted with
server's public key. The client also signs the request body and includes its
public certificate, protected by the signature in the message. The server
signs the response body with its private key and sends its public
certificate in the message. Both request and response messages include
signed time stamps. The encryption method is Basic256.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-81

Table 2-10 (Cont.) WS-Security 1.0 Policies

Policy File Description

Wssp1.2-Wss1.0-
UsernameToken-Plain-
X509-
TripleDesRsa15.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted with
server's public key. The client also signs the request body and includes its
public certificate, protected by the signature in the message. The server
signs the response body with its private key and sends its public
certificate in the message. Both request and response messages include
signed time stamps. The encryption method is TripleDes.

Wssp1.2-Wss1.0-
UsernameToken-Digest-
X509-Basic256.xml

Username token with digested password is sent in the request for
authentication. The encryption method is Basic256.

Wssp1.2-Wss1.0-
UsernameToken-Digest-
X509-
TripleDesRsa15.xml

Username token with digested password is sent in the request for
authentication. The encryption method is TripleDes.

Wssp1.2-Wss1.0-X509-
Basic256.xml

Mutual Authentication with X.509 Certificates. The message is signed
and encrypted on both request and response. The algorithm of Basic256
should be used for both sides.

Wssp1.2-Wss1.0-X509-
TripleDesRsa15.xml

Mutual Authentication with X.509 Certificates and message is signed and
encrypted on both request and response. The algorithm of TripleDes
should be used for both sides

Wssp1.2-Wss1.0-X509-
EncryptRequest-
SignResponse.xml

This policy is used where only the server has X.509v3 certificates (and
public-private key pairs). The request is encrypted and the response is
signed.

Wssp1.2-
wss10_x509_token_with
_message_protection_o
wsm_policy.xml

This policy is similar to Wssp1.2-
wss11_x509_token_with_message_protection_owsm_policy.xml
but supports WSS 1.0 instead of WSS1.1.

Wssp1.2-
wss10_x509_token_with
_message_protection_o
wsm_policy_eas256.xml

This policy is similar to Wssp1.2-
wss10_x509_token_with_message_protection_owsm_policy.xml.
It uses an extended algorithm suite which has a stronger hash algorithm
of Sha-256 and stronger signature method algorithm. This policy is
supported in FIPS-140 mode.

Wssp1.2-
wss10_username_token_
with_message_protecti
on_owsm_policy.xml

This policy is similar to Wssp1.2-
wss10_x509_token_with_message_protection_owsm_policy.xml
but it requires a UserName Token for authentication, instead of an X509
token for the authentication.

Wssp1.2-
wss10_username_token_
with_message_protecti
on_owsm_policy_eas256
.xml

This policy is similar to but Wssp1.2-
wss10_username_token_with_message_protection_owsm_policy
.xml. It uses an extended algorithm suite which has a stronger hash
algorithm of Sha-256 and stronger signature method algorithm. This
policy is supported in FIPS-140 mode.

WS-Security 1.1 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of
WS-Security 1.1:

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-82

Table 2-11 WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Wssp1.2-2007-Wss1.1-
X509-Basic256.xml

WSS 1.1 X509 with asymmetric binding.

Wssp1.2-2007-Wss1.1-
X509-
Basic256Sha256.xml

Same as Wssp1.2-2007-Wss1.1-X509-Basic256.xml but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-2007-Wss1.1-
UsernameToken-Digest-
X509-Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication with digested
Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
X509-Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication with plain-text
Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
X509-
Basic256Sha256.xml

Same as Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-
Basic256.xml but uses a stronger hash algorithm of Sha-256.

Wssp1.2-2007-Wss1.1-
X509-Eas256.xml

This policy is similar to policy Wssp1.2-2007-Wss1.1-X509-
Basic256.xml but uses an extended algorithm suite, which has a
stronger hash algorithm of Sha-256 and stronger signature method
algorithm. This policy is supported in FIPS-140 mode.

Wssp1.2-2007-Wss1.1-
EncryptedKey-X509-
SignedEndorsing.xml

WSS 1.1 X509 with symmetric binding and protected by signed
endorsing supporting token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Digest-
EncryptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with digested
Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
EncryptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with plain-text
Username Token.

Wssp1.2-2007-Wss1.1-
DK-X509-
SignedEndorsing.xml

WSS 1.1 X509 with derived key symmetric binding and protected by
signed endorsing supporting token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Digest-
DK.xml

WSS 1.1 X509 with derived key symmetric binding and authentication
with digested Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
DK.xml

WSS 1.1 X509 with derived key symmetric binding and authentication
with plain-text Username Token.

Wssp1.2-Wss1.1-X509-
Basic256.xml

This policy is similar to policy Wssp1.2-Wss1.0-X509-Basic256.xml
except it uses additional WS-Security 1.1 features, including Signature
Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-
EncryptedKey.xml

This is a symmetric binding policy that uses the WS-Security 1.1
Encrypted Key feature for both signature and encryption. It also uses
WS-Security 1.1 features, including Signature Confirmation and
Thumbprint key reference.

Wssp1.2-Wss1.1-
UsernameToken-DK.xml

WSS 1.1 X509 with derived key symmetric binding and authentication
with plain-text Username Token.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-83

Table 2-11 (Cont.) WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Wssp1.2-Wss1.1-
EncryptedKey-X509-
SignedEndorsing.xml

This policy has all of the features defined in policy Wssp1.2-Wss1.1-
EncryptedKey.xml, and in addition it uses sender's key to endorse the
message signature. The endorsing key is also signed with the message
signature.

Wssp1.2-Wss1.1-DK.xml This policy has all of features defined in policy Wssp1.2-Wss1.1-
EncryptedKey.xml, except that instead of using an encrypted key, the
request is signed using DerivedKeyToken1, then encrypted using a
DerivedKeyToken2. Response is signed using DerivedKeyToken3, and
encrypted using DerivedKeyToken4.

Wssp1.2-Wss1.1-DK-
X509-Endorsing.xml

This policy has all features defined in policy Wssp1.2-Wss1.1-DK.xml,
and in addition it uses the sender's key to endorse the message
signature.

Wssp1.2-Wss1.1-X509-
EncryptRequest-
SignResponse.xml

This policy is similar to policy Wssp1.2-Wss1.0-X509-
EncryptRequest-SignResponse.xml, except that it uses additional
WSS 1.1 features, including Signature Confirmation and Thumbprint key
reference.

Wssp1.2-Wss1.1-X509-
SignRequest-
EncryptResponse.xml

This policy is the reverse of policy Wssp1.2-Wss1.1-X509-
EncryptRequest-SignResponse.xml: the request is signed and the
response is encrypted.

Wssp1.2-
wss11_x509_token_with
_message_protection_o
wsm_policy.xml

This policy endorses with the sender's X509 certificate, and the message
signature is protected. It requires the use of the Basic128 algorithm suite
(AES128 for encryption) instead of the Basic256 algorithm suite
(AES256).

Wssp1.2-
wss11_x509_token_with
_message_protection_o
wsm_policy_eas256.xml

This policy is similar to Wssp1.2-
wss11_x509_token_with_message_protection_owsm_policy.xml.
It has a stronger hash algorithm of Sha-256 and stronger signature
method algorithm. This policy is supported in FIPS-140 mode.

WS-SecureConversation Policies
The policies in Table 2-12 implement WS-SecureConversation 1.3, 1.4, and WS-
SecureConversation 2005/2.

Note:

As described in Developing JAX-WS Web Services for Oracle WebLogic
Server, if you are using a template to configure your domain, the Advanced
JAX-WS template (wls_webservice_jaxws) is required for any JAX-WS web
service that uses WS-SecureConversation.

If you specify a WS-SecureConversation policy for your web service, it must be at the
class level.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-84

Table 2-12 WS-SecureConversation Policies

Policy File Description

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https-
BasicAuth.xml

One way SSL with Basic Authentication. Timestamp is included. The
algorithm suite is Basic256. The signature is encrypted.

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-
X509-
Basic256Sha256.xml

This policy is similar to policy Wssp1.2-2007-Wssc1.4-Bootstrap-
Wss1.0-UsernameToken-Plain-X509-Basic256.xml, but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public certificate.
Note that the client certificate can be used for authentication.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https-
UNT.xml

SSL Username token authentication.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponseCollection messages) occurs in https
transport. The application messages are signed and encrypted with
DerivedKeys. The signature is also encrypted.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0.
The application messages are signed and encrypted with DerivedKeys.
The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed
and encrypted. The WS-Addressing headers are signed. Timestamp is
included and signed. The signature is encrypted. The algorithm suite is
Basic256.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1.
The application messages are signed and encrypted with DerivedKeys.
The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed
and encrypted. The WS-Addressing headers are signed. Signature and
encryption use derived keys from an encrypted key.

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-
X509-Basic256.xml

WS-SecureConversation handshake is protected by WS-Security 1.0
X509 with asymmetric binding and authentication with plain-text
Username Token, similar to the Wssp1.2-2007-Wss1.0-
UsernameToken-Plain-X509-Basic256.xml policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed
and encrypted with derived keys from a secure conversation token
encrypted key. The WS-Addressing headers are signed. The policy use
WS-Policy 1.5 namespace "http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-
X509-Eas256.xml

This policy is similar to policy Wssp1.2-2007-Wssc1.4-Bootstrap-
Wss1.0-UsernameToken-Plain-X509-Basic256.xml but uses an
extended algorithm suite, which has a stronger hash algorithm of
Sha-256 and stronger signature method algorithm. This policy is
supported in FIPS-140 mode.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-85

Table 2-12 (Cont.) WS-SecureConversation Policies

Policy File Description

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
Saml1.1-
SenderVouches.xml

WS-SecureConversation handshake is protected by WS-Security 1.0
X509 with asymmetric binding and authentication with SAML 1.1 Sender
Vouches Token, similar to the Wssp1.2-2007-Saml1.1-
SenderVouches-Wss1.0.xml policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed
and encrypted with derived keys from a secure conversation token
encrypted key. The WS-Addressing headers are signed. The policy use
WS-Policy 1.5 namespace "http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.1-
Saml1.1-
SenderVouches.xml

WS-SecureConversation handshake is protected by WS-Security 1.1
X509 with asymmetric binding and authentication with SAML 1.1 Sender
Vouches Token, which is similar to the Wssp1.2-2007-Saml1.1-
SenderVouches-Wss1.1.xml policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed
and encrypted with derived keys from a secure conversation token
encrypted key. The WS-Addressing headers are signed. The policy use
WS-Policy 1.5 namespace "http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.1-
Saml2.0-Bearer.xml

WS-SecureConversation handshake is protected by WS-Security 1.1
X509 with asymmetric binding and authentication with SAML 2.0 Bearer
Token.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed
and encrypted with derived keys from a secure conversation token
encrypted key. The WS-Addressing headers are signed. The policy use
WS-Policy 1.5 namespace "http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.1-
UsernameToken-Plain-
EncryptedKey.xml

WS-SecureConversation handshake is protected by WS-Security 1.1
X509 with asymmetric binding and authentication with plain-text
Username Token, which is similar to the Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-EncryptedKey.xml policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed
and encrypted with derived keys from a secure conversation token
encrypted key. The WS-Addressing headers are signed. The policy use
WS-Policy 1.5 namespace "http://www.w3.org/ns/ws-policy".

Wssp1.2-Wssc1.3-
Bootstrap-Https-
BasicAuth.xml

One way SSL with Basic Authentication. Timestamp is included. The
algorithm suite is Basic256. The signature is encrypted.

Wssp1.2-Wssc1.3-
Bootstrap-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public certificate.
Note that the client certificate can be used for authentication.

Wssp1.2-Wssc1.3-
Bootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponseCollection messages) occurs in https
transport. The application messages are signed and encrypted with
DerivedKeys. The signature is also encrypted.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-86

Table 2-12 (Cont.) WS-SecureConversation Policies

Policy File Description

Wssp1.2-Wssc1.3-
Bootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0.
The application messages are signed and encrypted with DerivedKeys.
The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed
and encrypted. The WS-Addressing headers are signed. Timestamp is
included and signed. The signature is encrypted. The algorithm suite is
Basic256.

Wssp1.2-Wssc1.3-
Bootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1.
The application messages are signed and encrypted with DerivedKeys.
The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed
and encrypted. The WS-Addressing headers are signed. Signature and
encryption use derived keys from an encrypted key.

Wssp1.2-Wssc200502-
Bootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponse messages) occurs in https transport.
The application messages are signed and encrypted with DerivedKeys.

Wssp1.2-Wssc200502-
Bootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0.
The application messages are signed and encrypted with DerivedKeys.
The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponse messages are both signed and
encrypted. The WS-Addressing headers are signed. Timestamp is
included and signed. The algorithm suite is Basic128.

Wssp1.2-Wssc200502-
Bootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1.
The application messages are signed and encrypted with DerivedKeys.
The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponse messages are both signed and
encrypted. The WS-Addressing headers are signed. Signature and
encryption use derived keys from an encrypted key.

SAML Token Profile Policies
The policies shown in Table 2-13implement WS-Security SAML Token Profile 1.0 and 1.1.

Note:

WebLogic Server Version 10.3 supported SAML Holder of Key for the inbound
request only. As of WebLogic Server Version 10.3MP1 and later, both the request
and response messages are protected.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-87

Table 2-13 WS-Security SAML Token Profile Policies

Policy File Description

Wssp1.2-2007-
Saml1.1-Bearer-
Https.xml

One-way SSL uses SAML 1.1 token with Bearer confirmation
method for Authentication.

WebLogic Server supports the SAML 1.1 Bearer confirmation
method at the transport level, using Wssp1.2-2007-Saml2.0-
Bearer-Https.xml.

If you specify a transport-level security policy for your web service, it
must be at the class level. In addition, the transport-level security
policy must apply to both the inbound and outbound directions. That
is, you cannot have HTTPS for inbound and HTTP for outbound.

Wssp1.2-2007-
Saml1.1-
SenderVouches-
Wss1.0.xml

The message is signed and encrypted on both request and
response with WSS1.0 asymmetric binding. SAML 1.1 token is sent
in the request for authentication with Sender Vouches confirmation
method, signed by the X509 token.

Wssp1.2-2007-
Saml1.1-
SenderVouches-
Wss1.1.xml

The message is signed and encrypted on both request and
response with WSS1.1 X509 symmetric binding. SAML 1.1 token is
sent in the request for authentication with Sender Vouches
confirmation method, signed by the X509 token.

Wssp1.2-2007-
Saml1.1-
SenderVouches-
Wss1.1-
Basic256Sha256.xml

This policy is similar to Wssp1.2-2007-Saml1.1-
SenderVouches-Wss1.1.xml but uses a stronger hash algorithm
of Sha-256.

Wssp1.2-2007-
Saml1.1-
SenderVouches-
Wss1.1-Eas256.xml

This policy is similar to policy Wssp1.2-2007-Saml1.1-
SenderVouches-Wss1.1.xml but uses an extended algorithm
suite, which has a stronger hash algorithm of Sha-256 and stronger
signature method algorithm. This policy is supported in FIPS-140
mode.

Wssp1.2-2007-
Saml2.0-
SenderVouches-
Wss1.1.xml

The message is signed and encrypted on both request and
response with WSS1.1 X509 symmetric binding. SAML 2.0 token is
sent in the request for authentication with Sender Vouches
confirmation method, signed by the X509 token.

Wssp1.2-2007-
Saml2.0-
SenderVouches-
Wss1.1-
Basic256Sha256.xml

This policy is similar to policy Wssp1.2-2007-Saml2.0-
SenderVouches-Wss1.1.xml but uses a stronger hash algorithm
of Sha-256.

Wssp1.2-2007-
Saml2.0-
SenderVouches-
Wss1.1-
Asymmetric.xml

The message is signed and encrypted on both request and
response with WSS1.1 asymmetric binding. It uses additional WS-
Security 1.1 features, including Signature Confirmation and
Thumbprint key reference. SAML 2.0 token is sent in the request for
authentication with Sender Vouches confirmation method, signed by
the X509 token.

Wssp1.2-2007-
Saml2.0-
SenderVouches-
Wss1.1-Eas256.xml

This policy is similar to policy Wssp1.2-2007-Saml2.0-
SenderVouches-Wss1.1.xml but uses an extended algorithm
suite, which has a stronger hash algorithm of Sha-256 and stronger
signature method algorithm. This policy is supported in FIPS-140
mode.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-88

Table 2-13 (Cont.) WS-Security SAML Token Profile Policies

Policy File Description

Wssp1.2-2007-
Saml1.1-
HolderOfKey-
Wss1.0.xml

The message is signed and encrypted on both request and
response with WSS1.0 asymmetric binding. SAML 1.1 token is sent
in the request for authentication with Holder of Key confirmation
method, in which the key inside the SAML Token is used for the
signature.

Wssp1.2-2007-
Saml1.1-
HolderOfKey-Wss1.1-
Asymmetric.xml

The message is signed and encrypted on both request and
response with WSS1.1 asymmetric binding. It uses additional WS-
Security 1.1 features, including Signature Confirmation and
Thumbprint key reference. SAML 1.1 token is sent in the request for
authentication with Holder of Key confirmation method, in which the
key inside the SAML Token is used for the signature.

Wssp1.2-2007-
Saml2.0-
HolderOfKey-Wss1.1-
Asymmetric.xml

The message is signed and encrypted on both request and
response with WSS1.1 asymmetric binding. It uses additional WS-
Security 1.1 features, including Signature Confirmation and
Thumbprint key reference. SAML 2.0 token is sent in the request for
authentication with Holder of Key confirmation method, in which the
key inside the SAML Token is used for the signature.

Wssp1.2-2007-
Saml2.0-Bearer-
Https.xml

One-way SSL uses SAML 2.0 token with Bearer confirmation
method for Authentication.

WebLogic Server supports the SAML 2.0 Bearer confirmation
method at the transport level, using Wssp1.2-2007-Saml2.0-Bearer-
Https.xml.

To interoperate with other products that do not support SAML 2.0,
for the SAML-over-HTTPS scenario, the sender vouches
confirmation method is recommended.

Use the Wssp1.2-2007-Saml1.1-SenderVouches-
Https.xml policy for this purpose, instead of using SAML 1.1
Bearer.

If you specify a transport-level security policy for your web service, it
must be at the class level. In addition, the transport-level security
policy must apply to both the inbound and outbound directions. That
is, you cannot have HTTPS for inbound and HTTP for outbound.

Wssp1.2-2007-
Saml2.0-Bearer-
Https-
Basic256Sha256.xml

Same as Wssp1.2-2007-Saml2.0-Bearer-Https.xml but uses
a stronger hash algorithm of Sha-256.

Wssp1.2-
wss10_saml_token_wi
th_message_protecti
on_owsm_policy.xml

This policy is similar to Wssp1.2-
wss10_x509_token_with_message_protection_owsm_policy
.xml but it requires a SAML Token for authentication.

Wssp1.2-
wss10_saml_token_wi
th_message_protecti
on_owsm_policy_eas2
56.xml

This policy is similar to policy Wssp1.2-
wss10_saml_token_with_message_protection_owsm_policy
.xml but uses an extended algorithm suite, which has a stronger
hash algorithm of Sha-256 and stronger signature method
algorithm. This policy is supported in FIPS-140 mode.

Wssp1.2-
wss11_saml_token_wi
th_message_protecti
on_owsm_policy.xml

This policy endorses with the sender's X509 certificate, and
message signature is protected. It requires the use of the Basic128
algorithm suite (AES128 for encryption) instead of the Basic256
algorithm suite (AES256).

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

2-89

Table 2-13 (Cont.) WS-Security SAML Token Profile Policies

Policy File Description

Wssp1.2-
wss11_saml_token_wi
th_message_protecti
on_owsm_policy_eas2
56.xml

This policy is similar to policy Wssp1.2-
wss11_saml_token_with_message_protection_owsm_policy
.xml but uses an extended algorithm suite, which has a stronger
hash algorithm of Sha-256 and stronger signature method
algorithm. This policy is supported in FIPS-140 mode.

Wssp1.2-
wss11_saml20_token_
with_message_protec
tion_owsm_policy.xm
l

This policy is similar to policy Wssp1.2-
wss11_saml_token_with_message_protection_owsm_policy
.xml but uses a SAML 2.0 token.

Wssp1.2-
wss11_saml20_token_
with_message_protec
tion_owsm_policy_ea
s256.xml

This policy is similar to policy Wssp1.2-
wss11_saml20_token_with_message_protection_owsm_poli
cy.xml but uses an extended algorithm suite, which has a stronger
hash algorithm of Sha-256 and stronger signature method
algorithm. This policy is supported in FIPS-140 mode.

Choosing a Policy
WebLogic Server's implementation of WS-SecurityPolicy 1.2 makes a wide variety of
security policy alternatives available to you. When choosing a security policy for your
web service, you should consider your requirements in these areas:

• Performance

• Security

• Interoperability

• Credential availability (X.509 certificate, username token, clear or digest
password)

Whenever possible, Oracle recommends that you:

• Use a policy packaged in WebLogic Server rather than creating a custom policy.

• Use a WS-SecurityPolicy 1.2 policy rather than a WebLogic Server 9.x style policy,
unless you require features that are not yet supported by WS-SecurityPolicy 1.2
policies.

• Use transport-level policies (Wssp1.2-2007-Https-*.xml) only where message-
level security is not required.

• Use WS-Security 1.0 policies if you require interoperability with that specification.
Use one of the following, depending on your authentication requirements and
credential availability:

– Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml
– Wssp1.2-2007-Wss1.0-UsernameToken-Digest-X509-Basic256.xml
– Wssp1.2-2007-Wss1.0-X509-Basic256.xml

• Use WS-Security 1.1 policies if you have strong security requirements. Use one of
the following:

Chapter 2
Choosing a Policy

2-90

– Wssp1.2-2007-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml
– Wssp1.2-2007-Wss1.1-DK-X509-SignedEndorsing.xml
– Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml
– Wssp1.2-Wss1.1-DK-X509-Endorsing.xml

• Use a WS-SecureConversation policy where WS-ReliableMessaging plus security are
required:

– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml
– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml
– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml
– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml
– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml
– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

Unsupported WS-SecurityPolicy 1.2 Assertions
The WS-SecurityPolicy 1.2 assertions in Version-Independant Policy Supported are not
supported in this release of WebLogic Server.

Note:

New WS-SecurityPolicy 1.3 assertions are also not supported in this release.

Table 2-14 Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificatio
n

Assertion Remarks

5.1.1 TokenInclusion includeTokenPolicy=Once is not supported.

5.4.1 UsernameToken Only <sp:UsernameToken11> and Password Derived
Keys are not supported in this release. Other
Username Tokens assertions are supported.

5.4.2 IssuedToken WS-Trust Policy assertion is not supported in this
release.

5.4.4 KerberosToken Not supported in this release.

5.4.5 SpnegoContextToken Not supported in this release.

5.4.9 RelToken Not supported in this release.

5.4.11 KeyValueToken Not supported in this release.

6.5 Token Protection Token Protection in cases where
includeTokenPolicy="Never", or in cases where the
Token is not in the Message, is not supported in this
release.

Chapter 2
Unsupported WS-SecurityPolicy 1.2 Assertions

2-91

Table 2-14 (Cont.) Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificatio
n

Assertion Remarks

7.1 AlgorithmSuite /sp:AlgorithmSuite/wsp:Policy/sp:XPathFilter20
assertion, /sp:AlgorithmSuite/wsp:Policy/sp:XPath10
assertion and /sp:AlgorithmSuite/wsp:Policy/
sp:SoapNormalization10 are not supported in this
release.

8.1 SupportingTokens Not supported in this release:

../sp:SignedParts assertion, ../sp:SignedElements
assertion ../sp:EncryptedParts assertion ../
sp:EncryptedElements assertion

8.2

8.3

8.4

8.5

SignedSupportingTokens

EndorsingSupportingTokens

SignedEndorsingSupportingToke
ns

SignedEncryptedSupportingToke
ns

Not supported in this release:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

../sp:SignedEncryptedSupportingTokens assertion

The runtime will not be able to endorse the
supporting token in cases where the token is not in
the Message (such as for includeTokenPolicy=Never/
Once).

8.6 EncryptedSupportingTokens UserName Token is the only
EncryptionSupportingTokens supported in this
release.

Other type of tokens are not supported.

8.7 EndorsingEncryptedSupportingT
okens

Not supported in this release.

8.8 SignedEndorsingEncryptedSupp
ortingTokens

Not supported in this release.

9.1 WSS10 Assertion <sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken> are not
supported in this release.

9.2 WSS11 Assertion <sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken> are not
supported in this release.

10.1 Trust13 Assertion MustSupportClientChallenge,
MustSupportServerChallenge are not supported in
this release. This assertion is supported only in WS-
SecureConversation policy.

Using the Optional Policy Assertion
WebLogic Server supports the Optional WS-Policy assertion. Consider the use of
Optional in the following example:

<sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="…/IncludeToken/AlwaysToRecipient" wsp:Optional="true" >

Chapter 2
Using the Optional Policy Assertion

2-92

 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
</sp:SignedEncryptedSupportingTokens>

In the example, specifying the Username Token for authorization is optional. The client can
continue if it cannot generate the Username Token because the user is anonymous or when
there is no security context.

During the Security Policy enforcement process, the message is not rejected if the missing
element has the Policy assertion with the attribute of wsp:Optional="true".

The following security policy assertions are now supported by the Optional policy assertion:

• Username Token

• SAML Token

• Signature parts or signature elements

• Encryption parts or encryption elements

• Derive Key Token

Configuring Element-Level Security
WebLogic Server supports the element-level assertions defined in WS-SecurityPolicy 1.2.
These assertions allow you to apply a signature or encryption to selected elements within the
SOAP request or response message, enabling you to target only the specific data in the
message that requires security and thereby reduce the computational requirements.

In addition, the assertion RequiredElements allows you to ensure that the message contains
a specific header element.

The following element-level assertions are available:

• EncryptedElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516)

• ContentEncryptedElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826517)

• SignedElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-os.html#_Toc161826513)

• RequiredElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826518)

In order to specify an element-level assertion, you must identify the particular request
element or response element to which it applies.

You use XPath expressions in policy files to identify these elements, via either XPath Version
1.0 (http://www.w3.org/TR/xpath) or XPath Filter Version 2.0 (http://www.w3.org/TR/
xmldsig-filter2/) syntax. The examples in this section use the default syntax, XPath
Version 1.0.

Because each of these assertions identifies one or more particular elements in web service
message, you must use custom security policy files for all element-level security assertions.
These custom policy files are typically combined with predefined security policy files, with the

Chapter 2
Configuring Element-Level Security

2-93

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826517
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826517
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826513
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826513
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826518
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826518
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmldsig-filter2/
http://www.w3.org/TR/xmldsig-filter2/

predefined files defining the way that signing or encryption is performed, and the
custom policy files identifying the particular elements that are to be signed or
encrypted.

Define and Use a Custom Element-Level Policy File
The first step is to determine the XPath expression that identifies the target element.
To do this, you need to understand the format of the SOAP messages used by your
web service, either through direct inspection or via analysis of the service's WSDL and
XML Schema.

How you determine the format of the SOAP message, and therefore the required
XPath expression, is heavily dependent on the tools you have available and is outside
the scope of this document. For example, you might do the following:

1. Run the web service without element-level security.

2. Turn on SOAP tracing.

3. Inspect the SOAP message in the logs.

4. Produce the XPath expression from the SOAP message.

Or, you might have a software tool that allows you to produce a sample SOAP request
for a given WSDL, and then use it to generate the XPath expression.

Consider the example of a web service that has a "submitOrderRequest" operation
that will receive a SOAP request of the form shown in Example 2-19.

The sections in bold will be later used to construct the custom element-level policy.

Example 2-19 submitOrderRequest SOAP Request

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <ns1:submitOrderRequest
 xmlns:ns1="http://www.oracle.com/OrderService">
 <ns1:OrderRequest>
 <ns1:orderNumber>4815162342</ns1:orderNumber>
 <ns1:creditCard>
 <ns1:cctype>MasterCard</ns1:cctype>
 <ns1:expires>12-01-2020</ns1:expires>
 <ns1:ccn>1234-567890-4444</ns1:ccn>
 </ns1:creditCard>
 </ns1:OrderRequest>
 </ns1:submitOrderRequest>
 </env:Body>
</env:Envelope>

Assume that you require that the <ns1:creditCard> element and its child elements be
encrypted. To do this, you use the information obtained from the bold sections of
Example 2-19 to create a custom security policy file, perhaps called
EncryptCreditCard.xml.

Consider the example shown in Example 2-20.

Example 2-20 EncryptCreditCard.xml Custom Policy File

<?xml version="1.0"?>
<wsp:Policy

Chapter 2
Configuring Element-Level Security

2-94

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <sp:EncryptedElements xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <sp:XPath xmlns:myns="http://www.oracle.com/OrderService">
/soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderRequest/
myns:creditCard
 </sp:XPath>
 </sp:EncryptedElements>
</wsp:Policy>

As described in the WS-SecurityPolicy 1.2 Specification (http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516),
the /sp:EncryptedElements/sp:XPath element contains a string specifying an XPath
expression that identifies the nodes to be confidentiality protected. The XPath expression is
evaluated against the S:Envelope element node of the message. Multiple instances of this
element may appear within this assertion and should be treated as separate references.

Note the following:

• The root element must be <wsp:Policy> with the prefix (in this case wsp) mapping to the
full WS-Policy namespace.

• The assertion (in this case EncryptedElements) must also be namespace-qualified with
the full WS-SecurityPolicy 1.2 namespace, as indicated by the "sp" prefix.

• The creditCard element in the SOAP message is namespace-qualified (via the ns1
prefix), and has parent elements: OrderRequest, submitOrderRequest, Body, and
Envelope. Each of these elements is namespace-qualified.

The XPath query (beginning with /soapenv:Envelope…) matches the location of the
creditCard element:

 /soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderRequest/
myns:creditCard

• The namespace prefixes in the SOAP message need not match the prefixes in the
custom security policy file. It is important only that the full namespaces to which the
prefixes map are the same in both the message and policy assertion.

• WebLogic Server handles the mapping of SOAP 1.1 and SOAP 1.2 namespaces, and
WS-Addressing 2004/08 and WS-Addressing 1.0 namespaces.

Adding the Policy Annotation to JWS File
After you have created your custom policy, add a Policy annotation to your JWS file so that
the ElementEncryption policy is used for submitOrder web service requests, as shown in
Example 2-21.

Example 2-21 Adding Policy Annotation for Custom Policy File

@WebMethod
@Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plan-X509-Basic256.xml"),
 @Policy(uri="../policies/EncryptCreditCard.xml",
 direction=Policy.Direction.inbound)})

public String submitOrderRequest (OrderRequest orderRequest) {
 return orderService.processOrder(orderRequest);
}

Chapter 2
Configuring Element-Level Security

2-95

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516

Because the creditCard element is present in the SOAP request, but not the
response, the code fragment configures the EncryptedElements custom policy only in
the "inbound" direction.

To specify a user-created policy file, specify the path (relative to the location of the
JWS file) along with its name, as shown in the following example:

@Policy(uri="../policies/MyPolicy.xml")

In the example, the MyPolicy.xml file is located in the policies sibling directory of the
one that contains the JWS file.

You can also specify a policy file that is located in a shared Java EE library; this
method is useful if you want to share the file amongst multiple web services packaged
in different Java EE archives.

Note:

In this case, it is assumed that the policy file is in the META-INF/policies or
WEB-INF/policies directory of the shared Java EE library. Be sure, when you
package the library, that you put the policy file in this directory.

To specify a policy file in a shared Java EE library, use the policy prefix and then the
name of the policy file, as shown in the following example:

@Policy(uri="policy:MySharedPolicy.xml")

See Creating Shared Java EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Server for information on creating shared libraries
and setting up your environment so the web service can find the shared policy files.

Implementation Notes
Keep the following considerations in mind when implementing element-level security:

• You can include multiple element-level assertions in a policy; all are executed.

• You can include multiple <sp:XPath> expressions in a single assertions; all are
executed.

• The EncryptedElements assertion causes the identified element and all of its
children to be encrypted.

• The ContentEncryptedElements assertion does not encrypt the identified element,
but does encrypt all of its children.

• The RequiredElements assertion may be used to test for the presence of a top-
level element in the SOAP header. If the element is not found, a SOAP Fault will
be raised.

RequiredElements assertions cannot be used to test for elements in the SOAP
Body.

Chapter 2
Configuring Element-Level Security

2-96

Smart Policy Selection
Multiple policy alternatives for any given web service are supported, which provides the
service with significant flexibility.

Consider that a web service might support any of the following:

• Different versions of the standard. For example, the web service might allow WSRM 1.0
and WSRM 1.1, WSS1.0 and WSS 1.1, WSSC 1.1 and WWSSC 1.2, SAML 1.1 or SAML
2.0.

• Different credentials for authentication. For example, the web service might allow either
username token, X509, or SAML token for authentication.

• Different security requirements for internal and external clients. For example, external
authentication might require a SAML token, while internal employee authentication
requires only a username token for authentication.

The web services client can also handle multiple policy alternatives. The same client can
interoperate with different services that have different policy or policy alternatives.

For example, the same client can talk to one service that requires SAML 1.1 Token Profile 1.0
for authentication, while another service requires SAML 2.0 Token Profile 1.1 for
authentication.

Example of Security Policy With Policy Alternatives
Example 2-22 shows an example of a security policy that supports both WS-Security 1.0 and
WS-Security 1.1.

Note:

Within the <wsp:ExactlyOne> element, each policy alternative is encapsulated
within a <wsp:All> element.

Example 2-22 Policy Defining Multiple Alternatives

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
<wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>

Chapter 2
Smart Policy Selection

2-97

 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200512/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200512/IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>

Chapter 2
Smart Policy Selection

2-98

 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Configuring Smart Policy Selection
You can configure multiple policy alternatives for a single web service by creating a custom
policy, as shown in Example 2-22. You then configure the web service client to make a policy
selection preference.

In this release of WebLogic Server, you can configure the policy selection preferences for the
web service client by using the WebLogic Server Administration Console, and via stubs.

The following preferences are supported:

• Security

• Performance

• Compatibility

How the Policy Preference is Determined
The web services runtime uses your policy selection preference to examine the policy
alternatives and select the best choice.

If there are multiple policy choices, the system uses the configured preference list, the
availability of the credential, and setting of the optional function to determine the best
selection policy.

Chapter 2
Smart Policy Selection

2-99

If multiple policy alternatives exist for a client, the following selection rules are used:

• If the preference is not set, the first policy alternative will be picked, except if the
policy alternative is defined as wsp:optional=true.

• If the preference is set to security first, then the policy that has the most security
features is selected.

• If the preference is set to compatibility/interop first, then the policy that has the
lowest version is selected.

• If the preference is set to performance first, then the policy with the fewest security
features is selected.

For the optional policy assertions, the following selection rules are used:

• If the default policy selection preference is set, then the optional attribute on any
assertion is ignored.

• If the Compatibility or Performance preference is set, then any assertion with an
optional attribute is ignored; therefore the assertion is ignored.

• If the security policy selection preference is set, optional assertions are included
and alternative assertions are never generated.

Configuring Smart Policy Selection in the Console
Perform the following steps to configure smart policy selection in the Console:

1. If you do not already have a functional web services security configuration, create
a web services security configuration as described in the Oracle WebLogic Server
Administration Console Online Help.

2. Edit the web services security configuration. On the General tab, set the Policy
Selection Preference. The following values are supported:

• None (default)

• Security then Compatibility then Performance (SCP)

• Security then Performance then Compatibility (SPC)

• Compatibility then Security then Performance (CSP)

• Compatibility then Performance then Security (CPS)

• Performance then Compatibility then Security (PCS)

• Performance then Security then Compatibility (PSC

3. Save and activate your changes.

Understanding Body Encryption in Smart Policy
In smart policy selection scenarios, whether or not the Body will be encrypted (for
example, <sp:EncryptedParts> <sp:Body /></sp:EncryptedParts>) depends on the
following policy selection preference rules:

• Default -- The first policy alternative will be used for the determination. If the
encrypted body assertion is in the first policy alternative, the body is encrypted. If
the encrypted body assertion is not in the first policy alternative, the body is not
encrypted.

• SCP, SPC -- encrypted

Chapter 2
Smart Policy Selection

2-100

• PCS, PSC -- not encrypted

• CPS -- not encrypted

• CSP -- encrypted

Consider the following two examples. In Example 2-23, the encrypted body assertion is in the
first policy alternative. Therefore, in the default preference case the body is encrypted. For
policy selection preferences other than the default, the other preference rules apply.

Example 2-23 Body Assertion in First Policy Alternative

<?xml version="1.0"?>
<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
<wsp:ExactlyOne>
<sp:EncryptedParts>
<sp:Body/>
</sp:EncryptedParts>
<sp:EncryptedParts/>
</wsp:ExactlyOne>
</wsp:Policy>

By contrast, in Example 2-24, the encrypted body assertion is not in the first policy
alternative. Therefore, in the default preference case the body is not encrypted. For policy
selection preferences other than the default, the other preference rules apply.

Example 2-24 Body Assertion Not in First Policy Alternative

<?xml version="1.0"?>
<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
<wsp:ExactlyOne>
<sp:EncryptedParts/>
<sp:EncryptedParts>
<sp:Body/>
</sp:EncryptedParts>
</wsp:ExactlyOne>
</wsp:Policy>

Smart Policy Selection for a Standalone Client
You can set the policy selection preference via the stub property.

The following example sets the stub property for security, compatibility, and performance
preferences for JAX-RPC:

stub._setProperty(WLStub.POLICY_SELECTION_PREFERENCE,
WLStub.PREFERENCE_SECURITY_COMPATIBILITY_PERFORMANCE);
For JAX-WS, consider the following example:

BindingProvider bindingProvider = (BindingProvider) port;
Map<String,Object> rc =
(Map<String,Object>)bindingProvider.getRequestContext();
rc.put(WLStub.POLICY_SELECTION_PREFERENCE,
WLStub.PREFERENCE_COMPATIBILITY_PERFORMANCE_SECURITY);

Chapter 2
Smart Policy Selection

2-101

If the policy selection preference is not set, then the default preference (None) is used.

Multiple Transport Assertions
If there are multiple available transport-level assertions in your security policies,
WebLogic Server uses the policy that requires https. If more than one policy alternative
requires https, WebLogic Server randomly picks one of them. You should therefore
avoid using multiple policy alternatives that contain mixed transport-level policy
assertions.

Example of Adding Security to MTOM Web Service

Note:

The example shows adding security to a JAX-RPC web service. In this
release, MTOM with WS-Security is supported for both JAX-WS and JAX-
RPC.

As described in Optimizing Binary Data Transmission Using MTOM/XOP, SOAP
Message Transmission Optimization Mechanism/XML-binary Optimized Packaging
(MTOM/XOP) defines a method for optimizing the transmission of XML data of type
xs:base64Binary or xs:hexBinary in SOAP messages.

This section describes a combination of two examples that are optionally included with
WebLogic Server:

• EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wss1.1
• EXAMPLES_HOME\wl_server\examples\src\examples\webservices\mtom
These existing examples include functional code and extensive instructions.html
files that describes their use and function, how to build them, and so forth. This section
does not repeat that information, but instead concentrates on the changes made to
these examples, and the reasons for the changes. See Sample Applications and Code
Examplesin Understanding Oracle WebLogic Server.

Files Used by This Example
The example uses the files shown in the Version-Independent Matrix table in
Version-Independent Policy Supported. The contents of the source files are shown in
subsequent sections.

Table 2-15 Files Used in MTOM/Security Example

File Description

build.xml Ant build file that contains targets for building and running the
example.

Chapter 2
Example of Adding Security to MTOM Web Service

2-102

Table 2-15 (Cont.) Files Used in MTOM/Security Example

File Description

configWss.py WLST script that configures a web service security configuration.
This file is copied without change from
EXAMPLES_HOME\wl_server\examples\src\examples\webser
vices\wss1.1

MtomClient.java Standalone client application that invokes the MTOM web service.
This file uses the JAX-RPC Stubs generated by clientgen, based on
the WSDL of the web service.

SecurityMtomService
.java

JWS file that implements the MTOM web service. The JWS file uses
the @Policy annotation to specify the WS-Policy files that are
associated with the web service.

clientkeyStore.jks Client-side key store, used to create a client-side
BinarySecurityToken credential provider.

This file is copied without change from
EXAMPLES_HOME\wl_server\examples\src\examples\webser
vices\wss1.1\certs

serverkeyStore.jks Server-side key store, used to create a Server-side
BinarySecurityToken credential provider.

This file is copied without change from
EXAMPLES_HOME\wl_server\examples\src\examples\webser
vices\wss1.1\certs

testServerCertTempC
ert.der

Server-side certificate, used to create a client-side
BinarySecurityToken credential provider.

This file is copied without change from
EXAMPLES_HOME\wl_server\examples\src\examples\webser
vices\wss1.1\certs

SecurityMtomService.java
The SecurityMtomService.java JWS file is the same as that in
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\mtom\MtomService.java,
with the additional Policy annotations shown in bold.

Example 2-25 SecurityMtomService.java

package examples.webservices.security_mtom;
import weblogic.jws.Binding;
import weblogic.jws.Policy;
import weblogic.jws.Policies;
import weblogic.jws.Context;
import weblogic.jws.WLDeployment;
import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.mtom.api.MtomPolicyInfo;
import weblogic.wsee.mtom.api.MtomPolicyInfoFactory;
import weblogic.wsee.policy.framework.PolicyException;

import javax.jws.WebService;
import javax.jws.WebMethod;
import java.rmi.RemoteException;

/**

Chapter 2
Example of Adding Security to MTOM Web Service

2-103

 * Sample to MTOM with JAX-RPC
 *
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
@WebService
@Binding(Binding.Type.SOAP12)
//enable WSS + MTOM for this web service by adding the following canned policy
files
@Policies({
 @Policy(uri = "policy:Mtom.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml"),
@Policy(uri = "policy:Wssp1.2-Wss1.1-EncryptedKey.xml")
})
public class SecurityMtomService {

 public SecurityMtomService() {

 }

 /**
 * Input is sent as XOP'ed binary octet stream
 *
 * @param bytes input bytes
 * @return A simple String
 */
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

 /**
 * Output is sent as as XOP'ed binary octet stream
 *
 * @param s a simple String
 * @return byte[]
 */
 @WebMethod
 public byte[] echoStringAsBinary(String s) {
 return s.getBytes();
 }

 /**
 * input byte[] is sent as as XOP'ed binary octet stream
 *
 * @param array input byte[] array
 * @return String[]
 */
 @WebMethod
 public String[] echoBinaryArrayAsStringArray(byte[] array) {
 String[] strings = new String[1];
 strings[0] = new String(array);
 return strings;
 }
}

You can specify the @Policy annotation at both the class- and method- level. In this
example, the annotation is used at the class-level to specify the predefined WS-Policy
files, which means all public operations of the web service are associated with the
specified WS-Policy files.

Chapter 2
Example of Adding Security to MTOM Web Service

2-104

You use the @Policies annotation to group together multiple @Policy annotations. You can
specify this annotation at both the class- and method-level. In this example, the annotation is
used at the class-level to group the four @Policy annotations that specify the predefined WS-
Policy files:

• The predefined WS-Policy file Mtom.xml enables MTOM encoding.

• As described in Protection Assertion Policies, the Wssp1.2-2007-SignBody.xml policy file
specifies that the body and WebLogic system headers of both the request and response
SOAP message be digitally signed.

• The Wssp1.2-2007-EncryptBody.xml policy file specifies that the body of both the
request and response SOAP messages be encrypted.

• The Wssp1.2-Wss1.1-EncryptedKey.xml symmetric binding policy uses the WS-Security
1.1 Encrypted Key feature. The client application invoking the web service must use the
encrypted key to encrypt and sign, and the server must send Signature Confirmation.

MtomClient.java
MtomClient.java is a standalone client application that invokes the SecurityMtomService
web service. It uses the JAX-RPC stubs generated by clientgen, based on the WSDL of the
web service. The MtomClient code is shown in Example 2-26.

Example 2-26 MtomClient.java

package examples.webservices.security_mtom.client;

import java.rmi.RemoteException;

import java.security.cert.X509Certificate;
import java.util.ArrayList;
import java.util.List;
import javax.xml.rpc.Stub;

import weblogic.security.SSL.TrustManager;

// Import classes to create the Binary and Username tokens
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

// Import classes for creating the client-side credential provider
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.security.util.CertUtils;

/**
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class MtomClient {
 private static final String FOO = "FOO";
 private static SecurityMtomService port;

 public MtomClient(String args[]) throws Exception {
 //client keystore file
 String clientKeyStore = args[0];
 String clientKeyStorePass = args[1];
 String clientKeyAlias = args[2];
 String clientKeyPass = args[3];

Chapter 2
Example of Adding Security to MTOM Web Service

2-105

 //server certificate
 String serverCertFile = args[4];
 String wsdl = args[5];

 SecurityMtomServiceService service = new
SecurityMtomServiceService_Impl(wsdl);
 port = service.getSecurityMtomServiceSoapPort();

X509Certificate serverCert = (X509Certificate)
CertUtils.getCertificate(serverCertFile);

 //create emtpy list of credential providers
 List credProviders = new ArrayList();

 //Create client-side BinarySecurityToken credential provider that uses
 // X.509 for identity, based on certificate and keys parameters
 CredentialProvider cp = new ClientBSTCredentialProvider(clientKeyStore,
 clientKeyStorePass, clientKeyAlias, clientKeyPass, "JKS", serverCert);
 credProviders.add(cp);

 Stub stub = (Stub) port;

 // Set stub property to point to list of credential providers
 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 // setup the TrustManager.
 stub._setProperty(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain, int
validateErr) {
 //Typically in a real-life application, Java code that actually
 //verifies the certificate goes here; for sake of simplicity, this
 //example assumes the certificate is valid and simply returns true.

 return true;
 }
 });
 }

 public static void main(String[] args) throws Exception {
 MtomClient client = new MtomClient(args);
 client.invokeEchoBinaryAsString();
 client.invokeEchoStringAsBinary();
 client.invokeEchoBinaryArrayAsStringArray();
 }

 public void invokeEchoBinaryArrayAsStringArray() throws RemoteException {
 System.out.println("sending a String '" + FOO + "' as a byte array.");
 String result =
port.echoBinaryArrayAsStringArray(FOO.getBytes()).getJavaLangstring()[0];
 System.out.println("echoing '" + result + "' as a String array.");
 }

 public void invokeEchoStringAsBinary() throws RemoteException {
 System.out.println("sending a String '" + FOO + "'");
 String result = new String(port.echoStringAsBinary(FOO));
 System.out.println("echoing '" + result + "' as a byte array.");
 }

 public void invokeEchoBinaryAsString() throws RemoteException {

Chapter 2
Example of Adding Security to MTOM Web Service

2-106

 System.out.println("sending a String '" + FOO + "' as a byte array.");
 String result = port.echoBinaryAsString(FOO.getBytes());
 System.out.println("echoing '" + result + "' as a String.");
 }
}

The client application takes six arguments:

• Client keystore

• Client keystore password

• Client key alias

• Client key password

• The server certificate file

• WSDL of the deployed web service

The client application uses the following WebLogic web services security APIs to create the
needed client-side credential providers, as specified by the WS-Policy files that are
associated with the web service:

• weblogic.wsee.security.bst.ClientBSTCredentialProvider to create a binary security token
credential provider, using the certificate and private key.

• weblogic.xml.crypto.wss.WSSecurityContext to specify the list of credential providers to
the JAX-RPC stub.

• weblogic.xml.crypto.wss.provider.CredentialProvider, which is the main credential
provider class.

When you write this client application, you need to consult the WS-Policy files associated with
a web service to determine the types and number of credential providers that must be set in
the JAX-RPC stub. Typically, if the WS-Policy file specifies that SOAP messages must be
signed or encrypted, using X.509 for identity, then you must create a
ClientBSTCredentialProvider. (If it specifies that the user provides a username token for
identity, then the application must create a ClientUNTCredentialProvider.)

The example creates a client BST credential provider for the indicated keystore, certificate
alias, and server certificate. The certificate passed for the parameter serverCert is used to
encrypt the message body contents and to verify the received signature. Any KeyInfo
received as part of the in-bound signature (for example, certificate thumbprint) must correctly
identify the same server certificate.

The web services client runtime also consults this WSDL so it can correctly create the
security headers in the SOAP request when an operation is invoked.

Finally, the client application must use the weblogic.security.SSL.TrustManager WebLogic
security API to verify that the certificate used to encrypt the SOAP request is valid. The client
runtime gets this certificate (serverCert in the example) from the deployed WSDL of the web
service, which in real-life situations is not automatically trusted, so the client application must
ensure that it is okay before it uses it to encrypt the SOAP request.

Chapter 2
Example of Adding Security to MTOM Web Service

2-107

Note:

The client-side certificate and private key used in this example have been
created for simple testing purposes, and therefore are always trusted by
WebLogic Server. For this reason, there is no additional server-side security
configuration needed to run this example. In real life, however, the client
application would use a certificate from a real certificate authority, such as
Verisign. In this case, administrators would need to use the WebLogic Server
Administration Console to add this certificate to the list that is trusted by
WebLogic Server.

configWss.py Script File
The SecurityMtomService web service does not explicitly invoke any WebLogic Server
API to handle the requirements imposed by any associated policy files, nor does this
web service have to understand which, if any, security providers, tokens, or other such
mechanisms are involved.

The script file configWss.py uses WLST to create and configure the default web
service security configuration, default_wss, for the active security realm. (The default
web service security configuration is used by all web services in the domain unless
they have been explicitly programmed to use a different configuration.) Further, this
script makes sure that x509 tokens are supported, creates the needed security
providers, and so forth.

Example 2-27 shows the configWss.py file. The build.xml file provides the command
input. Sections of particular interest are shown in bold.

Note:

Long lines in this script have been formatted for readability.

Example 2-27 configWss.py

userName = sys.argv[1]
passWord = sys.argv[2]
url="t3://"+sys.argv[3]+":"+sys.argv[4]

print "Connect to the running adminSever"

connect(userName, passWord, url)

edit()
startEdit()

#Enable assert x509 in SecurityConfiguration
rlm = cmo.getSecurityConfiguration().getDefaultRealm()
ia = rlm.lookupAuthenticationProvider("DefaultIdentityAsserter")
activeTypesValue = list(ia.getActiveTypes())
existed = "X.509" in activeTypesValue
if existed == 1:
 print 'assert x509 is aleady enabled'

Chapter 2
Example of Adding Security to MTOM Web Service

2-108

else:
 activeTypesValue.append("X.509")
ia.setActiveTypes(array(activeTypesValue,java.lang.String))
ia.setDefaultUserNameMapperAttributeType('CN');
ia.setUseDefaultUserNameMapper(Boolean('true'));

#Create default WebServcieSecurity
securityName='default_wss'
defaultWss=cmo.lookupWebserviceSecurity(securityName)
if defaultWss == None:
 print 'creating new webservice security bean for: ' + securityName
 defaultWss = cmo.createWebserviceSecurity(securityName)
else:
 print 'found exsiting bean for: ' + securityName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v200502.dk.
 DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found exsiting bean for: DK ' + cpName

#Create credential provider for x.509
cpName='default_x509_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.bst.
 ServerBSTCredentialProvider')
 wtm.setTokenType('x509')
else:
 print 'found exsiting bean for: x.509 ' + cpName

#Custom keystore for xml encryption
cpName='ConfidentialityKeyStore'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
keyStoreName=sys.argv[5]
cpm.setValue(keyStoreName)

cpName='ConfidentialityKeyStorePassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
cpm.setEncryptValueRequired(Boolean('true'))
KeyStorePasswd=sys.argv[6]
cpm.setEncryptedValue(KeyStorePasswd)

cpName='ConfidentialityKeyAlias'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:

Chapter 2
Example of Adding Security to MTOM Web Service

2-109

 cpm = wtm.createConfigurationProperty(cpName)
keyAlias=sys.argv[7]
cpm.setValue(keyAlias)

cpName='ConfidentialityKeyPassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty('ConfidentialityKeyPassword')
cpm.setEncryptValueRequired(Boolean('true'))
keyPass=sys.argv[8]
cpm.setEncryptedValue(keyPass)

#Custom keystore for xml digital signature
cpName='IntegrityKeyStore'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
keyStoreName=sys.argv[5]
cpm.setValue(keyStoreName)

cpName='IntegrityKeyStorePassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
cpm.setEncryptValueRequired(Boolean('true'))
KeyStorePasswd=sys.argv[6]
cpm.setEncryptedValue(KeyStorePasswd)

cpName='IntegrityKeyAlias'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
keyAlias=sys.argv[7]
cpm.setValue(keyAlias)

cpName='IntegrityKeyPassword'
cpm=wtm.lookupConfigurationProperty(cpName)
if cpm == None:
 cpm = wtm.createConfigurationProperty(cpName)
cpm.setEncryptValueRequired(Boolean('true'))
keyPass=sys.argv[8]
cpm.setEncryptedValue(keyPass)

#Create token handler for x509 token
#cpName='default_x509_handler'
th=defaultWss.lookupWebserviceTokenHandler(cpName)
if th == None:
 th = defaultWss.createWebserviceTokenHandler(cpName)
 th.setClassName('weblogic.xml.crypto.wss.BinarySecurityTokenHandler')
 th.setTokenType('x509')
 cpm = th.createConfigurationProperty('UseX509ForIdentity')
 cpm.setValue('true')

save()
activate(block="true")
disconnect()
exit()

Chapter 2
Example of Adding Security to MTOM Web Service

2-110

Build.xml File
The build.xml file has the targets shown in the Version-Independent Matrix table in Version-
Independent Policy Supported.

Table 2-16 build.xml targets

Target Description

client Target that builds the Security MTOM web service client.

config.server.security Target that configures the web service security.

deploy Target that deploys the web service.

server Target that builds the Security MTOM web service.

clean Deletes temporary directories.

build Depends on server, client, and clean.

run Target that runs the Security MTOM web service client.

all Default target. Depends on build, deploy.

The complete build.xml file is shown in Example 2-28.

Example 2-28 build.xml File

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="webservices.security_mtom" default="all" basedir=".">

 <!-- set global properties for this build -->
 <property file="../../../examples.properties"/>

 <property name="client.dir" value="${client.classes.dir}/
webservicesSecurityMtom_Client" />
 <property name="package.dir" value="examples/webservices/security_mtom"/>
 <property name="package" value="examples.webservices.security_mtom"/>
 <property name="ws.file" value="SecurityMtomService" />
 <property name="ear.dir" value="${examples.build.dir}/webservicesSecurityMtomEar" />
 <property name="cert.dir" value="${basedir}/certs" />
 <property name="certs.dir" value="${basedir}/certs" />

 <!--client keystore-->
 <property name="client-keystore-name" value="clientKeyStore.jks"/>
 <property name="client-keystore-pass" value="keystorepw"/>
 <property name="client-cert" value="ClientCert"/>
 <property name="client-key" value="ClientKey"/>
 <property name="client-key-pass" value="ClientKeyPass"/>
 <property name="client-cert-alias" value="testClientCert"/>

 <!--server keystore-->
 <property name="server-keystore-name" value="serverKeyStore.jks"/>
 <property name="server-keystore-pass" value="keystorepw"/>
 <property name="server-cert" value="ServerCert"/>
 <property name="server-key" value="ServerKey"/>
 <property name="server-key-pass" value="ServerKeyPass"/>
 <property name="server-cert-alias" value="testServerCert"/>

 <path id="client.class.path">
 <pathelement path="${client.dir}"/>

Chapter 2
Example of Adding Security to MTOM Web Service

2-111

 <pathelement path="${java.class.path}"/>
 </path>

 <!-- Web Service WLS Ant task definitions -->
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="all" depends="build, deploy"/>

 <target name="build" depends="clean,server,client"/>

 <target name="clean">
 <delete dir="${ear.dir}"/>
 <delete dir="${client.dir}"/>
 </target>

 <!-- Target that builds the MTOM Web Service -->
 <target name="server" description="Target that builds the MTOM Web Service">
 <jwsc
 srcdir="${examples.src.dir}/${package.dir}"
 sourcepath="${examples.src.dir}"
 destdir="${ear.dir}"
 classpath="${java.class.path}"
 fork="true"
 keepGenerated="true"
 deprecation="${deprecation}"
 debug="${debug}">
 <jws file="SecurityMtomService.java" explode="true"/>
 </jwsc>
 </target>

 <!-- Target that builds the MTOM Web Service client -->
 <target name="client" description="Target that builds the source Web Service">
 <mkdir dir="${client.dir}/${package.dir}/client/"/>
 <clientgen
 wsdl="${ear.dir}/${ws.file}/WEB-INF/${ws.file}Service.wsdl"
 destDir="${client.dir}"
 classpath="${java.class.path}"
 packageName="${package}.client"/>
 <copy file="MtomClient.java" todir="${client.dir}/${package.dir}/client/"/>
 <javac
 srcdir="${client.dir}" destdir="${client.dir}"
 classpath="${java.class.path}"
 includes="${package.dir}/client/**/*.java"/>
 </target>

 <!-- Target that deploys the MTOM Web Service -->
 <target name="deploy" description="Target that deploys the reliable
destination Web Service">
 <wldeploy
 action="deploy"
 source="${ear.dir}"
 user="${wls.username}"
 password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"
 failonerror="${failondeploy}"/>
 </target>

Chapter 2
Example of Adding Security to MTOM Web Service

2-112

 <!-- Target that runs the MTOM Web Service client -->
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.security_mtom.client.MtomClient"
 failonerror="true" >
 <jvmarg line="-Dweblogic.wsee.verbose=*"/>
 <classpath refid="client.class.path"/>
 <arg line="
 ${basedir}/certs/${client-keystore-name}
 ${client-keystore-pass}
 ${client-cert-alias}
 ${client-key-pass}
 ${basedir}/certs/testServerCertTempCert.der
 http://${wls.hostname}:${wls.port}/SecurityMtomService/SecurityMtomService?
WSDL" />
 </java>
 </target>

 <!-- Target the configure the web service security -->
 <target name="config.server.security" description="Target the configure the web
service security">
 <copy todir="${examples.domain.dir}" overwrite="true">
 <fileset dir="${certs.dir}" includes="${server-keystore-name}"/>
 </copy>

 <java classname="weblogic.WLST" fork="true" failonerror="true">
 <arg line="configWss.py ${wls.username} ${wls.password} ${wls.hostname} $
{wls.port}
 ${server-keystore-name} ${server-keystore-pass} ${server-cert-alias} ${server-
key-pass}" />
 </java>

 </target>

</project>

Building and Running the Example
Follow these steps to build and run the example:

1. Start the Examples server.

2. Set up your environment, as described in the
EXAMPLES_HOME\wl_server\examples\src\examples\examples.html instructions file,
where EXAMPLES_HOME represents the directory in which the WebLogic Server code
examples are configured. See Sample Applications and Code Examplesin Understanding
Oracle WebLogic Server.

ORACLE_HOME\user_projects\domains\wl_server>setExamplesEnv.cmd
3. Change to the EXAMPLES_HOME\wl_server\examples\src\examples\webservices

directory and create a new subdirectory called security_mtom.

4. Cut and paste the contents of the build.xml, configWss.py, MtomClient.java, and
SecurityMtomService.java sections to files with the same names in the
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\security_mtom
directory.

Chapter 2
Example of Adding Security to MTOM Web Service

2-113

5. Copy all of the files (clientKeyStore.jks, serverKeyStore.jks, and
testServerCertTempCert.der) from

EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wss1.1\certs
to a new certs subdirectory

EXAMPLES_HOME\wl_server\examples\src\examples\webservices\security_mto
m\certs

6. Change to the
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\security_mto
m directory.

7. Execute the following command:

prompt> ant config.server.security
8. Restart Weblogic Server.

9. Build, deploy and run the example:

prompt> ant build deploy run

Deployed WSDL for SecurityMtomService
The deployed WSDL for the SecurityMtomService web service is available at the
following URL:

http://host:port/SecurityMtomService/SecurityMtomService?WSDL
The complete WSDL is shown in Example 2-29.

Example 2-29 Deployed WSDL for SecurityMtomService

<?xml version="1.0" encoding="UTF-8" ?>
 <s1:definitions name="SecurityMtomServiceServiceDefinitions"
targetNamespace="http://examples/webservices/security_mtom" xmlns=""
xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
xmlns:s1="http://schemas.xmlsoap.org/wsdl/"
xmlns:s2="http://examples/webservices/security_mtom"
xmlns:s3="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:UsingPolicy s1:Required="true" />
 <wsp:Policy s0:Id="Mtom.xml">
 <wsoma:OptimizedMimeSerialization
xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/
optimizedmimeserialization" />
 </wsp:Policy>
 <wsp:Policy s0:Id="Wssp1.2-Wss1.1-EncryptedKey.xml">
 <sp:SymmetricBinding xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200512">
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200512/IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference />
 <sp:WssX509V3Token11 />
 </wsp:Policy>
 </sp:X509Token>

Chapter 2
Example of Adding Security to MTOM Web Service

2-114

 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 <sp:OnlySignEntireHeadersAndBody />
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier />
 <sp:MustSupportRefIssuerSerial />
 <sp:MustSupportRefThumbprint />
 <sp:MustSupportRefEncryptedKey />
 <sp:RequireSignatureConfirmation />
 </wsp:Policy>
 </sp:Wss11>
 </wsp:Policy>
 <wsp:Policy s0:Id="Wssp1.2-2007-EncryptBody.xml">
 <sp:EncryptedParts xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702">
 <sp:Body />
 </sp:EncryptedParts>
 </wsp:Policy>
 <wsp:Policy s0:Id="Wssp1.2-2007-SignBody.xml">
 <sp:SignedParts xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:Body />
 </sp:SignedParts>
 </wsp:Policy>
 <s1:types>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="java:examples.webservices.security_mtom"
xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:s1="http://examples/webservices/security_mtom"
xmlns:s2="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="ArrayOfJavaLangstring_literal">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="JavaLangstring"
nillable="true" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ArrayOfJavaLangstring_literal"
type="java:ArrayOfJavaLangstring_literal"
xmlns:java="java:examples.webservices.security_mtom" />
 <xs:element name="base64Binary_literal" type="xs:base64Binary" />
 </xs:schema>
 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://examples/webservices/security_mtom"
xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:s1="http://examples/webservices/security_mtom"
xmlns:s2="http://schemas.xmlsoap.org/wsdl/soap12/"

Chapter 2
Example of Adding Security to MTOM Web Service

2-115

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:import namespace="java:examples.webservices.security_mtom" />
 <xs:element name="echoBinaryAsString">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="bytes" type="xs:base64Binary" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoBinaryAsStringResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoBinaryArrayAsStringArray">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="array" type="xs:base64Binary" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoBinaryArrayAsStringArrayResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="java:ArrayOfJavaLangstring_literal"
xmlns:java="java:examples.webservices.security_mtom" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoStringAsBinary">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="s" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoStringAsBinaryResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="xs:base64Binary" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </s1:types>
 <s1:message name="echoBinaryAsString">
 <s1:part element="s2:echoBinaryAsString" name="parameters" />
 </s1:message>
 <s1:message name="echoBinaryAsStringResponse">
 <s1:part element="s2:echoBinaryAsStringResponse" name="parameters" />
 </s1:message>
 <s1:message name="echoBinaryArrayAsStringArray">
 <s1:part element="s2:echoBinaryArrayAsStringArray" name="parameters" />
 </s1:message>
 <s1:message name="echoBinaryArrayAsStringArrayResponse">
 <s1:part element="s2:echoBinaryArrayAsStringArrayResponse"
name="parameters" />
 </s1:message>

Chapter 2
Example of Adding Security to MTOM Web Service

2-116

 <s1:message name="echoStringAsBinary">
 <s1:part element="s2:echoStringAsBinary" name="parameters" />
 </s1:message>
 <s1:message name="echoStringAsBinaryResponse">
 <s1:part element="s2:echoStringAsBinaryResponse" name="parameters" />
 </s1:message>
 <s1:portType name="SecurityMtomService" wsp:PolicyURIs="#Wssp1.2-2007-SignBody.xml
#Wssp1.2-2007-EncryptBody.xml
#Wssp1.2-Wss1.1-EncryptedKey.xml">
 <s1:operation name="echoBinaryAsString" parameterOrder="parameters">
 <s1:input message="s2:echoBinaryAsString" />
 <s1:output message="s2:echoBinaryAsStringResponse" />
 </s1:operation>
 <s1:operation name="echoBinaryArrayAsStringArray" parameterOrder="parameters">
 <s1:input message="s2:echoBinaryArrayAsStringArray" />
 <s1:output message="s2:echoBinaryArrayAsStringArrayResponse" />
 </s1:operation>
 <s1:operation name="echoStringAsBinary" parameterOrder="parameters">
 <s1:input message="s2:echoStringAsBinary" />
 <s1:output message="s2:echoStringAsBinaryResponse" />
 </s1:operation>
 </s1:portType>
 <s1:binding name="SecurityMtomServiceServiceSoapBinding"
type="s2:SecurityMtomService">
 <s3:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
 <wsp:Policy>
 <wsp:PolicyReference URI="#Mtom.xml" />
 </wsp:Policy>
 <s1:operation name="echoBinaryAsString">
 <s3:operation style="document" />
 <s1:input>
 <s3:body parts="parameters" use="literal" />
 </s1:input>
 <s1:output>
 <s3:body parts="parameters" use="literal" />
 </s1:output>
 </s1:operation>
 <s1:operation name="echoBinaryArrayAsStringArray">
 <s3:operation style="document" />
 <s1:input>
 <s3:body parts="parameters" use="literal" />
 </s1:input>
 <s1:output>
 <s3:body parts="parameters" use="literal" />
 </s1:output>
 </s1:operation>
 <s1:operation name="echoStringAsBinary">
 <s3:operation style="document" />
 <s1:input>
 <s3:body parts="parameters" use="literal" />
 </s1:input>
 <s1:output>
 <s3:body parts="parameters" use="literal" />
 </s1:output>
 </s1:operation>
 </s1:binding>
 <s1:service name="SecurityMtomServiceService">
 <s1:port binding="s2:SecurityMtomServiceServiceSoapBinding"
name="SecurityMtomServiceSoapPort">
 <s3:address location="http://localhost:7001/SecurityMtomService/
SecurityMtomService" />

Chapter 2
Example of Adding Security to MTOM Web Service

2-117

 </s1:port>
 </s1:service>
 </s1:definitions>

Example of Adding Security to Reliable Messaging Web
Service

This section describes an update to an example that is optionally included with
WebLogic Server:

• EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_securit
y

This section shows how to update the example to use the most recent version of the
policy file. Oracle recommends that you use the new policy namespace, as shown in
the revised example, as those are official namespaces from OASIS standards and
they will perform better when interoperating with other vendors.

Overview of Secure and Reliable SOAP Messaging
Reliable SOAP messaging is a framework whereby an application running in one
WebLogic Server instance can reliably invoke a web service running on another
WebLogic Server instance. Reliable is defined as the ability to guarantee message
delivery between the two web services.

WebLogic web services conform to the WS-ReliableMessaging 1.1 specification, which
describes how two web services running on different WebLogic Server application
servers can communicate reliably in the presence of failures in software components,
systems, or networks. In particular, the specification describes an interoperable
protocol in which a message sent from a source endpoint (client web service) to a
destination endpoint (web service whose operations can be invoked reliably) is
guaranteed either to be delivered, according to one or more delivery assurances, or to
raise an error. The WS-ReliableMessaging specification defines an interoperable way
to provide security by composing WS-ReliableMessaging with WS-
SecureConversation and associating a reliable sequence with a secure session. At
sequence creation time, the sending side needs to present a Security Token
Reference to point to a Security Context Token that will be used to identify the owner
of the sequence. All subsequent sequence messages and protocol messages in both
directions will need to demonstrate proof-of-possession of the referenced key.

WebLogic reliable SOAP messaging works only between two web services. This
means that you can invoke a WebLogic web service reliably only from another web
service, and not from a standalone client application. This example shows how to
create both types of web services (source and destination). The
WsrmSecurityClient.java class is a standalone Java application that then invokes the
source web service.

Overview of the Example
The existing example shows how to provide security functionality on top of reliability
for web services messaging by creating two WebLogic web services:

• web service whose operations can be invoked using reliable and secure SOAP
messaging (destination endpoint). The destination ReliableEchoService web

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

2-118

service has two operations that can be invoked reliably and in a secure way: echo and
echoOneway.

• Client web service that invokes an operation of the first web service in a reliable and
secure way (source endpoint). The source ReliableEchoClientService web service has
one operation for invoking the echo and echoOneway operations of the
ReliableEchoService web service reliably and in a secure way within one conversation:
echo.

The existing example includes functional code and an extensive instructions.html file that
describes its use and function, how to build it, and so forth This section does not repeat that
information, but instead concentrates on the changes made to the example, and the reasons
for the changes.

How the Example Sets Up WebLogic Security
The configWSS.py WLST script sets up security for the WebLogic Server instance that hosts
the source and destination web service. The security requirements are dictated by the WS-
SecurityPolicy files associated with the destination web service.

The Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml policy imposes the following
requirements:

• WS-SecureConversation handshake is protected by WS-Security 1.0.

• The application messages are signed and encrypted with DerivedKeys.

• The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages (part of the WS-
SecureConversation handshake) are both signed and encrypted.

• The WS-Addressing headers are signed.

• Timestamp is included and signed.

• The signature is encrypted.

• The algorithm suite is Basic256.

In response, the configWSS.py WLST script performs the following functions:

• Enables X.509 tokens for the default IdentityAsserter in the default security realm.

• Creates the default web service security configuration.

• Configures a credential provider for the Security Context Token.

• Configures a credential provider for Derived Key.

• Configures a BinarySecurityTokenHandler token handler for X.509 tokens.

• Configures a ServerBSTCredentialProvider credential provider for X.509 tokens.

• Configures keystores for confidentiality and integrity.

• Configures the PKI credential mapper. This maps the initiator and target resource to a
key pair or public certificate

In addition, the configWSSRuntime.py WLST script also performs the following function:

• Sets up the PKI credential mapper (configured by configWSS.py) to invoke the
destination web service.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

2-119

Files Used by This Example
The example uses the files shown in the Version-Independent Matrix table in
Version-Independent Policy Supported. The contents of revised source files are shown
in subsequent sections.

Table 2-17 Files Used in WSRM/Security Example

File Description

build.xml Ant build file that contains targets for building and running the
example.

ReliableEchoClientS
erviceImpl.java

JWS file that implements the source web service that reliably
invokes the echoOneWay and echo operation of the
ReliableEchoService web service in a secure way. This JWS file
uses the @ServiceClient annotation to specify the web service it
invokes reliably.

ReliableEchoService
Impl.java

JWS file that implements the reliable destination web service. This
JWS file uses the @Policy annotation to specify a WS-Policy file
that contains reliable SOAP messaging assertions.

ws_rm_configuration
.py

WLST script that configures a SAF Agent, FileStore, JMS Server,
and JMS queue, which are required for reliable SOAP messaging.
Execute this script for the WebLogic Server instance that hosts the
reliable destination web service. The out-of-the-box Examples
server has already been configured for the source web service that
invokes an operation reliably.

configWss.py WLST script that configures a credential provider for Security
Context Token, a credential provider for Derived Key, a credential
provider for x.509, KeyStores for Confidentiality and Integrity, and
PKI Cred Mapper that are required for secure SOAP messaging.
Execute this script for the WebLogic Server instance that hosts the
source and destination web service. Remember to restart the
Weblogic server after executing this script

configWss_Service.p
y

WLST script that configures a credential provider for Security
Context Token, a credential provider for Derived Key, a credential
provider for x.509, KeyStores for Confidentiality and Integrity that
are required by the server host the destination web service for
secure SOAP messaging. Execute this script for the WebLogic
Server instance that hosts the destination web service when the
source and destination web service are hosted in two servers.
Remember to restart the Weblogic server after executing this script.

configWssRuntime.py WLST script that configures a KeyPair Credential for invoking the
destination web service.

certs/
testServerCertTempC
ert.der

Server-side certificate, used create client-side BinarySecurityToken
credential provider.

certs/
clientKeyStore.jks

Client-side key store, used to create client-side BinarySecurityToken
credential provider.

certs/
serverKeyStore.jks

Server-side key store, used to create Server-side
BinarySecurityToken credential provider.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

2-120

Table 2-17 (Cont.) Files Used in WSRM/Security Example

File Description

WsrmSecurityClient.
java

Standalone Java client application that invokes the source
WebLogic web service, that in turn invokes an operation of the
ReliableEchoService web service in a reliable and secure way.

Revised ReliableEchoServiceImpl.java
The ReliableEchoServiceImpl.java JWS file is the same as that in
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\Reliable
EchoServiceImpl.java, with the revised Policy annotation shown in bold.

Example 2-30 ReliableEchoServiceImpl.java

@WebService(name = "ReliableEchoPort",
 serviceName = "ReliableEchoService")
@WLHttpTransport(contextPath = "WsrmSecurity", serviceUri = "ReliableEchoService")
@Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml"),
 @Policy(uri="policy:Reliability1.1_SequenceSTR")}
)

You can specify the @Policy annotation at both the class- and method- level. In this example,
the annotation is used at the class-level to specify the predefined WS-Policy files, which
means all public operations of the web service are associated with the specified WS-Policy
files.

Revised configWss.py
The ReliableEchoServiceImpl web service does not explicitly invoke any WebLogic Server
API to handle the requirements imposed by any associated policy files, nor does this web
service have to understand which, if any, security providers, tokens, or other such
mechanisms are involved.

The script file configWss.py uses WLST to create and configure the default web service
security configuration, default_wss, for the active security realm. (The default web service
security configuration is used by all web services in the domain unless they have been
explicitly programmed to use a different configuration.) Further, this script makes sure that
x509 tokens are supported, creates the needed security providers, and so forth.

The configWss.py file is the same as that in
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\configWs
s.py, with the changes shown in bold. The build.xml file provides the command input.

Note:

Long lines in this script have been formatted for readability.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

2-121

Example 2-31 configWss.py

:
#Create credential provider for SCT
cpName='default_sct_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 print 'creating new webservice credential provider : ' + cpName
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.
 ServerSCCredentialProvider')
 wtm.setTokenType('sct')
 cpm = wtm.createConfigurationProperty('TokenLifeTime')
 cpm.setValue('43200000')
else:
 print 'found exsiting bean for: ' + cpName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.
 dk.DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found exsiting bean for: DK ' + cpName
:

Revised configWss_Service.py
The configWss_Service.py script is similar to configWss.py, but it is used only when
the source and destination web service are hosted in two servers.

The configWss_Service.py file is the same as that in
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\co
nfigWss_Service.py, with the changes shown in bold. The build.xml file provides the
command input.

Note:

Long lines in this script have been formatted for readability.

Example 2-32 configWss_Service.py

:
 #Create credential provider for SCT
cpName='default_sct_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 print 'creating new webservice credential provider : ' + cpName
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

2-122

 v13.sct.ServerSCCredentialProvider')
 wtm.setTokenType('sct')
 cpm = wtm.createConfigurationProperty('TokenLifeTime')
 cpm.setValue('43200000')
else:
 print 'found exsiting bean for: ' + cpName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.dk.
 DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found existing bean for: DK ' + cpName
:

Building and Running the Example
After you have changed the example to use the new policy namespace, follow the steps in
the
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\instruct
ions.html file to build and run the example.

There are no changes needed to these steps.

Securing Web Services Atomic Transactions
When using web services atomic transactions, as described in Using Web Services Atomic
Transactions in Developing JAX-WS Web Services for Oracle WebLogic Server, it is
recommended that you secure the application message headers that contain the coordination
context and IssuedTokens using one of the following predefined policies:

• Wssp1.2-2007-SignAndEncryptWSATHeaders.xml—Specifies that the WS-
AtomicTransaction headers are signed and encrypted.

• Wssp1.2-2007-Wsp1.5-SignAndEncryptWSATHeaders.xml—Specifies that the WS-
AtomicTransaction headers are signed and encrypted. Web Services Policy 1.5 is used.

Note:

Because header encryption is available as part of the WS-Security 1.1 standard, it
is highly recommended that you use only WS-Security 1.1 binding policies in
conjunction with the policies listed above to secure the application request
messages. WS-Security 1.1 binding policies contain <sp:Wss11> assertion in the
policy and -Wss1.1 in the predefined policy name. If WS-Security 1.0 policies are
used, WebLogic Server encrypts the header into WS-Security 1.0 non-standard
format.

Chapter 2
Securing Web Services Atomic Transactions

2-123

You can attach policies using one of the following methods:

• At design time, using the @Policy and @Policies annotations, as described in
Example of Adding Security to a JAX-WS Web Service.

• At deployment time, using the WebLogic Server Administration Console, as
described in Associating Policy Files at Runtime Using the Administration Console.

The following example shows how to secure a web services atomic transaction
programmatically, using the @Policy and @Policies annotations. Relevant code is
shown in bold.

package jaxws.interop.rsp;
...
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.TransactionalFlowType;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.jws.Policy;
import weblogic.jws.Policies;
...
@WebService(
 portName = "FlightServiceBindings_Basic",
 serviceName = "FlightService",
 targetNamespace = "http://wsinterop.org/samples",
 wsdlLocation = "/wsdls/FlightService.wsdl",
 endpointInterface = "jaxws.interop.rsp.IFlightService"
)
@BindingType("http://schemas.xmlsoap.org/wsdl/soap/http")
@javax.xml.ws.soap.Addressing
public class FlightServiceImpl implements IFlightService {
...
 @Transactional(value = Transactional.TransactionFlowType.SUPPORTS,
 version = Transactional.Version.WSAT12)
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml"
 @Policy(uri="policy:Wssp1.2-2007-SignAndEncryptWSATHeaders.xml"
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"
 @Policy(uri="policy:Wssp1.2-2007-Wss1.1-X509-Basic256.xml"
 })
 public FlightReservationResponse reserveFlight(FlightReservationRequest request) {
 //replace with your impl here
 FlightReserverationEnitity entity = new FlightReserverationEnitity();
 entity.setAirlineID(request.getAirlineID());
 entity.setFlightNumber(request.getFlightNumber());
 entity.setFlightType(request.getFlightType());
 boolean successful = saveRequest(entity);
 FlightReservationResponse response = new FlightReservationResponse();
 if (!successful) {
 response.setConfirmationNumber("OF" + CONF_NUMBER++ + "-" + request.getAirlineID() +
 String.valueOf(entity.getId()));
 } else if (request.getFlightNumber() == null ||
 request.getFlightNumber().trim().endsWith("LAS")) {
 successful = false;
 response.setConfirmationNumber("OF" + "- No flight available for " +
 request.getAirlineID());
 } else {
 response.setConfirmationNumber("OF" + CONF_NUMBER++ + "-" + request.getAirlineID() +
 String.valueOf(entity.getId()));
 }
 response.setSuccess(successful);

Chapter 2
Securing Web Services Atomic Transactions

2-124

 return response;
 }

Proprietary Web Services Security Policy Files (JAX-RPC Only)
Previous releases of WebLogic Server, released before the formulation of the WS-
SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for security policy.

Note:

The security policy files written under the web services security policy schema are
deprecated in this release.

WS-SecurityPolicy 1.2 policy files and proprietary web services security policy
schema files are not mutually compatible; you cannot define both types of policy file
in the same web service. If you want to use WS-Security 1.1 features, you must use
the WS-SecurityPolicy 1.2 policy file format.

This section describes the set of predefined web services security policy schema files
included in WebLogic Server. These policy files are all abstract; see Abstract and Concrete
Policy Files for details.

The policy assertions used in these security policy files to configure message-level security
for a WebLogic web service are based on the assertions described in the December 18, 2002
version of the Web Services Security Policy Language (WS-SecurityPolicy) specification. This
means that although the exact syntax and usage of the assertions in WebLogic Server are
different, they are similar in meaning to those described in the specification. The assertions
are not based on later updates of the specification.

The predefined web services security policy files are:

• Auth.xml specifies that the client must authenticate itself. Can be used on its own, or
together with Sign.xml and Encrypt.xml.

• Sign.xml specifies that the SOAP messages are digitally signed. Can be used on its own,
or together with Auth.xml and Encrypt.xml.

• Encrypt.xml specifies that the SOAP messages are encrypted. Can be used on its own,
or together with Auth.xml and Sign.xml.

• Wssc-dk.xml specifies that the client and service share a security context when multiple
messages are exchanged and that derived keys are used for encryption and digital
signatures, as described by the WS-SecureConversation specification.

Note:

This predefined policy file is meant to be used on its own and not together with
Auth.xml, Sign.xml, Encrypt.xml, or Wssc-sct.xml. Also, Oracle recommends
that you use this policy file, rather than Wssc-sct.xml (Wssc-sct.xml), if you
want the client and service to share a security context, due to its higher level of
security.

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-125

• Wssc-sct.xml specifies that the client and service share a security context when
multiple messages are exchanged, as described by the WS-SecureConversation
specification.

Note:

This predefined policy file is meant to be used on its own and not
together with Auth.xml, Sign.xml, Encrypt.xml, or Wssc-dk.xml. Also,
Oracle provides this policy file to support the various use cases of the
WS-SecureConversation specification; however, Oracle recommends
that you use the Wssc-dk.xml (Wssc-dk.xml) policy file, rather than
Wssc-sct.xml (Wssc-sct.xml), if you want the client and service to share
a security context, due to its higher level of security.

Abstract and Concrete Policy Files
The WebLogic web services runtime environment recognizes two slightly different
types of security policy files: abstract and concrete.

Abstract policy files do not explicitly specify the security tokens that are used for
authentication, encryption, and digital signatures, but rather, the web services runtime
environment determines the security tokens when the web service is deployed.
Specifically, this means the <Identity> and <Integrity> elements (or assertions) of
the policy files do not contain a <SupportedTokens><SecurityToken> child element,
and the <Confidentiality> element policy file does not contain a
<KeyInfo><SecurityToken> child element.

If your web service is associated with only the predefined policy files, then client
authentication requires username tokens. web services support only one type of token
for encryption and digital signatures (X.509), which means that in the case of the
<Integrity> and <Confidentiality> elements, concrete and abstract policy files end
up being essentially the same.

If your web service is associated with an abstract policy file and it is published as an
attachment to the WSDL (which is the default behavior), the static WSDL file packaged
in the web service archive file (JAR or WAR) will be slightly different than the dynamic
WSDL of the deployed web service. This is because the static WSDL, being abstract,
does not include specific <SecurityToken> elements, but the dynamic WSDL does
include these elements because the web services runtime has automatically filled
them in when it deployed the service. For this reason, in the code that creates the
JAX-RPC stub in your client application, ensure that you specify the dynamic WSDL or
you will get a runtime error when you try to invoke an operation: HelloService
service = new HelloService(Dynamic_WSDL);
You can specify either the static or dynamic WSDL to the clientgen Ant task in this
case. See Browsing to the WSDL of the Web Service in Developing JAX-RPC Web
Services for Oracle WebLogic Server for information on viewing the dynamic WSDL of
a deployed web service.

Concrete policy files explicitly specify the details of the security tokens at the time
the web service is programmed. Programmers create concrete security policy files
when they know, at the time they are programming the service, the details of the type
of authentication (such as using x509 or SAML tokens); whether multiple private key and

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-126

certificate pairs from the keystore are going to be used for encryption and digital signatures;
and so on.

Auth.xml
The WebLogic Server Auth.xml file, shown below, specifies that the client application
invoking the web service must authenticate itself with one of the tokens (username or X.509)
that support authentication.

Because the predefined web services security policy schema files are abstract, there is no
specific username or X.509 token assertions in the Auth.xml file at development-time.
Depending on how you have configured security for WebLogic Server, either a username
token, an X.509 token, or both will appear in the actual runtime-version of the Auth.xml policy
file associated with your web service. Additionally, if the runtime-version of the policy file
includes an X.509 token and it is applied to a client invoke, then the entire body of the SOAP
message is signed.

If you want to specify that only X.509, and never username tokens, be used for identity, or
want to specify that, when using X.509 for identity, only certain parts of the SOAP message
be signed, then you must create a custom security policy file.

Example 2-33 Auth.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >
 <wssp:Identity/>
</wsp:Policy>

Sign.xml
The WebLogic Server Sign.xml file specifies that the body and WebLogic-specific system
headers of the SOAP message be digitally signed. It also specifies that the SOAP message
include a Timestamp, which is digitally signed, and that the token used for signing is also
digitally signed. The token used for signing is included in the SOAP message.

The following headers are signed when using the Sign.xml security policy file:

• SequenceAcknowledgement
• AckRequested
• Sequence
• Action
• FaultTo
• From
• MessageID
• RelatesTo
• ReplyTo
• To
• SetCookie

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-127

• Timestamp
The WebLogic Server Sign.xml file is shown below:

Example 2-34 Sign.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Integrity>
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 </wssp:Integrity>
 <wssp:MessageAge/>
</wsp:Policy>

Encrypt.xml
The WebLogic Server Encrypt.xml file specifies that the entire body of the SOAP
message be encrypted. By default, the encryption token is not included in the SOAP
message.

Example 2-35 Encrypt.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 >
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-128

 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>
</wsp:Policy>

Wssc-dk.xml
Specifies that the client and web service share a security context, as described by the WS-
SecureConversation specification, and that a derived key token is used. This ensures the
highest form of security.

This policy file provides the following configuration:

• A derived key token is used to sign all system SOAP headers, the timestamp security
SOAP header, and the SOAP body.

• A derived key token is used to encrypt the body of the SOAP message. This token is
different from the one used for signing.

• Each SOAP message uses its own pair of derived keys.

• For both digital signatures and encryption, the key length is 16 (as opposed to the default
32)

• The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will have to
create a custom security policy file, described in later sections.

Note:

If you specify this predefined security policy file, you should not also specify any
other predefined security policy file.

Example 2-36 Wssc-dk.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Integrity SupportTrust10="true">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <wssp:CanonicalizationAlgorithm URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-129

 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://www.bea.com/wls90/security/policy/
wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
 DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 <wssp:Claims>
 <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
 <wssp:Length>16</wssp:Length>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
 <wssp:Confidentiality SupportTrust10="true">
 <wssp:Target>
 <wssp:EncryptionAlgorithm URI="http://www.w3.org/2001/04/xmlenc#aes128-
cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
 DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 <wssp:Claims>
 <wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
 <wssp:Length>16</wssp:Length>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:KeyInfo>
 </wssp:Confidentiality>
 <wssp:MessageAge/>
</wsp:Policy>

Wssc-sct.xml
Specifies that the client and web service share a security context, as described by the
WS-SecureConversation specification. In this case, security context tokens are used
to encrypt and sign the SOAP messages, which differs from Wssc-dk.xml (Wssc-
dk.xml) in which derived key tokens are used. The Wssc-sct.xml policy file is provided
to support all the use cases of the specification; for utmost security, however, Oracle
recommends you always use Wssc-dk.xml (Wssc-dk.xml) when specifying shared
security contexts due to its higher level of security.

This security policy file provides the following configuration:

• A security context token is used to sign all system SOAP headers, the timestamp
security SOAP header, and the SOAP body.

• A security context token is used to encrypt the body of the SOAP message.

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-130

• The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will have to
create a custom security policy file, described in later sections.

Note:

If you specify this predefined security policy file, you should not also specify any
other predefined security policy file.

Example 2-37 Wssc-sct.xml

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Integrity SupportTrust10="true">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <wssp:CanonicalizationAlgorithm URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
 <wssp:Confidentiality SupportTrust10="true">
 <wssp:Target>
 <wssp:EncryptionAlgorithm URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
wsp:Body()</wssp:MessageParts>
 </wssp:Target>
 <wssp:KeyInfo>
 <wssp:SecurityToken IncludeInMessage="true"
 TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
 </wssp:SecurityToken>
 </wssp:KeyInfo>

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-131

 </wssp:Confidentiality>
 <wssp:MessageAge />
</wsp:Policy>

Chapter 2
Proprietary Web Services Security Policy Files (JAX-RPC Only)

2-132

3
Configuring Transport-Level Security

The chapter describes how to configure transport-level security for your WebLogic web
service using Java API for XML Web Services (JAX-WS) and Java API for XML-based RPC
(JAX-RPC).
Transport-level security refers to securing the connection between a client application and a
web service with Secure Sockets Layer (SSL).

SSL provides secure connections by allowing two applications connecting over a network to
authenticate the other's identity and by encrypting the data exchanged between the
applications. Authentication allows a server, and optionally a client, to verify the identity of the
application on the other end of a network connection. A client certificate (two-way SSL) can
be used to authenticate the user.

See Secure Sockets Layer (SSL) in Understanding Security for Oracle WebLogic Server for
general information about SSL and the implementations included in WebLogic Server.

Transport-level security includes HTTP BASIC authentication as well as SSL.

This chapter includes the following sections:

• Configuring Transport-Level Security Through Policy

• Available Transport-Level Policies

• Prerequisite: Configure SSL

• Configuring Transport-Level Security Through Policy: Main Steps

• Example of Configuring Transport Security for JAX-WS

• Persisting the State of a Request over SSL (JAX-WS Only)

• Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC
Only)

• Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)

Configuring Transport-Level Security Through Policy
WebLogic Server includes the predefined transport-level policy files described in Available
Transport-Level Policies, which typically satisfy the security needs of most programmers and
use cases.

You can also create and use your own WS-SecurityPolicy file if you need additional
configuration, as described in Creating and Using a Custom Policy File. If you need to do this,
you can use the predefined WS-SecurityPolicy files as templates to create your own custom
files. The policy .xml files are located in WL_HOME/server/lib/weblogic.jar. Within
weblogic.jar, the policy files are located in /weblogic/wsee/policy/runtime.

For example, the Oracle-supplied Wssp1.2-2007-Saml2.0-Bearer-Https.xml policy file
includes the following assertion indicating that the policy requires one-way SSL, as shown
here.

3-1

Example 3-1 Specifying SSL in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken/>
</wsp:Policy>
</sp:TransportToken>

If you needed to instead use two-way SSL, you could create a custom policy that adds
the RequireClientCertificate assertion, as shown below.

Example 3-2 Two-Way SSL in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken >
<wsp:Policy>
<sp:RequireClientCertificate/>
</wsp:Policy>
</sp:HttpsToken>
</wsp:Policy>
</sp:TransportToken>

The Wssp1.2-2007-Https-BasicAuth.xml policy file requires both SSL and HTTP
BASIC Authentication, as shown below.

Example 3-3 SSL and HTTP Basic Authentication in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken>
<wsp:Policy>
<sp:HttpBasicAuthentication/>
</wsp:Policy>
</sp:HttpsToken>
</wsp:Policy>
</sp:TransportToken>

Available Transport-Level Policies
These policies require use of the https protocol to access the WSDL and invoke web
services operations:

Table 3-1 Transport Level Policies

Policy File Description

Wssp1.2-2007-
Saml2.0-Bearer-
Https.xml

One-way SSL uses SAML 2.0 token with Bearer confirmation
method for Authentication.

Wssp1.2-2007-
Saml2.0-Bearer-
Https-
Basic256Sha256.xml

Same as Wssp1.2-2007-Saml2.0-Bearer-Https.xml but uses
a stronger hash algorithm of Sha-256.

Chapter 3
Available Transport-Level Policies

3-2

Table 3-1 (Cont.) Transport Level Policies

Policy File Description

Wssp1.2-2007-
Saml1.1-Bearer-
Https.xml

One-way SSL uses SAML 1.1 token with Bearer confirmation
method for Authentication.

Wssp1.2-2007-
Saml1.1-Bearer-
Https-
Basic256Sha256.xml

Same as Wssp1.2-2007-Saml1.1-Bearer-Https.xml but uses
a stronger hash algorithm of Sha-256.

Wssp1.2-2007-
Https.xml

One way SSL.

Wssp1.2-2007-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if
the Authorization header is not present in the request.

Wssp1.2-2007-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Set Two Way Client Cert Behavior to Client Certs Requested
But Not Enforced. See Configure two-way SSL in Oracle
WebLogic Server Administration Console Online Help for
information on how to do this.

Wssp1.2-2007-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Wssp1.2-2007-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-2007-Https-
UsernameToken-
Plain-
Basic256Sha256.xml

Same as Wssp1.2-2007-Https-UsernameToken-Plain.xml but
uses a stronger hash algorithm of Sha-256.

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if
the Authorization header is not present in the request.

Wssp1.2-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public
certificate. Note that the client certificate can be used for
authentication.

Prerequisite: Configure SSL
Before you can use a transport-level policy to protect a web service, you must configure SSL
for the core WebLogic Server security subsystem.

Chapter 3
Prerequisite: Configure SSL

3-3

The out-of-the-box private key and X.509 certificate pairs are provided for
demonstration and testing purposes. For this reason Oracle highly recommends you
use your own keystore and key pair in production.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client applications
and WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security
subsystem, see Configuring SSL in Administering Security for Oracle WebLogic
Server.

If you configure two-way SSL for WebLogic Server, you must also configure SSL for
the client application, as described in Configuring Two-Way SSL for a Client
Application.

OPSS Keystore Service Supported
As described in Configuring Oracle OPSS Keystore Service in Administering Security
for Oracle WebLogic Server, the OPSS Keystore Service provides an alternate
mechanism to manage keys and certificates.

Note:

You can use the OPSS Keystore Service only if you have installed the Oracle
JRF template on the WebLogic Server system and used this template to
create the domain. The OPSS Keystore Service is available only with the
JRF template and is not available with the default WebLogic Server
configuration.

WebLogic web services policies that require Secure Sockets Layer (SSL) can use an
existing OPSS Keystore Service without additional configuration.

However, WebLogic web service policies that use keys and certificates for message
protection as described in Configuring Message-Level Security cannot use the OPSS
Keystore Service. Specifically, do not configure the IntegrityKeyStore and
ConfidentialityKeyStore properties to use an OPSS Keystore Service.

Oracle recommends that you instead use OWSM message protection policies with the
OPSS Keystore Service, as described in Using Oracle Web Services Manager
Security Policies.

Configuring SSL: Main Steps
This section summarizes the procedure described in Setting Up SSL: Main Steps. The
steps are described here for your convenience; see Setting Up SSL: Main Steps for
complete information.

To set up SSL:

1. Configure identity and trust, as described in Configuring Keystores:

a. Obtain digital certificates, private keys, and trusted CA certificates from the
CertGen utility, the keytool utility, or a reputable vendor such as Entrust or

Chapter 3
Prerequisite: Configure SSL

3-4

Verisign. You can also use the digital certificates, private keys, and trusted CA
certificates provided by the WebLogic Server kit. The demonstration digital
certificates, private keys, and trusted CA certificates should be used in a
development environment only.

b. Store the private keys, digital certificates, and trusted CA certificates. Private keys
and trusted CA certificates are stored in a keystore.

c. Configure the identity and trust keystores for WebLogic Server in the WebLogic
Server Administration Console. See Configure keystores in the Oracle WebLogic
Server Administration Console Online Help.

2. Set SSL configuration options for the private key alias and password in the WebLogic
Server Administration Console.

Optionally, set configuration options that require the presentation of client certificates (for
two-way SSL). See Configure two-way SSL in the Oracle WebLogic Server
Administration Console Online Help.

Configuring Two-Way SSL for a Client Application

Note:

web services using asynchronous or reliable messaging will automatically use the
server's SSL certificate when establishing a new connection (back from the
receiving service to the sending service) for the purposes of sending asynchronous
responses, acknowledgments, and so forth.

If you configured two-way SSL for WebLogic Server, the client application must present a
certificate to WebLogic Server, in addition to WebLogic Server presenting a certificate to the
client application as required by one-way SSL. You must also follow these requirements:

• Create a client-side keystore that contains the client's private key and X.509 certificate
pair.

The SSL package of Java SE requires that the password of the client's private key must
be the same as the password of the client's keystore. For this reason, the client keystore
can include only one private key and X.509 certificate pair.

• Configure the core WebLogic Server's security subsystem, mapping the client's X.509
certificate in the client keystore to a user. See Configuring a User Name Mapper in
Administering Security for Oracle WebLogic Server.

• Create a truststore which contains the certificates that the client trusts; the client
application uses this truststore to validate the certificate it receives from WebLogic
Server. Because of the Java SE password requirement described in the preceding bullet
item, this truststore must be different from the keystore that contains the key pair that the
client presents to the server.

You can use the Cert Gen utility or the keytool (http://docs.oracle.com/javase/8/
docs/technotes/tools/windows/keytool.html) utility to perform this step. For
development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities in
Administering Security for Oracle WebLogic Server.

Chapter 3
Prerequisite: Configure SSL

3-5

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

• Set Two Way Client Cert Behavior to "Client Certs Requested But Not Enforced."
See Configure two-way SSL in Oracle WebLogic Server Administration Console
Online Help for information on how to do this.

• When you run the client application that invokes the web service, specify the
following properties:

– -Djavax.net.ssl.trustStore=trustStore

– -Djavax.net.ssl.trustStorePassword=trustStorePassword

where trustStore specifies the name of the client-side truststore that contains
the list of trusted certificates (one of which should be the server's certificate)
and trustStorePassword specifies the truststore's password.

The preceding properties are in addition to the standard properties you must
set to specify the client-side keystore:

– -Djavax.net.ssl.keyStore=keyStore

– -Djavax.net.ssl.keyStorePassword=keyStorePassword

Configuring Transport-Level Security Through Policy: Main
Steps

To configure transport-level web services security via one or more policy files:

1. As outlined in Prerequisite: Configure SSL, configure SSL for the core WebLogic
Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client
applications and WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security
subsystem, see Configuring SSL in Administering Security for Oracle WebLogic
Server.

2. Use @Policy or @Policies JWS annotations in your JWS file, or associate policy
files only at runtime using the WebLogic Server Administration Console, or specify
some policy files using the annotations and then associate additional ones at
runtime.

See Table 3-1 for a description of the available transport-level policies.

Note:

If you specify a transport-level security policy for your web service, it
must be at the class level.

In addition, the transport-level security policy must apply to both the
inbound and outbound directions. That is, you cannot have HTTPS for
inbound and HTTP for outbound.

The following example attaches the policy at the class level:

Chapter 3
Configuring Transport-Level Security Through Policy: Main Steps

3-6

@Policy(uri="policy:Wssp1.2-2007-Saml2.0-Bearer-Https.xml")
public class EchoService {

3. If you added @Policy or @Policies JWS annotations in your JWS file, compile and
redeploy your web service as part of the normal iterative development process.

4. When you run the client application that invokes the web service, specify certain
properties to indicate the SSL implementation that your application should use. In
particular:

• To specify the Sun SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list
of trusted certificates (one of which should be the server's certificate). To disable host
name verification, also specify the following property:

-Dweblogic.wsee.client.ssl.stricthostchecking=false

See Configuring Two-Way SSL for a Client Application for additional details about
two-way SSL.

Example of Configuring Transport Security for JAX-WS
This section describes a simple example for configuring JAX-WS with Transport Security from
a standalone client for one-way SSL.

See the following documentation for additional prerequisite information:

• Configuring SSL in Administering Security for Oracle WebLogic Server

• Set up SSL in the Oracle WebLogic Server Administration Console Online Help

• Configure KeyStores in the Oracle WebLogic Server Administration Console Online Help

One-Way SSL (HTTPS and HTTP Basic Authentication Example)
The web service Java source is shown in Example 3-4:

Note:

If you specify a transport-level security policy for your web service, it must be at the
class level.

In addition, the transport-level security policy must apply to both the inbound and
outbound directions. That is, you cannot have HTTPS for inbound and HTTP for
outbound.

Example 3-4 Web Service One-Way SSL Example

package httpbasicauth
import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.Policy;

Chapter 3
Example of Configuring Transport Security for JAX-WS

3-7

@WebService(name="HttpsBasicAuth", portName="HttpsBasicAuthSoapPort"
 targetNamespace="https://httpsbasicauth")

// Security Policy for Https and Http Basic Authentication
@Policy(uri = "policy:Wssp1.2-2007-Https-BasicAuth.xml)

public class HttpsBasicAuth {

 public HttpsBasicAuth() {}

 WebMethod()
 public String echoString(String input) {

 return("[HttpsBasicAuth.echoString]: " + input);

 }

}

The standalone Java web service client code that uses "weblogic.net" as the Java
protocol handler is shown in Example 3-5:

Example 3-5 Web Service Client One-Way SSL Example With weblogic.net

package httpbasicauth.client

import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.Map;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import httpsbasicauth.client.HttpsBasicAuthService;
import httpsbasicauth.client.HttpsBasicAuth;

public class HttpsBasicAuthClient

 private final static String ENDPOINT =;
 private final static String TARGET_NAMESPACE = "https://httpsbasicauth
 private final static String USERNAME =;
 private final static String PASSWORD =;
 private final static String TRUST_STORE_LOCATION =;
 private final static String TARGET_NAMESPACE =;

 private HttpsBasicAuthService service;
 private HttpsBasicAuth stub;

 public HttpsBasicAuthClient() {

 try {
 // This ignores the host name verifcation for the Public Certificate used
by the Server

System.setProperty("weblogic.security.SSL.ignoreHostnameVerification","true");

Chapter 3
Example of Configuring Transport Security for JAX-WS

3-8

 System.setProperty("java.protocol.handler.pkgs", "weblogic.net");
 System.setProperty("weblogic.security.TrustKeyStore","CustomTrust");
 System.setProperty("weblogic.security.CustomTrustKeyStoreFileName",
"TRUST_STORE_LOCATION");

System.setProperty("weblogic.security.CustomTrustKeyStorePassPhrase","TRUST_STORE_PASSW
ORD");
 System.setProperty("weblogic.security.CustomTrustKeyStoreType","JKS");

 URL url = new URL(endpoint+"?WSDL");
 QName serviceName = new QName(TARGET_NAMESPACE, "HttpsBasicAuthService");

 service = new HttpsBasicAuthService();

 stub = service.getHttpsBasicAuthSoapPort();

 BindingProvider bp = (BindingProvider) stub;

 Map<String,Object> context = bp.getRequestContext();

 context.put(BindingProvider.USERNAME_PROPERTY, USERNAME)
 context.put(BindingProvider.PASSWORD_PROPERTY, PASSWORD);
 context.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ENDPOINT);

 } catch (Exception e) {
 System.out.println("Error in creating the stub : " + e.getMessage());
 if (verbose) e.printStackTrace();
 }
 }

 public void invokeEchoString() throws Exception {

 String output = stub.echoString(ENDPOINT);

 System.out.println("[HttpsBasicAuthClient.invokeGEchoString]: " + output);

 }

 public static void main(String[] argv) throws Exception {

 HttpsBasicAuthClient client = new HttpsBasicAuthClient();

 System.setProperty("weblogic.wsee.verbose","*");

 System.out.println("----------------------");
 System.out.println(" Invoking echoString ");
 client.invokeEchoString();

 }

}

The standalone Java web service client code that uses the default Java protocol handler is
shown in Example 3-6:

Example 3-6 Web Service Client One-Way SSL Example With java.net

package httpbasicauth.client

import java.net.URL;

Chapter 3
Example of Configuring Transport Security for JAX-WS

3-9

import java.security.cert.X509Certificate;
import java.util.Map;

import javax.xml.namespace.QName;

import javax.xml.ws.BindingProvider;

import httpsbasicauth.client.HttpsBasicAuthService;
import httpsbasicauth.client.HttpsBasicAuth;

public class HttpsBasicAuthClient

 private final static String ENDPOINT =;
 private final static String TARGET_NAMESPACE = "https://httpsbasicauth
 private final static String USERNAME =;
 private final static String PASSWORD =;
 private final static String TRUST_STORE_LOCATION =;
 private final static String TARGET_NAMESPACE =;

 private HttpsBasicAuthService service;
 private HttpsBasicAuth stub;

 public HttpsBasicAuthClient() {

 try {

 System.setProperty("java.protocol.handler.pkgs", "java.net");
 System.setProperty("javax.net.ssl.trustStore", TRUST_STORE_LOCATION);
 System.setProperty("javax.net.ssl.trustStorePassword",
TRUST_STORE_PASSWORD);

 URL url = new URL(ENDPOINT+"?WSDL");
 QName serviceName = new QName(TARGET_NAMESPACE, "HttpsBasicAuthService");

 service = new HttpsBasicAuthService();

 stub = service.getHttpsBasicAuthSoapPort();

 BindingProvider bp = (BindingProvider) stub;

 Map<String,Object> context = bp.getRequestContext();

 context.put(BindingProvider.USERNAME_PROPERTY, USERNAME)
 context.put(BindingProvider.PASSWORD_PROPERTY, PASSWORD);
 context.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ENDPOINT);

 } catch (Exception e) {
 System.out.println("Error in creating the stub : " + e.getMessage());
 if (verbose) e.printStackTrace();
 }

 }

 public void invokeEchoString() throws Exception {

 String output = stub.echoString(ENDPOINT);

 System.out.println("[HttpsBasicAuthClient.invokeGEchoString]: " + output);

Chapter 3
Example of Configuring Transport Security for JAX-WS

3-10

 }

 public static void main(String[] argv) throws Exception {

 HttpsBasicAuthClient client = new HttpsBasicAuthClient();

 System.setProperty("weblogic.wsee.verbose","*");

 System.out.println("----------------------");
 System.out.println(" Invoking echoString ");
 client.invokeEchoString();

 }

}

The related portion of the ant build file is shown in Example 3-7:

Example 3-7 Ant Build File

<property name="output.dir" value="../../build/httpsbasicauth" />
<property name="service.dir" value="${output.dir}/httpsbasicauthApp" />
<property name="output.dir.client" value="${output.dir}/client" />
<property name="clientclasses.dir" value="${output.dir}/client" />
<property name="service.name" value="HttpsBasicAuth" />
<property name="wsdl.name" value="HttpsBasicAuthService" />
<property name="packageName" value="httpsbasicauth.client" />

<path id="client.class.path">
 <pathelement path="${java.class.path}" />
 <pathelement path="${clientclasses.dir}" />
</path>

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<taskdef name="jwsc" classname="weblogic.wsee.tools.anttasks.JwscTask"/>

 <target name="jwsc">

 <jwsc srcdir="." destdir="${output.dir.server}" sourcepath="../" debug="true"
keepGenerated="true">

 <module name="HttpsBasicAuth" contextPath="httpsbasicauth">

 <jws file="HttpsBasicAuth.java" type="JAXWS" generateWsdl="true">
 <WLHttpTransport contextPath="httpsbasicauth" serviceUri="httpsbasicauth"/>
 </jws>

 </jwsc>

 </target>

 <target name="client">

 <clientgen wsdl="jar:file:${service.dir}/${service.name}.war!/WEB-INF/$
{wsdl.name}.wsdl"
 type="JAXWS"
 destDir="${clientclasses.dir}"
 packageName="${packageName}">

Chapter 3
Example of Configuring Transport Security for JAX-WS

3-11

 </clientgen>

 <javac srcdir="${clientclasses.dir}"
 destdir="${clientclasses.dir}"
 includes="**/*.java"
 classpathref="client.class.path" />

 <javac srcdir="./"
 destdir="${clientclasses.dir}"
 includes="HttpsBasicAuthClient.java"
 classpathref="client.class.path" />

 </target>

 <target name="run">

 <java classname="httpsbasicauth.client.HttpsBasicAuthClient"
 classpathref="client.class.path"
 fork="true" />
 </target>

Persisting the State of a Request over SSL (JAX-WS Only)
JAX-RPC clients can use the SSLAdapter mechanism described in Using a Custom
SSL Adapter with Reliable Messaging (JAX-RPC Only) to persist the state of a request
over an SSL connection. In doing so, they persist the instance of the custom
SSLAdapter used to establish the connection.

Oracle WebLogic Server includes a two-way SSL client API for JAX-WS that you can
use to construct an SSLSocketFactory from system properties or from a new
weblogic.wsee.jaxws.sslclient.PersistentSSLInfo class. The API can persist SSL info
for Reliable Messaging, callbacks, and so forth, and supports the following well-known
system properties:

• weblogic.wsee.client.ssl.relaxedtrustmanager

• weblogic.security.SSL.ignoreHostnameVerification

The following new classes are available. See the Javadoc for complete descriptions.

• weblogic.wsee.jaxws.sslclient.SSLClientUtil. This class has the following methods:

– public static SSLSocketFactory getSSLSocketFactory(KeyManager[] kms,
TrustManager[] tms);

– public static SSLSocketFactory getSSLSocketFactory(PersistentSSLInfo
sslInfo);

– public static SSLSocketFactory getSSLSocketFactoryFromSysProperties();

• weblogic.wsee.jaxws.sslclient.PersistentSSLInfo, a Javabean for setting SSL info.

• weblogic.wsee.jaxws.JAXWSProperties, includes a
CLIENT_PERSISTENT_SSL_INFO property.

Example of Getting SSLSocketFactory From System Properties
Example 3-8 shows an example of getting the SSLSocketFactory from system
properties and using them in the request context.

Chapter 3
Persisting the State of a Request over SSL (JAX-WS Only)

3-12

Note:

The clientKeyStore and clientKeyStorePasswd have this restriction: the SSL
package of Java SE requires that the password of the client's private key must be
the same as the password of the client's keystore. For this reason, the client
keystore can include only one private key and X.509 certificate pair.

Example 3-8 Getting SSLSocketFactory From System Properties

String clientKeyStore = ...;
 String clientKeyStorePasswd = ...;
 String trustKeystore = ...;
 String trustKeystorePasswd = ...;

 System.setProperty("javax.net.ssl.keyStore", clientKeyStore);
 System.setProperty("javax.net.ssl.keyStorePassword", clientKeyStorePasswd);
 System.setProperty("javax.net.ssl.trustStore", trustKeystore);
 System.setProperty("javax.net.ssl.trustStorePasswd", trustKeystorePasswd);

 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.SSL_SOCKET_FACTORY,
 SSLClientUtil.getSSLSocketFactoryFromSysProperties());

Example 3-9 shows an example of getting SSLSocketFactory from persistent info
(PersistentSSLInfo), as well as directly setting a SSLSocketFactory if persistence is not
needed.

Example 3-9 Getting SSLSocketFactory from PersistentSSLInfo

String clientKeyStore = ...;
 String clientKeyStorePasswd = ...;
 String clientKeyAlias = ...;
 String clientKeyPass = ...;
 String trustKeystore = ...;
 String trustKeystorePasswd = ...;

 PersistentSSLInfo sslInfo = new PersistentSSLInfo();
 sslInfo.setKeystore(clientKeyStore);
 sslInfo.setKeystorePassword(clientKeyStorePasswd);
 sslInfo.setKeyAlias(clientKeyAlias);
 sslInfo.setKeyPassword(clientKeyPass);
 sslInfo.setTrustKeystore(trustKeystore);

 //user can print out the sslInfo for debug
 System.out.print(sslInfo.toString());

//Put sslInfo into requestContext for persistence, it might be required by JAX-WS
advance features, such as, RM, Callback
 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.CLIENT_PERSISTENT_SSL_INFO, sslInfo);

 //Alternatively, you can directly set a SSLSocketFactory if persistence is
not necessary. Note: The following line should be omitted if sslInfo is set with
above line.
 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.SSL_SOCKET_FACTORY,
 SSLClientUtil.getSSLSocketFactory(sslInfo));

Chapter 3
Persisting the State of a Request over SSL (JAX-WS Only)

3-13

sslInfo can set a key alias (clientKeyAlias) that points to a key in keystore (as an SSL
client-side key) in the event that the client keystore has multiple keys.

Configuring Transport-Level Security Via
UserDataConstraint: Main Steps (JAX-RPC Only)

The UserDataConstraint annotation requires that the web service be invoked using
the HTTPS transport.

To configure transport-level web services security via the UserDataConstraint
annotation in your JWS file:

1. Configure SSL for the core WebLogic Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client
applications and WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security
subsystem, see Configuring SSL in Administering Security for Oracle WebLogic
Server.

2. In the JWS file that implements your web service, add the
@weblogic.jws.security.UserDataConstraint annotation to require that the web
service be invoked using the HTTPS transport.

For details, see weblogic.jws.security.UserDataConstraint in the WebLogic Web
Services Reference for Oracle WebLogic Server.

3. Recompile and redeploy your web service as part of the normal iterative
development process.

See Developing WebLogic Web Services in Developing JAX-RPC Web Services
for Oracle WebLogic Server

4. Update the build.xml file that invokes the clientgen Ant task to use a static
WSDL to generate the JAX-RPC stubs of the web service, rather than the dynamic
deployed WSDL of the service.

The reason clientgen cannot generate the stubs from the dynamic WSDL in this
case is that when you specify the @UserDataConstraint annotation, all client
applications are required to specify a truststore, including clientgen. However,
there is currently no way for clientgen to specify a truststore, thus the Ant task
must generate its client components from a static WSDL that describes the web
service in the same way as the dynamic WSDL.

5. When you run the client application that invokes the web service, specify certain
properties to indicate the SSL implementation that your application should use. In
particular:

• To specify the Sun SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains
the list of trusted certificates (one of which should be the server's certificate).
To disable host name verification, also specify the following property:

-Dweblogic.wsee.client.ssl.stricthostchecking=false

Chapter 3
Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC Only)

3-14

See Configuring Two-Way SSL for a Client Application for details about two-way
SSL.

Using a Custom SSL Adapter with Reliable Messaging (JAX-
RPC Only)

Note:

All objects placed into Stub and MessageContext properties must be serializable
and externalizable, and must have their implementations available on the server
system CLASSPATH. This section describes the specific case of a custom
SSLAdapter implementation.

You can use a custom SSLAdapter implementation to provide client certificates and other
services needed to establish SSL connections between client and server when using reliable
messaging or buffering. The reliable messaging and buffering subsystems persist the state of
a request over an SSL connection. In doing so, they persist the instance of the custom
SSLAdapter used to establish the connection.

When the request is restored from persistence, the persistence facility must have access to
the custom SSLAdapter class in order to properly restore the custom SSLAdapter object
saved with the request. To allow for this, you must provide your custom SSLAdapter class via
the server's system CLASSPATH (and not within an application deployed to the server).

The custom SSLAdapter must extend SSLAdapter, and is installed and enabled via the
following procedure:

1. Create an instance of
weblogic.wsee.connection.transport.https.HttpsTransportInfo.

2. Set the custom SSL adapter on that transport info by calling
HttpsTransportInfo.setSSLAdapter(SSLAdapter adapter).

3. Set the transport info on the web services stub instance (stub of type
javax.xml.rpc.Stub) by calling

stub._setProperty(weblogic.wsee.connection.soap.SoapClientConnection.TRANSPORT_INFO
_PROPERTY,ti);

Where stub is the web services stub, and it is the HttpsTransportInfo you configured.

If you do not follow this procedure and provide the custom SSLAdapter class on the system
CLASSPATH, a ClassNotFoundException exception is generated:

java.io.IOException: java.lang.ClassNotFoundException:
 examples.webservices.client.ServiceBase$TestSSLAdapter

Chapter 3
Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)

3-15

4
Configuring Access Control Security (JAX-
RPC Only)

The chapter describes how to configure access control security for your WebLogic web
service using Java API for XML-based RPC (JAX-RPC).
This chapter includes the following sections:

• Configuring Access Control Security: Main Steps

• Updating the JWS File With the Security-Related Annotations

• Updating the JWS File With the @RunAs Annotation

• Setting the Username and Password When Creating the Service Object

Configuring Access Control Security: Main Steps
Access control security refers to configuring the web service to control the users who are
allowed to access it, and then coding your client application to authenticate itself, using
HTTP/S or username tokens, to the web service when the client invokes one of its
operations.

You specify access control security for your web service by using one or more of the following
annotations in your JWS file:

• weblogic.jws.security.RolesAllowed
• weblogic.jws.security.SecurityRole
• weblogic.jws.security.RolesReferenced
• weblogic.jws.security.SecurityRoleRef
• weblogic.jws.security.RunAs

Note:

The @weblogic.security.jws.SecurityRoles and
@weblogic.security.jws.SecurityIdentity JWS annotations were deprecated as
of WebLogic Server 9.1.

The following procedure describes the high-level steps to use these annotations to enable
access control security; later sections in the chapter describe the steps in more detail.

4-1

Note:

It is assumed in the following procedure that you have already created a
JWS file that implements a WebLogic web service and you want to update it
with access control security.

It is also assumed that you use Ant build scripts to iteratively develop your
web service and that you have a working build.xml file that you can update
with new information.

Finally, it is assumed that you have a client application that invokes the non-
secured web service. If these assumptions are not true, see Developing JAX-
RPC Web Services for Oracle WebLogic Server.

1. Update your JWS file, adding the @weblogic.jws.security.RolesAllowed,
@weblogic.jws.security.SecurityRole,
@weblogic.jws.security.RolesReferenced, or
@weblogic.jws.security.SecurityRoleRef annotations as needed at the
appropriate level (class or operation).

See Updating the JWS File With the Security-Related Annotations.

2. Optionally specify that WebLogic Server internally run the web service using a
specific role, rather than the role assigned to the user who actually invokes the
web service, by adding the @weblogic.jws.security.RunAs JWS annotation.

See Updating the JWS File With the @RunAs Annotation.

3. Optionally specify that your web service can be, or is required to be, invoked using
HTTPS by adding the @weblogic.jws.security.UserDataConstraint JWS
annotation.

See Configuring Transport-Level Security Via UserDataConstraint: Main Steps
(JAX-RPC Only) for details. This section also discusses how to update your client
application to use SSL.

4. Recompile and redeploy your web service as part of the normal iterative
development process.

See Developing WebLogic Web Services in Developing JAX-RPC Web Services
for Oracle WebLogic Server.

5. Using the WebLogic Server Administration Console, create valid WebLogic Server
users, if they do not already exist. If the mapping of users to roles is external, also
use the WebLogic Server Administration Console to create the roles specified by
the @SecurityRole annotation and map the users to the roles.

Note:

The mapping of users to roles is defined externally if you do not specify
the mapToPrincipals attribute of the @SecurityRole annotation in your
JWS file to list all users who can invoke the web service.

Chapter 4
Configuring Access Control Security: Main Steps

4-2

See Users, Groups, and Security Roles in Securing Resources Using Roles and Policies
for Oracle WebLogic Server.

6. Update your client application to use the HttpTransportInfo WebLogic API to specify
the appropriate user and password when creating the Service object.

See Setting the Username and Password When Creating the Service Object.

7. Update the clientgen Ant task in your build.xml file to specify the username and
password of a valid WebLogic user (in the case where your web service uses the
@RolesAllowed annotation) and the trust store that contains the list of trusted certificates,
including WebLogic Server's (in the case you specify @UserDataConstraint).

You do this by adding the standard Ant <sysproperty> nested element to the clientgen
Ant task, and set the key attribute to the required Java property, as shown in the following
example.

Note:

The example hard-codes the username and password; prompting for both
provides more security. You need the username and password for
@RolesAllowed, and trustStore if SSL must be used.

<clientgen
 wsdl="http://example.com/myapp/myservice.wsdl"
 destDir="/output/clientclasses"
 packageName="myapp.myservice.client"
 serviceName="StockQuoteService" >
 <sysproperty key="javax.net.ssl.trustStore"
 value="/keystores/DemoTrust.jks"/>
 <sysproperty key="weblogic.wsee.client.ssl.stricthostchecking"
 value="false"/>
 <sysproperty key="javax.xml.rpc.security.auth.username"
 value="juliet"/>
 <sysproperty key="javax.xml.rpc.security.auth.password"
 value="secret"/>
</clientgen>

8. Regenerate client-side components and recompile client Java code as usual.

Updating the JWS File With the Security-Related Annotations
Use the WebLogic-specific @weblogic.jws.security.RolesAllowed annotation in your JWS
file to specify an array of @weblogic.jws.security.SecurityRoles annotations that list the
roles that are allowed to invoke the web service. You can specify these two annotations at
either the class- or method-level. When set at the class-level, the roles apply to all public
operations. You can add additional roles to a particular operation by specifying the annotation
at the method level.

The @SecurityRole annotation has the following two attributes:

• role is the name of the role that is allowed to invoke the web service.

• mapToPrincipals is the list of users that map to the role. If you specify one or more users
with this attribute, you do not have to externally create the mapping between users and

Chapter 4
Updating the JWS File With the Security-Related Annotations

4-3

roles, typically using the WebLogic Server Administration Console. However, the
mapping specified with this attribute applies only within the context of the web
service.

The @RolesAllowed annotation does not have any attributes.

You can also use the @weblogic.jws.security.RolesReferenced annotation to
specify an array of @weblogic.jws.security.SecurityRoleRef annotations that list
references to existing roles. For example, if the role manager is already allowed to
invoke the web service, you can specify that the mgr role be linked to the manager role
and any user mapped to mgr is also able to invoke the web service. You can specify
these two annotations only at the class-level.

The @SecurityRoleRef annotation has the following two attributes:

• role is the name of the role reference.

• link is the name of the already-specified role that is allowed to invoke the web
service. The value of this attribute corresponds to the value of the role attribute of
a @SecurityRole annotation specified in the same JWS file.

The @RolesReferenced annotation does not have any attributes.

The following example shows how to use the annotations described in this section in a
JWS file, with the relevant sections shown in bold:

package examples.webservices.security_roles;
import javax.jws.WebMethod;
import javax.jws.WebService;
// WebLogic JWS annotations
import weblogic.jws.WLHttpTransport;
import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.RolesReferenced;
import weblogic.jws.security.SecurityRole;
import weblogic.jws.security.SecurityRoleRef;
@WebService(name="SecurityRolesPortType",
 serviceName="SecurityRolesService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="security",
 serviceUri="SecurityRolesService",
 portName="SecurityRolesPort")
@RolesAllowed ({
 @SecurityRole (role="manager",
 mapToPrincipals={ "juliet","amanda" }),
 @SecurityRole (role="vp")
})
@RolesReferenced (
 @SecurityRoleRef (role="mgr", link="manager")
)
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class SecurityRolesImpl {
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

Chapter 4
Updating the JWS File With the Security-Related Annotations

4-4

The example shows how to specify that only the manager, vp, and mgr roles are allowed to
invoke the web service. The mgr role is actually a reference to the manager role. The users
juliet and amanda are mapped to the manager role within the context of the web service.
Because no users are mapped to the vp role, it is assumed that the mapping occurs
externally, typically using the WebLogic Server Administration Console to update the
WebLogic Server security realm.

See JWS Annotation Reference in WebLogic Web Services Reference for Oracle WebLogic
Server for reference information on these annotations.

Updating the JWS File With the @RunAs Annotation
Use the WebLogic-specific @weblogic.jws.security.RunAs annotation in your JWS file to
specify that the web service is always run as a particular role. This means that regardless of
the user who initially invokes the web service (and the role to which the user is mapped), the
service is internally executed as the specified role.

You can set the @RunAs annotation only at the class-level. The annotation has the following
attributes:

• role is the role which the web service should run as.

• mapToPrincipal is the principal user that maps to the role.

The following example shows how to use the @RunAs annotation in a JWS file, with the
relevant sections shown in bold:

package examples.webservices.security_roles;
import javax.jws.WebMethod;
import javax.jws.WebService;
// WebLogic JWS annotations
import weblogic.jws.WLHttpTransport;
import weblogic.jws.security.RunAs;
@WebService(name="SecurityRunAsPortType",
 serviceName="SecurityRunAsService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="security_runas",
 serviceUri="SecurityRunAsService",
 portName="SecurityRunAsPort")
@RunAs (role="manager", mapToPrincipal="juliet")
/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class SecurityRunAsImpl {
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

Chapter 4
Updating the JWS File With the @RunAs Annotation

4-5

Setting the Username and Password When Creating the
Service Object

When you use the @RolesAllowed JWS annotation to secure a web service, only the
specified roles are allowed to invoke the web service operations. This means that you
must specify the username and password of a user that maps to the role when
creating the Service object in your client application that invokes the protected web
service.

WebLogic Server provides the HttpTransportInfo class for setting the username and
password and passing it to the Service constructor. The following example is based
on the standard way to invoke a web service from a standalone Java client (as
described in Invoking Web Services in Developing JAX-RPC Web Services for Oracle
WebLogic Server) but also shows how to use the HttpTransportInfo class to set the
username and password. The sections in bold are discussed after the example.

package examples.webservices.sec_wsdl.client;
import weblogic.wsee.connection.transport.http.HttpTransportInfo;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the SecWsdlService web service.
 *
 * @author Copyright © 1996, 2008, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class Main {
 public static void main(String[] args)
 throws ServiceException, RemoteException{
 HttpTransportInfo info = new HttpTransportInfo();
 info.setUsername("juliet".getBytes());
 info.setPassword("secret".getBytes());
 SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL", info);
 SecWsdlPortType port = service.getSecWsdlPort();
 try {
 String result = null;
 result = port.sayHello("Hi there!");
 System.out.println("Got result: " + result);
 } catch (RemoteException e) {
 throw e;
 }
 }
}

The main points to note in the preceding example are as follows:

• Import the HttpTransportInfo class into your client application:

import weblogic.wsee.connection.transport.http.HttpTransportInfo;
• Use the setXXX() methods of the HttpTransportInfo class to set the username

and password:

Chapter 4
Setting the Username and Password When Creating the Service Object

4-6

HttpTransportInfo info = new HttpTransportInfo();
info.setUsername("juliet".getBytes());
info.setPassword("secret".getBytes());

In the example, it is assumed that the user juliet with password secret is a valid
WebLogic Server user and has been mapped to the role specified in the @RolesAllowed
JWS annotation of the web service.

If you are accessing a web service using a proxy, the Java code would be similar to:

HttpTransportInfo info = new HttpTransportInfo();
Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));
info.setProxy(p);
info.setProxyUsername(user.getBytes());
info.setProxyPassword(pass.getBytes());

• Pass the info object that contains the username and password to the Service
constructor as the second argument, in addition to the standard WSDL first argument:

SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL", info);
See Invoking Web Services in Developing JAX-RPC Web Services for Oracle WebLogic
Server for general information about invoking a non-secured web service.

Chapter 4
Setting the Username and Password When Creating the Service Object

4-7

A
Using Oracle Web Services Manager Security
Policies

This appendix describes how to use Oracle Web Services Manager WS-Security (OWSM
security) policies with WebLogic JAX-WS web services.
This appendix includes the following sections:

• Overview of OWSM Security Policies

• Attaching OWSM Security Policies to JAX-WS Web Services

• Attaching OWSM Security Policies to JAX-WS Web Service Clients

• Disabling a Globally Attached OWSM Policy

• Configuring Policies

• Overriding the Policy Configuration for the Web Service Client

• Monitoring and Testing the Web Service

Overview of OWSM Security Policies
Oracle Fusion Middleware installs a portability layer on top of WebLogic Server that
integrates OWSM security policies into the WebLogic Server environment. This portability
layer provides OWSM security policies that you can use to protect WebLogic JAX-WS web
services and clients.

You can use the OWSM security policies as an alternative to the WebLogic WS-Security
policies for enforcing security for web services. You can also create custom OWSM security
policies and use them with WebLogic web services.

The following sections provide more information about the OWSM policies that are available
and when you should use them.

• Which OWSM Policies Are Supported for Java EE Web Services?

• When Should You Use OWSM Security Policies?

• Interoperability Between WebLogic Web Service Policies and OWSM Policies

Which OWSM Policies Are Supported for Java EE Web Services?
Only a subset of OWSM policies are supported for Java EE web services. See Which OWSM
Policies Are Supported for Java EE Web Services? in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

When Should You Use OWSM Security Policies?
You might want to use OWSM security policies to protect JAX-WS web services if you
already use SOA, ADF, or Web Center applications elsewhere in your environment and you
want a consistent security environment.

A-1

You should secure a WebLogic JAX-WS web service with OWSM security policies to
have consistent and interoperable web service security when these web services are
used in conjunction with Oracle Fusion Middleware applications.

That is, you should secure WebLogic JAX-WS web services with OWSM security
policies for use with applications that interact with Oracle Fusion Middleware
applications, not with standalone WebLogic Server web service applications.

Consider the following scenarios:

• If you develop WebLogic JAX-WS web services or clients that interact with SOA
Composite Services, ADF Components, or WebCenter Services, then you should
use the OWSM security policies.

• If you develop only WebLogic native Java JAX-WS web services, then you should
use WebLogic WS-Security policies.

Table A-1 lists policy selection guidelines for using the OWSM policies. In this table:

• weblogic.jws.Policy annotation applies to WebLogic web service policies

• weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation applies to OWSM
policies

Table A-1 Policy Selection Guidelines

@Policy @SecurityP
olicy

Feature to be
Implemented

Which Policies to Use

Yes No WSS 1.0 with multiple must
support key reference
methods

Wssp1.2-2007-Wss1.0-
UsernameToken-Plain-X509-
Basic256.xml
Wssp1.2-2007-Saml1.1-
SenderVouches-Wss1.0.xml

Yes No Username Token digest
authentication

Wssp1.2-2007-Https-
UsernameToken-Digest.xml
Wssp1.2-2007-Wss1.0-
UsernameToken-Digest-X509-
Basic256.xml
Wssp1.2-2007-Wss1.1-
UsernameToken-Digest-X509-
Basic256.xml

Appendix A
Overview of OWSM Security Policies

A-2

Table A-1 (Cont.) Policy Selection Guidelines

@Policy @SecurityP
olicy

Feature to be
Implemented

Which Policies to Use

No Yes Kerberos Authentication oracle/
wss11_kerberos_token_client_
policy
oracle/
wss11_kerberos_token_service
_policy
oracle/
wss11_kerberos_token_with_me
ssage_protection_client_poli
cy
oracle/
wss11_kerberos_token_with_me
ssage_protection_service_pol
icy
oracle/
wss11_kerberos_token_with_me
ssage_protection_basic128_cl
ient_policy
oracle/
wss11_kerberos_token_with_me
ssage_protection_basic128_se
rvice_policy

Yes No WSS 1.1 Derived Key Wssp1.2-2007-Wss1.1-DK-X509-
SignedEndorsing.xml
Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-DK.xml

Appendix A
Overview of OWSM Security Policies

A-3

Table A-1 (Cont.) Policy Selection Guidelines

@Policy @SecurityP
olicy

Feature to be
Implemented

Which Policies to Use

Yes No All SAML 2.0 scenarios oracle/
http_saml20_token_bearer_cli
ent_policy
oracle/
http_saml20_token_bearer_ser
vice_policy
oracle/
http_saml20_token_bearer_ove
r_ssl_client_policy
oracle/
http_saml20_token_bearer_ove
r_ssl_service_policy
oracle/
wss_saml20_token_bearer_over
_ssl_client_policy
oracle/
wss_saml20_token_bearer_over
_ssl_service_policy
oracle/
wss_saml20_token_over_ssl_cl
ient_policy
oracle/
wss_saml20_token_over_ssl_se
rvice_policy
oracle/
wss10_saml20_token_client_po
licy
oracle/
wss10_saml20_token_service_p
olicy
oracle/
wss10_saml20_token_with_mess
age_protection_client_policy
oracle/
wss10_saml20_token_with_mess
age_protection_service_polic
y
oracle/
wss11_saml20_token_with_mess
age_protection_client_policy
oracle/
wss11_saml20_token_with_mess
age_protection_service_polic
y

Appendix A
Overview of OWSM Security Policies

A-4

Table A-1 (Cont.) Policy Selection Guidelines

@Policy @SecurityP
olicy

Feature to be
Implemented

Which Policies to Use

Yes No Encrypt before signing Policy assertion
<sp:EncryptBeforeSigning/> in both
WSS10 or WSS11, Symmetric
Binding or Asymmetric Binding, such
as the following:

<wsp:Policy xmlns:wsp="..." >
 <sp:SymmetricBinding>
 <wsp:Policy>
 .. .

<sp:EncryptBeforeSigning/>
 . . .
 </wsp:Policy>
 </sp:SymmetricBinding>
 . . .
</wsp:Policy>

Yes No Multiple policy alternatives Policy assertion such as the
following:

<wsp:Policy xmlns:wsp="..." >
 <wsp:ExactlyOne>
 <wsp:All>
 ... ALternative 1 ...
 </wsp:All>
 <wsp:All>
 ... ALternative 2 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

For non-security features, such as WS-RM and MTOM, use WebLogic web service policies.

For specific policy instances, you can attach an OWSM policy to the web service client or
service, and an WebLogic web service policy to the WebLogic Java EE web service or client,
and they will interoperate. The specific interoperability scenarios are described in
Interoperability with Oracle WebLogic Server 11g Web Service Security Environments in
Interoperability Solutions Guide for Oracle Web Services Manager.

For these interoperability scenarios, you can use either OWSM or WebLogic web service
policies, depending on the following considerations:

• If additional non-standard policy assertions in the OWSM policy are needed for
configuration, then use the @SecurityPolicy annotation.

Examples of these non-standard assertions might be as follows:

<oralgp:Logging xmlns:oralgp="http://schemas.oracle.com/ws/2006/01/
loggingpolicy" . . .
 orawsp:category="security/logging">
 . . .
</oralgp:Logging>

Appendix A
Overview of OWSM Security Policies

A-5

or

<orawsp:Config xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/
policy" . . .>
 <orawsp:PropertySet . . .>
 . . .
 </orawsp:PropertySet>
</orawsp:Config>

• If the application will be used to interoperate with existing WebLogic web services
or Microsoft Windows Communication Foundation (WCF)/.NET Framework
services, and the previously-mentioned non-standard policy assertions are not
required, then use the @Policy annotation with WebLogic web service policies.

Interoperability Between WebLogic Web Service Policies and OWSM
Policies

A subset of WebLogic web service policies interoperate with OWSM policies.

That is, for specific policy instances, you can attach an OWSM policy to the web
service client or service, and a WebLogic web service policy to the WebLogic Java EE
web service or client, and they will interoperate.

The specific interoperability scenarios are described in Interoperability with Oracle
WebLogic Server 11g Web Service Security Environments in Interoperability Solutions
Guide for Oracle Web Services Manager.

WebLogic Server includes the policies shown in Table A-2 for interoperability with
OWSM.

Table A-2 Interoperability WebLogic WS-Security Policies

Policy Name Description

Wssp1.2-2007-Saml1.1-
HolderOfKey-Wss1.0-
Basic128.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-HolderOfKey-Wss1.0.xml,
including SAML token for authentication with holder of key
confirmation method, in which the key inside the SAML Token is
used for the signature. It requires using Basic128 algorithm suite
(AES128 for encryption) instead of Basic256 algorithm suite
(AES256).

Wssp1.2-
wss11_saml_token_with_
message_protection_ows
m_policy.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml,
including a SAML token for authentication with the sender
vouches confirmation method, signed and encrypted on both
request and response with WSS1.1 X509 symmetric binding.

It endorses with the sender's X509 certificate, and message
signature is protected. It requires the use of the Basic128
algorithm suite (AES128 for encryption) instead of the Basic256
algorithm suite (AES256).

Wssp1.2-
wss10_saml_token_with_
message_protection_ows
m_policy.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.0.xml,
including SAML token for authentication with sender vouches
confirmation method, signed with the client's private key. It
requires using Basic128 algorithm suite (AES128 for encryption)
instead of Basic256 algorithm suite (AES256). It also uses the
direct key reference that includes public certificates.

Appendix A
Overview of OWSM Security Policies

A-6

Table A-2 (Cont.) Interoperability WebLogic WS-Security Policies

Policy Name Description

Wssp1.2-2007-Saml1.1-
SenderVouches-
Https.xml

Two-way SSL that uses SAML 1.1 token with sender vouches
confirmation method for authentication. It requires client
certificates, and the recipient checks for the initiator's public
certificate.

Wssp1.2-
wss10_x509_token_with_
message_protection_ows
m_policy.xml

This policy provides similar security features to that of
Wssp1.2-2007-Wss1.0-X509-Basic256.xml for mutual
authentication with X.509 Certificates. It requires using Basic128
algorithm suite (AES128 for encryption) instead of Basic256
algorithm suite (AES256). It also uses the direct key reference
that includes public certificates.

Wssp1.2-2007-Wss1.1-
EncryptedKey-
Basic128.xml

This policy provides similar security features to that of Wssp1.2-
Wss1.1-EncryptedKey.xml. The policy requires the message
to be encrypted and signed without X509 certificate from the
client side. It is used for anonymous authentication.

Wssp1.2-
wss11_x509_token_with_
message_protection_ows
m_policy.xml

This policy provides similar security features to that of Wssp1.2-
Wss1.1-EncryptedKey-X509-SignedEndorsing.xml. It
endorses with the sender's X509 certificate, and the message
signature is protected. It requires the use of the Basic128
algorithm suite (AES128 for encryption) instead of the Basic256
algorithm suite (AES256).

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
EncryptedKey-
Basic128.xml

This policy provides similar security features to that of Wssp1.2-
Wss1.1-UsernameToken-Plain-X509-Basic256.xml, which
has WSS 1.1 X509 with asymmetric binding and authentication
with plain-text Username Token. It requires using Basic128
algorithm suite (AES128 for encryption) instead of Basic256
algorithm suite (AES256).

Wssp1.2-
wss10_username_token_w
ith_message_protection
_owsm_policy.xml

This policy provides similar security features to that of Wssp1.2-
Wss1.0-UsernameToken-Plain-X509-Basic256.xml,
including encrypted plain text password for authentication, signed
with the client's private key. It requires using Basic128 algorithm
suite (AES128 for encryption) instead of Basic256 algorithm suite
(AES256). It also uses the direct key reference that includes
public certificates.

Wssp1.2-2007-Saml1.1-
SenderVouches-Wss1.1-
Basic128.xml

This policy provides similar security features to that of
Wssp1.2-2007-Saml1.1-SenderVouches-Wss1.1.xml.

Wssp1.2-2007-Wss1.1-
EncryptedKey-X509-
Endorsing-Basic128.xml

This policy provides similar security features to that of Wssp1.2-
Wss1.1-EncryptedKey-X509-SignedEndorsing.xml.

Wssp1.2-2007-Wss1.1-
X509-Basic128.xml

This policy provides similar security features to that of
Wssp1.2-2007-Wss1.0-X509-Basic256.xml.

Wssp1.2-
wss11_saml20_token_wit
h_message_protection_o
wsm_policy.xml

This policy provides similar security features to that of Wssp1.2-
wss11_saml_token_with_message_protection_owsm_poli
cy.xml.

Appendix A
Overview of OWSM Security Policies

A-7

Attaching OWSM Security Policies to JAX-WS Web
Services

The OWSM WS-Security policy attachment model is similar to that of the WebLogic
web service policies. You can attach OWSM policies to WebLogic JAX-WS web
services using one of the following methods:

• Policy annotations at design time, as described in Attaching Policies to Java EE
Web Services and Clients Using Annotations in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

• WebLogic Server Administration Console at runtime, as described in Attaching
OWSM Security Policies Using the Administration Console.

• Fusion Middleware Control or WLST at runtime, as described in the following
sections in Securing Web Services and Managing Policies with Oracle Web
Services Manager:

– Attaching Policies Directly Using Fusion Middleware Control

– Attaching Policies Globally Using Fusion Middleware Control

– Attaching Policies Directly to Java EE Web Services Using WLST

– Attaching Policies Globally Using WLST

You can attach only one type of security policy to a web service, either WebLogic web
service security policies or OWSM policies. You cannot attach both WebLogic web
service policies and OWSM policies to the same web service, through either the
annotation mechanism, the WebLogic Server Administration Console, Fusion
Middleware Control, or a combination of the three.

You can attach an OWSM security policy only to a JAX-WS web service; you cannot
attach this type of policy to a JAX-RPC web service.

The following sections describe how to use the WebLogic Server Administration
Console to attach OWSM security policies to JAX-WS web services:

• Attaching OWSM Security Policies Using the Administration Console

• Refreshing the Cache After Attaching Policies

Attaching OWSM Security Policies Using the Administration Console
Attaching OWSM policies to a deployed web service at runtime using the WebLogic
Server Administration Console is similar to attaching WebLogic web service policies,
as described in Configuring Message-Level Security.

You can choose to not use @SecurityPolicy or @SecurityPolicies annotations in
your JWS file and attach policies only at runtime using the WebLogic Server
Administration Console. Or, you can attach a subset of policies using the annotations
and then attach additional policies at runtime. If you attach a policy file using the JWS
annotations, you can remove the policy at runtime using the WebLogic Server
Administration Console.

At runtime, the WebLogic Server Administration Console allows you to attach as many
policies as you want with a web service and its operations, even if the assertions in the
policies contradict each other or contradict the assertions in policies attached at design

Appendix A
Attaching OWSM Security Policies to JAX-WS Web Services

A-8

time using the JWS annotations. It is up to you to ensure that multiple attached policies work
together. If any contradictions exist, WebLogic Server returns a runtime error when a client
application invokes the web service operation.

There is no policy validation. The following specific combinations are valid:

• One management policy can be attached to a policy subject.

• One security policy with subtype authentication can be attached to a subject.

• One security policy with subtype message protection can be attached to a subject.

• One security policy with subtype authorization can be attached to a subject.

Note:

There may be either one or two security policies attached to a policy subject. A
security policy can contain an assertion that belongs to the authentication or
message protection subtype categories, or an assertion that belongs to both
subtype categories. The second security policy contains an assertion that
belongs to the authorization subtype.

• If an authentication policy and an authorization policy are both attached to a policy
subject, the authentication policy must precede the authorization policy.

Perform the following steps to attach an OWSM security policy via the WebLogic Server
Administration Console:

1. Using the WebLogic Server Administration Console, create the default web service
security configuration, which must be named default_wss. The default web service
security configuration is used by all web services in the domain unless they have been
explicitly programmed to use a different configuration.

See Create a Web Service Security Configuration in the Oracle WebLogic Server
Administration Console Online Help.

2. From the Summary of Deployments page, select the application for which you want to
secure a web service.

3. Click the plus sign (+) to expand the application. Select the web service you want to
secure.

4. Select the Configuration page.

5. Select the WS-Policy page.

6. Select the web service endpoint, as shown in Figure A-1. You can attach OWSM security
policies only at the class/port level.

Appendix A
Attaching OWSM Security Policies to JAX-WS Web Services

A-9

Figure A-1 Service Endpoints for the Web Service

7. Select OWSM, as shown in Figure A-2.

Figure A-2 Selecting the OWSM Security Policy Type

8. If you had instead mistakenly selected a particular web service operation, note that
you are not presented with the policy choice screen, as shown in Figure A-3. Click
Cancel to start over.

Figure A-3 WebLogic Server Policy Page

9. Select the OWSM security policies that you want to attach to this web service, and
use the control to move them into the Chosen Endpoint Policies box, as shown in
Figure A-4. Click Finish when done.

Appendix A
Attaching OWSM Security Policies to JAX-WS Web Services

A-10

Figure A-4 Selecting From the Available OWSM Security Policies

10. Save the deployment plan.

11. If the change is not automatically activated as indicated in the WebLogic Server change
message, restart the deployed application to reflect the new deployment plan.

Refreshing the Cache After Attaching Policies
WebLogic Server caches data for a deployed resource, and there is one cache per session.
You may need to clear this cache in order to see a policy attached to a web service.

In typical use, the WebLogic Server Administration Console caches the last deployed
resource with which a user interacts. Any changes made to a cached deployment by an
external tool or API (such as Fusion Middleware Control,WLST, or the JMX API) will not be
reflected in the cached version.

Consider the following scenario.

1. Assume that you have a web service deployed to WebLogic Server and you navigate to
the configuration page of that web service in the WebLogic Server Administration
Console. The information for this deployed resource is now cached.

2. If you attach an OWSM security policy to this web service using Fusion Middleware
Control, the change does not reflect in the WebLogic Server Administration Console,
even if you refresh the page.

To see the policy attachment, you need clear the cache. You can do this in two ways:

• Navigate to another deployment (thus caching it) and then revisit the original page.

• Log out of the WebLogic Server Administration Console and back in again.

Appendix A
Attaching OWSM Security Policies to JAX-WS Web Services

A-11

Attaching OWSM Security Policies to JAX-WS Web Service
Clients

The following procedure describes the high-level steps to attach an OWSM security
policy to a web service client application at design time. See Developing Basic JAX-
WS Web Service Clients in Developing JAX-WS Web Services for Oracle WebLogic
Server.

Note:

It is assumed that you have created the client application that invokes a
deployed web service, and that you want to update it by attaching a client-
side policy file. It is also assumed that you have set up an Ant-based
development environment and that you have a working build.xml file that
includes a target for running the clientgen Ant task.

1. Determine the OWSM security policies that you would like to attach to the client.
See Which OWSM Policies Are Supported for Java EE Web Services? in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

2. Update your Java client application to attach OWSM security policies.

The following sections in Securing Web Services and Managing Policies with
Oracle Web Services Manager describe the methods you can use to attach
OWSM security policies to web service clients:

• Attaching OWSM Security Policies to Clients Using Feature Classes

• Attaching Policies to Java EE Web Services and Clients Using Annotations

Attaching OWSM policies using Feature classes takes precedence over
annotations.

3. Update the build.xml file that builds your client application.

4. Rebuild your client application by running the relevant task. For example:

prompt> ant build-client
When you run the client application, it loads the policy files that the web service client
runtime uses to enable security for the SOAP request message.

Disabling a Globally Attached OWSM Policy
No behavior policies provide the ability to effectively disable an OWSM policy attached
globally in a policy set. Table A-3 lists the no behavior policies that are supported by
Java EE web services and clients to disable a globally attached OWSM security policy.

Appendix A
Attaching OWSM Security Policies to JAX-WS Web Service Clients

A-12

Table A-3 No Behavior Policies Supported by Java EE Web Services and Clients

No Behavior Policy Description

OWSM no behavior
policies

OWSM no behavior policies that are valid for Java EE web services and clients
include:

• no_authentication_client_policy and
no_authentication_service_policy

• no_authorization_service_policy
• no_messageprotection_client_policy and

no_messageprotection_service_policy
See No Behavior Policies in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

Attach an OWSM no behavior policy directly to the Java EE web service or client using
the procedures defined in the following sections in Securing Web Services and
Managing Policies with Oracle Web Services Manager:

• Attaching Policies to Java EE Web Services and Clients at Design Time
• Attaching Policies Directly Using Fusion Middleware Control
• Attaching Policies Directly to Java EE Web Services and Clients Using WLST

WebLogic no behavior
policy

The WebLogic no behavior policy, Wssp1.5-No-Op.xml, is defined as follows:

<?xml version="1.0"?>
 <wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <wsp15:All>
 <wsp15:Policy/>
 </wsp15:All>
 </wsp15:Policy>

Attach the Wssp1.5-No-Op.xml no behavior policy to the Java EE web service or
client using the procedures defined in the following sections.

Web service:

• Configuring Simple Message-Level Security
• Associating Policy Files at Runtime Using the Administration Console
Web service client:

• Using a Client-Side Security Policy File

See the following sections in Securing Web Services and Managing Policies with Oracle Web
Services Manager:

• Attaching Policies Globally Using Fusion Middleware Control

• Attaching Policies Globally Using WLST

Configuring Policies
You must configure your web service Securing Web Services in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Overriding the Policy Configuration for the Web Service Client
You can override the default configuration properties of an OWSM security policy
programmatically at design time using one of the following methods:

Appendix A
Configuring Policies

A-13

• JAX-WS RequestContext, as described in Overriding Client Policy Configuration
Properties at Design Time in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

• @Property annotation when attaching an OWSM security policy using the
@SecurityPolicy annotation, as described in Attaching Policies to Java EE Web
Services and Clients Using Annotations in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Monitoring and Testing the Web Service
You can use either the WebLogic Server Administration Console or Fusion Middleware
Control to monitor and test a WebLogic JAX-WS web service that is protected with an
OWSM security policy.

To monitor and test the web service from the WebLogic Server Administration
Console, perform the following steps:

1. From the Summary of Deployments page, select the application for which you
want to monitor or test the a web service.

2. To monitor the web service, from the settings page, select the Monitoring tab.

See Monitoring Web Services in Developing JAX-WS Web Services for Oracle
WebLogic Server.

3. To test the web service, from the settings page, select the Testing tab.

See Testing Web Services in Developing JAX-WS Web Services for Oracle
WebLogic Server.

To monitor and test the web service using the Fusion Middleware Control, see
Monitoring and Auditing Web Services and Testing Web Services in Administering
Web Services.

Appendix A
Monitoring and Testing the Web Service

A-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.2.0 and later)
	New and Changed Features for 12c (12.2.1.1.0)
	New and Changed Features for 12c (12.2.1)

	1 Overview of Web Services Security
	What Type of Security Should You Configure?
	Thread Safety

	2 Configuring Message-Level Security
	Overview of Message-Level Security
	Web Services Security Supported Standards
	Web Services Trust and Secure Conversation
	Web Services SecurityPolicy 1.2

	Main Use Cases of Message-Level Security
	Using Policy Files for Message-Level Security Configuration
	Using Policy Files With JAX-WS
	WS-Policy Namespace
	WS-SecurityPolicy Namespace
	Version-Independent Policy Supported
	Using the SHA-256 Secure Hash Algorithm
	Update the Predefined SHA-1 Policies to SHA-256
	SAML Policies
	Wss1.0 Policies
	Wss1.1 Policies
	Secure Conversation Policies

	Using the Extended Algorithm Suite (EAS)

	Configuring Simple Message-Level Security
	Configuring Simple Message-Level Security: Main Steps
	Ensuring That WebLogic Server Can Validate the Client's Certificate
	Updating the JWS File with @Policy and @Policies Annotations
	Setting the uri Attribute
	Setting Additional Attributes
	Example of Using the @Policy and @Policies JWS Annotations
	Loading a Policy From the CLASSPATH

	Using Key Pairs Other Than the Out-Of-The-Box SSL Pair

	Updating a Client Application to Invoke a Message-Secured Web Service
	Invoking a Web Service From a Client Running in a WebLogic Server Instance

	Example of Adding Security to a JAX-WS Web Service
	Creating and Using a Custom Policy File
	Configuring the WS-Trust Client
	Supported Token Types
	Configuring WS-Trust Client Properties
	Obtaining the URI of the Secure Token Service
	Configuring STS URI for WS-SecureConversation: Standalone Client
	Configuring STS URI for SAML: Standalone Client
	Configuring STS URI Using WLST: Client On Server Side
	Configuring STS URI Using Console: Client On Server Side
	Configuring STS Security Policy: Standalone Client
	Configuring STS Security Policy Using WLST: Client On Server Side
	Configuring STS Security Policy: Using the Console
	Configuring the STS SOAP and WS-Trust Version: Standalone Client
	Configuring the SAML STS Server Certificate: Standalone Client

	Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS
	Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message Protections

	Configuring and Using Security Contexts and Derived Keys
	Specification Backward Compatibility
	WS-SecureConversation and Clusters
	Updating a Client Application to Negotiate Security Contexts

	Associating Policy Files at Runtime Using the Administration Console
	Using Security Assertion Markup Language (SAML) Tokens For Identity
	SAML Token Overview
	Using SAML Tokens for Identity: Main Steps
	Specifying the SAML Confirmation Method
	Specifying the SAML Confirmation Method (Proprietary Policy Only)

	Sample of SAML 1.1 Bearer Token Over HTTPS
	Configuring SAML Attributes in a Web Service
	Using SAML Attributes: Available Interfaces and Classes
	Using SAML Attributes: Main Steps
	SAML Attributes Example

	Associating a Web Service with a Security Configuration Other Than the Default
	Valid Class Names and Token Types for Credential Provider
	Using System Properties to Debug Message-Level Security
	Using a Client-Side Security Policy File
	Associating a Policy File with a Client Application: Main Steps
	Updating clientgen to Generate Methods That Load Policy Files
	Updating a Client Application To Load Policy Files (JAX-RPC Only)

	Using WS-SecurityPolicy 1.2 Policy Files
	Transport-Level Policies
	Protection Assertion Policies
	WS-Security 1.0 Username and X509 Token Policies
	WS-Security 1.1 Username and X509 Token Policies
	WS-SecureConversation Policies
	SAML Token Profile Policies

	Choosing a Policy
	Unsupported WS-SecurityPolicy 1.2 Assertions
	Using the Optional Policy Assertion
	Configuring Element-Level Security
	Define and Use a Custom Element-Level Policy File
	Adding the Policy Annotation to JWS File

	Implementation Notes

	Smart Policy Selection
	Example of Security Policy With Policy Alternatives
	Configuring Smart Policy Selection
	How the Policy Preference is Determined
	Configuring Smart Policy Selection in the Console
	Understanding Body Encryption in Smart Policy
	Smart Policy Selection for a Standalone Client

	Multiple Transport Assertions

	Example of Adding Security to MTOM Web Service
	Files Used by This Example
	SecurityMtomService.java
	MtomClient.java
	configWss.py Script File
	Build.xml File
	Building and Running the Example
	Deployed WSDL for SecurityMtomService

	Example of Adding Security to Reliable Messaging Web Service
	Overview of Secure and Reliable SOAP Messaging
	Overview of the Example
	How the Example Sets Up WebLogic Security

	Files Used by This Example
	Revised ReliableEchoServiceImpl.java
	Revised configWss.py
	Revised configWss_Service.py
	Building and Running the Example

	Securing Web Services Atomic Transactions
	Proprietary Web Services Security Policy Files (JAX-RPC Only)
	Abstract and Concrete Policy Files
	Auth.xml
	Sign.xml
	Encrypt.xml
	Wssc-dk.xml
	Wssc-sct.xml

	3 Configuring Transport-Level Security
	Configuring Transport-Level Security Through Policy
	Available Transport-Level Policies
	Prerequisite: Configure SSL
	OPSS Keystore Service Supported
	Configuring SSL: Main Steps
	Configuring Two-Way SSL for a Client Application

	Configuring Transport-Level Security Through Policy: Main Steps
	Example of Configuring Transport Security for JAX-WS
	One-Way SSL (HTTPS and HTTP Basic Authentication Example)

	Persisting the State of a Request over SSL (JAX-WS Only)
	Example of Getting SSLSocketFactory From System Properties

	Configuring Transport-Level Security Via UserDataConstraint: Main Steps (JAX-RPC Only)
	Using a Custom SSL Adapter with Reliable Messaging (JAX-RPC Only)

	4 Configuring Access Control Security (JAX-RPC Only)
	Configuring Access Control Security: Main Steps
	Updating the JWS File With the Security-Related Annotations
	Updating the JWS File With the @RunAs Annotation
	Setting the Username and Password When Creating the Service Object

	A Using Oracle Web Services Manager Security Policies
	Overview of OWSM Security Policies
	Which OWSM Policies Are Supported for Java EE Web Services?
	When Should You Use OWSM Security Policies?
	Interoperability Between WebLogic Web Service Policies and OWSM Policies

	Attaching OWSM Security Policies to JAX-WS Web Services
	Attaching OWSM Security Policies Using the Administration Console
	Refreshing the Cache After Attaching Policies

	Attaching OWSM Security Policies to JAX-WS Web Service Clients
	Disabling a Globally Attached OWSM Policy
	Configuring Policies
	Overriding the Policy Configuration for the Web Service Client
	Monitoring and Testing the Web Service

