
Oracle® Fusion Middleware
Administering WebLogic Tuxedo Connector
for Oracle WebLogic Server

12c (12.2.1.4.0)
E90850-03
December 2022

Oracle Fusion Middleware Administering WebLogic Tuxedo Connector for Oracle WebLogic Server, 12c
(12.2.1.4.0)

E90850-03

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility viii

Diversity and Inclusion viii

Related Documentation viii

Conventions viii

1 Introduction to Oracle WebLogic Tuxedo Connector

Document Scope 1-1

Guide to this Document 1-1

Oracle WebLogic Tuxedo Connector Overview 1-2

Key Functionality and Administrative Features 1-2

Known Limitations 1-3

How Oracle WebLogic Tuxedo Connector Differs from Jolt 1-3

Platform Support 1-3

New and Changed Features in This Release 1-3

2 Configuring Oracle WebLogic Tuxedo Connector

Summary of Environment Changes and Considerations 2-1

Oracle Tuxedo Changes 2-1

WebLogic Server Changes 2-1

Administration and Programming 2-1

WebLogic Server Threads 2-2

Configuring Oracle WebLogic Tuxedo Connector for Your Applications 2-2

Oracle WebLogic Tuxedo Connector MBean Classes 2-3

Configuring Oracle WebLogic Tuxedo Connector Using the Administration Console 2-4

Configuring Oracle WebLogic Tuxedo Connector Using the Command-Line Interface 2-5

Set the WebLogic Server Environment 2-5

How to Set Oracle WebLogic Tuxedo Connector Properties 2-5

Set PasswordKey 2-5

Set encoding 2-5

Set Dumping of User Data 2-6

iii

System Level Debug Settings 2-7

Oracle WebLogic Tuxedo Connector Configuration Guidelines 2-7

3 Oracle WebLogic Tuxedo Connector Administration

Configuring the Connections Between Access Points 3-1

How to Request a Connection at Boot Time (On Startup) 3-3

How to Configure RetryInterval 3-3

How to Configure MaxRetries 3-3

How to Request Connections for Client Demands (On Demand) 3-4

Accepting Incoming Connections (Incoming Only) 3-4

How to use LOCAL Connection Policy 3-4

Configuring Failover and Failback 3-4

Prerequisite to Using Failover and Failback 3-5

How to Configure Failover 3-5

How Failback Works 3-6

How to Configure Link-level Failover 3-6

Sample Link-level Failover Configuration 3-7

Configuring for TypedMBString Support 3-7

Authentication of Remote Access Points 3-8

Configuring a Password Configuration 3-8

Using AES Encrypted Passwords 3-9

Generating Encrypted Passwords 3-9

Usage 3-10

Examples 3-10

Local Passwords 3-10

Remote Passwords 3-11

App Passwords 3-11

User Authentication 3-11

ACL Policy is LOCAL 3-11

ACL Policy is GLOBAL 3-12

Remote Access Point Credential Policy is GLOBAL 3-12

Remote Access Point Credential Policy is LOCAL 3-12

How to Configure Oracle WebLogic Tuxedo Connector to Provide Security between Oracle
Tuxedo and Oracle WebLogic Server 3-12

TpUsrFile Plug-in 3-13

Configuring the Local Tuxedo Access Point for the TpUsrFile Plug-in 3-13

Configure the Remote Tuxedo Access Point for the TpUsrFile Plug-in 3-13

LDAP Plug-in 3-14

Implementing Single Point Security Administration 3-14

Configure the Local Tuxedo Access Point for the LDAP Plug-in 3-14

Configure the Remote Tuxedo Access Point for the LDAP Plug-in 3-14

iv

Custom Plug-in 3-15

Configure the Local Tuxedo Access Point for the Custom Plug-in 3-15

Configure the Remote Tuxedo Access Point for the Custom Plug-in 3-15

Anonymous Users 3-15

Anonymous Users and CORBA Services 3-16

Link-Level Encryption 3-16

Secure Socket Level Encryption 3-16

4 Controlling Oracle WebLogic Tuxedo Connector Connections and
Services

Dynamic Administration of Connections 4-1

Using the WebLogic Server Administration Console 4-1

Using WebLogic Scripting Tool (WLST) 4-1

Listing Connections 4-1

Starting Connections 4-2

Stopping Connections 4-2

Modifying Configuration Attributes 4-3

Suspend/Resume WTC Services 4-3

Using the WebLogic Server Administration Console 4-4

Using WebLogic Scripting Tool (WLST) 4-4

Checking Status of WTC Services 4-4

Suspending WTC Services 4-4

Resuming WTC Services 4-5

Suspend/Resume WTC Services Dynamically 4-5

5 Administration of CORBA Applications

How to Configure Oracle WebLogic Tuxedo Connector for CORBA Service Applications 5-1

Example WTC Server and Tuxedo UBB Files 5-1

How to Administer and Configure Oracle WebLogic Tuxedo Connector for Inbound RMI-
IIOP 5-3

Configuring Your WTC Server for Inbound RMI-IIOP 5-3

Administering the Tuxedo Application Environment 5-3

Guidelines About Using Your Server Name as an Object Reference 5-5

How to Configure Oracle WebLogic Tuxedo Connector for Outbound RMI-IIOP 5-5

Example Outbound RMI-IIOP Configuration 5-5

6 How to Manage Oracle WebLogic Tuxedo Connector in a Clustered
Environment

Oracle WebLogic Tuxedo Connector Guidelines for Clustered Environments 6-1

v

How to Configure for Clustered Nodes 6-1

Limitations for Clustered Nodes 6-1

How to Configure OutBound Requests to Tuxedo Domains 6-2

Example Clustered Oracle WebLogic Tuxedo Connector Configuration 6-2

How to Configure Inbound Requests from Tuxedo Domains 6-7

Load Balancing 6-7

Fail Over 6-7

7 How to Configure the Oracle Tuxedo Queuing Bridge

Overview of the Tuxedo Queuing Bridge 7-1

How Tuxedo Queuing Bridge connects JMS with Tuxedo 7-2

How Tuxedo Queuing Bridge connects Tuxedo to JMS 7-2

Tuxedo Queuing Bridge Limitations 7-3

Configuring the Tuxedo Queuing Bridge 7-3

Dynamically Adding/Modifying Tuxedo Queuing Bridge 7-3

Tuxedo Queuing Bridge Instantiate 7-4

Starting the Tuxedo Queuing Bridge 7-4

Error Logging 7-4

Tuxedo Queuing Bridge Connectivity 7-4

Example Connection Type Configurations 7-5

Example JmsQ2TuxQ Configuration 7-5

Example TuxQ2JmsQ Configuration 7-6

Example JmsQ2TuxS Configuration 7-7

Priority Mapping 7-8

Error Queues 7-8

WLS Error Destination 7-8

Unsupported Message Types 7-8

Tuxedo Error Queue 7-9

Limitations 7-9

8 Connecting WebLogic Integration and Tuxedo Applications

Synchronous WebLogic Integration-to-Tuxedo Connectivity 8-1

Defining Business Operations 8-1

Invoking an eLink Adapter 8-1

Define Exception handlers 8-2

Synchronous Non-Blocking WebLogic Integration-to-Tuxedo Connectivity 8-2

Asynchronous WebLogic Integration-to-Tuxedo Connectivity 8-2

Asynchronous Tuxedo /Q-to-WebLogic Integration Connectivity 8-2

vi

Bi-directional Asynchronous Tuxedo-to-WebLogic Integration Connectivity 8-3

9 WebLogic Tuxedo Connector Samples Quick Start Guide

Where to Find Oracle WebLogic Tuxedo Connector Samples 9-1

Configuring the Oracle WebLogic Tuxedo Connector 9-1

Build the Simpapp Example 9-2

Create WTC Servers 9-2

Create a Local Oracle Tuxedo Access Point 9-3

Create a Remote Oracle Tuxedo Access Point 9-3

Create Exported Services 9-4

Create Imported Services 9-4

Target mySimpapp to the examplesServer 9-4

Register TDOM1 as an Oracle WebLogic Server User 9-5

Configuring Oracle Tuxedo 9-5

Run the Example 9-6

Oracle WebLogic Server to Oracle Tuxedo Interoperability 9-6

Oracle Tuxedo to Oracle WebLogic Server Interoperability 9-7

10

Troubleshooting The WebLogic Tuxedo Connector

Monitoring the WebLogic Tuxedo Connector 10-1

Set Trace Levels (Deprecated) 10-1

Enable Debug Mode 10-1

Enable a User Data Dump 10-1

Frequently Asked Questions 10-2

What does this EJB Deployment Message Mean? 10-2

How Do I Start the Connector? 10-2

How do I Start the Tuxedo Queuing Bridge? 10-2

How do I Assign a WTC Server to a Server Instance? 10-3

How do I Resolve Connection Problems? 10-3

How do I Migrate from Previous Releases? 10-3

Index

vii

Preface

This preface describes the document accessibility features and conventions used in
this guide—Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/us/corporate/
accessibility/index.html.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/us/
corporate/accessibility/support/index.html#info or visit http://
www.oracle.com/us/corporate/accessibility/support/index.html#trs if you are
hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documentation
The Oracle corporate Web site provides all documentation for WebLogic Server and
Tuxedo.

For more information about Java and Java CORBA applications, refer to the following
sources:

• The OMG Web Site at http://www.omg.org/.

• The Java site at http://www.oracle.com/technetwork/java/index.html.

Conventions
The following text conventions are used in this document:

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.omg.org/
http://www.oracle.com/technetwork/java/index.html

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

1
Introduction to Oracle WebLogic Tuxedo
Connector

This chapter summarizes the concepts and functionality of Oracle WebLogic Tuxedo
Connector for this release of WebLogic Server.
This chapter includes the following sections:

• Document Scope

• Oracle WebLogic Tuxedo Connector Overview

• Key Functionality and Administrative Features

• Known Limitations

• How Oracle WebLogic Tuxedo Connector Differs from Jolt

• Platform Support

• New and Changed Features in This Release

Document Scope
This document introduces the Oracle WebLogic Tuxedo Connector application development
environment. This document provides information on how to configure and administer the
Oracle WebLogic Tuxedo Connector to interoperate between Oracle WebLogic Server and
Oracle Tuxedo.

Guide to this Document
The document is organized as follows:

• Introduction to Oracle WebLogic Tuxedo Connector, is an overview of the Oracle
WebLogic Tuxedo Connector.

• Configuring Oracle WebLogic Tuxedo Connector , describes how to configure the Oracle
WebLogic Tuxedo Connector.

• Oracle WebLogic Tuxedo Connector Administration, provides configuration information
about the Oracle WebLogic Tuxedo Connector.

• Controlling Oracle WebLogic Tuxedo Connector Connections and Services, provides
information about starting and stopping Oracle WebLogic Tuxedo Connector connections
and suspending and resuming services.

• Administration of CORBA Applications, provides information on how to administer
CORBA applications.

• How to Manage Oracle WebLogic Tuxedo Connector in a Clustered Environment,
provides information on how to use Oracle WebLogic Tuxedo Connector in a clustered
environment.

• How to Configure the Oracle Tuxedo Queuing Bridge , provides information on tBridge
functionality and configuration.

1-1

• Connecting WebLogic Integration and Tuxedo Applications, discusses WebLogic
Integration - Tuxedo interoperability using the Oracle WebLogic Tuxedo
Connector.

• WebLogic Tuxedo Connector Samples Quick Start Guide, provides information on
how to download, configure, and run Oracle WebLogic Tuxedo Connector
samples.

• Troubleshooting The WebLogic Tuxedo Connector, provides Oracle WebLogic
Tuxedo Connector troubleshooting information.

Oracle WebLogic Tuxedo Connector Overview
The Oracle WebLogic Tuxedo Connector provides interoperability between WebLogic
Server applications and Tuxedo services. The connector allows WebLogic Server
clients to invoke Tuxedo services and Tuxedo clients to invoke WebLogic Server
Enterprise Java Beans (EJBs) in response to a service request.

Note:

The Oracle WebLogic Tuxedo Connector uses an interoperability protocol
that provides interoperability across many combinations of WebLogic Server
and Tuxedo versions. However, Oracle recommends that you use WebLogic
Server and Tuxedo versions that are currently supported with error
correction, in order to receive full support and bug fixes for the
interoperability provided by WebLogic Tuxedo Connector.

Key Functionality and Administrative Features
The Oracle WebLogic Tuxedo Connector enables you to develop and support
applications interoperating WebLogic Server and Tuxedo by using a Java Application-
to-Transaction Monitor Interface (JATMI) similar to the Tuxedo ATMI. The Oracle
WebLogic Tuxedo Connector tBridge functionality provides Tuxedo /Q and JMS
advanced messaging services.

The Oracle WebLogic Tuxedo Connector provides the following bi-directional
interoperability:

• Ability to call WebLogic Server applications from Tuxedo applications and vice
versa.

• Ability to integrate WebLogic Server applications into existing Tuxedo
environments.

• Transaction support.

• Ability to provide interoperability between CORBA Java and CORBA C++ server
applications.

• Ability to provide interoperability between Remote Method Invocation (RMI) over
Internet Inter-ORB Protocol (IIOP) applications and Tuxedo CORBA remote
objects.

• Ability to use WebLogic Integration to manage workflow across Tuxedo ATMI
services.

Chapter 1
Oracle WebLogic Tuxedo Connector Overview

1-2

• Ability to define multiple connections between WebLogic Server and Tuxedo.

The Oracle WebLogic Tuxedo Connector includes the following key administration features:

• Simple implementation. The Oracle WebLogic Tuxedo Connector does not require
modification of existing Tuxedo application code.

– Existing Tuxedo clients call WebLogic Server EJBs through the Oracle WebLogic
Tuxedo Connector.

– New or modified WebLogic Server clients call Tuxedo services through Oracle
WebLogic Tuxedo Connector.

• Bi-directional security propagation, including domain and ACL security.

• Domain-level failover and fallback.

• Advanced messaging services provided by Tuxedo /Q and JMS.

• Interoperability with mainframes and other legacy applications using eLink.

Known Limitations
Oracle WebLogic Tuxedo Connector has the following limitations:

• Support for runtime MBean exists, so the configuration can be modified after deployment.
There is an exception in tBridge. Both tBridge Globals and tBridge redirect changes will
not be in effect until WTC is undeployed and redeployed.

• Does not support inbound TGIOP in clustered environments.

How Oracle WebLogic Tuxedo Connector Differs from Jolt
The Oracle WebLogic Tuxedo Connector is not a replacement for Jolt. It differs from Jolt in
the following ways:

• Oracle WebLogic Tuxedo Connector offers a similar but different API than Jolt.

• Jolt enables the development of generic Java clients and other Web server applications
that the Oracle WebLogic Tuxedo Connector does not.

• Jolt does not provide a mechanism for an integrated WebLogic Server-Tuxedo
transaction.

Users should use Jolt as a solution instead of the Oracle WebLogic Tuxedo Connector when
a generic Java client or other Web server application is required and WebLogic Server is not
part of the solution.

Platform Support
See the Oracle Fusion Middleware Supported System Configurations page on the Oracle
Technology Network for more information on object references.

New and Changed Features in This Release
See What's New in Oracle WebLogic Server for a comprehensive listing of the new WebLogic
Server features introduced in this release.

Chapter 1
Known Limitations

1-3

2
Configuring Oracle WebLogic Tuxedo
Connector

This chapter describes how to configure the Oracle WebLogic Tuxedo Connector.
This chapter includes the following sections:

• Summary of Environment Changes and Considerations

• Configuring Oracle WebLogic Tuxedo Connector for Your Applications

Summary of Environment Changes and Considerations
This section provides an overview of the changes you must make to the Oracle Tuxedo and
Oracle WebLogic Server environments before you can start using the Oracle WebLogic
Tuxedo Connector.

Oracle Tuxedo Changes
Tuxedo users need to make the following environment changes:

• If an existing Tuxedo application is already using Tuxedo /T DOMAINS, then a new domain
must be added to the domains configuration file for each connection to an Oracle
WebLogic Tuxedo Connector instantiation.

• If the existing Tuxedo application does not use domains, then the domain servers must
be added to the TUXCONFIG of the application. A new DMCONFIG must be created with a
Tuxedo /T DOMAIN entry corresponding to the Oracle WebLogic Tuxedo Connector
instantiation.

• Oracle WebLogic Tuxedo Connector requires that the Oracle Tuxedo domain always
have encoding turned on. MTYPE should always be unset, or set to NULL, or set to a value
different from the MTYPE in the DM_LOCAL_DOMAINS section in the DMCONFIG file.

See Using the Tuxedo Domains Component.

WebLogic Server Changes
The following sections describe WebLogic Server changes required to use the Oracle
WebLogic Tuxedo Connector:

• Administration and Programming

• WebLogic Server Threads

Administration and Programming
WebLogic Server users need to make the following environment changes:

• Create Java clients or servers. See Developing Oracle WebLogic Tuxedo Connector
Applications for Oracle WebLogic Server.

2-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/add/addom.html

• Configure the Oracle WebLogic Tuxedo Connector using the WebLogic Server
Administration Console, command-line interface, or WLST. See Configuring Oracle
WebLogic Tuxedo Connector for Your Applications.

• If the Oracle WebLogic Tuxedo Connector ACL Policy is set to Local, access to
local services does not depend on the CredentialPolicy. The Tuxedo remote
domain DOMAINID must be authenticated as a local WebLogic Server user. See
User Authentication .

WebLogic Server Threads
The number of client threads available when dispatching services from the gateway
may limit the number of concurrent services running. For this release of Oracle
WebLogic Tuxedo Connector, there is no Oracle WebLogic Tuxedo Connector
attribute to increase the number of available threads. Use a reasonable thread model
when invoking service EJBs.You may need to increase the number of WebLogic
Server threads available to a larger value.

Note:

AWTC server uses three threads plus one thread for every local access point
defined.

Configuring Oracle WebLogic Tuxedo Connector for Your
Applications

This section provides information on how to configure the Oracle WebLogic Tuxedo
Connector to allow WebLogic Server applications and Tuxedo applications to
interoperate.

• Oracle WebLogic Tuxedo Connector MBean Classes

• Configuring Oracle WebLogic Tuxedo Connector Using the Administration Console

• Configuring Oracle WebLogic Tuxedo Connector Using the Command-Line
Interface

• Set the WebLogic Server Environment

• How to Set Oracle WebLogic Tuxedo Connector Properties

• System Level Debug Settings

Note:

Deciding when to target a WTC Server is very important. Support for
runtime MBean exists, so the configuration can be modified after
deployment. There is an exception in tBridge. Both tBridge Globals and
tBridge redirect changes will not be in effect until WTC is undeployed
and redeployed.

Chapter 2
Configuring Oracle WebLogic Tuxedo Connector for Your Applications

2-2

Oracle WebLogic Tuxedo Connector MBean Classes
The Oracle WebLogic Tuxedo Connector uses MBeans to describe connectivity information
and security protocols to process service requests between WebLogic Server and Tuxedo.
These configuration parameters are analogous to the interoperability attributes required for
communication between Tuxedo domains. The configuration parameters are stored in the
WebLogic Server config.xml file. Table 2-1 lists the MBean types used to configure Oracle
WebLogic Tuxedo Connector:

Table 2-1 MBean Types Used to Configure Oracle WebLogic Tuxedo Connector

MBean Type Description

WTCServer Parent MBean containing the interoperability attributes required for a
connection between WebLogic Server and Tuxedo. Defines your WTC server
when configured using the WebLogic Server Administration Console.

WTCLocalTuxDom Provides configuration information to connect available remote Tuxedo
domains to a WTC server. You must configure at least one local Tuxedo
access point. Defines your local Tuxedo access points when configured
using the WebLogic Server Administration Console.

Note: Because of dynamic configuration, you can create and deploy an
empty WTC server.

WTCRemoteTuxDom Provides configuration information to connect a WTC server to available
remote Tuxedo domains. You may configure multiple remote domains.
Defines your remote Tuxedo access points when configured using the
WebLogic Server Administration Console.

WTCExport Provides information on services exported by a local Tuxedo access point.
Defines your exported services when configured using the WebLogic Server
Administration Console.

WTCImport Provides information on services imported and available on remote domains.
Defines your imported services when configured using the WebLogic Server
Administration Console.

WTCResources Specifies global field table classes, view table classes, and application
passwords for domains. Defines your resources when configured using the
WebLogic Server Administration Console.

Support for MBSTRING is provided using RemoteMBEncoding and
MBEncodingMapFile attributes

WTCPassword Specifies the configuration information for inter-domain authentication.
Defines your Passwords when configured using the WebLogic Server
Administration Console.

WTCtBridgeGlobal Specifies global configuration information for the transfer of messages
between WebLogic Server and Tuxedo. Defines your Tuxedo queuing bridge
when configured using the WebLogic Server Administration Console.

WTCtBridgeRedirect Specifies the source, target, direction, and transport of messages between
WebLogic Server and Tuxedo. Defines your Tuxedo queuing bridge redirects
when configured using the WebLogic Server Administration Console.

For more information on the Oracle WebLogic Server management and the config.xml file,
see MBean Reference for Oracle WebLogic Server.

Chapter 2
Configuring Oracle WebLogic Tuxedo Connector for Your Applications

2-3

Configuring Oracle WebLogic Tuxedo Connector Using the
Administration Console

The WebLogic Server Administration Console allows you to configure, manage, and
monitor Oracle WebLogic Tuxedo Connector connectivity. To display the pages that
you use to perform these tasks, complete the following procedure:

1. Start the WebLogic Server Administration Console.

2. Locate the Interoperability node in the left pane, then expand WTC Servers.

3. Create or modify the WTC server you want to configure.

4. Follow the instructions in the Oracle WebLogic Server Administration Console
Online Help. For links to the Oracle WebLogic Server Administration Console
Online Help, see Table 2-2.

Table 2-2 shows the connectivity tasks, listed in typical order in which you perform
them. You may change the order; just remember you must configure an object before
associating or assigning it.

Table 2-2 Oracle WebLogic Tuxedo Connector Configuration Tasks

Task # Task Description

1 Create WTC servers Set the Name attribute.

2 Create local access
points

Set the attributes that describe your local Tuxedo access
point on the General, Connections, and Security pages. You
must configure at least one local Tuxedo access point.

Note: Because of dynamic configuration, you can create and
deploy an empty WTC server.

3 Create remote access
points

Set the attributes that describe your remote Tuxedo domains
on the Remote APs page.

4 Create exported
services

Set the attributes that describe your exported WebLogic
Server services on the Exported page.

5 Create imported
services

Set the attributes that describe your imported Tuxedo
services on the Imported page.

6 Create password
configurations

Set the attributes that describe your passwords on the
Passwords page.

7 Create resources Set the attributes that describe your Oracle WebLogic Tuxedo
Connector resources on the Resources page.

8 Create queuing bridge
connections

Set the global configuration information for the transfer of
messages between WebLogic Server and Tuxedo.

9 Create Tuxedo
queuing bridge
redirections

Sets the attributes used to specify the source, target,
direction, and transport of a message between WebLogic
Server and Tuxedo

10 Target WTC servers Select a target server instance for your WTC server.

Chapter 2
Configuring Oracle WebLogic Tuxedo Connector for Your Applications

2-4

Configuring Oracle WebLogic Tuxedo Connector Using the Command-Line
Interface

The command-line interface provides a way to create and manage Oracle WebLogic Tuxedo
Connector connections. See Understanding the WebLogic Scripting Tool.

Set the WebLogic Server Environment
You need to set the environment of your WebLogic Server application by running the
setExamplesEnv script located at ORACLE_HOME/user_projects/domains/wl_server, where
ORACLE_HOME is the directory you specified as the Oracle Home when you installed Oracle
WebLogic.

• Windows users: run setExamplesEnv.cmd.

• UNIX users: run setExamplesEnv.sh.

If you are setting the environment for the first time, you will need to review the settings in the
script. If necessary, use the following steps to modify the settings for your application
environment:

1. From the command line, change directories to the location of the WebLogic Server
application. Copy the setExamplesEnv script located at ORACLE_HOME/user_projects/
domains/wl_server to your application directory.

2. Edit the setExamplesEnv script with a text editor, such as vi.

• Windows users: edit setExamplesEnv.cmd.

• UNIX users: edit setExamplesEnv.sh.

3. Save the file.

How to Set Oracle WebLogic Tuxedo Connector Properties
PasswordKey and encoding are WebLogic Server Properties. If you need to set these
properties, update the JAVA_OPTIONS variable in your server start script. Example:

JAVA_OPTIONS=-Dweblogic.wtc.PasswordKey=mykey

Set PasswordKey
Use PasswordKey to specify the key used by the weblogic.wtc.gwt.genpasswd utility to
encrypt passwords:

JAVA_OPTIONS=-Dweblogic.wtc.PasswordKey=mykey

where mykey is the key value.

See Configuring a Password Configuration.

Set encoding
To transfer non-ascii (multibyte) strings between WebLogic Server and Tuxedo applications,
you must configure Oracle WebLogic Tuxedo Connector to provide character set translation.
Oracle WebLogic Tuxedo Connector uses an Oracle WebLogic Server property to match the

Chapter 2
Configuring Oracle WebLogic Tuxedo Connector for Your Applications

2-5

encoding used by all the Tuxedo remote domains specified in an Oracle WebLogic
Tuxedo Connector service. If you require more than one coding set running
simultaneously, you will require Oracle WebLogic Tuxedo Connector services running
in separate WebLogic Server instances.

To enable character set translation, update the JAVA_OPTIONS variable in your server
start script. Example:

JAVA_OPTIONS=-Dweblogic.wtc.encoding=codesetname

where codesetname is the name of a supported codeset used by a remote Tuxedo
domain. See Supported Encodings at http://docs.oracle.com/javase/8/docs/
technotes/guides/intl/encoding.doc.html for list of supported base and extended
coding sets.

You may not be able to select the exact encoding name to match the encoding used
by the remote domain. In this situation, you should select an encoding name that is
equivalent to the remote domain.

Example:

• The Supported Encoding list includes EUC_JP
• The remote domain is supported by a Solaris operating system using eucJP
Although the names don't match exactly, EUC_JP and eucJP are equivalent encoding
sets and provide the correct string translation between WebLogic Server and your
remote domain. You should set the encoding property to EUC_JP:

JAVA_OPTIONS=-Dweblogic.wtc.encoding=EUC_JP

Set Dumping of User Data
To enable dumping of user data, add the following line to the java.weblogic.Server
command.

JAVA_OPTIONS=-Dweblogic.debug.DebugWTCUData=true

Enabling this causes user data to be dumped after the connection is connected. If no
other debugging properties are enabled, then this will be the only WTC information
dumped, except normal WTC error/informational messages. The dump is available in
the WLS server log file.

The dump has the following format.

• For outbound messages

Outbound UDATA: buffer type (<type>, <subtype>)
+++++ User Data(size) +++++
......

• For inbound messages

Inbound UDATA: buffer type (<type>, <subtype>)
+++++ User Data(size) +++++
......

For example, a WLS client sends data "strings" in a STRING typed buffer and the
Tuxedo TOUPPER service converts it to "STRINGS". The WLS server log shows the
following dump.

Chapter 2
Configuring Oracle WebLogic Tuxedo Connector for Your Applications

2-6

http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

Outbound UDATA: buffer type (STRING, null)
+++++ User Data(16) +++++
00 00 00 07 73 74 72 69 6E 67 73 00 00 00 00 00strings.....
+++++ END +++++

Outbound UDATA: buffer type (String, null)
+++++ User Data(12) +++++
00 00 00 07 53 54 52 49 4E 47 53 00STRINGS.
+++++ END +++++

Enable IPv4 for SDP transport
To use Socket Direct Protocol (SDP), set the system property -
Djava.net.preferIPv4Stack=true in the JAVA_OPTIONS variable in your server start script.

For detailed information on how to configure WTC to use SDP to interoperate with Tuxedo,
see the Oracle Tuxedo/Oracle Exalogic Environment Deployment Guide, 11gR1PS2.

System Level Debug Settings
Because TraceLevel is deprecated, use system debugging. By default all the debug tracing
is off. Use the following settings to turn debug trace on.

• For tracing WTC-CORBA runtime

-Dweblogic.debug.DebugWTCCorbaEx=true
• For tracing WTC-GWT runtime

-Dweblogic.debug.DebugWTCGwtEx=true
• For tracing WTC-JATMI runtime

-Dweblogic.debug.DebugWTCJatmiEx=true
• For tracing WTC-tBridge runtime

-Dweblogic.debug.DebugWTCtBridgeEx=true
• For tracing WTC Configuration runtime

-Dweblogic.debug.DebugWTCConfig=true

Oracle WebLogic Tuxedo Connector Configuration Guidelines
Use the following guidelines when configuring Oracle WebLogic Tuxedo Connector:

• You may have more than one WTC server in your configuration.

• You cannot target two or more WTC servers to the same server instance. A server
instance can only be a target for one WTC server.

• Some configuration changes implemented in a WTC server after a target server instance
is selected will not be updated in the target server instance. You must remove the WTC
server from the server instance and then add the updated WTC server to the target
server instance.

For example, changes to tBridge requires you to undeploy and then deploy the WTC
server to make configuration changes effective. However, some configuration changes,
such as KeepAlive, KeepAliveWait and RetryInterval, take effect when you activate
the change. See Target WTC servers in the Oracle WebLogic Server Administration
Console Online Help.

Chapter 2
Configuring Oracle WebLogic Tuxedo Connector for Your Applications

2-7

3
Oracle WebLogic Tuxedo Connector
Administration

This chapter describes how to configure Oracle WebLogic Tuxedo Connector and establish
connectivity, and provide security between WebLogic Server applications and Tuxedo
environments. Oracle WebLogic Tuxedo Connector uses attributes that are analogous to the
interoperability attributes required for the communication between Tuxedo access points.
This chapter includes the following sections:

• Configuring the Connections Between Access Points

• Configuring Failover and Failback

• Configuring for TypedMBString Support

• Authentication of Remote Access Points

• User Authentication

• How to Configure Oracle WebLogic Tuxedo Connector to Provide Security between
Oracle Tuxedo and Oracle WebLogic Server

• Link-Level Encryption

• Secure Socket Level Encryption

For more information on the Oracle WebLogic Server management, including the Oracle
WebLogic Tuxedo Connector, see the MBean Reference for Oracle WebLogic Server.

Configuring the Connections Between Access Points
Several options can specify the conditions under which an access point tries to establish a
connection with a remote access point. Specify these conditions using the ConnectionPolicy
attribute on the Connections page of the local Tuxedo access points and remote Tuxedo
access points configurations of your WTC server. You can select any of the following
connection policies:

• How to Request a Connection at Boot Time (On Startup)

• How to Request Connections for Client Demands (On Demand)

• Accepting Incoming Connections (Incoming Only)

• How to use LOCAL Connection Policy

For connection policies of On Startup and Incoming Only, Dynamic Status is invoked.
Dynamic Status checks and reports on the status of imported services associated with each
remote access point.

The WTC local access point has three connection policies: ON_DEMAND, INCOMING_ONLY, and
ON_STARTUP. The default is ON_DEMAND.

The WTC remote access point has four connection policies: ON_DEMAND, INCOMING_ONLY,
ON_STARTUP, and LOCAL. The default is LOCAL. When you specify LOCAL for the remote access
point connection policy setting, the local access point connection policy is used. The remote

3-1

access point connection policy takes precedence over the local access point
connection policy.

The local access point connection policy works as a backup for remote access point
connection. At the WTC startup, WTC processes through all the remote access point
definitions and decides the actual connection policy similar to the following table.

Table 3-1 Access Point Connection Policy Settings

If the Local Access Point
Setting is...

And the Remote Access
Point Setting is

Then the Actual Connection
Policy Is...

ON_DEMAND ON_DEMAND ON_DEMAND

ON_DEMAND ON_STARTUP ON_STARTUP

ON_DEMAND INCOMING_ONLY INCOMING_ONLY

ON_DEMAND LOCAL ON_DEMAND

ON_STARTUP ON_DEMAND ON_DEMAND

ON_STARTUP ON_STARTUP ON_STARTUP

ON_STARTUP INCOMING_ONLY INCOMING_ONLY

ON_STARTUP LOCAL ON_STARTUP

INCOMING_ONLY ON_DEMAND ON_DEMAND

INCOMING_ONLY ON_STARTUP ON_STARTUP

INCOMING_ONLY INCOMING_ONLY INCOMING_ONLY

INCOMING_ONLY LOCAL INCOMING_ONLY

The following information clarifies the interaction between the connection policy for the
local access point, the connection policy for the remote access point, and the settings
of these parameters at the remote domain.

Table 3-2 Interaction of Local and Remote Access Point Connection Policies

If the Local System's
Effective Connection Policy
Is...

And the Remote System's
Effective Connection Policy
Is...

Then the Settings of the
Parameters at the Remote
Domain Are...

ON_DEMAND ON_DEMAND ON_DEMAND

from either

ON_DEMAND ON_STARTUP ON_STARTUP

when both are up

ON_DEMAND INCOMING_ONLY ON_DEMAND

from local

ON_STARTUP ON_DEMAND ON_STARTUP

when both are up

ON_STARTUP ON_STARTUP ON_STARTUP

when both are up

ON_STARTUP INCOMING_ONLY ON_STARTUP

when both are up

Chapter 3
Configuring the Connections Between Access Points

3-2

Table 3-2 (Cont.) Interaction of Local and Remote Access Point Connection
Policies

If the Local System's
Effective Connection Policy
Is...

And the Remote System's
Effective Connection Policy
Is...

Then the Settings of the
Parameters at the Remote
Domain Are...

INCOMING_ONLY ON_DEMAND ON_DEMAND

from remote

INCOMING_ONLY ON_STARTUP ON_STARTUP

when both are up

INCOMING_ONLY INCOMING_ONLY manual connect only when
both are up

How to Request a Connection at Boot Time (On Startup)
A policy of On Startup means that an access point attempts to establish a connection with its
remote access points at gateway server initialization time. The connection policy retries failed
connections at regular intervals determined by the RetryInterval parameter and the
MaxRetries parameter. To request a connection at boot time, set the ConnectionPolicy
attribute on the Connections page of your local Tuxedo access point to On Startup.

How to Configure RetryInterval
You can control the frequency of automatic connection attempts by specifying the interval (in
seconds) during which the access point should wait before trying to establish a connection
again. The minimum value is 0; the default value is 60, and maximum value is 2147483647.

How to Configure MaxRetries
You indicate the number of times an access point tries to establish connections to remote
access points before quitting by assigning a value to the MaxRetries parameter: the minimum
value is 0; the default and maximum value is 2147483647.

• If you set MaxRetries to 0, automatic connection retry processing is turned off. The
server does not attempt to connect to the remote access point automatically.

• If you set MaxRetries to a number, the access point tries to establish a connection the
specified number of times before quitting.

• If you set MaxRetries to 2147483647, retry processing is repeated indefinitely or until a
connection is established.

Use this only when ConnectionPolicy is set to On Startup. For other connection policies,
retry processing is disabled.

Table 3-3 Example Settings of MaxRetries and RetryInterval Parameters

If you set... Then...

ConnectionPolicy: On Startup
RetryInterval: 30
MaxRetries: 3

The access point makes 3 attempts to establish a
connection, at 30 seconds intervals, before quitting.

Chapter 3
Configuring the Connections Between Access Points

3-3

Table 3-3 (Cont.) Example Settings of MaxRetries and RetryInterval Parameters

If you set... Then...

ConnectionPolicy: On Startup
MaxRetries: 0

The access point attempts to establish a connection at
initialization time but does not retry if the first attempt
fails.

ConnectionPolicy: On Startup
RetryInterval: 30

The access point attempts to establish a connection
every 30 seconds until a connection is established.

How to Request Connections for Client Demands (On Demand)
A connection policy of 0n Demand means that a connection is attempted only when
requested by either a client request to a remote service or an administrative start
connection command.

Note:

If the ConnectionPolicy is not specified for the local access point, the Oracle
WebLogic Tuxedo Connector uses a ConnectionPolicy of 0n Demand.

Accepting Incoming Connections (Incoming Only)
A connection policy of Incoming Only means that an access point does not establish a
connection to remote access points upon starting. The access point is available for
incoming connection requests from remote access points.

How to use LOCAL Connection Policy
A connection policy of LOCAL indicates that a remote domain connection policy is
explicitly defaulted to the local domain ConnectionPolicy attribute value. If the remote
access point ConnectionPolicy is not defined, the system uses the setting specified
by the associated local access point.

Note:

A ConnectionPolicy of LOCAL is not valid for local access points.

Configuring Failover and Failback
Oracle WebLogic Tuxedo Connector provides a failover mechanism that transfers
requests to alternate remote access points when a failure is detected with a primary
remote access point. It also provides failback to the primary remote access point when
that access point is restored. This level of failover/failback depends on connection

Chapter 3
Configuring Failover and Failback

3-4

status. The access point must be configured with a connection policy of On Startup or
Incoming Only to enable failover/failback.

Note:

In the Tuxedo T/ Domain, there is a limit of two backup remote access points. The
Oracle WebLogic Tuxedo Connector has no limit to the number of backup access
points allowed to be configured for a service.

Prerequisite to Using Failover and Failback
To use failover/failback, you must specify ON_STARTUP or INCOMING_ONLY as the value of the
Connection Policy parameter.

A connection policy of 0n Demand is unsuitable for failback as it operates on the assumption
that the remote access point is always available. If you do not specify ON_STARTUP or
INCOMING_ONLY as your connection policy, your servers cannot fail over to the alternate
remote access points that you have specified with the Tuxedo RDOM parameter.

Note:

A remote access point is available if a network connection to it exists; a remote
access point is unavailable if a network connection to it does not exist.

How to Configure Failover
To support failover, you must specify the remote access points responsible for executing a
particular service. You must specify the following in your WTC server:

• Create remote Tuxedo access points configurations for each remote access point.

• Create imported services configurations that specify the service provided by each remote
access point.

Suppose a service, TOUPPER, is available from two remote access points: TDOM1 and TDOM3.
Your WTC server would include two remote Tuxedo access point configurations and two
imported services configurations in your WTC server. The WTC server defined in the
config.xml file would contain the following:

<wtc-server>
 <name>WTCsimpapp</name>
 <wtc-local-tux-dom>
 <access-point>TDOM2</access-point>
 <access-point-id>TDOM2</access-point-id>
 <connection-policy>ON_DEMAND</connection-policy>
 <interoperate>no</interoperate>
 <nw-addr>//123.123.123.123:5678</nw-addr>
 <name>myLoclTuxDom</name>
 <security>NONE</security>
 </wtc-local-tux-dom>
 <wtc-remote-tux-dom>

Chapter 3
Configuring Failover and Failback

3-5

 <access-point>TDOM1</access-point>
 <access-point-id>TDOM1</access-point-id>
 <local-access-point>TDOM2</local-access-point>
 <nw-addr>//123.123.123.123:1234</nw-addr>
 <name>myRTuxDom</name>
 </wtc-remote-tux-dom>
 <wtc-remote-tux-dom>
 <access-point>TDOM3</access-point>
 <access-point-id>TDOM3</access-point-id>
 <local-access-point>TDOM2</local-access-point>
 <nw-addr>//234.234.234.234:5555</nw-addr>
 <name>2ndRemoteTuxDom</name>
 </wtc-remote-tux-dom>
 <wtc-export>
 <ejb-name>tuxedo.services.TOLOWERHome</ejb-name>
 <local-access-point>TDOM2</local-access-point>
 <name>myExportedResources</name>
 <resource-name>TOLOWER</resource-name>
 </wtc-export>
 <wtc-import>
 <name>imp0</name>
 <resource-name>TOUPPER</resource-name>
 <local-access-point>TDOM2</local-access-point>
 <remote-access-point-list>TDOM1,TDOM3</remote-access-point-list>
 <remote-name>TOUPPER</remote-name>
 </wtc-import>
 <wtc-import>
 <name>imp1</name>
 <resource-name>TOUPPER</resource-name>
 <local-access-point>TDOM2</local-access-point>
 <name>2ndImportedResources</name>
 <remote-access-point-list>TDOM3,TDOM1</remote-access-point-list>
 <remote-name>TOUPPER</remote-name>
 </wtc-import>
</wtc-server>

How Failback Works
Failback occurs when a network connection to the primary remote access point is
reestablished for any of the following reasons:

• Automatic retries (On Startup only)

• Incoming connections

How to Configure Link-level Failover
To support link-level failover, you must specify the correct failover sequence
information in the comma separated syntax <nw-addr> XML tag in the
WTCRemoteTuxDomMBean and WTCLocalTuxDomMBean definitions. The order of the
network addresses determines the order of preference for failover.

Note:

The value of the XML tag is checked for correct syntax. If the syntax is not
correct, the InvalidAttributeException is thrown.

Chapter 3
Configuring Failover and Failback

3-6

The semantic of the link-level failover is late binding, which means the existence and
availability is not checked when the MBean is created. This is to allow users to add the
machine to DNS after the WTC configuration is created, but before the TDomain session
connection is created.

The correct syntax in config.xml will be as follow using comma separated syntax for the
<nw-addr> XML tag.

<nw-addr>//host1:4001</nw-addr> --> only one host, no link-level failover
<nw-addr>//host1:4001,//host2:4001</nw-addr> --> can failover to host2 <nw-addr>//
host1:4001,//host2:4001,//host3:4001</nw-addr> --> can failover from host 1 to host2,
and if host2 still not available then failover to host3

Sample Link-level Failover Configuration
The following example configures a WTC local access point named WDOM, and one TDomain
session with name TDOM. This TDomain session also defines a remote access point named
DOM1. The TDomain session in this case is a session between WDOM and TDOM. The local
access point will try to listen on end point "//pluto:4100" first; if fails to create a listening
endpoint, the session attempts to create a listening endpoint on "//saturn:4101". If WTC
migrated from pluto to saturn, then the remote access point DOM1 is able to contact WDOM
using "//saturn:4101".

If the remote access point DOM1 migrates from host mercury to host mars, the WDOM can
contact DOM1 at "//mars:4001".

The order of network address specified in the list provides order preference. For WDOM, "//
pluto:4100" is the first choice for creating a listening endpoint and "//saturn:4101" is the
second choice. For remote access point DOM1, "//mercury:4001" is the first choice to create
a connection from WDOM to DOM1 and "//mars:4001" is the second choice.

Example 3-1 Link-level Failover Configuration

<wtc-server>
 <name>myWTCserver</name>
....
<wtc-local-tux-dom>
 <name>WDOM</name>
 <access-point>WDOM</access-point>
 <access-point-id>WDOM</access-point-id>
 <nw-addr>//pluto:4100,//saturn:4101</nw-addr>
</wtc-local-tux-dom>
<wtc-remote-tux-dom>
 <name>TDOM</name>
 <access-point>DOM1</access-point>
 <access-point-id>DOM1</access-point-id>
 <local-access-point>WDOM</local-access-point>
 <nw-addr>//mercury:4001,//mars:4001</nw-addr>
</wtc-remote-tux-dom>
.....
</wtc-server>

Configuring for TypedMBString Support
To configure WTC to support MBSTRING buffers, you must specify the encoding you want to
use in the RemoteMBEncoding attribute of the WTCResources definition. This attribute is
optional and if it is not specified or is invalid, Java's default encoding is used.

Chapter 3
Configuring for TypedMBString Support

3-7

TypedMBString uses the conversion function java.lang.String class for converting
between Unicode and an external encoding. TypedMBString uses a map file to map
the encoding names between Java and GNU iconv, which is used by the C language
API of MBSTRING. The map file is mbencmap, which is a text-based file in $WL_HOME/
server/lib directory as a default. The map file creates a HashMap with each
"user_name java_name" pair. You can customize the map file.

An encoding map file contains one or more lines with the following syntax.

<user_name> <java_name1>[,<java_name2>,[java_name3,...]]

By specifying multiple java_names in a line, multiple Java encoding names are
mapped to a single user_name. The user_name always maps to the first java_name in
the line.

Authentication of Remote Access Points
Domain gateways can be made to authenticate incoming connections requested by
remote access points and outgoing connections requested by local access points.
Application administrators can define when security should be enforced for incoming
connections from remote access points. You can specify the level of security used by a
particular local access point by setting the Security attribute on the Security page of
the local Tuxedo access point configuration of your WTC server. There are three levels
of password security:

• NONE—incoming connections from remote access points are not authenticated.

• Application Password— incoming connections from remote access points are
authenticated using the application password defined in the resource configuration
of your WTC server. You use the weblogic.wtc.gwt.genpasswd utility to create
encrypted application passwords.

• Domain Password—this feature enforces security between two or more access
points. Connections between the local and remote access points are authenticated
using password pairs defined in the password configuration of your WTC server.
You use the weblogic.wtc.gwt.genpasswd utility to create encrypted local and
remote passwords.

The Security attribute on the Security page of the local Tuxedo access point of your
WTC server must match the SECURITY attribute of the *DM_LOCAL_DOMAINS section
of the Tuxedo domain configuration file.

• If authentication is required, it is done every time a connection is established
between the local access point and the remote access point.

• If the security type of the local Tuxedo access point in your WTC server does not
match the security type of the *DM_LOCAL_DOMAINS or if the passwords do not
match, the connection fails.

Configuring a Password Configuration
The /Domain architecture with SECURITY=DM_PW requires a password for each
connection principal. Each TDomain session between two TDomain gateways has two
distinctive connection principals associated with it; by default, they are represented by
Domain IDs. The default Session Authentication with DM_PW requires both sides

Chapter 3
Authentication of Remote Access Points

3-8

configure two secrets for both connection principals so they can authenticate each other. The
following example provides configurations for both WTC and Tuxedo.

• WTC is configured with:

– local access point WDOM1 with DOMAIN ID WDOM1
– remote access point TDOM1 with DOMAIN ID TDOM1
– security set to DM_PW

• Tuxedo is configured with

– its own local access point TDOM1 with DOMAIN ID TDOM1
– remote access point WDOM1 with DOMAIN ID WDOM1
– security is set to DM_PW

Then WTC needs to configure a password pair for TDOMAIN session (WDOM1, TDOM1). For
example, the password pair is represent as (pWDOM1, pTDOM1) for the TDomain Session
(WDOM1, TDOM1). Then Tuxedo TDOMAIN needs to configure a password pair for TDOMAIN
session (TDOM1, WDOM1). The password pair should be (pTDOM1, pWDOM1) in this case.

See How to Set Oracle WebLogic Tuxedo Connector Properties.

Using AES Encrypted Passwords
This release of WebLogic Server provides the ability to optionally support 256-bit AES
encryption of passwords by setting the -Daes flag in the weblogic.wtc.gwt.genpasswd utility
(see Generating Encrypted Passwords). This is equivalent to setting the GWT_SNP_MINCRYPT
environment variable to AES for a GWTDOMAIN process in Tuxedo.

Note:

For AES support in Tuxedo 10 for GWTDOMAIN, passwords in the tpusr file
remain encrypted using their original encryption method. tpusr files are normally
generated in a Tuxedo native domain and then copied to a location where WTC (via
the WLS domain) can access it.

Generating Encrypted Passwords
To generate encrypted passwords:

• Use weblogic.wtc.gwt.genpasswd to generate encrypted passwords for Local Password,
Remote Password, and App Password attributes. The utility uses a key to encrypt a
password that is copied into the password or resources configuration of your WTC
werver.

• The password configuration of your WTC server does not store clear text passwords.

• The key value is a WebLogic Server property.

-Dweblogic.wtc.PasswordKey=mykey

PasswordKey is the attribute used to assign the key

mykey is the key value

Chapter 3
Authentication of Remote Access Points

3-9

– The PasswordKey attribute can only be assigned for one key value. This key
value is used for all Oracle WebLogic Tuxedo Connector passwords generated
(local, remote, and application passwords) for use with a specific WebLogic
Server.

Usage
Call the utility without any arguments to display the command line options.

Example:

$ java weblogic.wtc.gwt.genpasswd
Usage: genpasswd [-Daes] Key <LocalPassword|RemotePassword|AppPassword> <local|
remote|application>

Call the utility with a key value, password to encrypt, and the type of password. To
generate 256-bit AES encoded password and password IV, include the -Daes flag.

Example:

$ java weblogic.wtc.gwt.genpasswd Key1 LocalPassword1 local

The utility will respond with the encoded password and password IV. Cut and paste the
results into the appropriate fields in the password configuration of your WTC server.

Local Password : my_password
Local Password IV: my_passwordIV

where

• Cut and paste the string of characters represented by my_password into the
Password field.

• Cut and paste the string of characters represented by my_passwordIV into the
PasswordIV field.

Examples
This section provides examples of each of the password element types.

Local Passwords
The following example uses key1 to encrypt LocalPassword1 as the password of the
local access point.

$ java weblogic.wtc.gwt.genpasswd key1 LocalPassword1 local
Local Password : FMTCg5Vi1mTGFds1U4GKIQQj7s2uTlg/ldBfy6Kb+yY=
Local Password IV : NAGikshMiTE=

Your Password attributes are:

Local Password: FMTCg5Vi1mTGFds1U4GKIQQj7s2uTlg/ldBfy6Kb+yY=
Local Password IV: NAGikshMiTE=

The following example uses AES encryption to encode LocalPassword1 as the
password of the local access point.

Chapter 3
Authentication of Remote Access Points

3-10

$ java weblogic.wtc.gwt.genpasswd -Daes LocalPassword1 local
Local Password : 71Im/Y4VcuhInuN1My5wWRjIneu+KPR0aN1WBliwIq4=
Local Password IV: a9qAjBpYExA=

Your Password attributes are:

Local Password: 71Im/Y4VcuhInuN1My5wWRjIneu+KPR0aN1WBliwIq4=
Local Password IV: a9qAjBpYExA=

Remote Passwords
The following example uses mykey to encrypt RemotePassword1 as the password for the
remote access point.

$ java weblogic.wtc.gwt.genpasswd mykey RemotePassword1 remote
Remote Password : A/DgdJYOJunFUFJa62YmPgsHan8pC02zPT0T7EigaVg=
Remote Password IV : ohYHxzhYHP0=

Your Password attributes are:

Remote Password: A/DgdJYOJunFUFJa62YmPgsHan8pC02zPT0T7EigaVg=
Remote Password IV: ohYHxzhYHP0=

App Passwords
The following example uses mykey to encrypt test123 as the application password.

$ java weblogic.wtc.gwt.genpasswd mykey test123 application
App Password : uou2MALQEZgNqt8abNKiC9ADN5gHDLviqO+Xt/VjakE=
App Password IV : eQuKjOaPfCw=

Your Resources attributes are:

Application Password: uou2MALQEZgNqt8abNKiC9ADN5gHDLviqO+Xt/VjakE=
Application Password IV: eQuKjOaPfCw=

User Authentication
Access Control Lists (ACLs) limit the access to local services within a local access point by
restricting the remote Tuxedo access point that can execute these services. Inbound policy
from a remote Tuxedo access point is specified using the AclPolicy attribute. Outbound
policy towards a remote Tuxedo domain is specified using the CredentialPolicy attribute.
This allows WebLogic Server and Tuxedo applications to share the same set of users and the
users are able to propagate their credentials from one system to the other.

The valid values for AclPolicy and CredentialPolicy are:

• LOCAL
• GLOBAL

ACL Policy is LOCAL
If the Oracle WebLogic Tuxedo Connector ACL Policy is set to Local, access to local
services does not depend on the remote user credentials. The Tuxedo remote access point
ID is authenticated as a local WebLogic Server user. To allow Oracle WebLogic Tuxedo

Chapter 3
User Authentication

3-11

Connector to authenticate a DOMAINID as a local user, use the WebLogic Server
Administration Console to complete the following steps:

1. From the WebLogic Server Administration Console, select Security Realms.

2. Select your default security Realm.

3. On the Realms settings page, select Users and Groups>Users.

The Users table displays. The User table lists the names of all users defined in the
Authentication provider.

4. Click New to configure a new User. The Create a New User page displays.

5. In the Create a New User page, do the following:

a. Add the Tuxedo DOMAINID in the Name field.

b. Enter and validate a password.

c. Click OK. The user name is now in the User table.

ACL Policy is GLOBAL
If the Oracle WebLogic Tuxedo Connector ACL Policy is GLOBAL, access to local
services depends on the remote user credentials.

Remote Access Point Credential Policy is GLOBAL
If a remote domain is running with the CredentialPolicy set to GLOBAL, the request
has the credentials of the remote user, thus the ability to access the local service
depends on this credential.

When CredentialPolicy is set to GLOBAL for WTC, then WLS user credential is
propagated from WTC to the remote Tuxedo domain. If a remote Tuxedo domain is
also configured with ACL_POLICY set to GLOBAL, then it will accept the WLS user
credential and use it to access Tuxedo services. If a remote Tuxedo domain is
configured with ACL_POLICY to LOCAL, then it will discard the received WLS user
credential and use WTC DOMAINID to access Tuxedo services.

Remote Access Point Credential Policy is LOCAL
When CredentialPolicy is set to LOCAL for WTC, then WLS user credential is not
propagated to a remote Tuxedo domain. The remote Tuxedo access point sets the
identity of a service request received from the WTC domain to be the principal name
specified in the local principal name for the remote Tuxedo domain.

How to Configure Oracle WebLogic Tuxedo Connector to
Provide Security between Oracle Tuxedo and Oracle
WebLogic Server

The following sections provide information on how to configure WebLogic Tuxedo
provide user security information to Tuxedo:

• TpUsrFile Plug-in

Chapter 3
How to Configure Oracle WebLogic Tuxedo Connector to Provide Security between Oracle Tuxedo and Oracle WebLogic

Server

3-12

• LDAP Plug-in

• Custom Plug-in

• Anonymous Users

TpUsrFile Plug-in
The TpUsrFile plug-in provides traditional Tuxedo TpUserFile functionality for users who do
not need single point security administration or custom security authentication. Use the
following steps to configure Oracle WebLogic Tuxedo Connector to provide security between
Tuxedo and WebLogic Server applications using the TpUsrFile plug-in AppKey Generator:

• Configuring the Local Tuxedo Access Point for the TpUsrFile Plug-in

• Configure the Remote Tuxedo Access Point for the TpUsrFile Plug-in

Configuring the Local Tuxedo Access Point for the TpUsrFile Plug-in
Set the security attribute on the Security page of the local Tuxedo access point of your
WTC server to match the SECURITY parameter of the *DM_LOCAL_DOMAINS section of
the Tuxedo domain configuration file.

Configure the Remote Tuxedo Access Point for the TpUsrFile Plug-in
Configure the Security page of the remote Tuxedo access point of your WTC server to
establish an inbound and outbound Access Control List (ACL) policy.

Perform the following steps to prepare the WebLogic Server environment:

1. Set the AclPolicy attribute to GLOBAL.

2. Set the CredentialPolicy attribute to GLOBAL.

3. Set the Allow Anonymous attribute for your environment. If you select to allow
anonymous users to access Tuxedo, you must set the value of the Default AppKey to be
used by anonymous users. See Anonymous Users.

4. Select TpUsrFile from the AppKey Generator dropdown box.

5. Set the value of the Tp Usr File attribute to the full path to the user password file.

You must have a copy of the Tuxedo tpusr file in your WebLogic Server environment.
Copy the tpusr file from TUXEDO to the WebLogic Server application environment or
generate your own tpusr file. See How to Enable User-Level Authentication.

Using the Resources TpUsrFile attribute
The location of the TpUsrFile can be specified from your remote Tuxedo access point
configurations or from your resources configuration. You may find it convenient assign the
value of the TpUsrFile attribute globally at the WTC server level, rather than by assigning it
individually on all of your remote Tuxedo access point configurations. Use the following
guidelines to help you determine where to best configure the TpUsrFile attribute:

• All TpUsrFile attribute values are ignored if the TpUsrFile Plug-in is not selected as the
AppKey Generator, regardless of location.

Chapter 3
How to Configure Oracle WebLogic Tuxedo Connector to Provide Security between Oracle Tuxedo and Oracle WebLogic Server

3-13

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/sec/secadm.html#1239966

• If the resources configuration does not have TpUsrFile attribute values, the
TpUsrFile attribute value must be specified in the remote Tuxedo access point
configurations. The cached user record information is ignored.

• If the resources and remote Tuxedo access point configurations contain TpUsrFile
attribute values, the attribute values in the remote Tuxedo access points are used.
The cached user record information is ignored.

• If the remote Tuxedo access point configurations do not have TpUsrFile attribute
values, the TpUsrFile attribute value must be specified in the resources
configuration. The cached user record is used, which improves system
performance. However, this restricts the user to have the same identity in all
remote Tuxedo access points.

LDAP Plug-in
The LDAP plug-in provides single point security administration that allows you to
maintain user security information in a WebLogic Server embedded LDAP server and
use the WebLogic Server Administration Console to administer the security information
from a single system. Requires Tuxedo 8.1 and higher.Use the following steps to
configure Oracle WebLogic Tuxedo Connector to provide security between Tuxedo
and WebLogic Server applications using the LDAP Plug-in AppKey Generator:

• Implementing Single Point Security Administration

• Configure the Local Tuxedo Access Point for the LDAP Plug-in

• Configure the Remote Tuxedo Access Point for the LDAP Plug-in

Implementing Single Point Security Administration
Detailed information on how to implement single point security administration, see
Implementing Single Point Security Administration. See Understanding Security for
Oracle WebLogic Server.

Configure the Local Tuxedo Access Point for the LDAP Plug-in
Set the security attribute on the Security page of the local Tuxedo access point of
your WTC server to match the SECURITY parameter of the *DM_LOCAL_DOMAINS
section of the Tuxedo domain configuration file.

Configure the Remote Tuxedo Access Point for the LDAP Plug-in
Configure the Security page of the remote Tuxedo access point of your WTC server to
establish an inbound and outbound Access Control List (ACL) policy.

Perform the following steps to prepare the WebLogic Server environment:

1. Set the AclPolicy attribute to GLOBAL.

2. Set the CredentialPolicy attribute to GLOBAL.

3. Set the Allow Anonymous attribute for your environment. If you select to allow
anonymous users to access Tuxedo, you must set the value of the Default AppKey
to be used by anonymous users. See Anonymous Users.

4. Select LDAP from the AppKey Generator dropdown box.

Chapter 3
How to Configure Oracle WebLogic Tuxedo Connector to Provide Security between Oracle Tuxedo and Oracle WebLogic

Server

3-14

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/sec/sngleadm.html

5. If necessary, set the value of the Tuxedo UID Keyword attribute and Tuxedo GID
attribute. Default values are provided. These keywords for the Tuxedo user ID (UID) is
used to extract the Tuxedo UID and GID in the user record of the embedded LDAP
database.

Custom Plug-in
The Custom plug-in provides the ability for you to create customized security authentication.
Use the following steps to configure Oracle WebLogic Tuxedo Connector to provide security
between Tuxedo and WebLogic Server applications using the Custom Plug-in AppKey
Generator:

• Configure the Local Tuxedo Access Point for the Custom Plug-in

• Configure the Remote Tuxedo Access Point for the Custom Plug-in

See How to Create a Custom AppKey Plug-in in Developing Oracle WebLogic Tuxedo
Connector Applications for Oracle WebLogic Server.

Configure the Local Tuxedo Access Point for the Custom Plug-in
Set the security attribute on the Security page of the local Tuxedo access point of your
WTC server to match the SECURITY parameter of the *DM_LOCAL_DOMAINS section of
the Tuxedo domain configuration file.

Configure the Remote Tuxedo Access Point for the Custom Plug-in
Configure the Security page of the remote Tuxedo access point of your WTC server to
establish an inbound and outbound Access Control List (ACL) policy.

Perform the following steps to prepare the WebLogic Server environment:

1. Set the AclPolicy attribute to GLOBAL.

2. Set the CredentialPolicy attribute to GLOBAL.

3. Set the Allow Anonymous attribute for your environment. If you select to allow
anonymous users to access Tuxedo, you must set the value of the Default AppKey to be
used by anonymous users. See Anonymous Users.

4. Select Custom from the AppKey Generator dropdown box.

5. Set the value of the Custom AppKey Class attribute to the full pathname to your Custom
AppKey generator class. This class is loaded when the WTC server is started.

6. Set the value of the Custom AppKey Param attribute to the optional parameters that you
may require to use your Custom AppKey class when it is initialized when the WTC server
starts.

Anonymous Users
The Allow Anonymous attribute on the Security page of a remote Tuxedo access point
specifies whether the anonymous user is allowed to access Tuxedo. If the anonymous user is
allowed to access Tuxedo, the value of the Default AppKey attribute is used for TpUsrFile
and LDAP AppKey plug-ins. The TpUsrFile and LDAP plug-ins do not allow users that are not
defined in user database to access Tuxedo unless the Allow Anonymous attribute is enabled.

Chapter 3
How to Configure Oracle WebLogic Tuxedo Connector to Provide Security between Oracle Tuxedo and Oracle WebLogic Server

3-15

Interaction with the Custom AppKey plug-in depends on the design of the Custom
AppKey generator.

The default value of the Default AppKey is -1. If you wish to use this value, you must
make sure that your Tuxedo environment has a user assigned to that key value. You
should avoid assigning the Default AppKey value to 0. In some systems, this specifies
the user as root.

Anonymous Users and CORBA Services
It is important to understand the differences between how ATMI services and CORBA
services authenticate an anonymous user. ATMI services rely on the Default AppKey
value sent with the message. Corba services use the default WebLogic Server
anonymous user name <anonymous> to identify the user credential defined in the
Tuxedo tpusr file. CORBA users must configure the anonymous user using one of the
following methods to become an authenticated user:

• Add <anonymous> to the Tuxedo tpusr file.

• Define anonymous as a user in the WebLogic Authentication provider. You do this
by setting the following argument when starting a WebLogic Server instance:

-Dweblogic.security.anonymousUserName=anonymous

Link-Level Encryption
You can use encryption to ensure data privacy. In this way, a network-based
eavesdropper cannot learn the content of messages or application-generated
messages flowing from one domain gateway to another. You configure this security
mechanism by setting the MINENCRYPTBITS and MAXENCRYPTBITS attributes on the
Security page in the local Tuxedo access points and remote Tuxedo access points
configurations of your WTC server.

Secure Socket Level Encryption
This release of WebLogic Server supports Secure Socket Level (SSL) encryption for
securing communications between domains, including use of trusted certificates and
private keys. You configure this security mechanism by setting attributes in the SSL
Configuration, KeyStore Configuration, and the MINENCRYPTBITS and MAXENCRYPTBITS
attributes on the Security page in the local Tuxedo access points and remote Tuxedo
access points configurations of your WTC server. See the following topics in Oracle
WebLogic Server Administration Console Online Help:

• Local Tuxedo Access Points: Security

• Remote Tuxedo Access Points: Security

• For this release, WTC does not support SSL renegotiation. Any TUXEDO remote
access points that communicate with WTC should disable renegotiation feature.
By default, the GWTDOMAIN disables the SSL renegotiation.

Chapter 3
Link-Level Encryption

3-16

4
Controlling Oracle WebLogic Tuxedo
Connector Connections and Services

This chapter describes how to control connectivity and services between WebLogic Server
applications and Tuxedo environments. Oracle WebLogic Tuxedo Connector uses attributes
that are analogous to the interoperability attributes required for the communication between
Tuxedo access points.
This chapter includes the following sections:

• Dynamic Administration of Connections

• Suspend/Resume WTC Services

Dynamic Administration of Connections
You can dynamically list, start, and stop individual connections using the WebLogic Server
Administration Console or WLST scripting language. Refer to the following sections for how
to start and stop WTC server connections using the available tools.

• Using the WebLogic Server Administration Console

• Using WebLogic Scripting Tool (WLST)

Using the WebLogic Server Administration Console
The WebLogic Server Administration Console allows you to start and stop Oracle WebLogic
Tuxedo Connector connections. Refer to the Start WTC server connections for starting the
WTC server connections and Stop WTC server connections for stopping the WTC server
connections in the Oracle WebLogic Server Administration Console Online Help.

Using WebLogic Scripting Tool (WLST)
The listConnectionsConfigured() attribute lists the configured connections,
startConnection() attribute allows you to start an individual connection, and
stopConnection() attribute allows you to stop individual connections. For information on how
to administer individual connections dynamically, refer to the Understanding the WebLogic
Scripting Tool.

Listing Connections
Using the WebLogic Scripting Tool (WLST), you can dynamically list the connections for a
domain with the listConnectionsConfigured() attribute. When you run
cmo.listConnectionsConfigured(), a reference to an array of DSessConnInfo structures is
returned. It is convenient to save this in a local WLST variable, such as

wls:/mydomain/serverRuntime/WTCRuntime/WTCService> r=cmo.listConnectionsConfigured()

4-1

Each DSessConnInfo instance has a local access point ID, remote access point ID,
and status (boolean, true = connected, false = not connected). For example,

wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].getLocalAccessPointId()
WLSDOM
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].getRemoteAccessPointId()
TUXDOM
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].isConnected()
0

Starting Connections
Using the WebLogic Scripting Tool (WLST), you can dynamically start individual
connections for an access point with the startConnection() attribute.

To start a connection between a local and a remote access point, specify the access
point IDs in the arguments. For example,

cmo.startConnection('WLSDOM','TUXDOM')

To start a connection between a local and all associated remote access points, specify
the local access point ID in the argument. For example,

cmo.startConnection('WLSDOM')

Stopping Connections
Using the WebLogic Scripting Tool (WLST), you can dynamically stop individual
connections for an access point with the stopConnection() attribute.

To stop a connection between a local and a remote access point, specify the access
point IDs in the arguments. For example,

cmo.stopConnection('WLSDOM','TUXDOM')

To stop all connections involving a given local access point, specify the local access
point ID in the argument. For example,

cmo.stopConnection('WLSDOM')

The following code list is an example of dynamically listing, starting and stopping
connections using WLST.

Example 4-1 Dynamically List, Start, and Stop Connections

java weblogic.WLST
wls:/offline> connect('weblogic','weblogic')
wls:/mydomain/serverConifg> cd('WTCServers')
wls:/mydomain/serverConfig/WTCServers> cd('myWTC')
wls:/mydomain/serverConfig/WTCServers/myWTC> cd('LocalTuxDoms')
wls:/mydomain/serverConfig/WTCServers/myWTC/LocalTuxDoms> ls()
dr-- TDOM2
wls:/mydomain/serverConfig/WTCServers/myWTC/LocalTuxDoms> cd('../../..')
wls:/mydomain/serverConfig> serverRuntime()
wls:/mydomain/serverRuntime> cd('WTCRuntime')
wls:/mydomain/serverRuntime/WTCRuntime> cd('WTCService')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> r=cmo.listConnectionsConfigured()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].getLocalAccessPointId()
TDOM2
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].getRemoteAccessPointId()
TDOM1

Chapter 4
Dynamic Administration of Connections

4-2

wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].isConnected()
0
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> cmo.startConnection('TDOM2','TDOM1')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> r=cmo.listConnectionsConfigured()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].isConnected()
1
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> cmo.stopConnection('TDOM2','TDOM1')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> r=cmo.listConnectionsConfigured()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print r[0].isConnected()
0
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> disconnect()
wls:/offline> exit()

Modifying Configuration Attributes
Using the WebLogic Scripting Tool (WLST), you can dynamically modify a configuration
attribute.

The following code listing is an example that modifies the setInteroperate() attribute.

Example 4-2 Modifying Configuration Attributes

java weblogic.WLST
wls:/offline> connect('weblogic','weblogic')
wls:/mydomain/serverConifg> edit()
wls:/mydomain/edit> startEdit()
wls:/mydomain/edit> cd("WTCServers/myWTC")
wls:/mydomain/edit/WTCServers/myWTC> cd("LocalTuxDoms")
wls:/mydomain/edit/WTCServers/myWTC/LocalTuxDoms> cd("TDOM2")
wls:/mydomain/edit/WTCServers/myWTC/LocalTuxDoms/TDOM2> cmo.setInteroperate("Yes")
wls:/mydomain/edit/WTCServers/myWTC/LocalTuxDoms/TDOM2> validate()
wls:/mydomain/edit/WTCServers/myWTC/LocalTuxDoms/TDOM2> showChanges()

Changes that are in memory and saved to disc but not yet activated are:

MBean Changed : mydomain:Name=TDOM2,Type=WTCLocalTuxDom,WTCServer=myWTC
Operation Invoked : modify
Attribute Modified : Interoperate
Attributes Old Value : No
Attributes New Value : Yes
Server Restart Required : false

wls:/mydomain/edit/WTCServers/myWTC/LocalTuxDoms/TDOM2> save()
wls:/mydomain/edit/WTCServers/myWTC/LocalTuxDoms/TDOM2> activate(block="true")
wls:/mydomain/edit/WTCServers/myWTC/LocalTuxDoms/TDOM2> disconnect()
wls:/offline> exit()

Suspend/Resume WTC Services
Using the WebLogic Server Administration Console or WLST, an administrator can suspend
and resume a service on a specific WTC server. When an imported service is suspended on
a WTC server, then all the JATMI client requests sent to the WTC server for that service are
returned immediately by WTC throwing a TPException.TPENOENT. The service will not
become available until the service is explicitly resumed.

For service requests from a Tuxedo client to WTC that are targeted to a suspended exported
service, the service request is returned with TPENOENT without ever invoking the actual
services. Any service requests already received and in processing will continue to process
and is not affected by the suspend operation.

Chapter 4
Suspend/Resume WTC Services

4-3

See Suspend/Resume WTC Services Dynamically

Refer to the following sections for how to suspend and resume WTC services using
the available tools.

• Using the WebLogic Server Administration Console

• Using WebLogic Scripting Tool (WLST)

Using the WebLogic Server Administration Console
The WebLogic Server Administration Console allows you to suspend and resume
Oracle WebLogic Tuxedo Connector services. Refer to the Suspend WTC services for
how to suspend and Resume WTC services for how to resume WTC services.

Using WebLogic Scripting Tool (WLST)
WLST allows you to suspend and resume Oracle WebLogic Tuxedo Connector
services through the WTCRuntimeMBean. You can also check the status of the
service.

Checking Status of WTC Services
To determine the status of a service, specify the SvcName, LDOM, or RDomList in the
arguments. For example,

int WTCService.getServiceStatus(String SvcName)

In this case, the code returns a status of all the imported and exported services with
the name SvcName for the targeted WTC server. If there is more than one imported
service or exported service with the same resource name 'SvcName', then if at least
one service is available, the status will return AVAILABLE. If there is more than one
imported service or exported service with the same resource name 'svcName' and
some services are suspended and some are unavailable, the status returns a
SUSPENDED value. If all services are unavailable, the status returns an UNAVAILABLE
value. TPException.TPENOENT is thrown when no match is found.

The legal values of the returned status are as shown in Table 4-1.:

Table 4-1 Status Values for a Service

Status Values Description

WTCServiceStatus.SUSPENDED The service is suspended administratively.

WTCServiceStatus.AVAILABLE The service is not suspended, and is accessible

WTCServiceStatus.UNAVAILABLE The service is not suspended, but is not accessible
because there is no connection available to remote
Tuxedo GWTDomain gateway that provides this service.

Suspending WTC Services
You can suspend any imported or exported service advertised by a WTC server. Any
service suspended administratively will become available only when either WTC

Chapter 4
Suspend/Resume WTC Services

4-4

server is redeployed, WLS server is rebooted, or the service is resumed administratively.

To suspend an available service, specify the SvcName, LDOM, or RDomList in the arguments.
For example,

Void WTCRuntimeMBean.suspendService(String SvcName, boolean isImported)

This case suspends all the Import or Export services with the specified name. If isImported
is true, then only imported services are suspended; if it is false, then only exported services
are suspended. TPException.TPENOENT is thrown if nothing is found.

Resuming WTC Services
You can resume any imported or exported service advertised by a WTC server that has a
status of suspended. Any service suspended administratively will become available only
when either WTC server is redeployed, WLS server is rebooted, or the service is resumed
administratively.

To resume a suspended service, specify the SvcName, LDOM, or RDomList in the arguments.
For example,

void WTCRuntimeMBean.resumeService(String SvcName)

This example resumes all the Import and Export services with SvcName configured for the
targeted WTC server. TPException.TPENOENT is thrown if no match is found.

Suspend/Resume WTC Services Dynamically
Using the WebLogic Server Administration Console or WLST, an administrator can suspend
and resume a service on a specific WTC server. When an imported service is suspended on
a WTC server, then all the JATMI client requests sent to the WTC server for that service are
returned immediately by WTC throwing a TPException.TPENOENT. The service will not
become available until the service is explicitly resumed.

The dynamic status only affect imported service. When there is at least one TDomain session
available or possibly available, then the imported service will become available. It will become
suspended only when no TDomain session is available. When connection policy resolution
for a WTCRemoteTuxDom is ON_DEMAND then the TDomain session is always available even
though it does not exist. When a connection policy resolution for WTCRemoteTuxDom is
INCOMING_ONLY or ON_STARTUP, then the TDomain session becomes available only when the
connection is made and the TDomain session exists.

The following code list is an example of dynamically listing, starting and stopping connections
using WLST.

Example 4-3 Dynamically Suspend and Resume Services

java weblogic.WLST
wls:/offline> connect('weblogic','weblogic','t3://localhost:7001')
wls:/mydomain/serverConfig> serverRuntime()
wls:/mydomain/serverRuntime> cd('WTCRuntime/WTCService')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> ls()
-r-- Name WTCService
-r-- ServiceStatus weblogic.wtc.gwt.DServiceInfo[weblogic.wtc.gwt.DServiceInfo@1947a96]
-r-- Type WTCRuntime
-r-x getServiceStatus Integer :
 String(java.lang.String),String(java.lang.String),String(java.lang.String)
-r-x getServiceStatus Integer : String(localAccessPoint),String(svcName)

Chapter 4
Suspend/Resume WTC Services

4-5

-r-x getServiceStatus Integer : String(localAccessPoint),String(svcName),Boolean(isImport)
-r-x getServiceStatus Integer : String(svcName)
-r-x getServiceStatus Integer : String(svcName),Boolean(isImport)
-r-x listConnectionsConfigured weblogic.wtc.gwt.DSessConnInfo[] :
-r-x resumeService Void : String(localAccessPoint),String(remoteAccessPointList),String(svcName)
-r-x resumeService Void : String(localAccessPoint),String(svcName)
-r-x resumeService Void : String(localAccessPoint),String(svcName),Boolean(isImport)
-r-x resumeService Void : String(svcName)
-r-x resumeService Void : String(svcName),Boolean(isImport)
-r-x startConnection Void : String(LDomAccessPointId)
-r-x startConnection Void : String(LDomAccessPointId),String(RDomAccessPointId)
-r-x stopConnection Void : String(LDomAccessPointId)
-r-x stopConnection Void : String(LDomAccessPointId),String(RDomAccessPointId)
-r-x suspendService Void : String(localAccessPoint),String(remoteAccessPointList),String(svcName)
-r-x suspendService Void : String(localAccessPoint),String(svcName)
-r-x suspendService Void : String(localAccessPoint),String(svcName),Boolean(isImport)
-r-x suspendService Void : String(svcName)
-r-x suspendService Void : String(svcName),Boolean(isImport)
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> status=cmo.getServiceStatus()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print status[0].getServiceName()
TOUPPER
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print
 weblogic.wtc.gwt.WTCServiceStatus.svcTypeToString(status[0].getServiceType())
IMPORT
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print
 weblogic.wtc.gwt.WTCServiceStatus.statusToString(status[0].getStatus())
AVAILABLE
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> cmo.suspendService('TOUPPER')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> status=cmo.getServiceStatus()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print
 weblogic.wtc.gwt.WTCServiceStatus.statusToString(status[0].getStatus())
SUSPENDED
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> cmo.resumeService('TOUPPER')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> status=cmo.getServiceStatus()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print
 weblogic.wtc.gwt.WTCServiceStatus.statusToString(status[0].getStatus())
AVAILABLE
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print status[0].getServiceName()
TOUPPER
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> cmo.suspendService('TDOM1','TOUPPER')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> status=cmo.getServiceStatus()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print status[0].getServiceName()
TOUPPER
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print
 weblogic.wtc.gwt.WTCServiceStatus.statusToString(status[0].getStatus())
SUSPENDED
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> cmo.resumeService('TDOM1','TOUPPER')
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> status=cmo.getServiceStatus()
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print status[0].getServiceName()
TOUPPER
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> print
 weblogic.wtc.gwt.WTCServiceStatus.statusToString(status[0].getStatus())
AVAILABLE
wls:/mydomain/serverRuntime/WTCRuntime/WTCService>
wls:/mydomain/serverRuntime/WTCRuntime/WTCService> disconnect()
wls:/offline> exit()

Chapter 4
Suspend/Resume WTC Services

4-6

5
Administration of CORBA Applications

This chapter provides information on how to administer and configure the Oracle WebLogic
Tuxedo Connector to support Tuxedo CORBA clients and services.
This chapter includes the following sections:

• How to Configure Oracle WebLogic Tuxedo Connector for CORBA Service Applications

• How to Administer and Configure Oracle WebLogic Tuxedo Connector for Inbound RMI-
IIOP

• How to Configure Oracle WebLogic Tuxedo Connector for Outbound RMI-IIOP

See Tuxedo CORBA.

How to Configure Oracle WebLogic Tuxedo Connector for
CORBA Service Applications

This section provides information on how to configure a WTC server to support a call to a
Tuxedo CORBA server from a WebLogic Server EJB. Use the following steps to configure
your WTC server:

1. Configure local Tuxedo access points WebLogic Server applications.

2. Configure remote Tuxedo access points for your Tuxedo CORBA domain.

3. Configure imported services.

• Set Resource Name to //domain_id where domain_id is DOMAINID specified in the
Tuxedo UBBCONFIG file of the remote Tuxedo domain where the object is deployed.
The maximum length of this unique identifier for CORBA domains is 15 characters
including the //.

• Set Local Access Point to the value of the Local Access Point attribute of your
remote Tuxedo access point.

• Set the Remote Access Point List to the value of the Access Point Id attribute of
the remote Tuxedo access point.

See Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic
Server.

See Configuring Oracle WebLogic Tuxedo Connector for Your Applications.

Example WTC Server and Tuxedo UBB Files
The following WTC server (represented by the WTCServer MBean in the config.xml file)
provides an example of how to configure an imported services configuration for a TUXEDO
CORBA server.

5-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/interm/corba.html

Example 5-1 Example WTCServer MBean for a CORBA Server Application

<wtc-server>
 <name>WTCsimpappCNS</name>
 <wtc-local-tux-dom>
 <access-point>examples</access-point>
 <access-point-id>examples</access-point-id>
 <connection-policy>ON_DEMAND</connection-policy>
 <nw-addr>//123.123.123.123:5678</nw-addr>
 <name>myLoclTuxDom</name>
 <security>NONE</security>
 </wtc-local-tux-dom>
 <wtc-remote-tux-dom>
 <access-point>TUXDOM</access-point>
 <access-point-id>TUXDOM</access-point-id>
 <local-access-point>examples</local-access-point>
 <nw-addr>//123.123.123.123:1234</nw-addr>
 <name>myRTuxDom</name>
 </wtc-remote-tux-dom>
 <wtc-import>
 <local-access-point>examples</local-access-point>
 <name>myImportedResources</name>
 <remote-access-point-list>TUXDOM</remote-access-point-list>
 <remote-name>//simpapp</remote-name>
 </wtc-import>
</wtc-server>

The following example Tuxedo UBB configuration file has a DOMAINID name of
simpapp. The DOMAINID name is used in the Resource Name attribute of the imported
services configuration of your WTC server.

Example 5-2 Example Tuxedo UBB File for a CORBA Server Application

*RESOURCES
 IPCKEY 55432
 DOMAINID simpapp
 MASTER SITE1
 MODEL SHM
 LDBAL N
*MACHINES
 "YODA"
 LMID=SITE1
 APPDIR="your APPDIR"
 TUXCONFIG="APPDIR\tuxconfig"
 TUXDIR="your TUXDIR"
 MAXWSCLIENTS=10
*GROUPS
 SYS_GRP
 LMID=SITE1
 GRPNO=1
 APP_GRP
 LMID=SITE1
 GRPNO=2
*SERVERS
 DEFAULT:
 RESTART=Y
 MAXGEN=5
 TMSYSEVT
 SRVGRP=SYS_GRP
 SRVID=1
 TMFFNAME

Chapter 5
How to Configure Oracle WebLogic Tuxedo Connector for CORBA Service Applications

5-2

 SRVGRP=SYS_GRP
 SRVID=2
 CLOPT="-A -- -N -M"
 TMFFNAME
 SRVGRP=SYS_GRP
 SRVID=3
 CLOPT= "-A -- -N"
 TMFFNAME
 SRVGRP=SYS_GRP
 SRVID=4
 CLOPT="-A -- -F"
 ISL
 SRVGRP=SYS_GRP
 SRVID=5
 CLOPT="-A -- -n <//your tux machine:2468>"
 cns
 SRVGRP=SYS_GRP
 SRVID=6
 CLOPT="-A --"
 DMADM SRVGRP=SYS_GRP SRVID=7
 GWADM SRVGRP=SYS_GRP SRVID=8
 GWTDOMAIN SRVGRP=SYS_GRP SRVID=9
 simple_server
 SRVGRP=APP_GRP
 SRVID=1
 RESTART = N
*SERVICES

How to Administer and Configure Oracle WebLogic Tuxedo
Connector for Inbound RMI-IIOP

This section provides information on how to administer your application environment and
configure your WTC server to enable Tuxedo CORBA objects to invoke upon EJBs deployed
in WebLogic Server using the RMI-IIOP API.

• Configuring Your WTC Server for Inbound RMI-IIOP

• Administering the Tuxedo Application Environment

Configuring Your WTC Server for Inbound RMI-IIOP
Configure local Tuxedo access points and remote Tuxedo access points as needed for your
environment. No special administration steps are required to enable Tuxedo CORBA objects
to invoke upon EJBs deployed in WebLogic Server using the RMI-IIOP API.

See Configuring Oracle WebLogic Tuxedo Connector for Your Applications.

Administering the Tuxedo Application Environment
You must perform some additional steps when configuring your Tuxedo application
environment.

1. Set the TOBJADDR for your environment, for example:

//<hostname>:2468

Chapter 5
How to Administer and Configure Oracle WebLogic Tuxedo Connector for Inbound RMI-IIOP

5-3

2. Register WebLogic Server (WLS) Naming Service in the Tuxedo domain's
CosNaming namespace by entering the following command:

cnsbind -o ior.txt your_bind_name

where your_bind_name is the CosNaming service object name from your Tuxedo
application.

The ior.txt file contains the URL of the WebLogic Server's domain Naming
Service, for example:

corbaloc:tgiop:myServer/NameService

where myServer is your server name.

3. Modify the *DM_REMOTE_SERVICES of your Tuxedo domain configuration file.
Replace your WebLogic Server service name, formerly the DOMAINID, with the
name of your WebLogic Server:

*DM_RESOURCES

VERSION=U22

*DM_LOCAL_DOMAINS

TDOM1 GWGRP=SYS_GRP

TYPE=TDOMAIN

DOMAINID="TDOM1"

BLOCKTIME=20

MAXDATALEN=56

MAXRDOM=89

*DM_REMOTE_DOMAINS

TDOM2 TYPE=TDOMAIN

DOMAINID="TDOM2"

*DM_TDOMAIN

TDOM1 NWADDR="//123.123.123.123:1234"

TDOM2 NWADDR="//234.234.234.234:5678"

*DM_REMOTE_SERVICES
"//myServer"

where myServer is the server name that is running the WTC server.

4. Load your modified domain configuration file using dmloadcf.

See Tuxedo Administration Topics.

Chapter 5
How to Administer and Configure Oracle WebLogic Tuxedo Connector for Inbound RMI-IIOP

5-4

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/interm/admin.html

Guidelines About Using Your Server Name as an Object Reference
This section provides guidelines you need to remember when creating server names that are
used as object references.

• The maximum field length Tuxedo accepts in the *DM_REMOTE_SERVICES section is 15
characters including the //. For example: If your server name is examplesServer, your
*DM_REMOTE_SERVICES object reference is //examplesServe.

• If you require multiple servers, the server names must be unique in the first 13
characters.

• You can use the complete name of your server name in the ior.txt file if it exceeds 13
characters. For example: corbaloc:tgiop:examplesServer/NameService

How to Configure Oracle WebLogic Tuxedo Connector for
Outbound RMI-IIOP

This section provides information on how to enable WebLogic Server EJBs to invoke upon
Tuxedo CORBA objects using the RMI-IIOP API. Use the following steps to modify your WTC
server:

1. Configure a local Tuxedo access point.

• Configure remote Tuxedo access point. Outbound RMI-IIOP requires two additional
elements: Federation URL and Federation Name.

• Set Federation URL to the URL for a foreign name service that is federated into the
JNDI. This must be the same URL used by the EJB to obtain the initial context used
to access the remote Tuxedo CORBA object.

• Set Federation Name to the symbolic name of the federation point.

2. Configure imported services.

• Set Resource Name to //domain_id where domain_id is DOMAINID specified in the
Tuxedo UBBCONFIG file of the remote Tuxedo domain where the object is deployed.
The maximum length of this unique identifier for CORBA domains is 15 characters
including the //.

• Set Local Access Point to the value of the Local Access Point attribute of your
remote Tuxedo access point.

• Set Remote Access Point List to the value of the Access Point Id attribute of your
remote Tuxedo access point.

See Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic
Server for information on how to develop applications that use RMI-IIOP to call a Tuxedo
service using a WebLogic Server EJB.

See Configuring Oracle WebLogic Tuxedo Connector for Your Applications.

Example Outbound RMI-IIOP Configuration
The following WTCServer MBean in the config.xml file provides an example of a configured
WTC server for outbound RMI-IIOP.

Chapter 5
How to Configure Oracle WebLogic Tuxedo Connector for Outbound RMI-IIOP

5-5

Example 5-3 Example WTCServer MBean for Outbound RMI-IIOP

.

.

.
<wtc-server>
 <name>WTCtrader</name>
 <wtc-local-tux-dom>
 <access-point>TDOM2</access-point>
 <access-point-id>TDOM2</access-point-id>
 <connection-policy>ON_DEMAND</connection-policy>
 <nw-addr>//123.123.123.123:5678</nw-addr>
 <name>myLoclTuxDom</name>
 <scurity>NONE</security>
 </wtc-local-tux-dom>
 <wtc-remote-tux-dom>
 <access-point>TDOM1</access-point>
 <access-point-id>TDOM1</access-point-id>
 <federation-name>tuxedo.corba.remote</federation-name>
 <federation-url>corbaloc:tgiop:simpapp/NameService</federation-
url>
 <local-access-point>TDOM2</local-access-point>
 <nw-addr>//123.123.123.123:1234</nw-addr>
 <name>myRTuxDom</name>
 </wtc-remote-tux-dom>
 <wtc-import>
 <local-access-point>TDOM2</local-access-point>
 <name>myImportedResources</name>
 <remote-access-point-list>TDOM1</remote-access-point-list>
 <remote-name>//simpapp</remote-name>
 </wtc-import>
</wtc-server>
.
.
.

Chapter 5
How to Configure Oracle WebLogic Tuxedo Connector for Outbound RMI-IIOP

5-6

6
How to Manage Oracle WebLogic Tuxedo
Connector in a Clustered Environment

This chapter provides information on how to administer and configure the Oracle WebLogic
Tuxedo Connector for use in a clustered environment:
This chapter includes the following sections:

• Oracle WebLogic Tuxedo Connector Guidelines for Clustered Environments

• How to Configure OutBound Requests to Tuxedo Domains

• How to Configure Inbound Requests from Tuxedo Domains

See Administering Clusters for Oracle WebLogic Server.

Oracle WebLogic Tuxedo Connector Guidelines for Clustered
Environments

Use the following guidelines when deploying Oracle WebLogic Tuxedo Connector in a
clustered environment:

• Because the binding is not replicated in other servers in a cluster, all the WebLogic
Servers in the cluster must have a configured Oracle WebLogic Tuxedo Connector that
includes an Imported Services page that defines any imported services required. If one
server in the cluster does not have a Oracle WebLogic Tuxedo Connector deployed, the
Enterprise Java Bean (EJB) or Message Driven Bean (MDB) won't be able to find a
Tuxedo Connection Factory for that connection.

• The administrator is responsible for the correct configuration of the TUXEDO DMCONFIG
to allow proper load balancing and fail over of inbound calls to clustered nodes.

• Oracle WebLogic Tuxedo Connector does not support inbound TGIOP in clustered
environments.

How to Configure for Clustered Nodes
Configuring WTC servers for a clustered WebLogic Server (WLS) environment is the same as
configuring WTC for a non-clustered WLS environment. Configure a WTC server for each
node in a cluster that you intend to deploy a JATMI-based EJB. Then target each WTC server
to their intended WebLogic Server. There should only be one WTC server per WebLogic
Server node.

Limitations for Clustered Nodes
For every WebLogic Server that has a JATMI-based EJB deployed, you must configure it with
a WTC server. The high availability depends on the WebLogic Server cluster's own HA ability.
There is no special capability to failover/failback among the WTC servers.

6-1

How to Configure OutBound Requests to Tuxedo Domains
The load balancing and failover of the outbound requests from WebLogic Server
depend on the WebLogic Server EJB and MDB.

See Communications in a Cluster in Administering Clusters for Oracle WebLogic
Server. Oracle WebLogic Tuxedo Connector also provides domain-level failover and
failback capabilities. See Configuring Failover and Failback.

Example Clustered Oracle WebLogic Tuxedo Connector Configuration
The following configuration provides an example of Oracle WebLogic Tuxedo
Connector in a clustered environment. The cluster consists of an administration server
(wtcAServer) and three managed servers (wtcMServer1, wtcMServer2, wtcMServer3).
Each managed server has a configured WTC server that contains the same service
(TOUPPER) in as an imported service.

Example 6-1 Example Clustered Oracle WebLogic Tuxedo Connector Configuration

<name>mydomain</name>
 <security-configuration>
 <name>mydomain</name>
 <realm>
 <sec:authentication-provider
 xsi:type="wls:default-authenticatorType"></sec:authentication-provider>
 <sec:authentication-provider xsi:type="wls:default-identity-asserterType">
 <sec:active-type>AuthenticatedUser</sec:active-type>
 </sec:authentication-provider>
 <sec:role-mapper xsi:type="wls:default-role-mapperType"></sec:role-mapper>
 <sec:authorizer xsi:type="wls:default-authorizerType"></sec:authorizer>
 <sec:adjudicator xsi:type="wls:default-adjudicatorType"></sec:adjudicator>
 <sec:credential-mapper xsi:type="wls:default-credential-mapperType"></sec:credential-mapper>
 <sec:cert-path-provider
 xsi:type="wls:web-logic-cert-path-providerType"></sec:cert-path-provider>
<sec:cert-path-builder>WebLogicCertPathProvider</sec:cert-path-builder>
 <sec:user-lockout-manager></sec:user-lockout-manager>
 <sec:security-dd-model>Advanced</sec:security-dd-model>
<sec:combined-role-mapping-enabled>false</sec:combined-role-mapping-enabled>
 <sec:name>myrealm</sec:name>
 </realm>
 <default-realm>myrealm</default-realm>
<credential-encrypted>{3DES}O0Qw7QBG3+cmemXbtKhHPJL2QLw7tqSYkoWqBtU17W+IoPebpoNai/
T3SdtxBOwVHOJJPi
 /sA8JMJ9MAM4i3KqVgd26A311z</credential-encrypted>
 <web-app-files-case-insensitive>os</web-app-files-case-insensitive>
<compatibility-connection-filters-enabled>true</compatibility-connection-filters-enabled>
 <node-manager-username>weblogic</node-manager-username>
<node-manager-password-encrypted>{3DES}37KMzVTzxZ9VFxCFSVGWzA==</node-manager-password-encrypted>
 <enforce-strict-url-pattern>false</enforce-strict-url-pattern>
 </security-configuration>
 <security>
 <realm>wl_default_realm</realm>
 <password-policy>wl_default_password_policy</password-policy>
 </security>
 <wtc-server>
 <name>WTCServer1</name>
 <target>wtcMServer1</target>
 <wtc-local-tux-dom>

Chapter 6
How to Configure OutBound Requests to Tuxedo Domains

6-2

 <name>ltd0</name>
 <access-point>WDOM1</access-point>
 <access-point-id>WDOM1</access-point-id>
 <security>NONE</security>
 <connection-policy>ON_STARTUP</connection-policy>
 <block-time>30000</block-time>
 <nw-addr>//mymachine:20401</nw-addr>
 </wtc-local-tux-dom>
 <wtc-remote-tux-dom>
 <name>rtd0</name>
 <access-point>TDOM1</access-point>
 <access-point-id>TDOM1</access-point-id>
 <local-access-point>WDOM1</local-access-point>
 <nw-addr>//123.123.123.123:20301</nw-addr>
 </wtc-remote-tux-dom>
 <wtc-remote-tux-dom>
 <name>rtd1</name>
 <access-point>TDOM2</access-point>
 <access-point-id>TDOM2</access-point-id>
 <local-access-point>WDOM1</local-access-point>
 <nw-addr>//123.123.123.123:20302</nw-addr>
 </wtc-remote-tux-dom>
 <wtc-export>
 <name>exp0</name>
 <resource-name>TOLOWER</resource-name>
 <local-access-point>WDOM1</local-access-point>
 <ejb-name>tuxedo.services.TOLOWERHome</ejb-name>
 <remote-name>TOLOWER</remote-name>
 </wtc-export>
 <wtc-export>
 <name>exp1</name>
 <resource-name>EJBLSleep</resource-name>
 <local-access-point>WDOM1</local-access-point>
 <ejb-name>tuxedo.services.TOLOWERHome</ejb-name>
 <remote-name>EJBLSleep</remote-name>
 </wtc-export>
 <wtc-import>
 <name>imp0</name>
 <resource-name>TOUPPER</resource-name>
 <local-access-point>WDOM1</local-access-point>
 <remote-access-point-list>TDOM2,TDOM1</remote-access-point-list>
 </wtc-import>
 <wtc-import>
 <name>imp1</name>
 <resource-name>LSleep</resource-name>
 <local-access-point>WDOM1</local-access-point>
 <remote-access-point-list>TDOM2,TDOM1</remote-access-point-list>
 </wtc-import>
 </wtc-server>
 <wtc-server>
 <name>WTCServer2</name>
 <target>wtcMServer2</target>
 <wtc-local-tux-dom>
 <name>ltd0</name>
 <access-point>WDOM2</access-point>
 <access-point-id>WDOM2</access-point-id>
 <security>NONE</security>
 <connection-policy>ON_STARTUP</connection-policy>
 <block-time>30000</block-time>
 <nw-addr>//mymachine:20402</nw-addr>
 </wtc-local-tux-dom>

Chapter 6
How to Configure OutBound Requests to Tuxedo Domains

6-3

 <wtc-remote-tux-dom>
 <name>rtd0</name>
 <access-point>TDOM1</access-point>
 <access-point-id>TDOM1</access-point-id>
 <local-access-point>WDOM2</local-access-point>
 <nw-addr>//123.123.123.123:20301</nw-addr>
 </wtc-remote-tux-dom>
 <wtc-remote-tux-dom>
 <name>rtd1</name>
 <access-point>TDOM2</access-point>
 <access-point-id>TDOM2</access-point-id>
 <local-access-point>WDOM2</local-access-point>
 <nw-addr>//123.123.123.123:20302</nw-addr>
 </wtc-remote-tux-dom>
 <wtc-export>
 <name>exp0</name>
 <resource-name>TOLOWER</resource-name>
 <local-access-point>WDOM2</local-access-point>
 <ejb-name>tuxedo.services.TOLOWERHome</ejb-name>
 <remote-name>TOLOWER</remote-name>
 </wtc-export>
 <wtc-export>
 <name>exp1</name>
 <resource-name>EJBLSleep</resource-name>
 <local-access-point>WDOM2</local-access-point>
 <ejb-name>tuxedo.services.TOLOWERHome</ejb-name>
 <remote-name>EJBLSleep</remote-name>
 </wtc-export>
 <wtc-import>
 <name>imp0</name>
 <resource-name>TOUPPER</resource-name>
 <local-access-point>WDOM2</local-access-point>
 <remote-access-point-list>TDOM2,TDOM1</remote-access-point-list>
 </wtc-import>
 <wtc-import>
 <name>imp1</name>
 <resource-name>LSleep</resource-name>
 <local-access-point>WDOM2</local-access-point>
 <remote-access-point-list>TDOM2,TDOM1</remote-access-point-list>
 </wtc-import>
 </wtc-server>
 <wtc-server>
 <name>WTCServer3</name>
 <target>wtcMServer3</target>
 <wtc-local-tux-dom>
 <name>ltd0</name>
 <access-point>WDOM3</access-point>
 <access-point-id>WDOM3</access-point-id>
 <security>NONE</security>
 <connection-policy>ON_STARTUP</connection-policy>
 <block-time>30000</block-time>
 <nw-addr>//mymachine:20403</nw-addr>
 </wtc-local-tux-dom>
 <wtc-remote-tux-dom>
 <name>rtd0</name>
 <access-point>TDOM1</access-point>
 <access-point-id>TDOM1</access-point-id>
 <local-access-point>WDOM3</local-access-point>
 <nw-addr>//123.123.123.123:20301</nw-addr>
 </wtc-remote-tux-dom>
 <wtc-remote-tux-dom>

Chapter 6
How to Configure OutBound Requests to Tuxedo Domains

6-4

 <name>rtd1</name>
 <access-point>TDOM2</access-point>
 <access-point-id>TDOM2</access-point-id>
 <local-access-point>WDOM3</local-access-point>
 <nw-addr>//123.123.123.123:20302</nw-addr>
 </wtc-remote-tux-dom>
 <wtc-export>
 <name>exp0</name>
 <resource-name>TOLOWER</resource-name>
 <local-access-point>WDOM3</local-access-point>
 <ejb-name>tuxedo.services.TOLOWERHome</ejb-name>
 <remote-name>TOLOWER</remote-name>
 </wtc-export>
 <wtc-export>
 <name>exp1</name>
 <resource-name>EJBLSleep</resource-name>
 <local-access-point>WDOM3</local-access-point>
 <ejb-name>tuxedo.services.TOLOWERHome</ejb-name>
 <remote-name>EJBLSleep</remote-name>
 </wtc-export>
 <wtc-import>
 <name>imp0</name>
 <resource-name>TOUPPER</resource-name>
 <local-access-point>WDOM3</local-access-point>
 <remote-access-point-list>TDOM2,TDOM1</remote-access-point-list>
 </wtc-import>
 <wtc-import>
 <name>imp1</name>
 <resource-name>LSleep</resource-name>
 <local-access-point>WDOM3</local-access-point>
 <remote-access-point-list>TDOM2,TDOM1</remote-access-point-list>
 </wtc-import>
 </wtc-server>
 <server>
 <name>wtcAServer</name>
 <native-io-enabled>true</native-io-enabled>
 <ssl>
 <name>wtcAServer</name>
<identity-and-trust-locations>FilesOrKeyStoreProviders</identity-and-trust-locations>
 </ssl>
 <listen-port>5472</listen-port>
 <tunneling-enabled>true</tunneling-enabled>
 </server>
 <server>
 <name>wtcMServer1</name>
 <native-io-enabled>true</native-io-enabled>
 <ssl>
 <name>wtcMServer1</name>
<identity-and-trust-locations>FilesOrKeyStoreProviders</identity-and-trust-locations>
 </ssl>
 <listen-port>7701</listen-port>
 <cluster>wtcCluster</cluster>
 <listen-address>mymachine</listen-address>
 <tunneling-enabled>true</tunneling-enabled>
 <jta-migratable-target>
 <user-preferred-server>wtcMServer1</user-preferred-server>
 <cluster>wtcCluster</cluster>
 </jta-migratable-target>
 </server>
 <server>
 <name>wtcMServer2</name>

Chapter 6
How to Configure OutBound Requests to Tuxedo Domains

6-5

 <native-io-enabled>true</native-io-enabled>
 <ssl>
 <name>wtcMServer2</name>
<identity-and-trust-locations>FilesOrKeyStoreProviders</identity-and-trust-locations>
 </ssl>
 <listen-port>7702</listen-port>
 <cluster>wtcCluster</cluster>
 <listen-address>mymachine</listen-address>
 <tunneling-enabled>true</tunneling-enabled>
 <jta-migratable-target>
 <user-preferred-server>wtcMServer2</user-preferred-server>
 <cluster>wtcCluster</cluster>
 </jta-migratable-target>
 </server>
 <server>
 <name>wtcMServer3</name>
 <native-io-enabled>true</native-io-enabled>
 <ssl>
 <name>wtcMServer3</name>
<identity-and-trust-locations>FilesOrKeyStoreProviders</identity-and-trust-locations>
 </ssl>
 <listen-port>7703</listen-port>
 <cluster>wtcCluster</cluster>
 <listen-address>mymachine</listen-address>
 <tunneling-enabled>true</tunneling-enabled>
 <jta-migratable-target>
 <user-preferred-server>wtcMServer3</user-preferred-server>
 <cluster>wtcCluster</cluster>
 </jta-migratable-target>
 </server>
 <cluster>
 <name>wtcCluster</name>
 <multicast-address>239.0.0.20</multicast-address>
 <multicast-port>7700</multicast-port>
 <multicast-ttl>1</multicast-ttl>
 </cluster>
 <configuration-version>9.0.0.0</configuration-version>
 <file-realm>
 <name>wl_default_file_realm</name>
 </file-realm>
 <realm>
 <name>wl_default_realm</name>
 <file-realm>wl_default_file_realm</file-realm>
 </realm>
 <password-policy>
 <name>wl_default_password_policy</name>
 </password-policy>
 <migratable-target>
 <name>wtcMServer1 (migratable)</name>
 <user-preferred-server>wtcMServer1</user-preferred-server>
 <cluster>wtcCluster</cluster>
 </migratable-target>
 <migratable-target>
 <name>wtcMServer2 (migratable)</name>
 <user-preferred-server>wtcMServer2</user-preferred-server>
 <cluster>wtcCluster</cluster>
 </migratable-target>
 <migratable-target>
 <name>wtcMServer3 (migratable)</name>
 <user-preferred-server>wtcMServer3</user-preferred-server>
 <cluster>wtcCluster</cluster>

Chapter 6
How to Configure OutBound Requests to Tuxedo Domains

6-6

 </migratable-target>
 <web-app-container>
 <relogin-enabled>true</relogin-enabled>
 <allow-all-roles>true</allow-all-roles>
<filter-dispatched-requests-enabled>true</filter-dispatched-requests-enabled>
 <rtexprvalue-jsp-param-name>true</rtexprvalue-jsp-param-name>
<jsp-compiler-backwards-compatible>true</jsp-compiler-backwards-compatible>
 </web-app-container>
 <admin-server-name>wtcAServer</admin-server-name>
</domain>

How to Configure Inbound Requests from Tuxedo Domains
Load balancing and failover of inbound requests from Tuxedo depend on the Tuxedo domain
DMCONFIG configuration.

Load Balancing
The following is a sample Tuxedo DMCONFIG that load balances from Tuxedo to clustered
WTC. This configuration has three nodes in a WebLogic Server cluster. Each node has a
single properly configured Oracle WebLogic Tuxedo Connector instance that provides an
exported service that is accessible to the Tuxedo client.

*DM_IMPORT
TOUPPER LDOM=tuxedo_dom RDOM=WDOM1 LOAD=50
TOUPPER LDOM=tuxedo_dom RDOM=WDOM2 LOAD=50
TOUPPER LDOM=tuxedo_dom RDOM=WDOM3 LOAD=50

See Tuxedo Load Balancing.

Fail Over
The following is a sample Tuxedo DMCONFIG that uses a more sophisticated configuration
that load balances between the WebLogic Server nodes as well as illustrate Tuxedo failover
capability. The Tuxedo domain must be configured with a Connection Policy of On Startup
or Incoming Only to enable Domains-level failover/failback.

*DM_IMPORT
TOUPPER LDOM=tuxedo_dom RDOM=WDOM1,WDOM2,WDOM3 LOAD=50
TOUPPER LDOM=tuxedo_dom RDOM=WDOM2,WDOM3,WDOM1 LOAD=50
TOUPPER LDOM=tuxedo_dom RDOM=WDOM3,WDOM1,WDOM2 LOAD=50

See Specifying Domains Failover and Failback on Tuxedo.

Chapter 6
How to Configure Inbound Requests from Tuxedo Domains

6-7

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/int/intatm.html#1119040
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/add/addom.html#1257878

7
How to Configure the Oracle Tuxedo Queuing
Bridge

This chapter provides information on the Tuxedo queuing bridge functionality and
configuration.
This chapter includes the following sections:

• Overview of the Tuxedo Queuing Bridge

• Configuring the Tuxedo Queuing Bridge

• Tuxedo Queuing Bridge Connectivity

• Example Connection Type Configurations

• Priority Mapping

• Error Queues

Overview of the Tuxedo Queuing Bridge
The Tuxedo queuing bridge is a part of the Oracle WebLogic Tuxedo Connector that provides
a bi-directional JMS interface for your WebLogic Server applications to communicate to
Tuxedo application environments. The transfer of messaging between the environments
consists of JMS based messages containing text, Byte, or XML data streams used to invoke
services on behalf of the client application.

Figure 7-1 Interaction between WebLogic Server and Tuxedo with queuing bridge

WLS

CONVERTOR

JMS

TBRIDGETBRIDGE JATMI WTC

TUXEDO

GWT ATMI SVC

/QUEUE

T/DOMAIN

The following features determine the functionality of the Tuxedo queuing bridge:

• Connectivity is determined by the configuration of the attributes in the Tuxedo queuing
bridge and redirections of your WTC server.

• The Tuxedo queuing bridge uses Java Messaging Service (JMS) to provide an interface
to a Tuxedo /Q or a Tuxedo service.

• The Tuxedo queuing bridge provides simple translation between XML and FML32 to
provide connectivity to existing Tuxedo systems.

7-1

How Tuxedo Queuing Bridge connects JMS with Tuxedo
This section provides information on how JMS messages flow through the Tuxedo
queuing bridge to Tuxedo queues and services.

Note:

Messages remain on the JMS queue until they have been acknowledged.

1. A JMS client, such as a web enabled WLPI application, places a message to be
processed by Tuxedo on a JMS Queue. If this message was part of a transaction,
the transaction commits.

2. The message is removed from the JMS queue to be processed by the Tuxedo
Queuing Bridge Converter.

3. The Tuxedo Queuing Bridge Converter checks the message type and converts
supported JMS types to JATMI buffer types.

a. BytesMessage, TextMessage, XML are converted respectively to
TypedCArray, TypedString, and TypedFML32. XML/FML translation is
performed according to the TranslateFML attribute.

b. Translation errors are sent to the wlsServerErrorDestination queue and the
message is acknowledged in the JMS session.

c. If an unrecognized JMS message is received: an appropriate error message is
logged, the message is acknowledged, and then is discarded. This is
considered a configuration error and the Tuxedo queuing bridge does not
redirect the message to the error queue.

4. The converted message is sent to Tuxedo using the TDomain gateway.

a. Messages with a redirect set to JmsQ2TuxQ use JATMI tpenqueue to deliver the
message to a Tuxedo queue.

b. Messages with a redirect set to JmsQ2TuxS use JATMI tpcall to deliver the
message to a Tuxedo service.

5. The tpenqueue is successful or tpcall is successful and the return results are
placed in the replyQ. The message is acknowledged in the JMS session.

If the tpenqueue or tpcall fails, Tuxedo queuing bridge delivers the message to
the wlsServerErrorDestination queue and the message is acknowledged in the
JMS session. If a wlsServerErrorDestination queue is not configured, the
message is discarded and the Tuxedo queuing bridge processes the next
available unacknowledged message.

How Tuxedo Queuing Bridge connects Tuxedo to JMS
This section provides information on how Tuxedo messages flow through the Tuxedo
queuing bridge to a JMS queue using the TuxQ2JmsQ redirect.

Chapter 7
Overview of the Tuxedo Queuing Bridge

7-2

Note:

Tuxedo queuing bridge uses a transaction to prevent the loss of messages while
transferring messages from Tuxedo /Q to a JMS queue.

1. Tuxedo queuing bridge polls the Tuxedo queue for available messages.

2. A Tuxedo service places a message on a Tuxedo queue.

3. Tuxedo queuing bridge uses JATMI tpdequeue to forward the message from Tuxedo and
places the message in the JMS queue.

• If a message cannot be redirected to a JMS queue for any reason after the specified
retries have been exhausted, the message is put into the tuxErrorDestination
queue within the same queue space as the Tuxedo queue.

• If the Tuxedo queuing bridge is not able to put the message into the
tuxErrorDestination queue for any reason, an error is logged and the message is
lost.

• If the tuxErrorDestination queue is not specified, the message is lost.

Tuxedo Queuing Bridge Limitations
The Tuxedo queuing bridge has the following limitations:

• Transactions are not used when retrieving messages from the JMS location and placing
them on the Tuxedo queue or invoking a Tuxedo service.

• Tuxedo queuing bridge is thread intensive. A thread is used to transport each message
from JMS queue to Tuxedo. A polling thread is required to monitor the configured Tuxedo
queue.

• The XML/FML translator is intended to construct simple message structures. See, FML32
Considerations in Developing Oracle WebLogic Tuxedo Connector Applications for
Oracle WebLogic Server.

Configuring the Tuxedo Queuing Bridge
Tuxedo queuing bridge connectivity is determined by configuring the attributes in the Tuxedo
queuing bridge and redirections of your WTC server. These attributes contain the necessary
information to establish a connection to Tuxedo.

A complete Tuxedo queuing bridge configuration requires the following:

• Configure one queuing bridge

• Configure one or more redirections

Dynamically Adding/Modifying Tuxedo Queuing Bridge
Typically, after a complete Tuxedo queuing bridge configuration exists and WTC is deployed,
the Tuxedo queuing bridge is activated. After the Tuxedo queuing bridge is active, no
additions or modifications to the configuration can occur without shutting the WTC queuing
bridge down.

Chapter 7
Configuring the Tuxedo Queuing Bridge

7-3

If WTC is activated and the Tuxedo queuing bridge is deactivated, the following
additions and modifications are possible.

• Add WTC queuing bridge if there is no WTC queuing bridge configuration

• Modify WTC queuing bridge

• Delete WTC queuing bridge

• Add WTC redirections

• Modify WTC redirections

• Delete WTC redirections

After completing the WTC queuing bridge configuration changes, you must activate
the changes.

Note:

Dynamically adding/modifying Tuxedo queuing bridge is only possible if the
queuing bridge is not activated. WTC can be activated, but the queuing
bridge must not be activated. To shut down the WTC queuing bridge, you
should deactivate the WTC server.

Tuxedo Queuing Bridge Instantiate
If, and only if, a complete WTC queuing bridgequeuing bridge configuration is
available at the time of activation will WTC start the Tuxedo queuing bridge.

If the WTC queuing bridge configuration is incomplete, then no Tuxedo queuing bridge
instance is available.

Starting the Tuxedo Queuing Bridge
The Tuxedo queuing bridge is started as part of the WebLogic Server application
environment if the Tuxedo queuing bridge and redirections of your WTC server are
configured and the WTC server is deployed to a target server. Any configuration
condition that prevents the Tuxedo queuing bridge from starting results in an error
being logged.

Error Logging
Oracle WebLogic Tuxedo Connector errors are logged to the WebLogic Server error
log.

Tuxedo Queuing Bridge Connectivity
The Tuxedo queuing bridge establishes a one-way data connection between instances
of a JMS queue and a Tuxedo /Q or a JMS queue and a Tuxedo service. This
connection is represented by the Tuxedo queuing bridge and redirections
configurations of your WTC server and provides a one-to-one connection between the
identified points. Three types of connections can be configured. The following is a
description of each of the connection types:

Chapter 7
Tuxedo Queuing Bridge Connectivity

7-4

• JmsQ2TuxQ: Reads from a given JMS queue and transports the messages to the specified
Tuxedo /Q.

• TuxQ2JmsQ: Reads from a Tuxedo /Q and transports the messages to JMS.

• JmsQ2TuxS: Reads from a given JMS queue, synchronously calls the specified Tuxedo
service, and places the reply back onto a specified JMS queue.

Note:

JMS message types: MapMessage, ObjectMessage, StreamMessage are not
valid in Oracle WebLogic Tuxedo Connector. If one of these message types is
received by the Tuxedo queuing bridge, a log entry is generated indicating this
is an unsupported type and the message is discarded.

Example Connection Type Configurations
The following sections provide example configurations for each connection type.

Example JmsQ2TuxQ Configuration
The following section provides an example configuration in the config.xml file for reading
from a JMS queue and sending to Tuxedo /Q.

<wtc-tbridge-redirect>
 <direction>JmsQ2TuxQ</direction>
 <name>redir0</name>
 <reply-q>RPLYQ</reply-q>
 <source-name>weblogic.jms.Jms2TuxQueue</source-name>
 <target-access-point>TDOM2</target-access-point>
 <target-name>STRING</target-name>
 <target-qspace>QSPACE</target-qspace>
 <translate-fml>NO</translate-fml>
</wtc-tbridge-redirect>

The following section describes the components of the JmsQ2TuxQ configuration:

• The Direction connection type is JmsQ2TuxQ.

• Source Name specifies the name of the JMS queue to read is
weblogic.jms.Jms2TuxQueue. The Tuxedo queuing bridge establishes a JMS client
session to this queue using CLIENT_ACKNOWLEDGE semantics.

• Target Access Point specifies the name of the access point is TDOM2.

• Target Qspace specifies the name of the Qspace is Qspace.

• Target Name specifies the name of the queue is STRING.
• ReplyQ specifies the name of a JMS reply queue is RPLYQ. Use of this queue causes

tpenqueue to provide TMFORWARD functionality.

• TranslateFML set to NO specifies that no data translation is provided by the Tuxedo
queuing bridge.

Table 7-1 provides information on JmsQtoTuxQ message mapping.

Chapter 7
Example Connection Type Configurations

7-5

Table 7-1 JmsQ to TuxQ Message Mapping

From: JMS Message Type To: Oracle WebLogic Tuxedo Connector JATMI
(Tuxedo)

BytesMessage TypedCArray

TextMessage (translateFML =
NONE)

TypedString

TextMessage (translateFML = FLAT) TypedFML32

Example TuxQ2JmsQ Configuration
The following section provides an example configuration in the config.xml file for
reading from a Tuxedo /Q and sending to a JMS queue.

<wtc-tbridge-redirect>
 <direction>TuxQ2JmsQ</direction>
 <name>redir1</name>
 <source-access-point>TDOM2</source-access-point>
 <source-name>STRING</source-name>
 <source-qspace>QSPACE</source-qspace>
 <target-name>weblogic.jms.Tux2JmsQueue</target-name>
 <translate-fml>NO</translate-fml>
</wtc-tbridge-redirect>

The following section describes the components of the TuxQ2JmsQ configuration:

• The Direction connection type is TuxQ2JmsQ.

• Target Name specifies the name of the JMS queue to read is
weblogic.jms.Tux2JmsQueue.

• Source Access Point specifies the name of the access point is TDOM2.
• Source Qspace specifies the name of the Qspace is Qspace.
• Source Name specifies the name of the queue is STRING.

• TranslateFML set to NO specifies that no data translation is provided by the
Tuxedo queuing bridge.

• TranslateFML set to Flat specifies that the data is translated from FML to XML by
the Tuxedo queuing bridge.

Table 7-2 provides information on TuxQ2JmsQ message mapping:

Table 7-2 TuxQ2JmsQ Message Mapping

From: Oracle WebLogic Tuxedo
Connector JATMI (Tuxedo)

To: JMS Message Type

TypedCArray BytesMessage

TypedString (translateFML = NO) TextMessage

TypedFML32 (translateFML = FLAT) TextMessage

TypedFML (translateFML = FLAT) TextMessage

TypedXML TextMessage

Chapter 7
Example Connection Type Configurations

7-6

Example JmsQ2TuxS Configuration
The following section provides an example configuration in the config.xml file for reading
from a JMS queue, calling a Tuxedo service, and then writing the results back to a JMS
queue.

<wtc-tbridge-redirect>
 <direction>JmsQ2TuxS</direction>
 <name>redir0</name>
 <replyq>weblogic.jms.Tux2JmsQueue</replyq>
 <source-name>weblogic.jms.Jms2TuxQueue</source-name>
 <target-access-point>TDOM2</target-access-point>
 <target-name>TOUPPER</target-name>
 <translate-fml>FLAT</translate-fml>
</wtc-tbridge-redirect>

The following section describes the components of the JmsQ2TuxS configuration:

• The Direction connection type is JmsQ2TuxS.

• Source Name specifies the name of the JMS queue to read is
weblogic.jms.Jms2TuxQueue.

• Target Access Point specifies the name of the access point is TDOM2.
• Target Name specifies the name of the queue is TOUPPER.
• ReplyQ specifies the name of the JMS reply queue is weblogic.jms.Tux2JmsQueue.

• TranslateFML set to FLAT specifies that when a JMS message is received, the message
is in XML format and is converted into the corresponding FML32 data buffer. The
message is then placed in a tpcall with arguments TDOM2 and TOUPPER. The resulting
message is then translated from FML32 into XML and placed on the
weblogic.jms.Tux2JmsQueue.

Table 7-3 provides information on the JMSQ2TuxX message mapping:

Table 7-3 JMSQ2TuxX Message Mapping

JMS Message Type Oracle WebLogic Tuxedo
Connector JATMI (Tuxedo)

JMS Message Type

BytesMessage TypedCArray BytesMessage

TextMessage (translateFML =
NONE)

TypedString TextMessage

TextMessage (translateFML =
FLAT)

TypedFML32 TextMessage

Note:

There may be scenarios where a reply from Tuxedo is returned and the
translateFML parameter has no effect. Translation may occur automatically.

Chapter 7
Example Connection Type Configurations

7-7

See Using FML with WebLogic Tuxedo Connector in Developing Oracle WebLogic
Tuxedo Connector Applications for Oracle WebLogic Server.

Priority Mapping
Oracle WebLogic Tuxedo Connector supports multiple Tuxedo queuing bridge redirect
instances. In many environments, using multiple redirect instances significantly
improves application scalability and performance. However, it does randomizes the
order in which messages are processed. Although priority mapping does not
guarantee ordering, it does provides a mechanism to react to messages based on an
assigned importance. If the order of delivery must be guaranteed, use a single Tuxedo
queuing bridge redirect instance.

Use Priority Mapping to map priorities between the JMS and Tuxedo.

• JMS has ten priorities (0 - 9).

• Tuxedo/Q has 100 priorities (1 - 100).

This section provides a mechanism to map the priorities between the Tuxedo and JMS
subsystems. There are two mapping directions:

• JmstoTux
• TuxtoJms
Defaults are provided for all values, shown below in pairs of value:range.

• The value specifies the given input priority.

• The range specifies a sequential group of resulting output priorities.

JmstoTux- 0:1 | 1:12 | 2:23 | 3:34 | 4:45 | 5:56 | 6:67 | 7:78 | 8:89 | 9:100
TuxtoJms- 0:1-10|1:11-20|2: 21-30|3: 31-40|4: 41-50|5:51-60|6: 61-70|7:71-80|8:81-90|
9:91-100

For this configuration, a JMS message of priority 7 is assigned a priority of 78 in the
Tuxedo /Q. A Tuxedo /Q with a priority of 47 is assigned a JMS priority of 4.

Error Queues
When Tuxedo queuing bridge encounters a problem retrieving messages from Tuxedo
Queue or JMS Queue after the retry interval:

• The information is logged.

• The message is saved in the error queue if it is configured.

WLS Error Destination
The WLS Error Destination queue is used if a JMS message cannot be properly
delivered due to Tuxedo failure or a translation error.

Unsupported Message Types
If an unrecognized JMS message is received, an appropriate error message is logged
and the message is discarded. This is considered a configuration error and the Tuxedo
queuing bridge does not redirect the message to the error queue.

Chapter 7
Priority Mapping

7-8

Tuxedo Error Queue
The Tuxedo Error Queue is the failure queue for the JATMI primitive tpdequeue during a
TuxQ2JmsQ redirect.

Limitations
The Tuxedo queuing bridge error queues have the following limitations:

• Tuxedo Error Destination can be specified only once. Any error queue name
associated with the ErrorDestination implies that all the QSPACEs have the same error
queue name available.

• When there is an error, the message is put back in the source QSPACE. Assuming the
QSPACE is corrupted or full, subsequent messages would be lost.

• There is no way to drop messages on error. All messages are received or none are
received.

• Information about the error is only available in the server log.

Chapter 7
Error Queues

7-9

8
Connecting WebLogic Integration and Tuxedo
Applications

This chapter describes how the Oracle WebLogic Tuxedo Connector Tuxedo queuing bridge
provides the necessary infrastructure for WebLogic Integration users to integrate Tuxedo
applications into their business workflows.
This chapter includes the following sections:

• Synchronous WebLogic Integration-to-Tuxedo Connectivity

• Synchronous Non-Blocking WebLogic Integration-to-Tuxedo Connectivity

• Asynchronous WebLogic Integration-to-Tuxedo Connectivity

• Asynchronous Tuxedo /Q-to-WebLogic Integration Connectivity

• Bi-directional Asynchronous Tuxedo-to-WebLogic Integration Connectivity

See BEA WebLogic Integration.

Synchronous WebLogic Integration-to-Tuxedo Connectivity
WebLogic Integration executes a blocking invocation against a Tuxedo service using a JATMI
EJB. This process consists of three parts:

• Defining WebLogic Integration Business Operations.

• Invoking an eLink Adapter.

• Defining WebLogic Integration Exception Handlers.

Defining Business Operations
Define WebLogic Integration Business Operations for the JATMI methods to be used:

• TypedFML32 buffer manipulation methods.

• Use the JATMI tpcall() method.

Example: out_buffer = tpcall (service_name, in_buffer, flags)

Invoking an eLink Adapter
Invoke an eLink adapter from a WebLogic Integration process flow:

• Build TypedFML32 request buffers using defined Business Operations.

• Using the defined Business Operation invoke the JATMI tpcall() method specifying the
service name.

• Process TypedFML32 response buffers using defined Business Operations.

8-1

http://docs.oracle.com/docs/cd/E13160_01/wli/docs10gr3/index.html

Define Exception handlers
Define WebLogic Integration Exception handlers to process exceptions.

Synchronous Non-Blocking WebLogic Integration-to-Tuxedo
Connectivity

WebLogic Integration sends a message to synchronously invoke a Tuxedo service:

• 1:1 relationship between JMS queue and the call to a Tuxedo service.

• 1:1 relationship between the response from the Tuxedo service and a JMS queue.

• WebLogic Integration writes a message to JMS queue.

• Once the message is on the JMS queue then Tuxedo queuing bridge moves the
message to the target Tuxedo service.

• The message is translated from/to XML/FML32.

• The response is written to the specified JMS reply queue.

• The WebLogic Integration event node waits on the response queue for a response
message.

Asynchronous WebLogic Integration-to-Tuxedo Connectivity
WebLogic Integration sends a guaranteed asynchronous message to a Tuxedo /Q:

• 1:1 relationship between JMS queue and Tuxedo /Q.

• WebLogic Integration writes a message to JMS queue.

• Once the message is on the JMS queue then Tuxedo queuing bridge moves the
message to the target Tuxedo /Q on a per message basis.

• Messages in error are forwarded to a specified JMS error queue:

– Infrastructure errors.

– XML/FML32 translation errors.

Asynchronous Tuxedo /Q-to-WebLogic Integration
Connectivity

Tuxedo /Q sends a guaranteed asynchronous message to WebLogic Integration:

• 1:1 relationship between JMS queue and Tuxedo /Q.

• Tuxedo writes a message to Tuxedo /Q.

• Once the message is committed on Tuxedo /Q, the message is forwarded via the
Tuxedo /T Domain Gateway to the WebLogic Tuxedo Connector Tuxedo queuing
bridge and target JMS queue.

• Messages which cannot be forwarded from Tuxedo are enqueued on a Tuxedo /Q
error queue.

Chapter 8
Synchronous Non-Blocking WebLogic Integration-to-Tuxedo Connectivity

8-2

• Messages in error are forwarded to a specified Tuxedo /Q error queue, including:

– Infrastructure errors.

– FML32/XML translation errors.

• A workflow is created that waits for the message on the JMS queue. It is defined in the
Start workflow node or in the Event node of an existing workflow instance.

Bi-directional Asynchronous Tuxedo-to-WebLogic Integration
Connectivity

Tuxedo executes a blocking invocation of a WebLogic Integration process flow. Use two
asynchronous instances to connect from JMS to Tuxedo /Q and from Tuxedo /Q back to JMS.

Chapter 8
Bi-directional Asynchronous Tuxedo-to-WebLogic Integration Connectivity

8-3

9
WebLogic Tuxedo Connector Samples Quick
Start Guide

This chapter provides examples that show how to use the Oracle WebLogic Server
Administration Console to configure Oracle WebLogic Tuxedo Connector so that Oracle
WebLogic Server can interoperate with Oracle Tuxedo.
This chapter includes the following sections:

• Where to Find Oracle WebLogic Tuxedo Connector Samples

• Configuring the Oracle WebLogic Tuxedo Connector

• Configuring Oracle Tuxedo

• Run the Example

Where to Find Oracle WebLogic Tuxedo Connector Samples
For this release of Oracle WebLogic Tuxedo Connector (WTC), samples are available on the
Oracle Technology Network web site. Create a wtc directory within the samples directory of
your WebLogic Server installation. Extract the contents of the wtc_90.tar to this directory. To
run the samples referenced in this document, you must download the simpapp and simpserv
samples.

Configuring the Oracle WebLogic Tuxedo Connector

Note:

This section summarizes how to configure the Oracle WebLogic Tuxedo Connector
on a Windows platform. UNIX users can adapt the instructions by making
appropriate substitutions such as replacing the "\" with "/" and ".cmd" with ".sh".

This example extends the Oracle Tuxedo simpapp application to run over Oracle Tuxedo
Domains (TDomains). This allows clients of the TOUPPER service to run on either the Oracle
Tuxedo server or the Oracle WebLogic Server examplesServer. The example provides the
following services:

• TOUPPER: An Oracle Tuxedo service that converts a string to upper case. A Oracle
WebLogic Server client invokes the TOUPPER EJB and connects to the Oracle Tuxedo
TOUPPER service.

• Tolower: A service implemented by an EJB in Oracle WebLogic Server. The client for the
Tolower service runs on Oracle Tuxedo.

The following sections describe how to configure Oracle WebLogic Tuxedo Connector using
the WebLogic Server Administration Console:

9-1

http://www.oracle.com/technetwork/indexes/samplecode/tuxedo-sample-522120.html

• Build the Simpapp Example

• Create WTC Servers

• Create a Local Oracle Tuxedo Access Point

• Create a Remote Oracle Tuxedo Access Point

• Create Exported Services

• Create Imported Services

• Target mySimpapp to the examplesServer

• Register TDOM1 as an Oracle WebLogic Server User

Build the Simpapp Example

Note:

You may want to enable tracing to monitor Oracle WebLogic Tuxedo
Connector. See Monitoring the WebLogic Tuxedo Connector.

Use the following steps to build the simpapp example:

1. Boot your Oracle WebLogic examplesServer.

2. Open a new shell window and set environment variables using the
ORACLE_HOME\user_projects\domains\wl_server\setExamplesEnv.cmd file.

3. Change directories to the location where you have downloaded the simpapp
sample. For example,
ORACLE_HOME\wlserver\samples\server\examples\src\examples\wtc\atmi\sim
papp directory. See Sample Applications and Code Examplesin Understanding
Oracle WebLogic Server.

4. Build the wtc_toupper.jar file using ant. This will deploy the EJB on Oracle
WebLogic Server. Enter the following command: ant

5. Change directories to the location where you have downloaded the simpserv
sample. For example,
ORACLE_HOME\wlserver\samples\server\examples\src\examples\wtc\atmi\sim
pserv directory.

6. Build the wtc_tolower.jar file. This will deploy the EJB on Oracle WebLogic
Server. Enter the following command: ant

7. Launch the WebLogic Server Administration Console in your browser. Use the
following URL: http://your_machine:7001/console. Replace your_machine with
the IP address for your machine or your machine name.

8. In the navigation tree, click Deployments and confirm that the wtc_tolower.jar
and wtc_toupper.jar are deployed.

Create WTC Servers
Use the following steps to create and configure a WTC server using the Oracle
WebLogic Server Administration Console:

Chapter 9
Configuring the Oracle WebLogic Tuxedo Connector

9-2

1. Expand Interoperability and select WTC Servers in the navigation tree.

2. On the WTC Servers page, click New.

3. On the Create a New WTC Server page, enter the name of your WTC server in the
Name field. Example: mySimpapp

4. Click OK.

5. Your new WTC server appears in the WTC Servers list.

Create a Local Oracle Tuxedo Access Point

Note:

When configuring the Network Address for a local access point, the port number
used should be different from any port numbers assigned to other processes.
Example: Setting the Network Address to //mymachine:7001 is not valid if the
Oracle WebLogic Server listening port is assigned to //mymachine:7001.

Use the following steps to configure a local Oracle Tuxedo access point:

1. In the WebLogic Server Administration Console, expand Interoperability and select
WTC Servers.

2. On the WTC Servers page, select the name of a WTC server, such as mySimpapp, to
access the settings page.

3. Select Configuration > Local APs.

4. Enter the following values for the fields on the WTC Local Access Points page:

Access Point: myLocalAp
AccessPoint ID: TDOM2
Network Address: the network address and port of your local access point

Example: //123.123.123.123:5678
5. Click OK.

Create a Remote Oracle Tuxedo Access Point
Use the following steps to configure a remote Oracle Tuxedo access point:

1. In the WebLogic Server Administration Console, expand Interoperability and select
WTC Servers.

2. On the WTC Servers page, select the name of a WTC server, such as mySimpapp.

3. Select Configuration > Remote APs.

4. Enter the following values for the fields on the WTC Remote Access Points page:

Access Point: myRemoteAP
AccessPoint ID: TDOM1
Local Access Point: myLocalAp

Chapter 9
Configuring the Oracle WebLogic Tuxedo Connector

9-3

Network Address: the network address and port of your remote access point

Example: //123.123.123.123:1234
5. Click OK.

Create Exported Services
Use the following steps to configure an exported service:

1. In the WebLogic Server Administration Console, expand Interoperability and
select WTC Servers.

2. On the WTC Servers page, select the name of a WTC server, such as
mySimpapp.

3. Select Configuration > Exported.

4. Enter the following values for the fields on the WTC Exported Services page:

Resource Name: TOLOWER
Local Access Point: myLocalAp
EJB Name: tuxedo.services.TOLOWERHome
Remote Name: TOLOWER

5. Click OK.

Create Imported Services
Use the following steps to configure an imported service:

1. In the WebLogic Server Administration Console, expand Interoperability and
select WTC Servers.

2. On the WTC Servers page, select the name of a WTC server, such as
mySimpapp.

3. Select Configuration > Imported.

4. Enter the following values for the fields on the WTC Imported Services page:

Resource Name: TOUPPER
Local Access Point: myLocalAp
Remote Access Point List: myRemoteAP
Remote Name: TOUPPER

5. Click OK.

Target mySimpapp to the examplesServer
1. In the WebLogic Server Administration Console, expand Interoperability and

select WTC Servers.

2. On the WTC Servers page, select the name of a WTC server, such as
mySimpapp.

3. Select Targets.

Chapter 9
Configuring the Oracle WebLogic Tuxedo Connector

9-4

4. Select the examplesServer.

5. Click Save.

Register TDOM1 as an Oracle WebLogic Server User
Use the following steps to register TDOM1 as an Oracle WebLogic Server user:

1. Click Security Realms in the navigation tree.

2. Click myRealm.

3. Select Users and Groups.

4. Click Users.

5. Click Lock & Edit.

6. Click New.

7. In the Create a New User page, do the following:

a. Add TDOM1 in the Name field.

b. Enter and confirm a password.

c. Click OK.

8. Click Release Configuration.

Configuring Oracle Tuxedo
Use the following steps to configure your Oracle Tuxedo domain:

1. Your PATH environment variable needs to include the path of your C compiler. Use set
PATH to check the status and add the path if necessary.

2. Copy the simpapp example from your Oracle Tuxedo installation and create a working
Oracle Tuxedo simpapp directory.

3. Change directories to your working Oracle Tuxedo simpapp directory.

4. Set environment variables using the setEnv.cmd located at TUXDIR. Update the following
parameters:

TUXDIR - base directory of the TUXEDO Software

APPDIR - base directory of the sample program

5. Build the clients:

buildclient -o simpcl -f simpcl.c
buildserver -o simpserv -f simpserv.c -s TOUPPER

6. Copy the ubbdomain and dom1config files from the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\wtc\atmi\simpapp
directory to your Oracle Tuxedo simpapp directory.

See Sample Applications and Code Examples in Understanding Oracle WebLogic Server

7. Copy the tolower.c file from the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\wtc\atmi\simpserv
directory to your Oracle Tuxedo simpapp directory.

Chapter 9
Configuring Oracle Tuxedo

9-5

8. Modify the ubbdomain for your Oracle Tuxedo environment. This includes setting
the path names for APPDIR, TUXCONFIG, and TUXDIR and setting the machine name.
Replace all <braced> items with information for your environment.

Example:

APPDIR="\home\me\simpapp"
TUXCONFIG="\home\me\simpapp\tuxconfig""
TUXDIR="\usr\tuxedo"

9. Load the ubbdomain file: tmloadcf -y ubbdomain
10. Modify the dom1config for your Oracle Tuxedo environment. This includes

creating log devices and updating the network addresses.

Example:

DMTLOGDEV="d:\my_apps\tlog"
AUDITLOG="d:\my_apps\aud"
TDOM1 NWADDR="//TuxedoMachine:1234"
TDOM2 NWADDR="//WTCMachine:5678"

11. Load the dom1config file.

set BDMCONFIG=d:\mydomain\simpapp\bdmconfig
dmloadcf -y dom1config

12. Build the tolower client

buildclient -f tolower.c -o tolower
13. Boot the Tuxedo domain

tmboot -y

Run the Example
Run each client to demonstrate interoperability between Oracle Tuxedo and Oracle
WebLogic Server.

Oracle WebLogic Server to Oracle Tuxedo Interoperability
Start an Oracle WebLogic Server client from the directory location to which you
downloaded the samples. For example,
ORACLE_HOME\wlserver\samples\server\examples\src\examples\wtc\atmi\simpapp
directory to invoke the TOUPPER EJB and connect to the Oracle Tuxedo TOUPPER
service. See Sample Applications and Code Examples in Understanding Oracle
WebLogic Server. Use the following command:

ant simpapp

The Oracle Tuxedo service replies to your Oracle WebLogic Server application with:

Buildfile: build.xml
simpapp:
run_client:
 [java] Beginning statefulSession.Client...
 [java] Creating Toupper
 [java] converting HelloWorld
 [java] converted to: HELLOWORLD
 [java] End statefulSession.Client...
BUILD SUCCESSFUL

Chapter 9
Run the Example

9-6

Oracle Tuxedo to Oracle WebLogic Server Interoperability
Run the tolower client from the Oracle Tuxedo simpapp directory to invoke the Tolower EJB
and return the results to the client. Use the following command:

tolower ALLSMALL

The Oracle WebLogic Server service replies to your Oracle Tuxedo client with:

Returned string is: allsmall

Chapter 9
Run the Example

9-7

10
Troubleshooting The WebLogic Tuxedo
Connector

This chapter provides WebLogic Tuxedo Connector troubleshooting information.
This chapter includes the following sections:

• Monitoring the WebLogic Tuxedo Connector

• Frequently Asked Questions

Monitoring the WebLogic Tuxedo Connector
The WebLogic Tuxedo Connector uses the WebLogic Server log file to record log information.
To record log information you must:

• Set Trace Levels (Deprecated)

• Enable Debug Mode

• Enable a User Data Dump

Set Trace Levels (Deprecated)
Because TraceLevel is no longer supported, use system debugging. By default all the debug
tracing is off. See System Level Debug Settings for information on how to develop
applications that use RMI-IIOP to call a Tuxedo service using a WebLogic Server EJB.

See How to Set Oracle WebLogic Tuxedo Connector Properties.

Enable Debug Mode
Use the following procedure to specify that trace information is written to the log file:

1. Click the Server node in the left pane.

2. Select your server in the left pane.

3. Select Logging.

4. On the General page:

a. Check Debug to Stdout

b. Set Stdout severity threshold to Info.

Enable a User Data Dump
To enable dumping of user data, add the following line to the java.weblogic.Server
command.

JAVA_OPTIONS=-Dweblogic.debug.DebugWTCUData=true

10-1

Enabling this causes user data to be dumped after the connection is connected. If no
other debugging properties are enabled, then this will be the only WTC information
dumped, except normal WTC error/informational messages. The dump is available in
the WLS server log file.

The dump has the following format.

• For outbound messages

Outbound UDATA: buffer type (<type>, <subtype>)
+++++ User Data(size) +++++
......

• For inbound messages

Inbound UDATA: buffer type (<type>, <subtype>)
+++++ User Data(size) +++++
......

Frequently Asked Questions
This section provides solutions to common user questions.

What does this EJB Deployment Message Mean?
When I build the simpserv example, I get the following error:

<date> <Error> <EJB> <EJB Deployment: Tolower has a class
weblogic.wtc.jatmi.tpserviceHome which is in the classpath. This class should
only be located in the ejb-jar file.>

This error message can be ignored for this release of the WebLogic Tuxedo
Connector. The EJB wants all of the interfaces for an EJB call in the EJB jar file.
However, some interfaces for the WebLogic Tuxedo Connector are implemented
through the CLASSPATH, and the compiler throws an exception. When the EJB is
deployed, the compiler complains that the EJB cannot be redeployed because some of
its classes are found in the CLASSPATH.

How Do I Start the Connector?
Releases prior to WebLogic Server 7.0 used a WebLogic Server Startup class to start
a WebLogic Tuxedo Connector session and a WebLogic Server Shutdown class to
end a session. In WebLogic Server 8.1 and later, WebLogic Tuxedo Connector
sessions are managed using a WTC server.

• A WebLogic Tuxedo Connector session is started when a configured WTC server
is assigned to a selected server instance.

• A WebLogic Tuxedo Connector session is ended by removing a WTC server from
the WebLogic server instance or when you shut down the WebLogic server
instance.

How do I Start the Tuxedo Queuing Bridge?
The Tuxedo queuing bridge is started if the Tuxedo queuing bridge and redirections
configurations exist in your WTC server and the WTC server is assigned to a selected
server

Chapter 10
Frequently Asked Questions

10-2

How do I Assign a WTC Server to a Server Instance?
The WebLogic Server Administration Console displays an exception when I try to assign my
WTC server to a server instance. What should I do?

Make sure you have a valid WTC server configured. Each WTC server must have one or
more local Tuxedo access points configured before it can be assigned to a server instance.
Your server log will display the following:

<Apr 22, 2002 4:21:35 PM EDT> <Error> <WTC> <180101> <At least one local domain has to
be defined.>

How do I Resolve Connection Problems?
I'm having trouble getting a connection established between Oracle WebLogic Tuxedo
Connector and Tuxedo. What should I do?

• Make sure you have started your Tuxedo server.

• Set the TraceLevel and enable Debug mode. Repeat the connectivity test and check the
WebLogic Tuxedo Connector and Tuxedo log files for error messages.

• Avoid using machine names or localhost. Always use an IP address when specifying a
network location.

• Check your AclPolicy and CredentialPolicy attributes. If your AclPolicy is LOCAL, you
must register the remote domain DOMAINID as a WebLogic Server user. For more
information, see Section 3.5, User Authentication.

• If you are migrating from WebLogic Server 6.x and your applications use security, you
need to set PasswordKey as a WebLogic Server property. For more information, see How
to Set Oracle WebLogic Tuxedo Connector Properties.

• Check the WebLogic Tuxedo Connector configuration against the Tuxedo remote
domain. The remote domain must match the name of a remote domain configured in
Oracle WebLogic Tuxedo Connector.

For example: If the name simpapp is configured in the Tuxedo DMCONFIG
*DM_LOCAL_DOMAINS section, then this name must match the name in your remote
Tuxedo access point Access Point Id attribute.

• Request assistance from BEA Customer Support.

How do I Migrate from Previous Releases?
See Upgrading Oracle WebLogic Server.

Chapter 10
Frequently Asked Questions

10-3

Index

Index-1

	Contents
	Preface
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction to Oracle WebLogic Tuxedo Connector
	Document Scope
	Guide to this Document

	Oracle WebLogic Tuxedo Connector Overview
	Key Functionality and Administrative Features
	Known Limitations
	How Oracle WebLogic Tuxedo Connector Differs from Jolt
	Platform Support
	New and Changed Features in This Release

	2 Configuring Oracle WebLogic Tuxedo Connector
	Summary of Environment Changes and Considerations
	Oracle Tuxedo Changes
	WebLogic Server Changes
	Administration and Programming
	WebLogic Server Threads

	Configuring Oracle WebLogic Tuxedo Connector for Your Applications
	Oracle WebLogic Tuxedo Connector MBean Classes
	Configuring Oracle WebLogic Tuxedo Connector Using the Administration Console
	Configuring Oracle WebLogic Tuxedo Connector Using the Command-Line Interface
	Set the WebLogic Server Environment
	How to Set Oracle WebLogic Tuxedo Connector Properties
	Set PasswordKey
	Set encoding
	Set Dumping of User Data
	Enable IPv4 for SDP transport

	System Level Debug Settings
	Oracle WebLogic Tuxedo Connector Configuration Guidelines

	3 Oracle WebLogic Tuxedo Connector Administration
	Configuring the Connections Between Access Points
	How to Request a Connection at Boot Time (On Startup)
	How to Configure RetryInterval
	How to Configure MaxRetries

	How to Request Connections for Client Demands (On Demand)
	Accepting Incoming Connections (Incoming Only)
	How to use LOCAL Connection Policy

	Configuring Failover and Failback
	Prerequisite to Using Failover and Failback
	How to Configure Failover
	How Failback Works

	How to Configure Link-level Failover
	Sample Link-level Failover Configuration

	Configuring for TypedMBString Support
	Authentication of Remote Access Points
	Configuring a Password Configuration
	Using AES Encrypted Passwords

	Generating Encrypted Passwords
	Usage
	Examples
	Local Passwords
	Remote Passwords
	App Passwords

	User Authentication
	ACL Policy is LOCAL
	ACL Policy is GLOBAL
	Remote Access Point Credential Policy is GLOBAL
	Remote Access Point Credential Policy is LOCAL

	How to Configure Oracle WebLogic Tuxedo Connector to Provide Security between Oracle Tuxedo and Oracle WebLogic Server
	TpUsrFile Plug-in
	Configuring the Local Tuxedo Access Point for the TpUsrFile Plug-in
	Configure the Remote Tuxedo Access Point for the TpUsrFile Plug-in
	Using the Resources TpUsrFile attribute

	LDAP Plug-in
	Implementing Single Point Security Administration
	Configure the Local Tuxedo Access Point for the LDAP Plug-in
	Configure the Remote Tuxedo Access Point for the LDAP Plug-in

	Custom Plug-in
	Configure the Local Tuxedo Access Point for the Custom Plug-in
	Configure the Remote Tuxedo Access Point for the Custom Plug-in

	Anonymous Users
	Anonymous Users and CORBA Services

	Link-Level Encryption
	Secure Socket Level Encryption

	4 Controlling Oracle WebLogic Tuxedo Connector Connections and Services
	Dynamic Administration of Connections
	Using the WebLogic Server Administration Console
	Using WebLogic Scripting Tool (WLST)
	Listing Connections
	Starting Connections
	Stopping Connections
	Modifying Configuration Attributes

	Suspend/Resume WTC Services
	Using the WebLogic Server Administration Console
	Using WebLogic Scripting Tool (WLST)
	Checking Status of WTC Services
	Suspending WTC Services
	Resuming WTC Services

	Suspend/Resume WTC Services Dynamically

	5 Administration of CORBA Applications
	How to Configure Oracle WebLogic Tuxedo Connector for CORBA Service Applications
	Example WTC Server and Tuxedo UBB Files

	How to Administer and Configure Oracle WebLogic Tuxedo Connector for Inbound RMI-IIOP
	Configuring Your WTC Server for Inbound RMI-IIOP
	Administering the Tuxedo Application Environment
	Guidelines About Using Your Server Name as an Object Reference

	How to Configure Oracle WebLogic Tuxedo Connector for Outbound RMI-IIOP
	Example Outbound RMI-IIOP Configuration

	6 How to Manage Oracle WebLogic Tuxedo Connector in a Clustered Environment
	Oracle WebLogic Tuxedo Connector Guidelines for Clustered Environments
	How to Configure for Clustered Nodes
	Limitations for Clustered Nodes

	How to Configure OutBound Requests to Tuxedo Domains
	Example Clustered Oracle WebLogic Tuxedo Connector Configuration

	How to Configure Inbound Requests from Tuxedo Domains
	Load Balancing
	Fail Over

	7 How to Configure the Oracle Tuxedo Queuing Bridge
	Overview of the Tuxedo Queuing Bridge
	How Tuxedo Queuing Bridge connects JMS with Tuxedo
	How Tuxedo Queuing Bridge connects Tuxedo to JMS
	Tuxedo Queuing Bridge Limitations

	Configuring the Tuxedo Queuing Bridge
	Dynamically Adding/Modifying Tuxedo Queuing Bridge
	Tuxedo Queuing Bridge Instantiate
	Starting the Tuxedo Queuing Bridge
	Error Logging

	Tuxedo Queuing Bridge Connectivity
	Example Connection Type Configurations
	Example JmsQ2TuxQ Configuration
	Example TuxQ2JmsQ Configuration
	Example JmsQ2TuxS Configuration

	Priority Mapping
	Error Queues
	WLS Error Destination
	Unsupported Message Types
	Tuxedo Error Queue
	Limitations

	8 Connecting WebLogic Integration and Tuxedo Applications
	Synchronous WebLogic Integration-to-Tuxedo Connectivity
	Defining Business Operations
	Invoking an eLink Adapter
	Define Exception handlers

	Synchronous Non-Blocking WebLogic Integration-to-Tuxedo Connectivity
	Asynchronous WebLogic Integration-to-Tuxedo Connectivity
	Asynchronous Tuxedo /Q-to-WebLogic Integration Connectivity
	Bi-directional Asynchronous Tuxedo-to-WebLogic Integration Connectivity

	9 WebLogic Tuxedo Connector Samples Quick Start Guide
	Where to Find Oracle WebLogic Tuxedo Connector Samples
	Configuring the Oracle WebLogic Tuxedo Connector
	Build the Simpapp Example
	Create WTC Servers
	Create a Local Oracle Tuxedo Access Point
	Create a Remote Oracle Tuxedo Access Point
	Create Exported Services
	Create Imported Services
	Target mySimpapp to the examplesServer
	Register TDOM1 as an Oracle WebLogic Server User

	Configuring Oracle Tuxedo
	Run the Example
	Oracle WebLogic Server to Oracle Tuxedo Interoperability
	Oracle Tuxedo to Oracle WebLogic Server Interoperability

	10 Troubleshooting The WebLogic Tuxedo Connector
	Monitoring the WebLogic Tuxedo Connector
	Set Trace Levels (Deprecated)
	Enable Debug Mode
	Enable a User Data Dump

	Frequently Asked Questions
	What does this EJB Deployment Message Mean?
	How Do I Start the Connector?
	How do I Start the Tuxedo Queuing Bridge?
	How do I Assign a WTC Server to a Server Instance?
	How do I Resolve Connection Problems?
	How do I Migrate from Previous Releases?

	Index

