
Oracle® Fusion Middleware
Developing Oracle Infrastructure Web
Services

12c (12.2.1.4.0)
F23323-01
September 2019

Oracle Fusion Middleware Developing Oracle Infrastructure Web Services, 12c (12.2.1.4.0)

F23323-01

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Lawallambok Wahlang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

 What's New in This Guide

New and Changed Features for 12c (12.2.1.4.0) xi

New and Changed Features for 12c (12.2.1.3.0) xi

New and Changed Features for 12c (12.2.1.2.0) xi

New and Changed Features for 12c (12.2.1.1.0) xi

1 Introduction to Oracle Infrastructure Web Services

1.1 Overview of Oracle Infrastructure Web Services 1-1

1.2 Supported Standards for Developing Oracle Infrastructure Web Services 1-1

1.3 Related documents for developing Oracle Infrastructure Web Services 1-5

2 Understanding How Policies Attach to Oracle Infrastructure Web
Services

2.1 What Are Policies and Policy Sets? 2-1

2.2 Understanding OWSM Predefined Policies and Assertion Templates 2-1

2.3 Overview of How Policies Attach to Web Services 2-2

3 Introduction to Securing Oracle Infrastructure Web Services

3.1 Overview of Web Services Security 3-1

3.2 About OWSM Predefined Security Policies and Assertion Templates 3-2

3.3 About Security Policies Attachment 3-2

3.4 About Security Policies Configuration 3-3

iii

4 Introduction to Developing Asynchronous Web Services

4.1 Understanding Asynchronous Web Services 4-1

4.1.1 Understanding the Flow of an Asynchronous Web Service Using a
Single Request Queue 4-2

4.1.2 Understanding the Flow of an Asynchronous Web Service Using a
Request and a Response Queue 4-3

4.1.3 Understanding the Client Perspective of an Asynchronous Web Service
Call 4-4

4.1.4 Understanding How Asynchronous Messages Are Correlated 4-5

4.2 About Using JDeveloper to Develop and Deploy Asynchronous Web Services 4-5

4.3 Annotation to Develop an Asynchronous Web Service 4-6

4.4 Creating the Request and Response Queues 4-7

4.4.1 Using the Default WebLogic JMS Queues 4-7

4.4.1.1 Default WebLogic JMS Queues in Non-clustered Domains 4-7

4.4.1.2 Tuning the Default JMS Delivery Failure Parameters 4-8

4.4.2 Creating Custom Request and Response Queues 4-8

4.4.3 About Custom Request and Response Queues 4-9

4.4.4 Best Practices for Creating the Custom Request and Response Queues 4-9

4.4.5 Modify Request and Response Queues at Runtime 4-10

4.4.6 Securing the Request and Response Queues 4-10

4.4.6.1 About Configuring a Custom JMS System User (Optional) 4-10

4.4.6.2 About the WLST Script for Securing the Request and Response
Queues 4-11

4.4.7 Confirming the Request and Response Queue Configuration 4-11

4.5 Annotation to Configure the Callback Service 4-12

4.6 Configuring SSL for Asynchronous Web Services 4-13

4.7 Defining Asynchronous Web Service Clients 4-14

4.7.1 Asynchronous Client Code 4-14

4.7.2 Callback Service Code 4-15

4.8 Attaching Policies to Asynchronous Web Services and Clients 4-16

4.8.1 About Attaching Policies to Asynchronous Web Service Clients 4-17

4.8.2 Policies to Attach for Asynchronous Callback Services 4-18

4.8.3 About Attaching Policies to Callback Clients 4-19

5 Introduction to Using Web Services Reliable Messaging

5.1 Web Services Reliable Messaging 5-1

5.2 Predefined Reliable Messaging Policies in Oracle Infrastructure Web Services 5-2

5.3 About Attachment of Reliable Messaging Policies to Oracle Infrastructure
Web Services 5-2

5.4 Reliable Messaging Policies Configuration 5-3

iv

6 Introduction to Using Web Services Atomic Transactions

6.1 Overview of Web Services Atomic Transactions Framework 6-1

6.2 Overview of Web Services Atomic Transactions in WebLogic Server
Environment 6-2

6.3 Components of Web Services Atomic Transactions 6-3

6.4 How Web Services Atomic Transactions are Enabled on a Web Service
(Inbound) 6-3

6.5 How Web Services Atomic Transactions are Enabled on a Web Service Client
(Outbound) 6-4

6.6 Web Services Atomic Transaction Configuration 6-4

6.7 Properties Configured for Messages Exchanged Between the Coordinator and
Participant 6-6

7 Introduction to Optimizing XML Transmission Using Fast Infoset

7.1 Overview of Fast Infoset 7-1

7.2 Enabling Fast Infoset on Web Services 7-1

7.3 About Enabling and Configuring Fast Infoset on Web Services Clients 7-2

7.3.1 Content Negotiation Strategy 7-2

7.3.2 Using FastInfosetClientFeature Feature Class at Design Time 7-3

7.4 Disabling Fast Infoset on Web Services and Clients 7-4

8 Introduction to Using MTOM Encoded Message Attachments

8.1 Overview of Message Transmission Optimization Mechanism 8-1

8.2 About Predefined MTOM Attachment Policies 8-2

8.3 About MTOM Policies Attachment 8-2

8.4 About MTOM Policies Configuration 8-2

9 Introduction to Developing RESTful Web Services

9.1 Overview of RESTful Web Services 9-1

9.2 How RESTful Web Services Requests Are Formed and Processed 9-1

9.2.1 HTTP Get Requests 9-2

9.2.1.1 About HTTP Get Requests 9-2

9.2.1.2 Building HTTP Get Requests 9-2

9.2.2 HTTP Post Requests 9-3

9.2.2.1 About the HTTP Post Requests 9-4

9.2.2.2 Building HTTP Post Requests 9-4

9.2.3 RESTful Responses 9-4

9.3 Understanding the Limitations of RESTful Web Service Support 9-5

v

10

Invoking a Web Service from a Standalone Client

10.1 Using a Standalone Client Jar to Invoke a Web Service 10-1

10.2 Supporting Basic Authentication 10-2

10.3 Supporting SSL Policies 10-2

11

About Testing Web Services

12

Interoperability Guidelines

12.1 Introduction to Web Service Interoperability 12-1

12.2 Web Service Interoperability Organizations 12-2

12.2.1 About the SOAPBuilders Community 12-2

12.2.2 About the WS-Interoperability Organization 12-2

12.3 Recommended Guidelines for Creating Interoperable Web Services 12-3

12.3.1 Why Design Web Services Using a Top Down Approach? 12-3

12.3.2 About Designing Data Types Using XSD First 12-3

12.3.3 Keeping Data Types Simple 12-4

12.3.3.1 Why Use Single-Dimensional Arrays? 12-4

12.3.3.2 Why Differentiate Between Empty Arrays and Null References to
Arrays? 12-4

12.3.3.3 Why Avoid Using Sparse, Variable-Sized, or Multi-Dimensional
Arrays? 12-5

12.3.3.4 Why Avoid Using xsd:anyType? 12-5

12.3.3.5 Why Map Any Unsupported xsd:types to a SOAPElement? 12-5

12.3.4 About Using Null Values With Care 12-5

12.3.5 About Using a Compliance Testing Tool to Validate the WSDL 12-5

12.3.6 Why Consider Differences Between Platform Native Types? 12-6

12.3.7 Why Avoid Using RPC-Encoded Message Format? 12-6

12.3.8 Understanding How to Avoid Name Collisions 12-6

12.3.9 Why Use Message Handlers, Custom Serializers, or Interceptors? 12-7

12.3.10 Why Apply WS-* Specifications Judiciously? 12-7

vi

List of Figures

4-1 Asynchronous Web Service Using a Single Request Queue 4-2

4-2 Asynchronous Web Service Using a Request and Response Queue 4-3

4-3 Asynchronous Web Service Client Flow 4-4

6-1 Web Services Atomic Transactions Framework 6-2

6-2 Web Services Atomic Transactions in WebLogic Server Environment 6-2

vii

List of Tables

1 Related Documents ix

1-1 Specifications Supported by Oracle Infrastructure Web Services 1-2

4-1 Annotations Used to Configure the Callback Service' 4-12

4-2 Annotations for Attaching Policies to Web Services and Callback Services 4-18

5-1 Delivery Assurances for Reliable Messaging 5-1

5-2 Predefined Reliable Messaging Policies 5-2

6-1 Components of Web Services Atomic Transactions 6-3

6-2 Web Services Atomic Transactions Configuration Options 6-4

6-3 Flow Transaction coordination contextypes Values 6-5

6-4 Securing Web Services Atomic Transactions 6-6

7-1 Content Negotiation Strategy 7-3

8-1 Predefined MTOM Attachment Policies 8-2

viii

Preface

This preface describes the intended audience, document accessibility features, and
conventions used in this guide.

Audience
This document is intended for programmers that are developing Oracle Infrastructure
web services, including SOA, Application Development Framework (ADF) services.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
12c documentation set:

Table 1 Related Documents

Document Description

Understanding Web
Services

Provides an introduction to web services for Oracle Fusion
Middleware 12c.

Understanding WebLogic
Web Services for Oracle
WebLogic Server

Provides an introduction to WebLogic Web Services (Java EE).

Understanding Oracle Web
Services Manager

Introduces Oracle Web Services Manager (OWSM) used for web
services policy attachment and management.

Administering Web Services Describes how to secure and administer web services.

Securing Web Services and
Managing Policies with
Oracle Web Services
Manager

Describes how to secure web services using OWSM policies.
This document also describes how to create and manage OWSM
policies.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Table 1 (Cont.) Related Documents

Document Description

Use Cases for Securing
Web Services Using Oracle
Web Services Manager

Provides use cases that demonstrate how to secure web
services using OWSM.

Extensibility Guide for
Oracle Web Services
Manager

Describes how to build custom policy assertions for OWSM.

Interoperability Solutions
Guide for Oracle Web
Services Manager

Describes how to implement the most common OWSM
interoperability scenarios.

Developing SOA
Applications with Oracle
SOA Suite

Describes how to develop SOA composite services.

Developing Fusion Web
Applications with Oracle
Application Development
Framework

Describes how to develop ADF components.

"Developing and Securing
Web Services" in
Developing Applications
with Oracle JDeveloper

Describes how to develop web services and attach policies using
Oracle JDeveloper.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

What's New in This Guide

The following topics introduce the new and changed features of Oracle Infrastructure
web services and other significant changes that are described in this guide, and
provides pointers to additional information.

New and Changed Features for 12c (12.2.1.4.0)
This revision contains no new features.

For a comprehensive listing of the new Oracle Web Services Manager features
introduced in this release, see New and Changed Features for 12c (12.2.1.4.0) in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

New and Changed Features for 12c (12.2.1.3.0)
This revision contains no new features. Minor updates were made throughout the
guide.

For a comprehensive listing of the new Oracle Web Services Manager features
introduced in this release, see New and Changed Features for 12c (12.2.1.3.0) in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

New and Changed Features for 12c (12.2.1.2.0)
This revision contains no new features. Minor updates were made throughout the
guide.

For a comprehensive listing of the new Oracle Web Services Manager features
introduced in this release, see New and Changed Features for 12c (12.2.1.2.0) in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

New and Changed Features for 12c (12.2.1.1.0)
This revision contains no new features. Minor updates were made throughout the
guide.

Minor updates, such as fixes or corrections, were made to this document.

For a comprehensive listing of the new Oracle Web Services Manager features
introduced in this release, see New and Changed Features for 12c (12.2.1.1.0) in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

xi

1
Introduction to Oracle Infrastructure Web
Services

An introduction of Oracle Infrastructure web services, description of concepts for
developing Oracle Infrastructure web services, and an overview of supported
standards and related documentation is described in this chapter.

• Overview of Oracle Infrastructure Web Services

• Supported Standards for Developing Oracle Infrastructure Web Services

• Related documents for developing Oracle Infrastructure Web Services

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 Overview of Oracle Infrastructure Web Services
In Oracle Fusion Middleware 12c, there are two categories of web services to support
the development, security, and administration of the following types of web services:

• Oracle Infrastructure web services—SOA, Application Development Framework
(ADF), Oracle Service Bus, and Oracle Enterprise Scheduler services

• Java EE web services—SOAP (JAX-WS) and RESTful (JAX-RS) web services

For more information about the web service and client types, see "Overview of Web
Services in Oracle Fusion Middleware 12c" in Understanding Web Services.

For more information about Java EE web services, see Overview of WebLogic Web
ServicesUnderstanding WebLogic Web Services for Oracle WebLogic Server.

1.2 Supported Standards for Developing Oracle
Infrastructure Web Services

Oracle considers interoperability of web services platforms to be more important than
providing support for all possible edge cases of the web services specifications.

The following table summarizes the Oracle Infrastructure web service specifications
that are part of the Oracle implementation, organized by high-level feature.

Oracle complies with the following specifications from the Web Services
Interoperability Organization and considers them to be the baseline for web services
interoperability:

• Basic Profile 1.1 and 1.0: http://www.ws-i.org/Profiles/
BasicProfile-1.1-2004-08-24.html

• Basic Security Profile 1.0: http://www.ws-i.org/Profiles/
BasicSecurityProfile-1.0.html

1-1

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

• WS-I Attachments Profile 1.0: http://www.ws-i.org/Profiles/
AttachmentsProfile-1.0.html

Note:

For more information about Oracle Infrastructure web service security
standards, see "Web Services Security Standards" in Understanding Oracle
Web Services Manager.

Table 1-1 Specifications Supported by Oracle Infrastructure Web Services

Feature Specification

Programming model (based
on metadata annotations)
and runtime architecture

Web Services Metadata Exchange (WS-MetadataExchange) 1.1—Part of the
WS-Federation roadmap which allows retrieval of metadata about a web service
endpoint. For more information, see Web Services Metadata Exchange (WS-
MetadataExchange) specification at http://xml.coverpages.org/WS-
MetadataExchange.pdf.

Web service description • Web Services Description Language (WSDL) 1.1—XML-based specification
that describes a web service. For more information, see Web Services
Description Language (WSDL) at http://www.w3.org/TR/wsdl

• Web Services Policy Framework (WS-Policy) 1.5 and 1.2—General purpose
model and corresponding syntax to describe and communicate the policies of a
web service. For more information, see:

WS-Policy 1.5 Framework (Recommendation): http://www.w3.org/TR/ws-
policy/

WS-Policy 1.2 Framework (Member Submission): http://www.w3.org/
Submission/WS-Policy

• Web Services Policy Attachment (WS-PolicyAttachment) 1.5 and 1.2—
Abstract model and an XML-based expression grammar for policies. For more
information, see:

WS-Policy Attachment 1.5 (Recommendation): http://www.w3.org/TR/ws-
policy-attach/

WS-PolicyAttachment 1.2 (Member Submission): http://www.w3.org/
Submission/WS-PolicyAttachment

Data exchange between
web service and requesting
client

• Simple Object Access Protocol (SOAP) 1.1 and 1.2—Lightweight XML-based
protocol used to exchange information in a decentralized, distributed
environment. For more information, see Simple Object Access Protocol (SOAP)
at http://www.w3.org/TR/SOAP

• SOAP with Attachments API for Java (SAAJ) 1.3—Implementation that
developers can use to produce and consume messages conforming to the
SOAP 1.1 specification and SOAP with Attachments notes. For more
information, see the SOAP with Attachments API for Java (SAAJ) specification
at https://saaj.dev.java.net

• Message Transmission Optimization Mechanism (MTOM) you can specify
that a web service use a streaming API when reading inbound SOAP messages
that include attachments, rather than the default behavior in which the service
reads the entire message into memory. For more information, see SOAP
Message Transmission Optimization Mechanism specification at http://
www.w3.org/TR/soap12-mtom/

Chapter 1
Supported Standards for Developing Oracle Infrastructure Web Services

1-2

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://xml.coverpages.org/WS-MetadataExchange.pdf
http://xml.coverpages.org/WS-MetadataExchange.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/Submission/WS-Policy
http://www.w3.org/Submission/WS-Policy
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/Submission/WS-PolicyAttachment
http://www.w3.org/Submission/WS-PolicyAttachment
http://www.w3.org/TR/SOAP
https://saaj.dev.java.net
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/

Table 1-1 (Cont.) Specifications Supported by Oracle Infrastructure Web Services

Feature Specification

Security • Web Services Security (WS-Security) 1.0 and 1.1—Standard set of SOAP
[SOAP11, SOAP12] extensions that can be used when building secure web
services to implement message content integrity and confidentiality. For more
information, see OASIS Web Service Security Web page at http://
www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Web services security supports the following security tokens:

- Username—defines how a web service consumer can supply a username as a
credential for authentication).

- X.509 certificate—a signed data structure designed to send a public key to a
receiving party.

- Kerberos ticket—a binary authentication and session token.

- Security Assertion Markup Language (SAML) assertion—shares security
information over the Internet through XML documents

For more information, see "Web Services Security Standards" in Understanding
Oracle Web Services Manager.

• Web Services Security Policy (WS-SecurityPolicy) 1.3, 1.2, and 1.1—Set of
security policy assertions for use with the WS-Policy framework. For more
information, see

Web Services Security Policy (WS-SecurityPolicy) 1.3 specification at http://
docs.oasis-open.org/ws-sx/ws-securitypolicy/200802

Web Services Security Policy (WS-SecurityPolicy) 1.2 specification at http://
docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-os.html

Web Services Security Policy (WS-SecurityPolicy) 1.1 specification at http://
specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-
securitypolicy.pdf

• Security Assertion Markup Language (SAML) 2.0—XML standard for
exchanging authentication and authorization data between security domains.
For more information, see the Security Assertion Markup Language (SAML)
specification at http://docs.oasis-open.org/security/saml/v2.0/

• Security Assertion Markup Language (SAML) Token Profile 1.1—Set of
SOAP extensions that implement SOAP message authentication and
encryption. For more information, see the Security Assertion Markup Language
(SAML) Token Profile 1.1 specification at http://www.oasis-open.org/
committees/download.php/16768/wss-v1.1-spec-os-
SAMLTokenProfile.pdf

• WS-Trust—Defines extensions to WS-Security that provide a framework for
requesting and issuing security tokens, and to broker trust relationships. For
more information, see http://docs.oasis-open.org/ws-sx/ws-trust/
v1.3/ws-trust.html

• WS-SecureConversation—This specification defines extensions that are build
on WS-Security to allow security context establishment and sharing, and
session key derivation for multiple message exchanges. For more information,
see the following URLs:

– http://docs.oasis-open.org/ws-sx/ws-secureconversation/
200512/ws-secureconversation-1.3-os.html

– http://docs.oasis-open.org/ws-sx/ws-secureconversation/
v1.4/ws-secureconversation.html

Chapter 1
Supported Standards for Developing Oracle Infrastructure Web Services

1-3

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200802
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200802
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://docs.oasis-open.org/security/saml/v2.0/
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.3/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html

Table 1-1 (Cont.) Specifications Supported by Oracle Infrastructure Web Services

Feature Specification

• XML Signature—Defines an XML syntax for digital signatures. For more
information, see XML Signature Syntax and Processing at http://
www.w3.org/TR/xmldsig-core/

• XML Encryption—Defines how to encrypt the contents of an XML element. For
more information, see XML Encryption Syntax and Processing at http://
www.w3.org/TR/xmlenc-core/

Reliable communication • Web Services Addressing (WS-Addressing) 1.0—Transport-neutral
mechanisms to address web services and messages. For more information, see
Web Services Addressing (WS-Addressing) specification at http://
www.w3.org/TR/ws-addr-core.

• Web Services Reliable Messaging (WS-ReliableMessaging) 1.0 and 1.1—
Implementation that enables two web services running on different WebLogic
Server instances to communicate reliably in the presence of failures in software
components, systems, or networks. For more information, see:

Web Services Reliable Messaging (WS-ReliableMessaging) 1.1 specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-
os-01.pdf

Web Services Reliable Messaging (WS-ReliableMessaging) 1.0 specification at
http://specs.xmlsoap.org/ws/2005/02/rm/ws-
reliablemessaging.pdf

• Web Services Reliable Messaging Policy (WS-ReliableMessaging Policy)
1.1—Domain-specific policy assertion for reliable messaging for use with WS-
Policy and WS-ReliableMessaging. For more information, see Web Services
Reliable Messaging Policy (WS-ReliableMessaging Policy) specification at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-
os-01.pdf

Atomic transactions Web Services Atomic Transaction—Defines the Atomic Transaction coordination
type that is to be used with the extensible coordination framework described in the
Web Services Coordination specification. The WS-AtomicTransaction and WS-
Coordination specifications define an extensible framework for coordinating
distributed activities among a set of participants. For more information, see:

• WS-AtomicTransaction: http://docs.oasis-open.org/ws-tx/wstx-
wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html

• WS-Coordination: http://docs.oasis-open.org/ws-tx/wstx-
wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

Optimizing XML
transmission

• Fast Infoset—Compressed binary encoding format that provides a more
efficient serialization than the text-based XML format. Fast Infoset optimizes
both document size and processing performance.The Fast Infoset specification,
ITU-T Rec. X.891 and ISO/IEC 24824-1 (Fast Infoset) is defined by both the
ITU-T and ISO standards bodies. The specification can be downloaded from the
ITU Web site: http://www.itu.int/rec/T-REC-X.891-200505-I/en

• Message Transmission Optimization Mechanism (MTOM)—Defines a
method for optimizing the transmission of XML data of type xs:base64Binary
or xs:hexBinary in SOAP messages.

Chapter 1
Supported Standards for Developing Oracle Infrastructure Web Services

1-4

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-core
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://www.itu.int/rec/T-REC-X.891-200505-I/en

Table 1-1 (Cont.) Specifications Supported by Oracle Infrastructure Web Services

Feature Specification

Advertisement (registration
and discovery)

• Universal Description, Discovery, and Integration (UDDI) 2.0—Standard for
describing a web service; registering a web service in a well-known registry; and
discovering other registered web services. For more information, see the
Universal Description, Discovery, and Integration (UDDI) specification at
http://uddi.xml.org

• Web Services Inspection Language 1.0—Provides an XML format for
assisting in the inspection of a site for available services. For more information,
see Web Services Inspection Language (WS-Inspection) 1.0 specification at
http://download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-wsilspec/ws-wsilspec.pdf.

1.3 Related documents for developing Oracle Infrastructure
Web Services

Oracle Infrastructure web services development is one of the two categories of web
service supported by Oracle Fusion Middleware 12c.

Refer the following section for a summary of documents related to Oracle
Infrastructure web services development, security, and administration: Related
Documents

Chapter 1
Related documents for developing Oracle Infrastructure Web Services

1-5

http://uddi.xml.org
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-wsilspec/ws-wsilspec.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-wsilspec/ws-wsilspec.pdf

2
Understanding How Policies Attach to
Oracle Infrastructure Web Services

Certain policies and policy sets are attached to Oracle Infrastructure web services to
manage and secure web services consistently across your organization.
This chapter describes policies and policy sets, provides information about the OWSM
predefined policies and templates, and explains how policies attach to Oracle
Infrastructure web services. It included the following sections:

• What Are Policies and Policy Sets?

• Understanding OWSM Predefined Policies and Assertion Templates

• Overview of How Policies Attach to Web Services

2.1 What Are Policies and Policy Sets?
Policies describe the capabilities and requirements of a web service such as whether
and how a message must be secured, whether and how a message must be delivered
reliably, and so on.

For more information, see "Understanding Polices" in Understanding Oracle Web
Services Manager.

A policy set, which can contain multiple policy references, is an abstract representation
that provides a means to attach policies globally to a range of subjects of the same
type. Attaching policies globally using policy sets provides a mechanism for the
administrator to ensure that all subjects are secured in situations where the developer,
assembler, or deployer did not explicitly specify the policies to be attached. Policies
that are attached using a policy set are considered externally attached.

Policy sets provide the ability to specify a runtime constraint that determines the
context in which the policy set is relevant. For example, you can specify that a service
use message protection when communicating with external clients only since the
message may be transmitted over insecure public networks. However, when
communicating with internal clients on a trusted network, message protection may not
be required. For more information about policy sets, see "Global Policy Attachments
Using Policy Sets" in Understanding Oracle Web Services Manager.

2.2 Understanding OWSM Predefined Policies and
Assertion Templates

Oracle Web Services Manager (OWSM) provides a policy framework to manage and
secure web services consistently across your organization.

OWSM can be used by both developers, at design time, and system administrators in
production environments. For more information about the OWSM policy framework,
see "Understanding the OWSM Policy Framework" in Understanding Oracle Web
Services Manager.

2-1

There is a set of predefined OWSM policies and assertion templates that are
automatically available when you install Oracle Fusion Middleware. The predefined
policies are based on common best practice policy patterns used in customer
deployments.

You can immediately begin attaching these predefined policies to your web services or
clients. You can configure the predefined policies or create a new policy by making a
copy of one of the predefined policies.

Predefined policies are constructed using assertions based on predefined assertion
templates. You can create new assertion templates, as required.

For more information about the predefined OWSM policies and assertion templates,
see the following sections in Securing Web Services and Managing Policies with
Oracle Web Services Manager:

• "Predefined Policies"

• "Predefined Assertion Templates"

2.3 Overview of How Policies Attach to Web Services
Security policies provide a framework to manage and secure web services consistently
across your organization.

Security policies can be attached directly to web services endpoints:

• Programmatically, at design time, using annotations. When developing an
application using JDeveloper, you can take advantage of the wizards available to
attach policies to web services and clients.

• Post-deployment using Oracle Fusion Middleware and WLST.

In addition, policy sets provide a means to attach policies globally to a range of
endpoints of the same type.

For complete details, see "Attaching Policies" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Chapter 2
Overview of How Policies Attach to Web Services

2-2

3
Introduction to Securing Oracle
Infrastructure Web Services

You have to secure Oracle Infrastructure web services.

This chapter describes how to secure Oracle Infrastructure web services. It includes
the following sections:

• Overview of Web Services Security

• About OWSM Predefined Security Policies and Assertion Templates

• About Security Policies Attachment

• About Security Policies Configuration

3.1 Overview of Web Services Security
Oracle Web Services Manager (WSM) is designed to define and implement web
services security.

Web services security includes several aspects, as described below:

• Authentication—Verifying that the user is who she claims to be. A user's identity
is verified based on the credentials presented by that user, such as:

– Something one has, for example, credentials issued by a trusted authority
such as a passport (real world) or a smart card (IT world).

– Something one knows, for example, a shared secret such as a password.

– Something one is, for example, biometric information.

Using a combination of several types of credentials is referred to as "strong"
authentication, for example using an ATM card (something one has) with a PIN or
password (something one knows).

• Authorization (or Access Control)—Granting access to specific resources
based on an authenticated user's entitlements. Entitlements are defined by one or
several attributes. An attribute is the property or characteristic of a user, for
example, if "Marc" is the user, "conference speaker" is the attribute.

• Confidentiality, privacy—Keeping information secret. Accesses a message, for
example a web service request or an email, as well as the identity of the sending
and receiving parties in a confidential manner. Confidentiality and privacy can be
achieved by encrypting the content of a message and obfuscating the sending and
receiving parties' identities.

• Integrity, non repudiation—Making sure that a message remains unaltered
during transit by having the sender digitally sign the message. A digital signature is
used to validate the signature and provides non-repudiation. The timestamp in the
signature prevents anyone from replaying this message after the expiration.

For more information about these web services security concepts, see "Understanding
Web Services Security Concepts" in Understanding Oracle Web Services Manager.

3-1

Oracle Web Services Manager (WSM) is designed to define and implement web
services security in heterogeneous environments, including authentication,
authorization, message encryption and decryption, signature generation and
validation, and identity propagation across multiple web services used to complete a
single transaction. In addition, OWSM provides tools to manage web services based
on service-level agreements. For example, the user (a security architect or a systems
administrator) can define the availability of a web service, its response time, and other
information that may be used for billing purposes. For more information about OWSM,
see "Understanding OWSM Policy Framework" in Understanding Oracle Web Services
Manager.

3.2 About OWSM Predefined Security Policies and
Assertion Templates

OWSM provides a set of predefined policies and assertion templates that are
automatically available when you install Oracle Fusion Middleware.

For more information, seeUnderstanding How Policies Attach to Oracle Infrastructure
Web Services .

OWSM provides a set of predefined policies and assertion templates that are
automatically available when you install Oracle Fusion Middleware. The following
categories of security policies and assertion templates are available in this pre-defined
set:

• Authentication Only Policies

• Message Protection Only Policies

• Message Protection and Authentication Policies

• Authorization Only Policies

For more information about the predefined OWSM policies and assertion templates,
see the following sections in Securing Web Services and Managing Policies with
Oracle Web Services Manager:

• "Predefined Policies"

• "Predefined Assertion Templates"

For assistance in determining which security policies to use, see "Determining Which
Security Policies to Use" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

3.3 About Security Policies Attachment
You can attach security policies to Oracle Infrastructure web services and clients at
design time using Oracle JDeveloper, or at runtime using the Fusion Middleware
Control.

For more information see Understanding How Policies Attach to Oracle Infrastructure
Web Services .

Chapter 3
About OWSM Predefined Security Policies and Assertion Templates

3-2

3.4 About Security Policies Configuration
You must configure the security policies before you can use them in your environment.

The steps to configure security policies are described in "Securing Web Services" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Chapter 3
About Security Policies Configuration

3-3

4
Introduction to Developing Asynchronous
Web Services

An introduction of asynchronous web service concepts and a description of how to
develop and configure asynchronous web services is detailed in this chapter.

It includes the following topics:

• Understanding Asynchronous Web Services

• About Using JDeveloper to Develop and Deploy Asynchronous Web Services

• Annotation to Develop an Asynchronous Web Service

• Creating the Request and Response Queues

• Annotation to Configure the Callback Service

• Configuring SSL for Asynchronous Web Services

• Defining Asynchronous Web Service Clients

• Attaching Policies to Asynchronous Web Services and Clients

4.1 Understanding Asynchronous Web Services
A client can continue its processing, without interruption by calling a web service
asynchronously.

When you invoke a web service synchronously, the invoking client application waits for
the response to return before it can continue with its work. In cases where the
response returns immediately, this method of invoking the web service might be
adequate. However, because request processing can be delayed, it is often useful for
the client application to continue its work and handle the response later on. By calling
a web service asynchronously, the client can continue its processing, without interrupt,
and will be notified when the asynchronous response is returned.

The following sections step through several asynchronous message flow diagrams,
provide the perspective from the client-side, and explain how asynchronous messages
are correlated:

• Understanding the Flow of an Asynchronous Web Service Using a Single Request
Queue

• Understanding the Flow of an Asynchronous Web Service Using a Request and a
Response Queue

• Understanding the Client Perspective of an Asynchronous Web Service Call

• Understanding How Asynchronous Messages Are Correlated

4-1

4.1.1 Understanding the Flow of an Asynchronous Web Service Using
a Single Request Queue

In an asynchronous web service using a single request queue there is a single
message-driven bean (MDB) associated with the request queue that handles both the
request and response processing.

Note:

Although the single request queue scenario may provide better performance,
it is less reliable than the request and response queue scenario. Oracle
recommends that you use the request and response queue scenario,
described in Understanding the Flow of an Asynchronous Web Service Using
a Request and a Response Queue, and not the single request queue
scenario.

The following diagram illustrates the flow of an asynchronous web service using a
single request queue. In this scenario, there is a single message-driven bean (MDB)
associated with the request queue that handles both the request and response
processing.

Figure 4-1 Asynchronous Web Service Using a Single Request Queue

The following steps describe the flow shown in the previous figure:

1. The client calls an asynchronous method.

2. The asynchronous web services receives the request and stores it in the request
queue.

3. The asynchronous web service sends a receipt confirmation to the client.

4. The MDB listener on the request queue receives the message and initiates
processing of the request.

5. The request MDB calls the required method in the web service implementation.

Chapter 4
Understanding Asynchronous Web Services

4-2

6. The web service implementation returns the response.

7. The request MDB, acting as a callback client, returns the response to the callback
service.

8. The callback service returns a receipt confirmation message.

9. The request MDB returns a confirmation message to the request queue to
terminate the process.

In this scenario, if there is a problem connecting to the callback service (in Step 7),
then the response will not be sent. If the request is retried later, the flow resumes from
Step 4 and the web service implementation will be called again (in Step 5). This may
not be desirable depending on your application logic or transactional control
processing. In the next scenario, the response is stored in a separate response queue,
eliminating the need to recall the web service implementation in the event that the
callback service is not available initially.

4.1.2 Understanding the Flow of an Asynchronous Web Service Using
a Request and a Response Queue

Use of two MDBs provide improved error recovery over the single queue model.

The following diagram illustrates the flow of an asynchronous method call using a
single request queue. In this scenario, there are two MDBs, one to handle the request
processing and one to handle the response processing. By separating the execution of
business logic from the response return, this scenario provides improved error
recovery over the single queue model described in Understanding the Flow of an
Asynchronous Web Service Using a Single Request Queue.

Figure 4-2 Asynchronous Web Service Using a Request and Response Queue

Chapter 4
Understanding Asynchronous Web Services

4-3

The following steps describe the flow shown in the previous figure:

1. The client calls an asynchronous method.

2. The asynchronous web services receives the request and stores it in the request
queue.

3. The asynchronous web service sends a receipt confirmation to the client.

4. The MDB listener on the request queue receives the message and initiates
processing of the request.

5. The request MDB calls the required method in the web service implementation.

6. The web service implementation returns the response.

7. The request MDB saves the response to the response queue.

8. The request MDB sends a confirmation to the request queue to terminate the
process.

9. The onMessage listener on the response queue initiates processing of the
response.

10. The response MDB, acting as the callback client, returns the response to the
callback service.

11. The callback service returns a receipt confirmation message.

12. The response MDB returns a confirmation message to the response queue to
terminate the sequence.

4.1.3 Understanding the Client Perspective of an Asynchronous Web
Service Call

Before initiating the asynchronous call, the client must deploy a callback service to
listen for the response from the asynchronous web service.

The following diagram illustrates the flow, from the client perspective, of the
asynchronous method call consisting of two one-way message exchanges.

Figure 4-3 Asynchronous Web Service Client Flow

As shown in the previous figure, before initiating the asynchronous call, the client must
deploy a callback service to listen for the response from the asynchronous web
service.

Chapter 4
Understanding Asynchronous Web Services

4-4

The following steps describe the message flow shown in the previous figure:

1. The client calls an asynchronous method.

2. The asynchronous web services receives the request, sends a confirmation
message to the initiating client, and starts process the request.

3. Once processing of the request is complete, the asynchronous web service acts
as a client to send the response back to the callback service.

4. The callback service sends a confirmation message to the asynchronous web
service.

4.1.4 Understanding How Asynchronous Messages Are Correlated
When the callback service receives a response, it needs a way to correlate the
response back to the original request. This is achieved using WS-Addressing and is
handled automatically by the runtime.

Note:

Message correlation is handled automatically by the runtime. This section is
for informational purposes only.

The client sets the following two fields in the WS-Addressing part of the SOAP header:

• ReplyTo address—Address of the callback service.

• MessageID—Unique ID that identifies the request. For example, a UUID.

The callback client sends the MessageId corresponding to the initial request in the
relatesToId field in the WS-Addressing header. If additional data is required by the
callback service to process the response, clients can perform one of the following
tasks:

• Clients can send the data as a reference parameter in the ReplyTo field.
Asynchronous web services return all reference parameters with the response, so
the callback service will be able to access the information.

• If sending the data as part of the asynchronous request message is not practical,
then the client can save the MessageID and data required to the local data store.

4.2 About Using JDeveloper to Develop and Deploy
Asynchronous Web Services

You can develop and deploy asynchronous web service methods for an ADF Business
Component quickly and easily by using JDeveloper.

For complete details of development and deployment of asynchronous web service
methods, see "How to Generate Asynchronous Web Service Methods" in Developer's
Guide for Oracle Application Development Framework.

The following sections describe in more detail how an asynchronous web service is
implemented. In some cases, the information is provided for informational purposes
only.

Chapter 4
About Using JDeveloper to Develop and Deploy Asynchronous Web Services

4-5

4.3 Annotation to Develop an Asynchronous Web Service
You can use annotations to develop an asynchronous web service.

A JAX-WS web service can be declared an asynchronous web service using the
following annotation: oracle.webservices.annotations.async.AsyncWebService.

The following provides a very simple POJO example of an asynchronous web service:

import oracle.webservices.annotations.PortableWebService
import oracle.webservices.annotations.async.AsyncWebService

@PortableWebService
@AsyncWebService
public class HelloService {
 public String hello(String name) {
 return "Hi " + name;
 }
}

The generated WSDL for the asynchronous web service contains two one-way
operations defined as two portTypes: one for the asynchronous operation and one for
the callback operation.

For example:

<wsdl:portType name="HelloService">
 <wsdl:operation name="hello">
 <wsdl:input message="tns:helloInput"
 xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
 ns1:Action=""/>
 </wsdl:operation>
</wsdl:portType>
<wsdl:portType name="HelloServiceResponse">
 <wsdl:operation name="helloResponse">
 <wsdl:input message="tns:helloOutput"
 xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
 ns1:Action=""/>
 </wsdl:operation>
</wsdl:portType>

Optionally, you can define a system user to secure access to the asynchronous web
service using the systemUser argument. If not specified, this value defaults to
OracleSystemUser.

For example:

@AsyncWebService(systemUser="ABCIncSystemUser')

By default, all operations associated with the web service are asynchronous. To mark
a specific method as synchronous, use the @CalbackMethod annotation, as described
in Annotation to Configure the Callback Service. If you want to be able to call a method
both synchronously and asynchronously, you will have to create two methods and
annotate them accordingly.

For more information about that @AsyncWebService and @PortableWebService
annotation, see Java API Reference for Oracle Infrastructure Web Services.

Chapter 4
Annotation to Develop an Asynchronous Web Service

4-6

For more information about securing the request and response queues used by
asynchronous web services, Securing the Request and Response Queues.

4.4 Creating the Request and Response Queues
You must create and secure the queues used to store the request and response
before you deploy your asynchronous web services.

The process of creating and securing the queues is described in the following
sections:

• Using the Default WebLogic JMS Queues

• Creating Custom Request and Response Queues

• About Custom Request and Response Queues.

• Best Practices for Creating the Custom Request and Response Queues.

• Modify Request and Response Queues at Runtime

• Securing the Request and Response Queues

• Confirming the Request and Response Queue Configuration

4.4.1 Using the Default WebLogic JMS Queues
The process for using the default WebLogic JMS queues varies, based on whether
you are using a clustered or non-clustered domain.

This section includes the following topics:

• Default WebLogic JMS Queues in Non-clustered Domains

• Tuning the Default JMS Delivery Failure Parameters

4.4.1.1 Default WebLogic JMS Queues in Non-clustered Domains
For non-clustered domains, a pair of default WebLogic JMS queues are provided as
part of the following WebLogic domain extension template:
oracle.jrf.ws.async_template.jar. The default JMS queues included in the
extension template include:

• Request queue: oracle.j2ee.ws.server.async.DefaultRequestQueue

• Response queue: oracle.j2ee.ws.server.async.DefaultResponseQueue

The default JMS connection factory, weblogic.jms.XAConnectionFactory, provided
as part of the base domain, is used by default.

To create the required default queues, when creating or extending your domain using
the Fusion Middleware Configuration Wizard, select Oracle JRF Web Services
Asynchronous services. For more information, see Creating a WebLogic Domain in
the Graphical ModeCreating WebLogic Domains Using the Configuration Wizard.

Chapter 4
Creating the Request and Response Queues

4-7

Note:

When using this domain extension template, ensure that you explicitly target
the JMS module (JRFWSAsyncJmsModule) to non-clustered one or more
servers in your domain, as required.

4.4.1.2 Tuning the Default JMS Delivery Failure Parameters
The following default values are configured for the JMS delivery failure parameters. It
is recommended that you review the settings and modify them, as appropriate, for your
environment. Configuration related to JMS delivery failure parameters can be modified
using the WebLogic Server Administration Console, as described in Main Steps for
Configuring Basic JMS System Resources in Administering JMS Resources for Oracle
WebLogic Server.

• Set the Redelivery Delay Override value to 900000 milliseconds. That is, wait 15
minutes before rolled back or recovered messages are redelivered, regardless of
the redelivery delay specified by the message consumer or the connection factory.

• Set the Redelivery Limit value to 100. This value specifies the number of
redelivery attempts allowed before a message is moved to the Error Destination
defined for the queues.

• Set the Expiration Policy value to Redirect. This moves expired messages from
their current location to the Error Destination defined for the queues. If enabled,
verify that the corresponding Error Destination has been configured.

4.4.2 Creating Custom Request and Response Queues
You have to customize the request and response queues, if the default WebLogic JMS
queues do not meet your requirements. Follow these steps to customize your request
and response queues:

1. Create the request and response queues manually, as described in Create a JMS
Queue or Topic.

2. Add them to your application code using the following annotations:

• Request queue:
oracle.webservices.annotations.async.AsyncWebServiceQueue

For example:

@AsyncWebServiceQueue (
 connectionFactory = "weblogic.jms.XAConnectionFactory",
 queue = "oracle.j2ee.ws.server.async.NonDefaultRequestQueue",
 enableTransaction = true
 transactionTimeout=3600
)

For more information about the @AsyncWebServiceQueue, see Java API
Reference for Oracle Infrastructure Web Services.

• Response queue:
oracle.webservices.annotations.async.AsycnWebServiceResponseQueue

For example:

Chapter 4
Creating the Request and Response Queues

4-8

@AsyncWebServiceResponseQueue (
 connectionFactory = "weblogic.jms.XAConnectionFactory",
 queue = "oracle.j2ee.ws.server.async.NonDefaultResponseQueue",
 enableTransaction = true
)

For more information about @AsyncWebServiceResponseQueue, see Java API
Reference for Oracle Infrastructure Web Services.

4.4.3 About Custom Request and Response Queues
You have to customize the request and response queues, if the default WebLogic JMS
queues do not meet your requirements.

Asynchronous requests are initially saved in the request JMS queue for asynchronous
execution. A Message-driven Bean (MDB) accesses the requests from the queue and
executes the business logic.

To process many requests simultaneously, application servers create a pool of MDB
instances, which can be configured based on the requirements of the application. The
more MDB instances in a pool, the better the throughput. However, more resources,
such as threads and database connections, will be used. The exact resource
requirements are dependent on the type of persistence store used for saving the
asynchronous request messages.

By default WebLogic Server initializes the pool with only one MDB instance and
continues to increase the pool size, up to 16, as more requests are queued for
execution. Once the maximum pool size is reached, no additional MDB instances are
added, and the server waits for the existing MDB instances to complete the currently
executing requests.

Users can configure the initial pool size and maximum pool size based on the
application requirements. It is recommended that you use the default values, and
adjust them based on the resource load observed. If the pool consumes too many
resources, the maximum pool size can be reduced. If there are ample resources in the
system and too many requests that are waiting in the queue, the maximum pool size
can be increased.

4.4.4 Best Practices for Creating the Custom Request and Response
Queues

A Message-driven Bean (MDB) accesses the requests from JMS queue for the
execution of Asynchronous requests.

The following list provides the best practices for creating the custom request and
response queues (Step 1 in "Creating Custom Request and Response Queues"):

• Configure queues in a cluster for high availability and failover.

• Configure a single JMS Server and WebLogic persistence store for each
WebLogic Server and target them to the server's default migratable target.

• For the JMS Server, configure quotas, as required.

To prevent out-of-memory errors, it is recommended that you configure the
maximum messages quota for each JMS Server. As a guide, each message
header consumes approximately 512 bytes. Therefore, a maximum quota of

Chapter 4
Creating the Request and Response Queues

4-9

500,000 message will require approximately 250MB of memory. Consider the
memory resources available in your environment and set this quota accordingly.

• Configure a single JMS system module and target it to a cluster.

• For the JMS system module, configure the following:

– Single subdeployment and populate it with each JMS Server.

– Required uniform distributed destination(s) and define targets using advanced
subdeployment targeting (defined above).

– Custom connection factory. If transactions are enabled, the connection factory
must support transactions, if enabled. By default, WebLogic JMS provides the
weblogic.jms.XAConnectionFactory connection factory to support
transactions.

4.4.5 Modify Request and Response Queues at Runtime
You can modify the request and response queues at runtime using Fusion Middleware
Control.

For complete details, see "Configuring Asynchronous Web Services" in Administering
Web Services.

4.4.6 Securing the Request and Response Queues
Oracle recommends that you secure the JMS request and response queues with a
user- or role-based security policy to secure access to these resources.

Note:

This section applies to ADF web services only. It does not apply to SOA web
services.

The steps to secure the JMS request and response queues include:

1. Optionally, configure the JMS System User, as described in About Configuring a
Custom JMS System User (Optional).

By default, the JMS System User that is authorized to access the JMS queues is
set as OracleSystemUser. In most cases, the default user is sufficient.

2. Run the WLST script to secure the request and response queues, as described in
About the WLST Script for Securing the Request and Response Queues.

4.4.6.1 About Configuring a Custom JMS System User (Optional)
By default, the JMS System User that is authorized to access the JMS queues is set
as OracleSystemUser. In most cases, this default value is sufficient. However, if you
need to change this value to a custom user in your security realm, you can specify a
custom system user using the systemUser attribute of the @AsyncWebService
annotation.

For example:

Chapter 4
Creating the Request and Response Queues

4-10

@AsyncWebService(systemUser = "ABCIncSystemUser")

In order for this change to take effect, you need to regenerate the application EAR file
using JDeveloper or the ojdeploy command line utility. For more information about
that @AsyncWebService annotation, see Java API Reference for Oracle Infrastructure
Web Services.

After your application has been deployed, you can change the JMS System User in
Fusion Middleware Control and in the WebLogic Server Administration Console as
described in "Changing the JMS System User for Asynchronous Web Services" in
Administering Web Services.

4.4.6.2 About the WLST Script for Securing the Request and Response
Queues

An online WLST script is provided to assist you in securing the request and response
queues. You pass the JMS system module name that you want to secure and the
security role to be assigned, in addition to the Administration Server connection details
(URL, username, and password).

The script is available at the following location:

<MW_HOME>/oracle_common/webservices/bin/secure_jms_system_resource.py

The following provides an example of how you might execute this script:

java -classpath <some_path>/weblogic.jar weblogic.WLST ./
secure_jms_system_resource.py
 --username <AdminUserName> --password <AdminPassword> --url <AdminServer_t3_url>
 --jmsSystemResource <JMSSystemResourceName> --role <SecurityRoleToUse>

4.4.7 Confirming the Request and Response Queue Configuration
You have to configure the requests and response queues to meet the requirements.

To confirm that the request and response queues have been configured as required,
perform one of the following tasks:

1. Invoke the Administration Console, as described in “Invoking the Administration
Console" in Understanding WebLogic Web Services for Oracle WebLogic Server.

2. Verify that the following JMS resources are defined and available under Services
> Messaging:

• JMS server named JRFWSAsyncJmsServer.

Ensure that the JMS module is targeted to one or more servers, as required,
for a non-clustered domain (standard queues) or to the cluster for clustered
domains (UDDs). The JMS Server is targeted appropriately when configuring
the domain using the Configuration Wizard or WLST. See also Using the
Default WebLogic JMS Queues.

• JMS module named JRFWSAsyncJmsModule.

• Request queue with JDNI name
oracle.j2ee.ws.server.async.DefaultRequestQueue and a corresponding
error queue.

Chapter 4
Creating the Request and Response Queues

4-11

• Response queue with JDNI name
oracle.j2ee.ws.server.async.DefaultResponseQueue and a corresponding
error queue.

3. Ensure that the asynchronous web service is deployed and verify that the system
message-driven beans (MDBs) are connected to the JMS destination(s), as
required, as follows:

a. Click Deployments.

b. Expand the application in the Deployments table.

c. Under EJBs, verify that there are two system MDBs per web service to support
the asynchronous web service runtime. For example,
<asyncwebservicename>_AsyncRequestProcessorMDB and
<asyncwebservicename>_AsyncResponseProcessorMDB.

d. Verify that each MDB displayed is connected to the JMS destination.

e. Select the EJB and click the Monitoring tab and then the Running tab.

f. Verify that the Connection Status field is Connected.

g. If the queues were not created correctly, perform one of the following:

Create and configure the required JMS queues manually. For more
information, see "Messaging" in Information Roadmap for Oracle WebLogic
Server.

or

Remove the JMS server, JMS module, and the default queues that were
created for asynchronous web service and recreate them using the steps
provided for clustered and non-clustered domains, as described in Using the
Default WebLogic JMS Queues.

Note:

JMS resources are stored in the config.xml file for the domain.

4.5 Annotation to Configure the Callback Service
You can use the annotations defined in the following table to customize characteristics
for the callback service (portType). The annotations are included in the
oracle.webservices.annotations.async package.

Table 4-1 Annotations Used to Configure the Callback Service'

Annotation Description

@CallbackMethod Customize the names of the WSDL entities for the corresponding operation in
the callback portType and set whether a method is synchronous or
asynchronous.

For example:

@CallbackMethod(exclude=true)

Chapter 4
Annotation to Configure the Callback Service

4-12

Table 4-1 (Cont.) Annotations Used to Configure the Callback Service'

Annotation Description

@CallbackProperties Specify a set of properties that are required in the message context when
calling the callback service.

For example:

@CallbackProperties(
 {
 @Property(
 key = SecurityConstants.ClientConstants.WSS_CSF_KEY,
 value = "basic.credentials")
 }
)

@Property Specify a property that is required in the message context when calling the
callback service.

For example:

@CallbackProperties(
 {
 @Property(
 key = SecurityConstants.ClientConstants.WSS_CSF_KEY,
 value = "basic.credentials")
 }
)

@ResponseWebService Customize the response web service port information.

@Retry Specify whether the asynchronous method is idempotent, or retriable, in the
event that its execution is terminated abnormally (for example, due to system
failure).

By default, all asynchronous methods are idempotent; this implies that there are
no side effects of calling the asynchronous method more than once. If an
asynchronous method is not idempotent, you should explicitly set this
annotation with the enable attribute set to false.

4.6 Configuring SSL for Asynchronous Web Services
There are several tasks that you must perform to configure SSL for asynchronous web
services.

The tasks required to be performed are as follows:

1. Create the identity and trust keystores using the keytool.

See "Obtaining Private Keys, Digital Certificates, and Trusted Certificate
Authorities" in Administering Security for Oracle WebLogic Server.

2. Configure the keystore, keystore type, and password for the identity and trust
keystores using Oracle WebLogic Server Administration Console.

See "Configure Keystores" in Oracle WebLogic Server Administration Console
Online Help.

3. Configure the password for the identity and trust keystores in the OWSM
Credential store provider using Fusion Middleware Control.

Chapter 4
Configuring SSL for Asynchronous Web Services

4-13

See "Configuring the Credential Store" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Ensure that the map with the name oracle.ws.async.ssl.security exists. If it
does not exist, you must create it.

Then, create the three key entries as listed below:

• trust-keystore-password with user name async and password
<trust_store_password>

• identity-keystore-password with user name async and password
<identity_store_password>

• key-password with user name async and password <key_password>

4.7 Defining Asynchronous Web Service Clients
Two types of clients which can call asynchronous web services are SOA/BPEL clients
and WebLogic Java EE JAX-WS Clients.

• SOA/BPEL clients—The process is identical to that of calling other asynchronous
BPEL clients. For more information, see "Invoking an Asynchronous Web Service
form a BPEL Process" in Developing SOA Applications with Oracle SOA Suite.

• WebLogic Java EE JAX-WS Clients—Using the Create Web Service Proxy wizard
in JDeveloper, select the Generate As Async option to generate an
asynchronous proxy. For more information about creating web service clients
using the wizard, see "Creating Web Service Clients" in the Developing
Applications with Oracle JDeveloper.

The following sections step through an example asynchronous client and callback
service that is generated and describes the updates that need to be implemented.

• Asynchronous Client Code

• Callback Service Code

Note:

The steps described in the following sections are applicable for WebLogic
Java EE JAX-WS clients, and not SOA/BPEL clients.

4.7.1 Asynchronous Client Code
You can use a client code to support asynchronous web services.

The following example provides a sample of the client code that is generated to
support asynchronous web services. As shown in bold, the client code must set two
fields in the outbound header to correlate the asynchronous messages:

• ReplyTo address—Address of the callback service.

• MessageID—Unique ID that identifies the request. For example, a UUID.

Chapter 4
Defining Asynchronous Web Service Clients

4-14

The client code that is generated provides a UUID for the message ID that is sufficient
in most cases, though you may wish to update it. You need to update the ReplyTo
address to point to the callback service.

package async.jrf;

import com.sun.xml.ws.api.addressing.AddressingVersion;
import com.sun.xml.ws.api.addressing.WSEndpointReference;
import com.sun.xml.ws.developer.WSBindingProvider;
import com.sun.xml.ws.message.StringHeader;
import java.util.UUID;

// !THE CHANGES MADE TO THIS FILE WILL BE DESTROYED IF REGENERATED!
// This source file is generated by Oracle tools
// Contents may be subject to change

// For reporting problems, use the following
// Version = Oracle WebServices (12.x.x.x.x, build 090303.0200.48673)

public class HelloServicePortClient
{
 private static HelloServiceService helloServiceService;
 private static final AddressingVersion WS_ADDR_VER = AddressingVersion.W3C;

 public static void main(String [] args)
 {
 helloServiceService = new HelloServiceService();
 HelloService helloService = helloServiceService.getHelloServicePort();
 // Get the request context to set the outgoing addressing properties
 WSBindingProvider wsbp = (WSBindingProvider)helloService;
 WSEndpointReference repl
 new WSEndpointReference(
 "http://<replace with the URL of the callback service>",
 WS_ADDR_VER);
 String uuid = "uuid:" + UUID.randomUUID();
 wsbp.setOutboundHeaders(
 new StringHeader(WS_ADDR_VER.messageIDTag, uuid),
 replyTo.createHeader(WS_ADDR_VER.replyToTag));
 // Add your code to call the desired methods.
 }
}

4.7.2 Callback Service Code
You can use callback service as a web service by using the callback service code.

The following provides a sample of the callback service code. The code shown in bold
illustrates how to extract the relatesToID from the message header, which is sent by
the client as the MessageID.

You need to implement the code to process the response and deploy the callback
service as a web service. Once deployed, add the URL of the callback service to the
client code as the replyTo field.

package async.jrf;

import com.sun.xml.ws.api.addressing.AddressingVersion;
import com.sun.xml.ws.api.message.Header;
import com.sun.xml.ws.api.message.HeaderList;

Chapter 4
Defining Asynchronous Web Service Clients

4-15

import com.sun.xml.ws.developer.JAXWSProperties;
import javax.annotation.Resource;
import javax.jws.Oneway;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.Style;
import javax.xml.bind.annotation.XmlSeeAlso;
import javax.xml.ws.Action;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.soap.Addressing;
// !THE CHANGES MADE TO THIS FILE WILL BE DESTROYED IF REGENERATED!
// This source file is generated by Oracle tools
// Contents may be subject to change
// For reporting problems, use the following
// Version = Oracle WebServices (12.x.x.x.x, build 090303.0200.48673)

@WebService(targetNamespace="http://jrf.async/", name="HelloServiceResponse")
@XmlSeeAlso(
 { async.jrf.ObjectFactory.class })
@SOAPBinding(style=Style.DOCUMENT)
@Addressing(enabled=true, required=true)
public class HelloServiceResponseImpl
{
 @Resource
 private WebServiceContext wsContext;
 private static final AddressingVersion WS_ADDR_VER = AddressingVersion.W3C;
 @WebMethod
 @Action(input="")
 @RequestWrapper(localName="helloResponse",targetNamespace="http://jrf.async/",
 className="async.jrf.HelloResponse")
 @Oneway
 public void helloResponse(@WebParam(targetNamespace="", name="return")
 String _return)
 {
 // Use the sample code to extract the relatesTo id for correlation and then add
your rest of the logic
 System.out.println("Received the asynchronous reply");
 // get the messageId to correlate this reply with the original request
 HeaderList headerList =
(HeaderList)wsContext.getMessageContext().get(JAXWSProperties.INBOUND_HEADER_LIST_PRO
PERTY);
 Header realtesToheader = headerList.get(WS_ADDR_VER.relatesToTag, true);
 String relatesToMessageId = realtesToheader.getStringContent();
 System.out.println("RelatesTo message id: " + relatesToMessageId);
 // Add your implementation here.
 }
}

4.8 Attaching Policies to Asynchronous Web Services and
Clients

The asynchronous web service and client policies must comply with one another.
Similarly, the asynchronous callback client and callback service policies must comply
with one another.

Chapter 4
Attaching Policies to Asynchronous Web Services and Clients

4-16

Note:

Web services reliable messaging (WS-ReliableMessaging) is not supported
for Oracle Infrastructure asynchronous web services. That is, you cannot
attach a reliable messaging policy at design time, using the
@ReliabilityPolicy annotation, or runtime, using Fusion Middleware
Control or WLST, to the asynchronous web service or the callback client.

You can use one of the following methods to attach policies to the components:

• Using annotations at design time.

• Using Fusion Middleware Control or WLST at runtime.

Each method is described in detail in the following sections.

Note:

You do not need to attach the oracle/wsaddr_policy again to your
asynchronous web service or client. By default, the oracle/wsaddr_policy
policy is attached to all asynchronous web services and clients and
advertised in the WSDL, as it is required by asynchronous web service
processing. However, Fusion Middleware Control does not reflect that the
policy is attached and it is available for selection in the Available Policies list
when attaching polices, as described in "Attaching Policies" in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

You can attach policies to the following asynchronous components:

• About Attaching Policies to Asynchronous Web Service Clients

• Policies to Attach for Asynchronous Callback Services

• About Attaching Policies to Callback Clients

• Policies to Attach for Asynchronous Callback Services

4.8.1 About Attaching Policies to Asynchronous Web Service Clients
Various policies are attached to Asynchronous Web Service Clients.

At design time, you can use the following methods to attach policies:

• For SOA/BPEL clients, you can use the SOA Composite Editor to attach policies,
as described in "Managing Policies" in Developing SOA Applications with Oracle
SOA Suite.

• For WebLogic Java EE JAX-WS Clients, you can use the Create Web Service
Proxy wizard in JDeveloper to attach policies. For more information about creating
web service clients using the wizard, see "Creating Web Service Clients" in the
Developing Applications with Oracle JDeveloper.

At runtime, you can use the Fusion Middleware Control to attach policies to each type
of client, as described in "Attaching Policies to Web Services and Clients Using Fusion

Chapter 4
Attaching Policies to Asynchronous Web Services and Clients

4-17

Middleware Control" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

4.8.2 Policies to Attach for Asynchronous Callback Services
You can use certain annotations to attach policies while sending the asynchronous
response to the client's callback service.

At design time, to attach policies while sending the asynchronous response to the
client's callback service, you can use one of the annotations defined in Table 4-2.

Table 4-2 Annotations for Attaching Policies to Web Services and Callback Services

Annotation Description

@CallbackManagementPolic
y

The
oracle.webservices.annotations.async.CallbackManagementPolicy
annotation attaches a management policy when sending the asynchronous
response to the client callback service. For more information, see
"@CallbackManagementPolicy" in Securing Web Services and Managing Policies
with Oracle Web Services Manager.
Note: This annotation has been deprecated. Oracle recommends that you use
the oracle.wsm.metadata.annotation.CallbackPolicySet annotation, as
described in "@CallbackPolicySet" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

@CallbackMtomPolicy The oracle.webservices.annotations.async.CallbackMtomPolicy
annotation attaches an MTOM policy when sending the asynchronous response
to the client callback service. For more information, see "@CallbackMtomPolicy"
in Securing Web Services and Managing Policies with Oracle Web Services
Manager.
Note: This annotation has been deprecated. Oracle recommends that you use
the oracle.wsm.metadata.annotation.CallbackPolicySet annotation, as
described in "@CallbackPolicySet" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

@CallbackPolicySet The oracle.wsm.metadata.annotation.CallbackPolicySet annotation
attaches one or more policy sets to the callback client of the asynchronous web
service that will connect to the callback service. By default, no policies are
attached. For more information, see "@CallbackPolicySet" in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

@CallbackSecurityPolicy The oracle.webservices.annotations.async.CallbackSecurityPolicy
annotation attaches a security policy to the callback web service. For more
information, see "@CallbackSecurityPolicy" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.
Note: This annotation has been deprecated. Oracle recommends that you use
the oracle.wsm.metadata.annotation.CallbackPolicySet annotation, as
described in "@CallbackPolicySet" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

@FastInfosetCallbackClie
nt

The com.oracle.webservices.api.FastInfosetCallbackClient
annotation enables and configures Fast Infoset on the callback client of the
asynchronous web service that will connect to the callback service. For more
information, see "@FastInfosetCallbackClient" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Chapter 4
Attaching Policies to Asynchronous Web Services and Clients

4-18

At runtime, you can use the Fusion Middleware Control to attach policies to
asynchronous callback services, as described in "Attaching Policies" in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

Use the following guidelines when attaching message protection policies to
asynchronous callback services:

• If you want to enforce a message protection policy on the callback service, you
must also enforce a message protection policy on the asynchronous request.
Otherwise, an error message will be returned at runtime indicating that the
asynchronous client public encryption certificate is not found.

You can enforce a message protection policy on the asynchronous request without
enforcing that same policy on the callback service.

• If you enforce a message protection policy on the asynchronous web service, then
you must configure the client public encryption certificate in the client keystore.

4.8.3 About Attaching Policies to Callback Clients
You can use Fusion Middleware Control at runtime, to attach policies to asynchronous
callback clients.

For more information, see "Attaching Policies to Asynchronous Web Service Callback
Clients" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Note:

The policies that you attach to the callback client are advertised in the
asynchronous web service WSDL.

Chapter 4
Attaching Policies to Asynchronous Web Services and Clients

4-19

5
Introduction to Using Web Services
Reliable Messaging

An introduction and description of the usage of Web Services Reliable Messaging
(WS-ReliableMessaging) with Oracle Infrastructure web services, to exchange
messages reliably is detailed in this chapter.
It includes the following sections:

• Web Services Reliable Messaging

• Predefined Reliable Messaging Policies in Oracle Infrastructure Web Services

• About Attachment of Reliable Messaging Policies to Oracle Infrastructure Web
Services

• Reliable Messaging Policies Configuration

5.1 Web Services Reliable Messaging
Message exchanges between web services can be disrupted by various errors,
including network, system, and software component errors or anomalies. Oracle
Infrastructure web services support the messaging protocol defined by the Web
Services Reliable Messaging specification to resolve these disruptions.

Once a web service or client sends a message, there is no immediate way, except by
consulting network-level exceptions or SOAP fault messages, to determine whether
the message was delivered successfully, if delivery failed and requires a
retransmission, or if a sequence of messages arrived in the correct order.

To resolve these issues, Oracle Infrastructure web services support the messaging
protocol defined by the Web Services Reliable Messaging (WS-ReliableMessaging)
specification at http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.pdf. This
specification describes a protocol that makes message exchanges reliable. Reliable is
defined as the ability to guarantee message delivery between the two Web Services. It
ensures that messages are delivered reliably between distributed applications
regardless of software component, system, or network failures. Ordered delivery is
assured and automatic retransmission of failed messages does not have to be coded
by each client application.

A reliable web service provides the following delivery assurances.

Table 5-1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

At Most Once Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

At Least Once Every message is delivered at least once. It is possible that some
messages are delivered more than once.

Exactly Once Every message is delivered exactly once, without duplication.

5-1

http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.pdf

Table 5-1 (Cont.) Delivery Assurances for Reliable Messaging

Delivery Assurance Description

In Order Messages are delivered in the order that they were sent. This delivery
assurance can be combined with one of the preceding three
assurances.

Consider using reliable messaging if your web service is experiencing the following
problems:

• Network failures or dropped connections.

• Messages are lost in transit.

• Messages are arriving at their destination out of order.

5.2 Predefined Reliable Messaging Policies in Oracle
Infrastructure Web Services

A set of predefined policies are automatically available when you install oracle fusion
middleware and reliable messaging policy is one such type of predefined policy.

Reliable messaging is driven by policies and the Policy framework. As described in
Understanding How Policies Attach to Oracle Infrastructure Web Services , OWSM
provides a set of predefined policies that are automatically available when you install
Oracle Fusion Middleware. The reliable messaging policies listed in Table 5-2 are
available in this pre-defined set:

Table 5-2 Predefined Reliable Messaging Policies

Reliable Messaging Policy Description

oracle/
no_reliable_messaging_p
olicy

When directly attached to an endpoint or globally attached at a lower scope,
effectively disables a globally attached Web Services Reliable Messaging policy at
a higher scope.

oracle/
reliable_messaging_poli
cy

Configures web services reliable messaging on the web service and client.

For more information about the reliable messaging predefined policies, see "Reliable
Messaging Policies" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

5.3 About Attachment of Reliable Messaging Policies to
Oracle Infrastructure Web Services

You can attach reliable messaging policies to Oracle Infrastructure web services or
clients at design time using Oracle JDeveloper, or at runtime using the Fusion
Middleware Control.

Chapter 5
Predefined Reliable Messaging Policies in Oracle Infrastructure Web Services

5-2

For more information, see Understanding How Policies Attach to Oracle Infrastructure
Web Services .

5.4 Reliable Messaging Policies Configuration
You must configure the reliable messaging policies before you can use them in your
environment.

The steps to configure reliable messaging policies are described in "Reliable
Messaging Policies" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

Chapter 5
Reliable Messaging Policies Configuration

5-3

6
Introduction to Using Web Services Atomic
Transactions

An introduction of usage of the web services atomic transactions to enable
interoperability with other external transaction processing systems is detailed in this
chapter.
It includes the following sections:

• Overview of Web Services Atomic Transactions Framework

• Overview of Web Services Atomic Transactions in WebLogic Server Environment

• Components of Web Services Atomic Transactions

• How Web Services Atomic Transactions are Enabled on a Web Service (Inbound)

• How Web Services Atomic Transactions are Enabled on a Web Service Client
(Outbound)

• Web Services Atomic Transaction Configuration

• Properties Configured for Messages Exchanged Between the Coordinator and
Participant

6.1 Overview of Web Services Atomic Transactions
Framework

WebLogic web services enable interoperability with other external transaction
processing systems, such as Websphere, Microsoft .NET, and so on, through the
support of certain specifications.

These specifications are as follows:

• WS-AtomicTransaction Version (WS-AT) 1.0, 1.1, and 1.2: http://docs.oasis-
open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html

• WS-Coordination Version 1.0, 1.1, and 1.2: http://docs.oasis-open.org/ws-tx/
wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

These specifications define an extensible framework for coordinating distributed
activities among a set of participants. The coordinator, shown in the following figure, is
the central component, managing the transactional state (coordination context) and
enabling web services and clients to register as participants.

6-1

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

Figure 6-1 Web Services Atomic Transactions Framework

6.2 Overview of Web Services Atomic Transactions in
WebLogic Server Environment

WebLogic Server interacts within the context of a web services atomic transaction.

Figure 6-2 shows two instances of such interaction. For simplicity, two WebLogic web
service applications are shown.

Figure 6-2 Web Services Atomic Transactions in WebLogic Server
Environment

Please note the following:

• Using the local JTA transaction manager, a transaction can be imported to or
exported from the local JTA environment as a subordinate transaction, all within
the context of a web service request.

• Creation and management of the coordination context is handled by the local JTA
transaction manager.

• All transaction integrity management and recovery processing is done by the local
JTA transaction manager.

For more information about JTA, see Java Transaction API and Oracle WebLogic
Extensionsin Developing JTA Applications for Oracle WebLogic Server.

Chapter 6
Overview of Web Services Atomic Transactions in WebLogic Server Environment

6-2

The following steps describe a sample end-to-end web services atomic transaction
interaction, illustrated in Figure 6-2:

1. Application A begins a transaction on the current thread of control using the JTA
transaction manager on Server A.

2. Application A calls a web service method in Application B on Server B.

3. Server A updates its transaction information and creates a SOAP header that
contains the coordination context, and identifies the transaction and local
coordinator.

4. Server B receives the request for Application B, detects that the header contains a
transaction coordination context and determines whether it has already registered
as a participant in this transaction. If it has, that transaction is resumed and if not,
a new transaction is started.

Application B executes within the context of the imported transaction. All
transactional resources with which the application interacts are enlisted with this
imported transaction.

5. Server B enlists itself as a participant in the WS-AT transaction by registering with
the registration service indicated in the transaction coordination context.

6. Server A resumes the transaction.

7. Application A resumes processing and commits the transaction.

6.3 Components of Web Services Atomic Transactions
Web services atomic transactions consists of a coordinator, activation service,
registration service and application protocol X, Y.

Table 6-1 describes these components in detail.

Table 6-1 Components of Web Services Atomic Transactions

Component Description

Coordinator Manages the transactional state (coordination context) and
enables web services and clients to register as participants.

Activation Service Enables the application to activate a transaction and create a
coordination context for an activity. Once created, the
coordination context is passed with the transaction flow.

Registration Service Enables an application to register as a participant.

Application Protocol X, Y Supported coordination protocols, such as WS-
AtomicTransaction.

6.4 How Web Services Atomic Transactions are Enabled on
a Web Service (Inbound)

You enable and configure web services atomic transactions on a web service at
design time using Oracle JDeveloper when creating a web service, or at deployment
time using the Fusion Middleware Control.

For more information, refer to the following sections:

Chapter 6
Components of Web Services Atomic Transactions

6-3

• Design time: "WS-Atomic Transaction Support" in Developing SOA Applications
with Oracle SOA Suite.

• Deployment time: "Configuring Atomic Transactions Using Fusion Middleware
Control" in Administering Web Services.

• "Configuring Atomic Transactions Using WLST" in Administering Web Services.

For information about configuration options, see Web Services Atomic Transaction
Configuration.

6.5 How Web Services Atomic Transactions are Enabled on
a Web Service Client (Outbound)

You enable and configure web services atomic transactions on a web service client at
deployment time using the Fusion Middleware Control.

You configure the version and flow type, as defined in Table 6-3.

For more information, see "Configuring Atomic Transactions Using Fusion Middleware
Control" in Administering Web Services.

You enable and configure web services atomic transactions at design time using
Oracle JDeveloper when creating a web service, or at deployment time using the
Fusion Middleware Control. For more information, refer to the following sections:

• Design time: "WS-Atomic Transaction Support" in Developing SOA Applications
with Oracle SOA Suite.

• Deployment time: "Configuring Atomic Transactions Using Fusion Middleware
Control" in Administering Web Services.

For information about configuration options, see Web Services Atomic Transaction
Configuration.

6.6 Web Services Atomic Transaction Configuration
You can set certain configurations to enable web services atomic transactions.

Table 6-2 summarizes the configuration options that you can set when enabling web
services atomic transactions.

Table 6-2 Web Services Atomic Transactions Configuration Options

Attribute Description

Version Version of the web services atomic transaction coordination context that is supported.
For web service clients, it specifies the version used for outbound messages only.
The value specified must be consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WSAT12, and DEFAULT.

The DEFAULT value for web services is driven by the inbound request and can be any
of the values.

The DEFAULT value for web service clients is as follows:

• If the flow option is WSDLDRIVEN, then the version advertised in the WSDL is
used.

• If the flow option is any setting other than WSDLDRIVEN, then WSAT10 is used.

Chapter 6
How Web Services Atomic Transactions are Enabled on a Web Service Client (Outbound)

6-4

Table 6-2 (Cont.) Web Services Atomic Transactions Configuration Options

Attribute Description

Flow type Whether the web services atomic transaction coordination context is passed with the
transaction flow. For valid values, see Table 6-3.

Note:

For information about enabling web service atomic transactions, see the
following:

• How Web Services Atomic Transactions are Enabled on a Web Service
(Inbound)

• How Web Services Atomic Transactions are Enabled on a Web Service
Client (Outbound).

Table 6-3 summarizes the valid values for flow type and their meaning on the web
service and client. The table also summarizes the valid value combinations when
configuring web services atomic transactions for an EJB-style web service that uses
the @TransacationAttribute annotation.

Table 6-3 Flow Transaction coordination contextypes Values

Value Web Service Client Web Service Valid EJB @TransactionAttribute
Values

NEVER (Default for
SOA service)

JTA transaction: Do
not export transaction
coordination context.

No JTA transaction:
Do not export
transaction
coordination context.

Transaction flow
exists: Do not import
transaction
coordination context. If
the
CoordinationContext
header contains
mustunderstand="t
rue", a SOAP fault is
thrown.

No transaction flow:
Do not import
transaction
coordination context.

NEVER, NOT_SUPPORTED, REQUIRED,
REQUIRES_NEW, SUPPORTS

SUPPORTS JTA transaction:
Export transaction
coordination context.

No JTA transaction:
Do not export
transaction
coordination context.

Transaction flow
exists: Import
transaction context.

No transaction flow:
Do not import
transaction
coordination context.

SUPPORTS, REQUIRED

Chapter 6
Web Services Atomic Transaction Configuration

6-5

Table 6-3 (Cont.) Flow Transaction coordination contextypes Values

Value Web Service Client Web Service Valid EJB @TransactionAttribute
Values

MANDATORY JTA transaction:
Export transaction
coordination context.

No JTA transaction:
An exception is
thrown.

Transaction flow
exists: Import
transaction context.

No transaction flow:
Service-side exception
is thrown.

MANDATORY, REQUIRED, SUPPORTS

WSDLDRIVEN (SOA
references only, and
the default)

Behaves according to
the value that is
advertised in the web
service WSDL.

N/A Depends on advertised value.

6.7 Properties Configured for Messages Exchanged
Between the Coordinator and Participant

You can secure messages exchanged between the coordinator and participant using
the WebLogic Server Administration Console.

To secure messages exchanged between the coordinator and participant, you can
configure the properties defined in the following table using the WebLogic Server
Administration Console. These properties are configured at the domain level.

For detailed steps, see "Configure web services atomic transactions" in the Oracle
WebLogic Server Administration Console Online Help.

Table 6-4 Securing Web Services Atomic Transactions

Property Description

Web Services Transactions Transport Security Mode Specifies whether two-way SSL is used for the message
exchange between the coordinator and participant. This
property can be set to one of the following values:

• SSL Not Required—All web service transaction protocol
messages are exchanged over the HTTP channel.

• SSL Required—All web service transaction protocol
messages are exchanged over the HTTPS channel.
This flag must be enabled when invoking
Microsoft .NET web services that have atomic
transactions enabled.

• Client Certificate Required—All web service transaction
protocol messages are exchanged over HTTPS and a
client certificate is required.

For more information, see "Configure two-way SSL" in the
Oracle WebLogic Server Administration Console Online
Help.

Chapter 6
Properties Configured for Messages Exchanged Between the Coordinator and Participant

6-6

Table 6-4 (Cont.) Securing Web Services Atomic Transactions

Property Description

Web Service Transactions Issued Token Enabled Flag the specifies whether to use IssuedToken to enable
authentication between the web services atomic transaction
coordinator and participant.

The IssuedToken is issued by the coordinator and consists
of a security context token (SCT) and a session key used for
signing. The participant sends the signature, signed using
the shared session key, in its registration message. The
coordinator authenticates the participant by verifying the
signature using the session key.

Chapter 6
Properties Configured for Messages Exchanged Between the Coordinator and Participant

6-7

7
Introduction to Optimizing XML
Transmission Using Fast Infoset

An introduction and description of, how to enable and use Fast Infoset to optimize
XML transmission for Oracle Infrastructure web services is detailed in this chapter.
It includes the following sections:

• Overview of Fast Infoset

• Enabling Fast Infoset on Web Services

• About Enabling and Configuring Fast Infoset on Web Services Clients

• Disabling Fast Infoset on Web Services and Clients

7.1 Overview of Fast Infoset
Fast Infoset is a compressed binary encoding format that provides a more efficient
serialization than the text-based XML format. Fast Infoset optimizes both document
size and processing performance.

When enabled, Fast Infoset converts the XML Information Set in the SOAP envelope
into a compressed binary format before transmitting the data. Fast Infoset optimizes
encrypted and signed messages, MTOM-enabled messages, and SOAP attachments,
and supports both HTTP and JMS transports.

The Fast Infoset capability is enabled on all web services, by default. For web service
clients, Fast Infoset is enabled if it is enabled on the web service and advertised in the
WSDL.

You can explicitly enable and configure Fast Infoset on a web service or client, as
described in the following sections.

7.2 Enabling Fast Infoset on Web Services
The Fast Infoset capability is enabled on a web service and advertised in the WSDL,
by default. Follow one of these methods to enable Fast Infoset explicitly on a web
service:

• At design time, using com.oracle.webservices.api.FastInfosetService
annotation. For example, following code excerpt provides an example of using the
com.oracle.webservices.api.FastInfosetService annotation to enable and
configure Fast Infoset on a web service at design time.

package examples.webservices.fastinfoset;
import com.oracle.webservcies.api.FastInfosetService;
import oracle.webservices.annotations.PortableWebService;
import javax.jws.WebMethod;

@PortableWebService
@FastInfosetService(enabled = true)

7-1

public class HelloImplFastInfosetEnabled {
 @WebMethod
 public String hello(String name) {
 return "Hello, " + name + "! (from FI Enabled Service)";
 }
}

For more information about the annotation, see "@FastInfosetService" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

For more information about the @PortableWebService annotation, see Java API
Reference for Oracle Infrastructure Web Services.

• Post-deployment, by attaching the oracle/fast_infoset_service_policy to the
web service.

For more information, see the following sections:

– "Attaching Policies to Web Services and Clients Using Fusion Middleware
Control" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

– "Configuring Fast Infoset Using WLST" in Administering Web Services.

7.3 About Enabling and Configuring Fast Infoset on Web
Services Clients

The Fast Infoset capability is enabled on a web service and advertised in the WSDL,
by default. Follow one of these methods to explicitly enable and configure Fast Infoset
on a web service client:

• At design time, using the
com.oracle.webservices.api.FastInfosetClientFeature feature class, as
shown in Using FastInfosetClientFeature Feature Class at Design Time

• Post-deployment, by attaching oracle/fast_infoset_client_policy to the web
service.

For more information, see the following sections:

– "Attaching Policies to Web Services and Clients Using Fusion Middleware
Control" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

– "Configuring Fast Infoset Using WLST" in Administering Web Services.

To enable and configure Fast Infoset on the client and on a web service at design
time, see the following sections:

• Content Negotiation Strategy

• Using FastInfosetClientFeature Feature Class at Design Time

7.3.1 Content Negotiation Strategy
You can configure the content negotiation policy when enabling Fast Infoset on the
client.

Table 7-1 summarizes the valid content negotiation strategies defined by
com.oracle.webservices.api.FastInfosetContentNegotiationType.

Chapter 7
About Enabling and Configuring Fast Infoset on Web Services Clients

7-2

Table 7-1 Content Negotiation Strategy

Value Description

OPTIMISTIC Assumes that Fast Infoset is enabled on the service. All requests
will be sent using Fast Infoset.

PESSIMISTIC Initial request from client is sent without Fast Infoset enabled, but
with an HTTP Accept header that indicates that the client
supports the Fast Infoset capability. If the service response is in
Fast Infoset format, confirming that Fast Infoset is enabled on
the service, then subsequent requests from the client will be sent
in Fast Infoset format.

NONE Client requests will not use Fast Infoset.

Please note:

• If the content negotiation strategy is configured explicitly on the client:

– It takes precedence over the negotiation strategy advertised in the WSDL.

– If the configured content negotiation strategy conflicts with the capabilities
advertised by the service (for example, if the client configures OPTIMISTIC and
the service has Fast Infoset disabled), then an exception is generated.

• If the content negotiation strategy is not configured explicitly by the client:

– If Fast Infoset is enabled and advertised on the service, the OPTIMISTIC
content negotiation strategy is used.

– If Fast Infoset is disabled and not advertised on the service, the NONE content
negotiation strategy is used.

7.3.2 Using FastInfosetClientFeature Feature Class at Design Time
You can enable and configure Fast Infoset on a web service at design time using the
com.oracle.webservices.api.FastInfosetClientFeature feature class.

The following code excerpt provides an example of using the
com.oracle.webservices.api.FastInfosetClientFeature feature class.

package examples.webservices.fastinfoset;
import com.oracle.webservices.api.FastInfosetClientFeature;
import com.oracle.webservices.api.FastInfosetContentNegotiationType;
...
public class HelloServicePortClient {

 private static HelloServiceService helloServiceService;

 public static void main(String [] args)
 {
 FastInfosetContentNegotiationType clientNeg =
 FastInfosetContentNegotiationType.PESSIMISTIC;
 FastInfosetClientFeature feature =
FastInfosetClientFeature.builder().fastInfosetContentNegotiation(clientNeg).enabled(t
rue).build();
 helloServiceService = new HelloServiceService();
 HelloService helloService =
 helloServiceService.getHelloServicePort(feature);

Chapter 7
About Enabling and Configuring Fast Infoset on Web Services Clients

7-3

...
}

7.4 Disabling Fast Infoset on Web Services and Clients
You can explicitly disable fast infoset on web services and clients at the design time.

To disable Fast Infoset explicitly:

• On a web service, set the enabled flag to false on the annotation, as described in
Enabling Fast Infoset on Web Services

• On a web service client, set the enabled flag to false or set the content
negotiation strategy to NONE on the annotation or Feature class, as described in
About Enabling and Configuring Fast Infoset on Web Services Clients

The following code excerpt provides an example of using the
com.oracle.webservices.api.FastInfosetService annotation to disable Fast Infoset
on a web service at design time.

package examples.webservices.fastinfoset;
import com.oracle.webservices.api.FastInfosetService;
...
@PortableWebService
@FastInfosetService(enabled = false)
public class HelloImplFastInfosetDisabled{
 @WebMethod
 public String hello(String name) {
 return "Hello, " + name + "! (from FI Disabled Service)";
 }
}

At post-deployment time, to disable Fast Infoset:

• Detach the oracle/fast_infoset_service_policy or oracle/
fast_infoset_client_policy policy from the web service or client, respectively.

For complete details, see the following sections:

– "Attaching Policies to Web Services and Clients Using Fusion Middleware
Control" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

– "Configuring Fast Infoset Using WLST" in Administering Web Services.

• To disable Fast Infoset globally, at a higher scope on a web service or client,
define a policy set that includes oracle/no_fast_infoset_service_policy or
oracle/no_fast_infoset_client_policy policy, respectively.

For complete details, see the following sections:

– "Attaching Policies Globally Using Policy Sets" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

– "Attaching Policies Globally Using Policy Sets Using WLST" in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

Chapter 7
Disabling Fast Infoset on Web Services and Clients

7-4

8
Introduction to Using MTOM Encoded
Message Attachments

Using MTOM to pass binary content improves web services performance. OWSM
enables you to attach MTOM policies to your web services.
This chapter includes the following sections:

• Overview of Message Transmission Optimization Mechanism

• About Predefined MTOM Attachment Policies

• About MTOM Policies Attachment

• About MTOM Policies Configuration

8.1 Overview of Message Transmission Optimization
Mechanism

You can use Message Transmission Optimization Mechanism (MTOM), to pass Binary
content such as an image in JPEG format between the client and the web service,
which reduces the transmission size on the wire.

In order to be passed, the binary content is typically inserted into an XML document as
an xsd:base64Binary string. Transmitting the binary content in this format greatly
increases the size of the message sent over the wire and is expensive in terms of the
required processing space and time.

Using MTOM, binary content can be sent as a MIME attachment, which reduces the
transmission size on the wire. The binary content is semantically part of the XML
document. This is an advantage over SWA (SOAP Messages with Attachments), in
that it enables you to apply operations such as WS-Security signature on the
message. For more information, refer to the following specifications:

• SOAP 1.2: http://www.w3.org/TR/2005/REC-soap12-mtom-20050125

• SOAP 1.1: http://www.w3.org/Submission/2006/SUBM-soap11mtom10-20060405

Using MTOM to pass binary content as an attachment improves the performance of
the web services stack. Performance is not affected if an MTOM-encoded message
does not contain binary content.

MTOM provides an optimized transmission mechanism for SOAP 1.2 messages with
an envelope that contains elements of XML schema type xs:base64 binary. MTOM
makes use of data handling mechanisms described in the following specifications:

• XOP (XML-binary Optimized Packaging)—Provides a mechanism to more
efficiently serialize XML Infosets that have content of type xs:base64Binary. The
XOP specification is available at the following Web site: http://www.w3.org/TR/
xop10/

8-1

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125
http://www.w3.org/Submission/2006/SUBM-soap11mtom10-20060405
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/xop10/

• DMCBDX (Describing Media Content of Binary Data in XML)—Provides content
type information for the binary data in the XML instance and schema. This
information can be used to optimize the processing of binary data. The DMCBDX
specification is available at the following Web site: http://www.w3.org/TR/2005/
NOTE-xml-media-types-20050504/

• RRSHB (Resource Representation SOAP Header Block)—allows a SOAP
message to carry a representation of a Web resource, such as a JPEG image, in a
SOAP header block. When combined with MTOM and XOP, the Web resource
contained in a RRSHB SOAP header block can be transmitted as a raw binary
MIME attachment instead of an xs:base64Binary string in the SOAP header. The
RRSHB specification is available at the following Web site: http://
www.w3.org/TR/2005/REC-soap12-rep-20050125/

These specifications fulfill the requirements outlined in OSUCR (SOAP Optimized
Serialization Use Cases and Requirements), as described at: http://www.w3.org/TR/
2004/WD-soap12-os-ucr-20040608/

8.2 About Predefined MTOM Attachment Policies
MTOM attachment policies are part of the pre-defined policy set of OWSM.

As described in Understanding How Policies Attach to Oracle Infrastructure Web
Services , OWSM provides a set of predefined policies and assertion templates that
are automatically available when you install Oracle Fusion Middleware. The MTOM
attachment policy listed in Table 8-1 is available in this pre-defined set:

Table 8-1 Predefined MTOM Attachment Policies

Reliable Messaging Policy Description

oracle/wsmtom_policy Rejects inbound messages that are not in MTOM format and verifies that outbound
messages are in MTOM format.

For more information about the MTOM attachment predefined policies, see "MTOM
Attachment Policies" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

8.3 About MTOM Policies Attachment
You can attach MTOM policies to Oracle Infrastructure web services and clients at
design time using Oracle JDeveloper, or at runtime using the Oracle Enterprise
Manager.

For more information, see Understanding How Policies Attach to Oracle Infrastructure
Web Services .

8.4 About MTOM Policies Configuration
No configuration steps are required.

Chapter 8
About Predefined MTOM Attachment Policies

8-2

http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504/
http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504/
http://www.w3.org/TR/2005/REC-soap12-rep-20050125/
http://www.w3.org/TR/2005/REC-soap12-rep-20050125/
http://www.w3.org/TR/2004/WD-soap12-os-ucr-20040608/
http://www.w3.org/TR/2004/WD-soap12-os-ucr-20040608/

9
Introduction to Developing RESTful Web
Services

An introduction of Representational State Transfer (RESTful) web service concepts
and a description of how to develop and configure RESTful web services using Java
API for RESTful Web Services (JAX-RS) is detailed in this chapter.
It included the following sections:

• Overview of RESTful Web Services

• How RESTful Web Services Requests Are Formed and Processed

• Understanding the Limitations of RESTful Web Service Support

9.1 Overview of RESTful Web Services
Representational State Transfer (REST) describes any simple interface that transmits
data over a standardized interface (such as HTTP) without an additional messaging
layer, such as SOAP.

REST provides a set of design rules for creating stateless services that are viewed as
resources, or sources of specific information, and can be identified by their unique
URIs. A client accesses the resource using the URI, a standardized fixed set of
methods, and a representation of the resource is returned. The client is said to transfer
state with each new resource representation.

When using the HTTP protocol to access RESTful resources, the resource identifier is
the URL of the resource and the standard operation to be performed on that resource
is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

You build RESTful endpoints using the invoke() method of the
javax.xml.ws.Provider<T> interface (see http://java.sun.com/javaee/5/
docs/api/javax/xml/ws/Provider.html). The Provider interface provides a dynamic
alternative to building an service endpoint interface (SEI).

9.2 How RESTful Web Services Requests Are Formed and
Processed

A description of how RESTful web service requests are formed on the client side and
how they are processed on the server side is detailed in these sections:

• HTTP Get Requests

• HTTP Post Requests

• RESTful Responses

9-1

http://java.sun.com/javaee/5/docs/api/javax/xml/ws/Provider.html
http://java.sun.com/javaee/5/docs/api/javax/xml/ws/Provider.html

9.2.1 HTTP Get Requests
RESTful web services support HTTP Get Requests. You can invoke RESTful requests
by using a GET with a specific URL.

This section describes how to build HTTP Get Requests. It includes the following
sections:

• About HTTP Get Requests

• Building HTTP Get Requests

9.2.1.1 About HTTP Get Requests
If a SOAP endpoint that is REST-enabled is deployed at the following URL:

http://example.com/my-app/my-service

Then HTTP GET requests will be accepted at the following URL:

http://example.com/my-app/my-service/{operationName}?
{param1}={value1}&{param2}={value2}

In the example above, {operationName} specifies one of the operation names in the
WSDL for the service. For RPC-literal operations, {param1}, {param2}, and so on, are
the part names defined in the operation's input wsdl:message. Note that these must be
simpleTypes (xsd:int, and so on).

Note:

Some browsers limit the size of the HTTP GET URL (typically less than 2000
characters). Try to keep the size of the URL small by using a limited number
of parameters and short parameter names and values.

For document-literal operations, messages have only a single parameter. To simulate
multiple parameters, the WSDL specifies a single parameter that is defined in the
schema as a sequence. Each member of the sequence is considered a parameter. In
this case, {param1}, {param2}, and so on, will be the members of the sequence type,
instead of message parts. As with RPC-literal, these must be simpleTypes.

The following example illustrates the request message defined for an operation named
addNumbers.

<wsdl:message name="AddNumbersRequest">
 <wsdl:part name="a" type="xsd:int" />
 <wsdl:part name="b" type="xsd:int" />
</wsdl:Message>

9.2.1.2 Building HTTP Get Requests
You can invoke RESTful requests by using a GET with the following URL:

http://{yourhost}/{context-path}/{service-url}/addNumbers?a=23&b=24

Chapter 9
How RESTful Web Services Requests Are Formed and Processed

9-2

The following example illustrates the SOAP envelope that the Oracle Web Services
platform will create on the server side from the GET request. This message will be
processed like any other incoming SOAP request.

<soap:Envelope>
 <soap:Body>
 <ns:addNumbers>
 <ns:a>23</ns:a>
 <ns:b>24</ns:b>
 </ns:addNumbers>
 <soap:Body>
<soap:Envelope>

The following example illustrates the request message sent for the addNumbers
service when it is defined as a document-literal operation.

<wsdl:message name="AddNumbersRequest">
 <wsdl:part name="params" type="tns:AddNumbersRequstObject" />
</wsdl:Message>

The following example illustrates the definition of the AddNumbersRequestObject as it
would be defined in the schema.

<xsd:complexType name="AddNumbersRequestObject">
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element name="a" type="xsd:int"/>
 <xsd:element name="b" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexContent>
</xsd:complexType>

This operation can be invoked by a GET request with the following URL.

http://{yourhost}/{context-path}/{service-url}/addNumbers?a=23&b=24

Note:

This is the same URL that is used for the RPC-literal request addNumbers
operation example.

9.2.2 HTTP Post Requests
RESTful web services support HTTP POST Requests that are simple XML messages
and not SOAP envelopes.

This section describes how to build HTTP POST Requests. It includes the following
sections:

• About the HTTP Post Requests

• Building HTTP Post Requests

Chapter 9
How RESTful Web Services Requests Are Formed and Processed

9-3

9.2.2.1 About the HTTP Post Requests
RESTful web services support HTTP POST Requests that are simple XML messages
—not SOAP envelopes. RESTful requests do not support messages with attachments.
Since the service also supports SOAP requests, the implementation must determine if
a given request is meant to be SOAP or RESTful request.

When a SOAP service receives a POST request, it looks for a SOAP action header. If
it exists, the implementation will assume that it is a SOAP request. If it does not, it will
find the QName of the root element of the request. If it is the SOAP envelope QName,
it will process the message as a SOAP request. Otherwise, it will process it as a
RESTful request.

9.2.2.2 Building HTTP Post Requests
You can process RESTful requests by wrapping the request document in a SOAP
envelope. The HTTP headers will be passed through as received, except for the
Content-Type header in a SOAP 1.2 request. This Content-Type header will be
changed to the proper content type for SOAP 1.2, application/soap+xml.

For example, this RESTful request will be wrapped in the SOAP envelope illustrated
the following request.

<ns:addNumbers>
 <ns:a>23</ns:a>
 <ns:b>24</ns:b>
</ns:addNumbers>

The following request will be processed as a normal SOAP request.

<soap:Envelope>
 <soap:Body>
 <ns:addNumbers>
 <ns:a>23</ns:a>
 <ns:b>24</ns:b>
 </ns:addNumbers>
 </soap:Body>
</soap:Envelope>

9.2.3 RESTful Responses
For any request (either GET or POST) that was processed as a RESTful request, the
response must also be in RESTful style.

The server will transform the SOAP response on the server into a RESTful response
before sending it to the client. The RESTful response will be an XML document whose
root element is the first child element of the SOAP body.

For example, assume that the SOAP envelope illustrated in the following example
exists on the server.

<soap:Envelope>
 <soap:Body>
 <ns0:result xmlns:nso="…">
 <ns:title>How to Win at Poker</ns:title>
 <ns:author>John Doe</ns:author>

Chapter 9
How RESTful Web Services Requests Are Formed and Processed

9-4

 </ns0:result>
 </soap:Body>
</soap:Envelope>

The following example illustrates the response sent back to the client. Note that the
Content-Type will always be text/xml. Any SOAP headers or attachments will not be
sent back to the client.

<ns0:result xmlns:ns0="…">
 <ns:title>How to Win at Poker</ns:title>
 <ns:author>John Doe</ns:author>
</ns0:result>

9.3 Understanding the Limitations of RESTful Web Service
Support

Oracle Web Services support for RESTful web services is constrained by certain
limitations.

The following list describes the limitations.

• RESTful web service support is available only for web service applications with
literal operations (both request and response should be literal).

• HTTP GET is supported only for web service operations without (required)
complex parameters.

• Some browsers limit the size of the HTTP GET URL, typically to 2000 characters
or less. Try to keep the size of the URL small by using a limited number of
parameters and short parameter values and names.

• RESTful web services send only simple XML messages. You cannot send
messages with attachments.

• Many management features, such as security and reliability, are not available with
RESTful web services. This is because SOAP headers, which are typically used to
carry this information, cannot be used with RESTful invocations of services.

• RESTful invocations cannot be made from generated Stubs or DII clients.
Invocations from those clients will be made in SOAP.

• There is no REST support for the Provider framework.

• Operation names in RESTful web services cannot contain multibyte characters.

Chapter 9
Understanding the Limitations of RESTful Web Service Support

9-5

10
Invoking a Web Service from a Standalone
Client

A description of how to invoke an Oracle Infrastructure web service from a standalone
client is detailed in this chapter.
It includes the following sections:

• Using a Standalone Client Jar to Invoke a Web Service

• Supporting Basic Authentication

• Supporting SSL Policies

10.1 Using a Standalone Client Jar to Invoke a Web Service
When invoking an Oracle Infrastructure web service from an environment that does
not have Oracle Fusion Middleware installed locally, with the entire set of Oracle
Fusion Middleware classes in the CLASSPATH, you can use the standalone client
JAR file to invoke the web service.

The standalone client JAR supports basic Oracle Infrastructure web service client-side
functionality and OWSM security policies.

To use the standalone client JAR file with your client application, perform the following
steps:

1. Create a Java SE client using your favorite IDE, such as Oracle JDeveloper.

2. Copy the file ORACLE_HOME/oracle_common/modules/clients/
com.oracle.webservices.fmw.client_12.1.3.jar from the computer hosting
Oracle Fusion Middleware to the client computer, where ORACLE_HOME is the
directory you specified as Oracle Home when you installed Oracle Fusion
Middleware.

For example, you might copy the file into the directory that contains other classes
used by your client application.

3. Add the JAR file to your CLASSPATH.

4. Configure your environment for Oracle Web Services Manager (OWSM) policies.
This step is optional, required only if you are attaching OWSM security policies to
the web service client.

The configuration steps required vary based on the type of policy being attached.
See the following examples:

• Supporting Basic Authentication

• Supporting SSL Policies

10-1

Note:

For additional configuration requirements, see "Configuring Java SE
Applications to Use OPSS" in Securing Applications with Oracle Platform
Security Services.

10.2 Supporting Basic Authentication
You have to perform certain steps to support basic authentication when you invoke an
Oracle Infrastructure web service from a standalone client.

To support basic authentication using the oracle/wss_http_token_client_policy
security policy, perform the following steps:

1. Copy the jps-config-jse.xml and audit-store.xml files from the domain_home/
config/fmwconfig directory, where domain_home is the name and location of the
domain, to a location that is accessible to the web service client.

2. Create a wallet (cwallet.sso) in the same location that you copied the files in step
a that defines a map called oracle.wsm.security and the credential key name
that the client application will use (for example, weblogic-csf-key).

The location of the file cwallet.sso is specified in the configuration file jps-
config-jse.xml with the element <serviceInstance>.For more information, see
"Using a Wallet-based Credential Store" in Securing Applications with Oracle
Platform Security Services.

3. On the Java command line, pass the following property defining the JPS
configuration file copied in step 1:

-Doracle.security.jps.config=<pathToConfigFile>

For more information, see "Scenario 3: Securing a Java SE Application" in
Securing Applications with Oracle Platform Security Services.

10.3 Supporting SSL Policies
You have to perform certain steps to support SSL policies when you invoke an Oracle
Infrastructure web service from a standalone client.

To support SSL policies, perform the following steps:

1. Copy the jps-config-jse.xml and audit-store.xml files from the domain_home/
config/fmwconfig directory, where domain_home is the name and location of the
domain, to a location that is accessible to the web service client.

2. On the Java command line, pass the following properties, defining the JPS
configuration file copied in step 1:

Define the JPS configuration file copied in step 1:

-Doracle.security.jps.config=<pathToConfigFile>

For more information, see "Scenario 3: Securing a Java SE Application" in
Securing Applications with Oracle Platform Security Services.

Define the trust store containing the trusted certificates:

Chapter 10
Supporting Basic Authentication

10-2

-Djavax.net.ssl.trustStore=<trustStore>

For more information, see "Setting Up the WebLogic Server in Case of a Java SE
Application" in "Setting Up a One-Way SSL Connection to the LDAP" in Securing
Applications with Oracle Platform Security Services.

Define the trust store password:

-Djavax.net.ssl.trustStorePassword=<password>

Chapter 10
Supporting SSL Policies

10-3

11
About Testing Web Services

You can use the Web Services Test Client or the Fusion Middleware Control Test Web
Service page to test basic and advanced features of your Oracle Infrastructure web
services, such as authentication, authorization, quality of service (QoS), HTTP header
options, and so on. You can also perform stress testing of the security features.
For information about testing web services using the Web Services Test Client or
Fusion Middleware Control Test Web Service page, see "Testing Web Services" in
Administering Web Services.

11-1

12
Interoperability Guidelines

An introduction of the guidelines for ensuring interoperability with Oracle Infrastructure
web services is detailed in this chapter.
It includes the following sections:

• Introduction to Web Service Interoperability

• Web Service Interoperability Organizations

• Recommended Guidelines for Creating Interoperable Web Services

12.1 Introduction to Web Service Interoperability
The goal of the web service architecture is to allow heterogeneous business
applications to smoothly work together. The architecture is loosely coupled and based
on XML standards.

Web services are designed to work with each other by defining Web Service
Description Language (WSDL) files as service contracts, regardless of which operating
system and development technology are behind them. However, because of the
complexity involved in service contracts, standards like WSDL and SOAP leave room
for ambiguous interpretations. In addition, vendor-specific enhancements and
extensions work against universal interoperability.

Business applications must invoke each other's services. These services are often
implemented with different technologies. Interoperability failures tend to increase as
web service complexity increases. If you host a publicly available web service, you will
want to ensure that your clients from all over the world, using vastly different tool kits,
can successfully invoke it. Likewise, your business application might need to integrate
or interact with another vendor's web service that was built on top of an existing legacy
system and has an unusual interface design.

Interoperability issues can originate from any layer of the protocol stack. On the
transport level, both parties involved in exchanging messages must agree on a
specific physical transport mechanism. For example, you cannot expect to use JMS
transport from a non-Java platform. This is why using basic HTTP protocol increases
your chance of interoperability. On the message level, because SOAP allows virtually
any type of data encoding to be used, interoperability can become difficult. For
example, a standard ArrayList on a Java platform will not be automatically translated
into a System.collections.ArrayList on the .NET platform. Also, interoperability issues
arise at the basic WSDL and SOAP level—advanced web service developers will find
many more new challenges when they start implementing quality of service (QOS)
features such as security, reliability, and transaction services.

Difficulties in interoperability do exist. However, with a few good guidelines, your
Oracle Infrastructure web service should work seamlessly with other Java EE vendor
platforms or non-Java platforms like the Microsoft .NET platform.

12-1

12.2 Web Service Interoperability Organizations
As interoperability gains more and more importance in the web service community, a
number of organizations have been established to achieve this goal.

• About the SOAPBuilders Community

• About the WS-Interoperability Organization

12.2.1 About the SOAPBuilders Community
SOAPBuilders is a loosely organized forum of developers working towards a set of
tests for interoperability between SOAP implementations. Interoperability is
demonstrated by implementing a canonical set of tests that are collectively defined by
the participants in the forum.

The tests developed by the SOAPBuilder community are, by and large, based on
vendor practices. However, practices shift over time. Clean and well-defined rules
organized in a formal manner are needed for web service vendors, web service
developers, and web service consumers. See the following Web site for more
information on SOAPBuilder tests: http://java.sun.com/webservices/interop/
soapbuilders/index.html

12.2.2 About the WS-Interoperability Organization
The Web Services Interoperability organization (WS-I) is an open industry organization
that creates, promotes, and supports generic protocols for the interoperable exchange
of messages between web services.

WS-I profiles are guidelines and recommendations for how the standards should be
used. These profiles aim to remove ambiguities by adding constraints to the underlying
specifications.

WS-I deliverables are profiles, common or best practices, scenarios, testing software,
and testing materials. You should design your web service so that it adheres to WS-I
basic profiles. WS-I compliant services agree to clear contracts and have a greater
chance of interoperability.

For example, a WS-I basic profile-compliant web service should use the following
features.

• Use HTTP or HTTPS as the transport binding. HTTP 1.1 is preferred over HTTP
1.0.

• Use literal style encoding. Do not use SOAP encoding.

• Use stricter fault message syntax. When a MESSAGE contains a soap:Fault
element, its element children must be unqualified.

• Use XML version 1.0.

• The service should not declare array wrapper elements using the convention
ArrayOfXXX.

The WS-I Web site provides more information about WS-I profiles, and the rules
defined within profiles: http://www.ws-i.org/

Chapter 12
Web Service Interoperability Organizations

12-2

http://java.sun.com/webservices/interop/soapbuilders/index.html
http://java.sun.com/webservices/interop/soapbuilders/index.html
http://www.ws-i.org/

Oracle is a member of the WS-I organization and is fully committed to helping our
customers achieve interoperability. The Oracle Infrastructure Web Services platform
allows a high degree of flexibility to help you create interoperable web services.

Oracle JDeveloper supports integrated testing of WSDL files and running web services
for WS-I Basic Profile conformance. It delivers an enhanced HTTP Analyzer for
monitoring and logging, and provides a built-in analysis and reporting tool to better
diagnose interoperability issues. For more information, see the Oracle JDeveloper
online help.

12.3 Recommended Guidelines for Creating Interoperable
Web Services

You have to follow certain guidelines to create interoperable web services. The first
general guideline is to create web services that are WS-I compliant, if possible.

The WS-I profiles, however, do not solve all interoperability problems. Many web
services were implemented before WS-I profiles existed. Also, the legacy systems that
you are enabling as a web service might have placed restrictions on your designs.
Thus, good practice in designing web services should always be adopted from the
beginning of the development process, whenever possible.

For this reason, Oracle recommends that you follow these general guidelines when
creating interoperable web services.

• Why Design Web Services Using a Top Down Approach?

• About Designing Data Types Using XSD First

• Keeping Data Types Simple

• About Using Null Values With Care

• About Using a Compliance Testing Tool to Validate the WSDL

• Why Consider Differences Between Platform Native Types?

• Why Avoid Using RPC-Encoded Message Format?

• Understanding How to Avoid Name Collisions

• Why Use Message Handlers, Custom Serializers, or Interceptors?

• Why Apply WS-* Specifications Judiciously?

12.3.1 Why Design Web Services Using a Top Down Approach?
Using a top-down from WSDL approach enables you to design your web service from
service contracts that are not tied to any platform or language-specific characteristics.

Contract-level interoperability can be ensured even before your web service is
implemented. Other web service platform tools will be able to process your WSDL file
and it is less likely that the service will be affected by existing legacy APIs.

12.3.2 About Designing Data Types Using XSD First
If possible, use an XSD schema editor to design your data types with schema types.

Chapter 12
Recommended Guidelines for Creating Interoperable Web Services

12-3

Resist using platform-specific data types such as the .NET DataSet data type, Java
collections, and so on.

12.3.3 Keeping Data Types Simple
You should avoid unnecessarily complex schema data types such as xsd:choice.

Simple data types provide the best interoperability and have the added benefit of
improved performance.

For additional information, see the following:

• Why Use Single-Dimensional Arrays?

• Why Differentiate Between Empty Arrays and Null References to Arrays?

• Why Avoid Using Sparse, Variable-Sized, or Multi-Dimensional Arrays?

• Why Avoid Using xsd:anyType?

• Why Map Any Unsupported xsd:types to a SOAPElement?

12.3.3.1 Why Use Single-Dimensional Arrays?
Use single dimensional arrays, if possible. Use arrays of arrays instead of multi-
dimensional arrays.

Multi-dimensional arrays (applicable in RPC-encoded formats only) are not supported
on the .NET platform. Also, in the case of multi-dimensional arrays, the length of the
inner arrays must be the same. Arrays of arrays provides flexibility in such a way that
the length of contained arrays can be different.

Note:

While XSD supports the definition of multi-dimensional arrays in the WSDL,
programming languages such as Java map them to arrays of arrays and
express the payload in a multi-dimensional format. While converting the
payload to multi-dimensional format, the Java VM must ensure that the
length of each inner array is the same, as well as perform other checks.

12.3.3.2 Why Differentiate Between Empty Arrays and Null References to
Arrays?

To prevent issues, be sure to differentiate between empty arrays and null references
to arrays.

For example, if you have an array with attributes minoccurs=0 and xsd:nillable=true
and the service implementation attempts to return a null reference to this array, then
the representation of the payload becomes problematic. Some implementations can
completely ignore this element in the payload as minoccurs=0, while other
implementations can specify this in the payload with the attribute xsi:nil=true.

The same question arises when you attempt to deserialize the array. You can
deserialize either to a null reference or to an array that contains no element. In this
case, the guideline is to check for null always before checking for length.

Chapter 12
Recommended Guidelines for Creating Interoperable Web Services

12-4

12.3.3.3 Why Avoid Using Sparse, Variable-Sized, or Multi-Dimensional
Arrays?

Although sparse, variable-sized, and multi-dimensional arrays are supported by XSD,
they may not be supported by your target platform. If you are creating your web
service top down from WSDL, try to avoid these array types and use regular arrays.

12.3.3.4 Why Avoid Using xsd:anyType?
Typically, xsd:anyType is mapped to java.lang.Object in the Java platform; this
allows you to pass any run-time that will require a separate serializer and deserializers
to be registered. The guideline is to find all the possible types that can be used in the
runtime and define them in the WSDL.

The following example illustrates a class MyAnyType and two classes,
MyPossibleType1 and MyPossibleType2, that extend it. In this case, use MyAnyType
instead of xsd:anyType, in the Web method.

public class MyAnyType {
 //No member variable
}

public class MyPossibleType1 extends MyAnyType {
 //member variable.
}

public class MypossibleType2 extends MyAnyType {
 //member variable
}
..

12.3.3.5 Why Map Any Unsupported xsd:types to a SOAPElement?
It is possible for the presence of only one unsupported xsd:type in the WSDL to affect
interoperability.

The easy work around is to map the unsupported XSD type to SOAPElement by using
a mapping mechanism, such as a JAX-RPC mapping file. Even if you have a type that
is supported but fails during runtime, you can still attempt to map it to SOAPElement,
then parse the SOAPElement inside the client or server.

12.3.4 About Using Null Values With Care
Avoid sending null values if possible. If you must use null values in your application,
design your schema types to clearly indicate that a null value is allowed.

Decide what you want to do with null values. For example, should an array be allowed
to be null? Should you use a null string or an empty string? If you are sending a null
value across platforms, will it cause exceptions on the receiver side?

12.3.5 About Using a Compliance Testing Tool to Validate the WSDL
If your web service is designed to be WS-I compliant, use the WS-I monitor tool to log
messages and the analyzer tool to validate for conformance.

Chapter 12
Recommended Guidelines for Creating Interoperable Web Services

12-5

You can obtain free downloads of WS-I tools from the following Web site: http://
www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools/

12.3.6 Why Consider Differences Between Platform Native Types?
Some schema types, such as xsd:unsignedshort and xsd:unsignedint, do not
always have a direct native type mapping. For example, there are no Java platform
equivalent unsigned types. Schema numeric types such as xsd:double, xsd:float,
and xsd:decimal might have different precisions once mapped to their platform native
types.

There are also limitations on the xsd:string type. The strings must not contain illegal
XML characters and the \r (carriage return) character will typically be mapped to the \n
(line feed) character.

Use byte[] instead of xsd:string when you do not know the character set that the
source data uses. Binary content is more interoperable than text content.

If you are creating the web service bottom up from Java classes, you must ensure that
you use the closest possible data type. Thus, use Java data types closer to the
xsd:type. For example, if you want to use xsd:dateTime to represent a date and time,
then use the javax.xml.datatype.XMLGregorianCalendar data type instead of
java.lang.Data or java.util.Calendar. The XMLGregorianCalendar data type can
return a more precise time because it can store fractional seconds.

If you are creating the web service top down from WSDL, use mapping files to map the
xsd:dateTime to XMLGregorianCalendar if time accuracy is very important.

Note:

All of the pre-Java EE platforms, such as J2EE 1.*, used Calendar, but now
Java EE-compliant platforms use XMLGregorianCalendar. This provides
better .Net interoperability because it can handle long fractions of seconds.

12.3.7 Why Avoid Using RPC-Encoded Message Format?
By itself, the RPC-encoded message format does not imply that you will not be able to
interoperate with other platforms and clients. In many cases, there are RPC-encoded
web services which are in use today.

The reason to move away from RPC-encoded message formats is to avoid some of
the edge cases where different interpretations of the underlying specification and
implementation choices break interoperability. Some examples include the treatment
of sparse arrays, multi-dimensional arrays, custom fault code QNames, un-typed
payloads, and so on.

12.3.8 Understanding How to Avoid Name Collisions
If you are creating web services bottom up from Java classes, you can avoid name
collisions by using explicit package names in your classes. If you are creating web
services top down from WSDL, you can avoid name collisions by using unique
namespace URIs.

Chapter 12
Recommended Guidelines for Creating Interoperable Web Services

12-6

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools/

Note:

By default, when most web service assembly tools use the top down
approach, they will try to derive a package name for the generated classes
from the namespace URI. When they use the bottom up approach, they will
try to use the Java package name to derive a namespace URI.

Unfortunately, because of valid package name limitations, this derivation is
not 1-1. So, specifying namespace URI in such a way that it does not
produce a conflicting package name that another namespace URI has
yielded, is very important.

12.3.9 Why Use Message Handlers, Custom Serializers, or
Interceptors?

You can use message handlers, custom serializers, or interceptors to easily fix some
interoperability issues.

This idea is to fix the issue on the payload at a very granular level, by intercepting and
changing the message either before it encounters the deserializers, or after the
payload is generated by the serializers and before it is put on the wire.

12.3.10 Why Apply WS-* Specifications Judiciously?
Many WS-* specifications are in early adoption phase, and could potentially reveal
interoperability issues with different stacks. A suggestion would be to make sure that a
WS-* feature is absolutely required before applying it.

Another suggestion would be to apply features that are most commonly used in the
web services space. For example, if you are in a situation where there are several
possible options, such as choosing either Basic Authentication, X.509, or Kerberos for
security, then choose the option which is most commonly used in the web services
space.

Chapter 12
Recommended Guidelines for Creating Interoperable Web Services

12-7

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.4.0)
	New and Changed Features for 12c (12.2.1.3.0)
	New and Changed Features for 12c (12.2.1.2.0)
	New and Changed Features for 12c (12.2.1.1.0)

	1 Introduction to Oracle Infrastructure Web Services
	1.1 Overview of Oracle Infrastructure Web Services
	1.2 Supported Standards for Developing Oracle Infrastructure Web Services
	1.3 Related documents for developing Oracle Infrastructure Web Services

	2 Understanding How Policies Attach to Oracle Infrastructure Web Services
	2.1 What Are Policies and Policy Sets?
	2.2 Understanding OWSM Predefined Policies and Assertion Templates
	2.3 Overview of How Policies Attach to Web Services

	3 Introduction to Securing Oracle Infrastructure Web Services
	3.1 Overview of Web Services Security
	3.2 About OWSM Predefined Security Policies and Assertion Templates
	3.3 About Security Policies Attachment
	3.4 About Security Policies Configuration

	4 Introduction to Developing Asynchronous Web Services
	4.1 Understanding Asynchronous Web Services
	4.1.1 Understanding the Flow of an Asynchronous Web Service Using a Single Request Queue
	4.1.2 Understanding the Flow of an Asynchronous Web Service Using a Request and a Response Queue
	4.1.3 Understanding the Client Perspective of an Asynchronous Web Service Call
	4.1.4 Understanding How Asynchronous Messages Are Correlated

	4.2 About Using JDeveloper to Develop and Deploy Asynchronous Web Services
	4.3 Annotation to Develop an Asynchronous Web Service
	4.4 Creating the Request and Response Queues
	4.4.1 Using the Default WebLogic JMS Queues
	4.4.1.1 Default WebLogic JMS Queues in Non-clustered Domains
	4.4.1.2 Tuning the Default JMS Delivery Failure Parameters

	4.4.2 Creating Custom Request and Response Queues
	4.4.3 About Custom Request and Response Queues
	4.4.4 Best Practices for Creating the Custom Request and Response Queues
	4.4.5 Modify Request and Response Queues at Runtime
	4.4.6 Securing the Request and Response Queues
	4.4.6.1 About Configuring a Custom JMS System User (Optional)
	4.4.6.2 About the WLST Script for Securing the Request and Response Queues

	4.4.7 Confirming the Request and Response Queue Configuration

	4.5 Annotation to Configure the Callback Service
	4.6 Configuring SSL for Asynchronous Web Services
	4.7 Defining Asynchronous Web Service Clients
	4.7.1 Asynchronous Client Code
	4.7.2 Callback Service Code

	4.8 Attaching Policies to Asynchronous Web Services and Clients
	4.8.1 About Attaching Policies to Asynchronous Web Service Clients
	4.8.2 Policies to Attach for Asynchronous Callback Services
	4.8.3 About Attaching Policies to Callback Clients

	5 Introduction to Using Web Services Reliable Messaging
	5.1 Web Services Reliable Messaging
	5.2 Predefined Reliable Messaging Policies in Oracle Infrastructure Web Services
	5.3 About Attachment of Reliable Messaging Policies to Oracle Infrastructure Web Services
	5.4 Reliable Messaging Policies Configuration

	6 Introduction to Using Web Services Atomic Transactions
	6.1 Overview of Web Services Atomic Transactions Framework
	6.2 Overview of Web Services Atomic Transactions in WebLogic Server Environment
	6.3 Components of Web Services Atomic Transactions
	6.4 How Web Services Atomic Transactions are Enabled on a Web Service (Inbound)
	6.5 How Web Services Atomic Transactions are Enabled on a Web Service Client (Outbound)
	6.6 Web Services Atomic Transaction Configuration
	6.7 Properties Configured for Messages Exchanged Between the Coordinator and Participant

	7 Introduction to Optimizing XML Transmission Using Fast Infoset
	7.1 Overview of Fast Infoset
	7.2 Enabling Fast Infoset on Web Services
	7.3 About Enabling and Configuring Fast Infoset on Web Services Clients
	7.3.1 Content Negotiation Strategy
	7.3.2 Using FastInfosetClientFeature Feature Class at Design Time

	7.4 Disabling Fast Infoset on Web Services and Clients

	8 Introduction to Using MTOM Encoded Message Attachments
	8.1 Overview of Message Transmission Optimization Mechanism
	8.2 About Predefined MTOM Attachment Policies
	8.3 About MTOM Policies Attachment
	8.4 About MTOM Policies Configuration

	9 Introduction to Developing RESTful Web Services
	9.1 Overview of RESTful Web Services
	9.2 How RESTful Web Services Requests Are Formed and Processed
	9.2.1 HTTP Get Requests
	9.2.1.1 About HTTP Get Requests
	9.2.1.2 Building HTTP Get Requests

	9.2.2 HTTP Post Requests
	9.2.2.1 About the HTTP Post Requests
	9.2.2.2 Building HTTP Post Requests

	9.2.3 RESTful Responses

	9.3 Understanding the Limitations of RESTful Web Service Support

	10 Invoking a Web Service from a Standalone Client
	10.1 Using a Standalone Client Jar to Invoke a Web Service
	10.2 Supporting Basic Authentication
	10.3 Supporting SSL Policies

	11 About Testing Web Services
	12 Interoperability Guidelines
	12.1 Introduction to Web Service Interoperability
	12.2 Web Service Interoperability Organizations
	12.2.1 About the SOAPBuilders Community
	12.2.2 About the WS-Interoperability Organization

	12.3 Recommended Guidelines for Creating Interoperable Web Services
	12.3.1 Why Design Web Services Using a Top Down Approach?
	12.3.2 About Designing Data Types Using XSD First
	12.3.3 Keeping Data Types Simple
	12.3.3.1 Why Use Single-Dimensional Arrays?
	12.3.3.2 Why Differentiate Between Empty Arrays and Null References to Arrays?
	12.3.3.3 Why Avoid Using Sparse, Variable-Sized, or Multi-Dimensional Arrays?
	12.3.3.4 Why Avoid Using xsd:anyType?
	12.3.3.5 Why Map Any Unsupported xsd:types to a SOAPElement?

	12.3.4 About Using Null Values With Care
	12.3.5 About Using a Compliance Testing Tool to Validate the WSDL
	12.3.6 Why Consider Differences Between Platform Native Types?
	12.3.7 Why Avoid Using RPC-Encoded Message Format?
	12.3.8 Understanding How to Avoid Name Collisions
	12.3.9 Why Use Message Handlers, Custom Serializers, or Interceptors?
	12.3.10 Why Apply WS-* Specifications Judiciously?

