
Oracle® Database
Using Oracle Blockchain Platform

Release 19.3.5
F20801-04
December 2020



Oracle Database Using Oracle Blockchain Platform, Release 19.3.5

F20801-04

Copyright © 2019, 2020, Oracle and/or its affiliates.

Primary Author: Kate Price

Contributors: Oracle Blockchain Platform development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience viii

Documentation Accessibility viii

Related Documents viii

Conventions viii

1   What's Oracle Blockchain Platform?

What's a Blockchain? 1-1

Why Should I Use Blockchain? 1-2

What Are the Advantages of Oracle Blockchain Platform? 1-3

What Do I Get with Oracle Blockchain Platform? 1-4

2   Get Started Using Samples

What Are Chaincode Samples? 2-1

Explore Oracle Blockchain Platform Using Samples 2-1

3   Manage the Organization and Network

What's the Console? 3-1

Modify the Console Timeout Setting 3-3

Find and Understand Your Oracle Blockchain Platform Version Number 3-4

Monitor the Network 3-4

How Can I Monitor the Blockchain Network? 3-4

What Type of Information Is on the Dashboard? 3-5

View Network Activity 3-7

Manage Nodes 3-7

What Types of Nodes Are in a Network? 3-7

Find Information About Nodes 3-9

View General Information About Nodes 3-9

Access Information About a Specific Node 3-9

View a Diagram of the Peers and Channels in the Network 3-10

iii



Find Node Configuration Settings 3-10

Start and Stop Nodes 3-11

Restart a Node 3-11

Set the Log Level for a Node 3-12

Manage Channels 3-12

What Are Channels? 3-12

View Channels 3-13

Create a Channel 3-14

View a Channel’s Ledger Activity 3-15

View or Update a Channel’s Organizations List 3-16

Join a Peer to a Channel 3-17

Add an Anchor Peer 3-17

Change or Remove an Anchor Peer 3-18

View Information About Instantiated Chaincodes 3-18

Work With Channel Policies and ACLs 3-19

What Are Channel Policies? 3-19

Add or Modify a Channel's Policies 3-20

Delete a Channel's Policies 3-21

What Are Channel ACLs? 3-22

Update Channel ACLs 3-22

Manage Certificates 3-22

Typical Workflows to Manage Certificates 3-23

Export Certificates 3-23

Import Certificates to Add Organizations to the Network 3-24

What's a Certificate Revocation List? 3-25

View and Manage Certificates 3-26

Revoke Certificates 3-26

Apply the CRL 3-27

Manage Ordering Service Settings 3-27

Export Ordering Service Settings 3-27

Import Ordering Service Settings 3-28

Edit Ordering Service Settings 3-29

View Ordering Service Settings 3-30

4   Understand and Manage Nodes by Type

Manage CA Nodes 4-1

View and Edit the CA Node Configuration 4-1

View Health Information for a CA Node 4-2

Manage the Console Node 4-2

View and Edit the Console Node Configuration 4-2

iv



View Health Information for the Console Node 4-3

Manage Orderer Nodes 4-3

View and Edit the Orderer Node Configuration 4-3

View Health Information for an Orderer Node 4-4

Manage Peer Nodes 4-4

View and Edit the Peer Node Configuration 4-4

List Chaincodes Installed on a Peer Node 4-5

View Health Information for a Peer Node 4-5

Export and Import Peer Nodes 4-5

Manage REST Proxy Nodes 4-6

How's the REST Proxy Used? 4-7

Add Enrollments to the REST Proxy 4-7

View and Edit the REST Proxy Node Configuration 4-8

View Health Information for a REST Proxy Node 4-8

5   Extend the Network

Add Oracle Blockchain Platform Participant Organizations to the Network 5-1

Typical Workflow to Join a Participant Organization to an Oracle Blockchain
Platform Network 5-1

Join a Network 5-4

Add Fabric Organizations to the Network 5-5

Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform
Network 5-5

Create a Fabric Organization's Certificates File 5-6

Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network 5-7

Add Organizations with Third-Party Certificates to the Network 5-9

Typical Workflow to Join an Organization with Third-Party Certificates to an
Oracle Blockchain Platform Network 5-9

Third-Party Certificate Requirements 5-10

Create an Organization's Third-Party Certificates File 5-11

Prepare the Third-Party Environment to Use the Oracle Blockchain Platform
Network 5-12

6   Develop Chaincodes

Write a Chaincode 6-1

Use a Mock Shim to Test a Chaincode 6-3

Deploy a Chaincode on a Peer to Test the Chaincode 6-5

7   Deploy and Manage Chaincodes

Typical Workflow to Deploy Chaincodes 7-1

v



Use Quick Deployment 7-2

Use Advanced Deployment 7-3

Update REST Proxy Settings for Running Chaincodes 7-4

Instantiate a Chaincode 7-6

Specify an Endorsement Policy 7-7

View an Endorsement Policy 7-8

Find Information About Chaincodes 7-8

Manage Chaincode Versions 7-9

Upgrade a Chaincode 7-9

What Are Private Data Collections? 7-10

Add Private Data Collections 7-11

View Private Data Collections 7-13

8   Develop Blockchain Applications

Before You Develop an Application 8-1

Use the Hyperledger Fabric SDKs to Develop Applications 8-2

Update the Hyperledger Fabric SDKs to Work with Oracle Blockchain Platform 8-4

Use the REST APIs to Develop Applications 8-6

9   Work With Databases

Query the State Database 9-1

What's the State Database? 9-1

State Database Indexes 9-2

Differences in the Validation of Rich Queries 9-4

Supported Rich Query Syntax 9-4

SQL Rich Query Syntax 9-4

CouchDB Rich Query Syntax 9-7

Create the Rich History Database 9-8

What's the Rich History Database? 9-8

Create the Oracle Database Cloud Service Connection String 9-9

Enable and Configure the Rich History Database 9-10

Modify the Connection to the Rich History Database 9-11

Choose the Channels that Write Data to the Rich History Database 9-11

Rich History Database Tables and Columns 9-12

A   Node Configuration

CA Node Attributes A-1

Console Node Attributes A-2

Orderer Node Attributes A-3

vi



Peer Node Attributes A-5

REST Proxy Node Attributes A-9

B   Using the Fine-Grained Access Control Library Included in the
Marbles Sample

Fine-Grained Access Control Library Functions B-3

Example Walkthough Using the Fine-Grained Access Control Library B-9

Fine-Grained Access Control Marbles Sample B-12

vii



Preface

Administering Oracle Blockchain Platform explains how to provision and maintain
Oracle Blockchain Platform instances.

Topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for administrators responsible for using and managing Oracle
Blockchain Platform blockchains .

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Administering Oracle Blockchain Platform

Conventions
The following text conventions are used in this document:

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

ix



1
What's Oracle Blockchain Platform?

This topic contains information to help you understand what Oracle Blockchain
Platform Enterprise Edition is.

Topics:

• What's a Blockchain?

• Why Should I Use Blockchain?

• What Are the Advantages of Oracle Blockchain Platform?

• What Do I Get with Oracle Blockchain Platform?

What's a Blockchain?
A blockchain is a system for maintaining distributed ledgers of facts and the history
of the ledger’s updates. A blockchain is a continuously growing list of records, called
blocks, that are linked and secured using cryptography.

This allows organizations that don't fully trust each other to agree on the updates
submitted to a shared ledger by using peer to peer protocols rather than a central
third party or manual offline reconciliation process. Blockchain enables real-time
transactions and securely shares tamper-proof data across a trusted business
network.

A blockchain network has a founder that creates and maintains the network, and
participants that join the network. All organizations included in the network are called
members.

Oracle Blockchain Platform is a permissioned blockchain, which provides a closed
ecosystem where only invited organizations (or participants) can join the network and
keep a copy of the ledger. Permissioned blockchains use an access control layer to
enforce which organizations have access to the network. The founding organization,
or blockchain network owner, determines the participants that can join the network. All
nodes in the network are known and use consensus protocol to ensure that the next
block is the only version of truth. There are three steps to consensus protocol:

• Endorsement — This step determines whether to accept or reject a transaction.

• Ordering — This step sorts all transactions within a time period into a sequence
or block.

• Validation — This step verifies that the required endorsement are gotten in
compliance with the endorsement policy and organization permissions.

Blockchain's key properties

Shared, transparent, and decentralized— The network maintains a distributed
ledger of facts and update history. All network participants see consistent data.
Data is distributed and replicated across the network’s organizations. Any authorized
organizations can access data.

1-1



Immutable and irreversible — Each new block contains a reference to the previous
block, which creates a chain of data. Data is distributed among the network
organizations. Blockchain records can only be appended and can't be undetectably
altered or deleted. Consensus is required before blocks or transactions are written to
the ledger. Therefore, the existence and validity of a data record can't be denied. After
endorsement policies are satisfied and consensus is reached, data is grouped into
blocks and blocks are appended to the ledger with cryptographically secured hashes
that provide immutability. Only those members authorized to have the corresponding
encryption keys can view data.

Encryption — All records are encrypted.

Closed ecosystem — Joined organizations can have a copy of the ledger.
Organizations are known in the real world. Consensus protocols depend on knowing
who the organizations are.

Speed — Transactions are verified in minutes. Network members interact directly.

Blockchain example

An example of an organization that benefits from using blockchain is a supply chain
contract manufacturing company. Suppose this company is located in the United
States and uses a third-party company in Mexico to source materials for and produce
electronic components. With a blockchain network, the manufacturing company can
quickly know the answers to the following questions:

• Where is the product in the production cycle?

• Where is the product being produced?

• Does the product contain ethically sourced materials?

• Does the product meet specifications and exporting compliance rules?

• When is ownership transferred?

• Does the invoice match and should the organization pay it?

• How should the organization handle any exceptions to the manufacturing,
shipping, or receiving process?

Why Should I Use Blockchain?
Implementing blockchain can help you manage and bring efficiency to many aspects of
your business practices.

The key benefits of using a blockchain are:

Increase Business Velocity — You can create a trusted network for business-
to-business transactions and extend and automate your operations beyond the
enterprise. With blockchain, you can optimize business decisions by providing real-
time information visibility across your company's ecosystem.

Reduce Operation Costs — Use blockchain to accelerate transactions and eliminate
cumbersome offline reconciliations by using a trusted shared fabric of common
information. Blockchains help you eliminate intermediaries and related costs, possible
single points of failure, and time delay by using a peer to peer business network.

Reduce the cost of fraud and regulatory compliance — Blockchain allows you to
gain the security of knowing that business critical records are made tamper-proof with

Chapter 1
Why Should I Use Blockchain?

1-2



securely replicated, cryptographically linked blocks that protect against single point of
failure and insider tampering.

What Are the Advantages of Oracle Blockchain Platform?
Using Oracle Blockchain Platform to create and manage your blockchain network has
many advantages over other available blockchain products.

As a preassembled platform, Oracle Blockchain Platform includes all the
dependencies required to support a blockchain network: compute, storage, containers,
identity services, event services, and management services. Oracle Blockchain
Platform includes the blockchain network console to support integrated operations.
This helps you start developing applications within minutes, and enables you to
complete a proof of concept in days or weeks rather than months.

How Oracle Blockchain Platform Adds Value to Hyperledger Fabric

Oracle Blockchain Platform is based on the Hyperledger Fabric project from the Linux
Foundation, and it extends the open source version of Hyperledger Fabric in many
ways.

Enhances Security

• Uses data in-transit encryption based on TLS 1.2, prioritizing forward-secrecy
ciphers in the TLS cipher-suite.

• Uses data at-rest encryption for all configuration and ledger data.

• Provides audit logging of all API calls to the blockchain resources, with records
available through an authenticated, filterable query API.

Adds REST Proxy

• Supports a rich set of Fabric APIs through REST calls for simpler transaction
integration. See REST API for Oracle Blockchain Platform.

• Enables synchronous and asynchronous invocations. Enables events and
callbacks and DevOps operations.

• Simplifies integration and insulates applications from underlying changes in
transaction flow.

Provides the Management and Operations Console

• Provides a comprehensive, intuitive web user interface and wizards to
automate many administration tasks. For example, adding organizations to the
network, adding new nodes, creating new channels, deploying and instantiating
chaincodes, browsing the ledger, and more.

• Enables DevOps through REST APIs for administration and monitoring of
blockchain.

• Dynamically handles configuration updates without node restart.

• Includes dashboards, ledger browser, and log viewers for monitoring and
troubleshooting.

Replaces Ledger DB World State Store With Oracle Berkeley DB

• Provides Couch DB rich query support at Level DB performance.

Chapter 1
What Are the Advantages of Oracle Blockchain Platform?

1-3



• Provides SQL-based rich query support. See What's the State Database?

• Validates query results at commit time to ensure ledger integrity and avoid
phantom reads.

Integrates Rich History Database

• Enables transparent shadowing of transaction history to Autonomous Data
Warehouse or Database as a Service and the use of Analytics or Business
Intelligence (for example, Oracle Analytics Cloud or third-party tools) on
blockchain transaction history and world state data. See Create the Rich History
Database.

Highly Available Architecture and Resilient Infrastructure

Built for business-critical enterprise applications, Oracle Blockchain Platform is
designed for continuous operation as a highly secure, resilient, scalable platform.
This platform provides continuous monitoring and autonomous recovery of all network
components based on continuous backup of the ledger blocks and configuration
information.

Each customer instance uses a framework of multiple managed VMs and containers to
ensure high availability. This framework includes:

• Peer node containers distributed across multiple VMs to ensure resiliency if one of
the VMs is unavailable or is being patched.

• Orderers, fabric-ca, console, and REST proxy nodes are replicated in all VMs for
transparent takeover to avoid outages.

• A highly available Kafka/Zookeeper cluster, leveraging multi-VM deployment
topology.

• Isolated VM environments for customer chaincode execution containers for greater
security and stability.

What Do I Get with Oracle Blockchain Platform?
Your instance includes everything you need to build, run, and monitor a complete
production-ready blockchain network based on Hyperledger Fabric.

Your Oracle Blockchain Platform instance is defined by the options you selected
when you created your instance. Your instance includes validating peer nodes, a
membership services provider (MSP), and an ordering service.

In addition, REST proxy nodes are provided and a default channel is created. Use
the console user interface to further configure, administer, and monitor the network, as
well as install, instantiate, and upgrade smart contracts (also known as chaincodes).
The Developer Tools tab contains sample chaincodes that you can deploy and run to
help you quickly understand how the blockchain network works.

Oracle Blockchain Platform is pre-assembled with underlying services, including
containers, compute, storage, LDAP for authentication, object store for embedded
archiving, and management and log analytics for operations and troubleshooting.
You can configure multiple peer nodes and channels for availability, scalability, and
confidentiality, and Oracle Blockchain Platform will automatically handle the underlying
dependencies.

Chapter 1
What Do I Get with Oracle Blockchain Platform?

1-4



2
Get Started Using Samples

This topic contains information about the samples included in your instance. Using
samples is the fastest way for you to get familiar with Oracle Blockchain Platform.

Topics

• What Are Chaincode Samples?

• Explore Oracle Blockchain Platform Using Samples

What Are Chaincode Samples?
Oracle Blockchain Platform includes chaincode samples written in Go and Node.js to
help you learn how to implement and manage your network’s chaincodes.

The Sample Chaincode page in the Oracle Blockchain Platform console contains:

• The Balance Transfer sample is a simple chaincode representing two parties
with account balances and operations to query the balances and transfer funds
between parties.

• The Marbles sample includes a chaincode to create marbles where each marble
has a color and size attribute. You can assign a marble to an owner and enable
operations to query status and trade marbles by name or color between owners.

• The Car Dealer sample includes a chaincode to manage the production, transfer,
and querying of vehicle parts; the vehicles assembled from these parts; and
transfer of the vehicles.

In this sample, a large auto maker and its dealers and buyers have created a
blockchain network to streamline its supply chain activities. Blockchain helps them
reduce the time required to reconcile issues with the vehicle and parts audit trail.

Use the Sample Chaincode page’s Download sample here links to download the
sample chaincode. The download contains the Go and Node.js versions of the
chaincode.

The download also contains a Java version of the chaincode.

For information about installing, instantiating, and invoking the samples on your
instance, see Explore Oracle Blockchain Platform Using Samples.

Explore Oracle Blockchain Platform Using Samples
You can install, instantiate, and invoke the sample chaincodes included in Oracle
Blockchain Platform.

 Tutorial

You must be an administrator to install and instantiate sample chaincodes. If you've
got user permissions, then you can invoke sample chaincodes.

2-1

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:25325


1. Go to the console and select the Developer Tools tab.

2. Click the Samples pane.

The Blockchain Samples page is displayed.

3. Locate the sample chaincode and install it.

a. Choose the sample chaincode that you want to use and click the
corresponding Install button.

b. In the Install Chaincode dialog, specify one or more peers to install the
chaincode on, and select which chaincode language you want to use (Go,
Node.js, or Java). Click Install.

4. Instantiate the chaincode.

a. Click the chaincode’s Instantiate button.

b. In the Instantiate Chaincode dialog select the channel you want to instantiate
the chaincode to, and specify any required parameters. Click Instantiate and
Enable in REST Proxy.

5. Go to the Channels tab and click the name of the channel that you instantiated the
sample chaincode to.

a. In the Channel Information page, click the Instantiated Chaincodes pane to
confirm the chaincode's deployment on the channel.

b. You can use the Ledger area to locate information about individual
transactions on the channel.

6. Click the Ledger pane and confirm the following.

• The Ledger Summary indicates one deployment occurred.

• In the Ledger table, locate the block with the Type of data (sys).

• Click the block and in the Transactions table, click the arrow icon to display
more information about the block. Confirm that the Function Name field
displays “deploy.”

7. If needed, go to the Chaincodes tab and instantiate the chaincode on other
channels.

If you're working on a network that contains multiple members and have
instantiated the chaincode on the founder, then you don’t have to instantiate the
chaincode on the participants where you installed the same chaincode. In such
cases, the chaincode is already instantiated and running on the participants.

a. Locate the name of the chaincode you want to instantiate in the table and click
it.

b. In the Chaincode Information page, click the Instantiate on a New
Chaincode button.

c. In the Instantiate Chaincode dialog specify the required information.

8. Invoke the chaincode.

a. Go to the Blockchain Samples page, locate the chaincode you're working with,
and click its Invoke button.

b. In the Invoke Chaincode dialog, select a channel to run the transaction on.

c. In the Action field, specify an action to execute the chaincode.

Chapter 2
Explore Oracle Blockchain Platform Using Samples

2-2



d. Click Execute. The Transaction Results shows returned values, and the API
details field displays the detailed log of all blockchain processes performed
from invoking the transaction.

9. Confirm whether the chaincode invoked successfully.

a. Go to the Channels tab, and locate and click the channel the chaincode was
installed on.

b. Confirm that the Ledger pane is selected, and in the Query Ledger table,
locate the block number indicating that an invocation occurred.

c. Click the block and confirm that in the Transactions table you see “Success” in
the Status column.

10. If needed, go to the Samples page and invoke any other operations on the
chaincode.

Chapter 2
Explore Oracle Blockchain Platform Using Samples

2-3



3
Manage the Organization and Network

This topic contains information to help you understand the console and how you can
use it to manage the channels and nodes that make up your organization and the
blockchain network.

Topics

• What's the Console?

• Modify the Console Timeout Setting

• Find and Understand Your Oracle Blockchain Platform Version Number

• Monitor the Network

• Manage Nodes

• Manage Channels

• Manage Certificates

• Manage Ordering Service Settings

What's the Console?
The Oracle Blockchain Platform console helps you monitor the blockchain network and
perform day to day administrative tasks.

When you provisioned your Oracle Blockchain Platform instance, all of the capabilities
you need to begin work on your blockchain network were added to the console.

You can use the console to perform tasks such as managing nodes, configuring
network channels and policies, and deploying and instantiating chaincodes. You can
also monitor and troubleshoot the network, view node status, view ledger blocks, and
find and view log files.

In most cases, each member of your network has its own console that they use
to manage their organization and monitor the blockchain network. Your role in the
network (founder or participant) determines the tasks you can perform in your console.
For example, if you're a participant, then you can’t add another participant to the
network. Only the founder can add a participant to the network.

Also, what you can do in the console is determined by your access privileges (either
Administrator or User). For example, only an Administrator can set an anchor peer or
create a new channel.

Your instance includes sample chaincodes that you can use to get started. See
Explore Oracle Blockchain Platform Using Samples.

The console is divided into tabs.

3-1



Dashboard Tab

Use the Dashboard tab for an overview of the network’s performance. See What Type
of Information Is on the Dashboard?

On the Dashboard tab, you’ll find:

• A banner showing you how many different components are on your network. For
example, how many channels and chaincodes.

• The number of user transactions on a channel during a specific time range.

• The number of nodes that are running or stopped.

• The number of endorsements and commits by peers.

• Utilization statistics for your instance's partitions.

Network Tab

The Network tab is where you view a list of the members in your network. The first
time you use the Network tab after setting up your instance, you’ll see the nodes you
created during set up.

You can use the Network tab to:

• Find the organization IDs of the members in your network, their Membership
Service Provider (MSP) IDs, and roles.

• Add a participant to the network.

• See a graphical representation of the network’s structure.

• Configure, view, or import the orderer settings.

• Manage certificates.

Nodes Tab

Go to the Nodes tab to view a list of the nodes in your network. The first time you use
the Nodes tab after setting up your instance, you’ll see the number of peer nodes you
requested when provisioning, one Fabric certificate authority (CA) node representing
the membership service, and four REST proxy nodes. If you’re a founder, then you’ll
see one orderer node representing an ordering service. During instance provisioning a
default channel was created and all peers were added to it.

Use the Nodes tab to:

• View and set node configurations.

• Add peer nodes. Export and import peers.

• Start, stop, and restart nodes.

• Remove peer nodes.

• See a graphical representation of which peer nodes are using which channels.

• Click a node's name to find more information about it.

Channels Tab

The Channels tab shows you the channels in your network, the peers using the
channels, and the chaincodes instantiated on the channels. The first time you use the

Chapter 3
What's the Console?

3-2



Channels tab after setting up your instance, you’ll see the default channel that was
created and all of the peers in your network added to it.

Use the Channels tab to:

• Add new channels.

• See the number of chaincodes instantiated on a channel.

• Click a channel's name to find more information about it, such as its ledger
summary, the peers joined to the channel, and the channel's policies and ACLs.

• Join peers to the channel.

• View and update the ordering service’s settings.

• Configure rich history for the channel.

Chaincodes Tab

Note that Oracle Blockchain Platform refers to smart contracts as chaincodes.

Go to the Chaincodes tab to view a list of the chaincodes installed on the instance.
The first time you use the Chaincodes tab after setting up your instance, no
chaincodes display in the list because no chaincodes were included during set up.
You must add the needed chaincodes.

You can use the Chaincodes tab to:

• Install, instantiate, and deploy a chaincode using the Quick or Advanced deploy
option.

• See how many peers have a chaincode installed.

• Find out how many channels a chaincode was instantiated on.

• Upgrade a chaincode.

• Find the chaincode’s path.

Developer Tools Tab

The Developer Tools tab is designed to help you learn blockchain fundamentals like
how to write chaincodes and create blockchain applications.

You can use the Developer Tools tab to:

• Find templates and the Hyperledger Fabric mock shim to help you create
chaincodes.

• Link to the SDKs and APIs that you need to write blockchain applications.

• Use the sample chaincodes to learn about chaincodes. Install, instantiate, and
invoke the sample chaincodes.

Modify the Console Timeout Setting
The Oracle Blockchain Platform console attempts to contact the nodes on the network
for 600,000 microseconds before it times out.

In most cases you won’t have to adjust this setting, but if the console is frequently not
responding, then consider increasing the timeout value. Oracle doesn’t recommend
decreasing the timeout value.

Chapter 3
Modify the Console Timeout Setting

3-3



1. Go to the console and select the Nodes tab.

2. In the Nodes tab go to the nodes table and locate the console node. Use the
nodes table’s type column to find the Console node.

3. Click the node’s More Actions menu and then click Edit Configuration.

The Configure dialog is displayed.

4. In the Request timeout (ms) field, type or use the arrow buttons to indicate the
timeout length in milliseconds.

5. Click Submit.

The timeout length changes immediately, and you don’t have to restart the
console.

Find and Understand Your Oracle Blockchain Platform
Version Number

Use this topic to find and understand your Oracle Blockchain Platform instance's
version number.

1. Go to the console and in the top right of the screen, locate and click your user
name.

2. Select About.

Your instance's version number will look similar to:

19.3.2

where:

• 19 is year

• 3 is the quarter

• 2 is the minor release number

Monitor the Network
This topic contains general information about monitoring the blockchain network.

Topics:

• How Can I Monitor the Blockchain Network?

• What Type of Information Is on the Dashboard?

• View Network Activity

How Can I Monitor the Blockchain Network?
The console provides several ways for you to monitor the activity and health of your
blockchain network.

Chapter 3
Find and Understand Your Oracle Blockchain Platform Version Number

3-4



For example, you can find summary information about the total number of blocks
submitted to the ledger, or you can search for and locate information about specific
chaincode transactions that happened on a specific channel.

You can use the console to locate the following sources of information to help you
understand what’s happening on your network.

Network Overview Information

Use the Dashboard tab if you need at-a-glance information about how well the whole
network is working and to spot any general issues such as a high rate of failing
transactions. See View Network Activity .

Ledger Summary

For information about the runtime statistics for transactions on a specific channel, go
to the channel’s Ledger Summary area. You can drill into a specific transaction for
more information about it, such as which member initiated the transaction and which
peer endorsed it. See View a Channel’s Ledger Activity.

Node Health

Use a node’s Health Summary area to help you understand how the node is
performing on the network. For example, CPU utilization and memory utilization. See:

• View Health Information for a CA Node

• View Health Information for the Console Node

• View Health Information for an Orderer Node

• View Health Information for a Peer Node

• View Health Information for a REST Proxy Node

What Type of Information Is on the Dashboard?
The console’s Dashboard tab provides an overview of how well your network is
functioning. You can use this information to identify any issue and to navigate to other
tabs in the console where you can learn more about and resolve any issues.

Summary Bar

This section shows the components in your network (for example, how many nodes
and chaincodes). You can click a component number to go to the console tab for
more information or to perform tasks related to the component. If your instance is a
development instance, then “Development mode” is displayed in the bottom right of
the summary bar.

At the top of the console, you’ll see what type of instance you’re working with. If you’re
a network founder, then you’ll see “(Founder)”. If you’re a participant in a network,
then the top of your console displays the name of the network you’re joined to. For
example, “(Participant of <foundername>)”.

Health

This section shows how many nodes are running and how many are stopped in the
network. Click the node numbers to go to the Nodes tab to investigate why a node
might be stopped, or for more information about the nodes in the network.

Chapter 3
Monitor the Network

3-5



The nodes in your network are partitioned inside of a virtual machine (VM). This
section also shows the percentage of the partition memory used, and the percentage
of CPU and disk used. If the memory percentage is relatively low (for example, 50%
or lower), then you can create another peer node without your system’s performance
decreasing significantly. If the percentage is close to 100, then your system most likely
can’t support another peer node.

Channel Activity

This area shows how many blocks have been created and how many transactions
have been executed based on the number of blocks created. Note that you might see
more blocks created than user transactions. For example, if you create a new channel
or you instantiate a chaincode, then those are classified as system-level transactions
and are included in blocks, but not classified as user transactions. This area shows
the top four channels that have handled the most transactions, and for each channel
shows the number of transactions that have succeeded and failed.

Note the following information:

• User transactions are transactions that were invoked as part of the chaincode’s
execution, and not underlying actions such as setting up the network, creating
channels, and installing and instantiating chaincodes.

• A block can contain multiple user transactions.

You can filter the amount of activity information that is displayed. You can select a set
time range (for example, last hour or last week), or you can select Custom and pick
the dates you want activity information for.

Peer Activity

This area shows the number of endorsement and commits completed by the network’s
peer nodes. This area shows the top four peer nodes that have endorsed and
committed the most transactions, and for each of those four peers, this area shows
the number of endorsements and commits that have succeeded and failed.

Note the following information:

• A transaction is an endorsement, and a commit is when a transaction is written to
the block.

• Commits can be either user transactions or system transactions

• Commits are the number of transactions that have been committed to the block.
Commits aren’t blocks.

• Only specific peers must do endorsements, but all peers must do commits.

You can filter the amount of activity information that is displayed. You can select a set
time range (for example, last hour or last week), or you can select Custom and pick
the dates you want activity information for.

Chapter 3
Monitor the Network

3-6



View Network Activity
Use the console’s Dashboard tab to find information about your blockchain network’s
activities, such as percentage of nodes that are running or stopped, and how
successfully the network is executing chaincode transactions.

You can use this information as a starting place and then use the other tabs in the
console to drill into any issues that you discover. For information about what displays
in the Dashboard tab, see What Type of Information Is on the Dashboard?

1. Go to the console and select the Dashboard tab.

2. To see channel and peer activity information that occurred at a specific time such
as for the last week or month, go to the filter dropdown menu and select the time
range you want. Select Custom to enter specific begin and end dates and click
Apply.

Manage Nodes
This topic contains general information about managing the nodes in your network.

Topics

• What Types of Nodes Are in a Network?

• Find Information About Nodes

• Start and Stop Nodes

• Restart a Node

• Set the Log Level for a Node

What Types of Nodes Are in a Network?
A blockchain network contain console, peer, orderer, certification authority (CA), and
REST proxy nodes. The nodes that display in your console depend upon if you're the
founder of or a participant in a network.

For example, if you're a participant in a network, your console won’t display an orderer
node for that network. If you're a founder, your console displays all node types.

What nodes are included in a new instance?

After you provision your instance and access the Nodes tab for the first time, you’ll
see:

• One console node.

• The number of peers you requested during set up. These peers display with the
Peer(Member) type. The maximum number of peer nodes that can be included
with an instance is 14.

• If you're a founder, then you’ll see two orderer nodes representing an ordering
service. If you're a participant then your instance won’t have an orderer node.

• A Fabric certificate authority (CA) representing the membership service.

• A REST proxy node.

Chapter 3
Manage Nodes

3-7



Node types

Use this table to find more information about nodes.

Node Type What Does This Node
Do?

Displays In
Founder or
Participant
Instance

Number of
Nodes per
Instance

R
e
p
l
i
c
a
s

Can I Change
the Number of
Nodes After
Provisioning
My Instance?

CA This node provides and
manages peer node
credentials and member
credentials.

Founder

Participant

1 2You can add
new replicas by
scaling your
instance out
using
Blockchain
Platform
Manager

Console This node is the console
component.

Founder

Participant

1 2You can add
new replicas by
scaling your
instance out
using
Blockchain
Platform
Manager

Orderer These nodes provides
communication between
nodes. They guarantees the
delivery of transactions into
blocks and blocks into the
blockchain.

If you're a participant,
then you must import the
founder’s ordering service
setting into your instance
so that all peer nodes can
communicate.

Founder 2 1You can add
new replicas by
scaling your
instance out
using
Blockchain
Platform
Manager

Peer This node contains a copy
of the ledger and writes
transactions to the ledger.
This node can also endorse
transactions.

Your network can contain
member or remote peers.

Founder

Participant

1 to 14
The number of
peer nodes you
can add was
specified when
your instance
was created.

1You can add or
remove peers
by scaling your
instance in or
out using
Blockchain
Platform
Manager

REST Proxy This node maps an
application identity to
a blockchain member,
which allows users and
applications to call the
Oracle Blockchain Platform
REST APIs.

Founder

Participant

1 2You can add
new replicas by
scaling your
instance out
using
Blockchain
Platform
Manager

Chapter 3
Manage Nodes

3-8



Find Information About Nodes
This topic contains information about where in the console you can find information
about the nodes in your instance and network.

Topics:

• View General Information About Nodes

• Access Information About a Specific Node

• View a Diagram of the Peers and Channels in the Network

• Find Node Configuration Settings

View General Information About Nodes
Use the Nodes tab to view general information about all of the nodes in your network.
For example, Name, Route, Type, and Status.

You can also use the Nodes tab to drill into details about a specific node. For more
information about node types, see What Types of Nodes Are in a Network?

1. Go to the console and select the Nodes tab.

2. In the Nodes tab confirm that the List View (and not the Topology View) is
displaying.

Column Description

Route Oracle Blockchain Platform generated the URLs when you provisioned
your instance or when you create new nodes.
If you use the Hyperledger Fabric SDK, then you need these URLs to
specify which peers you want the SDK to interact with.

Type Indicates the node type.

MSP ID Membership Service Provider ID.

Status Indicates if the node is running or down. Also indicates if there's an
unapplied configuration change for the node. Note the following statuses:
• Up — The node is running and working normally.
• Down — The node is stopped.
• N/A — This status displays for remote peers because your instance

doesn’t have the permissions required to get the peer’s status.

IsConfigured If the node’s configuration was updated you need to restart the node for
the updates to take effect. Nodes with the yes status are running (and not
stopped).

More Actions Your permissions determine the options available from the More Actions
menu. If you're an administrator, this button provides links to modify the
node’s configuration or remove a node. Administrators and users can
stop, start, and restart nodes.

Access Information About a Specific Node
Use the Nodes tab to access information about a specific. For example, health
information or log files.

1. Go to the console and select the Nodes tab.

Chapter 3
Manage Nodes

3-9



2. Click a node’s name to go to the Node Information page. The panes that display in
the Node Information page depend on the node type you select.

Pane Available
for Which
Node
Types?

What can I do in this pane?

Health All View metrics to help you understand how the node is
performing on the network. Example of metrics include CPU
Utilization and Memory Utilization.
For a Peer node, this pane displays information about
endorsed and committed transactions.

Channels Peer View a list of channels the selected peer node is using for
its communications with other nodes. Join the peer node to
other existing channels as needed. Go to the Channel page to
create a new channel and specify which peer nodes can join it.

Chaincodes Peer View the chaincodes that are installed on the peer node. Go to
the Chaincode page to install a new chaincode or upgrade an
existing chaincode.

Transaction
Statistics

REST proxy View the total queries, failed queries, total invocations, and
failed invocations handled by the REST proxy.

View a Diagram of the Peers and Channels in the Network
Use the Topology view to access an interactive diagram that shows which network
peers are using which channels.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click Topology View to see a diagram showing the peer nodes
in your network and which channels they’re using.

3. Hover over a peer to highlight it and the channels it’s using.

Find Node Configuration Settings
Use the Nodes tab to find a specific node’s configuration settings. If you’re an
administrator, then you can update a node’s configuration settings. If you’re a user,
then you can view a node’s configuration settings.

1. Go to the console and select the Nodes tab.

2. Go to the Nodes table, locate the node that you want configuration setting
information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed, showing the attributes specific to the node type
you selected. See Node Configuration.

Chapter 3
Manage Nodes

3-10



Start and Stop Nodes
You can start or stop CA, orderer, peer, and the REST proxy nodes in your network.
You can’t start or stop the console node or remote peer nodes.

You can start and stop nodes depending upon the traffic in your network. For example,
if network traffic is light, then you can stop unneeded peer nodes and orderer nodes.

You can also restart a node. See Restart a Node.

When you stop a peer node, Oracle Blockchain Platform removes the peer’s listing on
the Channel tab and Chaincodes tab. If you stop all peers that have the chaincode
installed, then the Chaincodes tab doesn’t list the chaincode. If you stop all peers
joined to a channel, then the Channels tab lists the channel, but its information isn't
available to view.
Before stopping a node for an extended period of time, you should transfer all this
peer's responsibilities to other running peers, and then remove all the responsibilities
this peer has.

• Check all other peers' gossip bootstrap address lists, remove the peer address,
and add another running peer's address if needed. After peer configuration
change, restart the peer.

• Check all channels' anchor peer lists, remove the peer from the anchor peer lists,
and add another running peer to the anchor peer list if needed.

• If a channel or chaincode is only joined or instantiated in this peer, you should
consider using another running peer to join the same channel and instantiate the
same chaincode.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the node that you want to start or
stop, and click the node’s More Actions button.

3. Click either the Start or Stop option. The node’s status changes to either up or
down and information is written to the node’s log file.

Restart a Node
You can restart the CA, orderer, peer, and REST proxy nodes in your network. You
can’t restart the console node or remote peer nodes.

You should restart a node if it's not responding or running properly, or if you’ve updated
a node’s configuration. You can also start or stop a node. See Start and Stop Nodes.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the node that you want to restart,
and click the node’s More Actions button.

3. Click Restart.

The node’s status changes to restarting and information is written to the log file.

Chapter 3
Manage Nodes

3-11



Set the Log Level for a Node
If you’re an administrator, then you can specify the type of information you want to
include in a node’s log files. For example, ERROR, WARNING, INFO, or DEBUG.

By default, every node’s log level is set to INFO. When developing and testing your
network, Oracle suggests that you set the logging level to DEBUG. If you're working in
a production environment, then use ERROR.

Only an administrator can change a node’s log level setting. If you're a user, then you
can view a node’s log level settings.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the nodes table, locate the node you want to update, click
its More Actions menu, and click Edit Configuration.

If you have user permissions, then your console will have the View option that you
click to see the node’s log level setting and other configuration settings.

The Configure dialog is displayed.

3. In the Log Level field, select the log level you want to use.

4. Click Submit.

If you changed the logging level on a peer node, then you need to restart the
peer node. For all other node types, the logging level change immediately, and you
don’t have to restart the console.

Manage Channels
This topic contains information about managing the channels in your network.

Topics

• What Are Channels?

• View Channels

• Create a Channel

• View a Channel’s Ledger Activity

• View or Update a Channel’s Organizations List

• Join a Peer to a Channel

• Add an Anchor Peer

• Change or Remove an Anchor Peer

• View Information About Instantiated Chaincodes

• Work With Channel Policies and ACLs

What Are Channels?
Channels partition and isolate peers and ledger data to provide private and
confidential transactions on the blockchain network.

Chapter 3
Manage Channels

3-12



Members define and structure channels to allow specific peers to conduct private and
confidential transactions that other members on the same blockchain network can't
see or access. Each channel includes:

• Peers

• Shared ledger

• Chaincodes instantiated on the channel

• One or more ordering service nodes

• Channel policy definitions and ACLs where the definitions are applied

Each peer that joins a channel has its own identity that authenticates it to the channel
peers and services. Although peers can belong to multiple channels, the information
on transactions, ledger state, and channel membership is restricted to peers within
each channel. 

You can use the Oracle Blockchain Platform console or the Hyperledger Fabric SDK to
create channels on your blockchain network. See View Channels.

View Channels
Members in your network use channels to privately communicate blockchain
transactions information.

Use the Channel tab to view a list of the channels in your network, create and monitor
channels, specify anchor peers, and upgrade the instantiated chaincodes used on
your channels.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channel table, click the channel name you want information about. Note that
if all peers joined to the channel are stopped, then the channel is listed but its
information isn't available to view.

The Channel Information page is displayed.

3. Click through the Channel Information page's panes to find information about the
channel.

Section What can I do in this pane?

Ledger Get information about the channel’s ledger activity such as
block number and the number of user transactions in the
block. Click a block number to drill into information about its
transactions. You can use the filter field to specify the summary
information that you want to see (for example, information from
the last day or last month), or use the custom option to enter
start and end times. See View a Channel’s Ledger Activity.

Instantiated Chaincodes View the list of chaincodes that have been instantiated on the
channel.

Peers View the list of peers that are joined to the channel. Use this
section to set anchor peers for the channel.

Organizations View the list of network members whose peers are using the
channel to communicate.

Chapter 3
Manage Channels

3-13



Section What can I do in this pane?

Channel Policies View the list of the standard policies and any policies that you
created for the channel. Use this section to add, modify, and
delete policies.

ACLs View the access control lists (ACLs) and the policies used
to manage which organizations and roles can access the
channel's resources.

Create a Channel
You can add channels to the network and specify which members can use the
channel, and which peers can join the channel. You can’t delete channels.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

2. In the Channels tab, click Create a New Channel.

3. In the Channel Name field, enter a unique name for the channel. The channel's
name can be up to 128 characters long.

4. In the Application Capabilities field, select 1_3 as the capabilities level for the
channel. Don't select 1_1 - it was used in earlier versions of the product and
selecting it will remove support for newer product features.

5. In the Organizations section, select any additional members that you want to
communicate on the channel.

If you’re working in a participant instance, you need to add the founder to your
instance before the founder’s MSP ID displays in the Organization section. To add
the founder organization, go to the Network tab and click the Add Organization
button to upload the founder’s certificates.

6. In the MSP ID ACL section, specify the organizations that have access to the
channel and permissions for each selected organization. Note that you can add
more organizations to or delete them from the channel later, as needed.

Your organization’s permissions are set to write (ReaderWriter) and you can't
modify this setting. By default, other member’s permissions are set to write
(ReaderWriter), but you can change them to read (ReaderOnly) if you don’t want
the members to invoke chaincodes and to only read channel information and
blocks on the channel.

7. (Optional) In the Peers to Join Channel field, select one or more peers. Note the
following information:

• Your instance has two VMs (Partition 1 and Partition 2) and Oracle
recommends that you join one peer from each partition to the channel.
This is because if one VM is unavailable that the channel can still process
endorsements and commits. A peer’s name tells you which partition it's
located in. For example, peer0–1 and peer1–1 are located in Partition 1. And
peer0–2 and peer1–2 are located in Partition 2.

• You can join a maximum of seven peers from Partition 1 and seven peers from
Partition 2.

• If your network contains participants, the participants’ peers don’t display in
this list. Participants must use their consoles to join peers to the channel. A

Chapter 3
Manage Channels

3-14



participant can’t join its peers to the channel unless its organization was added
to the channel’s MSP ID ACL section.

• If you want to create the channel only, then don’t select any peers. You can
add peers to the channel later.

8. Click Submit.

The channel table displays the new channel.

After you create the channel, you can:

• Instantiate a chaincode on the channel. See Instantiate a Chaincode.

• If the network contains participants, then they use their consoles to join member
peers to the channel. See Join a Peer to a Channel.

View a Channel’s Ledger Activity
Use the ledger to find summary information and runtime statistics for transactions on a
specific channel.

1. Go to the console and select the Channels tab.

2. In the channel table, click the channel name that you want transaction information
about. In the Channel Information page, confirm that the Ledger pane is selected.

3. Use the Ledger Summary area to find at a glance information about the channel’s
activity, such as the total number of blocks in the ledger’s chain and the total
number of user transactions on the channel.

4. To see blockchain activity that occurred at a specific time such as for the last day
or week, go to the filter dropdown menu to select the time range that you want. To
locate and drill into a specific set of transactions, select Custom and enter search
criteria in the Start Time and End Time fields, or click the calendar icon and pick
the dates that you want. Click Apply.

If you select a specific time period (for example, Last day) and then select it again
to re-run the query, the query doesn’t re-run. To get the latest information, click the
Refresh button.

Note the following transaction types that can display for a block:

• genesis — The transaction that runs the configuration block to initialize the
channel.

• data (sys) — The transaction that starts the chaincode’s container to make the
chaincode available for use.

• data — A chaincode transaction called for execution on the channel.

5. To find more information about a specific transaction, locate the transaction in the
query ledger table and click it. The transactions table displays the transaction’s
details.

Transaction Detail Description

TxID The unique alphanumeric ID assigned to the transaction. The
TxID is constructed as a hash of a nonce concatenated with
the signing identity's serialized bytes.

Time The transaction’s time stamp (date and time that the
transaction occurred).

Chapter 3
Manage Channels

3-15



Transaction Detail Description

Chaincode Displays the name of the chaincode that executed the
transaction. This field can show the name of a chaincode that
you wrote, installed, and instantiated, but can also show a
system chaincode.
System chaincode options are:

• LSCC — For lifecycle requests, such as instantiate, install,
and upgrade.

• QSCC — For querying. This chaincode includes APIs for
ledger query.

Status Shows if the transaction succeeded or failed.

6. Click the triangle next to the TxID to view in depth information about the
transaction, such as function name, arguments, validation results, response
status, the initiator and the endorser.

Note that if a transaction failed, then you can use the TxID to search error logs in
the peer node or orderer nodes for more information.

View or Update a Channel’s Organizations List
You can view the list of the organizations that have access to the channel. If you
created the channel, then you can change an organization’s permissions on the
channel, and you can add organizations to or remove them from the channel

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels in your network.

2. In the channels table, locate the channel that you want information about, click the
channels More Actions button, and click Edit Channel Organizations.

The Edit Organizations page is displayed.

3. In the MSP ID ACL section, you can do the following:

• Modify an organization’s permissions. The organization that created the
channel is set to write (ReaderWriter). You can't change this setting.

• If you’re the network founder, then clear an organization’s checkbox to delete it
from the channel. If you’re a network participant, then use the Delete button to
delete an organization from the channel. If you delete an organization from a
channel, then the organization and its peers can no longer query, invoke, and
instantiate a chaincode on the channel. And the removed organization’s peers
can’t join the channel.

• Click an organization’s checkbox to add the organization to the channel and
set its permissions. By default, each member’s permissions is set to write
(ReaderWriter), but you can change it to read (ReaderOnly) if you don’t want
the member to invoke chaincodes and to only read channel information and
blocks on the channel.

4. Click Submit to save the changes.

Chapter 3
Manage Channels

3-16



Join a Peer to a Channel
You can add a peer node to a channel so that the node can use it to exchange private
transaction information with other peer nodes on the channel.

Note the following information:

• When you create a channel, you specify which local peer nodes can join the
channel.

• If you’re creating a network containing a participant, then you can select the
participant as a member on the channel. Or you can add the participant after the
channel is created.

• Your instance has two VMs (Partition 1 and Partition 2) and Oracle recommends
that you join one peer from each partition to the channel. This is because if one
VM is unavailable that the channel is still available for endorsements and commits.
A peer’s name tells you which partition it’s located in. For example, peer0–1
and peer1–1 are located in Partition 1. And peer0–2 and peer1–2 are located in
Partition 2.

• You can join a maximum of seven peers from Partition 1 and seven peers from
Partition 2.

See Create a Channel.

You must be an administrator to perform this task.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the peer node that you want to add to a channel.

3. In the Node Information page, click the Channels pane to view the list of channels
the peer is already using.

4. Click Join New Channels.

The Join New Channels dialog is displayed.

5. Click the Channel Name field and from the list select the name of the channel to
join. Click the field again to select another channel. Click Join.

Add an Anchor Peer
Each member using a channel must designate at least one anchor peer. Anchor peers
are primary network contact points, and are used to discover and communicate with
other network peers on the channel.

You can designate one or more peers in your organization as an anchor peer on a
channel. For a high availability network, you can specify two or more anchor peers. All
members using the network channel must use their console to designate one or more
of their peer nodes as anchor peers.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel name you want to add anchor peers to.

Chapter 3
Manage Channels

3-17



The Channel Information page is displayed.

3. In the Channel Information page, click the Peers pane.

4. Locate the peer or peers that you want to designate as anchor peers and click
their Anchor Peer checkboxes to select them.

5. Click the Apply button.

Change or Remove an Anchor Peer
(New in 19.2.1) You can change or remove a channel's anchor peers. Anchor peers
are primary network contact points, and are used to discover and communicate with
other network peers on the channel.

Before you change or remove the channel's anchor peers, note the following
information:

• To communicate on the channel, you must designate one or more peers in your
organization as an anchor peer.

• For a high availability network, you can specify two or more anchor peers.

• All members using the network channel must use their console to designate one or
more of their peer nodes as anchor peers.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.

The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel name you want to remove anchor peers
from.

The Channel Information page is displayed.

3. In the Channel Information page, click the Peers pane.

4. Locate the peer or peers that you want to remove as anchor peers and clear their
Anchor Peer checkboxes. Alternatively, to add another peer as an anchor peer,
click its Anchor Peer checkbox to select it.

5. Click the Apply button.

View Information About Instantiated Chaincodes
You can view information about the chaincodes instantiated on the different channels
in your network.

Some examples of when you need information about instantiated chaincodes are to
determine if you need to upgrade the chaincode, or to find out which channels the
chaincode was instantiated on.

1. Go to the console and select the Channels tab.

2. In the channels table, click the channel name with the chaincode that you want to
view information for.

3. In the Channel Information page, confirm that the Instantiated Chaincodes pane is
selected

Chapter 3
Manage Channels

3-18



4. In the chaincode table, you can:

• Click the chaincode to go to the Chaincodes tab to learn more information
about it, for example the peers that the chaincode is installed on and the
channels that the chaincode is instantiate on.

• In a chaincode’s More Actions menu, click View Endorsement Policy to
find details about the chaincode’s endorsement policy, for example who must
endorse the chaincode and the signed by expression string.

5. (Optional) If you see a channel listing without a chaincode, then you can go to
the Chaincodes tab and instantiate a chaincode to the channel. See Instantiate a
Chaincode.

Work With Channel Policies and ACLs
(19.1.3 and later versions only) This topic contains information about a channel's
policies and ACLs.

Topics:

• What Are Channel Policies?

• Add or Modify a Channel's Policies

• Delete a Channel's Policies

• What Are Channel ACLs?

• Update Channel ACLs

What Are Channel Policies?
(19.1.3 and later versions only) A policy defines a set of conditions. The required
parties must meet the policy's conditions before their signatures are considered valid
and the corresponding request happens on the network.

The blockchain network is managed by these policies. Policies check the identity
associated with a request against the policy associated with the resource needed to
fulfill the request. Policies are located in the channel's configuration.

After you configure the channel's policies, you assign them to the channel's ACLs
resources to determine which members are required to sign before a change or
action can happen on the channel. For example, suppose you modified the Writers
policy to include members from Organization A or Organization B. Then you assigned
the Writers policy to the channel's cscc/GetConfigBlock ACL resource. Now only a
member from Organization A or Organization B can call GetConfigBlock on the cscc
component.

What Are the Policy Types?

There are two policy types: Signature and ImplicitMeta.

• Signature — Specifies a combination of evaluation rules. It supports combinations
of AND, OR, and NOutOf. For example, you could define something like “An
admin of org A and 2 other admins" or "11 of 20 org admins.”
Note that when you modify the Oracle Blockchain Platform's default Admins policy,
which was created as an ImplicitMeta policy, you'll use the Signature policy. Any
new policies you create will be Signature policies.

Chapter 3
Manage Channels

3-19



• ImplicitMeta — This policy type is only valid in the context of configuration. It
aggregates the result of evaluating policies deeper in the configuration hierarchy,
which are defined by Signature policies. It supports default rules, for example “A
majority of the organization admin policies.”
Oracle Blockchain Platform uses the ImplicitMeta policy type to create the Admins
policy. When you modify the Admins policy, you'll use the Signature policy. You
can't create or modify any policies using the ImplicitMeta policy. Oracle Blockchain
Platform only supports modifying or creating policies using the Signature policy
type.

When Are Policies Created?

When you add a channel to the network, Oracle Blockchain Platform created new
default policies. The default policies are: Admins (ImplicitMeta policy), Creator, Writers,
and Readers (Signature policies). If needed, you can modify these policies or create
new policies.

Note the following important issues about channel policies:

• You can use the console to create a channel and set your organization's ACL to
ReaderOnly. After you save the new channel, you can't update this ACL setting
from the channel's Edit Organization option.

However, you can use the console's Manage Channel Policies functionality to add
your organization to the Writers policy, which overwrites the channel's ReaderOnly
ACL setting.

• When you use the Hyperledger Fabric SDKs to create a channel, Fabric uses
the ImplicitMeta policies as the default channel policies for Readers and Writers.
When the channel uses these policies, the Oracle Blockchain Platform console
can't guarantee that the administrative operations (for example, edit organization)
will be successfully processed.

To correct this issue, update the readers and writers policies to Signature
policies, and define the policy rules as needed. See https://hyperledger-
fabric.readthedocs.io/en/release-1.3/access_control.html

• When you use the Hyperledger Fabric SDKs or CLI to create a channel, the
Creator policy isn't included in the configtx.yaml file. The Creator policy is required
by Oracle Blockchain Platform to allow the channel creator to edit a channel's
configuration. You must manually edit the configtx.yaml file and add the Creator
policy.

Add or Modify a Channel's Policies
(19.1.3 and later versions only) You can add or modify a channel's policy to specify
which members are required to perform a specific action on the channel. After you
define policies, you assign them to the channel's ACLs.

Before you add or update policies, you need to understand how Oracle Blockchain
Platform creates default channel policies. See What Are Channel Policies?

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel name that you want to add policies to or
modify policies for.

Chapter 3
Manage Channels

3-20

https://hyperledger-fabric.readthedocs.io/en/release-1.3/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/access_control.html


The Channel Information page is displayed.

3. In the Channel Information page, click the Channel Policies pane.

4. Do one of the following:

• To add a new policy, click the Create a New Policy button. The Create
Policy dialog is displayed. Enter a name in the Policy Name field and select
Signature in the Policy Type field. Expand the Signature Policy section.

• To modify an existing policy, click a policy's name. The Update Policy dialog
is displayed.

5. Click the Add Identity button to add an organization. Or modify an existing
signature policy as needed. Note the following information:

Field Description

MSP ID From the dropdown menu, select the
organization that must sign the policy.

Role Select the corresponding peer role required
by the policy. Usually this will be member.
You can find a peer’s role by viewing its
configuration information.

Policy Expression Mode In most cases, you’ll use Basic. Select
Advanced to write an expression string
using AND, OR, and NOutOf. See the
Hyperledger Fabric documentation for
information about how to write a valid policy
expression string.

Signed By Select how many members must sign the
policy to fulfill the request.

6. If you're adding a new policy, then click Create. If you're modifying a policy, then
click Update.

Delete a Channel's Policies
(19.1.3 and later versions only) You can delete a policy from a channel.

You can't delete a channel policy if it is assigned to an ACL. Before you try to delete a
channel policy, confirm that the policy isn't assigned.

You must be an administrator to perform this task.

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the channel that you want to delete a policy from.
The Channel Information page is displayed.

3. In the Channel Information page, click the Channel Policies pane.

4. Locate the policy that you want to delete and click its More Options button.

5. Click Remove and confirm the deletion.

Chapter 3
Manage Channels

3-21



What Are Channel ACLs?
(19.1.3 and later versions only) Access control lists (ACLs) use policies to manage
which organizations and roles can access a channel's resources.

Users interact with the blockchain network by targeting components such as the query
system chaincode (qscc), lifecycle system chaincode (lscc), configuration system
chaincode (cscc), peer, and event. These components are associated with specific
resources (for example, GetConfigBlock or GetChaincodeData) that you can assign
policies to at the channel level. These policies are a part of the channel's configuration.

A policy defines which organizations and roles can request a resource. When a
request is made, the policy tells the system to check the requester's identity and
determine if it's authorized to make the request. When you create a channel, Oracle
Blockchain Platform includes the default Hyperledger Fabric ACLs with the channel.
Oracle Blockchain Platform also creates four default policies (Admin, Creator, Writers,
and Readers) for the channel. You can modify these policies or create new policies as
needed. See What Are Channel Policies?

Update Channel ACLs
(19.1.3 and later versions only) You can update the channel's ACLs by assigning
policies to the channel's resources. A policy defines which organizations and roles can
request a resource

Before you update a channel's ACLs, you should understand what policies and ACLs
are. See What Are Channel Policies? and What Are Channel ACLs?

1. Go to the console and select the Channels tab.
The Channels tab is displayed and the channel table contains a list of all of the
channels on your network.

2. In the channels table, click the name of the channel that you want to update ACLs
for.
The Channel Information page is displayed.

3. In the Channel Information page, click the ACLs pane.

4. In the Resources table, locate the resource that you want to update. Click the
resource's Expand button and select the policy that you want to assign to the
resource.

5. Modify the other resource's policies as needed.

6. Click Update ACLs.

Manage Certificates
This topic contains information about how to manage your network’s certificates.

Topics:

• Typical Workflows to Manage Certificates

• Export Certificates

• Import Certificates to Add Organizations to the Network

Chapter 3
Manage Certificates

3-22



• What's a Certificate Revocation List?

• View and Manage Certificates

• Revoke Certificates

• Apply the CRL

Typical Workflows to Manage Certificates
Here are the common tasks for managing your network’s certificates.

Adding Organizations to the Network

You must be an administrator to perform these tasks.

Task Description More Information

Export or prepare an
organization's certificates

The organization that wants to
join the network either outputs
or writes its certificates file
and gives it to the founder.

Export Certificates

Create a Fabric Organization's
Certificates File

Create an Organization's
Third-Party Certificates File

Import member certificates The founder imports the
organization's certificates file
to add the organization to the
network.

Import Certificates to Add
Organizations to the Network

View certificates The founder can view
and manage the network’s
certificates.

View and Manage Certificates

Revoking Certificates

You must be an administrator to perform these tasks.

Task Description More Information

Decide which certificates to
revoke

View the certificates on your
system to determine which
ones to revoke to keep the
network secure.

View and Manage Certificates

Select the certificates to
revoke

Revoke the certificates in your
CA.

Revoke Certificates

Apply CRL Generates and applies an
updated CRL to ensure
that clients with revoked
certificates can’t access
channels.

Apply the CRL

Export Certificates
Founders and participant organizations must import and export certificate JSON files
to create the network.

Note the following information:

Chapter 3
Manage Certificates

3-23



• For the founder to add a participant organization to the blockchain network, the
participant must export its certificates file and make it available to the founder. The
founder then uploads the certificates file to add the participant organization to the
network.

• The certificate export file contains admincerts, cacerts, and tlscacerts.

• You might need to export certificates for blockchain or application developers. For
example, a client application needs the TLS certificate to interact with peers or
orderers.

For information about writing certificate files required to add Hyperledger Fabric or
Third-Party organizations to the network, see Extend the Network.

1. Go to the console and select the Network tab.

2. In the Network tab, go to the Organizations table, locate the member that you want
to export certificates for, and click its More Actions button.

3. Click Export Certificates.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

4. Specify where to save the file. Click OK to save the certificates file.

5. Send the certificates JSON file to the founder for import. See Import Certificates to
Add Organizations to the Network.

Import Certificates to Add Organizations to the Network
To add an organization to the network, the founder must import a certificates file that
was exported or prepared by the organization that wants to join the network.

You can import certificates for the following organization types.

Type Description

Oracle Blockchain Platform Participant Organization You can import a participant organization into a Oracle
Blockchain Platform network. You upload the certificates
that the participant organization exported from the
console and sent to you.
For information about creating certificates for upload and
a list of the other steps that you need to perform to
successfully set up a participant organization on the
network, see Export Certificates.

Hyperledger Fabric Organization You can import a Hyperledger Fabric organization into
an Oracle Blockchain Platform network. To successfully
upload a Fabric organization’s certificates file, you must
modify the certificates file to replace all instances of \n
with the newline character.
See Typical Workflow to Join a Fabric Organization to an
Oracle Blockchain Platform Network.

Chapter 3
Manage Certificates

3-24



Type Description

Third-Party Certificate Organization You can import an organization that is using certificates
generated from a third-party CA server. To successfully
upload a third-party organization’s certificates file, you
must modify the certificates file to replace all instances
of \n with the newline character.
See Typical Workflow to Join an Organization with
Third-Party Certificates to an Oracle Blockchain Platform
Network.

You must be an administrator to import certificates.

1. Go to the console and select the Network tab.

2. In the Network tab, click Add Organizations. The Add Organizations page is
displayed.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

3. Click Upload Organization Certificates. The File Upload dialog is displayed.

4. Browse for and select the JSON file containing the certificate information for
the organization you want to add to the network. Usually this file is named
certs.json. Click Open.

5. (Optional) Click the plus (+) icon to locate and upload another organization’s
certificate information.

6. Click Add. The organizations that you added are displayed in the Organization
table.

Note the following information for Oracle Blockchain Platform participant,
Hyperledger Fabric, and third-party certificate organizations. Even though the
founder uploaded the certificate information, the added organization can’t use
the ordering service to communicate on the network until it imports the founder’s
ordering service settings. The founder must export its ordering service settings
and give the resulting file to the joining organizations for import. See one of the
following:

• For Oracle Blockchain Platform participants, see Export Ordering Service
Settings.

• For Hyperledger Fabric organizations, see Prepare the Fabric Environment to
Use the Oracle Blockchain Platform Network.

• For third-party certificate organizations, see Prepare the Third-Party
Environment to Use the Oracle Blockchain Platform Network.

What's a Certificate Revocation List?
You use a certificate revocation list (CRL) to help manage the certificates throughout
your network.

A CRL is a list of digital certificates that the issuing Certificate Authority (CA) has
revoked before their scheduled expiration date and should no longer be trusted and

Chapter 3
Manage Certificates

3-25



used on the network. For example, you should revoke any certificates that have been
lost, stolen, or compromised.

After you use the Manage Certificates functionality to revoke certificates for users,
Oracle Blockchain Platform creates the CRL. To ensure that the certificates are
revoked throughout the network, you’ll need to:

• Use the Apply CRL functionality after you join peers to a channel created by
another network member. Apply CRL prevents clients with revoked certificates
from accessing the channel. See Apply the CRL.

View and Manage Certificates
Use the console to view and manage the user certificates in your instance and any of
the certificates you imported when building the network.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

Note that the Certificate Summary table will be empty until you add users to your
instance. Also, the administrator’s certificate doesn’t display in this table. This is to
prevent you from accidentally revoking the administrator’s certificate.

Organizations with third-party certificates or Hyperledger Fabric organization with
revoked certificates won't display in this table. In such cases, you must use the
native Hyperledger Fabric CLI or SDK to import the organization's certificate
revocation list (CRL) file.

The Certificates Summary dialog is displayed and shows a list of the certificates in
your instance.

3. As needed, perform any of the following tasks:

• Revoke certificates. See Revoke Certificates.

• If you’ve revoked certificates and are working in a network with multiple
members, then use Apply CRL after you join peers to a channel created by
another network member. Apply CRL prevents clients with revoked certificates
from accessing the channel. See Apply the CRL.

Revoke Certificates
An organization can revoke certificates for any of its users. To ensure that the
network remains secure, you should revoke certificates in case they’re lost, stolen,
or compromised.

You must be an administrator to perform this task.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

The Certificates Summary dialog is displayed.

3. In the Certificates Summary dialog, locate and select the IDs of the users that you
want to revoke certificates for.

Chapter 3
Manage Certificates

3-26



4. Click Revoke and confirm that you want to permanently revoke certificates for the
selected users.

The users with revoked certificate display in the table and are added to the CRL.

5. If you’re working in a network with other members, then to ensure that their
revoked certificates are cleaned up across the network, you must do the following:

• If you’re working in a network with multiple members, then apply the CRL after
you join peers to a channel created by another network member. Apply CRL
prevents clients with revoked certificates from accessing the channel. See
Apply the CRL.

Apply the CRL
If you're working in a network, then you must apply the CRL after you join peers to
a channel created by another network member. Apply CRL prevents members with
revoked certificates from accessing the channel.

You must do the following tasks before applying the CRL:

• Revoke certificates. See Revoke Certificates

You must be an administrator to perform this task.

1. Go to the console and select the Network tab.

2. In the Network tab, locate your organization’s ID and click its More Actions
button. Select Manage Client Certificates.

The Certificates Summary dialog is displayed.

3. Click the Apply CRL button and confirm that you want to apply the CRL.

Manage Ordering Service Settings
This topic contains information about how founders and participants manage ordering
service settings.

Topics:

• Export Ordering Service Settings

• Import Ordering Service Settings

• Edit Ordering Service Settings

• View Ordering Service Settings

Export Ordering Service Settings
If you’re a founder and are adding a participant to the network, then you must
download your instance’s ordering service settings and give them to the participant for
import. The participant isn’t able to communicate on the network until it has uploaded
the founder’s ordering service settings.

For more information about the process you need to follow to create a network with
multiple members, see Typical Workflow to Join a Participant Organization to an
Oracle Blockchain Platform Network.

Chapter 3
Manage Ordering Service Settings

3-27



It isn’t common, but in some situations, the founder might expose a different ordering
service to one or more network participants. In this case, the founder will export
the updated ordering settings and the impacted participants must import the revised
settings.

If the founder changes the ordering service settings and there are applications running
against the network, then those applications must be manually updated to use the
revised ordering service settings.

1. Go to the founder’s console and select the Network tab.

2. Go to the Organization table, locate the founder’s ID, click More Actions, and
select Export Ordering Settings.

3. Specify the location where you want to save the JSON file that contains the
ordering settings information. Click OK.

4. Send the ordering settings export file to the participants that need to import it into
their instances.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

Import Ordering Service Settings
If you’re a participant joining a network, then you must import the network founder’s
ordering service settings file. You’ll not be able to communicate on the network until
this settings file is uploaded into your instance.

For more information about the process you need to follow to create a network with
multiple members, see Typical Workflow to Join a Participant Organization to an
Oracle Blockchain Platform Network.

It isn’t common, but in some situations, the founder might expose a different ordering
service to you and other participants. In this case, the founder will export the updated
ordering settings and you’ll upload the revised settings into your instance. See Export
Ordering Service Settings.

If the founder changes the ordering service settings and there are applications running
against the network, then those applications must be manually updated to use the
revised ordering service settings.

1. Go to the participant’s console and select the Network tab.

2. Click Ordering Service Settings and click Import.

3. In the Ordering Settings dialog, click Upload Ordering Settings and browse for
and select the JSON file containing the ordering settings information. Usually this
file is named <founderinstancename>-orderer-settings.json.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

4. In the Ordering settings dialog, click Submit to upload the ordering settings to the
participant.

Chapter 3
Manage Ordering Service Settings

3-28



Edit Ordering Service Settings
You can update the ordering service settings for the founder instance.

Note the following important information about editing the ordering service settings:

• The updated settings are used when you create new channels and are not applied
to existing channels.

• Separately you can update the ordering service settings for an individual existing
channels. Go to the Channels tab, locate the channel, click the More Actions
menu, and select Update Ordering Service Settings.

• If you change the ordering service settings and there are applications running
against the network, then those applications must be manually updated to use the
revised ordering service settings.

• It isn’t common, but in some situations, you might expose a different ordering
service to some of the network participants. In this case, you’ll export the updated
ordering settings and the required participants will import the revised settings. See
Export Ordering Service Settings.

You must be an administrator to perform this task.

1. Go to the founder’s console and select the Network tab.

2. Click the Ordering Service Settings button.

The Ordering Service Settings dialog is displayed.

3. Update the settings as needed.

Field Description

Batch Timout (ms) Specify the amount of time in milliseconds
that the system should wait before creating
a batch. Enter a number between 1 and
3600000.

Max Message Count Specify the maximum number of message to
include in a batch. Enter a number between
1 and 4294967295.

Absolute Message Bytes Specify the maximum number of bytes
allowed for the serialized messages in a
batch.
This number must be larger than the value
you enter in the Preferred Message Bytes
field.

Preferred Message Bytes Specify the preferred number of bytes
allowed for the serialized messages in a
batch. A message larger than this size
results in a larger batch, but the batch size
will be equal to or less than the number of
bytes you specified in the Absolute Message
Bytes field.
Oracle recommends that you set this value
to 1 MB or less.

The value that you enter in this field must
be smaller than the value you enter in the
Absolute Message Bytes field.

Chapter 3
Manage Ordering Service Settings

3-29



4. Click Update.

The updated settings are saved.

View Ordering Service Settings
You can view the ordering service settings that were imported into a participant’s
Oracle Blockchain Platform instance.

It isn’t common, but in some situations, the founder might expose a different ordering
service to network participants. In this case, the founder will export the updated
ordering settings and you’ll upload the revised settings into your participant instance.
See Import Ordering Service Settings.

If the founder changes the ordering service settings and there are applications running
against the network, then those applications must be manually updated to use the
revised ordering service settings.

1. Go to the participant’s console and select the Network tab.

2. Click Ordering Service Settings and click View.

The Ordering Settings dialog is displayed.

Chapter 3
Manage Ordering Service Settings

3-30



4
Understand and Manage Nodes by Type

This topic contains information to help you understand the different node types and
where you can get more information about how the nodes are performing in the
network.

Topics:

• Manage CA Nodes

• Manage the Console Node

• Manage Orderer Nodes

• Manage Peer Nodes

Manage CA Nodes
This topic contains information about certificate authority (CA) nodes.

Topics

• View and Edit the CA Node Configuration

• View Health Information for a CA Node

View and Edit the CA Node Configuration
A certificate authority (CA) node’s configuration determines how the node performs
and behaves on the network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See CA Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the CA node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

4-1



View Health Information for a CA Node
You can check a certificate authority (CA) node’s metrics to see how the node
is performing on the blockchain network. This information helps you discover and
diagnose performance problems.

The Health pane displays the node’s performance metrics: CPU utilization and
memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the CA node you want to see health
information for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support.

Manage the Console Node
This topic contains information about the console node.

Topics:

• View and Edit the Console Node Configuration

• View Health Information for the Console Node

View and Edit the Console Node Configuration
The console node’s configuration determines how it performs and behaves on the
network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Console Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the console node and click its
More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

Chapter 4
Manage the Console Node

4-2



View Health Information for the Console Node
You can check the console node’s metrics to see how it's performing on the blockchain
network. This information helps you discover and diagnose performance problems.

The Health Overview pane displays these performance metrics: CPU utilization and
memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the console node.

The Node Information page is displayed.

3. Click the Health Overview pane to view the node’s performance metrics.

Note the following information:

• If the CPU Utilization percentage is too high, then it might be because too
many users are trying to access the console at the same time, or that the
console is having technical issues.

• If the utilization percentages are consistently high, then contact Oracle
Support

Manage Orderer Nodes
This topic contains information about orderer nodes.

Topics

• View and Edit the Orderer Node Configuration

• View Health Information for an Orderer Node

View and Edit the Orderer Node Configuration
An orderer node’s configuration determines how the node performs and behaves on
the network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Orderer Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the orderer node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

Chapter 4
Manage Orderer Nodes

4-3



View Health Information for an Orderer Node
You can check an orderer node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health Overview pane displays these performance metrics: CPU utilization and
memory utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the orderer node you want to see health
information for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support. If
the Disk Utilization percentage is too high, then the ledger might not get stored on
the node properly.

Manage Peer Nodes
This topic contains information about peer nodes.

Topics

• View and Edit the Peer Node Configuration

• List Chaincodes Installed on a Peer Node

• View Health Information for a Peer Node

• Export and Import Peer Nodes

View and Edit the Peer Node Configuration
A peer node’s configuration determines how the node performs and behaves on the
network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See Peer Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the peer node that you want
configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s settings as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

6. Restart the node to apply any changes that you made.

Chapter 4
Manage Peer Nodes

4-4



List Chaincodes Installed on a Peer Node
You can view a list of the chaincodes and their versions installed on a specific peer
node in your network.

If you don’t see the chaincode or the chaincode version you were expecting, then you
can install a chaincode or upgrade a chaincode to the peer node. You must be an
administrator to install or upgrade a chaincode.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the peer node you want to see information for.

The Node Information page is displayed.

3. Click the Chaincodes pane to view a list of chaincodes installed on the selected
peer node.

View Health Information for a Peer Node
You can check a peer node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health Overview pane displays these performance metrics: CPU utilization,
memory utilization, user transactions endorsed, and user transactions committed.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the name of the peer node you want to see health
information for.

The Node Information page is displayed.

3. Click the Health Overview pane to view the node’s performance metrics.

Note the following information:

• If the CPU Utilization and Memory Utilization percentages are too high, then
it might be because the peer is overloaded with endorsement requests.
Consider adding another peer or changing the endorsement policy.

• If the Disk Utilization percentage is too high, then the ledger might not get
stored on the node properly.

• The User Transactions Endorsed and User Transaction Committed metrics
are collected and refreshed every ten minutes. The counts you see are
cumulative.

• If the utilization percentages are consistently high, then contact Oracle
Support.

Export and Import Peer Nodes
If you want to run the blockchain transactions through the REST proxy, then after
you’ve added a participant to the network, you must export its peer nodes and import
them into the founder.

You need to do this export and import step because the REST proxy’s end point
configuration needs to know about the peers from both members. After you’ve

Chapter 4
Manage Peer Nodes

4-5



completed this step then you’ll have to update the founder and participants’ REST
proxy nodes to add the peers so that the requests can be routed as required by the
endorsement policy.

See Typical Workflow to Join a Participant Organization to an Oracle Blockchain
Platform Network.

1. Go to the participant’s console and select the Nodes tab.

2. Click Export/Import Peers and select Export.

The Export Nodes dialog is displayed.

3. In the Peer List field, select the peer nodes that you want to export. Click Export.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

4. To import, go to the founder’s Oracle Blockchain Platform console and select the
Nodes tab.

5. Click Export/Import Peers and select Import.

The Import Remote Nodes dialog is displayed.

6. Click Upload remote nodes configurations and browse for and select the
JSON file containing the node configuration information. Usually this file is named
<instance name>-exported-nodes.json.

Note that files exported by the console and REST APIs are only compatible for
import with the same component. That is you can't successfully use the REST API
to import an export file created with the console. Likewise, you can't successfully
use the console to import an export file created with the REST API.

7. Click the plus icon to upload another node configuration file for import.

8. Click Import.

9. To confirm that the nodes were added successfully, you can:

• Go to the founder’s Nodes tab and in the nodes table locate the names of the
imported peer nodes. Note that the imported nodes type is Remote Peer. You
can’t view or edit a remote peer’s configuration information.

• Go to the founder’s Network tab and click Topology View and locate the
names of the imported peer nodes.

Manage REST Proxy Nodes
This topic contains information to help you understand, set up, and manage the REST
proxy nodes.

Topics

• How's the REST Proxy Used?

• Add Enrollments to the REST Proxy

• View and Edit the REST Proxy Node Configuration

• View Health Information for a REST Proxy Node

Chapter 4
Manage REST Proxy Nodes

4-6



How's the REST Proxy Used?
The REST proxy maps an application identity to a blockchain member, which allows
users and applications to call the Oracle Blockchain Platform REST APIs.

Instead of using the native Hyperledger Fabric APIs, Oracle Blockchain Platform can
use the REST proxy to interact with the Hyperledger Fabric network. When you use
the native Hyperledger Fabric APIs, you connect to the peers and orderer directly.
However, the REST proxy allows you to query or invoke a Fabric chaincode through
the RESTful protocol.

Add Enrollments to the REST Proxy
Enrollments allow users to call the REST proxy without an enrollment certificate.
Enrollements require a new user group to be defined on your authentication server.

Adding Enrollments When Using Microsoft Active Directory as Your
Authentication Server

Adding an enrollment to the REST Proxy requires a new user group to be added
to Active Directory: <Rest Proxy Client Users group name>_<custom enrolment
name>. You can then use the Blockchain Platform console to map the enrollment to this
group.

1. Create a new Active Directory group called <Rest Proxy Client Users group
name>_<custom enrolment name>.

2. Add any users needing to use the custom enrollment to this group.

3. Go to the Blockchain Platform console and select the Nodes tab.

4. In the Nodes tab, find the REST proxy node you want to add an enrollment to and
open the More Actions menu.

5. Click View or create enrollments to see a list of the node’s current enrollments.

6. Click Create New Enrollment.

7. In the User Name field, enter <custom enrolment name> from the first step. Note
that this is case-sensitive and must match the user group you created. Click
Enroll.

• The enrollment is created and displays in the Enrollments table.

• The new enrollment is copied to each REST proxy node in the network.

Adding Enrollments When Using OpenLDAP or Oracle Internet Directory as Your
Authentication Server

Adding an enrollment to the REST Proxy creates a new user role in the
OBP_<platform-name>_<instance-name>_REST_<custom-enrollment> group on your
LDAP server.
After the enrollment is created in the console, the Administrator uses the LDAP server
to assign the required users to this role.

For information about how users access the REST resources, see REST API for
Oracle Blockchain Platform.

1. Go to the console and select the Nodes tab.

Chapter 4
Manage REST Proxy Nodes

4-7



2. In the Nodes tab, find the REST proxy node you want to add an enrollment to and
open the More Actions menu.

3. Click View or create enrollments to see a list of the node’s current enrollments.

4. Click Create New Enrollment.

The Create New Enrollment dialog is displayed.

5. In the User Name field, enter a name for the enrollment. Click Enroll.

After you click Enroll:

• The enrollment is created and displays in the Enrollments table.

• The new enrollment is copied to each REST proxy node in the network.

• A new user role in the OBP_<platform-name>_<instance-
name>_REST_<custom-enrollment> group on your LDAP server.

View and Edit the REST Proxy Node Configuration
A REST proxy node’s configuration determines how the node performs and behaves
on the network.

Only administrators can change a node’s configuration. If you've got user permissions,
then you can view a node’s configuration settings. See REST Proxy Node Attributes.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, go to the Nodes table, locate the REST proxy node that you
want configuration information for, and click the node’s More Actions button.

3. The configuration option is determined by your permissions. If you're an
administrator, locate and click Edit Configuration. If you're a user, locate and
click View.

The Configure dialog is displayed.

4. If you're an administrator, then modify the node’s Proposal Wait Time (ms) and
Transaction Wait Time (ms) attributes as needed.

5. Click Submit to save the configuration changes, or click X to close the Configure
dialog.

View Health Information for a REST Proxy Node
You can check a REST proxy node’s metrics to see how the node is performing on the
blockchain network. This information helps you discover and diagnose performance
problems.

The Health pane displays these performance metrics: CPU utilization and memory
utilization.

1. Go to the console and select the Nodes tab.

2. In the Nodes tab, click the REST proxy node you want to see health information
for.

The Node Information page is displayed.

3. Click the Health pane to view the node’s performance metrics.

If the utilization percentages are consistently high, then contact Oracle Support.

Chapter 4
Manage REST Proxy Nodes

4-8



5
Extend the Network

This topic contains information to help founders add organizations to the blockchain
network. This topic also contains information to help organizations join a network.

Topics

• Add Oracle Blockchain Platform Participant Organizations to the Network

• Add Fabric Organizations to the Network

• Add Organizations with Third-Party Certificates to the Network

Add Oracle Blockchain Platform Participant Organizations to
the Network

This topic contains information about joining an Oracle Blockchain Platform participant
organization to an Oracle Blockchain Platform network.

Topics:

• Typical Workflow to Join a Participant Organization to an Oracle Blockchain
Platform Network

• Join a Network

Typical Workflow to Join a Participant Organization to an Oracle
Blockchain Platform Network

Here are the tasks the founder and participants organizations need to perform to set
up a blockchain network.

Adding Participant Organizations to a Blockchain Network

Task Who Does This? Description More Information

Export the participant
organization's certificates
and import them into the
network

Participant organization
outputs certificates

Founder organization
uploads certificates

In the participant
organization's instance,
use the wizard to output
the certificates into a JSON
file and sends them to the
founder organization.

The founder uploads the
certificates to add the
participant to the network.

Join a Network
Import Certificates to
Add Organizations to the
Network

5-1



Task Who Does This? Description More Information

Download the founder
organization's ordering
service settings information
and upload it to the
participant organization

Founder organization
downloads ordering service
settings information

Participant organization
uploads ordering service
setting information

In the founder’s instance,
download the ordering
service settings information
(JSON file).

Then in the participant’s
instance, use the wizard to
upload the ordering service
settings. This enables the
participant to communicate
on the network.

Join a Network

Export and import the
participant organization's
peer nodes

Participant organization
exports peers

Founder organization
imports peers

In the participant’s
instance, export the peers
that you want to use on the
network.

Then in the founder’s
instance, import the peer
nodes.

Export and Import Peer
Nodes

Join Participant Organizations to the Channel and Set Anchor Peers

Task Who Does This? Description More Information

Create a channel Founder organization In the founder’s instance,
create a channel that the
founder and participants
use to communicate. Add
the founder’s peers to the
channel.

You must select any newly
added participants and
assign them permissions
on the channel.

Note that instead of
creating a new channel,
you can add participants to
an existing channel.

Create a Channel

Join participants to the
channel

Participant organization In the participant’s
instance, join the channel
that was created in the
founder’s instance.

Join a Peer to a Channel

Set anchor peers on the
founder and participants

Founder organization

Participant organization

In the founder and
participant instances,
specify which peers you
want to use as anchor
peers. You must select at
least one anchor peer for
each member.

Add an Anchor Peer

Chapter 5
Add Oracle Blockchain Platform Participant Organizations to the Network

5-2



Deploy the Chaincode Across the Blockchain Network

Task Who Does This? Description More Information

Install the chaincode on the
founder

Founder organization In the founder’s instance,
upload and install the
chaincode. Choose the
peers to install the
chaincode on.

Use Quick Deployment

Instantiate the chaincode
and specify an
endorsement policy on the
founder

Founder organization In the founder’s instance,
instantiate the chaincode to
activate it on the network.

An endorsement policy is
required to specify the
number of members that
must approve chaincode
transactions before they’re
submitted to the ledger.

Instantiate a Chaincode
Specify an Endorsement
Policy

Install the chaincode on the
participant

Participant organization In the participant’s
instance, install the
chaincode that your
network will use.

Because you’ll install the
same chaincode that you
installed and instantiated
on the founder, you
don’t need to instantiate
the chaincode on the
participant. When the
participant installs the
chaincode, it’s already
instantiated.

Use Quick Deployment

Expose the Chaincode’s REST API and Run Transactions

Task Who Does This? Description More Information

Configure the founder’s
REST proxy node

Founder organization In the founder’s instance,
modify the REST proxy
node’s attributes to specify
the channel, chaincode,
and peers that the network
will use for transactions.

View and Edit the REST
Proxy Node Configuration

Configure the participant’s
REST proxy node

Participant organization In the participant’s
instance, modify the REST
proxy node’s attributes
to specify the channel,
chaincode, and peers that
the network will use for
transactions.

View and Edit the REST
Proxy Node Configuration

Chapter 5
Add Oracle Blockchain Platform Participant Organizations to the Network

5-3



Task Who Does This? Description More Information

Invoke the chaincode and
monitor network activity
and ledger updates

Founder organization

Participant organization

Begin using your network’s
chaincode for transactions.

Both the founder and
the participants can use
their consoles to find
out information about the
activity on the network.
Specifically, you can use
the console’s Channels tab
to locate information about
specific ledger transactions

Find Information About
Nodes
View a Channel’s Ledger
Activity

Join a Network
Participant organization are required to complete a wizard to join a blockchain
network. The wizard displays the first time the participant organization opens its
instance.

The wizard assists the participant organization with exporting the certificates to a
JSON file to give to the network founder. The wizard also helps the participant import
the founder’s ordering service settings. For more information about the steps the
founder and participant must complete to create a network, see Typical Workflow to
Join a Participant Organization to an Oracle Blockchain Platform Network.

The participant’s dashboard won’t display until the wizard has been completed. If
you're a network founder, then this wizard is never displayed.

1. Open the participant organization's console.

The wizard that you’ll use to join a network is displayed.

2. In the wizard, click Export Certificates and click the Export button.

The Export dialog is displayed and includes the name of the JSON file the export
will create.

3. Specify where to save the file. Click OK to save the certificates file.

4. Send the certificates JSON file to the network’s founder. The network founder will
import the participant’s certificates file into the network.

5. Get the ordering services settings JSON file from the network founder. You'll
import this file into your instance.

6. In the wizard, click Import Ordering Service Settings.

7. Click Upload Ordering Service Settings.

The File Upload dialog is displayed.

8. In the File Upload dialog, browse for and select the JSON file containing
the founder’s ordering service settings information. Usually this file is named
<founderinstancename>-orderer-settings.json. Click Open.

The Current Orderer Address field updates with the address that Oracle
Blockchain Platform extracted from the JSON file.

9. Click Submit.

Your console’s Dashboard tab is displayed.

Chapter 5
Add Oracle Blockchain Platform Participant Organizations to the Network

5-4



Add Fabric Organizations to the Network
This topic contains information about joining Hyperledger Fabric organizations to an
Oracle Blockchain Platform network.

Topics:

• Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform
Network

• Create a Fabric Organization's Certificates File

• Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network

Typical Workflow to Join a Fabric Organization to an Oracle
Blockchain Platform Network

Here are the tasks that a Fabric organization and the Oracle Blockchain Platform
founder organization need to perform to join a Fabric organization to the Oracle
Blockchain Platform network.

Task Who Does This? Description More Information

Create the certificate file for
the Fabric organization

Fabric organization Find the Fabric
organization’s Admin, CA,
and TLS certificate
information and use it
to compose a JSON
certificates file.

Create a Fabric
Organization's Certificates
File

Upload Fabric
organization's certificate
file to the Oracle
Blockchain Platform
network

Founder organization Use the console to upload
and import the Fabric
organization's certificate
file to add the Fabric
organization to the
network.

Import Certificates to
Add Organizations to the
Network

Create a channel Founder organization Create a new channel and
add the Fabric organization
to it.

Create a Channel

Export the ordering service
settings from founder

Founder organization Output the founder’s
ordering services settings
to a JSON file and send
the file to the Fabric
organization.

Export Ordering Service
Settings

Chapter 5
Add Fabric Organizations to the Network

5-5



Task Who Does This? Description More Information

Compose orderer
certificate file

Fabric organization Create a file named
orderer.pem that includes
the tlscacert information.
Go to the exported
ordering service settings
file and copy the tlscacert
information. After you paste
the tlscacert information
into the orderer.pem file,
you must replace all
instances of \n with the
newline character.

The orderer.pem file must
have the following format:

-----BEGIN 
CERTIFICATE-----
... 
...
... 
-----END 
CERTIFICATE-----

Create a Fabric
Organization's Certificates
File

Provide ordering service
settings

Founder organization Open the ordering service
settings file and find the
ordering service’s address
and port and give them to
the Fabric organization. For
example:

"orderingServiceNod
es": [
{
"address": 
"grpcs://
example_address:777
7",
...
}]

NA

Add the Fabric organization
to the network

Fabric organization The Fabric organization
copies certificates into
its environment, sets
environment variables,
fetches the genesis block,
joins the channel, and
installs the chaincode.

Prepare the Fabric
Environment to Use the
Oracle Blockchain Platform
Network

Create a Fabric Organization's Certificates File
For a Fabric organization to join an Oracle Blockchain Platform network, it must write
a certificates file containing its admincerts, cacerts, and tlscacerts information. The

Chapter 5
Add Fabric Organizations to the Network

5-6



Oracle Blockchain Platform founder organization imports this file to add the Fabric
organization to the network.

The Fabric certificates information is stored in PEM files located in the
Fabric organization’s MSP folder. For example, network_name_example/crypto-
config/peerOrganizations/example_org.com/msp/.

The certificate file must be in written in JSON and contain the following fields:

• mspid — Specifies the name of the Fabric organization.

• type — Indicates that the organization is a network participant. This value must be
Participant.

• admincert — Contains the contents of the organization’s Admin certificates
file: Admin@example_org.com-cert.pem. When you copy the certificates
information into the JSON file, you must replace each new line with \n.

• cacert — Contains the contents of the organization’s CA certificates file:
ca.example_org-cert.pem. When you copy the certificates information into
the JSON file, you must replace each new line with \n.

• tlscert — Contains the contents of the organization’s TLS certificate file:
tlsca.example_org-cert.pem. When you copy the certificates information
into the JSON file, you must replace each new line with \n.

This is how the file needs to be structured:

{
  "mspID": "examplemspID",
  "type":  "Participant",
  "certs": { 
   "admincert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
   "cacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
   "tlscacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n"
 }
} 
    

Prepare the Fabric Environment to Use the Oracle Blockchain
Platform Network

You must modify the Fabric organization’s environment before it can use the Oracle
Blockchain Platform network.

Confirm that the following prerequisite tasks were completed. For more information,
see Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform
Network.

• The Fabric organization’s certificate file was created and sent to the Oracle
Blockchain Platform network founder.

Chapter 5
Add Fabric Organizations to the Network

5-7



• The network founder uploaded the certificates file to add the Fabric organization to
the network.

• The network founder created a new channel and added the Fabric organization to
it.

• The network founder downloaded its ordering service settings and sent them to
the Fabric organization.

• The Fabric organization created the orderer certificate file.

• The network founder gave the ordering service address and port to the Fabric
organization.

You must add the Fabric organization and install and test the chaincode.

1. Navigate to the Fabric network directory and launch the peer container.

2. Fetch the channel’s genesis block with this command:

peer channel fetch 0 mychannel.block -o ${orderer_addr}:$
{orderer_port} -c mychannel --tls --cafile orderer.pem --logging-
level debug  

Where:

• {orderer_addr} is the Founder’s orderer address.

• {orderer_port} is the Founder’s port number.

• -c mychannel is the name of the channel that the Founder created. This is
the channel where the Fabric organization will send and receive transactions
on the Oracle Blockchain Platform network.

• orderer.pem is the Founder’s orderer certificate file.

3. Join the channel with this command:

peer channel join -b mychannel.block -o ${orderer_addr}:$
{orderer_port} --tls --cafile orderer.pem --logging-level debug

4. Install the chaincode with this command:

peer chaincode install -n mycc -v 1.0 -l "golang" -p ${CC_SRC_PATH}

Where CC_SRC_PATH is the folder that contains the chaincode.

5. Instantiate the chaincode with this command:

peer chaincode instantiate -o  ${orderer_addr}:${orderer_port} --
tls --cafile orderer.pem -C mychannel -n mycc -l golang -v 
1.0 -c '{"Args":["init","a","100","b","200"]}' -P <policy_string> --
logging-level debug

6. Invoke the chaincode with this command:

peer chaincode invoke -o ${orderer_addr}:${orderer_port}  --tls 
true --cafile orderer.pem -C mychannel -n mycc -c '{"Args":
["invoke","a","b","10"]}' --logging-level debug

Chapter 5
Add Fabric Organizations to the Network

5-8



7. Query the chaincode with this command:

peer chaincode query -C mychannel -n mycc -c '{"Args":
["query","a"]}'  --logging-level debug

Add Organizations with Third-Party Certificates to the
Network

This topic contains information about joining organizations using third-party certificates
to an Oracle Blockchain Platform network.

Topics:

• Typical Workflow to Join an Organization with Third-Party Certificates to an Oracle
Blockchain Platform Network

• Third-Party Certificate Requirements

• Create an Organization's Third-Party Certificates File

• Prepare the Third-Party Environment to Use the Oracle Blockchain Platform
Network

Typical Workflow to Join an Organization with Third-Party Certificates
to an Oracle Blockchain Platform Network

Here are the tasks that an organization with third-party certificates and the Oracle
Blockchain Platform founder need to perform to join the organization to an Oracle
Blockchain Platform network.

Organization with certificates issued by a third-party certificate authority (CA) can
join the Oracle Blockchain Platform network as participants. These participants are
client-only organizations and have no peers or orderers. After joining the network,
these participants can use an SDK or a Hyperledger Fabric command line interface
(CLI) to start blockchain transactions on the network.

Task Who Does This? Description More Information

Get the third-party
certificates

Third-party certificates
(participant) organization

Go to the third-party CA
server and generate the
required certificates files.
Format the files as needed
for import into the network.

Third-Party Certificate
Requirements

Create the certificates file
for import

Third-party certificates
(participant) organization

Find the participant’s
Admin and CA certificate
information and use it
to compose a JSON
certificates file.

Create an Organization's
Third-Party Certificates File

Upload a certificate file for
the third-party (participant)
organization

Founder organization Use the console to upload
and import the participant’s
certificate file to add the
participant to the network.

Import Certificates to
Add Organizations to the
Network

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-9



Task Who Does This? Description More Information

Export the ordering service
settings from network
founder and provide
them to the third-party
(participant) organization

Founder organization Output the founder’s
ordering services settings
to a JSON file and send the
file to the participant.
Open the ordering service
settings file and find the
ordering service’s address
and port and give them
to the participant. For
example:

"orderingServiceNod
es": [
{
"address": 
"grpcs://
example_address:777
7"
...
}]

Export Ordering Service
Settings

Create the channel Founder Create a new channel and
add the participant to it.

Create a Channel

Install and instantiate the
chaincode

Founder In the founder’s instance,
upload, install, and
instantiate the chaincode.
Choose the network peers
to install the chaincode on.

Use Quick Deployment

Set up the third-party
(participant) organization's
environment

Third-party certificates
(participant) organization

To query or invoke
chaincodes, the participant
must:
• Add the founder's

ordering service's
address and port
to the participant's
environment.

• Configure the
environment to use
Hyperledger Fabric
CLI or SDKs.

• Install the chaincode
on peers.

Prepare the Third-Party
Environment to Use the
Oracle Blockchain Platform
Network

Third-Party Certificate Requirements
To successfully join the network, an organization must generate the required
third-party certificates. The information in these certificates is used to create the
organization's certificates file, which is then imported into the founder's instance.

Which Certificates Do Organizations Need to Provide?

You must generate the following certificates from your CA server:

• Client Public Certificate

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-10



• CA Root Certificate

What Are the Requirements for These Certificates?

The certificates must meet the following requirements:

• When generating the private key, you must use the Elliptic Curve Digital Signature
Algorithm (ECDSA). This algorithm is the only accepted algorithm for Fabric MSP
keys.

• The Subject Key Identifier (SKI) is mandatory and you must indicate it as x509
extensions in the extension file.

• You must convert the key files from the .key to the .pem format.

• You must convert the certificates from the .crt to the .pem format.

After confirming that you’ve outputted and updated the proper files, you can then
create the certificates file for import into the Oracle Blockchain Platform network. See
Create an Organization's Third-Party Certificates File.

Create an Organization's Third-Party Certificates File
To join an Oracle Blockchain Platform network, the organization must write a
certificates file containing its admincert and cacert information. The network founder
imports this file to add the organization to the network.

These organizations are client-only and have no peers or orderers. After joining the
network, these organizations can use an SDK or a Hyperledger Fabric CLI to start
blockchain transactions on the network.

Go to the certificates files that you generated from the CA Server to find the
information that you need to create the certificates file. See Third-Party Certificate
Requirements.

The certificates file must be in written in JSON and contain the following fields:

• mspid — Specifies the name of the organization.

• type — Indicates that the organization is a network participant. This value must be
Participant.

• admincert — Contains the contents of the organization’s Admin certificates file.
When you copy the certificates information into the JSON file, you must replace
each new line with \n.

• cacert — Contains the contents of the organization’s CA certificates file. When
you copy the certificates information into the JSON file, you must replace each
new line with \n.

This is how the file needs to be structured:

{
  "mspID": "examplemspID",
  "type":  "Participant",  
  "certs": { 
   "admincert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----
\n",
   "cacert": "-----BEGIN CERTIFICATE-----
\nexample_certificate\nexample_certificate==\n-----END CERTIFICATE-----

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-11



\n"
 }
} 
    

Prepare the Third-Party Environment to Use the Oracle Blockchain
Platform Network

You must set up the third-party organization's environment before it can use the Oracle
Blockchain Platform network.

Confirm that the following prerequisite tasks were completed. For information, see
Typical Workflow to Join an Organization with Third-Party Certificates to an Oracle
Blockchain Platform Network.

• The third-party organization’s certificate file was created and sent to the Oracle
Blockchain Platform network founder.

• The network founder uploaded the certificates file to add the third-party
organization to the network.

• The network founder exported the orderer service's settings and gave the service's
address and port to the third-party organization and the organization added them
to the environment.

• The network founder created a new channel and added the third-party
organization to it.

• The network founder installed and instantiated the chaincode.

Setup organization's Environment

Before the third-party organization can successfully use the Oracle Blockchain
Platform network, it must set up its environment to use Hyperledger Fabric CLI or
SDKs. See Welcome to Hyperledger Fabric.

Install the Chaincode

The third-party organization must install the chaincode on the peers. These peers
must then be joined to the channel so that the chaincode can be invoked.

Instantiate the Chaincode

If needed, the third-party organizations can instantiate the chaincode on the channel.
For example:

export  CORE_PEER_TLS_ENABLED=true
export  CORE_PEER_TLS_ROOTCERT_FILE=$PWD/tls-ca.pem
export  CORE_PEER_MSPCONFIGPATH=$PWD/crypto-config/peerOrganizations/
customerorg1.com/users/Admin@customerorg1.com/msp
export  CORE_PEER_LOCALMSPID="customerorg1" 

### gets channel name from input###
CHANNEL_NAME=$1

echo "######### going to instantiate chaincode on channel $
{CHANNEL_NAME} ##########"
CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode instantiate

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-12



-o ${peer_host}:${port}  --tls $CORE_PEER_TLS_ENABLED --cafile 
./tls-ca.pem -C ${CHANNEL_NAME}  -n obcs-example02 -v v0 -c '{"Args":
["init","a","100","b","200"]}'

Invoke the Chaincode

Third-party organizations use the Hyperledger Fabric CLI or SDKs to invoke the
chaincode. For example:

export CORE_PEER_TLS_ENABLED=true
export CORE_PEER_TLS_ROOTCERT_FILE=$PWD/tls-ca.pem
export CORE_PEER_MSPCONFIGPATH=$PWD/crypto-config/peerOrganizations/
customerorg1.com/users/User1@customerorg1.com/msp
export CORE_PEER_LOCALMSPID="customerorg1"

### gets channel name from input ###
CHANNEL_NAME=$1

#### do query or invoke on chaincode ####

CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode query -C
${CHANNEL_NAME} -n $2 -c '{"Args":["query","a"]}'

CORE_PEER_ADDRESS=${peer_host}:${port} peer chaincode invoke -o
${peer_host}:${port} --tls $CORE_PEER_TLS_ENABLED --cafile ./tls-
ca.pem -C ${CHANNEL_NAME} -n $2 -c '{"Args":["invoke","a","b","10"]}'

Chapter 5
Add Organizations with Third-Party Certificates to the Network

5-13



6
Develop Chaincodes

This topic contains information to help you understand how to write and test
chaincodes for use in Oracle Blockchain Platform.

Topics

• Write a Chaincode

• Use a Mock Shim to Test a Chaincode

• Deploy a Chaincode on a Peer to Test the Chaincode

Write a Chaincode
A chaincode is written in Go, Node.js, or Java and then packaged into a ZIP file that is
installed on the Oracle Blockchain Platform network.

Chaincodes define the data schema in the ledger, initialize it, perform updates
when triggered by applications, and respond to queries. Chaincodes can also post
events that allow applications to be notified and perform downstream operations. For
example, after purchase orders, invoices, and delivery records have been matched by
a chaincode, it can post an event so that a subscribing application can process related
payments and update an internal ERP system.

Resources for Chaincode Development

Oracle Blockchain Platform uses Hyperledger Fabric as its foundation. Use the
Hyperledger Fabric documentation to help you write valid chaincodes.

• Welcome to Hyperledger Fabric. The Key Concepts and Tutorials sections should
be read before you write you own chaincode.

• Go Programming Language. The Go compilers, tools, and libraries provide a
variety of resources that simplify writing chaincodes.

• Package shim. Package shim provides APIs for the chaincode to access its
state variables, transaction context and call other chaincodes. This documents
the actual syntax required for your chaincode.

Oracle Blockchain Platform provides downloadable samples that help you understand
how to write chaincodes and applications. See What Are Chaincode Samples?

You can add rich-query syntax to your chaincodes to query the state database. See
SQL Rich Query Syntax and CouchDB Rich Query Syntax.

Package and Zip a Go Chaincode

Once you've written your chaincode, place it in a ZIP file. You don't need to create
a package for the Go chaincode or sign it — the Oracle Blockchain Platform install
and instantiation process does this for you as described in Typical Workflow to Deploy
Chaincodes.

6-1

https://hyperledger-fabric.readthedocs.io/en/latest/
https://golang.org/dl/
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim?tab=doc


If your chaincode has any external dependencies, you can place them in the vendor
directory of your ZIP file.

Package and Zip a Node.js Chaincode

If you're writing a Node.js chaincode, you need to create a package.json file with
two sections:

• The scripts section declares how to launch the chaincode.

• The dependencies section specifies the dependencies.

The following is a sample package.json for a Node.js chaincode:

{
    "name": "chaincode_example02",
    "version": "1.0.0",
    "description": "chaincode_example02 chaincode implemented in 
Node.js",
    "engines": {
        "node": ">=8.4.0",
        "npm": ">=5.3.0"
    },
    "scripts": { "start" : "node chaincode_example02.js" },
    "engine-strict": true,
    "license": "Apache-2.0",
    "dependencies": {
        "fabric-shim": "~1.3.0"
    }
}

The packaging rules for a Node.js chaincode are:

• package.json must be in the root directory.

• The entry JavaScript file can be located anywhere in the package.

• If "start" : "node <start>.js" isn't specified in the package.json,
server.js must be in the root directory.

Place the chaincode and package file in a zip file to install it on Oracle Blockchain
Platform.

Package and Zip a Java Chaincode

If you're writing a Java chaincode, you can choose Gradle or Maven to build the
chaincode.

If you're using Gradle, place the chaincode, build.gradle, and settings.gradle in a zip
file to install it on Oracle Blockchain Platform. The following is a sample file list of a
chaincode zip package:

Archive:  example_gradle.zip 
 Length      Date    Time    Name
---------  ---------- -----   ---- 
      610  02-14-2019 01:36   build.gradle
       54  02-14-2019 01:28   settings.gradle
        0  02-14-2019 01:28   src/
        0  02-14-2019 01:28   src/main/
        0  02-14-2019 01:28   src/main/java/

Chapter 6
Write a Chaincode

6-2



        0  02-14-2019 01:28   src/main/java/org/
        0  02-14-2019 01:28   src/main/java/org/hyperledger/
        0  02-14-2019 01:28   src/main/java/org/hyperledger/fabric/
        0  02-14-2019 01:28   src/main/java/org/hyperledger/fabric/example/
     5357  02-14-2019 01:28   src/main/java/org/hyperledger/fabric/example/
SimpleChaincode.java
---------                     -------
     6021                     10 files

If you're using Maven, place the chaincode and pom.xml in a zip file to install it on
Oracle Blockchain Platform. The following is a sample file list of a chaincode zip
package:

Archive:  example_maven.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
     3313  02-14-2019 01:52   pom.xml
        0  02-14-2019 01:28   src/
        0  02-14-2019 01:28   src/chaincode/
        0  02-14-2019 01:28   src/chaincode/example/
     4281  02-14-2019 01:28   src/chaincode/example/SimpleChaincode.java
---------                     -------
     7594                     5 files

Testing a Chaincode

After you write your chaincode, then you need to test it. See:

• Use a Mock Shim to Test a Chaincode

• Deploy a Chaincode on a Peer to Test the Chaincode

Installing and Instantiating a Chaincode

Once you’ve tested your chaincode, you can deploy it following the information in
Typical Workflow to Deploy Chaincodes.

Upgrading a Chaincode

A chaincode may be upgraded any time by changing its version. The chaincode name
must be the same or it would be considered a totally different chaincode.

1. Change the chaincode version

2. Follow the instructions in Upgrade a Chaincode to install and upgrade the new
version of the chaincode.

Use a Mock Shim to Test a Chaincode
This method of testing involves using a mock version of the stub
shim.ChaincodeStubInterface. With this you can simulate some functionality of your
chaincode before deploying it to Oracle Blockchain Platform. You can also use this
library to build unit tests for your chaincode.

Manually Vendor the Shim with a Chaincode

This applies to Oracle Blockchain Platform 19.1.1, 19.1.3, 19.2.1, and 19.2.3.

In Hyperledger Fabric, the fabric-ccenv image contains the github.com/
hyperledger/fabric/core/chaincode/shim (shim) package. This allows you
to package a chaincode without needing to include the shim. However, this may cause

Chapter 6
Use a Mock Shim to Test a Chaincode

6-3



issues in future Hyperledger Fabric releases, and it may cause issues when using
packages that are included with the shim.

Workaround: To avoid potential issues, you should manually vendor the shim package
with the chaincode prior to using the peer command-line interface for packaging
and installing a chaincode, or packaging or installing a chaincode. See https://
jira.hyperledger.org/browse/FAB-5177.

Use a Mock Shim to Test a Chaincode

1. Create a test file that matches the name of the chaincode file.

For example, if car_dealer.go is the actual implementation code for you smart
contract, you would create a test suite called car_dealer_test.go containing all
the tests for car_dealer.go. The test suite filename should be in the *_test.go
format.

2. Create your package and import statements.

package main

import (
    "fmt"
    "testing"

    "github.com/hyperledger/fabric/core/chaincode/shim"
)

3. Create your unit test.

/*
* TestInvokeInitVehiclePart simulates an initVehiclePart 
transaction on the CarDemo cahincode
 */
func TestInvokeInitVehiclePart(t *testing.T) {
    fmt.Println("Entering TestInvokeInitVehiclePart")

    // Instantiate mockStub using CarDemo as the target chaincode 
to unit test
    stub := shim.NewMockStub("mockStub", new(CarDemo))
    if stub == nil {
        t.Fatalf("MockStub creation failed")
    }

    var serialNumber = "ser1234"

    // Here we perform a "mock invoke" to invoke the function 
"initVehiclePart" method with associated parameters
    // The first parameter is the function we are invoking
    result := stub.MockInvoke("001",
        [][]byte{[]byte("initVehiclePart"),
            []byte(serialNumber),
            []byte("tata"),
            []byte("1502688979"),
            []byte("airbag 2020"),
            []byte("aaimler ag / mercedes")})

Chapter 6
Use a Mock Shim to Test a Chaincode

6-4

https://jira.hyperledger.org/browse/FAB-5177
https://jira.hyperledger.org/browse/FAB-5177


    // We expect a shim.ok if all goes well
    if result.Status != shim.OK {
        t.Fatalf("Expected unauthorized user error to be returned")
    }

    // here we validate we can retrieve the vehiclePart object we 
just committed by serianNumber
    valAsbytes, err := stub.GetState(serialNumber)
    if err != nil {
        t.Errorf("Failed to get state for " + serialNumber)
    } else if valAsbytes == nil {
        t.Errorf("Vehicle part does not exist: " + serialNumber)
    }
}

Note:

Not all interfaces of the stub are implemented. Stub functions

• GetQueryResult

• GetHistoryForKey

are not supported, and attempting to call either of these will result in an error.

Deploy a Chaincode on a Peer to Test the Chaincode
After you create a chaincode, you must install, instantiate, and invoke it to test that it
works correctly.

If you need help writing a chaincode, see Write a Chaincode.

Follow these steps to deploy and test your chaincode.

1. Identify the channel or create a new channel and add peers to it. See Join a Peer
to a Channel.

2. Install the chaincode on the peers and instantiate it on the channel. See Use Quick
Deployment.

3. Use the Invoke and query REST APIs to test the chaincode with cURL through
the REST proxy. See REST API for Oracle Blockchain Platform for descriptions of
each endpoint and correct cURL syntax to invoke each operation.

4. Go to the Channels tab in the console and locate and click the name of the
channel running the blockchain.

5. In the channel’s Ledger pane, view the chaincode’s ledger summary.

Chapter 6
Deploy a Chaincode on a Peer to Test the Chaincode

6-5



7
Deploy and Manage Chaincodes

This topic contains information to help you deploy (install, instantiate, upgrade, and
enable in the REST proxy), monitor, and find information about the chaincodes on the
network.

Topics

• Typical Workflow to Deploy Chaincodes

• Use Quick Deployment

• Use Advanced Deployment

• Update REST Proxy Settings for Running Chaincodes

• Instantiate a Chaincode

• Specify an Endorsement Policy

• View an Endorsement Policy

• Find Information About Chaincodes

• Manage Chaincode Versions

• Upgrade a Chaincode

• What Are Private Data Collections?

• Add Private Data Collections

• View Private Data Collections

Typical Workflow to Deploy Chaincodes
Here are the common tasks for deploying chaincodes.

You must be an administrator to perform these tasks.

Task Description More Information

Use the wizard to fully or
partially deploy a chaincode

For testing, use Quick
Deployment to perform the
deployment in one step, using
default settings.
For production, use Advanced
Deployment to specify the
deployment settings such
as which peers to install
the chaincode on and
the endorsement policy
you want to use. With
Advanced Deployment you
can instantiate the chaincode
and enable it in the REST
proxy now or later.

Use Quick Deployment

Use Advanced Deployment

7-1



Task Description More Information

Instantiate a chaincode Instantiate the chaincode after
you’ve installed it.

Instantiate a Chaincode

Upgrade the chaincode Upload and instantiate a
newer version of a chaincode,
or pick an older version of the
chaincode to use.

Upgrade a Chaincode

Use Quick Deployment
Use the quick deployment option to perform a one-step chaincode deployment. This
option is recommended for chaincode testing.

The quick deployment uses default settings, installs the chaincode on all peers in the
channel, instantiates the chaincode using the default endorsement policy, and enables
the chaincode in the REST proxy.

Note the following information:

• The process to deploy sample chaincodes is different than the process described
in this topic. See Explore Oracle Blockchain Platform Using Samples.

• You can use the advanced deployment option to put your chaincode into
production on the network. See Use Advanced Deployment.

• You can’t delete a chaincode from the network.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

3. Click Quick Deployment.

The Deploy Chaincode (Quick) page is displayed.

4. In the Chaincode Name field, enter a unique name for the chaincode. In the
Version field enter a string value to specify the chaincode’s version number.

The Oracle Blockchain Platform chaincode name and version requirements are
different than the Hyperledger Fabric requirements. You must use the Oracle
Blockchain Platform naming requirements. Use these guidelines when naming the
chaincode:

• Use ASCII alphanumeric characters, ('') quotes, dashes (-), and underscores
(_).

• The name must start and end only with ASCII alphanumeric characters. For
example, you can't use names like _mychaincode or mychaincode_.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters. For example, you can't use names like my--chaincode or my-
_chaincode.

• The name must be 1 to 64 characters long.

• A chaincode version can contain a period (.).

5. Review the other default settings and modify them as needed.

Chapter 7
Use Quick Deployment

7-2



6. Click the Chaincode Source field and browse for the chaincode ZIP file to upload
and deploy.

7. Click Submit.

The chaincode is installed on the channel’s peers, instantiated, and enabled in the
REST proxy. The deployed chaincode’s name is displayed in the Chaincode tab’s
table.

Use Advanced Deployment
Use the advanced deployment option to specify the parameters required to deploy a
chaincode into a production environment. For example, you’ll specify which peers to
install the chaincode on and the endorsement policy to use.

With the advanced deployment wizard, you’ll install the chaincode on the peers you
select.

Note the following information:

• The process to deploy sample chaincodes is different than the process described
in this topic. See Explore Oracle Blockchain Platform Using Samples.

• You can use the quick deployment option for chaincode testing. Quick deployment
is a one-step deployment that uses default settings, installs the chaincode on all
peers in the channel, and instantiates the chaincode using a default endorsement
policy. See Use Quick Deployment.

• You can’t delete a chaincode from the network.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click Deploy a New Chaincode.

The Deploy Chaincode page is displayed.

3. Click Advanced Deployment.

The Deploy Chaincode (Advanced) Step 1 of 3: Install page is displayed.

4. In the Chaincode Name field, enter a unique name for the chaincode. In the
Version field, enter the chaincode’s version number.

The Oracle Blockchain Platform chaincode name and version requirements are
different than the Hyperledger Fabric requirements. You must use the Oracle
Blockchain Platform naming requirements. Use these guidelines when naming the
chaincode:

• Use ASCII alphanumeric characters, ('') quotes, dashes (-), and underscores
(_).

• The name must start and end only with ASCII alphanumeric characters. For
example, you can't use names like _mychaincode or mychaincode_.

• Dashes (-) and underscores (_) must be followed with ASCII alphanumeric
characters. For example, you can't use names like my--chaincode or my-
_chaincode.

• The name must be 1 to 64 characters long.

• A chaincode version can contain a period (.).

Chapter 7
Use Advanced Deployment

7-3



5. Select one or more network peers to install the chaincode onto. To provide high
availability, Oracle suggests that you choose the appropriate number of peers from
each partition. Also, the peers you choose must be joined to the channel that you’ll
instantiate the chaincode on.

6. Click the Chaincode Source field and browse for the chaincode ZIP file to upload
and deploy. Click Next.

The chaincode is installed and the Deploy Chaincode (Advanced) Step 2 of 3:
Instantiate page is displayed.

7. Decide if you want to instantiate the chaincode now or later.

• Click Close to close the wizard and instantiate later.

• To instantiate now, select the channel to instantiate the chaincode on and
the peers to instantiate the chaincode to. If required, enter initial parameters,
an endorsement policy, transient map, and private data collections. Note the
following information:

– Instantiation compiles, builds, and initializes the chaincode on the peers.

– If you leave the endorsement policy blank, then Oracle Blockchain
Platform uses the default endorsement policy. The default endorsement
policy gets an endorsement from any peer on the network.

– When instantiation is complete, the peers are able to accept chaincode
invocations and can endorse transactions.

Click Next.

The chaincode is instantiated.

Update REST Proxy Settings for Running Chaincodes
If you're using Node.js or Java chaincodes which are dependent on external libraries,
a few proxy settings must be updated.

You must complete these steps before you instantiate the chaincode. See Instantiate a
Chaincode.

Node.js Chaincode

When your Node.js chaincode is instantiated, npm is used to install all dependency
libraries from the internet, so in an Oracle Blockchain Platform instance, if there is
such a dependancy, you need to ensure the bcs/fabric-ccenv image has internet
access.

Set the HTTP proxy for the bcs/fabric-ccenv image following these steps:

1. Create a Docker file in any location in your VM with the following content (where
http://hostname:port is your HTTP proxy access entry):

FROM bcs/fabric-ccenv:latest
ENV npm_config_proxy http://hostname:port

2. Build the image again:

docker build -f Dockerfile -t bcs/fabric-ccenv:latest

Chapter 7
Update REST Proxy Settings for Running Chaincodes

7-4



Java Chaincode

To configure the proxy to run Java chaincode:

1. Gradle-only: Create gradle.properties in a local directory, and add the following
content in it:

systemProp.http.proxyHost=[proxy host]
systemProp.http.proxyPort=[proxy port]
systemProp.https.proxyHost=[proxy host]
systemProp.https.proxyPort=[proxy port]

2. Maven-only: Create settings.xml in a local directory, and add the following
content in it:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
https://maven.apache.org/xsd/settings-1.0.0.xsd"> 
<localRepository/>
<interactiveMode/> 
<usePluginRegistry/> 
<offline/> 
<pluginGroups/>
<servers/> 
<mirrors/> 
<proxies> 
<proxy> 
<id>httpproxy</id>
<active>true</active> 
<protocol>http</protocol> 
<host>[proxy host]</host> 
<port>[proxy port]</port> 
</proxy>
<proxy> 
<id>httpsproxy</id> 
<active>true</active> 
<protocol>https</protocol> 
<host>[proxy host]</host> 
<port>[proxy port]</port> 
</proxy> 
</proxies> 
<profiles/> 
<activeProfiles/>
</settings>

3. Create a Docker file and add the following to it:

FROM bcs/fabric-javaenv:latest
COPY gradle.properties /root/.gradle/
COPY settings.xml /root/.m2/

Chapter 7
Update REST Proxy Settings for Running Chaincodes

7-5



4. Create a new image:

docker build -f dockerfile -t bcs/fabric-javaenv:latest

Instantiate a Chaincode
Instantiating a chaincode compiles, builds, and initializes the chaincode on the peers
where the chaincode is installed. When instantiation is complete, the peers are able to
accept chaincode invocations and can endorse transactions.

Note the following information:

• You must install the chaincode on the required peers before you can instantiate it.

• If you're working on a channel that contains multiple members and have
instantiated the chaincode on one member, then you don’t have to instantiate the
chaincode on the other members where you installed the same chaincode. In such
cases, the chaincode is already instantiated and running on all members on the
channel.

• You can instantiate more than one chaincode on a channel.

• The process to instantiate the sample chaincodes is different than the instantiation
process described in this topic. See Explore Oracle Blockchain Platform Using
Samples.

• After you instantiate the chaincode, then you can optionally enable it in the REST
proxy.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. In the Chaincodes tab, click the arrow to expand the chaincode’s version list.

3. Locate the chaincode version and click its More Actions menu, and select
Instantiate.

The Instantiate Chaincode dialog is displayed.

4. Enter information about where and how to instantiate the chaincode.

Field Description

Channel Select the channel for the chaincode to run on.

Peers Select the peer or peers you want to use the chaincode. This list shows
the peers that you installed the chaincode onto.

Initial
Parameter

Enter the input parameters that you want to pass to the chaincode. Go to
the chaincode to find the initial parameters values.

Endorsement
Policy

In this section, specify the number and role of members required to
endorse the chaincode.
If you don’t specify an endorsement policy, then the default endorsement
policy is used. The default endorsement policy gets an endorsement from
any peer on the network.

Chapter 7
Instantiate a Chaincode

7-6



Field Description

Transient Map The data that is passed into the chaincode is the transaction payload and
the transient map. The transaction payload is recorded in the ledger and
is visible to anyone who can access the ledger through the query system
chaincode. Use a transient map to pass private data such as keys that you
don't want stored in the ledger.

In this section, provide the required keys and values. The information you
provide is maintained on the peer node and is sent to the chaincode when
a transaction is executed.

If you're adding private data collections, then specify a transient map to
pass the private data from the client to the peers for endorsement.

(New in
v19.1.3)
Private Data
Collections

In this section, add one or more private data collections. Private data
collections specify subsets of organizations that endorse, commit, or query
private data on the channel you instantiate the chaincode on.

5. Click Instantiate.

The chaincode is instantiated.

6. To confirm that the chaincode was instantiated, go to the Channels tab and
click the name of the channel that you instantiated the chaincode on. Go to
the Instantiated Chaincodes tab and confirm that the chaincode is listed in the
summary table.

Specify an Endorsement Policy
You can add an endorsement policy when you instantiate a chaincode. An
endorsement policy specifies the members with peers that must approve, or properly
endorse, a chaincode transaction before it’s added to a block and submitted to the
ledger.

Endorsement guarantees the legitimacy of a transaction. When you instantiate a
chaincode on a channel, you can specify an endorsement policy. If you don’t specify
an endorsement policy, then the default endorsement policy is used. The default
endorsement policy gets an endorsement from any peer on the network.

A member’s endorsing peers must have ReaderWriter permissions on the channel.
When a transaction is processed, each endorsing peer returns a signed read-write
set. After the client has enough endorsements to meet the endorsement policy
requirements, then the client bundles the common read-write set with the signature
from the endorsing peers and sends everything to the ordering service, which orders
and commits the transactions into blocks and then to the ledger.

You can go to the Channels tab to view an instantiated chaincode’s endorsement
policy. See View an Endorsement Policy. You can’t modify an instantiated chaincode's
endorsement policy. If you need to change an endorsement policy, then you must
reinstantiate the chaincode or upgrade it to another version and specify a different
endorsement policy.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode that you want to instantiate and begin the instantiation
process.

3. Expand the Endorsement Policy section. Click Add Identity to add members to
the policy as needed.

Chapter 7
Specify an Endorsement Policy

7-7



Field Description

MSP ID From the dropdown menu, select the endorser peer’s organization.

Role Select the corresponding peer role required by the endorsement policy.
Usually this will be member. You can find a peer’s role by viewing its
configuration information.

Policy
Expression
Mode

In most cases, you’ll use Basic. Select Advanced to provide an
expression string. See the Hyperledger Fabric documentation for
information about how to write a valid expression string.

Signed By Select how many members with endorsing peers (peers with
ReaderWriter permissions) on the channel must endorse the chaincode
transactions to make them valid.

4. Complete the other fields on the Instantiate Chaincode page as needed.

5. Click Instantiate.

View an Endorsement Policy
You can view an instantiated chaincode's endorsement policy.

You might need to view an instantiated chaincode's endorsement policy to see how it
was set up, how you need to choose transaction endorsers based on the policy, or to
help resolve an endorsement failure.

You can’t modify the endorsement policy for an instantiated chaincode. If you need to
change an endorsement policy, then you must reinstantiate the chaincode or upgrade
it to another version and specify a different endorsement policy.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists the chaincodes installed on the
network.

2. Locate the chaincode that you want to view endorsement policy information for
and expand it in the table.

3. Click the chaincode version that you want.

The Chaincode Version Information page is displayed.

4. In the Instantiated on Channels tab, locate the channel that you want, click More
Actions, and select View Endorsement Policy.

The Chaincode Endorsement Policy page is displayed.

Find Information About Chaincodes
You can find information about the chaincodes in your network. For example, how
many peers the chaincode is installed on and if the chaincode has been instantiated.

You can’t delete a chaincode from the network.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the chaincode table lists the chaincodes and
versions installed on the network.

2. In the chaincode table, locate the chaincode that you want information for and
expand it to see information about its versions, path, how many peers it’s installed
on, and how many channels it’s instantiated on.

Chapter 7
View an Endorsement Policy

7-8



Note the following information:

• When you stop a peer node, Oracle Blockchain Platform removes the peer’s
listing on the Chaincodes tab.

• If you stop all peers that have the chaincode installed, then the Chaincodes
tab doesn’t list the chaincode. To list the chaincode, start at least one peer
node that has the chaincode installed on it.

3. Use the chaincode table as a starting point to perform chaincode-related tasks,
such as instantiate, enable it in the REST proxy, and upgrade to a new version.

Manage Chaincode Versions
Each chaincode that you install or upgrade has a version number. Once installed, a
chaincode and any of its versions can’t be deleted.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the chaincode table lists the chaincodes
installed on the network.

2. Locate the chaincode that you want version information for and expand it to see a
list of versions.

3. Click a version number. The Chaincode Version Information page is displayed.

4. Click the Installed on Peers pane to see which peers the chaincode is installed on.
You can click the peer to view more information about it.

5. Click the Instantiated on Channels pane to see which channels the chaincode is
instantiated on. You can click a channel to view more information about it.

From this pane, you can also instantiate a specific version of the chaincode
version. If the chaincode was instantiated on a channel, then you can view its
endorsement policy.

Note that you can instantiate different versions of a chaincode on different
channels.

6. (New in v19.1.3) Click the Private Data Collections pane to view the private data
collections that were added when the chaincode was instantiated.

Upgrade a Chaincode
If a developer modifies a chaincode’s source, then you’ll need to deploy it to a new
version of the chaincode. If needed, you can revert back to an older version of a
chaincode.

You can instantiate different versions of the same chaincode on different channels.

You must be an administrator to perform this task.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists all of the chaincodes installed
on the network.

2. Locate the chaincode that you want to upgrade, click More Actions, and select
Upgrade. The More Actions button only displays for chaincodes that have been
instantiated.

Chapter 7
Manage Chaincode Versions

7-9



The Upgrade Chaincode Step 1 of 2: Select a version page is displayed.

3. Select a version source. Note the following information:

• Click Select from existing versions if you want to upgrade to a version that
is already on the network. You might choose this option because the most
current chaincode version contains errors and you need to temporarily use an
older version until the chaincode can be fixed. Because the older version is on
your system, the chaincode is already installed on the peers.

• Choose Install a new version to upload the chaincode file. In the Version
field enter a version number and in the Target Peers field, select the peers
to install the chaincode on. In the Chaincode Source field, click Upload
Chaincode File and browse for the chaincode ZIP file to upload.

4. Click Next.

The Upgrade Chaincode Step 2 of 2: Upgrade page is displayed.

5. Decide if you want to instantiate the chaincode version now or later.

• Click Close to close the wizard and upgrade later.

• To upgrade now, select the channel to upgrade the chaincode on and the
peers to instantiate the chaincode to. If required, enter initialize parameters, an
endorsement policy, and transient map. See Specify an Endorsement Policy.
Click Next.

The chaincode is upgraded.

What Are Private Data Collections?
(19.1.3 and later versions only) Private data collections specify subsets of
organizations that endorse, commit, or query private data on the channel.

Use private data collections in cases where you want a group of organizations on the
channel to share data and to prevent the other organizations on the channel from
seeing the data. Private data is distributed peer to peer and not by blocks, so the
transaction data is kept confidential from the ordering service. Collections help you
reduce the number of channels and their required maintenance on your network.

The primary components in a private data collection are:

• The private data that you specify in your private data collection definition. Private
data is sent with the gossip protocol from peer to peer within the organizations that
you specify in your policy. Private data is stored in a private database on the peer.
The ordering service isn't used and can't see the private data.

• A hash of the data, which is endorsed, ordered, and written to each peer on
the channel. This hash is evidence of the transaction and can be used for audit
purposes.

When you instantiate a chaincode, you can associate it with one or more private data
collections. Also when you instantiate a chaincode, you should specify a transient map
to pass the private data from the client to the peers for endorsement. The collection
definition specifies who can persist data, how many peers the data is distributed to,
how many peers are required to disseminate the private data, and how long the private
data is persisted in the private database.

Chapter 7
What Are Private Data Collections?

7-10



Add Private Data Collections
(19.1.3 and later versions only) You can add private data collections to channels.
Private data collections specify subsets of organizations that endorse, commit, or
query private data on the channel.

Use private data collections in cases where you want a group of organizations on the
channel to share data within a transaction and to prevent the other organizations on
the channel from seeing the data.

If you're going to use private data collections across the organizations in your network,
then you need to configure anchor peers. Anchor peers facilitate private data gossip
among the organizations. See Add an Anchor Peer.

You specify the private data collections when you instantiate the chaincode.

1. Go to the console and select the Chaincodes tab.

2. Locate the chaincode that you want to instantiate and begin the instantiation
process.

3. Expand the Private Data Collections section and add the collection definition as
needed.

Field Description

Collection Name Enter the collection's name. You'll reference
this name in the chaincode.

Policy Create the policy to specify which
organizations are included in the collection
and which peers can store the private data.

Each member listed in the policy must be
included in an OR signature policy list.

To support read/write transactions, the
private data distribution policy must
contain more organizations than the
chaincode endorsement policy because
peers must have the private data to endorse
transactions. For example, in a channel with
ten organizations, five of the organizations
are included in a private data collection
policy, but the endorsement policy requires
three organizations to endorse a transaction.

Chapter 7
Add Private Data Collections

7-11



Field Description

Peers Required Enter the number of peers that each
endorsing peer must distribute private data
to before the peer signs the endorsement
and returns the proposal response.

Oracle recommends that you set this value
to 1 or more peers to:
• Ensure redundancy of the private data

on multiple peers in the network.
• Ensure that private data is available

if the endorsing peers become
unavailable.

Note that setting this value to 0 means that
distribution isn't required. However, if the
Max Peer Count field is set to greater than
0, then private data distribution might still
occur.

Max Peer Count Enter the maximum number of peers that
the current endorsing peer attempts to
distribute the data to. This is to ensure
redundancy so that peers are available
between endorsement time and commit time
to pull the private data if an endorsing peer
isn't available.

If you set this value to 0, then the
private data isn't distributes at the time
of endorsement. This causes private data
pulls against the endorsing peers on all
authorized peers at commit time.

Block to Live Enter the length in number of blocks that you
want data to reside on the private database.
The data is purged when the number of
blocks is reached.

Set this value to 0 if you never want to purge
the data.

Note that a peer can fail to pull
private data from another peer if
a private data collection's blocktolive
value is less than 10, and its
requiredPeerCount and maxPeerCount are
less than the total number of peers
in the channel. This is a known
Hyperledger Fabric issue. See https://
jira.hyperledger.org/browse/FAB-11889.

4. Click Add New Collection and your collection's information is displayed in the
private data collection table.

5. If needed, specify other collections.

6. Complete the other fields on the Instantiate Chaincode page as needed.

7. Click Instantiate.

Chapter 7
Add Private Data Collections

7-12

https://jira.hyperledger.org/browse/FAB-11889
https://jira.hyperledger.org/browse/FAB-11889


View Private Data Collections
(19.1.3 and later versions only) You can view information about a chaincode's private
data collections.

After you instantiate a chaincode, you might need to view its private data collections to
see how they were defined.

You can’t modify the private data collections for an instantiated chaincode. If you need
to change the private data collections, then you need to upgrade the chaincode and
specify new private data collections.

1. Go to the console and select the Chaincodes tab.

The Chaincodes tab is displayed and the table lists the chaincodes installed on the
network.

2. Locate the chaincode that you want to view private data collections for and expand
it in the table.

3. Click the chaincode version that you want.

The Chaincode Version Information page is displayed.

4. In the Private Data Collections tab, locate the collection that you want to view.

Chapter 7
View Private Data Collections

7-13



8
Develop Blockchain Applications

Blockchains require smart contracts (chaincode) to update the ledger. In addition, you
will also require a client application that utilizes either the Oracle Blockchain Platform
REST API or native Hyperledger Fabric SDK to interact with the blockchain directly.
There are other operational and administrative tasks to consider, namely the creation
of peers and channels and installation of chaincode.

Topics

• Before You Develop an Application

• Use the Hyperledger Fabric SDKs to Develop Applications

• Use the REST APIs to Develop Applications

Before You Develop an Application
Before you write an application, download and use the sample applications, and
ensure that you've the correct certificates and privileges to run an application.

Oracle Blockchain Platform provides downloadable samples that help you understand
how to write chaincodes and applications. See:

• What Are Chaincode Samples?

• Explore Oracle Blockchain Platform Using Samples

Oracle Blockchain Platform uses Hyperledger Fabric as its foundation. Use the
Hyperledger Fabric documentation to help you write applications. The Key Concepts
and Tutorials sections should be read before you write you own application: Welcome
to Hyperledger Fabric.

Prerequisites for Application Development

A user ID and password for the application user must exist in your LDAP server.
Depending on the functions in the application, this user must have the following:

• To install and instantiate chaincode:

– You must have administrative access in order to install or deploy chaincode.

– You must export the admincerts, cacerts, and tlscacerts certificates as
described in Export Certificates so that they can be placed in your application
in the peer and orderer nodes crypto folders.

– You must export the admin credentials similarly to how you exported the
certificates (from the action menu, select Export Admin Credential). This will
download a ZIP file containing the signed certificate and keystore files that
need to be placed in your application in the peer and orderer nodes crypto
folders.

• To run operations against an installed and instantiated chaincode:

8-1

https://hyperledger-fabric.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/en/latest/


– You must export the admincerts, cacerts, and tlscacerts certificates as
described in Export Certificates so that they can be placed in your application
in the peer node crypto folders.

– You must export the tlscacerts certificate for the orderer node as described in
Export Ordering Service Settings so that it can be placed in your application.

– The chaincode you’re invoking must be installed and deployed to a channel
and node that your user ID has access to.

– A REST proxy node must be configured and the chaincode enabled for REST
proxy access. The user ID and password for the node must be provided.

• To run functions against a REST API endpoint:

– The chaincode you’re invoking must be installed and deployed to a channel
and node that your user ID has access to.

– A REST proxy node must be configured and the chaincode enabled for REST
proxy access. The user ID and password for the node must be provided.

Use the Hyperledger Fabric SDKs to Develop Applications
Applications use a software development kit (SDK) to access the APIs that permit
queries and updates to the ledger. You can install and use the Hyperledger Fabric
SDKs to develop applications for Oracle Blockchain Platform.

The REST APIs provided by Oracle Blockchain Platform have been created with
maximum flexibility in mind; you can invoke a transaction, invoke a query, or view the
status of a transaction. See REST API for Oracle Blockchain Platform.

However this means that you'll likely want to wrap the existing API endpoints in an
application to provide object-level control. Applications can contain much more fine-
grained operations.

SDK Versions

• If your Oracle Blockchain Platform founder instances were created using 19.2.3 or
19.3.2, they support V1.4 of the Hyperledger Fabric SDKs.

Installing the Hyperledger Fabric SDK for Node.js

Information about how to use the Fabric SDK for Node.js can be found here:
Hyperledger Fabric SDK for Node.js documentation

On the Developer Tools tab, open the Application Development pane.

• You can install the Hyperledger Fabric Node.js SDK from this tab.

• If you've previously installed it you must modify it to work with Oracle Blockchain
Platform following the instructions in Update the Hyperledger Fabric SDKs to Work
with Oracle Blockchain Platform.

Installing the Hyperledger Fabric SDK for Java

Information about how to use the Fabric SDK for Java can be found here: Hyperledger
Fabric SDK for Java documentation

On the Developer Tools tab, open the Application Development pane.

• You can install the Hyperledger Fabric Java SDK from this tab.

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-2

https://fabric-sdk-node.github.io/
https://github.com/hyperledger/fabric-sdk-java
https://github.com/hyperledger/fabric-sdk-java


• If you've previously installed it you must modify it to work with Oracle Blockchain
Platform following the instructions in Update the Hyperledger Fabric SDKs to Work
with Oracle Blockchain Platform.

Install a build tool such as Apache Maven.

Structuring your Application

Your Java application should be structured similar to the following:

/Application
  /artifacts
    /cypto
      /orderer
        Contains the certificates required for the application to act 
on the orderer node
        In participant instances only contains TLS certificates
      /peer
        Contains the certificates required for the application to act 
on the peer node
    /src
      chaincode.go if installing and deploying chaincode to the 
blockchain
  /java
    pom.xml or other build configuration files
    /resources
      Any resources used by the Java code, including artifacts such as 
the endorsement policy yaml file and blockchain configuration properties
    /src
      Java source files

Your Node.js application should be structured similar to the following:

/Application
  /artifacts
    /cypto
      /orderer
        Contains the certificates required for the application to act 
on the orderer node
        In participant instances only contains TLS certificates
      /peer
        Contains the certificates required for the application to act 
on the peer node
    /src
      chaincode.go if installing and deploying chaincode to the 
blockchain
  /node
    package.json file
    application.js
    /app
      Any javascript files called by the application
      /tools

Running the application

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-3



You’re now ready to run and test the application. In addition to any status messages
returned by your application, you can check the ledger in the Oracle Blockchain
Platform console to see your changes:

1. Go to the Channels tab in the console and locate and click the name of the
channel running the blockchain.

2. In the channel’s Ledger pane, view the chaincode’s ledger summary.

Update the Hyperledger Fabric SDKs to Work with Oracle Blockchain
Platform

There's an incompatibility between an OCI infrastructure component and the Node.js
and Java SDKs provided with Fabric. Follow the steps in this topic to correct this
problem.

Methods of updating the Fabric SDKs

There are two ways of updating the SDK:

• Using Oracle scripts to download and install the Node.js SDK or Java SDK which
will patch the code as it installs.

• Manually as described in this topic.

To use the scripts, on the console’s Developer Tools tab, select the Application
Development pane. The links to download both the Node.js SDK and Java SDK have
updates built in which will patch the code as it installs.

• Fabric Java SDK: We’ve created an updated grpc-netty-1.15.0.jar file, which is
the module referenced by the Java SDK which requires modifications.

• Fabric Node.js SDK: We have created the npm_bcs_client.sh script to replace the
standard Fabric npm install operations that users would perform to download
and install the Node.js Fabric client package. The script runs the same npm
command, but it also patched the needed component and rebuilds it.

Note that the Go SDK doesn’t have the same incompatibility issue and doesn’t need to
be updated.

Manually updating the Fabric Node.js SDK

Do the following to rebuild the grpc-node module to connect the peers and orderers
with grpcs client (via tls).

1. Install fabric-client without executing the grpc module's build script:

npm install --ignore-scripts fabric-client

2. Change the code to avoid an alpn error from server side.

• Change the target code of node_modules/grpc/deps/grpc/src/core/lib/
security/security_connector/security_connector.cc

• Change function ssl_check_peer to something similar to:

static grpc_error* ssl_check_peer(grpc_security_connector* sc,
                                  const char* peer_name, const 
tsi_peer* peer,

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-4



                                  grpc_auth_context** 
auth_context) {
  /* Check the ALPN. */
  const tsi_peer_property* p =
      tsi_peer_get_property_by_name(peer, 
TSI_SSL_ALPN_SELECTED_PROTOCOL);
   if (false) {
    return GRPC_ERROR_CREATE_FROM_STATIC_STRING(
        "Cannot check peer: missing selected ALPN property.");
  }
   if (p != nullptr && !grpc_chttp2_is_alpn_version_supported(p-
>value.data, p->value.length)) {
    return GRPC_ERROR_CREATE_FROM_STATIC_STRING(
        "Cannot check peer: invalid ALPN value.");
  }

  ...
}

• Change the target code of node_modules/grpc/binding.gyp.

• Change the variable grpc_alpn to false:

'grpc_alpn%': 'false'

3. Rebuild grpc

npm rebuild --unsafe-perm --build-from-source

You can now install any other modules you need and run the project.

Manually updating the Fabric Java SDK

For fabric-sdk-java, do the following steps to rebuild the grpc-netty package to
connect the peers and orderers with grpcs client (via tls). grpc-netty is a sub-project
of grpc-java.

1. Install project dependencies:

mvn install

2. Download grpc-java source code:

git clone https://github.com/grpc/grpc-java.git

3. Change the code to avoid an alpn error from the server side.

• Change the target code of grpc-java_root/netty/src/main/java/io/grpc/
netty/ProtocolNegotiators.java

• Change function userEventTriggered to something similar to:

private static class BufferUntilTlsNegotiatedHandler extends 
AbstractBufferingHandler
      implements ProtocolNegotiator.Handler {

Chapter 8
Use the Hyperledger Fabric SDKs to Develop Applications

8-5



    ...

    @Override
    public void userEventTriggered(ChannelHandlerContext ctx, 
Object evt) throws Exception {
      ...
          if (handler.applicationProtocol() == null 
              || 
NEXT_PROTOCOL_VERSIONS.contains(handler.applicationProtocol())) {
            // Successfully negotiated the protocol.
            logSslEngineDetails(Level.FINER, ctx, "TLS 
negotiation succeeded.", null);
      ...
  }

4. Build the project to generate the target patched package. Use gradle to build the
grpc-java project. Or you can just rebuild the grpc-netty sub-project in the grpc
netty directory gradle build.

After the build is done, you can get the target patched jar package in the directory
grpc-java\netty\build\libs\grpc-netty-1.15.0.jar.

5. Add the patched package into your Maven local repository.

Replace official grpc-netty jar package with the patched package in either of the
following two ways:

• Use Maven to install the package by local file:

mvn install:install-
file -Dfile=local_patched_grpc_netty_package_root/grpc-
netty-1.15.0.jar -DgroupId=io.grpc -DartifactId=grpc-netty -
Dversion=1.15.0 -Dpackaging=jar

You must keep the target groupid, artifactid, and version the same as the
package you want to replace.

• Manually replace your package. Go to the local Maven repository, find the
directory where the target package is located, and replace the package with
patched package.

6. Run the project.

Use the REST APIs to Develop Applications
The REST APIs provided by Oracle Blockchain Platform have been created with
maximum flexibility in mind; you can invoke a transaction, invoke a query, or view the
status of a transaction. However this means that you'll likely want to wrap the existing
API endpoints in an application to provide object-level control. Applications can contain
much more fine-grained operations.

Any application using the REST APIs requires the following:

• The chaincode name and version.

• The REST server URL and port, and the user ID and password for the REST
node.

Chapter 8
Use the REST APIs to Develop Applications

8-6



• Functions to invoke transactions against or query the ledger.

See REST API for Oracle Blockchain Platform for information on the existing
operations, including examples and usage syntax.

Structuring your Application

Your REST API application should be structured similar to the following:

/Application
  /artifacts
    /cypto
      /orderer
        Contains the certificates required for the application to act 
on the orderer node
        In participant instances only contains TLS certificates
      /peer
        Contains the certificates required for the application to act 
on the peer node
    /src
  /REST
    Application script containing REST API calls

Chapter 8
Use the REST APIs to Develop Applications

8-7



9
Work With Databases

This topic contains information to help you understand how to query the state
database and how to create and configure a rich history database.

Topics:

• Query the State Database

• Create the Rich History Database

Query the State Database
This topic contains information to help you understand how to query the state
database.

Topics:

• What's the State Database?

• Supported Rich Query Syntax

• State Database Indexes

• Differences in the Validation of Rich Queries

What's the State Database?
The blockchain ledger’s current state data is stored in the state database.

When you develop Oracle Blockchain Platform chaincodes, you can extract data from
the state database by executing rich queries. Oracle Blockchain Platform supports rich
queries by using the SQL rich query syntax and the CouchDB find expressions. See
SQL Rich Query Syntax and CouchDB Rich Query Syntax.

Hyperledger Fabric doesn’t support SQL rich queries. If your Oracle Blockchain
Platform network contains Hyperledger Fabric participants, then you need to make
sure to do the following:

• If your chaincodes contain SQL rich query syntax, then those chaincodes are
installed only on member peers using Oracle Blockchain Platform.

• If a chaincode needs to be installed on Oracle Blockchain Platform and
Hyperledger Fabric peers, then use CouchDB syntax in the chaincodes and
confirm that the Hyperledger Fabric peers are set up to use CouchDB as their
state database repository. Oracle Blockchain Platform can process CouchDB.

How Does Oracle Blockchain Platform Work with Berkeley DB?

Oracle Blockchain Platform uses Oracle Berkeley DB as the state database. Oracle
Blockchain Platform creates relational tables in Berkeley DB based on the SQLite
extension. This architecture provides a robust and performant way to validate SQL rich
queries.

9-1



For each channel chaincode, Oracle Blockchain Platform creates a Berkeley DB table.
This table stores state information data, and contains at least a key column named
key, and a value column named value or valueJson, depending on whether you’re
using JSON format data.

Column Name Type Description

key TEXT Key column of the state table.

value TEXT Value column of the state table.

valueJson TEXT JSON format value column of the
state table.

Note that the valueJson and value columns are mutually-exclusive. So, if the
chaincode assigns a JSON value to a key, then the valueJson column will hold that
value, and the value column will be set to null. If the chaincode assigns a non-JSON
value to a key, then the valueJson column will be set to null, and the value column will
hold the value.

Example of a State Database

These are examples of keys and their values from the Car Dealer sample’s state
database:

key value valueJson

abg1234 null {"docType": "vehiclePart", "serialNumber":
"abg1234", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "airbag
2020", "owner": "Detroit Auto", "recall": false,
"recallDate": 1502688979}

abg1235 null {"docType": "vehiclePart", "serialNumber":
"abg1235", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "airbag
4050", "owner": "Detroit Auto", "recall": false,
"recallDate": 1502688979}

ser1236 null {"docType": "vehiclePart", "serialNumber":
"ser1236", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name":
"seatbelt 10020", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

bra1238 null {"docType": "vehiclePart", "serialNumber":
"bra1238", "assembler": "bobs-bits",
"assemblyDate": 1502688979, "name":
"brakepad 4200", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

dtrt10001 null {"docType": "vehicle", "chassisNumber":
"dtrt10001", "manufacturer": "Detroit Auto",
"model": "a coupe", "assemblyDate":
1502688979, "airbagSerialNumber":
"abg1235", "owner": "Sam Dealer", "recall":
false, "recallDate": 1502688979

State Database Indexes
The state database can contain a large amount of data. In such cases Oracle
Blockchain Platform uses indexes to improve data access.

Chapter 9
Query the State Database

9-2



Default Indexes

When a chaincode is deployed, Oracle Blockchain Platform creates two indexes.

• Key index — Created on the key column.

• Value index — Created on the value column.

Custom Indexes

In some cases, you might need to create custom indexes. You define these indexes
using any expression that can be resolved in the context of the state table. Custom
indexes created against Berkeley DB rely on the SQLite syntax, but they otherwise
follow the same CouchDB implementation provided by Hyperledger Fabric.

Note that you can use custom indexes to dramatically improve the performance of
WHERE and ORDER BY statements on large data sets. Because using custom
indexes slows down data insertions, you should use them judiciously.

Each custom index is defined as an array of expressions, which support compound
indexes, expressed as a JSON document inside one file (note that there's one index
per file). You must package this file with the chaincode in a folder named “indexes”
in the following directory structure: statedb/relationaldb/indexes. See How to
add CouchDB indexes during chaincode installation.

Example Custom Indexes

The custom index examples in this section use the Car Dealer sample.

Example 1 —This example indexes the use of the json_extract expression in the
context of WHERE and ORDER BY expressions.

{"indexExpressions": ["json_extract(valueJson, '$.owner')"]}

For example:

SELECT … FROM … ORDER BY json_extract(valueJson, '$.owner')

Example 2 — This example indexes the compound use of the two json_extract
expressions in the context of WHERE and ORDER BY expressions.

{"indexExpressions": ["json_extract(valueJson, '$.docType')",
"json_extract(valueJson, '$.owner')"]}

For example:

SELECT … FROM … WHERE json_extract(valueJson, '$.docType') = 'vehiclePart'
AND json_extract(valueJson, '$.owner') = 'Detroit Auto'

Example 3 — This example creates two indexes: the index described in Example
1 and the index described in Example 2. Note that each JSON structure needs to
be included in a separate file. Each file describes a single index: a simple index like
Example 1, or a compound index like Example 2.

Index 1: {"indexExpressions": ["json_extract(valueJson, '$.owner')"]}

Index 2: {"indexExpressions": ["json_extract(valueJson, '$owner')",
"json_extract(valueJson, '$.docType')"]}

In the following example, Index 2 is applied to the AND expression in the WHERE portion
of the query, while Index 1 is applied to the ORDER BY expression:

Chapter 9
Query the State Database

9-3

https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-metadata-chaincode.html
https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-metadata-chaincode.html


SELECT … FROM … WHERE json_extract(valueJson, '$.docType') = 'vehiclePart'
AND json_extract(valueJson, '$.owner') = 'Detroit Auto' ORDER BY
json_extract(valueJson, '$.owner')

JSON Document Format

The JSON document must be in the following format:

{"indexExpressions": [expr1, ..., exprN]}

For example:

{"indexExpressions": ["json_extract(valueJson, '$.owner')"]}

Differences in the Validation of Rich Queries
In some cases, the standard Hyperledger Fabric with CouchDB rich query and the
Oracle Berkeley DB rich query behave differently.

In standard Hyperledger Fabric with CouchDB, each key and value pair returned by
the query is added to the transaction's read-set and is validated at validation time
and without re-executing the query. In Berkeley DB, the returned key and value pair
isn’t added to the read-set, but the rich query's result is hashed in a Merkle tree and
validated against the re-execution of the query at validation time.

Native Hyperledger Fabric doesn’t provide data protection for rich query. However,
Berkeley DB contains functionality that protects and validates the rich query by adding
the Merkle tree hash value into the read-set, re-executing the rich query, and at the
validation stage re-calculating the Merkle tree value. Note that because validation is
more accurate in Oracle Blockchain Platform with Berkeley DB, chaincode invocations
are sometimes flagged for more frequent phantom reads.

Supported Rich Query Syntax
Oracle Blockchain Platform supports two types of rich query syntax that you can use to
query the state database: SQL rich query and CouchDB rich query.

Topics:

• SQL Rich Query Syntax

• CouchDB Rich Query Syntax

SQL Rich Query Syntax
The Berkeley DB JSON extensions are in the form of SQL functions.

Before You Begin

Note the following information:

• You can only access the channel chaincode (<STATE>) that you’re executing your
query from.

• Only the SELECT statement is supported.

• You can’t modify the state database table.

• A rich query expression can have only one SELECT statement.

Chapter 9
Query the State Database

9-4



• The examples in this topic are just a few ways that you can write your rich query.
You've access to the usual full SQL syntax to query a SQL database.

• You've access to the JSON1 Extension (SQLite extension). See JSON1 Extension
and SQL As Understood by SQLite.

If you need more information about writing and testing chaincodes, see Develop
Chaincodes.

How to Refer to the State Database in Queries

The state database table name is internally managed by Oracle Blockchain Platform,
so you don't need to know the state database’s physical name when you write a
chaincode.

Instead, you must use the <STATE> alias to refer to the table name. For example:
select key, value from <STATE>.

Note that the <STATE> alias is not case-sensitive, so you can use either <state>,
<STATE>, or something like <StAtE>.

Retrieve All Keys

Use this syntax:

SELECT key FROM <STATE>

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following list of keys:

key

abg1234

abg1235

ser1236

bra1238

dtrt10001

Retrieve All Keys and Values Ordered Alphabetically by Key

Use this syntax:

SELECT key AS serialNumber, valueJson AS details FROM  <state> ORDER BY 
key

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

serialNu
mber

details

abg1234 {"docType": "vehiclePart", "serialNumber": "abg1234", "assembler": "panama-
parts", "assemblyDate": 1502688979, "name": "airbag 2020", "owner": "Detroit
Auto", "recall": false, "recallDate": 1502688979}

Chapter 9
Query the State Database

9-5

https://www.sqlite.org/json1.html
https://www.sqlite.org/lang_select.html


serialNu
mber

details

abg1235 {"docType": "vehiclePart", "serialNumber": "abg1235", "assembler": "panama-
parts", "assemblyDate": 1502688979, "name": "airbag 4050", "owner": "Detroit
Auto", "recall": false, "recallDate": 1502688979}

bra1238 {"docType": "vehiclePart", "serialNumber": "bra1238", "assembler": "bobs-bits",
"assemblyDate": 1502688979, "name": "brakepad 4200", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

dtrt10001 {"docType": "vehicle", "chassisNumber": "dtrt10001", "manufacturer": "Detroit
Auto", "model": "a coupe", "assemblyDate": 1502688979, "airbagSerialNumber":
"abg1235", "owner": "Sam Dealer", "recall": false, "recallDate": 1502688979

ser1236 {"docType": "vehiclePart", "serialNumber": "ser1236", "assembler": "panama-parts",
"assemblyDate": 1502688979, "name": "seatbelt 10020", "owner": "Detroit Auto",
"recall": false, "recallDate": 1502688979}

Retrieve All Keys and Values Starting with “abg”

Use this syntax:

SELECT key AS serialNumber, valueJson AS details FROM <state> WHERE key 
LIKE 'abg%'SELECT key, value FROM <STATE>

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

serialNu
mber

details

abg1234 {"docType": "vehiclePart", "serialNumber": "abg1234", "assembler": "panama-
parts", "assemblyDate": "1502688979", "name": "airbag 2020", "owner": "Detroit
Auto", "recall": "false", "recallDate": "1502688979"}

abg1235 {"docType": "vehiclePart", "serialNumber": "abg1235", "assembler": "panama-
parts", "assemblyDate": "1502688979", "name": "airbag 4050", "owner": "Detroit
Auto", "recall": "false", "recallDate": "1502688979"}

Retrieve All Keys with Values Containing a Vehicle Part Owned by "Detroit Auto"

Use this syntax:

SELECT key FROM <state> WHERE json_extract(valueJson, '$.docType') =
'vehiclePart' AND json_extract(valueJson, '$.owner') = 'Detroit Auto'

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following list of keys:

key

abg1234

abg1235

ser1236

bra1238

Retrieve Model and Manufacturer for all Cars Owned by "Sam Dealer"

Chapter 9
Query the State Database

9-6



Use this syntax:

SELECT json_extract(valueJson, '$.model') AS model,
json_extract(valueJson, '$.manufacturer') AS manufacturer FROM
<state> WHERE json_extract(valueJson, '$.docType') = 'vehicle' AND
json_extract(valueJson, '$.owner') = 'Sam Dealer'

For example, if you use this syntax to query the Car Dealer sample, then you’ll get the
following results:

model manufacturer

a coupe Detroit Auto

CouchDB Rich Query Syntax
Use the information in this topic if you’re migrating your chaincodes containing
CouchDB syntax to Oracle Blockchain Platform, or if you need to write chaincodes
to install on Hyperledger Fabric peers participating in an Oracle Blockchain Platform
network.

If you’re writing a new chaincode, then Oracle recommends that you use SQL rich
queries to take advantage of the performance benefits that Oracle Blockchain Platform
with Berkeley DB provides.

If you need more information about writing and testing chaincodes, see Develop
Chaincodes.

Unsupported Query Parameters and Selector Syntax

Oracle Blockchain Platform doesn’t support the use_index parameter. If used, Oracle
Blockchain Platform ignores this parameter, and it will automatically pick the indexes
defined on the StateDB in question.

Parameter Type Description

use_index json Instructs a query to use a specific
index.

Retrieve All Models, Manufacturers, and Owners of Cars, and Order Them by
Owner

Use this expression:

{ 
  "fields": ["model", "manufacturer", "owner"], 
  "sort": [   
    "owner" 
   ]
}

Chapter 9
Query the State Database

9-7



Retrieve Model and Manufacturer for All Cars Owned by “Sam Dealer”

Use this expression:

{ 
  "fields": ["model", "manufacturer"], 
  "selector": {   
    "docType"  : "vehicle",
     "owner" : "Sam Dealer" 
  }
}

Create the Rich History Database
This topic contains information to help you specify an Oracle database connection and
choose channels to create the rich history database. You’ll use this database to make
analytics reports and visualizations of your ledger’s activities.

Topics:

• What's the Rich History Database?

• Rich History Database Tables and Columns

• Create the Oracle Database Cloud Service Connection String

• Enable and Configure the Rich History Database

• Modify the Connection to the Rich History Database

• Choose the Channels that Write Data to the Rich History Database

What's the Rich History Database?
The rich history database is external to Oracle Blockchain Platform and contains data
about the blockchain ledger’s transactions on the channels you select. You use this
database to create analytics reports and visualization about your ledger’s activities.

For example, using the rich history database, you could create analytics to learn the
average balance of all of the customers in your bank over some time interval, or how
long it took to ship merchandise from a wholesaler to a retailer.

Internally, Oracle Blockchain Platform uses the Hyperledger Fabric history database to
manage the ledger and present ledger transaction information to you in the console.
Only the chaincodes can access this history database, and you can’t expose the
Hyperledger Fabric history database as a data source for analytical queries. The rich
history database uses an external Oracle database and contains many details about
every transaction committed on a channel. This level of data collection makes the
rich history database an excellent data source for analytics. For information about the
data that the rich history database collects, see Rich History Database Tables and
Columns.

You can only use an Oracle database such as Oracle Autonomous Data Warehouse
or Oracle Database Cloud Service with Oracle Cloud Infrastructure to create your
rich history database. You use the Oracle Blockchain Platform console to provide the
connection string and credentials to access and write to the Oracle database. Note

Chapter 9
Create the Rich History Database

9-8



that the credentials you provide are the database’s credentials and Oracle Blockchain
Platform doesn’t manage them. After you create the connection, you’ll select the
channels that contain the ledger data that you want to include in the rich history
database. See Enable and Configure the Rich History Database.

You can use any analytics tool, such as Oracle Analytics Cloud or Oracle Data
Visualization Cloud Service, to access the rich history database and create analytics
reports or data visualizations.

Create the Oracle Database Cloud Service Connection String
You must collect information from the Oracle Database Cloud Service deployed on
Oracle Cloud Infrastructure to build the connection string required by the rich history
database. You must also enable access to the database through port 1521.

Find and Record Oracle Database Cloud Service Information

The information you need to create a connection to the Oracle Database Cloud
Service is available in the Oracle Cloud Infrastructure Console.

1. From the Infrastructure Console, click the navigation menu in the top left corner,
and then click Database.

2. Locate the database that you want to connect to and record the Public IP
address.

3. Click the name of the database that you want to connect to and record the values
in these fields:

• Database Unique Name

• Host Domain Name

• Port

4. Find a username and password of a database user with permissions to read from
this database, and make a note of these. For example, the user SYSTEM.

Enable Database Access Through Port 1521

Add an ingress rule that enables the rich history database to access the database
through port 1521.

1. In the Oracle Cloud Infrastructure home page, click the navigation icon and then
under Databases click DB Systems.

2. Click the database that you want to connect to.

3. Click the Virtual Cloud Network link.

4. Navigate to the appropriate subnet, and under Security Lists, click Default
Security List For <Target Database>.

The Security List page is displayed.

5. Click Edit All Rules.

6. Add an ingress rule to allow any incoming traffic from the public internet to reach
port 1521 on this database node, with the following settings:

• SOURCE CIDR: 0.0.0.0/0

• IP PROTOCOL: TCP

• SOURCE PORT RANGE: All

Chapter 9
Create the Rich History Database

9-9



• DESTINATION PORT RANGE: 1521

• Allows: TCP traffic for ports: 1521

Build the Connection String

After enabling access to the Oracle database, use the information you collected to
build the connection string in the Configure Rich History dialog.

Construct the connection string like this: <publicIP>:<portNumber>/<database unique
name>.<host domain name>

For example, 123.213.85.123:1521/
CustDB_iad1vm.sub05031027070.customervcnwith.oraclevcn.com

Enable and Configure the Rich History Database
Use the console to provide database connection information and select the channels
with the chaincode ledger data that you want to write to the rich history database. By
default channels aren’t enabled to write data to the rich history database.

Note the following information:

• Each blockchain network member configures its own rich history database.

• You must use an Oracle database. No other database types are supported.

1. Enter connection and credential information for the Oracle database that you want
to use to store rich history information.

a. Go to the console and click the Options button and click Configure Rich
History. This button is located above the bar that contains the tabs that you
use to navigate to nodes, channels, and chaincodes.

The Configure Rich History dialog is displayed.

b. Enter the user name and password required to access the Oracle database.

c. In the Connection String field, enter the connection string for the database
that you’ll use to store rich history data. What you enter here depends on the
Oracle database you’re using.

• If you’re using Oracle Autonomous Data Warehouse, then you’ll enter
something similar to <username>adw_high. To find Oracle Autonomous
Data Warehouse’s connection information, go to its credential wallet ZIP
file and open its TNS file.

• If you’re using Oracle Database Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Cloud Service Connection
String.

• If you're using a non-autonomous Oracle database (a database that
doesn't use a credential wallet) and want to use the sys user to
connect to the database, then you must append ?as=sys[dba|asm|
oper] to the connection string. For example, 123.123.123.123:1521/
example.oraclevcn.com?as=sysdba

d. If you’re using an Oracle Cloud autonomous database instance (for example,
Oracle Autonomous Data Warehouse or Oracle Autonomous Transaction
Processing), then use the Wallet Package File field to upload the required
credential wallet ZIP file. This file contains client credentials and is generated
from the Oracle autonomous database.

Chapter 9
Create the Rich History Database

9-10



e. Click Save.

2. Enable rich history on the channels that contain the chaincode data that you want
to write to the rich history database.

a. Go to the console and select the Channels tab.

b. Locate the channel that contains the chaincode data that you want to write to
the rich history database. Click its More Options button and select Configure
Rich History.

The Configure Rich History dialog is displayed.

c. Click the Enable Rich History checkbox. Click Save.

Modify the Connection to the Rich History Database
You can change the rich history database’s connection information.

1. Go to the console and click the Options button and click Configure Rich History.
This button is located above the bar that contains the tabs that you use to navigate
to nodes, channels, and chaincodes.

2. If needed, update the user name and password required to access the Oracle
database.

3. If needed, in the Connection String field, modify the connection string for the
database that you’ll use to store rich history data. What you enter here depends on
the Oracle database you’re using.

• If you’re using Oracle Autonomous Data Warehouse, then you’ll enter
something similar to <username>adw_high. To find Oracle Autonomous Data
Warehouse’s connection information, go to its credential wallet ZIP file and
open its TNS file.

• If you’re using Oracle Database Cloud Service with Oracle Cloud
Infrastructure, see Create the Oracle Database Cloud Service Connection
String.

• If you're using a non-autonomous Oracle database (a database that
doesn't use a credential wallet) and want to use the sys user to
connect to the database, then you must append ?as=sys[dba|asm|
oper] to the connection string. For example, 123.123.123.123:1521/
example.oraclevcn.com?as=sysdba

4. If you’re using an Oracle Cloud autonomous database instance (for example,
Oracle Autonomous Data Warehouse or Oracle Autonomous Transaction
Processing), then use the Wallet Package File field to upload or re-upload the
required credential wallet file. This file contains client credentials and is generated
from the Oracle autonomous database.

5. Click Save.

Choose the Channels that Write Data to the Rich History Database
You can add channels to write chaincode ledger data to the rich history database, or
you can stop channels from writing data to the rich history database.

You must specify information to connect to the rich history’s database before you can
select channels that write to the rich history database. See Enable and Configure the
Rich History Database.

Chapter 9
Create the Rich History Database

9-11



1. Go to the console and select the Channels tab.

2. To add or remove a channel, locate the channel that you want to modify access
for. Click its More Options button and select Configure Rich History.

The Configure Rich History dialog is displayed.

3. To add the channel, click the Enable Rich History checkbox. To remove the
channel, clear the Enable Rich History checkbox.

4. Click Save.

Rich History Database Tables and Columns
The rich history database contains three tables for each channel: history, state, and
latest height. You’ll query the history and state tables when you create analytics about
your chaincodes’ ledger transactions.

History Table

The <instanceName><channelName>_hist table contains ledger history. The data in
this table tells you the chaincode ID, key used, if the transaction was valid, the value
assigned to the key, and so on.

Note that the value and valueJson columns are used in a mutually exclusive way.
That is when a key value is valid json, then the value is set into the valueJson
column. Otherwise the value is set in the value column. The valueJson column is set
up as a json column in the database, which means users can query that column using
the usual Oracle JSON specific extensions.

Column Datatype

chaincodeId VARCHAR2 (256)

key  VARCHAR2 (1024)

txnIsValid    NUMBER (1)

value VARCHAR2 (4000)

valueJson CLOB

blockNo NUMBER NOT NULL

txnNo NUMBER NOT NULL

txnId VARCHAR2 (128)  

txnTimestamp TIMESTAMP

txnIsDelete NUMBER (1)

State Table

The <instanceName><channelName>_state table contains data values replicated from
the state database. You’ll query the state table when you create analytics about the
state of the ledger.

Note that the value and valueJson columns are used in a mutually exclusive way.
That is when a key value is valid json, then the value is set into the valueJson
column. Otherwise the value is set in the value column. The valueJson column is set
up as a json column in the database, which means users can query that column using
the usual Oracle JSON specific extensions.

Chapter 9
Create the Rich History Database

9-12



Column Datatype

chaincodeId VARCHAR2 (256)

key VARCHAR2 (1024)

value VARCHAR2 (4000) 

valueJson CLOB

blockNo NUMBER

txnNo NUMBER

Latest Height Table

The <instanceName><channelName>_last table is used internally by Oracle
Blockchain Platform to track the block height recorded in the rich history database.
It determines how current the rich history database is and if all of the chaincode
transactions were recorded in the rich history database. You can’t query this database
for analytics.

Chapter 9
Create the Rich History Database

9-13



A
Node Configuration

This topic contains information to help you understand and configure your nodes. Each
node type has different configuration options.

Topics:

• CA Node Attributes

• Console Node Attributes

• Orderer Node Attributes

• Peer Node Attributes

• REST Proxy Node Attributes

CA Node Attributes
A certificate authority (CA) node keeps track of identities and certificates on the
blockchain network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-1    CA Node Attributes

Attribute Description Default Value

Fabric CA ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it. You can’t
modify this ID.

ca

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

A-1



Table A-1    (Cont.) CA Node Attributes

Attribute Description Default Value

Max Enrollments Use this field to determine
how many times the CA server
allows a password to be used
for enrollment on the network.
Consider the following options:
• -1 — If you use -1,

then the server allows a
password to be used an
unlimited number of times
for enrollment.

• 0 — Use 0 to disable
enrollment. No identity
registrations is allowed.

• 1 — Use 1 so that an
enrollment ID’s password
can be used only one
time.

-1

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use INFO.

INFO

Console Node Attributes
The console node manages the performance of the console.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-2    Console Node Attributes

Attribute Description Default Value

Console ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it.

console

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

NA

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use ERROR.

INFO

Appendix A
Console Node Attributes

A-2



Table A-2    (Cont.) Console Node Attributes

Attribute Description Default Value

Request Timeout (ms) Specify the maximum amount
of time in milliseconds that you
want the console to attempt
to contact the nodes before
timing out.

600,000

Orderer Node Attributes
An orderer node collects transactions from peer nodes, bundles them, and submits
them to the blockchain ledger. The node’s attributes determine how the node performs
and behaves on the network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-3    Orderer Node — General Attributes

Attribute Description Default Value

Orderer ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it.

orderer<number-partition>

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

NA

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use ERROR.

INFO

Table A-4    Orderer Node — Advanced Attributes — Kafka/Retry tab

Attribute Description Default Value

ShortInterval in seconds How long to establish the
Kafka cluster connection for
the orderer to read or write to
the channel.

The system will re-attempt
the connection using the
ShortInterval limit until it
exceeds the ShortTotal limit.

5

Appendix A
Orderer Node Attributes

A-3



Table A-4    (Cont.) Orderer Node — Advanced Attributes — Kafka/Retry tab

Attribute Description Default Value

ShortTotal in milliseconds How long the ShortInterval
limit is repeated until the
system uses the LongInterval
limit to establish the Kafka
cluster connection.

10

LongInterval in milliseconds How long to establish the
Kafka cluster connection for
the orderer to read or write to
the channel.

If the system can’t
successfully connect using
the ShortTotal limit, then the
system uses the LongInterval
to attempt the connection.

The system will re-attempt
the connection using the
LongtInterval limit until it
exceeds the LongTotal limit.

5

LongTotal in hours The number of hours the
LongInterval limit is repeated
until the Kafka cluster
connection fails.

12

NetworkTimeouts/DialTimeout
in seconds

The maximum amount of time
that the client will wait for the
initial connection.

10

NetworkTimeouts/
ReadTimeout in seconds

The maximum amount of time
that the client will wait for a
response.

10

NetworkTimeouts/
WriteTimeout in seconds

The maximum amount of time
that the client will wait for a
transmit.

10

Metadata/RetryBackoff in
milliseconds

The maximum amount of time
to wait before retrying the
metadata request to the Kafka
cluster.

250

Metadata/RetryMax The maximum number of
metadata request attempts the
system makes to the Kafka
cluster.

3

Producer/RetryBackoff in
milliseconds

The maximum amount of time
to wait before retrying to
post a message to the Kafka
cluster.

100

Producer/RetryMax The maximum number of
attempts that the system
makes to post a message to
the Kafka cluster.

3

Appendix A
Orderer Node Attributes

A-4



Table A-4    (Cont.) Orderer Node — Advanced Attributes — Kafka/Retry tab

Attribute Description Default Value

Consumer/RetryBackoff in
seconds

The maximum amount of time
to wait before retrying to
reconnect the offsets channel
or retrying failed offset fetch or
commit requests.

2

Peer Node Attributes
A peer node reads, endorses, and writes transactions to the blockchain ledger. The
node’s attributes determine how the node performs and behaves on the network.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-5    Peer Node — General Attributes

Attribute Description Default Value

Peer ID This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it.

peer<number-partition>

Local MSP ID This is the assigned MSP ID
for your organization. You can’t
modify this ID.

Specific to your organization.

Role Specifies if the peer’s role
is Member or Admin. In
most cases this field displays
Member.
This role is used by
the chaincode’s endorsement
policy. The endorsement
policy specifies the MSP that
must validate the identity of
the signer peer and the signer
peer’s role. The Admin role is
normally assigned in situations
where you want to further
protect sensitive operations
and make sure that those
operations are endorsed by
specific peers.

The peers created with your
instance were assigned the
Member role.

Member

Listen Port This is the listening port that
Oracle Blockchain Platform
assigned to the node. You
can’t change the port number.

Specific to your organization.

Appendix A
Peer Node Attributes

A-5



Table A-5    (Cont.) Peer Node — General Attributes

Attribute Description Default Value

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that for
production, you use ERROR.

INFO

Table A-6    Peer Node — Advanced Attributes — Gossip tab

Attribute Description Default Value

Bootstrap Peers Provide the service name
address and port that the peer
uses to contact other peers
during startup. This endpoint
must match the endpoints
of the peers in the same
organization.

NA

Max Block Count to Store Enter the maximum number of
blocks to store in memory.

3

Max Propagation Burst
Latency in milliseconds

Enter how many milliseconds
between message pushes.

2

Max propagation burst size Enter the number of messages
to be stored until a push
remote peer is triggered.

4

Propagate Iterations Enter the number of times
a message is pushed to the
peers.

7

Propagate Peer Number Enter how many peers to send
messages to.

8

Pull Interval in seconds Enter how many seconds
between pull phases.

10

Pull Peer Number Enter the number of peers to
pull from.

9

Request State Info Interval in
seconds

Enter how often to pull state
information messages from
the peers.

20

Publish state Info Interval in
seconds

Enter how often to send state
information messages to the
peers.

21

Publish Cert Period in seconds Enter how many seconds from
startup that certificates are
included in alive messages.

40

Dial Timeout in seconds Enter how many seconds
before dial times out.

10

Connect Timeout in seconds Enter how many seconds until
the connection times out.

20

Receive Buffer Size Enter the size of the buffer for
received messages.

20

Appendix A
Peer Node Attributes

A-6



Table A-6    (Cont.) Peer Node — Advanced Attributes — Gossip tab

Attribute Description Default Value

Send Buffer Size Enter the size of the buffer for
sending messages.

40

Digest Wait Time in seconds Enter how many seconds to
wait before the pull engine
processes incoming digests.

15

Request Wait Time in seconds Enter how many seconds to
wait before the pull engine
removes incoming nonce.

10

Response Wait Time in
seconds

Enter how many seconds that
the pull engine waits before it
terminates the pull.

20

Alive Time Interval in seconds Enter how often to check alive
time.

15

Alive Expiration Timeout in
seconds

Enter how many seconds to
wait before the alive expiration
times out.

12

Reconnect Interval in seconds Enter how many seconds to
wait before reconnecting.

9

Skip Block Verification Click to skip block verification. Selected

Table A-7    Peer Node — Advanced Attributes — Gossip/Election tab

Attribute Description Default Value

Membership Sample Interval
in seconds

How often in seconds the
peer checks its stability on the
network.

3

Leader Alive Threshold in
seconds

The number of seconds
to elapse before the last
declaration message is
sent and before the peer
determines leader election.

2

Leader Election Duration in
seconds

The number of seconds to
elapse after the peer sends
the propose message and
declares itself leader.

5

Appendix A
Peer Node Attributes

A-7



Table A-7    (Cont.) Peer Node — Advanced Attributes — Gossip/Election tab

Attribute Description Default Value

Leader A channel’s leader peer
receives blocks and distributes
them to the other peers within
the cluster. Specify the mode
that you want the peer to use
to determine a leader.
• OrgLeader — Select this

option to use static leader
mode and make the peer
the organization leader.
If you select this option
and then add more peers
to the channel, then you
must set all peers to
OrgLeader.

• UseLeaderElection —
Select this option to use
dynamic leader election
on the channel. Before an
active leader is selected
for the organization, the
system must run the
configuration transaction
to add the organization
to the channel, and
then the system updates
the new peers with the
configuration transaction.

UseLeaderElection

Table A-8    Peer Node — Advanced Attributes — Event Service tab

Attribute Description Default Value

Buffer Size Enter the maximum number
of events that the buffer can
contain. The system won’t
send the events that exceed
this number.

100

Timeout in milliseconds Enter in milliseconds the
maximum time allowed for the
business network to send an
event.

1000

Table A-9    Peer Node — Advanced Attributes — Chaincode tab

Attribute Description Default Value

Startup timeout in seconds Enter in seconds the
maximum time to wait
between when the container
starts and the registry
responds.

300

Appendix A
Peer Node Attributes

A-8



Table A-9    (Cont.) Peer Node — Advanced Attributes — Chaincode tab

Attribute Description Default Value

Execute timeout in seconds Enter in seconds the
maximum time that a
chaincode attempts to execute
before timing out.

30

Mode Displays how the system runs
the chaincode. This value is
always net.

net

Keepalive in seconds If you're using a proxy for
communication, then enter in
seconds the maximum amount
of time to keep the connection
between a peer and the
chaincode alive.

0

Log Level Specify the log level that you
want to use for all loggers
in the chaincode container.
Oracle suggests that for
development or testing, you
use DEBUG. And that for
production, you use ERROR.

INFO

(New in 19.2.1) Shim Level Specify the log level that you
want to use for the shim
logger.

WARNING

REST Proxy Node Attributes
A REST proxy node allows you to query or invoke a chaincode through the RESTful
protocol. The node’s attributes determine how the node performs on the network and
which channel, chaincode, and peers are used in the transactions performed by the
node.

Only Administrators can change a node’s attributes. If you've got User privileges, then
you can view a node’s attributes.

Table A-10    REST Proxy Node Attributes

Attribute Description Default Value

REST Proxy Name This is the identifier or
name that Oracle Blockchain
Platform assigned the node
when it created it. You can’t
modify this ID.

restproxy<node number>

Proposal Wait Time (ms) Enter the number of
milliseconds that the node
waits for completion of the
proposal process. If this
number is exceeded, then the
transaction times out.

60,000

Appendix A
REST Proxy Node Attributes

A-9



Table A-10    (Cont.) REST Proxy Node Attributes

Attribute Description Default Value

Transaction Wait Time (ms) Enter the number of
milliseconds that the node
waits for execution after the
transaction is submitted. If this
number is exceeded, then the
transaction times out.

300,000

Log Level Specify the log level that
you want to use for the
node. Oracle suggests that
for development or testing,
you use DEBUG. And that
for production, you use
WARNING or ERROR.

INFO

Appendix A
REST Proxy Node Attributes

A-10



B
Using the Fine-Grained Access Control
Library Included in the Marbles Sample

Starting in v1.2, Hyperledger Fabric provided fine-grained access control to many
of the management functions. Oracle Blockchain Platform now provides a updated
version of the mables sample package on the Developer Tools tab of the console,
implementing a library of functions that chaincode developers can use to create
access control lists for chaincode functions. It currently only supports the Go language.

Topics

• Background

• Fine-Grained Access Control Library Functions

• Example Walkthough Using the Fine-Grained Access Control Library

• Fine-Grained Access Control Marbles Sample

Background

The goal of this sample access control library is to provide the following:

• Provides a mechanism to allow you to control which users can access particular
chaincode functions.

• The list of users and their entitlements should be dynamic and shared across
chaincodes.

• Provides access control checks so that a chaincode can check the access control
list easily.

• At chaincode deployment time, allows you to populate the list of resources and
access control lists with your initial members.

• An access control list must be provided to authorize users to perform access
control list operations.

Download the Sample

On the Developer Tools tab, open the Samples pane. Click the download link under
Marbles with Fine-Grained ACLs. This package contains three sub-packages:

• Fine-GrainedAccessControlLibrary.zip:
The fine-grained access control library. It contains functions in Go which can
be used by chaincode developers to create access control lists for chaincode
functions.

• fgACL_MarbleSampleCC.zip:
The marbles sample with access control lists implemented. It includes a variety
of functions to let you examine how to work with fine-grained access control lists,
groups and resources to restrict functions to certain users/identities.

• fgACL-NodeJSCode.zip:

B-1



Node.js scripts which use the Node.js SDK to run the sample.
registerEnrollUser.js can be used to register new users with the
Blockchain Platform. invokeQueryCC.js can be used to run transactions
against a Blockchain Platform instance.

Terminology and Acronyms

Term Description

Identity An X509 certificate representing the identity
of either the caller or the specific identity the
chaincode wants to check.

Identity Pattern A pattern that matches one or more identities.
The following patterns are suggested:

• X.509 Subject Common Name – CN
• X.509 Subject Organizational Unit – OU
• X.509 Subject Organization – O
• Group as defined in this library – GRP
• Attribute – ATTR
The format for a pattern is essentially just
a string with a prefix. For example, to
define a pattern that matches any identity in
organization "example.com", the pattern would
be "%O%example.com".

Resource The name of anything the chaincode wants
to control access to. To this library it is just
a named arbitrary string contained in a flat
namespace. The semantics of the name are
completely up to the chaincode.

Group A group of identity patterns.

ACL Access Control List: a named entity that
has a list of identity patterns, a list of
types of access such as "READ", "CREATE",
"INVOKE", "FORWARD", or anything the
chaincode wants to use. This library will use
access types of CREATE, READ, UPDATE,
and DELETE (standard CRUD operations) to
maintain its information. Other than those four
as they relate to the items in this library, they
are just strings with no implied semantics. An
application may decide to use accesses of "A",
"B", and "CUSTOM".

Appendix B

B-2



Fine-Grained Access Control Library Functions
The library package provides the following functions for Resources, Groups and ACLs
as well as global functions.

Global Functions

Function Description

Initialization(identity *x509.Certificate, stub
shim.ChaincodeStubInterface) (error) (error)

When the chaincode is instantiated, the
Initialization function is called. That function
will initialize the world state with some built
in access control lists. These built in lists are
used to bootstrap the environment. So there
needs to be access control on who can create
resources, groups, and ACLs. If the identify is
nil, then use the caller's identify.

After the bootstrap is done, the following
entities are created:

• A resource named ".Resources".
A corresponding ACL named
".Resources.ACL" will be created with a
single identity pattern in it of the form
"%CN%bob.smith@oracle.com", using the
actual common name, and the access
will be CREATE, READ, UPDATE, and
DELETE access.

• A group named ".Groups". A
corresponding ACL named ".Groups.ACL"
will be created with a single
identity pattern in it of the form
"%CN%bob.smith@oracle.com", using the
actual common name, and the access
will be CREATE, READ, UPDATE, and
DELETE access.

• An ACL named ".ACLs". A corresponding
ACL control list named ".ACLs.ACL"
will be created with a single
identity pattern in it of the form
"%CN%bob.smith@oracle.com", using the
actual common name, and the access
will be CREATE, READ, UPDATE, and
DELETE access.

NewGroupManager(identity *x509.Certificate,
stub shim.ChaincodeStubInterface)
(*GroupManager, error)

Get the group manager that's used for all
group related operations.

Identity: the default identity for related
operation. If it's nil, then use caller's identity.

NewACLManager(identity *x509.Certificate,
stub shim.ChaincodeStubInterface)
(*ACLManager, error)

Get the ACL manager that's used for all ACL
related operations.

Identity: the default identity for related
operation. If it's nil, then use caller's identity.

NewResourceManager(identity
*x509.Certificate, stub
shim.ChaincodeStubInterface)
(*ResourceManager, error)

Get the resource manager that's used for all
resource related operations.

Identity: the default identity for related
operation. If it's nil, then use caller's identity.

Appendix B
Fine-Grained Access Control Library Functions

B-3



Access Control List (ACL) Functions

Definition of ACL structure:

type ACL struct {
  Name string
  Description string
  Accesses []string  // CREATE, READ, UPDATE, and DELETE, or whatever 
the end-user defined
  Patterns []string    // identities
  Allowed bool          // true means allows access.
  BindACLs []string  // The list of ACL , control who can call the APIs 
of this struct
}

• Accesses: The Accesses string is a list of comma-separated arbitrary access
names and completely up to the application except for four: CREATE, READ,
UPDATE, and DELETE. These access values are used in maintaining the fine
grained access control. Applications can use their own access strings such as
"register", "invoke", or "query", or even such things as access to field names
such as "owner", "quantity", and so on.

• Allowed: Allowed determines whether identities that match a pattern are allowed
access (true) or prohibited access (false). You could have an access control list
that indicates Bob has access to "CREATE", and another one that indicates group
Oracle (of which Bob is a member) is prohibited from "CREATE". Whether Bob has
access or not depends upon the order of the access control lists associated with
the entity in question.

• BindACLs: The BindACLs parameter will form the initial access control list.

ACL functions:

Function Description

Create(acl ACL, identity *x509.Certificate)
(error)

Creates a new ACL. Duplicate named ACL are
not allowed.

To create a new ACL, the identity needs
to have CREATE access to the bootstrap
resource named ".ACLs". If identity is nil, the
default identity specified in newACLManager()
is used.

Get(aclName string, identity *x509.Certificate)
(ACL, error)

Get a named ACL.

The identity must have READ access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

Delete(aclName string, identity
*x509.Certificate) (error)

Delete a specified ACL.

The identity must have DELETE access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-4



Function Description

Update(acl ACL, identity *x509.Certificate)
(error)

Update an ACL.

The identity must have UPDATE access to
the named resource, and the named ACL
must exist. If identity is nil, the default identity
specified in NewACLManager() is used.

AddPattern(aclName string, pattern string,
identity *x509.Certificate) (error)

Adds a new identity pattern to the named ACL.
The identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

RemovePattern(aclName string, pattern string,
identity *X509Certificate) (error)

Removes the identity pattern from the ACL.
The identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

AddAccess(aclname string, access string,
identity *X509Certificate) (error)

Adds a new access to the named ACL. The
identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

RemoveAccess(aclName string, access string,
identity *X509Certificate) (error)

Removes the access from the ACL. The
identity must have UPDATE access to the
named ACL.

If identity is nil, the default identity specified in
newACLManager() is used.

UpdateDescription(aclName string,
newDescription string, identity
*X509Certificate) (error)

Update the description.

The identity must have UPDATE access to the
named ACL. If identity is nil, the default identity
specified in newACLManager() is used.

AddBeforeACL(aclName string, beforeName
string, newBindACL string, identity
*X509Certificate) (error)

Adds a bind ACL before the existing named
ACL. If the named ACL is empty or not found,
the ACL is added to the beginning of the bind
ACL list.

The identity must have UPDATE access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

AddAfterACL(aclName string, afterName
string, newBindACL string, identity
*X509Certificate) (error)

Adds a bind ACL after the existing named
ACL. If the named ACL is empty or not found,
the ACL is added to the end of the bind ACL
list.

The identity must have UPDATE access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

RemoveBindACL(aclName string,
removeName string, identity *X509Certificate)
(error)

Removes the removeName ACL from the bind
ACL list.

The identity must have UPDATE access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

Appendix B
Fine-Grained Access Control Library Functions

B-5



Function Description

GetAll(identity *x509.Certificate) ([]ACL, error) Get all the ACLs.

The identity must have READ access to
the named ACL. If the identity is nil, the
default identity specified in newACLManager()
is used.

Group Functions

Definition of Group structure:

type Group struct {
    Name string
    Description string
    Members []string     // identity patterns, except GRP.
    BindACLs []string    // The list of ACLs, controls who can access 
this group.
}

Definition of GroupManager functions:

Function Description

Create(group Group, identity *x509.Certificate)
(error)

Create a new group.

The identity must have CREATE access
to bootstrap group ".Group". If identity
is nil, the default identity specified in
NewGroupManager() is used.

Get(groupName string, identity
*x509.Certificate) (Group, error)

Get a specified group.

The identity must have READ access to this
group. If identity is nil, the default identity
specified in NewGroupManager() is used.

Delete(groupName string, identity
*x509.Certificate) (error)

Delete a specified group.

The identity must have DELETE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

AddMembers(groupName string, member
[]string, identity *x509.Certificate) (error)

Add one or more members into the group.

The identity must have UPDATE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

RemoveMembers(groupName string, member
[]string, identity *x509.Certificate) (error)

Remove one or more member from a group.

The identity must have UPDATE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

UpdateDescription(groupName string, newDes
string, identity *x509.Certificate) (error)

Update the description.

The identity must have UPDATE access to
this group. If identity is nil, the default identity
specified in NewGroupManager () is used.

Appendix B
Fine-Grained Access Control Library Functions

B-6



Function Description

AddBeforeACL(groupName string,
beforeName string, aclName string, identity
*x509.Certificate) (error)

Adds an bind ACL to the group before the
existing named ACL. If the named ACL is
empty or not found, the ACL is added to
the beginning of the list of bind ACL for the
resource.

The identity must have UPDATE access to
the named group. If identity is nil, the default
identity specified in NewGroupManager () is
used.

AddAfterACL(groupName string, afterName
string, aclName string, identity
*x509.Certificate) (error)

Adds a bind ACL to the group after the existing
named ACL. If the named ACL is empty or not
found, the ACL is added to the end of the list
of bind ACL for the group.

The identity must have UPDATE access to the
named group. If the identity is nil, the default
identity specified in NewGroupManager () is
used.

RemoveBindACL(groupName string, aclName
string, identity *x509.Certificate) (error)

Removes the named ACL from the bind ACL
list of the named group.

The identity must have UPDATE access to the
named group. If the identity is nil, the default
identity specified in NewGroupManager () is
used.

GetAll(identity *x509.Certificate) ([]Group,
error)

Get all groups.

The identity must have READ access to these
groups. If identity is nil, the default identity
specified in NewGroupManager () is used.

Resource Functions

Definition of Resource structure:

type Resource struct {
     Name string
     Description string
     BindACLs []string      // The name list of ACL, controls who can 
access this resource
}

Resource Functions:

Fuction Description

Create(resource Resource, identity
*x509.Certificate) (error)

Create a new resource. Duplicate named
resources are not allowed.

The identity needs to have CREATE access to
the bootstrap resource named ".Resources" If
identity is null, the default identity specified in
NewResourceManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-7



Fuction Description

Get(resName string, identity *x509.Certificate)
(Resource, error)

Get a specified resource.

The identity must have READ access to the
resource. If identity is null, the default identity
specified in NewResourceManager() is used.

Delete(resName string, identity
*x509.Certificate) (error)

Delete a named resource.

The identity must have DELETE access to the
named resource. If identity is null, the default
identity specified in NewResourceManager() is
used.

UpdateDescription(resourceName string,
newDes string, identity *x509.Certificate)
(error)

Update the description.

The identity must have UPDATE access to this
resource. If identity is nil, the default identity
specified in NewResourceManager() is used.

AddBeforeACL(resourceName string,
beforeName string, aclName string, identity
*x509.Certificate) (error)

Adds a bind ACL to the resource before the
existing named ACL. If the named ACL is
empty or not found, the ACL is added to
the beginning of the list of bind ACL for the
resource.

The identity must have UPDATE access to the
named resource. If identity is nil, the default
identity specified in NewResourceManager() is
used.

AddAfterACL(resourceName string, afterName
string, aclName string, identity
*x509.Certificate) (error)

Adds a bind ACL to the resource after the
existing named ACL. If the named ACL is
empty or not found, the ACL is added to the
end of the list of bind ACL for the resource.

The identity must have UPDATE access
to the named resource. If the identity
is nil, the default identity specified in
NewResourceManager() is used.

RemoveBindACL(resourceName string,
aclName string, identity *x509.Certificate)
(error)

Removes the named ACL from the bind ACL
list of the named resource.

The identity must have UPDATE access
to the named resource. If the identity
is nil, the default identity specified in
NewResourceManager() is used.

CheckAccess(resName string, access string,
identity *x509.Certificate) (bool, error)

Check whether the current user has the
specified access to the named resource.

If the identity is nil, the default identity
specified in NewResourceManager() is used.

GetAll(identity *x509.Certificate) ([]Resource,
error)

Get all resources.

The identity must have READ access to these
resources. If identity is nil, the default identity
specified in NewResourceManager() is used.

Appendix B
Fine-Grained Access Control Library Functions

B-8



Example Walkthough Using the Fine-Grained Access
Control Library

This topic provides some examples of how this library and chaincode can be used.
These all assuming Init() has been called to create the bootstrap entities and the
caller of Init() and invoke() is "%CN%frank.thomas@example.com". The normal flow
in an application will be to create some initial access control lists that will be used to
grant or deny access to the other entities.

Initialization

Call Initialization() to create bootstrap entities when instantiating chaincode. For
example:

import "chaincodeACL"
func (t \*SimpleChaincode) Init(nil, stub shim.ChaincodeStubInterface) 
pb.Response
{
         err := chaincodeACL.Initialization(stub)
}

Create a new ACL

import "chaincodeACL"
...
{

**ACLMgr**  := chaincodeACL.NewACLManager(nil, stub) // Not specify 
identity, use caller's identity as default.

// Define a new ACL
**newACL**  := chaincodeACL.ACL{

    "AllowAdmins",   // ACL name
    "Allow admins full access",  // Description
    []string{"CREATE","READ","UPDATE","DELETE"},    // Accesses allowed 
or not
    true, // Allowed
    
[]string{"%CN%bob.dole@example.com","%OU%example.com,"%GRP%admins"}, // 
Initial identity patterns
    ".ACLs.acl", // Start with bootstrap ACL

}

// Add this ACL with default identity (caller's identify here)
err :=  **ACLMgr**.Create( **newACL** , nil)

}

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-9



Now that we have a new ACL, we can use that to modify who can perform certain
operations. So we’ll first add this new ACL to the bootstrap group .Groups to allow any
admin to create a group.

Add an ACL to a group

import "chaincodeACL"
…
{

  **groupMgr**  := chaincodeACL.NewGroupManager(nil, stub) // Not 
specify identity, use caller's identity as default.
  err :=  **groupMgr**.AddAfterACL(

    ".Groups",     // Bootstrap group name
    ".Groups.ACL", // Which ACL to add after
    "AllowAdmins", // The new ACL to add
    nil            // with default identity that's frank.thomas

)

}

This adds the AllowAdmins ACL to the bootstrap group .Groups after the initial
bootstrap ACL. Thus this ensures that Frank Thomas can still perform operations
on .Groups as the ACL granting him permission is first in the list. But now anyone that
matches the AllowAdmins ACL can perform CREATE, READ, UPDATE, or DELETE
operations (they can now create new groups).

Create a new group

Admins can now create a new group:

import "chaincodeACL"
...
{

...
  // Define a new group.
  **newGroup**  := chaincodeACL.Group{

      "AdminGrp",   // Name of the group
      "Administrators of the app",   // Description of the group
      
{"%CN%jill.muller@example.com","%CN%ivan.novak@example.com","%ATTR%role=
admin"},
      []string{"AllowAdmins"},   // The ACL for the group

    }

  **groupMgr**  := chaincodeACL.NewGroupManager(nil, stub)   // Not 
specify identity, use caller's identity as default.
  err :=  **groupMgr**.Create( **newGroup** , 
bob\_garcia\_certificate)   // Using a specific certificate

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-10



...
}

This call is using an explicit identity - that of Bob Garcia (using his certificate) - to
try and create a new group. Since Bob Garcia matches a pattern in the AllowAdmins
ACL and members of that ACL can perform CREATE operations on the bootstrap
group .Groups, this call will succeed. Had Jim Silva - who was not in organization unit
example.com nor in the group AdminGrp (which still doesn’t exist) - had his certificate
passed as the last argument, the call would fail as he doesn’t have the appropriate
permissions. This call will create a new group called "AdminGrp" with initial members
of the group being jill.muller@example.com and ivan.novak@example.com or anyone
with the attribute (ABAC) role=admin.

Create a new resource

import "chaincodeACL"
...
{

  ...
  **newResource**  :=  **chaincodeACL**.Resource{

      "transferMarble", // Name of resource to create

      "The transferMarble chaincode function", // Description of the 
resource

      []string{"AllowAdmins"}, // Single ACL for now allowing admins

  }

  **resourceMgr**  :=  **chaincodeACL**.NewResourceManager(nil, 
stub)  // Not specify identity, use caller's identity as default.
  err :=  **resourceMgr**.Create(resourceMgr, nil)   // Using caller's 
certificate

  ...
}

This would create a new resource named transferMarble that the application might
use to control access to the transferMarble chaincode function. The access is
currently limited by the AllowAdmins access control list.

Check access for a resource

We can use this new resource in our chaincode to only allow admins to transfer a
marble by modifying the invoke() method of the Marbles chaincode as follows:

import "chaincodeACL"
…
func (t \*SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) 
pb.Response {

Appendix B
Example Walkthough Using the Fine-Grained Access Control Library

B-11



  **resourceMgr**  :=  **chaincodeACL**.NewResourceManager(nil, 
stub)   // Not specify identity, use caller's identity as default.

  function, args := stub.GetFunctionAndParameters()

  fmt.Println("invoke is running " + function)        // Handle 
different functions

  if function == "initMarble" {   //create a new marble

      return t.initMarble(stub, args)}

  else if function == " **transferMarble**" { //change owner of a 
specific marble

    **allowed** , err : =  **resourceMgr**. **CheckAccess** 
("transferMarble", "UPDATE", nil)
    if  **allowed**  == true {

      return t.transferMarble(stub, args)

    else {

      return NOACCESS

    }

    } else if function == "transferMarblesBasedOnColor" { //transfer 
all marbles of a certain color
    …

    }

}

Fine-Grained Access Control Marbles Sample
The marbles chaincode application lets you create assets (marbles) with unique
attributes (name, size, color and owner) and trade these assets with fellow participants
in a blockchain network.

This sample application includes a variety of functions to let you examine how to work
with access control lists and groups to restrict functions to certain users.

• Overview of the Sample

• Pre-requisites and Setup

• Implement the Fine-Grained Access Control Marble Sample

• Testing the Access Control

• Sample Files Reference

Appendix B
Fine-Grained Access Control Marbles Sample

B-12



Overview of the Sample

The test scenario included in the sample contains the following restrictions in order to
manage assets:

• Bulk transfer of red marbles is only allowed by identities having the
"redMarblesTransferPermission" Fabric attribute.

• Bulk transfer of blue marbles is only allowed by identities having the
"blueMarblesTransferPermission" Fabric attribute.

• Deletion of marbles is only allowed to identities with "deleteMarblePermission"
Fabric attribute.

These restrictions are enforced by implementing the following library methods in the
fgMarbles_chaincode.go chaincode:

• Create a fine-grained ACL group named bulkMarblesTransferGroup. This group
will define all the identities which can transfer marbles based on color (bulk
transfers):

createGroup(stub, []string{" bulkMarblesTransferGroup", 
"List of Identities allowed to Transfer Marbles in Bulk", 
"%ATTR%redMarblesTransferPermission=true, 
%ATTR%blueMarblesTransferPermission=true", ".ACLs"})

• Create a fine-grained ACL named redMarblesAcl which provides bulk transfer of
red marbles access to bulkMarblesTransferGroup:

createACL(stub, []string{"redMarblesAcl", 
"ACL to control who can transfer red marbles in bulk", 
"redMarblesTransferPermission", "%GRP%bulkMarblesTransferGroup", 
"true", ".ACLs"})

• Create a fine-grained ACL named blueMarblesAcl which provides bulk transfer of
blue marbles access to bulkMarblesTransferGroup:

createACL(stub, []string{"blueMarblesAcl", 
"ACL to control who can transfer blue marbles in bulk", 
"blueMarblesTransferPermission", "%GRP%bulkMarblesTransferGroup", 
"true", ".ACLs"})

• Create a fine-grained ACL named deleteMarbleAcl to restrict marble deletion
based on "canDeleteMarble=true" Fabric attribute:

createACL(stub, []string{"deleteMarbleAcl", 
"ACL to control who can Delete a Marble", 
"deleteMarblePermission", "%ATTR%deleteMarblePermission=true", 
"true", ".ACLs"})

Appendix B
Fine-Grained Access Control Marbles Sample

B-13



• Create a fine-grained ACL resource named marble, operations on which are
controlled using the various ACLs we created:

createResource(stub, []string{"marble", 
"System marble resource", 
"deleteMarbleAcl,blueMarblesAcl,redMarblesAcl,.ACLs"})

Pre-requisites and Setup

In order to run the fine-grained access control version of the marbles sample,
complete these steps:

1. Download the fine-grained access control version of the marbles sample. On the
Developer Tools tab, open the Samples pane, and then click the download link
under Marbles with Fine-Grained ACLs. Unzip this package - it contains zips
of the marbles sample (fgACL_MarbleSampleCC.zip), Node.js files to run the
sample (fgACL-NodeJSCode.zip), and the fine-grained access control library
(Fine-GrainedAccessControlLibrary.zip).

2. Generate the chaincode package that will be deployed to Blockchain Platform:

• Install govendor:

go get -u github.com/kardianos/govendor

• Unzip the contents of fgACL_MarbleSampleCC.zip
to the fgACL_MarbleSampleCC directory. The
contents of the fgACL_MarbleSampleCC directory
would be: fgACL_Operations.go, fgGroups_Operations.go,
fgMarbles_chaincode.go, fgResource_Operations.go and the
vendor directory.

• From a command line, go to the fgACL_MarbleSampleCC directory,
and run govendor sync. This will download the required dependency
(github.com/op/go-logging) and add it to the vendor directory.

• Zip all the contents (the four Go files and the vendor directory) of the
fgACL_MarbleSampleCC directory. Your chaincode is ready to be deployed
to Blockchain Platform.

3. Install and instantiate the updated sample chaincode package
(fgACL_MarbleSampleCC.zip) as described in Use Quick Deployment.

4. On the Developer Tools tab, open the Application Development pane, and then
follow the instructions to download the Node.js SDK.

5. On the Developer Tools tab, open the Application Development pane, and then
click Download the development package.

a. Unzip the development package into the same folder with the Node.js files
downloaded with the sample.

b. In the network.yaml file, look for the certificateAuthorities entry and
its registrar entry. The administrator's password is masked (converted to
***) in the network.yaml when downloaded. It should be replaced with the
administrator's clear text password when running this sample.

6. Register a new identity with your Blockchain Platform instance:

Appendix B
Fine-Grained Access Control Marbles Sample

B-14



a. Create a new user in IDCS (referred to as <NewIdentity> in the following
steps) in the IDCS mapped to your tenancy.

b. Give this user the CA_User application role for your instance.

Implement the Fine-Grained Access Control Marble Sample

The following steps will enroll your new user and implement the ACL restrictions using
the provided Node.js scripts.

1. Enroll the new user:

node registerEnrollUser.js <NewIdentity> <Password>

2. Initialization: Initialize the access control lists.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName> 
<ChaincodeName> ACLInitialization

3. Create the access control lists, groups, and resources: This creates the ACL
resources described in the overview.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName> 
<ChaincodeName> createFineGrainedAclSampleResources

4. Create your test marble resources: This creates several test marble assets -
blue1 and blue2 owned by tom, red1 and red2 owned by jerry, and green1 and
green2 owned by spike.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName> 
<ChaincodeName> createTestMarbles

Testing the Access Control

In order to test that our access control lists are only allowing the correct users to
perform each function, we'll run through some sample scenarios.

1. Transfer a marble: We're transferring marble blue1 from tom to jerry. Since there
are no restrictions on who can transfer a single marble, this should complete
successfully.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName> 
<ChaincodeName> transferMarble blue1 jerry

2. Transfer a marble as the administrative user: We're transferring marble blue1
from jerry to spike. Since there are no restrictions on who can transfer a single
marble, this should also complete successfully.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName> 
<ChaincodeName> transferMarble blue1 spike

Appendix B
Fine-Grained Access Control Marbles Sample

B-15



3. Get history: Now we'll query the history of the marble named blue1. It should
return that it was transferred first to jerry then to spike.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName> 
<ChaincodeName> getHistoryForMarble blue1

4. Transfer all red marbles: The redMarblesAcl ACL should allow
this transfer because the newly registered identity has the required
"redMarblesTransferPermission=true" Fabric attribute, so the two red marbles
should be transferred to tom.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName> 
<ChaincodeName> transferMarblesBasedOnColor red tom

5. Transfer all red marbles as the administrative user: The administrative identity
doesn't have the "redMarblesTransferPermission=true" Fabric attribute, so the
redMarblesAcl ACL should block this transfer.

node invokeQueryCC.js <AdminIdentity> <Password> <ChannelName> 
<ChaincodeName> transferMarblesBasedOnColor red jerry

6. Transfer all green marbles: By default, only explicitly defined access is allowed.
Because there isn't an ACL which allows for bulk transfer of green marbles, this
should fail.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName> 
<ChaincodeName> transferMarblesBasedOnColor green tom

7. Delete a marble: The deleteMarbleAcl ACL allows this deletion because the
newly registered identity has the required "deleteMarblePermission=true" Fabric
attribute.

node invokeQueryCC.js <NewIdentity> <Password> <ChannelName> 
<ChaincodeName> delete green1

8. Delete a marble as the administrative user: The deleteMarbleAcl ACL should
prevent this deletion because the administrative identity doesn't have the required
"deleteMarblePermission=true" Fabric attribute.

node invokeQueryCC.js < AdminIdentity > <Password> <ChannelName> 
<ChaincodeName> delete green2

Sample Files Reference

These tables list the methods available in the chaincode and application files included
with the sample.

fgMarbles_chaincode.go

Function Description

initMarble Create a new marble

transferMarble Transfer a marble from one owner to another
based on name

Appendix B
Fine-Grained Access Control Marbles Sample

B-16



Function Description

createTestMarbles Calls initMarble to create new sample
marbles for testing purposes

createFineGrainedAclSampleResources Creates the fine-grained access control list
(ACL), groups, and resources required by our
test scenario

transferMarblesBasedOnColor Transfers multiple marbles of a certain color to
another owner

delete Delete a marble

readMarble Returns all attributes of a marble based on
name

getHistoryForMarble Returns a history of values for a marble

fgACL_Operations.go

Methods Parameters Description

getACL • name Get a named ACL or read
all ACLs. The user invoking
the method must have READ
access to the named ACL.

createACL • name
• description
• accesses
• patterns
• allowed
• BindACLs
• Identity_Certificate

To create a new ACL, the user
invoking the method needs to
have CREATE access to the
bootstrap resource named ".
ACLs". Duplicate named ACLs
are not allowed

deleteACL • name The user invoking the method
must have DELETE access to
the named ACL.

updateACL • name
• description
• accesses
• patterns
• allowed
• BindACLs

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addAfterACL • aclName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addBeforeACL • aclName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addPatternToACL • aclName
• BindPattern

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

Appendix B
Fine-Grained Access Control Marbles Sample

B-17



Methods Parameters Description

removePatternFromACL • aclName
• BindPattern

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

updateDescription • aclName
• newDesc

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

removeBindACL • aclName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

addAccess • aclName
• accessName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

removeAccess • aclName
• accessName

The user invoking the method
must have UPDATE access to
the named resource, and the
named ACL must exist.

ACLInitialization • none This function is used to
initialize the fine-grained ACL
support.

fgGroups_Operations.go

Methods Parameters Description

getGroup • name If name="GetAll", it returns
all the groups the identity
has access to. Otherwise, it
returns the individual group
details (if accessible) based on
name.

The user invoking the method
must have READ access to
this group.

createGroup • name
• description
• patterns
• bindACLs

Returns success or error.

The user invoking the method
must have CREATE access to
bootstrap group ". Group"

deleteGroup • name The user invoking the method
must have DELETE access to
this group.

addAfterGroup • groupName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this group.

addBeforeGroup • groupName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this group.

Appendix B
Fine-Grained Access Control Marbles Sample

B-18



Methods Parameters Description

updateDescriptionForGro
up

• groupName
• newDesc

The user invoking the method
must have UPDATE access to
this group.

removeBindAclFromGroup • groupName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
this group.

addMembersToGroup • groupName
• pattern

The user invoking the method
must have UPDATE access to
this group.

removeMembersFromGroup • groupName
• pattern

The user invoking the method
must have UPDATE access to
this group.

fgResource_Operations.go

Methods Parameters Description

createResource • name
• description
• bindACLs

The user invoking the
method needs to have
CREATE access to the
bootstrap resource named
". Resources". Duplicate
named resources are not
allowed.

getResource • name The user invoking the method
must have READ access to
the resource

deleteResource • name The user invoking the method
must have DELETE access to
the named resource

addAfterACLInResource • ResourceName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this resource

addBeforeACLInResource • ResourceName
• existingBindAclName
• newBindAclName

The user invoking the method
must have UPDATE access to
this resource

updateDescriptionInReso
urce

• ResourceName
• newDesc

The user invoking the method
must have UPDATE access to
this resource

removeBindACLInResource • ResourceName
• bindAclNameToRemove

The user invoking the method
must have UPDATE access to
this resource

checkResourceAccess • ResourceName
• access

Checks whether the current
user invoking the method has
the specified access to the
named resource.

Appendix B
Fine-Grained Access Control Marbles Sample

B-19


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 What's Oracle Blockchain Platform?
	What's a Blockchain?
	Why Should I Use Blockchain?
	What Are the Advantages of Oracle Blockchain Platform?
	What Do I Get with Oracle Blockchain Platform?

	2 Get Started Using Samples
	What Are Chaincode Samples?
	Explore Oracle Blockchain Platform Using Samples

	3 Manage the Organization and Network
	What's the Console?
	Modify the Console Timeout Setting
	Find and Understand Your Oracle Blockchain Platform Version Number
	Monitor the Network
	How Can I Monitor the Blockchain Network?
	What Type of Information Is on the Dashboard?
	View Network Activity

	Manage Nodes
	What Types of Nodes Are in a Network?
	Find Information About Nodes
	View General Information About Nodes
	Access Information About a Specific Node
	View a Diagram of the Peers and Channels in the Network
	Find Node Configuration Settings

	Start and Stop Nodes
	Restart a Node
	Set the Log Level for a Node

	Manage Channels
	What Are Channels?
	View Channels
	Create a Channel
	View a Channel’s Ledger Activity
	View or Update a Channel’s Organizations List
	Join a Peer to a Channel
	Add an Anchor Peer
	Change or Remove an Anchor Peer
	View Information About Instantiated Chaincodes
	Work With Channel Policies and ACLs
	What Are Channel Policies?
	Add or Modify a Channel's Policies
	Delete a Channel's Policies
	What Are Channel ACLs?
	Update Channel ACLs


	Manage Certificates
	Typical Workflows to Manage Certificates
	Export Certificates
	Import Certificates to Add Organizations to the Network
	What's a Certificate Revocation List?
	View and Manage Certificates
	Revoke Certificates
	Apply the CRL

	Manage Ordering Service Settings
	Export Ordering Service Settings
	Import Ordering Service Settings
	Edit Ordering Service Settings
	View Ordering Service Settings


	4 Understand and Manage Nodes by Type
	Manage CA Nodes
	View and Edit the CA Node Configuration
	View Health Information for a CA Node

	Manage the Console Node
	View and Edit the Console Node Configuration
	View Health Information for the Console Node

	Manage Orderer Nodes
	View and Edit the Orderer Node Configuration
	View Health Information for an Orderer Node

	Manage Peer Nodes
	View and Edit the Peer Node Configuration
	List Chaincodes Installed on a Peer Node
	View Health Information for a Peer Node
	Export and Import Peer Nodes

	Manage REST Proxy Nodes
	How's the REST Proxy Used?
	Add Enrollments to the REST Proxy
	View and Edit the REST Proxy Node Configuration
	View Health Information for a REST Proxy Node


	5 Extend the Network
	Add Oracle Blockchain Platform Participant Organizations to the Network
	Typical Workflow to Join a Participant Organization to an Oracle Blockchain Platform Network
	Join a Network

	Add Fabric Organizations to the Network
	Typical Workflow to Join a Fabric Organization to an Oracle Blockchain Platform Network
	Create a Fabric Organization's Certificates File
	Prepare the Fabric Environment to Use the Oracle Blockchain Platform Network

	Add Organizations with Third-Party Certificates to the Network
	Typical Workflow to Join an Organization with Third-Party Certificates to an Oracle Blockchain Platform Network
	Third-Party Certificate Requirements
	Create an Organization's Third-Party Certificates File
	Prepare the Third-Party Environment to Use the Oracle Blockchain Platform Network


	6 Develop Chaincodes
	Write a Chaincode
	Use a Mock Shim to Test a Chaincode
	Deploy a Chaincode on a Peer to Test the Chaincode

	7 Deploy and Manage Chaincodes
	Typical Workflow to Deploy Chaincodes
	Use Quick Deployment
	Use Advanced Deployment
	Update REST Proxy Settings for Running Chaincodes
	Instantiate a Chaincode
	Specify an Endorsement Policy
	View an Endorsement Policy
	Find Information About Chaincodes
	Manage Chaincode Versions
	Upgrade a Chaincode
	What Are Private Data Collections?
	Add Private Data Collections
	View Private Data Collections

	8 Develop Blockchain Applications
	Before You Develop an Application
	Use the Hyperledger Fabric SDKs to Develop Applications
	Update the Hyperledger Fabric SDKs to Work with Oracle Blockchain Platform

	Use the REST APIs to Develop Applications

	9 Work With Databases
	Query the State Database
	What's the State Database?
	State Database Indexes
	Differences in the Validation of Rich Queries
	Supported Rich Query Syntax
	SQL Rich Query Syntax
	CouchDB Rich Query Syntax


	Create the Rich History Database
	What's the Rich History Database?
	Create the Oracle Database Cloud Service Connection String
	Enable and Configure the Rich History Database
	Modify the Connection to the Rich History Database
	Choose the Channels that Write Data to the Rich History Database
	Rich History Database Tables and Columns


	A Node Configuration
	CA Node Attributes
	Console Node Attributes
	Orderer Node Attributes
	Peer Node Attributes
	REST Proxy Node Attributes

	B Using the Fine-Grained Access Control Library Included in the Marbles Sample
	Fine-Grained Access Control Library Functions
	Example Walkthough Using the Fine-Grained Access Control Library
	Fine-Grained Access Control Marbles Sample


