
Oracle® Service Architecture Leveraging Tuxedo (SALT)
Administration Guide

10g Release 3 (10.3)

January 2009

Service Architecture Leveraging Tuxedo Administration Guide, 10g Release 3 (10.3)

Copyright © 2006, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

 Oracle SALT Administration Guide i

Contents

Oracle SALT Administration Overview
Basic Concepts for Administering Oracle SALT . 1-1

Tuxedo Service Metadata . 1-1

Oracle SALT Web Service Deployment Model . 1-2

Oracle SALT Web Services Administrative Tasks and Tools. 1-3

Configuring a SALT Application Using Command-Line Utilities. 1-4

Administering a SALT Application Using Command-Line Utilities 1-5

Oracle SALT SCA Deployment Model . 1-5

Oracle SALT SCA Administrative Tasks and Tools . 1-9

Configuring a Password for an SCA Client . 1-10

Administering a TUXEDO SCA Application . 1-10

See Also . 1-11

Configuring an Oracle SALT Application
Configuring Tuxedo Web Services . 2-1

Using Tuxedo Service Metadata Repository for Oracle SALT 2-2

Configuring Native Tuxedo Services . 2-8

Configuring External Web Services . 2-13

Creating the SALT Deployment File . 2-19

Configuring Advanced Web Service Messaging Features . 2-26

Configuring Security Features . 2-31

Compiling SALT Configuration . 2-35

ii Oracle SALT Administration Guide

Configuring the UBBCONFIG File for Oracle SALT. 2-36

Configuring Oracle SALT In Tuxedo MP Mode . 2-41

Migrating from Oracle SALT 1.1. 2-42

Configuring Tuxedo SCA Components . 2-45

Configuring an SCA ATMI Client . 2-45

Configuring an SCA JATMI Client . 2-46

Configuring an SCA Workstation Client . 2-47

Configuring an SCA Web Service Client. 2-49

Configuring an SCA ATMI Server . 2-51

Configuring an SCA Web Service Server . 2-53

Configuring SCA Client Security . 2-56

Configuring Service Contract Discovery . 2-60

tpforward Support . 2-61

Service Contract Text File Output . 2-61

See Also. 2-64

Administering Oracle SALT at Run Time
Administering Tuxedo Web Services . 3-1

Browsing to the WSDL Document from the GWWS Server 3-1

Tuning the GWWS Server . 3-3

Tracing the GWWS Server . 3-4

Monitoring the GWWS Server . 3-7

Troubleshooting Oracle SALT . 3-10

Administering Tuxedo SCA Components. 3-12

Tracing the SCA ATMI Server and Client . 3-12

Monitoring SCA ATMI Servers . 3-14

Tracing SCA JATMI Clients . 3-15

See Also. 3-19

 Oracle SALT Administration Guide iii

Appendix A:
Oracle Tuxedo SCA Schemas

ATMI and JTMI Binding Schema For C/C++ .A-1

Web Service Binding Schema .A-7

See Also .A-9

iv Oracle SALT Administration Guide

Oracle SALT Administration Guide 1-1

C H A P T E R 1

Oracle SALT Administration Overview

The following sections provide an overview to Oracle SALT administration topics:

Basic Concepts for Administering Oracle SALT

Oracle SALT Web Services Administrative Tasks and Tools

Oracle SALT SCA Administrative Tasks and Tools

Basic Concepts for Administering Oracle SALT
This section explains the following basic concepts for administering Oracle SALT:

Tuxedo Service Metadata

Oracle SALT Web Service Deployment Model

Oracle SALT SCA Deployment Model

Tuxedo Service Metadata
Staring with the Oracle Tuxedo 9.0 release, the Tuxedo Service Metadata Repository was
developed to facilitate saving and retrieving Tuxedo service metadata. Tuxedo service metadata
is a collection of Tuxedo service attributes that are especially useful in describing the
request/response details of a Tuxedo service. The Oracle SALT gateway server (GWWS), relies on
the Tuxedo Service Metadata Repository for conversions between the Tuxedo request/response
format (buffer types) and standard SOAP message format.

1-2 Oracle SALT Administration Guide

When exposing Tuxedo services as Web services using Oracle SALT, you must define and load
your Tuxedo service metadata in the Tuxedo Service Metadata Repository. Oracle SALT can
then define the corresponding SOAP message format from the Tuxedo service metadata.

When invoking external Web services from a Tuxedo application, Oracle SALT provides a
WSDL file converter, wsdlcvt. This command utility helps you to define Tuxedo service
metadata from each Web service operation. The converted services are called SALT proxy
services and can be invoked as normal Tuxedo services. SALT proxy services also need to be
loaded in the Tuxedo Service Metadata Repository.

To retrieve the Tuxedo service metadata information, you must configure the Tuxedo Service
Metadata Repository system server (TMMETADATA), to be booted in the Tuxedo application.

Note: TMMETADATA must be booted prior to using any Oracle SALT gateway GWWS server.

For more information, see “Tuxedo Service Metadata Repository” and “Using Tuxedo Service
Metadata Repository for Oracle SALT” on page 2-2.

Oracle SALT Web Service Deployment Model
Deploying Oracle SALT requires two configuration file types:

SALT Web Service Definition File (WSDF)

SALT Deployment File (SALTDEPLOY)

SALT Web Service Definition File
The SALT Web Service Definition File (WSDF) is an XML-based file used to define SALT Web
service components (Web Service Bindings, Web Service Operations, Web Service Policies, and
so on). The WSDF is a Oracle SALT specific representation of the Web Service Definition
Language data model. There are two WSDF types: native and non-native.

Native WSDF

A native WSDF is created manually. You must define a set of Tuxedo services and how they
are exposed as Web services in the WSDF. It looks similar to the SALT 1.1 configuration
file. The native WSDF is the input file for the SALT WSDL generator (tmwsdlgen). For
more information, see “Configuring Native Tuxedo Services” on page 2-8.

Non-native WSDF

A non-native WSDF is generated from an external WSDL file that has been converted using
the SALT WSDL converter (wsdlcvt). Basically, you do not need to change the generated

../metarepo.html
../ref/comref.html#wp1106727
../ref/comref.html#wp1110855

Orac le SALT Web Serv ices Admin is t ra t ive Tasks and Too ls

Oracle SALT Administration Guide 1-3

WSDF (except to configure advanced features). For more information, see “Configuring
External Web Services” on page 2-13.

SALT Deployment File
The SALT Deployment File (SALTDEPLOY) is an XML-based file used to define Oracle SALT
GWWS server deployment information on a per Tuxedo machine basis. The SALTDEPLOY file lists
all necessary WSDF files. It also specifies how many GWWS servers are deployed on a Tuxedo
machine and associates inbound and outbound Web service endpoints for each GWWS server. The
SALTDEPLOY file contains a system section where global resources are configured (including
certificates and plug-in load libraries). For more information, see “Creating the SALT
Deployment File” on page 2-19.

Figure 1-1 illustrates the Oracle SALT deployment model.

Figure 1-1 SALT Deployment Model

Oracle SALT Web Services Administrative Tasks and Tools
Oracle SALT provides a set of command utilities for managing different parts of an Oracle SALT
application built on the Oracle Tuxedo system. These utilities can be used for the following tasks:

1-4 Oracle SALT Administration Guide

Configuring a SALT Application Using Command-Line Utilities

Administering a SALT Application Using Command-Line Utilities

Configuring a SALT Application Using Command-Line
Utilities
You can configure your Oracle SALT application by using command-line utilities. Specifically,
you can use an XML editor to create and edit the configuration file (WSDF files and
SALTDEPLOY file) for your application, and then use the command-line utility named
wsloadcf to translate the XML files (SALTDEPLOY file and referenced WSDF files) to a
binary file (SALTCONFIG). You are then ready to boot the SALT gateway (GWWS) servers.

The following list identifies Oracle SALT command-line utilities that you can use to configure
your application:

wsloadcf(1)

A command that is initiated on each Tuxedo machine. It allows you to compile your
application SALTDEPLOY file and referenced WSDF files into the binary SALTCONFIG
file. The wsloadcf command loads the binary file to the location defined by the
SALTCONFIG environment variable.

wsdlcvt(1)

A command that converts an external Web Service Description Language (WSDL) file into
Tuxedo definition files (WSDF file, Tuxedo Service Metadata definition file, FML32 field
table file and XML Schema file). The generated WSDF file is a non-native WSDF file
used for SALT outbound calls specifically.

Since Oracle SALT built on the Oracle Tuxedo framework, you should also use the following
Oracle Tuxedo provided command-line utilities to configure Oracle SALT specific items in a
Tuxedo application:

tmloadcf(1)

A command that runs on the master Tuxedo machine. It is used to compile the Tuxedo
application UBBCONFIG file into the binary TUXCONFIG file. To boot Oracle SALT
gateway servers, you must define GWWS servers in the UBBCONFIG file.

tmloadrepos(1)

A command that runs on the machine where Tuxedo Service Metadata Repository System
Server (TMMETADATA) is booted. It loads the Tuxedo service metadata definition text files
into the binary Tuxedo Service Metadata Repository file. You must load all Tuxedo legacy

Orac le SALT Web Serv ices Admin is t ra t ive Tasks and Too ls

Oracle SALT Administration Guide 1-5

services that are to be exposed as Web service operations in the Tuxedo Service Metadata
Repository. You must also load all wsdlcvt generated SALT proxy services in the Tuxedo
Service Metadata Repository.

Administering a SALT Application Using Command-Line
Utilities
You can use the wsadmin(1)command-line utility to perform administrative functions for Oracle
SALT gateway servers in your Tuxedo applications. Similar to the tmadmin, dmadmin and
qmadmin commands, wsadmin is an interactive meta-command that enables you to run
sub-commands.

In a Oracle Tuxedo application, you can run wsadmin(1) on any machine to monitor and manage
the SALT gateway servers defined in the Tuxedo application.

Oracle SALT SCA Deployment Model
An SCA composite is typically described in an associated configuration file, the file name ends
with ".composite". This file uses an XML-based format call the Service Component Definition
Language (SCDL) to describe the components this composite contains and specify how they
related to one another. Deploying Oracle SALT SCA requires at least one root composite file that
is located in $APPDIR.

There are two configuration file types:

SCA Composite Configuration File (.composite)

SCA Component Configuration File (.componentType)

There can be one or more components configured in the root composite file, and each of these
components has its own .composite and .componentType file residing in its own subdirectory.

SCA Composite Configuration File
There can be zero or more component elements within a composite. The root composite files must
be stored in $APPDIR in a server environment.

Listing 1-1shows an example of a root composite which contains two components:

1-6 Oracle SALT Administration Guide

Listing 1-1 Root Composite with Two Components

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO.app">

<component name="ECHO">

<implementation.composite name="ECHO" />

</component>

<component name="TOUPPER">

<implementation.composite name="TOUPPER" />

</component>

</composite>

Based on the configuration in Listing 1-1, Listing 1-2 shows the implied the directory hierarchy.

Listing 1-2 SCA Composite Directory Hierarchy

$APPDIR/ECHO.app.composite

$APPDIR/ECHO

$APPDIR/ECHO/ECHO.composite

$APPDIR/ECHO/ECHO.componentType

$APPDIR/TOUPPER

$APPDIR/TOUPPER/TOUPPER.composite

$APPDIR/TOUPPER/TOUPPER.componentType

This example is a typical server configuration. The Tuxedo SCA client also has a similar
application topology meaning that the client application is located in a subdirectory of the root
composite file. Listing 1-3 lists the directory structure for a client named EchoClient that uses
the ECHO1 service provided by ECHO.

Listing 1-3 Directory Structure

$APPDIR/root.composite

$APPDIR/EchoClient/EchoClient.composite

Orac le SALT Web Serv ices Admin is t ra t ive Tasks and Too ls

Oracle SALT Administration Guide 1-7

$APPDIR/EchoClient.composite

$APPDIR/EchoClient/EchoClient.dll

$APPDIR/EchoClient/EchoClient.exe

Note: One slight difference between an SCA server environment and an SCA client
environment is that there is no need to have a component configuration file in the client
environment.

SCA Component Configuration File
Components are the basic elements of business function in an SCA assembly, which are
combined into complete business solutions by SCA composites. Components are configured
instances of implementations. Components provide and consume services. More than one
component can use and configure the same implementation, where each component configures
the implementation differently.

Components are declared as sub-elements of a composite in an xxx.composite file. A
component is represented by a component element that is a child of the composite element. Using
the composite from Listing 1-1, the 2 components (ECHO and TOUPPER), contains specific
information. For the ECHO service ($APPDIR/ECHO/ECHO.composite), the ECHO.composite
information is shown in Listing 1-4.

Listing 1-4 ECHO.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="ECHO">

<service name="ECHO">

<interface.cpp header="ECHO.h" />

<binding.atmi requires="legacy">

<map target="EchoString1">ECHO1</map>

<map target="EchoString2">ECHO2</map>

</binding.atmi>

<reference>EchoServiceComponent</reference>

</service>

<component name="EchoServiceComponent">

<implementation.cpp library="ECHO" header="ECHOImpl.h" />

1-8 Oracle SALT Administration Guide

</component>

</composite>

The ECHO service provides two TUXEDO services: ECHO1 and ECHO2. ECHO1 executes CPP
function “EchoString1”. ECHO2 executes CPP function "EchoString2". The existence of
$APPDIR/ECHO/ECHOImpl.componentType and $APPDIR/ECHO/ECHO.so. are implied.
Listing 1-5 shows information that may be contained in ECHOImpl.componentType.

Note: On some Unix systems the suffix is .so.71 or .sl.

ECHO.so (or ECHO.dll Windows), is the shared library that contains the actual implementation
of EchoString1 and EchoString2 and is loaded into memory when the service is initialized.
ECHO1 and ECHO2 are dynamically advertised at server initialization. For example, if
EchoServer is the Tuxedo server that provides these two services, the Tuxedo UBBCONFIG file
should contain information as shown in Listing 1-6.

Listing 1-5 ECHOImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<service name="ECHO">

<interface.cpp header="ECHO.h"/>

</service>

</componentType>

Listing 1-6 UBBCONFIG File Example

...

*SERVERS

DEFAULT:

CLOPT="-A"

EchoServer SRVGRP=GROUP1 SRVID=1001

...

Orac le SALT SCA Admin is t rat ive Tasks and Too ls

Oracle SALT Administration Guide 1-9

For the TOUPPER service, the existence of $APPDIR/TOUPPER/TOUPPER.composite is also
implied by the ECHO.app.composite file. Listing 1-7 shows information that may be contained
in TOUPPER.composite file.

Listing 1-7 TOUPPER.composite file Example

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="TOUPPER">

<service name="TOUPPER">

<interface.cpp header="TOUPPER.h" />

<binding.atmi requires="legacy">

<map target="UpperString1">TOUPPER1</map>

<map target="UpperString2">TOUPPER2</map>

</binding.atmi>

<reference>ToupperServiceComponent</reference>

</service>

<component name="ToupperServiceComponent">

<implementation.cpp library="TOUPPER" header="TOUPPERImpl.h"

/>

</component>

</composite>

This composite file also implies the existence of
$APPDIR/TOUPPER/TOUPPERImpl.componentType and $APPDIR/TOUPPER/TOUPPER.so.

Note: Tuxedo SCA only supports "cpp" implementation types.

Oracle SALT SCA Administrative Tasks and Tools
Oracle SALT SCA provides a set of command line utilities for managing Oracle SALT SCA
application built on top of the Tuxedo system. The majority of these utilities are geared toward
application development but two of them are for administrative purposes. For more information,
see the Oracle SALT Reference Guide.

1-10 Oracle SALT Administration Guide

The administrative tools can be used for the following tasks:

Configuring a Password for an SCA Client

Administering a TUXEDO SCA Application

Configuring a Password for an SCA Client
You can configure your SALT SCA security by using the scapasswordtool command line
utility. It manages passwords for Tuxedo authentication in the SCA client and populates the
password store file (password.store).

When an SCA component makes a reference to a Tuxedo-based service with Tuxedo security set
to APP_PW or higher, the SCA component searches the password.store file to find the matching
password and userID in the configuration composite file. The password is encrypted with the
userID in plain text.

Creating a Password
To add/create a user ID and password, do the following:

1. prompt > Enter scapasswordtool -i userID -a

2. prompt > Enter password: password

3. prompt > Confirm password: password

The password is not echoed on the console screen.

Deleting a Password
To delete a userID and password, enter: scapasswordtool -i userID -d

The userID and associated password are deleted.

Administering a TUXEDO SCA Application
Tuxedo SCA components that declare services with ATMI binding are administered as a regular
Tuxedo service. The administrator can to boot new instances of these servers, monitor or shut
them down using existing Tuxedo commands such as tmadmin, tmboot, tmshutdown.

The Administrator can monitor activity or availability of specific methods by using tmadmin and
selecting the services declared in the ATMI bindings defined in the SCDL file.

See A l so

Oracle SALT Administration Guide 1-11

Each SCA server built using the buildscaserver command will also have administrative
functionality that can be invoked using the scaadmin command line utility.

See Also
scaadmin

scapasswordtool

buildscaclient

buildscacomponent

buildscaserver

Oracle Salt Programming Guide

Oracle Salt Reference Guide

http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/prog/intro.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html

1-12 Oracle SALT Administration Guide

Oracle SALT Administration Guide 2-1

C H A P T E R 2

Configuring an Oracle SALT Application

This section contains the following topics:

Configuring Service Contract Discovery

Configuring Tuxedo SCA Components

Configuring Service Contract Discovery

Configuring Tuxedo Web Services
Using Tuxedo Service Metadata Repository for Oracle SALT

Configuring Native Tuxedo Services

Configuring External Web Services

Configuring Service Contract Discovery

Creating the SALT Deployment File

Configuring Advanced Web Service Messaging Features

Configuring Security Features

Compiling SALT Configuration

Configuring the UBBCONFIG File for Oracle SALT

2-2 Oracle SALT Administration Guide

Configuring Oracle SALT In Tuxedo MP Mode

Migrating from Oracle SALT 1.1

Using Tuxedo Service Metadata Repository for Oracle SALT
Oracle SALT leverages the Tuxedo Service Metadata Repository to define service contract
information for both Tuxedo legacy services and SALT proxy services. Service contract
information for all listed Tuxedo services is obtained by accessing the Tuxedo Service Metadata
Repository system service provided by the local Tuxedo domain. Typically, SALT calls the
TMMETADATA system as follows:

During GWWS server run-time.

It calls the Tuxedo Service Metadata Repository to retrieve necessary Tuxedo service
definition at the appropriate time.

When tmwsdlgen generates a WSDL file.

It calls the Tuxedo Service Metadata Repository to retrieve necessary Tuxedo service
definitions and converts them to the WSDL description.

The following topics provide SALT-specific usage of Tuxedo Service Metadata Repository
keywords and parameters:

Defining Service-Level Keywords for Oracle SALT

Defining Service Parameters for Oracle SALT

Defining Service-Level Keywords for Oracle SALT
Table 2-1 lists the Tuxedo Service Metadata Repository service-level keywords used and
interpreted by SALT.

Note: Metadata Repository service-level keywords that are not listed have no relevance to
Oracle SALT and are ignored when SALT components load the Tuxedo Service
Metadata Repository.

../metarepo.html
../metarepo.html
../metarepo.html
../../../tuxedo/docs10gr3/rf5/rf5i.htm#3133627
../ref/comref.html#wp1106727

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-3

Table 2-1 Oracle SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

service The unique key value of the service. This value is referenced in the SALT
WSDF file.

For native Tuxedo services, this value can be the same as the Tuxedo
advertised service name or an alias name differ from the actual Tuxedo
advertised service name.

For SALT proxy services, this value typically is the Web service
operation local name.

servicemode Determines the service mode (i.e., native Tuxedo service or SALT proxy
service.

The valid values are:
• tuxedo represents a native Tuxedo service
• webservice represents a SALT proxy service, i.e. a service

definition converted from a wsdl:operation

Do not use “webservice” to define a native Tuxedo service. This value
is always used to define services converted from external Web services.

tuxservice The actual Tuxedo advertised service name. If no value is specified, then
the value is the same as the value in the service keyword.

For native Tuxedo service, Oracle SALT invokes the Tuxedo service
defined using this keyword.

For SALT proxy service, GWWS server advertises the service name
using this keyword value.

servicetype Determines the service message exchange pattern for the specified
Tuxedo service.

The following values specify mapping rules between the Tuxedo service
types and Web Service message exchange pattern (MEP):
• service corresponds to request-response MEP
• oneway corresponds to oneway request MEP
• queue corresponds to request-response MEP

2-4 Oracle SALT Administration Guide

inbuf Specifies the input buffer (request buffer) type for the service.

For native Tuxedo services, the value can be any Tuxedo typed buffer
type. The following values are Tuxedo reserved buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if inbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

outbuf Specifies the output buffer (response buffer with TPSUCCESS) type for
the service.

For native Tuxedo services, the value can be any Tuxedo typed buffer
type. The following values are Tuxedo reserved buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if outbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

errbuf Specifies the error buffer (response buffer with TPFAIL) type for the
service.

For native Tuxedo services, the value can be any Tuxedo typed buffer
type. The following values are Tuxedo reserved buffer types:
STRING, CARRAY, XML, MBSTRING, VIEW, VIEW32, FML,
FML32, X_C_TYPE, X_COMMON, X_OCTET, NULL (input buffer
is empty)

Note: The value is case sensitive, if errbuf specifies any other type
other than the previous buffer types, the buffer is treated as a
custom buffer type.

For SALT proxy services, the value is always FML32.

Table 2-1 Oracle SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-5

inview Specifies the view name used by the service for the following input buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

Oracle SALT requires that you specify the view name rather than accept
the default inview setting.

This keyword is for native Tuxedo services only.

outview Specifies the view name used by the service for the following output
buffer types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

Oracle SALT requires that you specify the view name rather than accept
the default outview setting.

This keyword is for native Tuxedo services only.

errview Specifies the view name used by the service for the following error buffer
types:
VIEW, VIEW32, X_C_TYPE, X_COMMON

Oracle SALT requires that you specify the view name rather than accept
the default errview setting.

This keyword is for native Tuxedo services only.

inbufschema Specifies external XML Schema element associated with the service
input buffer. If this value is specified, Oracle SALT incorporates the
external schema in the generated WSDL to replace the default data type
mapping rule for the service input buffer.

This keyword is for native Tuxedo services only.

Table 2-1 Oracle SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

2-6 Oracle SALT Administration Guide

Defining Service Parameters for Oracle SALT
The Tuxedo Service Metadata Repository interprets parameters as sub-elements encapsulated in
a Tuxedo service typed buffer. Each parameter can have its own data type, occurrences in the
buffer, size restrictions, and other Tuxedo-specific restrictions. Please note:

VIEW, VIEW32, X_C_TYPE, or X_COMMON typed buffers

Each parameter of the buffer should represent a VIEW/VIEW32 structure member.

FML or FML32 typed buffers

Each parameter of the buffer should represent an FML/FML32 field element that may be
present in the buffer.

STRING, CARRAY, XML, MBSTRING, and X_OCTET typed buffers

Tuxedo treats these buffers holistically. At most, one parameter is permitted for the buffer
to define restriction facets (such as buffer size threshold).

Custom typed buffers

Parameters facilitate describing details about the buffer type.

FML32 typed buffers that support embedded VIEW32 and FML32 buffers

Embedded parameters provide support.

Table 2-2 lists the Tuxedo Service Metadata Repository parameter-level keywords used and
interpreted by SALT.

outbufschema Specifies external XML Schema element associated with the service
output buffer. If this value is specified, Oracle SALT incorporates the
external schema in the generated WSDL to replace the default data type
mapping rule for the service output buffer.

This keyword is for native Tuxedo services only.

errbufschema Specifies external XML Schema element associated with the service error
buffer. If this value is specified, Oracle SALT incorporates the external
schema in the generated WSDL to replace the default data type mapping
rule for the service error buffer.

This keyword is for native Tuxedo services only.

Table 2-1 Oracle SALT Usage of Service-Level Keywords in Tuxedo Service Metadata Repository

Service-Level Keyword Oracle SALT Usage

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-7

Note: Metadata Repository parameter-level keywords that are not listed have no relevance to
Oracle SALT and are ignored when SALT components load the Tuxedo Service
Metadata Repository.

Table 2-2 Oracle SALT Usage of Parameter-Level Keyword in Tuxedo Service Metadata Repository

Parameter-level Keyword Oracle SALT Usage

param Specifies the parameter name.
• VIEW, VIEW32, X_C_TYPE, or X_COMMON

Specifies the view structure member name in the param keyword.
• FML, FML32

Specifies the FML/FML32 field name in the param keyword.
• STRING, CARRAY, XML, MBSTRING, or X_OCTET

Oracle SALT ignores the parameter definitions.

type Specifies the data type of the parameter.

Note: Oracle SALT does not support dec_t and ptr data types.

subtype Specifies the view structure name if the parameter type is view32. For
any other typed parameter, Oracle SALT ignores this value.

Note: Oracle SALT requires this value if the parameter type is
view32.

This keyword is for native Tuxedo service only.

access The general definition applies for this parameter. To support Tuxedo
TPFAIL scenario, the access attribute value has been enhanced.

Original values: in, out, inout, noaccess.

New added values: err, inerr, outerr, inouterr.

count The general definition applies for this parameter. For Oracle SALT, the
value for the count parameter must be greater than or equal to
requiredcount.

requiredcount The general definition applies for this parameter. The default is 1. For
Oracle SALT, the value for the count parameter must be greater than
or equal to requiredcount.

2-8 Oracle SALT Administration Guide

Configuring Native Tuxedo Services
This section describes the required and optional configuration tasks for exposing native Tuxedo
services as Web Services:

Creating a Native WSDF

Using WS-Policy Files

Generating a WSDL File from a Native WSDF

Creating a Native WSDF
To expose a set of Tuxedo services as Web services through one or more HTTP/S endpoints, a
native WSDF must be defined.

Each native WSDF must be defined with a unique WSDF name. A WSDF can define one or more
<WSBinding> elements for more Web service application details (such as SOAP protocol details,
the Tuxedo service list to be exposed as web service operations, and so on).

size This optional keyword restricts the maximum byte length of the
parameter. It is only valid for the following parameter types:
STRING, CARRAY, XML, and MBSTRING

If this keyword is not set, there is no maximum byte length restriction
for this parameter.

The value range is [0, 2147483647]

paramschema Specifies the corresponding XML Schema element name of the
parameter. It is generated by SALT WSDL converter.

This keyword is for SALT proxy service only. Do not specify this
keyword for native Tuxedo services.

primetype Specifies the corresponding XML primitive data type of the parameter.
It is generated by SALT WSDL converter according to SALT
pre-defined XML-to-Tuxedo data type mapping rules.

This keyword is for SALT proxy service only. Do not specify this
keyword for native Tuxedo services.

Table 2-2 Oracle SALT Usage of Parameter-Level Keyword in Tuxedo Service Metadata Repository

Parameter-level Keyword Oracle SALT Usage

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-9

Defining WSBinding Object
Each WSBinding object is defined using the <WSBinding> element. Each WSBinding object
must be defined with a unique WSBinding id within the WSDF. The WSBinding id is a required
indicator for the SALTDEPLOY file reference used by the GWWS.

Each WSBinding object can be associated with SOAP protocol details by using the <SOAP> sub-
element. By default, SOAP 1.1, document/literal styled SOAP messages are applied to the
WSBinding object.

Listing 2-1 shows how SOAP protocol details are redefined using the <SOAP> sub-element.

Listing 2-1 Defining SOAP Protocol Details for a WSBinding

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

<SOAP version=”1.2” style=”rpc” use=”encoded”>

<AccessingPoints>

...

</AccessingPoints>

</SOAP>

</WSBinding>

</Definition>

Within the <SOAP> element, a set of access endpoints can be specified. The URL value of these
access endpoints are used by corresponding GWWS servers to create the listen HTTP/S protocol
port. It is recommended to specify one HTTP and HTTPS endpoint (at most) for each GWWS server
for an inbound WSBinding object.

Each WSBinding object must be defined with a group of Tuxedo services using the
<Servicegroup> sub-element. Each <Service> element under <Servicegroup> represents a
Tuxedo service that can be accessed from a Web service client.

2-10 Oracle SALT Administration Guide

Defining Service Object
Each service object is defined using the <Service> element. Each service must be specified with
the “name” attribute to indicate which Tuxedo service is exposed. Usually, the “name” value is
used as the key value for obtaining Tuxedo service contract information from the Tuxedo Service
Metadata Repository.

Listing 2-2 shows how a group of services are defined for WSBinding.

Listing 2-2 Defining a Group of Services for a WSBinding

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

...

</WSBinding>

</Definition>

Configuring Message Conversion Handler
You can create your own plug-in functions to customize SOAP XML payload and Tuxedo typed
buffer conversion routine. For more information, see Using Oracle SALT Plug-ins in Oracle
SALT Programming Web Services and “Configuring Plug-in Libraries” on page 2-26.

Once a plug-in is created and configured, it can be referenced using the <service> element to
specify user-defined data mapping rules for that service. The <Msghandler> element can be
defined at the message level (<Input>, <Output> or <Fault>) to specify which implementation
of “P_CUSTOM_TYPE” category plug-in should be used to do the message conversion. The
<Msghandler> element content is the Plug-in name.

Listing 2-3 shows a service that uses the “MBCONV” custom plug-in to convert input and
“XMLCONV” custom plug-in to convert output.

../prog/plugin.html

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-11

Listing 2-3 Configuring Message Conversion Handler for a Service

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper" >

<Input>

<Msghandler>MBCONV</Msghandler>

</Input>

<Output>

<Msghandler>XMLCONV</Msghandler>

</Output>

</Service>

</Servicegroup>

...

</WSBinding>

</Definition>

Using WS-Policy Files
Advanced Web service features can be enabled by configuring WS-Policy files (for example,
Reliable Messaging and Web Service Message-Level Security). You may need to create
WS-Policy files to use these features. The Web Service Policy Framework specifications
provides a general purpose model and syntax to describe and communicate the policies of a Web
Service.

To use WS-Policy files, the <Policy> element should be defined in the WSDF to incorporate
these separate WS-Policy files. Attribute location is used to specify the policy file path, both
abstract and relative file path are allowed. Attribute use is optionally used by message level
assertion policy files to specify the applied messages, request (input) message, response (output)
message, fault message, or the combination of the three.

There are two different sub-elements in the WSDF that reference WS-Policy files:

<Servicegroup>

– If a WS-Policy file consists of Web Service Endpoint level Assertions, e.g. Reliable
Messaging Assertion, the WS-Policy file applies to all endpoints that serving this
<Servicegroup>.

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

2-12 Oracle SALT Administration Guide

– If a WS-Policy file consists of Web Service Operation level Assertions, e.g., Security
Identity Assertion, the WS-Policy file applies to all services listed in this
<Servicegroup>.

– If a WS-Policy file consists of Web Service Message level Assertions, e.g., Security
SignedParts Assertion, the WS-Policy file applies to input, output and/or fault messages
of all services listed in this <Servicegroup>.

Note: Oracle SALT only supports request message level assertions for the current
release. You must only specify use=”input” for message level assertion policy
files.

<Service>

– If a WS-Policy file consists of Web Service Operation level Assertions, e.g. Security
Identity Assertion, the WS-Policy file applies to this particular service.

– If a WS-Policy file consists of Web Service Message level Assertions, e.g. Security
SignedParts Assertion, the WS-Policy file applies to input, output and/or fault messages
of this particular service.

Note: Oracle SALT only supports request message level assertions for the current
release. You must only specify use=”input” for message level assertion policy
files.

Oracle SALT provides some pre-packaged WS-Policy files for most frequently used cases. These
WS-Policy files are located under directory $TUXDIR/udataobj/salt/policy. These files can
be referenced using location=”salt:<policy_file_name>”.

Listing 2-4 shows a sample of using WS-Policy Files in the native WSDF file.

Listing 2-4 A Sample of Defining WS-Policy Files in the WSDF File

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Policy location=”./endpoint_policy.xml” />

<Policy location=”/usr/resc/all_input_msg_policy.xml” use=”input” />

<Service name="toupper">

<Policy location=”service_policy.xml” />

<Policy location=”/usr/resc/input_message_policy.xml”

use=”input” />

</Service>

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-13

<Service name="tolower" />

</Servicegroup>

....

</WSBinding>

</Definition>

For more information, see “Specifying the Reliable Messaging Policy File in the WSDF File” and
“Using WS-SecurityPolicy Files”.

Generating a WSDL File from a Native WSDF
Once a Tuxedo native WSDF is created, the corresponding WSDL file can be generated using the
SALT WSDL generation utility, tmwsdlgen. The following example command generates a
WSDL file named “app1.wsdl” from a given WSDF named “app1.wsdf”:
tmwsdlgen -c app1.wsdf -o app1.wsdl

Note: Before executing tmwsdlgen, the TUXCONFIG environment variable must be set correctly
and the relevant Tuxedo application using TMMETADATA must be booted.

You can optionally specify the output WSDL file name using the ‘-o’ option. Otherwise,
tmwsdlgen creates a default WSDL file named “tuxedo.wsdl”.

If the native WSDF file contains Tuxedo services that use CARRAY buffers, you can specify
tmwsdlgen options to generate different styled WSDL files for CARRAY buffer mapping. By
default, CARRAY buffers are mapped as xsd:base64Binary XML data types in the SOAP
message. For more information, see Data Type Mapping and Conversions in the Oracle SALT
Programming Web Services and tmwsdlgen in the Oracle SALT Reference Guide.

Configuring External Web Services
To invoke an external Web Service from Tuxedo, the following configuration tasks need to be
performed:

Converting a WSDL file into Tuxedo Definitions

Post Conversion Tasks

../prog/datamap.html
../ref/comref.html#wp1106727

2-14 Oracle SALT Administration Guide

Converting a WSDL file into Tuxedo Definitions
Oracle SALT provides a WSDL conversion command utility to convert external WSDL files into
Tuxedo definitions. The WSDL file is converted using Extensible Stylesheet Language
Transformations (XSLT) technology. Apache Xalan Java 2.7.0 is bundled in SALT installation
package and is used as the default XSLT toolkit.

Oracle SALT WSDL converter is composed of two parts:

The xsl files, which process the WSDL file.

The command utility, wsdlcvt, invokes the Xalan toolkit. This wrapper script provides a
user friendly WSDL Converter interface.

The following sample command converts an external WSDL file and generates Tuxedo definition
files.
wsdlcvt -i http://api.google.com/GoogleSearch.wsdl -o GSearch

Table 2-3 lists the Tuxedo definition files generated by Oracle SALT WSDL Converter.

../ref/comref.html

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-15

Table 2-3 Tuxedo Definition Files generated by Oracle SALT WSDL Converter

Generated File Description

Tuxedo Service
Metadata Repository
input file

Oracle SALT WSDL Converter converts each wsdl:operation to a
Tuxedo service metadata syntax compliant service called SALT proxy
service. SALT proxy services are advertised by GWWS servers to accept
ATMI call from Tuxedo applications.

FML32 field table
definition file

Oracle SALT maps each wsdl:message to a Tuxedo FML32 typed
buffer. Oracle SALT WSDL Converter decomposes XML Schema of each
message and maps each basic XML snippet as an FML32 field. The
generated FML32 fields are defined in a definition table file, and the field
name equals to the XML element local name by default.

To access a SALT proxy service, Tuxedo applications must refer to the
generated FML32 fields to handle the request and response message.
FML32 environment variables must be set accordingly so that both Tuxedo
applications and GWWS servers can map between field names and field
identifier values.

Note: You may want to re-define the generated field names due to field
name conflict or some other reason. In that case, both Tuxedo
Service Metadata Definition input file and FML32 field table
definition file must be changed accordantly. For more information,
see “Resolving Naming Conflict For the Generated SALT Proxy
Service Definitions”.

Non-native WSDF file Oracle SALT WSDL Converter converts the WSDL file into a WSDF file,
which can be deployed to GWWS servers in the SALT deployment file for
outbound direction. The generated WSDF file is so-called non-native
WSDF file.

Note: Please do not deploy non-native WSDF files for inbound direction.

XML Schema files WSDL embedded XML Schema and imported XML Schema (XML
Schema content referenced with <xsd:import>) are saved locally as
.xsd files. These files are used by GWWS servers and need to be saved
under the same directory.

Note: New XML Schema environment variables XSDDIR and
XSDFILES must be set accordingly so that GWWS servers can
load these .xsd files.

2-16 Oracle SALT Administration Guide

WSDL-to-Tuxedo Service Metadata Keyword Mapping
Table 2-4 lists WSDL Element-to-Tuxedo Service Metadata Definition Keyword mapping rules.

WSDL-to-WSDF Mapping
Table 2-5 lists WSDL Element-to-WSDF Element mapping rules.

Table 2-4 WSDL Element-to-Tuxedo Service Metadata Definition Mapping

WSDL Element Corresponding Tuxedo
Service Metadata Definition
Keyword

Note

/wsdl:definitions
/wsdl:portType
/wsdl:operation
@name

service SALT proxy service name.

The keyword value equals to the operation local
name.

tuxservice SALT proxy service advertised name in
Tuxedo system.

If the wsdl operation local name is less than 15
characters, keyword value equals to the
operation local name, otherwise the keyword
value is the first 15 characters of the operation
local name.

/wsdl:definitions
/wsdl:portType
/wsdl:operation
/wsdl:input

inbuf=FML32 WSDL operation messages are always mapped
as Tuxedo FML32 buffer type.

Please do not change the buffer type any way.

Note: For more information about wsdl
message and FML32 buffer mapping,
see XML-to-Tuxedo Data Type
Mapping for External Web Services in
the Oracle SALT Programming Web
Services.

/wsdl:definitions
/wsdl:portType
/wsdl:operation
/wsdl:output

outbuf=FML32

/wsdl:definitions
/wsdl:portType
/wsdl:operation
/wsdl:fault

errbuf=FML32

../prog/datamap.html#wp1050031
../prog/datamap.html#wp1050031

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-17

Post Conversion Tasks
The following post conversion tasks need to be performed for configuring outbound Web service
applications:

Table 2-5 WSDL Element-to-WSDF Element Mapping

WSDL Element WSDF Element Note

/wsdl:definitions
@targetNamespace

/Definition
@wsdlNamespace

Each wsdl:definition maps to a WSDF
Definition.

/wsdl:definitions
/wsdl:binding

/Definition
/WSBinding

Each wsdl:binding object maps to a WSDF
WSBinding element.

/wsdl:definitions
/wsdl:binding
@type

/Definition
/WSBinding
/Servicegroup

Each wsdl:binding referenced wsdl:portType
object maps to the Servicegroup element of the
corresponding WSBinding element.

/wsdl:definitions
/wsdl:binding
/soap:binding

/Definition
/WSBinding
/SOAP
@version

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap/”, the SOAP version attribute value is
“1.1”;

If namespace prefix “soap” refers to URI
“http://schemas.xmlsoap.org/wsdl
/soap12/”, the SOAP version attribute value
is “1.2”.

/wsdl:definitions
/wsdl:binding
/soap:binding
@style

/Definition
/WSBinding
/SOAP
@style

The WSDF WSBinding SOAP message style
setting equals to the corresponding WSDL soap
binding message style setting (“rpc” or
“document”).

/wsdl:definitions
/wsdl:binding
/wsdl:operation

/Definition
/WSBinding
/Servicegroup
/Service

Each wsdl:operation object maps to a Service
element of the corresponding WSBinding
element.

/wsdl:definitions
/wsdl:port
/soap:address

/Definition
/WSBinding
/SOAP
/AccessingPoints
/Endpoint

Each soap:address endpoint defined for a
wsdl:binding object maps to a Endpoint
element of the corresponding WSBinding
element.

2-18 Oracle SALT Administration Guide

Resolving Naming Conflict For the Generated SALT Proxy Service Definitions

Loading the Generated SALT Proxy Service Metadata Definitions

Setting Environment Variables for GWWS Runtime

Resolving Naming Conflict For the Generated SALT Proxy Service Definitions
When converting a WSDL file, unexpected naming conflicts may be found due to truncation or
lost context information. Before using the generated Service Metadata Definitions and FML32
field table files, the following potential naming conflicts must be eliminated first.

Eliminating the duplicated service metadata keyword “tuxservice” definitions

The keyword tuxservice in the SALT proxy service metadata definition is the truncated
value of the original Web Service operation local name if the operation name is more than
15 characters. The truncated tuxservice value may be duplicated for multiple SALT
proxy service entries. Since GWWS server uses tuxservice values as the advertised
service names, so you must manually resolve the naming conflict among multiple SALT
proxy services to avoid uncertain service request delivery. To resolve the naming conflict,
you should assign a unique and meaningful name to tuxservice.

Eliminating the duplicated FML32 field definitions

When converting a external WSDL file into Tuxedo definitions, each wsdl:message is
parsed and mapped as an FML32 buffer format which containing a set of FML32 fields to
represent the basic XML snippets of the wsdl:message. By default, The generated FML32
fields are named using the corresponding XML element local names.

The FML32 field definitions in the generated field table file are sorted by field name so
that duplicated names can be found easily. In order to achieve a certain SOAP/FML32
mapping, the field name conflicts must be resolved. You should modify the generated
duplicated field name with other unique and meaningful FML32 field name values. The
corresponding Service Metadata Keyword param values in the generated SALT proxy
service definition must be modified accordingly. The generated comments of the FML32
fields and Service Metadata Keyword “param” definitions are helpful in locating the
corresponding name and param.

Loading the Generated SALT Proxy Service Metadata Definitions
After potential naming conflicts are resolved, you should load the SALT proxy service metadata
definitions into the Tuxedo Service Metadata Repository through tmloadrepos utility. For more
information, see tmloadrepos, in the Oracle Tuxedo Service Metadata Repository
Documentation.

../metarepo.html
../metarepo.html

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-19

Setting Environment Variables for GWWS Runtime
Before booting GWWS servers for outbound web services, the following environment variable
settings must be performed.

Update environment variable FLDTBLDIR32 and FIELDTBLS32 to add the generated
FML32 field table files.

Place all excerpted XML Schema files into one directory, and set environment variable
XSDDIR and XSDFILES accordingly.

– Environment variable XSDDIR and XSDFILES are introduced in SALT 2.0 release. They
are used by the GWWS server to load all external XML Schema files at run time.
Multiple XML Schema file names should be delimited with comma ‘,’. For instance, if
you placed XML Schema files: a.xsd, b.xsd and c.xsd in directory
/home/user/myxsd, you must set environment variable XSDDIR and XSDFILES as
follows before booting the GWWS server:
XSDDIR=/home/user/myxsd

XSDFILES=a.xsd,b.xsd,c.xsd

Creating the SALT Deployment File
The SALT Deployment file (SALTDEPLOY) defines a SALT Web service application. The
SALTDEPLOY file is the major input for Web service application in the binary SALTCONFIG
file.

To create a SALTDEPLOY file, do the following steps:

1. Importing the WSDF Files

2. Configuring the GWWS Servers

3. Configuring System Level Resources

For more information, see SALT Deployment File Reference in the Oracle SALT Reference
Guide.

Importing the WSDF Files
You should import all your required WSDF files to the SALT deployment file. Each imported
WSDF file must have a unique WSDF name which is used by the GWWS servers to make
deployment associations. Each imported WSDF file must be accessible through the location
specified in the SALTDEPLOY file.

../ref/deploy.html

2-20 Oracle SALT Administration Guide

Listing 2-5 shows how to import WSDF files in the SALTDEPLOY file.

Listing 2-5 Importing WSDF Files in the SALTDEPLOY File

<Deployment ..>

<WSDF>

<Import location="/home/user/simpapp_wsdf.xml" />

<Import location="/home/user/rmapp_wsdf.xml" />

<Import location="/home/user/google_search.wsdf" />

</WSDF>

...

</Deployment>

Configuring the GWWS Servers
Each GWWS server can be deployed with a group of inbound WSBinding objects and a group of
outbound WSBinding objects defined in the imported WSDF files. Each WSBinding object is
referenced using attribute “ref=<wsdf_name>:<WSBinding id>”. For inbound WSBinding
objects, each GWWS server must specify at least one access endpoint as an inbound endpoint from
the endpoint list in the WSBinding object. For outbound WSBinding objects, each GWWS server
can specify zero or more access endpoints as outbound endpoints from the endpoint list in the
WSBinding object.

Listing 2-6 shows how to configure GWWS servers with both inbound and outbound endpoints.

Listing 2-6 GWWS Server Defined In the SALTDEPLOY File

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

<Inbound>

<Binding ref="app1:app1_binding">

<Endpoint use="simpapp_GWWS1_HTTPPort" />

<Endpoint use="simpapp_GWWS1_HTTPSPort" />

</Binding>

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-21

</Inbound>

<Outbound>

<Binding ref="app2:app2_binding">

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

<Binding ref="app3:app3_binding" />

</Outbound>

</GWInstance>

</WSGateway>

...

</ Deployment>

Configuring GWWS Server Level Properties
The GWWS server can be configured with properties that switch feature on/off or set argument
to tune the server’s performance.

Properties are configured in the <GWInstance> child element <Properties>. Each individual
property is defined by using the <Property> element which contains a “name” attribute and a
“value” attribute). Different “name” attributes represent different property elements that contain
a value. Table 2-6 lists GWWS server level properties.

Table 2-6 GWWS Server Level Properties

Property Name Description Value Range Default

enableMultiEncoding Switch on/off the SOAP message
multiple encoding support

“true”|“false” “false”

max_backlog Specify socket backlog control value [1, 255] 20

max_content_length Specify the maximum allowed incoming
HTTP message content length.

[0, 1G](byte)

(Can set
suffix
‘M’,’G’, e.g.
1.5M, 0.2G)

0

(means no
limit)

thread_pool_size Specify the GWWS server thread pool
size.

[1, 1024] 16

2-22 Oracle SALT Administration Guide

Note: For more information about GWWS multiple encoding support, see “Configuring
Multiple Encoding Support” on page 2-23.

For more information about Performance tuning properties, see “Tuning the GWWS
Server” on page 3-3.

Listing 2-7 shows an example of how GWWS properties are configured.

Listing 2-7 Configuring GWWS Server Properties

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

.......

<Properties>

<Property name="thread_pool_size" value="20"/>

<Property name="enableMultiEncoding" value="true"/>

<Property name="timeout" value="600"/>

</Properties>

</GWInstance>

</WSGateway>

...

</ Deployment>

timeout Specify the network timeout in seconds. [1, 65535]

(unit:sec)

300

wsrm_acktime Specify the Reliable Messaging
Acknowledgement message reply
policy. GWWS servers support replying
acknowledgement messages either after
receiving the SOAP request from
network immediately or after the Tuxedo
service returns the response message.

“NETRECV” |
“RPLYRECV”

“NETRECV”

Table 2-6 GWWS Server Level Properties

Property Name Description Value Range Default

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-23

Configuring Multiple Encoding Support
SALT supports multiple encoding SOAP messages and the encoding mappings between SOAP
message and Tuxedo buffer. SALT supports the following character encodings:

ASCII, BIG5, CP1250, CP1251, CP1252, CP1253, CP1254, CP1255, CP1256,
CP1257, CP1258, CP850, CP862, CP866, CP874, EUC-CN, EUC-JP, EUC-KR,
GB18030, GB2312, GBK, ISO-2022-JP, ISO-8859-1, ISO-8859-13,
ISO-8859-15, ISO-8859-2, ISO-8859-3, ISO-8859-4, ISO-8859-5,
ISO-8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9, JOHAB, KOI8-R,
SHIFT_JIS, TIS-620, UTF-16, UTF-16BE, UTF-16LE, UTF-32, UTF-32BE,
UTF-32LE, UTF-7, UTF-8

To enable the GWWS multiple encoding support, GWWS server level property
“enableMultiEncoding” should be set to “true”.

Note: GWWS internally converts non UTF-8 external messages into UTF-8. However,
encoding conversion hurts server performance. By default, encoding conversion is turned
off and messages that are not UTF-8 encoded are rejected.

Listing 2-8 Configuring GWWS Server Multiple Encoding Property

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

.......

<Properties>

<Property name="enableMultiEncoding" value="true"/>

</Properties>

</GWInstance>

</WSGateway>

...

</ Deployment>

Table 2-7 explains the detailed SOAP message and Tuxedo buffer encoding mapping rules if the
GWWS server level multiple encoding switch is turned on.

2-24 Oracle SALT Administration Guide

Configuring System Level Resources
Oracle SALT defines a set of global resources shared by all GWWS servers in the SALTDEPLOY
file. The following system level resources can be configured in the SALTDEPLOY file:

Certificates

Table 2-7 SALT Message Encoding Mapping Rules

Mapping from ... Mapping to ... Encoding Mapping Rule

SOAP/XML Tuxedo Typed Buffer string/mbstring/xml buffer or field
characters’ encoding equals to SOAP xml
encoding.

STRING Typed Buffer SOAP/XML GWWS sets the target SOAP message in UTF-8
encoding, and assumes the original STRING
buffer containing only UTF-8 encoding
characters.

Note: Tuxedo Developers must ensure the
STRING characters are in UTF-8
encoding.

MBSTRING/XML Typed
Buffer

SOAP/XML SOAP xml encoding equals to
MBSTRING/XML encoding.

FML/32, VIEW/32 Typed
Buffer that containing the
same encoding setting for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to FLD_MBSTRING
encoding, the original Typed buffer field
characters are not changed in the SOAP
message.

Note: Tuxedo Developers must ensure the
FLD_STRING characters in the same
buffer are in consistent encoding.

FML/32, VIEW/32 Typed
Buffer that containing the
different encodings for
multiple FLD_MBSTRING
fields

SOAP/XML SOAP xml encoding is set to UTF-8, the
original Typed buffer FLD_MBSTRING field
characters in other encodings are converted into
UTF-8 in the SOAP message.

Note: Tuxedo Developers must ensure the
FLD_STRING characters in the same
buffer are in UTF-8 encoding.

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-25

Plug-in load libraries

Configuring Certificates
Certificate information must be configured in order for the GWWS server to create an SSL listen
endpoint, or to use X.509 certificates for authentication and/or message signature. All GWWS
servers defined in the same deployment file shares the same certificate settings, including the
private key file, trusted certificate directory, and so on.

The private key file is configured using the <Certificate>/<PrivateKey> sub-element. The
private key file must be in PEM file format and stored locally.

SSL clients can optionally be verified if the <Certificate>/<VerifyClient> sub-element is
set to true. By default, the GWWS server does not verify SSL clients.

If SSL clients are to be verified, and/or the X.509 certificate authentication feature is enabled, a
set of trusted certificates must be stored locally and located by the GWWS server. There are two
ways to define GWWS server trusted certificates:

1. Include all certificates in one PEM format file and define the file path using the
<<Certificate>/<TrustedCert> sub-element.

2. Saving separate certificate PEM format files in one directory and define the directory path
using the <<Certificate>/<CertPath> sub-element.

Listing 2-9 shows a SALTDEPLOY file segment configuring GWWS server certificates.

Listing 2-9 Configuring Certificates In the SALTDEPLOY File

<Deployment ..>

...

<System>

<Certificates>

<PrivateKey>/home/user/gwws_cert.pem</PrivateKey>

<VerifyClient>true</VerifyClient>

<CertPath>/home/user/trusted_cert</CertPath>

</Certificates>

</System>

</Deployment

2-26 Oracle SALT Administration Guide

Configuring Plug-in Libraries
A plug-in is a set of functions that are called when the GWWS server is running. Oracle SALT
provides a plug-in framework as a common interface for defining and implementing plug-ins.
Plug-in implementation is carried out through a dynamic library that contains the actual function
code. The implementation library can be loaded dynamically during GWWS server start up. The
functions are registered as the implementation of the plug-in interface.

In order for the GWWS server to load the library, the library must be specified using the
<Plugin>/<Interface> element in the SALTDEPLOY file.

Listing 2-10 shows a SALTDEPLOY file segment configuring multiple customized plug-in
libraries to be loaded by the GWWS servers.

Listing 2-10 Configuring Plug-in Libraries In the SALTDEPLOY File

<Deployment ..>

...

<System>

<Plugin>

<Interface lib=”plugin_1.so” />

<Interface lib=”plugin_2.so” />

</Plugin>

</System>

</Deployment

Note: If the plug-in library is developed using the SALT 2.0 plug-in interface, the “id” and
“name”attributes for the interface do not need to be specified. These values can be
obtained through plugin interfaces.

For more information, see Using Plug-ins with Oracle SALT in Oracle SALT
Programming with Web Services.

Configuring Advanced Web Service Messaging Features
Oracle SALT currently supports the following advanced Web Service Messaging features:

Web Service Addressing

Supports both inbound and outbound asynchronous Web service messaging.

../prog/plugin.html

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-27

Web Service Reliable Messaging

Supports inbound Web Service reliable message delivery.

Web Service Addressing
Oracle SALT supports Web service addressing for both inbound and outbound services. The Web
service addressing (WS-Addressing) messages used by the GWWS server must comply with the
Web Service Addressing standard (W3C Member Submission 10 August 2004).

Inbound services do not require specific Web service addressing configuration. The GWWS server
accepts and responds accordingly to both WS-Addressing request messages and non
WS-Addressing request messages.

Outbound services require Web service addressing configuration as described in the following
sections:

Configuring the Addressing Endpoint for Outbound Services

Disabling WS-Addressing

Configuring the Addressing Endpoint for Outbound Services
For outbound services, Web service addressing is configured at the Web service binding level. In
the SALTDEPLOY file, each GWWS server can specify a WS-Addressing endpoint by using the
<WSAddressing> element for any referenced outbound WSBinding object to enable
WS-Addressing.

Once the WS-Addressing endpoint is configured, the GWWS server creates a listen endpoint at start
up. All services defined in the outbound WSBinding are invoked with WS-Addressing messages.

Listing 2-11 shows a SALTDEPLOY file segment enabling WS-Addressing for a referenced
outbound Web service binding.

Listing 2-11 WS-Addressing Endpoint Defined for Outbound Web Service Binding

<Deployment ..>

...

<WSGateway>

<GWInstance id="GWWS1">

...

<Outbound>

<Binding ref="app1:app1_binding">

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

2-28 Oracle SALT Administration Guide

<WSAddressing>

<Endpoint address=”https://myhost:8801/app1_async_point”>

</WSAddressing>

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

<Binding ref="app2:app2_binding">

<WSAddressing>

<Endpoint address=”https://myhost:8802/app2_async_point”>

</WSAddressing>

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

</Outbound>

...

</GWInstance>

</WSGateway>

...

</ Deployment>

Notes: In a GWWS server, each outbound Web Service binding can be associated with a particular
WS-Addressing endpoint address. These endpoints can be defined with the same
hostname and port number, but the context path portion of the endpoint addresses must
be different.

If the external Web service binding does not support WS-Addressing messages,
configuring Addressing endpoints may result in run time failure.

Disabling WS-Addressing
No matter you create a WS-Addressing endpoint or not in the SALTDEPLOY file, you can
explicitly disable the Addressing capability for particular outbound services in the WSDF. To
disable the Addressing capability for a particular outbound service, you should use the property
name “disableWSAddressing” with a value set to “true” in the corresponding <Service>
definition in the WSDF file. This property has no impact to any inbound services.

Listing 2-12 shows WSDF file segment disabling Addressing capability.

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-29

Listing 2-12 Disabling Service Level WS-Addressing

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Service name="toupper">

<Property name="disableWSAddressing" value=”true” />

</Service>

<Service name="tolower" />

</Servicegroup>

....

</WSBinding>

</Definition>

Web Service Reliable Messaging
Oracle SALT currently supports Reliable Messaging for inbound services only. To enable
Reliable Messaging functionality, you must create a Web Service Reliable Messaging policy file
and include the policy file in the WSDF. The policy file must comply with the
WS-ReliableMessaging Policy Assertion Specification (February 2005).

Note: A WSDF containing a Reliable Messaging policy definition should be used by the GWWS
server for inbound direction only.

Creating the Reliable Messaging Policy File
A Reliable Messaging Policy file is a general WS-Policy file containing WS-ReliableMessaging
Assertions. The WS-ReliableMessaging Assertion is an XML segment that describes features
such as the version of the supported WS-ReliableMessage specification, the source endpoint’s
retransmission interval, the destination endpoint’s acknowledge interval, and so on.

For more information about the WS-ReliableMessaging policy file format, see the Oracle SALT
WS-ReliableMessaging Policy Assertion Reference in the Oracle SALT Reference Guide.

Listing 2-13 shows a Reliable Messaging policy file example.

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
../ref/rm_assert.html
../ref/rm_assert.html

2-30 Oracle SALT Administration Guide

Listing 2-13 Reliable Messaging Policy File Example

<?xml version="1.0"?>

<wsp:Policy wsp:Name="ReliableSomeServicePolicy"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”

xmlns:beapolicy="http://www.bea.com/wsrm/policy">

<wsrm:RMAssertion>

<wsrm:InactivityTimeout Milliseconds="600000" />

<wsrm:AcknowledgementInterval Milliseconds="2000" />

<wsrm:BaseRetransmissionInterval Milliseconds="500"/>

<wsrm:ExponentialBackoff />

<beapolicy:Expires Expires="P1D" />

<beapolicy:QOS QOS=”ExactlyOnce InOrder" />

</wsrm:RMAssertion>

</wsp:Policy>

Specifying the Reliable Messaging Policy File in the WSDF File
You must reference the WS-ReliableMessaging policy file at the <Servicegroup> level in the
native WSDF file. The following segment of the WSDF file shows how to reference the
WS-ReliableMessaging policy file.

Listing 2-14 Reference the WS-ReliableMessaging Policy At the Endpoint Level

<Definition ...>

<WSBinding ...>

<Servicegroup ...>

<Policy location=”RMPolicy.xml” />

<Service ... />

<Service ... />

...

</Servicegroup ...>

</WSBinding>

</Definition>

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-31

Note: Reliable Messaging in Oracle SALT does not support process/system failure scenarios,
which means SALT does not store the message in a persistent storage area. Oracle SALT
works in a direct mode with the SOAP client. Usually, system failure recovery requires
business logic synchronization between the client and server.

Configuring Security Features
Oracle SALT provides security support at both transport level and SOAP message level. The
following topics explains how to configure security features for each level:

Configuring Transport Level Security

Configuring Message Level Web Service Security

Configuring Transport Level Security
Oracle SALT provides point-to-point security using SSL link-level security and supports HTTP
basic authentication mechanism for both inbound and outbound service authentication.

Setting Up SSL Link-Level Security
To set up link-level security using SSL at inbound endpoints, you can simply specify the endpoint
address with prefix “https://”. The GWWS server who uses this inbound endpoint creates SSL
listen port and make SSL secured connections with Web Service Clients. SSL features need to
specify certificates settings. For more information about certificate settings, see “Configuring
Certificates”.

GWWS server automatically creates SSL secured connection to outbound endpoints that are
published with URLs that having prefix “https://”.

Configuring Inbound HTTP Basic Authentication
Oracle SALT depends on the Tuxedo security framework for Web Service client authentication.
There is no special configuration at Oracle SALT side to enable inbound HTTP Basic
Authentication. If Tuxedo system requires user credential, HTTP Basic Authentication is simply
an alternative for Web Service client program to carry the user credential.

The GWWS gateway supports Tuxedo domain security configuration for the following two
authentication patterns:

Application password (APP_PW)

User-level authentication (USER_AUTH)

2-32 Oracle SALT Administration Guide

The GWWS server passes the following string from the HTTP header of the client SOAP request
for Tuxedo authentication.

Authorization: Basic <base64Binary of username:password>

The following is an example of a string from the HTTP header:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

In this example, the client sends the Tuxedo username “Aladdin” and the password “open
sesame”, and uses this paired value for Tuxedo authentication.

Using Application Password (APP_PW)

If Tuxedo uses APP_PW, then the HTTP username value is ignored and the GWWS server
only uses the password string as the Tuxedo application password to check the
authentication.

Using User-level Authentication (USER_AUTH)

If Tuxedo uses USER_AUTH, then both the HTTP username and password value are used.
In this case, the GWWS server does not check the Tuxedo application password.

Note: ACL and MANDATORY_ACL are not supported for Web service clients, which means the
Tuxedo system ignores any ACL-related configuration specifications. Oracle SALT
does not make group information available for Web service clients.

Configuring Outbound HTTP Basic Authentication
Oracle SALT supports customers to develop authentication plug-in to prepare the user credential
for the outbound HTTP Basic Authentication. Outbound HTTP Basic Authentication is
configured at Endpoint level. If an outbound Endpoint requires user profile in the HTTP message,
you must specify the HTTP Realm for the HTTP endpoint in the WSDF file. The GWWS server
invokes authentication plug-in library to prepare the username and password, and send them
using HTTP Basic Authentication mechanism in the request message.

Listing 2-15 shows how to enable HTTP Basic Authentication for the outbound endpoints.

Listing 2-15 Enabling HTTP Basic Authentication For the Outbound Endpoint

<Definition ...>

<WSBinding id="simpapp_binding">

<SOAP>

<AccessingPoints>

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-33

<Endpoint id=”...” address=”...”>

<Realm>SIMP_REALM</Realm>

</Endpoint>

</AccessingPoints>

</SOAP>

<Servicegroup id="simpapp">

....

</Servicegroup>

....

</WSBinding>

......

</Definition>

Once a service request is sending to an outbound endpoint specified with <Realm> setting, the
GWWS server passes the Tuxedo client uid and gid to the authentication plug-in function, so that
the plug-in can determine HTTP Basic Authentication username/password according to the
Tuxedo client information. To obtain Tuxedo client uid / gid for HTTP basic authentication
username/password mapping, Tuxedo security level may also need to be configured in the
UBBCONFIG file. For more information, see “Configuring Tuxedo Security Level for Outbound
HTTP Basic Authentication”.

For more information about how to develop an outbound authentication plug-in, see
Programming Outbound Authentication Plug-ins in the Oracle SALT Programming Web
Services.

Configuring Message Level Web Service Security
Oracle SALT supports Web Service Security 1.0 and 1.1 specification for message level security.
You can use message-level security in Oracle SALT to assure:

Authentication, by requiring username or X.509 tokens

Inbound request message integrity, by requiring the soap body signature

Main Use Cases of Web Service Security
Oracle SALT implementation of the Web Service Security: SOAP Message Security specification
supports the following use cases:

../prog/plugin.html#wp1040794

2-34 Oracle SALT Administration Guide

Include a token (username, or X.509) in the SOAP message for authentication.

Include a token (X.509) and the soap body signature in the SOAP message for integrity.

Using WS-SecurityPolicy Files
Oracle SALT includes a number of WS-Security Policy 1.0 and 1.2 files you can use for message
level security use cases.

The WS-Policy files can be found at $TUXDIR/udataobj/salt/policy once you have
successfully installed Oracle SALT.

The following table lists the default WS-Security Policy files bundled by Oracle SALT.

The above policy files except WS-Security Policy 1.2 UserToken file can be referenced at
<Servicegroup> or <Service> level in the native WSDF file. The WSSP 1.2 UserToken file can
only be referenced at <Servicegroup> level. The sample “wsseapp” shows how to clip the
WSSP 1.2 UserToken file used in <Service> level.

Table 2-8 WS-Security Policy Files Provided By Oracle SALT

File Name Purpose

wssp1.0-username-au
th.xml

WS-Security Policy 1.0. Plain Text Username Token for Service
Authentication

wssp1.0-x509v3-auth
.xml

WS-Security Policy 1.0. X.509 V3 Certificate Token for Service
Authentication

wssp1.0-signbody.xm
l

WS-Security Policy 1.0. Signature on SOAP:Body for verification of
X.509 Certificate Token

wssp1.2-Wss1.0-User
nameToken-plain-aut
h.xml

WS-Security Policy 1.2. Plain Text Username Token for Service
Authentication

wssp1.2-Wss1.1-X509
V3-auth.xml

WS-Security Policy 1.2. X.509 V3 Certificate Token for Service
Authentication

wssp1.2-signbody.xm
l

WS-Security Policy 1.2. Signature on SOAP:Body for verification of
X.509 Certificate Token

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-35

Listing 2-16 shows a combination of policy assignment making that the service “TOUPPER”
requires client send a UsernameToken (in plain text format) and an X509v3Token in request, and
also require the SOAP:Body part of message is signed with the X.509 token.

Listing 2-16 WS-Security Policy Usage

<Definition ...>

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

<Policy location="salt:wssp1.2-Wss1.1-X509V3-auth.xml"/>

<Service name="TOUPPER" >

<Policy location="D:/wsseapp/wssp1.2-UsernameToken-Plain.xml"/>

<Policy location="salt:wssp1.2-signbody.xml" use="input"/>

</Service>

</Servicegroup>

....

</WSBinding>

......

</Definition>

Policy is referred with “location” attribute of the <Policy> element. A prefix “salt:” means a
SALT default bundled policy file is used. User-defined policy file can be used by directly
specifying the file path.

Notes: If a policy is referred at <Servicegroup> level, it will apply to all services in this service
group.

The “signbody” policy must be used with the attribute “use” set as “input”, which
specifies the policy applied only for input message. This is necessary because we do
not sign the SOAP:Body of output message.

Compiling SALT Configuration
Compiling a SALT configuration file means generating a binary version of the file (SALTCONFIG)
from the XML version SALTDEPLOY file. To compile a configuration file, run the wsloadcf
command. wsloadcf parses a deployment file and loads the binary file.

2-36 Oracle SALT Administration Guide

wsloadcf reads a deployment file and all imported WSDF files and WS-Policy files referenced
in the deployment file, checks the syntax according to the XML schema of each file format, and
optionally loads a binary configuration file called SALTCONFIG. The SALTCONFIG and
(optionally) SALTOFFSET environment variables point to the SALTCONFIG file and (optional)
offset where the information should be stored.

wsloadcf validates the given SALT configuration files according to the predefined XML
Schema files. XML Schema files needed by Oracle SALT can be found at directory:
$TUXDIR/udataobj/salt.

wsloadcf can execute for validating purpose only without generating the binary version
SALTCONFIG once option “-n” is specified.

For more information about wsloadcf, see wsloadcf reference in the Oracle SALT Reference
Guide.

Configuring the UBBCONFIG File for Oracle SALT
After configuring and compiling SALT configuration, Tuxedo UBBCONFIG file needs to be
updated to apply SALT components in the Tuxedo application. Table 2-9 lists the UBBCONFIG file
configuration tasks for Oracle SALT.

Table 2-9 UBBCONFIG File Configuration Tasks for Oracle SALT

Configuration Tasks Required Optional

Configuring the TMMETADATA Server in the *SERVERS Section X

Configuring the GWWS Servers in the *SERVERS Section X

Updating System Limitations in the UBBCONFIG File X

Configuring Certificate Password Phrase For the GWWS Servers X

Configuring Tuxedo Authentication for Web Service Clients X

Configuring Tuxedo Security Level for Outbound HTTP Basic
Authentication

X

../ref/comref.html#wp1110855

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-37

Configuring the TMMETADATA Server in the *SERVERS Section
Oracle SALT requires at least one TMMETADATA server defined in the UBBCONFIG file. Multiple
TMMETADATA servers are also allowed to increase the throughput of accessing the Tuxedo service
definitions.

Listing 2-17 lists a segment of the UBBCONFIG file that shows how to define TMMETADATA servers
in a Tuxedo application.

Listing 2-17 TMMETADATA Servers Defined In the UBBCONFIG File *SERVERS Section

......

*SERVERS

TMMETADATA SRVGRP=GROUP1 SRVID=1

CLOPT="-A -- –f domain_repository_file -r"

TMMETADATA SRVGRP=GROUP1 SRVID=2

CLOPT="-A -- –f domain_repository_file"

......

Note: Maintaining only one Service Metadata Repository file for the whole Tuxedo domain is
highly recommended. To ensure this, multiple TMMETADATA servers running in the
Tuxedo domain must point to the same repository file.

For more information, see “Managing The Tuxedo Service Metadata Repository” in the
Tuxedo 9.1 documentation.

Configuring the GWWS Servers in the *SERVERS Section
To boot GWWS instances defined in the SALTDEPLOY file, the GWWS servers must be defined in
the *SERVERS section of the UBBCONFIG file. You can define one or more GWWS server instances
concurrently in the UBBCONFIG file. Each GWWS server must be assigned with a unique instance id
with the option “-i” within the Tuxedo domain. The instance id must be present in the XML
version SALTDEPLOY file and the generated binary version SALTCONFIG file.

Listing 2-18 lists a segment of the UBBCONFIG file that shows how to define GWWS servers in a
Tuxedo application.

http://edocs.bea.com/tuxedo/tux91/ads/admrp.htm#1022468

2-38 Oracle SALT Administration Guide

Listing 2-18 GWWS Servers Defined In the UBBCONFIG File *SERVERS Section

......

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

CLOPT="-A -- –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

CLOPT="-A -- –i GW2"

GWWS SRVGRP=GROUP2 SRVID=20

CLOPT="-A -- -c saltconf_2.xml –i GW3"

......

For more information, see “GWWS” in the Oracle SALT Reference Guide.

Note: Be sure that the TMMETADATA system server is set up in the UBBCONFIG file to start before
the GWWS server boots. Because the GWWS server calls services provided by TMMETADATA,
it must boot after TMMETADATA.

To ensure TMMETADATA is started prior to being called by the GWWS server, put
TMMETADATA before GWWS in the UBBCONFIG file or use SEQUENCE parameters in
*SERVERS definition in the UBBCONFIG file.

Note: SALT configuration information is pre-compiled with wsloadcf to generated a binary
version SALTCONFIG file. GWWS server reads SALTCONFIG file at start up. Environment
variable SALTCONFIG must be set correctly with the binary version SALTCONFIG file
entity before booting GWWS servers.

Note: Option “-c” is deprecated in the current version Oracle SALT. In SALT 1.1 release,
option “-c” is used to specify SALT 1.1 configuration file for the GWWS server. In SALT
2.0, GWWS server reads SALTCONFIG file at start up. GWWS server specified with this option
can be booted with a warning message to indicate this deprecation. The specified file can
be arbitrary and is not read by the GWWS server.

Updating System Limitations in the UBBCONFIG File
When configuring the Tuxedo domain with SALT GWWS servers, you need to plan and update
Tuxedo system limitations defined in the UBBCONFIG file according to your SALT application
requirements.

../ref/comref.html#wp1111835

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-39

Tip: Defining enough MAXSERVERS number in the *RESOURCES section

Oracle SALT requires the following system servers to be started in a Tuxedo domain:
TMMETADATA and GWWS. The number of TMMETADATA and GWWS server must be accounted for in
the MAXSERVERS value.

Tip: Defining enough MAXSERVICES number in the *RESOURCES section

When the GWWS server working in the outbound direction, external wsdl:operations are mapped
with Tuxedo services and advertised via the GWWS servers. The number of the advertised services
by all GWWS servers must be accounted for in the MAXSERVICES value.

Tip: Defining enough MAXACCESSERS number in the *RESOURCES section

MAXACCESSERS value is used to specify the default maximum number of clients and servers that
can be simultaneously connected to the Tuxedo bulletin board on any particular machine in this
application. The number of TMMETADATA and GWWS server, maximum concurrent Web Service
client requests must be accounted for in the MAXACCESSERS value.

Tip: Defining enough MAXWSCLIENTS number in the *MACHINES section

When the GWWS server working in the inbound direction, each Web Service client is deemed a
workstation client in Tuxedo system; therefore, MAXWSCLIENTS must be configured with a valid
number in UBBCONFIG for the machine where the GWWS server is deployed. The number shares.

Configuring Certificate Password Phrase For the GWWS Servers
Configuring security password phrase is required when setting up certificates for Oracle SALT.
Certificates setting is desired when the GWWS servers enabling SSL link-level encryption and/or
Web Service Security X.509 Token and signature features. The certificate private key file needs
to be created and encrypted with a password phrase.

When the GWWS servers are specified with certificate related features, they are required to read the
private key file and decrypt them using the password phrase. To configure password phrase for
each GWWS server, keyword SEC_PRINCIPAL_NAME and SEC_PRINCIPAL_PASSVAR must be
specified under each desired GWWS server entry in the *SERVERS section. During compiling the

2-40 Oracle SALT Administration Guide

UBBCONFIG file with tmloadcf, the administrator must type the password phrase, which can be
used to decrypt the private key file correctly.

Note: Only one private key file can be specified in the SALT deployment file. All the GWWS
servers defined in the SALT deployment file must be provided the same password phrase
for the private key file decryption.

Listing 2-19 lists a segment of the UBBCONFIG file that shows how to define security password
phrase for the GWWS servers.

Listing 2-19 Security Password Phrase Defined in the UBBCONFIG File For the GWWS Servers

......

*SERVERS

GWWS SRVGRP=GROUP1 SRVID=10

SEC_PRINCIPAL_NAME="gwws_certkey"

SEC_PRINCIPAL_VAR="gwws_certkey"

CLOPT="-A -- –i GW1"

GWWS SRVGRP=GROUP1 SRVID=11

SEC_PRINCIPAL_NAME="gwws_certkey"

SEC_PRINCIPAL_PASSVAR="gwws_certkey"

CLOPT="-A -- –i GW2"

......

For more information, see “UBBCONFIG(5)“in the Tuxedo 9.1 documentation.

Configuring Tuxedo Authentication for Web Service Clients
Oracle SALT GWWS servers rely on Tuxedo authentication framework to check the validity of the
Web Service clients. If your legacy Tuxedo application is already applied with, Web Service
clients must send user credential using one of the following approaches:

HTTP Basic Authentication in the HTTP message header

Web Service Security Username Token in the SOAP message header

Contrarily, if you want to authenticate Web Service clients for Oracle SALT, you must configure
Tuxedo authentications in the Tuxedo domain.

http://edocs.bea.com/tuxedo/tux91/rf5/rf5j.htm#1531911

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-41

For more information about Tuxedo authentication, see “Administering Authentication” in the
Oracle Tuxedo 9.1 Documentation.

Configuring Tuxedo Security Level for Outbound HTTP Basic Authentication
To obtain Tuxedo client uid / gid for outbound HTTP Basic Authentication username
/password mapping, you need to configure Tuxedo Security level as USER_AUTH, ACL or
MANDATORY_ACL in the UBBCONFIG file.

Listing 2-20 lists a segment of the UBBCONFIG file that shows how to define security level ACL
in the UBBCONFIG file.

Listing 2-20 Security Level ACL Defined in the UBBCONFIG File For Outbound HTTP Basic Authentication

*RESOURCES

IPCKEY ...

......

SECURITY ACL

......

Configuring Oracle SALT In Tuxedo MP Mode
To set up GWWS servers running on multiple machines within a MP mode Tuxedo domain, each
Tuxedo machine must be defined with a separate SALTDEPLOY file and a set of separate other
components.

You must propagate the following global resources across different machines:

Certificates.

Private key file and the trusted certificate files must be accessible from each machine
according to the settings defined in the SALTDEPLOY file.

Plug-in load libraries.

Plug-in shared libraries must be compiled on each machine and must be accessible
according to the settings defined in the SALTDEPLOY file.

You may define two GWWS servers running on different machine with the same functionality by
associating the same WSDF files. But it requires manual propagation of the following artifacts:

http://edocs.bea.com/tuxedo/tux91/sec/secadm.htm#1409710

2-42 Oracle SALT Administration Guide

The WSDF files

The WS-Policy files

FML32 field table definition files if Tuxedo Services consume FML32 typed buffers

XML Schema files excerpted by wsdlcvt.

Migrating from Oracle SALT 1.1
This section describes the following two possible migrating approaches for SALT 1.1 customers
who plan to upgrade to SALT 2.0 release:

Running GWWS servers with SALT 1.1 Configuration File

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

Running GWWS servers with SALT 1.1 Configuration File
After upgrading from SALT 1.1 to SALT 2.0 release, you may still want to run your existing
SALT applications with the original SALT 1.1 configuration file. SALT 2.0 definitely supports
that.

SALT configuration compiler utility, wsloadcf, supports to load the binary version SALTCONFIG
from one SALT 1.1 format configuration file.

To run SALT 2.0 GWWS servers with SALT 1.1 Configuration file, you need to perform the
following steps:

1. Load the binary version SALTCONFIG from the SALT 1.1 format configuration file via
wsloadcf.

2. Set environment variable SALTCONFIG before booting the GWWS servers.

3. Boot the GWWS servers associated with this SALT 1.1 configuration file.

Note: If customers have more than one SALT 1.1 configuration files defined in a Tuxedo
domain, customers need to follow step 1 to 3 to generate more binary version
SALTCONFIG files and boot corresponding GWWS servers.

Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration
File
When wsloadcf loads a binary version SALTCONFIG from a SALT 1.1 configuration file, it also
convert this SALT 1.1 configuration file into one WSDF file and one SALTDEPLOY file.

Conf igur ing Tuxedo Web Se rv ices

Oracle SALT Administration Guide 2-43

It’s highly recommended to start using the SALT 2.0 styled configuration once you get the
converted files from SALT 1.1 configuration.

Note: If customers want to incorporate more than one SALT 1.1 configuration files into one
SALT 2.0 deployment, customers need to manually edit the SATLDEPLOY file for
importing the other WSDF files.

The following sample lists the converted SALTDEPLOY file and WSDF file from a given SALT 1.1
configuration file.

Listing 2-21 A Sample of SALT 1.1 Configuration File (simpapp.xml)

<Configuration xmlns=" http://www.bea.com/Tuxedo/Salt/200606">

<Servicelist id="simpapp">

<Service name="toupper" />

<Service name="tolower" />

</Servicelist>

<Policy />

<System />

<WSGateway>

<GWInstance id="GWWS1">

<HTTP address="//127.0.0.1:7805" />

<HTTPS address="127.0.0.1:7806" />

<Property name="timeout" value="300" />

</GWInstance>

</WSGateway>

</Configuration>

The converted SALT 2.0 WSDF file and deployment file are listed below.

Listing 2-22 Converted WSDF File for SALT 1.1 Configuration File (simpapp.xml.wsdf)

<Definition name="simpapp" wsdlNamespace="urn:simpapp.wsdl"

xmlns=" http://www.bea.com/Tuxedo/WSDF/2007">

<WSBinding id="simpapp_binding">

<Servicegroup id="simpapp">

2-44 Oracle SALT Administration Guide

<Service name="toupper" />

<Service name="tolower" />

</Servicegroup>

<SOAP>

<AccessingPoints>

<Endpoint id="simpapp_GWWS1_HTTPPort"

address=http://127.0.0.1:7805/simpapp />

<Endpoint id=" simpapp_GWWS1_HTTPSPort"

address=https://127.0.0.1:7806/simpapp />

</AccessingPoints>

</SOAP>

</WSBinding>

</Definition>

Listing 2-23 Converted SALTDEPLOY File for SALT 1.1 Configuration File (simpapp.xml.dep)

<Deployment xmlns=" http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

<WSDF>

<Import location="/home/myapp/simpapp.wsdf" />

</ WSDF>

<WSGateway>

<GWInstance id="GWWS1">

<Inbound>

<Binding ref="simpapp:simpapp_binding">

<Endpoint use=" simpapp_GWWS1_HTTPPort" />

<Endpoint use=" simpapp_GWWS1_HTTPSPort" />

</Binding>

</Inbound>

<Properties>

<Property name="timeout" value="300" />

</Properties>

</GWInstance>

</WSGateway>

</ Deployment>

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-45

Configuring Tuxedo SCA Components
Configuring Tuxedo SCA components comprises the following:

Configuring an SCA ATMI Client

Configuring an SCA JATMI Client

Configuring an SCA Workstation Client

Configuring an SCA Web Service Client

Configuring an SCA ATMI Server

Configuring an SCA Web Service Server

Configuring SCA Client Security

Configuring an SCA ATMI Client
The SCA ATMI client is a native Tuxedo client that is written using the SCA paradigm and built
using the buildscaclient utility. The client executable must be in a subdirectory of a directory
that contains the root.composite file.

Note: The APPDIR environment variable must point to the root.composite file directory.

Listing 2-24 shows the client application root composite file $APPDIR/root.composite.

Listing 2-24 Client Application Root Composite File

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">

<component name="testStringClientComp">

<implementation.composite name="ECHO"/>

</component>

</composite>

The $APPDIR/ECHO directory contains the ECHO application. The directory name, "ECHO",
must match the name specified in <implementation.composite name="ECHO"/>.
Listing 2-25 shows the client application composite file.

2-46 Oracle SALT Administration Guide

Listing 2-25 Client Application Composite File

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO">

<reference name="ECHO">

<interface.cpp header="ECHO.h"/>

<binding.atmi requires="legacy">

<tuxconfig>/tux/application/ECHOServer/tuxconfig</tuxconfig>

<inputBufferType target="TestString">STRING</inputBufferType>

<outputBufferType target="TestString">STRING</outputBufferType>

<errorBufferType target="TestString">STRING</errorBufferType>

 <binding.atmi>

</reference>

</composite>

The client dynamic link library for this client application is also contained in this directory. For
example, using the example in Listing 2-25, the $APPDIR/ECHO/ECHO.so shared object exists in
the ECHO directory. The target "TestStr" is used to group buffer types together.

The client executable also exists in this directory. There is no naming convention associated with
a client application. This client ECHO application could very well contain "doEchoClient" in
the ECHO application directory. For example: $APPDIR/ECHO/doEchoClient.

Note: You must set SCA_COMPONENT. See Listing 2-25,
SCA_COMPONENT=testStringClientComp.

Configuring an SCA JATMI Client
The JATMI client application configuration composite file is part of the Java .jar file. The
JATMI client composite file is not part of any package and is located in the base of the .jar file.
When client application is invoked, SCA Java runtime loads the composite file. No special setup
is required.

Note: The client application .jar file must be included in the CLASSPATH. The following .jar
files should also be part of CLASSPATH:

binding-jatmi-extension.jar

com.oracle.jatmi.dataxfm_1.0.0.0.jar

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-47

com.bea.core.jatmi_1.2.0.3.jar

com.bea.core.i18n_1.4.0.0.jar

tuscany-sca-manifest.jar

Listing 2-26 shows an SCA JATMI client composite file example.

Listing 2-26 SCA JATMI Client Composite File Example

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:f="binding-atmi.xsd"

name="EchoComposite">

<reference name="ECHO" promote="EchoComponent/ECHO">

<interface.java class="com.abc.sca.java.Echo" />

<f:binding.atmi requires="legacy">

<f:serviceType>RequestResponse</f:serviceType>

<f:inputBufferType>FML</f:inputBufferType>

<f:outputBufferType>FML</f:outputBufferType>

<f:fieldTables>com.abc.sca.java.fml.FMLTABLE

</f:fieldTables>

<f:workStationParameters>

<f:networkAddress>//STRIATUM:15011

</f:networkAddress>

</f:workStationParameters>

</f:binding.atmi>

</reference>

<component name="EchoComponent">

<implementation.java

class="com.abc.sca.java.EchoComponentImpl />

</component>

</composite>

Configuring an SCA Workstation Client
Configuring an SCA workstation clients is similar to configuring SCA native clients. One
difference is that an SCA workstation client requires using the <workStationParameters>

2-48 Oracle SALT Administration Guide

element and its sub-elements in the composite. The SCA runtime automatically detects whether
the client is built as an SCA native client or SCA workstation client and loads the correct
reference binding library accordingly.

An SCA Tuxedo Workstation client has a similar directory hierarchy to an SCA native client.
Both rely on the environment variable $APPDIR, which points to where the client application is
located.

Listing 2-27 shows a SCA Tuxedo workstation client configuration example.

Listing 2-27 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">

<component name="testStringClientComp">

<implementation.composite name="ECHO"/>

</component>

</composite>

Listing 2-28 $APPDIR/ECHO/ECHO.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="ECHO">

<reference name="ECHO">

<interface.cpp header="ECHO.h"/>

<binding.atmi requires="legacy">

<inputBufferType target="TestString">STRING</inputBufferType>

<outputBufferType target="TestString">STRING</outputBufferType>

<errorBufferType target="TestString">STRING</errorBufferType>

<workStationParameters>

<networkAddress>//STRIATUM:4890</networkAddress>

<encryptBits>128/128</encryptBits>

</workStationParameters>

<remoteAccess>WorkStation</remoteAccess>

</binding.atmi>

<reference>

</composite>

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-49

Configuring an SCA Web Service Client
The SCA Web service client is basically the same as SCA native client except that is uses the
<binding.ws> element instead of <binding.atmi>. The SCA runtime automatically detects
which binding the client is using, and loads the correct reference binding accordingly.

The SCA Web service client has a similar directory hierarchy as native client. They both rely on
the $APPDIR environment variable to point to where the client application is located.

Listing 2-29 shows an SCA Web service client configuration example.

Listing 2-29 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="testApp">

<component name="calcClient">

<implementation.composite name="calcClient"/>

</component>

</composite>

Listing 2-30 $APPDIR/calcClient/calcClient.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"name="calcClient">

<reference name="Calculator">

<interface.cpp header="CalcService.h"/>

<binding.ws

endpoint="http://calc.sample#wsdl.endpoint

(Calculator/CalculatorSOAP11port)"/>

</reference>

</composite>

2-50 Oracle SALT Administration Guide

The <interface.cpp> element is required to build the appropriate proxy stub. Also, the client
directory should contain the WSDL file where the endpoint specified in <binding.ws> is
located. In addition, the configuration of the Tuxedo Web Services gateway (GWWS) is
necessary and requires the following steps:

1. Make sure the TMMETADATA and GWWS servers are shut down.

2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, a Tuxedo
Metadata Repository interface definitions file, fml32 field tables and XML schemas.

3. Optionally, modify the generated WSDF file to override the actual endpoint address used at
runtime. For more information, see WSDF documentation.

4. Load the Tuxedo Metadata Repository interface definitions into the TMMETADATA server
repository (e.g.: $ tmloadrepos -I calc.mif metadata.repos -y). For more
information, see tmloadrepos documentation.

5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for
example). Listing 2-31 shows the added elements highlighted in blue.

6. Reload the GWWS binary configuration file to take into account the changes performed in
the previous five (e.g.: $ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Listing 2-31 GWWS Configuration File

<?xml version="1.0" encoding="UTF-8"?>

<saltdep:Deployment

xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<saltdep:WSDF>

<saltdep:Import location="calc.wsdf"/>

</saltdep:WSDF>

<saltdep:WSGateway>

<saltdep:GWInstance id="GWWS1">

<saltdep:Outbound>

<saltdep:Binding ref="calc:CalculatorSOAP11Binding">

<saltdep:Endpoint use="CalculatorSOAP11port"/>

</saltdep:Binding>

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-51

</saltdep:Outbound>

</saltdep:GWInstance>

</saltdep:WSGateway>

<saltdep:System/>

</saltdep:Deployment>

Configuring an SCA ATMI Server
For an SCA ATMI server, the SCA ROOT is the same as $APPDIR. There should be at least one
composite file that describes the SCA application. The SCA runtime searches for this composite
file and from there it loads all the composite and componentType files for SCA server
applications that are hosted in a Tuxedo environment.

Listing 2-32 shows a root composite file, named root.composite contains two SCA
applications hosted in a Tuxedo application domain. The two applications are called Purchase and
Finance. There are at least two subdirectories for these two SCA applications. One is called
Purchase.component and the other is called Finance.component.

Listing 2-32 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="root">

<component name="Purchase.component">

<implementation.composite name="Purchase" />

</component>

<component name="Finance.component">

<implementation.composite name="Finance" />

</component>

</composite>

Listing 2-33 shows the Purchase.component directory contains a composite file for the
Purchase application named Purchase.composite. Similarly, the Finance.component
directory contains a composite file for the Finance application named Finance.composite.

2-52 Oracle SALT Administration Guide

Listing 2-33 $APPDIR/Purchase.component/Purchase.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="Purchase">

<service name="purchase">

<interface.cpp header="Purchase.h" />

<binding.atmi requires="legacy">

<map target="Order">ORDER</map>

<map target="TrackOrder">TRACKORDER</map>

</binding.atmi>

<reference>PurchaseServiceComponent</reference>

</service>

<component name="PurchaseServiceComponent">

<implementation.cpp library="Purchase"

header="PurchaseImpl.h" />

</component>

</composite>

Listing 2-34 shows Purchase.composite contains the PurchaseImpl.componentType file
in the $APPDIR/Purchase.component directory and uses CPP as its application
implementation. When an SCA server using this configuration is built using the
buildscaserver utility, it advertises two SCA services automatically at runtime (ORDER and
TRACKORDER). The actual CPP implementation of the services is called Order and TrackOrder.

Listing 2-34 $APPDIR/Purchase.component/PurchaseImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<service name="purchase">

<interface.cpp header="Purchase.h"/>

</service>

</componentType>

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-53

Assume these two SCA applications hosted in Tuxedo and built using buildscaserver are
called PurchaseSvr and FinanceSvr. You must add the following lines to the *SERVERS
section in the UBBCONFIG file:
PurchaseSvr SRVGRP=PURCHASEGRP SRVID=500

FinanceSvr SRVGRP=FINANCEGRP SRVID=600

There is no need to add a service in the *SERVICES section. SCA services hosted by Tuxedo are
dynamically advertised.

Configuring an SCA Web Service Server
Configuring Web services binding for components (server side) is similar to configuring ATMI
binding for hosting SCA components.

Listing 2-35 shows a root composite file named root.composite. It contains one SCA
component hosted in a Tuxedo application domain. The two applications are called Purchase and
Finance. There are at least two subdirectories for these two SCA applications, one is called
Purchase.component, and the other is called Finance.component.

Listing 2-36 shows the actual component subdirectory. Listing 2-37 shows the componentType
side file

Listing 2-35 $APPDIR/root.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="root">

<component name="account">

<implementation.composite name="account" />

</component>

</composite>

Listing 2-36 $APPDIR/account/account.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="account">

<service name="AccountService">

2-54 Oracle SALT Administration Guide

<interface.wsdl

interface="http://www.bigbank.com/AccountService#wsdl.interface(AccountSer

vice)"/>

<binding.ws/>

<reference>AccountServiceComponent</reference>

</service>

<component name="AccountServiceComponent">

<implementation.cpp library="Account"

header="AccountServiceImpl.h"/>

</component>

</composite>

Listing 2-37 $APPDIR/account/AccountServiceImpl.componentType

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<service name="AccountService">

<interface.cpp header="AccountService.h"/>

</service>

</componentType>

The above SCA component will be hosted in a Tuxedo server built using buildscaserver with
the -w option (for Web Services) and named WSServer

Then in the Tuxedo UBBCONFIG file you need to add the following line in the *SERVERS
section: WSServer SRVGRP=ACCTGRP SRVID=500.

There is no need add a service in the *SERVICES section. SCA services hosted by Tuxedo are
dynamically advertised.

In addition, configuration of the Tuxedo Web Services gateway (GWWS) is necessary. Do the
the following steps:

1. Make sure the TMMETADATA and GWWS servers are shut down

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-55

2. Run wsdlcvt on the WSDL of the service(s) used. This produces a WSDF file, a Tuxedo
Metadata Repository interface definitions file, fml32 field tables and XML schemas

3. Modify the generated WSDF file to specify the actual endpoint address used at runtime to
accept requests. For more information, see WSDF documentation.

4. Load the Tuxedo Metadata Repository interface definitions into the TMMETADATA server
repository (e.g.:$ tmloadrepos -I AccountService.mif metadata.repos -y). For
more information, see tmloadrepos documentation.

5. Add a reference to the WSDF in the GWWS configuration input file (named gwws.dep for
example). Listing 2-38 shows the elements added highlighted in blue.

6. Reload the GWWS binary configuration file to take into account the changes performed in
the step five (e.g.: $ wsloadcf -y gwws.dep).

7. Reboot GWWS and TMMETADATA.

Listing 2-38 gwws.dep File

<?xml version="1.0" encoding="UTF-8"?>

<saltdep:Deployment

xmlns:saltdep="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <saltdep:WSDF>

 <saltdep:Import location="AccountService.wsdf"/>

 </saltdep:WSDF>

 <saltdep:WSGateway>

 <saltdep:GWInstance id="GWWS1">

 <saltdep:Inbound>

 <saltdep:Binding

ref="AccountService:AccountServiceSOAP">

 <saltdep:Endpoint use="AccountServiceSOAP"/>

 </saltdep:Binding>

 </saltdep:Inbound>

2-56 Oracle SALT Administration Guide

 </saltdep:GWInstance>

 </saltdep:WSGateway>

 <saltdep:System/>

</saltdep:Deployment>

Configuring SCA Client Security
Tuxedo SCA components support two types of security:

Tuxedo Application Domain Security

Tuxedo Link-Level Security

Tuxedo Application Domain Security
Tuxedo Application Domain Security is set when the TUXCONFIG file for the Tuxedo Application
Domain contains the SECURITY keyword in the *RESOURCES section. There are five levels of
application security: NONE, APP_PW, USER_PW, ACL, and MANDATORY_ACL. All security levels
except NONE require at least an application password from user to gain access to the Tuxedo
application. At the USER_PW level and above there is an additional user password to authenticate
the user and establish user credentials. In total there are potentially two passwords that need to be
configured.

All SCA clients require this password information in order to gain access to Tuxedo application
servers. There are two ways for an SCA client to retrieve password information:

The client application may provide password information to ATMI/JATMI reference
binding extensions through a callback mechanism.

The client application may configure the identification of the password to be retrieved by
the ATMI/JATMI reference binding extensions in the appropriate composite file.

Note: For more information, see Password callback methods in the SALT Programmer's
Guide.

In order for the SALT administrator to configure password retrieval, the administrator must:

Maintain the password.store file and set this file up correctly for the client application.
The administrator must duplicate the password.store file across different machines if
necessary.

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-57

Add or delete password and identification pairs when necessary.

Configure the client application composite file with correct information.

Listing 2-39 contains an SCA ATMI client application example.

Listing 2-39 $APPDIR/password.store $APPDIR/simple.app.composite

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simple.app">

<component name="simpapp.TuxClient">

<implementation.composite name="simpapp.client"/>

<reference name="TOUPPER">tuxToupper</reference>

</component>

</composite>

Listing 2-40 $APPDIR/simpapp.client/simpapp.client.composite

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simpapp.client">

<reference name="TOUPPER">

<interface.cpp header="ToupperTuxService.h"/>

<binding.atmi requires="legacy">

<tuxconfig>d:\tests\tuxedo\sca\tests\TUXCONFIG</tuxconfig>

<inputBufferType target="charToup">STRING</inputBufferType>

<outputBufferType target="charToup">STRING</outputBufferType>

<authentication

<passwordIdentifier>aaa</passwordIdentifier>

</authentication>

</binding.atmi>

</reference>

</composite>

2-58 Oracle SALT Administration Guide

The above composite defines a Tuxedo application domain password identification "aaa" which
will cause the ATMI reference binding to retrieve the password with identification "aaa" from
the password.store file at the runtime. If you increased Tuxedo application domain security by
requiring user authentication. (SECURITY=USER_PW or above) you would use the following
command: scapasswordtool -i crusoe -a.

Then use a text editor or any other tool that can edit the simpapp.client.composite file and
add the following entry in the <binding.atmi/authentication> element:
<userPasswordIdentifier>crusoe</userPasswordIdentifier>

Anyone using the password "crusoe" can access Tuxedo applications.

Tuxedo Link-Level Security
Tuxedo Link-Level Security has two variations. One is the easily configured Link-Level
Encryption (LLE) and the other one is the more commonly used Transport Layer Security (TLS)
also known as Secured Socket Layer (SSL). An SCA ATMI client using the native ATMI
reference binding does not need link-level security configured at the SCA level since its transport
method is native message queues and the Tuxedo BRIDGE.

The SCA JATMI client reference binding does not support link-level security. The only type of
SCA client that allows configuration of link-level security is SCA Workstation ATMI client.

The SCA Workstation ATMI client contains a <workStationParameters> element configured
in the composite file. The SCA runtime automatically loads the correct reference binding for this
type of client.

Configuring Link-Level Encryption
Link-level encryption can be configured by adding an <encryptBits> element in the composite
file. The following elements should not be configured for LLE, since they are specific to SSL
encryption and imply that SSL encryption is used:

secPrincipalName

secPrincipalLocation

secPrincipalPassId

The <encryptBits> element specifies the encryption strength that this client will attempt to
negotiate. The syntax for the <encryptBits> element is <minimum encryption

Conf igur ing Tuxedo SCA Components

Oracle SALT Administration Guide 2-59

strength>/<maximum encryption strength>. To configure minimum 56-bit encryption you
must add the following to the composite file:
<networkAddress>//STRIATUM:8741</networkAddress>

<encryptBits>56/128</encryptBits>

Note: encryptBits specifies the encryption strength that the client connection attempts to
negotiate. The format is <minencryptbits>/<maxencprytbits> (for example,
128/128). Values can be 0 (no encryption is used), 40, 56, 128, or 256. Invalid values
result in a configuration exception.

This tells SCA Workstation Reference binding to require 56 to 128 bits encryption strength when
negotiating with WSH. You must also add the following line to the *SERVERS section in the
UBBCONFIG file:
WSL SRVGRP=GROUP1 SRVID=1001 CLOPT="-A -- -n //STRIATUM:8741 -a -z 56 -Z
256

Configuring Transport Layer Security
In addition to <encryptBits>, to enable Link-Level Security over TLS/SSL you must configure
secPrincipalName, secPrincipalLocation, and secPrincipalPassId.

secPrincipalName - the name of the security principal. It is used for searching the client
X.509 certification from the LDAP server.

secPrincipalLocation - the client private key file.

secPrincipalPassId - the password identifier that is used to retrieve client password
used to encrypt the private key file.

These three parameters specify the parameters needed when a TLS/SSL connection needs to be
established by a SCA Workstation ATMI client.

Listing 2-41 contains the lines you must add to the client composite file in
/binding.atmi/workStationParameters to configure TLS/SSL.

Listing 2-41 Client Composite File

<networkAddress>//STRITUM:8742</networkAddress>

<secPrincipalName>crusoe</secPrincipalName>

<secPrincipalLocation>/tux/udataobj/security/keys/crusoe.pem</secPrincipal

Location>

<secPrincipalPassId>crusoe</secPrincipalPassId>

2-60 Oracle SALT Administration Guide

In Tuxedo, you must add -S 8742 to WSL to indicate that TLS/SSL is used if the client connects
through port 8742.

WSL SRVGRP=GROUP1 SRVID=1001

CLOPT="-A -- -n //STRIATUM:8741 -S 8742 -z 56 -Z 128"

Configuring Service Contract Discovery
When discovery is activated for a service, the server that provides the service collects service
contract information and sends the information to an internal service implemented by
TMMETADATA(5) . The same service contract is only sent once to reduce communication
overhead.

The TMMETADATA server summarizes the collected data and generates a service contract. The
contract information can either can be stored in the metadata repository, or output to a text file
(which is then loaded to the metadata repository using tmloadrepos). Oracle SALT uses the
tmscd command to control the service contract runtime collection. For more information, see
tmscd in the Oracle SALT Command Reference Guide.

Generated service contract information contains service name, request buffer information,
response buffer information, and error buffer information if there is a failure. The collected
service contract information is discarded if it fails to send information to the TMMETADATA
server. The buffer information includes buffer type and subtype, and field information for
FML/FML32 (name,type,subtype).

Discovery is supported for any embedded buffer in FML32 buffer. For FML/FML32 field
occurrences, the discovery automatically updates the pattern for the count/requiredcount in
metadata repository. Field occurrence does not impact pattern, but the minimum occurrence is the
"requiredcount".The maximum occurrence is the "count" of the entire contract discovery
period.

For VIEW/VIEW32/X_C_TYPE/X_COMMON, only the view name is discovered. ORACLE
SALT can generate view detail description by view name when using metadata repository.

Note: Patterns flagged with autodiscovery (see Table 2-10) are compared.

If the same autodiscovery pattern already exists in the metatdata repository, then the
newer pattern is ignored.

../../../tuxedo/docs10gr3/rf5/index.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html#wp1157037

Conf igur ing Serv i ce Cont ract D iscove ry

Oracle SALT Administration Guide 2-61

Only application ATMI services (local, or imported via /TDOMAIN gateway) are supported.
Service contract discovery does not support the following services:

system services (name starts with '.' or '..')

conversational services

CORBA services

/Q and SALT proxy services

Note: Services without a reply are mapped as "oneway" services in the metadata repository.

tpforward Support
If a service issues tpforward() instead of tpreturn(), its reply buffer information will be
same with the reply buffer of the service which it forwards to. For example,

client calls SVCA with a STRING typed buffer

SVCA processes the request, and then creates a new FML32 typed buffer as request
forwarded to SVCB

SVCB handles the request and returns a STRING buffer to the client. The SVCA contract
is STRING+STRING. The SVCB contract is FML32+STRING

Service Contract Text File Output
If you want collected service contract discovery information logged to a file instead of directly to
the metadata repository, you must use the TMMETADATA(5) -o<filename> option and then use
tmloadrepos to manually load the file to the metadata repository. For more information, see
tmloadrepos in the Oracle Tuxedo Reference Guide.

The output complies with the format imposed by tmloadrepos if a file is used as storage instead
of metadata repository. The file contains a service header section and a parameter section for each
parameter. Service header contains items listed in Table 2-10. The "service" field format is
<TuxedoServiceName>+'_'+<SequenceNo>. The suffix <SequenceNo> is used to avoid name
conflict when multiple patterns are recognized for a Tuxedo service.

Note: <SequenceNo> starts from the last <SequenceNo> number already stored in the
metadata repository.

Service parameter contains information is listed in Table 2-11.

../../../tuxedo/docs10gr3/rf5/index.html

2-62 Oracle SALT Administration Guide

Table 2-10 Service Level Attributes

Keywoard (abbreviation) Sample Value Description

service(sv) TOUPPER_1 <RealServiceName>_<Sequenc
eNo>.

tuxservice(tsv) TOUPPER The service name.

servicetype(st) service|oneway oneway if TPNOREPLY is set.

inbuf(bt) STRING FML, FML32, VIEW, VIEW32,
STRING, CARRAY, XML,
X_OCTET, X_COMMON,
X_C_TYPE, MBSTRING or
other arbitrary string
representing an application
defined custom buffer type.

outbuf(BT) FML32 set to "NULL" if it's an error
reply.

errbuf(ebt) STRING present only when it's an error
reply.

inview View name. Present only when
inbuf is of type VEW or
VIEW32.

outview View name. Present only when
outbuf is of type VIEW or
VIEW32.

errview View name. Present only when
errbuf is of type VIEW or
VIEW32.

autodiscovery true Set to "true".

Conf igur ing Serv i ce Cont ract D iscove ry

Oracle SALT Administration Guide 2-63

Examples
Example 1:

Input: service=SVC, request=STRING, reply = TPSUCCESS + STRING

Output Pattern: service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRING

Example 2:

Input: service=SVC, request=STRING, reply = TPFAIL+ STRING

Output Pattern (partial): Service=SVC_1,
tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING

Example 3:

Input:
service=SVC, request=STRING, reply = TPSUCCESS + STRING

Table 2-11 Parameter Level Attributes

Keyword(abbreviation) Sample Description

param(pn) USER_INFO

paramdescription(pd) service parameter

access(pa) in A combination of
{in}{out}{err}.

type(pt) fml32 byte, short, integer, float,
double, string, carray, dec_t,
xml, ptr, fml32, view32,
mbstring.

subtype(pst) A view name for a view or
view32 typed parameter.

count 100 The maximum occurrence of
FML/FML32 field watched
during the collection period

requiredcount 1 The minimum occurrence of
FML/FML32 field watched
during the collection period.

2-64 Oracle SALT Administration Guide

service=SVC, request=STRING, reply = TPFAIL+ STRING

Output Pattern:
service=SVC_1,tuxservice=SVC,inbuf=STRING,outbuf=STRING

Service=SVC_2, tuxservice=SVC,inbuf=STRING,outbuf=NULL,errbuf=STRING

Example 4:

Input: service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)

Output Pattern:

service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32
param: input(name, pwd), output(id)

Example 5:

Input:
service=FMLS,request=FML32(name,pwd),reply=TPSUCCESS+FML32(id)

service=FMLS,request=FML32(name,pwd,token),reply=TPSUCCESS+FML32(id)

Output Pattern:
service=FMLS_1,tuxservice=FMLS,inbuf=FML32,outbuf=FML32

param: input(name, pwd), output(id)

service=FMLS_2,tuxservice=FMLS,inbuf=FML32,outbuf=FML32

param: input(name, pwd,token), output(id)

See Also
tmadmin

tmloadrepos

scaadmin

buildscaclient

buildscaserver

ubbconfig

WSDF documentation

Oracle SALT Programming Guide

Oracle SALT Reference Guide

Oracle SALT Administration Guide 3-1

C H A P T E R 3

Administering Oracle SALT at Run Time

This section contains the following topics:

Administering Tuxedo Web Services

Administering Tuxedo SCA Components

Administering Tuxedo Web Services
Tuxedo Web service administration comprises the following:

Browsing to the WSDL Document from the GWWS Server

Tuning the GWWS Server

Tracing the GWWS Server

Monitoring the GWWS Server

Troubleshooting Oracle SALT

Browsing to the WSDL Document from the GWWS Server
Each GWWS server automatically generates a WSDL document for each deployed inbound native
WSDF. The WSDL document can be downloaded from any of the HTTP/S listening endpoints
via HTTP GET.

Use the following URL to browse the WSDL document:

3-2 Oracle SALT Administration Guide

“http(s)://<host>:<port>/wsdl[? [id=<wsdf_name>]

[&mappolicy=<pack|raw|mtom>] [&toolkit=<wls|axis>]]”

Table 3-1 lists all WSDL document download options.

Note: The WSDL download URL supported by Oracle SALT 2.0 is different from Oracle
SALT 1.1. In Oracle SALT 1.1 release, one GWWS server adaptively supports both
RPC/encoded and document/literal message style, both SOAP 1.1 and SOAP 1.2
version, from a given configuration file. In Oracle SALT 2.0 release, each WSDF file
associated with the GWWS server must be pre-combined with a certain SOAP version and
a certain SOAP message style. So the following WSDL download options for SALT 1.1
GWWS server are deprecated in this release.

Table 3-1 WSDL Download Options

Option Value Description

id Specifies the native WSDF name for the WSDL document. The specified
native WSDF must be imported via inbound direction by the GWWS server.
If the option is not specified, the first inbound native WSDF is used.

mappolicy { pack | raw | mtom }

Specifies the data mapping policies for certain Tuxedo Typed
buffers for the generated WSDL document. Currently, this option
impacts CARRAY typed buffers only. If the option is not specified,
pack is used as the default value.

toolkit { wls | axis }

Use this option only if you have previously defined
mappolicy=raw. Specify the client toolkit used so that the proper
WSDL document description for a CARRAY typed buffer MIME
attachment is generated. Oracle SALT supports WebLogic Server
and Axis for SOAP with Attachments. The default value is wls.

Table 3-2 Deprecated WSDL Download Options

Option Value Description

Admin is te r ing Tuxedo Web Serv ices

Oracle SALT Administration Guide 3-3

Tuning the GWWS Server
The GWWS server is a high performance gateway used between external Web Service
application and the Tuxedo application. It uses a thread-pool working model to improve
performance in a multi-processor server environment. The GWWS server also provides options
to control runtime behavior by setting the <WSGateway> element property values in the Oracle SALT
configuration file. The following topics list deployment considerations based on different
scenarios. For more information, see “Configuring the GWWS Servers” on page 2-20.

Thread Pool Size Tuning
Property: thread_pool_size

The default thread pool size is 16, but in some cases this may not be enough to handle high
volume loads. It is recommended to conduct a typical usage analysis in order to better estimate
the proper size requirement. Usually, if the concurrent client number is large (for example, more
than 500), it is suggested that you deploy the GWWS gateway on a server with at least a 4-way
processor and set the thread pool size to 64.

Network Timeout Control
Property: timeout

Oracle SALT provides a network timeout tuning parameter in the configuration file. The default
timeout value is 300 seconds.The value can be adjusted to reduce timeout errors.

Max Content Length Control
Property: max_content_length

Oracle SALT administrators may want to limit the buffer size sent from a client. SALT supports
this by using a property value that can be set for particular GWWS instances. By default there is
no limit.

SOAPversion This deprecated option is used to specify the expected SOAP version
defined in the generated WSDL document. Now this option is set in the
WSDF file.

encstyle This deprecated option is used to specify the expected SOAP message style
defined in the generated WSDL document. Now this option is set in the
WSDF file.

Table 3-2 Deprecated WSDL Download Options

3-4 Oracle SALT Administration Guide

Backlog Control
Property: max_backlog

The default backlog socket listen value is 20. On some systems, such as Windows, 20 may not
meet heavy load requirements. The client connection is rejected during TCP handshake.

The recommended value for Windows is based on the max concurrent TCP connections you may
encounter. For example, if 80 is the peak point, you may configure the max_backlog property
value to 60 in the SALT configuration file.

Note: The default backlog value is adequate for most systems. You do not need to tune it unless
you experience client connection problems during heavy loads.

WARNING: A large backlog value may increase syn-blood attack risk.

Tuxedo BLOCKTIME
A network receive timeout property is provided in the SALT configuration file. Web service
applications are also impacted by the Tuxedo BLOCKTIME parameter. Blocktime accounting
begins when a message is transformed from XML to a typed buffer and delivered to the Tuxedo
framework.

If no reply is received for a particular Web service client within the BLOCKTIME time frame,
the GWWS server sends a SOAP fault message to the client and terminates the connection. If the
GWWS server receives a delayed reply, it drops this message because the client has been
disconnected.

BLOCKTIME is defined in the UBBCONFIG file *RESOURCE section.

Boost Performance Using Multiple GWWS instances
If one GWWS instance is bottlenecks due to network congestion, low CPU resources and so on,
multiple GWWS instances can be deployed with the same Web Service binding on distributed
Tuxedo nodes.

Note: Even though multiple GWWS instances can provide the same logic functionality, from a
client perspective, they are different Web service endpoints with different HTTP/S listen
ports and addresses.

Tracing the GWWS Server
The GWWS server supports Tuxedo TMTRACE functionality (used to dynamically trace
messages). All trace points are logged in the ULOG file. Checking the ULOG file trace

../../../tuxedo/docs10gr3/rf5/rf5i.htm#1531911

Admin is te r ing Tuxedo Web Serv ices

Oracle SALT Administration Guide 3-5

information helps to evaluate GWWS server SOAP message problems. GWWS server message
tracing behavior is set using the TMTRACE environment variable, or by using the tmadmin chtr
sub-command.

The reserved trace category, msg, is used to trace Oracle SALT messages. It can be used together
with other general trace categories. For example, if trace category “atmi+msg” is specified, both
Oracle SALT and Tuxedo ATMI trace messages are logged.

Notes: Message tracing is recommended for diagnostic treatment only.

The following trigger specifications are not recommended for GWWS servers:

abort, system, sleep

In any of these trigger specifications are used, GWWS servers may be unexpectedly
terminated.

For more tmtrace and trace specification information, see tmtrace(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

TMTRACE specification examples for Oracle SALT message tracing are shown below:

To trace SALT messages only
export TMTRACE=msg:ulog:export GWWS_TRACE_LEVEL=100

To trace both Oracle SALT and Tuxedo ATMI messages
export TMTRACE=atmi+msg:ulog:export GWWS_TRACE_LEVEL=100

Listing 3-1 shows a ULOG file example containing Oracle SALT tracing messages.

Listing 3-1 TMTRACE Messages Logged By the GWWS Server

183632.BOX1!GWWS.4612.4540.0: TRACE:ms:A HTTP message is received, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:A SOAP message is received, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Begin data transformation of

request message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:End of data transformation of

request message, buffer type = STRING, SCO index=1023

../../../tuxedo/docs10gr3/rf5/rf5j.htm#1529614

3-6 Oracle SALT Administration Guide

183632. BOX1!GWWS.4612.840.0: TRACE:ms:Delivering a message to Tuxedo,

service name =TOUPPER, SCO index=1023

183632. BOX1!GWWS.4612.840.0: TRACE:ms:Got a message from Tuxedo, SCO

index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Begin data transformation of reply

message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:End of data transformation of reply

message, buffer type = STRING, SCO index=1023

183632. BOX1!GWWS.4612.4540.0: TRACE:ms:Send a http message to net, SCO

index=1023

A more complex log is generated by TMTRACE=msg:ulog, used in WS-ReliableMessaging
communication. All the application and infrastructure messages are sent to ULOG. Listing 3-2
shows a ULOG file example containing WS-ReliableMessaging TMTRACE messages.

Listing 3-2 WS-ReliableMessaging TMTRACE Messages

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP message is received, SCO

index=1023

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP Get request is received, SCO

index=1023

184706.BOX1!GWWS.3640.4772.0: TRACE:ms:Send a http message to net, SCO

index=1023

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:A HTTP message is received, SCO

index=1022

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:A SOAP message is received, SCO

index=1022

Admin is te r ing Tuxedo Web Serv ices

Oracle SALT Administration Guide 3-7

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Create a new inbound sequence,

ID=uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Create a new outbound sequence,

ID=uuid:f7f76200-f612-11da-990d-9f37c3d14ba7

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Send CreateSequenceResponse message

for sequence uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

184710.BOX1!GWWS.3640.4772.0: TRACE:ms:Send a http message to net, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:A HTTP message is received, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:A SOAP message is received, SCO

index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:Begin data transformation of request

message, buffer type = STRING, SCO index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:End of data transformation of

request message, buffer type = STRING, SCO index=1022

184712.BOX1!GWWS.3640.3260.0: TRACE:ms:Received a request message in

sequence uuid:4F1FEE40-72CB-118C-FFFFFFC0FFFFFFA8FFFFFFEB010000-1811

Checking the ULOG tracing information helps to evaluate GWWS server SOAP message
problem status.

Monitoring the GWWS Server
The GWWS server can be monitored with wsadmin utility, which is a command line tool. This
tool can show the running status of GWWS.

An example is shown in Listing 3-3.

3-8 Oracle SALT Administration Guide

Listing 3-3 Use wsadmin to monitor GWWS

$wsadmin

wsadmin - Copyright (c) 2005-2006 BEA Systems, Inc.

Portions * Copyright 1986-1997 RSA Data Security, Inc.

All Rights Reserved.

Distributed under license by BEA Systems, Inc.

SALT is a registered trademark.

> gwstats -i abcd

GWWS Instance : abcd

Inbound Statistics :

Request Response Succ : 74

Request Response Fail : 32

Oneway Succ : 0

Oneway Fail : 0

Total Succ : 74

Total Fail : 32

Avg. Processing Time : 210.726 (ms)

Outbound Statistics :

Request Response Succ : 0

Request Response Fail : 0

Oneway Succ : 0

Oneway Fail : 0

Total Succ : 0

Total Fail : 0

Avg. Processing Time : 0.000 (ms)

Total request Pending : 0

Outbound request Pending : 0

Active Thread Number : 2

Admin is te r ing Tuxedo Web Serv ices

Oracle SALT Administration Guide 3-9

> gws -i out -s getTemp

GWWS Instance : out

Service : getTemp

Outboud Statistics :

Request Response Succ : 333

Request Response Fail : 139

Avg. Processing Time : 143.064 (ms)

>

Command gwstats (abbreviated as gws) can display the statistics data of GWWS server with
specific instance ID or of certain service of the GWWS server. The data include the amount of
successful and failed request, etc.

Before wsadmin is executed, both TUXCONFIG and SALTCONFIG environment variable must be
set. wsadmin supports both active mode and in-active mode, which means wsadmin is able to
launch with/without booting the Tuxedo domain.

The following table lists wsadmin sub-commands.

Table 3-3 wsadmin Sub-Commands

Sub-Command Description

gwstats(gws) Displays statistics information of GWWS server

configstats(cstat) Displays configuration information

default(d) Specifies the default -i option

echo(e) Switches echo input on/off

paginate(page) Switches paging output on/off

3-10 Oracle SALT Administration Guide

Troubleshooting Oracle SALT
The following sections explain how to troubleshoot a Oracle SALT run-time failure:

GWWS Start Up Failure

GWWS Rejects SOAP Request

WSDL Document Generated Incorrectly or Rejected by SOAP Client Toolkit

GWWS Start Up Failure
If the GWWS server fails to start, check the following:

Tuxedo service contract configuration

Check the Tuxedo service contract definition is correct in the Tuxedo Service Metadata
Repository and the Tuxedo Service Metadata Repository Server - TMMETADATA - is booted
successfully.

GWWS server license

The GWWS server requires an extra license from Oracle to enable the functionality. Check
to make sure it has been installed properly.

GWWS server HTTP listen port configuration.

Check the GWWS server listen / WS-Addressing endpoints defined in the SALT
configuration files. Avoid port conflicts with other applications.

GWWS instance ID.

Check the GWWS instance ID to make sure the two names defined in UBBCONFIG and
SALTDEPLOY file are consistent.

UBBCONFIG file MAXWSCLIENTS definition.

Make sure that MAXWSCLIENTS is defined in the *MACHINE section of UBBCONFIG file on
the computer where GWWS server is deployed.

verbose(v) Switches verbose output on/off

quit(q) Terminates the program

Table 3-3 wsadmin Sub-Commands

Admin is te r ing Tuxedo Web Serv ices

Oracle SALT Administration Guide 3-11

RESTART=Y and REPLYQ=Y parameters.

If the GWWS server is set to RESTART=Y in the UBBCONFIG file, REPLYQ=Y must also be
defined.

SALTCONFIG file.

Make sure the binary version SALTCONFIG file is compiled successfully and the
environment variable SALTCONFIG is set correctly for the GWWS server.

GWWS Rejects SOAP Request
In some cases, the GWWS server may reject SOAP requests. The most common causes are:

The WSDL document is outdated.

The WSDL document used by SOAP clients is out of date and some services may not be
available.

The GWWS server environment variables are not set correctly.

When exporting a Tuxedo service with FML/VIEW buffers to a Web service, make sure
the related GWWS environment variables are set with valid values. The GWWS server
needs this information for the data mapping conversion.

Violated Tuxedo Service Metadata Repository restrictions.

Check the SOAP client data and make sure Tuxedo Service Metadata Repository
restrictions are not violated.

Unavailable Tuxedo service.

Make sure the Tuxedo service you want exported as a Web service is available.

WSDL Document Generated Incorrectly or Rejected by SOAP Client Toolkit
If the WSDL document is rejected by the Web Service client toolkit, do the following:

Try to use the document/literal message style and SOAP 1.1 to define native Tuxedo
WSDF file. This is also the default behavior.

Use tmwsdlgen to generate the WSDL document manually and compare with the one
downloaded by the GWWS server. If the TMMETADATA server is not started when the GWWS
server booted, the GWWS server cannot obtain the correct service contract information.
Therefore, the downloaded WSDL document does not contain the correct type definitions.

3-12 Oracle SALT Administration Guide

Administering Tuxedo SCA Components
Tuxedo SCA component administration comprises the following:

Tracing the SCA ATMI Server and Client

Monitoring SCA ATMI Servers

Tracing SCA JATMI Clients

Tracing the SCA ATMI Server and Client
Both The SCA ATMI server and client can utilized the existing tracing capability provided by
TUXEDO and SCA. The following sections describe how to use them in detail.

Tuxedo TMTRACE
SCA ATMI servers and clients support the Tuxedo tmtrace(5)function. All traces generated
from TMTRACE are logged in the ULOG file. Checking the ULOG file trace information helps to
determine the cause of a failure. The Tuxedo TMTRACE facility is enabled by setting TMTRACE
environmental variable, or by using the tmadmin chtr sub-command.

Note: To trace Tuxedo ATMI messages enter: export TMTRACE=atmi:ulog at the command
line.

SCA Runtime, ATMI Service, and Reference Binding Tracing
To trace the SCA runtime, ATMI service binding, and ATMI reference binding you must set
SCACPP_ULOG. The valid value range of this environmental variable is 10 (limited tracing) to 90
(full tracing). By default, the output is directed to the console. To send information to Tuxedo
ULOG, enter "SCACPP_ULOG=yes".

Note: This tracing facility is only available for Tuxedo server builds using buildscaserver
and SCA client builds using buildscaclient.

Listing 3-4 shows a ULOG example containing SCA runtime tracing:

Listing 3-4 SCA Runtime Tracing Information ULOG File

142059.STRIATUM!?proc.1108.3000.-2: >>

osoa::sca::CompositeContext::getCurrent

142059.STRIATUM!?proc.1108.3000.-2: >>

Admin is te r ing Tuxedo SCA Components

Oracle SALT Administration Guide 3-13

Tuscany::sca::SCARuntime::getCurrent Runtime

142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::ThreadLocal::getValu e

142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::ThreadLocal::getValu e

142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::SCARuntime::getShared Runtime

142059.STRIATUM!?proc.1108.3000.-2: SCARuntime::getSharedRuntime()

142059.STRIATUM!?proc.1108.3000.-2: >> tuscany::sca::util::Mutex::lock

142059.STRIATUM!?proc.1108.3000.-2: << tuscany::sca::util::Mutex::lock

142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::Mutex::unlock

142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::Mutex::unlock

142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::SCARuntime::getSharedR untime

142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::ThreadLocal::Thread Local

142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::ThreadLocal::Thread Local

142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::SCARuntime::SCARuntime

142059.STRIATUM!?proc.1108.3000.-2: SCA runtime install root

f:\tuxedo\tux101rp _wsc\udataobj\salt\sca

142059.STRIATUM!?proc.1108.3000.-2: Default component:

testStringClientComp

142059.STRIATUM!?proc.1108.3000.-2: >>

tuscany::sca::util::ThreadLocal::getValu e

142059.STRIATUM!?proc.1108.3000.-2: <<

tuscany::sca::util::ThreadLocal::getValu e

3-14 Oracle SALT Administration Guide

Monitoring SCA ATMI Servers
A Tuxedo SCA server built with the buildscaserver utility can be monitored using the
scaadmin utility. This utility shows service statistics information and helps perform maintenance
through dynamic shared library loading and unloading.

To reload all components hosted by the uBikeServer Tuxedo server previously built using the
buildscaserver command, do the following:

1. prompt> scaadmin

2. prompt> reload -s uBikeServer

Enter the following at the command line to display statistics on the services offered by the
uBikeServer Tuxedo server (Table 3-4 shows the results):

1. prompt> scaadmin

2. prompt> pstats -s uBikeServer

Before scaadmin is executed, you must set the TUXCONFIG environment variable. Table 3-5 lists
scaadmin sub-commands.

Table 3-4 pstats 0utput Service Statics

Service Method Status Requests Processed

SEARCHINVENTORY searchInventory A 37

Table 3-5 scaadmin Sub-Commands

Sub-Command Abbrev. Description

default d Sets the corresponding argument to default, and it can be
machine name, group name, server id, or server name. If
the default command is entered without an argument, the
current default values is printed.

reload r Dynamically reloads the SCA components hosted in a
Tuxedo server.

printstats pstats Displays the list of services hosted by a Tuxedo server,
and the associated method, number of queries, and status
(active, idle)

Admin is te r ing Tuxedo SCA Components

Oracle SALT Administration Guide 3-15

Note: Both Windows and HP systems have a limitation using the "reload" sub-command.

When multiple servers share the same component library on Windows and HP systems,
the shared component library cannot be reloaded. To reload a component library common
to multiple servers, the "scaadmin" reload sub-command must be performed on all
affected servers simultaneously.

Tracing SCA JATMI Clients
The TUXEDO SCA Java reference binding and data transformation support output to the console
and to a log file. By default there will be at most 10 log files, the maximum size of each file is
100000 bytes, and are located in $APPDIR with name jatmi<number>.log file. The log file
names are cycled with the latest one using the number 0, and the one just before latest one uses 1
(for example. jatmi0.log is the latest log file, and jatmi9.log is the oldest log file). If the
APPDIR environment variable is not set and com.oracle.jatmi.APPDIR java property is not
specified, the log is placed in the current working directory.

By default, the log files are overwritten each time the application starts. Many logger parameters
can be fine tuned. Table 3-6 lists tunable Java properties related to logging.

verbose v Produces output in verbose mode.

echo e Switches echo input on/off echo.

quit q Terminates the session.

Table 3-5 scaadmin Sub-Commands

Sub-Command Abbrev. Description

Table 3-6 Logger Tuning Property Table

Function Properties Value Range Default Value

Log File
Location

com.oracle.jatmi.APPDIR valid path name APPDIR environmental
variable, if APPDIR is not
set uses current working
directory

Log File Size com.oracle.jatmi.LogFil
eSize

0 ... maximum file
size supported by the
system

100,000 bytes

3-16 Oracle SALT Administration Guide

To have the TUXEDO SCA Java reference binding log in a different language, first check the
supported languages that are installed. The default is English. To switch to a different language,
add: "-Duser.language=<your preferred language>" to your Java command line when
starting the TUXEDO SCA Java client. For example:
java -classpath .:/apps/classes:$CLASSPATH -Duser.langueage=ES
-Dcom.oracle.jatmi.LogDestination=console myApplication.

This generates an English log in plain text format to the console only.

Table 3-6 shows an example of the log file contents.

Listing 3-5 Log File Contents

9/3/08:3:19:14 PM:10:TRACE[TuxedoConversion,processSendBuf]< (10) return

1st args

9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker,invoke]ServiceType:

requestresponse

9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker,invoke]Return Type Class:

simpapp.View7Rep

9/3/08:3:19:14 PM:10:DBG[AtmiBindingInvoker,invoke]target service name:

RULE7

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]TPURCODE: 0

9/3/08:3:19:15 PM:10:TRACE[TuxedoConversion,processReplyBuffer]> (reply

simpapp.View7Rep@191777e:0:null)

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]returnType:

Append File com.oracle.jatmi.LogFil
eAppend

{true,false} false

Number of Log
Files

com.oracle.jatmi.LogFil
eCount

1 ... maximum number
of files in a directory

10

Log Output com.oracle.jatmi.LogDes
tination

{file,console,b
oth}

both

Log Format com.oracle.jatmi.LogFil
eFormat

{xml,plain} plain

Table 3-6 Logger Tuning Property Table

Function Properties Value Range Default Value

Admin is te r ing Tuxedo SCA Components

Oracle SALT Administration Guide 3-17

simpapp.View7Rep

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer

Class: simpapp.View7Rep

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer

Type: X_COMMON

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processReplyBuffer]Reply Buffer

Subtype: View7Rep

9/3/08:3:19:15 PM:10:TRACE[TuxedoConversion,processReplyBuffer]< (30)

return buffer directly

9/3/08:3:19:15 PM:10:DBG[Accessors,getConventionProperty]Convention

Property: CONVENTIONS_TUX

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]networkAddress: host =

STRIATUM, port = 8080

9/3/08:3:19:15

PM:10:TRACE[AtmiBindingInvoker,determineServiceCallParameters]> ()

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isLegacy]> ()

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isLegacy]< (10) return true

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isMap]> ()

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,isMap]< (10) return false

9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]Operation name

= rule7_OVVO

9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getServiceType]> (rule7_OVVO)

9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getServiceType]< (10) return

null

9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getInputBufferType]>

(rule7_OVVO)

9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getInputBufferType]< (10)

return null

9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getOutputBufferType]>

(rule7_OVVO)

9/3/08:3:19:15 PM:10:TRACE[AtmiBindingImpl,getOutputBufferType]< (10)

return null

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,getErrorBufferType]> (rule7_OVVO)

9/3/08:3:19:15 PM:10:DBG[AtmiBindingImpl,getErrorBufferType]< (10) return

null

9/3/08:3:19:15

3-18 Oracle SALT Administration Guide

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]svcName =

RULE7

9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]svcType =

requestresponse

9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]inbuf =

X_COMMON

9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]outbuf =

X_COMMON

9/3/08:3:19:15

PM:10:DBG[AtmiBindingInvoker,determineServiceCallParameters]errbuf = null

9/3/08:3:19:15

PM:10:TRACE[AtmiBindingInvoker,determineServiceCallParameters]< (10)

return

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Input Buffer Type:

X_COMMON

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Output Buffer Type:

X_COMMON

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Error Buffer Type: null

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]inBufType:X_COMMON,

count: 1

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]outBufType:X_COMMON,

count: 1

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]View Classes:

simpapp.View7Req,simpapp.View7Rep

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Req

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Rep

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,setFieldClasses]setFldClasses:

null

9/3/08:3:19:15 PM:10:DBG[AtmiBindingInvoker,invoke]Passing thro invoker...

9/3/08:3:19:15 PM:10:TRACE[TuxedoConversion,processSendBuf]> (args

[Ljava.lang.Object;@ab1b4)

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]args[0] class

See A l so

Oracle SALT Administration Guide 3-19

simpapp.Rule7Req

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,needConversion]buftype: X_COMMON

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]Argument Class

Name: simpapp.Rule7Req

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]Input Buffer Id

: XCOMMON

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]Type code :

10

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,processSendBuf]InputBufferType:

XCOMMON

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Req

9/3/08:3:19:15 PM:10:DBG[TuxedoConversion,getClassList]getClassList:

Getting class for simpapp.View7Rep

9/3/08:3:19:15 PM:10:TRACE[Accessors,determineConvention]>

(simpapp.Rule7Req)

9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: getId

9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: setCmd

9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: setId

9/3/08:3:19:15 PM:10:DBG[Accessors,determineConvention]Method name: getCmd

9/3/08:3:19:15 PM:10:TRACE[Accessors,determineConvention]< (30) return BEAN

See Also
buildscaclient

buildscacomponent

buildscaserver

scaadmin

tmadmin

tmtrace

Oracle SALT Programming Guide

Oracle SALT Reference Guide

http://e-docs.bea.com/salt/docs10gr3/ref/comref.html#wp1154548
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html#wp1155553
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html#wp1156159
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html#wp1157082
http://e-docs.bea.com/salt/docs10gr3/prog/index.html
http://e-docs.bea.com/salt/docs10gr3/ref/index.html

3-20 Oracle SALT Administration Guide

Oracle Administration Guide: Appendix A A-1

A P P E N D I X A

Appendix A:
Oracle Tuxedo SCA Schemas

This section contains the following information:

ATMI and JTMI Binding Schema For C/C++

Web Service Binding Schema

ATMI and JTMI Binding Schema For C/C++

Listing A-1 ATMI and JTMI Binding Schema For C/C++

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.osoa.org/xmlns/sca/1.0"

 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"

 elementFormDefault="qualified">

 <element name="binding.atmi" type="sca:AtmiBinding"

 substitutionGroup="sca:binding"/>

Append ix A : Orac l e Tuxedo SCA Schemas

A-2 Oracle Administration Guide: Appendix A

 <complexType name="AtmiBinding">

 <complexContent>

 <extension base="sca:Binding">

 <sequence>

 <element name="tuxconfig" type="string"

 minOccurs="0"/>

 <element name="map" type="sca:TargetMapType" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="serviceType" type="sca:SvcType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="inputBufferType" type="sca:BufferType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="outputBufferType" type="sca:BufferType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="errorBufferType" type="sca:BufferType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="workStationParameters"

 type="sca:WorkStationParameters"

 minOccurs="0"/>

 <element name="authentication" type="sca:Authentication"

 minOccurs="0"/>

 <element name="fieldTablesLocation" type="string"

 minOccurs="0"/>

 <element name="fieldTables" type="string"

 minOccurs="0"/>

 <element name="fieldTablesLocation32" type="string"

ATMI and JTMI B ind ing Schema For C/C++

Oracle Administration Guide: Appendix A A-3

 minOccurs="0"/>

 <element name="fieldTables32" type="string"

 minOccurs="0"/>

 <element name="viewFilesLocation" type="string"

 minOccurs="0"/>

 <element name="viewFiles" type="string" minOccurs="0"/>

 <element name="viewFilesLocation32" type="string"

 minOccurs="0"/>

 <element name="viewFiles32" type="string"

 minOccurs="0"/>

 <element name="remoteAccess" type="sca:RemoteAccess"

 minOccurs="0"/>

 <element name="transaction" type="sca:TransactionType"

 minOccurs="0"/>

 </sequence>

 <anyAttribute namespace="##any" processContents="lax" />

 </extension>

 </complexContent>

 </complexType>

 <complexType name="TargetMapType">

 <simpleContent>

 <extension base="TargetSimple">

 <attribute name="target" type="string" use="optional"/>

 </extension>

 </simpleContent>

 </complexType>

Append ix A : Orac l e Tuxedo SCA Schemas

A-4 Oracle Administration Guide: Appendix A

 <simpleType name="TargetSimple">

 <restriction base="string"/>

 </simpleType>

 <complexType name="SvcType">

 <simpleContent>

 <extension base="SvcTypeEnum">

 <attribute name="target" type="string" use="optional"/>

 </extension>

 </simpleContent>

 </complexType>

 <simpleType name="SvcTypeEnum">

 <restriction base="string">

 <enumeration value="oneway"/>

 <enumeration value="requestresponse"/>

 </restriction>

 </simpleType>

 <complexType name="BufferType">

 <simpleContent>

 <extension base="BufferTypeEnum">

 <attribute name="target" type="string" use="optional"/>

 </extension>

 </simpleContent>

 </complexType>

ATMI and JTMI B ind ing Schema For C/C++

Oracle Administration Guide: Appendix A A-5

 <simpleType name="BufferTypeEnum">

 <restriction base="string">

 <enumeration value="string"/>

 <enumeration value="carray"/>

 <enumeration value="x_octet"/>

 <enumeration value="view"/>

 <enumeration value="x_c_type"/>

 <enumeration value="x_common"/>

 <enumeration value="view32"/>

 <enumeration value="xml"/>

 <enumeration value="fml"/>

 <enumeration value="fml32"/>

 <enumeration value="mbstring"/>

 </restriction>

 </simpleType>

 <complexType name="WorkStationParameters">

 <sequence>

 <element name="networkAddress" type="string" minOccurs="0"/>

 <element name="secPrincipalName" type="string" minOccurs="0"/>

 <element name="secPrincipalLocation" type="string"

 minOccurs="0"/>

 <element name="secPrincipalPassId" type="string"

 minOccurs="0"/>

 <element name="encryptbits" type="string" minOccurs="0"/>

 </sequence>

Append ix A : Orac l e Tuxedo SCA Schemas

A-6 Oracle Administration Guide: Appendix A

 </complexType>

 <complexType name="Authentication">

 <sequence>

 <element name="userName" type="string" minOccurs="0"/>

 <element name="clientName" type="string" minOccurs="0"/>

 <element name="groupName" type="string" minOccurs="0"/>

 <element name="passwordIdentifier" type="string"

 minOccurs="0"/>

 <element name="userPasswordIdentifier" type="string"

 minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="RemoteAccess">

 <restriction base="string">

 <enumeration value="native"/>

 <enumeration value="workstation"/>

 </restriction>

 </complexType>

 <complexType name="TransactionType">

 <attribute name="timeout" type="int" use="optional"/>

 </complexType>

</schema

Web Serv i ce B ind ing Schema

Oracle Administration Guide: Appendix A A-7

Web Service Binding Schema

Listing A-2 Web Service Binding Schema

<?xml version="1.0" encoding="UTF-8"?>

<!--

 Licensed to the Apache Software Foundation (ASF) under one

 or more contributor license agreements. See the NOTICE file

 distributed with this work for additional information

 regarding copyright ownership. The ASF licenses this file

 to you under the Apache License, Version 2.0 (the

 "License"); you may not use this file except in compliance

 with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing,

 software distributed under the License is distributed on an

 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

 KIND, either express or implied. See the License for the

 specific language governing permissions and limitations

 under the License.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.osoa.org/xmlns/sca/1.0"

 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"

 elementFormDefault="qualified">

Append ix A : Orac l e Tuxedo SCA Schemas

A-8 Oracle Administration Guide: Appendix A

 <element name="binding.ws" type="sca:WebServiceBinding"

substitutionGroup="sca:binding"/>

 <complexType name="WebServiceBinding">

 <complexContent>

 <extension base="sca:Binding">

 <sequence>

 <element name="soapbinding" type="sca:SOAPBinding"

minOccurs="0" maxOccurs="unbounded"/>

 <any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded" />

 </sequence>

 <attribute name="endpoint" type="anyURI" use="optional" />

 <attribute name="location" type="anyURI" use="optional" />

 <attribute name="conformanceURIs"

type="sca:ConformanceURIList" use="optional" />

 <attribute name="interfaceMapping" type="string"

use="optional" />

 <anyAttribute namespace="##any" processContents="lax" />

 </extension>

 </complexContent>

 </complexType>

 <complexType name="SOAPBinding">

 <sequence>

 <any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />

 </sequence>

 <attribute name="name" type="NCName" use="optional" />

See A l so

Oracle Administration Guide: Appendix A A-9

 <attribute name="version" type="string" use="optional" />

<anyAttribute namespace="##any" processContents="lax" />

 </complexType>

<simpleType name="ConformanceURIList">

<list itemType="anyURI"/>

</simpleType>

</schema>

See Also
Oracle SALT Administration Guide

Oracle SALT Programming Guide

http://e-docs.bea.com/salt/docs10gr3/admin/index.html
http://e-docs.bea.com/salt/docs10gr3/prog/index.html

Append ix A : Orac l e Tuxedo SCA Schemas

A-10 Oracle Administration Guide: Appendix A

See A l so

Oracle Administration Guide: Appendix A A-11

Append ix A : Orac l e Tuxedo SCA Schemas

A-12 Oracle Administration Guide: Appendix A

See A l so

Oracle Administration Guide: Appendix A A-13

	Oracle® Service Architecture Leveraging Tuxedo (SALT)
	10g Release 3 (10.3)

	Service Architecture Leveraging Tuxedo Administration Guide, 10g Release 3 (10.3)
	Oracle SALT Administration Overview
	Basic Concepts for Administering Oracle SALT
	Tuxedo Service Metadata
	Oracle SALT Web Service Deployment Model
	SALT Web Service Definition File
	SALT Deployment File

	Oracle SALT Web Services Administrative Tasks and Tools
	Configuring a SALT Application Using Command-Line Utilities
	Administering a SALT Application Using Command-Line Utilities
	Oracle SALT SCA Deployment Model
	SCA Composite Configuration File
	SCA Component Configuration File

	Oracle SALT SCA Administrative Tasks and Tools
	Configuring a Password for an SCA Client
	Creating a Password

	Administering a TUXEDO SCA Application

	See Also

	Configuring an Oracle SALT Application
	Configuring Tuxedo Web Services
	Using Tuxedo Service Metadata Repository for Oracle SALT
	Defining Service-Level Keywords for Oracle SALT
	Defining Service Parameters for Oracle SALT

	Configuring Native Tuxedo Services
	Creating a Native WSDF
	Using WS-Policy Files
	Generating a WSDL File from a Native WSDF

	Configuring External Web Services
	Converting a WSDL file into Tuxedo Definitions
	WSDL-to-WSDF Mapping
	Post Conversion Tasks

	Creating the SALT Deployment File
	Importing the WSDF Files
	Configuring the GWWS Servers
	Configuring System Level Resources

	Configuring Advanced Web Service Messaging Features
	Web Service Addressing
	Web Service Reliable Messaging

	Configuring Security Features
	Configuring Transport Level Security
	Configuring Message Level Web Service Security

	Compiling SALT Configuration
	Configuring the UBBCONFIG File for Oracle SALT
	Configuring the TMMETADATA Server in the *SERVERS Section
	Configuring the GWWS Servers in the *SERVERS Section
	Updating System Limitations in the UBBCONFIG File
	Configuring Certificate Password Phrase For the GWWS Servers
	Configuring Tuxedo Authentication for Web Service Clients
	Configuring Tuxedo Security Level for Outbound HTTP Basic Authentication

	Configuring Oracle SALT In Tuxedo MP Mode
	Migrating from Oracle SALT 1.1
	Running GWWS servers with SALT 1.1 Configuration File
	Adopting SALT 2.0 Configuration Style by Converting SALT 1.1 Configuration File

	Configuring Tuxedo SCA Components
	Configuring an SCA ATMI Client
	Configuring an SCA JATMI Client
	Configuring an SCA Workstation Client
	Configuring an SCA Web Service Client
	Configuring an SCA ATMI Server
	Configuring an SCA Web Service Server
	Configuring SCA Client Security
	Tuxedo Application Domain Security
	Tuxedo Link-Level Security

	Configuring Service Contract Discovery
	tpforward Support
	Service Contract Text File Output
	Examples

	See Also

	Administering Oracle SALT at Run Time
	Administering Tuxedo Web Services
	Browsing to the WSDL Document from the GWWS Server
	Tuning the GWWS Server
	Thread Pool Size Tuning
	Network Timeout Control
	Max Content Length Control
	Backlog Control
	Tuxedo BLOCKTIME
	Boost Performance Using Multiple GWWS instances

	Tracing the GWWS Server
	Monitoring the GWWS Server
	Troubleshooting Oracle SALT
	GWWS Start Up Failure
	GWWS Rejects SOAP Request
	WSDL Document Generated Incorrectly or Rejected by SOAP Client Toolkit

	Administering Tuxedo SCA Components
	Tracing the SCA ATMI Server and Client
	Tuxedo TMTRACE
	SCA Runtime, ATMI Service, and Reference Binding Tracing

	Monitoring SCA ATMI Servers
	Tracing SCA JATMI Clients

	See Also

	Appendix A: Oracle Tuxedo SCA Schemas
	ATMI and JTMI Binding Schema For C/C++
	Web Service Binding Schema
	See Also

