
Oracle® Service Architecture Leveraging Tuxedo (SALT)
Programming Guide

10g Release 3 (10.3)

January 2009

Service Architecture Leveraging Tuxedo Programming Guide, 10g Release 3 (10.3)

Copyright © 2006, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Introduction to Oracle SALT Programming 1
Oracle SALT Web Services Programming 1
Oracle SALT Proxy Service 1
Oracle SALT Message Conversion 2
Oracle SALT Programming Tasks Quick Index 2
Oracle SALT SCA Programming 3
Data Type Mapping and Message Conversion 1
Overview of Data Type Mapping and Message Conversion 1
Understanding Oracle SALT Message Conversion 2
Inbound Message Conversion 2
Outbound Message Conversion 2
Tuxedo-to-XML Data Type Mapping for Tuxedo Services 3
Tuxedo STRING Typed Buffers 13
Tuxedo CARRAY Typed Buffers 14
Tuxedo MBSTRING Typed Buffers 16
Tuxedo XML Typed Buffers 17
Tuxedo VIEW/VIEW32 Typed Buffers 20
Tuxedo FML/FML32 Typed Buffers 22
Tuxedo X_C_TYPE Typed Buffers 27
Tuxedo X_COMMON Typed Buffers 27
Tuxedo X_OCTET Typed Buffers 27
Custom Typed Buffers 27
XML-to-Tuxedo Data Type Mapping for External Web Services 27
XML Schema Built-In Simple Data Type Mapping 28
XML Schema User Defined Data Type Mapping 32
WSDL Message Mapping 35
Web Service Client Programming 1
Overview 1
Oracle SALT Web Service Client Programming Tips 2
Web Service Client Programming References 7
Online References 7
Tuxedo ATMI Programming for Web Services 1
Overview 1
Converting WSDL Model Into Tuxedo Model 2
WSDL-to-Tuxedo Object Mapping 2

Invoking SALT Proxy Services 3
Oracle SALT Supported Communication Pattern 3
Tuxedo Outbound Call Programming: Main Steps 4
Managing Error Code Returned from GWWS 5
Handling Fault Messages in a Tuxedo application 5
Using Oracle SALT Plug-Ins 1
Understanding Oracle SALT Plug-Ins 1
Plug-In Elements 1
Programming Message Conversion Plug-ins 7
How Message Conversion Plug-ins Work 7
When Do We Need Message Conversion Plug-In 9
Developing a Message Conversion Plug-In Instance 11
SALT 1.1 Custom Buffer Type Conversion Plug-In Compatibility 15
Programming Outbound Authentication Plug-Ins 17
How Outbound Authentication Plug-Ins Work 17
Implementing a Credential Mapping Interface Plug-In 17
Mapping the Tuxedo UID and HTTP Username 19
Oracle SALT SCA Programming 1
Overview 1
SCA Client Programming 2
SCA Client Programming Steps 2
SCA Component Programming 11
SCA Component Programming Steps 13
Web Services Binding 19
SCA Remote Protocol Support 23
/WS 23
/Domains 23
Java ATMI (JATMI) Binding 24
Tuxedo SCA Interoperability 28
SCA Transactions 28
SCA Security 29
SCA ATMI Binding 29
SCA ATMI Binding Data Type Mapping 31
Simple Tuxedo Buffer Data Mapping 32
Complex Return Type Mapping 35

Complex Tuxedo Buffer Data Mapping 36
SDO Mapping 40
See Also 42

Oracle SALT Programming Guide 1-1

C H A P T E R 1

Introduction to Oracle SALT
Programming

This section includes the following topics:

Oracle SALT Web Services Programming

Oracle SALT SCA Programming

Oracle SALT Web Services Programming
Oracle SALT provides bi-directional connectivity between Tuxedo applications and Web service
applications. Existing Tuxedo services can be easily exposed as Web Services without requiring
additional programming tasks. Oracle SALT generates a WSDL file that describes the Tuxedo
Web service contract so that any standard Web service client toolkit can be used to access Tuxedo
services.

Web service applications (described using a WSDL document) can be imported as if they are
standard Tuxedo services and invoked using Tuxedo ATMIs from various Tuxedo applications
(for example, Tuxedo ATMI clients, ATMI servers, Jolt clients, COBOL clients, .NET wrapper
clients and so on).

Oracle SALT Proxy Service
Oracle SALT proxy services are Tuxedo service entries advertised by the Oracle SALT Gateway,
GWWS. The proxy services are converted from the Web service application WSDL file. Each
WSDL file wsdl:operation object is mapped as one SALT proxy service.

1-2 Oracle SALT Programming Guide

The Oracle SALT proxy service is defined using the Service Metadata Repository service
definition syntax. These service definitions must be loaded into the Service Metadata Repository.
To invoke an proxy service from a Tuxedo application, you must refer to the Tuxedo Service
Metadata Repository to get the service contract description.

For more information, see “Tuxedo ATMI Programming for Web Services”.

Oracle SALT Message Conversion
To support Tuxedo application and Web service application integration, the Oracle SALT
gateway converts SOAP messages into Tuxedo typed buffers, and vice versa. The message
conversion between SOAP messages and Tuxedo typed buffers is subject to a set of SALT
pre-defined basic data type mapping rules.

When exposing Tuxedo services as Web services, a set of Tuxedo-to-XML data type mapping
rules are defined. The message conversion process conforms to Tuxedo-to-XML data type
mapping rules is called “Inbound Message Conversion”.

When importing external Web services as SALT proxy services, a set of XML-to-Tuxedo data
type mapping rules are defined. The message conversion process conforms to XML-to-Tuxedo
data type mapping rules is called “Outbound Message Conversion”.

For more information about SALT message conversion and data type mapping, see
“Understanding Oracle SALT Message Conversion”.

Oracle SALT Programming Tasks Quick Index
The following table lists a quick index of Oracle SALT programming tasks. You can locate your
programming tasks first and then click on the corresponding link for detailed description.

Orac le SALT SCA Prog ramming

Oracle SALT Programming Guide 1-3

Oracle SALT SCA Programming
SCA components run on top of the Oracle Tuxedo infrastructure using ATMI binding allowing
you to better blend high-output, high-availability and scalable applications in your SOA
environment. The Tuxedo SCA container is built on top of Tuscany SCA Native and Tuscany
SDO C++ ((Assembly: 0.96, Client and Implementation Model 0.95) and SDO (2.01)).

The ATMI binding implementation provides native Tuxedo communications between SCA
components as well as SCA components and Tuxedo programs (clients and servers). Runtime
checks will be encapsulated in an exception defined in a header (tuxsca.h) provided with the
atmi binding. This exception (ATMIBindingException), is derived from

Table 1-1 Oracle SALT Programming Tasks Quick Index

Tasks Refer to ...

Invoking Tuxedo
services (inbound)
through Oracle
SALT

Develop Web service client programs for
Tuxedo services invocation

“Oracle SALT Web Service Client
Programming Tips” on page 3-2

Understand inbound message conversion
and data type mapping rules

“Understanding Oracle SALT Message
Conversion” on page 2-2

“Tuxedo-to-XML Data Type Mapping for
Tuxedo Services” on page 2-3

Develop inbound message conversion
plug-in

“Programming Message Conversion
Plug-ins” on page 5-7

Invoking external
Web services
(outbound) through
Oracle SALT

Understand the general outbound service
programming concepts

“Tuxedo ATMI Programming for Web
Services” on page 4-1

Understand outbound message conversion
and data type mapping rules

“Understanding Oracle SALT Message
Conversion” on page 2-2

“XML-to-Tuxedo Data Type Mapping for
External Web Services” on page 2-27

Develop outbound message conversion
plug-in

“Programming Message Conversion
Plug-ins” on page 5-7

Develop your own plug-in to map Tuxedo
user name with user name for outbound
HTTP basic authentication

“Programming Outbound Authentication
Plug-Ins” on page 5-17

1-4 Oracle SALT Programming Guide

ServiceRuntimeException (so that programs not aware of the ATMI binding can still catch
ServiceRuntimeException) and thrown back to the caller.

SCA deployment is handled by the following build commands:

buildscaclient

buildscacomponent

buildscaserver

SCA clients can be stand-alone or part of a server, similar to Tuxedo ATMI clients. Components
are first built using buildscacomponent and then Tuxedo-enabled using buildscaserver.
SCA administration is performed using common Tuxedo commands (for example, tmadmin),
and the scaadmin command for SCA-specific tasks.

For more information, see:

Oracle SALT Administration Guide

Oracle SALT Reference Guide

SCA Service Component Architecture Client and Implementation Model Specification for
C++

http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref/html
http://e-docs.bea.com/salt/docs10gr3/admin/index.html
http://e-docs.bea.com/salt/docs10gr3/ref/index.html
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1

Oracle SALT Programming Guide 2-1

C H A P T E R 2

Data Type Mapping and Message
Conversion

This topic contains the following sections:

Overview of Data Type Mapping and Message Conversion

Understanding Oracle SALT Message Conversion

Tuxedo-to-XML Data Type Mapping for Tuxedo Services

XML-to-Tuxedo Data Type Mapping for External Web Services

Overview of Data Type Mapping and Message Conversion
Oracle SALT supports bi-directional data type mapping between WSDL messages and Tuxedo
typed buffers. For each service invocation, GWWS server converts each message between
Tuxedo typed buffer and SOAP message payload. SOAP message payload is the XML effective
data encapsulated within the <soap:body> element. For more information, see “Understanding
Oracle SALT Message Conversion”.

For native Tuxedo services, each Tuxedo buffer type is described using an XML Schema in the
SALT generated WSDL document. Tuxedo service request/response buffers are represented in
regular XML format. For more information, see “Tuxedo-to-XML Data Type Mapping for
Tuxedo Services”.

For external Web services, each WSDL message is mapped as a Tuxedo FML32 buffer structure.
A Tuxedo application invokes SALT proxy service using FML32 buffers as input/output. For
more information see, “XML-to-Tuxedo Data Type Mapping for External Web Services”.

2-2 Oracle SALT Programming Guide

Understanding Oracle SALT Message Conversion
Oracle SALT message conversion is the message transformation process between SOAP XML
data and Tuxedo typed buffer. Oracle SALT introduces two types message conversion rules:
Inbound Message Conversion and Outbound Message Conversion.

Inbound Message Conversion
Inbound message conversion process is the SOAP XML Payload and Tuxedo typed buffer
conversion process conforms to the “Tuxedo-to-XML data type mapping rules”. Inbound
message conversion process happens in the following two phases:

When GWWS accepts SOAP requests for legacy Tuxedo services;

When GWWS accepts response typed buffer from legacy Tuxedo service.

Oracle SALT encloses Tuxedo buffer content with element <inbuf>, <outbuf> and/or <errbuf>
in the SOAP message, the content encluded within element <inbuf>, <outbuf> and/or <errbuf>
is called “Inbound XML Payload”.

Outbound Message Conversion
Outbound message conversion process is the SOAP XML Payload and Tuxedo typed buffer
conversion process conforms to the “Tuxedo-to-XML data type mapping rules”. Outbound
message conferring process happens in the following two phases:

When GWWS accepts request typed buffer sent from a Tuxedo application;

When GWWS accepts SOAP response message from external Web service.

The following table compares inbound message conversion process and outbound message
conversion process.

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-3

Tuxedo-to-XML Data Type Mapping for Tuxedo Services
Oracle SALT provides a set of rules for describing Tuxedo typed buffers in an XML document.
These rules are exported as XML Schema definitions in SALT WSDL documents. This simplifies
buffer conversion and does not require previous Tuxedo buffer type knowledge.

Table 2-1 Inbound Message Conversion vs. Outbound Message Conversion

Inbound Message Conversion Outbound Message Conversion

SOAP message payload is encapsulated with
<inbuf>, <outbuf> or <errbuf>

SOAP message payload is the entire
<soap:body>

Transformation according to
“Tuxedo-to-XML data type mapping rules”

Transformation according to
“XML-to-Tuxedo data type mapping rules”

All Tuxedo buffer types are involved Only Tuxedo FML32 buffer type is involved

2-4 Oracle SALT Programming Guide

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-5

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

STRING Tuxedo STRING typed buffers are
used to store character strings that
terminate with a NULL character.
Tuxedo STRING typed buffers are
self-describing.

xsd:string

In the SOAP message, the XML element
that encapsulates the actual string data,
must be defined using xsd:string
directly.

Notes:
• The STRING data type can be

specified with a max data length in
the Tuxedo Service Metadata
Repository. If defined in Tuxedo,
the corresponding SOAP message
also enforces this maximum. The
GWWS server validates the actual
message byte length against the
definition in Tuxedo Service
Metadata Repository. A SOAP fault
message is returned if the message
byte length exceeds supported
maximums.

• If GWWS server receives a SOAP
message other than “UTF-8”, the
corresponding string value is in the
same encoding.

2-6 Oracle SALT Programming Guide

CARRAY
(Mapping with
SOAP Message
plus
Attachments)

Tuxedo CARRAY typed buffers store
character arrays, any of which can be
NULL. CARRAY buffers are used to
handle data opaquely and are not
self-describing.

The CARRAY buffer raw data is carried
within a MIME multipart/related
message, which is defined in the “SOAP
Messages with Attachments’
specification.

The two data formats supported for
MIME Content-Type attachments are:
• application/octet-stream

– For Apache Axis
• text/xml

– For Oracle WebLogic
Server

The format depends on which Web
service client-side toolkit is used.

Note: The SOAP with Attachment
rule is only interoperable with
Oracle WebLogic Server and
Apache Axis.

Note: CARRAY data types can be
specified with a max byte
length. If defined in Tuxedo, the
corresponding SOAP message
is enforced with this limitation.
The GWWS server validates the
actual message byte length
against the definition in the
Tuxedo Service Metadata
Repository.

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-7

CARRAY
(Mapping with
base64Binary)

Tuxedo CARRAY typed buffers store
character arrays, any of which can be
NULL. CARRAY buffers are used to
handle data opaquely and are not
self-describing.

xsd:base64Binary

The CARRAY data bytes must be
encoded with base64Binary before it
can be embedded in a SOAP message.
Using base64Binary encoding with
this opaque data stream saves the
original data and makes the embedded
data well-formed and readable.

In the SOAP message, the XML element
that encapsulates the actual CARRAY
data, must be defined with
xsd:base64Binary directly.

Note: CARRAY data type can be
specified with a max byte
length. If defined in Tuxedo, the
corresponding SOAP message
is enforced with this limitation.
The GWWS server validates the
actual message byte length
against the definition in the
Tuxedo Service Metadata
Repository.

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

2-8 Oracle SALT Programming Guide

MBSTRING Tuxedo MBSTRING typed buffers
are used for multibyte character
arrays. Tuxedo MBSTRING buffers
consist of the following three
elements:
• Code-set character encoding
• Data length
• Character array of the encoding.

xsd:string

The XML Schema built-in type,
xsd:string, represents the
corresponding type for buffer data
stored in a SOAP message.

The GWWS server only accepts
“UTF-8” encoded XML documents. If
the Web service client wants to access
Tuxedo services with MBSTRING
buffer, the mbstring payload must be
represented as “UTF-8” encoding in the
SOAP request message.

Note: The GWWS server
transparently passes the
“UTF-8” character set string to
the Tuxedo service using
MBSTRING Typed buffer
format.The actual Tuxedo
services handles the UTF-8
string.

For any Tuxedo response MBSTRING
typed buffer (with any encoding
character set), The GWWS server
automatically transforms the string into
“UTF-8” encoding and sends it back to
the Web service client.

MBSTRING
(cont.)

Limitation:

Tuxedo MBSTRING data type can be
specified with a max byte length in the
Tuxedo Service Metadata Repository.
The GWWS server checks the byte
length of the converted MBSTRING
buffer value.

Note: Max byte length value is not
used to enforce the character
number contained in the SOAP
message.

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-9

XML Tuxedo XML typed buffers store
XML documents.

xsd:anyType

The XML Schema built-in type,
xsd:anyType, is the corresponding
type for XML documents stored in a
SOAP message. It allows you to
encapsulate any well-formed XML data
within the SOAP message.

Limitation:

The GWWS server validates that the
actual XML data is well-formed. It will
not do any other enforcement validation,
such as Schema validation.

Only a single root XML buffer is
allowed to be stored in the SOAP body;
the GWWS server checks for this.

The actual XML data must be encoded
using the “UTF-8” character set. Any
original XML document prolog
information cannot be carried within the
SOAP message.

XML data type can specify a max byte
data length. If defined in Tuxedo, the
corresponding SOAP message must also
enforce this limitation.

Note: The Oracle SALT WSDL
generator will not have
xsd:maxLength restrictions
in the generated WSDL
document, but the GWWS
server will validate the byte
length according to the Tuxedo
Service Metadata Repository
definition.

X_C_TYPE X_C_TYPE buffer types are
equivalent to VIEW buffer types.

See VIEW/VIEW32

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

2-10 Oracle SALT Programming Guide

X_COMMON X_COMMON buffer types are
equivalent to VIEW buffer types, but
are used for compatibility between
COBOL and C programs. Field types
should be limited to short, long, and
string

See VIEW/VIEW32

X_OCTET X_OCTET buffer types are
equivalent to CARRAY buffer types

See CARRAY xsd:base64Binary

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-11

VIEW/VIEW32 Tuxedo VIEW and VIEW32 typed
buffers store C structures defined by
Tuxedo applications.

VIEW structures are defined by using
VIEW definition files. A VIEW
buffer type can define multiple fields.

VIEW supports the following
field types:
• short
• int
• long
• float
• double
• char
• string
• carray

VIEW32 supports all the VIEW
field types and mbstring.

Each VIEW or VIEW32 data type is
defined as an XML Schema complex
type. Each VIEW field should be one or
more sub-elements of the XML Schema
complex type. The name of the
sub-element is the VIEW field name.
The occurrence of the sub-element
depends on the count attribute of the
VIEW field definition. The value of the
sub-element should be in the VIEW field
data type corresponding XML Schema
type.

The the field types and the
corresponding XML Schema type are
listed as follows:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Tuxedo

Service Metadata Repository
definition) maps to xsd:byte

• char (defined as char in Tuxedo
Service Metadata Repository
definition) maps to xsd:string
(with restrictions maxlength=1)

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

VIEW/VIEW32
(cont.)

For more information, see
“VIEW/VIEW32 Considerations” on
page 2-21.

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

2-12 Oracle SALT Programming Guide

FML/FML32 Tuxedo FML and FML32 type
buffers are proprietary Oracle Tuxedo
system self-describing buffers. Each
data field carries its own identifier, an
occurrence number, and possibly a
length indicator.

FML supports the following field
types:
• FLD_CHAR
• FLD_SHORT
• FLD_LONG
• FLD_FLOAT
• FLD_DOUBLE
• FLD_STRING
• FLD_CARRAY

FML32 supports all the FML field
types and FLD_PTR,
FLD_MBSTRING, FLD_FML32,
and FLD_VIEW32.

FML/FML32 buffers can only have
basic data-dictionary-like definitions for
each basic field data. A particular
FML/FML32 buffer definition should be
applied for each FML/FML32 buffer
with a different type name.

Each FML/FML32 field should be one
or more sub-elements within the
FML/FML32 buffer XML Schema type.
The name of the sub-element is the FML
field name. The occurrence of the
sub-element depends on the count and
required count attribute of the
FML/FML32 field definition.

The e field types and the corresponding
XML Schema type are listed below:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Tuxedo

Service Metadata Repository
definition) maps to xsd:byte

• char (defined as char in Tuxedo
Service Metadata Repository
definition) maps to xsd:string

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-13

Tuxedo STRING Typed Buffers
Tuxedo STRING typed buffers are used to store character strings that end with a NULL character.
Tuxedo STRING typed buffers are self-describing.

The following example depicts the TOUPPER Tuxedo service, which accepts a STRING typed
buffer. The SOAP message is as follows:

Listing 2-1 Soap Message for a String Typed Buffer in TOUPPER Service

<?xml … encoding=”UTF-8” ?>

……

<SOAP:body>

<m:TOUPPER xmlns:m=”urn:......”>

<inbuf>abcdefg</inbuf>

</m:TOUPPER>

</SOAP:body>

FML/FML32

(cont.)
• view32 maps to tuxtype:view

<viewname>

• fml32 maps to tuxtype:fml32
<svcname>_p<SeqNum>

To avoid multiple embedded
FML32 buffers in an FML32 buffer,
a unique sequence number
(<SeqNum>) is used to distinguish
the embedded FML32 buffers.

Note: ptr is not supported.

For limitations and considerations
regarding mapping FML/FML32
buffers, refer to “FML/FML32
Considerations” on page 2-26.

Table 2-2 Tuxedo Buffer Mapping to XML Schema

Tuxedo Buffer Type Description XML Schema Mapping for SOAP Message

2-14 Oracle SALT Programming Guide

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

Tuxedo CARRAY Typed Buffers
Tuxedo CARRAY typed buffers are used to store character arrays, any of which can be NULL.
They are used to handle data opaquely and are not self-describing. Tuxedo CARRAY typed
buffers can map to xsd:base64Binary or MIME attachments. The default is
xsd:base64Binary.

Mapping Example Using base64Binary
Listing 2-2 shows the SOAP message for the TOUPPER Tuxedo service, which accepts a CARRAY
typed buffer using base64Binary mapping.

Listing 2-2 Soap Message for a CARRAY Typed Buffer Using base64Binary Mapping

<SOAP:body>

<m:TOUPPER xmlns:m=”urn:......”>

<inbuf>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</inbuf>

</m:TOUPPER>

</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:base64Binary” />

Mapping Example Using MIME Attachment
Listing 2-3 shows the SOAP message for the TOUPPER Tuxedo service, which accepts a CARRAY
typed buffer as a MIME attachment.

Listing 2-3 Soap Message for a CARRAY Typed Buffer Using MIME Attachment

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

start="<claim061400a.xml@example.com>"

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-15

Content-Description: This is the optional message description.

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <claim061400a.xml@ example.com>

<?xml version='1.0' ?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

..

<m:TOUPPER xmlns:m=”urn:…”>

<inbuf href="cid:claim061400a.carray@example.com"/>

</m:TOUPPER>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: text/xml

Content-Transfer-Encoding: binary

Content-ID: <claim061400a. carray @example.com>

...binary carray data…

--MIME_boundary--

The WSDL for carray typed buffer will look like the following:

<wsdl:definitions …>

<wsdl:types …>

<xsd:schema …>

<xsd:element name=”inbuf” type=”xsd:base64Binary” />

</xsd:schema>

</wsdl:types>

……

<wsdl:binding …>

<wsdl:operation name=”TOUPPER”>

2-16 Oracle SALT Programming Guide

<soap:operation …>

<input>

<mime:multipartRelated>

<mime:part>

<soap:body parts=”…” use=”…”/>

</mime:part>

<mime:part>

<mime:content part=”…” type=”text/xml”/>

</mime:part>

</mime:multipartRelated>

</input

……

</wsdl:operation>

</wsdl:binding>

</wsdl:definitions>

Tuxedo MBSTRING Typed Buffers
Tuxedo MBSTRING typed buffers are used for multibyte character arrays. Tuxedo MBSTRING
typed buffers consist of the following three elements:

code-set character encoding

data length

character array encoding.

Note: You cannot embed multibyte characters with non “UTF-8” code sets in the SOAP
message directly.

Figure 2-1 shows the SOAP message for the MBSERVICE Tuxedo service, which accepts an
MBSTRING typed buffer.

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-17

Figure 2-1 SOAP Message for an MBSTRING Buffer

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

WARNING: Oracle SALT converts the Japanese character "—" (EUC-JP 0xa1bd, Shift-JIS
0x815c) into UTF-16 0x2015.

If you use another character set conversion engine, the EUC-JP or Shift-JIS
multibyte output for this character may be different. For example, the Java il8n
character conversion engine, converts this symbol to UTF-16 0x2014. The result
is the also same when converting to UTF-8, which is the Oracle SALT default.

If you use another character conversion engine and Japanese "—" is included in
MBSTRING, TUXEDO server-side MBSTRING auto-conversion cannot
convert it back into Shift-JIS or EUC-JP.

Tuxedo XML Typed Buffers
Tuxedo XML typed buffers store XML documents.

Listing 2-4 shows the Stock Quote XML document.

Listing 2-5 shows the SOAP message for the STOCKINQ Tuxedo service, which accepts an XML
typed buffer.

Listing 2-4 Stock Quote XML Document

<?xml version="1.0" encoding="UTF-8"?>

<!-- "Stock Quotes". -->

<stockquotes>

<stock_quote>

<symbol>BEAS</symbol>

<when>

need to re-do th

2-18 Oracle SALT Programming Guide

<date>01/27/2001</date>

<time>3:40PM</time>

</when>

<change>+2.1875</change>

<volume>7050200</volume>

</stock_quote>

</stockquotes>

Then part of the SOAP message will look like the following:

Listing 2-5 SOAP Message for an XML Buffer

<SOAP:body>

<m: STOCKINQ xmlns:m=”urn:......”>

<inbuf>

<stockquotes>

<stock_quote>

<symbol>BEAS</symbol>

<when>

<date>01/27/2001</date>

<time>3:40PM</time>

</when>

<change>+2.1875</change>

<volume>7050200</volume>

</stock_quote>

</stockquotes>

</inbuf>

</m: STOCKINQ >

</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:anyType” />

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-19

Note: If a default namespace is contained in a Tuxedo XML typed buffer and returned to the
GWWS server, the GWWS server converts the default namespace to a regular name.
Each element is then prefixed with this name.

For example, if a Tuxedo service returns a buffer having a default namespace to the
GWWS server as shown in Listing 2-6, the GWWS server converts the default
namespace to a regular name as shown in Listing 2-7.

Listing 2-6 Default Namespace Before Sending to GWWS Server

<Configuration xmlns="http://www.bea.com/Tuxedo/Salt/200606">

<Servicelist id="simpapp">

<Service name="toupper"/>

</Servicelist>

<Policy/>

<System/>

<WSGateway>

<GWInstance id="GWWS1">

<HTTP address="//myhost:8080"/>

</GWInstance>

</WSGateway>

</Configuration>

Listing 2-7 GWWS Server Converts Default Namespace to Regular Name

<dom0:Configuration

xmlns:dom0="http://www.bea.com/Tuxedo/Salt/200606">

<dom0:Servicelist dom0:id="simpapp">

<dom0:Service dom0:name="toupper"/>

</dom0:Servicelist>

<dom0:Policy></<dom0:Policy>

<dom0:System></<dom0:System>

<dom0:WSGateway>

<dom0:GWInstance dom0:id="GWWS1">

<dom0:HTTP dom0:address="//myhost:8080"/>

</dom0:GWInstance>

2-20 Oracle SALT Programming Guide

</dom0:WSGateway>

</dom0:Configuration>

Tuxedo VIEW/VIEW32 Typed Buffers
Tuxedo VIEW and VIEW32 typed buffers are used to store C structures defined by Tuxedo
applications. You must define the VIEW structure with the VIEW definition files. A VIEW
buffer type can define multiple fields.

Listing 2-8 shows the MYVIEW VIEW definition file.

Listing 2-9 shows the SOAP message for the MYVIEW Tuxedo service, which accepts a VIEW
typed buffer.

Listing 2-8 VIEW Definition File for MYVIEW Service

VIEW MYVIEW

#type cname fbname count flag size null

float float1 - 1 - - 0.0

double double1 - 1 - - 0.0

long long1 - 3 - - 0

string string1 - 2 - 20 '\0'

END

Listing 2-9 SOAP Message for a VIEW Typed Buffer

<SOAP:body>

<m: STOCKINQ xmlns:m=”http://......”>

<inbuf>

<float1>12.5633</float1>

<double1>1.3522E+5</double1>

<long1>1000</long1>

<long1>2000</long1>

<long1>3000</long1>

<string1>abcd</string1>

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-21

<string1>ubook</string1>

</inbuf>

</m: STOCKINQ >

</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 2-10.

Listing 2-10 XML Schema for a VIEW Typed Buffer

<xsd:complexType name=” view_MYVIEW”>

<xsd:sequence>

<xsd:element name=”float1” type=”xsd:float” />

<xsd:xsd:element name=”double1” type=”xsd:double” />

<xsd:element name=”long1” type=”xsd:long” minOccurs=”3” />

<xsd:element name=”string1” type=”xsd:string minOccurs=”3” />

</xsd:sequence>

</xsd: complexType >

<xsd:element name=”inbuf” type=”tuxtype:view_MYVIEW” />

VIEW/VIEW32 Considerations
The following considerations apply when converting Tuxedo VIEW/VIEW32 buffers to and
from XML.

You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions
are automatically loaded by the GWWS server.

The GWWS server provides strong consistency checking between the Tuxedo Service
Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32
definition file at start up.

If an inconsistency is found, the GWWS server cannot start. Inconsistency messages are
printed in the ULOG file.

tmwsdlgen also provides strong consistency checking between the Tuxedo Service
Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32

2-22 Oracle SALT Programming Guide

definition file at start up. If an inconsistency is found, the GWWS server will not start.
Inconsistency messages are printed in the ULOG file.

If the VIEW definition file cannot be loaded, tmwsdlgen attempts to use the Tuxedo
Service Metadata Repository definitions to compose the WSDL document.

Because dec_t is not supported, if you define VIEW fields with type dec_t, the service
cannot be exported as a Web service and an error message is generated when the Oracle
SALT configuration file is loading.

Although the Tuxedo Service Metadata Repository may define a size attribute for “string/
mbstring” typed parameters (which represents the maximum byte length that is allowed in
the Tuxedo typed buffer), Oracle SALT does not expose such restriction in the generated
WSDL document.

When a VIEW32 embedded MBString buffer is requested and returned to the GWWS
server, the GWWS miscalculates the required MBString length and reports that the input
string exceeds the VIEW32 maxlength. This is because the header is included in the
transfer encoding information. You must include the header size when defining the
VIEW32 field length.

The Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope,
depending on the platform. However, the corresponding xsd:long schema type is used to
describe 64-bit numeric values.

If the GWWS server runs in 32-bit mode, and the Web service client sends xsd:long
typed data that exceeds the 32-bit value range, you may get a SOAP fault.

Tuxedo FML/FML32 Typed Buffers
Tuxedo FML and FML32 typed buffer are proprietary Oracle Tuxedo system self-describing
buffers. Each data field carries its own identifier, an occurrence number, and possibly a length
indicator.

FML Data Mapping Example
Listing 2-11 shows the SOAP message for the TRANSFER Tuxedo service, which accepts an FML
typed buffer.

The request fields for service LOGIN are:

ACCOUNT_ID 1 long /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */

AMOUNT 2 float /* The amount to transfer */

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-23

Part of the SOAP message is as follows:

Listing 2-11 SOAP Message for an FML Typed Buffer

<SOAP:body>

<m:TRANSFER xmlns:m=”urn:......”>

<inbuf>

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<AMOUNT>200.15</AMOUNT>

</inbuf>

</m:TRANSFER >

</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 2-12.

Listing 2-12 XML Schema for an FML Typed Buffer

<xsd:complexType name=” fml_TRANSFER_In”>

<xsd:sequence>

<xsd:element name=”ACCOUNT_ID” type=”xsd:long” minOccurs=”2”/>

<xsd:element name=” AMOUNT” type=”xsd:float” />

</xsd:sequence>

</xsd: complexType >

<xsd:element name=”inbuf” type=”tuxtype: fml_TRANSFER_In” />

FML32 Data Mapping Example
Listing 2-13 shows the SOAP message for the TRANSFER Tuxedo service, which accepts an
FML32 typed buffer.

The request fields for service LOGIN are:

CUST_INFO 1 fml32 /* 2 occurrences, The withdrawal

customer is 1st, and the deposit customer is 2nd */

2-24 Oracle SALT Programming Guide

ACCOUNT_INFO 2 fml32 /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */

AMOUNT 3 float /* The amount to transfer */

Each embedded CUST_INFO includes the following fields:

CUST_NAME 10 string

CUST_ADDRESS 11 carray

CUST_PHONE 12 long

Each embedded ACCOUNT_INFO includes the following fields:

ACCOUNT_ID 20 long

ACCOUNT_PW 21 carray

Part of the SOAP message will look as follows:

Listing 2-13 SOAP Message for Service with FML32 Buffer

<SOAP:body>

<m:STOCKINQ xmlns:m=”urn:......”>

<inbuf>

<CUST_INFO>

<CUST_NAME>John</CUST_NAME>

<CUST_ADDRESS>Building 15</CUST_ADDRESS>

<CUST_PHONE>1321</CUST_PHONE>

</CUST_INFO>

<CUST_INFO>

<CUST_NAME>Tom</CUST_NAME>

<CUST_ADDRESS>Building 11</CUST_ADDRESS>

<CUST_PHONE>1521</CUST_PHONE>

</CUST_INFO>

<ACCOUNT_INFO>

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<ACCOUNT_PW>abc</ACCOUNT_PW>

</ACCOUNT_INFO>

<ACCOUNT_INFO>

<ACCOUNT_ID>40069901</ACCOUNT_ID>

<ACCOUNT_PW>zyx</ACCOUNT_PW>

</ACCOUNT_INFO>

Tuxedo- to -XML Data Type Mapp ing fo r Tuxedo Serv ices

Oracle SALT Programming Guide 2-25

<AMOUNT>200.15</AMOUNT>

</inbuf>

</m: STOCKINQ >

</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 2-14.

Listing 2-14 XML Schema for an FML32 Buffer

<xsd:complexType name=”fml32_TRANSFER_In”>

<xsd:sequence>

<xsd:element name=”CUST_INFO” type=”tuxtype:fml32_TRANSFER_p1”

minOccurs=”2”/>

<xsd:element name=”ACCOUNT_INFO” type=”tuxtype:fml32_TRANSFER_p2”

minOccurs=”2”/>

<xsd:element name=”AMOUNT” type=”xsd:float” />

/xsd:sequence>

</xsd:complexType >

<xsd:complexType name=”fml32_TRANSFER_p1”>

<xsd:element name=”CUST_NAME” type=”xsd:string” />

<xsd:element name=”CUST_ADDRESS” type=”xsd:base64Binary” />

<xsd:element name=”CUST_PHONE” type=”xsd:long” />

</xsd:complexType>

<xsd:complexType name=”fml32_TRANSFER_p2”>

<xsd:element name=”ACCOUNT_ID” type=”xsd:long” />

<xsd:element name=”ACCOUNT_PW” type=”xsd:base64Binary” />

</xsd:complexType>

<xsd:element name=”inbuf” type=”tuxtype: fml32_TRANSFER_In” />

2-26 Oracle SALT Programming Guide

FML/FML32 Considerations
The following considerations apply to converting Tuxedo FML/FML32 buffers to and from
XML.

You must create an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled
only if the environment is set up correctly.

FML32 Field type FLD_PTR is not supported.

The GWWS server provides strong consistency checking between the Tuxedo Service
Metadata Repository FML/FML32 parameter definition and FML/FML32 definition file
during start up.

If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in
the Tuxedo Service Metadata Repository, the GWWS cannot start. Inconsistency messages
are printed in the ULOG file.

The tmwsdlgen command checks for consistency between the Tuxedo Service Metadata
Repository FML/FML32 parameter definition and FML/FML32 definition file. If
inconsistencies are found, it issue a warning and allow inconsistencies.

If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in
the Tuxedo Service Metadata Repository, tmwsdlgen attempts to use Tuxedo Service
Metadata Repository definitions to compose the WSDL document.

Although the Tuxedo Service Metadata Repository may define a size attribute for “string/
mbstring” typed parameters, which represents the maximum byte length that is allowed in
the Tuxedo typed buffer, Oracle SALT does not expose such restriction in the generated
WSDL document.

Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope according to
different platforms. But the corresponding xsd:long schema type is used to describe
64-bit numeric value. The following scenario generates a SOAP fault:

The GWWS runs in 32-bit mode, and a Web service client sends a xsd:long typed data
which exceeds the 32-bit value range.

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices

Oracle SALT Programming Guide 2-27

Tuxedo X_C_TYPE Typed Buffers
Tuxedo X_C_TYPE typed buffers are equivalent, and have a similar WSDL format to, Tuxedo
VIEW typed buffers.They are transparent for SOAP clients. However, even though usage is
similar to the Tuxedo VIEW buffer type, SALT administrators must configure the Tuxedo
Service Metadata Repository for any particular Tuxedo service that uses this buffer type.

Note: All View related considerations also take effect for X_C_TYPE typed buffer.

Tuxedo X_COMMON Typed Buffers
Tuxedo X_COMMON typed buffers are equivalent to Tuxedo VIEW typed buffers. However,
they are used for compatibility between COBOL and C programs. Field types should be limited
to short, long, and string.

Tuxedo X_OCTET Typed Buffers
Tuxedo X_OCTET typed buffers are equivalent to CARRAY.

Note: Tuxedo X_OCTET typed buffers can only map to xsd:base64Binary type. SALT 1.1
does not support MIME attachment binding for Tuxedo X_OCTET typed buffers.

Custom Typed Buffers
Oracle SALT provides a plug-in mechanism that supports custom typed buffers. You can validate
the SOAP message against your own XML Schema definition, allocate custom typed buffers, and
parse data into the buffers and other operations.

XML Schema built-in type xsd:anyType is the corresponding type for XML documents stored
in a SOAP message. While using custom typed buffers, you should define and represent the
actual data into an XML format and transfer between the Web service client and Tuxedo Web
service stack. As with XML typed buffers, only a single root XML buffer can be stored in the
SOAP body. The GWWS checks this for consistency.

For more plug-in information, see “Using Oracle SALT Plug-Ins” on page 5-1.

XML-to-Tuxedo Data Type Mapping for External Web
Services

Oracle SALT maps each wsdl:message as a Tuxedo FML32 buffer structure. Oracle SALT
defines a set of rules for representing the XML Schema definition using FML32. To invoke

2-28 Oracle SALT Programming Guide

external Web Services, customers need to understand the exact FML32 structure that converted
from the external Web Service XML Schema definition of the corresponding message.

The following sections describe detailed WSDL message to Tuxedo FML32 buffer mapping
rules:

XML Schema Built-In Simple Data Type Mapping

XML Schema User Defined Data Type Mapping

WSDL Message Mapping

XML Schema Built-In Simple Data Type Mapping
Table 2-3 shows the supported XML Schema Built-In Simple Data Type and the corresponding
Tuxedo FML32 Field Data Type.

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In
Simple Type

Tuxedo FML32 Field
Data Type

C/C++ Primitive Type
In Tuxedo Program

Note

xsd:byte FLD_CHAR char

xsd:unsignedByte FLD_CHAR unsigned char

xsd:boolean FLD_CHAR char Value Pattern
[‘T’ | ‘F’]

xsd:short FLD_SHORT short

xsd:unsignedShort FLD_SHORT unsigned short

xsd:int FLD_LONG long

xsd:unsignedInt FLD_LONG unsigned long

xsd:long FLD_LONG long In a 32-bit Tuxedo
program, the C primitive
type long cannot
represent all xsd:long
valid value.

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices

Oracle SALT Programming Guide 2-29

The following samples demonstrate how to prepare data in a Tuxedo program for XML Schema
Built-In Simple Types.

XML Schema Built-In Type Sample - xsd:boolean

XML Schema Built-In Type Sample - xsd:unsignedInt

XML Schema Built-In Type Sample - xsd:string

XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Built-In Type Sample - xsd:date

xsd:unsignedLong FLD_LONG unsigned long In a 32-bit Tuxedo
program, the C primitive
type unsigned long
cannot represent all
xsd:long valid value.

xsd:float FLD_FLOAT float

xsd:double FLD_DOUBLE double

xsd:string

(and all xsd:string
derived built-in type, such as
xsd:token, xsd:Name,
etc.)

FLD_STRING

FLD_MBSTRING

char []

(Null-terminated string)
xsd:string can be
optionally mapped as
FLD_STRING or
FLD_MBSTRING using
wsdlcvt.

xsd:base64Binary FLD_CARRAY char []

xsd:hexBinary FLD_CARRAY char []

All other built-in data types

(Data / Time related,
decimal / Integer related,
anyURI, QName,
NOTATION)

FLD_STRING char [] You should comply with
the value pattern of the
corresponding XML
built-in data type.
Otherwise, server-side
Web service will reject
the request.

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In
Simple Type

Tuxedo FML32 Field
Data Type

C/C++ Primitive Type
In Tuxedo Program

Note

../ref/comref.html#wp1112274

2-30 Oracle SALT Programming Guide

Table 2-4 XML Schema Built-In Type Sample - xsd:boolean

XML Schema Definition

<xsd:element name=”flag” type=”xsd:boolean” />

Corresponding FML32 Field Definition (FLD_CHAR)

Field_name Field_type Field_flag Field_comments

flag char -

C Pseudo Code

char c_flag;

FBFR32 * request;

...

c_flag = ‘T’; /* Set True for boolean data */

Fadd32(request, flag, (char *)&c_flag, 0);

Table 2-5 XML Schema Built-In Type Sample - xsd:unsignedInt

XML Schema Definition

<xsd:element name=”account” type=”xsd:unsignedInt” />

Corresponding FML32 Field Definition (FLD_LONG)

Field_name Field_type Field_flag Field_comments

account long -

C Pseudo Code

unsigned long acc;

FBFR32 * request;

...

acc = 102377; /* Value should not exceed value scope of unsigned int*/

Fadd32(request, account, (char *)&acc, 0);

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices

Oracle SALT Programming Guide 2-31

Table 2-6 XML Schema Built-In Type Sample - xsd:string

XML Schema Definition

<xsd:element name=”message” type=”xsd:string” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments

message mbstring -

C Pseudo Code

FBFR32 * request;

FLDLEN32 len, mbsize = 1024;

char * msg, * mbmsg;

msg = calloc(...); mbmsg = malloc(mbsize);

...

strncpy(msg, “...”, len); /* The string is UTF-8 encoding */

Fmbpack32(“utf-8”, msg, len, mbmsg, &mbsize, 0); /* prepare mbstring*/

Fadd32(request, message, mbmsg, mbsize);

Table 2-7 XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Definition

<xsd:element name=”mem_snapshot” type=”xsd:hexBinary” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments

mem_snapshot carray -

C Pseudo Code

FBFR32 * request;

FLDLEN32 len;

char * buf;

buf = calloc(...);

...

memcpy(buf, “...”, len); /* copy the original memory */

Fadd32(request, mem_snapshot, buf, len);

2-32 Oracle SALT Programming Guide

XML Schema User Defined Data Type Mapping
Table 2-9 lists the supported XML Schema User Defined Simple Data Type and the
corresponding Tuxedo FML32 Field Data Type.

Table 2-8 XML Schema Built-In Type Sample - xsd:date

XML Schema Definition

<xsd:element name=”IssueDate” type=”xsd:date” />

Corresponding FML32 Field Definition (FLD_STRING)

Field_name Field_type Field_flag Field_comments

IssueDate string -

C Pseudo Code

FBFR32 * request;

char date[32];

...

strcpy(date, “2007-06-04+8:00”); /* Set the date value correctly */

Fadd32(request, IssueDate, date, 0);

Table 2-9 Supported XML Schema User Defined Data Type

XML Schema User Defined
Data Type

Tuxedo FML32 Field
Data Type

C/C++ Primitive Type
In Tuxedo Program

Note

<xsd:anyType> FLD_MBSTRING char [] Tuxedo Programmer
should prepare entire
XML document
enclosing with the
element tag.

<xsd:simpleType>
derived from built-in
primitive simple data types

Equivalent FML32
Field Type of the
primitive simple type
(see Table 2-3)

Equivalent C Primitive
Data Type of the
primitive simple type
(see Table 2-3)

Facets defined with
<xsd:restriction>
are not enforced at
Tuxedo side.

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices

Oracle SALT Programming Guide 2-33

<xsd:simpleType>
defined with <xsd:list>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Tuxedo
side.

<xsd:simpleType>
defined with
<xsd:union>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Tuxedo
side.

<xsd:complexType>
defined with
<xsd:simpleContent>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Tuxedo
side.

<xsd:complexType>
defined with
<xsd:complexContent
>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced at Tuxedo
side.

<xsd:complexType>
defined with shorthand
<xsd:complexContent
>, sub-elements composited
with sequence or all

FLD_FML32 FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex type is defined
as an embedded FML32
field.

<xsd:complexType>
defined with shorthand
<xsd:complexContent
>, sub-elements composited
with choice

FML_FML32 FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex type is defined
as an embedded FML32
field.

Tuxedo programmer
should only add one sub
field into the fml32
buffer.

Table 2-9 Supported XML Schema User Defined Data Type

XML Schema User Defined
Data Type

Tuxedo FML32 Field
Data Type

C/C++ Primitive Type
In Tuxedo Program

Note

2-34 Oracle SALT Programming Guide

The following samples demonstrate how to prepare data in a Tuxedo program for XML Schema
User Defined Data Types:

XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple
Type

XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

Table 2-10 XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple Type

XML Schema Definition

<xsd:element name=”Grade” type=”Alphabet” />

<xsd:simpleType name=”Alphabet”>

<xsd:restriction base=”xsd:string”>

<xsd:maxLength value=”1” />

<xsd:pattern value=”[A-Z]” />

</xsd:restriction>

</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_STRING)

Field_name Field_type Field_flag Field_comments

Grade string -

C Pseudo Code

char grade[2];

FBFR32 * request;

...

grade[0] = ‘A’; grade[1] = ‘\0’;

Fadd32(request, Grade, (char *)grade, 0);

Table 2-11 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

XML Schema Definition (Target Namespace “urn:sample.org”)

<xsd:element name=”Users” type=”namelist” />

<xsd:simpleType name=”namelist”>

<xsd:list itemType=”xsd:NMTOKEN”>

</xsd:simpleType>

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices

Oracle SALT Programming Guide 2-35

WSDL Message Mapping
Tuxedo FML32 buffer type is always used in mapping WSDL messages.

Table 2-12 lists the WSDL message mapping rules defined by Oracle SALT.

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments

Users mbstring -

C Pseudo Code

char * user[5];

char users[...];

char * mbpacked;

FLDLEN32 mbsize = 1024;

FBFR32 * request;

...

sprintf(users, “<n1:Users xmlns:n1=\”urn:sample.org\”>”);

for (i = 0 ; i < 5 ; i++) {

strcat(users, user[i]);

strcat(users, “ “);

}

strcat(users, “</n1:Users>“);

...

mbpacked = malloc(mbsize);

/* prepare mbstring*/

Fmbpack32(“utf-8”, users, strlen(users), mbpacked, &mbsize, 0);

Fadd32(request, Users, mbpacked, mbsize);

Table 2-11 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

Table 2-12 WSDL Message Mapping Rules

WSDL Message Definition Tuxedo Buffer/Field Definition Note

<wsdl:input> message Tuxedo Request Buffer (Input buffer)

<wsdl:output> message Tuxedo Response Buffer with TPSUCCESS
(Output buffer)

2-36 Oracle SALT Programming Guide

<wsdl:fault> message Tuxedo Response Buffer with TPFAIL
(error buffer)

Each message part defined
in <wsdl:input> or
<wsdl:output>

Mapped as top level field in the Tuxedo
FML32 buffer. Field type is the equivalent
FML32 field type of the message part XML
data type. (See Table 2-3 and Table 2-9)

<faultcode> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultcode) in the Tuxedo error
buffer:

faultcode string - -

This mapping rule
applies for SOAP 1.1
only.

<faultstring> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultstring) in the Tuxedo error
buffer:
faultstring string - -

This mapping rule
applies for SOAP 1.1
only.

<faultactor> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultactor) in the Tuxedo error
buffer:
faultactor string - -

This mapping rule
applies for SOAP 1.1
only.

<Code> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_FML32
field (Code) in the Tuxedo error buffer,
which containing two fixed sub
FLD_STRING fields (Value and
Subcode):
Code fml32 - -
Value string - -
Subcode string - -

This mapping rule
applies for SOAP 1.2
only.

<Reason> in SOAP 1.2
fault message

Mapped as a fixed top level FLD_FML32
field (Reason) in the Tuxedo error buffer,
which containing zero or more fixed sub
FLD_STRING field (Text):
Reason fml32 - -
Text string - -

This mapping rule
applies for SOAP 1.2
only.

Table 2-12 WSDL Message Mapping Rules

WSDL Message Definition Tuxedo Buffer/Field Definition Note

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices

Oracle SALT Programming Guide 2-37

<Node> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_STRING
field (Node) in the Tuxedo error buffer:
Node string - -

This mapping rule
applies for SOAP 1.2
only.

<Role> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_STRING
field (Role) in the Tuxedo error buffer:
Role string - -

This mapping rule
applies for SOAP 1.2
only.

<detail> in SOAP fault
message

Mapped as a fixed top level FLD_FML32
field in the Tuxedo error buffer:
detail fml32 - -

This mapping rule
applies for both SOAP
1.1 and SOAP 1.2.

Each message part defined
in <wsdl:fault>

Mapped as a sub field of “detail” field in
the Tuxedo FML32 buffer. Field type is the
equivalent FML32 field type of the message
part XML data type. (See Table 2-3 and
Table 2-9)

This mapping rule
applies for both SOAP
1.1 and SOAP 1.2.

Table 2-12 WSDL Message Mapping Rules

WSDL Message Definition Tuxedo Buffer/Field Definition Note

2-38 Oracle SALT Programming Guide

Oracle SALT Programming Guide 3-1

C H A P T E R 3

Web Service Client Programming

This section contains the following topics:

Overview

Oracle SALT Web Service Client Programming Tips

Web Service Client Programming References

Overview
Oracle SALT is a configuration-driven product that publishes existing Tuxedo application
services as industry-standard Web services. From a Web services client-side programming
perspective, Oracle SALT used in conjunction with the Oracle Tuxedo framework is a standard
Web service provider. You only need to use the Oracle SALT WSDL file to develop a Web
service client program.

To develop a Web service client program, do the following steps:

1. Generate or download the Oracle SALT WSDL file. For more information, see Configuring
Oracle SALT in the Oracle SALT Administration Guide.

2. Use a Web service client-side toolkit to parse the SALT WSDL document and generate client
stub code. For more information, see Oracle SALT Web Service Client Programming Tips.

3. Write client-side application code to invoke a Oracle SALT Web service using the functions
defined in the client-generated stub code.

4. Compile and run your client application.

../admin/config.html
../admin/config.html

3-2 Oracle SALT Programming Guide

Oracle SALT Web Service Client Programming Tips
This section provides some useful client-side programming tips for developing Web service
client programs using the following Oracle SALT-tested programming toolkits:

Oracle WebLogic Web Service Client Programming Toolkit

Apache Axis for Java Web Service Client Programming Toolkit

Microsoft .NET Web Service Client Programming Toolkit

For more information, see Interoperability Considerations in the Oracle SALT Administration
Guide.

Notes: You can use any SOAP toolkit to develop client software.

The sample directories for the listed toolkits can be found after Oracle SALT is installed.

Oracle WebLogic Web Service Client Programming Toolkit
WebLogic Server provides the clientgen utility which is a built-in application server
component used to develop Web service client-side java programs. The invocation can be issued
from standalone java program and server instances. For more information, see
http://edocs.bea.com/wls/docs91/webserv/client.html#standalone_invoke.

Besides traditional synchronous message exchange mode, Oracle SALT also supports
asynchronous and reliable Web service invocation using WebLogic Server. Asynchronous
communication is defined by the WS-Addressing specification. Reliable message exchange
conforms to the WS-ReliableMessaging specification.

Tip: Use the WebLogic specific WSDL document for HTTP MIME attachment support.

Oracle SALT can map Tuxedo CARRAY data to SOAP request MIME attachments. This
is beneficial when the binary data stream is large since MIME binding does not need
additional encoding wrapping. This can help save CPU cycles and network bandwidth.

Another consideration, in an enterprise service oriented environment, is that binary data
might be used to guide high-level data routing and transformation work. Encoded data
can be problematic. To enable the MIME data binding for Tuxedo CARRAY data, a
special flag must be specified in the WSDL document generation options; both for online
downloading and using the tmwsdlgen command utility.

../admin/interop.html
http://edocs.bea.com/wls/docs91/webserv/client.html#standalone_invoke

Runn ing H/F 2

Oracle SALT Programming Guide 3-3

Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=wls

tmwsdlgen Utility
tmwsdlgen -c WSDF_FILE -m raw -t wls

Apache Axis for Java Web Service Client Programming Toolkit
Oracle SALT supports the AXIS wsdl2java utility which generates java stub code from the
WSDL document. The AXIS Web service programming model is similar to WebLogic.

Tip: 1. Use the AXIS specific WSDL document for HTTP MIME attachment support.

Oracle SALT supports HTTP MIME transportation for Tuxedo CARRAY data. A
special option must be specified for WSDL online downloading and the tmwsdlgen
utility.

Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=axis

tmwsdlgen Utility
tmwsdlgen -c WSDF_FILE -m raw -t axis

Tip: 2. Disable multiple-reference format in AXIS when RPC/encoded style is used.

AXIS may send a multi-reference format SOAP message when RPC/encoded style is
specified for the WSDL document. Oracle SALT does not support multiple-reference
format. You can disable AXIS multiple-reference format as shown in Listing 3-1:

Listing 3-1 Disabling AXIS Multiple-Reference Format

TuxedoWebServiceLocator service = new TuxedoWebServiceLocator();

service.getEngine().setOption("sendMultiRefs", false);¦

Tip: 3. Use Apache Sandensha project with Oracle SALT for WS-ReliableMessaging
communication.

3-4 Oracle SALT Programming Guide

Interoperability was tested for WS-ReliableMessaging between Oracle SALT and the
Apache Sandensha project. The Sandensha asynchronous mode and send offer must
be set in the code.

A sample Apache Sandensha asynchronous mode and send offer code example is
shown in Listing 1-2:

Listing 3-2 Sample Apache Sandensha Asynchronous Mode and “send offer” Code example

/* Call the service */

 TuxedoWebService service = new TuxedoWebServiceLocator();

Call call = (Call) service.createCall();

 SandeshaContext ctx = new SandeshaContext();

 ctx.setAcksToURL("http://127.0.0.1:" + defaultClientPort +

"/axis/services/RMService");

ctx.setReplyToURL("http://127.0.0.1:" + defaultClientPort +

"/axis/services/RMService");

ctx.setSendOffer(true);

ctx.initCall(call, targetURL, "urn:wsrm:simpapp",

Constants.ClientProperties.IN_OUT);

call.setUseSOAPAction(true);

call.setSOAPActionURI("ToUpperWS");

call.setOperationName(new

javax.xml.namespace.QName("urn:pack.simpappsimpapp_typedef.salt11",

"ToUpperWS"));

call.addParameter("inbuf", XMLType.XSD_STRING, ParameterMode.IN);

call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING);

 String input = new String();

 String output = new String();

int i;

 for (i = 0; i < 3; i++) {

 input = "request" + "_" + String.valueOf(i);

Runn ing H/F 2

Oracle SALT Programming Guide 3-5

System.out.println("Request:"+input);

 output = (String) call.invoke(new Object[]{input});

 System.out.println("Reply:" + output);

 }

ctx.setLastMessage(call);

input = "request" + "_" + String.valueOf(i);

System.out.println("Request:"+input);

 output = (String) call.invoke(new Object[]{input});

Microsoft .NET Web Service Client Programming Toolkit
Microsoft .Net 1.1/2.0 provides wsdl.exe in the .Net SDK package. It is a free development
Microsoft toolkit. In the Oracle SALT simpapp sample, a .Net program is provided in the
simpapp/dnetclient directory.

.Net Web service programming is easy and straightforward. Use the wsdl.exe utility and the
Oracle SALT WSDL document to generate the stub code, and then reference the .Net object
contained in the stub code/binary in business logic implementations.

Tip: 1. Do not use .Net program MIME attachment binding for CARRAY.

Microsoft does not support SOAP communication MIME binding. Avoid using the
WSDL document with MIME binding for CARRAY in .Net development.

Oracle SALT supports base64Binary encoding for CARRAY data (the default WSDL
document generation.)

Tip: 2. Some RPC/encoded style SOAP messages are not understood by the GWWS
server.

When the Oracle SALT WSDL document is generated using RPC/encoded style, .Net
sends out SOAP messages containing soapenc:arrayType. Oracle SALT does not
support soapenc:arrayType using RPC/encoded style. A sample RPC/encoded
style-generated WSDL document is shown in Listing 1-3.

3-6 Oracle SALT Programming Guide

Listing 3-3 Sample RPC/encoded Style-Generated WSDL document

<wsdl:types>
<xsd:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"
targetNamespace="urn:pack.TuxAll_typedef.salt11">

<xsd:complexType name="fml_TFML_In">
<xsd:sequence>

<xsd:element maxOccurs="60"
minOccurs="60" name="tflong" type="xsd:long"></xsd:element>

<xsd:element maxOccurs="80"
minOccurs="80" name="tffloat" type="xsd:float"></xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="fml_TFML_Out">

…
</xsd:complexType>

</xsd:schema>

</wsdl:types>

Workaround: Use Document/literal encoded style for .Net client as recommended by Microsoft.

Tip: 3. Error message regarding xsd:base64Binary in RPC/encoded style.

If xsd:base64Binary is used in the Oracle SALT WSDL document in RPC/encoded
style, wsdl.exe can generate stub code, but the client program might report a runtime
error as follows:

System.InvalidOperationException:'base64Binary' is an invalid value for the
SoapElementAttribute.DataType property. The property may only be specified for
primitive types.

Workaround: This is a .Net framework issue.
Use Document/literal encoded style for .Net client as recommended by Microsoft.

Runn ing H/F 2

Oracle SALT Programming Guide 3-7

Web Service Client Programming References

Online References
Oracle WebLogic 10.0 Web Service Client Programming References

Invoking a Web service from a Stand-alone Client: Main Steps

Apache Axis 1.3 Web Service Client Programming References

Consuming Web Services with Axis

Using WSDL with Axis

Microsoft .NET Web Service Programming References

Building Web Services

http://edocs.bea.com/wls/docs100/webserv/client.html#standalone_invoke
http://ws.apache.org/axis/java/user-guide.html#ConsumingWebServicesWithAxis
http://ws.apache.org/axis/java/user-guide.html#UsingWSDLWithAxis
http://msdn.microsoft.com/webservices/webservices/building/default.aspx

3-8 Oracle SALT Programming Guide

4-1 Oracle SALT Programming Guide

C H A P T E R 4

Tuxedo ATMI Programming for Web
Services

This topic contains the following topics:

Overview

Converting WSDL Model Into Tuxedo Model

Invoking SALT Proxy Services

Overview
Oracle SALT allows you to import external Web Services into Tuxedo Domains. To import
external Web services into Tuxedo application, a WSDL file must first be loaded and converted.
The Oracle SALT WSDL conversion utility, wsdlcvt, translates each wsdl:operation into a
Oracle SALT proxy service. The translated SALT proxy service can be invoked directly through
standard Tuxedo ATMI functions.

Oracle SALT proxy service calls are sent to the GWWS server. The request is translated from
Tuxedo typed buffers into the SOAP message, and then sent to the corresponding external Web
Service. The response from an external Web Service is translated into Tuxedo typed buffers and
returned to the Tuxedo application. The GWWS acts as the proxy intermediary.

If an error occurs during the service call, the GWWS server sets the error status using tperrno,
which can be retrieved by Tuxedo applications. This enables you to detect and handle the SALT
proxy service call error status.

4-2 Oracle SALT Programming Guide

Converting WSDL Model Into Tuxedo Model
Oracle SALT provides a WSDL conversion utility, wsdlcvt, that converts external WSDL files
into Tuxedo specific definition files so that you can develop Tuxedo ATMI programs to access
services defined in the WSDL file.

WSDL-to-Tuxedo Object Mapping
Oracle SALT converts WSDL object models into Tuxedo models using the following rules:

Only SOAP over HTTP binding are supported, each binding is defined and saved as a
WSBinding object in the WSDF file.

Each operation in the SOAP bindings is mapped as one Tuxedo style service, which is also
called a SALT proxy service. The operation name is used as the Tuxedo service name and
indexed in the Tuxedo Service Metadata Repository.

Other Web service external application protocol information is saved in the generated
WSDF file (including SOAP protocol version, SOAP message encoding style, accessing
endpoints, and so).

XML Schema definitions embedded in the WSDL file are copied and saved in separate
.xsd files.

Each wsdl:operation object and its input/output message details are converted as a
Tuxedo service definition conforms to Tuxedo Service Metadata Repository input syntax.

Table 4-1 lists detailed mapping relationships between the WSDL file and Tuxedo definition
files.

Table 4-1 WSDL Model / Tuxedo Model Mapping Rules

WSDL Object Tuxedo/SALT Definition File Tuxedo/SALT Definition Object

/wsdl:binding SALT Web Service Definition File
(WSDF)

/WSBinding

/wsdl:portType /WSBinding/Servicegroup

/wsdl:binding/soap:binding /WSBinding/SOAP

/wsdl:portType/operation Metadata Input File (MIF) /WSBinding/service

/wsdl:types/xsd:schema FML32 Field Defintion Table Field name type

../ref/comref.html#wp1112274

Runn ing H/F 1

4-3 Oracle SALT Programming Guide

Invoking SALT Proxy Services
The following sections include information on how to invoke the converted SALT proxy service
from a Tuxedo application:

Oracle SALT Supported Communication Pattern

Tuxedo Outbound Call Programming: Main Steps

Managing Error Code Returned from GWWS

Handling Fault Messages in a Tuxedo application

Oracle SALT Supported Communication Pattern
Oracle SALT only supports the Tuxedo Request/Response communication patterns for outbound
service calls. A Tuxedo application can request the SALT proxy service using the following
communication Tuxedo ATMIs:

tpcall(1) / tpacall(1) / tpgetreply(1)

These basic ATMI functions can be called with a Tuxedo typed buffer as input parameter.
The return of the call will also carry a Tuxedo typed buffer. All these buffers will conform
to the converted outside Web service interface. tpacall/tpgetreply is not related to
SOAP async communication.

tpforward(1)

Tuxedo server application can use this function to forward a Tuxedo request to a specified
SALT proxy service. The response buffer is sent directly to client application’s response
queue as if it’s a traditional native Tuxedo service.

TMQFORWARD enabled queue-based communication.

Tuxedo system server TMQFORWARD can accept queued requests and send them to
Oracle SALT proxy services that have the same name as the queue.

Oracle SALT does not support the following Tuxedo communication patterns:

Conversational communication

Event-based communication

4-4 Oracle SALT Programming Guide

Tuxedo Outbound Call Programming: Main Steps
When the GWWS is booted and Oracle SALT proxy services are advertised, you can create a
Tuxedo application to call them. To develop a program to access SALT proxy services, do the
following:

Check the Tuxedo Service Metadata Repository definition to see what the SALT proxy
service interface is.

Locate the generated FML32 field table files. Modify the FML32 field table to eliminate
conflicting field names and assign a valid base number for the index.

Note: The wsdlcvt generated FML32 field table files are always used by GWWS. you must
make sure the field name is unique at the system level. If two or more fields are
associated with the same field name, change the field name. Do not forget to change
Tuxedo Service Metadata Repository definition accordingly.

The base number of field index in the generated FML32 field table must be changed
from the invalid default value to a correct number to ensure all field index in the table
is unique at the entire system level.

Generate FML32 header files with mkfldhdr32(1).

Boot the GWWS with correct FML32 environment variable settings.

Write a skeleton C source file for the client to call the outbound service (refer to Tuxedo
documentation and the Tuxedo Service Metadata Repository generated pseudo-code if
necessary). You can use tpcall(1) or tpacall(1) for synchronous or asynchronous
communication, depending on the requirement.

For FML32 buffers, you need to add each FML32 field (conforming to the corresponding
Oracle SALT proxy service input buffer details) defined in the Tuxedo Service Metadata
Repository, including FML32 field sequence and occurrence. The client source may
include the generated header file to facilitate referencing the field name.

Get input buffer ready, user can handle the returned buffer, which should be of the type
defined in Metadata.

Compile the source to generate executable.

Test the executable.

http://edocs.bea.com/tuxedo/tux91/rfcm/rfcmd22.htm#1000080

Runn ing H/F 1

4-5 Oracle SALT Programming Guide

Managing Error Code Returned from GWWS
If the GWWS server encounters an error accessing external Web services, tperrno is set
accordingly so the Tuxedo application can diagnose the failure. Table 4-2 lists possible Oracle
SALT proxy service tperrno values.

Handling Fault Messages in a Tuxedo application
All rules listed in used to map WSDL input/output message into Tuxedo Metadata inbuf/outbuf
definition. WSDL file default message can also be mapped into Tuxedo Metadata errbuf, with
some amendments to the rules:

Rules for fault mapping:

There are two modes for mapping Metadata errbuf into SOAP Fault messages: Tux Mode and
XSD Mode.

Table 4-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason

TPENOENT Requested SALT proxy service is not advertised by GWWS

TPESVCERR The HTTP response message returned from external Web service
application is not valid

The SOAP response message returned from external Web service
application is not well-formed.

TPEPERM Authentication failure.

TPEITYPE Message conversion failure when converting Tuxedo request typed buffer
into XML payload of the SOAP request message.

TPEOTYPE Message conversion failure when converting XML payload of the SOAP
response message into Tuxedo response typed buffer.

TPEOS Request is rejected because of system resource limitation

TPETIME Timeout occurred. This timeout can either be a BBL blocktime, or a SALT
outbound call timeout.

TPSVCFAIL External Web service returns SOAP fault message

TPESYSTEM GWWS internal errors. Check ULOG for more information.

4-6 Oracle SALT Programming Guide

Tux Mode is used to convert Tuxedo original error buffers returned with TPFAIL. The
error buffers are converted into XML payload in <detail> element of SOAP fault.

XSD Mode is used to represent SOAP fault and WSDL file fault messages defined with
Tuxedo buffers. The mapping rule include:

Each service in XSD mode (servicemode=webservice) will always have an errbuf in Metadata,
with type=FML32.

The errbuf is a FML32 buffer. It is complete description for SOAP:Fault message that is possible
to appear in correspondence, which will be different for SOAP 1.1 and 1.2. So the errbuf
definitionís content will be determined by the SOAP version and WSDL fault message both.

Parameter detail/Detail (1.1/1.2) will be a FML32 field that each field of it represents for the
wsdl:part defined in one wsdl:fault message (when wsdl:fault is present). Each part is defined as
a param(field) in this FML32 field. The mapping rules are the same as input/output buffer. The
difference is that each paramís requiredcount is 0, which means the part may not appear in SOAP
fault message.

Other elements appears in soap:fault message will always be defined as a filed in errbuf, with
requiredcount equals to 1 or 0 depending on the element is a MUST or OPTIONAL.

Each partís definition in Metadata will guide converting a <detail> in soap fault message into a
field in error buffer.

Oracle SALT Programming Guide 5-1

C H A P T E R 5

Using Oracle SALT Plug-Ins

This section contains the following topics:

Understanding Oracle SALT Plug-Ins

Programming Message Conversion Plug-ins

Programming Outbound Authentication Plug-Ins

Understanding Oracle SALT Plug-Ins
The Oracle SALT GWWS server is a configuration-driven process which, for most basic Web
service applications, does not require any programming tasks. However, Oracle SALT
functionality can be enhanced by developing plug-in interfaces which utilize custom typed buffer
data and customized shared libraries to extend the GWWS server.

A plug-in interface is a set of functions exported by a shared library that can be loaded and
invoked by GWWS processes to achieve special functionality. Oracle SALT provides a plug-in
framework as a common interface for defining and implementing a plug-in interface. Plug-in
implementation is carried out by a shared library which contains the actual functions. The plug-in
implementation library is configured in the SALT Deployment file and is loaded dynamically
during GWWS server startup.

Plug-In Elements
Four plug-in elements are required to define a plug-in interface:

Plug-In ID

../ref/comref.html#wp1111835
../ref/deploy.html

5-2 Oracle SALT Programming Guide

Plug-In Name

Plug-In Implementation Functions

Plug-In Register Functions

Plug-In ID
The plug-in ID element is a string used to identify a particular plug-in interface function. Multiple
plug-in interfaces can be grouped with the same Plug-in ID for a similar function. Plug-in ID
values are predefined by Oracle SALT. Arbitrary string values are not permitted.

Oracle SALT 2.0 supports the P_CUSTOM_TYPE and P_CREDENMAP plug-in ID, which is used to
define plug-in interfaces for custom typed buffer data handling, and map Tuxedo user ID and
group ID into username/password that HTTP Basic Authentication needs.

Plug-In Name
The plug-in Name differentiates one plug-in implementation from another within the same
Plug-in ID category.

For the P_CUSTOM_TYPE Plug-in ID, the plug-in name is used to indicate the actual custom buffer
type name. When the GWWS server attempts to convert data between Tuxedo custom typed
buffers and an XML document, the plug-in name is the key element that searches for the proper
plug-in interface.

Plug-In Implementation Functions
Actual business logic should reflect the necessary functions defined in a plug-in vtable structure.
Necessary functions may be different for different plug-in ID categories.

For the P_CREDENMAP ID category, one function needs to be implemented:

int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *
t_userid, char * t_grpid, Cred_UserPass * credential);

For more information, see “Programming Outbound Authentication Plug-Ins”.

Plug-In Register Functions
Plug-in Register functions are a set of common functions (or rules) that a plug-in interface must
implement so that the GWWS server can invoke the plug-in implementation. Each plug-in
interface must implement three register function These functions are:

Information Providing Function

Unders tand ing Orac le SALT P lug- Ins

Oracle SALT Programming Guide 5-3

Initiating Function

Exiting Function

vtable Setting Function

Information Providing Function
This function is optional. If it is used, it will be first invoked after the plug-in shared library is
loaded during GWWS server startup. If you want to implement more than one interface in one
plug-in library, you must implement this function and return the counts, IDs, and names of the
interfaces in the library.

Returning a 0 value indicates the function has executed successfully. Returning a value other than
0 indicates failure. If this functions fails, the plug-in is not loaded and the GWWS server will not
start.

The function uses the following syntax:

int _ws_pi_get_Id_and_Names(int * count, char **ids, char **names);

You must return the total count of implementation in the library in arguments count. The
arguments IDs and names should contains all implemented interface IDs and names, separated
by a semicolon “;”.

Initiating Function
The initiating function is invoked after all the implemented interfaces in the plug-in shared library
are determined. You can initialize data structures and set up global environments that can be used
by the plug-ins.

Returning a 0 value indicates the initiating function has executed successfully. Returning a value
other than 0 indicates initiation has failed. If plug-in interface initiation fails, the GWWS server
will not start.

The initiating function uses the following syntax:

int _ws_pi_init_@ID@_@Name@(char * params, void **priv_ptr);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and MyType as
a plug-in name is: _ws_pi_init_P_CUSTOM_TYPE_MyType (char * params, void
**priv_ptr).

5-4 Oracle SALT Programming Guide

Exiting Function
The exiting function is called before closing the plug-in shared library when the GWWS server
shuts down. You should release all reserved plug-in resources.

The exiting function uses the following syntax:

int _ws_pi_exit_@ID@_@Name@(void * priv);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating exiting function name of a plug-in with P_CUSTOM_TYPE as a plug-in ID
and MyType as a plug-in name is: _ws_pi_exit_P_CUSTOM_TYPE_MyType(void * priv).

vtable Setting Function
vtable is a particular C structure that stores the necessary function pointers for the actual
businesss logic of a plug-in interface. In other words, a valid plug-in interface must implement
all the functions defined by the corresponding vtable.

The vtable setting function uses the following syntax:
int _ws_pi_set_vtbl_@ID@_@Name@(void * priv);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the vtable setting function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and
MyType as a plug-in name is: _ws_pi_set_vtbl_P_CUSTOM_TYPE_MyType(void * priv).

The vtable structures may be different for different plug-in ID categories. For the Oracle SALT
2.0 release, P_CUSTOM_TYPE and P_CREDENMAP are the only valid plug-in IDs.

The vtable structures for available plug-in interfaces are shown in Listing 5-1.

Listing 5-1 VTable Structure

struct credmap_vtable {

int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *

t_userid, char * t_grpid, Cred_UserPass * credential); /* used for HTTP Basic

Authentication */

/* for future use */

void * unused_1;

void * unused_2;

void * unused_3;

};

Unders tand ing Orac le SALT P lug- Ins

Oracle SALT Programming Guide 5-5

struct credmap_vtable indicates that one function need to be implemented for a P_CREDENMAP
plug-in interface. For more information, see “Programming Outbound Authentication Plug-Ins”.

The function input parameter void * priv points to a concrete vtable instance. You should set
the vtable structure with the actual functions within the vtable setting function.

An example of setting the vtable structure with the actual functions within the vtable setting
function is shown in Listing 5-2.

Listing 5-2 Setting the vtable Structure with Actual functions within the vtable Setting Function

int _DLLEXPORT_ _ws_pi_set_vtbl_P_CREDENMAP_TEST (void * vtbl)

{

struct credmap_vtable * vtable;

if (! vtbl)

return -1;

vtable = (struct credmap_vtable *) vtbl;

vtable->gwws_pi_map_http_basic = Credmap_HTTP_Basic;

return 0;

}

Developing a Plug-In Interface
To develop a comprehensive plug-in interface, do the following steps:

1. Develop a shared library to implement the plug-in interface

2. Define the plug-in interface in the SALT configuration file

Developing a Plug-In Shared Library
To develop a plug-in shared library, do the following steps:

1. Write C language plug-in implementation functions for the actual business logic. These
functions are not required to be exposed from the shared library. For more information, see
“Plug-In Implementation Functions”.

5-6 Oracle SALT Programming Guide

2. Write C language plug-in register functions that include: the initiating function, the exiting
function, the vtable setting function, and the information providing function if necessary.
These register functions need to be exported so that they can be invoked from the GWWS
server. For more information, see “Plug-In Register Functions”.

3. Compile all the above functions into one shared library.

Defining a Plug-In interface in SALT configuration file
To define a plug-in shared library that is loaded by the GWWS server, the corresponding plug-in
library path must be configured in the SALT deployment file. For more information, see Setting
Up a Oracle SALT Application in the Oracle SALT Administration Guide.

An example of how to define plug-in information in the Oracle SALT deployment file is shown
in Listing 5-3.

Listing 5-3 Defined Plug-In in the Oracle SALT Deployment File

<?xml version="1.0" encoding="UTF-8"?>

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

.

.

<System>

<Plugin>

<Interface

id=”P_CREDENMAP”

name=”TEST”

library=”credmap_plugin.dll” />

</Plugin>

</System>

</Deployment>

Notes: To define multiple plug-in interfaces, multiple <Interface> elements must be
specified. Each <Interface> element indicates one plug-in interface.

Multiple plug-in interfaces can be built into one shared library file.

../admin/config.html
../admin/config.html

Programming Message Convers ion P lug- ins

Oracle SALT Programming Guide 5-7

Programming Message Conversion Plug-ins
Oracle SALT defines a complete set of default data type conversion rules to convert between
Tuxedo buffers and SOAP message payloads. But the default data type conversion rules may not
meet all your needs in tranforming SOAP messages into Tuxedo typed buffers or vice versa. To
accommodate special application requirements, Oracle SALT supports customized message level
conversion plug-in development to extends the default message conversion.

Note: SALT 2.0 Message Conversion Plug-in is an enhanced successor of SALT 1.1 Custom
Buffer Type Conversion Plug-in.

The following topics are included in this section:

“How Message Conversion Plug-ins Work” on page 5-7

“When Do We Need Message Conversion Plug-In” on page 5-9

“Developing a Message Conversion Plug-In Instance” on page 5-11

“SALT 1.1 Custom Buffer Type Conversion Plug-In Compatibility” on page 5-15

How Message Conversion Plug-ins Work
Message Conversion Plugin is one sort of SALT supported Plug-in that are defined within the
SALT plug-in framework. All Message Conversion Plug-in instances have the same Plug-In ID,
“P_CUSTOM_TYPE“. Each particular Message Conversion Plug-in instance may implement two
functions, one is used to convert SOAP message payload to Tuxedo buffer, and the other is used
to convert Tuxedo buffer to SOAP message payload. These two function prototypes are defined
in the following vtable C languange structure of “P_CUSTOM_TYPE”.

Listing 5-4 vtable structure for SALT Plug-In “P_CUSTOM_TYPE” (C Language)

/* custtype_pi_ex.h */

struct custtype_vtable {

CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void * xercesDOMTree,

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)

int (* soap_out_tuxedo__CUSTBUF) (void ** xercesDOMTree,

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)

......

}

5-8 Oracle SALT Programming Guide

Function pointer (* soap_in_tuxedo__CUSTBUF) points to the customized function that
converts the SOAP message payload to Tuxedo typed buffer.

Function pointer (* soap_out_tuxedo__CUSTBUF) points to the customized function that
converts the Tuxedo typed buffer to SOAP message payload.

You may implement both functions defined in the message conversion plug-in vtable structure if
needed. You may also implement one function and set the other function with a NULL pointer.

How Message Conversion Plug-In Works in an Inbound Call Scenario
Inbound call scenario stands for an external Web Service program invokes a Tuxedo service
through Oracle SALT gateway. Figure 5-1 depicts message streaming between a Web Service
client and a Tuxedo domain.

Figure 5-1 Message Conversion Plug-In Works in an Inbound Call Scenario

(Add a picture here)

When a SOAP request message is delivered to the GWWS server, GWWS tries to find if there is
a message conversion plug-in instance associated with the input message conversion of the target
service. If any, GWWS will invoke the customized (*soap_in_tuxedo__CUSTBUF) function
implemented in the plug-in instance.

When a Tuxedo response buffer is returned from the Tuxedo service, GWWS tries to find if there
is a message conversion plug-in instance associated with the output message conversion of the
target service. If any, GWWS will invoke the customized (*soap_out_tuxedo__CUSTBUF)
function implemented in the plug-in instance.

How Message Conversion Plug-In Works in an Outbound Call Scenario
Outbound call scenario stands for a Tuxedo program invokes an external Web Service through
Oracle SALT gateway. Figure 5-2 depicts message streaming between a Tuxedo domain and a
Web Service application.

Figure 5-2 Message Conversion Plug-In Works in an Outbound Call Scenario

(Add a picture here)

When a Tuxedo request buffer is delivered to the GWWS server, GWWS tries to find if there is
a message conversion plug-in instance associated with the input message conversion of the target

Programming Message Convers ion P lug- ins

Oracle SALT Programming Guide 5-9

service. If any, GWWS will invoke the customized (*soap_out_tuxedo__CUSTBUF) function
implemented in the plug-in instance.

When a SOAP response message is returned from the external Web Service application, GWWS
tries to find if there is a message conversion plug-in instance associated with the output message
conversion of the target service. If any, GWWS will invoke the customized
(*soap_in_tuxedo__CUSTBUF) function implemented in the plug-in instance.

When Do We Need Message Conversion Plug-In
Table 5-1 lists message conversion plug-in use cases.

5-10 Oracle SALT Programming Guide

Table 5-1 Message Conversion Plug-In Use Cases

Scenario Description soap_in_tuxedo_CUSTBUF soap_out_tuxedo_CUSTBUF

Tuxedo
Originated
Service

When a SOAP message payload is
being transfomed to a custom
typed buffer

Required N/A

When a custom typed buffer is
being transformed to a SOAP
message payload

N/A Required

If a Tuxedo service input and/or
output buffer is associated with
customized XML schema
definition, when a SOAP message
payload is being transformed to
this buffer

Non XML typed buffer:
Required

XML typed buffer:
Optional

N/A

If a Tuxedo service input and/or
output buffer is associated with
customized XML schema
definition, when this buffer is
being transformed to SOAP
message payload

N/A Non XML typed buffer:
Required

XML typed buffer:Optional

All other general cases when a
SOAP message payload is being
transformed to a Tuxedo buffer

Optional N/A

All other general cases when a
Tuxed buffer is being transformed
to a SOAP message payload

N/A Optional

Web Service
Originated
Service

All cases when a Tuxed buffer is
being transformed to a SOAP
message payload

N/A Optional

All cases when a SOAP message
payload is being transformed to a
Tuxedo buffer

Optional N/A

Programming Message Convers ion P lug- ins

Oracle SALT Programming Guide 5-11

From the above table, we can abstract the following general rules of using message conversion
plug-ins.

If a Tuxedo originated service consumes custom typed buffer, message conversion plug-in
is required. Tuxedo framework does not understand the detailed data structure of the
custom typed buffer, hence SALT default data type conversion rules cannot be applied.

If the input and/or output (no matter returned aside with TPSUCCESS or TPFAIL) buffer
of a Tuxedo originated service is associated with external XML Schema, you should
develop message conversion plug-ins to handle the transformation by yourself, unless you
are aware of SALT default buffer type based conversion rules can handle it correctly.

– For instance, if you associates your own XML Schema with an FML32 typed buffer of
a Tuxedo service, you must provide a message conversion plug-in, since SALT default
data mapping routines may not understand the SOAP message payload structure when
trying to convert it into the FML typed buffer, and contrarily, the SOAP message
payload structure converted from the FML typed buffer may be tramendously different
from the XML shape defined via your own XML Schema.

– If you associates your own XML Schema with an XML typed buffer of a Tuxedo
service, most of time, you don’t have to provide a message conversion plug-in because
SALT just passes the XML data as is in both message conversion directions.

For more information about how to associate external XML Schema definition with the
input, output and error buffer of a Tuxedo Service, see “Defining Tuxedo Service
Contract with Service Metadata Repository” in Oracle SALT Administration Guide.

You are freely to develop message conversion plug-ins for any message level conversion to
replace SALT default message conversion routines if needed.

Developing a Message Conversion Plug-In Instance

Converting a SOAP Message Payload to a Tuxedo Buffer
The following function should be implemented in order to convert a SOAP XML payload to a
Tuxedo buffer:
CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void * xercesDOM,
CustomerBuffer *a, CustType_Ext * extinfo);

Synopsis
#include <custtype_pi_ex.h>

../ref/comref.html#wp1106727
../ref/comref.html#wp1106727

5-12 Oracle SALT Programming Guide

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,
CustType_Ext * extinfo);

myxml2buffer is an arbitrary customized function name.

Description
The implemented function should have the capability to parse the given XML buffer and convert
concrete data items to a Tuxedo custom typed buffer instance.

The input parameter, char * xmlbuf, indicates a NULL terminated string with the XML format
data stream. Please note that the XML data is the actual XML payload for the custom typed
buffer, not the whole SOAP envelop document or the whole SOAP body document.

The input parameter, char * type, indicates the custom typed buffer type name, this parameter
is used to verify that the GWWS server expected custom typed buffer handler matches the current
plug-in function.

The output parameter, CustomerBuffer *a, is used to store the allocated custom typed buffer
instance. A Tuxedo custom typed buffer must be allocated by this plug-in function via the ATMI
function tpalloc(). Plug-in code is not responsible to free the allocated custom typed buffer,
it is automatically destroyed by the GWWS server if it is not used.

Diagnostics
If successful, this function must return the pointer value of input parameter CustomerBuffer *
a.

If it fails, this function returns NULL.

Listing 5-5 Converting XML Effective Payload to Tuxedo Custom Typed Buffer Pseudo Code

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,

CustType_Ext * extinfo)

{

// casting the input void * xercesDOM to class DOMDocument object

DOMDocument * DOMTree =

// allocate custom typed buffer via tpalloc

a->buf = tpalloc("MYTYPE", "MYSUBTYPE", 1024);

a->len = 1024;

Programming Message Convers ion P lug- ins

Oracle SALT Programming Guide 5-13

// fetch data from DOMTree and set it into custom typed buffer

DOMTree ==> a->buf;

if (error) {

release (DOMTree);

tpfree(a->buf);

a->buf = NULL;

a->len = 0;

return NULL;

}

release (DOMTree);

return a;

}

Tip: Tuxedo bundled Xerces library can be used for XML parsing. Tuxedo 8.1 bundles Xerces
1.7 and Tuxedo 9.1 bundles Xerces 2.5

Converting a Tuxedo Buffer to a SOAP Message Payload
The following function should be implemented in order to convert a custom typed buffer to
SOAP XML payload:
int (*soap_out_tuxedo__CUSTBUF)(char ** xmlbuf, CustomerBuffer * a, char *
type);

Synopsis
#include <custtype_pi_ex.h>

int * mybuffer2xml (char ** xmlbuf, CustomerBuffer *a, char * type);

"mybuffer2xml" is the function name can be specified with any valid string upon your need.

Description
The implemented function has the capability to convert the given custom typed buffer instance
to the single root XML document used by the SOAP message.

5-14 Oracle SALT Programming Guide

The input parameter, CustomerBuffer *a, is used to store the custom typed buffer response
instance. Plug-in code is not responsible to free the allocated custom typed buffer, it is
automatically destroyed by the GWWS server if it is not used.

The input parameter, char * type, indicates the custom typed buffer type name, this parameter
can be used to verify if the SALT GWWS server expected custom typed buffer handler matches
the current plug-in function.

The output parameter, char ** xmlbuf, is a pointer that indicates the newly converted XML
payload. The XML payload buffer must be allocated by this function and use the malloc ()
system API. Plug-in code is not responsible to free the allocated XML payload buffer, it is
automatically destroyed by the GWWS server if it is not used.

Diagnostics
If successful, this function must returns 0.

If it fails, this function must return -1.

Listing 5-6 Converting Tuxedo Custom Typed Buffer to SOAP XML Pseudo Code

int mybuffer2xml (void ** xercesDom, CustomerBuffer *a, CustType_Ext *

extinfo)

{

// Use DOM implementation to create the xml payload

DOMTree = CreateDOMTree();

if (error)

return -1;

// fetch data from custom typed buffer instance,

// and add data to DOMTree according to the client side needed

// XML format

a->buf ==> DOMTree;

// allocate xmlbuf buffer via malloc

* xmlbuf = malloc(expected_len(DOMTree));

if (error) {

release (DOMTree);

Programming Message Convers ion P lug- ins

Oracle SALT Programming Guide 5-15

return -1;

}

// casting the DOMDocument to void * pointer and returned

DOMTree >> (* xmlbuf);

if (error) {

release (DOMTree);

free ((* xmlbuf));

return -1;

}

return 0;

}

WARNING: GWWS framework is responsible to release the DOMDocument created inside
the plug-in function. To avoid double release, programmers must pay attention to
the following Xerces API usage:

If the DOMDocument is constructed from an XML string through
XercesDOMParser::parse() API. You must use
XercesDOMParser::adoptDocument() to get the pointer of the DOMDocument
object. You must do not use XercesDOMParser::getDocument() to get the pointer
of the DOMDocument object because the DOMDocument object is maintained
by the XercesDOMParser object and will be released when deleting the
XercesDOMParser object if you do not de-couple the DOMDocument from the
XercesDOMParser via XercesDOMParser::getDocument() function.

Associating a Message Conversion Plug-In Instance with a SALT Exposed
Service
To be added

SALT 1.1 Custom Buffer Type Conversion Plug-In
Compatibility
SALT 1.1 Custom Buffer Type Conversion Plug-in provides the customized message conversion
mechanism only for Tuxedo custom buffer types.

5-16 Oracle SALT Programming Guide

The following table compares SALT 2.0 Message Conversion Plug-in and SALT 1.1 Custom
Buffer Type Conversion Plug-in.

Please note that SALT 1.1 Custom Buffer Type Plug-in shared library cannot be used directly in
SALT 2.0. You must perform the following tasks to upgrade it into SALT 2.0 message
conversion plug-in:

1. Re-implement function (*soap_in_tuxedo__CUSTBUF) and
(*soap_out_tuxedo__CUSTBUF) according to new SALT 2.0 message conversion plug-in
vtable function prototype API. The major change is that SOAP message payload is saved as
an Xerces class DOMDocument object instead of the old string value.

2. Re-compile your functions as the shared library and configure this shared library in SALT
Deployment file so that it could be loaded by GWWS servers.

Table 5-2 SALT 2.0 Message Conversion Plug-in / SALT 1.1 Custom Buffer Type Conversion Plug-in
Comparison

SALT 1.1 Custom Buffer Type Plug-in SALT 2.0 Message Conversion Plug-in

Plug-in ID is “P_CUSTOM_TYPE” Plug-in ID is “P_CUSTOM_TYPE”

Plug-in Name must be the same as the supported
custom buffer type name

Plug-in Name can be any meaningful value,
which is only used to distinguish from other
plug-in instances.

Only support message conversion between
SOAP message payload and Tuxedo custom
buffer types

Support message conversion between SOAP
message payload and any kind of Tuxedo buffer
types

Buffer type level association.

Each plug-in instance must be named as the
supported custom buffer type name. Each
custom buffer type can only has one plug-in
implementation.

i.e. one custom buffer type can associate with a
plug-in instance, and used by all the services

Message level association.

Each Tuxedo service can associate plug-in
instances with its input and/or output buffers
respectively through the plug-in instance’s
name.

SOAP message payload is saved as a NULL
terminated string for plug-in programming

SOAP message payload is saved as a Xerces
DOM Document for plug-in programming

Programming Outbound Authent i cat ion P lug- Ins

Oracle SALT Programming Guide 5-17

Tip: You do not have to manually associate the upgraded message conversion plug-ins with
service buffers. If a custom typed buffer is involved in the message conversion at
runtime, GWWS can automatically search a message conversion plug-in that has the
same name as the buffer type name if no explicit message conversion plug-in interface is
configured.

Programming Outbound Authentication Plug-Ins
When a Tuxedo client accesses Web services via SOAP/HTTP, the client may be required to send
a username and password to the server to perform HTTP Basic Authentication. The Tuxedo
clients uses tpinit() to send a username and password when registering to the Tuxedo domain.
However, this username is used by Tuxedo and is not the same as the one used by the Web service
(the password may be different as well).

To map the usernames, Oracle SALT provides a plug-in interface (Credential-Mapping Interface)
that allows you to choose which username and password is sent to the Web service.

How Outbound Authentication Plug-Ins Work
When a Tuxedo client calls a Web service, it actually calls the GWWS server that declares the
Web service as a Tuxedo service. The user id and group id (defined in tpusr and tpgrp files)
are sent to the GWWS. The GWWS then checks whether the Web service has a configuration
item <Realm>. If it does, the GWWS:

tries to invoke the vtable gwws_pi_map_http_basic function to map the Tuxedo userid into
the username and password for the HTTP Realm of the server.

for successful calls, encodes the returned username and password with Base64 and sends
it in the HTTP header field “Authorization: Basic” if the call is successful

for failed calls, returns a failure to the Tuxedo Client without invoking the Web service.

Implementing a Credential Mapping Interface Plug-In
Using the following scenario:

An existing Web service, myservice, sited on http://www.abc.com/webservice, requires
HTTP Basic Authentication. The username is “test”, the password is “1234,” and the realm
is “myrealm”.

5-18 Oracle SALT Programming Guide

After converting the Web service WSDL into the SALT configuration file (using
wsdlcvt), add the <Realm>myrealm</Ream> element to the endpoint definition in the
WSDF file.

Perform the following steps to implement a Oracle SALT plug-in interface:

1. Write the functions to map the “myrealm” Tuxedo UID/GID to username/password on
www.abc.com.

Use Credmap_HTTP_Basic();

This function is used to return the HTTP username/password. The function prototype
defined in credmap_pi_ex.h

2. Write the following three plug-in register functions. For more information, see “Plug-In
Register Functions”.

_ws_pi_init_P_CREDENMAP_TEST(char * params, void ** priv_ptr);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup.

_ws_pi_exit_P_CREDENMAP_TEST(void * priv);

This function is invoked when the GWWS server unloads the plug-in shared library during
the shutdown phase.

_ws_pi_set_vtbl_P_CREDENMAP_TEST(void * vtbl);

Set the gwws_pi_map_http_basic entry in vtable structure credmap_vtable with the
Credmap_HTTP_Basic() function implemented in step 1.

3. You can also write the optional function

_ws_pi_get_Id_and_Names(int * params, char ** ids, char ** names);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup to determine what library interfaces are implemented. For more
information, see “Plug-In Register Functions”.

4. Compile the previous four or five functions into one shared library, credmap_plugin.so.

5. Configure the plug-in interface in the SALT deployment file.

Configure the plug-in interface as shown in Listing 5-7.

Programming Outbound Authent i cat ion P lug- Ins

Oracle SALT Programming Guide 5-19

Listing 5-7 Custom Typed Buffer Plug-In Interface

<?xml version="1.0" encoding="UTF-8"?>

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

.

.

<System>

<Plugin>

<Interface

id=”P_CREDENMAP”

name=”TEST”

library=”credmap_plugin.dll” />

</Plugin>

</System>

</Deployment>

Mapping the Tuxedo UID and HTTP Username
The following function should be implemented in order to return username/password for HTTP
Basic Authentication:
typedef int (* GWWS_PI_CREDMAP_PASSTEXT) (char * domain, char * realm, char
* t_userid, char * t_grpid, Cred_UserPass * credential);

Synopsis
#include <credmap_pi_ex.h>
typedef struct Cred_UserPass_s {

 char username[UP_USERNAME_LEN];

 char password[UP_PASSWORD_LEN];

} Cred_UserPass;

int gwws_pi_map_http_basic (char * domain, char * realm, char * t_uid, char
* t_gid, Cred_UserPass * credential);

The "gwws_pi_map_http_basic" function name can be specified with any valid string as
needed.

5-20 Oracle SALT Programming Guide

Description
The implemented function has the capability to determine authorization credentials (usernames
and passwords) used for authorizing users with a given Tuxedo uid and gid for a given domain
and realm.

The input parameters, char * domain and char * realm, represent the domain name and
HTTP Realm that the Web service belongs to. The plug-in code must use them to determine the
scope to find appropriate credentials.

The input parameters, char * t_uid and char * t_gid, are strings that contain Tuxedo user
ID and group ID number values respectively. These two parameters may be used to find the
username.

The output parameter, Cred_UserPass * credential, is a pointer that indicates a pre-allocated
buffer storing the returned username/password. The plug-in code is not responsible to allocate the
buffer.

Notes: Tuxedo user ID is available only when *SECURITY is set as USER_AUTH or higher in
the UBBCONFIG file. Group ID is available when *SECURITY is set as ACL or higher.
The default is “0”.

Diagnostics
If successful, this function returns 0. If it fails, it returns -1.

Listing 5-8 Credential Mapping for HTTP Basic Authentication Pseudo Code

int Credmap_HTTP_Basic(char * domain, char * realm, char * t_uid, char *

t_gid, Cred_UserPass * credential)

{

// Use domain and realm to determine scope

credentialList = FindAllCredentialForDomainAndRealm(domain, realm);

if (error happens)

return -1;

// find appropriate credential in the scope

foreach cred in credentialList {

if (t_uid and t_gid match) {

Programming Outbound Authent i cat ion P lug- Ins

Oracle SALT Programming Guide 5-21

*credential = cred;

return 0;

}

}

if (not found and no default credential) {

return -1;

}

*credential = default_credential;

return 0;

}

Tip: The credentials can be stored in the database with domain and realm as the key or index.

5-22 Oracle SALT Programming Guide

Oracle SALT Programming Guide 6-1

C H A P T E R 6

Oracle SALT SCA Programming

This chapter contains the following topics:

Overview

SCA Client Programming

SCA Component Programming

Web Services Binding

SCA Remote Protocol Support

SCA Transactions

SCA Security

SCA ATMI Binding

SCA ATMI Binding Data Type Mapping

Overview
One important aspect of Service Component Architecture (SCA) is the introduction of a new
programming model. As part of the Tuxedo architecture, SCA allows you to better blend
high-output, high-availability and scalable applications in an SOA environment.

SCA components run on top of the Tuxedo infrastructure using ATMI binding. The ATMI
binding implementation provides native Tuxedo communications between SCA components, as
well as SCA components and Tuxedo programs (clients and servers).

Orac le SALT SCA Prog ramming

6-2 Oracle SALT Programming Guide

In addition to the programming model, the Service Component Definition Language (SCDL)
describes what components can perform in terms of interactions between each other, and instruct
the framework to set-up necessary links (wires).

SCA Client Programming
The runtime reference binding extension is the implementation of the client-side aspect of the
SCA container. It encapsulates the necessary code to call other services: SCA components,
Tuxedo servers or even Web services, transparently from an SCA-based component.

SCA Client Programming Steps
The steps required for developing SCA client programs are:

1. Setting Up the Client Directory Structure

2. Developing the Client Application

3. Composing the SCDL Descriptor

4. Building the Client Application (Using buildscaclient)

5. Running the Client Application

6. Handling TPFAIL Data

Setting Up the Client Directory Structure
You must define the applications physical representation. Strict SCA client applications are an t
SCA component type. Listing 6-1shows the directory structure used to place SCA components in
an application.

Listing 6-1 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment

variable)

 root.composite (SCDL top-level composite, contains the list of components

in this application)

 myClient/ (directory containing actual client component described in

this section)

SCA C l i en t P rogramming

Oracle SALT Programming Guide 6-3

 myClient.composite (SCDL for the client component)

 myClient.cpp (client program source file)

 TuxService.h (interface of component called by client program)

Listing 6-2 provides an example of typical root.composite content.

Listing 6-2 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simple.app">

<component name="myClientComponent">

<implementation.composite name="myClient"/>

</component>

</composite>

The individual components are listed here. The implementation.composite@name parameter
references the directory that contains the component named 'myClientComponent'. This last
value is required at runtime. For more information, see Running the Client Application.

Developing the Client Application
Client programs are required to implement a call to a single API. This following call is required
in order to set up the SCA runtime:

...

CompositeContext theContext = CompositeContext::getCurrent();

...

Actual calls are based on an interface. This interface is usually developed along with the
component being called. In the case of existing Tuxedo ATMI services, this interface can be
generated by accessing the Tuxedo METADATA repository, For more information, see
tuxscagen and the SALT SCA Administration Guide.

http://e-docs.bea.com/salt/docs10gr3/ref/comref.html

Orac le SALT SCA Prog ramming

6-4 Oracle SALT Programming Guide

In the case of calling external Web services, an interface matching the service WSDL must be
provided. For more information, see SCA ATMI Binding Data Type Mapping for the
correspondence between WSDL types and C++ types.

Listing 6-3 provide an interface example.

Listing 6-3 Interface Example

#include <string>

/**

* Tuxedo service business interface

*/

class TuxService

{

public:

virtual std::string TOUPPER(const std::string inputString) = 0;

};

In the interface shown in Listing 6-3, a single method TOUPPER is defined. It takes a single
parameter of type std::string, and returns a value of type std::string. This interface needs
to be located in its own .h file, and is referenced by the client program by including the .h file.

Listing 6-4 shows an example of a succession of calls required to perform an invocation.

Listing 6-4 Invocation Call Example

// SCA definitions

// These also include a Tuxedo-specific exception definition:

ATMIBindingException

#include "tuxsca.h"

// Include interface

#include "TuxService.h"

...

// A client program uses the CompositeContext class

CompositeContext theContext = CompositeContext::getCurrent();

...

SCA C l i en t P rogramming

Oracle SALT Programming Guide 6-5

// Locate Service

TuxService* toupperService =

(TuxService *)theContext.locateService("TOUPPER");

...

// Perform invocation

const std::string result = toupperService->TOUPPER("somestring");

...

Notes: The invocation itself is equivalent to making a local call, as if the class were in another
file linked in the program itself.

For detailed code examples, see the SCA samples located in following directories:

UNIX samples: $TUXDIR/samples/salt/sca

Windows samples: %TUXDIR%\samples\salt\sca

Composing the SCDL Descriptor
The link between the local call and the actual component is made by defining a binding in the
SCDL side-file. For example, for the example shown in Listing 6-4 to call an existing Tuxedo
ATMI service, the SCDL descriptor shown in Listing 6-5 should be used. This SCDL is
contained in a file called <componentname>.composite.

Listing 6-5 SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

 name="simpapp.client">

 <reference name="TOUPPER">

 <interface.cpp header="TuxService.h"/>

 <binding.atmi requires="legacy">

 <inputBufferType target="TOUPPER">STRING</inputBufferType>

 <outputBufferType target="TOUPPER">STRING</outputBufferType>

 </binding.atmi>

 </reference>

Orac le SALT SCA Prog ramming

6-6 Oracle SALT Programming Guide

</composite>

This composite file indicates that a client component may perform a call to the TOUPPER
reference, and that this call will be performed using the ATMI binding. In effect, this results in a
tpcall() to the "TOUPPER" Tuxedo service. This Tuxedo service may be an actual existing
Tuxedo ATMI service, or another SCA component exposed using the ATMI binding. For more
information, see SCA Component Programming.

The inputBufferType and outputBufferType elements are used to determine the type of
Tuxedo buffer used to exchange data. For more information, see SCA ATMI Binding Data Type
Mapping and the ATMI Binding Element Reference for a description of all possible values that
can be used in the binding.atmi element.

Building the Client Application (Using buildscaclient)
Once all the elements are in place, the client program can be built using provided
buildscaclient command.

The program above can be built using the following steps:

1. Navigate to the directory containing the client source and SCDL composite files

2. Execute the following command: $ buildscaclient -c myClientComponent -s . -f
myClient.cpp

This command verifies the SCDL code, and builds the following required elements:

a shared library (or DLL on Windows) containing generated proxy code

the client program itself

If no syntax or compilation error is found, the client program is ready to be used.

Running the Client Application
To execute the client program, the following environment variables are required:

APPDIR - designates the application directory; in the case of SCA this typically contains
the top-level SCDL composite.

SCA_COMPONENT - the default SCA component (the value 'myClientComponent' in the
example shown in Listing 6-2). It tells the SCA runtime where to start when looking for
services in the locateService() call.

http://e-docs.bea.com/salt/docs10gr3/ref/sca_bindschema.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html

SCA C l i en t P rogramming

Oracle SALT Programming Guide 6-7

Invoking Existing Tuxedo Services
Access to existing Tuxedo ATMI services from an SCA client program can be simplified using
the examples shown in Listing 6-6, Listing 6-7, and Listing 6-8.

Note: These examples can also be used for server-side SCA components.

Starting from a Tuxedo METADATA repository entry as shown in Listing 6-6, the tuxscagen
command can be used to generate interface and SCDL.

Listing 6-6 SCA Components Calling an Existing Tuxedo Service

service=TestString

tuxservice=ECHO

servicetype=service

inbuf=STRING

outbuf=STRING

service=TestCarray

tuxservice=ECHO

servicetype=service

inbuf=CARRAY

outbuf=CARRAY

Listing 6-7 Generated Header

#ifndef ECHO_h
#define ECHO_h
#include <string>
#include <tuxsca.h>
class ECHO
{
public:

virtual std::string TestString(const std::string arg) = 0;
virtual std::string TestCarray(const struct carray_t * arg) = 0; };

#endif /* ECHO_h */

http://e-docs.bea.com/salt/docs10gr3/ref/comref.html

Orac le SALT SCA Prog ramming

6-8 Oracle SALT Programming Guide

Listing 6-8 Generated SCDL Reference

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="ECHO">

 <reference name="ECHO">

 <interface.cpp header="ECHO.h"/>

 <binding.atmi requires="legacy">

 <serviceType target="TestString">RequestResponse</serviceType>

 <inputBufferType target="TestString">STRING</inputBufferType>

 <outputBufferType target="TestString">STRING</outputBufferType>

 <serviceType target="TestCarray">RequestResponse</serviceType>

 <inputBufferType target="TestCarray">CARRAY</inputBufferType>

 <outputBufferType target="TestCarray">CARRAY</outputBufferType>

 </binding.atmi>

 </reference>

</composite>

The steps to invoke these services are then identical to the examples shown in Listing 6-6 through
6-8.

Handling TPFAIL Data
When invoking a non-SCA Tuxedo ATMI service, that service may return in error but still send
back data by using the tpreturn(TPFAIL, …) API. When this happens, an SCA client or
component is interrupted by the ATMIBindingException type.

The data returned by the service, if present, can be obtained by using the
ATMIBindingException.getData().

SCA C l i en t P rogramming

Oracle SALT Programming Guide 6-9

Listing 6-9 Invocation Interruption Example

...

 try {

 const char* result = toupperService->charToup("someInput");

 } catch (tuscany::sca::atmi::ATMIBindingException& abe) {

 // Returns a pointer to data corresponding to

 // mapping defined in <errorBufferType> element

 // in SCDL

 const char* *result = (const char **)abe.getData();

 if (abe.getData() == NULL) {

 // No data was returned

 } else {

 // Process data returned

 ...

 }

 } catch (tuscany::sca::ServiceInvocationException& sie) {

 // Other type of exception is returned

 }

...

The example in Listing 6-9 corresponds to a binding.atmi definition as shown in Listing 6-10.

Listing 6-10 /binding.atmi Definition

...

<binding.atmi requires="legacy">

<inputBufferType target="charToup">STRING</inputBufferType>

<outputBufferType

Orac le SALT SCA Prog ramming

6-10 Oracle SALT Programming Guide

target="charToup">STRING</outputBufferType>

<errorBufferType target="charToup">STRING</errorBufferType>

<binding.atmi/>

...

Other data types returned have to be cast to the corresponding type. For instance an invocation
returning a commonj::sdo::DataObjectPtr such that, in SCDL:

Listing 6-11 SCDL

...

 <errorBufferType target="myMethod">FML32/myType</errorBufferType>

...

Will have to cast the result of ATMIBindingException.getData() as follows:

Listing 6-12 ATMIBindingException.getData() Results

...

 } catch (tuscany::sca::atmi::ATMIBindingException& abe) {

 const commonj::sdo::DataObjectPtr *result =

(const commonj::sdo::DataObjectPtr *)abe.getData();

...

The rules for returning TPFAIL data to the calling application are as follow:

For each <errorBufferType>, a canonical type is defined, where <errorBufferType> is
converted. When the <errorBufferType> is equal to the <outputBufferType>, the
canonical type is the same C++ type that is returned on a successful service
implementation.

SCA Component P rogramming

Oracle SALT Programming Guide 6-11

When the <errorBufferType> is different from the <outputBufferType>, the canonical
type is as follows:

– For STRING buffers, a C++ char* or char[]datatype.

– For MBSTRING buffers, a C++ wchar_t* or wchar_t[].

– For CARRAY buffers, a C++ CARRAY_PTR.

– For X_OCTET buffers, a C++ X_OCTET_PTR.

– For XML buffers, a C++ XML_PTR.

– For FML, FML32, VIEW, VIEW32, X_COMMON, and X_C_TYPE buffers, a C++
commonj::sdo::DataObjectPtr.

In each case, the value returned by getData() is a pointer to the type above.

For more conversion rules between Tuxedo buffer types and C++ data information, see SCA
ATMI Binding Data Type Mapping.

SCA Component Programming
The SCA Component terminology designates SCA runtime artifacts that can be invoked by other
SCA or non-SCA runtime components. In turn, these SCA Components can perform calls to other
SCA or non-SCA components. This is as opposed to strict SCA clients which can only make calls
to other SCA or non-SCA components, but cannot be invoked.

The SCA container in Oracle SALT offers the capability of hosting SCA components in an
Oracle Tuxedo server environment. This allows you to take full advantage of proven Oracle
Tuxedo qualities: reliability, scalability and performance.

Figure 6-1 summarizes SCA components and Tuxedo server mapping rules.

Orac le SALT SCA Prog ramming

6-12 Oracle SALT Programming Guide

Figure 6-1

While SCA components using Tuxedo references do not require special processing, SCA
components offering services must still be handled in a Tuxedo environment.

The mapping is as follows:

An SCA composite declaring one or more services with a <binding.atmi> definition
maps to a single Tuxedo server advertising the same number of services as the SCA
composite.

There can be more than one composite.

Composites can be nested.

Promotion handling:

– a composite promoting a service contained in a nested component results in the
promoted service being advertised as a Tuxedo service.

– a service declared in a component, but not promoted, is not advertised.

The resulting Tuxedo server advertises as many services as there are binding.atmi
sections in the SCDL definition

SCA Component P rogramming

Oracle SALT Programming Guide 6-13

Interfaces may declare multiple methods. Each method is linked to a Tuxedo native service
by way of the /binding.atmi/@map attribute. A method not declared via the
/binding.atmi/@map attribute is not accessible through Tuxedo. The use of duplicate
service names are detected at server generation time, so that Tuxedo service names to
interface method mapping in a single Tuxedo server instance is 1:1.

A generated Tuxedo server acts as a proxy for SCA components. An instance of this
generated server corresponds to an SCA composite as defined in the SCDL configuration.
Such servers are deployed as necessary by the Tuxedo administrator.

SCA composites are deployed in a Tuxedo application by configuring instances of generated
SCA servers in the UBBCONFIG file. Multiple instances are allowed. Multi-threading capabilities
are also allowed and controllable using already-existing Tuxedo features.

SCA Component Programming Steps
The steps required for developing SCA component programs are:

1. Setting Up the Component Directory Structure

2. Developing the Component Implementation

3. Composing the SCDL Descriptor

4. Compiling and Linking the Components

5. Building the Tuxedo Server Host

Setting Up the Component Directory Structure
The first step is to define the applications physical representation. Listing 6-13 shows the
directory structure employed to place SCA components in an application:

Listing 6-13 SCA Component Directory Structure

myApplication/ (top-level directory, designated by the APPDIR environment

variable)

 root.composite (SCDL top-level composite, contains the list of components

in this application)

 myComponent/ (directory containing actual component described in this

section)

Orac le SALT SCA Prog ramming

6-14 Oracle SALT Programming Guide

 myComponent.composite (SCDL for the component)

 myComponentImpl.cpp (component implementation source file)

 TuxService.h (interface of component being exposed)

 TuxServiceImpl.h (component implementation definitions)

Listing 6-14 shows typical root.composite content.

Listing 6-14 root.composite Content

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="simple.app">

<component name="myComponent">

<implementation.composite name="myComponent"/>

</component>

</composite>

Here the individual components are listed. The implementation.composite@name parameter
references the directory that contains the 'myComponent' component.

Developing the Component Implementation
Components designed to be called by other components do not need to be aware of the SCA
runtime. There are, however, limitations in terms of interface capabilities, such as:

C structures and C++ classes (other than std::string and
commonj::sdo::DataObjectPtr) cannot be used as parameters or return values

Parameter arrays are not supported

For more information, see SCA ATMI Binding Data Type Mapping.

Listing 6-15 shows an example of an interface implemented for a client program.

SCA Component P rogramming

Oracle SALT Programming Guide 6-15

Listing 6-15 Component Implementation Interface

#include <string>

/**

 * Tuxedo service business interface

 */

 class TuxService

 {

 public:

 virtual std::string TOUPPER(const std::string inputString) = 0;

 };

The component implementation then generally consists of two source files (as shown
Listing 6-16 and Listing 6-17 respectively):

component implementation definitions, contained in a <servicename>Impl.h file, and

component implementation, contained in a <servicename>Impl.cpp file

Listing 6-16 Example (TuxServiceImpl.h):

#include "TuxService.h"

 /**

 * TuxServiceImpl component implementation class

 */

 class TuxServiceImpl: public TuxService

 {

 public:

 virtual std::string toupper(const std::string inputString);

Orac le SALT SCA Prog ramming

6-16 Oracle SALT Programming Guide

 };

Listing 6-17 Example (TuxServiceImpl.cpp):

#include "TuxServiceImpl.h"

 #include "tuxsca.h"

using namespace std;

using namespace osoa::sca;

/**

 * TuxServiceImpl component implementation

 */

std::string TuxServiceImpl::toupper(const string inputString)

{

 string result = inputString;

 int len = inputString.size();

 for (int i = 0; i < len; i++) {

 result[i] = std::toupper(inputString[i]);

 }

 return result;

}

SCA Component P rogramming

Oracle SALT Programming Guide 6-17

Additionally, a side-file (componentType), is required. It contains the necessary information for
the SCA wrapper generation and possibly proxy code (if this component calls another
component).

This componentType file (<componentname>Impl.componentType)is an SCDL file type.
Listing 6-18 shows an example of a componentType file (TuxServiceImpl.componentType).

Listing 6-18 componentType File Example

<?xml version="1.0" encoding="UTF-8"?>

 <componentType xmlns="http://www.osoa.org/xmlns/sca/1.0" >

 <service name="TuxService">

<interface.cpp header="TuxService.h"/>

</service>

 </componentType>

Composing the SCDL Descriptor
The link between the local implementation and the actual component is made by defining a
binding in the SCDL side-file. For example, for the file type in Listing 6-18 to be exposed as a
Tuxedo ATMI service, the SCDL below should be used. This SCDL is contained in a file called
<componentname>.composite (for example, myComponent.composite).

Listing 6-19 Example SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

 name="simpapp.server">

 <service name="mySVC">

 <interface.cpp header="TuxService.h"/>

 <binding.atmi requires="legacy">

 <map target="toupper">TUXSVC</map>

 <inputBufferType target="toupper">STRING</inputBufferType>

Orac le SALT SCA Prog ramming

6-18 Oracle SALT Programming Guide

 <outputBufferType target="toupper">STRING</outputBufferType>

 </binding.atmi>

 <reference>TuxServiceComponent</reference>

 </service>

 <component name="TuxServiceComponent">

 <implementation.cpp library="TuxSvc" header="TuxServiceImpl.h"/>

 </component>

</composite>

This composite file indicates that the service, mySVC, can be invoked via the Tuxedo
infrastructure. It further indicates that the toupper() method is advertised as the TUXSVC service
in the Oracle Tuxedo system. Once initialized, another SCA component may now call this
service, as well as a non-SCA Tuxedo ATMI client.

The inputBufferType and outputBufferType elements are used to determine the type of
Tuxedo buffer used to exchange data. For more information, see SCA ATMI Binding Data Type
Mapping and the ATMI Binding Element Reference for a description of all possible values that
can be used in the binding.atmi element.

Compiling and Linking the Components
Once all the elements are in place, the component can be built using the buildscacomponent
command.

The component above can be built using the following steps:

1. navigate to the APPDIR directory. The component and side files should be in its own directory
one level down

2. execute the command below: $ buildscacomponent -c myComponent -s . -f
TuxServiceImpl.cpp

This command verifies the SCDL code, and builds the following required elements:

a shared library (or DLL on Windows) containing generated proxy code

http://e-docs.bea.com/salt/docs10gr3/ref/sca_bindschema.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html

Web Serv i ces B ind ing

Oracle SALT Programming Guide 6-19

Building the Tuxedo Server Host
In order for components to be supported in an Oracle Tuxedo environment, a host Tuxedo server
must be built. This is achieved using the buildscaserver command.

For example: $ buildscaserver -c myComponent -s . -o mySCAServer

The mySCAServer is then ready to be used. It will automatically locate the component(s) to be
deployed according to the SCDL, and perform the appropriate Tuxedo/SCA associations.

Web Services Binding
The Web Services binding (binding.ws) leverages previously existing Oracle SALT
capabilities by funneling Web service traffic through the GWWS gateway. SCA components are
hosted in Tuxedo servers, and communications to and from those servers are performed using the
GWWS gateway.

SCA clients using a Web services binding remain unchanged whether the server is running in a
Tuxedo environment or a native Tuscany environment (for example, exposing the component
using the Axis2 Web services binding).

Note: HTTPS is not currently supported.

When SCA components are exposed using the Web services binding (binding.ws), tooling
performs the generation of WSDF information, metadata entries and FML32 field definitions.

When SCDL code of SCA components to be hosted in a Tuxedo domain (for example, service
elements) contains <binding.ws> elements, the buildscaserver command generates an
WSDF entry in a file named service.wsdf where 'service' is the name of the service exposed.
An accompanying service.mif and service.fml32 field table files are also generated, based on
the contents of the WSDL interface associated with the Web service. You must compose a WSDL
interface. If no WSDL interface is found, an error message is generated.

Web services accessed from a Tuxedo domain using a Web services binding (for example,
reference elements found in SCDL) require the following manual configuration steps:

1. Convert the WSDL file into a WSDF entry by using the wsdlcvt tool. Simultaneously, a
Service Metadata Entry file (.mif), and fml32 mapping file are generated.

2. Make sure that the UBB source has the TMMETADATA and GWWS servers configured

3. Import the WSDF file into the SALTDEPLOY file

4. Convert the SALTDEPLOY file into binary using wsloadcf.

{DOCROOT)/ref/comref.html

Orac le SALT SCA Prog ramming

6-20 Oracle SALT Programming Guide

5. Load the Service Metadata Entry file (.mif) into the Service Metadata Repository using the
tmloadrepos command.

6. Boot (or re-boot) the GWWS process to initiate the new deployment.

The Web services binding reference extension initiates the Web services call.

Listing 6-20 Example SCA Component Service Exposed as a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bigbank.account">

...

 <service name="AccountService">

 <interface.wsdl interface="http://www.bigbank.com/AccountService

#wsdl.interface(AccountService)"/>

 <binding.ws/>

 <reference>AccountServiceComponent</reference>

 </service>

 <component name="AccountServiceComponent">

 <implementation.cpp

 library="Account" header="AccountServiceImpl.h"/>

 <reference name="accountDataService">

AccountDataServiceComponent

 </reference>

 </component>

...

</composite>

The steps required to expose the corresponding service are as follows:

Web Serv i ces B ind ing

Oracle SALT Programming Guide 6-21

1. Compose a WSDL interface matching the component interface.

2. Use buildscacomponent to build the application component runtime, similar to building a
regular SCA component.

3. buildscaserver -w is used to convert SCDL code into a WSDF entry, and produce a
deployable server (Tuxedo server + library + SCDL).

The service from the above SCDL creates a WSDF entry as shown in Listing 6-21.

Listing 6-21 WSDF Entry

<Definition>

<WSBinding id="AccountService_binding">

<ServiceGroup id="AccountService">

<Service name="TuxAccountService"/>

</ServiceGroup>

</WSBinding>

</Definition>

4. buildscaserver -w also constructs a Service Metadata Repository entry based by parsing
the SCDL and interface. The interface needs to be in WSDL form, and manually-composed
in this release.

5. Make sure that the UBB source has the TMMETADATA and GWWS servers configured

6. The Service Metadata Repository entry is loaded into the Service Metadata Repository using
the tmloadrepos command.

7. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted
into binary using wsloadcf.

8. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository.

9. The Tuxedo server hosting the Web service is booted and made available.

10. The GWWS is rebooted to take into account the new deployment.

These steps are required, in addition to the SALTDEPLOY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of GWInstance,

Orac le SALT SCA Prog ramming

6-22 Oracle SALT Programming Guide

Server Level Properties, etc.). When completed, Web service clients (SCA or other) have access
to the Web service.

Listing 6-22 Example Reference Accessing a Web Service

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bigbank.account">

...

<reference name="StockQuoteWebService">

<interface.wsdl interface="http://www.webserviceX.NET/#

wsdl.interface(StockQuoteSoap)"/>

<binding.ws endpoint="http://www.webserviceX.NET/#

wsdl.endpoint(StockQuote/StockQuoteSoap)"/>

</reference>

...

</composite>

The steps required to access the Web service are as follows:

1. A WSDL file is necessary. This is usually published by the Web Service provider.

2. The WSDL file must be converted into a WSDF entry using the wsdlcvt tool. At the same
time a Service Metadata Entry file (.mif), and fml32 mapping file is generated.

3. The WSDF file must be imported into the SALTDEPLOY file and SALTDEPLOY converted
into binary using wsloadcf.

4. The Service Metadata Entry file (.mif) is loaded into the Service Metadata Repository using
the tmloadrepos command.

5. The GWWS process is rebooted to take into account the new deployment.

These steps are required, in addition to the SALTDEPLOY configuration, in order to set up the
GWWS gateway for Web services processing (for example, configuration of GWInstance,
Server Level Properties, etc.). When completed, the SCA client has access to the Web service.

The process is the same, whether the client is stand-alone SCA program or an SCA component
(already a server) referencing another SCA component via the Web service binding.

SCA Remote P ro toco l Suppor t

Oracle SALT Programming Guide 6-23

SCA Remote Protocol Support
Tuxedo SCA invocation support the following remote protocols:

/WS

/Domains

Java ATMI (JATMI) Binding

/WS
SCA invocations made using the SCA container have the capability of being performed using the
Tuxedo WorkStation protocol (/WS). This is accomplished by specifying the value
WorkStation (not abbreviated so as not to confuse it with WebServices) in the
<remoteAccess> element of the <binding.atmi> element.

Only reference-type invocations are be available in this mode. Service-type invocations may be
performed using the /WS transparently (there is no difference in behavior or configuration, and
setting the <remoteAccess> element to WorkStation for an SCA service has no effect).

Since native and WorkStation libraries cannot be mixed within the same process, client
processes must be built differently depending on the type of remote access chosen.

Note: When using the value propagatesTransaction in /binding.atmi/@requires, the
behavior of the ATMI binding does not actually perform any transaction propagation. It
actually starts a transaction, since the use of this protocol is reserved for client-side access
to Tuxedo (SCA or non-SCA) applications only. For more information, see SCA ATMI
Binding.

/Domains
SCA invocations made using the SCA container have the capability of being performed using the
Tuxedo /Domains protocol. No additional configurations are necessary on <binding.atmi>
declarations in SCDL files.

Note: /Domains interoperability configuration is controlled by the Tuxedo administrator.

The SCA service name configured for Tuxedo /Domains is as follows:

SCA -> SCA mode - /binding.atmi/service/@name attribute followed by a '/'
and method name

Orac le SALT SCA Prog ramming

6-24 Oracle SALT Programming Guide

Legacy mode (SCA -> Tux interop mode) - /binding.atmi/service/@name
attribute.

For more information, see Tuxedo SCA Interoperability.

Java ATMI (JATMI) Binding
Java ATMI (JATMI) binding allows SCA clients written in Java to call Tuxedo services or SCA
components. It provides one-way invocation of Tuxedo services based on the Tuxedo
WorkStation protocol (/WS). The invocation is for outbound communication only from a Java
environment to Tuxedo application acting as a server. Apart from a composite file for SCDL
binding declarations, no external configuration is necessary. The service name, workstation
address and authentication data are provided in the binding declaration.

Note: Both SSL and LLE are not currently supported.

Most of the Tuxedo CPP ATMI binding elements support JATMI binding and have the same
usage. However, due to different underlying technology and running environment differences,
some elements are not supported and some that are supported but have different element names.

The following Tuxedo CPP ATMI binding elements are not supported:

binding.atmi/tuxconfig

binding.atmi/fieldTablesLocation

binding.atmi/fieldTablesLocation32

binding.atmi/viewFilesLocation

binding.atmi/viewFilesLocation32

binding.atmi/transaction

The following Tuxedo CPP ATMI binding workStationParameters elements are not
supported:

binding.atmi/workStationParameters/secPrincipalName

binding.atmi/workStationParameters/secPrincipalLocation

binding.atmi/workStationParameters/secPrincipalPassId

binding.atmi/workStationParameters/encryptBits

The following Tuxedo CPP ATMI binding element is supported in a limited fashion.

binding.atmi/remoteAccess

SCA Remote P ro toco l Suppor t

Oracle SALT Programming Guide 6-25

Note: Only the value "WorkStation" is allowed. If not specified, "WorkStation" is
assumed.

All the classes in the elements mentioned below must be specified in Java CLASSPATH:

binding.atmi/fieldTables - Specifies a comma-separated list of Java classes that are
extended from the weblogic.wtc.jatmi.TypedFML base class.

binding.atmi/fieldTables32 - Specifies a comma-separated list of Java classes that
are extended from the weblogic.wtc.jatmi.TypedFML32 base class.

binding.atmi/viewFiles - Specifies a comma-separated list of Java classes that are
extended from the weblogic.wtc.jatmi.TypedView base class. These derived classes
usually are generated from a Tuxedo VIEW file using the weblogic.wtc.jatmi.viewj
compiler. These also includes derived from weblogic.wtc.jatmi.TypedXCType and
weblogic.wtc.jatmi.TypedXCommon.

 For more information, see How to Use the viewj Compiler in the Tuxedo Weblogic
Tuxedo Connector Programmer's Guide.

binding.atmi/viewFiles32 - Specifies a comma-separated list of Java classes that are
extended from the webogic.wtc.jatmi.TypedView32 base class. These derived classes
usually are aslo generated from a Tuxedo VIEW file using the
weblogic.wtc.jatmi.viewj32 compiler.

Listing 6-23 shows an example of composite file for binding declaration of a Tuxedo service
named "ECHO“.

Listing 6-23 ECHO Composite File

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:f="binding-atmi.xsd"

name="ECHO">

 <reference name="ECHO" promote="EchoComponent/ECHO">

<interface.java interface="com.abc.sca.jclient.Echo" />

 <f:binding.atmi requires="legacy">

<f:inputBufferType target="echoStr">STRING</f:inputBufferType>

 <f:outputBufferType target="echoStr">STRING</f:outputBufferType>

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wtc_atmi/Views.html#wp1113817

Orac le SALT SCA Prog ramming

6-26 Oracle SALT Programming Guide

 <f:errorBufferType target="echoStr">STRING</f:errorBufferType>

 <f:workStationParameters>

<f:networkAddress>//STRIATUM:9999,//STRIATUM:1881</f:networkAddr

ess>

 </f:workStationParameters>

 <f:remoteAccess>WorkStation</f:remoteAccess>

 </f:binding.atmi>

 </reference>

 <component name="EchoComponent">

 <implementation.java class="com.abc.sca.jclient.EchoComponentImpl"

/>

 </component>

</component>

Listing 6-24 shows the interface for the example mentioned above.

Listing 6-24 ECHO Interface

package com.abc.sca.jclient;

import com.oracle.jatmi.AtmiBindingException;

public interface Echo {

 String echoStr(String requestString) throws AtmiBindingException;

}

SCA Remote P ro toco l Suppor t

Oracle SALT Programming Guide 6-27

Listing 6-25 shows an example of an SCA client implementation.

Listing 6-25 SCA Client Implementation

package com.abc.sca.jclient;

import org.osoa.sca.annotations.Constructor;

import org.osoa.sca.annotations.Reference;

import com.oracle.jatmi.AtmiBindingException;

/**

 * A simple client component that uses a reference with a JATMI binding.

 */

public class EchoComponentImpl implements Echo {

 private Echo echoReference;

 @Constructor

 public EchoComponentImpl(@Reference(name = "ECHO", required = true)

Echo

 echoReference) {

 this.echoReference = echoReference;

 }

 public String echoStr(String requestString) throws

AtmiBindingException {

 return echoReference.echoStr(requestString);

 }

}

Orac le SALT SCA Prog ramming

6-28 Oracle SALT Programming Guide

Tuxedo SCA Interoperability
Existing Tuxedo service interoperability is performed by using the
/binding.atmi/@requires attribute with the legacy value. When a legacy value is specified,
invocations are performed using the following behavior:

If a <map> element is present in either a <reference> or a <service>, that value is used
to determine which Tuxedo service associated with the specified method name to call or
advertise.

Otherwise:

In a <reference> element: the value specified in the /reference/@name element is used
to perform the Tuxedo call, with semantics according to the interface method used.

In a <service> element: the Tuxedo service specified in the /binding.atmi/map
element is advertised, and mapped to the method specified in the
/binding.atmi/map/@target attribute.

Additionally, the /binding.atmi/@requires attribute is used to internally control data
mapping, such that FML32 or FML field tables are not required.

Note: When not specified, communications are assumed to have SCA -> SCA semantics where
the actual Tuxedo service name is constructed from /service/@name or
/reference/@name and actual method name (see the pseudo schema shown
Listing 6-26).

SCA Transactions
The ATMI binding schema supports SCA transaction policies by using the
/binding.atmi/@requires attribute and three transaction values. These transaction values
specify the transactional behavior that the binding extension follows when ATMI binding is used
(see the pseudo schema shown Listing 6-26).

The transaction values are as follows:

not specified (no value)

All transactional behavior is left up to the Tuxedo configuration. If the Tuxedo
configuration supports transactions, then one may be propagated if it exists. If the Tuxedo

SCA Secur i t y

Oracle SALT Programming Guide 6-29

configuration does not support transactions and one exists then an error will occur.
However, a transaction is not started if one does not already exist.

suspendsTransaction

When specified, the transaction context will not be propagated to the service called. For a
<service>, the transaction, if present, will be automatically suspended before invoking
the application code, and resumed afterwards, regardless of the outcome of the invocation.
For a <reference>, equivalent to making a tpcall() with the TPNOTRAN flag.

propagatesTransaction

Only applicable to <reference> elements, ignored for <service> elements. Starts a new
transaction if one does not already exist, otherwise participate in existing transaction. Such
a behavior can be obtained in a component or composite <service> by configuring it
AUTOTRAN in the UBBCONFIG. An error will be generated if a Tuxedo server host the
SCA component implementation and it is not configured in a transactional group in the
UBBCONFIG.

SCA Security
SCA references pass credentials using the <authentication> element of the binding.atmi
SCDL element.

SCA services can be ACL protected by referencing their internal name:
/binding.atmi/service/@name attribute followed by a '/' and method name in SCA -> SCA
mode, /binding.atmi/service/@name attribute in legacy mode (SCA -> Tux interop mode).

See also, Tuxedo SCA Interoperability.

SCA ATMI Binding
Tuxedo communications are configured in SCDL using a <binding.atmi> element. This allows
you to specify configuration elements specific to the ATMI transport, such as the location of the
TUXCONFIG file, the native Tuxedo buffer types used, Tuxedo-specific authentication or /WS
(WorkStation) configuration elements, etc.

Listing 6-26 shows a summary of the <binding.atmi> element.

Note: ? refers to a parameter that can be specified 0 or 1 times.

* refers to a parameter that can be specified 0 or more times.

For more information, see Appendix F: Oracle SALT SCA ATMI Binding Reference in the
Oracle SALT Reference Guide.

http://e-docs.bea.com/salt/docs10gr3/ref/sca_bindschema.html

Orac le SALT SCA Prog ramming

6-30 Oracle SALT Programming Guide

Listing 6-26 ATMI Binding Pseudoschema

<binding.atmi requires="transactionalintent legacyintent"?>

<tuxconfig>...</tuxconfig>?

<map target="name">...</map>*

<serviceType target="name">...</serviceType>*

<inputBufferType target="name">...</inputBufferType>*

<outputBufferType target="name">...</outputBufferType>*

<errorBufferType target="name">...</errorBufferType>*

<workStationParameters>?

<networkAddress>...</networkAddress>?

<secPrincipalName>...</secPrincipalName>?

<secPrincipalLocation>...</secPrincipalLocation>?

<secPrincipalPassId>...</secPrincipalPassId>?

<encryptBits>...</encryptBits>?

</workStationParameters>

<authentication>?

<userName>...</userName>?

<clientName>...</clientName>?

<groupName>...</groupName>?

<passwordIdentifier>...</passwordIdentifier>?

<userPasswordIdentifier>...

</userPasswordIdentifier>?

</authentication>

<fieldTablesLocation>...</fieldTablesLocation>?

<fieldTables>...</fieldTables>?

<fieldTablesLocation32>...</fieldTablesLocation32>?

<fieldTables32>...</fieldTables32>?

<viewFilesLocation>...</viewFilesLocation>?

<viewFiles>...</viewFiles>?

<viewFilesLocation32>...</viewFilesLocation32>?

<viewFiles32>...</viewFiles32>?

<remoteAccess>...</remoteAccess>?

<transaction timeout="xsd:long"/>?

</binding.atmi>

SCA ATMI B ind ing Data Type Mapp ing

Oracle SALT Programming Guide 6-31

SCA ATMI Binding Data Type Mapping
Using the ATMI binding leverages the Tuxedo infrastructure. As such, data exchanged between
SCA components, or Tuxedo clients/services and SCA clients/components is performed using
Tuxedo typed buffers. The tables below summarize the correspondence between native types and
Tuxedo buffers/types, as well as SOAP types when applicable.

In the example shown Listing 6-27, implementations send and receive a Tuxedo STRING buffer.
To the software (binding and reference extension implementations), the determination of the
actual Tuxedo buffer to be used is provided by the contents of the
/binding.atmi/inputBufferType, /binding.atmi/outputBufferType, or
/binding.atmi/errorBufferType elements in the SCDL configuration, and the type of buffer
returned (or sent) by a server (or client). It does not matter whether client or server is an ATMI
program or an SCA component.

Notice that the Tuxedo simpapp service has its own namespace within namespace services.
A C++ method toupper is associated with this service.

Listing 6-27 C++ Interface Example

#include <string>

namespace services

{

 namespace simpapp

 {

 /**

 * business interface

 */

 class ToupperService

 {

 public:

 virtual std::string

Orac le SALT SCA Prog ramming

6-32 Oracle SALT Programming Guide

 toupper(const std::string inputString) = 0;

 };

 } // End simpapp

} // End services

The following data type mapping rules apply:

Simple Tuxedo Buffer Data Mapping

Complex Tuxedo Buffer Data Mapping

SDO Mapping

Simple Tuxedo Buffer Data Mapping
The following are considered to be simple Tuxedo buffers:

STRING

CARRAY (and X_OCTET)

MBSTRING

XML

Table 6-1 lists simple Tuxedo buffer types that are mapped to SCA binding.

Table 6-1 Simple Tuxedo Buffer Type Data Mapping

C++ or STL Type Java Type Tuxedo Buffer Type Notes

char*, char array
or std::string

 java.lang.String STRING

CARRAY_T byte[] or
java.lang.Byte[]

CARRAY

X_OCTET_T byte[] or
java.lang.Byte[]

X_OCTET

SCA ATMI B ind ing Data Type Mapp ing

Oracle SALT Programming Guide 6-33

When a service called by an SCA client returns successfully, a pointer to the service return data
is passed back to the Proxy stub generated by buildscaclient. The Proxy stub then
de-references this pointer and returns the data to the application.

Table 6-1 can be interpreted as follows:

When the reference or service binding extension runtime sees a Tuxedo STRING buffer, it
looks for either a char*, char array, std::string parameter or return type
(depending on the direction). If a different type is found, an exception is thrown with a
message explaining what happened.

When the reference or service binding extension runtime sees a char* (for example) as a
single parameter or return type, it looks for STRING as the buffer type in the
binding.atmi element. If a different Tuxedo buffer type is found, an exception is thrown
with a message explaining what happened.

Multibyte String Data Mapping
Tuxedo uses multibyte strings to represent multibyte character data, with encoding names based
on iconv as defined by Tuxedo. C++ uses a wstring, wchar_t*, or wchar_t[] data type to
represent multibyte character data, with encoding names as defined by the C++ library.

Tuxedo and C++ sometimes use different names to represent a particular multibyte encoding.
Mapping between Tuxedo encoding names and C++ encoding names is as follows:

XML_T byte[] or
java.lang.Byte[]

XML This type is passed as a
C++ array within the data
element of struct XML or
as an array of java bytes.
It is transformed to SDO.

wchar_t * or
wchar_t array

N/A MBSTRING See Multibyte String
Data Mapping

std::wstring java.lang.String MBSTRING See Multibyte String
Data Mapping

Table 6-1 Simple Tuxedo Buffer Type Data Mapping

C++ or STL Type Java Type Tuxedo Buffer Type Notes

Orac le SALT SCA Prog ramming

6-34 Oracle SALT Programming Guide

Receiving a Multibyte String Buffer
When an SCA client or server receives an MBSTRING buffer or an FML32 buffer with a
FLD_MBSTRING field, it considers the encoding for that multibyte string to be the first locale
from the following cases:

1. Locale associated with the FLD_MBSTRING field, if present.

Note: For more information, see Table 6-2.

2. Locale associated with the MBSTRING or FML32 buffer.

3. Locale set in the environment of the SCA client or server.

If case 1 or 2 is matched, Tuxedo invokes the setlocale() function for locale type LC_CTYPE
with the locale for the received buffer. If setlocale() fails (indicating there is no such locale)
and an alternate name has been associated with this locale in the optional
$TUXDIR/locale/setlocale_alias file, Tuxedo attempts to set the LC_CTYPE locale to the
alternate locale.

The $TUXDIR/locale/setlocale_alias file may be optionally created by the Tuxedo
administrator. If present, it contains a mapping of Tuxedo MBSTRING codeset names to an
equivalent operating system locale accepted by the setlocale() function.

Lines consist of a Tuxedo MBSTRING codeset name followed by whitespace and an OS locale
name. Only the first line in the file corresponding to a particular MBSTRING codeset name are
considered. Comment lines begin with #.

The $TUXDIR/locale/setlocale_alias file is used by the SALT SCA software when
converting MBSTRING data into C++ wstring or wchar_t[] data. If setlocale() fails when
using the Tuxedo MBSTRING codeset name, then the SALT SCA software attempts to use the
alias name, if present. For example, if the file contains a line 'GB2312 zh_CN.GB2312' then if
setlocale(LC_CTYPE, 'GB2312') fails, the SALT SCA software attempts
setlocale(LC_CTYPE, 'zh_CN.GB2312').

Sending a Multibyte String Buffer
When an SCA client or server converts a wstring, wchar_t[], or wchar_t* to an MBSTRING
buffer or a FLD_MBSTRING field, it uses the TPMBENC environment variable value as the locale
to set when converting from C++ wide characters to a multibyte string. If the operating system
does not recognize this locale, Tuxedo uses the alternate locale from the
$TUXDIR/locale/setlocale_alias file, if any.

SCA ATMI B ind ing Data Type Mapp ing

Oracle SALT Programming Guide 6-35

Note: In SALT 10g Release 3 (10.3), it is possible to transmit multibyte data retrieved from a
Tuxedo MBSTRING buffer, an FML32 FLD_MBSTRING field, or a VIEW32 mbstring
field. It is also possible to transmit multibyte data entered using the SDO setString()
method.

However, it is not possible to enter multibyte characters directly into an XML document
and transmit this data via SALT 10g Release 3 (10.3). This is because multibyte
characters entered in XML documents are transcoded into multibyte strings, and SDO
uses wchar_t arrays to represent multibyte characters.

Complex Return Type Mapping
The following C++ built-in types used as return types are considered complex and automatically
encapsulated in an FML/FML32 buffer as a single generic field following the complex buffer
mapping rules described in Complex Tuxedo Buffer Data Mapping. This mechanism addresses
the need for returning types where a corresponding Tuxedo buffer can not be used.

Note: Interfaces returning any of the built-in types assume that FML/FML32 is the output
buffer type. The name of this generic field is TUX_RTNdatatype based on the type of
data being returned. TUX_RTNdatatype fields are defined in the
Usysflds.h/Usysfl32.h and Usysflds/Usysfl32 shipped with Tuxedo.

bool : maps to TUX_RTNCHAR field

char: maps to TUX_RTNCHAR field

signed char: maps to TUX_RTNCHAR field

unsigned char: maps to TUX_RTNCHAR field

short: maps to TUX_RTNSHORT field

unsigned short: maps to TUX_RTNSHORT field

int: maps to TUX_RTNLONG field

unsigned int: maps to TUX_RTNLONG field

long: maps to TUX_RTNLONG field

unsigned long: maps to TUX_RTNLONG field

long long: (maps to TUX_RTNLONG field

unsigned long long: maps to TUX_RTNLONG field

Orac le SALT SCA Prog ramming

6-36 Oracle SALT Programming Guide

float: maps to TUX_RTNFLOAT field

double: maps to TUX_RTNDOUBLE field

long double: maps to TUX_RTNDOUBLE field

Complex Tuxedo Buffer Data Mapping
The following are considered to be complex Tuxedo buffers:

FML

FML32

VIEW (and X_* equivalents)

VIEW32

Table 6-1 lists the simple Tuxedo buffer types that are mapped to SCA binding.

For FML and FML32 buffers, parameter names in interfaces must correspond to field names, and
follow the restrictions that apply to Tuxedo fields (length, characters allowed). When these
interfaces are generated from metadata using tuxscagen(1), the generated code contains the
properly formatted parameter names.

If an application manually develops interfaces without parameter names, manually develops
interfaces that are otherwise incorrect, or makes incompatible changes to SALT generated
interfaces, then incorrect results are likely to occur.

VIEW (and X_* equivalents) and VIEW32 buffers require the use of SDO DataObject
wrappers.

Listing 6-28, shows an interface example. The associated field definitions (following the
interface) must be present in the process environment.

Listing 6-28 Interface Example

...

int myService(int param1, float param2); ...

Field table definitions

#name number type flag comment

#---

SCA ATMI B ind ing Data Type Mapp ing

Oracle SALT Programming Guide 6-37

param1 20 int - Parameter 1

param2 30 float - Parameter 2

...

Table 6-2 Complex Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Tuxedo field type Tuxedo view type Notes

bool boolean or
java.lang.Bo
olean

FLD_CHAR char Maps to 'T' or 'F'. (This
matches the mapping used
elsewhere in SALT.)

char, signed
char, or
unsigned char

byte or
java.lang.By
te

FLD_CHAR char

short or
unsigned short

short or
java.lang.Sh
ort

FLD_SHORT short An unsigned short will be
cast to a short before being
converted to FLD_SHORT
or short.

int or unsigned
int

int or
java.lang.In
teger

FLD_LONG int An unsigned int being
converted to FML or
FML32 will be cast to a
long before being
converted to FLD_LONG or
long. An unsigned int
being converted to a VIEW
or VIEW32 member will be
cast to an int.

Orac le SALT SCA Prog ramming

6-38 Oracle SALT Programming Guide

long or
unsigned long

long or
java.lang.Lo
ng

FLD_LONG long An exception is thrown if
the value of a 64-bit
long does not fit into a
FLD_LONG or long on a
32-bit platform. An
unsigned long will be cast
to long before being
converted to FLD_LONG or
long.

long long or
unsigned long
long

N/A FLD_LONG long An exception will be
thrown if the data value
does not fit within a
FLD_LONG or long. An
unsigned long long will
be cast to long long
before being converted to
FLD_LONG or long.

float float or
java.lang.Fl
oat

FLD_FLOAT float

double double or
java.lang.Do
uble

FLD_DOUBLE double

long double N/A FLD_DOUBLE double

char* or char
array

N/A FLD_STRING string

std::string java.lang.St
ring

FLD_STRING string

Table 6-2 Complex Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Tuxedo field type Tuxedo view type Notes

SCA ATMI B ind ing Data Type Mapp ing

Oracle SALT Programming Guide 6-39

struct CARRAY class
CARRAY

FLD_CARRAY carray Will map externally
following GWWS rules.
This departs from the
OSOA spec. that does not
support them, and should
be considered an
improvement.

Bytes N/A FLD_CARRAY Carray This mapping is used when
part of a DataObject

wchar_t* or
wchar_t array

N/A FLD_MBSTRING
(FML32 only)

mbstring
(VIEW32
only)

(Java char is Unicode and
can range from -32768 to
+32767.)

See also Multibyte String
Data Mapping

std::wstring java.lang.St
ring

FLD_MBSTRING
(FML32 only)

mbstring
(VIEW32
only)

See also Multibyte String
Data Mapping

Table 6-2 Complex Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Tuxedo field type Tuxedo view type Notes

Orac le SALT SCA Prog ramming

6-40 Oracle SALT Programming Guide

SDO Mapping
C++ method prototypes that use commonj::sdo::DataObjectPtr objects as parameter or
return types are mapped to an FML, FML32, VIEW, or VIEW32 buffer.

You must provide an XML schema that describes the SDO object. The schema is made available
to the service or reference extension runtime by placing the schema file (.xsd file) in the same
location as the SCDL composite file that contains the reference or service definition affected. The
schema will be used internally to associate element names and field names.

Note: When using view or view32, a schema type (for example, complexType) which name
matches the view or view32 used is required.

For more information, see mkfldfromschema and mkfld32fromschema in the SALT 10g
Release 3 (10.3) Reference Guide.

For example, a C++ method prototype defined in a header such as:
long myMethod(commonj::sdo::DataObjectPtr data);

commonj::sdo::
DataObjectPtr

TypedFML32 FLD_FML32
(FML32 only)

N/A Generate a data
transformation exception,
which is translated to an
ATMIBindingExceptio
n before being returned to
the application, when:
• Attempting to add such

a field in a Tuxedo
buffer other than
FML32

• The data object is not
typed (i.e. there is no
corresponding schema
describing it).

See also Multibyte String
Data Mapping

commonj::sdo::
DataObjectPtr

TypedView32 FLD_VIEW32
(FML32 only)

N/A See also Multibyte String
Data Mapping

Table 6-2 Complex Tuxedo Buffer Type Data Mapping

C++, STL, or SDO
type

Java Type Tuxedo field type Tuxedo view type Notes

http://e-docs.bea.com/salt/docs10gr3/ref/comref.html
http://e-docs.bea.com/salt/docs10gr3/ref/comref.html

SCA ATMI B ind ing Data Type Mapp ing

Oracle SALT Programming Guide 6-41

Listing 6-29 shows the associated schema.

Listing 6-29 Schema

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema

 xmlns="http://www.example.com/myExample"

 targetNamespace="http://www.example.com/myExample">

 <xsd:element name="bike" type="BikeType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="BikeType">

 <xsd:sequence>

 <xsd:element name="serialNO" type="xsd:string"/>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="type" type="xsd:string"/>

 <xsd:element name="price" type="xsd:float"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

Table 6-3 shows the generated field table.

Table 6-3 Generated Field Tables

NAME NUMBER TYPE FLAG Comment

bike 20 fml32 -

comment 30 string -

Orac le SALT SCA Prog ramming

6-42 Oracle SALT Programming Guide

The following restrictions in XML schemas apply:

Attributes cannot be specified and are ignored if specified

Values in restrictions are ignored (their meaning is application-related), only the field name
and type are generated

When using XML schema types, only signed integral types will be supported.
See "SDO C++ Specification" for a list of available SDO primitive types.

See Also
Oracle SALT Administration Guide

Oracle SALT Reference Guide

SDO for C++ Specification V2.1

http://www.osoa.org/download/attachments/36/CPP-SDO-Spec-v2.1.0-FINAL.pdf?version
=2

SCA Assembly Model V0.96:

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V096.pdf?version=1

SCA Client and Implementation for C++ (V0.95):

http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCp
p_V0.95.pdf?version=1

serialNO 40 string -

name 50 string -

type 60 string -

price 70 float -

Table 6-3 Generated Field Tables

NAME NUMBER TYPE FLAG Comment

http://e-docs.bea.com/salt/docs10gr3/admin/index.html
http://e-docs.bea.com/salt/docs10gr3/ref/index.html
http://www.osoa.org/download/attachments/36/CPP-SDO-Spec-v2.1.0-FINAL.pdf?version=2
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V096.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCpp_V0.95.pdf?version=1

	Oracle® Service Architecture Leveraging Tuxedo (SALT)
	10g Release 3 (10.3)

	Service Architecture Leveraging Tuxedo Programming Guide, 10g Release 3 (10.3)
	Introduction to Oracle SALT Programming
	Oracle SALT Web Services Programming
	Oracle SALT Proxy Service
	Oracle SALT Message Conversion
	Oracle SALT Programming Tasks Quick Index

	Oracle SALT SCA Programming

	Data Type Mapping and Message Conversion
	Overview of Data Type Mapping and Message Conversion
	Understanding Oracle SALT Message Conversion
	Inbound Message Conversion
	Outbound Message Conversion

	Tuxedo-to-XML Data Type Mapping for Tuxedo Services
	Tuxedo STRING Typed Buffers
	Tuxedo CARRAY Typed Buffers
	Mapping Example Using base64Binary
	Mapping Example Using MIME Attachment

	Tuxedo MBSTRING Typed Buffers
	Tuxedo XML Typed Buffers
	Tuxedo VIEW/VIEW32 Typed Buffers
	VIEW/VIEW32 Considerations

	Tuxedo FML/FML32 Typed Buffers
	FML Data Mapping Example
	FML32 Data Mapping Example
	FML/FML32 Considerations

	Tuxedo X_C_TYPE Typed Buffers
	Tuxedo X_COMMON Typed Buffers
	Tuxedo X_OCTET Typed Buffers
	Custom Typed Buffers

	XML-to-Tuxedo Data Type Mapping for External Web Services
	XML Schema Built-In Simple Data Type Mapping
	XML Schema User Defined Data Type Mapping
	WSDL Message Mapping

	Web Service Client Programming
	Overview
	Oracle SALT Web Service Client Programming Tips
	Oracle WebLogic Web Service Client Programming Toolkit
	Apache Axis for Java Web Service Client Programming Toolkit
	Microsoft .NET Web Service Client Programming Toolkit

	Web Service Client Programming References
	Online References

	Tuxedo ATMI Programming for Web Services
	Overview
	Converting WSDL Model Into Tuxedo Model
	WSDL-to-Tuxedo Object Mapping

	Invoking SALT Proxy Services
	Oracle SALT Supported Communication Pattern
	Tuxedo Outbound Call Programming: Main Steps
	Managing Error Code Returned from GWWS
	Handling Fault Messages in a Tuxedo application

	Using Oracle SALT Plug-Ins
	Understanding Oracle SALT Plug-Ins
	Plug-In Elements
	Plug-In ID
	Plug-In Name
	Plug-In Implementation Functions
	Plug-In Register Functions
	Developing a Plug-In Interface

	Programming Message Conversion Plug-ins
	How Message Conversion Plug-ins Work
	How Message Conversion Plug-In Works in an Inbound Call Scenario
	How Message Conversion Plug-In Works in an Outbound Call Scenario

	When Do We Need Message Conversion Plug-In
	Developing a Message Conversion Plug-In Instance
	Converting a SOAP Message Payload to a Tuxedo Buffer
	Converting a Tuxedo Buffer to a SOAP Message Payload
	Associating a Message Conversion Plug-In Instance with a SALT Exposed Service

	SALT 1.1 Custom Buffer Type Conversion Plug-In Compatibility

	Programming Outbound Authentication Plug-Ins
	How Outbound Authentication Plug-Ins Work
	Implementing a Credential Mapping Interface Plug-In
	Mapping the Tuxedo UID and HTTP Username

	Overview
	SCA Client Programming
	SCA Client Programming Steps
	Setting Up the Client Directory Structure
	Developing the Client Application
	Composing the SCDL Descriptor
	Building the Client Application (Using buildscaclient)
	Running the Client Application
	Handling TPFAIL Data

	SCA Component Programming
	SCA Component Programming Steps
	Setting Up the Component Directory Structure
	Developing the Component Implementation
	Composing the SCDL Descriptor
	Compiling and Linking the Components
	Building the Tuxedo Server Host

	Web Services Binding
	SCA Remote Protocol Support
	/WS
	/Domains
	Java ATMI (JATMI) Binding

	Tuxedo SCA Interoperability
	SCA Transactions
	SCA Security
	SCA ATMI Binding
	SCA ATMI Binding Data Type Mapping
	Simple Tuxedo Buffer Data Mapping
	Multibyte String Data Mapping

	Complex Return Type Mapping
	Complex Tuxedo Buffer Data Mapping
	SDO Mapping

	See Also

