Aqualogic Data Services
Platform™ Tutorial: Part 11

A Guide to Developing BEA Aqualogic Data Services Platform (DSP) Projects

Note: This tutorial is based in large part on a guide originally developed for enterprises
evaluating Data Services Platform for specific requirements. In some cases illustrations,
directories, and paths reference Liquid Data, the previous name of the Data Services
Platform.

Version: 2.5
Document Date: June 2005

o9,
Revised: September 2006 o?7%

g /
zhea’
L/

Copyright
Copyright © 2005, 2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement.
This document may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-
Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the Commercial
Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans,
SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log
Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal,
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic
Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support
is a service mark of BEA Systems, Inc. All other company and product names may be the subject of
intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Data Services Platform: Samples Tutorial 2

Contents

AQUALOGIC DATA SERVICES PLATFORM™ TUTORIAL: PART Il ...t 1
A Guide to Developing BEA Aqualogic Data Services Platform (DSP) Projects..........ccccccoeevoveviennene. 1
Lesson 18 Building XQueries in XQuery EdItOr VIEW ... v 10
Lab 18.1 Importing Schemas for Query Developmentccooveiiiiiriinienieiieieeeeseee e se e es 11
Lab 18.2 Creating Source-t0-Target MapPINgS........coeeruieierierierieie ettt te st eeteetesteesbeeste et saesetesaeenbeeneeeneeens 11
Lab 18.3 Creating a Basic Parameterized FUNCHONcccoooiiiiiiiiiiiiiiiiececeee e 14
Lab 18.4 Creating a String Function with a Built-In XQuery Function...........cccceceoeieniiinininieeeeee 18
Lab 18.5 Creating a Date FUNCHIONcc.iiiiiiiieeiiiiee ettt ettt st b e ee et et esneeneeeeeens 21
Lab 18.6 Creating Outer Joins and Order By EXPreSsions.........ccccevierierieierieniesiiesie e seee e seeeneens 23
Lab 18.7 Creating Group By and Aggregate EXPreSSIONSccccveruieiiieiiieieniieniesieeieete e seee e ee e eneeseeeneeens 28
Lab 18.8 Creating Constant EXPIeSSIONSc.eecvireueriierierieeieetesiesteeteeteestesseesseeseesessaesseesseesseensesssesseesseenseens 32
Lesson 19 Building XQUEKIES IN SOUICE VIBWccueiiiiiiiiiiiiiiesie et 35
Lab 19.1 Creating @ NeW XIML TYPE ...ccuieiuieiieiiietieieeitt ettt ettt ettt ettt et et esetesaeesse e st eneeeneeeneeseeenseans 36
Lab 19.2 Creating a Basic Parameterized XQUETYcovierieriieiieiieniieitete ettt eiee st ee e seeenaeens 37
Lab 19.3 Creating a String FUNCHONcoouiiiiiii et sttt et e e e e e ens 40
Lab 19.4 Building an Outer Join and Using Order BYcccoceriiriiiiiiiiieieieeeie et 44
Lab 19.5 Creating an Inner Join and @ TOP Nc.oooiiiiiiiiiieieceeeeeee ettt s e e e e snaesseenseens 47
Lab 19.6 Creating a Multi-Level Group Byooiiiiiiiie ettt st ens 51
Lab 19.7 USING If-TREN-EISE ..eoviiiiiiiciecieeeet ettt ettt sttt e e etaesaa e saesbeessessaesseesseesseenseans 54
Lab 19.8 Creating a Union and CONCAtENATIONccueervierueeieiieitierieeieeteeseesseesteesseesessessnesseesseesseessesssessesssenns 58
Lesson 20 Implementing Relationship Functions and Logical Modelingccccoceovvnincnenncnnn 62
Lab20.1 Implementing and Testing a Relationship FUNCHONc..cocoviniiiiiiiiiiiiicccecceeee 63
Lab 20.2 Creating a Model Diagram for Logical Data ServiCes..........ccvevvieirriereerieeiieiieiieseeseere e eeeesseesseens 65
Lesson 21 RUNNING Ad HOC QUETTES.........cuiiiiiieiieieieiee sttt 69
Lab21.1 Creating an Instance of the PreparedEXpression ClIassccvevuerierieniieneniiesie et seeeneens 69
Lab21.2 Defining Ad HOC QUEIY Parametersccceeuieriirieriierieiieie ettt etesaeseeesieessesaesnnesseesseeseenseens 71
Lab21.3 Testing the Ad HOC QUETYcceiiieriieiieiieieeiteetteeteete ettt ettt ettt te e e ssaessaesseensesnsesnnesneesseenseenseans 72
Lesson 22 Creating Data Services Based on SQL StatemMentscccooevveieneviveiieneseesese s 74
Lab22.1 Creating a Data Service from a User-Defined SQL Statement............cccoceereriiiiinienieneeeeeceneene 74
Lab22.2 Testing YOUr SQL Data SEIVICEc.cecvirieiieriieieeieeteeieesit et eteeetestee e esteesaeseaesseesseessesnsesneesseenseenseans 76

Data Services Platform: Samples Tutorial 3

Lesson 23
Lab 23.2
Lab 23.3
Lab 23.4

Lesson 24
Lab 24.1
Lab 24.2
Lab 24.3
Lab 24.4

Lesson 25
Lab 25.1
Lab 25.2
Lab 25.3

Lesson 26
Lab 26.1
Lab 26.2
Lab 26.3

Lesson 27
Lab 27.1
Lab27.2

Lesson 28
Lab 28.1
Lab 28.2
Lab 28.3

Lesson 29
Lab 29.1
Lab 29.2
Lab 29.3

Lesson 30
Lab 30.1
Lab 30.2
Lab 30.3
Lab 30.4

Performing Custom Data Manipulation Using Update Override..........c..ccecvvevvernennnn. 77

Creating an Update OVEITIACccvievieiieieriieieeieete sttt ete ettt esteebe b e esbestaesseesseesseessesssensesssenens 78
Associating an Update Override to a Logical Data Service.........ccovvevieriieiieciinienieeeie e 80
Testing the Update OVEITIAC.ccvieiieiieieiieiieie ettt ettt veess e e e e sbeesbeessesssessaesseessesnnesens 80
Updating Web Services Using Update OVErrideccocveveieiieieieee e 82
Creating an Update Override for a Physical Data Service.........coccvevverieriieciieienienieeiecee e 83
Writing Web Service Update Logic in the Update OVerrideccevvevieieeienienieeiecieceeseeve e 84
Testing the Update OVEITIAC.ccvieiieieeiieiieieeteeie sttt sttt v et e st e sbeesbeessesssessaesseensesssenens 84
Checking for Change ReqUITEIMENTSooiiiiiiiiiieiieiieei ettt s 86
Overriding SQL Updates Using Update OVErrides..........ccccevviiveiiiiiiieiiieeie s 87
Adding SQL Update Statements to an Update Override Filecccocvevvieiieienienieieciecieseee e 87
Associating an SQL-Based Data Service and Update Override...........c.oovveveeienieneenieeieiie e 88
TESING UPAALES ...evvieeieiieiicie ettt ettt e et e s eae s teeste e beesbeesseeseesseesseesseassessseseesseensesnsennns 88
Understanding QUErY PIanS ... 90
Viewing the QUETY PIAN........cccoioiiiieiiee ettt ettt e et e e b e seenseenseenes 91
Locating the SQL Statement in @ QUery Plan...........cccccoeoviviiiiiiiiiinici e e 92
Locating XML ELSINENLScceecieriieiieiiiieiieeeeste et eeteeteesteesseessesssesstesseesseesseessesssesseesesnsasssesssesssensns 93
Reusing XQuery Code through Vertical View Unfoldingc.ccocoveiiiiiiinininciens 94
UNolding VErtiCal VIBWecciiiiieiieiieiieie ettt et et te st ettt ssaesseesseenseensesssesseesseenseenseansenns 94
Testing a Vertical File Unfoldingcoccveiiiiiieiiiiiiiieiiee ettt sae e 97
Configuring Alternatives for Unavailable Data SOUICESccccovvvvevieiisiere e 98
Setting the Demonstration CONAItIONScevvieriieiieieriesieeeieete st see e seeseee e sseeeeensessaesseensens 99
Configuring AIEINALIVE SOUICESeevieiieiereieiietieieeteseesteeseeaesteseeesseesseesesseesseeseenseensesssesseensees 101
Testing an AIEINAtIVE SOUICE.......cc.vervierieeieeiertieteeieeteeeesseesseeaestestesseesseesesssesseesseeseensesssesseenseen 102
Enabling Fine-Grained Cachingccccooiiiiiiiiic e 104
Enabling Function-Level Caching for a Physical Data Service...........ccoocveviriiniinienieieeeieeeen 104
Testing the Caching POLICYcoieriiiiiiiieieeieee ettt sttt et e st ebeenaesseensean 105
Testing Performance IMPACEc.cccveiirrieiiieiieieeieit ettt st see e enaeenaessaesseeseen 107
Creating XQuery Filters to Implement Conditional-Logic Security............c.cc.cooenee. 108
CTEALING USET GIOUPS ...euvientietieieeieeitestte et et et et ette st e e st e te e teeseesseesseesseeeeemeesaeesseaseenteensenseesseensean 108
Writing the XQuery Security FUNCHION.c.ooiieiiiiiieeeee e 110
Activating the XQuery Function for SECUTILYc.cccveiiirienieiieieeiereee e 112
Testing the XQuery Security FUNCIONcoevieiiieiieieeieceeieeie et neees 112

Data Services Platform: Samples Tutorial 4

Lesson 31
Lab 31.1
Lab31.2

Lesson 32
Lab 32.1
Lab 32.2
Lab 32.3

Lesson 33
Lab 33.1
Lab 33.2

Lesson 34
Lab 34.1
Lab 34.2
Lab 34.3
Lab 34.4

Lesson 35
Lab 35.1
Lab 35.2

Creating Data Services from Stored ProCedUIES..........cccoviiiieieiiiie s 114

Importing a Stored Procedure into the APPliCAtioNcc.ccveeeveeiiiierierieeie et 115
Importing Stored Procedure Metadata into @ Data ServiCe........cccvvvvereerieeriiiienienieieeieeeeeeeesieennens 116
Creating Data Services from Java FUNCLIONSccooeiiiiiiinieccsse s 118
Accessing Data Using WebLogic’s Embedded LDAP Function..........ccceceeeeereeriencienieneeneee e 120
Accessing Excel Spreadsheet Data Using JCOMccocoieiiieiieiiiieiienieeie et eve e sseeneees 122
(Optional) Accessing Data Using an Enterprise Java Bean............ccccccvevviviiviiniiiiieicieieieeienn, 123
Creating Data Services from XML FileS.......cccccoiiiiiiiiiice s 126
Importing XML Metadata and XML Schema Definitionc.ccoceveverienieniininincncnenecceeeenen 126
Testing the XIML Data SEIVICEc.eecviecierieriieiieii et ete sttt eteeteseeseteseeesseesesseessaesseenseensesnsessnensens 129
Creating Data Services from FIat Files ... 131
Importing Flat File Metadatacccooiiiiiiiieeeee ettt 131
Testing Your Flat File Data SEIVICEc.cecueeieriieriieieeieiiesieeieeieseeste st eeeeeesneesseesseenseensessnesseensens 133
Integrating Flat File Valuation with a Logical Data Serviceccoceverenerieiienenenenenenceieeenes 134
Testing an Integrated Flat File Data ServiCe.........ccvecieririieriieieiie et 135
Creating an XQuery Function Library ..o 137
Creating an XQuery FUnction LiDIarycceecueiieiieniiiie ettt snees 137
Using the XQuery Function Library in an XQUETYccceererriiiiierienieie et 139

Data Services Platform: Samples Tutorial

About This Document

Welcome to the AqualLogic Data Services Platform (DSP) Samples Tutorial. In this document, you are
provided with step-by-step instructions that show how you can use DSP to solve the types of data
integration problems frequently faced by Information Technology (IT) managers and staff. These
issues include:

What is the best way to normalize data drawn from widely divergent sources?

Having normalized the data, can you access it, ideally through a single point of access?

After you define a single point of access, can you develop reusable queries that are easily
tested, stored, and retrieved?

After you develop your query set, can you easily incorporate results into widely available
applications?

Other questions may occur. s the data-rich solution scalable? Is it reusable throughout the enterprise?
Are the original data sources largely transparent to the application—or do they become an issue each
time you want to make a minor adjustments to queries or underlying data sources?

Document Organization
This guide is organized into 35 lessons that illustrate several Data Services Platform capabilities:
Data service development. In which you specify the query functions that DSP will use to
access, aggregate, and transform distributed, disparate data into a unified view. In this stage,

you also specify the XML type that defines the data view that will be available to client-side
applications.

Data modeling. In which you define a graphical representation of data resource relationships
and functions.

Client-side development. In which you define an environment for retrieving data results.

Each lesson in the tutorial consists of an overview plus “labs” that demonstrate DSP’s capabilities on a
topic-by-topic basis. Each lab is structured as a series of procedural steps that details the specific
actions needed to complete that part of the demonstration.

The lessons are divided into two parts:
Part 1: Core Training. Includes Lessons 1 through 17, which illustrate the DSP capabilities
that are most commonly used.

Part 2: Power-User Training. Includes Lessons 18 through 35; these illustrate DSP's more
advanced capabilities.

Note: The lessons build on each other and must be completed in the sequence in which they are
presented.

Data Services Platform: Samples Tutorial 6

Technical Prerequisites

The lessons within this guide require familiarity with the following topics: data integration and
aggregation concepts, the BEA WebLogic® Platform™ (particularly WebLogic Server and WebLogic
Workshop), Java, query concepts, and the environment in which you will install and use DSP.

For some lessons, an ability to understand XQuery is helpful.

System Requirements

To complete the lessons, your computer requires:

Platform: BEA WebLogic Server 8.1 Service Pack 5
Domain: ldplatform
Application: AquaLogic Data Services Platform 2.5

Operating System: | Windows 2000 or XP
Memory: 512 MB RAM minimum; 1 GB RAM recommended

Browser: Internet Explorer 6 or higher or equivalent

Data Sources Used Within These Lessons

The Data Services Platform Samples Tutorial builds data services that draw on a variety of underlying
data sources. These data sources, which are provided with the product, are described in the following

table:
Data Type Data Source Data
Relational Customer Relationship Management =~ Customer and credit card data
(CRM) RTLCUSTOMER database
Relational Order Management System (OMS) Apparel product, order, and order line
RTLAPPLOMS database data
Relational Order Management System (OMS) Electronics product, order, and order line
RTLELECOMS database data
Relational RTLSERVICE database Customer service data, organized in a
single Service Case table
Web service CreditRatingWs Credit rating data
Stored procedure =~ GETCREDITRATING_SP Customer credit rating information
Java function Functions. DSML Java function enabling LDAP access
Java function Functions.excel jcom Excel spreadsheet data, using JCOM
Java function Functions.CreditCardClient Customer credit card information, using
an XMLBean
XML files ProductUNSPSC.xsd Third-party product information
Flat file Valuation.csv Data received from an internal

department that deals with customer

Data Services Platform: Samples Tutorial 7

scoring and valuation models

Related Information

In addition to the material covered in this guide, you may want to review the wealth of resources
available at the BEA Web site, WebLogic developer site, and third-party sites. Information at these
sites includes datasheets, product brochures, customer testimonials, product documentation, code
samples, white papers, and more.

For more information about Java and XQuery, refer to the following sources:

The Sun Microsystems, Inc. Java site at:

http://java.sun.com/

The World Wide Web Consortium XML Query section at:
http://www._w3.0org/XML/Query

For more information about BEA products, refer to the following sources:

DSP documentation site at:

http://edocs.bea.com/aldsp/docs25/index.html

BEA e-docs documentation site at:
http://edocs.bea.con/

BEA online community for WebLogic developers at:
http://dev2dev.bea.com

Data Services Platform: Samples Tutorial

http://java.sun.com/
http://www.w3.org/XML/Query
http://edocs.bea.com/aldsp/docs25/index.html
http://edocs.bea.com/
http://dev2dev.bea.com/

Part 2: Power-User Training

In the DSP Samples Tutorial Part I (Core Training), you were introduced to the features, functions,
and tools necessary to build, cache, and secure data services within a DSP application. In Part 2, you
will build upon that knowledge to:

Build queries in both XQuery Editor View and Source View.
Create models for logical data services.
Run ad hoc queries.

Use update overrides to perform custom data manipulations, update Web services, and
overwrite SQL updates.

Use the automatically generated Query Plan.

Re-use XQuery code.

Configure alternative sources for unavailable data sources.

Use SQL Exits to enable retrieving data from an SQL statement.

Enable fine-grained caching.

Enable element-level security.

Create data services from stored procedures, Java functions, XML files, and flat files.

Create an XQuery function library.

Data Services Platform: Samples Tutorial

Lesson 18 Building XQueries in XQuery Editor View

In concrete terms, a data service is simply a file that contains XML Query (XQuery) instructions for
retrieving, aggregating, and transforming data. Essentially you create a query function by:

Integrating physical and logical data sources into the query.
Mapping data sources to the data service's Return type.
Creating XQuery statements that include conditions, parameters, functions, and expressions.

You can also modify the Return type, either within XQuery Editor View or using an external tool.

In this lesson, you will use XQuery Editor View to develop a variety of XQuery instructions.

Objectives

After completing this lesson, you will be able to:

Use the graphical XQuery Editor View to create parameterized, string, and date functions;
outer joins, aggregate, and order by and constant expressions.

Use the XQuery Function Palette to add built-in XQuery functions to a query.

Overview

XQuery Editor View provides a graphical, drag-and-drop approach to constructing queries. Using
XQuery Editor View, you can:

View and modify the data service's Return type, whose shape is defined by the data service's
XML Type.

View, add, modify, and delete the function calls from other physical and logical data services
that define which data source(s) will be queried.

View, add, and delete the source-to-target mappings that define which data will be made
available to consuming applications.

View, add, modify, and delete the parameters, expressions, and conditions that define how the
data will be processed.

Changes that you make in XQuery Editor View are immediately reflected in Source View. Similarly,
changes you make in Source View will be immediately effective in XQuery Editor View.

Data Services Platform: Samples Tutorial 10

Lab 18.1

Lab 18.2

Importing Schemas for Query Development

To simplify development time in this lesson you will use ready-made schemas that define a data
service's Return type.

Objectives

In this lab, you will:

Create a folder to organize all the queries that you will create in this lesson and the next.

Import the schemas that you will use in those queries.

Instructions

1.

Create a new folder in the DataServices project folder, and name it MyQueries.

a.

b.

Right-click the MyQueries folder and choose Import.

Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide\MyQueries,
select the schemas folder, and click Import. This will automatically create a folder named
schemas, and appropriate .xsd files, within the MyQueries directory. These -xsd files will
be used to determine the Return type for all queries developed in this lesson.

Creating Source-to-Target Mappings

Every function within a logical data service includes source-to-target mappings that define what results
will be returned by the function. As described in Part I, there are several types of mappings:

A simple mapping means that you are mapping simple source node elements to simple
elements in the Return type one at a time. You can create a simple mapping by dragging and
dropping any element from the source node to its corresponding target element in the Return
type. Optional Return type elements do not need to be mapped; otherwise elements in the
Return type need to be mapped in order for your query to run.

An induced mapping means that a complex element is mapped to a complex element in the
Return type. In this gesture the top level complex element in the Return type is ignored
(source node name need not match). The editor automatically then maps any child elements
(complex or simple) that are an exact match for source node elements.

An overwrite mapping replaces a Result type element and all its children (if any) with the
source node elements. As an example of the general steps needed to create an overwrite
mapping, you would press <Ctrl>, then drag and drop the source node's complex element onto
the corresponding element in the Result type. The entire source node's complex element is
brought to the Result type, where it completely replaces the target element with the source
element.

An append mapping adds a simple or complex element (and any children or attributes) as a
child of the specified element in the Return type. To create an append mapping, select the
source element, then press <Ctrl>+<Shift> while dragging and dropping the source node’s
element onto the element in the Return type that you want to be the parent of the new
element(s).

Alternatively, if you simply want to add a child element to a Return type, you can drag a
source element to a complex element in your Return type. The element will be added as a
child of the complex element and mapped accordingly.

Data Services Platform: Samples Tutorial 11

Objectives

In this lab, you will:

Create four types of mappings.

Review the results.

Instructions

1. Right-click the MyQueries folder, choose New — Data Service, and use CustomerInfo.ds in
the Name field.

1. In Design View, associate the CustomerInfo data service with the CUSTOMER . xsd schema.
The schema is located in MyQuer ies\schemas.

2. Add a new function to the CustomerInfo data service and name it getAllCustomers.

iy Quanies| e
= CUSTOMER
) CUSTOMER_ID xstring
@ FIRST_NAME swistring)
@ LAST MANE waatring
@ CUSTEMER_SINCE xredote
(@ CMAL_ADORLSS xe:strng
S TELEPHONE NUMBER vo:sting
@ SN T sty
& BIRTH_DGY 7 vadate
) DEFALLT_SHIF_METHON 7 entring
) LMAL NOTIFICATION ¢ xsshort
G NEWS_LETTIER 7 xaghort
& CMUINE_STATEMENT 7 asishurl

—_— s stomers

Degn View | X0usry Dkor Ve | Source Wiew | Tast Vidw | Quéry Plan Y

Figure 18-1 Design View of CustomerlInfo Data Service
3. Click the getAllCustomers() function to open XQuery Editor View.
4. Add a for node to the work area by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER . ds folder, located in
DataServices\CustomerDB.

b. Drag and drop CUSTOMER() into XQuery Editor View. This creates a
For : $CUSTOMER source node.

5. Create a simple mapping. Drag and drop each element in the CUSTOMER source node onto
the corresponding element in the Return type.

Note: You do not need to map the LOGIN_ID element.

Data Services Platform: Samples Tutorial 12

CustomerInfo.ds™* - {DataervicesHMyQueries)

Selact Functinn:@ getallCustomers()| +

=49For: §CUSTOMER =
= CUSTOMER: *

CUSTOMER _ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE de
EMAILL_ADDRESS strir|
TELEPHOME _MUMBER.
55N T string
BIRTH_DAYV ? date
DEFAULT_SHIP_METH
EMALL_MNOTIFICATION
NEWS_LETTTER ? shol
OMLIME_STATEMEMT
LOGIN_ID ? string —

1 O]

0

@ Return

7 = CUSTOMER
CUSTOMER _ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMBER. string
SSM T string
BIRTH_DAY ? date
DEFAULT_SHIP_METHOD ? string
EMAIL_MNOTIFICATION ? short
NEWS_LETTTER 7 short

f OQMLINE_STATEMENT ? short

o

|
oE[v

z

| [Desion View | #Query Editor Yiew [Souree Yiew | Test View | Guery Plan View

Figure 18-2 Simple Mapping

6. Create an induced mapping, by completing the following steps:

a. Delete all the simple mappings. (Right-click a map line and select Delete from the pop-

up menu.)

b. Drag and drop the CUSTOMER* element (source node) onto the CUSTOMER element

in the Return type.

Notice that the mappings are automatically generated for each element, because the source and target

element names are the same.

CustomerInfo.ds* - {Datadervices iMyQueries)

Select Function:@ getAHCustomers()| >

=49For: $§CUSTOMER = U
El CUSTOMER * [+]
CUSTOMER_ID string
FIRST_NAME string
LAST_NAME string
CUSTOMER_SINCE dz
EMAIL_ADDRESS strir
TELEPHONE_MUMBER
55N 7 string
BIRTH_DAY ? date
DEFAULT_SHIP_METH,
EMAIL_NOTIFICATION
NEWS_LETTTER ? sho
ONLINE_STATEMENT 7
LOGINID ? string ' —

1 [

@ Return

1

7 & CUSTOMER

CUSTOMER_ID string
FIRST_NAME string
LAST_NAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string
TELEPHOME_NUMEER string
SSN? string

BIRTH_DAY ? date
DEFAULT_SHIP_METHOD ? string
EMAIL_NOTIFICATION ? short
NEWS_LETTTER 7 short
OMLINE_STATEMENT ? shart

[TDesign View | #Query Editar Yiew | Saurce View | Test Vigw

Figure 18-3 Induced Mapping

7. Create an overwrite mapping, by completing the following steps:

a. In the Return type right-click the CUSTOMER element and choose Add Child Element.

b. Double-click the NewChildElement, enter Addresses, and press Enter.

c. Inthe Data Services Palette, open the ADDRESS . ds icon, which is located in the
DataServices\CustomerDB folder.

Data Services Platform: Samples Tutorial

13

d. Drag and drop ADDRESS() into XQuery Editor View.

e. Press Ctrl, and then drag and drop ADDRESS* element (source node) onto the
Addresses element in the Return type.

Notice that the entire complex ADDRESS* element is brought to the target, where it overwrites the
element, instead of adding it as a child.

CustomerInfo.ds* - {Dataservices My Queries) %
Select Function: 4] gEtAI\CustDmErsOm
=qFor: §CUSTOMER # U (@ Return 7
B CUSTOMER * [+] 0 = CUSTOMER [«]
CUSTOMER_ID string CUSTOMER_ID string
FIRST_MAME string FIRST_MAME string
LAST_MNAME string LAST_MAME string
CUSTOMER_SINCE dz CUSTOMER_SINCE date
EMALL_ADDRESS strir S:For: ADDRESS + O EMAIL_ADDRESS string
TELEPHOME_MUMEER. EL ATREESR = TELEPHOME_NUMEER string
SEN T string b SSN? string
BIRTH_DAY 7 date ST EMER, et BIRTH_DAY 7 date
pregon | Mt LUt T
NEWS_LETTTER ? sho el) NEWS_LETTTER 7 shart
OMLINE_STATEMENT 7 STREETAADDRESST ' OMLINE_STATEMENT ? shert
LOGIN D ? string L T ADRESD B ACDRESS
- X LY e ADDR_ID string
o I IE ZIAIE ohi CUST&MER 1D skring
ZIPCODE string 2
COUNTRY string FIRST_MAME st.r\ng
DAY PHONE 7 strin_| LAST_NAME string
il
ALIAS 7 string = ! L
- CITY string
< |] STATE string
ZIPCODE string
COUMTRY string
DAY_PHOME ? string =
3] [0
1 [I+
OE[[v!¢ ¢
7
| [Design View | ¥Query Editor Yiew [Source View | Test View | Query Plan view

Figure 18-4 Overwrite Mapping

Lab 18.3 Creating a Basic Parameterized Function

A parameterized query lets you filter returned data based on specific criteria, such as a particular order
number, customer name, or customer number.

Objectives

In this lab, you will:

Create a parameterized function that returns all orders for a particular customer.
Test the function.

Review the XQuery source code.

Instructions

In Design View: Add a new function to the CustomerInfo data service and name it
getCustomerByName.

1. Click getCustomerByName() to open XQuery Editor View for that function.

2. Add a for node, by completing the following steps:

Data Services Platform: Samples Tutorial 14

a. Inthe Data Services Palette, open the CUSTOMER . ds folder, which is located in the
DataServices\CustomerDB folder.

b. Drag and drop CUSTOMER() into XQuery Editor View. This creates a
For : $CUSTOMER source node.

3. Create an induced mapping. Drag and drop the CUSTOMER* element (source node) onto the
CUSTOMER element in the Return type.

4. Add a parameter, by completing the following steps:
a. Right-click an empty spot in XQuery Editor View.
b. Choose Add Parameter.
c. Enter FirstName in the Parameter Name field.
d. Select xs:string as the Primitive Type.

e. Click OK. (You will need to move the nodes until all are visible because the new
parameter node may be placed behind the CUSTOMER node.)

5. Add a where clause, by completing the following steps:

a. Drag and drop the parameter's string element onto FIRST NAME element (source
node). Make sure that you release the mouse button when the FIRST NAME
element is highlighted. This action creates a filter for the FIRST NAME element
based on the parameter that is passed to the function.

b. Confirm that the where clause is correctly set by clicking the SCUSTOMER source
node's header. The Expression Editor will open and you should see the following
where clause:

$FirstName = $CUSTOMERO/FIRST_NAME

CustomerInfo.ds* - {DataServicesHMyQuetias| %

Selact Funmnn:|-@ getCustomerByblame()|

=9For: $CUSTOMERD & U

= CUSTOMER * 2=
CUSTOMER_ID string
FIRST_NAME string
LAST_NAME string
CUSTOMER_SIMCE dat|
EMATL_ADDRESS string
TELEFHONE_NUMEER: ¢
55N 7 string
BIRTH_DAY 7 date
DEFAULT_SHIP_METHC,
EMALL_MOTIFICATION
NEWS_LETTTER 7 shor
ONLINE_STATEMENT ?
LOGIN_ID ? string

&l

< 0]

D

@Relum

7 - CUSTOMER
CUSTOMER _ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE date
EMAIL_ADDRESS string
TELEPHOME _WUMEER. string
SSH? string
BIRTH_DAY 7 date
DEFALLT_SHIP_METHOD ? string
EMAIL_MOTIFICATION 7 short
MEWS_LETTTER 7 short

i OMLINE_STATEMENT ? short

{?|Parameter: $FirsiName # —

Firsthame string

[I

=

“

OE[|~

Where $Firsthismme = $CLISTOMERQIFIRST_NAME

=

==

L |

[Desian Wiew | XQuery Editor Yiew [Source Yiew | Test View | Query Plan View |

Figure 18-5 First Name Parameter and WHERE Clause

Data Services Platform: Samples Tutorial 15

6. Add a second where clause, by completing the following steps:

a. Add a new parameter, entering LastName, and selecting xs:string as the Primitive
Type.

b. Click the SCUSTOMER node's header. The Expression Editor opens.

c. Triple-click inside the where field and place your cursor at the very end, after
FIRST NAME.

d. Select the “and” logical conjunction from the pop-up operator list (the “...” icon).
You can now define the where clause to filter data by last name.

Note: An alternative method is to simply enter “and” in the field.

e. Click the string element in the second parameter. The variable name $LastName
appears at the end of the where clause.

f. Choose eq: Compare Single Values from the popup operator list.
Note: An alternative method is to simply enter eq in the field.

g. Click the LAST NAME element in the For:SCUSTOMER node. You should see the
following in the where clause field:

$FirstName = $CUSTOMER/FIRST_NAME and $LastName eq $CUSTOMER/LAST_NAME

h. Click the green check button to accept the changes.

CustomerInfio.ds* - {DakaServiceskiMyQueries) B3

Select Functinn:|@ getCustomerByhame(Firsthiame, Lasthame)| ~ |

= @Return]|
— ®|=4For- §CUSTONMERD # U
CUE = 0 = CUSTOMER
e —| = CLISTOMER, * - ;
{?]Parameter: §FirstMame = o COSTOMER. 1D <tnng
CUSTOMER_ID string FIRST_MAME string
Firsttame string / FIRST_NAME string e
LAST_NAME string CUSTOMER_SINCE date
CUSTOMER_SIMCE dat EMAIL_ADDRESS string
EMAIL_ADDRESS string TELEPHOME_NUMBER string
{?]Parameter: §Lastla._. = TELERHOME: NLIMBER 4 SSN? string
SSM? strin
LastNams string g? BIRTH_DAY 7 date
BIRTH_DAY 7 dats DEFAULT_SHIP_METHOD ? string
DEFAULT_SHIP_METHC EMAIL_NOTIFICATION ? short
EMAIL_NOTIFICATION fide e ko
MEWS_LETTTER 7 shor £ OMLINE_STATEMENT 7 shart L
ONLINE_STATEMENT 7
LOGIN ID'? string
1] | 0]
[E1l] [
R A =
OE[vl -
'{«}‘ ihere $Firsthiame = $CUSTOMERD{FIRST_NAME and $Lastiiame eq $CUSTOMERGLAST NAME

[Desian View | %Query Editor Yiew [Source View | Test View | Query Plan View |

Figure 18-6 XQuery Editor View of Parameterized Query
7. Test the function, by completing the following steps:
a. Open CustomerInfo.ds in Test View.
b. Select getCustomerByName(FirstName, LastName) from the drop-down list.
c. Enter Jack in $FirstName field.
d. Enter Black in the $LastName field.
e. Click Execute.

Confirm the results, which should be as displayed in Figure 18-7.

Data Services Platform: Samples Tutorial 16

CustamerInfo.ds - {DataServicesHMyQueries) b3

Select Function:

|-B getCustomerByMNamelFirstName, LastName)l - |

Parameters

xs5:skring FirstName: | dack |

xs:string LastName: | Elack |

Mumber Element iby path)

Limit elements in array results to:
E) -]

[Start Client: Transaction Validate Results

=

Resulk

- <ns0iArrayOFCUSTOMER xmins:ns0="ld: Dataservices/MyQueries/ CUSTOMER" =
- <ns0:CUSTOMER =

=CUSTOMER_ID> CUSTOMER1 </CUSTOMER_ID =
<FIRST_MAME> Jack </FIRST_NAME=
<LAST_MAME> Black <[LAST_MAME>
“CUSTOMER _SINCE> 2001-10-01 </CUSTOMER _SINCE >
<EMAIL_ADDRESS> Jack@hotmail.com </EMAIL_ADDRESS >
<TELEPHOME_MUMBER > 2145134119 <TELEPHOME _MUMBER =
<55M> 295-13-4119 </S5M=
<BIRTH_DéY:> 1970-01-01 <[BIRTH_DAY>
<DEFALULT_SHIP_METHOD > AIR <[DEFAULT_SHIP_METHOD=
<EMAIL_MOTIFICATION= 1 </EMAIL_MOTIFICATION:>
<MEWS_LETTTER> O </NEWS_LETTTER:= ad

Design View | #Query Editor View | Source View | Test View [Query Plan View

Figure 18-7 Parameterized Query Results

8. Open Customer Info.ds in Source View to view the generated XQuery. The query should

be similar to that displayed in Figure 18-8.

Note: The automatic namespace assignments may not match).

CustomerInfo.ds - {DataServicesH My Queries!,

®

declare namespace nsd="ld:DataServices/CustomerDE/ADDRESS™

declare namespace ns3="ld:DataServices/CustomerDBE/ADDRESS™;
declare namespace nsZ="1ld:DataServices/CustonerDB/CUSTOMER™;

declare namespace hsl="ld:DataServices/CustomerDE/CUSTOMER™:
import schema namespace na0="ld:Datalervicezs/Mylueries/CUSTOMER” at "ld:Dataerwvices/Myluerie
declare namespace tha="ld:Datalervices/Mylueries/CustomerInfo™;

clare function ths:getdllCustouners() as element(ns0:CUSTOMER) *

declare functiom ths:getCustcomerByName(sFirstNane ag xa:string, sLastName as xs:string) as el

for SCUSTOMER im ns2:CUSTOMER()

where sFirstName = SCUSTOMER/FIRST NAME amd slastlName eq SCUSTOMER/LAST_NAME

return

~ns0: CUSTOMER
=<CUSTOMER. TD>-{fn:data(sCUSTOMER/CUSTONER_ID))/ CUSTOMER ID:-
=FIRST_HAME:{fnidata(sCUSTOMER/FIRST_HAMNE) }-</FIRST HAME:-
=LAST_HAME>{fn:data(sCUSTOMER/LAST_HAMNE) }-</LAST_ HAME:
=<CUSTOMER. STHCE>{fn:data(sCUSTOMER/CUSTOMER_SINCE) }</CUSTOMER STHCE>
~EMATL_AIDDRESE-{fn:data(sCUSTOMER/EMATL_ADDRESS) | </EMATL. TDDRESS>-
=TELEFHOHE_HUMBER:-{fn:data($CUSTOMER/TELEFHONE _HUMEER) } </ TELEFHOHE HUMBER:-
=85H7>{fn:data | sCTSTOMER/ 35N } < FSSH>
=<BIRTH DAY 7>{fn:data($CUSTOMER/BIRTH_DAY) }</BIRTH DY
=DEFAULT_SHIP METHOD 7>{fn:data($CUSTOMER/DEFAULT _SHIP_METHOD) }-</DEFAULT SHIP METHOD:
~EMATL,_HOTTFICATION?>{fn:data(§CUSTOMER/EMATL_NOTIFICATION) }-</EMATL. HOTIFICATION:-
=HEWS_LETTTER?>{fn:data{$CUSTOMEE/NEWS_LETTTER) }</HEWS _LETTTER-
<OHLTHE_STATEMENT 2>{fn:data($CUSTOMER/ONLINE_STATEMENT) }-</0HLIHE STATEMENT:-

</n=0: CUSTOMER >

I

"I [

Design iew | XOuery Editor Yiew | Source View [Test Yiew | Query Flan Yiew

Figure 18-8 Parameterized Function Source Code

Data Services Platform: Samples Tutorial

17

Lab 18.4 Creating a String Function with a Built-In XQuery Function

The XQuery language provides more than 100 functions. BEA provides some additional, special
purpose functions. In this lab, you will build a query that uses the built-in XQuery startWith() function
to create business logic sufficient to retrieve records based on an OR condition.

Objectives

In this lab, you will:

Create a string function that will find customers by their social security number.
Test the function.

Review the XQuery source code.

Instructions

1.
2.
3.

Add a new function to the CustomerInfo data service and name it getCustomerBySSN.
Click getCustomerBySSN() to open XQuery Editor View to that function.
Add a for clause, by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER . ds folder, which is located in
DataServices\CustomerDB.

b. Drag and drop CUSTOMER() into XQuery Editor View. This creates a For : $CUSTOMER
node.

Click getCustomerBySSN() to open XQuery Editor View to that function.

Create an induced map. Drag and drop the CUSTOMER* element (source) onto the CUSTOMER
element in the Return type.

Add a new parameter, entering SSN as the Parameter Name, and selecting xs:string as the
Primitive Type.

Add a where clause that uses a built-in XQuery function, by completing the following steps:
a. Click the SCUSTOMER node's header. The Expression Editor opens.

b. Click the Add Where Clause icon W .
c. In XQuery Function Palette, expand the String Functions folder.

d. Drag and drop the following function into the where clause field.

fn:starts-with($argl as xs:string?, $arg2 as xs:string?) as
xs:boolean

e. Confirm that the where clause now includes the following built-in function:
fn:starts-with($argl, $arg2)

f. Edit the where clause, so that it reads as follows:
fn:starts-with($CUSTOMER/SSN, $SSN)

g. Click the green check button to accept the changes.

Data Services Platform: Samples Tutorial 18

Customerlnfo.ds* - {DataServiceshiMyGueries| ®

getCustomerBySSN() | ~

D

@Relurn

1 = CUSTOMER
CUSTOMER ID string

For: $CUSTOMER 0 FIRST_MAME string

e = o e e
CUSTOMER_ID string = ate

e remone preen
LAST_MAME string | string

- i

CUSTOMER_SINCE date ZIS:TH 5[;::\'{@? dt

g e DEFALLT_SHIP EM:THOD? i

TELEPHOME_HUMBER. string _SHIP. string L]
EMAIL_NOTIFICATION ? short

SSNT string

?
SiTLoAT? dte i Lonane sttt wee
DEFALILT _SHIP_METHOD ? skri -
EMAIL_MNOTIFICATION ? short
MEWS_LETTTER ? shart
OMLINE_STATEMENT ? shark

{?|Parameter: $SSN

[N O

£l |
OB [[V :

Where Fristarts-with($CUSTOMER (S5N, $55M)

¥ruery Editor Yiew

ety Plan Wigw

Figure 18-9 Built-In Function Where Clause
8. Test the function, by completing the following steps:
a. Open CustomerInfo.ds in Test View.
b. Select getCustomerBySSN() from the Function drop-down list.
c. Enter 647 in the xs:string SSN field.
d. Click Execute.
e. Confirm the results, which should be as displayed in Figure 18-10.

CusktamerInfio.ds - {DakaServicest|MyQueries) F

Seleck Function:

[aetcustomensyssnissn) I~]

Parameters

ssistring S6M: | | 647 |

Mumber Element (hy path)

Limit elements in array results fo:
ECI -]

[start Client Transaction [] Validate Resulks

Result Tesxt ML

- cnsii:ArrayOF CUSTOMER. xmins:nsD="ld:DataServices{MyQueries/CUSTOMER "
- <nsO:CUSTOMER. »
<CUSTOMER_ID= CUSTOMER3 </CLISTOMER_ID®
<FIRST_NAME> Joe <jFIRST_NAME:>
<LAST_NAME:> Smith </LAST_NAME:>
<CUSTOMER_SINCE> 2001-10-01 </CUSTOMER_SINCE>
<EMAIL_ADDRESS> JOHN_3@yahoo.com </EMAIL_ADDRESS>
<TELEFHOME_NUMBER > 9287731259 </TELEPHONE_NUMBER >
<S5N> 647-73-1259 </55N>
<BIRTH_DAY> 1952-05-09 </BIRTH_DAY>
<DEFAULT_SHIP_METHOD> PRIORITY-1 </DEFAULT_SHIP_METHOD>
<EMALL_NOTIFICATION> 1 </EMALL_NOTIFICATION:>
<MEWS_LETTTER:> O </MEWS_LETTTER:>
<ONLINE_STATEMENT > 1 <fONLINE_STATEMENT >
<JnsO:CUSTOMER >
<insD:ArTayOFCUSTOMER =

[Desian Yiew | %Query Editor View | Source Wiew | Test View [Query Flan Yiew |

Figure 18-10 Built-In Function Test Results

Data Services Platform: Samples Tutorial

9. Open CustomerInfo.ds in Source View to view the generated XQuery. The query should

be similar to that displayed in Figure 18-11.

Note: The automatic namespace assignments may not match.

CustomerInfo.ds - {DataServicesHMyQueries)

declare namespace nhsd="1d:DataServices/CustonerDE/ADDRESE":

declare namespace ns3="ld:Datafervicess/CustonerDB/ADDREESS™;
declare namespace nsZ="ld:Data3ervices/CustonerDE/CUSTOMER™;

declare namespace nsl="ld:Datafervices/CustonerDB/CUSTOMER™;
import schema namespace nsl="ld:Datafervices/Mylueries/CUSTOMER" at "ld:Datalferwvices/MyQuerie
declare namespace tns="ld:DataServices/My(ueries/CustomerInfo™;

declare function ths:getidllCustoners() as elewment(ns0: CUOSTOMER) *

declare function tns:getCustomerByName ($FirstNape as xs:string, §lastNape as xs:string) as el

declare function tns:getCustomerBy35N(555N as xs:string) as element(ns0:CUSTOMER) * {

for sCUSTOMER dm ns2: CUSTOMER()

where fn:starts-with(sCUSTOMER/SEN, $55N)

return

=ns0 : CUSTOMER:-
<CUSTOMER. TD>-{fn:data|sCUSTOMER/CUSTOMER_ID) }<fCUSTOMER TD>-
<FIRST WAME-={fn:data(§CUSTOMER/FIRST NAME) }</FIRST WAME:-
<LAST HAME:{fn:data(§CUSTOMER/LAST NAME) }</LAST HAME-
<CUSTOMER. STHCE>-{fn:data(sCUSTOMER/CTSTOMER_SINCE) }<fCUSTOMER STHCE-
~<EMATL, ADDRESS:{fn:data(fCUSTOMER/EMATL _ADDRESS) }</EMATL ADDRESS:-
<TELEPHOHE HUMBER:-{fn:data(sCUSTOMER/TELEPHONE _NUMEER) }</TELEPHOHE HUMBER:-
<B5H7>{fn: data(sCTSTOMER/ S3H) §</S5H>
=<BIRTH DRY 2>{fn:data(sCUSTOMER/BIRTH_DAY) }</BIRTH DAY:-
=“DEFAULT SHIP METHOD 7-{fn:data(sCUSTOMER/DEFAULT SHIP_METHOD) }</DEFAULT SHIP METHOD-
~<EMATL, HOTIFICATION?>={fn:data(sCUSTOMER/EMATL NOTIFICATION) }</EMATL. HOTIFICATION-
=<HEWS LETTTER?>-{fn:data(sCUSTOMER/HEWS _LETTTER) }</HEWS LETTTER-
~<DHLINE STRTEMEHT 7={fn:data(sCUSTOMER/ONLINE STATEMENT) }-</0HLIHE STATEMEHT-

< fns0: CUSTOMER:~

[| [

|I|><

Design Yiew | #Query Editor View | Source View [Test View [Query Flan View

Figure 18-11 Source View of Built-1n String Function

Data Services Platform: Samples Tutorial

20

Lab 18.5 Creating a Date Function

A date function lets you retrieve data based on date parameters.

Objectives

In this lab, you will:

Create a date function that will find customers by the year that they were born.
Test the function.

Review the XQuery source code.

Instructions

1. Add anew function to the CustomerInfo data service and name it getCustomerByBirthYear.
2. Click getCustomerByBirthYear() to open XQuery Editor View to that function.

3. Add a for clause, by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER - ds folder, which is located in
DataServices\CustomerDB.

b. Drag and drop CUSTOMER()into XQuery Editor View. This creates a for node for the
CUSTOMER() function.

4. Create an induced mapping. Drag and drop the CUSTOMER* element (source) onto the
CUSTOMER element (Return).

5. Create a new parameter, enter BirthYear as the Parameter Name, and select xs:integer as the
Primitive Type.

6. Add a where clause, by completing the following steps:
a. Click the SCUSTOMER node's header. The Expression Editor opens.
b. Click the Add Where Clause icon.
¢. In XQuery Function Palette, expand the Duration, Date, and Time Functions folder.

d. Drag and drop the built-in following function into the where clause field.

fn:year-from-date($arg as xs:date?) as xs:integer?

e. Confirm that the where clause is as follows:

fn:year-from-date($arg)

f. Edit the built-in function, so that it reads as:
fn:year-from-date($CUSTOMER/BIRTH_DAY) eq $BirthYear

g. Click the green check button to accept the changes.

Data Services Platform: Samples Tutorial

CustomerInfo,ds - {DataServicesHMyQueriss) s
Selisct Functian: o] getCustomerByBirthvear() I~]
— (@ Return =
i ¥|=9For: $CUSTOMER ~ # O
U B CUSTOMER.
\ [CUSTOMER * CUSTOMER_ID string
CUSTOMER_ID string FIRST_NAME string
| FIRST_MAME string LAST_MAME string
i LAST_NAME string CUSTOMER_SIMCE date
d CUSTOMER_SINCE date EMAIL_ADDRESS string
| EMAIL_ADDRESS string TELEPHOME_NUMBER string
A TELEFHOME _NUMBER: string SSH? string
{?Parameter: §Birth... = [S5N7 string BIRTH_DAY 7 dats
Birthvear integer BIRTH DAY ? date DEFAULT_SHIP_METHOD ? string
DEFAULT_SHIP_METHOD 7 stri EMATL_NOTIFICATION ? short
EMAIL_NOTIFICATION ? shark NEWS_LETTTER 7 shart
HEWS_LETTTER 7 short e ONLINE_STATEMENT 7 shart
ONLINE_STATEMENT ? shart L.
LOGIN_ID 7 string
[0
4
K] [I+
em[]~ :
‘ 4 Where Fr:year-from-date($CUSTOMER(BIRTH_DAY) eq $Birthvear

%Query Editor View ?‘mm Wigw | Test Wiew | Query Plan View

Figure 18-12 Where Clause Using a Built-In Date Function

7. Test the function, by completing the following steps:

a. Open CustomerInfo.ds in Test View.

b. Select getCustomerByBirthYear() from the function drop-down list.

c. Enter 1970 in the $arg0 field.
d. Click Execute.

e. Confirm the results, which should be as displayed in Figure 18-13. There should be five

customer profiles returned.

CuskamerInfo.ds - {DataServicesHMyQueries)|

Select Function:

|-B getCustomerByEirthear(Birthear) |~ |

Parameters

xsiinkeger BirthYear: ‘ 1970

Mumber Element (by path)

Limit elements in array results to
[s0]

[Start Client Transaction [] validate Results

Result [Tox |

- <nsD:ArayOFCUSTOMER, xmins:ns0="ld:DataServices{MyQueries] CUSTOMER"

- «ns CUSTOMER,
<CUSTOMER_ID> CUSTOMER1 </CUSTOMER_ID»
<FIRST_NAME> Jack <(FIRST_NAME:
<LAST_NAME= Black </LAST_NAME=
<CUSTOMER_SINCE> 2001-10-01 </CUSTOMER_SINCE:
<EMAIL_ADDRESS> Jack@hotmail.com </EMAIL_ADDRESS»
<TELEPHONE_NUMBER> 2145134118 <(TELEFHONE_NUMBER >
<S5h> 295-13-4119 </5503
<BIRTH_DAY> 1970-01-01 <jBIRTH DAY=
<DEFAULT_SHIP_METHOD> AIR <{DEFAULT_SHIF_METHOD >
<EMAIL_NOTIFICATION> 1 </EMAIL_NOTIFICATION:
<HEWS_LETTTER> O <[MEWS_LETTTER>
<OMLINE_STATEMENT» 1 </OMLINE_STATEMENT

<jnsD:CUSTOMER >

- <ns:CUSTOMER »
<CUSTOMER_ID> CUSTOMERS </CLSTOMER_ID>
<FIRST_NAME> Michael <jFIRST_NAME=
<LAST_NAME> Snow </LAST_NAME>
<CUSTOMER_SINCE> 2001-10-01 </CUSTOMER_SINCE:>

Deslan Yiew | #Query Editor View | Source View | Test View [Query Plan View

Figure 18-13 Date Function Test Results

Data Services Platform: Samples Tutorial

22

8. Open Customer Info.ds in Source View to view the generated XQuery. The query should be
similar to that displayed in Figure 18-14.

Note: The automatic namespace assignments may not match.

CustomerInfo.ds - {DataServicesHMyQueries) ES

declare namespace nsl="ld:Datalerwvices/CustonerDE/CUSTOMER™; E
import schema namespace nsl="1ld:Datalervices/MyQueries/CUSTOMER™ at "ld:Dataferwvices/MyQuerie
declare namespace tns="ld:DataServices/MNylueries/CustonerInfo”;

[+ declare function tnz:getillCustomers() as element(ns0:CUITOMER) ¥

FHEH

lare function tns:gecCustonerEByllane ($Firstiane as ®X3:s8tring, $lastiame as ¥sg:string) as el

HEH

lare function tns:getCustomerBy3SN($55N as xs:string) as element(ns0: CUSTOMER)* ".

lare function tnsz:getCustomerByBirthVear(sBirthVesr as xs:integer) as element(ns0:CUSTOMER
for FCUSTOMER im nsz:CUSTOMER()
where tn:year-from-date|sCUSTOMER/BIRTH DAY) eq sBirthiear

return

<ns0: CUSTOMER-
<CUSTOMER ID:{fn: data|§CUSTOMER/CUSTOMER_ID) }</CUSTOMER ID:-
<FIRST WAME-{fn:data($CUSTOMER/FIRST NAME))} /EFIRST HRME:-
<LRST HAME>{fr:data|§CUSTOMER/LAST NAME) }</LRAST HAME:-
<CUSTOMER_STHCE>{ fn:data(§CUSTOMER/CUSTOMER_STNCE) |/ CUSTOMER_STHCE:
<EMATL_ADDRESS>{fn:data(§CUSTOMEE/EMATL_ADDRESS) }</EMAIL ADDRESS:
<TELEPHONE_HUMBER:-{ £n: data(sCUSTOMER/ TELEPHONE_NUMEER) } -/ TELEPHONE HUMBER:-
=SSHz={fn:datal §CUSTOMER/S5N) 1</SSH>
<BIRTH DAY #-{fn: data [§CUSTOMER/BIRTH_DAY) }</BIRTH DRY>
<DEFAULT SHIP METHOD ?>-{fn:data(§CUSTOMER/DEFAULT SHIP_METHOD) }</DEFAULT SHIP METHOD:
<EMATL, HOTIFICRTION 2={fn:data| §CUSTOMER/EMATL _NOTIFICATION) }</EMATL HOTIFICATION:-
<HEWS LETTTER?>-{fn:data(§CUSTOMER/NEWS_LETTTER) }</HEWS LETTTER-
<OHLIHE STATEMENT 7>-{fn:data($CUSTOMER/ONLINE_STATEMENT] }</OHLIHE STATEMENT:

< fn=0: CUSTOMER > -

}i
[l D]
Design View | #Query Editor Yiew | Source View |[Test Yiew | Query Plan View

Figure 18-14 Date Function Source View

Lab 18.6 Creating Outer Joins and Order By Expressions

Outer joins return all records from one table even it doesn’t contain values that match those in the other
table. For example, an outer join of customers and orders reports all customers—even those without
orders.

Objectives

In this lab, you will:

Create a function that:

0 Returns customer information and their addresses (there may be more than 1).
0 Nests address information inside customer information.

0 Orders customers by first name and last name, in ascending order.

0 Orders addresses by zip code, in descending order.

Test the function.

Review the XQuery source code.

Instructions
1. Add anew data service to the MyQueries folder and name it CustomerAddresses.

2. Associate the CustomerAddresses() data service with the CUSTOMERADDRESS . xsd schema. The
schema is located in MyQueries\schemas.

Data Services Platform: Samples Tutorial 23

3. Add a new function to the CustomerAddresses data service and name it getCustomerAddresses.

[Fer " Customerfidresses Dl Srvie

o CUsTOmER
) CUSTOMER 1D xe-sting
B PIRST_NAME Nt
) LAST_NOME i:sting
B OUSTOMUR_SINCE wovdate
@) FMaD_anOness eeatring
@ TEIEPHONE_NUMEFT vastring
@ 55N T enting
@) RIATH_DWY 7 wndabe
@) DEFULT_SHIP_METHOD 7 waistring
@ FMan_NOTIFICATION T wpshast
@) NEWS_LETTTER 7 wnshart
@ OMUINE_STATEMENT 7 wrishart

B @ ApoRESSES
@ anoRpss*

S pilustomeriddesee:

) LAST_MANE wavstring -

ADCR_ID wp:string
CUSTOMER_ID iepistring
FIRST_NAME ea:string

Figure 18-15 Design View of CustomerAddresses Data Service

4. Click getCustomerAddresses() to open XQuery Editor View for that function.

5. Add two for nodes to the work area, by completing the following steps:

a. Inthe Data Services Palette, expand DataServices\CustomerDB.

b. Open the CUSTOMER . ds folder (located in the CustomerDB folder), and then drag and drop
CUSTOMER()into XQuery Editor View.

c. Open the ADDRESS . ds folder (located in the CustomerDB folder), and then drag and drop
ADDRESS() into XQuery Editor View.

et Cstomer e wetel)|

]
TELETHOME_HLMBET, sy

lem[vl

=l

1D Wiy | ey Etor Ve[S Vi | Tl Vi 1 Quitry PR Ve

Figure 18-16 Source Nodes

6. Create an induced mapping for the CUSTOMER node. Drag and drop the CUSTOMER* element
(source) onto the CUSTOMER element (Return).

7. Create an induced mapping for the ADDRESS node. Drag and drop the ADDRESS* element
(source) onto the ADDRESS element (Return).

Note: Do not drop the source element onto the ADDRESSES element.

Data Services Platform: Samples Tutorial

24

8. Create a source node relationship. Drag and drop the CUSTOMER _ID element in the
$CUSTOMER node onto the corresponding element in the SADDRESS node.

CustomerAddresses. ds* - {DataServicesHMyQueries) x
gelCustomerAddresses()| =
@ Return =
[For: §CUSTOMER o 7 3 B CUSTOMER
E CUSTOMER * 4 CUSTOMER_ID string
CUSTOMER_ID string FIRST_MNAME string
FIRST_MAME string LAST_NAME string
LAST_MAME string CUSTOMER_SINCE date
CUSTOMER _SINCE date EMAIL_ADDRESS string
EMAIL_ADDRESS string TELEPHOMNE_MUMBER string
TELEPHOME_MUMBER. string SSM? string
S5M 7 string BIRTH_DAY ? date
BIRTH_DAY ? date DEFAULT_SHIP_METHOD ? string
DEFAULT_SHIP_METHOD 7 string EMAIL_MOTIFICATION ? shart
EMATL_NOTIFICATION 7 shart MEWS _LETTTER 7 short
NEWS_LETTTER ? short ONLINE_STATEMENT 7 short
ONLIME_STATEMENT ? shart: =} ADDRESSES
0] = ADDRESS *
ADDR_ID string

CUSTOMER_ID string
= *[[? For: swooRess o s
d i
- ADDRESS . STREET_ADDRESSL string
ADDR_ID string STREET_ADDRESS2 ? string
CUSTOMER_ID string

CITV string
FIRST_MAME string STATE string
LAST_MAME string ZIPCODE string
STREET_ADDRESS1 string

COUNTRY string
>

STREET_ADDRESSZ2 ? string DAY _PHONE ? string

CITY string

EVE_PHONE ? string
STATE string

ALIAS 7 string
ZIPCODE string STATUS ? string
COUNTRY string & 15_DEFAULT short
DAY_PHONE ? string

EVE_PHONE ? string
ALIAS T string
STATUS 7 string
15_DEFAULT shart

<] O
FGQD\ 5

XQuery Editor View Query Plan View

Figure 18-17 Mapped and Joined Source Nodes

9. Add an OrderBy clause, by completing the following steps:

a. Click the ADDRESS node's header. The Expression Editor opens.

A
b. Click the Order By Clause icon _£¥,

c. Click inside the Order By Clause field.
d. Enter SADDRESS/ZIPCODE descending in the field.

e. Click the green check button to accept the changes.

Data Services Platform: Samples Tutorial

T =
[For scuatoner | |7 & antomr
= CUSTOMER * | CUSTOHER 1T sbriog
CUSTOME D streg 1 | FIRST_NAME strig
FIRET_NAME st C LAST_AVE string
LAST_NAML etieg 1 | CUSTOMER_SCE dte
CUSTCMER_SINCE date o EMAR_ADORESS. strig
LMAIL_ADDRLSS string 1 o TELEFHOHE_MUMEER: siring
TELEPHCNE TAMEET. i » 5T ey
SENt strng 1 » BIRTH [7 date
EITH DAY T ok . DEFALLT_SHIB_METHOO T st
OEFAAT_SH0P METHOD T sting ——— w EMAL_NOTIFICATION T short
EMAlL_NOTIFICATION T sheat . HEWS_LETTTER 7 shart
MEWS_LETTTER ¢ short " OMLINE STATEMENT 7 shert
COLRE_STATEVENT T short = ADCRESSES
5] ADORESS *
s 200 0 streg
; " CUSTOMER D streg
o) ¥ FIRST WML 4trng
B For $ADDRESS 1 LAST_HAHE string
El ABGRESS r STRELT_ACCRLSSE shrng
ROOR_ID strivg STEET_ADORESS2 T shrin
CUSTOMER 1D sirng ¥ Y sty
l::tm‘t“m . STATE strieq
= i IPCOCE sring
STREET_ADDRESSY string COUNTRY e
STEEET_ADONESSE T sty LAY _PHONE T string
AT staing EVE_PrceE T string
STATE dreg MI5? g
TFT00E mirg T
DAY PHOKE 7 sting
EVE_PHONE T st
A7 sting
STATL ¥ strirg
15 DEFRILT shert

Cem[]+

m mmmww 10 = $ACCRESSITLSTONER 1D
L

| s Vo |30y Edor v Sntee Vi Tk Vo | s Pl Vi

Figure 18-18 OrderBy Clause

10. Test the function, by completing the following steps:
a. Open CustomerAddresses.ds in Test View.
b. Select getCustomerAddresses() from the function drop-down list.
c. Click Execute.

d. Confirm the results. Addresses should be nested after the customer's information.

Data Services Platform: Samples Tutorial

26

Customeraddresses. ds - {DataServicesHMyQueries) 3

Seleck Function:

‘@ getCustomerAddresses() | ~ |

Parameters

Mumber Element (by path)

Limit elements in array results to: | o0 | | | - ‘

[Start Client: Transaction [Yalidate Results

Result

- <ns0iArrayOFCUSTOMER xmins:ns0="d:DataServices/MyQueries/CLSTOMERADDRESS" >
- <ns0iCUSTOMER >
<CUSTOMER_ID> CUSTOMERD </CLUSTOMER_ID>
<FIRST_MAME > Kevin <{FIRST_NAME:
<LAST_NAME> Smith <[LAST_NAME >
<CUSTOMER _SINCE> 2001-10-01 <[CUSTOMER_SINCE>
<EMAIL_ADDRESS> Kevin@aol.com </EMAIL_ADDRESS:>
<TELEPHOME_WUMBER > 4088320283 </TELEPHOME_MNUMEBER =
<350 098-32-0284 </55h>
<BIRTH_DAY:> 1970-01-01 </BIRTH_DAY:>
<DEFALLT_SHIP_METHOD> GROUND <{DEFAULT_SHIP_METHOD >
<EMAIL_NOTIFICATION > 1 </EMAIL_MOTIFICATION:
<NEWS_LETTTER> O <[NEWS_LETTTER:
<OMLINE_STATEMENT > L <JONLINE_STATEMENT =
- <ADDRESSES >]
- <ADDRESS »
<ADDR_ID> ADDR_10_0 <{ADDR_ID>
<CUSTOMER_ID:> CUSTOMERD </CUSTOMER _ID>
<FIRST_NAME> Kevin <[FIRST_NAME:>
<LAST_MAME= Smith </LAST_MAME>
<STREET_ADDRESS1:> 2284 Zanker Blvd </STREET_ADDRESS1>
<CITY> San Jose <[CITV>
<STATE> CA <[STATE>
<ZIPCODE> 95131 </ZIPCODE
<COUNTRY> USA <[COUNTRY>
<DAV_PHOME> 4088320284 </DAY_PHOME >
<EVE_PHONE= 4080216109 <JEVE_PHONE >
<ALIAS= Work <fALIAS:
<STATUS= ACTIVE <jSTATUS: [~]

Desian Yiew | #Query Editar Yiew | Source Yiew | Test View [Guery Plan Yiew |

Figure 18-19 Order By Test Results
11. Open CustomerAddresses.ds in Source View to view the generated XQuery.

Note: The automatic namespace assignments may not match.

Data Services Platform: Samples Tutorial

*

Customerdddresses.ds - {DataServicesHMyQueries!,

declare function tns:getCustomerdddresses() as element(ns5:CUSTOMER)* [|z|

for FCUSTOMER inm ns6: CUITOMER ()

return

“ms3: CUSTOMER:-
<CUSTOMER. TD:-{fn:data|sCUSTOMER/CUSTOMER_ID) }<</CUSTOMER ID:-
<FIRST HAME-{fn:data(fCUSTOMER/FIRST _NAME) }-</FIRST HWAME:
<LAST WAME:>{fn:data($CUSTOMER/LAST NAME) }</LAST HAME:-
<CUSTOMER STHCE-{Efn:data(sCUSTOMER/CUSTOMER_SINCE) 1< /CUSTOMER STHCE- ﬁ
<EMATL. ADDRESS>{fn:data(sCUSTOMER/EMATL_ADDEESS) }</EMATL. ADDRESS:-
<TELEPHOHE_HUMBER:-{fn: data(§CUSTOMER/TELEPHONE _NUMEER) | </ TELEFHONE HUMBER:-
<SSH7-{fn: data | sCHSTOMER/SSN) }<FSSH-
<BIRTH DAY 7>={fn:data(sCUVSTOMER/BIRTH_DAY) }</BIRTH DAY
<DEFRULT SHIP METHOD 2>-{fn:dataisCUSTOMER/DEFAULT_SHIP METHOD| }</DEFAULT SHIP METHOD:-
<EMATL N'I]T]I‘IC]'uTII]lI‘?}{ frn:data(FCUSTOMER/EMATL _NOTIFICATION) }-</EMATL | HOTTFTCATION:-
<HEWS LETTTER?>{fn:data(sCUSTOMER/NEWS_LETTTER) }<fHEWS LETTTER-=
<OHLTHE STATEMEHT ?>-{fn:data(sCUSTOMER/ONLINE_STATEMENT) }</OHLIHE STATEMEHT -
<ADDRESSES:> -

{

for FADDEESS inm nsd:ADDRESS()
where sCUSTOMER/CUSTOMER ID = §ADDRESS/CUSTOMER_ID
order by FADDEESS/ZIFCODE descending
return
“ADDRESS- L
<EDDR_ID>-{fn:data|§ANDEESS/ADDR_ID) }</ADDR_ID:>
<CUSTOMER. ID>{fn:data($ADDRESS/CUSTOMER_ID] }</CUSTOMER. ID>
<FIRST WAME:-{fn:data(5ADDRESS/FIRST_NAME) }</FIRST HAME>-
<LAST HAME>{fn:data($ADDRESS/LAST NAME) }</LAST HAME-
<5STREET ADDRESS1-{fn:data(sADDERESS/STREET_ADDRESSL) }</STREET ADDRESS1:-
<STREET | ' ADDRESS?22={fn:data(FADDEESS/STREET . ADDRESSZ]}(ISTREET ADDRESS 2
<CITY>{fn:data(§ADDEESS/CITY) b</CITY>
<STATE> | fn: data| $ADDEESS,/STATE) }-</STATE>
<ZIPCODE={fn:data(fANDEESS/EIPCODE) 1< fZIPCODE>
<COUHTRY:={ fn:data | §AIDEESS /COUNTRY) | </ COUNTRY >
<DAY_PHOME 7>-{£n: data | SADDRESS/DAT_PHONE) }</DAY_PHOHE:>
<EVE_PHOME 7>-{ £r1: data (§ADDRESS/EVE_PHONE) }</EVE_PHOHE:>
<ALIAS ?={fn:data(sADDEESSFALTAS) V< fALIAS>
<STATUS 2-{ fn: data | §AIDEESS /STATUS) }</STATUS>
<15 DEFRULT-{fn:data(fADDRESS /IS _DEFAULT) }<fI5 DEFAULTZ
</ADDRESS >

}
< /ADDRESSES:>
<fns5: CUSTOMER - =l

Kl [+]
Design View [BQuery Editor Yiew | Source View | Test Yiew | Query Plan Yiew

Figure 18-20 CustomerAddresses() Source View

Lab 18.7 Creating Group By and Aggregate Expressions

Sometimes, you may want to group data according to particular data elements, such as grouping
customers by state and country.

Objectives

In this lab, you will:

Create a query using the group by operator and sum() function that generates a report of
customers grouped by state and city, showing total sales by city.

Test the function.

Review the XQuery source code.

Instructions
1. Create a new data service in the MyQueries folder and name it CustomerOrders.

2. Associate the CustomerOrders data service with the CUSTOMER _ORDER . xsd schema. The schema
is located in MyQueries\schemas.

3. Create a new function and name it getCustomerOrderAmount.

Data Services Platform: Samples Tutorial 28

CustomerOrders, ds* - {DataServicesHMyQueriesl *

Ty, CustomerOrders Data Service

E O CUSTOMER _ORDER
@ CUSTOMER_ID xs:shring
@ TOTAL_ORDER_AMOUNT xs:desimal

A eCustomerDrder Amount:

Design Wiew [RQuery Editor Tiew Query Plan Wiew

Figure 18-21 Design View of Customer Orders Data Service
4. Click getCustomerOrderAmount to open XQuery Editor View for that function.
5. Add a for node, by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER_ORDER. ds folder, which is located in
DataServices\ApparelDB.

b. Drag and drop CUSTOMER ORDER() into XQuery Editor View.

6. Create a GroupBy clause, by completing the following steps:
a. Right-click the C_ID element in the $CUSTOMER_ORDER source node.
b. Choose Create Group By. A GroupBy node is created.

7. Create a simple mapping. Drag and drop the TOTAL ORDER_AMT from the Group section of
the GroupBy node onto the corresponding element in the Return type.

8. Create a simple mapping. Drag and drop the C_ID element in the By section of the GroupBy node
to the corresponding element in the Return type.

X

CustamerOrders.ds* - {DataServicesMyQueties]

@ newFunction]) | -

v]

=aFor: $CUS'I:0MER70RD,,, s {2 GroupBy: §CUSTOMER_ORDER_grou.__ *
CRDER_ID string E [=14=| Group
C_ID string] =-CUSTOMER_ORDER *
ORDER_DT date ORDER_IDr string @Return
SHIP_METHOD_DSC string CID string 7 B CUSTOMER_ORDER
HANDLING CHRG_AMT decim ORDER_DT date CLSTOMER 10 string
SUBTOTAL_AMT decimal SHIP_METHOD_DSC string & TOTAL_ORDER_AMOLNT dacimal
TOTAL_ORDER_AMT decimal HAMDLING _CHRG_AMT decimal
SALE_TAS_AMT decimal SUBTOTAL_AMT decimal
SHIP_TO IO string TOTAL_ORDER_AMT decimal
SHIP_TO_MM string SALE_TAZ_AMT decimal
BILL_TO_ID string SHIP_TO_ID skring
ESTIMATED_SHIP_DT date SHIP_TO_MM skring [
STATLIS string | EILL_TO_ID string
TRACKING_MNO 7 string |z| ESTIMATED_SHIP_DT date
[«] [¥] STATUS string
TRACKING_MO 7 string
= By
L 1D string
=
Kl] [

Jem[]v34l :

Design Yiew | XQuery Editor View [Source View | Tesk Yiew | Query Plan Wisw

Figure 18-22 GroupBy Node Added and Mapped

Data Services Platform: Samples Tutorial 29

Modify a Return expression, by completing the following steps:

a. Click the TOTAL ORDER_AMOUNT, located in the Return node. The Expression Editor
opens. Every element in a Return type has an underlying expression. In this case the

expression is:

{fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMT)}

b. Edit the expression so that it changes fn:data() to fn:sum(), as follows:

{fn:sum($CUSTOMER_ORDER_group/TOTAL_ORDER_AMT)}

c. Click the green check button to accept the changes.

CustomerOrders.ds - {DataServicesHMyQueries)

X
-B niewFunction() ‘ - |
-
S4For: §CUSTOMER_ORD... # U
= — {E GroupBy: $CUSTOMER_ORDER_grou_._ #
CRDER_ID string |Z| [=1%=| Group
C_ID string [] - CUSTOMER_ORDER *
ORDER_DT date ORDER_ID string @ Return
SHIP_METHOD_DaC string C_ID string 01 = CUSTOMER _ORDER.
HAMDLING_CHRG_AMT decim ORDER_DT date CUSTOMER_ID string
SUBTOTAL_AMT decimal SHIP_METHOD_DSC skring i TOTAL ORDER_AMOUNT decimal L]
TOTAL_ORDER_AMT decimal HAMDLING _CHRG_AMT decimal - b
SALE_TAX_AMT decimal SUBTOTAL_AMT decimal
SHIP_TO_ID string TOTAL_ORDER_AMT decimal
SHIP_TiO MM skring SALE_TAX_AMT decimal
BILL_TO_ID skring SHIP_T2_ID skring
ESTIMATED_SHIP_DT date SHIP_TO MM string
STATUS string BILL_TO_ID string
TRACKIMG_MC ? string E ESTIMATED _SHIP_DT date
< STATUS string
TRACKING_NG 7 string =]
<l | [
QN[| ¢

Expression {fr:sum{$CUSTOMER _ORDER_grouplTOTAL_CRDER_AMT)}

Design Yiew | %Guery Editor View [Source View | Test Yiew | Query Plan View

Figure 18-23 Aggregate Expression

9. Test the function, by completing the following steps:

a. Open CustomerOrders.ds in Test View.

b. Select getCustomerOrderAmount() from the Function drop-down list.

c. Click Execute.

d. Confirm the results.

Data Services Platform: Samples Tutorial

30

CustomerOrders.ds - {DataServicest My Queries',

3
Seleck Function:
|-B getCustomerOrderamount() | - |
Parameters
Mumher Element (by path)
Limit elements in array results to
EE -]

[1 start Client Transaction [Validate Results

Result

- =nsD:ArrayOf CUSTOMER_ORDER xmins: ns0="Id: ataervicesMyQueries/ORDERS" =
- =nsliCUSTOMER _ORDER. =
<CUSTOMER_ID> CUSTOMERD </CUSTOMER_ID =
<TOTAL_ORDER_AMOUNT> 1609.5 </TOTAL_ORDER_AMOUNT >
<InsDiCUSTOMER_ORDER >
- =nsl: CUSTOMER _ORDER. =
<CUSTOMER_ID: CUSTOMER1 </CUSTOMER_ID >
<TOTAL_ORDER_AMOUNT > 3626.25 </TOTAL_ORDER_AMOUNT >
<fns0: CUSTOMER_ORDER =
- =ns0; CUSTOMER, _ORDER. =
<CUSTOMER_ID: CUSTOMERZ2 </CUSTOMER_ID >
<TOTAL_ORDER_AMOUNT> 1253.3 </TOTAL_ORDER_AMOUNT >
«fns0iCUSTOMER_ORDER =
- «ns:CUSTOMER._ORDER. =
<CUSTOMER _ID> CUSTOMER3 </CUSTOMER_ID >
<TOTAL_ORDER_AMOUNT > 9039.75 </TOTAL_ORDER_AMOUNT =
«Ins0iCUSTOMER_ORDER >
- <ns0:CUSTOMER _ORDER =
<CUSTOMER_ID> CUSTOMER4 </CUSTOMER_ID =
TOTAL ORDER AMOUNT > 9587.3 <ITOTAL ORDER. AMOUNT E‘
[et |

Design Yiew | XQuery Editor View | Source Wisw | Test Yiew |[Query Plan View

Figure 18-24 Aggregate Test Results
10. Open CustomerOrders.ds in Source View to view the generated XQuery.

Note: The automatic namespace assignments may not match that shown in the lab.

CustomerOrders,ds - {DataServicesHMyQueries)

*

OPULT SCIETE B ISI0= L UACESELVICES/ Iy JUEL IES/ UFULES di

IO TACHAELVITE Ty JUELTE CIIEIrS
declare namespace ths="ld:DataServices/Mylueries/Custonerlrders"™;

clare function tns:getCustomerlrderdmount() as element(nsl0:CUSTOMER_ORDER)* |
| for FCUSTOMER ORDER in nslZ:CUSTOMER_OFDER()

growp SCUSTOMER ORDEE as §CUSTOMER ORDER group by SCUSTOMER ORDER/C_ID as ¢ ID group
return - - - - - -
<ms10: CUSTOMER ORDER:-

<CUSTOMER. TD-{fn:data(sC ID group) }-</CUSTOMER ID:-

<TOTAL ORDER_AMOUNT:{fn:sun{ §CUSTOMER ORDER group/TOTAL_ORDER_AMT) }</TOTAL_ORDER AMOUNT:
<fn510: CUSTOMER ORDER>

[

Design View | ¥Query Editor Wiew | Source View [Test Wiew [Query Plan View

Figure 18-25 Source View of the CustomerOrders Data Service

Data Services Platform: Samples Tutorial

31

Lab 18.8 Creating Constant Expressions

Creating a data service query that uses a constant expression enables a quick and easy way to locate
specific information. For example, you can use a constant expression to identify all customers who
ship by Ground method.

Objectives

In this lab, you will:

Create a non-parameterized function that will return all customers whose default shipping
method is GROUND.

Test the function.

View the XQuery source code.

Instructions

1. Add anew function to the CustomerInfo data service and name it getGroundCustomers.
2. Click the getGroundCustomers() function to open the XQuery Editor View.

3. Add a for node, by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER . ds folder, which is located in the
DataServices\CustomerDB folder.

b. Drag and drop CUSTOMER() into XQuery Editor View.

4. Create an induced mapping. Drag and drop the entirce CUSTOMER* element (source node) onto
the CUSTOMER element (Return).

5. Add a where clause, by completing the following steps:
a. Click the CUSTOMER node's header. The Expression Editor opens.
b. Click the Add Where Clause icon.

c. Enter the following expression as a where clause:
$CUSTOMER/DEFAULT_SHIP_METHOD eq "GROUND™

d. Click the green check mark icon to accept the where clause for the customer object.

Data Services Platform: Samples Tutorial

Customerlnfa ds* - {DataServicesH{MyQueries ®

Select Funct\on:‘a getGroundCustomers() \ > |
@ Retumn ==}
) = CUSTOMER
=3For: §CUSTOMER = © ; CUSTOMER_ID string
El-CUSTOMER * [=] FIRST_MAME string
CUSTOMER_ID string LAST_NAME string
FIRST_WAME string + CUSTOMER _SINCE date
LAST_MAME string EMAIL_ADDRESS string
CUSTOMER _SINCE d TELEPHOME _WUMBER. string
EMAIL_ADDRESS stri : 53N 7 string
TELEPHONE_MUMEBER, + BIRTH_DAY ? date
53N 7 string DEFAULT_SHIP_METHOD ? string
BIRTH_DAY 7 date ; EMAIL_NOTIFICATION ? short
DEFALILT_SHIP_METH : WEWS_LETTTER 7 short
EMAIL_MOTIFICATIO é OMLINE_STATEMENT 7 shart
NEWS_LETTTER 7 shi H
ONLINE_STATEMENT i =
LOGIN_ID ? string é
[« [+
(K1] @
B Y InEET 5

Where $CUSTOMER/DEFALLT_SHIP_METHOD &q "GROLIND"

%Query Editor View ?‘m@ Wigw | Test Wiew | Query Plan View

Figure 18-26 Constant Function with Default Expression

6. Test the function. The results should be as displayed in Figure 18-27.

CustomerInfo.ds - {DataServicesHMyQueries), 4

Select Function:

|-B getG@roundCustomers() | - |

Parameters

Mumber Element {by path)
Limit elements in array results to:

ECN [-]

[start Client Transaction [Yalidate Resulks

Result

- <ns0iArrayOFCUSTOMER xmins:ns0="ld:DataServices My Queties/CUSTOMER" =

- =ns0:CUSTOMER. =
<CUSTOMER_ID> CUSTOMERS </CUSTOMER _ID=
<FIRST_MAME = Michael </FIRST_MAME:=
ZLAST_NAME: Snow <[LAST_MAME:
<CUSTOMER_SINCE= 2001-10-01 </CUSTOMER_SINCE =
<EMAIL_ADDRESS> JOHN_S@aol.com </EMAIL_ADDRESS:>
<TELEFHOME_MUMBER. > 4150460017 </TELEPHONE_MUMEER =
£55N> T30-46-0017 <[55M>
<BIRTH_DAY> 1970-01-01 </BIRTH_DAY>=
<DEFAULT_SHIP_METHOD> GROUND </DEFALULT_SHIP_METHOD =
<EMAIL_MOTIFICATION= 1 </EMAIL_MOTIFICATION>
<MEWS_LETTTER> O </MEWS_LETTTER>
<OMLINE_STATEMEMT > 1 «/OMNLINE_STATEMENT =

=/nsCUSTOMER >

+ =nsiCUSTOMER. =

+ =ns0:CUSTOMER. =

+ =nsiCUSTOMER =

+ =ns0:CUSTOMER. =

+ =ns CUSTOMER |Z|

Figure 18-27 Test Results of a Constant Expression

7. Open CustomerInfo.ds in Source View. The code should be as displayed in Figure 18-28.

Data Services Platform: Samples Tutorial

CustomerInfo,ds - {DataServices HMyQueriest

s

lare function thns:getGroundCustomers() as element(ns0: CUSTOMER)* [

for SCUSTOMER in ns2:CUSTOMER()
where SCUSTOMER/DEFAULT SHIP METHOD eq "GROUND'™
return
<ns0: CUSTOMER:-
<CUSTOMER, ID-{fr:data|§CUSTOMER/CUSTOMER_ID) }</CUSTOMER ID-
<FIRST HAME>{fn:data(§CUSTOMER/FIRST NAME) }</FTRST HAME-
<LAST HAME>{fn:data|$CUSTOMER/LAST NAME) 1</LAST HAME>
<CUSTOMER. STHCE:={fn:data($CUSTOMER/CUSTOMER_SINCE) }</CUSTOMER STHCE:-
<EMATL ADDRESS:-{fn:data(§CUSTOMER/EMAIL_ADDRESS) }</EMATL ADDRESS:-
<TELEPHORE_WUMBER:-{ f1: data [§CUSTOMER/TELEPHONE_NUMBER) }</TELEPHOHE HUMBER:-
<BEW2+{ fn:data | sCUSTOMER/S5N) 1< /S5H>
<BIRTH DAY #-{ fn: data | sCUSTOMER/BIRTH_DAY) }</BIRTH DRY:>
<DEFAULT SHIF METHOD #-{fn:data(§CUSTOMER/DEFAULT SHIP_METHOD) !</DEFAULT SHIP
<EMATL,_HOTIFICATION ¢ {fn:data($CUSTOMER/EMATL_NOTIFICATION) }</EMATL HOTIFICAT
<HEWS LETTTER ?>{fn: data(sCUSTOMER/NEWS LETTTER) }</HEWS LETTTER:
<OHLIHE STATEMENT »>{fn:data($CHSTOMER/ONLINE_STATEMENT) §</OHLIHE STATEMEHT:
</ns0: CUSTOMER~

[«

| D]

]

| Design Wiew | =Query Editor View | Source View | Test View [Query Plan View |

Figure 18-28 Source Code

Lesson Summary

In this lesson you learned how to:

Use the graphical XQuery Editor View to create parameterized, string, and date functions;

outer joins, aggregate, and order by and constant expressions.

Use the XQuery Function Palette to add built-in XQuery functions to a query.

Data Services Platform: Samples Tutorial

34

Lesson 19 Building XQueries in Source View

Objectives

Overview

In the previous lesson, you built XQueries using XQuery Editor View. Sometimes, it is necessary to
programmatically build a query or modify its code. In this lesson, you will learn how to use Source
View to create and edit query functions.

After completing this lesson, you will be able to:

Use Source View to add, edit, or delete XQuery code that defines a data service's query
functions.

Compare the coded query with the XQuery Editor View.

Test the results.

Source View lets you view and/or modify the data service’s XQuery source code. In general, a data
service is simply a file that contains XQuery code. Although DSP provides extensive visual design
tools for developing a data service, sometimes you may need to work directly with XQuery syntax.

Two-way editing is supported—changes you make in Source View are reflected in XQuery Editor
View, and vice versa. The source code is commented to help you edit the source correctly.

[Eumtome 6% - e iaracnti|

dnclarn " £1
declar manespacn £2
deciare w £

doclare saespace 10

rpurt sehem nanespace tl -

Impart schem Ranespace

| e e ey ki | Sorce e Tt Vi | umry Pl Yooy

Figure 19-1 Source View

Source View Tools

Within Source View, you can use the XQuery Construct Palette, which lets you add any of several
built-in generic FLWOR statements to the XQuery syntax. You can then customize the generic
statement to match your particular needs.

Data Services Platform: Samples Tutorial

35

Lab 19.1

|| #Guery Canstruct Palette *
|~ ®Guery Constructs
COFLweER
CFLWOR
COFLwWR
COFwWGER
COFwoR
COFWR
COFaR
COFoR
CaFr
[CJ IFTHEMELSE
[C) IFTHEMELSEIF

Figure 19-2 XQuery Construct Palette

To add a FLWOR construct, drag and drop the selected item into the appropriate declare function
space.

If XQuery Construct Palette is not open, choose View — Windows — XQuery Construct Palette.

Creating a New XML Type

For each of the queries created in this lesson, you will define a function that returns results nested
within the Return type. To enable that, you need to create a data service with an undefined XML type.
By leaving the XML type's schema undefined, you can modify the Return type on an ad hoc basic,
without a need to be concerned about synchronizing the XML and Return types.

Objectives

In this lab, you will:

Create a new data service, called XQueries.ds.

Create a new, but undefined, XML type.

Instructions
1. Create a new data service in the MyQueries folder and name it XQueries.
2. Create a new XML type by completing the following steps:
a. Right-click the XQueries Data Service header.
b. Select Create XML Type.
c. Enter Results in the Return Type field.
Note: Do not change the default settings for the Schema File and Target Namespace fields.
d. Click OK.

2 Create New Schema File @

| Evaluatlon'LDataSerwceslMyQuerles)’xQuerles.xsd| l:‘

Schema File

Return type | Results |

Target Mamespace | Id:DataServices My QueriesEQueries |

Figure 19-3 Create New XML Type

Data Services Platform: Samples Tutorial

36

3.

Confirm that the data service diagram is as displayed in Figure 19-4.

#Queries.ds* - {DataServicesHMyQueries)

_IE\XQueries Data Service

@ Resuls

<

[t

I 12

=

I Design View [Ruery Editor Yisw | Source Wiew | Test iew | Query Plan Yiew |

Figure 19-4 Design View: Undefined Results Type

Lab 19.2 Creating a Basic Parameterized XQuery

There are two basic types of queries: those without parameters and those with parameters. In the

previous lesson, you used XQuery Editor View's graphical tools to define a query with parameters. In

this lab, you will use Source Editor to programmatically define a parameterized query.

Objectives

In this lab, you will:

Build a query that retrieves customer information based on first and last names.

View the results in XQuery Editor View.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1.
2.

Add a new function to XQueries.ds and name it getCustomerByName.
Open Source View.
Define the function declaration, by completing the following steps:

a. Add the following parameter to the first parenthesis:

$p_Ffirstname as xs:string, $p_lastname as xs:string

b. Remove the asterisk (*), because you want this function to only return a single result.

The code should be similar to the following :

declare function tns:getCustomerByName($p_firstname as xs:string,
$p_lastname as xs:string) as element(nsO:Results) {

Click the + symbol next to the getCustomerByName() function. This opens the function body.

Split the <tnsO:RESULTS/> element into open and end tags, with curly braces in between for the

XQuery. The code should be as follows (ignore the error indicator):

Data Services Platform: Samples Tutorial

37

<tnsO:Results>

{
}

</tnsO:Results>

6. Open XQuery Construct Palette.

7. Drag and drop the FWR construct between the curly braces. The code should be as follows:

for $var in O
where true()

return
O
8. Define the for clause by completing the following steps:
a. Change the variable to $customer.

b. In the Data Services Palette, expand CustomerDB\CUSTOMER.ds.

c. Drag and drop CUSTOMER() into the for clause's first empty parenthesis. The code should

be similar to the following:
for $customer in (ns1l:CUSTOMER(Q))
where true()

return

O

9. Replace the where clause true() code with the following:

$customer/FIRST_NAME eq $p_firstname and $customer/LAST_NAME eq

$p_lastname

10. Set the return clause, by adding $customer between the parenthesis.

11. Confirm that the source code is as displayed in Figure 19-5; namespaces may be different for your

application.

¥Oueries.ds* - {DataServicesHMyQueries)

*

(:ipragme function <f:function kind="read" xmlns:f="wrn:annotations.ld.bea.comn">
<uilroperties=
coomponent h="Z93T w="EIET y="TET x="249" pipimized="rfalse" identifiers"customer" =
woomponent h="150" w="180" y="203" x="13" minimized="false" identifier="p firstname" >
<component h="160" w="160" y="0T x="0" mininized="false" identifier="p lastname"/>
coomponent h="3F0" w="ZEQ" y="0" x="551" minimized="fzlse" identifier="retwrnNode"/ =
< /uilPropertiess
< Fr functions=
1)

<tns:Results:
{
for focustomer im (nsl: CUSTOMER())
where |§customer/FIRST NAME eq §p firstneme and §customer/LAST NAME eq §p lastname)
return
[§ous tomar)

i

<ftns :Results>

Kl

declare function ths:getCustomerByName(§p firstpame as ¥5:string, §p ldstname as xs:string) as element(ns0:Re

Design Yiew | XQuery Editor View | Source View | Test View [Query Flan Yiew

Figure 19-5 Parameterized Query Source Code

12. Build the DataServices project.

Data Services Platform: Samples Tutorial

38

13. Open XQueries.ds in XQuery Editor View and review the graphical version of the XQuery
code. It should be as displayed in Figure 19-6.

¥Oueries.ds* - {DataServicesHMyQueries) s
Select Function:@ getCustomerByMarnelp_firstname, p_Iastname)| - |
{?lParameter: $p_la... = | @ Return 2
p_lastname string ™ ' = Results anyType
S = CUSTOMER
\ = CIUSTOMER _ID string
— P[=49For: geustomer 8w FIRST_MAME string
! [CUSTOMER. * LAST_NAME string
CUSTOMER_ID string CISTOMER _SINCE date
FIRST_MAME string EMAIL_ADDRESS string
LAST_MAME string TELEPHOME _MUMBER. string
CUSTOMER_SIMCE date 55N ? string
EMAIL_ADDRESS string BIRTH_DAY ? date
{?Parameter: $p_fi... = | TELEPHOME_MUMBER string DEFAULT_SHIF_METHOD 7 string
p_firstrame string S5M 7 skring EMAIL_MOTIFICATION ? short
BIRTH_D&Y ? date ME'WS_LETTTER ? short
DEFAULT _SHIP_METHOD ? string OMLIME_STATEMENT ? short
EMAIL_MNOTIFICATION 7 short Jul LOGIN_ID ?# string
MNEWS_LETTTER ¥ short
ONLINE_STATEMEMT ? short
LOGIN_ID 7 string
Kl | []
(X InRET :
*
3
||

Design ¥iew | %Query Editor View [Source Wiew | Test view | Query Plan Yiew

Figure 19-6 XQuery Editor View of Parameterized Function
14. Test the function, by completing the following steps:
a. Open XQueries.ds in Test View.
b. Select getCustomersByName() from the Function drop-down list.
c. Enter the following parameters:
Firstname: Jack
Lastname: Black

d. Confirm the results.

Data Services Platform: Samples Tutorial

Lab 19.3

¥Queries.ds - {DataServicesH My Queries), 4

Select Function:

|-B getCustomerByMamedp_firstname, D_Iastname)| - |

Parameters

xsistring p_firstname: | Jack |

xs:string p_lastname: | Black |

Mumber Element (by path)

Lirmit elernerts in array results to; | =00 ‘ | - |

[start Client Transaction [] Validate Results

Result Text KWL

- zns0:Resulks xmins:ns0="ld:DataServices/MyQueries|¥Queries” >
- =ns1:CUSTOMER xmilns:ns1="ld:DataServices/CustomerDE/CIUSTOMER" =

<CUSTOMER_ID:> CUSTOMER1 </CUSTOMER_ID >
<FIRST_MAME:> Jack </FIRST_NAME:=
<LAST_NAME= Black </LAST_MAME>
<CUSTOMER _SINCE> 2001-10-01 </CUSTOMER _SINCE >
<EMAIL_ADDRESS> Jack@hotmail.com </EMAIL_ADDRESS =
<TELEPHOME_NUMBER. > 2145134119 </TELEPHOMNE_MUMEER >
<55N> 295-13-4119 </55M>
<BIRTH_DAY:> 1970-01-01 </BIRTH_DAY>
<DEFAULT_SHIP_METHOD= AIR </DEFAULT_SHIP_METHOD:>
<EMAIL_MOTIFICATION= 1 </EMAIL_MCTIFICATION:=
<MEWS_LETTTER> O =/MEWS_LETTTER:=
<OMLIME_STATEMENT > 1 </OMLINE_STATEMEMT =

| Thl T L ! 1. 1 ThI T E

Desian Yiew | #0uery Editor Yiew | Source Yiew | Test view [Query Plan View

[

Figure 19-7 Test Results of a Parameterized Function

15. (Optional) Open Customer Info.ds in XQuery Editor View and compare the diagrams for the
two data services.

XQuery Code Reference for a Parameterized Function

declare function tns:getCustomerByName($p_firstname as xs:string, $p_lastname as
xs:string) as element(tnsO:Results) {
<tnsO:Results>

for $customer in (ns1:CUSTOMERQ))

where ($customer/FIRST_NAME eq $p_TFirstname and $customer/LAST_NAME eq
$p_lastname)

return

($customer)

</ns0:Results>

Creating a String Function

XQuery provides numerous string functions that can be incorporated into your business logic.
Objectives
In this lab, you will:

Create a startwith() function that retrieves customer information by name or SSN.

Test the function.

Data Services Platform: Samples Tutorial 40

Instructions
1. Add anew function to XQueries.ds and name it getCustomerByNameorSSN().
2. Open XQueries.ds in Source View.

3. Define the function declaration, by changing the parameter as follows:

$fullname as xs:string, $ssn as xs:string

4. Replace the contents of the where clause with the following:
fn:contains(fn:upper-case(fn:concat($customer/FIRST_NAME,"
", $customer/LAST_NAME)), fn:upper-case($fullname)) or
fn:starts-with($customer/SSN, $ssn)

Note: You can either type the code in or build the clause by using the following built-in functions,
located in the XQuery Function Palette:

fn:concat fn:starts-with

fn:contains fn:upper-case

Note: The full name is created “on-the-spot” by concatenating FIRST NAME and LAST NAME
elements to the local (XQuery engine internal) variable such as $p_name. Upper case is used to
normalize names.

5. Leave the return clause as $customer so that all elements in the type are returned.

6. Confirm that the code is as follows (namespaces may be different for your application):

¥Oueries.ds* - {DataServicesHMyQueries) s
UECLare B [I51= L0 UACasE LV ICESy CUS COE LDy LU0 [OTLE 7 lz'
import schema namespace ns0="ld:DataServices/Mylueries/Xlueries" at "ld:Datalervices /Mylueries/Xlueries.xad";
declare namespace tns="ld:Dataiervices/MyQueries/¥Queries”;

(ripragma function «<f:function Kind="read" xplns:f="urn:annotdtions.ld.bed.con'>
<uilroperties=
cocomponent h="1A0" w="140" y="0" p="0" pinipized="Ffalse" identifier="fullname" >
coomponent h="150" w="160" F="160" x="0" minimized="fzlse" identifier="ssn"/ =
coomponent R="406" w="TZETT y="0" x="E01" minimized="fzlse" identifier="retuwranNode"/ =
soomponent B="ZRAT W=TIIET p=TORT =108 pinimized="ralse™ identiriers"oustomerT x
< /uilPropertiss>
</ Fr function=

declare function tns:getCustomerByNameorSSN(sfnllnsre as xs:string, $ssn as xs:string) as element(ns0:Results
<tns:Results>
{
for scustomer inm (nsl:CUSTOMER())
vhere fn:contains(fn:iupper-case(fn:concat|scustoner/FIRST HAME,™
"y custoner/LAST_NAME)), fniupper-case(sffullname)) or
fn:starts-with(fcus tomsr /35N, §55m)
return [scoustomer)

}

<ftns:Results>
b
[[]
Design Yiew | XQuery Editor View | Source View | Test View [Query Flan Yiew

Figure 19-8 Source View of String Function

7. Open XQueries.ds in XQuery Editor View.

Data Services Platform: Samples Tutorial

41

%Queries.ds - 4DataServicesHiMyQueries| %
Select Funct\nn:‘-@ getCustomerByNameorSSH(fulname, ssr)| + |
{?}Parameter: $fulin... 5 [~ (@ Return &
fullname string I [E-Results anyType
T CUSTOMER
CUSTOMER_ID string
FIRST_NAME string
— P|=4For: $customer & 0 LAST_MAME string
o CLISTOMER * CUSTOMER_SINCE date
\ CUSTOMER_ID' string EMAIL_ADDRESS string
\ g TELEPHORE_NUMEER string
1?]Parameter: §ssn [~ - GEIEl S] o ey
LAST_MAME string string
ssn string CUSTOMER_SINCE date BIRTH_DAY? date
EMATL_ADDRESS string DEFAULT_SHIP_METHOD ? string
TELEFHONE_MUMBER string EMAIL_MOTIFICATION 7 short
SN 7 string. NEWS_LETTTER 7 short
TR B OMLINE_STATEMENT ? short
DEFALLT_SHIP_METHOD ? string o LOGIN_ID # string
EMAIL_NOTIFICATION 7 short
NEWS_LETTTER ? short
ONLINE_STATEMENT 7 short
LOGIN_ID ? string
B INLE :
=
| [Design View | ¥Query Editor View |Source View | Test Yiew | Guery Plan View

Figure 19-9 XQuery Editor View of String Function
8. Test the query by completing the following steps:
a. Open XQueries.ds in Test View.

b. Enter a value in both Parameter fields. Neither field can be blank; however, because of the
query logic, only one parameter needs to be matched.

c. Click Execute. The query should return results based on your keyword search parameters.
See below for results in Test View and the underlying code.

Data Services Platform: Samples Tutorial

¥Queries,ds - {DataServicesHMyQueries) b4

Select Function:

|-B gekCustamerByMameOrsshifullname, ssn)l - |

Parameters

wsistring fullname: | Jack, |

x515kring ssn:

)

Mumber Element iby path)

Limit elements in array results to:
[s0] [~]

[start Clienk Transaction [Yalidate Results

Resul Text HhL

- <ns0iResults xmins:ns0="ld:DataServices/MyQueries/<Queries" =
- =ns1iCUSTOMER xmins:ns1="ld:DataServices/CustomerDB/CUSTOMER" =

<CUSTOMER_ID> CUSTOMER1 </CUSTOMER_ID>
<FIRST_MAME> Jack </FIRST_MAME:=
LAST_MAME> Black </LAST_MAME:>
<CUSTOMER_SINCE= 2001-10-01 </CUSTOMER_SINCE:
<EMAIL_ADDRESS > Jack@hotmail.com </EMAIL_ADDRESS >
<TELEPHOME_MUMBER > 2145134119 </TELEPHOMNE_MUMBER. =
€35N> 295-13-4119 /55N>
<BIRTH_DAY> 1970-01-01 </BIRTH_DAY>
<DEFAULT_SHIP_METHOD> AIR </DEFAULT_SHIP_METHOD =
<EMAIL_NOTIFICATION:= 1 </EMAIL_NOTIFICATION:
<MEWS_LETTTER> O «fMEWS_LETTTER =
<OMLIME_STATEMEMT = 1 </OMLIME_STATEMEMT =

1 ThI_TM a 1. K ThI_T B

Design View | ¥Query Editor Wiew | Source View | Test Wiew [Query Plan Yiew

]

Figure 19-10 Test Results of String Function

XQuery Code Reference for a String Function

declare function tns:getCustomerByNameOrSSN($fullname as xs:string, $ssn as xs:string)
as element(nsO:Results) {
<nsO:Results>

for $customer in (ns1l:CUSTOMER(Q))

where (fn:contains(fn:upper-case(fn:concat($customer/FIRST_NAME,"
" ,$customer/LAST_NAME)), fn:upper-case($fullname)) or
fn:starts-with($customer/SSN, $ssn))

return

($customer)

}

</ns0:Results>

Data Services Platform: Samples Tutorial 43

Lab 19.4 Building an Outer Join and Using Order By

Outer joins allow you to get results from the joined objects even if the primary key is not represented
in both objects. For example, an outer join of customers and orders reports all customers—even those
without orders.

Objectives

In this lab, you will:

Build a query that retrieves all customers and lists their addresses, if any.
Shape the return data to include:

0 All customers, even those without known addresses.

0 Nest addresses with customers (there may be more than 1).

0 Order customers by first name and last name.

0 Order the addresses by zip code.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1. Add anew function to XQueries.ds and name it getCustomerAddresses.
2. Open XQueries.ds in Source View.

3. Define the function declaration by removing the asterisk (*). The code should be as:

declare function tns:getCustomerAddresses() as element(nsO:Results) {
4. Click the + symbol next to the getCustomerAddresses() function. This opens the function body.

5. Split the <tnsO:RESULTS/> element into open and end tags, with curly braces in between for the
XQuery.

6. Open XQuery Construct Palette, and then drag and drop the FOR construct between the curly
braces. The code should be as follows:

for $var in QO
order by O
return

O

7. Set the for clause, using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within the Data Services Palette.

for $customer in (ns1:CUSTOMERQ))

8. Set the order by clause, by replacing the (), as follows:
$customer/FIRST_NAME, $customer/LAST_NAME

Data Services Platform: Samples Tutorial 44

9. Set the return clause, by replacing the (), as follows:

return
<CUSTOMER>
<FIRST_NAME>{fn:data($customer/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{fn:data($customer/LAST_NAME)}</LAST_NAME>
{
for $address in)
where ($address/CUSTOMER_ID eq $customer/CUSTOMER_ID)
order by $address/ZIPCODE ascending
return
$address
}
</CUSTOMER>

Note: You can either type the code in, or use the XQuery Function Palette and XQuery Construct
Palette to build up your query function.

10. Set the $address clause by associating it with ADDRESS(), which is located in
CustomerDB\ADDRESS.ds folder within Data Services Palette.

for $address in (ns2:ADDRESS())

11. Confirm that the query is as shown in Figure 19-11; namespaces may be different for your
application.

#Queries.ds* - {DataServicesHMyQueries)

X

(:ipragme function <f:function kind="read" xmlns:f="wrn:annotations.ld.bea.comn"> E
wuilroperties=
Coomponent h="449" w=ZELT y="0T x="A40" minimized="false™ identifier="returnNode"/ >
coomponent h="J29" w="Z0E" y="2O" x="ZT8" minimized="false" identifier="address"/ =
coomponent R="Z95T w=TEIET p="d1" x="0" minimized="false™ identifier="customer" />
< /uiProperticss>

<tns:Results:{for fcustomer im (nsl:CUSTOMER())
order by soustoner/FIRST_NAME, scustomer/LAST_NAME
return
<CUSTOMER -
<FIRST_WAME:-{fn:data|§customer/FIRST NAME] }</FIRST HAME-
<LAST WAME>{fn:data($custoner/LAST_NAME) }</LAST WAME>-
13

«/F1 function=
)
declare function tns:getfustomerdddresses() as element(ns0:Results) {

for faddress im (nsZ:ADDRESI())
where ($address/CUSTOMER_ID eqg §Scustomer/CUSTOMER_ID)
order by saddressfIIPCODE ascending
return
gaddress)
< fCUSTOMER =
}<Ftns:Results
1r

[[+]
Design Yiew | #Query Editor Yiew | Source View | Test Yiew | Query Plan View

Figure 19-11 Source View of Outer View and Order By Function

Data Services Platform: Samples Tutorial 45

12. Open XQueries.ds in XQuery Editor View.

¥Oueries.ds* - {DataServicesHMyCueries) 3
Select Function:@ getCustomerAddressesi) | - |
=4For: $customer = 0= 7 @Return el
[= CUSTOMER. * 0 [Resulks anyType
CUSTOMER_ID string | U E CLSTOMER *
FIRST_MAME string T FIRST_MAME string
LAST_MAME string LAST_MAME string
CUSTOMER_SINCE date =< For: address s o £ ADDRESS
EMAIL_ADDRESS string — ADDR_ID string
TELEFHOME_NUMEER. string El ADDRESS * sl CUSTOMER_ID string
SEN 7 string I FIRST_MAME string
BIRTH_DAY 7 date I CRIERSIDRSHING LAST_NAME string
DEFAULT_SHIF_METHGD 7 string LIRS Bl STREET_ADDRESSL string
EMAIL_NOTIFICATION ? short e e STREET_ADDRESSZ ? string
MEWS_LETTTER 7 short S AR S 2) CITY string
OMLINE_STATEMENT ? shart i A R STATE string
LOGIN_ID 7 string SHSling ZIPCODE string
EAeetina COUNTRY string

ZIPCODE skring
COUMNTRY skring
DiY_PHONME 7 string
EVE_PHOME 7 string
ALIAS 7 string &
STATUS ? skring

15_DEFRULT short]

[R I I

DAY _PHOME 7 string
EVE_PHONE 7 string
ALIAS 7 string
STATUS ? string
I5_DEFALLT shart

] | O]
[T IHEET v

1+

—

Design ¥iew | %Query Editor view [Source Yiew | Test Yiew | Query Flan View

Figure 19-12 XQuery Editor View of Outer Join and Order By Function

13. Open XQueries.ds in Test View and test the query; no parameters are required. The XQuery
function appears below.

Data Services Platform: Samples Tutorial

¥Queries,ds - {DataServices MMyQueries), 4

Select Function:

|-B getCustomeraddresses() | - |

Parameters

Mumber Element (hy path)

Limit elerents in array results to; | s | | - |

[start Client Transaction [] validate Results

Resul Text HML

ZLAST_NAME> Johnson </LAST_MAME:> [«]
- «=ns1:ADDRESS xmins:ns1="ld:DataServicesCustomerDBfADDRESS" =
<ADDR_ID> ADDR_B_0 </ADDR_ID>
<CUSTOMER_ID> CUSTOMERG </CUSTOMER_ID>
<FIRST_MAME > Don </FIRST_MNAME:=
ZLAST_NAME:> Johnson <[LAST_MAME:>
<5TREET_ADDRESS1:> 334 Sixth Street. </STREET_ADDRESS1:=
<CITY> Austin </CITY>
<5TATE=> TX </STATE>
<ZIPCODE= 78701 </ZIPCODE>
“COUNTRY > USA </COUNTRY =
<DAY_PHOME=> 5128937204 =[DAY_PHOME>
<EYE_PHOME> 5129419616 </EVE_PHOME =
<ALIAS> Home <[ALIAS>
<5TATUS> ACTIVE </STATUS:=
<I5_DEFAULT=> 1 «fI5_DEFALLT=
<fns1:ADDRESS >
- <ns1:ADDRESS wmins:ns1="ld:DataServices/CustomerDE/ADDRESS" =

<ADDR_ID> ADDR_6_1 </ADDR_ID= =]

Figure 19-13 Test Results of Outer Join and Order By Function

XQuery Code Reference for an Outer Join and Order By Function

declare function tns:getCustomerAddresses() as element(nsO:Results) {
<tnsO:Results>

{
for $customer in (ns1:CUSTOMERQ))
order by $customer/FIRST_NAME, $customer/LAST_NAME

return
<CUSTOMER>
<FIRST_NAME>{ fn:data($customer/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{fn:data($customer/LAST_NAME)}</LAST_NAME>
{
for $address in (ns2:ADDRESS())
where ($address/CUSTOMER_ID eq $customer/CUSTOMER_ID)
order by $address/ZIPCODE ascending
return
$address
¥
</CUSTOMER>

</tnsO:Results>

Lab 19.5 Creating an Inner Join and a Top N

Inner joins mandate that the only items that are returned are with a corresponding entry (such as a
primary key in the relational world) in another data source. The following are introduced:

let clauses

Data Services Platform: Samples Tutorial 47

Nested for clauses

Concat() and subsequent() XQuery functions

Objectives

In this lab, you will:

Build a query that retrieves the top 10 customers who have placed orders with the company.
Define the shape of the returned data to include:

0 Total order amount.

O Items returned ordered by total order amount, from the highest to the lowest.

0 Customer’s full name, order ID, and order amount.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1.
2.

Add a new function to XQueries.ds and name it getTop10Customers.
Open XQueries.ds in Source View.

Define the function declaration by removing the asterisk (*). The code should be as follows:

declare function tns:getToplOCustomers() as element(nsO:Results) {
Click the + symbol next to the getTop10Customers() function. This opens the function body.
Add curly braces between the two tags.

After the opening curly brace, add the following let clause, which will hold the results of
subsequent for clauses:

let $topl0:=

Open XQuery Construct Palette, and then drag and drop the FWOR construct after the let clause.

The code should be as follows:
for $var in QO
where true()
order by O

return

O

Data Services Platform: Samples Tutorial

48

8. Set the for clause using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within Data Services Palette.

for $customer in (ns1:CUSTOMERQ))

9. Create a second for clause, using a $order variable that is associated with
CUSTOMER_ORDER() located in the ElectronicsDB\CUSTOMER_ORDER.ds folder within
Data Services Palette.

for $order in (ns3:CUSTOMER_ORDER(Q))

10. Set the where clause, by replacing the true() with the following code:
where ($customer/CUSTOMER_ID eq $order/CUSTOMER_ID)

11. Set the order by clause, by entering the following code in the ():
order by $order/TOTAL_ORDER_AMOUNT descending
12. Set the return clause, by entering the following code:
return
<CUSTOMER>
<CUSTOMER_NAME>
{fn:concat($customer/FIRST_NAME,"™ ', $customer/LAST_NAME)}
</CUSTOMER_NAME>
<ORDER_I1D>{fn:data($order/ORDER_ID)}</ORDER_ID>
<TOTAL_ORDERS>{fn:data($order/TOTAL_ORDER_AMOUNT)}</TOTAL_ORDERS>
</CUSTOMER>
return fn:subsequence($topl0, 1, 10)

Note: You can either type the code in, or use the XQuery Function Palette and XQuery Construct
Palette to build up your query.

13. Confirm that the source code is similar to that displayed in Figure 19-14; namespaces may vary.

#Queries.ds* - {DataServicesH\MyQueries!

declare function tns:getToplOCustoners () as elementinsO:Results) |
<tns:Results>-{let stopidi=
for scustomer im (nsl:CUSTOMER())
for sorder in (nsd:CUSTOMER_ORDER())
where (scustomer/CUSTOMER_ID eq sorder/CUSTOMER_ID)
order by sorder/TOTAL_ORDER_AMOUNT descending
return

*

<CUSTOMER. HAME:
{En:concat(soustorer/FIRST NAME," ", Scustomer/LAST_NAME)}
<fCUSTOMER. WRME:-
<ORDER_ID>fn:data|sorder/ORDER_ID] }</ORDER ID>
<TOTAL ORDERS:{fn:data(sorder/TOTAL_ORDER_AMOUNT) }</TOTAL ORDERS:
< FCUSTOMER>
return fn:subsequence(sioplld, 1, 10)

}</ftns:Results>

I
Kl O]
Design View | Xuery Editar View | Source View |Test Wiew | Query Plan View

Figure 19-14 Source Code for Inner Join and Top N Function

14. Open XQueries.ds in XQuery Editor View.

Data Services Platform: Samples Tutorial 49

#Queries.ds* - {DataServicesHMyQueries) b3

Select Function:] gt Topt 0ustomers»{) -]
SqFor: $customer ENw N | @Lel' Slop10 s 0 @Relum &
[CUSTOMER * TSI TONERTS 7 B Results anyType
= in] = "
CUSTOMER_ID string f CLSTOMER_NAVE string 9 CUSTOMER

FIRST_MAME string I CROER_ID string CUSTOMER_MAME string
LAST_NAME string | TOTAL_ORDERS decimal ORDER_ID string
CUSTOMER _SIMCE date [u] TOTAL_ORDERS decimal
EMAIL_ADDRESS string !
TELEPHONE_NUMBER. string
SSMT string

BIRTH_DAY 7 date

DEFAULT_SHIP_METHOD 7 string =qFor: $order aw
EMAIL_NOTIFICATION ? short B CUSTOMER_ORDER *
NEWS_LETTTER 7 short ORDERiID string
OMLINE_STATEMENT ? shart CUSTOMER_ID string

LOGIM_ID ? string ORDER_DATE date

SHIP_METHOD string
HANDLING_CHARGE decimal
SUBTOTAL decimal
TOTAL_ORDER_AMOUNT decimal
SALE_TAX decimal

SHIP_TC string
SHIP_TO_MAME string
BILL_TO string
ESTIMATED_SHIP_DATE date
STATUS string
TRACKIMNG_NUMBER 7 string
CWMER 7 string

| Expression Editar &
Design Yiew | ¥Query Editar View [Source View | Test Yiew | Query Plan View |

Figure 19-15 XQuery Editor View of Inner Join and Top N Function

15. Open XQueries.ds in Test View; no parameters are required to run your query. You should see a
document containing the top 10 orders will appear, ordered by total amount. The XQuery function
appears below.

#Queries.ds - {DataServicesHMyQueries| b3

Select Function:

‘-D getTop10Customers() |- |

Parameters

Murnber Element {by path)

Limit elerents in array results ta: | o0 | | ‘ - |

[Start Client Transaction [Walidate Results

Result Iz Results are valid.

- <nsD:Results xmins:ns0="1d:DataServices/MyQueries(XQueries’ =
- <CUSTOMER >
<CUSTOMER_NAME> Tim Floyd </CUSTOMER_HAME >
<ORDER_ID> ORDER_T_8 </CRDER_ID>
<TOTAL_ORDERS> 3282.5 </TOTAL_CRDERS>
=fCUSTOMER =
- <CUSTOMER >
<CUSTOMER_NAME> Tim Floyd </CUSTOMER_HAME >
<ORDER_ID> ORDER_T_T </CRDER_ID>
<TOTAL_ORDERS> 3012.5 </TOTAL_CRDERS:>
=fCUSTOMER =
+ <CUSTOMER >
+ SCUSTOMER > =
+ SCUSTOMER >
+ ZCUSTOMER =
+ ZCUSTOMER >

L errmzn i

Design View | wQuery Editar Yiew | Source View | Test Yiew [Goery Flan View

>

Figure 19-16 Test View for Inner Join and Top N Function

XQuery Code Reference for Inner Join and Top N Function

declare function tns:getToplOCustomers() as element(nsO:Results) {
<tnsO:Results>

{
let $topl0:=
for $customer in (ns1:CUSTOMERQ))

Data Services Platform: Samples Tutorial 50

for $order in (ns3:CUSTOMER_ORDER(Q))
where ($customer/CUSTOMER_ID eq $order/CUSTOMER_ID)
order by $order/TOTAL_ORDER_AMOUNT descending
return
<CUSTOMER>
<CUSTOMER_NAME>
{fn:concat($customer/FIRST_NAME," ', $customer/LAST_NAME)}
</CUSTOMER_NAME>
<ORDER_ID>{fn:data($order/ORDER_1D)}</ORDER_ID>
<TOTAL_ORDERS>{fn:data($order/TOTAL_ORDER_AMOUNT)}</TOTAL_ORDERS>
</CUSTOMER>
return fn:subsequence($topl0, 1, 10)

</tnsO:Results>

Lab 19.6 Creating a Multi-Level Group By

Retrieving customers grouped by states and cities is not only often needed; it is also a classic database
exercise. The following are introduced:

Group by clause.

count() function.

Objectives

In this lab, you will:

Create a query that determines the number of customers, by state and by city.

Test the function.

Instructions

1. Add a function to XQueries.ds and name it getNumCustomersByState().
Open XQueries.ds in Source View.

Define the function declaration, by removing the asterisk *.

Click the + symbol next to the getNumCustomersByState() function.

Split the <tnsO:Results/> element into open and end tags, with curly braces in between.

A

Open XQuery Construct Palette and then drag and drop the for-group-return (FGR) construct
between the curly braces:

for $var in O
group $var as $varGroup by () as $var2
return
O
7. Set the for and group clauses as follows:

for $address in ns2:ADDRESS()
group $address as $stateGroup by $address/STATE as $state

Note: Your source is invalid until you complete the next step.

8. Associate the for clause with ADDRESS() located in CustomerDB\Address .ds within the Data
Services Palette as follows:

Data Services Platform: Samples Tutorial 51

for $address in ns2:ADDRESS()
9. Set the return clause, as follows:
return
<state>
<name>{$state}</name>
<number>{fn:count($stateGroup/CUSTOMER_ID)}</number>
{

Note: The clause includes the fn:count() built-in function, available from the XQuery Function Palette.

10. Open XQuery Construct Palette and then drag and drop the FWGR construct after the open curly
brace of the return clause:

for $addressl in ns2:ADDRESS(Q)
where $address1/STATE eq $state
group $addressl as $cityGroup by $addressl/CITY as $city
return
<cities>
<city>{$city}</city>
<number>{fn:count($cityGroup/CUSTOMER_I1D)}</number>

</cities>

</state>

11. Make sure that the namespace in the second for clause is the same as the namespace in the first for
clause.

12. Confirm that the code is as displayed in Figure 19-17 (namespaces may be different for your
application).

XQueries.ds* - {DataServicesH My Queries)

X

declare function tns:getNumCustomerBy3tate() as element(ns0:Results) {
<tns:Results>{
for faddress in nsZ:ADDRESS ()
group Saddress as SstateSroup by faddress/STATE as Sstate
return
“state>
<Tame{ §5Ea te} - names
<mumbers{fn: count | §statefroup/CUSTOMER_ID) }</number>
{
for faddressl in nsZ:ADDRESS ()
where jaddress1/STATE eq fstate
group Saddressi as Scityiroup by Saddress1/CITY as foity
return
<cities>
<citys{§oity)<foitys
<mumber>{fni count { §oi fyGronp,/CUSTOMER_ID) }</mumber:-
<fcities>

¥
“fstater
}</tns:Results> =

[« D]
Design Yiew | ¥Query Editor Yiew | Source Yiew | Test View | Query Plan View

Figure 19-17 Source Code for Multi-Level Group By Function

Data Services Platform: Samples Tutorial 52

13. Open XQueries.ds in XQuery Editor View.

Hqueries.de® Aipyquerie), -
g omer 8y Satnl)
i = (] Retum
T3 Fur: Suddruns (2 Groupty. sstateGroup = Rasuks amfype
e AOCRETS * = 1 se
ALCR_ID strng it 0 = e g
CUSTOMER 10 sireny ADCH_ID s8h0 : strng
FIRST_NAME stirg CUSTOMER_ID strng ! rusrher mteger
':;L[n'm “s:: i FINST_NAME. siri i chas *
STREET_ACAESSH siring ST o = cky e
STREET_ADDRESSZ P sring s:nr::‘:mr:: g - Y“'-"‘:
cary sing STRILT_ADOHESSE ¥ st iasber g
STATE simg Y o g
TICO0E i STATE strng {2 Groupty: SeiyGroup
COUNTRY string aoeE sineg = '
DAY BCNLT sy COUTRY strirsy - ADDAESS
EVE_PHONE + s21ing DAY_PHONE 7 sty HooR T i
ALIAGT. Mring EVE_IHONE T g CUSTOMER_ID string
STATUS ¢ string AEAS T siring FIRST_ A string
ESPEFALT shert STATUS T sdriesy LAST_HAME string
5 DOFMALT shert STREET_ACCRESS! sriee
- STRELT_ADCRLSSE ¥ siring
STATE areq T ey
STATE atreng
= »{[BFor saddmest ¥ f?:l::vg::n
gromermsinns DY_FHONE 7 strng
ADOR_ID erng EVE_One | strey
CUSTOMER 10 string AIAS ? strng
FIRST_NAME streg STATE Y g
LAST_NAVE sting 15 DEFALLT short
STNEET_ADORESSY wevg = b
STREET_ADDRESSE T strng -
CITY sarig
STATE string
TINCOLE st
CONMIRY streg
CRY_PHONE 7 srrg
EVE_IONE T g
ALDAS T string
StATS T streg i 1
15 DEFMLT short
lem| v
i BB 5ddress1 [STATE 00 st =
Lbtow Views | Siuron Yiem | Tesk Yiews | Gusry Plan Ve |

Figure 19-18 XQuery Editor View of Multi-Level Group By Function

14. Open XQueries.ds in Test View and test the function; no parameters are required. You should
see the state name, followed by the number of customers residing in that state, followed by the city
name and number of customers residing in that city. The underlying XQuery also appears below.

¥Queties.ds - {DataServicesH\MyQueriest 2

Select Function:

|B getNumCustomersByStatel) | - ‘

Parameters

Murmber Element (by path)

Limit elements in array results to
EC I~

[start Client Transaction [validate Resuls

Result Text HuL

- =nsO:Results xmins:ns0="ld:DataServices/Myueries/KQueries” »
- <skate >
<name= AZ <fname>
<number> 4 </number=
- <rities =
<city> Phoenix </dty >
<number> 2 <jnumber >
<jcities=
- <ities =
<city> Tucson <jcity >
<number> 2 <frumber =
<jcities>
«[statex
+ <skate =
+ <skate >
+ <state >
+ <state =
<fnsD:Resultss=

| Design View | %Query Editor Yiew | Source View | Test View [Query Plan Yiew

Figure 19-19 Test View of Multi-Level Group By Function

Data Services Platform: Samples Tutorial 53

XQuery Code Reference for Multi-Level Group By Function

declare function tns:getNumCustomersByState() as element(nsO:Results) {
<tnsO:Results>

{
for $address in ns2:ADDRESS()
group $address as $stateGroup by $address/STATE as $state
return
<state>
<name>{$state}</name>
<number>{fn:count($stateGroup/CUSTOMER_ID)}</number>

{
for $addressl in ns2:ADDRESS()

where $address1/STATE eq $state
group $addressl as $cityGroup by $addressl/CITY as $city
return
<cities>
<city>{$city}</city>
<number>{fn:count($cityGroup/CUSTOMER_ID)}</number>
</cities>
</state>

</tnsO:Results>

¥

Lab 19.7 Using If-Then-Else

This example shows how you can create switch-like conditions when building your query. The If-
Then-Else concept is introduced.

Objectives

In this lab, you will:

Create a function that returns different achievement levels as strings for a set of customers,
based on their total order amount.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1. Add anew function to XQueries.ds and name it getCustomerLevels.
Open XQueries.ds in Source View.
Define the function declaration, by removing the asterisk (*).

Split the <tns0:Results/> element into open and end tags, with curly braces ({}) in between.

w»ok WD

Add a for clause, using a $customer variable that is associated with CUSTOMER() located in
CustomerDB\CUSTOMER.ds within Data Services Palette.

for $customer in ns1l:CUSTOMER(Q)

Data Services Platform: Samples Tutorial 54

6. Add asecond for clause, using an $orders variable that is associated with
CUSTOMER ORDER() located in the ElectronicsDB\CUSTOMER_ORDER .ds folder within
Data Services Palette.

for $orders in ns3:CUSTOMER_ORDER(Q)
7. Add where, let, and return clause code, placing it immediately after the second for clause:
where $customer/CUSTOMER_ID eq $orders/CUSTOMER_ 1D

group $orders as $orderGroup by fn:concat($customer/FIRST_NAME,™
", $customer/LAST_NAME) as $customer_name

let $sum := fn:sum($orderGroup/TOTAL_ORDER_AMOUNT)
return
<CUSTOMER_RATING>
<CUSTOMER__ ID>{$customer_name}</CUSTOMER_ID>
<RATING> {if ($sum>=10000) then
"'GOLD""
else if ($sum<5000) then
"REGULAR"
else
"SILVER"
}
</RATING>
</CUSTOMER_RATING>

8. Confirm that the code is as displayed in Figure 19-20; namespaces may be different in your
application.

X

XQueries.ds* - {DataServicesH My Queries)

E - o

declare function ths:getCustonerlLevels() as element(ns0:Results)¥ |
“ins:Results>

{
for foustomer im nsl:CUSTOMER()
for fordsrs in nsd: CUSTOMER_ORDER()
where §coustoper/CUSTOMER_ID eq §orders/CUSTOMER_ID
growp Sorders as forderGroup by fniconcat(fcustomner/FIRST_NAME,™ ™, scustoner/LAST NAME) as foustome
let fsum = fn:sumifordertroup/TOTAL_ORDER_AMOUNT)
return
<CUSTOMER. RATIHG:-
<CUSTOMER. ID>={ §custoner name}<fCUSTOMER TD>-
<RATTHG> B -

i

if (Fsuw>=10000) then "GOLD™ |:|
else if (§suw<5000) then "REGULAR"

else "SILVER"}

= fRATIHG-
<fCUSTOMER RATIHG-
}<ftns:Results>
b: =
[0
Design View | %0uery Editor View | Source Yiew [Test Wiew [Query Plan View

Figure 19-20 Source View of If-Then-Else Function

9. Open XQueries.ds in XQuery Editor View.

Data Services Platform: Samples Tutorial 55

#Queries.ds* - {DataServicesHMyQueries! b3
Select Funct\on:‘@ gekCustomerLevels() ‘ - ‘
=4For: $cusiomer 2 0 @Lel:ssum @REIum &
[z} CUSTOMER * - (=) Input 7 B Results anyType -
CUSTOMER_ID string anyAtomicType * 0 = CUSTOMER_RATING *
FIRST_MAME string [=4=| Cutput: [= CUSTOMER_ID string
LAST_NABME string decimal g string
CUSTOMER _SINCE date iE GroupBy: SorderGroup # = RATING string
EMAIL_ADDRESS string =4+ Group = B Conditional
TELEPHOME_MUMBER skring E1-CUSTOMER _ORDER *] 2 string
55N 7 string ORDER_ID string [=-Conditional
BIRTH_DAY 7 date CUSTOMER_ID string g2 string
DEFAULT_SHIP_METHOD ? StE ORDER_DATE date 2] string
e e | SHIP_METHOD string F) —— T
HANDLING_CHARGE decimal
*|ZaFor: Sorders AU SUBTOTAL decimal
= CUSTOMER _ORDER * - TOTAL_ORDER_AMOUNT decimal
CORDER_ID string SALE_TAY decimal
CUSTOMER_ID string SHIP_TO string
ORDER_DATE date SHIP_TO_MAME string
SHIP_METHOD string BILL_TO string
HANDLING_CHARGE decimal ESTIMATED_SHIP_DATE date
SUBTOTAL decimal STATUS string
TOTAL_ORDER_AMOUNT decin TRACKING_MUMEER 7 string
SALE_TA decimal OWNER, 7 string
SHIP_TO string = By
SHIP_TO_MAME string = string =
] 0]
| | [
ON[[Ty ¢
1
| [Design View | ®Query Editor Yiew [Source Yiew | Test View | Query Flan View |

Figure 19-21 XQuery Editor View of If-Then-Else Function

10. Open XQueries.ds in Test View and test the function; no parameters are required. When you run
the query you will see results organized according to the following levels of purchases:

Gold for total orders >= 10000
Silver for total orders >= 5000 and <10000
Regular for total orders below 5000

The customer’s full name and level are also shown. The XQuery function appears below.

Data Services Platform: Samples Tutorial 56

XCueries,ds - {DataServicest My Queriest e

Select Function:

|@ getCustamerLevels() | - ‘

Parameters

Mumher Element hy path)

Limit elements in array results to
ECI) -]

[start Clisnt Transaction [] Yalidate Results

Result Text L

| [+]

- <CUSTOMER_RATING =
«CUSTOMER_ID > Don Johnson <jiCUSTOMER _ID=
<RATING> SILYER </RATING:
</CUSTOMER_RATING:>
- <CUSTOMER_RATIMG >
<CUSTOMER_ID> Hommer Simpson <jCUSTOMER_ID>
<RATING> SILYER </RATING>
<[CUSTOMER _RATING>
- <CUSTOMER_RATING =
«CUSTOMER_ID > Jack Black </CUSTOMER_ID>=
<RATING> SILVER </RATING:>
«/CUSTOMER _RATING> %
- <CUSTOMER_RATING =
<CUSTOMER_ID= Jerry Greenberg </CUSTOMER_ID=
“RATING> GOLD <[RATING>
<[CUSTOMER _RATING:>
- <CUSTOMER_RATING >
<CUSTOMER_ID> Joe Smith «</CUSTOMER_ID>=
“RATING> REGULAR </RATING> |E|

[Design View [%Query Editor Wiew | Source View | Test View [Query Plan Yiew

Figure 19-22 Test View of If-Then-Else Function

XQuery Code Reference for If-Then-Else Function

declare function tns:getCustomerLevels() as element(nsO:Results) {
<tnsO:Results>
{
for $customer in ns1l:CUSTOMERQ)
for $orders in ns3:CUSTOMER_ORDERQ)
where $customer/CUSTOMER_ID eq $orders/CUSTOMER_ID
group $orders as $orderGroup by fn:concat($customer/FIRST_NAME,"
", $customer/LAST_NAME) as $customer_name
let $sum := fn:sum($orderGroup/TOTAL_ORDER_AMOUNT)
return
<CUSTOMER_RATING>
<CUSTOMER_ 1D>{$customer_name}</CUSTOMER_I1D>
<RATING> {
if ($sum>=10000) then
""GOLD™
else if ($sum<5000) then
""REGULAR™
else
"SILVER™

}
</RATING>
</CUSTOMER_RATING>

</tnsO:Results>

¥

Data Services Platform: Samples Tutorial

Lab 19.8 Creating a Union and Concatenation

This example demonstrates how to integrate data from two different data sources and present the
results in a single report that lets you view the data source information as two separate variables.

Objectives

In this lab, you will:

Create a function that gathers results from two order entry systems: RTLAPPLOMS and
RTLELECOMS.

Test the function.

Instructions

1.
2.

Add a new function to XQueries.ds and name it getCombinedOrders.
Open XQueries.ds in Source View.

Define the function declaration, by removing the asterisk * and adding the following parameter:

$customer_id as xs:string
Split the <ns0:Results/> element into open and end tags, with curly braces ({}) in between.

Open XQuery Construct Palette and then drag and drop the FLWR construct between the curly
braces.

Set the for clause using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within Data Services Palette.

for $customer in ns1l:CUSTOMER(Q)

Set the let clause, using a $appl0rder variable that is associated with CUSTOMER_ORDER(),
which is located in Appare IDB\CUSTOMER_ORDER .ds within Data Services Palette.

let $applOrder:= for $orderl in ns4:CUSTOMER_ORDER(Q)

Set the where clause as follows:
where $customer/CUSTOMER_ID = $orderl/C_ID

Data Services Platform: Samples Tutorial 58

9. Set the return clause, as follows:
return
$orderl
let $elecOrder := for $order2 in ns3:CUSTOMER_ORDERQ)
where ($order2/CUSTOMER_ID eq $customer/CUSTOMER_ID)
return
$order2
where ($customer/CUSTOMER_ID eq $customer_id)
return
<CUSTOMER>
{$customer}
<Orders>
{$applOrder, $elecOrder }
</Orders>

</CUSTOMER>
Note: ns3:CUSTOMER _ORDER() refers to CUSTOMER_ORDER . ds in ElectronicsDB folder

10. Confirm that the code is as displayed in Figure 19-22; the namespaces may vary in your
application.

H

XQueries.ds* - {DataServicesHMyQueries),

é}' ns0:Results>- E|
ke

are function tns:getCowmbinedOrders|§customer id as xsi:string) as elementinsO:Results) {
<ns0:Results> -
i
for scustomer in nsl:CUSTOMER()
let sapplirder:= for forderl in nsd: CUSTOMEE_ORDER()
where forderi/C_ID eq Foustomer/CUSTOMER_ID
return
gorderd
let selecOrder := for ForderZ im ns3: CUSTOMER_ORDER ()
where [§orderi/CUSTOMER ID eq $customer/CUSTOMER ID)
return
jorders
where |goustomer/CUSTOMER_ID eq soustomer id)
return -
“CUSTOMERZ-
{foustomer}
<Drders:
{ gapplOrder, Selecirder }
<f0rders-
< fCUSTOMER~
i
<fns0:Results-

Kl [v]
Design View | ®Query Editor View | Source View [Test View | Query Plan View

Figure 19-23 Source View for Union and Concatenation Function

Data Services Platform: Samples Tutorial 59

11. Open XQueries.ds in XQuery Editor View.

#Queries,ds* - {DataServicesH\MyQueries)

o
Select Funct\nn:‘-El getCombinedOrderstcustomer_id) | |
=4For: $customer 2 0 T — = - — - — = For: Sorder2 4 0 (@ Return #
5} CLSTOMER * [= CLSTOMER,_ORDER * [= 0 B Results anyType =]
CUSTOMER_ID' string TN ORDER_ID string T B CUSTOMER*
FIRST_MAME string | {?]Parameter: Scustom... # |~ - CUSTOMER D' st ol = CUSTOMER
LAST_NAME string | customer_id string ORDER_DATE dat; CETORERSIBE ing
CUSTOMER_SINCE date) T FIRST_NAME string
EMAIL_ADDRESS string PR LAST_NAME string
TELEPHONE_NUMEER st — e CUSTOMER_SINCE date
SSM 7 string 7 ~ TOTAL CRDER Al EMAILL_ADDRESS string
EIRTH_DAY 7 date ! e L SALE Th% decimel TELEPHONE_MUMBER strir
DEFALLT_SHIP_METHOD [\ SHIF To swing [T S5M 7 string
EMATL_WNTIETE ATINR ? g5 Let: SelecOrder &0 9 ?
5 B 5| Let §] D BIRTH_DAY 7 date
T CUSTOMER,_ORDER, = DEFALLT_SHI2 MEHOD 7y
ORDER_ID string D m,—‘”“"””f""”"‘“lj
CUSTOMER_ID string T For: $order1 A 0
GRDER_DATE date [CUSTOMER_ORDER. * -
SHIP_METHOD string ORDER_ID string
HANDLING_CHARGE decimal -
%] Let: SappiOrder % O HE] | = g
B-CLSTOMER_ORDER [=] SHIP_METHOD_DSC string
RS] [HANDLING_CHRG_AMT deci
CSIDJEtng SUBTOTAL_AMT decimal
ORDER_DT date TOTAL_ORDER_AMT decims
SHIP_METHCD_DSC strng SALE. TAY_AMT dacimal
] e SHIP_TO_ID string =
01—
4] 3

Figure 19-24 XQuery Editor View of Union and Concatenation Function

12. Open XQueries.ds in Test View, and then test the getCombinedOrders() function using
CUSTOMERS as the parameter. The XQuery function appears below.

¥Queties.ds - {DataServicesH\MyQueries) X

Select Function:

|@ getCombinedorders{tustomer_id) | - ‘

Parameters

xs:string customer _id: ‘ CUSTOMER3 ‘

Mumhber Elernent {ay path)

Lirnit elerments in array results to
ECI) -]

[start Clisnt Transaction [] Yalidate Results

Result

+ =nsZ: CUSTOMER _ORDER. xmins:ns2="ld: DataServices/ ApparelDBACIUSTOMER _ORDER" = E|
+ <ns2: CUSTOMER _ORDER, xmins;ns2="ld:DataServices/ApparelDEfCUSTOMER _ORDER" = [%
+ =ns2: CUSTOMER _ORDER. xmlns:ns2="ld: DataServices/ ApparelDBfCUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER, xmins:ns2="ld: DataServices/ ApparelDEfCIUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER xmins:ns2="ld:DataServices/ApparelDBfCUSTOMER _ORDER" =

+ =nsZ; CUSTOMER _ORDER, xmins:ns2="ld: DataServices/ApparelDEfCIUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER, xmins;ns2="ld: DataServices/ApparelDBICUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER. xmlns:ns2="ld: DataServices/ ApparelDBfCUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER, xmins:ns2="ld: DataServices/ ApparelDEfCIUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER xmins:ns2="ld:DataServices/ApparelDBfCUSTOMER _ORDER" =

+ =nsZ; CUSTOMER _ORDER, xmins:ns2="ld: DataServices/ApparelDEfCIUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER xmins:ns2="ld:DataServices/ApparelDBfCUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER. xmins:ns2="ld: DataServices/ ApparelDBfCUSTOMER _ORDER" =

+ =ns3 CUSTOMER _ORDER, xmins:ns3="ld: DataServices /ElectronicsDE/CUSTOMER _ORDER" >

+ <ns3 CUSTOMER _ORDER xmins:ns3="ld: DataServices/ElectronicsDB/CUSTOMER _ORDER" >

+ =ns3: CUSTOMER _ORDER, xmins:ns3="ld: DataServices /EleckronicsDEf CUSTOMER _ORDER" =

i [=]

[Design View [#Query Editor Yiew | Source View | Test View [Query Plan Yiew

Figure 19-25 Test View of Union and Concatenation Function

Data Services Platform: Samples Tutorial

XQuery Reference Code for Union and Concatenation Function

declare function tns:getCombinedOrders($customer_id as xs:string) as
element(nsO:Results) {

<tnsO:Results>
{
for $customer in ns1l:CUSTOMER(Q)
let $applOrder:= for $orderl in ns4:CUSTOMER_ORDER(Q)
where ($orderl/C_ID eq $customer/CUSTOMER_ID)
return
$orderl
let $elecOrder := for $order2 in ns3:CUSTOMER_ORDERQ)
where ($order2/CUSTOMER_ID eq $customer/CUSTOMER_ID)
return
$order2
where ($customer/CUSTOMER_ID eq $customer_id)
return
<CUSTOMER>
{$customer}
<Orders>
{ $applOrder, $elecOrder }
</Orders>
</CUSTOMER>
}

</tnsO:Results>

}:

Lesson Summary

In this lesson you, learned how to:

Use Source View to add, edit, or delete XQuery code that defines a data service's query
functions.

Compare the coded query with the XQuery Editor View.

Data Services Platform: Samples Tutorial

61

Lesson 20 Implementing Relationship Functions and Logical
Modeling

Relationship functions return data combined from two or more data services. For example, by creating
a relationship between the Address and Customer data services, you can obtain the address for a given
customer. Or by creating a relationship between the Customer and Order Management data services,
you can receive data that identifies all orders returned by a particular customer.

Model diagrams are used to view a selected set of data services and the relationships between them.
The model shows the basic structure of the data returned by the data service. The main purpose of the
diagram is to help you envision meaningful subsets of your enterprise data relationships, but it can also
be used to define new artifacts or edit existing artifacts.

Logical modeling is an extension of the physical modeling that you learned about in Lesson 5. There
are three labs in this lesson, which are to be completed in sequential order. The labs in this lesson are
dependent on the work completed in the previous lessons.

Objectives

After completing this lesson, you will be able to:

Create model diagrams for a logical data service.
Define relationships between data services.
View and implement multiple relationship functions.

Test multiple relationship functions.

Overview

To help you get from a complex, distributed physical data landscape to a more holistic view of
enterprise information, DSP supports a visual, model-driven approach to developing data services.
Modeling provides a graphical representation of the data resources in your environment, providing a
bird’s-eye view of a large system or giving you a way to create “zoomed” views of enterprise areas. In
a model diagram data services appear as boxes, while relationships appear as annotated lines
connection the data service representations. A relationship is only visible if both end points are also on
the diagram.

The result is real-time access to externally persisted data through a logical data model.

Data Services Platform: Samples Tutorial 62

Lab 20.1 Implementing and Testing a Relationship Function

The getCustomer Order() function is intended to return customer order information for a specific
customer. However, to accomplish that you need to add the ApparelDB data service’s
CUSTOMER _ORDER as a source schema, and then create a relationship with the target schema.

Objectives

In this lab you will:

Implement a relationship function, using XQuery Editor View to define the return data
service, by:

0 Identifying the data source.
0 Creating an overwrite map between source and target elements.
0 Creating a simple map between a parameter and a source element.

Test the relationship function created as a result of the mappings.

Instructions

1. Open CUSTOMER.ds in XQuery Editor View. The file is located in
DataServices\CustomerDB.

2. Select getCustomer Order(arg) from the Function drop-down list.

*

CUSTOMER:.ds* - {DataServicesHCustomer DB}

Select Function: d+] gebCUSTOMER_ORDER(arg)| ~

]

@Retum

0 = CUSTOMER_ORDER
ORDER_ID string
C_ID string
QRDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal

{?}Parameter: $arg =
Bl CUSTOMER:
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string

TELEPHONE_MUMEER string
55N 7 string

BIRTH_DAY 7 date
DEFAULT_SHIP_METHCD 7 string
EMAIL_NOTIFICATION ? short
MNEWS_LETTTER 7 short
OMLINE_STATEMENT ? short

TOTAL_ORDER_AMT decimal
SALE_TAY_AMT decimal
SHIP_TO_ID string
SHIP_TO_NM string
BILL_TC_ID string
ESTIMATED _SHIP_DT date
STATUS string
TRACKING_MO ¥ string

LOGIN_ID ? string o DATE_INT 7 long

“

T IBEEY

{‘\ ‘

¥Query Editor Wiew [Saurce Wiew | Test Wiew | QUery Flan View

Figure 20-1 XQuery Editor View of getCustomer_Order Function
3. In Data Services Palette, expand the ApparelDB and CUSTOMER_ORDER . ds folders.
4. Drag and drop CUSTOMER_ORDER() into XQuery Editor View.

5. In XQuery Editor View, create an overwrite mapping between the CUSTOMER ORDER source
and Return elements by completing the following steps:

a. Press Ctrl.

b. Drag and drop the source node's CUSTOMER ORDER* element onto the Return
type's CUSTOMER ORDER element.

Data Services Platform: Samples Tutorial 63

6. Drag and drop the parameter’s CUSTOMER _ID element onto the source node's C_ID element.
Confirm that the getCustomer Order() function is as displayed in Figure 20-2.

CUSTOMER. ds* - {DataServicesHCustomerDE,

Select Function:|d+] getCUSTOMER_ORDER(arg)| ~

{?}Parameter: §arg 5 |~ —»

=4For: §CUSTOMER_ORDER = U

@ Return

D

= CUSTOMER.
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE date
EMAIL_ADDRESS string
TELEPHOME_MUMBER string
95M 7 string
BIRTH_DAV ? date
DEFALLT _SHIP_METHOD 7 string
EMAIL_WNOTIFICATION ? shark
MEWS_LETTTER ? short
OMNLINE_STATEMENT 7 short
LOGIN_ID 7 string

[CUSTOMER_ORDER. *
ORDER_ID string
C_ID string
OQRDER_DT date
SHIP_METHOD_DSC string
HANDLING _CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAX_AMT decimal
SHIP_TO_ID string
SHIP_TO_NM string
BILL_TO_ID string
ESTIMATED_SHIP_DT date
STATUS string
TRACKING_MO 7 string
DATE_INT 7 long

-E-CUSTOMER _ORDER.
ORDER_ID string
C_ID string
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING _CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_CRDER_AMT decimal
SALE_TAX_AMT dedimal
SHIP_TO_ID string
SHIP_TO_MM string
BILL_TO_ID string
ESTIMATED_SHIP_DT date
STATUS string
TRACKING_MO ? string

] DATE_INT 7 lang

[InESY

ﬁ}| Where $arg/CUSTOMER,_ID = $CUSTOMER _ORDER/C_ID

=

Design View | ¥Query Editor Yiew [Source Yiew | Test View | Query Plan Yiew

Figure 20-2 Joined and Mapped Function

7. Save your work and then build the DataServices project.

8. Open CUSTOMER .ds in Test View and run a test by completing the following steps:
Select getCUSTOMER _ORDER (arg) from the Function drop-down list.

Click Browse, navigate to, and open the
<beahome>\weblogic81\samples\LiquidData\EvalGuide directory.

Select the customer.xml file.

Look In: ‘C] liquiddata

-]

£ AlterTable [MyPartal

0] CreditRatingw's [MyQueries
2 CustomerManagementwebapp] schemas

0] DataServiceClient Casa

Caeb [C) #MLFiles

0 excel [¢3) customer.xml
T FlatFiles

.

Mame: | cuskomer, xml

Type: |)<ML Files

-]

Figure 20-3 Select XML File

9. Click Select. The contents of the file are inserted into the Parameters field.

Data Services Platform: Samples Tutorial

64

CUSTOMER. ds - {DataServices M Customer DB}

Select Function:

5_LETTTER =0<(MEWS_LETTTER > <OMNLINE_STATEMENT =1 </OMNLINE_STATEMENT > <fns0iCUSTOMER >

H-_ﬂ 0etCUSTOMER_ORDERarg) [~ |

Parameters
f1:CUSTOMER arg: Erowse... | | Paste ReSUHI | Insert Template |
<ns:CUSTOMER xmins:ns0="Id:DataServices/CustomerDB/CLISTOMER" - <CUSTOMER_ID>CUSTOMER3<[CUSTOMER,_ID> <FIRST_MAME »Britt </FIRST_N [«
AME = <LAST_MAME =Pierce </LAST_MAME> < CUSTOMER _SINCE >2001-10-01</CUSTOMER_SIMNCE » <EMAIL_ADDRESS > J0HN_3@att. com</EMA
IL_ADDRESS> <TELEPHOME_MUMBER »92587731 259 </TELEPHOME_NUMBER> <33M>647-73-1259 (35N> <BIRTH_DAY >1952-05-09 </EIF
TH_DAY> <DEFAULT_SHIP_METHOD=PRIORITY-1 </DEFALLT_SHIP_METHCD <EMAIL_NOTIFICATION>1 </EMAIL_NOTIFICATION:= <NEY

Mumber Elernent (b path)
Limit elements in array results to:
| 500 ‘ | CUSTOMER_ORDER [+ |
[start Client Transaction [w] Yalidate Results
Design Yiew | ®Query Editor Yiew | Source Yiew | Test View [Query Flan View
Figure 20-4 Select XML File
10. Click Execute. The order information for CUSTOMER3 should appear.
Reslt | [Results are valid. Text ML ‘
- <k1:CUSTOMER _ORDER xmins:t1="ld:Dataservices/ApparelDE/CUSTOMER _ORDER" = E
<ORDER_ID> ORDER_3_0 </ORDER_ID>
<C_ID> CUSTOMER3 </C_ID>
<ORDER_DT> 2001-10-01 </ORDER DT>
<SHIP_METHOD_DSC:= PRIORITY-1 </SHIP_METHOD_DSC:
<HANDLING_CHRG_AMT > 6.8 </HANDLING_CHRG_AMT =
<SUBTOTAL_AMT > 649.85 </SUBTOTAL_AMT=
<TOTAL_ORDER_AMT> 656.65 </TOTAL_ORDER_AMT >
<SALE_TAZ_AMT> O <fSALE_TAX_AMT:>
“SHIP_TO_ID> ADDR_3_0 </SHIP_TO_ID>
<SHIP_TO_WM: Britt Pierce </SHIP_TC MM
<BILL_TO_ID= CC_3_1 </BILL_TO_ID>
<ESTIMATED _SHIP_DT:» 2001-10-03 </ESTIMATED_SHIP_DT=
<5TATUS> CLOSED </STATUS> E|
ThAss . annen n dida rrnasuTe

[l

Design Yiew | ®Query Editor Wiew | Source Yiew | Test View [Query Plan Yiew

Figure 20-5 Relationship Test Results

Lab 20.2 Creating a Model Diagram for Logical Data Services

Model diagrams display the basic structure of the data returned by a data service. A model diagram lets

you view a selected set of data services and the relationships between them. The main purpose of the

diagram is to help you envision meaningful subsets of the model, but it can also be used to define new

artifacts or edit existing artifacts.

Objectives

In this lab, you will:

Import a schema that provides a logical and unified representation of two separate physical

data sources.

Create a basic model diagram by adding data services to the imported logical data service.

Data Services Platform: Samples Tutorial

65

Create relationship functions between the modeled data services.

Instructions

1. Import the OrderManagement schema into the DataServices project folder by completing the
following steps:

Right-click the DataServices project folder.
a. Choose Import.

b. Navigate to and open the <beahome>\weblogic81\samples\LiquidData\EvalGuide
directory.

c. Select the OrderManagement folder.

d. Click Import. A new folder, OrderManagement, is created in the DataServices project. The
imported schema contains logical representations of the two Order Management Systems
(Apparel and Electronics), which make the two systems appear as if they are a single Order
Management System.

2. Create a sub-folder within the Models folder by completing the following steps:
a. Right-click the MODELS folder, located in the DataServices folder.
b. Choose New — Folder.
c. Enter Logical in the Name field.
d. Click OK.
3. Create a new logical model diagram by completing the following steps:
a. Right-click the Logical folder.
b. Choose New — Model Diagram.
c. Enter OrderManagement Logical Model.md in the Name field.
d. Click Create.
4. Create a model for the OrderManagement data services by completing the following steps:
a. Expand the CustomerManagement, OrderManagement, and ServiceDB folders.

b. Drag and drop the following -ds files into the model:

Data Service File Located In:
customerProfile.ds CustomerManagement
address.ds OrderManagement
Customer.ds OrderManagement
customerOrder.ds OrderManagement

customerOrderLineltem.ds | OrderManagement

orders.ds OrderManagement
product.ds OrderManagement
service_case.ds ServiceDB

Data Services Platform: Samples Tutorial 66

Y our model diagram should be similar to that displayed in Figure 20-6. Notice that relationships
between data services already exist. These relationships were generated during the Import Source
Metadata process, and are based on the foreign key relationship defined in the underlying relational
data.

&8 Lvatuation - BLA Webd ogic Warkshap - Orderblanagement_Lagcal_Sedelmid

Bo U e fwtd AL Geb S wwde 1w
DEEd s ~iaBle+ sl EEE R~ HEN LS8
| Oreriamgemers gl Mndel el L

@ s

| s CAs

| | e moen L 1T
|1 iy [foamaersy | F ettt ety ot

@ Servw Burrng we i

Figure 20-6 Model Diagram for Logical Data Services

5. Create a relationship between the CustomerProfile and ADDRESS data services by completing the
following steps:

a. Drag and drop the customer_id element (CustomerProfile) onto the CustomerID element
(Address).

b. Click Finish in the Relationship Properties window.

6. Create a relationship between CustomerProfile and SERVICE CASE data services by completing
the following steps:

a. Drag and drop the customer_id (CustomerProfile) onto the CUSTOMER _ID element
(SERVICE_CASE).

b. Click Finish in the Relationship Properties window.

Data Services Platform: Samples Tutorial 67

@ Evaluation - BIA Weblogic Werkahep - Ordetibanagement_|ogical Medelmd

Bl G e Pt A (b Dok e e
DE@@ ~~i aBl++aaudEEEE-~“ HEE QLS8

-
L4 L v
<= Custemertrutil
o [5 @ customen oncen
§ simiaas B CrdeiD ey
-, @ o g
[FRTp— @ 3 & Cromtins e
[T ——— @ = & Smartittod oy
@ o srce ! ey @ o @ HardngCurss sidecedt |-
@ el adens ! ot g] @ Sibtoid e
B iektere cunte © ey @ o [ERpe——— @ Tt |
At a— b - CERE- - -
@ by e @ o B Sus e
@ ek sho_peihed T e] @ ShwTuiems g
g] v
z 3 @ @ CriveSisment st
(R = . 1 antoen)
I et s Py ufide]) 1 At
et | Custom papeRn
. QoA 1 aetDodesstort st 204)
@ ot aatany
v s sy
¥ BERVICE_CABE ittt de A
e - e B sty pettd et T Tee i p—
W s Y- SEE— ading,sharge xac b mbdererseer |
e & moouc L e 5@ omoms_ome soe
: e 3 u | Kl
= B CampeytD ey . g —
e @ 8 © oD sy |
@ v =1 e] | It
= o -4 B Cuwery sedeomd te
= @ u -1 { pr——
= o L 1 R r———
@ L T o - 1 [FE T
=y [—— |
[wetthextrnsatidersd) . |
1 sovace_casigy | i I potABOrderst) |1 customun_onoem e &
) [Pemax i) Ll o S £ ol
T
7 6 R
I T = %]
@ S Eurreg ve CEfE

Figure 20-7 New Relationships Defined

7. Open CustomerProfile.ds in Design View. You should see two new relationship functions,
getAddress1() (which navigates to the Address logical data service, located in OrderManagement)
and getSERVICE CASEI1() (which navigates to the SERVICE CASE physical data service,

located in ServiceDB).

CustomerPrfile, ds* - {DataservicesHCustomerianagemert],

X

| /{2 CustomerProfile Data Service

= @ CustomerPrafile
@ customer +
@ customer_id xsdistring
@ first_name xsdrstring
@ last_name xsd:string
@ customer_since 7 xsd:date
qetAddress @ emall_address ? xsd:string
@ telephone_number ? xsd:string
@ ssn? asdistring
@ hirth_day ? xsdrdate
QEtSERYICE CASE @ default_ship_method ? xsd:sking
© email_notification ? xsd:shert
(@ news_letter ? xsdishort
@ online_staterent ? xsd:short
@ login_id xsdistring
E @ orders?
B @ order*
@ order_id xsdhstring
@ customer_id xsd:string
@ order_date xsdidate [=]

e o et AIC LSt DTS
—Fh

= getCustomerProfile

Address

SERVIC. ..

.ﬁ ApparelDE/CUSTO...
.ﬁ ApparelDE/CUSTO...
.ﬁ CustomerDB/CUST. ..
.@ WehServicasigetcr ...

<

B

Design View [#Query Editor View Query Plan Vi

Figure 20-8 New Functions

8. Save your work.

Lesson Summary

In this lab, you learned to:

Import a schema that provides a logical and unified representation of two separate physical

data sources.

Create a basic model diagram by adding data services to the imported logical data service.

Create relationship functions between the modeled

data services.

Data Services Platform: Samples Tutorial

68

Lesson 21 Running Ad Hoc Queries

Sometimes it is necessary to execute a query on functions associated with an application that is already
deployed. Rather than take the application offline to create a new query, DSP provides the
PreparedExpression class, which lets you create and run ad hoc queries on deployed applications.

Objectives

After completing this lesson, you will be able to:

Create an ad hoc query from within a DSP application.

Run an ad hoc query.

Overview

DSP includes a PreparedExpression class that lets you build an ad hoc query using remote data
sources, and then execute it using the Mediator API or DSP Control. Using the methods within the
PreparedExpression class, you can build queries on top of existing XDS functions belonging to
applications already deployed on an active local or remote server domain.

The process for running an ad hoc query is as follows:

1. Create a StringBuffer to hold the query.

2. Create an instance of the PreparedExpression class, using the prepareExpression method.
3. Create parameters for the ad hoc query, using the bind<DataType> methods.
4

Submit the query and review the results, using the Mediator API or DSP Control.

Lab 21.1 Creating an Instance of the PreparedExpression Class
The first steps in creating an ad hoc query are to instantiate a StringBuffer and the PreparedExpression
class. For the latter instance, you use the prepareExpression method of the DataServiceFactory class,
which accepts three parameters:
Initial Context
Application Name
XQuery String

For example:

PreparedExpression pe = DataServiceFactory.prepareExpression(
getlnitialContext(),
"Evaluation',

xquery.toString(Q)
):

Objectives

In this lab, you will:

Data Services Platform: Samples Tutorial 69

Build a StringBuffer instance to hold the ad hoc query.

Create an instance of the PreparedExpression class.

Instructions

5. Create a new Java project in the Evaluation application, and name it AdHocClient.
Create a new Java class in the AdHocClient project, and name it AdHocQuery.

Open AdHocQuery . java.

®© =N

Import the following Java classes:

import com.bea.ld.dsmediator.client._DataServiceFactory;

import com.bea.ld.dsmediator.client._PreparedExpression;

import com.bea.xml_.XmlObject;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.xml_.namespace.QName;

import weblogic.jndi.Environment;

Note: You can also import the necessary Java classes by first adding the code specified below, and
then pressing Alt + Enter.

9. Specify the initial context for the query, by adding the following code after the first curly brace:

public static InitialContext getlnitialContext() throws
NamingException {
Environment env = new Environment();
env.setProviderUrl (*'t3://1ocalhost:7001");

env.setlnitialContextFactory(*"'weblogic. jndi._WLInitialContextFactory')

env._setSecurityPrincipal ("weblogic™);
env.setSecurityCredentials('weblogic');

return new
InitialContext(env.getlnitialContext().getEnvironment());

}
10. Add the main argument, by adding the following code after the initial context:

public static void main (String args[]) {
System.out.printIn(''========== Ad Hoc Client ============="");
try {
} catch (Exception e) {
e.printStackTrace();

}
}

Data Services Platform: Samples Tutorial 70

Lab 21.2

11. Build a StringBuffer instance to hold your query. For example, add the following code after the
line: try {:
StringBuffer xquery = new StringBuffer();

xquery.append(‘'declare variable $p_firstname as xs:string external;
\n");
xquery.append(‘'declare variable $p_lastname as xs:string external;
\n"");

xquery.append(‘'declare namespace
nsl1=\"1d:DataServices/MyQueries/XQueries\'; \n"");

xquery.append(‘'declare namespace
nsO=\"1d:DataServices/CustomerDB/CUSTOMER\"; \n\n'");

xquery.append(*'<ns1:RESULTS> \n'");
xquery.append(*'{ \n'");
xquery.append(* for $customer in ns0:CUSTOMERQ) \n'");
xquery .append (" where ($customer/FIRST_NAME eq $p_firstname \n');
xquery .append (" and $customer/LAST_NAME eq $p_lastname) \n"");
xquery.append(* return \n'");
xquery.append(* $customer \n'");
xquery.append(*" } \n'");
xquery.append(*'</ns1:RESULTS> \n'");

12. Use the prepareExpression method of the Mediator API’s DataServiceFactory class to create an
instance of the PreparedExpression class, by adding the following code:

PreparedExpression pe = DataServiceFactory.prepareExpression(

getlnitialContext(), "Evaluation'™, xquery.toString(Q));

Defining Ad Hoc Query Parameters

After you create an instance of the PreparedExpression class, you need to specify the parameters that
will be passed when the ad hoc query is submitted. To pass parameters, you use one or more
bind<DataType> methods, such as bindString and bindInt.

Objectives

In this lab, you will:

Use the bind<DataType> methods of the PreparedExpression instance to pass parameters.
Invoke the query.
Display the query’s XML results.

Instructions

1. Pass parameters by using the bindString method of the PreparedExpression instance. For example,
add the following code to the AdHocQuery . java file:

pe.bindString(new QName("'p_Ffirstname'), "Jack');
pe.bindString(new QName("'p_lastname™), "Black'™);

2. Invoke the executeQuery method to return the query results in an XmlObject.

Data Services Platform: Samples Tutorial 71

XmIObject obj = pe.executeQuery();

3. Enter the code necessary to return the XmlObject and display the XML. For example:
System.out.printin(obj.toString());

Lab 21.3 Testing the Ad Hoc Query

You are now ready to test the ad hoc query, which is set to return information for Jack Black.

Objectives

In this lab, you will:

Build the AdHocClient project.

Run the AdHocQuery. java

Instructions
1. Build the AdHocClient project.
2. Inthe AdHocQuery . java application, click the Start icon (or press Ctrl + F5).

3. Confirm that you can retrieve customer profile information for Jack Black.

Output X
Trying to create process and attach to 19581...
D:vbeatjdkld:s 05\bind javaw.exe -Xdebug -Xnoagent -Djava.compiler=NONE
Process started
Attached successfully.
==================== Data Jervice Client ==s=s===============
<ns0:RESULTS xmlns:ns0="1d:Datafervices /Mylueries/lueries">
<nsl: CUSTOMER xmlns:insl="ld:DataServices/CustonerDB/CUSTOMER >
LCUSTOMER_ID:-Jack</CUSTOMER ID>
<FIR3T NAME-Jack</FIR3T NAME:
LLAST NAME>Elack</L&3T_ NAME>
<CUSTOMER_SINCE>2001-10-01</CUSTOMER_3INCE>
<EMATL_ADDRESS»JackBhotmail.coms /EMATL_ADDRESS:
<TELEPHONE_NUMBER-2145134119< /TELEPHONE_NIMEER:
LHENE295-13-4119 /551
<BIRTH DAT>1970-01-01</BIRTH DAY>
<DEFAULT SHIP METHOD-AIR</DEFAULT SHIP METHOD
<EMATL NOTIFICATION:1</EMATL_ NOTIFICATION-
<NEWS_LETTTER-0< /NEWS LETTTER>
<ONLINE_STATEMENT-1</0NLINE_STATEMENT>
</nsl: CUSTOMER:-
</ns0:RESULTE>

Debugging Finished

[0 L]

Figure 21-1 Results of Ad-Hoc Query () Function

Code Reference for an Ad Hoc Query

import com.bea.ld.dsmediator.client.DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com.bea.xml_XmlObject;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.xml.namespace.QName;
import weblogic.jndi.Environment;

public class AdHocQuery
public static InitialContext getlnitialContext() throws NamingException {

Environment env = new Environment();
env._setProviderUrl (*'t3://1ocalhost:7001");

Data Services Platform: Samples Tutorial

env.setlnitialContextFactory(*'weblogic.jndi _WLInitialContextFactory');
env.setSecurityPrincipal ("weblogic™);
env._setSecurityCredentials("'weblogic™);
return new

InitialContext(env.getlnitialContext().getEnvironment());
3
public static void main (String args[]) {
System.out._printin(" Ad Hoc Client

try {
StringBuffer xquery = new StringBuffer();

xquery.append(*‘declare variable $p_firstname as xs:string external; \n");
xquery.append(“'declare variable $p_lastname as xs:string external; \n");

xquery.append(*'declare namespace nsl=\"ld:DataServices/MyQueries/XQueries\"; \n'");

xquery.append(*'declare namespace ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n'");

xquery.append(*'<ns1:RESULTS> \n");
xquery .append(*'{ \n");
xquery .append (™ for $customer in nsO:CUSTOMER(Q) \n");
xquery .append (™" where ($customer/FIRST_NAME eq $p_Ffirstname \n');
xquery .append("’ and $customer/LAST_NAME eq $p_lastname) \n'');
xquery .append (™ return \n");
xquery .append (™ $customer \n");
xquery.append(** } \n');
xquery.append(*'</ns1:RESULTS> \n");

PreparedeExpression pe = DataServiceFactory.prepareExpression(getinitialContext(),
"Evaluation', xquery.toString());

pe.bindString(new QName(“'p_firstname™), "Jack');

pe.bindString(new QName("'p_lastname'), "Black');

XmlObject results = pe.executeQuery();

System.out.printin(results);

} catch (Exception e) {
e.printStackTrace();
3

Lesson Summary

In this lesson, you learned how to:

Create a StringBuffer instance to hold the ad hoc query.

Create an instance of the PreparedExpression class, using the prepareExpression method of
the Mediator API’s DataServiceFactory class.

Create parameters for the ad hoc query, using the bindString method of the
PreparedExpression class.

Submit the query and review the results, using the Mediator API.

Review the XML output.

Data Services Platform: Samples Tutorial

73

Lesson 22 Creating Data Services Based on SQL Statements

The SQL-Exit feature lets developers re-use SQL statements that are currently available in the source
system. These user-defined SQL statements are bound in XQuery as external functions, in the same
manner as all DSP sources.

Objectives

After completing this lesson, you will be able to:

Create data service based on a user-defined SQL statement.

Use that data service to retrieve customer and address information together.

Overview

Configuring the SQL-exit data source involves the following steps:

1. Create the .xsd schema that describes the SQL results.
2. Create the data service, including annotations, describing the result set.
3. Associate an XML Type for the data service to the schema previously created.

When a user-defined SQL statement is used within other functions, the DSP engine will bind the SQL
statement as a sub-query in a new SQL statement. To disable this functionality, the metadata property
is Subquery, stored in the function's pragma, can be set to value false.

Lab 22.1 Creating a Data Service from a User-Defined SQL Statement

The SQL statement that will be used to create a new data service involves a join between the
CUSTOMER and ADDRESS data services. You need to manually add all the necessary metadata to
the new data service, before this query can execute. To do so, you will use metadata previously
imported from the CUSTOMER and ADDRESS tables.

Objectives

In this lab, you will:

Import an SQL statement as source metadata for a physical data service.

Generate a new data service.

Instructions

1. Open the SQL_Statement.txt file, located in the
<beahome>\weblogic81\samples\LiquidData\EvalGuide folder.

2. Copy the text within the file. The text is:

select "A"_"CUSTOMER_ID", "A"_"FIRST_NAME", "A"_"LAST_NAME",
“B"_"ADDR_ID", "B"."CITY", "B"."STATE", "B"."ZIPCODE", "B"."COUNTRY"
from "RTLCUSTOMER™.'"CUSTOMER™" ™A™, "RTLCUSTOMER'.'"ADDRESS"™ "B'" where
A" _""CUSTOMER_ID' = "B"™.""CUSTOMER_ID" AND *"B"."STATE™ = ?

3. Create a new folder in the DataServices project and name it SQL. You will use this folder to store
a new data service based on user-defined SQL statements.

Data Services Platform: Samples Tutorial 74

Right-click the SQL folder and select Import Source Metadata.
Select Relational from the Data Source Type and click Next.
Select the SQL statement radio button and click Next. The SQL Statement page opens.

Paste the copied text into the SQL Statement field.

© N v ok

Select VARCHAR from the Type column for Position 1 and click Next. The Summary page
opens.

22 SQL Statement El

SQL Statement
Enter SELECT statemnent, Use ? For parameters.

clect
" "CUSTOMER_ID", "A" "FIRST_MAME", "A""LAST_MAME", "B"."ADDR_ID", "B" "CITY", "B "STATE", "B"."ZIPCOD

[E1] v

Parameters
Enter parameter types.,

Position Type
1 WARCHAR

]

2

3

[l

‘ Previous | | et I | ‘ | Cancel ‘

Figure 22-1 SQL Statement

9. Rename the data service to MySQL.

2% Summary @

The following data service(s) will be created. Edit suggested name(s) as needed.

‘ BML Type Marne ‘
e=]|
‘ sqlQuery MySQL IIZI

Location | Ci\bealuser_projectstapplications\EvaluationiDataServicesiSGL ‘ ‘ Browse... ‘

[Previous | | | [Fmish | [caneat |

Figure 22-2 Summary for SQL-Based Data Service

10. Click Finish. The MySQL data service and associated schema files are added to the SQL folder.

Data Services Platform: Samples Tutorial

75

Lab 22.2 Testing Your SQL Data Service

You are now ready to test whether the MySQL data service can retrieve all customers who reside in
California.

Objectives

In this lab, you will:

Test the MySQL data service.

View the results.

Instructions

1. Open MySQL.ds in Test View.

2. Select MySQL(x1) from the Function drop-down list.
3. In the parameter box enter CA
4

Click Execute. The result set will show customer and address information for the state of
California.

Result Iz Results are valid. Text HML ‘

- sl MyaQL xmins:ns0="ld:DataservicesSQL/MySL" =
<CUSTOMER _ID: CUSTOMER4 <{CUSTOMER _ID:=
<FIRST_MAME> Steve =/FIRST_MAME:
<LAST_MAME> Ling </LAST_NAME>
<ADOR_ID:= ADDR_4_1 </ADDR_ID:>
<CITY> San Jose </CITV>
=STATE> CA </STATE=
«ZIPCODE= 95131 </ZIPCODE>
SCOUNTRY > USA <[COUNTRY >

<fnsl:MySOL=

+ =ns0:MySQL xmins:ns0="ld:DataServices/SOLIMySOL" =

+ s Mya0L xmins:ns0="ld:DataservicesSQL/MySOL" = L

+ =ns0:MySOL xrmlns:ns0="ld:DataServices/SOLIMySOL" =

Design Yiew | xQuery Editor View | Source View | Test View [Query Flan Yiew

Figure 22-3 Test Results for an SQL-Based Data Service
Lesson Summary
In this lesson, you learned how to:

Manually create a data service out of an SQL statement.

Test the SQL-based data service.

Data Services Platform: Samples Tutorial

Lesson 23 Performing Custom Data Manipulation Using Update

Objectives

Overview

Override

DSP permits customized updates through the use of the update override feature. The update override
logic, which is triggered prior to submitting data, can be used for custom data manipulation, update
overrides, logging, debugging, or other custom logic needs.

In this lesson, you will write an update override that computes total orders, based on the quantity and
price of each order.

After completing this lesson, you will be able to:

Write customized data manipulation through an update override.

Associate an update override with a data service.

An update override, which you assign to a data service, performs custom logic prior to submitting data.
The update override is a Java class that implements the com.bea.sdo.mediator.UpdateOverride class.
Using that class’s performChange (DataGraph graph) method, a Data Graph instance of the current
data service is returned. The Data Graph can then be manipulated in using the update override logic.

For example, you can get the CustomerProfileDocument DataObject through the data graph
(CustomerProfileDocument) graph.getRootObject();
You could also get the Change Logging summary through graph.getChangeSummary()

On return of the Data Graph, the following conditions apply:

Return true: Proceed with the rest of update.
Return false: Stop the update.

Throw Exception: Rollback.

Data Services Platform: Samples Tutorial 77

Lab 23.2 Creating an Update Override

An update override enables custom manipulation of data within data service.

Objectives

In this lab, you will:

Create a new Java class that will serve as the basis for an update override.
Import and implement an update override class.
Implement the performChange method.

Write customized update logic.

Instructions

1.

5.

6.

Create a new Java class by completing the following steps:

a.
b.
C.

d.

Right-click the CustomerManagement folder, located in the DataServices folder.
Choose New — Java Class.

Enter CustomerProfileExit in the File Name field.

Click Create.

Build the DataServices project.

Open the CustomerProfileExit. java file.

Import and implement the update override, by completing the following steps:

a.

Import the update override by entering the following code:

import com.bea.ld.dsmediator.update.UpdateOverride;

Implement the update override by modifying the public class CustomerProfileExit code, as
follows:

public class CustomerProfileExit implements UpdateOverride
Press Alt + Enter, and then click OK to add the performChange(DataGraph) signature.

Implement the performChange(DataGraph graph) method by modifying the code to read as
follows:

public boolean performChange(DataGraph graph)

The DataGraph passed in the argument contains the current SDO instance with all changes,
including the change summary.

Access the update override by casting the root object of the data graph to your SDO. Add the
following code, after the opening braces:

CustomerProfileDocument customerDocument =
(CustomerProfileDocument) graph.getRootObject();

Press Alt+Enter. With this CustomerProfileDocument instance, you can get and set values that
will be applied to the SDO before it is submitted.

Data Services Platform: Samples Tutorial

78

7. Write update logic to compute the total order amount, based on the sum of each order item’s
quantity multiplied by its price (sum of price*qty). You can use this to get the total of each item’s
quantity*price and to set the total order amount to this value.

Note: Use BigDecimals for computations.

For example:

Order[] orders =
customerDocument.getCustomerProfile() .getCustomerArray(0).getOrders()
.getOrderArray();

for (int x=0; x<orders.length; x++) {
BigDecimal total = new BigDecimal (0);
OrderLine[] items = orders[x]-getOrderLineArray();
for (int y=0; y < items.length; y++) {

total =
total .add(items[y].getQuantity() .multiply(items[y].getPrice()));

}
orders[x].setTotalOrderAmount(total);

}

8. Press Alt + Enter, for all flagged items.

9. Enter the code necessary to return the results. For example:

System.out.printIn(’'>>> CustomerProfile.ds Exit completed");
return true;

}

}

10. Confirm that your code is as displayed in Figure 23-1.

11. Build DataServices project.

CustomerProfilsExit, java* - {DataServicesH| CustomeriManagement),

import
import
import
import
import
import

public
{

package CustonerManagement;

I public boolean performChange (DataGraph graph)

O]

com.bea, 1d. dspediator. update. UpdateOverride;

comnonj. sdo.DataGraph:

Java.math.BigDecimal;

org. operuri. temp. datafervices. schenas. custonerProfile. CustonerProfileDocument;

org. openuri. temp. dataServices. schenas. customerProfile. CustomerFrofileDocunent. CustonerProfile. Customer. Orders. Order:

oryg. openurl. temp.datafervices. schenas.custonerProfile. CustonerfrofileDocunent, CustonerProfile, Custoner. Jrders. Drder. Orderline;

class CustomerProfilefExit implements UpdateOverride

CustonerProfileDocunent customerDocument = (CustomerProfileDocument) graph.getRootObiecti):
Order[] orders = customerDocument.getCustomerProfile().getCustomerdrray(0).getlrders().getOrderhrray():
for jimt x=0; x<orders.length; x++) {
BigDecimal total = mew BigDecimal (0):
Orderline[] items = orders[x].getOrderLinedrray():
for jint ¥=0; y < items.length; y++ {
total = total.addiitems[v].getQuantityi). mulciplyiitens[y].getPrice()));

'
orders[x].setTotalOrderinount(total) ;

'

return true;

Figure 23-1 Update Override Code

Data Services Platform: Samples Tutorial

79

Lab 23.3 Associating an Update Override to a Logical Data Service

Before you can use the update override, you must associate it with a specific data service.

Objectives

In this lab you will:

Use the Property Editor to associate an update override with a specific data service.

Build the data service to include the update override.

Instructions
1. Open the CustomerProfile data service in Design View.

2. Click the CustomerProfile header to activate the Property Editor. (If the Property Editor is not
open, press Alt + 6.)

3. Click the update override class field.
4. Navigate to the DataServices. jar\CustomerManagement folder.

5. Select CustomerProfileExit.class and click Open. The update override class field is now
populated with CustomerManagement.CustomerProfileExit.

6. Build the DataServices project.

Lab 23.4 Testing the Update Override

As with any other data service, you should test the update override to ensure that it works properly.

Objectives

In this lab you will:

Change order information from within your CustomerManagementWebApp application.

Confirm update override results.

Instructions

1. Open CustomerPageFlowController. jpf, which is located in the
CustomerManagementWebApp\CustomerPageFlow folder.

2. Click the Start icon to open Workshop Test Browser.

3. Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.

Note: It may take a few seconds before the information is returned.
Change the order information by adding, modifying or deleting order lines.
Click Submit All Changes.

Click Back to return to the CUSTOMER ID page.

Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.

® NN s

Confirm if the updated total order information was computed.

Data Services Platform: Samples Tutorial

80

Update Override Reference Code

package CustomerManagement;

import com.bea.ld.dsmediator.update.UpdateOverride;

import commonj.sdo.DataGraph;

import java.math.BigDecimal;

import org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDocument;

import
‘g-openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDocument.CustomerPr
‘ile.Customer.Orders.Order;

import
‘g-openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDocument.CustomerPr
‘ile.Customer.Orders.Order.OrderLine;

public class CustomerProfileExit implements UpdateOverride
{

public boolean performChange(DataGraph graph)

{

CustomerProfileDocument customerDocument = (CustomerProfileDocument)
-aph.getRootObject();

Order[] orders =
iIstomerDocument.getCustomerProfile() .getCustomerArray(0).getOrders() -getOrderArray();

for (int x=0; x<orders.length; x++) {

BigDecimal total = new BigDecimal(0);

OrderLine[] items = orders[x]-getOrderLineArray();

for (int y=0; y < items.length; y++) {

total = total.add(items[y].getQuantity().multiply(items[y].getPrice()));

}
orders[x] -setTotalOrderAmount(total);

}

return true;

Lesson Summary

In this lesson, you learned how to:

Create an update override for a logical data service.

Write logic in the update override to access the XML bean and perform custom data
manipulation prior to submitting.

Associate an update override to the data service.

Data Services Platform: Samples Tutorial 81

Lesson 24 Updating Web Services Using Update Override

You can also use update overrides to update a Web service.

Objectives

After completing this lesson, you will be able to:

Write an update override function for performing manual updates.

View your results.

Overview

Unlike relational data sources, Web service updates are not automated, because DSP is unable to
determine how to decompose a read function into a corresponding write. To enable DSP to perform the
necessary writes, you must create an update override for the physical data service, and then implement
the necessary writes in that update override. For example:

public class CreditRatingExit implements UpdateOverride {
public boolean performChange(DataGraph datagraph){

// don"t do anything if there are no changes
ChangeSummary cs = datagraph.getChangeSummary();
if (cs.getChangedDataObjects().size()==0)

return true;

// get changed values from SDO

GetCreditRatingResponseDocument creditRating =
(GetCreditRatingResponseDocument) datagraph.getRootObject();

int newRating =
creditRating.getGetCreditRatingResponse() .getGetCreditRatingResult().getRating();

String customerld =
creditRating.getGetCreditRatingResponse() .getGetCreditRatingResult().getCustomerld();

// update CreditRating web service

try {

CreditRatingDBTestSoap ratingWS = new
CreditRatingDBTest_Impl().getCreditRatingDBTestSoap();

CreditRating rating = new CreditRating(newRating,customerld);
ratingWS.setCreditRating(rating);
} catch (Exception e) {
e.printStackTrace();
return false;
}
System.out.printIn(*WEB SERVICE EXIT COMPLETE!');
return true;

Data Services Platform: Samples Tutorial 82

Lab 24.1 Creating an Update Override for a Physical Data Service

The clientgen utility in WebLogic generates a Web Service-specific client _jar file that client
applications can use to invoke Web Services. You simply need to specify the WSDL URI, the
name and location of the client. jar file to generate and a package structure. Clientgen is
available as an ant task as well as a Java application that can be invoked from the command line.

For more information on clientgen see:

http://e-docs.bea.com/wls/docs81/webserv/anttasks.html

Objectives

In this lab, you will:

Edit the WebLogic clientgen command to point to your WebLogic Server.
Run the clientgen utility.

Add the generated client _jar file to your application Library.

Instructions

Set the clientgen command line utility to generate a Web service client . jar file by completing the
following steps:

1.

A O T

Edit the setenv.cmd, located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide, to point to your WebLogic
Server installation. This will set the environment for running clientgen. For example:

call <beahome>\weblogic81l\server\bin\setWLSEnv.cmd
set CLASSPATH=d:\bea\weblogic81\server\lib\webservices.jar;%CLASSPATH%
echo %CLASSPATH%

Open the command prompt.

Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.
Run setenv.cmd.

Run clientgen.cmd to generate CreditRatingWSClient. jar.

In WebLogic Workshop add CreditRatingWSClient.jar to your application’s Libraries
folder. The . jar file should be located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

Data Services Platform: Samples Tutorial 83

http://e-docs.bea.com/wls/docs81/webserv/anttasks.html

Lab 24.2

Lab 24.3

Writing Web Service Update Logic in the Update Override

You now should set the update override class to the CreditRatingExit. This will let you get any updated
credit rating information, invoke the CreditRating Web service, and pass in the new value.

Objectives

In this lab, you will:

Import the CreditRatingExit. java file into the WebServices folder.

Set the update override class to the CreditRatingExit.

Instructions
1. Right-click the WebServices folder, located in the DataServices folder.
2. Choose Import.

3. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide and select
CreditRatingExit.java.

4. Click Import.
5. Build the DataServices project.

6. Open getCreditRatingResponse.ds in Design View. The file is located in the WebServices
folder.

7. In the Property Editor, set the update override class by selecting CreditRatingExit from
DataServices\WebServices.

8. Build the DataServices project.

Testing the Update Override

You are now ready to test whether the update override functions correctly.

Objectives

In this lab, you will:

Change a customer's credit rating.

View the results.

Instructions

1. Open CreditRatingDBTest.jws, located in the CreditRatingWS folder.

2. Click the Start icon. The Workshop Test Browser opens.

3. Enter CUSTOMERS3 in the customer id field and click getCreditRating(x1).
4. Click the Test XML tab.
5

Copy the SOAP body for the getCreditRating() function.
<getCreditRating xmlns="http://www.openuri.org/*>

<I--Optional :-->

Data Services Platform: Samples Tutorial

84

<customer_id>string</customer_id>

</getCreditRating>
Close the Workshop Test Browser.
Open getCreditRatingResponse.ds in Test View.

Paste the SOAP body into the Parameter field.

S

Change <customer_id>string</customer_id> to
<customer_id>CUSTOMER3</customer_id>.

10. Click Execute.

11. Click Edit and modify the credit rating. The update override is functioning correctly if you can
update the credit rating.

getCreditRatingResponse . ds - {DataServicesHwebServices), X
Select Function: =
‘-B getCreditRating(x1) |~ |
Parameters
tligetCrediRating wl: Browse.. | | Paste Result ‘ | Insert Template |
[<getCreditRating xmins="http: {fwww openuri.orgf"> [=]
<l--Optional:--=
<customer_id>CUSTOMER 3= customer_id>
</getCreditRating >
< 0]
Mumber Element (by path)
Limit elements in array results to:
‘ 500 | | getCreditRatingResponse |~ ‘

[start client Transaction 7] Validate Results

[Resuts ars valid, ‘ l:":l

- =GetCreditRatingResponse >
- <GetCreditRatingResult>
<Rating > 700 </Rating >
<Customerld:> CUSTOMER3 <fCustomerld>
ZGetCreditRatingResult >
<JGetCreditRatingResponse =

Result

¥Guery Editor View | Source Wiew | Test View [GQuery Plan view

Figure 24-1 Test View of Update Override for a Web Service

Data Services Platform: Samples Tutorial

Lab 24.4 Checking for Change Requirements

You can now use the Web service to perform update overrides.

Objectives

In this lab you will:

Change credit rating information from within your CustomerManagementWebApp
application.

Confirm update override results.

nstructions

1. Open CustomerPageFlowController.jpf, which is located in the
CustomerManagementWebApp folder. The Workshop Test Browser opens.
2. Click the Start icon.
3. Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.
4. Click Update Profile, change the credit rating information, click Submit, and then click Submit All
Changes.
5. Confirm if the credit rating was updated, by clicking Back, entering CUSTOMER3 in the
CUSTOMER ID field, and clicking Submit.
& Workshop Test Browser E][EWE
- = 3 < || -p,I’CustomerPageFIDngetCustomer.do,']sasslon\d=CM9IB1SwkmTWhmZJTVURGTTthnIszhK1XdetqdquQhUpZyW!138?547305| 4:";?&‘
|J\ BEA Weblogic Workshop™ __
L/ Version 8.1

Customer Profile

Name Smith, Joe
Customer Since 2001-10-01
Email Address JOHM_3@att.com
Telephone Number 287731269
SSN 647-73-1259
Birth Day 1952-05-09
Default Shippin
TR PRIORITY-1
Credit Rating 550

Update Profile

Orders

Figure 24-2 Workshop Test Browser View of Update Override Functionality

Lesson Summary

In this lesson, you learned how to:

Create an update override for a physical data service (Web service)

Associate the update override with a Web service client and write logic to invoke Web service
update operations.

Use the change summary to check whether there are changes needing to be written.

Data Services

Platform: Samples Tutorial 86

Lesson 25 Overriding SQL Updates Using Update Overrides

So far you have completed a few lessons on how update override functionality can be used for custom
data manipulation and web service updates.

In this lesson you will learn how custom SQL updates can be used for performing manual updates to a
relational source (table, view, stored procedure, or SQL Exit), using update overrides and JDBC.

Objectives

After completing this lesson, you will be able to:

Add update functionality to a previously created update override.

Write an update override for performing manual updates to a relational source (table, view,
stored procedure, or update override) via JDBC.

Create an update override for a physical data service.

Setup the update override to be a JDBC client and write logic to update the database table.

Overview

Update overrides are useful in situations where you need to perform some custom updates or create a
custom query.

In this particular case, since the previous update override lacks update functionality, you can add an
update statement to the override.

Lab 25.1 Adding SQL Update Statements to an Update Override File

You can add SQL update statements to an update override file, thereby enabling custom data
manipulations in relational databases.

Objectives

In this lab, you will:

Import the Java folder, which contains the MySQLEXit.java file.

Add SQL update statements to the Java file.

Instructions

1. Right-click the SQL folder located in DataServices project, choose Import, and select the Java
folder from the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.

Click Import and verify that the Java folder is added to the SQL folder.
Open MySQLEXxit.java, located in the DataServices\SQL\Java folder.
Locate the line “Type in your UPDATE SQL statements here”.

A

Enter the two following SQL statements and store them into updateStr and updateStr1l
respectively:

"UPDATE RTLCUSTOMER.CUSTOMER SET FIRST_NAME=?, LAST_NAME=? WHERE
CUSTOMER_ID=?"";

Data Services Platform: Samples Tutorial 87

Lab 25.2

Lab 25.3

"UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?, ZIPCODE=?, COUNTRY=?

WHERE ADDR_I1D=?"";

Your code should look like the following:

String updateStr = "UPDATE RTLCUSTOMER.CUSTOMER SET FIRST_NAME=?,

LAST_NAME=? WHERE CUSTOMER_ID=?"";

String updateStrl = "UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?,

ZIPCODE=?, COUNTRY=? WHERE ADDR_ID=?";

My3QLExit. java® - {DataServicesHSQL Javal

package S0L.Javar
HRBEETTIT

public class MyS(LExit implements UpdateOwerride
i
3 public boolean perfornChange {DataGraph graph)
{

if (graph.getChangeSumwary().getChangedbatalbiects().isEnpty()) |
return false:;
¥
else |
Connection mw_conn = null;
Prepareditatement m_stmt = null;
Prepareditatement m_stmtl = null:

String updateStr = "UPDATE RTLCUSTOMER.CUSTOMER SET FIRST HAME=2?, LAST HAME=? WHERE CUSTOMER TD=2";
String updateStrl = "UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?, ZIPCODE=?, COUNTRY=? WHERE RDDR ID=?";

DataferviceMediator dsm = (DataServiceMediator) Mediator.getInstance();

RelationalMetaData rmd = (RelationalMetaData) dsw.getDataderviceMetaData("ld:DataServices/SOL/MyS0L.ds");

String dsNawe = rmd.getDataSourceNames();

try {
My3QlDocument custhoc = (MySO0LDocument) graph.getRootObject():
Syatem. out.println("GRAPH —>>>" + custDoc. toScring()):

6. Save MySQLExit.java and close the file.

7. Build DataServices project.

Associating an SQL-Based Data Service and Update Override

You must now set the update override class to the MySQLEXit. This will let you get any updated

changes and pass the new value.

Objectives

In this lab, you will:

Associate the update override class with the MySQLEXit.

Confirm the settings in the Property Editor.

Instructions

1. Open MySQL.ds in Design View. (The file is located in the DataServices\SQL folder.

2. Click the MySQL Data Service header. The Property Editor opens.

3. In the Property Editor, set the update override class by selecting MySQLEXit from the

DataServices\SQL\Java folder.
4. Save the MySQL.ds file.

5. Build your DataServices project.

Testing Updates

You are now ready to test whether the update override functions correctly.

Data Services Platform: Samples Tutorial

88

Objectives

In this lab, you will:

Test the update override, by using the MySQL data service to make changes to the underlying
relational data source.

View the results.

Instructions
1. Open MySQL.ds in Test View.

2. Select MySQL(x1) from the Function drop-down list, enter CA, and click Execute.
3. Click Edit.
4

Test if updates are getting propagated to the database, by completing the following steps:

a. Select any Customer node.
b. Modify City and Zip Code elements.

c. Click Submit to issue the update override commit command and propagate changes to the
database.

5. Select MySQL(x1) from the function drop-down list, enter CA, and click Execute to confirm that

your database is updated.

Lesson Summary

In this lesson, you learned how to:

Create an update override for a physical data service.

Setup the update override to be a JDBC client and write logic to update the database table.

Data Services Platform: Samples Tutorial 89

Lesson 26 Understanding Query Plans

A query plan contains detailed, functional-level information about an XQuery. Reviewing the Query
Plan is the first step in troubleshooting a data service function's performance bottlenecks, as it lets you
view the query's construction.

Objectives

After completing this lesson, you will be able to:

Examine a query plan in three different views: tree, XML, and text.
Locate the SQL statement created to retrieve data from the underlying database.

Locate XML elements.

Overview

The most common reason for viewing a query plan is to review the SQL statement generated by the
DSP query engine. However, the query plan also displays the following information for the physical
data sources to be called during the query:

Physical Data Source Information Provided
Relational Data source name, actual SQL

calls, and join parameters.

Web Services Data source name, operation(s)
called, and join parameters.

Custom Functions Function name and join
parameters.
XML and Delimited Files Filename.

In addition, the following information is displayed for all functions:

Number of invocations.

Order in which the data source calls are made.

Compilation time.

Areas where calls are made in parallel.

Areas where there are Cartesian joins.

Areas where join algorithms are used, including parameter passing and index joins.

Any calls to a middle-tier cache.

Data Services Platform: Samples Tutorial 90

Lab 26.1 Viewing the Query Plan

A query plan is generated for each data service function, when a DSP project is built.

Objectives

In this lab, you will:

Get the query plan for the getCustomerProfile() function.

View the results in tree, XML, and text views.

Instructions

1. Open XQueries.ds in Query Plan View.

2. Select getTop10Customers() from the function drop down list.

3. Click Show Query Plan. The query plan opens in tree view, as displayed in Figure 26-1.

WQueries.ds - {DataServicesHMyQueriss|

Select Function;

|@ getTop10Customers() |~ ‘
Query Flan L | Test
=l <Results:

£ 54 for $f357
relational source :cgDataSource :
SELECT (k1 "FIRST_MAME" [|** || E1."LAST_NAME") AS c1, t2."ORDER_ID" AS c2,
t2."TOTAL_ORDER_AMOLINT" A5 c3
FROM "RTLCUSTOMER","CUSTOMER" £1
JOIN "RTLELECOMS" "CUSTOMER_CRDER" t2
ON {£1,"CUSTOMER D" = t2,"CUSTOMER_ID)
ORDER BY k2."TOTAL_ORDER _AMOUNT" DESC

Design View | #Query Editar View | Source View | Test Wiew | Query Plan Yiew |

Figure 26-1 Query Plan as a Tree Structure

4. Click the XML button to view the Query Plan as an XML document.

HQueties.ds - {DataServicesHMyQueries)

X

Select Function:

[aetTop10customerst) I~]

Show Query Plan

Query Flan HNIL Text

- «elementConstructor name="Resulks" tip="{ld:DataServices/MyQueties/xQueries Results” >
- <FLWOR »
+ <refurn >
+ <limitClause >
+ <for name="$f357" =
2IFLWOR =

<felementConstructar >

Desian Yiew | XQuery Editor Yiew | Source View | Test iew | Query Plan View |

Figure 26-2 Query Plan as an XML Document

Data Services Platform: Samples Tutorial

91

5. Click the Text button to view the Query Plan as a text document.

#Queries.ds - {DataServicesHMyQueries)

Select Function:

‘-B getTopl0Customers() |~ |

Shaw Query Plan
Query Plan Tree ML Text

<?xml version="10" encading="UTF-G" 7>

<elementConstructor name="Results" ip="{d:DataServicas/MyQuatiss /¥QuerissiResults">
<FLWOR >

<returns
<elementCanstructor name="CUSTOMER">
<elementConstructar field="(0}" from="4f357" name="CUSTOMER _NAME">

</elementConstructor =

I from="$f357" name="CRDER_ID">
</elementConstructor =

<elementConstructar field="(z)" fram="$f357" name="TOTAL_ORDERS">

</elementConstructor =

o

<elementConstructor field="

<felementConstructar=
<Jreturnz
<limitClause:
=start>
<constank=>
[#cdata-section: [integer 1]]
<fconstant>
=fstart>

lenath []

[Design View | Xquery Editor Yisw | Source Wiew | Test Visw | Query Plan View |

Figure 26-3 Query Plan as a Text Document

Lab 26.2 Locating the SQL Statement in a Query Plan

SQL statements are generated for functions that call relational databases.

Objectives

In this lab, you will:

Locate an SQL statement within the query.

Review the contents of the SQL statement.

Instructions
1. Open the Query Plan as an XML document.

2. Expand the FLWOR nodes until you see the #cdata-section. This is the SQL statement for the
query.

AQueries.ds - {DataServicesHMyQueries|

Seleck Function:

[$] getToptocustomersy I~]

Shaw Query Plan
Query Plan HhIL Tex

- <FLWOR >

E]
- <return =

+ <elementConstruckor name="CUSTOMER" >
=freturn

- <limitClause >
- <start >
- <constant >
[#cdata-section: [integer 1]]
«jconskant>
<fstart>
=+ <length =
=flimitClause >
+ =for name="$f357" >
<IFLWOR =

<lelementConstructor =

[E1]

Design View | Kiguery Editor View | Source Wiew | Test View | Query Plan View |

Figure 26-4 Query Plan View of SQL Statements

Data Services Platform: Samples Tutorial

As a reminder, this function retrieves customer and order amount information. In addition, the result
set is ordered in descending order by order amount.

Lab 26.3 Locating XML Elements

XML elements identify the data that will be returned by the query function. Each XML element is
identified with a QName.

Objectives

In this lab, you will:

Locate all XML elements within the query.

Review the contents of the XML element lines.

Instructions
1. In Query Plan View, expand the return node.

2. Notice all the XML elements that will be returned when the function is executed.

#Queries.ds - {DataServicesHMyQueries) G

Select Function:

i-a getTopl0Customers() | - i
Query Plan | Tree || HML ” Text |
- =elementConstructor name="Results" tip="{d:DataServices/MyQueries xQueriesResults" = Z
- <FLWOR > M
- <refurn =
- «elementConstructor name="CUSTOMER" =
<elementConstructor field="{0}" from="$f357" name="CUSTOMER_MAME" = <jelementConstruckor =
<elementConstructer field="{1}" from="$f357" name="0ORDER_ID" = < lelementConstructor =
zelementConstructor field="{2}" from="$f357" name="TOTAL_ORDERS" = <felementConstruckor =
<felementConstructor =
<freturnz =]
- «limitClause =
- <start >
- <constant =
[#cdata-section: [integer 1]]
<fconstant =]
[« | 3]

Design Yiew | ®0uery Editor View | Source View | Test ¥iew | Query Plan Yiew |

Figure 26-5 Query Plan View of XML Elements

Lesson Summary

In this lesson, you learned how to:

Examine a query plan as tree, XML, and text documents.
Locate the SQL statement that was created to retrieve data from the underlying database.

Locate XML elements.

Data Services Platform: Samples Tutorial

Lesson 27 Reusing XQuery Code through Vertical View Unfolding

DSP enables powerful data service code reusability.

Objectives

After completing this lesson, you will be able to:

Re-use code.

Unfold vertical file view.

Overview

DSP enables powerful data service code reusability. You can develop your logic once, and then re-use
it later when building other data services. This feature is called view unfolding.

In addition to code reuse, DSP is smart enough to optimize your output and only query sources and
elements that you request in your data service (vertical view unfolding).

Lab 27.1 Unfolding Vertical View

You will reuse the CustomerProfile data service previously built to retrieve Customer Order
information. The CustomerProfile data service is built from three different tables in the underlying
PointBase database: CUSTOMER, CUSTOMER_ORDER and CUSTOMER_ORDER_LINE ITEM.

Objectives

In this lab, you will:

Import the CustomerOrder data service into the CustomerManagement folder.

Import CustomerOrder . xsd, and then associate the schema with the CustomerOrder data
service.

Implement a query function, and define its conditions.

Instructions

1. Import CustomerOrder .ds into DataServices\CustomerManagement. The file is located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Import CustomerOrder.xsd into DataServices\CustomerManagement\schemas. The file
is also located in <beahome>\weblogic81\samples\LiquidData\EvalGuide.

3. Implement the getCustomerOrder() function in the CustomerOrder data service, by completing the
following steps:

a. Open CustomerOrder .ds in XQuery Editor View.

b. In Data Services Palette, drag and drop getAllCustomers() into XQuery Editor View. (The
method call is located in the folder:

DataServices\CustomerManagement\CustomerProfile

4. Set the conditions for the function, by completing the following steps:

Data Services Platform: Samples Tutorial 94

a. Select the Customer* element. This will activate the Expression Editor and make visible the

ns2:getAlICustomers()/customer expression. You will use the Expression Editor to
scope the data returned in the getAllCustomers() function.

CuskamerOrder ds* - {DataServicesHCuskomerManagementy, b3

Select Function:{=] getCustomerOrder()|

(@ Relum ®

0 = List

u] = CUSTOMER _CRDER
ORDER_ID string
CUSTOMER_ID skring
ORDER_DATE date
SHIP_METHOD string
SUBTOTAL decimal

=4For: $§CustomerProfiled %

=] customer *
customer_jd string
firsk_name string
last_name string

I E=!

customer_since ? date

email_address 7 string TOTAL_ORDER_AMOUNT
telephone_number 7 string SALE_TAR decimal
ssn 7 string BILL_TC string
birth_day 7 date ul STATUS string
default_ship_methad 7 string =] emphy
email_notification ¥ short
news_letter 7 short
online_statement 7 short
login_id string E

E‘ E‘ [l E

em[| i

‘ Expression ns2igetallCustomers{}customer

#Query Editor View [Source View | Test View | Query Plan Wiew

Figure 27-1 Default Expression
b. Triple-click the Expression field.
¢. Modify the expression by adding the following code:
ns2:getAllCustomers()/customer/orders/order

d. Click the green checkmark icon to accept the changes. The CustomerProfile* element
changes to the order* element, and the For : $CustomerProfi le schema now includes
the order elements.

CustomerCOrder, ds* - {DataServicesHCustomeriManagement!, o

getCustomerOrder()l -

|T;.-,'=‘For: $CustomerProfile (o] @Relum
=1 arder * [=] 7 B List
order_id string] 0 = CUSTOMER_ORDER
customer_id string CORDER_ID string
order_date ? date CUSTOMER_ID string
ship_method string ORDER_DATE date
handling_charge decimal SHIP_METHOD string
subtotal decimal SUBTOTAL decimal
total_order_amount decimal TOTAL_ORDER_AMOUNT
sale_tax decimal SALE_TAX decimal
ship_to string BILL_TO string
ship_to_name string 0 STATUS string
bill_to string 2] emply
estimated_ship_date date
status string H
data_source string
=l order_line *
line_id string g] m
o8N] .

Expression nsz:getallCustomersi)fcustomerfordersjorder

#Cuery Editor View [Source View | Test Yiew | Query Plan Yiew

Figure 27-2 Modified Expression

Data Services Platform: Samples Tutorial

95

5. Create a simple mapping: Drag and drop all order* elements (source node) to the corresponding
CUSTOMER _ORDER elements in the Return type.

CuskomerCrder ds™* - {DataServices}\CustomeriManagement), b3
getCustomerOrder()l -
|T__—}Fnr: $CustomerProfile v} @Relum
[=lorder * - B CUSTOMER _ORDER
arder_id string] ORDER_ID string
customer _id string CUSTOMER_ID string
order_date 7 date QRDER_DATE date
ship_methad string SHIF_METHOD string
handling_rharge decimal SUBTOTAL decimal
subtotal decimal TOTAL_ORDER_AMOUNT dec
tokal_order_amount decimal SALE_TAX decimal
sale_tax decimal BILL_TO string
ship_to string £ STATUS string
ship_to_name string
bill_to string
estimated_ship_date date
skatus string .
data_source string
[l order_line *
line_id string El I | lz‘
order_id string Iz‘
0N || v

Desian Wiew | ¥GQuery Editor Yiew [Source Yiew | Test Wiew | Quary Plan iew

Figure 27-3 XQuery Editor View—Mappings
6. Save the data service file.

7. Open CustomerOrders.ds in Source View and notice that the function is using the
CustomerProfile file as its data source.

CuskomerCrder .ds* - {DataServicesH CustomeriManagement),

(ripragma xds <x:xds targetType="cus:CUSTOMER ORDER" xmlns:cus="http://temp. openiri.org/DataServices /s |

declare namespace hs3="http://temp.openuri.orgsDataiervicessschemas/CustonerProfile. xad™;

declare namespace nsZ="ld:Datafervices/CustonerManagement/CustonerProfile™;
declare namespace nsl="ld:DataServices/CustomerManagenent/Customerlrder™;
import schema namespace ns0="http://temp.openuri.org/Datalervices/schenasz/Custonerlrder.xsd™ at "ld:Dat

lare function nsl:getCustomerOrderi) as element(ns0:CUSTOMER_ORDER)* |

for §CustomerlProfile in ns2:getallCustomers|) /oustoner/orders/order

return

<ns0: CUSTOMER. ORDER>-
<OBDER_ID>-{fn:data(sCustonsrProfile/order id) }<f0RDER ID>-
<CUSTOMER. TD>-{fn:data(sCus tomerProfilefoustoner_id) }<fCUSTOMER._TD:-
<OEDER.DATE:{fn:datasiCus tomerProfileforder_date) }<fORDER. DATE:
<SHIP METHOD-{fn:data(sCus tomerProfilesship_method) }<fSHIF_METHOD-
<SUBTOTHL-{ fni:data(sCustoper Drofilessubtotal) =/ SUBTOTAL >
<TOTAL_ORDER RMOUNT:{fn:data(sCustomerProfile/rotal_order_awount) }</TOTAL_ORDER AMOUHT:
<SHLE TRC-{fn:datalsCustomerlrofilessale_tad) < fSALE TRC-
<BILL TO>{fn:data(sCustonerbrofile/bill_to) }<fBILL TO>
<STATUS{fn:data | §CustorerLrofile/status) }<fSTATUS >

<fns0: CUSTOMER OFDER>-

[l | []
Design Yiew | #Query Editor Yiew | Source View |[Test View | Query Plan Yiew

Figure 27-4 Source View of Vertical File Unfolding Function

Data Services Platform: Samples Tutorial

96

Lab 27.2 Testing a Vertical File Unfolding

Testing a vertical file unfolding is similar to testing any other data service function.

Objectives

In this lab, you will:

Test the CustomerOrder data service.

Review the results.

Instructions

1. Open CustomerOrders.ds in Test View.

2. Select getCustomerOrder() from the function drop-down list.
3. Click Execute.

4. Confirm that you can retrieve customer order information.

CustomerOrder.ds - {DataservicesHCustomerManagement}

[

Select Function:

‘-B getCustomerOrdert) |~ ‘

Paramekers

Murnber Element (by path)
Limit elements in array results ta:

[s00 || customer_oroer -]

[Start Client Transaction] Validate Resuits

Resul | [Resuls ore valid. |

- <t1:CUSTOMER _ORDER xmins:t1="http:/Jtemp, openuri.orgfDataServicesfschemas CustomerOrder xsd” » &
<ORDER_ID:> ORDER_10_0 </ORDER_ID> D
<CUSTOMER_ID> CUSTOMERD </CUSTOMER _ID>

«<ORDER_DATE> 2001-10-01 </ORDER_DATE:>
<SHIP_METHOD> GROUND </SHIP_METHOD:>
«<SUBTOTAL> 76.85 <(SUBTOTAL>
<TOTAL_ORDER_AMOUMT > 83.65 </TOTAL_ORDER_AMOUNT =
<SALE_TAZ> 0 </SALE_TAZ>
<BILL_TO> CC_10_1 <fBILL_TO>
<STATUS: CLOSED <[STATLIS:
<{t1:CUSTOMER_ORDER >
+ <k 1 CUSTOMER _ORDER. xmins:t1="http://temp. openuri.ora/DataservicesfschemasiCustomerOrder, xsd” =
+ <1 CUSTOMER,_ORDER xmins:t1="http://temp. openuri.org{DataServicesfschemas/CustomerOrder, xsd" =

+ <t1:CUSTOMER_CRDER xmlns:t1="http: /ftemp. openri.orgiDataServices/schemasiCustomerOrder, xsd" » =

Des@n Wiew | XQuery Editor View | Source View | Test Yiew §uer§ Plan Yiew

Figure 27-5 Vertical File Unfolding Test Results

Lesson Summary

In this lesson, you learned how to:

Build a data service based on another data service (view unfolding)

Re-use code (vertical file unfolding).

Data Services Platform: Samples Tutorial

Lesson 28 Configuring Alternatives for Unavailable Data Sources

Objectives

Overview

Sometimes a particular data source is either temporarily unavailable or very slow to send a response
back to a consuming application. In such cases, you need to be able to run an alternative data source.
DSP enables you create an alternative data source that will be called if the primary data source does

not respond within a specified timeframe.

After completing this lesson, you will be able to:

Invoke, configure, and test an alternative data source.
Use the fn-bea:timeout() function for configuring alternative sources.

Review WebLogic Server output.

Enabling an alternative data source is implemented by calling the fn-bea:timeout() function. The
syntax for the function is as follows:

fn-bea:timeout($seq as item()*, $millis as xs:int, $alt as item()*)
as itemQ*

where:

$seq is the primary expression.
$millis in the timeout in milliseconds.
$alt is the alternate expression.

To implement this functionality, the return types of both the primary and alternative expression should
be available when the project is compiled. This ensures that the function's return type is correctly
inferred. In other words, the source metadata must be available at compile time, because the alternative
source function provides only runtime failover capability.

Data Services Platform: Samples Tutorial 98

Lab 28.1 Setting the Demonstration Conditions

You will import a slow Web service into your application, thereby enabling the demonstration of
configuring alternatives for unavailable data sources.

Objectives

In this lab, you will:

Import and test a "slow" Web for demonstration purposes.

Create a physical data service that is based on an alternative data source.

Instructions

1. Right-click the Evaluation folder and then import the
<beahome>\weblogic81\samples\LiquidData\EvalGuide\CreditWs file as a Web
Service Project. This will import a simple Web service that does nothing but sleep for 3 seconds.

Click “Yes’ when asked for “Files required for Web Services are not in the project. Do you wish to
add them?”

2. Build the CreditWS project.

3. Test the slow Web service by completing the following steps:
a. Open the NewCreditReport. jws, located in the CreditWS folder.
b. Click the Start icon (or press Ctrl + F5). The Workshop test browser opens.
c. Enter CUSTOMERS in the cid field and click NewLookupCredit.

d. Confirm that you can get credit rating information.

Y
bea
P

[Overview | [Console | [Test Farm | [Test xmL | http:/locabhost 7001 /Creditws MNewCreditRepart, jws

Test operations

Message Loy £ Refresh Service Request NewlLookupCredit
— NewLookupCredit Submitted at Mondary, March 28, 2005 1:31:08 PM PST

=2Clear Lo cid = CUSTOMER3

Operation NewLookupCredit
Submitted at Monday, March 28, 2005 1:31:08 PM PST
Method: NewCredi:Report MewLookupCredit
Arguments:

cid : CUSTOMERS
Callstack:

HewLookupCredit()

Returned from NewLookupCredit

Submitted st Mondary, March 28, 2005 1:31:11 PM PST

Return valus: demo.NewCreditReportData@bteds

Service Response

Submitted at Monday, March 28, 2008 1:31:11 PM PST

<ns:NewCreditReportData xmins:ns="http: fwwws. openuri.org)"
smln pxsds="http: ffua. 3.0rg/2001 [XMLSchema” xmins esi="htp: ffuna. w3, 0rg/2001 /XML Schema-
instance"=
<ns:CreditCode >9</ns: CreditCode >

</ns:NewCreditReportData>

Figure 28-1 Test Browser View of the Slow Web Service

4. Create a physical data service for the slow Web service, by completing the following steps:
a. Select the Overview tab in the Workshop Test Browser.
b. Click Complete WSDL.

c. Copy the WSDL URI, which you will use to import an alternative data service. The URI
typically is:
http://localhost:7001/CreditWS/NewCreditReport. jws?WSDL=

Data Services Platform: Samples Tutorial 99

d. In the Application pane of WebLogic Workshop, right-click the WebServices folder (located
in DataServices).

e. Choose Import Source Metadata.

f. Select Web Service from the Data Source Type drop-down list and click Next.
g. Paste the WSDL URI into the URI field, then click Next.

h. Expand the folders and select the NewLookupCredit operation.

i. Click Add to populate the Selected Web Service Operations pane and click Next.
Note: Do not select NewLookCredit as a side-effect procedure.

j- Review the Summary information and click Finish.

5. Check the Application pane. There should be a new physical data service called
NewLookupCreditResponse.ds.

6. Open NewLookupCreditResponse.ds in Design View. There should be a function called

NewLookupCredit.
MewlookupCreditResponse.ds - {DataServicesHwebServices, X
[=]
ENewLnokupEreditRespunse Data Service =
B & MewlookupCreditResponse
T NewLookupCredit = O MNewLookupCreditResult ? epeNewCraditReportDats
0 credicode p e ink

4 [
| Design View [®Guery Editor View | Sorce View | Test View | Query Flan Yiew |

Figure 28-2 Design View of Web Service-Based Data Service

Data Services Platform: Samples Tutorial 100

Lab 28.2 Configuring Alternative Sources

Because the CreditWS Web service is slow, you need to configure an alternative source to obtain the
credit rating information in a timely manner.

Objectives

In this lab, you will:

Configure an alternative data source.

Use the fn:bea:timeout() function.

Instructions

1. Open CustomerProfile.ds in Source View. (The file is located in
DataServices\CustomerManagement.

2. Add the following code to the namespace declaration:

declare namespace
ws3=""ld:DataServices/WebServices/NewLookupCreditResponse";

declare namespace ws4 = "http://www.openuri.org/";
3. Locate the getAllCustomers() function.

4. Locate the following entry:
{
for $rating in wsl:getCreditRating(
<ws2:getCreditRating>
<ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>
</ws2:getCreditRating>)
return
<creditrating>
<rating>{data($rating/ws2:getCreditRatingResult/ws2:Rating)}</rating>

<customer_id>{data($rating/ws2:getCreditRatingResult/ws2:Customer_id)}</cu
stomer_id>
</creditrating>

Data Services Platform: Samples Tutorial 101

Replace that entry with the following code and note the use of the fn-bea:timeout() function.:
{
<creditrating>
<rating>
{
fn-bea:timeout(
data(
ws3:NewLookupCredit(
<ws4:NewLookupCredit>
<ws4:cid>{data($CUSTOMER/CUSTOMER_ID)}</ws4:cid>
</ws4:NewLookupCredit>
)/ws4:NewLookupCreditResult/ws4:CreditCode
)
, 2000,
data(
wsl:getCreditRating(
<ws2:getCreditRating>

<ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>
</ws2:getCreditRating>
)/ws2:getCreditRatingResult/ws2:Rating)
)
}
</rating>
<customer_id>{data($CUSTOMER/CUSTOMER_ID)}</customer_id>
</creditrating>

}

Lab 28.3 Testing an Alternative Source

Testing getAllCustomers() function will let you confirm that the query is retrieving data from the
alternative source, rather than the CreditWS.

Objectives

In this lab, you will:

Test the CustomerProfile data service, using the getAllCustomers() function.

Review the results in the Output window.

Instructions

4.
5.

Build the DataServices project.

Enable auditing for the getAllCustomers() function using the AquaLogic Data Services Platform

Console. For details about auditing, refer to
http://edocs.bea.com/aldsp/docs2 1/admin/monitor.html.

Open CustomerProfile.ds located in CustomerManagement folder in Test View.
Select getAllCustomers() from the function drop-down list.

Click Execute.

Open the Output window, scroll to the bottom, and then confirm that the CreditWS Web service times

out and then the CreditRating Web service is called. The output should display as shown in Figure

28-3.

Data Services Platform: Samples Tutorial

102

Output

00

query/failover

sourcefile: ld:DataServices/CustomerManagement/CustomerProfile.ds
timeout: 2000

sourcecolumn: 5

function: [http://wig.bea.con/xquery/xquery-functions) tineout
sourceline: 105

query/wrappers fws
wsdl: http://localhost:7001/CreditRatingWs/controls/CreditRatingDETest. Jws PWSDL=
time: 140
parameters:
<ns0:getfreditRating xmlns:ns0="http:/ www. openuri. org/ >
<nsl:custoner_id xmlns:ns0="http://ww.openuri. oryg/">CUSTOMERD /ns: custoner_id-
</ns0:getCreditRating
operation: getCreditRatineg
result:
<ns:getLreditRatingResponse xmlns:ns="http:/ /Wi, Openuri. org/ s
#ns:getlreditRatingResul t>
#ns:Rating=600< /ns: Rating>
<ns:Custoner_id»CUSTOMERDC /ns: Custoner_ids
</ns:getfreditRatingResult> =

K1 D]

Figure 28-3 Output Window

The invocation of the first Web service NewLookupCreditResponse fails because the thread times out.
Because this Web service has failed it will not be invoked again. Instead, the alternate Web service is
invoked.

Lesson Summary

In this lesson, you learned how to:

Invoke, configure, and test an alternative data source.
Use the fn-bea:timeout() function for configuring alternative sources.

Review WebLogic Server output.

Data Services Platform: Samples Tutorial 103

Lesson

Objectives

Overview

Lab 29.1

29 Enabling Fine-Grained Caching

Fine-grained caching lets you cache a data subset, such as information that does not frequently change.
Fine-grained caching is at the function level, because a function's role is to retrieve specific
information.

After completing this lesson, you will be able to:

Define a cache policy for the slow credit rating Web service.

Testing caching performance.

DSP provides a flexible caching mechanism to manage caching of data service functions. In Part 1,
you learned how to cache a function in a logical data service. However, there are situations where you
may want to cache only a sub-set of information available in a particular logical data service. For
example, the CustomerProfile data service includes information about each customer's profile and
order information. The profile information does not change often, whereas order information
constantly changes. In this situation users would like to cache the profile information for a given
customer but retrieve the most recent order information from the operational system.

By defining different caching policies for the underlying customer and order physical data services,
you can cache only the CUSTOMER physical data service. As a result, any request made to the logical
CustomerProfile data service will be partly answered from the DSP Cache for customer information
and partly answered from the operational system for order information.

Enabling Function-Level Caching for a Physical Data Service

Caching of a function in an underlying data service provides you with the ability to cache a sub-set of
data within a data service function.

Objectives
In this lab, you will:
Enable application-level caching and function-level caching.

Instructions

1. Login to the DSP Console (http://localhost:7001/Idconsole/), using the following credentials:

0 User Name = weblogic
0 Password = weblogic
2. Using the + icon, expand the 1dplatform directory.

Note: If you click the ldplatform name, the Application List page opens. This is not the page you want
for this lesson.

3. Click Evaluation. The Administration Control’s General page opens.

4. 1In the Data Cache section, select Enable Data Cache.

Data Services Platform: Samples Tutorial 104

http://localhost:7001/ldconsole/

Lab 29.2

5. Select cgDataSource from the Data Cache data source name drop-down list.
6. Enter WSCACHE in the Data Cache table name field.
7. Click Apply.

Allaw Sebanls anonymews access

A thad party Sy
Data Cache

Enable Data Cacke

Plense check e box 10 seasle the dita cache

Data Cache dat

Data Cache table mame

Server Hessmoes

Max number of quary plams cacked 100

Figure 29-1 Enable Caching

8. Expand the Evaluation folder and navigate to getCreditRatingResponse.ds, located in

DataServices\WebServices folder.

9. For the getCreditRating() function, set a caching policy by completing the following steps:

a. Select Enable Data Cache.
b. Enter 300 in the TTL field.
c. Click Apply.

Metadata

Data Cache || Audit | Security

set the Time To Live (TTL) for each function. To purge the cache use the purge icon.

This page shows a list of data serice functions. You can enable data caching of the data service functions here and you can

Name Enable Data Cache TTL (sec) Number Of Data Cache Entries | Purge Data Cache
getCrecitRating 0 i}
Apply

Figure 29-2 Enable Function-Level Caching

Testing the Caching Policy

You are now ready to test your new fine-grained caching policy.

Objectives

In this lab, you will:

Test the function-level caching policy.

Data Services Platform: Samples Tutorial

105

Determine whether the cache was populated.

Instructions

1. In WebLogic Workshop, execute a test query by completing the following steps:

a. Open CustomerProfile.ds in Test View. The file is located in the CustomerManagement

folder.
b. Select getCustomerProfile(CustomerID) from the function drop-down list.
c. Enter CUSTOMERS3 in the Parameter field.
d. Click Execute.

e. Inthe Output window, note the number of invocations and the times for the
NewLookupCreditResponse and getCreditRatingResponse data sources.

2. In the PointBase Console, check whether the cache database table was populated by completing

the following steps:

a. Start the PointBase Console, using the following command in a command prompt window:

<beahome>\weblogic81\common\bin\startPointBaseConsole.cmd

b. Use the following configuration to connect to your local PointBase database:

0 Driver: com.pointbase.jdbc.jdbcUniversalDriver
0 URL: jdbc:pointbase:server://localhost:9093/workshop
0 User: weblogic
0 Password: weblogic
c. Click OK.
d. Enter the SQL command: SELECT * FROM WSCACHE

e. Click Execute to check whether the cache was populated.

w Pointiiase{l) Console 4.4 ECF build 274 - jdbe: painibase:server:ifiocalhost: 909 3workshop
Do [t S0 [OA Fesd \ooow Fumees e

S ®@J X D o0 13 » o <1 i -] 5}
Open_ Seve_ Cu Copy FPasie FEiecus Erecue Al Updstshle Cuipt Commt Fokeck Brpot . mpoi. HebTopoa

@ @ e PortRass tocahot! W Vacrkshon H s
o By, soremas Ferderd * from WECACHE,
& (g SECURITY
F— = :
oo 1 cHASH I cewRE oo I
i rotsTa 120050522 B0 241 | 12

] 2006-05- 22 THIBS0 T
] TS0 (20080530 16 2660 361

s LTiE FO0RCA- 7 187880 341

OZE 7606 0067522 16 26050 2

s OO 0473 199 80 412 et

"
b 105370822 O 1 IS0 ATE
] 10BRSRIA 006057 19 7650 B2
lo
4

100022638 (006-015-22 46 S0 S3F

b _onaassas 00w ne o e mn e

P...m.-hw In:n 1ec ! s
e [iacaAR |
ponttare server Moceinost S PLEASE AT
[Connected 1o Database jahe poirtbase server Mocalhost WS0Avorkshon, Ready
Eaeuadiv
1 rirev(s) setecied (Time: 036 seconds, Compde Tme 007 seconds.)
ey Hatery

Figure 29-3 PointBase Console Cache Information

Data Services Platform: Samples Tutorial

106

Lab 29.3 Testing Performance Impact

The next step is to determine whether the caching policy improves query performance.

Objectives

In this lab, you will:

Execute a data service test.

Determine whether the caching policy improved query performance time.

Instructions

1. In WebLogic Workshop, execute a test query by completing the following steps:

a.

Open CustomerProfile.ds in Test View. (The file is located in the CustomerManagement
folder.)

Select getCustomerProfile() from the function drop-down list.
Enter CUSTOMER3 in the Parameter field.

Click Execute.

2. Confirm the following performance results in the Output window:

a.

b.

Lesson Summary

Confirm that the slow Web service (NewLookupCreditRatingResponse) was never invoked
due to alternate path execution.

Determine whether caching the Web service helped to reduce the query execution time.

In this lesson, you learned how to:

Enable the cache for a physical data service function and define the cache's TTL.

Determine the performance impact of the physical data service cache on a function in a
logical data service by checking the query response time and whether the physical data
service (original data source) was invoked.

Data Services Platform: Samples Tutorial 107

Lesson 30 Creating XQuery Filters to Implement Conditional-Logic
Security

Data Services Platform can enable security based on the results of conditional logic.

Objectives

After completing this lesson, you will be able to:

Activate security XQuery functions.

Write security XQuery functions.

Overview

Conditional logic can be used to establish very specific security restrictions. For example, users in an
employee role can see only orders less than $1,000, while users in a manager role can see all orders,
regardless of total amount. This feature is implemented through the DSP Console.

Lab 30.1 Creating User Groups

The first step in setting conditional-logic security is establishing security groups.

Objectives

In this lab, you will:

Create new user groups.

Assign user accounts to user groups.

Instructions

1. Login to the WebLogic Server Console (http://localhost:7001/console/), using the following
credentials:

User Name = weblogic
Password = weblogic
2. Create two new user groups by completing the following steps:
a. Choose Security — Realms — myrealm — Groups.
b. Select Configure a New Group.
c. Enter LD _Emp in the Name field.
d. (Optional) Enter “Employee Group” in the Description field.
e. Click Apply.
f. Repeat steps 2b through 2e to create a new group for LD Mgr.

Data Services Platform: Samples Tutorial 108

http://localhost:7001/console/

myrealm> Create Group

001

| Youar

Logout

Details |

This page allows you ta define a group in this security realm

Name: LD_Ernp

The name for this group

Description: |Employse Groug|

A shart description of this group

Figure 30-1 Configuring a New User Group
3. Assign the user Bob to the LD _Emp group, by completing the following steps:
a. Choose Security — Realms — myrealm — Users.

b. Click Bob in the User column. The User page for Bob opens.

e

L hon:
2 hea

myrealm> User p= |t BEA

Connected o - localhost 7001 | You are logged in a

| Logout

B/ Configure a new User

This page allows you to define a user in this security realm

Name: Eob

The login name for this uzer.

Description: [|

A short description of this user. Far example, the user's full name
Password: Change.

Apply

Figure 30-2 User Page for Bob
c. Click the Groups tab. The Groups page opens.
d. Select LD Emp from the Possible Groups pane.

e. Click the arrow (—) to add the group to the Current Groups pane.
f. Click Apply.

myreaim> User

B Caonfigure 3 new Lisar,,

General | m Ditails |

Thés page allows you ta select the groups 1o which this user belongs.

Possible Graups Cumrent Graups
Adiminshators a
Diaployers

i

Wtoration Doplaysre

Group Membership: Intagrationtanitors

EnlcgahenOporatons

Intagrationl lzars

L0 My

Moniors

Opesateon ~

[

Figure 30-3 Group Assignment Page for Bob

Data Services Platform: Samples Tutorial 109

4. Assign the user Joe in the LD_Mgr group, by completing the following steps:
a. Choose Security — Realms — myrealm — users.
b. Click Joe in the User column. The User page for Joe opens.
c. Click the Groups tab. The Groups page opens.
d. Select LD Mgr from the Possible Groups pane.
e. Click the arrow (—) to add the group to the Current Groups pane.
f. Click Apply.

Lab 30.2 Writing the XQuery Security Function

You can specify a security function using XQuery syntax.

Objectives

In this lab, you will:

Set security access control.

Set a security XQuery function.

Instructions

1. Login to the DSP Console (http://localhost:7001/ldconsole/), using the following
credentials:

A. User Name = weblogic
B. Password = weblogic
2. Click the Security tab.
3. Using the plus (+) icon, expand the Idplatform directory.

Note: If you click the ldplatform name, the Application List page opens. You do not want this page for
this lesson.

4. Click Evaluation. The Administration Control’s General page opens.
5. Select Check Access Control.

6. Select Allow Default Anonymous Access.

Data Services Platform: Samples Tutorial 110

http://localhost:7001/ldconsole/

23 A que g Bt Services Pstfon Co ~ T fo Bt
[3

e ON e Fpetn Dok e
Ow - O @G Pt @ 35 #-Jo-8 43

et o st 701 el 0= =
Google - Y G c D P Do | T Owb + S A - e #-

[N i | iy Finctona s Socuy | Ao ipans | A |

Tivs page sbo 118 Seding ConAguEon BRI T 3 403 BTRCH BEpRCIGN

Actew Cantiul
Chec Arcess Conral

Allew detsalt smatgumsin socem

Thes arpisty acew
At paty Secy

Data Cache

nabde Data Care

Piabtn chach the btx 1o enable The Bt chche

Dta Cache data sauics nams

Piasae ssfect duta souese JHD narse b tha bl
Dis Cachin abls mamss WELACHE

Piasas anter the 8y quabled fabée nem

& e % Lo rrrares

Figure 30-4 Setting Access Control
7. Select Xquery Functions for Security and enter the following function:

Note: Namespaces may be different for your application.
declare namespace demo="'lib:mydemo";

declare namespace
itemns="http://temp.openuri.org/DataServices/schemas/CustomerProfile.xsd" ;

declare function demo:secureCustomer($ssn as xs:string) as xs:boolean {

if (fn-bea:is-user-in-group(*'LD_Mgr')) then fn:true()

else fn:false()
}:
8. Click Apply. You should now have the following:

2 Aqualogle Data Serv
Bl O Yew Fgeokes [ock bep

Q- O M@ G Psws yreens @3- 5 w-Jorfl A3

Consele - Miciesall latesst Explores EEX
[

e |] benge o b P06 Adcorche = D
Google R I - A e T i optiors. ¥ LR
0 4 Console Accass Controd s = B

/1
T s Mplattorm > Evatuation M ? " Cher
S8 [Comected To _bocabost T001 1 You welopged iaus _webloge | legaa]
=y Ganerat | Monitos Admnistratie s | Awde |
B Teties This page aliows you 10 craate 3Ouary Aunctions for data driven access control. Tou Can craste ome of mare HGuery fnctions 1o aliow or desalkow rotum of data
elemants based on the value. To sssaciate these fancticns wih shkments, §a 10 tha Secerty Pobcy 1ab in a data serwce noda
decloze nmespace demos"iibimpdeset:
deciaze namespace
iremaa=Thiip://samp. apan afbazafervicen/scheman/ CustomerProts le. xnd®
declaze functiom demoise stomer (SEEN 83 X83FLEiNG) &F XBiBOGIEAN ¢
12 (fn-bewiis-user-in-grosp|“L0_Ngr<)| then fmitrue()
else tnifalse()
M
iuary Fenctions
for Sacarity
Lation S
Output
& L T

Figure 30-5 Specifying Security XQuery Function Code

Data Services Platform: Samples Tutorial

Lab 30.3 Activating the XQuery Function for Security

The next step in setting an XQuery security function is to set security at the element level.

Objectives

In this lab, you will:

Secure data source elements.

Set a security policy.

Instructions

1. In the DSP Console expand the Evaluation folder and navigate to the CustomerProfile data
service, located in DataServices\CustomerManagement.

2. Click Security Policy.

3. Click the icon in the XQuery Function for Security column for the CustomerProfile/customer/ssn

resource. The Assign XQuery Functions window opens.

Figure 30-6 QName Window

4. Set the Namespace URI and Local Name, by completing the following steps:
a. Click Add and enter the following values:
0 Namespace URI: lib:mydemo

0 Local Name: secureCustomer

b. Click Submit.
c. Click Close.

-3 Assign XQuery Functions - Microsoft Internet Explorer,

Add the Qname of the security function

Click Add to add functions
Provide Namespace URI and Local Mame.

Namespace URI

1 |lib:mydemo

M Remove | Submit | Close

Sample Namespace :"lib:DataSenices/myserice” and Local Mame:"isMyFunction”

Local Name

secureCustome

Figure 30-7 QName Information

Lab 30.4 Testing the XQuery Security Function

Using the security credentials for Bob and Joe, you can now test the XQuery security function.

Objectives

In this lab, you will:

Test access control, using two different user logins.

View the results.

Data Services Platform: Samples Tutorial

112

Instructions
1. Set the login properties to Bob and run a test, by completing the following steps:

a. Inthe DSP-enabled Workshop application, choose Tools — Application Properties —
WebLogic Server.

b. Select Use Credentials Below.
c. Enter “Bob” and “password” in the Use Credentials Below fields.
d. Click OK.

e. Open CustomerProfile.ds in Test View. (The file is located in the CustomerManagement
folder.)

f. Select getAllCustomers() from the function drop-down list.
g. Click Execute. All customer data, except SSNs, should be returned.

Note: In order to deploy from WorkShop User/Group you should have permission to deploy
applications.

2. Change the login properties to Joe and run a test. All customer data, including SSNs, should be
returned.

3. Inthe DSP Console expand the Evaluation folder and navigate to the CustomerProfile data
service, located in DataServices\CustomerManagement.

4. Click Security Policy.

5. Click the icon in the XQuery Function for Security column for the CustomerProfile/customer/ssn
resource. The QName window opens.

6. Click Remove, click Submit, and then click Close to remove the following:
Namespace URI: lib:mydemo;
Local Name: secureCustomer

Important: You must remove the Namespace/Local Name information before you can proceed with the
following lessons.

7. Click Tools=>Application Properties.
8. Use the following credentials:
User name = weblogic

Password = weblogic
Lesson Summary
In this lesson, you learned how to:

Establish security based on XQuery functions.

Write security XQuery functions.

Data Services Platform: Samples Tutorial 113

Lesson 31 Creating Data Services from Stored Procedures

Objectives

Overview

Enterprise databases utilize stored procedures to improve query performance, manage and schedule
data operations, enhance security, and so forth. Stored procedures are essentially database objects that
logically group a set of SQL and native database programming language statements together to
perform a specific task.

You can import stored procedure metadata from any relational data available to the BEA WebLogic
Server. DSP then uses that metadata to generate a physical data service that you can then use in logical
data services.

After completing this lesson, you will be able to:

Import stored procedures as a Java project within an application.

Import stored procedure metadata into a data service.

Imported stored procedure metadata is quite similar to imported metadata for relational tables and
views. Stored procedure metadata generally contains:

A data service file with a pragma that describe the parameters of the stored procedure.
A schema file with the same primary name as the procedure name.

Note: If a stored procedure includes only one return value and the value is either simple type or a row
set that is mapping to an existing schema, no schema file is created.

Handling Stored Procedure Row Sets

A row set type is a complex type, whose name can include:

The parameter name, if there is an input/output or output only parameter.
An assigned name such as RETURN_VALUE, if there is a return value.
The referenced element name (result rowsets) in a user-specified schema.

The row set type contains a repeatable element sequence (for example, called CUSTOMER) with the
fields of the row set.

Note:
All row set-type definitions must conform to the structure in the stored procedure itself. In some
cases the Metadata Import Wizard will be able to automatically detect the structure of a row set
and create an element structure. However, if the structure cannot be determined, you will need to

provide it through the wizard.

Each database vendor approaches stored procedures differently. Refer to your database
documentation for details on managing stored procedures.

XQuery support limitations are, in general, due to JDBC driver limitations.

Data Services Platform: Samples Tutorial

114

Lab 31.1

DSP does not support rowset as an input parameter.

Importing a Stored Procedure into the Application

The first step in demonstrating DSP's ability to access data through a stored procedure is to import the
procedure into the application.

Objectives

In this lab, you will:

Import stored procedures as a Java project.

Test the results.

Instructions

1. Import storedprocs as a Java project, adding it to the Evaluation application. The project is located
in <beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Build the storedprocs project. The storedprocs. jar file will be added to the Libraries folder.
3. Shutdown the PointBase database, by stopping WebLogic Server.
Note: Stopping WebLogic Server calls the PointBase shutdown script.

4. Open the startPointBase.cmd in a text editor such as Notepad. The file is located in
<beahome>\weblogic81\common\bin.

5. Inthe startPointBase.cmd script, search for the string “@REM Add PointBase classes to the
classpath” and add the complete path of the storedprocs. jar file below this line in the script as
follows:.:

set CLASSPATH=<beahome>\user_projects\applications\Evaluation\APP-
INF\lib\storedprocs. jar;%POINTBASE_CLASSPATH%

Note:

For reference, the modified startPointBase.cmd is included in
samples\liquiddata\EvalGuide.

The CLASSPATH depends on your WebLogic Server installation. User can copy the correct
path from the Output window of WebLogic Workshop.

Start WebLogic Server, which in turn starts the PointBase database.
Run CreditRatingStoredProcedure. java to define the stored procedures in PointBase.

Click OK at the pop-up message.

© ® =2

Confirm that the stored procedure executed, by reviewing the contents in the Output window. You
should see the credit rating for CUSTOMER3.

Note: Your credit rating may be different, based on the changes that you made in Lab 24.3.

Data Services Platform: Samples Tutorial 115

|| Cutput *
Trying to create process and attach to 2152...
Divbeayjdieldd 05%bhin' javaw. exe -kdebuyg -knoagent -Djava.compiler=NONE -
Process started
Attached successfully.

Credit Rating from 5P for COSTOMERZ : OO0
BEST Credit Bating from 3P : 850
Debugging Finished

[0 []

Figure 31-1 Output Window View of Stored Procedures Compilation

Lab 31.2 Importing Stored Procedure Metadata into a Data Service

Importing a stored procedure's source metadata enables the generation of a stored procedure data
service.

Objectives

In this lab, you will:

Import source metadata into a new data service.

Test the stored procedure data service.

Instructions
1. Create a new folder in the DataServices project and name it StoredProcedures.
2. Import stored procedures metadata, by completing the following steps:
a. Right-click the StoredProcedures folder.
b. Choose Import Source Metadata.
c. Select Relational from the Data Source Type drop-down list, then click Next.
d. Select cgDataSource from the Data Source drop-down list, then click Next.
e. Expand the WEBLOGIC\Procedures folders.
f. Select GETCREDITRATING_SP, click Add, and click Next.
g. Accept the default settings displayed in the Configure Procedure window, then click Next.
Note: Do not select GETCREDITRATING_SP as a side-effect procedure.
h. Accept the default settings displayed in the Summary window and click Finish.
3. Build the DataServices project.

4. In the Application pane, confirm that there is a new data service, GETCREDITRATING_SP.ds,
located in the StoredProcedures folder.

5. Test the data service, by completing the following steps:
a. Open GETCREDITRATING_SP.ds in Test View.
b. Select GETCREDITRATING_ SP(x1) from the Function drop-down list.
c. Enter CUSTOMERS3 in the Parameter field.

d. Click Execute. You should see the credit rating for Customer3

Data Services Platform: Samples Tutorial 116

6. Review the results.
Lesson Summary
In this lesson, you learned how to:

Import stored procedures into an application.

Import stored procedure source metadata into a data service.

Data Services Platform: Samples Tutorial 117

Lesson 32 Creating Data Services from Java Functions

Objectives

Overview

A Java function is another form of metadata that DSP can use as a data source. This is perhaps the
most powerful metadata, because it allows DSP to utilize any data source that can be accessed from
Java, such as Enterprise Java Beans, IMS/messaging applications, LDAP and other directory services,
text/binary files that can be read through Java I/O, and even DCOM-based applications like Microsoft
Excel.

In this lesson, you will access three data sources through Java functions:

WebLogic’s embedded LDAP, by importing a Directory Service Markup Language (DSML)-
based Java application as a Java function.

Data in a Microsoft Excel spreadsheet, by importing a Java application that uses JCOM to
access the MS Excel spreadsheet.

An Enterprise Java Bean that returns customer credit card information using a Java function.

After completing this lesson, you will be able to:

Write Java functions and access them from data services.

When you use DSP's Import Source Metadata feature to import user-defined Java functions, the
functions are introspected to create the necessary method signatures and parameter metadata. At the
same time, a prologue is created that defines the function's signatures and relevant schema type for
complex elements such as Java classes and arrays.

In DSP, user-defined functions are treated as Java classes. The following are supported:

Java primitive types and single-dimension arrays, such as Boolean, byte, and char.

XMLBean classes corresponding to global elements, complex types, and arrays. The classes
generated by XMLBeans can be used as parameters or Return types. The advantage of using
XMLBean-generated classes is that you do not need to define a schema for the references
complex type or element.

The Metadata Import Wizard supports marshalling and unmarshalling that converts Java token
iterators into XML, and vice versa. For example, you start with a Java function,
getListGivenMixed, defined as follows:

public static float[] getListGivenMixed(float[] fpList, int size) {
int listLen = ((fpList.length > size) ? size : fpList.length);
float fpListop = new float[listLen];

for (int i =0; i < listLen; i++)

fpListop[i]=fpList[i];

return fpListop;

}

After the function is processed through the Metadata Import Wizard, the following XML-based
metadata is generated:

Data Services Platform: Samples Tutorial 118

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
targetType=""t:float" xmlns:t="http://www.w3.0rg/2001/XMLSchema"">
<javaFunction

classpath=""D:\jf\build\jar\jfTest. jar;D:\jF\xbeanTests\xbeangen\
Customer . jar;D:\wls82\weblogic81\server\lib\xbean.jar"
class=""jfTest.Customer'/>

</x:Ixds>::)

declare namespace fl1 = "ld:javaFunc/float";

(::pragma function <f:function xmIns:f="urn:annotations.ld_bea.com"
kind="datasource'" access="public">

<params>

<param nativeType="[F"/>

<param nativeType="int"/>

</params>

</f:function>::)

declare function fl:getListGivenMixed($x1l as xsd:float*, $x2 as
xsd:int)

as xsd:float* external;
The corresponding XQuery for the imported Java function would be as follows:
declare namespace fl1 = "ld:javaFunc/float";

let $y := (2.0, 4.0, 6.0, 8.0, 10.0)
let $x := fl:getListGivenMixed($y, 2)

return $x

Note: To ensure successful importation and usage within DSP, the Java function should be static
functions and its package and class names should be defined in its namespace. DSP recognizes the
Java method name as the XQuery function name qualified with the Java function namespace.

For detailed information about using Java functions within DSP see the Data Services Developer’s
Guide.

Data Services Platform: Samples Tutorial 119

Lab 32.1 Accessing Data Using WebLogic’'s Embedded LDAP Function

DSP enables access to data services, using WebLogic's embedded LDAP function. You will learn how
to use this functionality by importing a Directory Service Markup Language (DSML)-based Java
application as a Java function.

Objectives

In this lab, you will:

Set the LDAP security credential for WebLogic’s Embedded LDAP.
Create a new user account.
Import JAR files and Java applications that will be used to generate a data service.

Test the data service.

Instructions

1. In the DataServices project, create a folder and name it Functions. This is where you will place the
Java functions that you want to import.

2. Set the LDAP security credential for WebLogic’s Embedded LDAP, by completing the following
steps:

a. Open the WebLogic Server Console from your browser:

http://localhost:7001/console.

b. Login using the following credentials:

¢. User Name = weblogic

d. Password = weblogic

e. Select the Security folder, located under the Idplatform domain.
f. Click Embedded LDAP.

Enter security in the Credential and Confirm Credential fields.

5 R

Click Apply. This allows access to the WebLogic Server LDAP.

Data Services Platform: Samples Tutorial 120

http://localhost:7001/console

i ———

............

Figure 32-1 Setting LDAP Access Credentials

3.

9.

You will need to restart the WebLogic Server now as change to this property does not take effect
until the Server is restarted.

Create a new user, by completing the following steps:
a. Expand the Security — Realms — myrealm — Users folders.
b. Click Configure a New User, using your name and a password of your choice.
c. Click Apply.

In WebLogic Workshop right-click the Libraries folder and import all the JAR files located in the
samples\ligiddata\EvalGuide\ldap\lib folder into the Libraries folder in Workshop.

Right-click the Functions folder and import DSML . java from the
samples\liquiddata\EvalGuide folder.

Build the DataServices project.

Import the Java function metadata for the DSML Java application into the Functions folder by
completing the following steps:

a. Right click the functions project and choose Import Source Metadata.
b. Select Java Function for the Data Source Type and click Next.

c. In the Class Name field, browse and select
DataServices.jar\Functions\DSML .class and click Next.

d. Select the calDSML() function, click Add, and then click Next.

Note: Do not select the callDSML procedure as a side-effect procedure.

e. Accept the default settings in the Summary window and click Finish.
The dsml . ds file and schemas folder are added to the Functions folder.

Build the DataServices project.

10. Test the DSML data service by completing the following steps:

a. Opendsml.ds in Test View.

b. Select calDSML() from the Function drop-down list.

Data Services Platform: Samples Tutorial 121

c. Enter the following arguments (for more information on LDAP arguments and access, see
http://dev2dev.bea.com/codelibrary/code/ld_ldap.jsp):

Description Argument
LDAP URL Idap://localhost:7001
Principal (Directory Manager) cn=Admin
Credentials (Password) security

INDI (true: use JNDI to access LDAP; false: use native Jndi
LDAP connection

Base domain name to search dc=ldplatform
Filter used to search cn=<your user name>

d. Click Execute.

e. View the results.

Result | [Results are valid, Texd ‘

- <dsal xmins="http: [fuww. dsmlorgfDSHL” >

]

- zdirectory-entries >
- <entry dn="uid=1ulia, ou=people, ou=myrealm,dc=ldplatform” >
+ <objectclass >
+ <attr name="cn" >
+ «attr name="sn" >
- <attr name="uid" >
<value> Julia <jvalus>
<fattr>
- <attr name="userpassword" >
<walue encoding="bases4" > e3NzaGFIQ; QTc ZoQ1N3 JUIhKUZQ= <jvalue> |
<fattr>

<fentry> E‘

Design View | sCuery Editor View | Source View | Test View [Guery Plan View

4

Figure 32-2 Results for callDSML()

Lab 32.2 Accessing Excel Spreadsheet Data Using JCOM
Data in a Microsoft Excel spreadsheet can be accessed through JCOM.

Objectives

In this lab, you will:

Import JAR and Java files appropriate that will be used to generate a data service for using
JCOM.

Test the results.

Instructions

1. Right-click the Libraries folder and import all the JAR files located in the
samples\ligiddata\EvalGuide\excel\lib folder.

2. Right-click the Functions folder and import excel_jcom. java from
<beahome>\weblogic81l\samples\LiquidData\EvalGuide.

Data Services Platform: Samples Tutorial 122

http://dev2dev.bea.com/codelibrary/code/ld_ldap.jsp

3. Build the DataServices project.

4. TImport the Java function metadata for the Excel JCOM Java application into the Functions folder,
by completing the following steps:

a. Right click the Functions project and choose Import Source Metadata.
b. Select Java Function for the Data Source Type and click Next.

c. In the Class Name field, browse and select
DataServices\Functions\Functions.excel_jcom and then click Next.

d. Select the getExcel() function, click Add, and then click Next.
e. Accept the default setting in the Select Side Effect Procedures window and click Next.

f. Accept the default settings in the Summary window and click Finish. The excel .ds and
associated schema files are added to the Functions folder.

5. Build the DataServices project.

6. Test the Excel data service, by completing the following steps:
a. Open excel .ds in Test View.
b. Select getExcel(x1, x2) from the Function drop-down list.

c. Enter the following arguments:

Description Argument
XLS File Name <beahome>\weblogic8l\samples\LiquidData\EvalGuide\excel\test_xls
Worksheet Name Customers

7. Review the results.

Result \z Results are valid. Text HhL

- <exciexcel xminsiexc="http: /e, bea,com/excel” >
+<cells =

o

- <row rowlD="0001" rowhumber="1" >
<col columnID="a4&4" columnilame="4" > Customer ID <fcol>
Customer name </col>
" = City <jcal>
<ol columnID="ARKAD" calumniame="D" = Sales People ID <jcal>
<frow =
+ <row rowlD="0002" rawhlumber="2" >

<col columnID="A4AAE" columnhlame="
<col columnID="aAAC" columnilame="

+ <row rowlD="0003" rowkumber="3" >
+ <row rowID="0004" rawhlumber="4" >
+ <row rowlD="0005" rowkumber="5" =

+ <row rowlD="000&" rowhumber="8" > E

Edit -

Design Yiew | XQuery Editor Wigw | Source Wiew | Test Yiew [Query Plan View |

Figure 32-3 Results of the getExcel function

Note: For more information on Excel access refer to
http://dev2dev.bea.com/codelibrary/code/liquiddata_Excel.jsp-

Lab 32.3 (Optional) Accessing Data Using an Enterprise Java Bean

Create an Enterprise Java Bean that returns customer credit card information using a Java function.

Objectives

In this lab, you will:

Data Services Platform: Samples Tutorial 123

http://dev2dev.bea.com/codelibrary/code/liquiddata_Excel.jsp

Import the schemas needed to define an EJB-based data service.
Generate an EJB-based data service.

Test the results.

Instructions
1. Create a Schemas Project, by completing the following steps:

a. Right-click the Evaluation application folder and import the Schemas folder as a Schema
Project. The folder is located in:

<beahome>\weblogic81l\samples\LiquidData\EvalGuide\ejb

This schema will be used for the EJB results, which returns an XML document containing
credit card information for a customer.

b. Build the Schemas project.
2. Create an EJB Project, by completing the following steps:

a. Right-click the Evaluation application folder and import the EJB folder as an EJB Project.
The folder is located in:

<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb. This contains:
a container-managed entity bean that maps to the credit card database table

a stateless session bean that invokes the entity bean finder method returning a
list of credit cards for a given customer in the shape of the CREDIT CARDS
XML schema.

b. Build the EJB project.
3. Create a Java project, by completing the following steps:

a. Right-click the Evaluation application folder and import the EJBClient folder as a Java
Project. The folder is located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb. This project contains
the Java client that connects remotely to the stateless session bean. This will be used as the
custom function.

b. Build the EJBClient project.

4. RunCreditCardClient.java, which is located in the EJBClient project folder. A list of credit
cards for CUSTOMER3 should display in the Output window

Note: Click OK for the pop-up message. Drag and drop the CreditCardClient.java into the
Functions folder.

5. Build the DataServices project.

6. Import the Java function metadata for the EJB Client into the DataServices project by completing
the following steps.

a. Right-click the Functions folder and select Import Source Metadata.
b. Select Java Function as the Data Source Type and click Next.

c. Browse and select DataServices\Functions.CreditCardClient as the Class Name
and click Next.

d. Select getCreditCards, click Add, and then click Next.

Data Services Platform: Samples Tutorial 124

e. Accept the default settings in the Select Side Effect Procedures window.

f. Accept the default settings in the Summary window and click Finish. The CREDIT_CARDS .ds
file is added to the Functions folder.

Note: Do not confuse this data service with the CREDIT_CARD . ds created from the
relationship database.

g. Build the DataServices project.

7. Test the getCreditCards() function within the CREDIT CARDS data service. Use CUSTOMER3
as the argument. Confirm that you can retrieve credit card information for Britt Pierce.

Result | [Results are valid, Text ML

- <rred:CREDIT_CARDS xmins:cred="http: {ftemp.openuri.org/DanubeDemo/CREDIT_CARDS. xsd” =
+ <cred:CREDIT_CARD >
- <rred:CREDIT_CARD »
<cred CC_ID> CC_3_1 «fored:CC_ID>
<cred:CUSTOMER_ID: CUSTOMER3 <jcred:CUSTOMER_ID:
«cred:CC_CUSTOMER_MAME = Britt Pierce <fcred:CC_CUSTOMER_NAME:
<orediCC_TYPE> VISA <forediCC_TVPE=
<cred: CC_BRAND> Wells Fargo <fcred:CC_BRAND>
«cred:CC_NUMBER > 4311595933626871 </cred:CC_MUMBER »
«cred:LAST_DIGITS> 26871 <fored:LAST_DIGITS>
«cred:EXP_DATE > 2004-01-30T00:00:00.000+05:30 <jcred:EXP_DATE> U
<cred: STATUS> ACTIVE </cred:STATUS>
«cred:IS_DEFAULT> 0 </cred:IS_DEFALLT >
<cred ALIAS> WISA_1 <jcred:ALIAS> El

+]

#Query Editor View | Source View | Test view [Query Plan View

Figure 32-4 Results for the getCreditCards() function

Lesson Summary

In this lesson, you learned how to import the following sources as Java functions:

WebLogic’s embedded LDAP through a Directory Service Markup Language (DSML)-based Java
application

Data in a Microsoft Excel spreadsheet through a Java application that uses JCOM to access the
MS Excel spreadsheet.

An Enterprise Java Bean that returns customer credit card information.

Data Services Platform: Samples Tutorial 125

Lesson 33 Creating Data Services from XML Files

XML documents are a convenient means for handling hierarchical data. DSP enables the creation of
data services that read data stored in XML files.

Objectives

After completing this lesson, you will be able to:

Import XML metadata and query XML files.

Confirm that the results conform to the XML file specifications.

Overview

Contents of an XML file can be turned into a data service and used as a data source.

In this lab you will create a data service that queries data stored in an XML file. The XML file contains
UNSPSC product category received from third-party vendor.

Lab 33.1 Importing XML Metadata and XML Schema Definition

Importing XML metadata ad schema definitions is similar to importing relational and Web service
metadata, with some differences.

Objectives

In this lab, you will:

Import XML metadata.
Associate a schema and XML source file with the data service.

Generate a data service that reads XML data for the UNSPSC product category.

Instructions

1. Import the XMLFiles folder into the DataServices project. The folder is located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Right click the XMLFiles folder and select Import Source Metadata.
3. Select XML Data from the Data Source Type drop-down list, then click Next.

2 Select data source type @

[raka Source Type: | AML Data | - |

| ek || || Cancel |

Figure 33-1 Import XML Data

The Select XML Source window opens.

Data Services Platform: Samples Tutorial 126

4 Select XML Source E]

~Specify a schema file and {optional) =ML document name
Schema File Browse. ..
¥ML Docurment {optional) Browse. ..
| Previous | I ezt I | | | Cancel |

Figure 33-2 Select XML Source Window
4. Associate a schema file with the data service, by completing the following steps:

a. Click Browse, next to the Schema File field. The XMLFiles directory opens in the Select
Schema Files window.

b. Expand the Schemas folder.

c. Select ProductUNSPSC.xsd and click Select.

Look In: ||:| schemas | - |

8] ProductUNSPSC. xsd

Mame: | ProductUNSPSC, xsd |

Type: |Schema Files | - |

Figure 33-3 Select Schema File
5. Associate the XML Document with the data service, by completing the following steps:

a. Click Browse, next to the XML Document field. The XMLFiles directory opens in the Select
XML Source File window.

b. Select unspsc.xml and click Select.

[C) schemas
|<—j unspsc.xml

Tarne: | unspsi,xmil |

Type: |><ML Source Files | - |

Figure 33-4 Select XML Source File

The Select XML Source window is now populated with file information.

Data Services Platform: Samples Tutorial 127

¥ Select XML Source @

~Specify a schema file and {optional) XML document nam
Schema File D:ibeatuser_projectsiapplicationsidanube)\Evaluation|DataServicesi¥MLFilesischemas\Product UNSPSC. xsd Browse. ..
¥ML Document {optional) | Di\bealuser_projects\applications|danube! Evaluation|DataServicesiXMLFilesiunspse. xml Browse. ..
| Previous | ‘ Nest | ‘ | ‘ Cancel |

Figure 33-5 Populated Select XML Source Window

6. Click Next. The Summary window opens.

24 Summary. E|
The following data service{s) will be created. Edit suggested name(s) as needed.
[YML Type Name
| FroductUNSPSC | PFroductUNSPSC ‘%
Location | D:\application|Evaluation|DataSsreices XML Fies || romse... |
| Previous | ‘ ‘ | Finish I ‘ Cancel |

Figure 33-6 Summary Window

The Summary information includes the following details:

XML Type, for XML objects whose source metadata will be imported.

Name, for each data service that will be generated from the source metadata. (Any name

conflicts appear in red; you can modify any data service name to correct an error condition or

to change to a different project-unique name.)

Location, where the generated data service(s) will reside.

7. Click Finish. A new data service, called ProductUNSPSC . ds, is created in

DataServices\XMLFiles.

Data Services Platform: Samples Tutorial

128

Lab 33.2 Testing the XML Data Service

After creating an XML data service, you need to confirm that the service is able to return data, based
on the associated XML source file.

Objectives

In this lab, you will:

Build the DataService project.
Execute the productUNSPSC() function.

Compare the test results with the unspsc.xml file.

Instructions

1. Open ProductUNSPSC.ds in Test View.

2. Test the data service by completing the following steps:
a. Select productUNSPSC() from the Function drop-down list.
b. Click Execute.

c. Confirm that you can retrieve data, as displayed in Figure 33-7.

ProductUNSPSE. ds - {DataServices} #HLFies| %

Seleck Function:

%] productinspsc(y -]

Parameters

Mumber Element (by path)
Limit elements in array results to:

[s00][Productunmesc [-]

[Start Client Transaction 2] Walidate Resuks

Result | [# Results are valid. Text HML

- «ns0:ProductUNSPSC xmins:ns0="1d:DataServicessMLFiles/Product UNSPSC" >
- <categories >

<category_id> CAT_2 <jcategory_id>
<category_class» CLASS_1 <[category_class:
<category_family> FAMILY _1 </category_famiky>
<category_segment> SEGMENT_2 <jcategory_segment>
</cateqgories >
=+ «rateqories =
+ <categories >
«/nsD:ProductUNSPSC

Design Yiew | #Query Editor View [Source View | Test View [Query Plan View

Figure 33-7 XML Data Service Test Results
3. Inthe Application pane expand the XMLFiles folder and open the unspsc.xml file.

4. Confirm that the test results conform to the specifications in the XML file.

Data Services Platform: Samples Tutorial 129

unspsc.xml - {DataServices HEXMLFles)

; |=CnsD: ProductUN3P3C xmlns:ns0="1ld:Datalfervices/XMLFiles/ProductUN3P3C">
<categoriess
<category 1id=CAT Z< /cateqory ide
<category classxCLATY_l<//category_classs
<category family>FAMILY l</category family>
<oategory sequentx>JEGMENT Z</catedory_Segments
< /categories>
<categoriess
<category id=CAT 3</category ids
<category classxCLATS_E</category_classs
<category familyr>FAMILY 2</category familyx
<oategory sequentx>JEGMENT 3</catedory_sSegment>
</categoriess
<categoriess
<category_id=CAT 4</category_ids
<category classxCLATI _3</category_classsx
<category_familyrFAMILY 5</category_familwyx
<category sequent>IEGMENT 4</category_segment>
</categoriess
</msl: ProductUNSPSCE

IO

Figure 33-8 XML Elements

Lesson Summary

In this lesson, you learned how to:

Access data in an XML file.

Confirm that the results conform to the contents of the XML file.

Data Services Platform: Samples Tutorial

130

Lesson 34 Creating Data Services from Flat Files

Flat files, such as spreadsheets, offer a highly adaptable means of storing and manipulating data,
especially data that needs to be quickly changed. Flat files are simply treated as another data source
that DSP can use to generate metadata and create a data service.

Objectives

After completing this lesson, you will be able to:

Create a data service that can access data stored in a flat file.

Associate the flat file data service with a logical data service.

Overview

Flat files, such as spreadsheets, often support a text format called CSV or Comma Separated Values.
Such file formats typically have a .csv extension.

Lab 34.1 Importing Flat File Metadata

The flat file must be in a DSP project, before a data service can be generated. As part of the import
process, you must provide a schema name, a file name, or both.

Objectives

In this lab, you will:

Create a data service that queries data stored in a flat file. The flat file contains customer
valuation data received from an internal department that deals with customer scoring and
valuation models. The file contains the following fields:

Customer _id

Valuation_date

Valuation_score

Instructions

1. Right-click the DataServices folder and import the FlatFiles folder, which is located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Import source metadata by completing the following steps:

a.

b.

Right-click the FlatFiles folder and select Import Source Metadata.

Select Delimited Data from the Data Source Type drop-down list, then click Next.
Ignore the Schema field.

Click Browse, next to the Delimited Source field.

Select Valuation.csv and click Select.

Confirm that the Has Header checkbox is enabled.

Data Services Platform: Samples Tutorial

131

By selecting this option, you specify that the header data, which is usually located in the
first row of the spreadsheet, will not be treated as data within the generated data service.

g. Confirm that the Delimited radio button is enabled. By enabling this option, you specify
that the data is separated by a specific character, rather than a fixed width such as 10
spaces.

h. Confirm that a comma (,) is in the Delimiter field. If data is delimited, then you must
specify what character is used to delimit the data. Although the default is a comma, any
ASCII character is supported.

i. Click Next. The Summary dialog box opens.

j- Click Finish. A new data service called Valuation.ds is created in the
DataServices\FlatFiles.

3. Open the Valuation.ds file in Design View.

4. Open Valuation.ds in Design View and confirm that there is a Valuation function. This
function will retrieve all data from the flat file.

Yaluation.ds - {DataServicesHFlatFilesy x
=]
| ls . ¥aluation Data Service _ W
=@ row
¢ T valuation @ CUSTOMER_ID xs:string
C) WALUATION_DATE xs:string
(:J YALUATION_TIER. xs:string
|| Design View [XGuery Editar View | Source View | Test View | Query Plan View

Figure 34-1 Design View of the Data Service Based on a Flat File

Data Services Platform: Samples Tutorial 132

Lab 34.2 Testing Your Flat File Data Service

After creating the data service, you need to confirm that the service is able to return data, based on the
associated delimited source file.

Objectives

In this lab, you will:

Build the DataService project.

Execute the Valuation function.

Instructions

1. Right-click the DataServices folder.

2. Choose Build DataServices.

3. Open Valuation.ds in Test View.

4. Test the data service by completing the following steps:
a. Select Valuation() from the Function drop-down list.
b. Click Execute.

5. Confirm that you can retrieve data, as displayed in Figure 34-2. Notice that the return element is
introspected. That is based on the header information in the Valuation.csv file.

Valuation.ds - {DataservicesHFlatFiles) %

Select Function:

5] valuation) [~]

Parameters

Mumber Element {by path)

Limit elements in array results to:
| 500 | ‘ row |~ ‘

[start Client Transaction Validate Results

Result @ Results are walid, Text ML

- <nsD:row xmins:ns0="Id: DataServices/FlatFiles/Valuation” =
<CUSTOMER_ID:> CUSTOMER1 </CUUSTOMER _ID:=
<WALUATION_DATE> 12/25/2004 «/VALUATION_DATE=
<MALUATION_TIER > SILYER <jWALUATION_TIER.:=

<[nsDirows

D

- <nsD:row xmins:ns0="ld: DataServices|FlatFiles/¥aluation” =
<CUSTOMER_ID:> CUSTOMERZ </CUUSTOMER _ID:=
<WALUATION_DATE> 12/25/2004 «/VALUATION_DATE=
<WALUATION_TIER > GOLD <[vALUATIOM_TIER >

<[nsDirows

+ <nsD:row xmins:ns0="ld: DataServicesiFlatFilesi¥aluation”

+ <nsO:row xmins:ns0="ld: DataServices|FlatFiles/valuation"

+ <ns0:row xmins:ns0="ld: DataServices|FlatFiles/valuation"

+ <ns0:row xmins:ns0="/d: DataServices|FlatFiles/valuation”

i
i
+ zns0irow xmins:ns0="ld: DataervicesiFlatFiles/valuation”
l
i
i

Wow W W v W

+ «nsO:row xmins:ns0="ld: DataServicesiFlatFiles/valuation”

Design View | XGuery Editor Yiew | Source View | Test View [Query Plan View

Figure 34-2 Test Results—Flat File Data Service

Data Services Platform: Samples Tutorial 133

Lab 34.3 Integrating Flat File Valuation with a Logical Data Service

At this point, you are able to pull data from the flat file. However, integrating the flat file data service
into a logical data service lets you retrieve multiple sources of information.

Objectives

In this lab, you will:

Modify a function to retrieve data from a flat file physical data service.

View the results in both XQuery Editor View and Source View.

Instructions

1. Open CustomerProfile.ds under
DataServices/CustomerManagement/CustomerProfile in XQuery Editor View.

Select getAllCustomers() from the Function drop-down list.
In the Data Services Palette, expand the FlatFiles and Valuation.ds folders.

Drag and drop Valuation() into XQuery Editor View.

AR I

Create a simple mapping by dragging and dropping the VALUATION DATE and
VALUATION_TIER elements (valuation node) onto the corresponding elements in the Return

type.

6. Create a join. Drag and drop the CUSTOMER _ID element (Customer node) onto the
corresponding element in the Valuation node. The final layout should be similar to that shown in
Figure 34-3:

| mtalCustomers)

*|i2 For: SCUSTOMER & Retum

= QUSTOMER *
CUSTOMER D string
FIRST HAML string
LAST _MNAME string

e
emal_sddress T shring
telaphona_rumber 7 strrg

) For: SCUSTOMER_ORDER_L w07 wrng

! 1 bt _day 7 date

bl e CUSTOMER_CRDER_LINE_ITEN * Al R
EMAL_AO0RESS string LD sy omad_ruficotion? et
TELEPHONE_MUMEER, sirng QRDERID #aing [y -
rimirting PRODUCT_ID strig s
HIRTH_DAY ? date LT IEG e erders
DEFALLT_SHGP_METHOO 7 strimy QUANTITY. Iwoer = guder *
EMAL_NOTIFICATION 7 shrt TG dackl crder i strng
BEWS_ LETTTER 7 shoet S g

cuntormm id sirig

CMLINE_STATEMENT 7 sheet cechr data dats

shp_mathed siring
o charge decenal
Subtotsl decms
* [For: SCUSTOMER_ORDER | okl prder_amourt: decmal
F vae _tax decrna
= QUSTOMER_CRDER * - v
OROER D st
CUSTOMER 1D string

shg_tn_rane 2rng

R il to sty
ORDER_DATE date wsimated_shi,_dete date
S0°_METHOD stg st sty

HANDLING (CHARGE decemal

data_source string
SHTOTAL decmal

crder_lne ¥

TOTAL ORDER:_AMOUNT decmal o
i strig
SALE_TAK decimal oazrisod]
e proset 4 sreg
o prodat i
BILL_TO sdring i
STIMATED S _DATE Quartty
e ED_SHF_DATE dste [Brar srow e
STATUS string e
= row

CUSTOMER 1D string = credtratng ¥

VALLIATICN_DATE string rakng g

VALLATION_TIER strreg customer d sting

= wabastion T

woliation_dater shrirg
waugtion,_tir string

em 73

Dm0 Ve | uery Edtor View | Sourn View | Tast Visws | Cuirey Pan Views |

Figure 34-3 XQuery Editor View of Flat File Data Service Integrated with Logical Data Service

Data Services Platform: Samples Tutorial 134

Lab 34.4

7. Open CustomerProfile.ds in Source View and confirm that the following mapping have been

created:

CustomerProfile. ds - {DataServiceshiCustomerManagement]

declare function tns:getAllCustomers(] as element(naD:CustomerProfilei® {
<ns0:CustomerProfile-
{
for srow in ns6:Valuation()
for SCUSTOMER in nsl:CUSTOMER()
where FCUSTOMER/CUSTOMER_ID = $row/CUSTOMER_ID
return
<customer>
<customer id-{fn:data(sCOSTOMER/CUSTOMER_ID| }</customer id>-
<first_mame>{En: data(SCUSTOMER/FIRST NAME))</ first_name>
<last_name>{fn: data(CUSTOMER/LAST NAME) }</last_name>
<customer since:>{fn:data(sCUSTOMER/CUSTOMER_SINCE) }</customer since>
<email _address?>{fn:data($CUSTOMER/EMATL ADDRESS)}</email address:
<telephone_mumber 2>-{ fn: data sCUSTOMER/TELEPHONE NUMEER) }</telephone_nurber:>
<ssn2{ fn: data { SOTSTOMER/SSN) }<fssni
<hirth day?>{En: data(sCUSTOMER/BIRTH DAY) }</birth day>
<default_ship methodz>{fn:data(sCYSTOMER/DEFAULT SHIP METHOD) }</default_ship method>
<email motification?>{fn:data($CUSTOMER/EMAIL_NOTIFICATION) }<femail motification:-
<news letter?>{fn:data(§CUSTOMEE/NES LETTTER) }</news letter>
<online statement 2-{fn:data(sCUSTOMER/ONLINE_STATEMENT) }</online statement:-
<login id-{fn:data(§CUSTOMER/LOGIN_ID) }</login id>
<orders >
{
for SCUSTOMEE ORDEE in naZ:CUSTOMER_ORDER()
where SCUSTOMER/CUSTOMER ID = $CHSTCMEE ORDEE/C_ID
return
<order:
<order_id={fn:data(sCUSTOMEE ORDEE/ORDER_ID) }</order_id-
<customer_id>-{fn:data|sCUSTOMER ORDER/C_ID) }</customer_id>
<order_date>{fn:data($CUSTOMER ORDEE/ORDER_DT)}</order date>
<ship method={fn: data|sCUSTOMER ORDER/SHIP METHOD DSC)y</ship method-

<subtotal>{fn:data|§CUSTOMER ORDER/SUBTOTAL_AMT) }</subtotal>

[T I

<handTing_charge>{fn: data($CSTOMER ORDER/HANDLING CHRG_AMT) }</handling_charge>

<total order amount>{fn:data{sCUSTOGMER ORDER/TOTAL ORDER AMT)}</total order amount> EE

ey Editar View | Source Yiew Query Plan View

Figure 34-4 Source View of Flat File Data Service Integrated with Logical Data Service

Testing an Integrated Flat File Data Service

Testing the function lets you confirm that the data is correctly retrieved.

Objectives

In this lab, you will:

Test the getAllCustomers function.

View the results.

Instructions

1. Open CustomerProfile.ds in Test View.

2. Select getAllCustomers() from the Function drop-down list.
3. Click Execute.
4

Confirm that you can retrieve valuation information.

Result | [Results are valid.

- <tliCustomerProfile xmins:t1="http://temp, openuri.orgiDataServices/schemas/CustomerProfile, xsd" >
- <customer >

<custamer_id> CUSTOMERT <jcustomer_id>
<first_name> Jack <ffirst_name:
<last_name> Black =flast_name:=
<customer_since= 2001-10-01 </customer_since=
=email_address> Jack@hotmail.com </email_address>
<telephone_number> 2145134119 <ftelephone_number
<ssn> 295-13-4119 <fssn>
<hirth_day> 1970-01-01 <jbirth_day>
«default_ship_method> AIR <fdefaul:_ship_method>
<email_natification= 1 <femail_notification>
<news_letker> 0 </news_letker=
<online_statement> 1 </anline_statement>
<login_id> Jack <flogin_id=
+ <orders >

+ crradiratinn

]

[Design View | XGQuery Editar View | Source Visw | Test View [Query Plan Yiew |

Data Services Platform: Samples Tutorial

135

Figure 34-5 Test View of Integrated Flat File Data Service

5. (Optional) Use the getCustomerProfile function, enter CUSTOMER3 in the Parameter field, and
click Execute.

Note: Ensure that the user has access to run the getCustomerProfile function by checking the security
settings in the DSP Console.

Lesson Summary

In this lesson, you learned how to:

Import a CSV file containing valuation information.
Create a flat file physical data service.

Integrate the flat file physical data service with a logical data service.

Data Services Platform: Samples Tutorial 136

Lesson 35 Creating an XQuery Function Library

In any DSP project you can create XQuery libraries containing functions which can be used by any
data service in your application. An XQuery function library is ideal for containing transformation and
other types of functions without the overhead of having to build a data service. An XQuery function
library can also be used to hold security functions which, in turn, can be used by any data service.

Objectives

After completing this lesson, you will be able to:

Create and use XFL functions.

View the results.

Overview

An XQuery Function Library (XFL) contains user functions that return discrete values, such as string,
integer, or calendar. These functions are useful for data manipulation at query execution time.

Lab 35.1 Creating an XQuery Function Library

In this lesson, you will “encrypt” a customer's SSN to hide its value. As part of this process you will be
modifying the getCustomerProfile() query function.

Objectives

In this lab, you will:

Import a Java file into the DataServices project.
Import source metadata.

Test the function

Instructions
1. Create a new folder in the DataServices project and name it xfl.

2. Import protectSSN. java in the xfl folder. The file is located in
samples\liquiddata\EvalGuide.

3. Build the DataServices project.
4. Import source metadata into the xfl folder by completing the following steps:
a. Right-click the xfl folder and choose Import Source Metadata.
b. Select Java Function from the Data Source Type drop-down list and click Next.

c. Browse and select DataServices\xfl .protectSSN in the Class Name field and click
Next.

Data Services Platform: Samples Tutorial 137

¥ Select Java File le

-Specify Class Mame:

Class Mame: | wf) ratectssn | | Browse. .. |

| Previous | | Mext | | | | Cancel |

Figure 35-1 Selecting the Java File
d. Select the protectSSN function, and then click Add.
1 Select Java Functions E‘

Java functions with the following input and output types are supported for import:
simple types, XMLBean types, java arrays of simple types and java arrays of XMLBean types

Available Java Functions Selected Java Functions

protectSSM(string)

Il

Remove All

[Previous | [mext || || cancel |

Figure 35-2 Selecting the Java Function
e. Accept the default settings in the Select Side Effect Procedures window and click Next.

f. Click Next. The Summary window opens.

These function{s) will be saved to the specified XML library file:

[Function Name Library Name Add to Existing Library File

[protectsstistring) [trary ‘ =

Location | Di\application|EvaluationiDataSsrvicesid| || Browse... |
‘ Previous ‘ | | | Finish | | Cancel |

Figure 35-3 Imported Java Metadata Summary

f. Click Finish.

Data Services Platform: Samples Tutorial 138

5. Test the function, by completing the following steps:
a. Open library.xfl in Test View.
b. Select protectSSN from the Function drop-down list.
c. Insert any number in the Parameter field; for example, 3.

d. Click Execute. The test should return 999-99-9999, regardless of the input parameter.

library =fl - {DataServicesHaxfl|,

o] 2

Seleck Function:

|protectSSN(x1) ‘ - ‘

Parameters

wsdiskring w1z | 3

[start Client Transaction [] validate Results

[99-99-9990

Desian View | #Query Editor View | Source Wiew | Test View [Guery Plan Yiew

Figure 35-4 XQuery Function Library Test

Lab 35.2 Using the XQuery Function Library in an XQuery
Adding an XQuery Function Library file to an XQuery.

Objectives

In this lab, you will:

Add the protectSSN.xfl file to an XQuery.
Test the query.

View the results.

Instructions
1. Build the DataServices project.

In the DSP-console, navigate to DataServices\CustomerManagement\CustomerProfile.

Click Admin and then Security.

2

3

4. Click the Access Policy icon for getCustomerProfile().

5. Remove the users Bob and Joe from the Policy Statement list.
6

Test the getCustomerProfile() function without the protectSSN function by completing the
following steps:

a. Open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the function drop-down list.

Data Services Platform: Samples Tutorial 139

c. Enter CUSTOMERS3 in the Parameter field.
d. Confirm that the query returns a valid SSN.
Set SSN protection, by completing the following steps:

a. Open CustomerProfile.ds in Source View.

b. Expand the getAllCustomers node.

c. Locate the SSN return code within the getAllCustomers() function. It should be as follows:

<ssn?>{fn:data($CUSTOMER/SSN)}</ssn>

d. In Data Services Palette, expand the xfl and library.xfl folders.

e. Drag and drop protectSSN() to the SSN return value.

f. Modify the remaining code, so that it is as follows:
{ssn?{ns9:protectSSN($CUSTOMER/SSN) }</ssn>)}

Note: <a> is the renamed element. You can use any name for the element, but for the
sake of clarity, we used the simple <a> name.

Test the getCustomerProfile() function with the protectSSN function, by completing the following

steps:

a. Open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the function drop-down list.

c. Enter CUSTOMERS in the parameter field. The query should return an invalid social security

number.

Result

[Results are valid.

Text

HhL

- <t1:CustomerProfile xmins:t 1="http: ftemp. openwri,org/DataServicesfschemas/CustomerProfie. xsd” >

- <customer *

<customer_id> CUSTOMERS <jcustomer_id>
<first_name> Britt <[first_name>

<last_name> Pierce <jlast_name>

<customer_since> 2001-10-01 <jcustomer_since>
<email_address> JOHN_3@att.com </emai_sddress:
<telephone_number> 9287731259 </telephone_number =
<ssn> 999-99-9999 <[ssn=

<hirth_day> 1952-05-09 <fhirth_day>
«default_ship_method> PRIDRITY-1 </default_ship_method>
<email_natification= 1 <femail_notification>
<news_letters 0 </news_letter =

<online_statement> 1 </anline_statement>

[¥]

Design View [#Query Editor View [Source View | Test View [Query Flan View

Figure 35-5 Test View of Protected SSN

Lesson Summary

In this lesson, you learned how to:

Create a XFL function.

Use the XFL function within a query.

Data Services Platform: Samples Tutorial

140

Data Services Platform: Samples Tutorial 141

Glossary

ad-hoc query. A hand-coded or generated query that is passes to Data Services Platform on the fly, rather than
stored in the DSP repository.

administration console. A Web-based administration tool that an administrator uses to configure and monitor
WebLogic Servers. DSP provides a console to help manage instances of Data Services Platform.

application. A collection of all resources and components deployed as a unit to an instance of WebLogic Server.
The application contains one or more projects, which in turn contain the folders and files that make up your
application. Only one application can be open at a time.

cache. The location where DSP stores information about commonly executed stored queries for subsequent,
efficient retrieval, thereby enhancing overall system performance. DSP provides query plan cache and result set
cache.

cache policy. In the result set cache, configuration settings determine when the cached results expire for individual
stored queries.

data model. A visual representation of data resources.
data object. In SDO, a complex type that holds atomic values and references to other data objects.

data service. A modeled object that describes a data shape and functions used to retrieve and update the data, as
well as functions to navigate to other related data services.

data service mediator. The SDO mediator that uses data services to retrieve and update data.
data service update. The engine responsible for handling submits of changes to SDOs

data source. Any structured, semi-structured, or unstructured information that can be queried. The types of data
sources that DSP can query include relational databases, Web services, flat files (delimited and fixed width), XML
files, Java functions, application views using Web applications (business-level interfaces to the data in packaged
applications such as Siebel, PeopleSoft, or SAP), data views (dynamic results of DSP queries).

data source schema. An XML schema that defines the content, semantics, and physical structure of a data source.

function. A uniquely named portion of an XQuery that performs a specific action. In the case of DSP the function
would typically query physical or logical data.

Java Server Page (JSP). A J2EE component that extends the Servlet class, and allows for rapid server-side
development of HTML interfaces that can be co-mingled with Java.

logical data service. A data service that integrates data from multiple physical and/or logical data services.
mapping. The process of connecting data source schemas to a target (result) schema.
metadata. Descriptors about a data service’s information, format, meaning, and lineage.

physical data service. The leaf-level data services that expose external data. For relational sources, this would be a
data service representing tables or stored procedures. For functional sources, this would be the functions that are
considered to be the initial source of data operated on by XQuery.

project. Groups related files within an application.

query. In DSP an XQuery function that retrieves data from a data source. Functions define what tasks the query will
perform, while expressions define what data to extract.

query operation. Operation that a query performs, such as a join, aggregation, union, or minus.

guery plan. A compiled query. Before a query is run, DSP compiles the XQuery code into an executable query
plan. When the query executes, the query plan is sent to the data source for processing.

Data Services Platform: Samples Tutorial 142

http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#54450
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57806
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#59865
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57092

repository. File-based metadata maintained in a DSP project.

result set. The data returned from an executed query. There are two types of result sets: intermediate result sets are
temporary result sets that the query processor generates while processing an analytical query; final result sets are
returned to the client application that requested the query in the form of XML data.

return type. A type of XML schema that defines the shape of data returned by a query.
schema. A model for representing the data types, structure, and relationships of data sets and queries.

security. Set of mechanisms available to prevent access to, corruption of, or theft of data. DSP extends the
WebLogic Server compatibility security mechanisms to define groups, users, and access control to DSP resources.

service data object (SDO). Defines a Java-based programming architecture and API for data access.

Simple Object Access Protocol (SOAP). An extensible, platform-independent, XML-based protocol that allows
disparate applications to exchange messages over the Web. SOAP can be used to invoke methods on servers, Web
services, application components, and objects in a distributed, heterogeneous environment. SOAP-based Web
services are one of the data sources DSP supports.

source schema. XML schema that describes the shape (structure and legal elements) of the source data—that is, the
data to be queried. The DSP-enabled server runs queries against source data and returns query results in the form of
the source schema.

stored query. A query that has been saved to the DSP repository. There is a performance benefit to using a stored
query because its query plan is always cached in memory, optionally along with query result. With an ad-hoc query,
however, the query plan and result are not cached. In addition, caching of query results for a stored query is
configurable through the Cache tab on the DSP node in the Administration Console.

Structured Query Language (SQL). The standard, structured language used for communicating with relational
databases. Database programmers use SQL queries to retrieve information and modify information in relational
databases. In order to be able to access different types of data sources dynamically, DSP employs the XML-based
XQuery language as a layer on top of platform-dependent query systems such as SQL.

target schema. See return type.
Weblogic Server. The platform upon which DSP is built.
Weblogic Workshop. The IDE in which DSP runs as an application.

Web service. Business functionality made available by one company, usually through an Internet connection, for
use by another company or software program. Web services are a type of service that can be shared by, and used as
components of, distributed Web-based applications. Web services communicate with clients (both end-user
applications and other Web services) through XML messages that are transmitted by standard Internet protocols,
such as HTTP. Web services endorse standards-based distributed computing. Currently, popular Web Service
standards are Simple Object Access Protocol (SOAP), Web services description language (WSDL), and Universal
Description, Discovery, and Integration (UDDI).

Web services description language (WSDL). Specification for an XML-based grammar that defines and describes
a Web service. A WSDL is necessary if two different online systems need to communicate without human
intervention.

xml schema. A structured model for describing the structure, content, and semantics of XML documents based on
custom rules. Unlike DTDs, XML schemas are written in XML data syntax and provide more support for standard
data types and other data-specific features. When metadata about a data source is obtained, it is stored in an XML
schema in the DSP repository.

XQuery. An XML query language, which represents a query as an expression which is used to query relational,
semi-structured, and structured data.

xsd. An abbreviation for XML Schema Definition. An XSD file describes the contents, semantics, and structure of
data within an XML document.

Data Services Platform: Samples Tutorial 143

Data Services Platform: Samples Tutorial 144

	 Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document

	Document Organization
	 Technical Prerequisites
	System Requirements
	Data Sources Used Within These Lessons
	Related Information
	Part 2: Power-User Training

	Lesson 18 Building XQueries in XQuery Editor View
	Objectives
	Overview

	Lab 18.1 Importing Schemas for Query Development
	Objectives
	Instructions

	Lab 18.2 Creating Source-to-Target Mappings
	Objectives
	Instructions

	Lab 18.3 Creating a Basic Parameterized Function
	Objectives
	Instructions

	Lab 18.4 Creating a String Function with a Built-In XQuery Function
	Objectives
	Instructions

	Lab 18.5 Creating a Date Function
	Objectives
	Instructions

	Lab 18.6 Creating Outer Joins and Order By Expressions
	Objectives
	Instructions

	Lab 18.7 Creating Group By and Aggregate Expressions
	Objectives
	Instructions

	Lab 18.8 Creating Constant Expressions
	Objectives
	Instructions

	Lesson Summary

	Lesson 19 Building XQueries in Source View
	Objectives
	Overview
	Source View Tools

	Lab 19.1 Creating a New XML Type
	Objectives
	Instructions

	Lab 19.2 Creating a Basic Parameterized XQuery
	Objectives
	Instructions
	XQuery Code Reference for a Parameterized Function

	Lab 19.3 Creating a String Function
	Objectives
	Instructions
	XQuery Code Reference for a String Function

	Lab 19.4 Building an Outer Join and Using Order By
	Objectives
	Instructions
	XQuery Code Reference for an Outer Join and Order By Function

	Lab 19.5 Creating an Inner Join and a Top N
	Objectives
	Instructions
	XQuery Code Reference for Inner Join and Top N Function

	Lab 19.6 Creating a Multi-Level Group By
	Objectives
	Instructions
	XQuery Code Reference for Multi-Level Group By Function

	Lab 19.7 Using If-Then-Else
	Objectives
	Instructions
	XQuery Code Reference for If-Then-Else Function

	Lab 19.8 Creating a Union and Concatenation
	Objectives
	Instructions
	XQuery Reference Code for Union and Concatenation Function

	Lesson Summary

	Lesson 20 Implementing Relationship Functions and Logical Modeling
	Objectives
	Overview

	Lab 20.1 Implementing and Testing a Relationship Function
	Objectives
	Instructions

	Lab 20.2 Creating a Model Diagram for Logical Data Services
	Objectives
	Instructions

	Lesson Summary

	Lesson 21 Running Ad Hoc Queries
	Objectives
	Overview

	Lab 21.1 Creating an Instance of the PreparedExpression Class
	Objectives
	Instructions

	Lab 21.2 Defining Ad Hoc Query Parameters
	Objectives
	Instructions

	Lab 21.3 Testing the Ad Hoc Query
	Objectives
	Instructions
	Code Reference for an Ad Hoc Query

	Lesson Summary

	Lesson 22 Creating Data Services Based on SQL Statements
	Objectives
	Overview

	Lab 22.1 Creating a Data Service from a User-Defined SQL Statement
	Objectives
	Instructions

	Lab 22.2 Testing Your SQL Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 23 Performing Custom Data Manipulation Using Update Override
	Objectives
	Overview

	Lab 23.2 Creating an Update Override
	Objectives
	Instructions

	Lab 23.3 Associating an Update Override to a Logical Data Service
	Objectives
	Instructions

	Lab 23.4 Testing the Update Override
	Objectives
	Instructions
	Update Override Reference Code

	Lesson Summary

	Lesson 24 Updating Web Services Using Update Override
	Objectives
	Overview

	Lab 24.1 Creating an Update Override for a Physical Data Service
	Objectives
	Instructions

	Lab 24.2 Writing Web Service Update Logic in the Update Override
	Objectives
	Instructions

	Lab 24.3 Testing the Update Override
	Objectives
	Instructions

	Lab 24.4 Checking for Change Requirements
	Objectives
	Instructions

	Lesson Summary

	Lesson 25 Overriding SQL Updates Using Update Overrides
	Objectives
	Overview

	Lab 25.1 Adding SQL Update Statements to an Update Override File
	Objectives
	Instructions

	Lab 25.2 Associating an SQL-Based Data Service and Update Override
	Objectives
	Instructions

	Lab 25.3 Testing Updates
	Objectives
	Instructions

	Lesson Summary

	Lesson 26 Understanding Query Plans
	Objectives
	Overview

	Lab 26.1 Viewing the Query Plan
	Objectives
	Instructions

	Lab 26.2 Locating the SQL Statement in a Query Plan
	Objectives
	Instructions

	Lab 26.3 Locating XML Elements
	Objectives
	Instructions

	Lesson Summary

	Lesson 27 Reusing XQuery Code through Vertical View Unfolding
	Objectives
	Overview

	Lab 27.1 Unfolding Vertical View
	Objectives
	Instructions

	Lab 27.2 Testing a Vertical File Unfolding
	Objectives
	Instructions

	Lesson Summary

	Lesson 28 Configuring Alternatives for Unavailable Data Sources
	Objectives
	Overview

	Lab 28.1 Setting the Demonstration Conditions
	Objectives
	Instructions

	Lab 28.2 Configuring Alternative Sources
	Objectives
	Instructions

	Lab 28.3 Testing an Alternative Source
	Objectives
	Instructions
	The invocation of the first Web service NewLookupCreditResponse fails because the thread times out. Because this Web service has failed it will not be invoked again. Instead, the alternate Web service is invoked.

	Lesson Summary

	Lesson 29 Enabling Fine-Grained Caching
	Objectives
	Overview

	Lab 29.1 Enabling Function-Level Caching for a Physical Data Service
	Objectives
	Instructions

	Lab 29.2 Testing the Caching Policy
	Objectives
	Instructions

	Lab 29.3 Testing Performance Impact
	Objectives
	Instructions

	Lesson Summary

	Lesson 30 Creating XQuery Filters to Implement Conditional-Logic Security
	Objectives
	Overview

	Lab 30.1 Creating User Groups
	Objectives
	Instructions

	Lab 30.2 Writing the XQuery Security Function
	Objectives
	Instructions

	Lab 30.3 Activating the XQuery Function for Security
	Objectives
	Instructions

	Lab 30.4 Testing the XQuery Security Function
	Objectives
	Instructions

	Lesson Summary

	Lesson 31 Creating Data Services from Stored Procedures
	Objectives
	Overview
	Handling Stored Procedure Row Sets

	Lab 31.1 Importing a Stored Procedure into the Application
	Objectives
	Instructions

	Lab 31.2 Importing Stored Procedure Metadata into a Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 32 Creating Data Services from Java Functions
	Objectives
	Overview

	Lab 32.1 Accessing Data Using WebLogic’s Embedded LDAP Function
	Objectives
	Instructions

	Lab 32.2 Accessing Excel Spreadsheet Data Using JCOM
	Objectives
	Instructions

	Lab 32.3 (Optional) Accessing Data Using an Enterprise Java Bean
	Objectives
	Instructions

	Lesson Summary

	Lesson 33 Creating Data Services from XML Files
	Objectives
	Overview

	Lab 33.1 Importing XML Metadata and XML Schema Definition
	Objectives
	Instructions

	Lab 33.2 Testing the XML Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 34 Creating Data Services from Flat Files
	Objectives
	Overview

	Lab 34.1 Importing Flat File Metadata
	Objectives
	Instructions

	Lab 34.2 Testing Your Flat File Data Service
	Objectives
	Instructions

	Lab 34.3 Integrating Flat File Valuation with a Logical Data Service
	Objectives
	Instructions

	Lab 34.4 Testing an Integrated Flat File Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 35 Creating an XQuery Function Library
	Objectives
	Overview

	Lab 35.1 Creating an XQuery Function Library
	Objectives
	Instructions

	Lab 35.2 Using the XQuery Function Library in an XQuery
	Objectives
	Instructions

	Lesson Summary
	 Glossary

