
BEAAquaLogic
Data Services
Platform™

Concepts Guide
Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site:

http://e-docs.bea.com/aldsp/docs25/index.html

Version: 2.5
Document Date: June 2005
Revised: September 2006

http://edocs.bea.com/aldsp/docs25/index.html

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Concepts Guide v

Contents

1. Introducing BEA AquaLogic Data Services Platform
The Extraordinary Cost of Information Fragmentation . 1-1

What is a AquaLogic Data Services Platform? . 1-3

Data Services and a Service-Oriented Architecture . 1-4

Role of Data Services . 1-5

Modeling the Enterprise. 1-6

Implementing Data Services . 1-8

Data Consumers . 1-8

Life Cycle of a Data Service-Oriented Development Project . 1-9

Data Service Development Roles . 1-9

Additional Technical and Product Information. 1-10

2. Architecture
WebLogic Platform and AquaLogic Data Services Platform. 2-1

AquaLogic Data Services Platform Architecture. 2-2

AquaLogic Data Services Platform Components . 2-3

3. Unifying Information with Data Services
What is a Data Service? . 3-1

Understanding Data Service Functions . 3-2

Data Service Transformations . 3-3

The Role of XQuery . 3-4

Advertising and Maintaining Data Services with Metadata . 3-4

vi Concepts Guide

4. Modeling and a Service-Oriented Architecture
The Role of the Model .4-1

Modeling Data Services. .4-2

Modeling Data Using XML Types .4-3

5. Using Service Data Objects (SDO)
Introducing Service Data Objects .5-1

Getting Data Objects .5-2

An Initial Look at SDO Programming .5-3

Updating Data .5-5

Data Service Mediator. .5-6

The Decomposition Process .5-8

Logical Data Service Update Process .5-9

6. Performance and Caching
Overview .6-1

Query Optimization .6-1

Caching .6-2

7. Securing Enterprise Data
Ensuring Data Security .7-1

Securing AquaLogic Data Services Platform Resources .7-2

Understanding Security Policies .7-3

Concepts Guide 1-1

C H A P T E R 1

Introducing BEA AquaLogic Data
Services Platform

This chapter provides an overview of BEA AquaLogic Data Services Platform. It covers the following
topics:

The Extraordinary Cost of Information Fragmentation

What is a AquaLogic Data Services Platform?

Data Services and a Service-Oriented Architecture

Modeling the Enterprise

Implementing Data Services

Data Consumers

Life Cycle of a Data Service-Oriented Development Project

Data Service Development Roles

Note: AquaLogic Data Services Platform was formerly named Liquid Data. Some artifacts of the
original name remain in the product, installation path, and components.

The Extraordinary Cost of Information Fragmentation
Information resources are often the most important assets of an enterprise. Availability of accurate
and timely formation can make or break an enterprise’s ability to execute on its essential functions
— from day-to-day operations to the marketing and delivery of products or services to strategic
planning.

In t roduc ing BEA AquaLog ic Data Se rv i ces P lat fo rm

1-2 Concepts Guide

It is a fact of life, however, that as enterprises evolve, their data resources tend to become increasingly
fragmented. Corporate acquisitions and mergers, new technologies, and changing IT strategies all
contribute to data lakes and puddles, in which pockets of information become isolated by physical and
technical boundaries. In a typical enterprise information pools in databases and files, within
applications, or externally, supplied on-the-fly by business partners, vendors, and clients as Web
services or XML documents. Figure 1-1 illustrates this fragmentation of data.

Figure 1-1 Direct Data Access Applications

As a consequence, integrated information becomes so expensive to create that it is — except for the
highest priority needs — effectively unavailable to the decision makers, employees, and customers
when they need it. And as for those highest priority projects, developers must cope with a daunting
variety of data access mechanisms and APIs. Resulting applications tends to be dominated by data
management logic, making them intolerant to changes in the data layer.

When changes do occur, the applications must be revised and retested, because their business logic
is embedded with the data access code. In sum, when it comes to developing applications, the costs of
information fragmentation are quantifiable and significant. By many estimates, up to 70% of the time
required to develop an enterprise application goes into data access programming.

Other costs may be more difficult to gauge but are certainly as significant — from hampered decision
making and poor responsiveness to the high cost of integration talent.

data consumer applications

data sources

XML Data Web services
relational

relational

What is a AquaLog ic Data Se rv ices P la t fo rm?

Concepts Guide 1-3

What is a AquaLogic Data Services Platform?
A data service is a query-based access layer that facilitates the ability of calling applications to access
and manage disparate data.

AquaLogic Data Services Platform (AquaLogic Data Services Platform) is the AquaLogic component
dedicated to developing and deploying integrated data services. Data services give consumers an
easy-to-use, uniform model for accessing heterogeneous, distributed data.

AquaLogic Data Services Platform significantly simplifies the task of creating and deploying reusable
data services. It provides tools and frameworks for rapidly generating physical data services based on
existing data sources and for creating view-like logical data services.

Most data in an organization exists as queryable data or application data. From the perspective of the
data consumer, AquaLogic Data Services Platform presents a sensible, uniform model for getting and
using information. The application simply retrieves or updates its data by calling one of the data
service’s public APIs. The backend data may come from legacy applications, relational databases, Web
services, and so forth. Thus data services can be viewed as a layer integrated between the data
consumer and the data sources, as illustrated in Figure 1-2.

Figure 1-2 Data Integration Layer Between Data Users and Data Sources

AquaLogic Data Services Platform is a virtual data layer in the sense that, except for caching, data is
not kept in any AquaLogic Data Services Platform or WebLogic component. Instead, data services

data sources

data consumer applications

data services layer

In t roduc ing BEA AquaLog ic Data Se rv i ces P lat fo rm

1-4 Concepts Guide

dynamically retrieve data from the physical data sources. Dynamic access ensures that applications
have access to current (that is, real time) information.

A data service represents a unit of information in the enterprise data model. Like a Web service, it
exposes an API public interface in the form of one or more accessor functions. A data service accessor
function typically returns data in the form of the data service’s complex datatype. The function uses
XQuery to acquire, transform, and aggregate data from external sources.

Returned data is poured into an XML data shape defined as the XML type of the data service. Because
an individual data service represents a relatively small unit of information, response time is generally
superior. Other features — such as caching and query optimization — help to ensure the optimal
performance of the data services layer.

AquaLogic Data Services Platform insulates data consumers from the complexity of disparate data
sources. It encapsulates the details of data integration logic and gives consumers a sensible, coherent
model for accessing and updating data. Data access and business or presentation logic are effectively
decoupled, resulting in applications that are easier to develop and maintain, without data access
plumbing code.

As it does for reading data, AquaLogic Data Services Platform gives client applications a unified
interface for updating data. AquaLogic Data Services Platform allows client applications to modify and
update data from heterogeneous, distributed sources as if it were a single entity. The complexity of
propagating changes to diverse data sources is handled by AquaLogic Data Services Platform.

From the data service implementor’s point of view, the task of building a library of update-capable
data services is considerably eased by the AquaLogic Data Services Platform update framework. For
relational sources, AquaLogic Data Services Platform can propagate changes to the data source
automatically. For other sources or to customize relational updates, you can use the AquaLogic Data
Services Platform update framework artifacts and APIs to quickly implement customized,
update-capable services. Either way, data consumers are isolated from the details of updating the data
sources.

Data Services and a Service-Oriented Architecture
A Service-Oriented Architecture (SOA) is an IT environment architectural style. In this architecture,
business processes are delivered as a set of loosely-bound services. Web services provide an
implementation of SOA. A web service is a modular, self-describing component that can be used in a
platform-independent way.

To appreciate SOA it is helpful to consider that, traditionally, applications are built as monolithic
units. They impose platform dependencies on users and are not easily adaptable to new types of
interactions. Web services break the monolithic model into multiple reusable components that can

What is a AquaLog ic Data Se rv ices P la t fo rm?

Concepts Guide 1-5

interact with other independent components and services in meaningful ways. For example, instead
of having a single financial application, an organization may deploy one or more services that expose
the business activities of the application as modular, self-contained, callable processes. That way
other systems (such as Human Resource services or applications) can easily leverage financial
computing resources for its current or future needs. In this way SOA can be viewed either as breaking
down barriers between applications or eliminating the need for them entirely.

With SOA the IT infrastructure operates in an integrated, organic fashion like a virtual application
that spans the organization.

Role of Data Services
SOA is considered a loosely coupled — not completely decoupled — architecture because, while the
service provider has no knowledge of the interfaces or business concerns of its consumers, the
consumers do include explicit references to the service provider interface, in the form of service calls.

The benefits of loose coupling include simplified data access, reusability, and adaptability. New
services can be exposed and used without requiring extensive changes to existing applications. The
result is a service layer that is highly adaptive and change tolerant.

Data services fit perfectly into the SOA picture by providing a data abstraction layer between data
users and the underlying data sources. Thus the application developer can count on working with a
uniform, well-defined SOA-based data access interface. The need for data access specialists capable
of establishing connections to back-end data is greatly reduced. The application simply calls a public
function and good things happen.

Simply put, AquaLogic Data Services Platform disentangles the data provider from the applications
that use the data.

Other benefits of AquaLogic Data Services Platform include:

Leverage domain resources. Information “locked away” in legacy systems can be made
available to application developers. Applications, and their users, benefit by being able to
access and update the entire range of information resources of an enterprise.

Dramatically reduce coding. With a high-level query language and visual development tools for
service implementation, AquaLogic Data Services Platform makes it easy to implement a data
services layer that lets developers use simple function calls instead of tedious custom code.

Consolidate data management. AquaLogic Data Services Platform provides a single point for
applying security and caching policies.

Enable uniform service governance. Service-level agreements can be verified and documented.

In t roduc ing BEA AquaLog ic Data Se rv i ces P lat fo rm

1-6 Concepts Guide

Modeling the Enterprise
A data model typically organizes data in a way that represents business entities. With AquaLogic Data
Services Platform, you can define the data model that makes sense for your organization. Business
entities common to most organizations include, for example, products, orders, and customers. A data
service Customer object can have all of the attributes that are relevant to a customer in the deployed
environment, such as contact information, shipping preferences, payment information, and so on. The
underlying data sources for the elements that make up the Customer object are only of interest when
the underlying structure or availability of that data changes. The data service can also specify security,
caching, and other policies.

The policies relevant to the data are applied to the data consistently, without requiring developers to
implement them in the various applications they develop.

To help you get from a complex, distributed physical data landscape into a sensible data model,
AquaLogic Data Services Platform supports a visual, model-driven approach to developing data
services. Modeling provides a graphical representation of the data resources in your environment,
providing a bird’s eye view of a large system, or giving you a way to break a larger problem into smaller
pieces.

The result is real-time access to externally persisted data through a logical data model (as illustrated
in Figure 1-3) while providing a single point for applying data service policies, such as security and
caching, on information used across applications and services.

Model ing the Ente rp r i se

Concepts Guide 1-7

Figure 1-3 Anatomy of a Logical Data Model

In SOA, services are conventionally thought of in terms of processes. However, most SOA initiatives
actually start with data. By its nature, data has broader, more generalized usage than typically does a
business process. Data consumers can use the same piece of data in different ways. Once you have
developed the data model for your enterprise data, the data types, as encapsulated by data services,
can be reused by numerous data consuming applications.

The data model represented by a AquaLogic Data Services Platform deployment is captured by
metadata. In AquaLogic Data Services Platform, metadata serves several purposes:

Developers can use metadata to determine what data services are available, what functions
they provide, where data comes from, and much more.

Administrators can use metadata for impact analysis. For example, you can determine how
changes to the underlying data layer will the data services layer. When changes occur, as is
inevitable, tools for synchronizing source metadata ease the difficulty of applying changes to
data services.

The metadata browser, a component of the AquaLogic Data Services Platform Console, provides an
easy-to-use interface for searching and browsing through metadata.

data consumers
customer

bill payment

MRP

Product
Catalogs

HR
data

order entry

sales
forecasts

support

purchasing
pricing

promotions

enterprise
systems

portal
J2EE
app

executive
dashboard

data services layer

In t roduc ing BEA AquaLog ic Data Se rv i ces P lat fo rm

1-8 Concepts Guide

Implementing Data Services
A data service encapsulates the logic for normalizing, transforming, and integrating disparate data. A
client application or process uses a data service by calling one of its public functions. A data service
can have any number of public functions, each of which returns data in the form of the data shape
described by the XML Schema associated with the data service.

Logic is encapsulated in a data service in the form of queries written in the XML Query (XQuery)
language. XQuery 1.0, an emerging W3C standard specification, is a SQL-like language specifically
intended for working with structured, XML data. As a declarative language, XQuery lends itself to
compiler-based optimization techniques, freeing developers from having to learn extensive rules and
techniques for writing optimized query functions.

Those familiar with SQL should find XQuery easy to learn since they have many features in common.
AquaLogic Data Services Platform provides an XQuery Editor that allows you to create XQueries
through graphical gestures using an easy-to-use IDE tool.

Data Consumers
Once the AquaLogic Data Services Platform application has been deployed to a WebLogic Server,
clients can use it to access real-time data. AquaLogic Data Services Platform supports several data
clients:

Java

Web services

Data service control

JDBC/SQL

ADO

In all cases AquaLogic Data Services Platform supports data access through Java interfaces
(AquaLogic Data Services Platform Mediator API and Workshop Data Service control) or through Web
services that act as wrappers for the data services.

As an additional option, the AquaLogic Data Services Platform JDBC driver gives SQL clients (such as
reporting and database tools) and JDBC applications a traditional, database-oriented view of the data
layer. To users of the JDBC driver, the set of data served by AquaLogic Data Services Platform appears
as a single virtual database. Note that, given the two-dimensional view of data inherent in SQL, SQL
access is supported only for data services that provide a flat view of data.

L i fe Cyc le o f a Data Serv ice-Or iented Deve lopment P ro jec t

Concepts Guide 1-9

Life Cycle of a Data Service-Oriented Development
Project

The following are the basic steps for managing a data service in a SOA environment:

1. Establish project requirements. This entails identifying available data resources, business logic
requirements, security needs, and caching requirements.

2. Import metadata from available sources. Once you have chosen the data resources you want to
include in your implementation, you can define them as data sources by creating profiles for them.
Importing metadata for the sources automatically creates the physical data services that are the
building blocks of a data services layer and stores the connection information for the source.

3. Model the data access layer. A model is a graphical representation of the data services in your
environment and the relationships between them. Modeling can help you plan and document your
data services implementation. In AquaLogic Data Services Platform such services can be created
and modified directly from a model diagram.

4. Implement logical data services. Logical data services can transform, filter, and aggregate
disparate data, as well as prescribe constraints on the data, security, caching and other properties.
For more information see “Creating Data Services” in the Building Queries and Data Views.

5. Identify update requirements. For relational sources, update capabilities are automatically
available through SDO. For other sources and for situations where you need to implement custom
transaction rollback logic or other processes, you can customize update routines provided with
AquaLogic Data Services Platform.

6. Deploy the data services. The query functions are deployed to a server for universal secured
availability.

7. Configure cache and security settings.

8. Maintain and monitor the data services layer. AquaLogic Data Services Platform includes tools
for evaluating the impact of changes to the data source layer and for synchronizing data services
with the modifications.

Data Service Development Roles
In a SOA environment instead of developers having to understand how to connect to and use numerous
data sources — along with the business or presentation logic that needs to be implemented once the
data is acquired — development tasks are be divided in ways that naturally correspond to the roles
that often exist in an organization:

In t roduc ing BEA AquaLog ic Data Se rv i ces P lat fo rm

1-10 Concepts Guide

Data Architects know about the desired business entities to be created and the data sources
that are required. They have a deep understanding of the data, underlying schema, and
relationships across the various data sources. They create the schemas and data services and
update logic used by application developers.

Application Developers create client applications that use data service functions and
procedures to access and manage real-time information.

System Administrators Administrator perform the following types of tasks:

– Deploy the data service to a server such as a WebLogic domains.

– Configure access to data sources.

– Set up and configure caching.

– Implement security such as configuring users, groups, and defining security roles.

– Monitor operation, tune performance, and provide support.

Additional Technical and Product Information
This section provides a compendium of links to technical and product information related to BEA
AquaLogic Data Services Platform. These documents are subject to revision on a frequent basis and
may reflect earlier versions of the product in some aspects.

Programmatic interfaces. AquaLogic Data Services Platform supports several different
programmatic interfaces enabling enterprises to build a single data services layer that can be
consumed by a wide variety of applications in the enterprise. This technical note covers the
different programmatic interfaces supported by AquaLogic Data Services Platform along with
typical usage scenarios.

Caching. AquaLogic Data Services Platform provides a flexible mechanism to manage caching
of data services. This tech note covers the caching features provided by the platform together
with their benefits and the common scenarios in which caching is used.

Metadata Management. Metadata management capabilities provided by AquaLogic Data
Services Platform significantly lowers the cost of maintaining and evolving a data services layer.
This technical note covers the metadata management capabilities provided by the platform.

Modeling. Modeling is an important first step in any software development project. It becomes
increasingly important in distributed environments in which organizations have multiple
information sources and domain expertise spread across multiple geographically dispersed
groups. This technical note covers the modeling capabilities and key benefits provided by the
AquaLogic Data Services Platform.

http://dev2dev.bea.com/2006/01/ALDSP_API_Technical_Note.pdf
http://dev2dev.bea.com/2006/01/ALDSP_Data_Cache_Tech_Note.pdf
http://dev2dev.bea.com/2006/01/ALDSP_Data_Cache_Tech_Note.pdf
http://dev2dev.bea.com/2006/01/ALDSP_Metadata_Tech_Note.pdf
http://dev2dev.bea.com/2006/01/ALDSP_Modeling_Tech_Note.pdf

Add i t i ona l Techn ica l and P roduc t In fo rmat ion

Concepts Guide 1-11

Security. BEA AquaLogic Data Services Platform provides a rich security framework that
enables data service architects to capture and manage the security policies in a single place.
This tech note briefly describes the security features provided by BEA AquaLogic Data Services
Platform, along with its benefits and the common usage scenarios to which security can be
applied.

Update and SDO. AquaLogic Data Services Platform provides a rich, disconnected
programming model in the form of Service Data Objects (SDOs). The SDO specification defines
a Java-based programming API for data access and update independent of the underlying
physical sources. This technical note covers that and all of the platform's update features along
with their associated benefits.

http://dev2dev.bea.com/2006/01/ALDSP_Security_Tech_Note.pdf
http://dev2dev.bea.com/2006/01/ALDSP_Update_Tech_Note.pdf

In t roduc ing BEA AquaLog ic Data Se rv i ces P lat fo rm

1-12 Concepts Guide

Concepts Guide 2-1

C H A P T E R 2

Architecture

This chapter describes the architecture of BEA AquaLogic Data Services Platform. The following
topics are covered:

WebLogic Platform and AquaLogic Data Services Platform

AquaLogic Data Services Platform Architecture

AquaLogic Data Services Platform Components

WebLogic Platform and AquaLogic Data Services
Platform

Data services can be developed as a Workshop application or as a project within another type of
Workshop application, such as a portal, web application, or business process. The runtime platform is
WebLogic Server. AquaLogic Data Services Platform leverages WebLogic Server technologies such as
scalability and clustering, and the full array of J2EE features and services. It operates seamlessly with
other applications running in a WebLogic Server.

Client applications using AquaLogic Data Services Platform services need only establish an initial
context to the WebLogic Server where AquaLogic Data Services Platform is deployed. This context —
a JNDI mechanism for identifying a resource on a network — is similar to a database connection in
that it identifies the server location and includes any required connection parameters, such as user
names and passwords.

Arch i tec tu re

2-2 Concepts Guide

Once the initial context is established, the client can instantiate data services and use them to get and
update information. For complete information on BEA WebLogic Server, see WebLogic Server
documentation at the following URL:

http://edocs.bea.com/wls/docs81/index.html

AquaLogic Data Services Platform Architecture
As shown in Figure 2-1, AquaLogic Data Services Platform provides a data integration layer between
data sources and data users.

The core of the AquaLogic Data Services Platform runtime component is the data processing engine.
It is a distributed query processor that divides user requests into optimized sub-queries which, as
possible, are processed concurrently against the data sources. The core is supplemented by security
and caching components and interfaces for acquiring and delivering information, as described further
in the following section.

http://edocs.bea.com/wls/docs81/index.html

AquaLog ic Data Se rv ices P la t fo rm Components

Concepts Guide 2-3

Figure 2-1 AquaLogic Data Services Platform Components Architecture

AquaLogic Data Services Platform Components
As depicted in Figure 2-1, the components and features of AquaLogic Data Services Platform include:

Data Processing Engine. The XQuery data processing engine is optimized for distributed data
access to databases, Web services, and files.

Java clients SQL/JDBCWeb

Data Services
Development

Tools

Data Services
Console

caching, security
management

Client API
Java API Workshop Control

WebServices XQuery JDBC

Data Source API

Security

Caching

Data Processing Engine

Model
Repository

JDBC Web
Services

Files
XML CSVRDBMS

read/update
calls

services

data sources

data users
XQuery

Java
functions

(ad hoc
queries)

Arch i tec tu re

2-4 Concepts Guide

Cache. By caching frequently accessed data to a database, you can improve response time and
reduce the load on back-end resources. For more information, see Chapter 6, “Performance and
Caching.”

Security. In addition to taking advantage of security features of the underlying WebLogic server,
AquaLogic Data Services Platform lets you set read and update permissions for functions. For
more information, see Chapter 7, “Securing Enterprise Data.”

Client API. Application developers have several options for accessing data. The Service Data
Objects (SDO) API allows client applications to read and update the data through a typed or
untyped interface. Query-oriented access is supported through an ad hoc query mechanism. In
addition, the AquaLogic Data Services Platform JDBC driver enables JDBC clients, including
SQL tools, to access information provided by AquaLogic Data Services Platform services.

Data source API. AquaLogic Data Services Platform supports many data source types,
including:

– Relational sources

– Web services

– XML files

– Delimited files

– Custom Java functions

AquaLogic Data Services Platform Console. The AquaLogic Data Services Console allows you to
manage function caching and security access, as well as internal server behavior such as thread
usage and memory. It provides usage statistics regarding data services, as well as auditing and
logging of the runtime engine.

Design Tools. AquaLogic Data Services Platform includes tools for creating the data services
layer, including developing data services, modeling, and creating XQuery functions. For more
information, see Chapter 3, “Unifying Information with Data Services.”

Concepts Guide 3-1

C H A P T E R 3

Unifying Information with Data
Services

This section describes data services, the fundamental components of the BEA AquaLogic Data
Services Platform integration layer. The following topics are covered:

What is a Data Service?

Understanding Data Service Functions

Data Service Transformations

Advertising and Maintaining Data Services with Metadata

What is a Data Service?
A data service gives data users access to any information in the enterprise through a single access
layer. Typically, a data service models a unit of information, such as a customer, sales order, or
product. The set of data services collectively comprise the data integration layer in an IT environment.

In concrete terms, a data service is a file with a .ds extension that contains XML Query Language
instructions for querying and transforming data. In many ways, a data service is similar to a Web
service. It is modular and reusable. It has a contract made up of public functions and procedures for
accessing its services. It conceals the details of the service implementation — generally involving data
acquisition and transformation — from the user.

However, unlike a conventional Web service, at the core of each data service is an XML data type
(shown in the Design View in Figure 3-1). When AquaLogic Data Services Platform acquires and
integrates data in response to a request, it is returned in the shape defined by the XML data type, it
concrete terms, its schema.

Uni f y ing In fo rmat ion w i th Data Se rv ices

3-2 Concepts Guide

A service consumer — a client application, process, or another data service — uses read functions
defined in the data service to get its information. It can also call a navigation function to get
information from a related data service, typically passing an instance of the current data service as an
argument. Another facility available from data services are procedures. These routines can invoke
external processes that have side effects rather than return data. A data service can have any number
of read functions, procedures, and navigation functions.

Figure 3-1 Workshop Representation of a Data Service

In addition to forming returned data as prescribed by its target XML schema, a data service can
operate on data in other ways as well. It can through build-in XQuery functions perform mathematical
calculations on numeric data, for example, or concatenate text strings.

Understanding Data Service Functions
It is through data service functions that client applications, controls, and processes obtain enterprise
data. The data service interface consists of the public functions of the data service, which can be of
several types:

Read functions. Returning data in the form of the data service XML type.

Navigate functions. Returning data from related data services.

Procedures. Executing side effecting functions in the enterprise.

read functions data type

contributing servicesnavigation functions

Data Serv ice T ransfo rmat ions

Concepts Guide 3-3

A submit function. Allowing authorized users to insert, delete, and change back-end data.

It is important to keep in mind that — in accord with the goals of SOA — data services in general (and
AquaLogic Data Services Platform functions in particular) provide “course grain” access to data.
Coarse grain access relieves clients from the drudgery of identifying and aggregating information that
collectively makes up a distinct business entity.

In addition to public interfaces, a data service can have private functions. Private functions can be
used only by other functions within the data service. They generally contain common processing logic,
that is, operations for use in more than one function in the data service.

There is also a facility for providing auxiliary functions across multiple data services. These are called
XQuery Function Library (.xfl) files.

Read functions on a data service can be defined to return information in various ways. For example,
the data service may define read functions for getting all customers, customers by region, or customers
with a minimum order amount.

However, data users often want to access information in ways that are not entirely pre-specified or
limited by the design of a data service. The filtering and ordering API allow client applications to
control further what data is returned by a data service read function call based on conditions specified
at runtime. Instead of having to create a read function for every possible client requirement, the
service designer can create generalized read function against which clients can apply their own
filtering or ordering conditions at runtime. It is left to the service architect to decide whether to
create a set of narrowly-defined read functions, with access conditions built into the interface, or to
create more generic read functions and allow the client to specify filtering conditions.

Data Service Transformations
Between acquiring data from back-end systems and presenting that data to clients, a data service
often transforms the data in some way. The nature of the transformation is determined by the XQuery
body of the called function.

Transformations can involve simple element mappings, more general shape transformations, data
joins, or value modifications by string operators, mathematical operators, or date operators. The
structure and data in a transformation can be controlled by logical constructs such as if-then-else
statements. The transformation may join data from multiple sources or filter data.

The XQuery Editor (shown in Figure 3-2) enables you to create a transformational query by dragging
and dropping nodes between source and target schemas. A target schema is the XML type of the data
service, that is, the shape of the data returned in response to service requests.

Uni f y ing In fo rmat ion w i th Data Se rv ices

3-4 Concepts Guide

Figure 3-2 Graphical XQuery Transformation Designer

The Role of XQuery
The internal language of a data service, XQuery (short for XML Query Language), is the emerging
standard for querying XML-based information. XQuery has many features in common with SQL, such
as where clauses. However, unlike SQL, which was intended for working with simple two-dimensional
data format (rows and columns), XQuery is designed to work with the richer, Web service data that
uses the nested structure approach of XML.

The XQuery functions in a data service determine what data is acquired by the service and how it is
transformed. But the transformation is not limited to the format of the data; it can also affect the data
value itself, for example, by concatenating strings or calculating mathematical operations on numeric
values.

Advertising and Maintaining Data Services with Metadata
A significant challenge for enterprises is not only in integrating disparate data sources, but in
advertising the availability of data in a consistent, reliable manner. If potential users of a data source
do not know it exists, the data is effectively non-existent. Once a developer has gone to the trouble of
creating a unified Customer data service, for example, other developers need to be able to discover
and reuse it for their own work.

AquaLogic Data Services Platform uses a set of data service descriptors (or metadata) to supply
enterprise-wide information on data services and their component functions and procedures. The

Adver t i s ing and Mainta in ing Data Serv ices wi th Metadata

Concepts Guide 3-5

metadata describes the data services — what information they provide and where the information
comes from (that is, its lineage).

In addition to documenting services for potential consumers, metadata helps administrators
determine what services are affected when inevitable changes occur in the data source layer. If a
database changes, the administrator can easily tell which data services are affected by the change.

When changes do occur, a metadata synchronization wizard helps you to absorb data source level
changes into the data services layers. The wizard, which is launched from Workshop, detects
disparities between the schema of the data source and the physical data services. It highlights
differences and allows them to be incorporated with a few clicks.

Those interested in metadata can access it in several ways. The metadata browser (shown in
Figure 3-3) provides an HTML interface for browsing and searching metadata. Also, a Metadata API
provides programmatic access to the same information.

Figure 3-3 Metadata Browser

Uni f y ing In fo rmat ion w i th Data Se rv ices

3-6 Concepts Guide

Concepts Guide 4-1

C H A P T E R 4

Modeling and a Service-Oriented
Architecture

This section describes the role of modeling in building a data services layer for your enterprise. The
following topics are covered:

The Role of the Model

Modeling Data Using XML Types

Modeling Data Services

The Role of the Model
Although never required, modeling can help mitigate complexity of large, intricate data systems. The
BEA AquaLogic Data Services Platform provides loosely-coupled modeling services through a visual,
representational view of data resources. It can present a high-level view of a complex system or it can
break a complex problem into smaller pieces.

Modeling helps you to organize and document data services in all or a portion of your enterprise. It
enables you to bridge the gap between the complexity of the underlying physical data landscape, on
the one hand, and a logical, intuitive data model exposed by data services, on the other.

Modeling is often the first step in developing a data services layer. It provides a roadmap for the
development of logical data services.

The AquaLogic Data Services Platform Modeler (shown in Figure 4-1) is a visual modeling tool for
creating, managing, and modifying data services. You can create data services and define the
relationships between them directly in the modeler.

Model ing and a Serv i ce-Or ien ted A rch i tec tu re

4-2 Concepts Guide

Figure 4-1 Sample Model Diagram

Modeling Data Services
Just as it does for database design, data modeling helps to ensure the optimal design of your data
services layer. Modeling helps you analyze and develop data services efficiently. Often it can help turn
a complex data landscape into a sensible, business-level data model. Modeling also serves to document
data services for use by others.

Physical data services can be considered the building blocks for logical data services. In the case of a
relational data source, for example, importing metadata results in a data service being created for
each table. This data service, in turn, can be immediately represented in one or several models.

Modeling not only represents the data services in your AquaLogic Data Services Platform
implementation, it also captures the relationships between data services. A relationship is a logical

Mode l ing Data Us ing XML Types

Concepts Guide 4-3

connection between two data services, such as between a Customers data service and an Orders data
service, joined by a customer ID primary key.

The directionality of a relationship can be either:

One way, in which data service a can navigate to data service b but b does not navigate to a (or
vice-versa).

Two way, in which data service a can navigate to b and b can navigate to a.

Modeling Data Using XML Types
AquaLogic Data Services Platform uses the XML Schema language to model data. XML Schema (a
standard, XML-based schema definition language) gives AquaLogic Data Services Platform a way to
define normalized data, enabling consuming applications to use the data without regard for the
inherent differences of its various underlying source representations.

Each data service has a data type, called an XML type, with a data shape defined in XML Schema. The
schema defines the structure of the data service; that is, its elements, attributes, and rules. For
example the following code defines CUSTOMER as having a sequence containing two elements:
CUSTOMERID of type integer and CUSTOMERNAME of type string:

<xs:element name="CUSTOMER">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CUSTOMERID" type="xs:int"/>
 <xs:element name="CUSTOMERNAME" type="xs:string" />
 ...
 </xs:sequence>
 </xs:complexType>
</xs:schema>

An XML schema file, named with a .xsd extension, is automatically generated when you import the
metadata of a physical data source. For logical data services, you can create the schema automatically
through the XQuery Editor, or using a schema editor built into the Modeler and Design View. Schemas
can also be created externally through tools such as XMLSpy. In any case, a data service cannot be
valid without an associated XML schema definition.

Model ing and a Serv i ce-Or ien ted A rch i tec tu re

4-4 Concepts Guide

Concepts Guide 5-1

C H A P T E R 5

Using Service Data Objects (SDO)

This section describes the AquaLogic Data Services Platform client-side application programming
object model, Service Data Objects (SDO). The following topics are covered:

Introducing Service Data Objects

Getting Data Objects

An Initial Look at SDO Programming

Updating Data

Introducing Service Data Objects
SDO is a Java-based data programming model and architecture for accessing and updating data. SDO
is defined in a joint specification proposed by BEA and IBM (JSR 235). SDO is intended to give
applications an easy-to-use, uniform programming model for accessing and updating data, regardless
of the underlying source or format of the data.

Unlike existing data access technologies such as JDO or JDBC, SDO specifies both a static and a
dynamic interfaces for accessing data. The static (or strongly typed) interface gives client developers
an easy-to-use, update-capable model for accessing values. A static interface function is in the form:

getCUSTOMERNAME()

As implied by the sample function name, to use the static interface the developer must know the types
of the data (that is, CUSTOMERNAME) at development time. If the types are unknown at development
time, the developer can use the dynamic (or loosely typed) interface. Such calls are in the form:

Using Serv ice Data Ob jec ts (SDO)

5-2 Concepts Guide

cust.get("CUSTOMERNAME")

A dynamic interface is useful when the data type is not known or defined at development time and is
particularly useful for creating programming tools and frameworks across data source types.

In addition to a programming interface, SDO defines a data programming architecture. A component
of this architecture called the mediator serves as the adapter between the client and data source. A
mediator specializes in exchanging data with the data source. It knows how to retrieve data from a
particular source and pass changes back to it. Data is passed in a datagraph, which consists of a graph
of data objects.

As mentioned in the SDO specification, a particular SDO implementation is likely to have specialized
mediators for particular source types, such as for databases. AquaLogic Data Services Platform
provides a data service mediator that resides between SDO clients and the data integration layer.

With SDO, clients use data in an essentially stateless, disconnected fashion. When AquaLogic Data
Services Platform gets data from a source, such as a database, it acquires one or more database
connections only long enough to retrieve the data. Once the data is acquired, AquaLogic Data Services
Platform releases the connections. The client works on a local copy of the data, disconnected from the
data source.

The network is accessed again only when the client wants to apply the data changes to the source.
Disconnected data access contributes to a scalable, efficient computing environment because
back-end system resources are never tied up for very long.

Optimistic concurrency rules are used to ensure the integrity of data when updates occur. With
optimistic concurrency, data at the data source is not locked while a client works with it. Instead, if
updates are made to the data, potential conflicts (such as other clients changing the same data after
the client got it) are detected when the data updates or propagated back to the sources.

For complete information on Service Data Objects, including the specification and Javadoc, go to:

http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp

Getting Data Objects
AquaLogic Data Services Platform uses SDO as its client-side programming model. Simply put, this
means that when a Java client invokes a data service’s read function — either through the AquaLogic
Data Services Platform Mediator API or through the Workshop Data Service control — it gets a return
value in the form of an SDO data object. A data object is the fundamental component in the SDO
programming model. It represents a unit of structured information, with static and dynamic interfaces
for getting and setting its data values.

http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp

An In i t i a l Look a t SDO Programming

Concepts Guide 5-3

An Initial Look at SDO Programming
This section introduces you to SDO programming through a small code sample. The sample shows how
SDO provides a simple, easy to use client-side data programming model.

The sample is written against the data service shown in Figure 5-1.

Figure 5-1 Data Service Design View

The data type for the Customer data service is CUSTOMER. A data type is a structured XML document
known as a schema. In this example the data type is composed of properties such as customer ID,
name, and orders. The data for a CUSTOMER instance comes from four other data services:
CUSTOMERS, PO_CUSTOMERS, PO_ITEMS, and getCustomerCredit. Physically each of these is an
XQuery document with a .ds extension (example: PO_CUSTOMERS.ds).

The sample Customer data service has several methods for getting data type instances, including
getCustomer(), getCustomerById(), getPaymentList(), and so on. The function getPaymentList() is a
navigation function. It does not return a CUSTOMER document; instead it returns data from a data
service for which a logical relationship has been defined. In the case of getPaymentList(), the related
data service named PAYMENTS returns the payment history for a given customer.

The navigation function makes it easy for client applications to acquire additional related data that is
likely to be of interest when working with CUSTOMER documents. With the same data service handle
used to get a customer, they can get that customer’s list of payments.

The result is code that is concise, readable and easy to maintain, as shown in Listing 5-1.

Using Serv ice Data Ob jec ts (SDO)

5-4 Concepts Guide

Listing 5-1 SDO Sample

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.bea.dsp.dsmediator.client.*;

import org.openuri.temp.schemas.customer.CUSTOMERDocument;

public class myCust {

 public static void main(String[] args) throws Exception {

 Hashtable h = new Hashtable();

 h.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 h.put(Context.PROVIDER_URL,"t3://localhost:7001");

 h.put(Context.SECURITY_PRINCIPAL,"weblogic");

 h.put(Context.SECURITY_CREDENTIALS,"weblogic");

 DataService ds =

com.bea.dsp.dsmediator.client.DataServiceFactory.newXmlService(

 new InitialContext(h),

 "Demo",

 "ld:DataServices/Customer");

 Object arg[]={new Integer("987655")};

 CUSTOMERDocument myCustomer =

 (CUSTOMERDocument) ds.invoke("getCustomer",arg);

 myCustomer.getCUSTOMER().setCUSTOMERNAME("BigCo, Inc");

 ds.submit(myCustomer,"ld:DataServices/Customer");

 System.out.println(" Customer information: \n" + myCustomer);

 }

}

Notice that once the proper packages have been imported and the initial context to the server has
been made, in about five lines of code the client application:

Gets data from four different data sources.

Modifies a value (customer name).

Updat ing Data

Concepts Guide 5-5

Submits the change, which propagates from AquaLogic Data Services Platform through SDO to
to the data sources.

The complexity of this entire procedure is hidden from the client application developer. Instead, the
complexity is handled at the data services layer and by the AquaLogic Data Services Platform
framework.

Updating Data
As it does for reading data, SDO gives client applications a unified interface for updating data. With
AquaLogic Data Services Platform, client application can modify and update data from
heterogeneous, distributed sources as if the data were from a single entity. The complexity of
propagating changes to diverse data sources is hidden from the client programmer.

Data source updates occur in a transactionally secure manner; that is, given an update call that affects
multiple sources, all updates to individual data sources within the update call either succeed or fail
together. (Note that it is possible to override this behavior as needed.)

From the data service implementor’s point of view, the task of building a library of update-capable
data services is considerably eased by the AquaLogic Data Services Platform update framework. For
relational sources, AquaLogic Data Services Platform can typically propagate changes to the data
sources automatically. For other sources, or to customize relational updates, you can use the
AquaLogic Data Services Platform update framework and tools to quickly implement a wide range of
update-capable services.

As shown in the Figure 5-2, updates occur through a process in which the requested change is first
analyzed to determine, among other things, the lineage of the data. The AquaLogic Data Services
Platform mediator then decomposes the submitted object into its constituent parts and propagates
the changes to the data source.

Using Serv ice Data Ob jec ts (SDO)

5-6 Concepts Guide

Figure 5-2 AquaLogic Data Services Platform Source Update Sequence

At any point in this process, you can have your own code programmatically intervene, for example, to
validate the update values or for auditing purposes.

Data Service Mediator
The Data Service Mediator is the core mechanism for the AquaLogic Data Services Platform update
framework; the update framework also encompasses several programming artifacts, as follows:

Decomposition function. The decomposition function is the first read function contained in a
data service, unless a different function has been specified through the Property Editor. The
decomposition function is used by the Mediator to create a decomposition map (for logical data
services only) that identifies the constituent data services. From these constituent data
services, the Mediator instantiates data objects corresponding to the changed values in the
updated data object.

Decomposition map. A decomposition map (associated with logical data services only) provides
information about how a data object based on that data service is constructed (from the
underlying data sources or other data services).

getCredit.ws

dataGrph.update(myCustmer)
...

Liquid Data Mediator

myCustomer

myClientApp.java:

score

items
CustId

1. Client Submit

2. Change analysis

3. Decomposition
and updating

...

Updat ing Data

Concepts Guide 5-7

Update plan. An update plan identifies the physical resources that should be modified, and
how they should be modified. An update plan is generated for any changed data objects bound
to logical data services (see Figure 5-3). The update plan does not include unchanged objects,
nor does it have access to any data services that are not included in the update plan: only
changed objects are included in the update plan.

KeyPair. A keypair is an object used by AquaLogic Data Services Platform to keep track of
primary-foreign key relationships, and the relationship of properties of data objects that have
been populated from various layers of a multi-layer data service. (A keypair is sometimes
described as a property map.)

Figure 5-3 Decomposition Process Populates an Update Plan with Constituent Data Objects

From a lower-level perspective, an update plan is a Java object that comprises a tree of
DataServiceToUpdate instances — the names of the data services that comprise the changed data
objects. DataServiceToUpdate, KeyPair, UpdatePlan, and DataServiceMediatorContext have been
implemented as classes in the SDO Mediator APIs, specifically in:

com.bea.ld.dsmediator.update package

See the topic "Mediator API Javadoc" in the Introducing Data Services for Client Application
Developers chapter of Application Developer’s Guide.

customersDocument

decomposition process

 submit document

OrderSDO(0)

OrderSDO(1)

OrderSDO(2)

CustomerSDO
update plan

../appdev/intro.html
../appdev/intro.html

Using Serv ice Data Ob jec ts (SDO)

5-8 Concepts Guide

The Decomposition Process
An important characteristic of the SDO model is that back-end data sources associated with modified
objects are not changed until the submit() method is called on the data service bound to the objects.

After receiving a data object (the changed SDO) from a calling client application, the Mediator always
looks for an update override class first (regardless of whether the data service is a physical or logical
data service). If an update override class is available, it is instantiated and executed.

The Mediator first determines the data lineage — the origins of the data — by using the data service’s
decomposition function to map each constituent in a data object to its underlying data source or data
service. In addition, any inverse functions specified for the data service are used by the Mediator to
define a complete decomposition map. (Inverse functions are described in the Best Practices and
Advanced Topics chapter of the Data Services Developer’s Guide.)

As shown in Figure 5-3, a customersDocument object that comprises updated customer information
(from a Customer data service) and three updated Orders (from an Orders data service) would be
decomposed into four objects.

An important distinction between logical and physical data service updates is as follows:

Physical Data Service Update Process. The data source is updated immediately. No
decomposition is required.

Logical Data Service Update Process. A logical data service must be decomposed into its
constituent data services.

Physical Data Service Update Process
For a physical data service, changes to the data sources are propagated immediately (unless an update
override class is associated with the data service). Neither a decomposition map nor an update plan
is needed for a physical data service.

Upon receiving an SDO (whether from a submit() method invocation or as a projection from a
higher-level data service), the Mediator first checks for an UpdateOverride class associated with the
data service.

No update override. If there is no UpdateOverride the Mediator simply propagates the changes
to the underlying data sources.

With update override. If there is an UpdateOverride the Mediator executes the update override
class.

../datasrvc/bestpractices.html
../datasrvc/bestpractices.html

Updat ing Data

Concepts Guide 5-9

Logical Data Service Update Process
A logical data service can comprise any number of logical or physical data services. When a top-level
data service function executes, the lower-level logical data services that it comprises are "folded in"
so that the function appears to be written directly against physical data services. Only information
that has been projected in the top-level data service is passed to the next lower-level data service.

Figure 5-4 provides an overview of the steps involved in updating a logical data service:

1. The client application invokes the submit() method, passing the changed data object and its
associated data graph to the Mediator. The data graph has a change summary detailing the
changes to the object.

2. The Mediator receives the submitted data object and begins the decomposition process by first
checking for an update override class. The two possible logic branches are described below:

– No update override. The Mediator decomposes the updated object into submit() calls
against the underlying physical data services.

– With update override. The Mediator instantiates mid-level data objects from the top-level
SDO, then calls update override routine. The submit () on the mid-level data service is then
processed as usual.

Note: An update override class can exist at each layer of a multi-layered data service. Thus,
a logical data service comprising several layers of other logical data services checks
for an update override at each constituent layer. If a mid-layer data service has no
update override, the update framework bypasses the instantiation of an SDO object,
instead directly creating the SDO objects for the underlying data service. This is true
in the case of a logical data service with an update override or a physical data service.

The performChange() method can access and modify the update plan and decomposition map,
or perform any other custom processing, including taking over complete processing. The
method returns a Boolean value that either continues or aborts processing by the Mediator, as
follows:

– True. After control returns from the method, the Mediator resumes its normal course of
processing. A new update plan is automatically generated so that any new changes against
the passed-in SDO made in the update override plan can be accounted for. The new plan
combines the previously indicated changes with any new change.

– False. The Mediator does not attempt to apply the changes. The method would return false,
for example, if all changes have already been made. (If you want to handle an error that
would require the update to be aborted, your method should throw an exception.)

Using Serv ice Data Ob jec ts (SDO)

5-10 Concepts Guide

3. The Mediator determines the origins of the data sources that must be changed and how to change
them. The Mediator calls the decomposition function associated with the data service and receives
a decomposition map for the data service. By default, the Mediator uses the data service’s first
read function to create its decomposition map (if no other decomposition function is specified).

a. The Mediator uses the information in the change summary and the data service’s
decomposition map to derive an update plan. The update plan comprises a tree of data service
objects ("SDO objects to update") for each instance of a changed data source.

b. For any lower-level data service, the Mediator also checks for an update override, and executes
the update override class if one is present.

4. The Mediator iterates (walks) through the update plan, submitting changes to each of the lower
level data services. The Mediator applies changes based on the order of objects in the tree and
their container-containment relationships, as follows:

a. Objects within the same level (sibling objects) are processed in the order in which they are
encountered in the data object.

b. Container objects are processed before contained objects — unless the container is being
deleted, in which case changes are applied to the contained object before the containing
object.

c. If an object has a KeyPair specified, the values are mapped from its container before
submitting the change. (Changes made to an SDO container during its update, such as primary
key computations, are visible in the contained object.)

Updat ing Data

Concepts Guide 5-11

Figure 5-4 Logical Data Service Update Process

Primary-Foreign Key Relationships Mapped Using a KeyPair
Most RDBMSs can automatically generate primary keys, which means that if you are adding new data
objects to a data service that is backed by a relational database, you may want or need to handle a
primary key as a return value in your code. For example, if a submitted data graph of objects includes
a new data object, such as a new Customer, AquaLogic Data Services Platform generates the necessary
primary key.

For data inserts of autonumber primary keys, the new primary key value is generated and returned to
the client. Only primary keys of top-level data objects (top-level of a multi-level data service) are
returned; nested data objects that have computed primary keys are not returned.

By returning the top-level primary key of an inserted tuple, AquaLogic Data Services Platform allows
you to re-fetch tuples based on their new primary keys, if necessary.

The Mediator saves logical primary-foreign keys as a KeyPair (see the KeyPair class in the Mediator
API). A KeyPair object is a property map that is used to populate foreign-key fields during the process
of creating a new data object:

customer.ds

Mediator

CUST

ALDSP

ITEMS.DS

custUpd.class

itemUpd.class

ORDERS.DS

1.

2.

3.

5.

4.

submit()
Client App

ORDERS

Using Serv ice Data Ob jec ts (SDO)

5-12 Concepts Guide

The value of the property will be propagated from the parent to the child, if the property is an
autonumber primary key in the container, which is a new record in the data source after the
autonumber has been generated.

The KeyPair object is used to identify corresponding data elements at adjacent levels of a
decomposition map; it ensures that a generated primary key value for a parent (container) object will
be mapped to the foreign key field of the child (contained) element.

As an example, Figure 5-5 shows property mapping for the decomposition of a Customers data service.

Figure 5-5 Logical Data Services Use KeyPairs for Property Mapping (Primary-Foreign Key Mapping)

AquaLogic Data Services Platform manages the primary-foreign key relationships between data
services; how the relationship is managed depends on the layer (of a multi-layered data service), as
follows:

Top-level data service. Inserts generate a new primary key, which is returned to the client.
Adding a data object at the top-level of a data service data objects have been added which have
primary keys that are automatically generated by the RDBMS, the values of the primary keys for
the inserted tuples will be returned as an array of Java properties (XPath name/value pairs)
after a successful update submit:

Properties[] keys = ds.submit(doc);

A tuble is basically a record; in the context of data services, a tuble may comprise data that
spans several layers of data services.

Nested data objects. Generates and inserts a new primary key, but does not return to the
client.

customerIDcustomerID

customerName

Customers Data Service

orderID

POItem

customerIDcustomerID

customerName

customer Data Service

Order Data Service

orderID

POItem

Property Mapping

customerID

Updat ing Data

Concepts Guide 5-13

AquaLogic Data Services Platform propagates the effects of changes to a primary or foreign key.

For example, given an array of Customer objects with a primary key field CustID into which two
customers are inserted, the submit would return an array of two properties with the name being
CustID, relative to the Customer type, and the value being the new primary key value for each inserted
Customer.

Managing Key Dependencies
AquaLogic Data Services Platform manages primary key dependencies during the update process. It
identifies primary keys and can infer foreign keys in predicate statements. For example, in a query
that joins data by comparing values, as in:

where customer/id = order/id

The Mediator performs various services given the inferred key/foreign key relationship when updating
the data source.

If a predicate dependency exists between two SDOToUpdate instances (data objects in the update
plan) and the container SDOToUpdate instance is being inserted or modified and the contained
SDOToUpdate instance is being inserted or modified, then a key pair list is identified that indicates
which values from the container SDO should be moved to the contained SDO after the container SDO
has been submitted for update.

This Key Pair List is based on the set of fields in the container SDO and the contained SDO that were
required to be equal when the current SDO was constructed, and the key pair list will identify only
those primary key fields from the predicate fields.

The KeyPair maps a container primary key to container field only. If the KeyPair does not container’s
complete primary key is not identified by the map then no properties are specified to be mapped.

A Key Pair List contains one or more items, identifying the node names in the container and contained
objects that are mapped.

Foreign Keys
When computable by SDO submit decomposition, foreign key values are set to match the parent key
values.

Foreign keys are computed when an update plan is produced.

Transaction Management
Each submit() to the Mediator operates as a transaction. Depending upon whether the submit()
succeeds or fails, you should do one of two things:

Using Serv ice Data Ob jec ts (SDO)

5-14 Concepts Guide

Submit() succeeds. You can re-query the SDO to be sure it matches the current data because
side effects of the update may have changed the result of the query. (Re-querying the data
service to obtain a new data object also clears the change summary.)

Submit() fails. You can reinvoke submit() on the data object to execute the same updates
(since the original data objects and change summary still exist).

Nested Transactions
All submits perform immediate updates to data sources. If a data object submit occurs within the
context of a broader transaction, commits or rollbacks of the containing transaction have no effect on
the submitted data object or its change summary, but they will affect any data source updates that
participated in the transaction.

Concepts Guide 6-1

C H A P T E R 6

Performance and Caching

This chapter describes AquaLogic Data Services Platform performance features. It covers these
topics:

Overview

Query Optimization

Caching

Overview
Poor performance can outweigh many of the advantages that an otherwise carefully designed data
services deployment provides.

AquaLogic Data Services Platform includes a number of configurable settings and internal features to
facilitate good performance. With caching, data response times can actually improves upon those
provided by native access mechanisms.

Query Optimization
As a declarative language, XQuery also affords many opportunities for optimization. In general terms,
a declarative language focuses on what needs to be done, not on how things are to be done (as is the
case for an imperative language). As such, the AquaLogic Data Services Platform engine is free to
choose the most effective way to execute a given query, not only for the best performance of the data
services layer but also to minimize the burden on the data sources as well.

The types of query optimization AquaLogic Data Services Platform performs include:

Pe r fo rmance and Cach ing

6-2 Concepts Guide

When possible, AquaLogic Data Services Platform pushes predicate evaluation, joins,
aggregation, and other data manipulation functions to the underlying SQL databases. This
minimizes the number of database calls required and reduces the volume of data returned from
those calls.

AquaLogic Data Services Platform handles layered data services using a process called view
unfolding. Instead of retrieving the full data set encompassed by a multi-level function call,
AquaLogic Data Services Platform retrieves only the data relevant to the actual request.

AquaLogic Data Services Platform combines multiple “trips” to the same database implied by a
function into a single access when sensible.

You can view how the engine has compiled a query using the plan view.

Caching
Caching improves the responsiveness of the client application and minimizes the burden on back-end
resources. With caching, AquaLogic Data Services Platform stores the results returned from a data
service function in a local relational database. When a function call is made again with the same
parameters, AquaLogic Data Services Platform can respond with the cached copy of the data, thereby
avoiding repeated calls to the back-end data sources.

Caching with AquaLogic Data Services Platform can be managed at a highly granular level. You can
enable or disable caching and set the time-to-live on a per function basis. This allows you to apply
caching policies as best suits the type of information. If the information is apt to be long-standing
without change, the cache can hold that data longer. If information changes frequently, you can have
the cache expire as frequently as appropriate.

You can manage the cache by setting time-to-live values and purging the cache through the AquaLogic
Data Services Platform Console.

If a client application wants to be sure that it acquires the latest information, it can use the
GET_CURRENT_DATA attribute to retrieve information directly from the data source. This operation
also automatically updates the function cache, if any.

For information about caching see “Configuring the Results Query Cache” in the AquaLogic Data
Services Platform Administration Guide.

../admin/cache.html

Concepts Guide 7-1

C H A P T E R 7

Securing Enterprise Data

This chapter discusses AquaLogic Data Services Platform security features. It covers the following
topics:

Ensuring Data Security

Securing AquaLogic Data Services Platform Resources

Understanding Security Policies

Ensuring Data Security
Integrating enterprise data with AquaLogic Data Services Platform does not require any compromise
in the security of sensitive information. Because different data has different security requirements,
the ability to apply access control policies to data items is essential. Not all users who need access to
general customer information, for example, should have access to sensitive information such as credit
card numbers.

Like other components of the WebLogic Platform, AquaLogic Data Services Platform supports
role-based security authorization. Authorization involves granting a user (either individually or as a
member of a group or security role) permission to access resources provided by a AquaLogic Data
Services Platform deployment.

The WebLogic Platform provides the security framework that handles authorization based upon
information in the context of the user request. By default, AquaLogic Data Services Platform uses the
WebLogic Authorization provider for authorization. If desired, other modules, including third-party
authorization modules, can be used as well.

Secur ing Ente rp r ise Data

7-2 Concepts Guide

Security policies are enforced no matter how the client attempts to access a resource, from the
Mediator API, the Data Service control API, JDBC, or a web service.

Securing AquaLogic Data Services Platform Resources
AquaLogic Data Services Platform enables you to secure resources at a range of granularity levels,
from the application level to the level of individual data elements.

Specifically, secureable resources in AquaLogic Data Services Platform include:

Applications. An application-level policy applies to all data services in a AquaLogic Data
Services Platform deployment. You can configure the application setting to be one of the
following:

– block all access, except as permitted by a more specific policy

– permit access (even to unauthenticated users), except as blocked by a more specific policy.

Functions. Secures specific functions in a data service. Function-level security allows you to
specify differing access levels between read functions and submit functions. Since submit
functions allow users to modify back-end data, they often require a more restrictively defined
level of access control.

Data Elements. Secures individual data items within a data service’s return type. (In terms of
database security, element level security corresponds to column-level security in databases.)
For example, you can secure only the credit card number of a customer document.

If a given user does not meet the security condition defined for an individual element, the
element is redacted from the final result; that is, the customer information is provided with the
credit card item missing. Element-level security applies across data service functions.

Document Instances. An instance-level policy is data driven; it allows you to secure access to
AquaLogic Data Services Platform resources based on the value of the data being returned.
Data-driven security is equivalent to row-level security for databases. It lets you, for example,
block access to particular users if an order amount exceeds a specified value.

You can specify security policies that control access to the AquaLogic Data Services Console itself. The
policies determine who can access particular pages in the console by their functional category,
whether administration-based (for configuration and monitoring pages) or informational (for data
service metadata pages).

Unders tand ing Secur i t y Po l i c i es

Concepts Guide 7-3

Understanding Security Policies
A security policy determines whether a user can access a AquaLogic Data Services Platform resource.
With the WebLogic Authorization module, you can create policies based upon the user’s identity, the
user’s group or role affiliation, time of day, development mode of the server, or any combination of
these. Access policies can be used individually or together so that you can apply security in the manner
that best matches your needs.

You can create a data-driven policy in the AquaLogic Data Services Platform Console as an XQuery
function. The function can perform any evaluation and processing steps desired, given the identity of
the user making the request and the value of the requested data. To permit access, the function simply
returns true or false to block it.

Secur ing Ente rp r ise Data

7-4 Concepts Guide

	Introducing BEA AquaLogic Data Services Platform
	The Extraordinary Cost of Information Fragmentation
	What is a AquaLogic Data Services Platform?
	Data Services and a Service-Oriented Architecture
	Role of Data Services

	Modeling the Enterprise
	Implementing Data Services
	Data Consumers

	Life Cycle of a Data Service-Oriented Development Project
	Data Service Development Roles

	Additional Technical and Product Information

	Architecture
	WebLogic Platform and AquaLogic Data Services Platform
	AquaLogic Data Services Platform Architecture
	AquaLogic Data Services Platform Components

	Unifying Information with Data Services
	What is a Data Service?
	Understanding Data Service Functions
	Data Service Transformations
	The Role of XQuery

	Advertising and Maintaining Data Services with Metadata

	Modeling and a Service-Oriented Architecture
	The Role of the Model
	Modeling Data Services
	Modeling Data Using XML Types

	Using Service Data Objects (SDO)
	Introducing Service Data Objects
	Getting Data Objects

	An Initial Look at SDO Programming
	Updating Data
	Data Service Mediator
	The Decomposition Process
	Logical Data Service Update Process

	Performance and Caching
	Overview
	Query Optimization
	Caching

	Securing Enterprise Data
	Ensuring Data Security
	Securing AquaLogic Data Services Platform Resources
	Understanding Security Policies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

