
Oracle® Warehouse Builder
Transformation Guide

10g Release 1 (10.1)

Part No. B12151-02

September 2007

Oracle Warehouse Builder Transformation Guide, 10g Release 1 (10.1)

Part No. B12151-02

Copyright © 2007 Oracle. All rights reserved.

Primary Author: Jean-Pierre Dijcks

Contributing Author: Shirinne Alison, Kavita Nayar, Padmaja Potineni

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... ix

Purpose ... ix
Documentation Accessibility ... ix
Audience... x
How This Guide Is Organized... x
New in 10g Release 1 (10.1).. xi
Added in Release 9.0.4.. xiii
Conventions .. xvii
Related Publications... xvii
Contacting Oracle.. xviii

1 Introduction to Warehouse Builder Transformations

Overview .. 1-1
Transforming Data with Warehouse Builder .. 1-2
SQL Standards .. 1-2
How SQL Works ... 1-2
SQL as the Common Language for Relational Databases.. 1-3

2 Transformations

Regular SQL Operators ... 2-1
Deduplicator (DISTINCT)... 2-1
Filter (WHERE)... 2-2
Joiner (FULL OUTER JOIN) ... 2-4
Key Lookup... 2-7
Pivot Operator .. 2-8

Example: Pivoting Sales Data.. 2-9
Sequence (CURRVAL, NEXTVAL) .. 2-10
Set (UNION, UNION ALL, INTERSECT, MINUS) ... 2-12
Sorter (ORDER BY) ... 2-13
Splitter (Multiple Table WHERE) ... 2-15
Table Function ... 2-18
Unpivot Operator.. 2-19

Example: Unpivoting Sales Data ... 2-19
Aggregator (GROUP BY, HAVING) .. 2-20

AVG ... 2-22

iv

COUNT.. 2-22
MAX... 2-23
MIN .. 2-23
STDDEV .. 2-24
STDDEV_POP .. 2-25
STDDEV_SAMP... 2-25
SUM ... 2-26
VAR_POP.. 2-26
VAR_SAMP .. 2-27
VARIANCE... 2-27

Constant.. 2-28
SYSDATE... 2-28
SYSTIMESTAMP.. 2-28

Data Cleansing Operators.. 2-28
Name and Address ... 2-28
Match-Merge Operator... 2-30

Example: Matching and Merging Customer Data .. 2-30
Designing Mappings with a Match-Merge Operator ... 2-30

3 SQL Transformations

Introduction ... 3-1
About Transformations .. 3-1
About Oracle Transformation Libraries ... 3-2

Global Shared Library .. 3-2
Oracle Library.. 3-2
Accessing Transformation Libraries .. 3-2
Importing PL/SQL Packages .. 3-3

Administrative Transformations ... 3-3
WB_ABORT .. 3-3
WB_ANALYZE_SCHEMA... 3-3
WB_ANALYZE_TABLE.. 3-4
WB_COMPILE_PLSQL ... 3-4
WB_DISABLE_ALL_CONSTRAINTS .. 3-5
WB_DISABLE_ALL_TRIGGERS ... 3-6
WB_DISABLE_CONSTRAINT .. 3-6
WB_DISABLE_TRIGGER.. 3-7
WB_ENABLE_ALL_CONSTRAINTS ... 3-8
WB_ENABLE_ALL_TRIGGERS .. 3-9
WB_ENABLE_CONSTRAINT ... 3-9
WB_ENABLE_TRIGGER ... 3-10
WB_TRUNCATE_TABLE.. 3-11

Character Transformations .. 3-12
ASCII ... 3-12
ASCIISTR.. 3-12
CHARTOROWID.. 3-13
CHR... 3-13
CONCAT.. 3-14

v

CONVERT.. 3-14
INITCAP... 3-15
INSTR / INSTRB ... 3-15
LENGTH/LENGTHB... 3-16
LOWER... 3-17
LPAD... 3-17
LTRIM... 3-18
NLSSORT ... 3-18
NLS_INITCAP... 3-19
NLS_LOWER ... 3-19
NLS_UPPER... 3-20
REPLACE ... 3-20
RPAD .. 3-21
RTRIM... 3-22
SOUNDEX.. 3-22
SUBSTR... 3-23
TO_DATE... 3-24
TO_MULTI_BYTE... 3-24
TO_NUMBER .. 3-25
TO_SINGLE_BYTE ... 3-25
TRANSLATE.. 3-26
TRIM ... 3-26
UPPER... 3-27
WB.LOOKUP_CHAR .. 3-27
WB.LOOKUP_CHAR .. 3-28
WB_IS_SPACE... 3-29

Date Transformations ... 3-29
ADD_MONTHS .. 3-29
LAST_DAY... 3-30
MONTHS_BETWEEN .. 3-30
NEW_TIME.. 3-30
NEXT_DAY.. 3-31
ROUND (date) ... 3-32
SYSDATE.. 3-32
TO_CHAR (datetime)... 3-32
TRUNC (date) .. 3-33
WB_CAL_MONTH_NAME .. 3-33
WB_CAL_MONTH_OF_YEAR... 3-34
WB_CAL_MONTH_SHORT_NAME .. 3-34
WB_CAL_QTR... 3-35
WB_CAL_WEEK_OF_YEAR... 3-35
WB_CAL_YEAR.. 3-36
WB_CAL_YEAR_NAME ... 3-36
WB_DATE_FROM_JULIAN.. 3-37
WB_DAY_NAME.. 3-37
WB_DAY_OF_MONTH... 3-38
WB_DAY_OF_WEEK ... 3-38

vi

WB_DAY_OF_YEAR .. 3-39
WB_DAY_SHORT_NAME.. 3-39
WB_DECADE .. 3-40
WB_HOUR12... 3-40
WB_HOUR12MI_SS.. 3-41
WB_HOUR24... 3-41
WB_HOUR24MI_SS.. 3-42
WB_IS_DATE... 3-42
WB_JULIAN_FROM_DATE.. 3-43
WB_MI_SS.. 3-43
WB_WEEK_OF_MONTH .. 3-44

Number Transformations... 3-44
ABS .. 3-45
ACOS .. 3-45
ASIN.. 3-45
ATAN.. 3-46
ATAN2.. 3-46
COS.. 3-46
COSH .. 3-47
CEIL... 3-47
EXP .. 3-47
FLOOR .. 3-48
LN.. 3-48
LOG ... 3-48
MOD.. 3-49
POWER ... 3-49
ROUND (number)... 3-50
SIGN.. 3-50
SIN... 3-50
SINH.. 3-51
SQRT ... 3-51
TAN... 3-51
TANH ... 3-52
TO_CHAR (number) .. 3-52
TRUNC (number).. 3-53
WB.LOOKUP_NUM (on a number)... 3-53
WB.LOOKUP_NUM (on a varchar2) ... 3-54
WB_IS_NUMBER .. 3-55

OLAP Transformations... 3-55
WB_OLAP_LOAD_CUBE ... 3-56
WB_OLAP_LOAD_DIMENSION .. 3-56
WB_OLAP_LOAD_DIMENSION_GENUK.. 3-57

XML Transformations... 3-58
WB_XML_LOAD... 3-58
WB_XML_LOAD_F .. 3-58

Conversion Transformations... 3-59
CASE ... 3-59

vii

NVL ... 3-60
Other Transformations ... 3-61

NLS_CHARSET_DECL_LEN.. 3-61
NLS_CHARSET_ID .. 3-62
NLS_CHARSET_NAME .. 3-62
UID .. 3-62
USER ... 3-63

A Using Slowly Changing Dimensions

About Slowly Changing Dimensions ... A-1
Case Study Scenario.. A-2

Source System.. A-2
Target System .. A-3

Using Type 1 Slowly Changing Dimensions ... A-4
Step 1: Populate the Surrogate Key .. A-5
Step 2: Configure the Target Properties... A-5
Step 3: Generate Code... A-6

Using Type 2 Slowly Changing Dimensions ... A-6
Step 1: Detect a Match .. A-8
Step 2: Split Join Results ... A-8
Step 3: Determine Merge Rows... A-9
Step 4: Use the Expression UPDATE_DELTA_ROW .. A-9
Step 5: Use the Expression MERGE_DELTA_ROW .. A-9
Step 6: Populate Surrogate Keys ... A-12
Step 7: Configure Target Properties ... A-12
Step 8: Generate Code... A-12

Using Type 3 Slowly Changing Dimension... A-13
Step 1: Detect a Match .. A-13
Step 2: Populate Current Values ... A-14
Step 3: Populate Previous Value Columns by Expression .. A-14
Step 4: Populate Surrogate Keys ... A-14
Step 5: Configure Target Properties ... A-14
Step 6: Generate Code... A-15

Deploying and Loading Slowly Changing Dimensions ... A-15

Index

viii

ix

Preface

This preface includes the following topics:

■ Purpose on page ix

■ Documentation Accessibility on page ix

■ Audience on page x

■ How This Guide Is Organized on page x

■ New in 10g Release 1 (10.1) on page xi

■ Added in Release 9.0.4 on page xiii

■ Conventions on page xvii

■ Related Publications on page xvii

■ Contacting Oracle on page xviii

Purpose
Oracle Warehouse Builder is a comprehensive toolset for individuals who move and
transform data, develop and implement business intelligence systems, perform
metadata management, or create and manage Oracle databases and metadata. This
guide describes the functions and procedures that characterize Warehouse Builder
transformations.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should

x

appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Audience
This guide is intended for data warehouse practitioners, including:

■ Business Intelligence application developers

■ Warehouse architects, designers, and developers—especially SQL and PL/SQL
developers

■ Data analysts and those who develop extract, transform, and load routines

■ Developers of large-scale products based on data warehouses

■ Warehouse administrators

■ System administrators

■ Other MIS professionals

In order to use the information in this guide, you need to be comfortable with the
concepts of Relational Database Management Systems and Data Warehouse design.
For information on data warehousing, refer to the Oracle9i Data Warehousing Guide.
Also, you need to be familiar with Oracle’s relational database software products such
as Oracle Database, SQL*Plus, SQL*Loader, Oracle Enterprise Manager, and Oracle
Workflow.

How This Guide Is Organized
The transformations described in this manual are grouped according to the data or
function type. For example, all transformations working on dates are grouped together
in one section. All functions in each section are listed alphabetically to make searching
more efficient. Each transformation contains the syntax as it reads in Warehouse
Builder, a description of the purpose of this transform, and examples or business use
cases.

Warehouse Builder includes a set of custom functions, built using PL/SQL to make
common activities easier for developers. These transformations start with the prefix
WB_ and are listed at the end of the chapter.

The Oracle Warehouse Builder Transformation Guide contains the following chapters and
appendixes.

■ Chapter 1, "Introduction to Warehouse Builder Transformations" introduces SQL
and PL/SQL transformations.

■ Chapter 2, "Transformations" describes packaged transformations available in the
Mapping Editor and how to define them within a mapping.

■ Chapter 3, "SQL Transformations" provides a reference for the SQL procedures
and functions available in Warehouse Builder.

■ Appendix A, "Using Slowly Changing Dimensions" provides a brief introduction
to the different types of Slowly Changing Dimensions. It also goes through a case

xi

study scenario to demonstrate how to use Warehouse Builder to design and
deploy different types of Slowly Changing Dimensions.

New in 10g Release 1 (10.1)

Enhancements to the Mapping Editor: Mapping Debugger
Warehouse Builder now provides you with extensive debugging capabilities for your
mappings from within the Mapping Editor. Use the Mapping Debugger to locate
logical design errors in your mappings. The new features allow you to step through
the data flow of a mapping using comprehensive debugging functions such as setting
breakpoints and watches and interactively changing test data.

Enhanced Support of Multiple Targets: Correlated Commit
This release introduces a new commit strategy for mappings with multiple targets. In
previous releases, Warehouse Builder performed independent commits. That is,
Warehouse Builder committed and rolled back each target separately and
independently of other targets. In addition to this option, Warehouse Builder now also
performs correlated commits. Warehouse Builder considers all targets collectively and
commits or rolls back data uniformly across all targets. Use the correlated commit
when it is important to ensure that every row in the source impacts all affected targets
uniformly.

Direct Partition Exchange Loading
In previous releases, Warehouse Builder by default created a temporary table for
mappings that required additional processing of source data before exchanging
partitions. This occurred when the mapping contained remote sources or multiple
sources joined together. Beginning in this release, you can now by-pass the creation of
a temporary table and directly swap a source into a target. Use Direct PEL in a
mapping to instantaneously publish fact tables that you loaded in a previously
executed mapping.

Data Quality Features
■ Multiple Name and Address Software Providers: Beginning in this release,

Warehouse Builder is compatible with multiple certified Name and Address
software providers. Third-party vendors can license Name and Address software
directly to you for use with Warehouse Builder. This enables you to choose a name
and address provider whose offering is the most appropriate for your project.

■ Name-Address Operator Wizard: In previous releases, you defined the
Name-Address operator using the mapping canvas and the operator
Configuration Properties sheet. For improved usability, Warehouse Builder now
enables you to use a wizard and Operator editor to create and edit the
Name-Address operator.

■ Match-Merge Operator: Warehouse Builder incorporates the data quality
functionality formerly available in Oracle Pure Integrate. You can use the
Match-Merge operator available in the Mapping Editor to define business rules for
matching and merging records. The Match-Merge operator together with the
Name-Address operator support householding, the process of identifying unique
households in name and address data.

xii

Metadata Change Management
In a previous release, you could perform metadata change management using the
OMB Plus scripting utility. Beginning in this release, you can also access these
functions for the Warehouse Builder client user interface. Metadata change
management enables you to take snapshots of metadata objects and use them for
backup and history management. Snapshots are supported for any object on the
navigation tree and can store information about an object alone (such as a table or
module), or the objects within it as well (such as the tables within a module).

Extending Oracle Warehouse Builder Functionality
■ Security: Warehouse Builder now provides advanced repository security and

auditing options that you can implement according to your security requirements.
The advanced security options include the following:

Proactive Security: Warehouse Builder enables you to plug in a customized
security PL/SQL implementation package in the Warehouse Builder repository to
provide tailored access control to users according to the security rules defined by
your organization.

Reactive Security: Warehouse Builder enables you to track audit information
based on the metadata history and to determine security policies from such audit
information.

Data Stewardship: Warehouse Builder enables an individual or a group of
individuals to “own” portions of the metadata rather than the technical
administrators. Metadata ownership thus becomes an important component of
metadata security management.

■ RAC Support: With 10g Release 1 (10.1), Warehouse Builder provides increased
support for RAC features. Warehouse Builder now supports the use of net service
names in the runtime. This enables you to plan maintenance of nodes in a cluster
without having to reconfigure the runtime environment. Warehouse Builder also
provides an increased availability in the runtime service. For example, if either the
service instance or its associated node fails or is taken out of service, then the
runtime service instance on a different node can take over. While the Warehouse
Builder design repository can also be used in a RAC cluster, it will not take
advantage of any failover features of RAC for this release.

Enhancements to Flat File Support
■ ZONED Data Type Support: Warehouse Builder now enables you to load fixed

format data files containing ZONED decimal data. In the Flat File Sample Wizard,
specify the ZONED data type for a flat file you import. The format for ZONED
data is a string of decimal digits, one for each byte, with the sign included in the
last byte. (In COBOL, this is a SIGN TRAILING field.) The length of this field is
equal to the precision (number of digits) that you specify. You may also specify a
scale, which is the number of digits to the right of the decimal point.

■ DECIMAL Data Type Support: DECIMAL data is in packed decimal format; two
digits for each byte, except for the last byte, which contains a digit and sign. The
DECIMAL data type includes precision and scale and therefore can represent
fractional values.

Enhancements in Database Connectivity
Warehouse Builder now enables you to create public database links that can be shared
across a database. Public database links can be created by repository owners, as well as
any user with the CREATE PUBLIC DATABASE LINK privilege.

xiii

Warehouse Builder Available on HP-UX and AIX
Starting with this release, Warehouse Builder is available on HP-UX and AIX
platforms. This new availability is an addition to the UNIX (Solaris and Linux), and
Windows (NT, 2000, and XP) platforms, which have been available from previous
releases. (Note that the OLAP Bridges feature is only available on Windows platforms
and the Name and Address Server is only available on Windows and Solaris
platforms.)

Public Application Programming Interface
Starting in this release, Warehouse Builder now includes a public application
programming interface (API). To access the API, unzip and extract the following file to
a folder on your local machine:

<owb home directory>\owb\lib\int\pubapi_javadoc.jar

Double click the file index.html. Select the Help link for information on how to use
the API.

Added in Release 9.0.4
The following new features were introduced in Oracle Warehouse Builder:

Changes in the Warehouse Builder Console
■ Enhanced Navigation Tree: The navigation tree that displays in the Warehouse

Builder console has been enhanced to improve navigation between projects and
facilitate direct access to metadata repository objects. All projects are now visible
from the tree, whereas previously you could only see one project at a time. Now
you can expand a project node to display the contents of the active project. The
module tree no longer appears in a separate window.

■ Wizards, Editors, and Properties Sheets: All Warehouse Builder wizards, editors,
and properties sheets are now launched from the navigation tree.

■ Business Areas Renamed to Collections: In previous releases, you could create
business areas in warehouse modules to organize objects in Warehouse Builder
and to export metadata to tools such as Oracle Discoverer. Starting in this release,
collections replace business areas in all functions and introduce enhancements, such
as the ability to import metadata into and export metadata from a collection.

■ Fact Tables Renamed to Cubes: The terms fact and fact table have been replaced
with cube in this release to be in line with OLAP industry standards.

■ Logical Names Renamed to Business Names: All references to logical names of
objects have changed to business names in this release.

■ Toolbars in the Warehouse Builder Console: The utility drawer has been
removed and the side and top toolbars in the Warehouse Builder console have
been merged at the top to consolidate the most important functionality in one
place.

Enhancements to Deployment
■ Addition of Deployment Management Objects: This release introduces three

object types to assist in managing connections to deployment sources and targets:
Locations, Connectors, and Runtime Repository Connections. Locations define the
physical location of the deployment. Connectors define relationships between
locations. Runtime Repository Connections provide information about Runtime

xiv

Repositories. Using these objects, you can create multiple deployment targets for
the same target design.

■ Single Deployment Management Interface: The Deployment Manager provides a
single interface for managing deployments of all objects, and executions of
deployed mappings, transformations, and process flows. It also provides
immediate access to the history of previously deployed objects. Not only does the
Deployment Manager enable you to perform all these tasks from one interface, but
Warehouse Builder now keeps track of runtime metadata, providing you with the
history of what has previously been deployed.

Enhancements to Warehouse Builder Metadata Browser
■ Design Metadata Browsing: The Warehouse Builder Design Browser has been

enhanced to include all new exposed objects, such as external tables, locations and
connectors. In addition, you can now launch the Design Browser as a standalone
executable; it no longer requires Oracle Application Server to be installed for a
single-user usage.

■ Runtime Metadata Browsing: The Warehouse Builder Runtime Audit Viewer has
been replaced by the Runtime Audit Browser, which provides web-based
reporting. The Runtime Audit Browser provides a more extensive set of
deployment and execution audit reports than was available in previous releases.
This audit data comes from information stored in the Runtime Repository and
includes both deployment and execution data.

Enhancements to Warehouse Builder Programmatic Access
■ Warehouse Builder Public APIs: Starting with this release, Warehouse Builder

offers this alternative for programmatic access to Oracle Warehouse Builder
features: a full set of Java public APIs for application programmers who want to
embed Warehouse Builder features and services in their own applications.

■ Warehouse Builder Scripting Language: Oracle MetaBase (OMB) Scripting
Language provides access to all Warehouse Builder functions without accessing
the Warehouse Builder graphical user interface. Users can access Warehouse
Builder metadata and functionality by using OMB Plus, Warehouse Builder's
scripting utility. This gives developers the power of using Warehouse Builder
programmatically and extending its functionality where required. For more
information on OMB Scripting Language, refer to the Oracle Warehouse Builder
Scripting Reference.

Enhancements to Metadata Management
■ Security: Warehouse Builder now provides an optional repository security and

auditing system that you can implement according to your security requirements.
You can create a multiple user account system where multiple identifiable users
can access the same Warehouse Builder repository. Warehouse Builder also enables
you to plug in a customized security PL/SQL implementation package in the
Warehouse Builder repository to provide tailored access control to users according
to the security rules defined by your organization.

■ Metadata Change Management (Metadata Snapshots): Starting in this release,
you can take snapshots of metadata objects and use them for backup and history
management. Snapshots are supported for any object on the navigation tree and
can store information about an object alone (such as a table or module), or the
objects within it as well (such as the tables within a module).

xv

■ Multiple Language Support (MLS): With this feature, you can store the displayed
business names and descriptions in languages other than the base language of the
repository. Your different translations of business names and descriptions can be
used to deploy to an EUL in the language of the target user population.

■ Extensibility Through User-Defined Properties: Users can define additional
properties for any Warehouse Builder objects using the Warehouse Builder OMB
Plus scripting utility. After you define user-defined properties through scripting,
you can access them in the user interface, the Oracle MetaBase (OMB) Scripting
Language, Warehouse Builder Java APIs, and Warehouse Builder Design Browser.
This enhances the extensibility of Warehouse Builder and makes it easier to
integrate it with other Business Intelligence products.

■ Metadata Loader (Import and Export) Flexibility Enhancements: Two new
features were added to enhance this area of the product. The first is the ability for
you to export metadata directly from Collections. The second feature is available
from the Metadata Loader command line utility. It provides you with flexibility to
specify the type of actions you want to apply when you import a first-class object.

Process Flow Editor
Starting in this release, you can use the Process Flow Editor in Warehouse Builder to
create and define process flows. External process operators that you previously
defined in mappings are upgraded to user-defined processes and are contained within
a process flow module. Process flows now integrate in the same Warehouse Builder
design environment and no longer require you to use Oracle Workflow design client to
perform these functions. The Warehouse Builder process flow modeler natively
understands the semantic of your mappings and enables you to model activities such
as FTP, email, and so on.

Performance Improvements
■ Mapping User Interface: A new pre-defined display set, named Mapping, was

added in this release. Selecting this display set causes the Mapping to only display
columns that effectively are mapped, or used.

■ Mapping Compression: This feature automatically detects unused connections
between operators and attributes in any given mapping and eliminates them from
the repository. This dramatically enhances the performance of loading and storing
large mappings that represent significant data flows.

■ Metadata Loader (Import and Export): Import and export functionality now takes
advantage of the new compression feature available for each mapping. This means
that the Metadata Loader now exports and imports only those mapping objects
that are actually used.

Oracle Database Integration
■ OLAP Integration: Warehouse Builder enables you to design, deploy, and load

multidimensional OLAP objects as ROLAP or MOLAP models from different data
sources. After the data is loaded, you can use BI tools and applications to run
complex analytical queries that answer your business questions. Using Warehouse
Builder, you can now create and manage both your relational and
multidimensional objects from the same cube and dimension designs.

■ Advanced Queue (AQ) Integration: Warehouse Builder enables you to import
Advanced Queue definitions and to use AQs as data sources and targets while
designing your data warehouse. Through Advanced Queue functionality coupled
with the Messaging Gateways, Warehouse Builder enables you to support

xvi

messaging applications on MQ Series and Tibco as Warehouse Builder data
sources. AQs also enable you to propagate change data capture from your source
system to your target. The ability to integrate AQs lays the foundation for
providing real time data warehousing in the future.

■ External Tables: Starting in this release, you can use external tables to represent
data from non-relational file sources in a relational, read-only format. You can
import an existing external table from an Oracle database. Or you can create an
external table in Warehouse Builder based on a flat file definition. Warehouse
Builder will generate the right DDL for you to deploy you external table to an
Oracle database.

■ Oracle Database Multiple Table Inserts: Warehouse Builder takes advantage of
Oracle Database functionality and generates a multiple-table insert statement
when the target is Oracle Database. This enables you to optimize mappings to
insert data into multiple tables in one operation.

■ Oracle Database Table Functions: Warehouse Builder introduces the Table
Function operator that enables you to improve performance when loading your
target system. Use this operator to develop custom code that can manipulate a set
of input rows and return another set of rows possibly of different cardinality.
Unlike conventional functions, table functions output a set of rows that can be
queried like a physical table.

Enhanced Support for Flat Files
■ Unbound Flat Files as Targets: In this release, you can create a new, unbound flat

file object as you create your mapping. Warehouse Builder creates a new
comma-delimited, single-record-type flat file in the specified location. This feature
makes it easier to load the contents of a relational object into a flat file.

■ Outbound Reconcile for Flat Files: Outbound reconciliation makes it possible to
create a new repository object from a mapping flat file. This results in a new,
comma-delimited file to be created where specified, if the flat file is new to that
repository. This feature makes it easier to "quickly dump" the contents of a
relational object to a flat file.

■ Logical Records for Delimited Files: The Flat File Sample Wizard has also been
enhanced to display an improved user interface that enables you to define logical
records for delimited files.

■ Position-Based Master-Detail Loading: Position-based master-detail flat files are
now easier to load with the use of additional mapping operators.

■ SQL Property Extensions: You can now specify SQL properties for flat files you
import into Warehouse Builder. This enables you to pre-define SQL property
values for each flat file field. Thus, if mapping a flat file source to a relational
target, the target column will default to these pre-defined SQL property values.
These values will be used when building a relational target column or when
creating an external table column.

Mapping Editor Enhancements
■ Mapping User Interface: A new set of property tabs is now available for you to

quickly create and edit mapping operators and attribute properties.

■ Pivot and Unpivot Operators: Starting in this release, you can add a pivot
operator or an unpivot operator to a mapping. The pivot operator enables you to
transform a single row of attributes into multiple rows. The unpivot operator
converts multiple input rows into one output row.

xvii

■ Name and Address Operator Enhancements: The Name and Address operator
has been enhanced to include new input roles and output attributes. The United
States Postal Service Code Accuracy Support System (CASS) reporting is also
supported starting with this release.

Warehouse Builder Is Now Available on UNIX Platforms
Starting with this release, Warehouse Builder is available on UNIX (Solaris, and
Linux), as well as Windows (NT, 2000, and XP) platforms. This applies to all the
components of Warehouse Builder, with the exception of the Name and Address
libraries, which are not available on Linux in this release. (Note that the OLAP Bridges
feature is only available on Windows platforms and the Name and Address Server is
only available on Windows and Solaris platforms.)

Conventions
In this manual, Windows refers to the Windows NT, Windows 2000, and Windows XP
operating systems. The SQL*Plus interface to Oracle Database may be referred to as
SQL.

In the examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following table lists the conventions used in this manual.

Related Publications
The Warehouse Builder documentation set includes these manuals:

■ Oracle Warehouse Builder User’s Guide

■ Oracle Warehouse Builder Installation and Configuration Guide

■ Oracle Warehouse Builder Transformation Guide

■ Oracle Warehouse Builder Scripting Reference

■ Oracle Warehouse Builder Release Notes

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information
not directly related to the example has been omitted.

... Horizontal ellipsis points in statements or commands mean
that parts of the statement or command not directly related to
the example have been omitted.

boldface text Boldface type in text refers to interface buttons and links.
Boldface type also serves as emphasis to set apart main ideas.

italicized text Italicized text applies to new terms introduced for the first
time. Italicized text also serves as an emphasis on key concepts.

unicode text Unicode text denotes exact code, file directories and names,
and literal commands.

italicized unicode
text

Italicized unicode text refers to parameters whose value is
specified by the user.

[] Brackets enclose optional clauses from which you can choose
one or none.

xviii

In addition to the Warehouse Builder documentation, you can refer to the Oracle Data
Warehousing Guide.

Oracle provides additional information sources, including other documentation,
training, and support services that can enhance your understanding and knowledge of
Oracle Warehouse Builder.

■ For more information on Oracle Warehouse Builder technical support, contact
Oracle World Wide Support services at:

http://www.oracle.com/support

■ For the latest information on, and downloads of, software and documentation
updates to Oracle Warehouse Builder, visit MetaLink at:

http://metalink.oracle.com

■ You can order other Oracle documentation at:

http://oraclestore.oracle.com

Contacting Oracle

OracleMetaLink
OracleMetaLink is the Oracle support Web site where you can find the latest product
information, including documentation, patch information, BUG reports, and TAR
entries. Once registered, you can access email, phone and Web resources for all Oracle
products. OracleMetaLink is located at:

http://metalink.oracle.com

Check OracleMetaLink regularly for Warehouse Builder information and updates.

Documentation
You can order Oracle product documentation by phone or through the World Wide
Web:

■ Phone: Call 800-252-0303 to order documentation or request a fax listing of
available Oracle documentation.

■ Oracle Documentation Sales Web site:

http://oraclestore.oracle.com

■ Oracle Support Services Web site:

http://www.oracle.com/support

Introduction to Warehouse Builder Transformations 1-1

1
Introduction to Warehouse Builder

Transformations

Transforming data is one of the main functions of an Extract, Transformation, and
Loading (ETL) tool. Data transformations can range from single-value-based
arithmetic calculations to multiple data transformations, such as data manipulation
and alterations. Oracle Warehouse Builder includes several pre-defined
transformations, as well as a library of predefined functions and procedures, to
transform data. Warehouse Builder also uses SQL and PL/SQL as the transformation
languages, which enables it to fully utilize the power of the Oracle database engine.

This guide describes the functions and procedures that characterize Warehouse
Builder transformations. Because this guide is not intended as a basic user manual,
you must have an understanding of how to create mappings and how to add
transformations and operators to mappings. Additionally, concepts such as the Global
Shared Library are not discussed in this manual.

This chapter includes the following topics:

■ Overview on page 1-1

■ Transforming Data with Warehouse Builder on page 1-2

■ SQL Standards on page 1-2

■ How SQL Works on page 1-2

■ SQL as the Common Language for Relational Databases on page 1-3

For more information, see the Oracle Warehouse Builder User’s Guide.

Overview
Oracle offers a comprehensive ETL solution, and one of the major components in this
solution is the ETL tool, Oracle Warehouse Builder. Warehouse Builder provides
components that enable you to model and create an ETL process. Its intuitive user
interface (UI) enables you to design and define objects that are stored in an open
repository. After completing the initial design, you can deploy this design to the
runtime platform. Because the runtime platform is the Oracle database, Warehouse
Builder is used as a tool that generates code rather than an ETL engine-based tool.
Warehouse Builder also provides reporting tools to run reports on your repository.
And it also enables you to integrate with other Oracle query tools.

Because SQL and PL/SQL are versatile and proven languages widely used by many
information professionals, the time and expense of developing an alternative
transformation language is eliminated by using Warehouse Builder. With Warehouse

Transforming Data with Warehouse Builder

1-2 Oracle Warehouse Builder Transformation Guide

Builder, you can create solutions using existing knowledge and a proven, open, and
standard technology.

Transforming Data with Warehouse Builder
The ETL processes designed with Warehouse Builder can be translated into PL/SQL
packages. These PL/SQL packages are deployed to the Oracle database and stored as
packages available for execution.

You can also use PL/SQL to transform data moving from sources to targets. To enable
faster development of warehousing solutions, Warehouse Builder provides custom
procedures and functions written in PL/SQL. Warehouse Builder enables you to reuse
PL/SQL as well as to write your own PL/SQL transformations. Because the final
process runs on the Oracle database, Warehouse Builder supports all constructs
supported by the Oracle database.

You can also use the Warehouse Builder Mapping Editor to design data
transformations using SQL code components. For example, activities such as joining
disparate data sources or splitting data streams into multiple output streams can be
implemented as SQL components. This enables Warehouse Builder to generate
efficient SQL code to move data from source to target.

SQL Standards
Oracle Corporation strives to comply with industry-accepted standards and
participates actively in SQL standards committees. Industry-accepted committees
include the American National Standards Institute (ANSI) and the International
Standards Organization (ISO), which is affiliated with the International
Electrotechnical Commission (IEC). Both ANSI and the ISO/IEC have accepted SQL as
the standard language for relational databases. When a new SQL standard is
simultaneously published by these organizations, the names of these standards
conform to conventions used by the organization. Although naming conventions may
differ, it should be noted that the standards are technically identical.

The latest SQL standard was adopted in July 1999 and is often called SQL:99. The
formal names of this standard are:

■ ANSI X3.135-1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation"), and 5 ("Bindings")

■ ISO/IEC 9075:1999, "Database Language SQL", Parts 1 ("Framework"), 2
("Foundation"), and 5 ("Bindings")

How SQL Works
SQL is a data sublanguage that provides an interface to a relational database such as
Oracle. All SQL statements are instructions to the database. SQL benefits different
types of users including application programmers, database administrators, managers,
and end users.

SQL language:

■ Processes sets of data as groups rather than as individual units.

■ Provides automatic navigation to the data.

■ Uses standalone statements that are complex and powerful.

SQL as the Common Language for Relational Databases

Introduction to Warehouse Builder Transformations 1-3

Flow-control statements were not originally part of SQL, but they can be found in the
recently accepted optional part of SQL, ISO/IEC 9075-5: 1996. Flow-control statements
are commonly known as "persistent stored modules" (PSM), and Oracle’s PL/SQL
extension to SQL is similar to PSM.

SQL enables you work with data at the logical level. The implementation details are
only required when you want to manipulate the data. For example, to retrieve a set of
rows from a table, you can define a condition to filter the rows. All rows satisfying the
condition are retrieved in a single step and can be passed as a unit to the user, to
another SQL statement, or to an application. You do not have to filter the rows one by
one, or manually store and retrieve the data. All SQL statements use the optimizer, a
part of Oracle that determines the most efficient means of accessing the specified data.
Oracle also provides techniques that you can use to improve the optimizer
performance.

SQL provides statements for different tasks including:

■ Querying data

■ Inserting, updating, and deleting rows in a table

■ Creating, replacing, altering, and dropping objects

■ Controlling access to the database and its objects

■ Guaranteeing database consistency and integrity

SQL unifies all of the preceeding tasks in one consistent language.

SQL as the Common Language for Relational Databases
All major relational database management systems support SQL and all programs
written in SQL can be moved from one database to another with very little
modification.

This means that all the SQL knowledge in your organization is fully portable to
Warehouse Builder. Warehouse Builder enables you to import and maintain any
existing complex custom code. You can later use these custom transformations in
Warehouse Builder mappings.

SQL as the Common Language for Relational Databases

1-4 Oracle Warehouse Builder Transformation Guide

Transformations 2-1

2
Transformations

The Warehouse Builder Mapping Editor includes a selection of pre-built
transformation operators. These operators enable you to define common
transformations when you define how the data will move from source to target.

Transformation Operators are pre-built PL/SQL functions, procedures, package
functions, and package procedures. They take input data, perform operations on it,
and produce output data.

This chapter contains the following topics:

■ Regular SQL Operators on page 2-1

■ Data Cleansing Operators on page 2-33

For related information, see the Oracle Warehouse Builder User’s Guide.

Regular SQL Operators
SQL is a powerful mechanism to extract and transform data. You can use SQL to join
disparate sources into one data stream, transform the joined data, and then split it into
multiple streams output to multiple targets. Warehouse Builder enables these activities
by using regular SQL operations.

Deduplicator (DISTINCT)
In a large number of cases the source data contains duplicate values. For example,
higher levels within a dimension are duplicated in the source because they are at a
lower level of granularity. When selecting these rows, the goal is to only select one row
for each level record, not multiple ones.

This can be achieved by adding a deduplicator operator to a mapping, as shown in
Figure 2–1. All rows that are required by the target must pass through the
deduplicator. No row set can bypass the deduplicator and hit the target directly.

Regular SQL Operators

2-2 Oracle Warehouse Builder Transformation Guide

Figure 2–1 Deduplicator in a Mapping

A deduplicator results in a DISTINCT keyword in the generated extraction query, as
shown in Figure 2–2.

Figure 2–2 Translation to DISTINCT Keyword

Filter (WHERE)
A filter enables you to restrict the data set selected from the query source. Filtering
limits the number of rows to be extracted or processed based on a clause applied to a
set of data. This filter clause can be based on all supported data types and can contain
constants.

In Figure 2–3, the orders are restricted using the order status. The orders must be
booked and the last updated date must be the date of extraction. The result is
truncated to ensure that matches are done on the date without the timestamp.
Therefore, the result only loads the booked orders that were modified (or set to
“booked”) on the day of loading. This is an easy way of implementing change data
capture.

All rows that are required at the target must pass through the filter operator. No row
set can bypass the filter and hit the target directly.

Regular SQL Operators

Transformations 2-3

Figure 2–3 Filter in a Mapping

After defining a filter in the mapping, you must specify the filter clause using the
Expression Builder, as shown in Figure 2–4. Because filter conditions can be complex,
you can use the Expression Builder to validate the filter clause before deploying it to
any target system.

Figure 2–4 Expression Builder with the Filter Clause Defined

Warehouse Builder translates the filter clause into a WHERE clause in the extraction
program, as shown in Figure 2–5.

Regular SQL Operators

2-4 Oracle Warehouse Builder Transformation Guide

Figure 2–5 The Generated Code for Join operator

The generated extraction code contains the physical column names of the objects
whereas the Expression Builder shows you the relative names. If you are using
business names in the logical modeling phase, Warehouse Builder automatically
translates them into physical names of actual database objects.

Joiner (FULL OUTER JOIN)
A join is a query that combines rows from two or more tables, views, or materialized
views. Oracle performs a join whenever multiple tables appear in the query's FROM
clause. The query's select list can select any columns from any of these tables.

Most join queries contain WHERE clause conditions that compare two columns, each
from a different table. To execute a join, Oracle combines pairs of rows, each
containing one row from each table, for which the join condition evaluates to TRUE. In
addition to join conditions, the WHERE clause of a join query can also contain other
conditions that refer to columns of only one table. These conditions can further restrict
the rows returned by the join query.

The joiner in Warehouse Builder also supports inner joins, outer joins, self joins,
equijoins, and non-equijoins. When run on Oracle9i, Warehouse Builder supports full
outer joins. The Key Lookup operator is an example of an outer join used in
Warehouse Builder. For more information on joins, see the Oracle SQL Reference.

Regular SQL Operators

Transformations 2-5

Figure 2–6 Joining Two Related Tables Into a Single Result Set

If the metadata in the Warehouse Builder repository already contains a primary to
foreign key relationship, Warehouse Builder pre-populates the join condition based on
that information. In Figure 2–6, two source tables are joined to combine the data from a
set of normalized order tables into one table. Because the order lines are typically of a
higher cardinality (there are more records for each order in the lines table), the result
set is also of that higher cardinality.

If two tables in a join query have no join condition, Warehouse Builder returns their
Cartesian product and combines each row of one table with each row of the other
table. Because a cartesian product always generates many rows, it may not be useful.
For example, the Cartesian product of two tables each with 100 rows has 10,000 rows.
You must always include a join condition unless you need a Cartesian product.

Regular SQL Operators

2-6 Oracle Warehouse Builder Transformation Guide

Figure 2–7 The Join Condition Based on the PK - FK Relationship

Using the Expression Builder, as shown in Figure 2–7, you can define infinitely
complex join clauses. Warehouse Builder translates these clauses into WHERE clauses
in the generated SQL code, as shown in Figure 2–8. In this example, the FROM clause
contains both source tables and the WHERE clause joins these tables on the order_id
columns.

Figure 2–8 The Generated Code for Join operator

Regular SQL Operators

Transformations 2-7

Key Lookup
A common design decision in a data warehouse is the use of surrogate keys. These
keys, typically integers, are used to replace larger logical identifiers taken from the
source systems. You can use surrogate keys to reduce the space used by tables linking
to a primary key or to substitute source specific identifiers with common identifiers to
enable reporting. For information on creating numerical surrogate keys, see "Sequence
(CURRVAL, NEXTVAL)" on page 2-11.

When you use surrogate keys, there is a mismatch between the primary identifier of a
record in the source and in the target. To ensure that joins in the target are performed
on the correct data, a key lookup needs to be performed. The key lookup transforms
the logical key into its surrogate equivalent. Figure 2–9 shows an example of a key
lookup in a mapping.

Figure 2–9 Key Lookup in a Mapping

Warehouse Builder provides two ways of performing a key lookup: you can use
pre-defined PL/SQL transformations or you can use a SQL operator. The SQL operator
joins a lookup object, such as a table, view, materialized view, or dimension, to the
table containing the original identifier.

For lookup conditions, you do not need to manually create the join clauses. A
specialized UI enables you to specify these clauses, as shown in Figure 2–10. For each
output attribute on the key lookup operator, you can specify a default.

Regular SQL Operators

2-8 Oracle Warehouse Builder Transformation Guide

Figure 2–10 Defining a Lookup Condition

To avoid over-restriction (and missing source rows), the lookup table is outer joined by
the operator to ensure that all source rows are part of the query. If no lookup value is
available, the operator returns a NULL value. You can substitute this with a default
value that uses NVL in the query to substitute the NULL with the default.

Figure 2–11 Generated Code With OUTER JOIN And NVL

In Figure 2–11, the outer join is performed on the PRODUCT_LK table which is the
lookup table. Rows returning NULL for the UNIFIED_CODE are substituted through
use of the NVL function to reflect a -1 value. Thus, the default value does not interfere
with the system-generated codes. For details, see NVL on page 3-61.

Pivot Operator
The pivot operator enables you to transform a single row of attributes into multiple
rows. Use this operator in a mapping when you want to transform data that is
contained across attributes instead of rows. For example, when you extract data from
non-relational data sources, such as data in a crosstab format.

Regular SQL Operators

Transformations 2-9

Example: Pivoting Sales Data
The external table SALES_DAT contains data from a flat file. This data contains one
row for each sales representative and separate columns for each month. For more
information about external tables, see Oracle Warehouse Builder User’s Guide.
Figure 2–12 shows the data in SALES_DAT in a crosstab format.

Figure 2–12 SALES_DAT

Table 2–1 shows a sample of the data after Warehouse Builder has performed a pivot
operation. The data that was formerly contained across multiple columns (M1, M2,
M3...) is now contained in a single attribute (MONTHLY_SALES). A single ID row in
SALES_DAT corresponds to 12 rows in pivoted data.

To perform the pivot transformation in this example, you can create a mapping as
shown in Figure 2–13.

Figure 2–13 Pivot Operator in a Mapping

In this mapping, Warehouse Builder reads the data from the external table, pivots the
data, aggregates the data, and writes it to a target in set-based mode. It is not necessary

Table 2–1 Pivoted Data

REP MONTH MONTHLY_SALES REGION

0675 Jan 10.5 4

0675 Feb 11.4 4

0675 Mar 9.5 4

0675 Apr 8.7 4

0675 May 7.4 4

0675 Jun 7.5 4

0675 Jul 7.8 4

0675 Aug 9.7 4

0675 Sep NULL 4

0675 Oct NULL 4

0675 Nov NULL 4

0675 Dec NULL 4

Regular SQL Operators

2-10 Oracle Warehouse Builder Transformation Guide

to load the data to a target directly after pivoting it. You can use the pivot operator in a
series of operators before and after directing the data into the target operator. You can
place operators such as a FILTER, JOIN, and SET OPERATION before the pivot
operator. Because pivoted data in Warehouse Builder is not a row-by-row operation,
you can also execute the mapping in set-based mode.

Sequence (CURRVAL, NEXTVAL)
A sequence enables you to generates sequential numbers from the database. It also
enables you to create identifiers without a real semantic meaning. These identifiers are
often called surrogate keys. You can then use Key Lookup within Warehouse Builder
to deduce this generated key through a lookup on the original value.

When a sequence number is generated, the sequence is incremented independent of
whether you commit or rollback the transaction. If two users concurrently increment
the same sequence, the sequence numbers each user acquires may have gaps because
the sequence numbers are also being generated by the another user. One user can
never acquire the sequence number generated by the other user. After a user generates
a sequence value, that user can continue to access that value whether the sequence is
incremented by another user or not.

Because sequence numbers are generated independently of tables, the same sequence
can be used for one or multiple tables. Individual sequence numbers may appear to be
skipped if they are generated and used in a transaction that is later rolled back.
Additionally, a single user may not realize that other users are drawing from the same
sequence.

You can access the sequence values in SQL statements with the CURRVAL
pseudocolumn (which returns the current value of the sequence) or the NEXTVAL
pseudocolumn (which increments the sequence and returns the new value).

Figure 2–14 shows you how to use sequences in a Warehouse Builder mapping.

Note: To use the CURRVAL functionality, a NEXTVAL call has to be
made first.

Regular SQL Operators

Transformations 2-11

Figure 2–14 Generating Surrogate Keys

In this example, the pseudocolumns CURRVAL and NEXTVAL are available in the
sequence object in Warehouse Builder and you can choose the appropriate column to
map. The NEXTVAL column is commonly used to generate the insert statement, as
shown in Figure 2–15.

Figure 2–15 Generated Code for Sequence Operator

Because sequences can be used by multiple sessions, you cannot depend on the
numbers being consecutive. A sequence also caches a specific number of values, for
example a range of 20 values, that are lost when you terminate the session.

Regular SQL Operators

2-12 Oracle Warehouse Builder Transformation Guide

Set (UNION, UNION ALL, INTERSECT, MINUS)
Set operators combine the results of two component queries into a single result. Unlike
a joiner, set operators do not require WHERE clauses to tie result sets together. In set
based operators, although the data is added to one output, the column lists are not
mixed together to form one combined column list. While a joiner combines separate
rows into one row, set operators combine all data rows in their universal row as shown
in Figure 2–16.

Figure 2–16 Applying a Set-Based Transformation

Warehouse Builder supports UNION, UNION ALL, INTERSECT, and MINUS as
modes for this operator. Table 2–2 shows the returns for the operator for all the modes.
For details, see the Oracle SQL Reference.

The UNION (or UNION ALL) operator is most commonly used to combine, for example,
product or customer lists from disparate sources. If the tables (often staging tables)
match in format, a UNION can combine the records to one unified list of products.
These than can be loaded into a warehouse or cleansed before storage in the
warehouse. Figure 2–17 shows an example of a union on two product tables.

Table 2–2 Set Operator Returns

Operator Returns

UNION All rows selected by either query

UNION ALL All rows selected by either query, including
all duplicates

INTERSECT All distinct rows selected by both queries

MINUS All distinct rows selected by the first query
but not the second

Regular SQL Operators

Transformations 2-13

Figure 2–17 Performing a Union on Two Product Tables

If you change the mode on the operator (each operator can only perform one action),
the generated code changes and the UNION keyword is substituted with the one you
have chosen.

Sorter (ORDER BY)
Because most data in a data warehouse is typically loaded in batches, there can be
problems in the loading routines. For example, a batch of orders might contain a single
order number multiple times with each order line representing a different state of the
order. The order might have gone from status "CREATED" to "UPDATED" to "BOOKED"
during the day.

Because a SQL select statement does not guarantee any ordering by default, the inserts
and updates on the target table can take place in the wrong order. If the "UPDATED"
row is processed last, it becomes the final value for the day although the result should
be status "BOOKED",

Warehouse Builder enables you to solve this problem by creating an ordered extraction
query using the Sorter operator.

Regular SQL Operators

2-14 Oracle Warehouse Builder Transformation Guide

Figure 2–18 Ordering Data in a Mapping

The sorter creates an ORDER BY clause in the SQL statement allowing ordering on the
columns in the ORDER BY clause. Columns listed first in the ORDER BY clause take
precedent over the ones listed later in the list. The first ordering is done on the order
number, and within each group of order numbers, the ordering is done on the last
updated date, as shown in Figure 2–18. The last change is the last update on the target
reflecting the correct final status of the order in the target.

Figure 2–19 Determining Sorting and Sort Order

Ordering within the GROUP BY clauses can be done either in an ASCENDING or
DESCENDING order. The default is DESCENDING order, as shown in Figure 2–19.

Regular SQL Operators

Transformations 2-15

Figure 2–20 ORDER BY Clause in the Generated SQL

If you change the order of the attributes in the ORDER BY clause, it changes the order
in the generated SQL and also the behavior of the mapping, as shown in Figure 2–20.

Splitter (Multiple Table WHERE)
In a warehouse environment, you may require data to be moved to different targets
based on a data driven condition. Instead of moving the data through multiple filters,
Warehouse Builder enables you to use a splitter. This operator takes input data and
outputs multiple flows of data based on the split conditions you specify.

For example, if you want to split the CUSTOMER table into addresses and pure
customer information, then one row must be inserted in two tables as shown in
Figure 2–21.

Regular SQL Operators

2-16 Oracle Warehouse Builder Transformation Guide

Figure 2–21 Performing an Unconditional Split

In this example, no split conditions are added to the splitter. Although OUTGRP1 and
OUTGRP2 have no condition, a set of columns in OUTGRP1 are mapped to one target
while a set of columns in OUTGRP2 are mapped to a different target. If you want to
reduce the number of customers (based on the assumption that one customer has more
addresses), you can add a deduplicator to the upper flow to obtain only one customer
for each address. By mapping the cust_id to both targets, a relationship is
maintained at all times.

Currently, the code generated is two separate streams of data. Each target is treated as
a data recipient. If the data is inserted, two insert statements are generated in one
package, as shown in Figure 2–22 and Figure 2–23.

Regular SQL Operators

Transformations 2-17

Figure 2–22 Inserting the Customer Table

Figure 2–23 Inserting the Address Data

In the following example, the addresses may be split to hold only the billing addresses
in the address table. You can add a condition to OUTGRP2 to select only these

Regular SQL Operators

2-18 Oracle Warehouse Builder Transformation Guide

addresses. In such a case, a WHERE clause is added to the code, as shown in
Figure 2–24.

If none of the clauses is met on the output groups, the data is added to the default
group containing all data not held in any of the regular output groups.

Figure 2–24 Inserting Only “Bill To” Addresses

You can also use the splitter for conditional filtering. For example, you can use it split
erroneous data from the main branch into separate error tables.

Table Function
While a regular function only works on one row at a time, a table function enables you
to apply the same complex PL/SQL logic on a set of rows and increase your
performance.

In Warehouse Builder, you can add a table function operator to a mapping and input a
set of rows into it. This row set is then transformed using PL/SQL logic within the
table function before it is output to the next operator.

Regular SQL Operators

Transformations 2-19

Figure 2–25 Table Function in a Mapping

In Figure 2–25, the Time dimension is loaded from a table function. This table function
is added to the FROM clause of the select statement. The table function plays the role of
a row set provider allowing complex calendar data generation and loading to be done
in a single "insert as select" statement.

Unpivot Operator
The unpivot operator converts multiple input rows into one output row. It also enables
you to extract once from a source, and then produce one row from a set of source rows
that are grouped by attributes in the source data. Like the pivot operator, you can
place the unpivot operator anywhere in a mapping.

Example: Unpivoting Sales Data
Table 2–3 shows a representative sample of data from a relational table, SALES. In the
crosstab format, the ‘MONTH’ column has 12 possible character values, one for each
month of the year. And all sales figures are contained in one column, ‘MONTHLY_
SALES’.

Table 2–3 Data in Crosstab Format

REP MONTH MONTHLY_SALES REGION

0675 Jan 10.5 4

0676 Jan 9.5 3

0679 Jan 8.7 3

0675 Feb 11.4 4

0676 Feb 10.5 3

0679 Feb 7.4 3

0675 Mar 9.5 4

0676 Mar 10.3 3

0679 Mar 7.5 3

0675 Apr 8.7 4

0676 Apr 7.6 3

0679 Apr 7.8 3

Regular SQL Operators

2-20 Oracle Warehouse Builder Transformation Guide

Figure 2–26 shows data from the relational table ‘SALES’ after Warehouse Builder
unpivots the table. The data formerly contained in the ‘MONTH’ column, for example
Jan, Feb, Mar, corresponds to12 separate attributes (M1, M2, M3...). The sales figures
formerly contained in the ‘MONTHLY_SALES’ are now distributed across the 12
attributes for each month.

Figure 2–26 Data Unpivoted from Crosstab Format

Aggregator (GROUP BY, HAVING)
Aggregation of fact data is a common transformation operation. In Warehouse Builder,
you can add one aggregator to a mapping to perform multiple aggregations.
Warehouse Builder provides a separate editor to enable you to create complex
aggregations. Although you can call a different aggregation function for each attribute
in an aggregator, each aggregator supports only one GROUP BY and one HAVING
clause. For example, you may want to aggregate orders over the Channel, Product,
and Orders dimension, as shown in Figure 2–27.

Figure 2–27 Aggregating Order Information

If the target table in this example is allowed to take inserts and updates (updates are
matched on the dimension key values or the aggregation points), then the following
query is generated by Warehouse Builder, as shown in Figure 2–28.

Regular SQL Operators

Transformations 2-21

Figure 2–28 Merging Aggregated Data

The statement can be created using the properties on the aggregator. Each attribute
holds its own aggregation type, and the HAVING and GROUP BY clauses are modified
on the operator, as shown in Figure 2–29, Figure 2–30, and Figure 2–31.

Figure 2–29 GROUP BY Clause

Regular SQL Operators

2-22 Oracle Warehouse Builder Transformation Guide

Figure 2–30 Aggregation Function Per Attribute

The Aggregator can use the following functions:

AVG

Syntax
avg::=AVG(expr)

Purpose
AVG returns the average value of expr using the GROUP BY clause as specified on the
operator. In Warehouse Builder, this means that the aggregator returns the average
value of the data flowing into the operator as an output group attribute.

Example
The following example calculates the average salary of all employees in the
OE.EMPLOYEES table:

SELECT AVG(salary) "Average" FROM employees;

Average

6425

COUNT

Syntax
count::=COUNT(expr)

Purpose
COUNT returns the number of rows in the query using the GROUP BY clause as
specified on the operator. If you specify an expr, COUNT returns the number of rows
where expr is not null. You can count all rows or only distinct values of expr. If you
specify the asterisk (*), this function returns all rows, including duplicates and nulls.
COUNT never returns null as a value on its own.

Example
The following example uses COUNT as an aggregate function:

SELECT COUNT(commission_pct) "Count" FROM employees;

Count

Regular SQL Operators

Transformations 2-23

35

MAX

Syntax
max::=MAX(attribute)

Purpose
MAX returns the maximum value of attribute using the GROUP BY clause as
specified on the operator. This means that the aggregator returns the maximum value
of the data flowing into the operator attribute as an output group attribute.

Example
The following example determines the highest salary in the HR.EMPLOYEES table:

SELECT MAX(salary) "Maximum" FROM employees;

Maximum

24000

MIN

Syntax
min::= MIN(attribute)

Purpose
MIN returns the maximum value of attribute using the GROUP BY clause as
specified on the operator. This means that the aggregator returns the maximum value
of the data flowing into the operator attribute as an output group attribute.

Example
The following statement returns the earliest hiredate in the HR.EMPLOYEES table:

SELECT MIN(hire_date) "Earliest" FROM employees;

Earliest

17-JUN-87

NONE

Syntax
none::=Group By (attribute)

Purpose
NONE is used to identify the action used to aggregate on the attribute when this
attribute is added to the GROUP BY clause. Specifying NONE in the aggregation
operator for attribute automatically adds it to the Group By clause (and
vice-versa). Using NONE does not lead to an aggregation in the SQL statement as the
other functions do.

Regular SQL Operators

2-24 Oracle Warehouse Builder Transformation Guide

Example
Figure 2–31 shows the GROUP BY attributes on the right side. Moving an attribute
from the left side to the right side automatically switches the aggregation action to
NONE.

Figure 2–31 Group By Clause Dialog

Conversely (as with the aggregation function dialog), selecting NONE moves the
attribute to the GROUP BY clause and it appears on the right side.

Figure 2–32 Selecting No Aggregation for the Attribute

STDDEV

Syntax
stddev::= STDDEV(attribute)

Purpose
STDDEV returns sample standard deviation of attribute: a set of numbers. The
attributes in Warehouse Builder typically consist of a row fed into the aggregator.

STDDEV differs from STDDEV_SAMP because STDDEV returns zero when it has only
one row of input data, and STDDEV_SAMP returns a null. Oracle calculates the
standard deviation as the square root of the variance defined for the VARIANCE
aggregate function.

Regular SQL Operators

Transformations 2-25

Example
The following example returns the standard deviation of salary values in the sample
HR.EMPLOYEES table:

SELECT STDDEV(salary) "Deviation"
FROM employees;

Deviation

3909.36575

STDDEV_POP

Syntax
stddev_pop::=STDDEV_POP(sttribute)

Purpose
STDDEV_POP computes the population standard deviation and returns the square root
of the population variance into the output attribute of the aggregator.

The attribute is a number expression, and the function returns a value of type
NUMBER.

This function is the same as the square root of the VAR_POP function. When VAR_POP
returns null, this function also returns null.

Example
The following example returns the population and sample standard deviations of
amount of sales in the sample table SH.SALES.

SELECT STDDEV_POP(amount_sold) "Pop",
STDDEV_SAMP(amount_sold) "Samp"
FROM sales;

Pop Samp
---------- ----------
944.290101 944.290566

STDDEV_SAMP

Syntax
stddev_samp::=STDDEV_SAMP(attribute)

Purpose
STDDEV_SAMP computes the cumulative sample standard deviation and returns the
square root of the sample variance into the output attribute of the aggregator.

The attribute is a number expression and the function returns a value of type NUMBER. This
function is same as the square root of the VAR_SAMP function. When VAR_SAMP returns NULL,
this function also returns NULL.

Example
The following example returns the population and sample standard deviations of
amount of sales in the sample table SH.SALES.

SELECT STDDEV_POP(amount_sold) "Pop",

Regular SQL Operators

2-26 Oracle Warehouse Builder Transformation Guide

STDDEV_SAMP(amount_sold) "Samp"
FROM sales;

Pop Samp
---------- ----------
944.290101 944.290566

SUM

Syntax
sum::=SUM(attribute)

Purpose
SUM returns the summary of the values of attribute. The attribute in Warehouse
Builder is typically a row set fed into the aggregator. It can contain expressions from
previous transformations or from the source system.

Example
The following example calculates the sum of all salaries in the sample HR.EMPLOYEES
table below:

SELECT SUM(salary) "Total"
FROM employees;

Total

691400

VAR_POP

Syntax
var_pop::= VAR_POP(attribute)

Purpose
After discarding the nulls in this set, VAR_POP returns the population variance of a set
of numbers to the output attribute in the aggregator. The attribute is a number
expression and the function returns a value of type NUMBER. If the function is
applied to an empty set, it returns NULL.

The function makes the following calculation:

(SUM(attribute²) - SUM(attribute)² / COUNT(attribute)) / COUNT(attribute)

Example
The following example returns the population variance of the salaries in the
HR.EMPLOYEES table:

SELECT VAR_POP(salary) FROM employees;

VAR_POP(SALARY)

15140307.5

Regular SQL Operators

Transformations 2-27

VAR_SAMP

Syntax
var_samp::= VAR_SAMP(attribute)

Purpose
After discarding the nulls in this set, VAR_SAMP returns the sample variance of a set of
numbers to the output attribute in the aggregator. The expression is a number
expression and the function returns a value of type NUMBER. If the function is
applied to an empty set, it returns NULL.

The function makes the following calculation:

(SUM(attribute²) - SUM(attribute)² / COUNT(attribute)) / (COUNT(attribute) - 1)

This function is similar to VARIANCE, except that given an input set of one element,
VARIANCE returns 0 and VAR_SAMP returns null.

Example
The following example returns the sample variance of the salaries in the sample
HR.EMPLOYEES table.

SELECT VAR_SAMP(salary) FROM employees;

VAR_SAMP(SALARY)

15283140.5

VARIANCE

Syntax
variance::=VARIANCE(attribute)

Purpose
VARIANCE returns the variance of attribute and delivers the result to the output
attribute in the aggregator. Warehouse Builder calculates the variance of attribute
as follows:

■ 0 if the number of rows in attribute = 1

■ VAR_SAMP if the number of rows in attribute > 1

Example
The following example calculates the variance of all salaries in the sample
HR.EMPLOYEES table:

SELECT VARIANCE(salary) "Variance"
FROM employees;

Variance

15283140.5

Data Cleansing Operators

2-28 Oracle Warehouse Builder Transformation Guide

Constant
Many transformations require constant values. Warehouse Builder provides some
constants as direct functions. You can use the Expression Builder to create constants in
Warehouse Builder. The constants delivered as special functions are described in the
following sections.

SYSDATE

Syntax
sysdate::=SYSDATE

Purpose
SYSDATE returns the current date and time and requires no arguments. In distributed
SQL statements, this function returns the date and time on your local database. You
cannot use this function in the condition of a CHECK constraint.

Example
The following example returns the current date and time:

SELECT TO_CHAR (SYSDATE, 'MM-DD-YYYY HH24:MI:SS')"NOW"
FROM DUAL;

NOW

04-13-2001 09:45:51

SYSTIMESTAMP

Syntax
systimestamp::=SYSTIMESTAMP

Purpose
The SYSTIMESTAMP function returns the system date, including fractional seconds
and time zone of the database. The return type is TIMESTAMP WITH TIME ZONE.

Example
The following example returns the system date:

SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP
--
28-MAR-00 12.38.55.538741 PM -08:00

Data Cleansing Operators
The Warehouse Builder Mapping Editor includes operators that perform data
cleansing transformations. This section describes these operators.

Name and Address
Warehouse Builder includes an operator that enables name and address cleansing (as
of the 9.0.2.56.0 version). The name and address operator supports parsing,

Data Cleansing Operators

Transformations 2-29

standardization, postal matching, and geocoding of name and address data. Name and
Address parsing is the breakdown of non-discrete input into discrete name or address
components. For example, an input address of:

Mr. Joe A. Smith Sr.
8500 Normandale Lake Blvd Suite 710
Bloomington MN 55438

is parsed into the following abbreviated list of address components:

Pre name: MR
First name: JOE
First name standardized: JOSEPH
Post name: SR
Street name: NORMANDALE LAKE
Primary address: NORMANDALE LAKE BLVD
Secondary address: STE 710
Last Line: BLOOMINGTON MN 55437-3813
Latitude: 44.854876

Name and address standardization includes modification of components to a standard
version acceptable to a postal service or suitable for record matching. In the preceding
example, Suite is standardized to STE and Joe is standardized to JOSEPH.

Postal matching involves matching an input address with postal database entries to
either verify an address or correct an address. In the preceding example, the postal
code was corrected to 55437-3813.

Figure 2–33 Name and Address Operator

Geocoding (only available for the US) involves the collection of census and locational
data. Latitude and Longitude are currently available in Warehouse Builder. Census

Data Cleansing Operators

2-30 Oracle Warehouse Builder Transformation Guide

data such as minor census district, metropolitan statistical area, and FIPS code will be
available in later versions.

Match-Merge Operator
The Match-Merge operator is a data quality operator that you can use to first match
and then merge data.

When you match records, you determine through business rules which records in a
table refer to the same data. When you merge records, you consolidate into a single
record the data from the matched records.

This section includes information and examples on how to use the Match-Merge
operator in a mapping. The Match-Merge operator together with the Name-Address
operator support householding, the process of identifying unique households in name
and address data.

Example: Matching and Merging Customer Data
Consider how you could utilize the Match-Merge operator to manage a customer
mailing list. Use matching to find records that refer to the same person in a table of
customer data containing 10,000 rows. For example, you can define a match rule that
screens records that have similar first and last names. Through matching you may
discover that 5 rows refer to the same person. You can merge those records into one
new record. For example, you can create a merge rule to retain the values from the one
of the five matched records with the longest address. The newly merged table now
contains one record for each customer.

Table 2–4 shows records that refer to the same person prior to using the Match-Merge
operator.

Table 2–5 shows the single record for Jane Doe after using the Match-Merge operator.
Notice that the new record retrieves data from different rows in the sample.

Designing Mappings with a Match-Merge Operator
Figure 2–34 shows a mapping you can design using a Match-Merge operator. Notice
that the Match-Merge operator is preceded by a Name-Address operator,
NAMEADDR, and a staging table, CLN_CUSTOMERS. You can design your mapping
with or without a Name-Address operator. Preceding the Match-Merge operator with
a Name-Address operator is desirable when you want to ensure your data is clean and
standardized before launching time consuming match and merge operations.

Table 2–4 Sample Records

Row FirstName LastName SSN Address Unit Zip

1 Jane Doe NULL 123 Main Street NULL 22222

2 Jane Doe 111111111 NULL NULL 22222

3 J. Doe NULL 123 Main Street Apt 4 22222

4 NULL Smith 111111111 123 Main Street Apt 4 22222

5 Jane Smith-Doe 111111111 NULL NULL 22222

Table 2–5 Merged Record for Jane Doe

First Name Last Name SSN Address Unit Zip

Jane Doe 111111111 123 Main Street Apt 4 22222

Data Cleansing Operators

Transformations 2-31

Figure 2–34 Match-Merge Operator in a Mapping

Whether you include a Name-Address operator or not, be aware of the following
considerations as you design your mapping:

■ PL/SQL output: The Match-Merge operator can generate two outputs, both
PL/SQL outputs only. The MERGE group includes the merged data. The XREF
group is an optional group you can design to document the merge process.

■ Row based operating mode: When the Match-Merge operator matches records, it
compares each row with the subsequent row in the source and generates row
based code only. These mappings, therefore, can only run in row based mode.

■ SQL based operators before Match-Merge: The Match-Merge operator generates
only PL/SQL outputs. If you want to include operators that generate SQL code
only, you must design the mapping such that they precede the Match-Merge
operator. For example, operators such as the Join, Key Lookup, and Set operators
must precede the Match-Merge operator. A mapping designed with operators that
generate set based code after a Match-Merge operator is invalid and Warehouse
Builder does not generate code for such mappings.

■ SQL input: With one specific exception, the Match-Merge operator requires SQL
input. If you want to precede a Match-Merge with an operator that generates only
PL/SQL output such as the Name-Address operator, you must first load the data
to a staging table.

■ Refining Data from Match-Merge operators: To achieve greater data refinement,
map the XREF output from one Match-Merge operator into another Match-Merge
operator. This scenario is the one exception to the SQL input rule for Match-Merge
operators. With additional design elements, the second Match-Merge operator
accepts PL/SQL.

For more information on the Match Merge operator, see the Oracle Warehouse Builder
User’s Guide.

Data Cleansing Operators

2-32 Oracle Warehouse Builder Transformation Guide

SQL Transformations 3-1

3
SQL Transformations

This chapter contains the following topics:

■ Introduction on page 3-1

■ Administrative Transformations on page 3-3

■ Character Transformations on page 3-12

■ Date Transformations on page 3-29

■ Number Transformations on page 3-44

■ OLAP Transformations on page 3-55

■ XML Transformations on page 3-58

■ Conversion Transformations on page 3-59

■ Other Transformations on page 3-61

For related information, see:

■ Oracle SQL Reference

■ Oracle Warehouse Builder User’s Guide

Introduction
The following sections describe the transformation libraries and introduce how to use
custom transformations in Warehouse Builder.

About Transformations
Warehouse Builder supports the following transformation types:

■ User Transformation Package: This category contains package functions and
procedures that you define.

■ Predefined Transformations: These categories exist in the Oracle Library and
consist of built-in and seeded functions and procedures.

■ Functions: The functions category is automatically created in every warehouse
module. This category contains any standalone functions used as transformations.
These functions can be defined by the user or imported from a database. A
function transformation takes 0-n input parameters and produces a result value.

■ Procedures: The procedures category is automatically created in every warehouse
module. This category contains any standalone procedures used as
transformations. These procedures can be defined by the user or imported from a

Introduction

3-2 Oracle Warehouse Builder Transformation Guide

database. A procedure transformation takes 0-n input parameters and produces
0-n output parameters.

■ Imported Package: This category is created by importing a PL/SQL package.
Although you can modify the package body, you cannot modify the package
header, which is the signature for the function or procedure. You can view the
package in the transformation library property sheet.

About Oracle Transformation Libraries
Each time you create a warehouse module, Warehouse Builder creates a
Transformation Library for that module containing transformation operations. This
library contains the standard Oracle Library and an additional library for each
warehouse module defined within the repository.

Transformation Libraries consist of the following types:

■ Global Shared Library: a collection of reusable transformations categorized as
functions and procedures defined within your repository.

■ Oracle Library: a collection of predefined functions from which you can define
procedures for your Global Shared Library.

When you create a custom transformation, add it to the Global Shared Library to share
across warehouse modules. If the transformation is specific to one module, add it to
the transformation library within that module.

Global Shared Library
The Global Shared Library stores transformations that are shared across a repository.
The default categories are:

■ Functions: This category stores standalone functions.

■ Procedures: This category stores standalone procedures.

Oracle Library
The Oracle Library includes a set of standard transformations organized into
categories including:

■ Administration

■ Character

■ Conversion

■ Date

■ Numeric

■ Other

■ XML

Accessing Transformation Libraries
You can access the Transformation Libraries from the Expression Builder, the Add
Transformation dialog, or the New Transformation Wizard. You can also access
Transformation Libraries from the navigation tree in the Warehouse Builder console.
Additionally, you can create your own transformation libraries to organize
transformations according to your needs.

Administrative Transformations

SQL Transformations 3-3

Importing PL/SQL Packages
Use the Import Wizard to import PL/SQL functions, procedures, and packages into a
Warehouse Builder project.

When you use the imported PL/SQL:

■ You can edit, save, and deploy the imported PL/SQL functions and procedures.

■ You cannot edit imported PL/SQL packages.

■ Wrapped PL/SQL objects are not readable.

■ Imported packages can be viewed and modified in the category property sheet.

■ You can edit the imported package body but not the imported package
specification.

Use the transformation properties sheet to edit a transformation. Be sure to edit
properties consistently. For example, if you change the name of a parameter, then you
must change its name in the implementation code. You can view transformation
properties from the Mapping Editor using the Operator Property sheet. These settings
are read-only.

Administrative Transformations
Administration transformations, or functions, are actions that are regularly performed
in ETL processes. The main focus of these transformations is in the DBA related areas
or to improve performance. For example, it is common to disable constraints when
loading tables and then to re-enable them after loading has completed. Warehouse
Builder provides pre-built functionality for this purpose in the administration
transformations.

The administration functions in Warehouse Builder are all custom functions and are
listed in alphabetical order.

WB_ABORT

Syntax
WB_ABORT(p_code, p_message)

where p_code is the abort code, and must be between -20000 and -29999; and p_
message is an abort message you specify.

Purpose
WB_ABORT enables you to abort the application from a Warehouse Builder component.
You can run it from a post mapping process or as a transformation within a mapping.

Example
Use this administration function to abort an application. You can use this function in a
post mapping process to abort deployment if there is an error in the mapping.

WB_ANALYZE_SCHEMA

Syntax
WB_ANALYZE_SCHEMA

Administrative Transformations

3-4 Oracle Warehouse Builder Transformation Guide

No parameters are required for this function.

Purpose
After loading data into the warehouse, the statistics need to be refreshed to ensure
optimal performance recommendations from the cost-based optimizer in the
warehouse. WB_ANALYZE_SCHEMA calls DBMS_DDL.ANALYZE_OBJECT to analyze a
schema to supply these statistics. It analyzes the entire schema, which may take some
time depending on the number of tables and the number of rows in these tables.

Example
You can use this administration package to automatically run the analyze command
on the schema you loaded. This can be done using the post mapping process of the last
mapping in a dependency diagram. You can also deploy the procedure to the database
schema and invoke the procedure from OEM using a SQL statement created in the
client tool.

WB_ANALYZE_TABLE

Syntax
WB_ANALYZE_TABLE(p_name)

where p_name is the table on which the analyze command is executed.

Purpose
After loading data into the warehouse the statistics need to be refreshed to ensure
optimal performance recommendations from the cost-based optimizer in the
warehouse. WB_ANALYZE_TABLE calls DBMS_DDL.ANALYZE_OBJECT to analyze a
specific table in the user schema and supply these statistics. It analyzes the table,
which may take some time depending on the number of rows in this table.

Example
You can use this administration package to automatically run the analyze command
on the table you have loaded. This can be done using a post mapping process of the
mapping that loads data into the table.

WB_COMPILE_PLSQL

Syntax
WB_COMPILE_PLSQL(p_name, p_type)

where p_name is the name of the object that is to be compiled; p_type is the type of
object to be compiled. The legal types are:

’PACKAGE'
'PACKAGE BODY'
'PROCEDURE'
'FUNCTION'
'TRIGGER'

Purpose
This program unit compiles a stored object in the database.

Administrative Transformations

SQL Transformations 3-5

WB_DISABLE_ALL_CONSTRAINTS

Syntax
WB_DISABLE_ALL_CONSTRAINTS(p_name)

where p_name is the table name that determines which constraints are disabled.

Purpose
This program unit disables all constraints that are owned by the table as stated in the
call to the program.

For faster loading of data sets, you can disable constraints on a table. The data is now
loaded without validation. This is mainly done on relatively clean data sets.

Example
The following example shows the disabling of the constraints on the table
OE.CUSTOMERS:

select constraint_name
,decode(constraint_type
 , 'C', 'Check'
 , 'P', 'Primary'
) Type
, status
from user_constraints
where table_name = 'CUSTOMERS';
5 rows selected

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

Perform the following in Scalpels or Warehouse Builder to disable all constraints:

Execute WB_DISABLE_ALL_CONSTRAINTS('CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

5 rows selected

Note: This statement uses a cascade option to allow dependencies
to be broken by disabling the keys.

Administrative Transformations

3-6 Oracle Warehouse Builder Transformation Guide

WB_DISABLE_ALL_TRIGGERS

Syntax
WB_DISABLE_ALL_TRIGGERS(p_name)

where p_name is the table name on which the triggers are disabled.

Purpose
This program unit disables all triggers owned by the table as stated in the call to the
program. The owner of the table must be the current user (in variable USER). This
action stops triggers and improves performance.

Example
The following example shows the disabling of all triggers on the table OE.OC_
ORDERS:

Available triggers:

select trigger_name
, status
from user_triggers
where table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in Scalpels or Warehouse Builder to disable the specified
constraint.

Execute WB_DISABLE_ALL_TRIGGERS ('OC_ORDERS');

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG DISABLED

WB_DISABLE_CONSTRAINT

Syntax
WB_DISABLE_CONSTRAINT(p_constraintname, p_tablename)

where p_constraintname is the constraint name to be disabled; p_tablename is
the table name on which the specified constraint is disabled.

Purpose
This program unit disables the specified constraint that is owned by the table as stated
in the call to the program. The user is the current user (in variable USER).

For faster loading of data sets, you can disable constraints on a table. The data is then
loaded without validation. This reduces overhead and is mainly done on relatively
clean data sets.

Administrative Transformations

SQL Transformations 3-7

Example
The following example shows the disabling of the specified constraint on the table
OE.CUSTOMERS:

select constraint_name
, decode(constraint_type
, 'C', 'Check'
, 'P', 'Primary'
) Type
, status
from user_constraints
where table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

5 rows selected

Perform the following in SQL*Plus or Warehouse Builder to disable the specified
constraint.

Execute WB_DISABLE_CONSTRAINT('CUSTOMERS_PK','CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

5 rows selected

WB_DISABLE_TRIGGER

Syntax
WB_DISABLE_TRIGGER(p_name)

where p_name is the trigger name to be disabled.

Purpose
This program unit disables the specified trigger. The owner of the trigger must be the
current user (in variable USER).

Example
The following example shows the disabling of a trigger on the table OE.OC_ORDERS:

Note: This statement uses a cascade option to allow dependencies to
be broken by disabling the keys.

Administrative Transformations

3-8 Oracle Warehouse Builder Transformation Guide

select trigger_name, status
from user_triggers
where table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to disable the specified
constraint.

Execute WB_DISABLE_TRIGGER ('ORDERS_TRG');

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG DISABLED

WB_ENABLE_ALL_CONSTRAINTS

Syntax
WB_ENABLE_ALL_CONSTRAINTS(p_name)

where p_name is the table name which determines which constraints are disabled.

Purpose
This program unit enables all constraints that are owned by the table as stated in the
call to the program.

For faster loading of data sets, you can disable constraints on a table. After the data is
loaded, you must enable these constraints again using this program unit.

Example
The following example shows the disabling of the constraints on the table
OE.CUSTOMERS:

select constraint_name
, decode(constraint_type
, 'C', 'Check'
, 'P', 'Primary)
Type
, status
from user_constraints
where table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

5 rows selected

Perform the following in SQL*Plus or Warehouse Builder to enable all constraints.

Administrative Transformations

SQL Transformations 3-9

Execute WB_ENABLE_ALL_CONSTRAINTS('CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check ENABLED
CUST_LNAME_NN Check ENABLED
CUSTOMER_CREDIT_LIMIT_MAX Check ENABLED
CUSTOMER_ID_MIN Check ENABLED
CUSTOMERS_PK Primary ENABLED

5 rows selected

WB_ENABLE_ALL_TRIGGERS

Syntax
WB_ENABLE_ALL_TRIGGERS(p_name)

where p_name is the table name on which the triggers are enabled

Purpose
This program unit enables all triggers owned by the table as stated in the call to the
program. The owner of the table must be the current user (in variable USER).

Example
The following example shows the enabling of all triggers on the table OE.OC_ORDERS:

select trigger_name
, status
from user_triggers
where table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG DISABLED

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

Execute WB_ENABLE_ALL_TRIGGERS ('OC_ORDERS');

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

WB_ENABLE_CONSTRAINT

Syntax
WB_ENABLE_CONSTRAINT(p_constraintname, p_tablename)

where p_constraintname is the constraint name to be disabled and p_tablename
is the table name on which the specified constraint is disabled.

Administrative Transformations

3-10 Oracle Warehouse Builder Transformation Guide

Purpose
This program unit disables the specified constraint that is owned by the table as stated
in the call to the program. The user is the current user (in variable USER). For faster
loading of data sets, you can disable constraints on a table. After the loading is
complete, you must re-enable these constraints. This program unit shows you how to
enable the constraints one at a time.

Example
The following example shows the enabling of the specified constraint on the table
OE.CUSTOMERS:

select constraint_name
, decode(constraint_type
 , 'C', 'Check'
 , 'P', 'Primary'
) Type
, status
from user_constraints
where table_name = 'CUSTOMERS';

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

5 rows selected

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

Execute WB_ENABLE_CONSTRAINT('CUSTOMERS_PK','CUSTOMERS');

CONSTRAINT_NAME TYPE STATUS
------------------------------ ------- --------
CUST_FNAME_NN Check DISABLED
CUST_LNAME_NN Check DISABLED
CUSTOMER_CREDIT_LIMIT_MAX Check DISABLED
CUSTOMER_ID_MIN Check DISABLED
CUSTOMERS_PK Primary DISABLED

5 rows selected

WB_ENABLE_TRIGGER

Syntax
WB_ENABLE_TRIGGER(p_name)

where p_name is the trigger name to be enabled.

Purpose
This program unit enables the specified trigger. The owner of the trigger must be the
current user (in variable USER).

Administrative Transformations

SQL Transformations 3-11

Example
The following example shows the enabling of a trigger on the table OE.OC_ORDERS:

select trigger_name
, status
from user_triggers
where table_name = 'OC_ORDERS';

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG DISABLED
ORDERS_ITEMS_TRG ENABLED

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

Execute WB_ENABLE_TRIGGER ('ORDERS_TRG');

TRIGGER_NAME STATUS
------------------------------ --------
ORDERS_TRG ENABLED
ORDERS_ITEMS_TRG ENABLED

WB_TRUNCATE_TABLE

Syntax
WB_TRUNCATE_TABLE(p_name)

where p_name is the table name to be truncated.

Purpose
This program unit truncates the table specified in the command call. The owner of the
trigger must be the current user (in variable USER). The command disables and
re-enables all referencing constraints to enable the truncate table command. Use this
command in a pre-mapping process to explicitly truncate a staging table and ensure
that all data in this staging table is newly loaded data.

Example
The following example shows the truncation of the table OE.OC_ORDERS:

select count(*) from oc_orders;

 COUNT(*)

 105

Perform the following in SQL*Plus or Warehouse Builder to enable the specified
constraint.

Execute WB_TRUNCATE_TABLE ('OC_ORDERS');

 COUNT(*)

 0

Character Transformations

3-12 Oracle Warehouse Builder Transformation Guide

Character Transformations
Character transformations enable Warehouse Builder users to perform transformations
on Character objects. These transformations are ordered alphabetically. The custom
functions provided with Warehouse Builder are prefixed with WB_.

The following character transformations are available in Warehouse Builder.

ASCII

Syntax
ascii::=ASCII(attribute)

Purpose
ASCII returns the decimal representation in the database character set of the first
character of attribute. An attribute can be of data type CHAR, VARCHAR2,
NCHAR, or NVARCHAR2. The value returned is of data type NUMBER. If your
database character set is 7-bit ASCII, this function returns an ASCII value. If your
database character set is EBCDIC Code, this function returns an EBCDIC value. There
is no corresponding EBCDIC character function.

Example
The following example returns the ASCII decimal equivalent of the letter Q:

SELECT ASCII('Q') FROM DUAL;
ASCII('Q')

81

ASCIISTR

Syntax
asciistr::=ASCIISTR(attribute)

Purpose
ASCIISTR uses a string in any character set as its argument and returns an ASCII
string in the database character set. The value returned contains only characters that
appear in SQL and a forward slash (/).

Example
The following example returns the ASCII string equivalent of the text string
"flauwekul":

SELECT ASCIISTR('flauwekul') FROM DUAL;

ASCIISTR('FLAUW

\6<65\756<\6700

Character Transformations

SQL Transformations 3-13

CHARTOROWID

Syntax
chartorowid::=CHARTOROWID(attribute)

Purpose
CHARTOROWID converts a value from CHAR, VARCHAR2, NCHAR, or NVARCHAR2
data type to ROWID data type.

Example
The following example converts a character rowid representation to a rowid. The
function returns a different rowid on different databases.

SELECT last_name FROM employees
WHERE ROWID = CHARTOROWID('AAAFYmAAFAAAAFEAAP');
LAST_NAME

Greene

CHR

Syntax
chr::=CHR(attribute)

Purpose
CHR returns the character with the binary equivalent to the number specified in the
attribute in either the database character set or the national character set.

If USING NCHAR_CS is not specified, this function returns the character with the
binary equivalent to attribute as a VARCHAR2 value in the database character set.
If USING NCHAR_CS is specified in the expression builder, this function returns the
character with the binary equivalent to attribute as a NVARCHAR2 value in the
national character set.

Examples
The following example is run on an ASCII-based machine with the database character
set defined as WE8ISO8859P1:

SELECT CHR(67)||CHR(65)||CHR(84) "Dog" FROM DUAL;

Dog

CAT

To produce the same results on an EBCDIC-based machine with the WE8EBCDIC1047
character set, modify the preceeding example as follows:

SELECT CHR(195)||CHR(193)||CHR(227) "Dog"
FROM DUAL;

Dog

CAT

The following example uses the UTF8 character set:

Character Transformations

3-14 Oracle Warehouse Builder Transformation Guide

SELECT CHR (50052 USING NCHAR_CS) FROM DUAL;
CH
--
Ä

CONCAT

Syntax
concat::=CONCAT(attribute1, attribute2)

Purpose
CONCAT returns attribute1 concatenated with attribute2. Both attribute1
and attribute2 can be CHAR or VARCHAR2 data types. The returned string is of
VARCHAR2 data type contained in the same character set as attribute1. This
function is equivalent to the concatenation operator (||).

Example
This example uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(last_name, '''s job category is '),
job_id) "Job"
FROM employees
WHERE employee_id = 152;

Job
--
Hall's job category is SA_REP

CONVERT

Syntax
convert::=CONVERT(attribute, dest_char_set, source_char_set)

Purpose
CONVERT converts a character string specified in an operator attribute from one
character set to another. The data type of the returned value is VARCHAR2.

■ The attribute1 argument is the value to be converted. It can of the data types
CHAR and VARCHAR2.

■ The dest_char_set argument is the name of the character set to which
attribute1 is converted.

■ The source_char_set argument is the name of the character set in which
attribute1 is stored in the database. The default value is the database character
set.

Both the destination and source character set arguments can be either literals or
columns containing the name of the character set. For complete correspondence in
character conversion, the destination character set must contain a representation of all
the characters defined in the source character set. When a character does not exist in
the destination character set, it is substituted with a replacement character.
Replacement characters can be defined as part of a character set definition.

Character Transformations

SQL Transformations 3-15

Example
The following example illustrates character set conversion by converting a Latin-1
string to ASCII. The result is the same as importing the same string from a
WE8ISO8859P1 database to a US7ASCII database.

SELECT CONVERT('Ä Ê Í Õ Ø A B C D E ', 'US7ASCII', 'WE8ISO8859P1')
FROM DUAL;

CONVERT('ÄÊÍÕØABCDE'

A E I ? ? A B C D E ?

Common character sets include:

■ US7ASCII: US 7-bit ASCII character set

■ WE8DEC: West European 8-bit character set

■ WE8HP: HP West European Laserjet 8-bit character set

■ F7DEC: DEC French 7-bit character set

■ WE8EBCDIC500: IBM West European EBCDIC Code Page 500

■ WE8PC850: IBM PC Code Page 850

■ WE8ISO8859P1: ISO 8859-1 West European 8-bit character set

INITCAP

Syntax
initcap::=INITCAP(attribute)

Purpose
INITCAP returns the content of the attribute with the first letter of each word in
uppercase and all other letters in lowercase. Words are delimited by white space or by
characters that are not alphanumeric. Attribute can be of the data types CHAR or
VARCHAR2. The return value is the same data type as attribute.

Example
The following example capitalizes each word in the string:

SELECT INITCAP('the soap') "Capitals" FROM DUAL;
Capitals

The Soap

INSTR / INSTRB

Syntax
instr::=INSTR(attribute1, attribute2, n, m)
instrb::=INSTRB(attribute1, attribute2, n, m)

Purpose
INSTR searches attribute1 beginning with its nth character for the mth occurrence
of attribute2. It returns the position of the character in attribute1 that is the first
character of this occurrence. INSTRB uses bytes instead of characters.

Character Transformations

3-16 Oracle Warehouse Builder Transformation Guide

If n is negative, Oracle counts and searches backward from the end of attribute1.
The value of m must be positive. The default values of both n and m are 1, which means
that Oracle begins searching the first character of attribute1 for the first occurrence
of attribute2. The return value is relative to the beginning of attribute1,
regardless of the value of n, and is expressed in characters. If the search is unsuccessful
(if attribute2 does not appear m times after the nth character of attribute1), then
the return value is 0.

Examples
The following example searches the string "CORPORATE FLOOR", beginning with the
third character, for the string "OR". It returns the position in CORPORATE FLOOR at
which the second occurrence of "OR" begins:

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instring" FROM DUAL;

Instring

14

The next example begins searching at the third character from the end:

SELECT INSTR('CORPORATE FLOOR','OR', -3, 2)
"Reversed Instring"
FROM DUAL;

Reversed Instring

2

This example assumes a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR','OR',5,2) "Instring in bytes"
FROM DUAL;

Instring in bytes

27

LENGTH/LENGTHB

Syntax
length::=LENGTH(attribute)
lengthb::=LENGTHB(attribute)

Purpose
The length functions return the length of char. LENGTH calculates the length using
characters as defined by the input character set. LENGTHB uses bytes instead of
characters. The attribute can be of the data types CHAR or VARCHAR2. The return
value is of data type NUMBER. If attribute has data type CHAR, the length
includes all trailing blanks. If attribute contains a null value, this function returns
null.

Example
The following examples use the LENGTH function using single- and multibyte database
character set.

Character Transformations

SQL Transformations 3-17

SELECT LENGTH('CANDIDE') "Length in characters"
FROM DUAL;

Length in characters

7

This example assumes a double-byte database character set.

SELECT LENGTHB ('CANDIDE') "Length in bytes"
FROM DUAL;

Length in bytes

14

LOWER

Syntax
lower::=LOWER(attribute)

Purpose
LOWER returns attribute, with all letters in lowercase. The attribute can be of the
data types CHAR and VARCHAR2. The return value is the same data type as that of
attribute.

Example
The following example returns a string in lowercase:

SELECT LOWER('MR. SCOTT MCMILLAN') "Lowercase"
FROM DUAL;

Lowercase

mr. scott mcmillan

LPAD

Syntax
lpad::=LPAD(attribute1, n, attribute2)

Purpose
LPAD returns attribute1, left-padded to length n with the sequence of characters in
attribute2. Attribute2 defaults to a single blank. If attribute1 is longer than
n, this function returns the portion of attribute1 that fits in n.

Both attribute1 and attribute2 can be of the data types CHAR and VARCHAR2.
The string returned is of VARCHAR2 data type and is in the same character set as
attribute1. The argument n is the total length of the return value as it is displayed
on your screen. In most character sets, this is also the number of characters in the
return value. However, in some multibyte character sets, the display length of a
character string can differ from the number of characters in the string.

Example
The following example left-pads a string with the characters "*.":

Character Transformations

3-18 Oracle Warehouse Builder Transformation Guide

SELECT LPAD('Page 1',15,'*.') "LPAD example"
FROM DUAL;

LPAD example

..*.*.*Page 1

LTRIM

Syntax
ltrim::=LTRIM(attribute, set)

Purpose
LTRIM removes characters from the left of attribute, with all the left most
characters that appear in set removed. Set defaults to a single blank. If attribute
is a character literal, you must enclose it in single quotes. Warehouse Builder begins
scanning attribute from its first character and removes all characters that appear in
set until it reaches a character absent in set. Then it returns the result.

Both attribute and set can be any of the data types CHAR and VARCHAR2. The
string returned is of VARCHAR2 data type and is in the same character set as
attribute.

Example
The following example trims all of the left-most x's and y's from a string:

SELECT LTRIM('xyxXxyLAST WORD','xy') "LTRIM example"
FROM DUAL;

LTRIM example

XxyLAST WORD

NLSSORT

Syntax
nlssort::=NLSSORT(attribute, nlsparam)

Purpose
NLSSORT returns the string of bytes used to sort attribute. The parameter
attribute is of type VARCHAR2. Use this function to compare based on a linguistic
sort of sequence rather than on the binary value of a string.

The value of nlsparam can have the form 'NLS_SORT = sort' where sort is a
linguistic sort sequence or BINARY. If you omit nlsparam, this function uses the
default sort sequence for your session.

Example
The following example creates a table containing two values and shows how the
values returned can be ordered by the NLSSORT function:

CREATE TABLE test (name VARCHAR2(15));
INSERT INTO TEST VALUES ('Gaardiner');
INSERT INTO TEST VALUES ('Gaberd');

Character Transformations

SQL Transformations 3-19

SELECT * FROM test ORDER BY name;

NAME

Gaardiner
Gaberd

SELECT *
 FROM test
 ORDER BY NLSSORT(name, 'NLSSORT = XDanish');

Name

Gaberd
Gaardiner

NLS_INITCAP

Syntax
nls_initcap::=NLS_INITCAP(attribute, nlsparam)

Purpose
NLS_INITCAP returns attribute, with the first letter of each word in uppercase, all
other letters in lowercase. Words are delimited by white space or characters that are
not alphanumeric.

The value of nlsparam can have the form 'NLS_SORT = sort', where sort is either
a linguistic sort sequence or BINARY. The linguistic sort sequence handles special
linguistic requirements for case conversions. These requirements can result in a return
value of a different length than the attribute. If you omit 'nlsparam', this function
uses the default sort sequence for your session.

Example
The following examples show how the linguistic sort sequence results in a different
return value from the function:

SELECT NLS_INITCAP('ijsland') "InitCap"
 FROM dual;

InitCap

Ijsland

SELECT NLS_INITCAP('ijsland','NLS_SORT=XDutch) "InitCap"
 FROM dual;

InitCap

IJsland

NLS_LOWER

Syntax
nls_lower::=NLS_LOWER(attribute, nlsparam)

Character Transformations

3-20 Oracle Warehouse Builder Transformation Guide

Purpose
NLS_LOWER returns attribute, with all letters lowercase. Both attribute and
nlsparam can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The string returned is of data type VARCHAR2 and is in the same character
set as attribute. The value of nlsparam can have the form 'NLS_SORT = sort',
where sort is either a linguistic sort sequence or BINARY.

Example
The following example returns the character string 'citta'' using the XGerman
linguistic sort sequence:

SELECT NLS_LOWER('CITTA''','NLS_SORT=XGerman) "Lowercase"
 FROM DUAL;

Lowercase

citta'

NLS_UPPER

Syntax
nls_upper::=NLS_UPPER(attribute, nlsparam)

Purpose
NLS_UPPER returns attribute, with all letters uppercase. Both attribute and
nlsparam can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The string returned is of VARCHAR2 data type and is in the same character
set as attribute. The value of nlsparam can have the form 'NLS_SORT = sort',
where sort is either a linguistic sort sequence or BINARY.

Example
The following example returns a string with all letters converted to uppercase:

SELECT NLS_UPPER('große') "Uppercase"
 FROM DUAL;

Uppercase

GROßE

SELECT NLS_UPPER('große', 'NLS_SORT=XGerman) "Uppercase"
 FROM DUAL;

Uppercase

GROSSE

REPLACE

Syntax
replace::=REPLACE(attribute, 'search_string', 'replace_string')

Character Transformations

SQL Transformations 3-21

Purpose
REPLACE returns an attribute with every occurrence of search_string replaced
with replacement_string. If replacement_string is omitted or null, all
occurrences of search_string are removed. If search_string is null, attribute
is returned.

Both search_string and replacement_string, as well as attribute, can be of
the data types CHAR or VARCHAR2. The string returned is of VARCHAR2 data type
and is in the same character set as attribute.

This function provides a superset of the functionality provided by the TRANSLATE
function. TRANSLATE provides single-character, one-to-one substitution. REPLACE
enables you to substitute one string for another, as well as to remove character strings.

Example
The following example replaces occurrences of "J" with "BL":

SELECT REPLACE('JACK and JUE','J','BL') "Changes"
FROM DUAL;
Changes

BLACK and BLUE

RPAD

Syntax
rpad::=RPAD(attribute1, n, attribute2)

Purpose
RPAD returns attribute1, right-padded to length n with attribute2, replicated as
many times as necessary. Attribute2 defaults to a single blank. If attribute1 is
longer than n, this function returns the portion of attribute1 that fits in n.

Both attribute1 and attribute2 can be of the data types CHAR or VARCHAR2.
The string returned is of VARCHAR2 data type and is in the same character set as
attribute1.

The argument n is the total length of the return value as it is displayed on your screen.
In most character sets, this is also the number of characters in the return value.
However, in some multibyte character sets, the display length of a character string can
differ from the number of characters in the string.

Example
The following example rights-pads a name with the letters "ab" until it is 12 characters
long:

SELECT RPAD('MORRISON',12,'ab') "RPAD example"
FROM DUAL;
RPAD example

MORRISONabab

Character Transformations

3-22 Oracle Warehouse Builder Transformation Guide

RTRIM

Syntax
rtrim::=RTRIM(attribute, set)

Purpose
RTRIM returns attribute, with all the right most characters that appear in set
removed; set defaults to a single blank. If attribute is a character literal, you must
enclose it in single quotes. RTRIM works similarly to LTRIM. Both attribute and
set can be any of the data types CHAR or VARCHAR2. The string returned is of
VARCHAR2 data type and is in the same character set as attribute.

Example
The following example trims the letters "xy" from the right side of a string:

SELECT RTRIM('BROWNINGyxXxy','xy') "RTRIM e.g."
FROM DUAL;

RTRIM e.g

BROWNINGyxX

SOUNDEX

Syntax
soundex::=SOUNDEX(attribute)

Purpose
SOUNDEX returns a character string containing the phonetic representation of
attribute. This function enables you to compare words that are spelled differently,
but sound similar in English.

The phonetic representation is defined in The Art of Computer Programming, Volume 3:
Sorting and Searching, by Donald E. Knuth, as follows:

■ Retain the first letter of the string and remove all other occurrences of the
following letters: a, e, h, i, o, u, w, y.

■ Assign numbers to the remaining letters (after the first) as follows:

– b, f, p, v = 1

– c, g, j, k, q, s, x, z = 2

– d, t = 3

– l = 4

– m, n = 5

– r = 6

■ If two or more letters with the same number were adjacent in the original name
(before step 1), or adjacent except for any intervening h and w, omit all but the
first.

■ Return the first four bytes padded with 0.

Character Transformations

SQL Transformations 3-23

Data types for attribute can be CHAR and VARCHAR2. The return value is the
same data type as attribute.

Example
The following example returns the employees whose last names are a phonetic
representation of "Smyth":

SELECT last_name, first_name
FROM hr.employees
WHERE SOUNDEX(last_name)
= SOUNDEX('SMYTHE');

LAST_NAME FIRST_NAME
---------- ----------
Smith Lindsey

SUBSTR

Syntax
substr::=SUBSTR(attribute, position, substring_length)
substrb::=SUBSTRB(attribute, position, substring_length)

Purpose
The substring functions return a portion of attribute, beginning at character
position, substring_length characters long. SUBSTR calculates lengths using
characters as defined by the input character set. SUBSTRB uses bytes instead of
characters.

■ If position is 0, it is treated as 1.

■ If position is positive, Warehouse Builder counts from the beginning of
attribute to find the first character.

■ If position is negative, Warehouse Builder counts backward from the end of
attribute.

■ If substring_length is omitted, Warehouse Builder returns all characters to the end
of attribute. If substring_length is less than 1, a null is returned.

Data types for attribute can be CHAR and VARCHAR2. The return value is the
same data type as attribute. Floating-point numbers passed as arguments to
SUBSTR are automatically converted to integers.

Examples
The following example returns several specified substrings of "ABCDEFG":

SELECT SUBSTR('ABCDEFG',3,4) "Substring"
FROM DUAL;

Substring

CDEF

SELECT SUBSTR('ABCDEFG',-5,4) "Substring"
FROM DUAL;

Substring

Character Transformations

3-24 Oracle Warehouse Builder Transformation Guide

CDEF

Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG',5,4.2) "Substring with bytes"
FROM DUAL;

Substring with bytes

CD

TO_DATE

Syntax
to_date::=TO_DATE(attribute, fmt, nlsparam)

Purpose
TO_DATE converts attribute of CHAR or VARCHAR2 data type to a value of data
type DATE. The fmt is a date format specifying the format of attribute. If you omit
fmt, attribute must be in the default date format. If fmt is 'J', for Julian, then
attribute must be an integer. The nlsparam has the same purpose in this function
as in the TO_CHAR function for date conversion.

Do not use the TO_DATE function with a DATE value for the attribute argument.
The first two digits of the returned DATE value can differ from the original
attribute, depending on fmt or the default date format.

Example
The following example converts character strings into dates:

SELECT TO_DATE(
'January 15, 1989, 11:00 A.M.',
'Month dd, YYYY, HH:MI A.M.',
'NLS_DATE_LANGUAGE = American')
FROM DUAL;

TO_DATE

15-JAN-89

TO_MULTI_BYTE

Syntax
to_multi_byte::=TO_MULTI_BYTE(attribute)

Purpose
TO_MULTI_BYTE returns attribute with all of its single-byte characters converted
to their corresponding multibyte characters; attribute can be of data type CHAR or
VARCHAR2. The value returned is in the same data type as attribute. Any
single-byte characters in attribute that have no multibyte equivalents appear in the
output string as single-byte characters.

This function is useful only if your database character set contains both single-byte
and multibyte characters.

Character Transformations

SQL Transformations 3-25

Example
The following example illustrates converting from a single byte 'A' to a multi byte.

'A' in UTF8:
SELECT dump(TO_MULTI_BYTE('A')) FROM DUAL;
DUMP(TO_MULTI_BYTE('A'))

Typ=1 Len=3: 239,188,161

TO_NUMBER

Syntax
to_number::=TO_NUMBER(attribute, fmt, nlsparam)

Purpose
TO_NUMBER converts attribute to a value of CHAR or VARCHAR2 data type
containing a number in the format specified by the optional format model_fmt, to a
value of NUMBER data type.

Examples
The following example converts character string data into a number:

UPDATE employees
SET salary = salary + TO_NUMBER('100.00', '9G999D99')
WHERE last_name = 'Perkins';

The nlsparam string in this function has the same purpose as it does in the TO_CHAR
function for number conversions.

SELECT TO_NUMBER('-AusDollars100','L9G999D99',
' NLS_NUMERIC_CHARACTERS = '',.''
NLS_CURRENCY = ''AusDollars''
') "Amount"
FROM DUAL;

Amount

-100

TO_SINGLE_BYTE

Syntax
to_single_byte::=TO_SINGLE_BYTE(attribute)

Purpose
TO_SINGLE_BYTE returns attribute with all of its multibyte characters converted
to their corresponding single-byte characters; attribute can be of data type CHAR
or VARCHAR2. The value returned is in the same data type as attribute. Any
multibyte characters in attribute that have no single-byte equivalents appear in the
output as multibyte characters.

This function is useful only if your database character set contains both single-byte
and multibyte characters.

Character Transformations

3-26 Oracle Warehouse Builder Transformation Guide

Example
The following example illustrates going from a multibyte 'A' in UTF8 to a single byte
ASCII 'A':

SELECT TO_SINGLE_BYTE(CHR(15711393)) FROM DUAL;
T
-
A

TRANSLATE

Syntax
translate::=TRANSLATE(attribute, from_string, to_string)

Purpose
TRANSLATE returns attribute with all occurrences of each character in from_
string replaced by its corresponding character in to_string. Characters in
attribute that are not in from_string are not replaced. The argument from_
string can contain more characters than to_string. In this case, the extra
characters at the end of from_string have no corresponding characters in to_
string. If these extra characters appear in attribute, they are removed from the
return value.

You cannot use an empty string for to_string to remove all characters in from_
string from the return value. Warehouse Builder interprets the empty string as null,
and if this function has a null argument, it returns null.

Examples
The following statement translates a license number. All letters 'ABC...Z' are translated
to 'X' and all digits '012 . . . 9' are translated to '9':

SELECT TRANSLATE('2KRW229',
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',
'9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX') "License"
FROM DUAL;
License

9XXX999

The following statement returns a license number with the characters removed and the
digits remaining:

SELECT TRANSLATE('2KRW229',
'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ', '0123456789') "Translate example"
FROM DUAL;

Translate example

2229

TRIM

Syntax
trim::=TRIM(attribute)

Character Transformations

SQL Transformations 3-27

Purpose
TRIM enables you to trim leading or trailing spaces (or both) from a character string.
The function returns a value with data type VARCHAR2. The maximum length of the
value is the length of attribute.

Example
This example trims leading and trailing spaces from a string:

SELECT TRIM (' Warehouse ') "TRIM Example"
FROM DUAL;
TRIM example

Warehouse

UPPER

Syntax
upper::=UPPER(attribute)

Purpose
UPPER returns attribute, with all letters in uppercase; attribute can be of the
data types CHAR and VARCHAR2. The return value is the same data type as
attribute.

Example
The following example returns a string in uppercase:

SELECT UPPER('Large') "Uppercase"
FROM DUAL;
Upper

LARGE

WB.LOOKUP_CHAR

Syntax
WB.LOOKUP_CHAR (table_name
, column_name
, key_column_name
, key_value
)

where table_name is the name of the table to perform the lookup on and column_
name is the name of the VARCHAR2 column that will be returned. For example, the
result of the lookup key_column_name is the name of the NUMBER column used as
the key to match on in the lookup table, key_value is the value of the key column
mapped into the key_column_name with which the match will be done.

Purpose
To perform a key lookup on a number that returns a VARCHAR2 value from a
database table using a NUMBER column as the matching key.

Character Transformations

3-28 Oracle Warehouse Builder Transformation Guide

Example
Consider the following table as a lookup table LKP1:

KEY_COLUMN TYPE COLOR
10 Car Red
20 Bike Green

Using this package with the following call:

WB.LOOKUP_CHAR ('LKP1'
, 'TYPE'
, 'KEYCOLUMN'
, 20
)

returns the value of 'Bike' as output of this transform. This output would then be
processed in the mapping as the result of an inline function call.

WB.LOOKUP_CHAR
Syntax
WB.LOOKUP_CHAR (table_name
, column_name
, key_column_name
, key_value
)

where table_name is the name of the table to perform the lookup on; column_name
is the name of the VARCHAR2 column that will be returned, for instance, the result of
the lookup; key_column_name is the name of the VARCHAR2 column used as the
key to match on in the lookup table; key_value is the value of the key column, for
instance, the value mapped into the key_column_name with which the match will be
done.

Purpose
To perform a key lookup on a VARCHAR2 character that returns a VARCHAR2 value
from a database table using a VARCHAR2 column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEYCOLUMN TYPE COLOR
ACV Car Red
ACP Bike Green

Using this package with the following call:

WB.LOOKUP_CHAR ('LKP1'
, 'TYPE'
, 'KEYCOLUMN'
, 'ACP'
)

returns the value of 'Bike' as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the lookup operator.

Date Transformations

SQL Transformations 3-29

WB_IS_SPACE

Syntax
WB_IS_SPACE(attibute)

Purpose
Checks whether a string value only contains spaces. In mainframe sources, some fields
contain many spaces to make a file adhere to the fixed length format. This function
provides a way to check for these spaces. The function always returns a Boolean value.

Example
WB_IS_SPACE returns true if attribute contains only spaces.

Date Transformations
Date transformations provide Warehouse Builder users with functionality to perform
transformations on date attributes. These transformations are ordered and the custom
functions provided with Warehouse Builder are all in the format WB_<function
name>.

All date transformations provided with Warehouse Builder are listed in alphabetical
order in the following sections.

ADD_MONTHS

Syntax
add_months::=ADD_MONTHS(attribute, n)

Purpose
ADD_MONTHS returns the date in the attribute plus n months. The argument n can
be any integer. This will typically be added from an attribute or from a constant.

If the date in attribute is the last day of the month or if the resulting month has
fewer days than the day component of attribute, then the result is the last day of
the resulting month. Otherwise, the result has the same day component as
attribute.

Example
The following example returns the month after the hire_date in the sample table
employees:

SELECT TO_CHAR(ADD_MONTHS(hire_date,1), 'DD-MON-YYYY') "Next month"
FROM employees
WHERE last_name = 'Baer';
Next Month

07-JUL-1994

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the lookup operator.

Date Transformations

3-30 Oracle Warehouse Builder Transformation Guide

LAST_DAY

Syntax
last_day::=LAST_DAY(attribute)

Purpose
LAST_DAY returns the date of the last day of the month that contains the date in
attribute.

Examples
The following statement determines how many days are left in the current month.

SELECT SYSDATE,
LAST_DAY(SYSDATE) "Last",
LAST_DAY(SYSDATE) - SYSDATE "Days Left"
FROM DUAL;
SYSDATE Last Days Left
--------- --------- ----------
23-OCT-97 31-OCT-97 8

MONTHS_BETWEEN

Syntax
months_between::=MONTHS_BETWEEN(attribute1, attribute2)

Purpose
MONTHS_BETWEEN returns the number of months between dates in attribute1 and
attribute2. If attribute1 is later than attribute2, the result is positive; if
earlier, then the result is negative.

If attribute1 and attribute2 are either the same day of the month or both last
days of months, the result is always an integer. Otherwise, Oracle calculates the
fractional portion of the result-based on a 31-day month and considers the difference
in time components attribute1 and attribute2.

Example
The following example calculates the months between two dates:

SELECT MONTHS_BETWEEN
(TO_DATE('02-02-1995','MM-DD-YYYY'),
TO_DATE('01-01-1995','MM-DD-YYYY')) "Months"
FROM DUAL;

Months

1.03225806

NEW_TIME

Syntax
new_time::=NEW_TIME(attribute, zone1, zone2)

Date Transformations

SQL Transformations 3-31

Purpose
NEW_TIME returns the date and time in time zone zone2 when date and time in time
zone zone1 are the value in attribute. Before using this function, you must set the
NLS_DATE_FORMAT parameter to display 24-hour time.

The arguments zone1 and zone2 can be any of these text strings:

■ AST, ADT: Atlantic Standard or Daylight Time

■ BST, BDT: Bering Standard or Daylight Time

■ CST, CDT: Central Standard or Daylight Time

■ CST, EDT: Eastern Standard or Daylight Time

■ GMT: Greenwich Mean Time

■ HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.

■ MST, MDT: Mountain Standard or Daylight Time

■ NST: Newfoundland Standard Time

■ PST, PDT: Pacific Standard or Daylight Time

■ YST, YDT: Yukon Standard or Daylight Time

Example
The following example returns an Atlantic Standard time, given the Pacific Standard
time equivalent:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT NEW_TIME
(TO_DATE('11-10-99 01:23:45', 'MM-DD-YY HH24:MI:SS'),
'AST', 'PST') "New Date and Time"
FROM DUAL;

New Date and Time

09-NOV-1999 21:23:45

NEXT_DAY

Syntax
next_day::=NEXT_DAY(attribute, attribute2)

Purpose
NEXT_DAY returns the date of the first weekday named by the string in attribute2
that is later than the date in attribute1. The argument attribute2 must be a day
of the week in the date language of your session, either the full name or the
abbreviation. The minimum number of letters required is the number of letters in the
abbreviated version. Any characters immediately following the valid abbreviation are
ignored. The return value has the same hours, minutes, and seconds component as the
argument attribute1.

Example
This example returns the date of the next Tuesday after February 2, 2001:

SELECT NEXT_DAY('02-FEB-2001','TUESDAY') "NEXT DAY"
FROM DUAL;

Date Transformations

3-32 Oracle Warehouse Builder Transformation Guide

 NEXT DAY

06-FEB-2001

ROUND (date)

Syntax
round_date::=ROUND(attribute, fmt)

Purpose
ROUND returns the date in attribute rounded to the unit specified by the format
model fmt. If you omit fmt, date is rounded to the nearest day.

Example
The following example rounds a date to the first day of the following year:

SELECT ROUND (TO_DATE ('27-OCT-00'),'YEAR') "New Year"
FROM DUAL;

New Year

01-JAN-01

SYSDATE

Syntax
sysdate::=SYSDATE

Purpose
SYSDATE returns the current date and time. The data type of the returned value is
DATE. The function requires no arguments. In distributed SQL statements, this
function returns the date and time on your local database. You cannot use this function
in the condition of a CHECK constraint.

Example
The following example returns the current date and time:

SELECT TO_CHAR(SYSDATE, 'MM-DD-YYYY HH24:MI:SS')"NOW" FROM DUAL;

NOW

04-13-2001 09:45:51

TO_CHAR (datetime)

Syntax
to_char_date::=TO_CHAR(attribute, fmt, nlsparam)

Date Transformations

SQL Transformations 3-33

Purpose
TO_CHAR converts attribute of DATE data type to a value of VARCHAR2 data type
in the format specified by the date format fmt. If you omit fmt, date is converted to a
VARCHAR2 value in the default date format.

 The nlsparams specifies the language in which month and day names and
abbreviations are returned. This argument can have this form: 'NLS_DATE_LANGUAGE
= language' If you omit nlsparams, this function uses the default date language
for your session.

Example
The following example applies various conversions on the systemdate in the database:

select to_char(sysdate) no_fmt
from dual;
NO_FMT

26-MAR-02

select to_char(sysdate, 'dd-mm-yyyy') fmted
from dual;

FMTED

26-03-2002

TRUNC (date)

Syntax
trunc_date::=TRUNC(attribute, fmt)

Purpose
TRUNC returns attribute with the time portion of the day truncated to the unit
specified by the format model fmt. If you omit fmt, date is truncated to the nearest
day.

Example
The following example truncates a date:

SELECT TRUNC(TO_DATE('27-OCT-92','DD-MON-YY'), 'YEAR') "New Year"
FROM DUAL;

New Year

01-JAN-92

WB_CAL_MONTH_NAME

Syntax
WB_CAL_MONTH_NAME(attribute)

Purpose
The function call returns the full-length name of the month for the date specified in
attribute.

Date Transformations

3-34 Oracle Warehouse Builder Transformation Guide

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_MONTH_NAME(sysdate)
from dual;

WB_CAL_MONTH_NAME(SYSDATE)

March

select WB_CAL_MONTH_NAME('26-MAR-2002')
from dual;

WB_CAL_MONTH_NAME('26-MAR-2002')

March

WB_CAL_MONTH_OF_YEAR

Syntax
WB_CAL_MONTH_OF_YEAR(attribute)

Purpose
WB_CAL_MONTH_OF_YEAR returns the month (1-12) of the year for date in
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_MONTH_OF_YEAR(sysdate) month
from dual;

 MONTH

 3

select WB_CAL_MONTH_OF_YEAR('26-MAR-2002') month
from dual;

 MONTH

 3

WB_CAL_MONTH_SHORT_NAME

Syntax
WB_CAL_MONTH_SHORT_NAME(attribute)

Purpose
WB_CAL_MONTH_SHORT_NAME returns the short name of the month (for example 'Jan')
for date in attribute.

Date Transformations

SQL Transformations 3-35

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_MONTH_SHORT_NAME (sysdate) month
from dual;

MONTH

Mar

select WB_CAL_MONTH_SHORT_NAME ('26-MAR-2002') month
from dual;

MONTH

Mar

WB_CAL_QTR

Syntax
WB_CAL_QTR(attribute)

Purpose
WB_CAL_QTR returns the quarter of the Gregorian calendar year (for example Jan -
March = 1) for date in attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_QTR (sysdate) quarter
from dual;

 QUARTER

 1

select WB_CAL_QTR ('26-MAR-2002') quarter
from dual;

 QUARTER

 1

WB_CAL_WEEK_OF_YEAR

Syntax
WB_CAL_WEEK_OF_YEAR(attribute)

Purpose
WB_CAL_WEEK_OF_YEAR returns the week of the year (1-53) for date attribute.

Date Transformations

3-36 Oracle Warehouse Builder Transformation Guide

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_WEEK_OF_YEAR (sysdate) w_of_y
from dual;

 W_OF_Y

 13

select WB_CAL_WEEK_OF_YEAR ('26-MAR-2002') w_of_y
from dual;

 W_OF_Y

 13

WB_CAL_YEAR

Syntax
WB_CAL_YEAR(attribute)

Purpose
WB_CAL_YEAR returns the numerical year component for a date in attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_YEAR (sysdate) year
from dual;

 YEAR

 2002

select WB_CAL_YEAR ('26-MAR-2002') w_of_y
from dual;

 YEAR

 2002

WB_CAL_YEAR_NAME

Syntax
WH_CAL_YEAR_NAME(attribute)

Purpose
WB_CAL_YEAR_NAME returns the spelled out name of the year for the date in
attribute.

Date Transformations

SQL Transformations 3-37

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_CAL_YEAR_NAME (sysdate) name
from dual;

NAME
--
Two Thousand Two

select WB_CAL_YEAR_NAME ('26-MAR-2001') name
from dual;

NAME
--
Two Thousand One

WB_DATE_FROM_JULIAN

Syntax
WB_DATE_FROM_JULIAN(attribute)

Purpose
WB_DATE_FROM_JULIAN converts Julian date attribute to a regular date.

Example
The following example shows the return value on a specified Julian date:

select to_char(WB_DATE_FROM_JULIAN(3217345),'dd-mon-yyyy') JDate
from dual;

JDATE

08-sep-4096

WB_DAY_NAME

Syntax
WB_DAY_NAME(attribute)

Purpose
WB_DAY_NAME returns the full name of the day for date attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_NAME (sysdate) name
from dual;

NAME
--
Thursday

Date Transformations

3-38 Oracle Warehouse Builder Transformation Guide

select WB_DAY_NAME ('26-MAR-2002') name
from dual;

NAME
--
Tuesday

WB_DAY_OF_MONTH

Syntax
WB_DAY_OF_MONTH(attribute)

Purpose
WB_DAY_OF_MONTH returns the day number within the month for date attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_MONTH (sysdate) num
from dual;

 NUM

 28

select WB_DAY_OF_MONTH ('26-MAR-2002') num
from dual

 NUM

 26

WB_DAY_OF_WEEK

Syntax
WB_DAY_OF_WEEK(attribute)

Purpose
WB_DAY_OF_WEEK returns the day number within the week for date attribute
based on the database calendar.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_WEEK (sysdate) num
from dual;

 NUM

 5

select WB_DAY_OF_WEEK ('26-MAR-2002') num
from dual;

Date Transformations

SQL Transformations 3-39

 NUM

 3

WB_DAY_OF_YEAR

Syntax
WB_DAY_OF_YEAR(attribute)

Purpose
WB_DAY_OF_YEAR returns the day number within the year for the date attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_OF_YEAR (sysdate) num
from dual;

 NUM

 87

select WB_DAY_OF_YEAR ('26-MAR-2002') num
from dual;

 NUM

 85

WB_DAY_SHORT_NAME

Syntax
WB_DAY_SHORT_NAME(attribute)

Purpose
WB_DAY_SHORT_NAME returns the three letter abbreviation or name for the date
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DAY_SHORT_NAME (sysdate) abbr
from dual;

ABBR

Thu

select WB_DAY_SHORT_NAME ('26-MAR-2002') abbr
from dual;

Date Transformations

3-40 Oracle Warehouse Builder Transformation Guide

NUM

Tue

WB_DECADE

Syntax
WB_DECADE(attribute)

Purpose
WB_DECADE returns the decade number within the century for the date attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_DECADE (sysdate) dcd
from dual;

 DCD

 2

select WB_DECADE ('26-MAR-2002') DCD
from dual;

 DCD

 2

WB_HOUR12

Syntax
WB_HOUR12(attribute)

Purpose
WB_HOUR12 returns the hour (in a 12-hour setting) component of the date
corresponding to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR12 (sysdate) h12
from dual;

 H12

 9

select WB_HOUR12 ('26-MAR-2002') h12
from dual;

 H12

Date Transformations

SQL Transformations 3-41

 12

WB_HOUR12MI_SS

Syntax
WB_HOUR12MI_SS(attribute)

Purpose
WB_HOUR12MI_SS returns the timestamp in attribute formatted to HH12:MI:SS.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR12MI_SS (sysdate) h12miss
from dual;

H12MISS

09:08:52

select WB_HOUR12MI_SS ('26-MAR-2002') h12miss
from dual;

H12MISS

12:00:00

WB_HOUR24

Syntax
WB_HOUR24(attribute)

Purpose
WB_HOUR24 returns the hour (in a 24-hour setting) component of date corresponding
to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR24 (sysdate) h24

Note: For a date not including the timestamp (in the second
example), Oracle uses the 12:00 (midnight) timestamp and therefore
returns 12 in this case.

Note: For a date not including the timestamp (in the second
example), Oracle uses the 12:00 (midnight) timestamp and therefore
returns 12 in this case.

Date Transformations

3-42 Oracle Warehouse Builder Transformation Guide

from dual;

 H24

 9

select WB_HOUR24 ('26-MAR-2002') h24
from dual;

 H24

 0

WB_HOUR24MI_SS

Syntax
WB_HOUR24MI_SS(attribute)

Purpose
WB_HOUR24MI_SS returns the timestamp in attribute formatted to HH24:MI:SS.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_HOUR24MI_SS (sysdate) h24miss
from dual;

H24MISS

09:11:42

select WB_HOUR24MI_SS ('26-MAR-2002') h24miss
from dual;

H24MISS

00:00:00

WB_IS_DATE

Syntax
WB_IS_DATE(attribute, fmt)

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

Date Transformations

SQL Transformations 3-43

Purpose
To check whether attribute contains a valid date. The function returns a Boolean
value which is set to true if attribute contains a valid date. Fmt is an optional date
format. If fmt is omitted, the date format of your database session is used.

You can use this function when you validate your data before loading it into a table.
This way the value can be transformed before it reaches the table and causes an error.

Example
WB_IS_DATE returns true in PL/SQL if attribute contains a valid date.

WB_JULIAN_FROM_DATE

Syntax
WB_JULIAN_FROM_DATE(attribute)

Purpose
WB_JULIAN_FROM_DATE returns the Julian date of date corresponding to
attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_JULIAN_FROM_DATE (sysdate) jdate
from dual;

 JDATE

 2452362

select WB_JULIAN_FROM_DATE ('26-MAR-2002') jdate
from dual;

 JDATE

 2452360

WB_MI_SS

Syntax
WB_MI_SS(attribute)

Purpose
WB_MI_SS returns the minutes and seconds of the time component in the date
corresponding to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_MI_SS (sysdate) mi_ss
from dual;

Number Transformations

3-44 Oracle Warehouse Builder Transformation Guide

MI_SS

33:23

select WB_MI_SS ('26-MAR-2002') mi_ss
from dual;

MI_SS

00:00

WB_WEEK_OF_MONTH

Syntax
WB_WEEK_OF_MONTH(attribute)

Purpose
WB_WEEK_OF_MONTH returns the week number within the calendar month for the date
corresponding to attribute.

Example
The following example shows the return value on the sysdate and on a specified
date string:

select WB_WEEK_OF_MONTH (sysdate) w_of_m
from dual;

 W_OF_M

 4

select WB_WEEK_OF_MONTH ('26-MAR-2002') w_of_m
from dual;

 W_OF_M

 4

Number Transformations
These transforms are ordered alphabetically and the custom functions provided with
Warehouse Builder are prefixed with WB_.

All numerical transformations provided with Warehouse Builder are listed in
alphabetical order in the following sections.

Note: For a date not including the timestamp (in the second
example), Oracle uses the 00:00:00 timestamp and therefore returns
the timestamp in this case.

Number Transformations

SQL Transformations 3-45

ABS

Syntax
abs::=ABS(attribute)

Purpose
ABS returns the absolute value of attribute.

Example
The following example returns the absolute value of -15:

SELECT ABS(-15) "Absolute" FROM DUAL;
Absolute

15

ACOS

Syntax
acos::= ACOS(attribute)

Purpose
ACOS returns the arc cosine of attribute. The argument attribute must be in the
range of -1 to 1, and the function returns values in the range of 0 to pi, expressed in
radians.

Example
The following example returns the arc cosine of .3:

SELECT ACOS(.3) "Arc_Cosine" FROM DUAL;

Arc_Cosine

1.26610367

ASIN

Syntax
asin::=ASIN(attribute)

Purpose
ASIN returns the arc sine of attribute. The argument attribute must be in the
range of -1 to 1, and the function returns values in the range of -pi/2 to pi/2,
expressed in radians.

Example
The following example returns the arc cosine of .3:

SELECT ACOS(.3) "Arc_Sine" FROM DUAL;

Arc_Sine

Number Transformations

3-46 Oracle Warehouse Builder Transformation Guide

.304692654

ATAN

Syntax
atan::=ATAN(attribute)

Purpose
ATAN returns the arc tangent of attribute. The argument attribute can be in an
unbounded range, and the function returns values in the range of -pi/2 to pi/2,
expressed in radians.

Example
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

.291456794

ATAN2

Syntax
atan2::=ATAN2(attribute1, attribute2)

Purpose
ATAN2 returns the arc tangent of attribute1 and attribute2. The argument
attribute1 can be in an unbounded range, and the function returns values in the range
of -pi to pi, depending on the signs of attribute1 and attribute2, and are expressed in
radians. ATAN2(attribute1,attribute2) is the same as
ATAN2(attribute1/attribute2).

Example
The following example returns the arc tangent of .3 and .2:

SELECT ATAN2(.3,.2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent2

.982793723

COS

Syntax
cos::=COS(attribute)

Purpose
COS returns the cosine of attribute (an angle expressed in degrees).

Number Transformations

SQL Transformations 3-47

Example
The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3.14159265359/180) "Cosine" FROM DUAL;

Cosine

 -1

COSH

Syntax
cosh::=COSH(attribute)

Purpose
COSH returns the hyperbolic cosine of attribute.

Example
The following example returns the hyperbolic cosine of 0:

SELECT COSH(0) "Hyperbolic Cosine" FROM DUAL;

Hyperbolic Cosine

 1

CEIL

Syntax
ceil::=CEIL(attribute)

Purpose
CEIL returns smallest integer greater than or equal to attribute.

Example
The following example returns the smallest integer greater than or equal to 15.7:

 SELECT CEIL(15.7) "Ceiling" FROM DUAL;
 Ceiling

16

EXP

Syntax
exp::=EXP(attribute)

Purpose
EXP returns e raised to the nth power represented in attribute, where e =
2.71828183...

Number Transformations

3-48 Oracle Warehouse Builder Transformation Guide

Example
The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power" FROM DUAL;

e to the 4th power

54.59815

FLOOR

Syntax
floor::=FLOOR(attribute)

Purpose
FLOOR returns the largest integer equal to or less than the numerical value in
attribute.

Example
The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor" FROM DUAL;

Floor

15

LN

Syntax
ln::=LN(attribute)

Purpose
LN returns the natural logarithm of attribute, where attribute is greater than 0.

Example
The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural Logarithm" FROM DUAL;

Natural Logarithm

4.55387689

LOG

Syntax
log::=LOG(attribute1, attribute2)

Number Transformations

SQL Transformations 3-49

Purpose
LOG returns the logarithm, base attribute1 of attribute2. The base attribute1
can be any positive number other than 0 or 1 and attribute2 can be any positive
number.

Example
The following example returns the logarithm of 100:

SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL;

Log base 10 of 100

 2

MOD

Syntax
mod::=MOD(attribute1, attribute2)

Purpose
MOD returns the remainder of attribute1 divided by attribute2. It returns
attribute1 if attribute2 is 0.

Example
The following example returns the remainder of 11 divided by 4:

 SELECT MOD(11,4) "Modulus" FROM DUAL;
 Modulus

3

POWER

Syntax
power::=POWER(attribute1, attribute2)

Purpose
POWER returns attribute1 raised to the nth power represented in attribute2. The
base attribute1 and the exponent in attribute2 can be any numbers, but if
attribute1 is negative, then attribute2 must be an integer.

Example
The following example returns three squared:

SELECT POWER(3,2) "Raised" FROM DUAL;
Raised

9

Number Transformations

3-50 Oracle Warehouse Builder Transformation Guide

ROUND (number)

Syntax
round_number::=ROUND(attribute1, attribute2)

Purpose
ROUND returns attribute1 rounded to attribute2 places right of the decimal
point. If attribute2 is omitted, attribute1 is rounded to 0 places. Additionally,
attribute2 can be negative to round off digits left of the decimal point and
attribute2 must be an integer.

Examples
The following example rounds a number to one decimal point:

SELECT ROUND(15.193,1) "Round" FROM DUAL;

Round

15.2
 The following example rounds a number one digit to the left of the decimal point:
 SELECT ROUND(15.193,-1) "Round" FROM DUAL;
 Round

20

SIGN

Syntax
sign::=SIGN(attribute)

Purpose
If attribute < 0, SIGN returns -1. If attribute = 0, the function returns 0. If
attribute > 0, SIGN returns 1. This can be used in validation of measures where
only positive numbers are expected.

Example
The following example indicates that the function's argument (-15) is <0:

SELECT SIGN(-15) "Sign" FROM DUAL;
 Sign

-1

SIN

Syntax
sin::=SIN(attribute)

Purpose
SIN returns the sine of attribute (expressed as an angle)

Number Transformations

SQL Transformations 3-51

Example
The following example returns the sine of 30 degrees:

SELECT SIN(30 * 3.14159265359/180) "Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

 .5

SINH

Syntax
sinh::=SINH(attribute)

Purpose
SINH returns the hyperbolic sine of attribute.

Example
The following example returns the hyperbolic sine of 1:

SELECT SINH(1) "Hyperbolic Sine of 1" FROM DUAL;

Hyperbolic Sine of 1

 1.17520119

SQRT

Syntax
sqrt::=SQRT(attribute)

Purpose
SQRT returns square root of attribute. The value in attribute cannot be negative.
SQRT returns a "real" result.

Example
The following example returns the square root of 26:

SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951

TAN

Syntax
tan::=TAN(attrin=bute)

Purpose
TAN returns the tangent of attribute (an angle expressed in radians).

Number Transformations

3-52 Oracle Warehouse Builder Transformation Guide

Example
The following example returns the tangent of 135 degrees:

SELECT TAN(135 * 3.14159265359/180) "Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

 -1

TANH

Syntax
tanh::=TANH(attribute)

Purpose
TANH returns the hyperbolic tangent of attribute.

Example
The following example returns the hyperbolic tangent of 5:

SELECT TANH(5) "Hyperbolic tangent of 5" FROM DUAL;

Hyperbolic tangent of 5

 .462117157

TO_CHAR (number)

Syntax
to_char_number::=to_char(attribute, fmt, nlsparam)

Purpose
TO_CHAR converts attribute of NUMBER data type to a value of VARCHAR2 data
type, using the optional number format fmt. If you omit fmt, attribute is
converted to a VARCHAR2 value exactly long enough to hold its significant digits.
The nlsparam specifies these characters that are returned by number format
elements:

■ Decimal character

■ Group separator

■ Local currency symbol

■ International currency symbol

This argument can have the following form:

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Within the quoted string,

Number Transformations

SQL Transformations 3-53

you must use two single quotation marks around the parameter values. Ten characters
are available for the currency symbol.

If you omit nlsparam or any one of the parameters, this function uses the default
parameter values for your session.

Examples
In this example, the output is blank padded to the left of the currency symbol.

SELECT TO_CHAR(-10000,'L99G999D99MI') "Amount"
FROM DUAL;
Amount

$10,000.00-
SELECT TO_CHAR(-10000,'L99G999D99MI'
'NLS_NUMERIC_CHARACTERS = '',.''
NLS_CURRENCY = ''AusDollars'' ') "Amount"
FROM DUAL;

Amount

AusDollars10.000,00-

TRUNC (number)

Syntax
trunc_number::=TRUNC(attribute, m)

Purpose
TRUNC returns attribute truncated to m decimal places. If m is omitted, attribute
is truncated to 0 places. m can be negative to truncate (make zero) m digits left of the
decimal point.

Example
The following example truncates numbers:

SELECT TRUNC(15.79,1) "Truncate"
FROM DUAL;
Truncate

15.7
 SELECT TRUNC(15.79,-1) "Truncate"
FROM DUAL;
 Truncate

10

WB.LOOKUP_NUM (on a number)

Syntax
 WB.LOOKUP_NUM (table_name
, column_name
, key_column_name
, key_value
)

Number Transformations

3-54 Oracle Warehouse Builder Transformation Guide

where TABLE_NAME is the name of the table to perform the lookup on; COLUMN_NAME
is the name of the NUMBER column that will be returned, for instance, the result of
the lookup; KEY_COLUMN_NAME is the name of the NUMBER column used as the key
to match on in the lookup table; KEY_VALUE is the value of the key column, for
example, the value mapped into the key_column_name with which the match will be
done.

Purpose
To perform a key look up that returns a NUMBER value from a database table using a
NUMBER column as the matching key.

Example
Consider the following table as a lookup table LKP1:

KEYCOLUMN TYPE_NO TYPE
10 100123 Car
20 100124 Bike

Using this package with the following call:

WB.LOOKUP_CHAR('LKP1'
, 'TYPE_NO'
, 'KEYCOLUMN'
, 20
)

returns the value of 100124 as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

WB.LOOKUP_NUM (on a varchar2)

Syntax:
WB.LOOKUP_CHAR(table_name
, column_name
, key_column_name
, key_value
)

where TABLE_NAME is the name of the table to perform the lookup on; COLUMN_NAME
is the name of the NUMBER column that will be returned (such as the result of the
lookup); KEY_COLUMN_NAME is the name of the NUMBER column used as the key to
match on in the lookup table; KEY_VALUE is the value of the key column, such as the
value mapped into the key_column_name with which the match will be done.

Purpose:
To perform a key lookup which returns a NUMBER value from a database table using
a VARCHAR2 column as the matching key.

Example
Consider the following table as a lookup table LKP1:

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the lookup operator.

OLAP Transformations

SQL Transformations 3-55

KEYCOLUMN TYPE_NO TYPE
ACV 100123 Car
ACP 100124 Bike

Using this package with the following call:

WB.LOOKUP_CHAR ('LKP1'
, 'TYPE'
, 'KEYCOLUMN'
, 'ACP'
)

returns the value of 100124 as output of this transformation. This output is then
processed in the mapping as the result of an inline function call.

WB_IS_NUMBER

Syntax
 WB_IS_NUMBER(attibute, fmt)

Purpose
To check whether attribute contains a valid number. The function returns a Boolean
value, which is set to true if attribute contains a valid number. Fmt is an optional
number format. If fmt is omitted, the number format of your session is used.

You can use this function when you validate the data before loading it into a table.
This way the value can be transformed before it reaches the table and causes an error.

 Example
 WB_IS_NUMBER returns true in PL/SQL if attribute contains a valid number.

OLAP Transformations
OLAP transformations enable Warehouse Builder users to load data stored in
relational dimensions and cubes into an analytic workspace.

The OLAP transformations provided by Warehouse Builder are:

■ WB_OLAP_LOAD_CUBE on page 3-56

■ WB_OLAP_LOAD_DIMENSION on page 3-56

■ WB_OLAP_LOAD_DIMENSION_GENUK on page 3-57

The WB_OLAP_LOAD_CUBE, WB_OLAP_LOAD_DIMENSION, and WB_OLAP_LOAD_
DIMENSION_GENUK transformations are used for cube cloning in Warehouse Builder.
Use these OLAP transformations only if your database version is Oracle Database 9i or
Oracle Database 10g Release 1.

The examples used to explain these OLAP transformations are based on the scenario
depicted in Figure 3–1.

Note: This function is a row-based key lookup. Set-based lookups
are supported when you use the lookup operator described in Key
Lookup on page 2-7.

OLAP Transformations

3-56 Oracle Warehouse Builder Transformation Guide

Figure 3–1 Example of OLAP Transformations

The relational dimension TIME_DIM and the relational cube SALES_CUBE are stored
in the schema WH_TGT. The analytic workspace AW_WH, into which the dimension and
cube are loaded, is also created in the WH_TGT schema.

WB_OLAP_LOAD_CUBE

Syntax
wb_olap_load_cube::=WB_OLAP_LOAD_CUBE(olap_aw_owner, olap_aw_name, olap_cube_
owner, olap_cube_name, olap_tgt_cube_name)

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the cube
data; olap_cube_owner is the name of the database schema that owns the related
relational cube; olap_cube_name is the name of the relational cube; olap_tgt_
cube_name is the name of the cube in the analytic workspace.

Purpose
WB_OLAP_LOAD_CUBE loads data from the relational cube into the analytic
workspace. This allows further analysis of the cube data. This is for loading data in an
AW cube from a relational cube which it was cloned from. This is a wrapper around
some of the procedures in the DBMS_AWM package for loading a cube.

Example
The following example loads data from the relational cube SALES_CUBE into a cube
called AW_SALES in the AW_WH analytic workspace:

WB_OLAP_LOAD_CUBE('WH_TGT', 'AW_WH', 'WH_TGT', 'SALES_CUBE', 'AW_SALES')

WB_OLAP_LOAD_DIMENSION

Syntax
wb_olap_load_dimension::=WB_OLAP_LOAD_DIMENSION(olap_aw_owner, olap_aw_name, olap_
dimension_owner, olap_dimension_name, olap_tgt_dimension_name)

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the
dimension data; olap_dimension_owner is the name of the database schema in
which the related relational dimension is stored; olap_dimension_name is the name

OLAP Transformations

SQL Transformations 3-57

of the relational dimension; olap_tgt_dimension_name is the name of the
dimension in the analytic workspace.

Purpose
WB_OLAP_LOAD_DIMENSION loads data from the relational dimension into the
analytic workspace. This allows further analysis of the dimension data. This is for
loading data in an AW dimension from a relational dimension which it was cloned
from. This is a wrapper around some of the procedures in the DBMS_AWM package
for loading a dimension.

Example
The following example loads the data from the relational dimension TIME_DIM into a
dimension called AW_TIME in the analytic workspace AW_WH:

WB_OLAP_LOAD_DIMENSION('WH_TGT', 'AW_WH', 'WH_TGT', 'TIME_DIM', 'AW_TIME')

WB_OLAP_LOAD_DIMENSION_GENUK

Syntax
wb_olap_load_dimension_genuk::=WB_OLAP_LOAD_DIMENSION_GENUK(olap_aw_owner, olap_
aw_name, olap_dimension_owner, olap_dimension_name, olap_tgt_dimension_name)

where olap_aw_owner is the name of the database schema that owns the analytic
workspace; olap_aw_name is the name of the analytic workspace that stores the
dimension data; olap_dimension_owner is the name of the database schema in
which the related relational dimension is stored; olap_dimension_name is the name
of the relational dimension; olap_tgt_dimension_name is the name of the
dimension in the analytic workspace.

Purpose
WB_OLAP_LOAD_DIMENSION_GENUK loads data from the relational dimension into
the analytic workspace. Unique dimension identifiers will be generated across all
levels. This is for loading data in an AW dimension from a relational dimension which
it was cloned from. This is a wrapper around some of the procedures in the DBMS_
AWM package for loading a dimension.

If a cube has been cloned and if you select YES for the Generate Surrogate Keys for
Dimensions option, then when you want to reload the dimensions, you should use the
WB_OLAP_LOAD_DIMENSION_GENUK procedure. This procedure generates surrogate
identifiers for all levels in the AW, because the AW requires all level identifiers to be
unique across all levels of a dimension.

Example
Consider an example in which the dimension TIME_DIM has been deployed to the
OLAP server by cloning the cube. The parameter generate surrogate keys for
Dimension was set to true. To now reload data from the relational dimension TIME_
DIM into the dimension AW_TIME in the analytic workspace AW_WH, use the following
syntax.

WB_OLAP_LOAD_CUBE('WH_TGT', 'AW_WH', 'WH_TGT', 'TIME_DIM', 'AW_TIME')

XML Transformations

3-58 Oracle Warehouse Builder Transformation Guide

XML Transformations
XML transformations provide Warehouse Builder users with functionality to perform
transformations on XML objects. These transformations enable Warehouse Builder
users to load and transform XML documents and Oracle AQs.

 To enable loading of XML sources, Warehouse Builder provides access to the database
XML functionality through custom functions, as detailed in this chapter.

WB_XML_LOAD

Syntax:
WB_XML_LOAD(control_file)

Purpose
WB_XML_LOAD extracts and loads data from XML documents into database targets.
The control_file, an XML document, specifies the source of the XML documents,
the targets, and any runtime controls. After the transformation has been defined, a
mapping in Warehouse Builder calls the transformation as a pre-map or post-map
trigger.

Example
The following example illustrates a script that can be used to implement a Warehouse
Builder transformation that extracts data from an XML document stored in the file
products.xml and loads it into the target table called books.

begin
wb_xml_load(‘<OWBXMLRuntime>'
||
'<XMLSource>'
||
' <file>\ora817\GCCAPPS\products.xml</file>'
||
'</XMLSource>'
||
'<targets>'
||
' <target XSLFile="\ora817\XMLstyle\GCC.xsl">books</target>'
||
'</targets>'
||
'</OWBXMLRuntime>'
);
end;

For more information on control files, see the Oracle Warehouse Builder User’s Guide.

WB_XML_LOAD_F

Syntax
WB_XML_LOAD_F(control_file)

Purpose
WB_XML_LOAD_F extracts and loads data from XML documents into database targets.
The function returns the number of XML documents read during the load. The

Conversion Transformations

SQL Transformations 3-59

control_file, itself an XML document, specifies the source of the XML documents,
the targets, and any runtime controls. After the transformation has been defined, a
mapping in Warehouse Builder calls the transformation as a pre-map or post-map
trigger.

Example
The following example illustrates a script that can be used to implement a Warehouse
Builder transformation that extracts data from an XML document stored in the file
products.xml and loads it into the target table books.

begin
wb_xml_load_f('<OWBXMLRuntime>'
||
'<XMLSource>'
||
' <file>\ora817\GCCAPPS\products.xml</file>'
||
'</XMLSource>'
||
'<targets>'
||
' <target XSLFile="\ora817\XMLstyle\GCC.xsl">books</target>'
||
'</targets>'
||
'</OWBXMLRuntime>'
);
end;

For more information on the types handled and detailed information on control_
files, see the Oracle Warehouse Builder User’s Guide.

Conversion Transformations
The conversion transformations enable Warehouse Builder users to perform functions
that allow conditional conversion of values. These functions achieve "if - then"
constructions within SQL. For example, NVL provides functionality that substitutes
NULL values with any value specified, or if input = NULL then output = value.

CASE
CASE expressions enable you to use "IF...THEN...ELSE" logic in SQL statements
without invoking procedures. Use this statement instead of decode.

Syntax
case_expression::=CASE attrubute1 WHEN inputvalue THEN outputvalue
[WHEN inputvalue THEN outputvalue]...
ELSE elsevalue
END

Purpose
In a simple CASE expression, Oracle searches for the first WHEN ... THEN pair for
which attribute1 is equal to inputvalue and returns outputvalue. If none of
the WHEN ... THEN pairs meet this condition, and an ELSE clause exists, then Oracle
returns elsevalue. Otherwise, Warehouse Builder returns null.

Conversion Transformations

3-60 Oracle Warehouse Builder Transformation Guide

All of the expressions (attribute1, inputvalue, and outputvalue) must be of
the same data type, which can be CHAR or VARCHAR2.

Simple CASE Example
For each customer in the sample oe.customers table, the following statement lists
the credit limit as "Low" if it equals $100, "High" if it equals $5000, and "Medium" if it
equals anything else.

SELECT cust_last_name,
 CASE credit_limit WHEN 100 THEN 'Low'
 WHEN 5000 THEN 'High'
 ELSE 'Medium' END
 FROM customers;

CUST_LAST_NAME CASECR
-------------------- ------
...
Bogart Medium
Nolte Medium
Loren Medium
Gueney Medium

Searched CASE Example
The following statement finds the average salary of the employees in the sample table
oe.employees, using $2000 as the lowest salary possible:

SELECT AVG(CASE WHEN e.salary > 2000 THEN e.salary
 ELSE 2000 END) "Average Salary" from employees e;

Average Salary

 6461.68224

Warehouse Builder Example
In Warehouse Builder, you can use an expression to hold the CASE statement. The
Expression Builder enables you to create the statement that is incorporated in the
generated code. This example is shown in Figure 3–2, "CASE Mapping Example".

Figure 3–2 CASE Mapping Example

NVL

Syntax
nvl::=NVL(attribute1, attrbitute2)

Other Transformations

SQL Transformations 3-61

Purpose
If attribute1 is null, NVL returns attribute2. If attribute1 is not null, then
NVL returns attribute1. The arguments attribute1 and attribute2 can be any
data type. If their data types are different, expr2 is converted to the data type of
expr1 before they are compared. Warehouse Builder provides three variants of NVL to
support all input values.

The data type of the return value is always the same as the data type of attribute1,
unless attribute1 is character data, in which case the return value data type is
VARCHAR2, in the character set of attribute1.

Example
The following example returns a list of employee names and commissions,
substituting "Not Applicable" if the employee receives no commission:

SELECT last_name, NVL(TO_CHAR(commission_pct), 'Not Applicable') "COMMISSION"
FROM employees
WHERE last_name LIKE 'B%';

LAST_NAME COMMISSION
------------------------- --
Baer Not Applicable
Baida Not Applicable
Banda .11
Bates .16
Bell Not Applicable
Bernstein .26
Bissot Not Applicable
Bloom .21
Bull Not Applicable

Other Transformations
Other transformations included with Warehouse Builder enable you to perform
various functions which are not restricted to certain data types. This section describes
those types.

NLS_CHARSET_DECL_LEN

Syntax
nls_charset_decl_len::=NLS_CHARSET_DECL_LEN(byte_count,charset_id)

Purpose
NLS_CHARSET_DECL_LEN returns the declaration width (in number of characters) of
an NCHAR column. The byte_count argument is the width of the column. The
charset_id argument is the character set ID of the column.

Example
The following example returns the number of characters that are in a 200-byte column
when you are using a multibyte character set:

SELECT NLS_CHARSET_DECL_LEN(200, nls_charset_id('ja16eucfixed')) FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID('JA16EUCFIXED'))
--

Other Transformations

3-62 Oracle Warehouse Builder Transformation Guide

 100

NLS_CHARSET_ID

Syntax
nls_charset_id::= NLS_CHARSET_ID(text)

Purpose
NLS_CHARSET_ID returns the character set ID number corresponding to character set
name text. The text argument is a run-time VARCHAR2 value. The text value
'CHAR_CS' returns the database character set ID number of the server. The text
value 'NCHAR_CS' returns the national character set ID number of the server.

Invalid character set names return null.

Example
The following example returns the character set ID number of a character set:

SELECT NLS_CHARSET_ID('ja16euc') FROM DUAL;

NLS_CHARSET_ID('JA16EUC')

 830

NLS_CHARSET_NAME

Syntax
nls_charset_name::= NLS_CHARSET_NAME(number)

Purpose
NLS_CHARSET_NAME returns the name of the character set corresponding to ID
number. The character set name is returned as a VARCHAR2 value in the database
character set.

If number is not recognized as a valid character set ID, then this function returns null.

Example
The following example returns the character set corresponding to character set ID
number 2:

SELECT NLS_CHARSET_NAME(2) FROM DUAL;

NLS_CH

WE8DEC

UID

Syntax
uid::=UID()

Other Transformations

SQL Transformations 3-63

Purpose
UID returns an integer that uniquely identifies the session user, such as the user who is
logged on when running the session containing the transformation. In a distributed
SQL statement, the UID function identifies the user on your local database.

Use this function when logging audit information into a target table to identify the
user running the mappings.

Example
The following returns the local database user id logged into this session:

select uid from dual;

 UID

 55

USER

Syntax
user::=USER()

Purpose
USER returns the name of the session user (the user who logged on) with the data type
VARCHAR2.

Oracle compares values of this function with blank-padded comparison semantics. In
a distributed SQL statement, the UID and USER functions identify the user on your
local database.

Use this function when logging audit information into a target table to identify the
user running the mappings.

Example
The following example returns the local database user logged into this session:

select user from dual;

USER

OWB9I_RUN

Other Transformations

3-64 Oracle Warehouse Builder Transformation Guide

Using Slowly Changing Dimensions A-1

A
Using Slowly Changing Dimensions

This appendix provides a brief introduction to the different types of Slowly Changing
Dimensions. It also goes through a case study scenario to demonstrate how to use
Warehouse Builder to design and deploy different types of Slowly Changing
Dimensions. For additional information, refer to books that discuss data warehousing
such as The Data Warehouse Toolkit by Ralph Kimball.

This appendix contains the following topics:

■ About Slowly Changing Dimensions on page A-1

■ Case Study Scenario on page A-2

■ Using Type 1 Slowly Changing Dimensions on page A-4

■ Using Type 2 Slowly Changing Dimensions on page A-6

■ Using Type 3 Slowly Changing Dimension on page A-13

■ Deploying and Loading Slowly Changing Dimensions on page A-16

About Slowly Changing Dimensions
A Slowly Changing Dimension (SCD) is a well-defined strategy to manage both
current and historical data over time in a data warehouse. You must first decide which
type of slowly changing dimension to use based on your business requirements.
Table A–1 describes the three main types of SCDs.

Note: Warehouse Builder only supports Slowly Changing
Dimensions with Oracle9i Release 2 or later database servers.

Table A–1 Types of Slowly Changing Dimensions

Type Use Description Preserves History?

Type 1 Overwriting Only one version of the dimension
record exists. When a change is made,
the record is overwritten and no
historic data is stored.

No

Type 2 Creating Another
Dimension Record

There are multiple versions of the
same dimension record, and new
versions are created while old versions
are still kept upon modification.

Yes

Case Study Scenario

A-2 Oracle Warehouse Builder Transformation Guide

After selecting the type of SCD, proceed with the following steps to create the
dimensions:

■ Create new dimensions that store historic data.

■ Create mappings that extract, transform, and load data from the source system to
the pre-defined dimension target.

■ Generate and deploy both dimensions and mappings to an Oracle9i Release 2 or
later database.

■ Execute the mappings.

Case Study Scenario
In order to use slowly changing dimensions, you must be using the following:

■ Warehouse Builder 9.0.4 or later

■ Oracle9i Release 2 Database or later

In this appendix, we will be demonstrating how to construct SCDs with the source and
target systems described in the following sections. We will be using star schema to
store data for all levels on the same dimension table target. This is one of the most
commonly used strategy.

Source System
The geography data source table GEO_SRC will be used in our case study. Figure A–1
shows the attributes of the GEO_SRC table.

Figure A–1 GEO_SRC Table Properties

Type 3 Creating a Current
Value Field

There are two versions of the same
dimension record: old values and
current values, and old values are kept
upon modification on current values.

Yes

Table A–1 (Cont.) Types of Slowly Changing Dimensions

Type Use Description Preserves History?

Case Study Scenario

Using Slowly Changing Dimensions A-3

Target System
The target warehouse that will be created includes the following:

■ The sequence DIM_ID that will be used to populate surrogate keys

■ The dimension GEO_DIM that will be used as a Type 1 SCD

■ A mapping to load data from GEO_SRC to GEO_DIM

■ The dimension GEO_DIM_TYPE2 that will be used as a Type 2 SCD

■ A mapping to load data from GEO_SRC to GEO_DIM

■ The dimension GEO_DIM_TYPE3 that will be used as a Type 3 SCD

■ A mapping to load data from GEO_SRC to GEO_DIM_TYPE3

A geography dimension will be used as our case study for illustration. Typically a
geography dimension has two levels: city and state. A city level is the lowest level
among the geography hierarchy, while a state level is the higher level. A simplified
city level, shown in Figure A–2, has the following attributes:

■ ID: The surrogate key for city level.

■ NAME: The natural key for city level.

■ POPULATION: The population of the city.

Figure A–2 City Level Dimension Properties

A simplified state level, as shown in Figure A–3, has the following attributes:

■ ID: The surrogate key for state level.

■ NAME: The natural key for state level.

■ BUDGET: The budget of the state.

Using Type 1 Slowly Changing Dimensions

A-4 Oracle Warehouse Builder Transformation Guide

Figure A–3 State Level Dimension Properties

Using Type 1 Slowly Changing Dimensions
With Type 1 SCDs, you keep no history and only store the latest value of the
dimension record. Once you define the dimension GEO_DIM, you can use it in your
mapping to load data into it. To load Type1 slowly changing dimensions, you extract
data from the source and then directly load them into the target. GEO_SRC is the
source table from which data will be loaded into the dimension GEO_DIM. Figure A–4
shows the mapping used in this example.

Using Type 1 Slowly Changing Dimensions

Using Slowly Changing Dimensions A-5

Figure A–4 Type 1 SCD Mapping

Use the following steps to finish creating the Type 1 SCD:

■ Step 1: Populate the Surrogate Key

■ Step 2: Configure the Target Properties

■ Step 3: Generate Code

Step 1: Populate the Surrogate Key
To ensure that unique numbers are assigned for surrogate keys for new dimension
records, a sequence operator is used to map to the surrogate key column of GEO_DIM,
which is CITY_ID (lowest level key).

Step 2: Configure the Target Properties
You should configure the properties for GEO_DIM operator, as shown in Figure A–5,
to ensure data loads properly. First, you need to configure the loading type of GEO_
DIM to be 'UPDATE/INSERT'.

Using Type 2 Slowly Changing Dimensions

A-6 Oracle Warehouse Builder Transformation Guide

Figure A–5 Mapping Dimension Properties

You also need to configure each mapped column.

■ CITY_ID is the surrogate key and is to be loaded only when inserting rows.

■ CITY_NAME is the natural key and is to be loaded only when inserting rows. It is
also to be matched when updating rows.

■ CITY_POPULATION is to be loaded both when inserting and updating rows.
STATE_NAME and STATE_BUDGET are configured in the same way.

Step 3: Generate Code
If your target database type, which is configurable from warehouse module
configuration properties, is set to Oracle9i, the MERGE feature is ensured for you
when you generate code.

Using Type 2 Slowly Changing Dimensions
With Type 2 SCD, you always create another version of dimension record and mark
the existing version as history. To accommodate this, you need to create extra metadata
for your dimension table, including an effective date column and an expiration date
column. These columns are used to differentiate a current version from a historical
version as follows:

■ Effective date column stores the effective date of the version; also known as start
date

■ Expiration date column stores the expiration date of the version; also known as
end date

■ Expiration date value of the current version is always set to NULL or a default
date value

You also need to decide which columns you want to store historic data for when the
values are to be changed. These columns are defined as trigger columns and should be
described as part of your metadata.

Using Type 2 Slowly Changing Dimensions

Using Slowly Changing Dimensions A-7

Once you define your dimension GEO_DIM_TYPE2, you can use it in your mapping
to load data into it. GEO_SRC is the sample source table here from which data are to
be loaded into GEO_DIM_TYPE2.

To load Type 2 slowly changing dimension, you need to transform data extracted from
the source properly before you load them into the target. You achieve this by creating a
mapping, such as the one displayed in Figure A–6. In this mapping, data is first
extracted from GEO_SRC, transformed by a series of operators, and finally loaded into
GEO_DIM_TYPE2.

Figure A–6 Type 2 SCD Mapping

You must be very curious about how data are actually transformed. Warehouse
Builder supports all operators you would need for Type 2 slowly changing dimension.
With Warehouse Builder, the whole ETL process of Type 2 slowly changing dimension
can be done in one single mapping. Let us take a look at how data are transformed in a
step-by-step fashion.

Use the following steps to create a Type 2 SCD:

■ Step 1: Detect a Match

■ Step 2: Split Join Results

■ Step 3: Determine Merge Rows

■ Step 4: Use the Expression UPDATE_DELTA_ROW

■ Step 5: Use the Expression MERGE_DELTA_ROW

■ Step 6: Populate Surrogate Keys

■ Step 7: Configure Target Properties

■ Step 8: Generate Code

Using Type 2 Slowly Changing Dimensions

A-8 Oracle Warehouse Builder Transformation Guide

Step 1: Detect a Match
First of all, for each source row from GEO_SRC, you need to figure out if it has
matched a current dimension record in GEO_DIM_TYPE2. To do this, a Joiner is used
to match GEO_SRC with GEO_DIM_TYPE2 exclusively using outer join by natural
key columns as the join condition. Figure A–7 shows the expression used for this
condition.

Figure A–7 Input_Row Expression

Also notice that GEO_SRC should only match current dimension records in GEO_
DIM_TYPE2, rather than history dimension records. To do this, you apply a filter
operator to filter out history records from matching.

Step 2: Split Join Results
After Joiner, the output data are now composing both the source data rows and the
matched target rows. For each output row of Joiner, you need to categorize it into the
following groups:

■ OPEN_SET is defined to create a new version or overwrite a current version

■ CLOSE_SET is defined to mark a current version as historical

Do this categorizing by splitting the Joiner output into OPEN_SET and CLOSE_SET
groups using a Splitter.

A Joiner output row will be put into OPEN_SET group if it comes from a row in GEO_
SRC that is either matching with any current version in GEO_DIM_TYPE2, or
matching with no version. Do this by specifying the splitter condition for OPEN_SET
group.

A Joiner output row will be put into CLOSE_SET group if both the following two
condition are true:

■ If it comes from a row in GEO_SRC that is matching with any current version in
GEO_DIM_TYPE2, and

■ If any trigger column from GEO_DIM_TYPE2 does not equal to that from GEO_
SRC

Specify the splitter condition for CLOSE_SET group to AND the earlier two condition
clauses.

Using Type 2 Slowly Changing Dimensions

Using Slowly Changing Dimensions A-9

Step 3: Determine Merge Rows
With OPEN_SET and CLOSE_SET, you compute the following two delta sets with
which GEO_DIM_TYPE2 is to be loaded:

■ From CLOSE_SET to update GEO_DIM_TYPE2; also known as UPDATE_DELTA_
ROW

■ From OPEN_SET to update/insert GEO_DIM_TYPE2; also known as MERGE_
DELTA_ROW

You use Expressions to accomplish both tasks. UPDATE_DELTA_ROW and MERGE_
DELTA_ROW are created as two separate Expression operators from output of
CLOSE_SET and OPEN_SET, respectively. The output groups of both Expression
operators are then UNION by utilizing a SetOp operator, whose output row set is
ready to be mapped to GEO_DIM_TYPE2 directly.

Step 4: Use the Expression UPDATE_DELTA_ROW
UPDATE_DELTA_ROW represents the row set that the final target row is to be
overwritten from in order to mark a current matched version as historical. Specifically,
the target expiration timestamp need be updated with current system date value. This
operation is also known as to close the current version. To accomplish this, you specify
the expression of attribute DATE_EXP to be SYSDATE.

For the rest of the columns, you do not need to update them such that the original
target column values are specified for the corresponding expressions.

Step 5: Use the Expression MERGE_DELTA_ROW
MERGE_DELTA_ROW represents the row set that the final target row is to be
overwritten from in order to:

■ Create another current version if there is either no current version matched in
target, or the matched version has a different value in any of the trigger columns.

■ Otherwise, update the matched version directly.

Specifically, you need to build the expression for each final target column to
differentiate between the earlier two scenarios by instantiating a CASE expression, that
is, 'Case When (...) Then (...) Else (...) End'. Fortunately, Warehouse Builder supports a
user-friendly expression builder to accomplish this easily.

For DATE_EFF or any effective timestamp column, you specify the expression to:

■ Either preserve the current system time (or SYSDATE) if it is to create another
version,

■ Or otherwise, preserve the effective timestamp value derived from target (that is, it
is to update the matched version)

Figure A–8 shows an example of how you specify the expression for DATE_EFF or any
effective timestamp column.

Using Type 2 Slowly Changing Dimensions

A-10 Oracle Warehouse Builder Transformation Guide

Figure A–8 Expression for DATE_EFF

For DATE_EXP or any expiration timestamp column, you specify the expression to:

■ Either preserve a default value (such as NULL or some future timestamp
01/01/2004) to mark any version as the current if it is to create another version,

■ Or otherwise, preserve the expiration timestamp value derived from target (that is,
it is to update the matched version)

Figure A–9 shows an example of how you specify the expression for DATE_EXP or
any expiration timestamp column.

Figure A–9 Expression for DATE_EXP

For CITY_NAME or any natural key column, you always overwrite with natural key
value derived from source. Figure A–10 shows an example of how you specify the
expression for CITY_NAME or any natural key column.

Using Type 2 Slowly Changing Dimensions

Using Slowly Changing Dimensions A-11

Figure A–10 Expression for CITY_NAME

For CITY_ID_KEY or any surrogate key column, you need to preserve the surrogate
key value derived from target in order to:

■ Match with the final target row to perform updating if it were to update the
matched version.

■ The derived target surrogate key would be NULL if it were to create a new
version; a sequence number would be introduced later to ensure a unique
surrogate key value is assigned for creating a dimension record.

Figure A–11 shows an example of how you specify the expression for CITY_ID_KEY or
any surrogate key column.

Figure A–11 Expression for CITY_ID_KEY

For STATE_NAME or any non-trigger column, you always overwrite with the value
derived from source.

Using Type 2 Slowly Changing Dimensions

A-12 Oracle Warehouse Builder Transformation Guide

For CITY_POPULATION or any trigger column, you always overwrite with the value
derived from source.

Step 6: Populate Surrogate Keys
To ensure that unique numbers are assigned as surrogate keys for new dimension
records, a sequence operator is used to insert the surrogate key column of GEO_DIM_
TYPE2, which is CITY_ID.

The derived target surrogate key from UNION would be used to match with the final
target surrogate key during loading. To achieve this, you create an additional attribute
MATCHING for the final target and then map from the derived target surrogate key
CITY_ID_KEY to it.

MATCHING attribute stands for the unique key of the final target that is chosen to be
the matching criteria to ensure data loads properly. Here you should use the final
target surrogate key column CITY_ID as MATCHING attribute. You achieve this by
setting the bound name to be the same as CITY_ID:

Step 7: Configure Target Properties
Figure A–12 shows an example of how you can configure the properties for GEO_
DIM_TYPE2 operator to ensure that data loads properly. First of all, you need to
configure the loading type of GEO_DIM_TYPE2 to be UPDATE/INSERT.

Figure A–12 Configuration using UPDATE/INSERT

You also need to configure each mapped column.

■ CITY_ID is the surrogate key and is to be loaded only when inserting rows.

■ CITY_NAME is the natural key and is to be loaded only when inserting rows.

■ CITY_POPULATION is to be loaded both when inserting and updating rows.
STATE_NAME, EFFECTIVE_DATE and EXPIRATION_DATE are configured in
the same way.

■ MATCHING is to be matched when updating rows.

Step 8: Generate Code
If your target database type (configurable from warehouse module configuration
properties) is set to Oracle9i, the MERGE feature is ensured for you when you generate
code.

Using Type 3 Slowly Changing Dimension

Using Slowly Changing Dimensions A-13

Using Type 3 Slowly Changing Dimension
With Type 3 SCD; you create a current value field to keep the current value of
dimension record apart from its previous value. To achieve this, you need to create two
columns for each data field, one for current value and the other for keeping previous
value, respectively.

Once you define your dimension GEO_DIM_TYPE3, you can use it in your mapping
to load data into it. GEO_SRC is the sample source table here from which data are to
be loaded into GEO_DIM_TYPE3.

To load Type 3 slowly changing dimension, you extract data from the source and then
transform them before directly load them into the target. You achieve this by the
following mapping graph where data are first extracted from GEO_SRC, transformed
by a series of operators, and finally loaded into GEO_DIM_TYPE3. Figure A–13 shows
an example of this mapping.

Figure A–13 Type 3 SCD Mapping

Use the following steps to create a Type 3 SCD:

■ Step 1: Detect a Match

■ Step 2: Populate Current Values

■ Step 3: Populate Previous Value Columns by Expression

■ Step 4: Populate Surrogate Keys

■ Step 5: Configure Target Properties

■ Step 6: Generate Code

Step 1: Detect a Match
First of all, for each source row from GEO_SRC, you need to figure out if it has
matched a current dimension record in GEO_DIM_TYPE3. To do this, a Joiner is used

Using Type 3 Slowly Changing Dimension

A-14 Oracle Warehouse Builder Transformation Guide

to match GEO_SRC with GEO_DIM_TYPE3 exclusively (using outer join) by natural
key columns as the join condition.

Step 2: Populate Current Values
For Type 3 SCD, you always overwrite current value columns of the target with that of
the source. You accomplish this by creating mapping lines from Joiner output directly
into the target, GEO_DIM_TYPE3.

Step 3: Populate Previous Value Columns by Expression
For Type 3 SCD, it matters to you when and how to overwrite previous value columns
of the target, including CITY POPULATION_OLD, CITY STATE_BUDGET_OLD, and
CITY STATE_NAME_OLD.

Specifically you need to:

■ Overwrite previous value column with current value column of the target, if
current value of the target is different from that of the source; or

■ Otherwise, no change is required for the previous value column.

To achieve this, build an Expression from the previous Joiner result and instantiate the
expression using a CASE expression. Figure A–14 shows an example of how to
instantiate the expression using a CASE expression.

Figure A–14 Case Expression

Step 4: Populate Surrogate Keys
This is similar to what you have done for Type 1 SCDs. Refer to "Step 1: Populate the
Surrogate Key" on page A-5 for details.

Step 5: Configure Target Properties
This is also similar to what you have done for Type 1 SCDs.

■ You need to configure the loading type of GEO_DIM_TYPE3 to be
UPDATE/INSERT.

Deploying and Loading Slowly Changing Dimensions

Using Slowly Changing Dimensions A-15

■ CITY_ID is the surrogate key and is to be loaded only when inserting rows.

■ CITY_NAME is the natural key and is to be loaded only when inserting rows. It is
also to be matched when updating rows.

■ Others are to be loaded both when inserting and updating rows.

Step 6: Generate Code
If your target database type (configurable from warehouse module configuration
properties) is set to Oracle9i, the MERGE feature is ensured for you when you generate
code.

Deploying and Loading Slowly Changing Dimensions
Once you have constructed dimensions and mappings, you proceed to deploy and
execute them through Deployment Manager. Run mappings using set-based mode
with an Oracle9i database as your target to ensure optimal performance.

Deploying and Loading Slowly Changing Dimensions

A-16 Oracle Warehouse Builder Transformation Guide

Index-1

Index

A
ABS, 3-45
accessibility in Oracle documentation, ix
accessing

transformation libraries, 3-2
ACOS function, 3-45
ADD_MONTHS, 3-29
administrative transformations, 3-3
aggregator operator, 2-20
Americans with Disabilities Act (ADA)

compliance, ix
ASCII, 3-12
ASCIISTR, 3-12
ASIN function, 3-45
ATAN function, 3-46
ATAN2 function, 3-46
AVG, 2-22

B
books

accessibility, ix

C
CEIL, 3-47
character transformations, 3-12
CHARTOROWID, 3-13
CHR, 3-13
CONCAT, 3-14
constant operator, 2-28
contacting Oracle
conventions

used in this guide, xvii
CONVERT, 3-14
COS function, 3-46
COSH function, 3-47
COUNT, 2-22
CURRVAL, 2-10

Sequence operator, 2-10

D
data cleansing operators, 2-28
data quality

Match-Merge operator, 2-30

data transformation, 3-1
datatypes

ZONED, xii
Date Transformations, 3-29
date transformations, 3-29
Deduplicator operator, 2-1
disabilities, documentation accessibility, ix
DISTINCT, 2-1
documentation

ordering, for Warehouse Builder

E
EXP, 3-47

F
features

new in this release
new in this release See also Oracle Warehouse Builder

Release Notes
Filter operator, 2-2
FLOOR, 3-48
FULL OUTER JOIN, 2-4
functions

Global Shared Library, 3-2

G
geocoding, 2-29
Global Shared Library, 3-2
GROUP BY, 2-20
guides

accessibility, ix
available for Warehouse Builder, xvii

H
HAVING, 2-20
householding, 2-30

Match-Merge operator, 2-30

I
importing

PL/SQL Packages, 3-3

Index-2

INITCAP, 3-15
installing Warehouse Builder See Oracle Warehouse

Builder Installation and Configuration Guide
INSTR / INSTRB, 3-15
INTERSECT, 2-12

J
Joiner operator, 2-4

K
key

surrogate, 2-10
Key Lookup operator, 2-7

L
LAST_DAY, 3-30
LENGTH/LENGTHB, 3-16
LN function, 3-48
LOG function, 3-48
LOWER, 3-17
LPAD, 3-17
LTRIM, 3-18

M
manuals

accessibility, ix
available for Warehouse Builder, xvii

mapping operators
Match-Merge operator, 2-30
Pivot operator, 2-8
Unpivot operator, 2-19

Match-Merge operator, 2-30
design considerations, 2-30
example, 2-30

MAX, 2-23
MetaLink
MIN, 2-23
MINUS, 2-12
MOD, 3-49
MONTHS_BETWEEN, 3-30

N
Name and Address operator, 2-28
new features

See also Oracle9i Warehouse Builder Release Notes
NEW_TIME, 3-30
NEXT_DAY, 3-31
NEXTVAL, 2-10

Sequence operator, 2-10
NLS_CHARSET_DECL_LEN function, 3-61
NLS_CHARSET_ID function, 3-62
NLS_CHARSET_NAME function, 3-62
NLS_INITCAP function, 3-19
NLS_LOWER function, 3-19
NLS_UPPER function, 3-20
NLSSORT function, 3-18

NONE, 2-23
Number Transformations, 3-44
number transformations, 3-44
NVL, 2-8

O
OLAP transformations, 3-55
operators

aggregator, 2-20
constant, 2-28
data cleansing, 2-28
Deduplicator operator, 2-1
Filter, 2-2
Joiner, 2-4
Key Lookup operator, 2-7
Match-Merge operator, 2-30
Name and Address, 2-28
Pivot operator, 2-8
sequence, 2-10
Sequence operator, 2-10
Set operator, 2-12
SQL, 2-1
transformation operators, 2-1
Unpivot operator, 2-19

Oracle
accessibility

Oracle Library, 3-2
Oracle Transformation Libraries, 3-2
Oracle, contacting
OracleMetaLink
ORDER BY, 2-13
other (non-SQL) transformations, 3-61

P
Pivot operator

about, 2-8
example, 2-9

PL/SQL
importing PL/SQL packages, 3-3

POWER, 3-49
procedures

Global Shared Library, 3-2

R
ROUND, 3-32, 3-50
RPAD, 3-21
RTRIM, 3-22

S
Section 508 compliance, ix
sequence, 2-10
Sequence operator, 2-10
Set operator, 2-12
SIGN, 3-50
SIN function, 3-50
SINH function, 3-51
Sorter operator

Index-3

operators
Sorter operator, 2-13

SOUNDEX, 3-22
Splitter operator

operators
Splitter operator, 2-15

SQL Operators, 2-1
SQRT, 3-51
STDDEV, 2-24
STDDEV_POP, 2-25
STDDEV_SAMP, 2-25
SUBSTR, 3-23
SUM, 2-26
surrogate key, 2-10
SYSDATE, 2-28
SYSDATE function, 3-32
SYSTIMESTAMP, 2-28

T
Table Function operator, 2-18
TAN function, 3-51
TANH function, 3-52
TO_CHAR, 3-32, 3-52
TO_DATE, 3-24
TO_MULTI_BYTE, 3-24
TO_NUMBER, 3-25
TO_SINGLE_BYTE, 3-25
transformation libraries

about, 3-2
accessing, 3-2
Global Shared Library, 3-2
Oracle Library, 3-2

Transformation Operators, 2-1
transformations

about, 3-1
administrative, 3-3
character, 3-12
date, 3-29
functions, 3-1
imported package, 3-2
number, 3-44
OLAP, 3-55
operators, 2-1
other (non-SQL), 3-61
overview, 3-1
predefined, 3-1
procedures, 3-1
user transformation package, 3-1
XML, 3-58

transformations See also Oracle Warehouse Builder
Transformation Guide

TRANSLATE, 3-26
TRIM, 3-26
TRUNC, 3-33, 3-53

U
UID, 3-62
UNION, 2-12

UNION ALL, 2-12
Unpivot operator

about, 2-19
example, 2-19

updates
to Warehouse Builder documentation

UPPER, 3-27
USER, 3-63
user manuals

accessibility, ix
User Transformation Package, 3-1
User’s Guide

conventions, xvii
related documents, xvii
to order documentation
updates available at

V
VAR_POP, 2-26
VAR_SAMP, 2-27
VARIANCE, 2-27

W
Warehouse Builder

documentation for, xvii
new features in this release
to order documentation

WB_ABORT, 3-3
WB_ANALYZE_SCHEMA, 3-3
WB_ANALYZE_TABLE, 3-4
WB_CAL_MONTH_NAME, 3-33
WB_CAL_MONTH_OF_YEAR, 3-34
WB_CAL_MONTH_SHORT_NAME, 3-34
WB_CAL_QTR, 3-35
WB_CAL_WEEK_OF_YEAR, 3-35
WB_CAL_YEAR, 3-36
WB_CAL_YEAR_NAME, 3-36
WB_COMPILE_PLSQL, 3-4
WB_DATE_FROM_JULIAN, 3-37
WB_DAY_NAME, 3-37
WB_DAY_OF_MONTH, 3-38
WB_DAY_OF_WEEK, 3-38
WB_DAY_OF_YEAR, 3-39
WB_DAY_SHORT_NAME, 3-39
WB_DECADE, 3-40
WB_DISABLE_ALL_CONSTRAINTS, 3-5
WB_DISABLE_ALL_TRIGGERS, 3-6
WB_DISABLE_CONSTRAINT, 3-6
WB_DISABLE_TRIGGER, 3-7
WB_ENABLE_ALL_CONSTRAINTS, 3-8
WB_ENABLE_ALL_TRIGGERS, 3-9
WB_ENABLE_CONSTRAINT, 3-9
WB_ENABLE_TRIGGER, 3-10
WB_HOUR12, 3-40
WB_HOUR12MI_SS, 3-41
WB_HOUR24, 3-41
WB_HOUR24MI_SS, 3-42
WB_IS_DATE, 3-42

Index-4

WB_IS_NUMBER, 3-55
WB_IS_SPACE, 3-29
WB_JULIAN_FROM_DATE, 3-43
WB_MI_SS, 3-43
WB_OLAP_LOAD_CUBE, 3-56
WB_OLAP_LOAD_DIMENSION, 3-56
WB_OLAP_LOAD_DIMENSION_GENUK, 3-57
WB_TRUNCATE_TABLE, 3-11
WB_WEEK_OF_MONTH, 3-44
WB_XML_LOAD, 3-58
WB_XML_LOAD_F, 3-58
WB.LOOKUP_CHAR, 3-27, 3-28
WB.LOOKUP_NUM, 3-53, 3-54
WHERE, 2-2, 2-15

X
XML Transformations, 3-58

Z
ZONED, xii

	Contents
	Preface
	Purpose
	Documentation Accessibility
	Audience
	How This Guide Is Organized
	New in 10g Release 1 (10.1)
	Added in Release 9.0.4
	Conventions
	Related Publications
	Contacting Oracle

	1 Introduction to Warehouse Builder Transformations
	Overview
	Transforming Data with Warehouse Builder
	SQL Standards
	How SQL Works
	SQL as the Common Language for Relational Databases

	2 Transformations
	Regular SQL Operators
	Deduplicator (DISTINCT)
	Filter (WHERE)
	Joiner (FULL OUTER JOIN)
	Key Lookup
	Pivot Operator
	Example: Pivoting Sales Data

	Sequence (CURRVAL, NEXTVAL)
	Set (UNION, UNION ALL, INTERSECT, MINUS)
	Sorter (ORDER BY)
	Splitter (Multiple Table WHERE)
	Table Function
	Unpivot Operator
	Example: Unpivoting Sales Data

	Aggregator (GROUP BY, HAVING)
	AVG
	COUNT
	MAX
	MIN
	STDDEV
	STDDEV_POP
	STDDEV_SAMP
	SUM
	VAR_POP
	VAR_SAMP
	VARIANCE

	Constant
	SYSDATE
	SYSTIMESTAMP

	Data Cleansing Operators
	Name and Address
	Match-Merge Operator
	Example: Matching and Merging Customer Data
	Designing Mappings with a Match-Merge Operator

	3 SQL Transformations
	Introduction
	About Transformations
	About Oracle Transformation Libraries
	Global Shared Library
	Oracle Library
	Accessing Transformation Libraries
	Importing PL/SQL Packages

	Administrative Transformations
	WB_ABORT
	WB_ANALYZE_SCHEMA
	WB_ANALYZE_TABLE
	WB_COMPILE_PLSQL
	WB_DISABLE_ALL_CONSTRAINTS
	WB_DISABLE_ALL_TRIGGERS
	WB_DISABLE_CONSTRAINT
	WB_DISABLE_TRIGGER
	WB_ENABLE_ALL_CONSTRAINTS
	WB_ENABLE_ALL_TRIGGERS
	WB_ENABLE_CONSTRAINT
	WB_ENABLE_TRIGGER
	WB_TRUNCATE_TABLE

	Character Transformations
	ASCII
	ASCIISTR
	CHARTOROWID
	CHR
	CONCAT
	CONVERT
	INITCAP
	INSTR / INSTRB
	LENGTH/LENGTHB
	LOWER
	LPAD
	LTRIM
	NLSSORT
	NLS_INITCAP
	NLS_LOWER
	NLS_UPPER
	REPLACE
	RPAD
	RTRIM
	SOUNDEX
	SUBSTR
	TO_DATE
	TO_MULTI_BYTE
	TO_NUMBER
	TO_SINGLE_BYTE
	TRANSLATE
	TRIM
	UPPER
	WB.LOOKUP_CHAR
	WB.LOOKUP_CHAR
	WB_IS_SPACE

	Date Transformations
	ADD_MONTHS
	LAST_DAY
	MONTHS_BETWEEN
	NEW_TIME
	NEXT_DAY
	ROUND (date)
	SYSDATE
	TO_CHAR (datetime)
	TRUNC (date)
	WB_CAL_MONTH_NAME
	WB_CAL_MONTH_OF_YEAR
	WB_CAL_MONTH_SHORT_NAME
	WB_CAL_QTR
	WB_CAL_WEEK_OF_YEAR
	WB_CAL_YEAR
	WB_CAL_YEAR_NAME
	WB_DATE_FROM_JULIAN
	WB_DAY_NAME
	WB_DAY_OF_MONTH
	WB_DAY_OF_WEEK
	WB_DAY_OF_YEAR
	WB_DAY_SHORT_NAME
	WB_DECADE
	WB_HOUR12
	WB_HOUR12MI_SS
	WB_HOUR24
	WB_HOUR24MI_SS
	WB_IS_DATE
	WB_JULIAN_FROM_DATE
	WB_MI_SS
	WB_WEEK_OF_MONTH

	Number Transformations
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	COS
	COSH
	CEIL
	EXP
	FLOOR
	LN
	LOG
	MOD
	POWER
	ROUND (number)
	SIGN
	SIN
	SINH
	SQRT
	TAN
	TANH
	TO_CHAR (number)
	TRUNC (number)
	WB.LOOKUP_NUM (on a number)
	WB.LOOKUP_NUM (on a varchar2)
	WB_IS_NUMBER

	OLAP Transformations
	WB_OLAP_LOAD_CUBE
	WB_OLAP_LOAD_DIMENSION
	WB_OLAP_LOAD_DIMENSION_GENUK

	XML Transformations
	WB_XML_LOAD
	WB_XML_LOAD_F

	Conversion Transformations
	CASE
	NVL

	Other Transformations
	NLS_CHARSET_DECL_LEN
	NLS_CHARSET_ID
	NLS_CHARSET_NAME
	UID
	USER

	A Using Slowly Changing Dimensions
	About Slowly Changing Dimensions
	Case Study Scenario
	Source System
	Target System

	Using Type 1 Slowly Changing Dimensions
	Step 1: Populate the Surrogate Key
	Step 2: Configure the Target Properties
	Step 3: Generate Code

	Using Type 2 Slowly Changing Dimensions
	Step 1: Detect a Match
	Step 2: Split Join Results
	Step 3: Determine Merge Rows
	Step 4: Use the Expression UPDATE_DELTA_ROW
	Step 5: Use the Expression MERGE_DELTA_ROW
	Step 6: Populate Surrogate Keys
	Step 7: Configure Target Properties
	Step 8: Generate Code

	Using Type 3 Slowly Changing Dimension
	Step 1: Detect a Match
	Step 2: Populate Current Values
	Step 3: Populate Previous Value Columns by Expression
	Step 4: Populate Surrogate Keys
	Step 5: Configure Target Properties
	Step 6: Generate Code

	Deploying and Loading Slowly Changing Dimensions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

