
Oracle® JRockit JVM
Diagnostics Guide

R27.6

April 2009

Oracle JRockit JVM Diagnostics Guide, R27.6

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Part I. Understanding the Oracle JRockit JDK

About the Oracle JRockit JDK
What is the JRockit JVM?. 1-2

About the JDK . 1-2

JRockit JDK Versions . 1-2

What Platforms Does the JRockit JDK Support? . 1-3

Compatibility Information . 1-3

The Contents of a JRockit JDK Installation . 1-3

Development Tools . 1-4

Demo . 1-4

C Header Files . 1-4

Java Runtime Environment (JRE) . 1-5

Additional Libraries . 1-5

Sample . 1-6

Attach API Support . 1-6

Oracle JRockit Documentation . 1-6

JRockit JVM Command Line Options . 1-7

JRockit JDK and JRockit Mission Control Support . 1-7

Understanding JIT Compilation and Optimizations
More than a “Black Box” . 2-1

How the JRockit JVM Compiles Code . 2-3
Oracle JRockit Diagnostics Guide iii

An Example Illustrating Some Code Optimizations . 2-5

Understanding Memory Management
The Heap and the Nursery . 3-1

Object Allocation . 3-2

Garbage Collection. 3-2

The Mark and Sweep Model . 3-3

Generational Garbage Collection . 3-4

Dynamic and Static Garbage Collection Modes . 3-4

Compaction . 3-5

Understanding Threads and Locks
Understanding Threads. 4-1

Default Stack Size for Java Threads . 4-2

Default Stack Size for JVM Internal Threads . 4-2

Understanding Locks . 4-3

Spinning and Sleeping. 4-3

Lock Chains . 4-3

Migrating Applications to the Oracle JRockit JDK
About Application Migration . 5-1

Why Migrate? . 5-2

Migration Restrictions. 5-2

Migration Support . 5-2

Migration Procedures . 5-2

Environment Changes . 5-3

Other Tips . 5-3

Tuning the JRockit JVM for Your Application. 5-3

Testing the Application . 5-4
iv Oracle JRockit Diagnostics Guide

Why Test? . 5-4

How to Test . 5-4

Replicating Tools Supplied with the Sun JDK . 5-5

Command-line Option Compatibility Between the JRockit JVM and Sun 5-6

Submitting Migration Tips . 5-7

Setting Up and Running the Oracle JRockit JDK
Installing the Oracle JRockit JDK . 6-1

Setting Up and Checking Your Linux Environment . 6-1

Linux on IA32 . 6-2

Using LD_ASSUME_KERNEL . 6-2

Running in a chroot(3) Environment. 6-2

Setting Up and Checking Your Windows Environment. 6-2

Setting Up and Checking Your Sun Solaris Environment . 6-3

Setting the Path to the License File . 6-3

Part II. Profiling and Performance Tuning

About Profiling and Performance Tuning
How to Tune: An Overview . 7-1

What this Section Contains. 7-1

Understanding the Tuning Trade-offs
Pause Times vs. Throughput. 8-1

Concurrent vs. “Stop-the-World” . 8-1

Compaction Pauses vs. Throughput . 8-2

Performance vs. Memory Footprint . 8-2

Heap Size vs. Throughput . 8-2

Book Keeping vs. Pause Times . 8-2
Oracle JRockit Diagnostics Guide v

First Steps for Tuning the Oracle JRockit JVM
Step 1: Basic Tuning . 9-1

Tuning the Heap Size . 9-2

Tuning the Garbage Collection . 9-2

Tuning the Nursery Size . 9-3

Tuning the Pause Target . 9-4

Step 2: Performance Tuning. 9-4

Lazy Unlocking. 9-5

Call Profiling. 9-5

Large Pages . 9-5

Step 3: Advanced Tuning . 9-5

Tuning Compaction. 9-6

Tuning the TLA size . 9-7

Further Information. 9-8

Best Practices . 9-8

Oracle WebLogic Server . 9-8

Oracle WebLogic SIP Server . 9-8

Oracle WebLogic Event Server. 9-9

Oracle Workshop. 9-9

“Utility” Applications . 9-10

“Batch” Runs. 9-10

Tuning the Memory Management System
Setting the Heap and Nursery Size. 10-1

Setting the Heap Size . 10-2

Setting the Nursery and Keep Area Size. 10-3

Selecting and Tuning a Garbage Collector. 10-4

Selecting a Dynamic Garbage Collection Mode. 10-4
vi Oracle JRockit Diagnostics Guide

Selecting a Static Garbage Collection Strategy . 10-8

Tuning the Concurrent Garbage Collection Trigger . 10-9

Tuning the Compaction of Memory . 10-10

Fragmentation vs. Garbage Collection Pauses . 10-10

Adjusting Compaction. 10-11

Optimizing Memory Allocation Performance . 10-13

Setting the Thread Local Area Size. 10-13

Tuning Locks
Lock Profiling . 11-2

Disabling Spinning Against Fat Locks . 11-2

Adaptive Spinning Against Fat Locks . 11-2

Lock Deflation . 11-3

Lazy Unlocking. 11-3

Tuning For Low Latencies
Measuring Latencies . 12-1

Tune the Garbage Collection . 12-2

Dynamic Garbage Collection Mode Optimized for Deterministic Pauses 12-3

Dynamic Garbage Collection Mode Optimized for Short Pauses. 12-4

Static Generational Concurrent Garbage Collection . 12-5

Tune the Heap Size . 12-5

Manually Tune the Nursery Size . 12-6

Manually Tune Compaction . 12-6

Tune When to Trigger a Garbage Collection . 12-7

Tuning For Better Application Throughput
Measuring Your Application’s Throughput . 13-1

Select Garbage Collector . 13-2
Oracle JRockit Diagnostics Guide vii

Dynamic Garbage Collection Mode Optimized for Throughput 13-3

Static Single-Spaced Parallel Garbage Collection . 13-3

Static Generational Parallel Garbage Collection. 13-3

Tune the Heap Size. 13-4

Manually Tune the Nursery Size . 13-4

Manually Tune Compaction. 13-5

Tune the Thread-Local Area Size . 13-5

Tuning For Stable Performance
Measuring the Performance Variance . 14-1

Tune the Heap Size. 14-2

Manually Tune the Nursery Size . 14-2

Tune the Garbage Collector . 14-3

Tune Compaction . 14-3

Tuning For a Small Memory Footprint
Measuring the Memory Footprint . 15-1

Set the Heap Size . 15-2

Select a Garbage Collector . 15-2

Tune Compaction . 15-3

Tune Object Allocation . 15-3

Tuning For Faster JVM Startup
Measuring the Startup Time . 16-1

Setting the Heap Size . 16-1

Troubleshoot Your Application and the JVM . 16-2

Part III. JRockit JDK Tools
viii Oracle JRockit Diagnostics Guide

Introduction to Diagnostics Tools
What this Section Contains. 17-1

Using Oracle JRockit Mission Control Tools
JRockit Mission Control Overhead. 18-1

Architectural Overview of the JRockit Mission Control Client 18-2

JRockit Mission Control 3.0 . 18-2

JRockit Mission Control 2.0 . 18-3

JRockit Mission Control 1.0 . 18-4

The JRockit Management Console . 18-6

The JRockit Runtime Analyzer. 18-6

Latency Analysis Tool (JRockit Mission Control 3.0) . 18-6

JRA Sample Recordings . 18-7

The JRockit Memory Leak Detector . 18-8

More Information on JRockit Mission Control Versions . 18-8

Understanding Verbose Outputs
Memory Management Verbose Log Modules . 19-1

Verbose Memory Module . 19-2

Verbose Nursery Log Module . 19-4

Verbose Memdbg Log Module . 19-6

Verbose Compaction Log Module. 19-14

Verbose Gcpause Log Module. 19-15

Verbose Gcreport Log Module . 19-17

Verbose Refobj and Referents Log Modules. 19-19

Other Verbose Log Modules. 19-22

Verbose Opt Log Module . 19-22

Verbose Exceptions Log Module. 19-23
Oracle JRockit Diagnostics Guide ix

Using Thread Dumps
Creating Thread Dumps . 20-1

Reading Thread Dumps . 20-2

The Beginning of The Thread Dump . 20-2

Stack Trace for Main Application Thread. 20-3

Locks and Lock Chains. 20-3

JVM Internal Threads . 20-5

Other Java Application Threads . 20-5

Lock Chains . 20-7

Thread Status in Thread Dumps. 20-8

Life States . 20-8

Run States . 20-9

Special States . 20-10

Troubleshooting with Thread Dumps. 20-10

Detecting Deadlocks . 20-10

Detecting Processing Bottlenecks . 20-11

Viewing The Runtime Profile of an Application . 20-11

Running Diagnostic Commands
Diagnostic Commands Overview. 21-1

Using jrcmd . 21-2

How jrcmd Communicates with the JRockit JVM . 21-2

How to Use jrcmd . 21-2

jrcmd Examples. 21-3

Known Limitations of jrcmd. 21-4

Ctrl-Break Handler . 21-5

Available Diagnostic Commands. 21-7

Getting Help . 21-10
x Oracle JRockit Diagnostics Guide

Oracle JRockit Time Zone Updater
Downloading the TZUpdater . 22-2

Introduction to the TZUpdater . 22-2

System Requirements to Run the TZUpdater . 22-2

Using the TZUpdater . 22-2

Command-line Options Described . 22-2

Example of the Default way of Using TZUpdater . 22-3

Error Handling . 22-4

System-wide Usage. 22-4

Determining Your TZUpdater Version. 22-5

Removing TZUpdater Changes . 22-5

Known Issues . 22-6

Oracle JRockit Mission Control Use Cases
Analyzing System Behavior with the JRockit Management Console 23-1

Getting Started . 23-2

Analyzing Memory Usage. 23-3

Setting an Alert Trigger . 23-6

Profiling Methods Online by Using the Console. 23-10

Analyzing System Problems with the JRockit Runtime Analyzer 23-12

Getting Started . 23-13

Creating the Recording . 23-13

Looking at the Recording . 23-14

Examining the Methods Tab . 23-15

Detecting a Memory Leak . 23-24

Getting Started . 23-24

Analyze the Java Application . 23-25

The Leak is Discovered . 23-30
Oracle JRockit Diagnostics Guide xi

Part IV. Diagnostics and Troubleshooting

About Diagnostics and Troubleshooting
What this Section Contains . 24-1

Diagnostics Roadmap
Step 1. Eliminate Common Causes . 25-1

Step 2. Observe the Symptoms. 25-3

Step 3. Identify the Problem. 25-4

Step 4. Resolve the Problem. 25-5

Step 5. Send a Trouble Report (Optional) . 25-5

The Oracle JRockit JVM Starts Slowly
Possible Causes Behind a Slow Start . 26-1

Special Note If You Recently Switched JVMs to the JRockit JVM 26-2

Diagnosing a Slow JVM Startup . 26-2

Diagnosing a Slow Application Startup . 26-3

Timing with nanoTime() and currentTimeMillis() . 26-3

System.nanoTime() . 26-3

System.currentTimeMillis() . 26-4

Milliseconds and nanotime at application startup. 26-4

Recommended Solutions for a Slow Start . 26-4

Tune for Faster Startup . 26-4

Eliminate Optimization Problems . 26-4

Eliminate Application Problems . 26-5

Open a Case with Oracle Support . 26-5

Long Latencies
The Problem is Usually with Tuning . 27-1
xii Oracle JRockit Diagnostics Guide

Troubleshooting Tips . 27-2

GC Trigger Value Keeps Increasing . 27-2

GC Reason for Old Collections is Failed Allocations. 27-2

Long Young Collection Pause Times . 27-2

Long Pauses in Deterministic Mode . 27-3

If All Else Fails, Open a Case With Oracle Support . 27-3

Low Overall Throughput
The Problem is Usually with Tuning . 28-1

If All Else Fails, Open a Case With Oracle Support . 28-2

The Oracle JRockit JVM’s Performance Degrades Over Time
The Problem is Usually With Tuning . 29-1

You Could be Experiencing Optimization Problems . 29-2

You Could Be Experiencing a Memory Leak in Java . 29-2

If All Else Fails, Open a Case with Oracle Support . 29-3

The System is Crashing
Notifying Oracle Support . 30-1

Classify the Crash . 30-2

Using a Crash File . 30-2

Determine the Crash Type . 30-2

Out Of Virtual Memory Crash . 30-3

Verify the Out Of Virtual Memory Error. 30-3

Troubleshoot the Out Of Virtual Memory Error . 30-5

Stack Overflow Crash. 30-7

Verify the Stack Overflow Crash. 30-7

Troubleshoot a Stack Overflow Crash. 30-8

Unsupported Linux Configuration Crash . 30-8
Oracle JRockit Diagnostics Guide xiii

Verify that the OS Version is Supported . 30-8

Verify that You Have Installed the Correct glibc Binary 30-9

Examine the Thread Library . 30-9

JVM Crash . 30-9

Code Generation Crash . 30-9

Garbage Collection Crash . 30-12

Understanding Crash Files
Differences Between Text dump Files and Binary core/mdmp Files 31-2

Binary Crash File Sizing . 31-3

Location of Crash Files . 31-3

Enabling Binary core Crash Files on Linux and Sun Solaris 31-4

Enabling Binary mdmp Crash Files on Windows. 31-4

Disabling Crash Files . 31-4

Disabling Text dump Files . 31-4

Disabling the Binary Crash Files . 31-5

Extracting Information From a Text dump File . 31-5

Symptoms to Look For . 31-5

Example of a Text dump File . 31-6

The Oracle JRockit JVM is Freezing
Diagnosing Where the Freeze is Occurring . 32-1

Java Application Freeze . 32-2

Resolving a Java Application freeze . 32-2

If This Did Not Help . 32-2

JVM Freeze . 32-3

Collect Information About the JVM Freeze . 32-3

Submit the Information to Oracle JRockit Support. 32-6
xiv Oracle JRockit Diagnostics Guide

Non-responding NFS Shares . 32-6

Submitting Problems to Oracle Support
Check the Oracle JRockit JVM Forums First. 33-1

Filing the Trouble Report . 33-2

Trouble Reporting Process Overview . 33-2

Identify Your Problem Type . 33-2

Verify That You’re Running a Supported Configuration 33-2

Verify the Problem has Not Been Fixed in a Subsequent Version of the JRockit JVM
33-3

Collect Enough Information to Define Your Issue . 33-3
Oracle JRockit Diagnostics Guide xv

xvi Oracle JRockit Diagnostics Guide

Part I Understanding the
Oracle JRockit JDK
Chapter 1. About the Oracle JRockit JDK
Chapter 2. Understanding JIT Compilation and Optimizations
Chapter 3. Understanding Memory Management
Chapter 4. Understanding Threads and Locks
Chapter 5. Migrating Applications to the Oracle JRockit JDK
Chapter 6. Setting Up and Running the Oracle JRockit JDK
Oracle JRockit Diagnostics Guide

C H A P T E R 1
About the Oracle JRockit JDK
Note: The information in the Diagnostics Guide is only applicable to the Oracle JRockit JDK
R26 and later versions.

The Oracle JRockit JDK provides tools, utilities, and a complete runtime environment for
developing and running applications using the Java programming language. The JRockit JDK
includes the Oracle JRockit Java Virtual Machine (JVM). The Oracle JRockit JVM is developed
and optimized for Intel architectures to ensure reliability, scalability, and manageability for Java
applications.

This section contains information on the following subjects:

What is the JRockit JVM?

JRockit JDK Versions

What Platforms Does the JRockit JDK Support?

Compatibility Information

The Contents of a JRockit JDK Installation

Attach API Support

Oracle JRockit Documentation

JRockit JVM Command Line Options

JRockit JDK and JRockit Mission Control Support
Oracle JRockit JVM Diagnostics Guide 1-1

About the Orac l e JRock i t JDK
What is the JRockit JVM?
The JRockit JVM is a high performance JVM developed to ensure reliability, scalability,
manageability, and flexibility for Java applications. The JRockit JVM delivers a new level of
performance for Java applications deployed on Intel 32-bit (Xeon) and 64-bit (Xeon, Itanium, and
SPARC) architectures at significantly lower costs to the enterprise. Furthermore, it is the only
enterprise-class JVM optimized for Intel architectures, providing seamless inter operability
across multiple hardware and operating configurations. The JRockit JVM makes it possible to
gain optimal performance for your Java applications when running it on either the Windows or
Linux operating platforms on either 32-bit or 64-bit architectures. The JRockit JVM is especially
well suited for running Oracle WebLogic Server.

For more information on JVMs in general, see the Introduction to the JVM Specification at:

http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.ht

ml#3057

About the JDK
The JRockit JVM is one component of the Oracle JRockit Java development kit (JDK). In
addition to the JRockit JVM, the JDK is comprised of the Java Runtime Environment (JRE),
which contains the JVM and Java class libraries (as specified by the Java Platform, Standard
Edition 6 API Specification), as well as a set of development tools, such as a compiler. For more
information about the contents of the JRockit JDK, please refer to The Contents of a JRockit JDK
Installation.

JRockit JDK Versions
The JRockit JDK numbering scheme is based upon:

Java SE version (J2SE 1.4.2, J2SE 5.0, Java SE 6)

The JRockit JVM release number (Rnn.nn.nn)

For example, Oracle JRockit JDK 6 R27.6 refers to the 27.6 release of JRockit JVM used with
Java SE 6; Oracle JRockit JDK 1.4.2 R27.6 refers to the 27.6 release of the JRockit JVM used
with J2SE 1.4.2. All future versions of the JRockit JDK will follow this versioning scheme.

A full version name might look like this:
R27.6.0-1-85830-1.6.0_01-20070716-1248-windows-ia32
1-2 Oracle JRockit JVM Diagnostics Guide

What P la t fo rms Does the JRock i t JDK Suppo r t?
where R27.6.0 is the JRockit JVM release, 1.6.0_01 is the Java version, and windows-ia32
is the platform on which this version runs.

Note: JRockit JDK versions that were based on J2SE releases earlier than 1.4.2 used a different
numbering scheme following the Oracle WebLogic Platform versions. For this reason,
the J2SE 1.3.1 version of the JRockit JDK was called 7.0.

Every JRockit JVM release comes with several Java versions. For example, JRockit JVM R27.6
comes with Java SE versions 1.4.2, 5.0, and 6. A Java version can be compatible with multiple
JRockit JVM releases.

What Platforms Does the JRockit JDK Support?
The JRockit JDK is certified to be compatible with J2SE 1.3.1, 1.4.2, 5.0, and Java SE 6. For a
complete list of platforms that the JRockit JDK supports, please refer to JRockit JDK Supported
Configurations at:

http://e-docs.bea.com/jrockit/jrdocs/suppPlat/supp_plat.html

Compatibility Information
The JRockit JDK subscribes to an update policy that ensures compatibility from one release to
the next to provide simple and complete upgrade flexibility. This policy is described in
Compatibility Between Releases at:

http://e-docs.bea.com/jrockit/jrdocs/suppPlat/prodsupp.html#999010

The Contents of a JRockit JDK Installation
This section describes the various components that make up an installation of the JRockit JDK.
It also identifies the folders in which the components reside.

The JRockit JDK is very similar, in the file layout, to the Sun JDK, except that it includes a new
JRE with the JRockit JVM and some changes to the Java class libraries (however, all of the class
libraries have the same behavior in the JRockit JDK as in the Sun JDK).

The following sections briefly describe the contents of the directories in a JRockit JDK
installation:

Development Tools (/bin)

Demo (/demo)
Oracle JRockit JVM Diagnostics Guide 1-3

About the Orac l e JRock i t JDK
C Header Files (/include)

Java Runtime Environment (JRE) (/jre)

Additional Libraries (/lib)

Sample (/sample)

Development Tools
Found in: /bin

Development tools and utilities help you develop, execute, debug, and document programs
written in the Java programming language. The JRockit JDK includes the standard tools
commonly distributed with the typical Java JDKs. While most of these are standard JDK tools
and are proven to work well with Java development projects, you are free to use any other third
party tools, compilers, debuggers, IDEs, and so on that might work best in your situation. The
tools included with the JRockit JDK are:

Javac compiler

Jdb debugger

Javadoc, which is used to create an HTML documentation site for the JVM API

For more information on these tools, please refer to Sun Microsystem’s Java SE 6 Development
Kit at:
http://java.sun.com/javase/6/

Demo
Found in: /demo

This directory contains various demos of how to use various libraries included in the JRockit JDK
installation.

C Header Files
Found in: /include

Header files that support native-code programming using the Java Native Interface (JNI) and the
Java Virtual Machine Tools Interface (JVMTI) and other functionality of the Java SE Platform.
1-4 Oracle JRockit JVM Diagnostics Guide

http://java.sun.com/javase/6/

The Contents o f a JRock i t JDK Ins ta l la t i on
Java Runtime Environment (JRE)
Found in: /jre

The JRockit JVM implementation of the Java runtime environment. The runtime environment
includes the JRockit JVM, class libraries, and other files that support the execution of programs
written in Java.

Java Virtual Machine
By definition, the JVM is the JRockit JVM, as described in this documentation set.

Standard Java SE JRE Features
In addition to JRE components specific to the JRockit JDK, the JRE also contains components
found in the Sun implementation of the JRE. For a complete list of the standard Java SE JRE
features, see the Sun documentation for the specific version of JRockit JDK you are running:

JRockit JDK 6 R27.2 and higher:

http://java.sun.com/javase/6/docs/index.html

JRockit JDK 5.0 R25 and higher:

http://java.sun.com/j2se/1.5.0/docs/index.html

JRockit JDK 1.4.2 R26 and higher:

http://java.sun.com/j2se/1.4.2/docs/index.html

Note on JRE Class Files
The JRE class files distributed with the JRockit JDK come directly from Sun, except for a small
number that are tightly coupled to the JVM and are therefore overridden in the JRockit JDK. The
overridden class files are in the java.lang, java.io, java.net, and java.util packages. No
classes have been omitted.

Additional Libraries
Found in: /lib

Additional class libraries and support files required by the development tools.
Oracle JRockit JVM Diagnostics Guide 1-5

http://java.sun.com/javase/6/docs/index.html

About the Orac l e JRock i t JDK
Sample
Found in: /sample

The Sample directory contains the source files for a simple NIO-based HTTP/HTTPS Server
written in Java. The server was written to demonstrate some of the functionality of the Java 2
platform. The demo is not meant to be a full tutorial, it assumes that you have some familiarity
with the subject matter.

Attach API Support
Versions of the JRockit JVM running on Java 6 support the Attach API. This API is a Java
extension that provides a way to attach tools written in Java to JRockit JVM and load their tool
agents into it. For example, a management console might use a management agent to obtain
objects in the JRockit JVM instance. If the management console has to manage an application
running in a JRockit JVM instance that doesn’t include the management agent, you can use this
API to attach to the JRockit JVM instance and load the agent.

For more information, please see the Attach API specification at:
http://java.sun.com/javase/6/docs/jdk/api/attach/spec/index.html

Oracle JRockit Documentation
The Oracle JRockit JVM Diagnostics Guide is a general document applicable to the R27 release
and all subsequent JRockit JDK releases.

For links to all documentation available for the latest version of the JRockit JDK, visit the Oracle
JRockit documentation page at the following location:

http://edocs.bea.com/jrockit/webdocs/index.html

From this page, you can also access the documentation for earlier versions of the Oracle JRockit
JDK.

You can find documentation for the Oracle JRockit Mission Control tools at the following
location:

http://edocs.bea.com/jrockit/tools/index.html
1-6 Oracle JRockit JVM Diagnostics Guide

http://edocs.bea.com/jrockit/webdocs/index.html

JRock i t JVM Command L ine Opt ions
JRockit JVM Command Line Options
The Oracle JRockit JVM configuration and tuning parameters are set by using specific command
line options, which you can enter either along with the start-up command or include in a start-up
script. These options are discussed in the Oracle JRockit Command Line Reference, at:

http://edocs.bea.com/jrockit/jrdocs/refman/index.html

JRockit JDK and JRockit Mission Control Support
You are entitled to support on the JVM and JRockit Mission Control if you have a support
agreement with Oracle.
Oracle JRockit JVM Diagnostics Guide 1-7

About the Orac l e JRock i t JDK
1-8 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 2
Understanding JIT Compilation and
Optimizations
This section offers a high-level look at how the Oracle JRockit JVM generates code. It provides
information on JIT compilation and how the JVM optimizes code to ensure high performance.
This section contains information on the following subjects:

More than a “Black Box”

How the JRockit JVM Compiles Code

An Example Illustrating Some Code Optimizations

More than a “Black Box”
From the user’s point of view, the JRockit JVM is merely a black box that “converts” Java code
to highly optimized machine code: you put Java code in one end of the JVM and out the other end
comes machine code for your particular platform (see Figure 2-1).
Oracle JRockit JVM Diagnostics Guide 2-1

Unders tanding J I T Compi la t ion and Opt imizat ions
Figure 2-1 The JRockit JVM as a Black Box

When lifting the lid of the black box you will see different actions that are taken before the code
is optimized for your particular operating system. There are certain operations, data structure
changes, and transformations that take place before the code leaves the JVM (see Figure 2-2).
2-2 Oracle JRockit JVM Diagnostics Guide

How the JRock i t JVM Compi les Code
Figure 2-2 Lifting the Black Box

This section sheds some light on what actually happens with the Java application code when
going through the JVM.

How the JRockit JVM Compiles Code
The code generator in the JRockit JVM runs in the background during the entire run of your Java
application, automatically adapting the code to run its best. The code generator works in three
steps, as described in Figure 2-3.
Oracle JRockit JVM Diagnostics Guide 2-3

Unders tanding J I T Compi la t ion and Opt imizat ions
Figure 2-3 How the JRockit JVM Optimizes Code for Your Java Application

1. The JRockit JVM Runs JIT Compilation
The first step of code generation is the Just-In-Time (JIT) compilation. This compilation allows
your Java application to start and run while the code that is generated is not highly optimized for
the platform. Although the JIT is not actually part of the JVM standard, it is, nonetheless, an
essential component of Java. In theory, the JIT comes into use whenever a Java method is called,
and it compiles the bytecode of that method into native machine code, thereby compiling it “just
in time” to execute.

After a method is compiled, the JRockit JVM calls that method’s compiled code directly instead
of trying to interpret it, which makes the running of the application fast. However, during the
beginning of the run, thousands of new methods are executed, which can make the actual start of
the JRockit JVM slower than other JVMs. This is due to a significant overhead for the JIT to run
and compile the methods. So, if you run a JVM without a JIT, that JVM starts up quickly but
usually runs slower. If you run the JRockit JVM that contains a JIT, it can start up slowly, but
then runs quickly. At some point, you might find that it takes longer to start the JVM than to run
an application.

Compiling all of the methods with all available optimizations at startup would negatively impact
the startup time. Thus the JIT compilation does not fully optimize all methods at startup.

2. The JRockit JVM Monitors Threads
During the second phase, the JRockit JVM uses a sophisticated, low-cost, sampling-based
technique to identify which functions merit optimization: a “sampler thread” wakes up at periodic
intervals and checks the status of several application threads. It identifies what each thread is
2-4 Oracle JRockit JVM Diagnostics Guide

An Example I l lus t ra t ing Some Code Opt imi zat ions
executing and notes some of the execution history. This information is tracked for all the methods
and when it is perceived that a method is experiencing heavy use—in other words, is “hot”—that
method is earmarked for optimization. Usually, a flurry of such optimization opportunities occur
in the application’s early run stages, with the rate slowing down as execution continues.

3. The JRockit JVM Runs Optimization
During the third phase, the JVM runs an optimization round of the methods that it perceives to be
the most used—“hot”—methods. This optimization is run in the background and does not disturb
the running application.

An Example Illustrating Some Code Optimizations
This example illustrates some ways in which the JRockit JVM optimizes Java code. The example
is fairly short and simple, but it will give you a general idea of how the actual Java code can be
optimized. Note that there are many ways of optimizing Java applications that are not discussed
here.

In Table 2-1 you can see how the code before and after optimization. The differences might not
look substantial, but note that the optimized code does not need to run down to Class B every time
Class A is run.
Oracle JRockit JVM Diagnostics Guide 2-5

Unders tanding J I T Compi la t ion and Opt imizat ions
Steps Taken to Optimize Class A
When the Oracle JRockit JVM optimizes code it goes through several steps to get the best
optimization possible. The example from Table 2-1 shows on how a method looks like before and
after the optimization. In Table 2-2 you find an explanation of what can happen in a few
optimization steps that the JVM might go through at the level of the Java application code itself.
Note that several optimizations appear at the level of the assembler code, however.

Table 2-1 Example of before and after optimization of a class

Class A before optimization Class A after optimization

class A {
B b;
public void foo() {

y = b.get();
...do stuff...
z = b.get();
sum = y + z;

}
}

class B {
int value;
final int get() {

return value;
}

}

class A {
B b;
public void foo() {

y = b.value;
...do stuff...
sum = y + y;

}
}

class B {
int value;
final int get() {

return value;
}

}

2-6 Oracle JRockit JVM Diagnostics Guide

An Example I l lus t ra t ing Some Code Opt imi zat ions
Table 2-2 Different Optimization Steps

Step in
Optimization

Code Transformation Comment

Starting point public void foo() {
y = b.get();
...do stuff...
z = b.get();
sum = y + z;

}

1. Inline final
method

public void foo() {
y = b.value;
...do stuff...
z = b.value;
sum = y + z;

}

// b.get() has been replaced by b.value
// as latencies are reduced by accessing
// b.value directly instead of through
// a function call.

2. Remove
redundant
loads

public void foo() {
y = b.value;
...do stuff...
z = y;
sum = y + z;

}

// z = b.value has been replaced with
// z = y so that latencies will be
// reduced by accessing the local value
// instead of b.value.

3. Copy
propagation

public void foo() {
y = b.value;
...do stuff...
y = y;
sum = y + y;

}

// z = y has been replaced by y = y since
// there is no use for an extra variable
// z as the value of z and y will be
// equal.

4. Eliminate
dead code

public void foo() {
y = b.value;
...do stuff...
sum = y + y;

}

// y = y is unnecessary and can be
// eliminated.
Oracle JRockit JVM Diagnostics Guide 2-7

Unders tanding J I T Compi la t ion and Opt imizat ions
2-8 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 3
Understanding Memory Management
Memory management is the process of allocating new objects and removing unused objects to
make space for those new object allocations. This section presents some basic memory
management concepts and explains the basics about object allocation and garbage collection in
the Oracle JRockit JVM. The following topics are covered:

The Heap and the Nursery

Object Allocation

Garbage Collection

For information about how to use command line options to tune the memory management system,
see Tuning the Memory Management System.

The Heap and the Nursery
Java objects reside in an area called the heap. The heap is created when the JVM starts up and
may increase or decrease in size while the application runs. When the heap becomes full, garbage
is collected. During the garbage collection objects that are no longer used are cleared, thus
making space for new objects.

Note that the JVM uses more memory than just the heap. For example Java methods, thread
stacks and native handles are allocated in memory separate from the heap, as well as JVM internal
data structures.

The heap is sometimes divided into two areas (or generations) called the nursery (or young
space) and the old space. The nursery is a part of the heap reserved for allocation of new objects.
Oracle JRockit JVM Diagnostics Guide 3-1

Unders tanding Memory Management
When the nursery becomes full, garbage is collected by running a special young collection, where
all objects that have lived long enough in the nursery are promoted (moved) to the old space, thus
freeing up the nursery for more object allocation. When the old space becomes full garbage is
collected there, a process called an old collection.

The reasoning behind a nursery is that most objects are temporary and short lived. A young
collection is designed to be swift at finding newly allocated objects that are still alive and moving
them away from the nursery. Typically, a young collection frees a given amount of memory much
faster than an old collection or a garbage collection of a single-generational heap (a heap without
a nursery).

In R27.2.0 and later releases, a part of the nursery is reserved as a keep area. The keep area
contains the most recently allocated objects in the nursery and is not garbage collected until the
next young collection. This prevents objects from being promoted just because they were
allocated right before a young collection started.

Object Allocation
During object allocation, the JRockit JVM distinguishes between small and large objects. The
limit for when an object is considered large depends on the JVM version, the heap size, the
garbage collection strategy and the platform used, but is usually somewhere between 2 and 128
kB. Please see the documentation for -XXtlaSize and -XXlargeObjectLimit for more
information.

Small objects are allocated in thread local areas (TLAs). The thread local areas are free chunks
reserved from the heap and given to a Java thread for exclusive use. The thread can then allocate
objects in its TLA without synchronizing with other threads. When the TLA becomes full, the
thread simply requests a new TLA. The TLAs are reserved from the nursery if such exists,
otherwise they are reserved anywhere in the heap.

Large objects that don’t fit inside a TLA are allocated directly on the heap. When a nursery is
used, the large objects are allocated directly in old space. Allocation of large objects requires
more synchronization between the Java threads, although the JRockit JVM uses a system of
caches of free chunks of different sizes to reduce the need for synchronization and improve the
allocation speed.

Garbage Collection
Garbage collection is the process of freeing space in the heap or the nursery for allocation of new
objects. This section describes the garbage collection in the JRockit JVM.
3-2 Oracle JRockit JVM Diagnostics Guide

Garbage Co l lec t i on
The Mark and Sweep Model

Generational Garbage Collection

Dynamic and Static Garbage Collection Modes

Compaction

The Mark and Sweep Model
The JRockit JVM uses the mark and sweep garbage collection model for performing garbage
collections of the whole heap. A mark and sweep garbage collection consists of two phases, the
mark phase and the sweep phase.

During the mark phase all objects that are reachable from Java threads, native handles and other
root sources are marked as alive, as well as the objects that are reachable from these objects and
so forth. This process identifies and marks all objects that are still used, and the rest can be
considered garbage.

During the sweep phase the heap is traversed to find the gaps between the live objects. These gaps
are recorded in a free list and are made available for new object allocation.

The JRockit JVM uses two improved versions of the mark and sweep model. One is mostly
concurrent mark and sweep and the other is parallel mark and sweep. You can also mix the two
strategies, running for example mostly concurrent mark and parallel sweep.

Mostly Concurrent Mark and Sweep
The mostly concurrent mark and sweep strategy (often simply called concurrent garbage
collection) allows the Java threads to continue running during large portions of the garbage
collection. The threads must however be stopped a few times for synchronization.

The mostly concurrent mark phase is divided into four parts:

Initial marking, where the root set of live objects is identified. This is done while the Java
threads are paused.

Concurrent marking, where the references from the root set are followed in order to find
and mark the rest of the live objects in the heap. This is done while the Java threads are
running.

Precleaning, where changes in the heap during the concurrent mark phase are identified
and any additional live objects are found and marked. This is done while the Java threads
are running.
Oracle JRockit JVM Diagnostics Guide 3-3

Unders tanding Memory Management
Final marking, where changes during the precleaning phase are identified and any
additional live objects are found and marked. This is done while the Java threads are
paused.

The mostly concurrent sweep phase consists of four parts:

Sweeping of one half of the heap. This is done while the Java threads are running and are
allowed to allocate objects in the part of the heap that isn’t currently being swept.

A short pause to switch halves.

Sweeping of the other half of the heap. This is done while the Java threads are running and
are allowed to allocate objects in the part of the heap that was swept first.

A short pause for synchronization and recording statistics.

Parallel Mark and Sweep
The parallel mark and sweep strategy (also called the parallel garbage collector) uses all
available CPUs in the system for performing the garbage collection as fast as possible. All Java
threads are paused during the entire parallel garbage collection.

Generational Garbage Collection
The nursery, when it exists, is garbage collected with a special garbage collection called a young
collection. A garbage collection strategy which uses a nursery is called a generational garbage
collection strategy, or simply generational garbage collection.

The young collector used in the JRockit JVM identifies and promotes all live objects in the
nursery that are outside the keep area to the old space. This work is done in parallel using all
available CPUs. The Java threads are paused during the entire young collection.

Dynamic and Static Garbage Collection Modes
By default, the JRockit JVM uses a dynamic garbage collection mode that automatically selects
a garbage collection strategy to use, aiming at optimizing the application throughput. You can
also choose between two other dynamic garbage collection modes or select the garbage collection
strategy statically. The following dynamic modes are available:

throughput, which optimizes the garbage collector for maximum application throughput.
This is the default mode.

pausetime, which optimizes the garbage collector for short and even pause times.
3-4 Oracle JRockit JVM Diagnostics Guide

Garbage Co l lec t i on
deterministic, which optimizes the garbage collector for very short and deterministic
pause times. This mode is only available as a part of Oracle JRockit Real Time.

The major static strategies are:

singlepar, which is a single-generational parallel garbage collector (same as parallel)

genpar, which is a two-generational parallel garbage collector

singlecon, which is a single-generational mostly concurrent garbage collector

gencon, which is a two-generational mostly concurrent garbage collector

For more information on how to select the best mode or strategy for your application, see
Selecting and Tuning a Garbage Collector.

Compaction
Objects that are allocated next to each other will not necessarily become unreachable (“die”) at
the same time. This means that the heap may become fragmented after a garbage collection, so
that the free spaces in the heap are many but small, making allocation of large objects hard or
even impossible. Free spaces that are smaller than the minimum thread local area (TLA) size can
not be used at all, and the garbage collector discards them as dark matter until a future garbage
collection frees enough space next to them to create a space large enough for a TLA.

To reduce fragmentation, the JRockit JVM compacts a part of the heap at every garbage
collection (old collection). Compaction moves objects closer together and further down in the
heap, thus creating larger free areas near the top of the heap. The size and position of the
compaction area as well as the compaction method is selected by advanced heuristics, depending
on the garbage collection mode used.

Compaction is performed at the beginning of or during the sweep phase and while all Java threads
are paused.

For information on how to tune compaction, see Tuning the Compaction of Memory.

External and Internal Compaction
The JRockit JVM uses two compaction methods called external compaction and internal
compaction. External compaction moves (evacuates) the objects within the compaction area to
free positions outside the compaction area and as far down in the heap as possible. Internal
compaction moves the objects within the compaction area as far down in the compaction area as
possible, thus moving them closer together.
Oracle JRockit JVM Diagnostics Guide 3-5

Unders tanding Memory Management
The JVM selects a compaction method depending on the current garbage collection mode and the
position of the compaction area. External compaction is typically used near the top of the heap,
while internal compaction is used near the bottom where the density of objects is higher.

Sliding Window Schemes
The position of the compaction area changes at each garbage collection, using one or two sliding
windows to determine the next position. Each sliding window moves a notch up or down in the
heap at each garbage collection, until it reaches the other end of the heap or meets a sliding
window that moves in the opposite direction, and starts over again. Thus the whole heap is
eventually traversed by compaction over and over again.

Compaction Area Sizing
The size of the compaction area depends on the garbage collection mode used. In throughput
mode the compaction area size is static, while all other modes, including the static mode, adjust
the compaction area size depending on the compaction area position, aiming at keeping the
compaction times equal throughout the run. The compaction time depends on the number of
objects moved and the number of references to these objects. Thus the compaction area will be
smaller in parts of the heap where the object density is high or where the amount of references to
the objects within the area is high. Typically the object density is higher near the bottom of the
heap than at the top of the heap, except at the very top where the latest allocated objects are found.
Thus the compaction areas are usually smaller near the bottom of the heap than in the top half of
the heap.
3-6 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 4
Understanding Threads and Locks
A running application is usually made up of one process with its own memory space. A computer
is generally running several processes at the same time. For example, a word processor
application process might be running alongside a media player application process. Furthermore,
a process consists of many concurrently running threads. When you run a Java application, a new
JVM process is started.

Each Java process has at least one application thread. Besides the threads of the running Java
application, there are also Oracle JRockit JVM internal threads that take care of garbage
collection or code generation.

This section contains basic information about threads and locks in the JRockit JVM. The
following subjects are discussed:

Understanding Threads

Understanding Locks

For information about how to make so-called thread dumps, printouts of the stacks of all the
threads in an application, see Using Thread Dumps. Thread dumps can be used to diagnose
problems and optimize application and JVM performance.

Understanding Threads
A java application consists of one or more threads that run Java code. The entire JVM process
consists of the Java threads and some JVM internal threads, for example one or more garbage
collection threads, a code optimizer thread and one or more finalizer threads.
Oracle JRockit JVM Diagnostics Guide 4-1

Unders tand ing Threads and Locks
From the operating system’s point of view the Java threads are just like any application threads.
Scheduling of the threads is handled by the operating system, as well as thread priorities.

Within Java, the Java threads are represented by thread objects. Each thread also has a stack, used
for storing runtime data. The thread stack has a specific size. If a thread tries to store more items
on the stack than the stack size allows, the thread will throw a stack overflow error.

Default Stack Size for Java Threads
This section lists the default stack sizes. You can change the thread stack size with the -Xss
command line option, for example:
java -Xss:512k MyApplication

The default stack sizes differ depending upon whether you are using IA32 and X64, as shown in
Table 1:

Default Stack Size for JVM Internal Threads
A special “system” stack size is used for JVM internal threads; for example, the garbage
collection and code generation threads. The default system stack size is 256 KB on all platforms.

Note: The -Xss command line option sets the stack size of both application threads and JVM
internal threads.

Table 1 Default Stack Size

OS Default Stack Size

Windows IA32 64 kB

Windows IA64 320 KB

Windows x64 128 kB

Linux IA32 128 kB

Linux IA64 1024 KB

Linux x64 256 kB

Solaris/SPARC 512 KB
4-2 Oracle JRockit JVM Diagnostics Guide

http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540
http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540
http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540
http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540

Unders tand ing Locks
Understanding Locks
When threads in a process share and update the same data, their activities must be synchronized
to avoid errors. In Java, this is done with the synchronized keyword, or with wait and notify.
Synchronization is achieved by the use of locks, each of which is associated with an object by the
JVM. For a thread to work on an object, it must have control over the lock associated with it, it
must “hold” the lock. Only one thread can hold a lock at a time. If a thread tries to take a lock that
is already held by another thread, then it must wait until the lock is released. When this happens,
there is so called “contention” for the lock.

There are four different kinds of locks:

Fat locks: A fat lock is a lock with a history of contention (several threads trying to take
the lock simultaneously), or a lock that has been waited on (for notification).

Thin locks: A thin lock is a lock that does not have any contention.

Recursive locks: A recursive lock is a lock that has been taken by a thread several times
without having been released.

Lazy locks: A lazy lock is a lock that is not released when a critical section is exited. Once
a lazy lock is acquired by a thread, other threads that try to acquire the lock have to ensure
that the lock is, or can be, released. Lazy locks are used by default in Oracle JRockit JVM
27.6. In older releases, lazy locks are only used if you have started the JVM with the
-XXlazyUnlocking option.

A thin lock can be inflated to a fat lock and a fat lock can be deflated to a thin lock. The JRockit
JVM uses a complex set of heuristics to determine when to inflate a thin lock to a fat lock and
when to deflate a fat lock to a thin lock.

Spinning and Sleeping
Spinning occurs when a thread that wants a specific lock continuously checks that lock to see if
it is still taken, instead of yielding CPU-time to another thread.

Alternatively, a thread that tries to take a lock that is already held waits for notification from the
lock and goes into a sleeping state. The thread will then wait passively for the lock to be released.

Lock Chains
Several threads can be tied up in what is called lock chains. Although they appear somewhat
complex, lock chains are fairly straightforward. They can be defined as follows:
Oracle JRockit JVM Diagnostics Guide 4-3

Unders tand ing Threads and Locks
Threads A and B form a lock chain if thread A holds a lock that thread B is trying to take.
If A is not trying to take a lock, then the lock chain is “open.”

If A->B is a lock chain, and B->C is a lock chain, then A->B->C is a more complete lock
chain.

If there is no additional thread waiting for a lock held by C, then A->B->C is a complete
and open lock chain.

Lock Chain Types
The JRockit JVM analyzes the threads and forms complete lock chains. There are three possible
kinds of lock chains: Open, Deadlocked and Blocked lock chains.

Open Chains
Open lock chains represent a straight dependency, thread A is waiting for B which is waiting for
C, and so on. If you have long open lock chains, your application might be wasting time waiting
for locks. You may then want to reconsider how locks are used for synchronization in your
application.

Deadlock Chains
A deadlocked, or circular, lock chain consists of a chain of threads, in which the first thread in
the chain is waiting for the last thread in the chain. In the simplest case, thread A is waiting for
thread B, while thread B is waiting for thread A. Note that a deadlocked chain has no head. In
thread dumps, the Oracle JRockit JVM selects an arbitrary thread to display as the first thread in
the chain.

Deadlocks can never be resolved, and the application will be stuck waiting indefinitely.

Blocked Chains
A blocked lock chain is made up of a lock chain whose head thread is also part of another lock
chain, which can be either open or deadlocked. For example, if thread A is waiting for thread B,
thread B is waiting for thread A, and thread C is waiting for thread A, then thread A and B form
a deadlocked lock chain, while thread C and thread A form a blocked lock chain.
4-4 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 5
Migrating Applications to the Oracle
JRockit JDK
This section describes how to migrate Java applications developed on another JDKs to the Oracle
JRockit JDK to ensure optimal performance during runtime. This section contains information on
the following subjects:

About Application Migration

Migration Support

Migration Procedures

Testing the Application

Replicating Tools Supplied with the Sun JDK

Command-line Option Compatibility Between the JRockit JVM and Sun

Submitting Migration Tips

About Application Migration
Migrating an application to the JRockit JDK is a relatively simple process, requiring some minor
environmental changes and following some simple coding guidelines. This section provides
instructions and tips to successfully completing this simple process. It also describes some of the
benefits and possible problems you might encounter during migration and it discusses some best
J2SE coding practices for you to follow to ensure that your application runs successfully once it
is running on the JRockit JDK.
Oracle JRockit JVM Diagnostics Guide 5-1

Migrat ing App l icat ions to the Orac le JRock i t JDK
Why Migrate?
The JRockit JDK is the default JDK shipped with Oracle WebLogic Server. Although there are
other JDKs available on the market today that you can use to develop Java applications, Oracle
recommends that you use JRockit JDK with your Oracle products.

Migration Restrictions
Migration is available for all platforms when Oracle WebLogic Server is supported with the
JRockit JDK. For a list of supported platforms, please refer to:

http://edocs.bea.com/platform/suppconfigs/index.html

Migration Support
Should you experience any problems or find any bugs while attempting to migrate an application
to the JRockit JDK, please send us an e-mail at support@bea.com. We would appreciate if you
could provide as much information as possible about the problem, for example:

Hardware

Operating system and its version

The program you are attempting to migrate

Stack dumps (if any)

A small code example that will reproduce the error

Copies of any *.dump and *.mdmp/core process memory dump files. On Windows they
are stored as *.mdmp, on Linux and Solaris as core or core.*

Migration Procedures
This section describes basic environmental and implementation changes necessary to migrate to
JRockit JDK from a third-party JDK, such as the Sun Microsystems JDK. It includes information
on the following subjects:

Environment Changes

Other Tips

Tuning the JRockit JVM for Your Application
5-2 Oracle JRockit JVM Diagnostics Guide

Migrat i on Procedures
Environment Changes
Note: The changes described in this section apply primarily to Oracle WebLogic Server. If you

are working with other Java applications, you will need to change the scripts and
environments according to how that application is set up.

To migrate from a third-party JDK to the JRockit JDK, you need to make the following changes
to the files.

Set the JAVA_HOME environmental variable in <WEBLOGIC_HOME>/common/commEnv.cmd
(or .sh) to the appropriate path.

Set the JAVA_VENDOR environmental variable in
<WEBLOGIC_HOME>/common/commEnv.cmd (or .sh) to BEA.

If you are using a start-up script, remove any Sun-specific (or other JVM provider) options
from the start command line (like -XX:NewSize). If possible, replace them with Oracle
JRockit JVM-specific options; for example, -Xns. Other flags that might need to be
changed include MEM_ARGS and JAVA_VM.

(For more information on command-line options supported by the JRockit JVM, please
refer to the Reference Manual.)

Change config.xml to point the default compiler setting(s) to the javac compiler in the
JRockit JDK.

Other Tips
For information on other coding practices that will ensure a successful migration of your
application to the JRockit JDK, please refer to Developing Java Applications.

Tuning the JRockit JVM for Your Application
Once you’ve migrated your application to the JRockit JDK, you might want to tune the JVM for
optimal performance. For example, you might want to specify a different start-up heap size or set
custom garbage collection parameters. You can find detailed information on tuning the JRockit
JVM in the chapters of the section Profiling and Performance Tuning.

The non-standard options, that is, options preceded with -X, are critical tools for tuning a JVM at
startup. These options change the behavior of the JRockit JVM to better suit the needs of different
Java applications.
Oracle JRockit JVM Diagnostics Guide 5-3

Migrat ing App l icat ions to the Orac le JRock i t JDK
While all JVMs use non-standard options, the option names might not be the same from JVM to
JVM; for example, while the JRockit JVM will accept the non-standard option -Xns to set the
nursery in generational concurrent and generational parallel garbage collectors, Sun’s HotSpot
JVM uses the non-standard option -XX:NewSize to set this value.

If you are migrating an application to the JRockit JDK, we recommend that you become familiar
with the non-standard options available to you. For more information, please refer to the
Reference Manual.

You should also be aware that, being non-standard, non-standard options are subject to change at
any time.

Testing the Application
Always test your application on the JRockit JVM before putting it into production. If you develop
your application on the Sun JVM (HotSpot), you must test your application on the JRockit JVM
before you put it into production.

Why Test?
Some important reasons for testing are:

Sometimes you might find bugs in your own program that don’t occur on the Sun JVM; for
example, synchronization problems.

You might have used third party class libraries that do not follow the Java specifications
and rely on Sun-specific classes or behavior.

You might have used third-party class files that are not correct. The JRockit JVM has been
known to enforce verification more rigorously than the Sun JVM.

How to Test
To test your application on the JRockit JVM:

1. Run your application against any test scripts or benchmarks that are appropriate for that
application.

2. If any problems occur, handle them as you normally would for the specific application.
5-4 Oracle JRockit JVM Diagnostics Guide

Rep l i cat ing Too ls Suppl i ed wi th the Sun JDK
Replicating Tools Supplied with the Sun JDK
The following J2SE tools, normally available with the Sun JDK, are not shipped with the JRockit
JDK:

jinfo

jhat

jmap

jsadebugd

jstack

The JRockit JDK provides internal tools that are equivalent to or better than most of the Sun tools.
Listing 5-1 lists the Sun tools and their JRockit JDK equivalents. Some of these tools require
using the jrcmd feature. For more information, please refer to Running Diagnostic Commands

Table 5-1 JRockit JDK/Sun Tool Equivalents

Sun Tool Shipped with
JRockit JDK

JRockit JDK Equivalent

jinfo No jrcmd <pid> print_properties

jrcmd <pid> command_line

jhat No JRockit Memory Leak Detector (see The JRockit Memory Leak
Detector) and JRockit Runtime Analyzer (see The JRockit Runtime
Analyzer).

jmap No JRockit Memory Leak Detector (see The JRockit Memory Leak
Detector)
jrcmd <pid> print_object_summary

jrcmd <pid> verbose_referents

jrcmd <pid> heap_diagnostics

jsadebugd No No equivalent tool

jstack No jrcmd <pid> print_threads

jps Yes jrcmd
Oracle JRockit JVM Diagnostics Guide 5-5

Migrat ing App l icat ions to the Orac le JRock i t JDK
Command-line Option Compatibility Between the JRockit
JVM and Sun

This section describes the compatibility between command-line options available when running
the JRockit JVM and when running the Sun Hotspot JVM. These options correspond to each
other by name only, by function only, or both by name and function.

Table 5-2 lists options that both Sun Hotspot JVM and the JRockit JVM have but have different
functionality depending upon the JVM you are running.

Table 5-3 lists options that work the same or similarly on both Sun Hotspot and the JRockit JVM
but have different names depending upon the JVM you are running.

jstat Yes No equivalent, jstat works with the JRockit JVM. The JRockit
Runtime Analyzer (see The JRockit Runtime Analyzer) and the
JRockit Management Console in Oracle JRockit Mission Control
(see The JRockit Management Console) are however better tools for
this purpose.

jstatd Yes No equivalent, jstatd works with the JRockit JVM.

jconsole Yes jconsole works with the JRockit JVM. The JRockit Management
Console in JRockit Mission Control (see The JRockit Management
Console) is however a better tool for monitoring the JRockit JVM.

jrunscript Yes No equivalent, jrunscript works with the JRockit JVM.

Table 5-1 JRockit JDK/Sun Tool Equivalents

Sun Tool Shipped with
JRockit JDK

JRockit JDK Equivalent

Table 5-2 Same Name, Different Function

Option Name Hotspot Function JRockit JVM Function

-Xms Sets the initial size of the heap Sets the initial and minimum size of the heap.
For complete description, please refer to
-Xms.
5-6 Oracle JRockit JVM Diagnostics Guide

Submi t t ing Mig ra t i on T ips
Table 5-4 lists options only available when using the Oracle JRockit JVM.

Submitting Migration Tips
The migration tips discussed in this section represent an evolving list. Often, a successful
migration to the JRockit JDK depends as much upon the application being migrated as it does to
the VMs being used. Oracle welcomes suggestions based upon your experiences with migrating
applications to the Oracle JRockit JDK. Feel free to submit any migration ideas or comments to
the Oracle JRockit forums at dev2dev.

Table 5-3 Different Name, Same or Similar Function

Hotspot Option Name JRockit JVM Option Name Function

-XX:+AggressiveHeap -XXaggressive:memory Configures the memory system for
memory-intensive workloads and sets
an expectation to enable large
amounts of memory resources to
ensure high throughput. The JRockit
JVM will also use large pages, if
available.

-verbose:gc -Xverbose:memory Prints out log information about the
memory system

-Xmn, -XXNewSize,
-XXMaxNewSize

-Xns Sets the size of the young generation

-XX:+UseConcMarkSweepGC -Xgc:singlecon Sets the garbage collector to use a
concurrent strategy

-XX:+UseParallelGC -Xgc:parallel Sets the garbage collector to use a
parallel strategy

Table 5-4 Options Available for JRockit JVM Only

Option name Function

-XgcPrio Specifies what to prioritize: even pause times or maximum throughput

-XpauseTarget Specifies a suitable pause time for the application
Oracle JRockit JVM Diagnostics Guide 5-7

Migrat ing App l icat ions to the Orac le JRock i t JDK
5-8 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 6
Setting Up and Running the Oracle
JRockit JDK
Before using the Oracle JRockit JDK, you need to make sure that it is set up correctly. This
section gives you hints on how to set up your environment for your specific platform. Once you
have configured the environment correctly, you will find the diagnosing process easier. The
configuration is done in the following steps:

Installing the Oracle JRockit JDK

Setting Up and Checking Your Linux Environment

Setting Up and Checking Your Windows Environment

Setting Up and Checking Your Sun Solaris Environment

Setting the Path to the License File

Installing the Oracle JRockit JDK
The JRockit JDK is included in several Oracle products, for example Oracle JRockit Mission
Control, Oracle JRockit Real Time and Oracle WebLogic.

Setting Up and Checking Your Linux Environment
The Linux operating systems exist in a large number of updates and patches. Oracle personnel is
not able to test the JRockit JDK against every patch that is released. Instead we intend to test the
most recent releases of some few distributions. As a general rule, you should keep your Linux
environment up to date and make sure you have a release that is supported by Oracle when
Oracle JRockit JVM Diagnostics Guide 6-1

Se t t ing Up and Running the Orac le JRock i t JDK
running the JRockit JDK. Please see the Oracle JRockit JDK Supported Configurations
document for a list of releases and distributions that the JRockit JDK has been successfully tested
against.

The following path is the correct path for Linux installations:

export PATH=$HOME/jrockit-<jrockit_version>-jdk<sun_version>/bin:$PATH

Linux on IA32
When running the Oracle JRockit JVM on Linux IA32, it must be configured to use the glibc
compiled for i686 architecture, otherwise you will see freezes and crashes with the JRockit JVM.

Check which glibc is installed by running:

rpm -q --queryformat ‘\n%{NAME} %{VERSION} %{RELEASE} %{ARCH}\n’ glibc

Using LD_ASSUME_KERNEL
When using the JRockit JDK 1.4.2 on Linux, you should first make sure that the environment
variable LD_ASSUME_KERNEL is not defined. If LD_ASSUME_KERNEL is defined, the JRockit JVM
will use an older and slower threading implementation, which can deter—and will not improve—
performance.

Running in a chroot(3) Environment
In some Linux versions the /proc filesystem isn’t mounted when running in a chroot(3)
environment. This may cause the JRockit JVM to become unstable or crash when running in the
chroot(3) environment, as the JVM and some Linux libraries need to access information about
the hardware platform from /proc.

To verify that /proc is mounted you can issue the shell command getconf
_NPROCESSORS_CONF from the command line in your chroot(3) environment. This command
should return the correct number of processors on your system, otherwise you will have to mount
the /proc filesystem before running the JRockit JVM.

Setting Up and Checking Your Windows Environment
There are a number of environment variables that control the operation of the JRockit JVM on
Windows. The following PATH environment variable needs to point to the directory of your Java
installation:
6-2 Oracle JRockit JVM Diagnostics Guide

Set t ing Up and Check ing Your Sun So la r is Env i ronment
set
PATH=%ProgramFiles%\Java\jrockit-<jrockit_version>-jdk<sun_version>\bin;%PATH%

Setting Up and Checking Your Sun Solaris Environment
The following path is the correct path for Solaris installations:

export PATH=$HOME/jrockit-<jrockit_version>-jdk<sun_version>/bin:$PATH

Oracle JRockit JDK is included in several products, for example Oracle JRockit Mission Control,
Oracle JRockit Real Time and Oracle WebLogic. For more information, see the installation
guides for your specific Oracle product.

Setting the Path to the License File
Note: Technical license checks have been removed as of this rel;ease. The following

instructions apply only to versions of JRockit JDK prior to R27.6.

You can set the path to the license file by using the -Djrockit.license.path flag at startup.
This option is useful when:

You do not have write permissions to the JDK and therefore can't add the license path
there.

You want to start several servers with different IPs from the same Oracle JRockit JDK.

The option should point to a directory where the license.bea file resides and not directly to the
license.bea file; for example:

Correct:

-Djrockit.license.path=C:/Program Files/Java/[JROCKIT_HOME]/jre

Incorrect:

-Djrockit.license.path=C:/Program
Files/Java/[JROCKIT_HOME]/jre/license.bea
Oracle JRockit JVM Diagnostics Guide 6-3

Se t t ing Up and Running the Orac le JRock i t JDK
6-4 Oracle JRockit JVM Diagnostics Guide

Part II Profiling and
Performance Tuning
Chapter 7. About Profiling and Performance Tuning
Chapter 8. Understanding the Tuning Trade-offs
Chapter 9. First Steps for Tuning the Oracle JRockit JVM
Chapter 10. Tuning the Memory Management System
Chapter 11. Tuning Locks
Chapter 12. Tuning For Low Latencies
Chapter 13. Tuning For Better Application Throughput
Chapter 14. Tuning For Stable Performance
Chapter 15. Tuning For a Small Memory Footprint
Chapter 16. Tuning For Faster JVM Startup
Oracle JRockit JVM Diagnostics Guide

C H A P T E R 7
About Profiling and Performance
Tuning
Tuning the Oracle JRockit JVM to achieve optimal application performance is about the most
critical aspect using this product. A poorly-tuned JVM can result in slow transactions, long
latencies, system freezes, and even system crashes. This documen explores the many tuning
techniques and options you can employ to see that your implementation of this JVM performs to
maximum capabilities.

How to Tune: An Overview
Ideally, tuning should occur as part of the system startup, by employing various combinations of
the start-up options described in the Oracle JRockit JVM Command-Line Reference. The Oracle
JRockit JDK provides the necessary tools for monitoring your application during runtime.
Properly tuned, according to the recommendations in this section, the JVM should run smoothly
and provide timely results. Should runtime monitoring indicate problems along the way, you can
use the recommendations in this section to guide you toward a better-tuned JVM.

What this Section Contains
This section includes information on the following subjects:

While tuning the JRockit JVM you will often find a certain trade-off between short
garbage collection pause times, high application throughput and low memory footprint.
Understanding the Tuning Trade-offs describes these trade-offs and the reasons behind
them.
Oracle JRockit JVM Diagnostics Guide 7-1

About P ro f i l ing and Per fo rmance Tun ing
Each Java application has its own behavior and its own requirements. The JRockit JVM
can accommodate most of them automatically, but to get the optimal performance you
should tune at least some basic parameters. First Steps for Tuning the Oracle JRockit JVM
gives an overview of the first steps of tuning the JRockit JVM and some best practices for
tuning the JVM for a few different Oracle applications.

A correctly tuned memory management system minimizes the overhead inflicted by
garbage collection and makes object allocation fast. Tuning the Memory Management
System covers the most important options available for tuning the memory management
system in the JRockit JVM.

The interaction between Java threads affects the performance of your application. Tuning
Locks contains information about the JRockit JVM options for tuning how locks and
contention for locks are handled.

Do you want your application to run smoothly with minimal pauses caused by the garbage
collection? If the answer is “yes”, then you want to tune for short pause times. Using the
tuning techniques described in Tuning For Low Latencies to ensure that pause times are
kept to a minimum and transactions execute quickly.

Do you want to minimize the total amount of CPU time spent in garbage collection and
spend more time in the application layer? If the answer is “yes”, then you want to tune for
high application performance, or application throughput. Tuning For Better Application
Throughput describes how to tune your Oracle JRockit JVM to ensure that the Java
application runs as fast as possible with minimal garbage collector overhead.
7-2 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 8
Understanding the Tuning Trade-offs
While tuning the Oracle JRockit JVM you will often find a certain trade-off between short
garbage collection pause times, high application throughput and low memory footprint. This
section describes these trade-offs and the reasons behind them. The following topics are covered:

Pause Times vs. Throughput

Performance vs. Memory Footprint

Pause Times vs. Throughput
The JRockit JVM offers a choice between short garbage collection pauses and maximum
application throughput. Intuitively it looks like short garbage collection pauses would also
maximize the application throughput, which may make you wonder why you have to choose
between the two. This section describes the reasons behind this trade-off.

Concurrent vs. “Stop-the-World”
The trade-off between garbage collection pauses and application throughput is partly caused by
the mostly concurrent garbage collection strategy that enables short garbage collection pauses.
No matter how efficient a garbage collection algorithm that stops the Java threads during the
entire garbage collection is, a garbage collection algorithm that allows the Java threads to
continue running during parts of the garbage collection will always give you shorter individual
garbage collection pauses. Unfortunately a concurrent algorithm requires more bookkeeping and
some extra work, since new objects are created and references between objects change during the
garbage collection. All these changes must be kept track of, which alone causes some slight
Oracle JRockit JVM Diagnostics Guide 8-1

Unders tand ing the Tun ing T rade-o f fs
overhead, and at some point the garbage collector must handle all the changes, which causes
some extra work. Simply put, the more the garbage collector can do while the Java threads are
paused, the less it has to work in total.

Compaction Pauses vs. Throughput
The mark and sweep garbage collection model can cause fragmentation on the heap when small
chunks of memory are freed between blocks of live objects. Compaction of the heap reduces this
fragmentation. Fragmentation has a negative impact on the overall throughput as it makes object
allocation more difficult and garbage collections more frequent. The JRockit JVM does partial
compaction of the heap in each garbage collection, and the compaction is done while all Java
threads are paused. Moving objects takes time, and compaction takes more time the more objects
it moves. The trade-off is simple - reducing the amount of compaction shortens the compaction
pause times but lowers the overall throughput by increasing the fragmentation.

Performance vs. Memory Footprint
A small memory footprint is desirable for applications that run on machines with limited memory
resources. Unfortunately there is a certain trade-off between a small memory footprint and both
application throughput and garbage collection pauses. This section describes some of the reasons
for this trade-off.

Heap Size vs. Throughput
A large heap reduces the garbage collection frequency and the negative impact of fragmentation,
thus improving the throughput of the application. On the other hand a large heap increases the
memory footprint of the Java process.

Book Keeping vs. Pause Times
When you use a garbage collection mode that optimizes for short pauses, the Oracle JRockit JVM
will have to use more advanced book keeping to keep track of changes in the heap, references to
objects that are compacted etc. All this increases the memory footprint. You cannot tune the
memory usage for book keeping other than by selecting a different garbage collection mode or
strategy.
8-2 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 9
First Steps for Tuning the Oracle
JRockit JVM
Each Java application has its own behavior and its own requirements. The Oracle JRockit JVM
can accommodate many of them automatically, but to get the optimal performance you should
tune at least some basic parameters. This section gives an overview of the first steps of tuning the
JRockit JVM and some best practices for tuning the JVM for a few different Oracle applications,
covering the following topics:

Step 1: Basic Tuning

Step 2: Performance Tuning

Step 3: Advanced Tuning

Best Practices

For in-depth information on tuning the JRockit JVM, please see Tuning the Memory
Management System and Tuning Locks.

Step 1: Basic Tuning
The first steps of tuning are:

Tuning the Heap Size

Tuning the Garbage Collection

Tuning the Nursery Size

Tuning the Pause Target
Oracle JRockit JVM Diagnostics Guide 9-1

F i rs t S teps fo r Tun ing the Orac le JRock i t JVM
Tuning the Heap Size
The heap is the area where Java objects reside. A large heap decreases the garbage collection
frequency but may take slightly longer to garbage collect. Typically a heap should be at least
twice the size of the live objects in the heap, meaning that at least half of the heap should be freed
at each garbage collection. For server applications you can usually set the heap as large as the
available memory in your system will allow, as long as this doesn’t cause paging.

Set the heap size using the following command line options:

-Xms:<size>, which sets the initial and minimum heap size.

-Xmx:<size>, which sets the maximum heap size.

For example a server application running on a machine with 2 GB RAM memory could be started
with the following settings:
java -Xms:800m -Xmx:1000m MyServerApp

This starts the JVM with a heap of 800 MB and allows the heap to grow up to 1000MB.

For in-depth information on setting the heap size, see Setting the Heap Size.

Tuning the Garbage Collection
Garbage collection is the process of reclaiming space from objects that are no longer in use, so
that this space can be used for allocation of new objects. Garbage collection uses system
resources in one way or another. By tuning the garbage collection you can decide how and when
the resources are used. The JRockit JVM offers three garbage collection modes and a number of
static garbage collection strategies. These allow you to tune the garbage collection to suit your
application’s needs.

Select the garbage collection mode by using one of the following options:

-XgcPrio:throughput, which defines that the garbage collection should be optimized for
application throughput. This is the default garbage collection mode.

-XgcPrio:pausetime, which defines that the garbage collection should be optimized for
short garbage collection pauses.

-XgcPrio:deterministic, which defines that the garbage collection should be optimized
for very short and deterministic garbage collection pauses. This option is only available as
part of Oracle JRockit Real Time.
9-2 Oracle JRockit JVM Diagnostics Guide

Step 1 : Bas ic Tun ing
For example a transaction based application which requires reasonably low latencies could be
started with the following settings:
java -XgcPrio:pauseTime MyTransactionApp

This starts the JVM with the garbage collection optimized for short garbage collection pauses.

For in-depth information on selecting a garbage collection mode or a static garbage collection
strategy, see Selecting and Tuning a Garbage Collector.

Tuning the Nursery Size
Some of the garbage collection modes and strategies in the JRockit JVM use a nursery. The
nursery is an area of the heap where new objects are allocated. When the nursery becomes full it
is garbage collected separately in a young collection. The nursery size decides the frequency and
duration of young collections. A larger nursery decreases the frequency but slightly increases the
duration of each young collection.

In the JRockit JVM R27.3.0 and later the nursery size is adjusted automatically to optimize for
application throughput if you use -XgcPrio:throughput (default) or -Xgc:genpar. For other
garbage collection modes and static strategies or older versions of the JVM you may want to tune
the nursery size manually. Typically the nursery size should be as large as possible while
maintaining reasonably short young collection pauses. Depending on the application, a
reasonable nursery size can be anything from a few megabytes up to about half of the heap size.

Set the nursery size by using the following command line option:

-Xns:<size>

For example a transaction based application running on a machine with 2GB RAM memory could
be started with the following settings:
java -Xms:800m -Xmx:1000m -XgcPrio:pausetime -Xns:100m MyTransactionApp

This starts up the JVM with a heap of 800 MB, allowing it to grow up to 1000 MB. The garbage
collection is set to optimize for pause times and the nursery size is set to 100 MB. Note that the
dynamic garbage collection mode may choose to run without a nursery, but whenever a nursery
is used it will be 100 MB.

For in-depth information on how to tune the nursery size, see Setting the Nursery and Keep Area
Size.
Oracle JRockit JVM Diagnostics Guide 9-3

F i rs t S teps fo r Tun ing the Orac le JRock i t JVM
Tuning the Pause Target
-XgcPrio:pausetime and -XgcPrio:deterministic use a pause target for optimizing the pause times
while keeping the application throughput as high as possible. A higher pause target usually allows
for a higher application throughput, thus you should set the pause target as high as your
application can tolerate.

Set the pause target by using the following command line option:

-XpauseTarget:<time>

For example a transaction based application with transactions that normally take 100 ms and time
out after 400 ms could be started with the following settings:
java -XgcPrio:pausetime -XpauseTarget:250 MyTransactionApp

This starts up the JVM with garbage collection optimized for short pauses with a pause target of
250 ms. This leaves a 50 ms margin before time-out for 100 ms transactions that are interrupted
by a 250 ms garbage collection pause.

For in-depth information on tuning the pause target, see Setting a Pause Target for Pausetime
Mode.

Step 2: Performance Tuning
To be able to tune your JVM for better application throughput you must first have a way of
assessing the throughput. A common way of measuring the application throughput is to time the
execution of a pre-defined set of test cases. Optimally the test cases should simulate several
different use cases and be as close to real scenarios as possible. Also, one test run should take at
least a few minutes, so that the JVM has time to warm up.

This section describes a few optional performance features that improve the performance for
many applications. Once you have a way of assessing the throughput of your application you can
try out the following features:

Lazy Unlocking

Call Profiling

Large Pages
9-4 Oracle JRockit JVM Diagnostics Guide

Step 3 : Advanced Tun ing
Lazy Unlocking
The JRockit JVM R27.3 and later offers a feature called lazy unlocking. This feature makes
synchronized Java code run faster when the contention on the locks is low.

Try this feature on your application by adding the following option to the command line:

-XXlazyUnlocking

For more information on this option, see the documentation for -XXlazyUnlocking.

Call Profiling
Call profiling enables the use of more advanced profiling for code optimizations and can increase
the performance for many applications. This option is supported in the JRockit JVM R27.3.0 and
later versions.

Try this feature on your application by adding the following option to the command line:

-XXcallProfiling

For more information on this option, see the documentation for -XXcallProfiling.

Large Pages
The JRockit JVM can use large pages for the Java heap and other memory areas in the JVM. To
use large pages, you must first configure your operating system for large pages. Then you can add
the following option to the Java command line:

-XlargePages

For complete instructions on how to use this option and configure your operating system for large
pages, see the documentation for -XlargePages.

Step 3: Advanced Tuning
Some applications may benefit from further tuning. It is important that you verify the results of
the tuning by monitoring and benchmarking your application. Advanced tuning of the JRockit
JVM can give you improved performance and predictable behavior if done correctly, while
incorrect tuning may lead to uneven performance, low performance or performance degradation
over time.

This section covers the following topics:
Oracle JRockit JVM Diagnostics Guide 9-5

F i rs t S teps fo r Tun ing the Orac le JRock i t JVM
Tuning Compaction

Tuning the TLA size

Further Information

Tuning Compaction
Compaction of objects is the process of moving objects closer to each other in the heap, thus
reducing the fragmentation and making object allocation easier for the JVM. The JRockit JVM
compacts a part of the heap at each garbage collection (or old collection, if the garbage collector
is generational).

Compaction may in some cases lead to long garbage collection pauses. To assess the impact of
compaction on garbage collection pauses you can either monitor the -Xverbose:gcpause
outputs or create a JRA recording and look at the garbage collection pauses in the Java Runtime
Analyzer (see Using Oracle JRockit Mission Control Tools for more information). Look for old
collection pause times and pause parts called “compaction” and “reference updates”. The
compaction pause times depend on the compaction ratio and the compact set limit.

Compaction Ratio
The compaction ratio determines how many percent of the heap will be compacted during each
garbage collection (old collection). The compaction ratio is set using the following option:

-XXcompactRatio:<percentage>

You can tune the compaction ratio if the garbage collection pauses are too long because of
compaction. As a start, you can try lowering the compaction ratio to 1 and see if the problem
persists. If it doesn’t, you should try gradually increasing the compaction ratio as long as the
compaction times stay short. A good value for the compact ratio is usually between 1 and 20,
sometimes even higher. If the problem persists even though you set the compaction ratio to 1, you
can try changing the compact set limit.

Setting the compaction ratio too low may increase the fragmentation and the amount of “dark
matter”, which is free space that is too small to be used for object allocation. You can see the
amount of dark matter in JRA recordings.

Compact Set Limit
The compact set limit prevents sets a limit for how many references there can be to objects within
the compaction area. If the number of references exceeds this limit, the compaction is canceled.
The compact set limit is set using the following option:
9-6 Oracle JRockit JVM Diagnostics Guide

Step 3 : Advanced Tun ing
-XXcompactSetLimit:<references>

You can tune the compact set limit if the garbage collection pauses are too long due to
compaction. As a start, you can try setting the compact set limit as low as 10.000. If the problem
is solved you should try gradually increasing the compact set limit as long as the compaction
times stay low. A normal value for the compact set limit is usually between 100.000 and several
million, while lower values are used when the pause time limits are very low.

Setting the compact set limit too low may stop compaction from being done altogether, which
you can see in the verbose logs or in a JRA recording, where all compactions are noted as
“aborted”. Running without any compaction at all may lead to increasing fragmentation, which
will in the end force the JVM to perform a full compaction of the whole heap at once, which may
take several seconds. Thus we recommend that you do not decrease the compact set limit unless
you really have to.

Note: -XXcompactSetLimit has no effect when -XgcPrio:deterministic or
-XgcPrio:pausetime is used. For these garbage collection modes you should not tune
the compaction manually, but instead use the -XpauseTarget option to tune the garbage
collection pauses.

For in-depth information on how to tune compaction, see Tuning the Compaction of Memory.

Tuning the TLA size
The thread local area (TLA) is a chunk of free space reserved on the heap or the nursery and given
to a thread for its exclusive use. A thread can allocate small objects in its own TLA without
synchronizing with other threads. When the TLA gets full the thread simply requests a new TLA.
The objects allocated in a TLA are accessible to all Java threads and are not considered “thread
local” in any way after they have been allocated.

Increasing the TLA size is beneficial for multi threaded applications where each thread allocates
a lot of objects. Increasing the TLA size is also beneficial when the average size of the allocated
objects is large, as this allows larger objects to be allocated in the TLAs. Increasing the TLA size
too much may however cause more fragmentation and more frequent garbage collections. To
assess the sizes of the objects allocated by your application you can do a JRA recording and view
object allocation statistics in the Java Runtime Analyzer. See Using Oracle JRockit Mission
Control Tools for more information on JRA.

The TLA size is set using the following option:

-XXtlaSize:min=<size>,preferred=<size>
Oracle JRockit JVM Diagnostics Guide 9-7

F i rs t S teps fo r Tun ing the Orac le JRock i t JVM
The “min” value is the minimum TLA size, while the “preferred” value is a preferred size. This
means that TLAs will be of the “preferred” size whenever possible, but may be as small as the
“min” size. Typically the preferred TLA size can be up to twice the size of the largest commonly
used object size in the application. Adjusting the min size may have an effect on garbage
collection performance, but is seldom necessary. A normal value for the min size is 2 KB.

For in-depth information about tuning the TLA size, see Optimizing Memory Allocation
Performance.

Further Information
Further information on tuning the JRockit JVM can be found in Tuning the Memory Management
System and Tuning Locks.

Best Practices
This section lists some best practices for tuning the JRockit JVM for a number of specific
applications and application types.

Oracle WebLogic Server
Oracle WebLogic Server is an application server, and as such it requires high application
throughput. An application server is often set up in a controlled environment on a dedicated
machine. Try the following when tuning the JRockit JVM for Oracle WebLogic Server:

Use a large heap, several gigabytes if the system allows for it.

Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(-Xmx).

Use the default garbage collection mode, -XgcPrio:throughput

Oracle WebLogic SIP Server
Oracle WebLogic SIP Server is an application server specialized for the communications
industry. Typically it requires fairly low latencies and is run in a controlled environment on a
dedicated machine. Try the following when tuning the JRockit JVM for Oracle WebLogic SIP
Server:

Use a large heap, at least a couple of gigabytes if the system allows for it.
9-8 Oracle JRockit JVM Diagnostics Guide

Best P ract ices
Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(-Xmx).

Use the garbage collection mode optimized for pause times, -XgcPrio:pausetime, or the
static generational concurrent garbage collector, -Xgc:gencon.

Use a fairly small nursery, in the range of 50-100 MB.

Decrease the compaction ratio or compact set limit to lower and even out the compaction
pause times, see Tuning Compaction for more information.

Oracle WebLogic Event Server
Oracle WebLogic Event Server is an application server for applications based on an event-driven
architecture. Typically it requires very low latencies and is run in a controlled environment on a
dedicated machine. Try the following settings when tuning the JRockit JVM for Oracle
WebLogic Event Server:

Use a heap size of 1 GB to fully utilize the deterministic garbage collection mode.

Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(-Xmx).

Use the garbage collection mode optimized for low and deterministic latencies,
-XgcPrio:deterministic. The deterministic garbage collection mode is only available
as a part of JRockit Real Time.

Oracle Workshop
Oracle Workshop consists of several Eclipse plug-ins. Eclipse requires fast response times and is
typically run on a workstation together with many other applications. Try the following settings
when tuning the JRockit JVM for Eclipse together with Oracle Workshop.

Use a maximum heap size that is lower than the amount of RAM in the system and leaves
space for the operating system and a varying number of other applications running
simultaneously.

Set the initial/minimum heap size (-Xms) lower than the maximum heap size (-Xmx) to
allow the JVM to resize the heap when necessary.

Use the garbage collection mode optimized for short pauses, -XgcPrio:pausetime, or the
default garbage collection mode, -XgcPrio:throughput.
Oracle JRockit JVM Diagnostics Guide 9-9

F i rs t S teps fo r Tun ing the Orac le JRock i t JVM
“Utility” Applications
Java utility applications that run for a short time and have a simple and specific purpose, for
example javac, require a fast startup and often don’t need a lot of memory. To tune the JRockit
JVM for this kind of applications, try the following recommendations:

Use a small heap, anything from 16 MB and up depending on the application’s needs.

Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(-Xmx).

Use the default garbage collection mode, -XgcPrio:throughput

“Batch” Runs
Data processing applications that process large batches of data, for example applications for
XML processing or data mining, require maximum application throughput but are seldom
sensitive to long latencies. To tune the Oracle JRockit JVM for this kind of applications, try the
following recommendations:

Set the heap size as large as your system can tolerate, almost as much as the amount of
physical memory in the system while leaving some memory for the operating system and
other applications that may be running at the same time.

Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(-Xmx).

Use the default garbage collection mode, -XgcPrio:throughput.

Increase the thread local area size. See Tuning the TLA size for more information.
9-10 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 10
Tuning the Memory Management
System
Memory management is all about allocation of objects. One part of the memory management
system finds a free spot for the new object, while another part garbage collects old objects to
create more free space for new objects. The more objects a Java application allocates, the more
resources will be used for memory management. A correctly tuned memory management system
minimizes the overhead inflicted by garbage collection and makes object allocation fast. You can
read more about how memory management in the Oracle JRockit JVM works in Understanding
Memory Management. This section covers the most important options available for tuning the
memory management system in the JVM. The following topics are covered:

Optimizing Memory Allocation Performance

Selecting and Tuning a Garbage Collector

Tuning the Compaction of Memory

Optimizing Memory Allocation Performance

Setting the Heap and Nursery Size
The heap is the area where the Java objects reside. The heap size has an impact on the JVM’s
performance, and thus also on the Java application’s performance.

When the JVM uses a generational garbage collection strategy, a part of the heap is reserved for
the nursery. All small objects are allocated in the nursery, also known as young space. When the
nursery becomes full, a young collection is performed, where objects that have lived long enough
in the nursery are moved to old space, which is the rest of the heap.
Oracle JRockit JVM Diagnostics Guide 10-1

Tuning the Memory Management Sys tem
To distinguish between recently allocated objects and objects that have been around for a while
in the nursery, the JVM uses a keep area. The keep area contains the most recently allocated
objects in the nursery and is not garbage collected until the next young collection.

Setting the Heap Size
Command line options: -Xms:<min size> -Xmx:<max size>

The heap size has an impact on allocation speed, garbage collection frequency and garbage
collection times. A small heap will become full quickly and must be garbage collected more
often. It is also prone to more fragmentation, making object allocation slower. A large heap
introduces a slight overhead in garbage collection times. A heap that is larger than the available
physical memory in the system must be paged out to disk, which leads to long access times or
even application freezes, especially during garbage collection.

In general, the extra overhead caused by a larger heap is smaller than the gains in garbage
collection frequency and allocation speed, as long as the heap doesn’t get paged to disk. Thus a
good heap size setting would be a heap that is as large as possible within the available physical
memory.

There are two parameters for setting the heap size:

-Xms:<size>, which sets the initial and minimum heap size

-Xmx:<size>, which sets the maximum heap size

For example:
java -Xms:1g -Xmx:1g MyApplication

This starts up the JVM with a heap size fixed to 1 GB.

For default values and limitations, see the documentation on -Xms and -Xmx.

If the optimal heap size for the application is known, we recommend that you set -Xms and -Xmx
to the same value. This gives you a controlled environment where you get a good heap size right
from the start.

Setting the Heap Size on 64-bit Systems
On 64-bit systems a memory address is 64 bits long, which makes it possible to address much
more memory than with a 32-bit address. On the other hand each reference requires twice as much
memory. To reduce the memory usage on 64-bit systems, The JRockit JVM can use compressed
references. Compressed references reduce the references to 32 bits, and can be used as long as
the entire heap can be addressed with 32 bits. Compressed references are enabled by default
10-2 Oracle JRockit JVM Diagnostics Guide

Set t ing the Heap and Nurse r y S i ze
whenever applicable. Thus, on a 64.bit system, you will usually benefit from setting the
maximum heap size below 4 GB as long as the amount of live data is less than 3-4 GB.

Setting the Nursery and Keep Area Size
Command line option: -Xns:<nursery size>

The size of the nursery has an impact on allocation speed, garbage collection frequency and
garbage collection times. A small nursery will become full quickly and must be garbage collected
more often, while garbage collection of a large nursery takes slightly longer time. A nursery that
is so small that few or no objects have died before a young collection is started is of very little
use, and neither is a nursery that is so large that no young collections are performed between
garbage collections of the whole heap that are triggered due to allocation of large objects in old
space.

An optimal nursery size for maximum application throughput is such that as many objects as
possible are garbage collected by young collection rather than old collection. This value
approximates to about half of the free heap. In the JRockit JVM R27.3.0 and later versions, the
dynamic garbage collection mode optimized for throughput, -Xgcprio:throughput, and the
static generational parallel garbage collector, -Xgc:genpar, will dynamically set the nursery size
to an approximation of the optimal value.

The optimal nursery size for throughput is often quite large, which may lead to long young
collection times. Since all Java threads are paused while the young collection is performed, you
may want to reduce the nursery size below the optimal value to reduce the young collection pause
times.

The nursery size is set using the command line option -Xns:<size>. For example:
java -Xns:100m MyApplication

This starts up the JVM with a fixed nursery size of 100 MB.

For default values and limitations, see the documentation on -Xns.

Keep Area
Command line option: -XXkeepAreaRatio:<percentage>

The keep area size has an impact on both old collection and young collection frequency. A large
keep area causes more frequent young collections, while a keep area that is too small causes more
frequent old collections when objects are promoted prematurely.
Oracle JRockit JVM Diagnostics Guide 10-3

Tuning the Memory Management Sys tem
An optimal keep area size is as small as possible while maintaining a low promotion ratio. The
promotion ratio can be observed in JRA recordings (see Using Oracle JRockit Mission Control
Tools for more information) and verbose outputs from -Xverbose:memory=debug, as well as in
the garbage collection report printed out by -XgcReport. By default the keep area is 25% of the
nursery.

The keep area size can be changed using the command line option
-XXkeepAreaRatio:<percentage>, and is defined as a percentage of the nursery. For
example:
java -XXkeepAreaRatio:10 MyApplication

This starts up the JVM with a keep area that is 10% of the nursery size.

Selecting and Tuning a Garbage Collector
Garbage collection of objects is a necessary evil. Without garbage collection the automatic
memory management system would not work, and either the application developers would have
to somehow recycle the memory themselves or the application would after a while use up all the
memory in the system until it can’t continue running as further memory allocation becomes
impossible.

The impact of garbage collection can be distributed in different ways depending on the choice of
the garbage collection method. The JRockit JVM offers several garbage collection modes, which
use one or several garbage collection strategies. The garbage collection modes are either
dynamic, which select the best garbage collection strategy for a given goal, or static, allowing the
user to select a garbage collection strategy of their choice. You can select a dynamic garbage
collection mode by using the command line option -XgcPrio:<mode>, or set a static garbage
collector with -Xgc:<strategy>.

Selecting a Dynamic Garbage Collection Mode
The dynamic garbage collection modes adjust the memory management system in runtime,
optimizing for a specific goal depending on which mode is used. There are three dynamic garbage
collection modes:

throughput, which optimizes the garbage collector for maximum application throughput

pausetime, which optimizes the garbage collector for short and even pausetimes

deterministic, which optimizes the garbage collector for very short and deterministic
pause times
10-4 Oracle JRockit JVM Diagnostics Guide

Se lec t ing and Tun ing a Garbage Co l l ec to r
The dynamic garbage collection modes use advanced heuristics to tune the following parameters
in runtime:

Garbage collection strategy

Nursery size

Compaction amount and type

Use a dynamic garbage collection mode if you don’t want to go through the time consuming
process of tuning these parameters manually, or when a static environment isn’t optimal for your
application.

Throughput Mode
Command line option: -XgcPrio:throughput

The dynamic garbage collection mode optimizing over application throughput uses as little CPU
resources as possible for garbage collection, thus giving the Java application as many CPU cycles
as possible. The JRockit JVM achieves this by using a parallel garbage collection strategy that
stops the Java application during the whole garbage collection duration and uses all CPUs
available to perform the garbage collection. Each individual garbage collection pause may be
long, but in total the garbage collector takes as little CPU time as possible.

Use throughput mode for applications that demand a high throughput but are not very sensitive
to the occasional long garbage collection pause.

Throughput mode is default when the JVM runs in -server mode (which is default), or can be
enabled with the command line option -XgcPrio:throughput. For example:
java -XgcPrio:throughput MyApplication

This starts up the JVM with the garbage collection mode optimized for throughput.

For more information, see the documentation on -XgcPrio.

Pausetime Mode
Command line option: -XgcPrio:pausetime

The dynamic garbage collection mode optimizing over pause times aims to keep the garbage
collection pauses below a given pause target while maintaining as high throughput as possible.
The JRockit JVM achieves this by choosing between a mostly concurrent garbage collection
strategy that allows the Java application to continue running during large portions of the garbage
collection duration, and a parallel garbage collection strategy that stops the Java application
Oracle JRockit JVM Diagnostics Guide 10-5

Tuning the Memory Management Sys tem
during the entire garbage collection duration. The mostly concurrent garbage collector introduces
some extra overhead in keeping track of changes during the concurrent phases, and will also
cause more frequent garbage collections. This will lower the overall throughput somewhat, but
keeps down the individual garbage collection pauses.

Use pausetime mode for applications that are sensitive to long latencies, for example transaction
based systems where transaction times must be stable.

Pausetime mode is enabled with the command line option -XgcPrio:pausetime. For example:
java -XgcPrio:pausetime MyApplication

This starts up the JVM with the garbage collection mode optimized for short pauses.

For more information, see the documentation on -XgcPrio.

Setting a Pause Target for Pausetime Mode
Command line option: -XpauseTarget:<time in ms>

The pausetime mode uses a pause target for optimizing the pause times. The pause target impacts
the application throughput, as a lower pause target will inflict more overhead on the memory
management system. Set the pause target as high as your application can tolerate.

The pause target for pausetime mode is by default 500 ms, and can be changed with the command
line option -XpauseTarget:<time in ms>. For example:
java -XgcPrio:pausetime -XpauseTarget:300ms MyApplication

This starts up the JVM with the garbage collection optimized for short pauses and a pause target
of 300 ms.

For more information, see the documentation on -XpauseTarget.

Deterministic Mode
Command line option: -XgcPrio:deterministic

The dynamic garbage collection mode optimizing for deterministic pause times is designed to
ensure extremely short garbage collection pause times and limit the total pause time within a
prescribed window. The JRockit JVM achieves this by using a specially designed mostly
concurrent garbage collector, which allows the Java application to continue running as much as
possible during the garbage collection.

Use the deterministic mode for applications with strict demands on short and deterministic
latencies, for example transaction based applications.
10-6 Oracle JRockit JVM Diagnostics Guide

Se lec t ing and Tun ing a Garbage Co l l ec to r
Deterministic mode is enabled with the command line option -XgcPrio:deterministic. For
example:
java -XgcPrio:deterministic MyApplication

This starts up the JVM with the garbage collection mode optimized for short and deterministic
pauses.

For more information, see the documentation on -XgcPrio.

Special Note for WLRT Users
Deterministic garbage collection time can be affected by the JRockit Mission Control Client.
While all JRockit Mission Control tools are fully supported when running WLRT with the
deterministic garbage collector, you should be aware of some caveats.

-Xmanagement does not prolong deterministic garbage collection pauses by itself, but it
does introduce a slightly increased amount of Java code executed by the JVM. This can
affect response times and performance compared to not using -Xmanagement.

When making a JRA-recording, disable heap statistics (heapstat) if you run in a latency
sensitive situation where you cannot accept the pause for the benefit of the information.
Heapstat provides additional bookkeeping of the content of the heap. These statistics are
collected at the beginning and at the end of a JRA-recording, inside a pause. You can
disable heapstat by using specific arguments when requesting the recording. For more
information, please see Creating a JRA Recording with JRockit Mission Control 1.0.

JRA recordings, even with heapstats disabled, might cause deterministic garbage collection
pauses to last slightly longer.

Memory leak trend analysis can cause longer garbage collection pauses, similar to JRA
recordings.

On requests for more information when the Memory Leak Detector is using its graphical
user interface or the Ctrl-Break handler—for example to retrieve the number of instances
of a type of object or to retrieve the list of references to an instance or to a class—a longer
pause can be introduced.

For more information on JRockit Mission Control, please refer to Using Oracle JRockit Mission
Control Tools.

Setting a Pause Target for Deterministic Mode
Command line option: -XpauseTarget:<time in ms>
Oracle JRockit JVM Diagnostics Guide 10-7

Tuning the Memory Management Sys tem
The deterministic mode uses a pause target for optimizing the pause times. The pause target
impacts the application throughput, as a lower pause target will inflict more overhead on the
memory management system. Set the pause target as high as your application can tolerate.

The garbage collector will aim on keeping the garbage collection pauses below the given pause
target. How well it will succeed depends on the application and the hardware. For example, a
pause target on 30 ms has been verified on an application with 1 GB heap and an average of 30%
live data or less at collection time, running on the following hardware:

2 x Intel Xeon 3.6 GHz, 2 MB level 2 cache, 4 GB RAM

4 x Intel Xeon 2.0 GHz, 0.5 MB level 2 cache, 8 GB RAM

Running on slower hardware, with a different heap size and/or with more live data might break
the deterministic behavior or cause performance degradation over time, while faster hardware or
less live data might allow you to set a lower pause target.

The pause target for deterministic mode is by default 30 ms, and can be changed with the
command line option -XpauseTarget:<time>. For example:
java -XgcPrio:deterministic -XpauseTarget:40ms MyApplication

This starts up the JVM with the garbage collection optimized for short and deterministic pauses
and a pause target of 40ms.

For more information, see the documentation on -XpauseTarget.

Selecting a Static Garbage Collection Strategy
Command line option: -Xgc:<strategy>

There are four major static garbage collection strategies available.

singlepar, which is a single-generational parallel garbage collector (same as parallel)

genpar, which is a two-generational parallel garbage collector

singlecon, which is a single-generational mostly concurrent garbage collector

gencon, which is a two-generational mostly concurrent garbage collector

When a static garbage collection strategy is selected, the garbage collection strategy will not
change automatically in runtime.

Use a static garbage collection strategy if you want a well defined and predictable behavior and
are willing to tune the JVM to find the best memory management settings for your application.
10-8 Oracle JRockit JVM Diagnostics Guide

Se lec t ing and Tun ing a Garbage Co l l ec to r
Garbage Collector Strategy Selection Workflow
To select the best garbage collection strategy for your application you can follow this workflow:

1. Is your application sensitive to long garbage collection pauses (500 ms or more)?

Yes: Select a mostly concurrent garbage collection strategy, gencon or singlecon

No: Select a parallel garbage collection strategy, genpar or singlepar

2. Does your application allocate a lot of temporary objects?

Yes: Select a two-generational garbage collection strategy, gencon or genpar

No: Select a single-generational garbage collection strategy, singlecon or singlepar

For example, the Oracle WebLogic Sip Server is a transaction based system that allocates new
objects for each transaction and has short time-outs for transactions. Long garbage collection
pauses would cause transactions to time out, so a mostly concurrent garbage collection should be
used. This suggests either gencon or singlecon. The transactions generate a lot of temporary
or short lived objects, which suggests a two-generational garbage collector, gencon.

You can set a static garbage collection strategy with the command line option
-Xgc:<strategy>, for example:
java -Xgc:gencon MyApplication

This starts up the JVM with the generational concurrent garbage collector.

For more information, see the documentation on -Xgc.

Changing Garbage Collection Strategy During Runtime
You can change garbage collector strategies during runtime from the Memory tab of the JRockit
Management Console (in JRockit Mission Control) except for when these conditions exist:

If you are using the dynamic garbage collection mode optimized for deterministic pause
times.

If you are using static single-spaced parallel garbage collection.

For more information, consult the JRockit Management Console’s online help.

Tuning the Concurrent Garbage Collection Trigger
Command line option: -XXgcTrigger:<percentage>
Oracle JRockit JVM Diagnostics Guide 10-9

Tuning the Memory Management Sys tem
When you are using a concurrent strategy for garbage collection (in either the mark or the sweep
phase, or both), the JRockit JVM dynamically adjusts when to start an old generation garbage
collection in order to avoid running out of free heap space during the concurrent phases of the
garbage collection. The triggering is based on such characteristics as how much space is available
on the heap after previous collections. The JVM dynamically tries to optimize this space and will
occasionally run out of free heap during the concurrent garbage collection while it does. When
the limit is hit, the verbose printout:

[memdbg] starting parallel sweeping phase

appears below the command line (assuming you have set -Xverbose:memdbg). This message
means that a concurrent sweep could not finish in time and the JVM is using all currently
available resources to make up for it. In this case, a parallel sweep is made. If the JVM fails to
adapt and the above printout continues to appear, performance is being adversely affected. To
avoid this, set the -XXgcTrigger option to trigger a garbage collection when there is still X%
left of the heap, for example:

java -XXgcTrigger=20 MyApplication

will trigger an old generation garbage collection when less than 20% of the free heap size is left
unused.

If you are using a parallel garbage collection strategy (in both the mark and the sweep phase),
then old generation garbage collections are performed whenever the heap is completely full.

Tuning the Compaction of Memory
Compaction is the process of moving chunks of allocated space towards the lower end of the
heap, helping create contiguous free memory at the upper end. The JRockit JVM does partial
compaction of the heap at each old collection. The size and position of the compaction area as
well as the compaction method is selected by advanced heuristics, depending on the garbage
collection mode used.

Fragmentation vs. Garbage Collection Pauses
Compaction is performed during garbage collection while all Java threads are paused.
Compaction of a large area with many objects will thus increase the garbage collection pause
times. On the other hand, insufficient compaction will lead to fragmentation of the heap, which
leads to lower performance. If the fragmentation increases over time, the JRockit JVM will
eventually be forced to either do a full compaction of the heap, causing a long garbage collection
pause, or throw an OutOfMemoryError.
10-10 Oracle JRockit JVM Diagnostics Guide

Tun ing the Compact ion o f Memory
If your application shows performance degradation over time in a periodic manner, such that the
performance degrades until it suddenly pops back to excellent, just to start degrading again, you
are most likely experiencing fragmentation problems. The heap becomes more and more
fragmented for each old collection until finally object allocation becomes impossible and the
JVM is forced to do a full compaction of the heap. The full compaction eliminates the
fragmentation, but only until the next garbage collection. You can verify this by looking at
-Xverbose:memory outputs, monitoring the JVM through the Management Console in JRockit
Mission Control or by creating a JRA recording and examining the garbage collection data. If you
see that the amount of used heap after each old collection keeps increasing over time until it hits
the roof, and then drops down again at the next old collection, you are experiencing a
fragmentation problem.

Compaction is optimally tuned when the fragmentation is kept on a low and constant level.

Adjusting Compaction
Even though the compaction heuristics in the JRockit JVM are designed to keep the garbage
collection pauses low and even, you may sometimes want to limit the compaction ratio further to
reduce the garbage collection pauses. In other cases you may want to increase the compaction
ratio to keep heap fragmentation in control. There are several ways to adjust the compaction:

Setting the Compaction Ratio

Setting the Compact Set Limit

Turning Off Compaction

Using Full Compaction

Setting the Compaction Ratio
Command line option: -XXcompactRatio:<percentage>

Setting a static compaction ratio will force the JVM to compact a specified percentage of the heap
at each old collection. This disables the heuristics for selecting a dynamic compaction ratio that
depends on the heap layout. The compact ratio can be defined to a static percentage of the heap
using the command line option -XXcompactRatio:<percentage>. For example:
java -XXcompactRatio:1 MyApplication

This starts up the JVM with a static compact ratio of about 1% of the heap.

For more information, see the documentation on -XXcompactRatio.
Oracle JRockit JVM Diagnostics Guide 10-11

Tuning the Memory Management Sys tem
Use this option if you need to force the JVM to use a smaller or larger compaction ratio than it
would select by default. You can monitor the compaction ratio in -Xverbose:memory=debug
outputs and JRA recordings. A high compaction ratio keeps down the fragmentation on the heap
but increases the compaction pause times.

Setting the Compact Set Limit
Command line option: -XXcompactSetLimit:<references>

When compaction has moved objects, the references to these objects must be updated. The
garbage collector does this before the Java threads are allowed to run again, which increases the
garbage collection pause proportionally to the number of references that have been updated. The
compact set limit defines how many references there may be from objects outside the compaction
area to objects within the compaction area, thus limiting a portion of the compaction pause. If,
during a garbage collection, the number of references to the chosen compaction area exceeds the
compact set limit, the compaction will be canceled.

The compact set limit depends on the garbage collection mode used, and will for some modes
adjust dynamically in runtime. You can set a static compact set limit by using the command line
option -XXcompactSetLimit:<references>, where “references” specifies the maximum
number of references to objects within the compaction area. For example:
java -XXcompactSetLimit:20000 MyApplication

This starts up the JVM with a compact set limit of 20000 references.

For more information, see the documentation for -XXcompactSetLimit.

Use this option to increase the compact set limit if too many compactions are canceled (aborted),
or to decrease the limit if the compaction pause times are too long. You can monitor the
compaction behavior in -Xverbose:memory=debug outputs and JRA recordings, and
compaction pause times in -Xverbose:gcpause=debug outputs and JRA recordings.

Note: -XXcompactSetLimit has no effect when the deterministic or pausetime garbage
collection modes are used, as these garbage collector modes use other heuristics for
adjusting the compaction pausetimes.

Turning Off Compaction
Command line option: -XXnoCompaction

Very few applications survive in the long run without any compaction at all, but for those that do
you can turn off the compaction entirely.

To turn off compaction entirely, use the command line option -XXnoCompaction, for example:
10-12 Oracle JRockit JVM Diagnostics Guide

Opt imiz ing Memory A l l oca t i on Per fo rmance
java -XXnoCompaction MyApplication

For more information, see the documentation for -XXnoCompaction.

Using Full Compaction
Command line option: -XXfullCompaction

Some applications are not sensitive to garbage collection pauses or perform old collections very
infrequently. For these applications you may want to try running full compaction, as this
maximizes the object allocation performance between the garbage collections. Note however that
a full compaction of a large heap with a lot of objects may take several seconds to perform.

To turn on full compaction, use the command line option -XXfullCompaction, for example:
java -XXfullCompaction MyApplication

For more information, see the documentation for -XXfullCompaction.

Optimizing Memory Allocation Performance
Apart from optimizing the garbage collection to clear space for object allocation, you can tune
the object allocation itself to maximize the application throughput.

Setting the Thread Local Area Size
Command line options: -XXtlaSize:min=<size>,preferred=<size>
-XXlargeObjectLimit:<size> -XXminBlockSize:<size>

The thread local area (TLA) is a chunk of free space reserved on the heap or in the nursery and
given to a thread for its exclusive use. A thread can allocate small objects in its own TLA without
synchronizing with other threads. Objects allocated in a TLA are however not thread local. They
can be accessed by any thread and will be garbage collected globally. When the TLA gets full the
thread simply requests a new TLA.

The thread local area size influences the allocation speed, but can also have an impact on garbage
collection frequency. A large TLA size allows each thread to allocate a lot of objects before
requesting a new TLA, and in JRockit JVM R27.2 and later it also allows the thread to allocate
larger objects in the thread local area. On the other hand, a large TLA size prevents small chunks
of free memory from being used for object allocation, which increases the impact of
fragmentation. In JRockit JVM R27.1 and later, the TLA size is dynamic depending on the size
of the available chunks of free space, and varies between a minimum and a preferred size.
Oracle JRockit JVM Diagnostics Guide 10-13

Tuning the Memory Management Sys tem
Increasing the preferred TLA size is beneficial for applications where each thread allocates a lot
of objects. When a two-generational garbage collection strategy is used, a large minimum and
preferred TLA size will also allow larger objects to be allocated in the nursery. Note however that
the preferred TLA size should always be less than about 5% of the nursery size.

Increasing the minimum TLA size may improve garbage collection times slightly, as the garbage
collector can ignore any free chunks that are smaller than the minimum TLA size.

Decreasing the preferred TLA size is beneficial for applications where each thread allocates only
a few objects before it is terminated, so that a larger TLA wouldn’t ever become full. A small
preferred TLA size is also beneficial for applications with very many threads, where the threads
don’t have time to fill their TLAs before a garbage collection is performed.

Decreasing the minimum TLA size lessens the impact of fragmentation.

A common setting for the TLA size is a minimum TLA size of 2-4 kB and a preferred TLA size
of 16-256 kB.

To adjust the TLA size, you can use the command line option
-XXtlaSize:min=<size>,preferred=<size>. For example:
java -XXtlaSize:min=1k,preferred=512k MyApplication

This starts up the JVM with a minimum TLA size of 1 kB and a preferred TLA size of 512 kB.

For more information and default values, see the documentation on -XXtlaSize.

Note: If you are using JRockit JVM R27.1 or older and want to adjust the TLA size, you should
set -XXlargeObjectLimit:<size> and -XXminBlockSize:<size> to the same value
as the minimum TLA size.

Note: If you are using the Oracle JRockit JVM R27.0 or older the minimum and preferred TLA
size will always be the same value. The syntax for setting the TLA size is
-XXtlaSize:<size>.
10-14 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 11
Tuning Locks
The interaction between Java threads affects the performance of your application.There are two
ways of tuning the interaction of threads.

3. By modifying the structure of your program code, for example to minimize the amount of
contention between threads.

4. By using options in the Oracle JRockit JVM that affect how contention is handled when your
application is running.

The Oracle JRockit JVM Diagnostics Guide does not provide any documentation on how to
optimize thread management when coding Java, but this section contains information about
JRockit JVM options for tuning how locks and contention for locks are handled. This section
covers the following topics:

Lock Profiling

Disabling Spinning Against Fat Locks

Adaptive Spinning Against Fat Locks

Lock Deflation

Lazy Unlocking

For more information on how the JRockit JVM handles threads and locks, see Understanding
Threads and Locks.
Oracle JRockit JVM Diagnostics Guide 11-1

Tun ing Locks
Lock Profiling
You can enable the JRockit Runtime Analyzer to collect and analyze information about the locks
and the contention that has occurred while the runtime analyzer was recording. To do this, add
the following option when you start your application:
-Djrockit.lockprofiling=true

When lock profiling has been enabled, you can view information about Java locks on the Lock
Profiling tab in the JRockit Mission Control Client.

Note: Lock profiling creates a lot (in the order of 20%) of overhead processing when your Java
application runs.

There are two Ctrl-Break handlers tied to the lock profile counters. To work, both require lock
profiling to be enabled with the -Djrockit.lockprofiling option. These are used with jrcmd.

The handler lockprofile_print prints the current values of the lock profile counters. The
handler lockprofile_reset resets the current values of the lock profile counters.

For more information about Ctrl-Break handlers and using jrcmd, see Running Diagnostic
Commands.

Disabling Spinning Against Fat Locks
Spinning against a fat lock is generally beneficial. However, in some instances, it can be
expensive and costly in terms of performance, for example when you have locks that create long
waiting periods and high contention. You can turn off spinning against a fat lock and eliminate a
potential performance degradation with the following option:
-XXdisableFatSpin

The option disables the fat lock spin code in Java, allowing threads that are trying to acquire a fat
lock go to sleep directly.

Adaptive Spinning Against Fat Locks
You can let the JVM decide whether threads should spin against a fat lock or not (and directly go
into sleeping state when failing to take it). To enable adaptive lock spinning, set the option
-Djrockit.useAdaptiveFatSpin=true

By default, adaptive spinning against fat locks is disabled. Note that whether threads failing to
take a particular fat lock will go spinning or sleeping can change during runtime.
11-2 Oracle JRockit JVM Diagnostics Guide

Lock Def la t ion
You can specify the criteria that needs to be fulfilled for threads to start spinning against a fat
lock. The following options let you tune adaptive spinning.
-Djrockit.adaptiveFatSpinTimeStampDiff=2000000

This sets the maximum difference in CPU-specific ticks where spinning is beneficial.
-Djrockit.adaptiveFatSpinMaxSpin=1000

Number of spins that must fail before threads switch from spinning to sleeping.
-Djrockit.adaptiveFatSpinMaxSleep=1000

Number of sleeps that must get the lock early before threads go back to spinning.
-Djrockit.fatlockspins=100

Number of loops before JRockit JVM tries to read from the lock again in the innermost lock spin
code.

Lock Deflation
If the amount of contention on a lock that has turned fat has been small, then the lock will convert
back to a thin lock. This process is called lock deflation. By default, lock deflation is enabled. If
you do not want fat locks to deflate, then run you application with the following option:
-XXdisableFatLockDeflation

With lock deflation disabled, a fat lock stays a fat lock even after there is no threads contending
or waiting to take the lock.

You can also tune when lock deflation will be triggered. Specify, with the following option, the
number of uncontended fat lock unlocks that should occur before deflation:
-XXfatLockDeflationThreshold=<NumberOfUnlocks>

Lazy Unlocking
So called “lazy” unlocking is intended for applications with many non-shared locks. Be aware
that it can introduce performance penalties with applications that have many short-lived but
shared locks.

When lazy unlocking is enabled, locks will not be released when a critical section is exited.
Instead, once a lock is acquired, the next thread that tries to acquire such a lock will have to ensure
that the lock is or can be released. It does this by determining if the initial thread still uses the
lock. A shared lock will convert to a normal lock and not stay in lazy mode.
Oracle JRockit JVM Diagnostics Guide 11-3

Tun ing Locks
Lazy unlocking is enabled by default in the Java 6 version of the Oracle JRockit JVM R27.6 on
all platforms except IA64 and for all garbage collection strategies except the deterministic
garbage collector. In older releases you can enable lazy unlocking with the command line option
-XXlazyUnlocking.
11-4 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 12
Tuning For Low Latencies
Long latencies can make some applications behave poorly even though the overall throughput is
good. For example, a transaction based system may seem to perform well as to the number of
transactions executing during a specified amount of time, but still show some uneven behavior
with transactions timing out now and then even on low loads. Latencies in the application or the
environment in which the application is run may cause this uneven or poor performance.
Latencies can be due to anything from contention in the Java code to slow network connections
to a database server. Latencies may also be caused by the JVM, for example during garbage
collection, depending on how the JVM is tuned. This section describes how to tune the Oracle
JRockit JVM for low latencies, covering the following subjects:

Measuring Latencies

Tune the Garbage Collection

Tune the Heap Size

Manually Tune the Nursery Size

Manually Tune Compaction

Tune When to Trigger a Garbage Collection

Measuring Latencies
Most application developers have a way of measuring their application’s performance. You can
for example run a set of simulated use cases and measure the time it took to execute them, the
number of a specific kind of transactions executed per minute, the average transaction time or
Oracle JRockit JVM Diagnostics Guide 12-1

Tun ing Fo r Low Latenc ies
how many percent of the transaction times are above or below a specific threshold. When you
tune for low latencies you will be most interested in measuring the amount of transaction times
that are above a certain threshold. For best tuning results you should have a varied set of
benchmarks that are as realistic as possible and run for a longer period of time. Twenty minutes
is often a minimum, and sometimes the full effect of the tuning can be seen only after several
hours.

When you have identified a situation where the long latencies occur, you can start monitoring the
JRockit JVM using some of the following methods:

Create a runtime analysis report by using the JRockit Runtime Analyzer (JRA) supplied
with the product. If you are running the JRockit JVM R27.1 or later and Oracle JRockit
Mission Control 2.0 or later version of JRockit Runtime Analyzer, the individual pause
times for each garbage collection pause (there might be several pauses during one garbage
collection) are reported. The JRA report will also show page faults occurring during
garbage collection. For information on creating and analyzing a JRA report, please refer to
the online help in the JRockit Mission Control Client or the Oracle JRockit Mission
Control documentation.

You can create a latency recording to monitor the occurrences of latencies in your
application. For more information on creating a Latency Recording, please see the online
help in the Oracle JRockit Mission Control Client or the Oracle JRockit Mission Control
documentation.

You can see garbage collection pause times in the JRockit JVM by starting the JVM with
-Xverbose:gcpause.

If you are using an older versions of the JRockit JVM (that is, prior to version R27.1) and
an older version of JRA, use the command-line option -Xverbose:memdbg,gcpause to
print out the garbage collection pause times. The parameter memdbg will also display more
detailed printouts about page faults that occur during garbage collection.

Now you have the tools to see the results of your tuning.

Tune the Garbage Collection
The first step for tuning the JRockit JVM for low latencies is to select a garbage collection mode
that gives you short garbage collection pauses. The best bet is one of the following two dynamic
garbage collection modes or one static garbage collection strategy, described further in this
section:

Dynamic Garbage Collection Mode Optimized for Deterministic Pauses.
12-2 Oracle JRockit JVM Diagnostics Guide

Tune the Garbage Co l lec t i on
This is the garbage collection mode designed for very short and deterministic garbage
collection pauses. It is available as a part of Oracle JRockit Real Time.

Dynamic Garbage Collection Mode Optimized for Short Pauses.

This is a garbage collection mode designed for short garbage collection pauses.

Static Generational Concurrent Garbage Collection

This static garbage collection mode provides fairly short garbage collection pauses but
does not optimize for a specific pause target. Additional tuning of the nursery size and
compaction may be necessary when this garbage collector is chosen.

For more information about different garbage collector options, see Selecting and Tuning a
Garbage Collector.

Dynamic Garbage Collection Mode Optimized for
Deterministic Pauses
Applications that require minimal latency, such as those used in the telecom and finance
industries, cannot abide by the unpredictable pause times caused common garbage collection
strategies. To avoid these overly-long pauses, the JRockit JVM provides “deterministic” garbage
collection, a dynamic garbage collection mode that keeps the garbage collection pauses short and
deterministic.

Set the deterministic garbage collector at the commandline as follows:

java -XgcPrio:deterministic -Xms:1g -Xmx:1g myApplication

The garbage collector will aim on keeping the garbage collection pauses below the given pause
target. How well it will succeed depends on the application and the hardware. For example, a
pause target on 30 ms has been verified on an application with 1 GB heap and an average of 30%
live data or less at collection time, running on the following hardware:

2 x Intel Xeon 3.6 GHz, 2 MB level 2 cache, 4 GB RAM

4 x Intel Xeon 2.0 GHz, 0.5 MB level 2 cache, 8 GB RAM

Running on slower hardware, with a different heap size and/or with more live data might break
the deterministic behavior or cause performance degradation over time, while faster hardware or
less live data might allow you to set a lower pause target.

The pause target for deterministic mode is by default 30 ms, and can be changed with the
command line option -XpauseTarget:<time>. For example:
Oracle JRockit JVM Diagnostics Guide 12-3

Tun ing Fo r Low Latenc ies
java -XgcPrio:deterministic -Xms:1g -Xmx:1g -XpauseTarget:40ms
MyApplication

This starts up the JVM with the garbage collection optimized for short and deterministic pauses
and a pause target of 40ms.

For more information, see the documentation on -XpauseTarget.

The deterministic garbage collector optimizes the compaction for the given pause target and does
not use a nursery. Further tuning of compaction and nursery size should thus be unnecessary
when the deterministic garbage collector is used.

Dynamic Garbage Collection Mode Optimized for Short
Pauses
The dynamic garbage collection mode optimized for short pauses is useful for applications that
don’t require quite as short and deterministic pauses as the deterministic garbage collector
guarantees. This garbage collection mode selects a garbage collection strategy to keep the
garbage collection pauses below a given pause target (500 ms by default). Compaction will also
be adjusted automatically to keep down the pause times caused by compaction.

Set the pausetime priority as follows:

java -XgcPrio:pausetime myApplication

If you use the pausetime priority but find that the default (500 ms) is too long, you can specify a
target pause time by using the -XpauseTarget option, for example:

java -XgcPrio:pausetime -XpauseTarget=200ms myApplication

Be aware that there is a certain trade off between short pauses and application throughput. Shorter
garbage collection pauses require more overhead in bookkeeping and may cause more
fragmentation, which lowers the performance. If your application can tolerate pause times longer
than 500 ms you can increase the pause target to increase the application’s performance.

The target value is used as a pause time goal and by the dynamic garbage collector to more
precisely configure itself to keep pauses near the target value. Using this option allows you to
specify the pause target to be between 200 ms and 5 seconds. If you don’t specify a pause target,
the default remains 500 ms.

The garbage collection mode for short pauses optimizes the compaction for the given pause
target, so further tuning of the compaction should not be necessary. The nursery size is adjusted
automatically, but for an even performance you may need to tune the nursery size manually. In
12-4 Oracle JRockit JVM Diagnostics Guide

Tune the Heap S i ze
R27.3 and later releases, the nursery size is static for this garbage collection mode and will have
to be tuned manually.

Static Generational Concurrent Garbage Collection
If you want to use a static garbage collector and still experience minimal pause times, use a
concurrent garbage collector. Generally, using a generational garbage collector is preferable to
using a single-spaced garbage collector since a generational garbage collector gives you better
application throughput.

To use a generational concurrent garbage collector, enter the following at the command line:

java -Xgc:gencon myApplication

To use a single-spaced concurrent garbage collector, enter the following at the command line:
java -Xgc:singlecon myApplication

When you use a static garbage collector you may have to tune the nursery size and the compaction
manually.

Tune the Heap Size
You can resize the heap by using the -Xms (initial and minimum heap size) and -Xmx (maximum
heap size) command line options when you launch the JRockit JVM. Usually you can set the
initial and the maximum heap size to the same value. Increasing the heap size reduces the
frequency of garbage collections. A larger heap may also take slightly longer to garbage collect,
but this effect is usually not considerable until the heap reaches sizes of several gigabytes.

The best approach to tuning the heap size is simply to benchmark the application with many
different heap sizes. Monitor the garbage collection pauses as described in Measuring Latencies
while you do this to determine the largest possible heap size for your application.

The only exception is the deterministic garbage collector. The deterministic garbage collector is
verified using a heap of about 1 GB, and will work best with heaps of about this size.

To set the heap size, use the -Xms and the -Xmx options, for example

java -Xms:1g -Xmx:1g myApp

For more information, see Optimizing Memory Allocation Performance.
Oracle JRockit JVM Diagnostics Guide 12-5

Tun ing Fo r Low Latenc ies
Manually Tune the Nursery Size
If you are running -XgcPrio:pausetime or -Xgc:gencon you might want to tune the nursery
size manually.

The size of the nursery changes dynamically in runtime when you use -XgcPrio:pausetime,
but setting it manually gives a more even behavior (note that when you use the dynamic garbage
collector, the nursery might also be turned off completely when single-spaced garbage collection
is used).

Note: In the Oracle JRockit JVM R27.3 and later versions the nursery size is static when
running -XgcPrio:pausetime. Tuning the nursery size manually is often beneficial for
both the pause times and the application throughput.

The default nursery size for -Xgc:gencon is static, and may thus not be optimal for all
applications. You might benefit from manually setting a custom nursery size. The nursery should
be as large as possible, but the nursery size must be decreased if the pause time created by a young
collection (nursery garbage collection) is too long. Tune the nursery size by benchmarking your
application with several different nursery sizes while monitoring the garbage collection pauses as
described in Measuring Latencies.

To set the size of the nursery, use the -Xns option; for example:

java -XgcPrio:pausetime -Xns:64m myApp

Manually Tune Compaction
If you are using a static garbage collector, tuning compaction manually might help improve
latencies. Compaction is performed during a garbage collection pause, and thus the compaction
time affects the garage collection pause times. By default, the static garbage collectors use a
compaction scheme that aims at keeping the compaction times fairly even, but does not put an
upper bound on the compaction time.

You can limit the compaction manually by setting a static compaction area size
(-XXcompactRatio) or by limiting the number of references that can be updated due to
compaction (-XXcopactSetLimit). Neither action will not guarantee an upper bound on the
compaction time, but will reduce the risk for long compaction times.

Be aware that if you set the compaction ratio to low, the heap slowly becomes more and more
fragmented until it is impossible to find free space that is big enough for object allocation. The
heap becomes full of dark matter (basically severe fragmentation). When this happens, a full
12-6 Oracle JRockit JVM Diagnostics Guide

Tune When to T r igger a Garbage Co l lec t i on
compaction (a compaction of the complete heap) will be done, which can result in a pause times
of up to half a minute. Dark matter is reported for the heap in a JRA recording.

For complete information on limiting compaction, please refer to Adjusting Compaction.

Tune When to Trigger a Garbage Collection
The -XXgcTrigger option determines how much free memory should remain on the heap when
a concurrent garbage collection starts. If the heap becomes full during the concurrent garbage
collection, the Java application can’t allocate more memory until garbage collection frees some
memory, which might cause the application to pause. While the trigger value will tune itself in
runtime to prevent the heap from becoming too full, this automatic tuning might take too long.
Instead, you can use -XXgcTrigger option to set from the start a garbage collection trigger value
more appropriate to your application.

If the heap becomes full during the concurrent mark phase, the sweep phase will revert to parallel
sweep (unless -XXnoParSweep has been specified). If this happens frequently and the garbage
collection trigger doesn't increase automatically to prevent this, use -XXgcTrigger to manually
increase the garbage collection trigger; for example:

java -XXgcTrigger myApp

The current value of the garbage collection trigger appears in the -Xverbose:memdbg outputs
whenever the trigger changes.
Oracle JRockit JVM Diagnostics Guide 12-7

Tun ing Fo r Low Latenc ies
12-8 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 13
Tuning For Better Application
Throughput
Every application has a unique behavior and has its own unique requirements on the JVM for
gaining maximum application throughput. The “out of the box” behavior of the Oracle JRockit
JVM gives good performance for most applications. You can however often tune the JVM further
to gain some extra application throughput, which means that the application will run faster.

This chapter describes how to tune the JRockit JVM for improved application throughput. It
includes information on the following subjects:

Measuring Your Application’s Throughput

Select Garbage Collector

Tune the Heap Size

Manually Tune the Nursery Size

Manually Tune Compaction

Tune the Thread-Local Area Size

Measuring Your Application’s Throughput
In this document “application throughput” denotes the speed at which a Java application runs. If
your application is a transaction based system, high throughput means that more transactions are
executed during a given amount of time. You can also measure the throughput by measuring how
long it takes to perform a specific task or calculation.
Oracle JRockit JVM Diagnostics Guide 13-1

Tuning For Bet te r App l i cat ion Throughput
To measure the throughput of your application you need a benchmark. The benchmark should
simulate several realistic use cases of the application and run long enough to allow the JVM to
warm up and perform several garbage collections. You also need a way to measure the results,
either by timing the entire run of a specific set of actions or by measuring the number of
transactions that can be performed during a specific amount of time. For an optimal throughput
assession, the benchmark should run on high load and not depend on any external input like
database connections.

When you have a benchmark set up, you can monitor the behavior of the JVM using one of the
following methods:

Create a runtime analysis with the JRockit Runtime Analyzer (JRA) in Oracle JRockit
Mission Control. In the JRA tool, you can see the frequency of the garbage collections and
why garbage the collections are launched. This information provides clues for memory
management tuning. For information on creating and analyzing a JRA report, please refer
to the online help in the Oracle JRockit Mission Control Client or the Oracle JRockit
Mission Control documentation.

Create verbose outputs by using the command-line option -Xverbose; for example,
-Xverbose:memdbg,gcpause,gcreport will show memory management data like
garbage collection frequency and duration. From the JRockit JVM R27.1 and forward,
setting -Xverbose:memdbg will also show the reason why each garbage collection was
started. This will help you study the garbage collection behavior.

Now you have the tools for measuring the throughput of your Java application and can start to
tune the JVM for better application throughput.

Select Garbage Collector
The first step of tuning the JRockit JVM for maximum application throughput is to select an
appropriate garbage collection mode or strategy.

Dynamic Garbage Collection Mode Optimized for Throughput

This is the default garbage collection mode for the JRockit JVM. This mode selects the
optimal garbage collection strategy for maximum application throughput.

Static Generational Parallel Garbage Collection

This static garbage collector is a good alternative if you do not want to use a dynamic
garbage collection mode. The generational parallel garbage collector provides high
throughput for applications that allocate a lot of temporary objects.
13-2 Oracle JRockit JVM Diagnostics Guide

Se lec t Garbage Co l lec to r
Static Single-Spaced Parallel Garbage Collection.

This is another alternative if you do not want to use a dynamic garbage collection mode.
The single-spaced parallel garbage collector provides high throughput for applications that
allocate mostly large objects.

For more information about different garbage collector options, see Selecting and Tuning a
Garbage Collector.

Dynamic Garbage Collection Mode Optimized for
Throughput
The default garbage collection mode in the JRockit JVM (assuming that you run in server mode,
which is also default) tunes the memory management for maximum application throughput.
Depending on the behavior of your application, it will select either a generational or
non-generational parallel garbage collection strategy. It will also tune the nursery size, if the
garbage collection strategy is generational.

Be aware that if you use the dynamic garbage collection mode optimized for throughput, the
garbage collection pauses will not have any strict time limits. If your application is sensitive to
long latencies, you should tune for low latencies rather than for maximum throughput, or find a
middle path that gives you acceptable latencies.

The dynamic garbage collection mode optimized for throughput is the default garbage collector
for the JRockit JVM. You can also turn it on explicitly like this:

java -XgcPrio:throughput myApplication

Static Single-Spaced Parallel Garbage Collection
If you want to use a static garbage collector, then you should use a parallel garbage collector in
order to maximize application throughput. If the large/small object allocation ratio is high, then
use a single-spaced garbage collector (-Xgc:singlepar). You can see the ratio between large
and small object allocation if you do a JRA recording of your application.

To improve throughput by using a static garbage collector, you may also need to set other -X or
-XX options to deliver that throughput.

Static Generational Parallel Garbage Collection
If you want to maximize application throughput and the large/small object allocation ratio is low,
then use a generational parallel garbage collector (-Xgc:genpar). A generational parallel
Oracle JRockit JVM Diagnostics Guide 13-3

Tuning For Bet te r App l i cat ion Throughput
garbage collector might be the right choice even if the large/small object allocation ratio is high
when you are using a very small nursery. You can see the ratio between large and small object
allocation if you do a JRA recording of your application.

To improve throughput by using a static garbage collector, you may also need to set other -X or
-XX options to deliver that throughput.

Tune the Heap Size
The default heap size starts at 64 MB and can increase up to 1 GB. Most server applications need
a large heap—at least larger than 1 GB—to optimize throughput. For such applications, you will
need to set the heap size manually by using the -Xms (initial heap size) and -Xmx (maximum heap
size) command-line options. Setting -Xms the same size as -Xmx has regularly shown to be the
best configuration for improving throughput; for example:

java -Xms:2g -Xmx:2g myApp

For more information on setting the initial and maximum heap sizes, including guidelines for
setting these values, please see Optimizing Memory Allocation Performance.

Manually Tune the Nursery Size
The nursery—or young generation —is the area of free chunks in the heap where objects are
allocated when running a generational garbage collector (-XgcPrio:throughput, -Xgc:genpar
or -Xgc:gencon). A nursery is valuable because most objects in a Java application die young.
Collecting garbage from the young space is preferable to collecting the entire heap, as it is a less
expensive process and most objects in the young space will already be dead when the garbage
collection is started.

If you are using a generational garbage collector you might need to change the nursery setting to
accommodate more young objects.

-XgcPrio:throughput and -Xgc:genpar will change the nursery size dynamically in
runtime. -XgcPrio:throughput might even turn off the nursery (that is, switch to a single
generational garbage collector). In some cases manual tuning might result in a more
efficient nursery size.

-Xgc:gencon has a fairly low and static nursery size setting. For many applications, you
may want to tune the nursery size manually when using this garbage collector.

An efficient nursery size is such that the amount of memory freed by young collections (garbage
collections of the nursery) rather than old collections (garbage collections of the entire heap) is
13-4 Oracle JRockit JVM Diagnostics Guide

Manual l y Tune Compact ion
as high as possible. To achieve this, you should set the nursery size close to the size of half of the
free heap after an old collection.

To set the nursery size manually, use the -Xns command-line option; for example:

java -Xgc:gencon -Xms:2g -Xmx:2g -Xns:512m myApp

Manually Tune Compaction
Compaction is the process of moving chunks of allocated space toward the lower end of the heap,
helping to create contiguous free memory at the other end. The JRockit JVM does partial
compaction of the heap at each old collection.

The default compaction setting for static garbage collectors (-Xgc or -XXsetGC) use a dynamic
compaction scheme that tries to avoid “peaks” in the compaction times. This is a compromise
between keeping garbage collection pauses even and maintaining a good throughput, so it doesn't
necessarily give the best possible throughput. Tuning the compaction can pay off well, depending
on the application's characteristics.

There are two ways to tune the compaction for better throughput; increasing the size of the
compaction area and increasing the compact set limit. Increasing the size of the compaction area
will help reduce the fragmentation on the heap. Increasing the compact set limit will implicitly
allow larger areas to be compacted at each garbage collection. This reduces the garbage collection
frequency and makes allocation of large objects faster, thus improving the throughput.

For information on tuning these compaction options, please refer to Tuning the Compaction of
Memory.

Tune the Thread-Local Area Size
Thread Local Areas (TLAs) are chunks of free memory used for object allocation. The TLAs are
reserved from the heap and given to the Java threads on demand, so that the Java threads can
allocate objects without having to synchronize with the other Java threads for each object
allocation.

Increasing the preferred TLA size speeds up allocation of small objects when each Java thread
allocates a lot of small objects, as the threads won’t have to synchronize to get a new TLA as
often.

In Oracle JRockit JVM R27.3 and later releases the preferred TLA size also determines the size
limit for objects allocated in the nursery. Increasing the TLA size will thus also allow larger
objects to be allocated in the nursery, which is beneficial for applications that allocate a lot of
Oracle JRockit JVM Diagnostics Guide 13-5

Tuning For Bet te r App l i cat ion Throughput
large objects. In older versions you need to set both the TLA size and the Large Object Limit to
allow larger objects to be allocated in the nursery. A JRA recording will show you statistics on
the sizes of large objects allocated by your application. For good performance you can try setting
the preferred TLA size at least as large as the largest object allocated by your application.

For more information on how to set the TLA size, see Setting the Thread Local Area Size.
13-6 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 14
Tuning For Stable Performance
An incorrectly tuned JVM may perform well initially, but start showing lower performance or
longer latencies over time or display severe performance variations. This section shows you how
to tune your JVM for stable performance over time. The following topics are covered:

Measuring the Performance Variance

Tune the Heap Size

Manually Tune the Nursery Size

Tune the Garbage Collector

Tune Compaction

Measuring the Performance Variance
To be able to measure and analyze performance variance over time you need a long-running test
that continuously reports the current performance. The test scenario should be as realistic as
possible and cover as many use cases as possible.

When you have identified a variance in performance you can start monitoring the Oracle JRockit
JVM to see if this variance correlates to events within the JVM, for example garbage collection,
fragmentation or lock deflation. The tools in Oracle JRockit Mission Control will help you do
this, as well as the verbose outputs that you can enable with the -Xverbose command line option.
Oracle JRockit JVM Diagnostics Guide 14-1

Tuning Fo r S tab le Pe r fo rmance
Events to look for and the proper tools for finding these are listed in Table 14-1

Tune the Heap Size
Heap size changes in runtime may cause performance variations. You can monitor the heap size
in -Xverbose:memdbg outputs and in JRockit Mission Control tools. A JRA recording will also
tell you if the heap size has changed during the recording.

For an even performance over time, you should set the initial heap size (-Xms) to the same value
as the maximum heap size (-Xmx), for example:
java -Xms:1g -Xmx:1g myApplication

For more information on tuning the heap size, see Setting the Heap Size.

Manually Tune the Nursery Size
Nursery size changes in runtime may cause performance variations, but may also help keeping
the performance high when the load changes. You can monitor the nursery size in
-Xverbose:memdbg outputs and JRockit Mission Control tools. A JRA recording will also tell
you if the nursery size has changed during the recording. If you find that performance variations
in your application correlate to nursery size changes, you can set a static nursery size with the
command line option -Xns:<size>, for example:

Table 14-1 JVM Events

Event Type What to Look For Tools

Heap size change The heap increases or decreases -Xverbose:memdbg, JRA,
Oracle JRockit Mission Control

Nursery size change The nursery size increases or
decreases

-Xverbose:memdbg, JRA,
Oracle JRockit Mission Control

Garbage collector strategy
change

A dynamic garbage collection
mode changes the garbage
collection strategy

-Xverbose:memdbg, JRA

Increased fragmentation The amount of dark matter
increases

JRA

Full compaction Compaction of all heap parts at
once

-Xverbose:memdbg, JRA
14-2 Oracle JRockit JVM Diagnostics Guide

Tune the Garbage Co l lec to r
java -Xns:100m myApplication

For more information on tuning the nursery size, see Setting the Nursery and Keep Area Size.

Note: Overriding the dynamic nursery sizing heuristics may have a negative impact on the
performance or cause performance variations in applications where the amount of live
data varies during the run.

Tune the Garbage Collector
The dynamic garbage collection modes in the JRockit JVM select a garbage collection strategy
based on runtime information. Changes in application behavior may cause the garbage collection
strategy to change. If such changes happen often and cause a performance variations, you may
want to select a static garbage collection strategy rather than a dynamic garbage collection mode.
Set a static garbage collection strategy with the command line option -Xgc:<strategy>, for
example:
java -Xgc:parallel myApplication

For more information on selecting a static garbage collection strategy, see Selecting a Static
Garbage Collection Strategy.

Tune Compaction
The Oracle JRockit JVM uses the mark and sweep garbage collection model as described in The
Mark and Sweep Model. This garbage collection model may cause the heap to become
fragmented, which means that the free areas on the heap become many but small. The JVM
performs partial compaction of the heap at each garbage collection to reduce the fragmentation.
Sometimes the amount of compaction isn’t enough. This leads to increasing fragmentation,
which in turn leads to more and more frequent garbage collections until the heap is so fragmented
that a full compaction is performed. After the full compaction the garbage collection frequency
goes down, but will gradually increase as the fragmentation increases again.

This behavior will cause the performance of the Java application to vary. As the garbage
collection frequency increases the performance drops. During the full compaction you may
experience a prolonged garbage collection pause, which pauses the entire Java application for a
while. After this the performance is high again, but starts going down as the garbage collection
frequency increases again.

You can monitor the compaction ratio and garbage collection frequency in -Xverbose:memdbg
outputs, the Management Console and JRA recordings. A JRA recording will also show you how
much dark matter (severe fragmentation) there is on the heap. If you find that the garbage
Oracle JRockit JVM Diagnostics Guide 14-3

Tuning Fo r S tab le Pe r fo rmance
collection keeps increasing until a full compaction is done, you need to increase the compaction
ratio. For information on how to tune the compaction, see Tuning the Compaction of Memory.

You can also decrease the fragmentation on the heap by using a generational garbage collector.
See Selecting and Tuning a Garbage Collector for information on different garbage collectors.
14-4 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 15
Tuning For a Small Memory Footprint
If you are running on a system with limited memory resources, you may want to tune the Oracle
JRockit JVM for a small memory footprint. This section describes the tuning options you have
available for reducing the memory footprint of the JVM. The following topics are covered:

Measuring the Memory Footprint

Set the Heap Size

Select a Garbage Collector

Tune Compaction

Tune Object Allocation

Measuring the Memory Footprint
The memory footprint of an application is best measured using some of the tools provided with
the operating system, for example the top shell command or the Task Manager in Windows.

To determine how the memory usage of the JVM process is distributed, you can request a
memory analysis by using jrcmd to print the JVM’s memory usage. See Using jrcmd and
Available Diagnostic Commands for more information.

When you have acquired information on the JVM’s memory usage you can start tuning the JVM
to reduce the memory footprint within the areas that use the most memory.
Oracle JRockit JVM Diagnostics Guide 15-1

Tun ing Fo r a Smal l Memory Foo tpr in t
Set the Heap Size
The most obvious place to start tuning the memory footprint is the Java heap size. If you reduce
the Java heap size by a certain amount you will reduce the memory footprint of the Java process
by the same amount. You can however not reduce the Java heap size infinitely. The heap must be
at least large enough for all objects that are alive at the same time. Preferably the heap should be
at least twice the size of the total amount of live objects, or large enough so that the JVM spends
less time garbage collecting the heap than running Java code.

The heap size is set with the command line options -Xms (initial heap size) and -Xmx (maximum
heap size); for example:
java -Xms:100m -Xmx:100m myApplication

To allow the heap to grow and shrink depending on the amount of free memory in your system,
set -Xms lower than -Xmx. For more information on setting the heap size, see Optimizing Memory
Allocation Performance.

Select a Garbage Collector
The choice of a garbage collection mode or static strategy does not in itself affect memory
footprint noticeably, but choosing the right garbage collection strategy may allow you to reduce
the heap size without a major performance degradation.

If your application uses a lot of temporary objects you should consider using a generational
garbage collection strategy. The use of a nursery reduces fragmentation and thus allows for a
smaller heap.

The concurrent garbage collector must start garbage collections before the heap is entirely full,
to allow Java threads to continue allocating objects during the garbage collection. This means that
the concurrent garbage collector requires a larger heap than the parallel garbage collector, and
thus your primary choice for a small memory footprint is a parallel garbage collector.

The default garbage collection mode chooses between a generational parallel garbage collection
strategy and a non-generational parallel garbage collection strategy, depending on the sizes of the
objects that your application allocate. This means that the default garbage collector is a good
choice when you want to minimize the memory footprint.

If you want to use a static garbage collection strategy, you can specify the strategy with the -Xgc
command line option; for example:
java -Xgc:genpar myApplication
15-2 Oracle JRockit JVM Diagnostics Guide

Tune Compact ion
For more information on selecting a garbage collector, see Selecting and Tuning a Garbage
Collector.

Tune Compaction
Using a small heap increases the risk for fragmentation on the heap. Fragmentation can have a
severe effect on application performance, both by lowering the throughput and by causing
occasional long garbage collections when the garbage collector is forced to compact the entire
heap at once.

If you are experiencing problems with fragmentation on the heap you can increase the
compaction ratio by using the command line option -XXcompactRatio:<percentage>, for
example:
java -XXcompactRatio:50 myApplication

If your application isn’t sensitive to long latencies, you can try using full compaction. This will
allow you to use a smaller heap, as all fragmentation is eliminated at each garbage collection.
Enable full compaction by using the command line option -XXfullCompaction; for example:
java -XXfullCompaction myApplication

Compaction uses memory outside of the heap for bookkeeping. As an alternative to increasing
the compaction you can use a generational garbage collector, which also reduces the
fragmentation.

Tune Object Allocation
You can tune the object allocation to allow smaller chunks of free memory to be used for
allocation. This reduces the negative effects of fragmentation, and allows you to run with a
smaller heap. The smallest chunk of memory used for object allocation is a thread local area. Free
chunks smaller than the minimum thread local area size are ignored by the garbage collector and
become dark matter until a later garbage collection frees some adjacent memory or compacts the
area to create larger free chunks. You can reduce the minimum thread local area size with the
command line option -XXtlaSize:min=<size>, for example:

java -XXtlaSize:min=1k myApplication

In releases older than R27.2 you reduce the TLA size with the command line option
-XXtlaSize:<size>, for example:

java -XXtlaSize:1k myApplication
Oracle JRockit JVM Diagnostics Guide 15-3

Tun ing Fo r a Smal l Memory Foo tpr in t
For more information on how to set the thread local area size, see the documentation on
-XXtlaSize and Optimizing Memory Allocation Performance.
15-4 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 16
Tuning For Faster JVM Startup
Small utility applications that run only for a short time may suffer a performance hit if the JVM
and Java application startup time is long. The Oracle JRockit JVM is by default optimized for
server use, which means that the startup times can be longer in favour of high performance as
soon as the application is up and running. This section describes how to tune the JVM to decrease
the startup times, covering the following topics:

Measuring the Startup Time

Setting the Heap Size

Troubleshoot Your Application and the JVM

Measuring the Startup Time
The startup time of an application is the time it takes for the application to get up and running and
ready to start doing what it is supposed to do. The startup time includes both the JVM startup and
the Java application startup.

For information on how to measure the startup time of your application, see Timing with
nanoTime() and currentTimeMillis().

Setting the Heap Size
The heap size has an impact on both the JVM startup time and the Java application startup time.
The JVM reserves memory for the maximum heap size (-Xmx) and commits memory for the
initial heap size (-Xms) at startup, which takes time. For large applications this is inevitable, but
Oracle JRockit JVM Diagnostics Guide 16-1

Tun ing Fo r Faste r JVM Star tup
you should be aware that using an oversized heap may lead to longer JVM startup times than
necessary. If your application is small and runs only for a short time you may have to set a small
heap size to avoid the overhead of reserving and committing more memory than the application
will ever need.

On the other hand, if the initial heap is too small, the Java application startup becomes slow as
the JVM is forced to perform garbage collection frequently until the heap has grown to a more
reasonable size. For optimal startup performance you should set the initial heap size to the same
as the maximum heap size.

Troubleshoot Your Application and the JVM
The application itself may be causing the startup to become slow. See The Oracle JRockit JVM
Starts Slowly for tips on troubleshooting problems in the application and JVM.
16-2 Oracle JRockit JVM Diagnostics Guide

Part III JRockit JDK Tools
Chapter 17. Introduction to Diagnostics Tools
Chapter 18. Using Oracle JRockit Mission Control Tools
Chapter 20. Using Thread Dumps
Chapter 21. Running Diagnostic Commands
Chapter 22. Oracle JRockit Time Zone Updater
Oracle JRockit JVM Diagnostics Guide

C H A P T E R 17
Introduction to Diagnostics Tools
Throughout the Oracle JRockit JVM Diagnostics Guide, you will be directed to use certain tools
or other features of the Oracle JRockit JVM to better identify and resolve problems when running
an application with the JVM. The chapters in this section provide an overview of these tools along
with instructions for using them.

What this Section Contains
These tools and features include:

Monitoring, management and analysis tools that are included in Oracle JRockit Mission
Control. JRockit Mission Control contains a suite of tools that help you monitor, manage,
profile, and eliminate memory leaks in your Java application without causing undue
performance overhead (see Using Oracle JRockit Mission Control Tools).

Customizable verbose logs that provide low overhead runtime information on various
components of the JRockit JVM, for example memory management and code
optimizations. (see Understanding Verbose Outputs).

Thread dumps, snapshots of the state of all threads that are part of the process. These
dumps reveal information about an application’s thread activity, which can help you
diagnose problems and better optimize application and JVM performance (see Using
Thread Dumps).

Ctrl-Break Handlers, which allow you to interrupt processing to print information about
running processes or communicate directly with the JRockit JVM. You can easily send
Oracle JRockit JVM Diagnostics Guide 17-1

In t roduct ion to D iagnos t i cs Too ls
Ctrl-Break handler commands “on the fly” to a running JVM process by using jrcmd (see
Running Diagnostic Commands).

Time Zone Updater, required for you to update installed JDK/JRE images with more recent
time zone data to accommodate the U.S. 2007 daylight saving time changes (US2007DST)
originating with the U.S. Energy Policy Act of 2005. (see Oracle JRockit Time Zone
Updater).

Instructions for Oracle JRockit Mission Control 1.0 users who want to create a JRockit
Runtime Analyzer recording. The JRA provides a wealth of information on internals in the
JRockit JVM that you will find of great interest if you are using this product as your
runtime VM (see Creating a JRA Recording with JRockit Mission Control 1.0).

Oracle JRockit Mission Control Use Cases demonstrates various ways Oracle JRockit
Mission Control can be used to monitor and manage application running on the JRockit
JVM. It includes use cases describing how to use:

– The JRockit Management Console

– The JRockit Runtime Analyzer (JRA)

– The JRockit Memory Leak Detector (Memleak)
17-2 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 18
Using Oracle JRockit Mission Control
Tools
The suite of tools included in Oracle JRockit Mission Control are designed to monitor, manage,
profile, and gain insight into problems occurring in your Java application without requiring the
performance overhead normally associated with these types of tools.

This chapter serves as a generic introduction to the different versions of JRockit Mission Control.
You can find more detailed information about the versions, please refer to More Information on
JRockit Mission Control Versions.

This chapter contains information on these subjects:

JRockit Mission Control Overhead

Architectural Overview of the JRockit Mission Control Client

The JRockit Management Console

The JRockit Runtime Analyzer

The JRockit Memory Leak Detector

More Information on JRockit Mission Control Versions

JRockit Mission Control Overhead
JRockit Mission Control’s low performance overhead is a result of using data collected as part of
the Oracle JRockit JVM’s normal adaptive dynamic optimization. This also eliminates the
problem with the Heisenberg anomaly that can occur when tools using bytecode instrumentation
alters the execution characteristics of the system. JRockit Mission Control functionality is always
Oracle JRockit JVM Diagnostics Guide 18-1

Using Orac le JRock i t M iss i on Cont ro l Too ls
available on-demand and the small performance overhead is only in effect while the tools are
running.

Architectural Overview of the JRockit Mission Control
Client

This section provides an architectural overview of all versions of JRockit Mission Control.

JRockit Mission Control 3.0

JRockit Mission Control 2.0

JRockit Mission Control 1.0

JRockit Mission Control 3.0
With the Rich Client Platform (RCP) based JRockit Mission Control Client, you can launch the
JRockit Memory Leak Detector, the JRockit Runtime Analyzer, and the JRockit Management
Console from within the JRockit Mission Control Client. Figure 18-3 depicts how the JRockit
Mission Control Client looks when all tools are loaded.

Figure 18-1 Architectural Overview of the JRockit Mission Control 3 Client

When a JRA recording is started from within the JRockit Mission Control Client, it records the
status of the JRockit JVM process for the time that you have specified and creates a ZIP file
18-2 Oracle JRockit JVM Diagnostics Guide

Arch i tec tura l Ove rv i ew o f the JRock i t Miss ion Cont ro l C l i ent
containing an XML file with the recorded data and optionally a binary file with latency data
together with the corresponding data producer specification files. The ZIP file is automatically
opened in the JRockit Runtime Analyzer (marked 5 in Figure 18-3) upon completion of the
recording for JDK level 1.5 and later; for JDK 1.4.2 it is stored locally on the computer where the
recorded JVM was running. Typical information that is recorded during a JRA recording is Java
heap distribution, garbage collections, method samples, and lock profiling information
(optional). New for the JRockit Mission Control 3.0 release, is that you can also record thread
latency data. When viewing Latency data in the JRA Tool, the Latency Events Details become
visible (marked 2 in Figure 18-3).

To view real-time behavior of your application and of the JRockit JVM, you can connect to an
instance of the JVM and view real-time information through the JRockit Management Console
(marked 4 in Figure 18-3). Typical data that you can view is thread usage, CPU usage, and
memory usage. All graphs are configurable and you can both add your own attributes and
redefine their respective labels. In the Management Console you can also create rules that trigger
on certain events, for example sending an e-mail if the CPU load reaches 90%.

With the JMX Agent you have access to all MBeans deployed in the platform MBean server.
From these MBeans, you can read attribute information, such as garbage collection durations.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The JRockit Memory Leak Detector connects to the JMX
(RMP) Agent that instructs to start a Memory Leak server with which all further communication
takes place.

JRockit Mission Control 2.0
With the new Client Platform (RCP) based JRockit Mission Control Client, you can launch the
JRockit Memory Leak Detector, the JRockit Runtime Analyzer, and the JRockit Management
Console from within the JRockit Mission Control Client (see Figure 18-2).
Oracle JRockit JVM Diagnostics Guide 18-3

Using Orac le JRock i t M iss i on Cont ro l Too ls
Figure 18-2 Architectural Overview of the JRockit Mission Control 2.0 Client

Through the JMX Agent, you have access to all MBeans deployed in the platform MBean server.
From these MBeans, you can read attributes information, such as garbage collection duration.

When a JRA recording is started from within the JRockit Mission Control Client, it records the
status of the JRockit JVM process for the time that you have specified and creates an XML file.
This file is automatically opened in the JRockit Runtime Analyzer. Typical information that is
recorded during a JRA recording is Java heap distribution, garbage collections, method
optimizations, and method profiling information.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The Memory Leak Detector connects to the JMX (RMP)
Agent that instructs to start a Memory Leak server with which all further communication takes
place.

JRockit Mission Control 1.0
JRockit Mission Control 1.0 is available on the JRockit JDK 1.4.2 (R26.2 and later) and JRockit
JDK 5.0 (R26.0 and later), see Figure 18-3. The difference between the two is the connection
agent used by the JRockit Management Console and the JRockit Management Console user
interface itself.
18-4 Oracle JRockit JVM Diagnostics Guide

Arch i tec tura l Ove rv i ew o f the JRock i t Miss ion Cont ro l C l i ent
The RMP Agent (JRockit JDK 1.4.2) provides access, among other things, to live data about
memory and CPU usage. With the addition of the JMX Agent (available with JRockit JDK 5.0)
you will also get access to MBeans available to the platform MBean server. From these MBeans,
you can read attributes information, such as garbage collection pauses.

When a JRA recording is started, for example, from the Management Console, it records the
status of the JRockit JVM process for the time that you have specified. When the recording is
completed, the information is saved to an XML file. This XML file can be viewed and analyzed
in the JRockit Runtime Analyzer. Typical information that is recorded during a JRA recording is
Java heap distribution, garbage collections, and method optimizations.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The Memory Leak Detector connects to the JMX (RMP)
Agent that instructs to start a Memory Leak server where all further communication takes place.

Figure 18-3 Architectural Overview of JRockit Mission Control 1.0
Oracle JRockit JVM Diagnostics Guide 18-5

Using Orac le JRock i t M iss i on Cont ro l Too ls
The JRockit Browser (JRockit Mission Control 2.0 and
later)

The JRockit Browser is available only with JRockit Mission Control 2.0 and later versions. This
tool allows you to set up and manage all running instances of the JRockit JVM on your system.
From the JRockit Browser you activate recordings, set up a tree view of different JRockit JVMs
to monitor, start other JRockit Mission Control tools, etc. Each JRockit JVM instance is referred
to as a Connector.

The JRockit Management Console
The JRockit Management Console is used to monitor and manage multiple (or single) JRockit
JVM instances. It captures and presents live data about memory, CPU usage, and other runtime
metrics. For the Management Console that is running on JRockit JDK 5.0, information from any
JMX MBean deployed in the JRockit JVM internal MBean server (JMX Agent in Figure 18-3)
can be displayed as well. JVM management includes dynamic control over CPU affinity, garbage
collection strategy, memory pool sizes, and more.

The JRockit Runtime Analyzer
The JRockit Runtime Analyzer (JRA) is an on-demand “flight recorder” that produces detailed
recordings about the JVM and the application it is running. The recorded profile can later be
analyzed off line by using the JRA. Recorded data includes profiling of methods and locks, as
well as garbage collection statistics, optimization decisions, and latency analysis (JRockit
Mission Control 3.0).

Latency Analysis Tool (JRockit Mission Control 3.0)
The Latency Analysis Tool is a subset of the JRockit Mission Control 3.0 version of the JRA that
allows you to create JRA recordings that contain latency information for your application.
Latency events occur when thread execution stops temporarily, for example when a thread waits
for its turn to enter a synchronized method, or waits for data from a socket. The JRA now contains
three additional tabs that all show latency data from different perspectives. These tabs are
prefixed Latency and named: Latency Log, Latency Graph, and Latency Traces. Together with
these three tabs and two auxiliary tabs, you can activate and deactivate event types on the latency
tabs and view properties.
18-6 Oracle JRockit JVM Diagnostics Guide

The JRock i t Runt ime Ana lyze r
JRA Sample Recordings
Beginning with the JRockit JVM R27.5 and JRockit Mission Control 3.0.2, you can access three
sample JRA recordings that demonstrate the features of the Latency Analysis Tool. The files are
located at JROCKIT_HOME/missioncontrol/samples/jrarecordings/. They are:

pricing_server_logging_on.jra — this recording shows an application experiencing
problems with latencies because several threads try to access a java.util.logging
Logger.

pricing_server_logging_off.jra — this file contains a recording of the same
application in pricing_server_logging_on.jra, but with logging turned off.

java2d_demo.jra — this recording shows how to use the Jump-to-Source feature. It is a
recording of the demo located at JROCKIT_HOME/demo/jfc/Java2D. The Java2D demo
folder contains the source, allowing this recording to demonstrate Jump-to-Source.

Note: Jump-to-Source is only available when running the JRockit Mission Control Client
within Eclipse. To run the JRockit Mission Control Client within Eclipse, please
install it from the update site. For more information see
dev2dev.bea.com/jrockit/tools.html. You also need to set up a Java project
containing the source you wish to jump to; in this case the Java2D demo.

Opening a Sample Recording
You can open a sample either from within the JRockit Mission Control Client or directly from
the file system, as described below:

To open a sample recording from within the JRockit Mission Control Client
With the JRockit Mission Control Client running, do the following:

1. Open the File menu and select Open File...

The Open File dialog box appears, showing the
JROCKIT_HOME/missioncontrol/samples/jrarecordings/ folder (the default folder).

2. Select the sample recording you want to open and click Open.

The recording opens.

To open a sample recording from the file system
With the JRockit Mission Control Client running and your file system (for example, Windows
Explorer) open, do the following:
Oracle JRockit JVM Diagnostics Guide 18-7

Using Orac le JRock i t M iss i on Cont ro l Too ls
1. In the file system, navigate to
JROCKIT_HOME/missioncontrol/samples/jrarecordings/ and select the recording
you want to open.

2. Drag the recording from the file system directly onto the JRockit Mission Control Client

The recording opens.

The JRockit Memory Leak Detector
The JRockit Memory Leak Detector is a tool for discovering and finding the cause for memory
leaks in a Java application. The JRockit Memory Leak Detector’s trend analyzer discovers slow
leaks, it shows detailed heap statistics (including referring types and instances to leaking objects),
allocation sites, and it provides a quick drill down to the cause of the memory leak. The Memory
Leak Detector uses advanced graphical presentation techniques to make it easier to navigate and
understand the sometimes complex information.

More Information on JRockit Mission Control Versions
Complete information on using JRockit Mission Control is available in the respective versions
documentation. Because of the difference in deployment mechanisms between JRockit Mission
Control 1.0, JRockit Mission Control 2.0, and JRockit Mission Control 3.0, each version has its
own set of documentation:

For JRockit Mission Control 1.0, please refer to the JRockit Mission Control
documentation.

For JRockit Mission Control 2.0, please refer to the online help documentation included
with the JRockit Mission Control 2 GUI.

For JRockit Mission Control 3.0, please refer to the built-in help documentation as well as
eDocs. For PDF versions of the help, see the Oracle JRockit Mission Control
documentation.
18-8 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 19
Understanding Verbose Outputs
The -Xverbose command line option enables verbose outputs from the Oracle JRockit JVM.
You can use these verbose outputs for monitoring, tuning and diagnostics. This chapter describes
some of the most useful verbose modules and how to interpret the outputs from them.

Note: Outputs may differ between JVM versions and that the exact format is subject to changes
at any time.

This chapter is divided into two sections:

Memory Management Verbose Log Modules

Other Verbose Log Modules

Memory Management Verbose Log Modules
Many of the verbose modules available in the JRockit JVM are dedicated to memory
management and garbage collection.Table 19-1 lists the verbose modules described in this
section.

Table 19-1 Memory Management Verbose Modules

Module Description Uses

memory Basic garbage collection information Tuning and monitoring

nursery Nursery details Tuning and monitoring
Oracle JRockit JVM Diagnostics Guide 19-1

Unders tanding Verbose Outputs
Most verbose modules are available in several log levels. This section covers only the default
(info) log level, which is the most useful for general tuning and monitoring purposes.

Verbose Memory Module
The -Xverbose:memory (or -Xverbose:gc) module provides basic information on garbage
collection events. The overhead for this module is very low, which means that you can enable it
even in a production environment.

Initial Verbose Memory Outputs
At JVM startup the memory log module outputs some basic numbers on the memory management
system configuration and a guide to how to read the garbage collection printouts.

Listing 19-1 shows an example of the initial output from the memory log module. This example
is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-1 Initial Verbose Memory Output

1: [memory] GC mode: Garbage collection optimized for throughput, initial
strategy: Generational Parallel Mark & Sweep

2: [memory] heap size: 307200K, maximal heap size: 307200K, nursery size:
153600K

3: [memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause> ms

memdbg Memory management details Tuning, monitoring and diagnostics

compaction Compaction details Tuning, monitoring and diagnostics

gcpause Garbage collection pause times Tuning, monitoring and diagnostics

gcreport Garbage collection summary Tuning and monitoring

refobj Reference object information (R27.5) Monitoring and diagnostics

referents Reference object information Monitoring and diagnostics

Table 19-1 Memory Management Verbose Modules

Module Description Uses
19-2 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
4: [memory] <s/start> - start time of collection (seconds since jvm start)

5: [memory] <end> - end time of collection (seconds since jvm start)

6: [memory] <before> - memory used by objects before collection (KB)

7: [memory] <after> - memory used by objects after collection (KB)

8: [memory] <heap> - size of heap after collection (KB)

9: [memory] <pause> - total sum of pauses during collection (milliseconds)

10: [memory] run with -Xverbose:gcpause to see individual pauses

Line 1 describes the garbage collection mode used in this run, as well as the initial garbage
collection strategy.

Line 2 shows you the initial and maximum heap size, as well as the initial nursery size.

Lines 3-10 describe the format of the garbage collection outputs.

Verbose Memory Garbage Collection Outputs
The memory log module prints out a line for each garbage collection.

Listing 19-2 shows a snippet of verbose outputs from the memory log module. This example is
from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-2 Verbose Memory Garbage Collection Outputs

1: [memory] 83.976: parallel nursery GC 307200K->191044K (307200K), 35.584 ms

2: [memory] 84.772-85.766: GC 288200K->73425K (307200K), 994.090 ms

3: [memory] 87.036: parallel nursery GC 233783K->119655K (307200K), 57.716 ms

4: [memory] 87.974: parallel nursery GC 233655K->119527K (307200K), 35.876 ms

Each garbage collection output starts with a timestamp, which is the time in seconds since the
JVM started. At the end of each line you can also see the total heap size within parenthesis, and
the total garbage collection duration for each garbage collection. Note that the garbage collection
duration may consist of both pauses and concurrent garbage collection phases.
Oracle JRockit JVM Diagnostics Guide 19-3

Unders tanding Verbose Outputs
Lines 1, 3 and 4 are outputs from young collections. The young collection on line 1 reduced the
amount of occupied heap from 307200 KB to 191044 KB.

Line 2 is an output from an old collection, which reduced the amount of occupied heap from
288200 KB to 73425 KB.

Verbose Memory Page Faults Warning
Page faults cause memory access to become slow, and page faults during garbage collection may
cause long garbage collection times. Because of this, the verbose memory log module prints out
a warning whenever the number of page faults during the garbage collection was more than 5%
of the number of pages in the heap.

Listing 19-3 shows an example of a page fault warning. This example is from the JRockit JVM
R27.4.

Listing 19-3 Verbose Memory Page Faults Warning

[memory] Warning: Your computer has generated 9435 page faults during the last
garbage collection.

[memory] If you find this swapping problematic, please consider running JRockit
with a smaller heap.

Verbose Nursery Log Module
The -Xverbose:nursery log module provides details on young collections and nursery sizing.
Some of this information is useful for monitoring and tuning the JRockit JVM. The overhead is
very low, which means that you can enable this module even in a production environment.

The nursery log module is available in the JRockit JVM R27.2 and later releases.

Verbose Nursery Young Collection Output
Listing 19-4 shows an example of an output from the nursery log module during a young
collection. This example is from the JRockit JVM R27.4. Line numbers have been added.
19-4 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
Listing 19-4 Verbose Nursery Young Collection Output

1: [nursery] KeepAreaStart: 0x015FFFF0 KeepAreaEnd: 0x01AFFFF0

2: [nursery] Young collection 86 started. This YC is running while the OC is in
phase: not running.

3: [nursery] Setting mmNurseryMarker[0] to 0x015FFFF0

4: [nursery] Setting mmNurseryMarker[1] to 0x01AFFFF0

Lines 1, 3 and 4 contain information related to the keep area size and position. This information
is only interesting for advanced diagnostics.

Line 2 shows you the sequence number of the young collection. It also informs you that the old
collection is not running while this young collection is running. Other possible old collection
phases are marking, precleaning and sweeping, which are the concurrent phases of the concurrent
old collection.

Verbose Nursery Size Adjustment Output
Some garbage collection modes and strategies will adjust the nursery size in runtime for optimal
performance. The nursery log module shows some information on the nursery sizing calculations
and nursery size changes.

Listing 19-5 shows an example of nursery sizing outputs from an old collection. This example is
from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-5 Verbose Nursery Size Adjustment Output

1: [nursery] Optimal nursery size: 157286400, free heap: 314572800

2: [nursery] Nursery size increased from 0kb to 153600kb. Parts: 4023

Line 1 shows you that the heuristics have found that an optimal nursery size would be 157286400
bytes. The memory management system may however not be able to create a nursery of exactly
this size.
Oracle JRockit JVM Diagnostics Guide 19-5

Unders tanding Verbose Outputs
Line 2 states that the nursery size is being increased from 0 (no nursery) to 153600 KB, and that
the nursery consists of 4023 chunks.

Verbose Memdbg Log Module
The -Xverbose:memdbg log module provides details on garbage collection and memory
management. Enabling this log module also enables some other log modules, for example the
nursery log module. This section only describes the outputs labeled memdbg, all other verbose
outputs have been removed from the examples.

The overhead of the verbose memdbg outputs is low, and thus it can be used in production
environments.

Initial Verbose Memdbg Output
Listing 19-6 shows an example of the initial output from the memdbg verbose module. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-6 Initial Verbose Memdbg Output

1: [memdbg] Memory layout after heap allocation:

2: [memdbg] ' ' - free, '-' - OS reserved range, 'r' - reserved, 'x' - committed,

3: [memdbg] '+' - committed/read, 'e' - committed/executable

4: [memdbg] 'J' - java heap, 'j' - java heap data structures

5: [memdbg] 00 0.00Gb
-eeJJJ

6: [memdbg] 10 0.25Gb JJJJJJJJJJJJJJ

7: [memdbg] 20 0.50Gb

8: [memdbg] 30 0.75Gb

9: [memdbg] 40 1.00Gb

10: [memdbg] 50 1.25Gb

11: [memdbg] 60 1.50Gb

12: [memdbg] 70 1.75Gb e e - e e e ejj
19-6 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
13: [memdbg] 80 2.00Gb
--

14: [memdbg] 90 2.25Gb
--

15: [memdbg] a0 2.50Gb
--

16: [memdbg] b0 2.75Gb
--

17: [memdbg] c0 3.00Gb
--

18: [memdbg] d0 3.25Gb
--

19: [memdbg] e0 3.50Gb
--

20: [memdbg] f0 3.75Gb
--

21: [memdbg] Minimum TLA size is 2048 bytes

22: [memdbg] Preferred TLA size is 38912 bytes

23: [memdbg] Large object limit is 2048 bytes

24: [memdbg] Minimal blocksize on the freelist is 2048 bytes

25: [memdbg] Initial and maximum number of gc threads: 2, of which 2 parallel
threads, 1 concurrent threads, and 2 yc threads

26: [memdbg] Prefetch distance in balanced tree: 4

27: [memdbg] Using prefetch linesize: 32 bytes chunks: 512 bytes pf_dist: 64
bytes

Lines 1-20 describe the memory lay-out in the machine after the Java heap has been allocated.
This information can be used for diagnosing problems related to heap positioning.

Lines 21-24 show you the minimum and preferred Thread Local Area sizes, the large object limit
and the minimum block size on the freelist. These values may depend on the heap size and the
garbage collector, as well as the JRockit JVM version.

Line 25 informs you of the number of garbage collection threads.
Oracle JRockit JVM Diagnostics Guide 19-7

Unders tanding Verbose Outputs
Line 26 and 27 contain information on prefetching, which is mostly useful for advanced
diagnosing and tuning.

Verbose Memdbg Parallel Old Collection Output
The memdbg module adds a lot of useful information to the garbage collection outputs. For most
tuning and diagnosing, this information is essential. The outputs differ between garbage
collection types.

Listing 19-7 shows an example of a verbose memdbg output from a single generational parallel
old collection. This example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-7 Verbose Memdbg Parallel Old Collection Output

1: [memdbg] GC reason: System.gc() called, cause: System.gc()

2: [memdbg] Stopping of javathreads took 0.213 ms

3: [memdbg] old collection 1 started

4: [memdbg] Alloc Queue size before GC: 0, tlas: 0, oldest: 0

5: [memdbg] Compacting 8 heap parts at index 120 (type external) (exceptional
false)

6: [memdbg] Starting parallel marking phase.

7: [memdbg] Hard handles: Processed 1946 handles during normal processing.

8: [memdbg] Weak handles: Processed 104 handles during normal processing.

9: [memdbg] total mark time: 7.440 ms

10: [memdbg] ending marking phase

11: [memdbg] starting parallel sweeping phase

12: [memdbg] total sweep time: 3.844 ms

13: [memdbg] ending sweeping phase

14: [memdbg] Alloc Queue size after GC: 0, tlas: 0, oldest: 0

15: [memdbg] Page faults before GC: 6618, page faults after GC: 7938, pagesin
heap: 76800

16: [memdbg] Restarting of javathreads took 0.023 ms
19-8 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
Line 1 displays the reason for the garbage collection. In this example the garbage collection was
triggered by a System.gc() call.

Line 2 displays the time it took to stop all Java threads for garbage collection, in this case 0.213
ms. This information is useful for latency diagnosing.

Line 3 shows the sequence number of the garbage collection.

Line 4 contains information on the object allocation queue status at the start of the garbage
collection. The allocation queue contains all pending object allocation requests that have not yet
been satisfied. In this example the allocation queue is empty, which is normal when the garbage
collection is started by System.gc().

Line 5 shows you the compaction planned for this garbage collection. In this example 8 heap parts
will be compacted starting at heap part 120. The compaction type is external, which means that
objects are moved out of the compaction area, and the compaction is not exceptional, which
means that it may be aborted or interrupted if the compaction heuristics decide that it will take
too long to perform the compaction.

Line 6 marks the start of the mark phase.

Lines 7 and 8 show information on weak and hard handles. This is mostly useful for advanced
diagnostics and monitoring.

Line 9 shows you the total time for the mark phase. This time can include both pauses and
concurrent phases, although in this case the entire mark phase is done while the Java threads are
paused.

Line 10 marks the end of the mark phase.

Line 11 marks the start of the sweep phase.

Line 12 shows you the total time for the sweep phase. This time can include both pauses and
concurrent phases, although in this case the entire mark phase is done while the Java threads are
paused.

Line 13 marks the end of the sweep phase.

Line 14 displays information on the status of the object allocation queue after the garbage
collection. You can compare this information to the information on line 4 to get an idea of how
well object allocation is faring. Many objects in the allocation queue at the end of a garbage
collection may be an indication that object allocation is difficult, for example due to heavy
fragmentation.

Line 15 shows statistics on page faults before and after the garbage collection. Page faults during
the garbage collection may slow down the garbage collection severely.
Oracle JRockit JVM Diagnostics Guide 19-9

Unders tanding Verbose Outputs
Line 16 displays the time it took to restart all Java threads after garbage collection. This
information is useful for latency diagnosing.

Verbose Memdbg Concurrent Old Collection Output
The memdbg module adds a lot of useful information to the garbage collection outputs. For most
tuning and diagnosing, this information is essential. The outputs differ between garbage
collection types.

Listing 19-8 shows an example of a verbose memdbg output from a single generational mostly
concurrent old collection. This example is from the JRockit JVM R27.4. Line numbers have been
added.

Listing 19-8 Verbose Memdbg Concurrent Old Collection Output

1: [memdbg] GC reason: GC trigger reached, cause: Heap too full

2: [memdbg] Stopping of javathreads took 0.425 ms

3: [memdbg] old collection 5 started

4: [memdbg] Alloc Queue size before GC: 0, tlas: 0, oldest: 0

5: [memdbg] Compacting 16 heap parts at index 112 (type internal) (exceptional
false)

6: [memdbg] Starting initial marking phase (OC1).

7: [memdbg] Restarting of javathreads took 31.908 ms

8: [memdbg] Starting concurrent marking phase (OC2).

9: [memdbg] Hard handles: Processed 4251 handles during concurrent processing.

10: [memdbg] Starting precleaning phase (OC3).

11: [memdbg] Weak handles: Processed 146 handles during concurrent processing.

12: [memdbg] Stopping of javathreads took 0.219 ms

13: [memdbg] Starting final marking phase (OC4).

14: [memdbg] Hard handles: Processed 8 handles during remaining processing.

15: [memdbg] Weak handles: Processed 40 handles during remaining processing.

16: [memdbg] total concurrent mark time: 512.526 ms
19-10 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
17: [memdbg] ending marking phase

18: [memdbg] starting concurrent sweeping phase

19: [memdbg] total concurrent sweep time: 54.623 ms

20: [memdbg] ending sweeping phase

21: [memdbg] Alloc Queue size after GC: 0, tlas: 0, oldest: 0

22: [memdbg] gc-trigger is 13.200 %

23: [memdbg] Page faults before GC: 89592, page faults after GC: 92886, pages
in heap: 76800

24: [memdbg] Restarting of javathreads took 0.030 ms

Line 1 displays the reason for the garbage collection. In this example the garbage collection was
started because the heap occupancy reached the limit for when a concurrent garbage collection
should be started.

Line 2 displays the time it took to stop all Java threads for garbage collection, in this case 0.425
ms. Similar information is displayed on line 12. This information is useful for latency diagnosing.

Line 3 shows the sequence number of the garbage collection.

Line 4 contains information on the object allocation queue status at the start of the garbage
collection. The allocation queue contains all pending object allocation requests that have not yet
been satisfied. In this example the allocation queue is empty.

Line 5 shows you the compaction planned for this garbage collection. In this example 16 heap
parts will be compacted starting at heap part 112. The compaction type is internal, which means
that objects are moved within the compaction area, and the compaction is not exceptional, which
means that it may be aborted or interrupted if the compaction heuristics decide that it will take
too long to perform the compaction.

Line 6 marks the start of the initial mark phase.

Line 7 displays the time it took to start the Java threads for the concurrent marking phase. Similar
information is displayed on line 24.

Line 8 marks the start of the concurrent mark phase.

Lines 9, 11, 14 and 15 show information on weak and hard handles. This is mostly useful for
advanced diagnostics and monitoring.
Oracle JRockit JVM Diagnostics Guide 19-11

Unders tanding Verbose Outputs
Line 10 marks the start of the concurrent precleaning phase.

Line 13 marks the start of the final marking phase.

Line 16 shows you the total time for the mark phase. This time includes both pauses and
concurrent phases.

Line 17 marks the end of the mark phase.

Line 18 marks the start of the sweep phase.

Line 19 shows you the total time for the sweep phase. This time includes both pauses and
concurrent phases.

Line 20 marks the end of the sweep phase.

Line 21 displays information on the status of the object allocation queue after the garbage
collection. You can compare this information to the information on line 4 to get an idea of how
well object allocation is faring. Many objects in the allocation queue at the end of a garbage
collection may be an indication that object allocation is difficult, for example due to heavy
fragmentation.

Line 22 displays the value of the GC trigger. The next concurrent old collection will start when
less than this percentage of the heap is free.

Line 23 shows statistics on page faults before and after the garbage collection. Page faults during
the garbage collection may slow down the garbage collection severely.

Verbose Memdbg Young Collection Output
Listing 19-9 shows an example of a verbose memdbg output from a young collection. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-9 Verbose Memdbg Young Collection Output

1: [memdbg] GC reason: TLA allocation failed, cause: Get TLA From Nursery

2: [memdbg] Stopping of javathreads took 0.198 ms

3: [memdbg] Hard handles: Processed 4259 handles during normal processing.

4: [memdbg] Weak handles: Processed 144 handles during normal processing.

5: [memdbg] nursery GC 86: promoted 48984 objects (1718K) in 39.310 ms
19-12 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
6: [memdbg] Page faults before GC: 89240, page faults after GC: 89754, pages in
heap: 76800

7: [memdbg] Nursery size after YC: 20971520

8: [memdbg] Restarting of javathreads took 0.030 ms

Line 1 displays the reason for the garbage collection. In this example the garbage collection was
started because allocation of a thread local area failed. This is the normal reason for starting a
young collection.

Line 2 displays the time it took to stop all Java threads for garbage collection, in this case 0.198
ms. This information is useful for latency diagnosing.

Lines 3 and 4 show information on weak and hard handles. This is mostly useful for advanced
diagnostics and monitoring.

Line 5 shows details on the young collection. 48984 objects of a total size of 1718 KB were
promoted during this young collection. The young collection took 39.310 ms.

Line 6 shows statistics on page faults before and after the garbage collection. Page faults during
the garbage collection may slow down the garbage collection severely.

Line 7 shows the nursery size after the young collection.

Line 8 displays the time it took to start all Java threads after the garbage collection, in this case
0.030 ms.

Aborted Compactions
Verbose memdbg outputs tell you if compaction is aborted due to too many pointers to the
compaction area. When that happens, the following output is printed:

[memdbg] Pointerset limit hit, compaction aborted.

Parallel Sweep in Concurrent Old Collections
If the heap becomes full during the mark phase of a concurrent old collection, the garbage
collector will by default override the concurrent sweep phase and use parallel sweep instead.
When that happens, the following output is printed:

[memdbg] The heap became full during concurrent mark. Running parallel

sweep.
Oracle JRockit JVM Diagnostics Guide 19-13

Unders tanding Verbose Outputs
Verbose Compaction Log Module
The JRockit JVM performs partial compaction of the heap at each old collection. Compaction
reduces fragmentation in the heap, which makes object allocation faster. The verbose
compaction log module displays details on compaction. The overhead of this log module is low,
which means that it can be enabled in production environments.

Listing 19-10 shows an example of a verbose output from the compaction log module. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-10 Verbose Compaction Old Collection Output

1: [compact] OC 4: 8 parts (max 128), index 8. Type internal, (exceptional false)

2: [compact] Area start: 0x01EC0000, end: 0x03180000

3: [compact] Updated 14130 references in 0 nonmoved and 11700 moved objects

4: [compact] Average compact time ratio: 0.442280

5: [compact] Compaction pause: 2.548 (target 50.000), update ref pause: 10.025
(target 50.000)

6: [compact] Updated 59048 refs (limit: 84386).

7: [compact] Compaction ended at index 15, object end address 0x03179A00.

8: [compact] Summary: 4;8;15;8;1;0;2.548;50.000;10.025;50.000;59048;84386

9: [compact] Adjusting compactsetlimit: 102698

10: [compact] Pause per 1000 refs, current: 0.169920, average: 0.486862. Target
pause: 50.000

Line 1 shows a summary of the upcoming compaction. In this example the sequence number of
the old collection is 4. 8 heap parts out of a total of 128 heap parts will be compacted, starting at
index 8. The compaction type is internal, which means that objects will be moved within the
compaction area. The compaction is not exceptional, which means that it can be aborted or
interrupted if it takes too long.

Line 2 shows the physical addresses of the start and the end of the compaction area. This
information is useful for advanced diagnostics.
19-14 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
Line 3 displays statistics on the number of references updated within the compaction area due to
moved objects. In this example 14130 references were updated in 11700 moved objects.

Line 4 informs you that the average ratio between time spent in moving objects and updating
references to moved objects is 0.44.

Line 5 shows detailed information on the two components of the pause time caused by
compaction, as well as the current pause targets for these components. In this example, moving
objects took only 2.548 ms and updating references to moved objects took 10.025 ms, while the
target was 50 ms for each of the components.

Line 6 shows the total number of references updated, both those within the compaction area and
those outside the compaction area that pointed at objects within the compaction area. This
information is useful for monitoring and tuning.

Line 7 shows the end index and physical address of the compaction. This information is useful
for diagnostics.

Line 8 contains a machine readable summary of some of the statistics from this compaction. This
line is useful for collecting statistics.

Line 9 informs you that the compaction heuristics have adjusted the compact set limit. The
compact set limit determines the amount of compaction that can be done at each old collection.

Line 10 shows statistics on the average time for updating 1000 references. This value is used as
a base for the compact set limit calculation.

Aborted Compaction Verbose Output
Whenever a compaction is aborted, the verbose compaction log module will display information
on the reason for the aborted compaction. In the following example the pointer matrix for a
garbage collection thread reached its top limit, which means that there were too many pointers to
objects within the selected compaction area.

[compact] Pointermatrix for thread '(GC Worker Thread 1)' failed to extend

beyond 25817 elements.

Verbose Gcpause Log Module
The -Xverbose:gcpause log module displays information on individual garbage collection
pauses. For monitoring, tuning and diagnosing latencies this information is essential. The
overhead of the log module is low, which means that it can be used in production environments.
Oracle JRockit JVM Diagnostics Guide 19-15

Unders tanding Verbose Outputs
Verbose Gcpause Parallel Old Collection Output
A parallel old collection pauses all Java threads during the entire garbage collection. The output
from -Xverbose:gcpause during a parallel old collection is thus fairly simple, as seen in
Listing 19-11. This example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-11 Verbose Gcpause Parallel Old Collection Output

1: [gcpause] Threads waited for memory 147.424 ms starting at 6.398 s

2: [gcpause] old collection phase 1-0 pause time: 146.861682 ms, (start time:
6.398 s)

3: [gcpause] (pause includes compaction: 10.169 ms (external), update ref: 14.390
ms)

Line 1 tells you that Java threads waited 147.424 ms for memory due to the old collection. This
value can be different than the old collection pause time.

Line 2 shows the pause time for “phase 1-0” of the old collection. Phase 1 is the first phase, while
phase 0 is the default phase while the garbage collection isn’t running. This means that the timing
started in phase 1 and ended after the garbage collector was finished, and thus includes the entire
garbage collection.

Line 3 shows some details on how much of the pause time consisted of compaction and reference
updates due to compaction.

Verbose Gcpause Concurrent Old Collection Output
A mostly concurrent (or “concurrent”) old collection consists of several concurrent garbage
collection phases with short pauses in between.

Listing 19-12 shows an example of an output from a mostly concurrent old collection. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-12 Verbose Gcpause Concurrent Old Collection Output

1: [gcpause] old collection phase 1 pause time: 19.184561 ms, (start time: 24.027
s)
19-16 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
2: [gcpause] old collection phase 4-5 pause time: 25.100956 ms, (start time:
24.720 s)

3: [gcpause] (pause includes yc: 24.456 ms, compaction: 0.230 ms (external),
update ref: 0.003 ms)

4: [gcpause] old collection phase 5 pause time: 0.253384 ms, (start time: 24.769
s)

5: [gcpause] old collection phase 5-0 pause time: 1.751061 ms, (start time: 1.391
s)

Line 1 shows the pause time for phase 1 of the old collection. Phase 1 is the initial marking phase.

Line 2 shows the pause time for the pause that starts with phase 4 and ends at the beginning of
phase 5 of the old collection. This phase is the final marking phase and compaction.

Line 3 shows some details of the phase 4-5 pause. The young collection performed in phase 4
took 24.456 ms, the compaction took 0.23 ms and reference updates after compaction took 0.003
ms. This information is useful for tuning and diagnosing compaction pause times.

Line 4 shows the pause time for the pause in the middle of phase 5. Phase 5 is the concurrent
sweep phase. The heap is swept in two parts, and the short pause is for switching parts to sweep.

Line 5 shows the pause time for the pause at the end of phase 5, where final statistics are collected
and the garbage collection is wrapped up.

Verbose Gcpause Young Collection Output
A young collection consists of a single pause. Thus the verbose gcpause output for a young
collection is very simple, as seen in this example:

[gcpause] nursery collection pause time: 37.832462 ms

Verbose Gcreport Log Module
The -Xverbose:gcreport log module prints out a summary of garbage collection activity at the
end of the run.

Listing 19-13 shows an example of a verbose gcreport output. This example is from the JRockit
JVM R27.4. Line numbers have been added.
Oracle JRockit JVM Diagnostics Guide 19-17

Unders tanding Verbose Outputs
Listing 19-13 Verbose GCreport Output

1: [memory] Memory usage report

2: [memory]

3: [memory] young collections

4: [memory] number of collections = 5647

5: [memory] total promoted = 58920467 (size 2144906056)

6: [memory] max promoted = 219349 (size 10249784)

7: [memory] total GC time = 37.543 s

8: [memory] mean GC time = 6.648 ms

9: [memory] maximum GC Pauses = 59.602 , 71.426, 75.759 ms

10: [memory]

11: [memory] old collections

12: [memory] number of collections = 34

13: [memory] total promoted = 776698 (size 28208080)

14: [memory] max promoted = 72997 (size 2655216)

15: [memory] total GC time = 13.970 s (pause 4.583 s)

16: [memory] mean GC time = 410.872 ms (pause 134.790 ms)

17: [memory] maximum GC Pauses = 147.064 , 172.153, 209.094 ms

18: [memory]

19: [memory] number of concurrent mark phases = 21

20: [memory] number of parallel mark phases = 13

21: [memory] number of concurrent sweep phases = 18

22: [memory] number of parallel sweep phases = 16

Lines 3-9 display information on the young collections during this run.

Line 4 shows the total number of young collections.
19-18 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
Line 5 shows the total number of objects promoted and their total size in bytes.

Line 6 shows the largest number of objects promoted during a single young collection and their
total size in bytes.

Line 7 shows the total time spent in young collections.

Line 8 shows the average time spent in a single young collection.

Line 9 shows the three longest pause times caused by young collection.

Lines 11-17 show statistics on old collections.

Line 12 shows the total number of old collections.

Line 13 shows the number of objects promoted during old collections and their total size in bytes.

Line 14 shows the largest number of objects promoted during a single old collection and their
total size in bytes.

Line 15 shows the total time spent in old collections and the sum of all garbage collection pauses
caused by old collections.

Line 16 shows the average time spent in a single old collection and the average sum of pauses
during a single old collection.

Line 17 shows the three longest old collection pauses.

Line 19 displays the number of concurrent mark phases. In this example 21 of the old collections
used concurrent mark.

Line 20 shows the number of parallel mark phases. In this example 13 of the old collections used
parallel mark.

Line 21 shows the number of concurrent sweep phases. In this example 18 of the old collections
used concurrent sweep.

Line 22 shows the number of parallel sweep phases. In this example 16 of the old collections used
parallel sweep.

Verbose Refobj and Referents Log Modules
The -Xverbose:referents log module was introduced in the JRockit JVM R27.2, while
-Xverbose:refobj was introduced in the JRockit JVM R27.5 and will replace the verbose
referents module.

The verbose referents module introduces some overhead and is not suitable for production
environments. The verbose refobj info level output in R27.2 is much cheaper and can be used
Oracle JRockit JVM Diagnostics Guide 19-19

Unders tanding Verbose Outputs
in production environments. The debug level output of refobjs corresponds to the old verbose
referents information on info level and should not be used in production.

Verbose Refobj Output on Info Level
The -Xverbose:refobj log module shows a summary of the number of reference objects and
how they are handled at each garbage collection.

Listing 19-14 shows an example of a verbose refobj output. This example is from the JRockit
JVM R27.5. Line numbers have been added.

Listing 19-14 Verbose Refobj Output on Info Level

1: [refobj] SoftRef: Reach: 2 Act: 0 PrevAct: 11 Null: 50

2: [refobj] WeakRef: Reach: 183 Act: 0 PrevAct: 0 Null: 10

3: [refobj] Phantom: Reach: 0 Act: 0 PrevAct: 0 Null: 0

4: [refobj] ObjMoni: Reach: 2 Act: 0 PrevAct: 0 Null: 0

5: [refobj] Finaliz: Reach: 17 Act: 0 PrevAct: 0 Null: 0

6: [refobj] WeakHnd: Reach: 306 Act: 0 PrevAct: 0 Null: 0

7: [refobj] SoftRef: @Mark: 62 @Preclean: 1 @FinalMark: 0

8: [refobj] WeakRef: @Mark: 178 @Preclean: 15 @FinalMark: 0

9: [refobj] Phantom: @Mark: 0 @Preclean: 0 @FinalMark: 0

10: [refobj] ObjMoni: @Mark: 2 @Preclean: 0 @FinalMark: 0

11: [refobj] Finaliz: @Mark: 0 @Preclean: 17 @FinalMark: 0

12: [refobj] WeakHnd: @Mark: 0 @Preclean: 105 @FinalMark: 201

13: [refobj] SoftRef: SoftAliveOnly: 0 SoftAliveAndReach: 0

Lines 1-6 show the number of occurrences of each reference object type, finalizers, weak handles
and object monitors. The references objects are categorized by status, as follows:

Reachable: Reference objects with reachable referents. A referent that is reachable on a
harder level is considered reachable; for example a referent of a soft reference is reachable
if it also is hard reachable.
19-20 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules
Activated: Activated references are such that the referent is no longer reachable on any
harder level than this reference, which means that the reference can be cleared or put on a
reference queue.

Previously Activated: References that have been activated at a previous garbage
collection but have not yet been cleared are previously activated.

Null: Null references are such that the reference in the reference object is null, but the
reference object itself still exists.

Lines 7-12 show statistics on in which garbage collection phases the reference objects were
handled.

Line 13 shows how many soft references are soft alive only and how many are also hard
reachable.

Verbose Referents Output and Verbose Refobj on Debug Level
The old verbose referents log module and the debug level of the refobj log module displays
detailed information on reference objects and referents, as seen in Listing 19-15. This example is
from the JRockit JVM R27.2. Note that the output may look different in later releases.

Each reference type is broken down by reference class and referent. In the case of handles, only
referents are shown; there are no references. The different counters tell how many instances of
each type exists and how they are reachable (or cleared).

Additional information is that the header/footer of the report informs what type of collection took
place. In the header you can see the time since the last old collection and the amount of free at
that time. If any soft references are present you will also find information on which softly
reachable referents are collected based on when they where last looked up through get().

Note: These verbose outputs have a significant negative impact on the performance.

Listing 19-15 Verbose Referents Output

--- Verbose reference objects statistics - heap collection -------
63.7 MB free memory (of 64.0 MB) after last heap GC, finished 0.177 s ago.
Soft references: 0 (0 only soft reachable, 2 cleared this GC)
 java/lang/ref/SoftReference: 0 (0, 2)
 0 (0, 1) java/lang/StringCoding$CharsetSD
 0 (0, 1) [Ljava/lang/String;
 Softly reachable referents not used for at least 0.000 s cleared.
Weak references: 10 (0 cleared this GC)
 java/lang/ref/WeakReference: 9 (0)
Oracle JRockit JVM Diagnostics Guide 19-21

Unders tanding Verbose Outputs
 9 (0) java/lang/Class
 java/lang/ThreadLocal$ThreadLocalMap$Entry: 1 (0)
 1 (0) java/lang/ThreadLocal
Weak object handles: 63 (0 cleared this GC)
 35 (0) sun/misc/Launcher$AppClassLoader
 28 (0) java/lang/String
Final handles: 10 (0 pending finalization, 0 became pending this GC)
 4 (0, 0) java/util/jar/JarFile
 3 (0, 0) java/util/zip/Inflater
 2 (0, 0) java/io/FileOutputStream
 1 (0, 0) java/io/FileInputStream
Phantom references: 2 (0 only phantom reachable, 0 became phantom reachable this
 GC)
 jrockit/vm/ObjectMonitor: 2 (0, 0)
 1 (0, 0) java/lang/Object
 1 (0, 0) java/io/PrintStream
--- End of reference objects statistics - heap collection --------

In this example the garbage collection has cleared two soft references referring to objects or
arrays of the types java.lang.StringCoding and java.lang.String, respectively.

There are 10 weak references, 63 weak object handles, 10 final handles and 2 phantom references.

Other Verbose Log Modules
Among the various log modules available in the JRockit JVM, opt and exceptions are two of
the most used and most useful.

Verbose Opt Log Module
The -Xverbose:opt log module displays information on code optimizations done by the
optimizing compiler.

Listing 19-16 shows an example of a verbose opt output. This example is from the JRockit JVM
R27.5. Line numbers have been added.

Listing 19-16 Verbose Opt Output

1: [opt] #1 5 (0x1c) o0 java/util/Random.acquireSeedLock()V

2: [opt] #1 5 (0x1c) o0 @0x13AA0000-0x13AA003F 2.43 ms (2.43 ms)
19-22 Oracle JRockit JVM Diagnostics Guide

Other Ve rbose Log Modules
3: [opt] #2 5 (0x1c) o0 java/util/Random.next(I)I

4: [opt] #2 5 (0x1c) o0 @0x13AA0370-0x13AA03FF 2.66 ms (20.19 ms)

Lines 1 and 3 show the names of two methods that are optimized.

Lines 2 and 4 show the addresses of the methods and the time it took to optimize them.

You can use the verbose opt information to diagnose and monitor the optimizations.

Verbose Exceptions Log Module
The -Xverbose:exceptions log module prints each Java exception that is thrown in the
application. You can use this information to monitor and troubleshoot exceptions in your
application.

Listing 19-17 shows some example outputs from the verbose exceptions log module. This
example is from the Oracle JRockit JVM R27.5. Each line displays the name of the exception
thrown as well as the exception message, if such is available.

Listing 19-17 Verbose Exceptions Output

[excepti][00004] java/lang/NullPointerException

[excepti][00004] java/lang/NullPointerException: null array passed into
arraycopy

[excepti][00004] java/lang/ArrayIndexOutOfBoundsException

[excepti][00004] java/lang/ArrayIndexOutOfBoundsException

[excepti][00004] java/lang/NullPointerException: null array passed into
arraycopy

-Xverbose:exceptions=debug prints out the same information but also provides stack traces
for each exception.
Oracle JRockit JVM Diagnostics Guide 19-23

Unders tanding Verbose Outputs
19-24 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 20
Using Thread Dumps
This chapter describes how to get and use Oracle JRockit JVM thread dumps. For basic
background information about threads and thread synchronization, see Understanding Threads
and Locks.

A thread dump is a snapshot of the state of all threads that are part of the process. The state of
each thread is presented with a so called stack trace, which shows the contents of a thread’s stack.
Some of the threads belong to the Java application you are running, while others are JVM internal
threads.

A thread dump reveals information about an application’s thread activity that can help you
diagnose problems and better optimize application and JVM performance; for example, thread
dumps automatically show the occurrence of a deadlock. Deadlocks bring some or all of an
application to a complete halt.

The following subjects are discussed in this chapter:

Creating Thread Dumps

Reading Thread Dumps

Thread Status in Thread Dumps

Troubleshooting with Thread Dumps

Creating Thread Dumps
To create a thread dump from a process, do either of the following:
Oracle JRockit JVM Diagnostics Guide 20-1

Using Thread Dumps
Press Ctrl-Break while the process is running (or by sending SIGQUIT to the process on
Linux).

Enter the following at the command line at startup:
bin\jrcmd.exe <pid> print_threads

The thread dump appears at the command line.

Note: For more information about jrcmd and Ctrl-Break handlers, see Running Diagnostic
Commands.

Reading Thread Dumps
This section describes the typical contents of a thread dump by going through an example thread
dump from the beginning to end. First, an example thread dump, broken up into its components
is presented (see Listing 20-1, Listing 20-2, Listing 20-3, Listing 20-4 and Listing 20-5). First,
information about the main thread is printed, then all the JVM internal threads, followed by all
other Java application threads (if there are any). Finally, information about lock chains are
printed.

The example thread dump is taken from a program that creates three threads that are quickly
forced into a deadlock. The application threads Thread-0, Thread-1, and Thread-2 correspond to
three different classes in the Java code.

The Beginning of The Thread Dump
The thread dump starts with the date and time of the dump, and the version number of the JRockit
JVM used (see Listing 20-1).

Listing 20-1 The initial information of a thread dump

===== FULL THREAD DUMP ===============
Wed Feb 21 13:46:45 2007
BEA JRockit(R) R27.1.0-109-73164-1.5.0_08-20061129-1428-windows-ia32
20-2 Oracle JRockit JVM Diagnostics Guide

Reading Thread Dumps
Stack Trace for Main Application Thread
Listing 20-2 shows the stack trace of the main application thread. There is a thread information
line, followed by information about locks and a trace of the thread’s stack at the moment of the
thread dump.

Listing 20-2 The main thread in the thread dump

"Main Thread" id=1 idx=0x2 tid=48652 prio=5 alive, in native, waiting
-- Waiting for notification on: util/repro/Thread1@0x01226528[fat lock]
at jrockit/vm/Threads.waitForSignal(J)Z(Native Method)
at java/lang/Object.wait(J)V(Native Method)
at java/lang/Thread.join(Thread.java:1095)
^-- Lock released while waiting: util/repro/Thread1@0x01226528[fat lock]
at java/lang/Thread.join(Thread.java:1148)
at util/repro/DeadLockExample.main(DeadLockExample.java:23)
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

After the name and other identification information, the different status messages of the main
thread are printed. The main thread in Listing 20-2 is a running thread (alive), it is either
executing JVM internal code or user-defined JNI code (in native), and it is currently waiting
for an object to be released (waiting). If a thread is waiting on a notification on a lock (by calling
Object.wait()), this is indicated at the top of the stack trace as Waiting for notification
on.

Locks and Lock Chains
For each thread, the JRockit JVM prints the following information:

If the thread is trying to take a lock (to enter a synchronized block), but the lock is already
held by another thread, this is indicated at the top of the stack trace, as “Blocked trying to
get lock”.

If the thread is waiting on a notification on a lock (by calling Object.wait()), this is
indicated at the top of the stack trace as “Waiting for notification”.
Oracle JRockit JVM Diagnostics Guide 20-3

Using Thread Dumps
If the thread has taken any locks, this is shown in the stack trace. After a line in the stack
trace describing a function call is a list of the locks taken by the thread in that function.
This is described as ^-- Holding lock (where the ^-- serves as a reminder that the lock
is taken in the function written above the line with the lock).

The semantics for waiting (for notification) on an object in Java is somewhat complex. First, to
enter a synchronized block, you must take the lock for the object, and then you call wait() on
that object. In the wait method, the lock is released before the thread actually goes to sleep waiting
for a notification. When it receives a notification, wait re-takes the lock before returning. So, if a
thread has taken a lock, and is waiting (for notification) on that lock, the line in the stack trace
that describes when the lock was taken is not shown as “Holding lock,” but as “Lock released
while waiting.”

All locks are described as Classname@0xLockID[LockType]; for example:

java/lang/Object@0x105BDCC0[thin lock]

Classname@0xLockID describe the object to which the lock belongs. The classname is an exact
description, the fully qualified classname of the object. LockID, on the other hand, is a temporary
ID which is only valid for a single thread dump. That is, you can trust that if a thread A holds a
lock java/lang/Object@0x105BDCC0, and a thread B is waiting for a lock
java/lang/Object@0x105BDCC0, in a single thread dump, then it is the same lock. If you do
any subsequent thread dumps however, LockID is not comparable and, even if a thread holds the
same lock, it might have a different LockID and, conversely, the same LockID does not guarantee
that it holds the same lock. LockType describes the JVM internal type of the lock (fat, thin,
recursive, or lazy). The status of active locks (monitors) is also shown in stack traces.

Presentation of Locks Out of Order
The lines with the lock information might not always be correct, due to compiler optimizations.
This means two things:

If a thread, in the same function, takes lock A first and then lock B, the order in which they
are printed is unspecified.

If a thread, in method foo() calls method bar(), and takes a lock A in bar(), the lock
might be printed as being taken in foo().

Normally, this should not be a problem. The order of the lock lines should never move much from
their correct position. Also, lock lines will never be missing—you can be assured that all locks
taken by a thread are shown in the thread dump.
20-4 Oracle JRockit JVM Diagnostics Guide

Reading Thread Dumps
JVM Internal Threads
Listing 20-3 shows the traces of JVM internal threads. The threads have been marked as daemon
threads, as can be seen by their daemon state indicators. Daemon threads are either JVM internal
threads (as in this case) or threads marked as daemon threads by
java.lang.Thread.setDaemon().

Listing 20-3 The first and last thread in a list of JVM internal Threads

"(Signal Handler)" id=2 idx=0x4 tid=48668 prio=5 alive, in native, daemon

[...]

"(Sensor Event Thread)" id=10 idx=0x1c tid=48404 prio=5 alive, in native,

daemon

As you can see, lock information and stack traces are not printed for the JVM internal threads in
Listing 20-3. This is the default setting.

If you want to see stack traces for the JVM internal threads, then use the parameter
nativestack=true when you send the print_threads handler. At the command line, write
the following:
bin\jrcmd.exe <pid> print_threads nativestack=true

Other Java Application Threads
Normally, you will primarily be interested in the threads of the Java application you are running
(including the main thread). All Java application threads except the main thread are presented
near the end of the thread dump. Listing 20-4 shows the stack traces of three different application
threads.

Listing 20-4 Additional application threads

"Thread-0" id=11 idx=0x1e tid=48408 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x01226300[fat lock]
at jrockit/vm/Threads.waitForSignal(J)Z(Native Method)
at
Oracle JRockit JVM Diagnostics Guide 20-5

Using Thread Dumps
jrockit/vm/Locks.fatLockBlockOrSpin(ILjrockit/vm/ObjectMonitor;II)V(Unknow

n Source)
at

jrockit/vm/Locks.lockFat(Ljava/lang/Object;ILjrockit/vm/ObjectMonitor;Z)Lj

ava/lang/Object;(Unknown Source)
at
jrockit/vm/Locks.monitorEnterSecondStage(Ljava/lang/Object;I)Ljava/lang/Ob

ject;(Unknown Source)
at

jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object;(Unknow

n Source)
at util/repro/Thread1.run(DeadLockExample.java:34)
^-- Holding lock: java/lang/Object@0x012262F0[thin lock]
^-- Holding lock: java/lang/Object@0x012262F8[thin lock]
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

"Thread-1" id=12 idx=0x20 tid=48412 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x012262F8[thin lock]
at jrockit/vm/Threads.sleep(I)V(Native Method)
at jrockit/vm/Locks.waitForThinRelease(Ljava/lang/Object;I)I(Unknown

Source)
at

jrockit/vm/Locks.monitorEnterSecondStage(Ljava/lang/Object;I)Ljava/lang/Ob

ject;(Unknown Source)
at

jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object;(Unknow

n Source)
at util/repro/Thread2.run(DeadLockExample.java:48)
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

"Thread-2" id=13 idx=0x22 tid=48416 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x012262F8[thin lock]
at jrockit/vm/Threads.sleep(I)V(Native Method)
at jrockit/vm/Locks.waitForThinRelease(Ljava/lang/Object;I)I(Unknown
Source)
20-6 Oracle JRockit JVM Diagnostics Guide

Reading Thread Dumps
at
jrockit/vm/Locks.monitorEnterSecondStage(Ljava/lang/Object;I)Ljava/lang/Ob
ject;(Unknown Source)
at
jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object;(Unknow
n Source)
at util/repro/Thread3.run(DeadLockExample.java:65)
^-- Holding lock: java/lang/Object@0x01226300[fat lock]
at jrockit/vm/RNI.c2java(IIII)V(Native Method)
-- end of trace

All three threads are in a blocked state (indicated by blocked), which means that they are all
trying to enter synchronized blocks. Thread-0 is trying to take Object@0x01226300[fat lock]
but this is held by Thread-2. Both Thread-2 and Thread-1 are trying to take
Object@0x012262F8[thin lock] but this lock is held by Thread-0. This means that Thread-0
and Thread-2 form a deadlock, while Thread-1 is blocked.

Lock Chains
One prominent feature of the JRockit JVM is that it automatically detects deadlocked, blocked
and open lock chains among the running threads. The analysis in Listing 20-5 presents the all the
lock chains created by the threads T1, T2, T3, T4 and T5. This information can be used to tune
and troubleshoot your Java code.

Listing 20-5 Deadlocked and blocked lock chains

Circular (deadlocked) lock chains
=================================
Chain 6:
"Dead T1" id=16 idx=0x48 tid=3648 waiting for java/lang/Object@0x01225018

held by:
"Dead T3" id=18 idx=0x50 tid=900 waiting for java/lang/Object@0x01225010

held by:
"Dead T2" id=17 idx=0x4c tid=3272 waiting for java/lang/Object@0x01225008

held by:
"Dead T1" id=16 idx=0x48 tid=3648
Oracle JRockit JVM Diagnostics Guide 20-7

Using Thread Dumps
Blocked lock chains
===================
Chain 7:
"Blocked T2" id=20 idx=0x58 tid=3612 waiting for

java/lang/Object@0x01225310 held by:
"Blocked T1" id=19 idx=0x54 tid=2500 waiting for

java/lang/Object@0x01224B60 held by:
"Open T3" id=13 idx=0x3c tid=1124 in chain 1

Open lock chains
================
Chain 1:
"Open T5" id=15 idx=0x44 tid=4048 waiting for java/lang/Object@0x01224B68

held by:
"Open T4" id=14 idx=0x40 tid=3380 waiting for java/lang/Object@0x01224B60

held by:
"Open T3" id=13 idx=0x3c tid=1124 waiting for java/lang/Object@0x01224B58

held by:
"Open T2" id=12 idx=0x38 tid=3564 waiting for java/lang/Object@0x01224B50

held by:
"Open T1" id=11 idx=0x34 tid=2876 (active)

Thread Status in Thread Dumps
This section describes the different statuses or states a thread can show in a thread dump. There
are three types of states:

Life States

Run States

Special States

Life States
Table 20-1 describes the life states a thread can show in a thread dump.
20-8 Oracle JRockit JVM Diagnostics Guide

Thread Status in Th read Dumps
Run States
Table 20-2 describes the run states a thread can show in a thread dump.

Table 20-1 Thread Life States

State Description

alive This is a normal, running thread. Virtually all threads in the thread dump will be
alive.

not started The thread has been requested to start running by
java.lang.Thread.start(), but the actual OS process has not yet started, or
executed far enough to pass control to the JRockit JVM. It is extremely unlikely to
see this value. A java.lang.Thread object that is created, but not has had
start() executed, will not show up in the thread dump.

terminated This thread has finished its run() method and has also notified any threads joining
on it, but it is still kept in the JVM internal thread structure for running threads. It
is extremely unlikely to see this value. A thread that has been terminated for a time
longer than a few milliseconds will not show up in the thread dump.

Table 20-2 Thread Run States

State Description

blocked This thread has tried to enter a synchronized block, but the lock was taken by
another thread. This thread is blocked until the lock gets released.

blocked (on
thin lock)

This is the same state as blocked, but with the additional information that the lock
in question is a thin lock.

waiting This thread has called Object.wait() on an object. The thread will remain there
until some other thread sends a notification on that object.

sleeping This thread has called java.lang.Thread.sleep().

parked This thread has called
java.util.concurrent.locks.LockSupport.park().

suspended The thread’s execution has been suspended by
java.lang.Thread.suspend() or a JVMTI/JVMPI agent call
Oracle JRockit JVM Diagnostics Guide 20-9

Using Thread Dumps
Special States
Table 20-3 describes the special states a thread can show in a thread dump. Note that all these
states are not mutually exclusive.

Troubleshooting with Thread Dumps
This section contains information on about how to use thread dumps for troubleshooting and
diagnostics.

To use thread dumps for troubleshooting, beyond detecting deadlocks, you need to take several
thread dumps from the same process. However, if you want to do long time analysis of behavior
you will likely be more helped by combining occasional thread dumps with other diagnostics
tools, such as the JRockit Runtime Analyzer, which is part of Oracle JRockit Mission Control
(see Using Oracle JRockit Mission Control Tools for more information).

Detecting Deadlocks
The Oracle JRockit JVM automatically analyzes the thread dump information and detects
whether there exists any circular (deadlocked) or blocked lock chains in it.

Table 20-3 Special Thread States

State Description

interrupted The user has called java.lang.Thread.interrupt() on this thread.

daemon This is either an JVM internal thread or a thread that has been marked as
a daemon thread by java.lang.Thread.setDaemon().

in native This thread is executing native code. This could either mean user-supplied JNI
code, or JVM internal code.

in suspend critical
mode

This thread is executing JVM internal code, and has marked itself as being
suspend critical, meaning that for a short moment, it will block a garbage
collection from taking place.

native_blocked This thread is executing JVM internal code, and have tried to take an JVM internal
lock. The thread is blocked, since that lock is held by another thread.

native_waiting This thread is executing JVM internal code, and is waiting for notification from
another thread on an JVM internal lock.
20-10 Oracle JRockit JVM Diagnostics Guide

Troub leshoot ing w i th Th read Dumps
Detecting Processing Bottlenecks
For detecting more than deadlocks in your threads, you have to make several consecutive thread
dumps. This lets you detect the occurrence of contention, where multiple threads are trying to get
the same lock. Contention might create long open lock chains that, while not deadlocked, will
degrade performance.

If you discover (in a set of consecutive thread dumps) that one or more threads in your application
is temporarily stuck waiting for a lock to be released, then you might have reason to look over the
code of your Java application to see if the synchronization (serialization) is necessary or if the
threads can be organized differently.

Viewing The Runtime Profile of an Application
By making several consecutive thread dumps, you might quickly get an overview of which parts
of your Java application that are most heavily used. However, you should consult the Threads
tab in JRockit Management Console for more detailed information about the workload on the
different parts of your application.
Oracle JRockit JVM Diagnostics Guide 20-11

Using Thread Dumps
20-12 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 21
Running Diagnostic Commands
Use diagnostic commands to communicate with a running Oracle JRockit JVM process. These
commands tell the JRockit JVM to for example print a heap report or a garbage collection activity
report, or to turn on or off a specific verbose module. This chapter describes how to run diagnostic
commands and lists the available commands. The following sections are included:

Diagnostic Commands Overview

Using jrcmd

Ctrl-Break Handler

Available Diagnostic Commands

Getting Help

Diagnostic Commands Overview
Diagnostic commands help you communicate with a running JRockit JVM process. With these
commands you can for example ask for a heap report or enable or disable a verbose module.

You can send diagnostic commands to a running JVM process in several ways:

By using jrcmd, a command line tool that sends the commands to a given JRockit JVM
process.

By pressing Ctrl-Break, whereupon the JVM will look for a ctrlhandler.act file and
execute the commands listed therein.
Oracle JRockit JVM Diagnostics Guide 21-1

Running D iagnost ic Commands
By using the JRockit Management Console in Oracle JRockit Mission Control to send
diagnostic commands to a running JRockit JVM process.

You can enable or disable any diagnostic command using the system property
-Djrockit.ctrlbreak.enable<name>=<true|false>, where name is the name of the
diagnostic command. The following two handlers are disallowed by default and need to be turned
on:

run_class

force_crash.

For example:
-Djrockit.ctrlbreak.enablerun_class=true

Using jrcmd
jrcmd is a command line tool included with the JRockit JDK you can use to send diagnostic
commands to a running JVM process. This section provides a brief overview of jrcmd. It
includes information on the following subjects:

How jrcmd Communicates with the JRockit JVM

How to Use jrcmd

jrcmd Examples

Known Limitations of jrcmd

How jrcmd Communicates with the JRockit JVM
jrcmd uses the JRIPC library, a small C library, to communicate with a running JRockit JVM
process. JRIPC has the following basic functionality

It discovers which JRockit JVM processes are running on the machine

It sends diagnostic commands to a JRockit JVM process

It reads performance counters exposed by the JRockit JVM

How to Use jrcmd
To use jrcmd, simply enter it at the command line, with the appropriate parameters:

jrcmd <jrockit pid> [<command> [<arguments>]] [-l] [-f file] [-p] -h]
21-2 Oracle JRockit JVM Diagnostics Guide

Using j rcmd
where:

[<command> [<arguments>]] is any diagnostic command and its associated arguments;
for example, version, print_properties, command_line, and so on.

-l displays the counters exposed by this process

-f reads and execute commands from the file

-p lists JRockit JVM processes on the local machine

-h shows help

If the PID is 0, commands will be sent to all JRockit JVM processes. If no options are given,
default is -p.

jrcmd Examples
Here are some examples of using jrcmd for:

Listing JRockit JVM Processes

Sending a Command to a Process

Sending Several Commands

Listing JRockit JVM Processes
Do the following to list all JRockit JVM processes running on the machine:

1. Run jrcmd or jrcmd -p to list the running JRockit JVMs; for example:

> jrcmd -P
10064 Sleeper
 -Xverbose:memory -Xmx30m
>

You will see the PID of the process (10064) and the program it is currently running
(Sleeper) as well as the parameters used to start the JVM (-Xverbose:memory
-Xmx30m).

Sending a Command to a Process
To send a command to the process you identified in Listing JRockit JVM Processes, do the
following:

1. Find the PID from Listing JRockit JVM Processes (10064)
Oracle JRockit JVM Diagnostics Guide 21-3

Running D iagnost ic Commands
2. Enter jrcmd with that PID and the version command; for example:

> jrcmd 10064 version

This command sends the version command to the JRockit JVM. The response will be:

Oracle WebLogic JRockit(R) Virtual Machine build 9.9.9-1.5.0-Jun 9
2004-13:52:53-<internal>, Native Threads, GC strategy: parallel

Sending Several Commands
You can create a file (just like the ctrlhandler.act file) with several commands and execute
all of them. Use this procedure:

1. Create a file called commands.txt with the following contents:
– version

– timestamp

2. Execute the file with jrcmd; for example:

> jrcmd 10064 -f commands.txt

The system will respond:

Oracle WebLogic JRockit(R) Virtual Machine build 9.9.9-1.5.0-Jun 9
2004-13:52:53-<internal>, Native Threads, GC strategy: parallel

==== Timestamp ==== uptime: 0 days, 00:05:04 time: Fri Jun 11 14:28:31 2004

3. Use the PID 0 to send the commands to all running JRockit JVM processes.

Known Limitations of jrcmd
When using jrcmd, be aware of these limitations:

In order to issue diagnostic commands to a process on Linux or Solaris, you need to run
jrcmd as the same user as the one running the Java process.

When using jrcmd on Windows, you need to run the Java process and jrcmd from the same
Windows station. If you run the Java process as a Windows service, and run jrcmd on your
desktop, it will not work, since they are running in two separate environments.

When an JRockit JVM is started as root and then changed to a less privileged user, jrcmd
will not be able to communicate properly with the process thereafter due to security
restrictions.
21-4 Oracle JRockit JVM Diagnostics Guide

Ct r l -Break Hand le r
– The following things can be done:
Root can list the running processes.
The less privileged user can send commands to the process.

– The following things cannot be done:
Root cannot send commands to the process; any commands will be treated as a
Ctrl-Break signal and print a thread dump instead.
The less privileged user cannot list the running JRockit JVM process, but if they know
the process ID (PID), they can send commands to the process using jrcmd <pid>
<command>.

If the default Windows temporary directory (java.io.temp) is on a FAT file system, jrcmd
will not be able to discover local processes. For security reasons, local monitoring and
management is only supported if your default Windows temporary directory is on a file
system that supports setting permissions on files and directories (for example, on an NTFS
file system). It is not supported on a FAT file system that provides insufficient access
controls.

Ctrl-Break Handler
Another way you can run diagnostic commands is by pressing Ctrl-Break. When you press
Ctrl-Break, the JRockit JVM will search for a file named ctrlhandler.act (see Listing 21-1)
in your current working directory. If it doesn't find the file there, it will look in the directory
containing the JVM. If it does not find this file there either, it will revert to displaying the normal
thread dump. If it finds the file, it will read the file searching for command entries, each of which
invoke the corresponding diagnostic command.

Listing 21-1 ctrlhandler.act File

set_filename filename=c:\output.txt append=true
print_class_summary
print_object_summary increaseonly=true
print_threads
print_threads nativestack=true
print_utf8pool
jrarecording filename=c:\myjra.xml time=120 nativesamples=true
verbosity set=memory,memdbg,codegen,opt,sampling filename="c:\output"
timestamp

stop
ctrl-break-handler will stop reading the file after it finds
the stop key-word
Oracle JRockit JVM Diagnostics Guide 21-5

Running D iagnost ic Commands

version - print JRockit version

print_threads - the normal thread dump that lists all the currently
running threads and there state

print_class_summary - prints a tree of the currently loaded classes

print_utf8pool - print the internal utf8 pool

print_object_summary - display info about how many objects of each
type that are live currently and how much size
they use. Also displays points to information

jvmpi_datadump

jvmpi_datareset

jrarecording - starts a jrarecording

verbosity - changes the verbosity level , not functional in ariane142_04

start_management_server - starts a management server
kill_management_server - shuts the management server down
(the managementserver.jar has to be in the bootclasspath for
these command to work)

#

In the ctrlhandler.act file, each command entry starts with a Ctrl-Break Handler name
followed by the arguments to be passed to the Ctrl-Break Handler. The arguments should be on
the property form (that is, name=value; for example, set_filename
filename=c:\output.txt append=true). String, integer or boolean values are acceptable
property types.

You can disable Ctrl-Break functionality by setting this command:

-Djrockit.dontusectrlbreakfile=true.
21-6 Oracle JRockit JVM Diagnostics Guide

Avai lab le D iagnost i c Commands
Available Diagnostic Commands
Table 21-1 lists the currently available diagnostic commands.

Table 21-1 Existing Ctrl-Break Handlers

Command Description

set_filename filename=<file>
[append=true]

Set the file which all commands following this command
will use for printing. You can have several
set_filename commands in a file. It takes two
arguments: filename and an optional append to specify if
you want to append to the file or overwrite it. The default
file is stderr, and to overwrite the file.

timestamp Prints a timestamp.

version Prints the JRockit JVM version

print_threads [nativestack=true]
[jvmmonitors=true]

Prints a normal thread dump.
• nativestack=true will print C-level stacktraces

as well as Java traces.
• jvmmonitors=true will also print the JRockit

JVM's internal native locks (those that are
registered): status and wait queue, and with
-XXnativeLockProfiling=true their profile
stats (acquired/contended/tryfailed).

verbosity [args=<components>]
[filename=<file>]

Change the verbosity level normally specified with
-Xverbose. This handler does not work in R25.

command_line Prints the command line used to start the JRockit JVM.

print_object_summary See the JRockit Memory Leak Detector User Guide (for
JRockit Mission Control 1.0) or the Memory Leak
Detector built-in help (for Oracle JRockit Mission
Control 2.0 and later).

print_class_summary Print all loaded classes.

print_utf8pool Print all UTF8 strings.

print_memusage Print all memory the OS says the JRockit JVM process
is holding onto, as well as what each subsystem thinks it
is holding onto.
Oracle JRockit JVM Diagnostics Guide 21-7

Running D iagnost ic Commands
oom_diagnostics Note: This command applies only to versions of
JRockit JVM R26.3 and earlier.

Cause an OutOfMemoryDiagnostics to be printed. If
both set_filename and
-Djrockit.oomdiagnostics.filename is set,
the latter takes precedence.

This command is deprecated in the JRockit JVM R26.4.
Use heap_diagnostics instead.

heap_diagnostics Cause a heap diagnostic to be printed. Output ends up on
Ctrl-Break Handler output stream and does not take the
property
-Djrockit.oomdiagnostics.filename into
consideration. This command applies only to versions of
JRockit JVM R26.4 and later.

heapreport Prints out a report on the JVM’s native memory
allocation on the C-Heap. This is only supported if you
are running with HEAP_TRACE defined.

gcreport Prints out a comprehensive summary of garbage
collection activity so far during the run. In order to be
able to dynamically print out the same information as
-XgcReport would provide at the end of an application
run, make sure to have the option flag -XgcReport in
your start-up configuration, otherwise the correct
measurements won't be performed.

jrarecording [filename=<file>]
[time=<time>] [nativesamples=true]

Starts a JRA recording. For more information, please
refer to Creating a JRA Recording with JRockit Mission
Control 1.0

run_optfile [filename=<file>] See Creating and Using an Optfile.

start_management_server Starts the management server. (Actually the listening
socket that in turn starts servers whenever a connection
is established). managementnserver.jar has to be
in the boot classpath for this command to work.

Table 21-1 Existing Ctrl-Break Handlers

Command Description
21-8 Oracle JRockit JVM Diagnostics Guide

Avai lab le D iagnost i c Commands
kill_management_server Stops the management server. (Actually shuts down the
listening socket.) The only reason it isn't named
stop_management_server is that stop is a reserved
keyword that stops parsing of the act file. The
managementserver.jar has to be in the boot classpath for
this command to work.

lockprofile_print Will print the current values of the lock profile counters.
Enable lock profiling with
-Djrockit.lockprofiling.

lockprofile_reset Will reset the current values of the lock profile counters.
Enable lock profiling with
-Djrockit.lockprofiling.

print_exceptions
[stacktraces=all/true/false]
[exceptions=all/true/false]

Enable/disable printing of exceptions (see
-Xverbose). To turn exception printing off completely
you need to set exceptions = false even if it was
turned on by stacktraces = true.

force_crash Forces the Oracle JRockit JVM to crash/dump.

run_class [class=<classname>]
[daemon=<true|false>]

Runs any class implementing the Runnable interface.
Must be enabled with:

-Djrockit.ctrlbreak.enablerun_class=tr
ue.

Note that the class name must use slashes (/) to separate
package names; for example:
jrcmd <pid> run_class
class=java/lang/Thread

memprof [sampleRate=<seconds>]
[trendSize=<size>]
[forceThreshold=<bytes>]
[verboseResultStats=<true|false>]
[skipSymbols=<symbolexcludelist>]

Turns on memory profiling in the running application.
Memory profiling can be very helpful for diagnosing
such problems as memory leaks.

Table 21-1 Existing Ctrl-Break Handlers

Command Description
Oracle JRockit JVM Diagnostics Guide 21-9

Running D iagnost ic Commands
Getting Help
To get help about the available commands, execute the special command help. This will print all
available commands.

help <handlername> prints help for the specified command.

help help will print help for help.

help all will print the help for all commands.
21-10 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 22
Oracle JRockit Time Zone Updater
The Oracle JRockit Time Zone Updater (TZUpdater) allows you to update installed JDK/JRE
images with more recent time zone data to accommodate the U.S. 2007 daylight saving time
changes (US2007DST) originating with the U.S. Energy Policy Act of 2005.

Oracle recommends using the latest Oracle JRockit JDK release as the preferred vehicle for
delivering both time zone data updates and other product improvements, such as security fixes.
If you are unable to use the latest JRockit JDK/JRE update release, this tool provides a route of
updating time zone data while leaving other system configuration and dependencies unchanged.

This section contains information on the following subjects:

Downloading the TZUpdater

Introduction to the TZUpdater

System Requirements to Run the TZUpdater

Using the TZUpdater

Error Handling

System-wide Usage

Removing TZUpdater Changes

Known Issues
Oracle JRockit JVM Diagnostics Guide 22-1

Orac le JRock i t T ime Zone Updater
Downloading the TZUpdater
Download the TZUpdater from:

http://commerce.bea.com/products/weblogicjrockit/tzupdater/accept_terms_tzupdater.jsp

Introduction to the TZUpdater
To upgrade a specific Java installation, you need to include the full path to the Java executable of
that installation. If tzupdater.jar is run by just running java -jar..., or by double-clicking
the tzupdater.jar file, this will invoke Sun’s Java on many systems, which will result in an
error message being displayed. The section Example of the Default way of Using TZUpdater
explains the typical use of TZUpdater.

A single JDK/JRE image is modified per execution. For administering of multiple JDK/JRE
instances, see System-wide Usage.

Prior to running the TZUpdater, you need to stop any running instances of the specific JDK/JRE
that you will operate upon.

The TZUpdater modifies and updates the JVM it is run with, thus it is important to run the tool
as a command-line application, see Command-line Options Described.

System Requirements to Run the TZUpdater
The TZUpdater supports Oracle’s JDK/JRE releases 1.4 or later on all supported platforms.

Using the TZUpdater
The command-line interface is the following:

 JAVA_HOME/bin/java -jar tzupdater.jar options

Command-line Options Described
If no command-line option is specified, the usage message is displayed. To perform time zone
data update, either the -u or -f option must be specified, see Table 22-1 for a list of all available
command line options.
22-2 Oracle JRockit JVM Diagnostics Guide

Using the TZUpdate r
Example of the Default way of Using TZUpdater
Below is an example of the default way of using the TZUpdater to upgrade time zone data on a
Java installation at, for example, /opt/bea/jrockit90_150_06.

1. Test the current version of the timezone data of the JRE:
> /opt/bea/jrockit90_150_06/bin/java -jar tzupdater.jar -V

tzupdater version: 1.0.0-b03
JRE time zone data version: tzdata2005n
Embedded time zone data version: tzdata2007a

2. Update the timezone data:
> /opt/bea/jrockit90_150_06/bin/java -jar tzupdater.jar -u

Table 22-1 List of available options.

Command Option Name Description

-h help Prints the usage to stdout and exit. Other options are ignored if
specified.

-V version Shows the tool version number and the tzdata version numbers of
the JRE and the archive embedded in the jar file and exit.

-u update Updates the time zone data. If this option is specified with -h, -t, or
-V option, the command displays the usage to stdout and exit.

-f force Force update the tzdata even if the version of the tzdata archive is
older then the JRE’s tzdata version. This option doesn’t require the
-u option to perform the update.

-v verbose Displays detailed messages to stdout.

-bc backward
compatible

Keeps backward compatibility with the 3-letter time zone IDs of JDK
1.1. Any time zone IDs that conflict with the JDK 1.1 time zone IDs
will be removed from the installed time zone data. See Known Issues
for details. This option must be specified with the -u, -f, or -t
option.

-t test Runs verification tests only and exit. The -f option is ignored if
specified. If the -bc option is specified, any test cases for time zone
IDs that conflict with the JDK 1.1 time zone IDs will be ignored.
Oracle JRockit JVM Diagnostics Guide 22-3

Orac le JRock i t T ime Zone Updater
3. Verify that the version is updated:
> /opt/bea/jrockit90_150_06/bin/java -jar tzupdater.jar -V

tzupdater version: 1.0.0-b03
JRE time zone data version: tzdata2007a
Embedded time zone data version: tzdata2007a

4. Run the built in tests to test the new timezone data. If nothing is printed the tests has
succeeded.
> /opt/bea/jrockit90_150_06/bin/java -jar tzupdater.jar -t

Error Handling
The TZUpdater tries to restore the original state when it has encountered an unexpected error,
such as lack of disk space. Such errors will generate a TzRuntimeException.

System-wide Usage
Stop any running instances of the JDK/JRE that you will operate on before running the
TZUpdater for that JDK/JRE.

It is possible for systems to accrete multiple copies of JDK/JRE images, so you might need to
apply the tool individually to each JDK/JRE image. Microsoft Windows users can use the
desktop search utility to find each image. To locate multiple installed copies of the JDK/JRE on
a UNIX derivative system, follow these steps:

1. Find locally installed JDK/JRE instances for UNIX derived systems:
/usr/bin/find DIRPATH -fstype nfs -prune -o -fstype autofs -prune
-o -name java -print -exec {} -version ;

where DIRPATH is a directory path to search for installed Java SE instance, for example,
/usr.

2. Automate updating of locally installed instances:
/usr/bin/find DIRPATH -fstype nfs -prune -o -fstype autofs -prune
-o -name java -print -exec {} -jar /ABSOLUTEPATH/tzupdater.jar -u ;

where DIRPATH is a directory path to search for installed Java SE instance, for example,
/usr. Replace ABSOLUTEPATH with the full pathname to the directory where
tzupdater.jar is expanded.\
22-4 Oracle JRockit JVM Diagnostics Guide

Dete rmin ing Your TZUpdater Ve rs ion
Determining Your TZUpdater Version
Use the command tzinfo to see which version of TZUpdater you’re using. Enter the command
from your JRockit JDK installation directory’s bin\ directory. The system will respond with
complete version information; for example, if you entered:

\jrockits\R27.3.0_R27.3.0-45_1.5.0\bin\tzinfo

The system would respond:

java version "1.5.0_10"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_10-b03)
BEA JRockit(R) (build R27.3.0-45-79733-1.5.0_10-20070330-1521-windows-ia32,
compiled mode)

Time zone data version: tzdata2006k

Removing TZUpdater Changes
Stop any running instances of the JDK/JRE that you will operate on before running the
TZUpdater for that JDK/JRE.

The modifications the current TZUpdater results in can only be manually removed by following
these steps:

1. Locate the zi directory under the modified JAVAHOME/jre/lib directory. This is the newer
data.

2. Locate a zi.tzdata* directory in the same JAVAHOME/jre/lib directory. This is the
replaced, older data.

3. Obtain the currently installed timezone data version from the command java -jar
tzupdater.jar -V.

4. Rename the current zi directory to something like “zi.tzdata2007a” or whatever the
version command in step 3 gave. Make sure that this renaming does not conflict with the older
data directory.

5. Rename the older data directory to zi.

6. Validate the change in the currently active timezone data by executing java -jar
tzupdater.jar -V.

7. Restart your applications on the updated JDK/JRE instance.
Oracle JRockit JVM Diagnostics Guide 22-5

Orac le JRock i t T ime Zone Updater
Known Issues
The tool has a few restrictions due to the TimeZone API and implementation constraints.

Table 22-2 Known issue in the TZUpdater.

Issue Explanation of the known issue

Time zone display names This tool will not update time zone display names of time zones that are
completely new or have display name related changes. An example is that
Europe/Podgorica is a new time zone ID in tzdata2006n due to the
Serbia/Montenegro split. Another example is that America/Indiana/Knox changed
from Eastern Time to Central Time on April 2, 2006, which change appeared since
tzdata2006a. The time zone display names for America/Indiana/Knox were
changed in Java version 5.0 update 8.

JDK 1.1 time zone ID
compatibility

In tzdata2005r, the Olson time zone database added EST, MST, and HST with no
DST rules (i.e., standard time only). These IDs conflict with the same IDs in JDK
1.1. When users need the JDK 1.1 compatible time zone IDs rather than the
complete set of the Olson time zone IDs, these incompatible IDs need to be
removed. See also Sun's bug 6466476.

TimeZone.getAvaila
bleIds(int) and
TimeZone.getRawOff
set() limitation and JCK

These TimeZone methods do not take a time stamp based on the API design
assumption that a time zone’s GMT offset never changes. Therefore, it is not
possible to keep their return values consistent all the time. There is JCK test case
TimeZone2014 that the return values of these methods are consistent. This test
case fails if and only if there are any time zones of which GMT offsets will change
in future time.

A workaround fix was added to Java 5.0 update 4 and 6 Standard Edition, which
involved a time zone data file format change. Therefore, two versions of time zone
data archives need to be provided with the tool in case that a future GMT offset
change is involved in any time zones.

See Sun’s bug 5055567 for details.

Note: The JCK test case fails without the 5055567 fix until the actual GMT
offsets transition occurs.

Software Package
Management errors

The current TZUpdater works outside of the native operating environment
software package management infrastructure. Once you have used TZUpdater to
install newer time zone data files, commands such as Solaris pkgchk will report
errors concerning the files altered by TZUpdater. These are files under the
jre/lib/zi directory.
22-6 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 23
Oracle JRockit Mission Control Use
Cases
This chapter demonstrates various ways Oracle JRockit Mission Control can be used to monitor
and manage application running on the Oracle JRockit JVM. It includes the following use cases:

Analyzing System Behavior with the JRockit Management Console

Analyzing System Problems with the JRockit Runtime Analyzer

Detecting a Memory Leak

Analyzing System Behavior with the JRockit Management
Console

Marcus wants to monitor his application, DemoLeak which he’s running on an instance of the
JRockit JVM, to ensure that he has tuned it to provide the best possible performance. To do this,
he will run the JRockit Management Console concurrent with the application run. The
Management Console will provide realtime information about memory, CPU usage, and other
runtime metrics. The Management Console is a multi-tabbed interface, each tab allowing him to
monitor and/or manage an aspect of a running application. Which tabs his version of the
Management Console uses depends on which Java plug-ins he has installed with the console.
When fully-implemented, the console will include eight tabs and one menu, which map to seven
plug-ins.
Oracle JRockit JVM Diagnostics Guide 23-1

Orac le JRock i t M iss ion Cont ro l Use Cases
Getting Started
To get started, Marcus launches the JRockit Mission Control Client from the command prompt,
by entering:

jrockit\bin\jrmc

While the JRockit Mission Control Client is starting up, he launches the DemoLeak application.
At the command prompt, he enters:

jrockit\bin\java DemoLeak

Next, he starts the Management Console with a local connection.

To launch the Management Console, Marcus does the following:

1. In the JRockit Browser, he locates the JRockit JVM instance to which he wants to connect. In
this case, it will be the one running the DemoLeak class under Discovered/Local.

Figure 23-1 Locating the Appropriate JRockit JVM Instance

2. He right-clicks the mouse to open a context menu for the connection.
23-2 Oracle JRockit JVM Diagnostics Guide

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
Figure 23-2 Context Menu for Selected JRockit JVM Instance

3. He selects Start Console.

After a few moments, the Management Console appears in the right panel of the JRockit
Mission Control Client. Note that in Marcus’s implementation of the JRockit Mission
Control Client, he can see the following tabs:

– Overview

– MBean Browser

– Memory

– Threads

– Runtime

– Triggers

– Exception Count

– Method Profiler

Analyzing Memory Usage
One way to spot problems with application performance to is to see how it uses memory during
runtime. To analyze how his application is using the memory available to it, Marcus will use the
Oracle JRockit JVM Diagnostics Guide 23-3

Orac le JRock i t M iss ion Cont ro l Use Cases
Memory Tab. This tab focuses on heap usage, memory usage, and garbage collection schemes.
The information provided on this tab can greatly assist Marcus in determining whether he has
configured the JRockit JVM to provide optimal application performance.

To analyze memory usage, Marcus does the following:

1. First, he examines the Heap graph, which shows the used Java heap growing until it reaches
80% to 90% of the available heap before a garbage collection is triggered. At that, point the
graph falls back, indicating that new heap space is available. As the graph in Figure shows,
this cycle repeats itself throughout the run.

Figure 23-3 Heap Graph

2. Next, he takes a look at the Memory Statistics and Garbage Collector panels, which show
additional information about memory usage and the garbage collector, respectively. If
necessary, Marcus can change some of the values from this tab; for example he could change
the allocated Java heap size or the garbage collection strategy if he felt that those originally
selected weren’t allowing the application to run optimally.

Plotting Garbage Collection Times
Next, he decides to see the duration for each garbage collection. Overly long garbage collection
times are a common cause of poor application performance. To see the duration of the garbage
collections, Marcus can plot this information on the Heap graph.

The graphs shown in the various tabs are all preconfigured with a few useful default attributes,
but any numerical attribute from any MBean can be added. In addition to the standard MBeans
in J2SE 5.0 and the JRockit JVM specific MBeans, JRockit Mission Control itself provides so
called synthetic MBeans that derives attributes from multiple other attributes. One such attribute
is the garbage collection times

Note: The attribute for garbage collection durations is called PauseTimes even though the Java
application isn’t necessarily paused during the whole garbage collection. When a
concurrent garbage collector is in use, the garbage collector runs concurrently with the
Java application for the most part of the garbage collection duration. The misleading
23-4 Oracle JRockit JVM Diagnostics Guide

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
naming of the attribute is a known issue and will be fixed in upcoming releases. The
correct name of the attribute would be Duration.

To do this, Marcus does the following:

1. In the Memory tab, he clicks Add… (to the right of the Heap graph).

The Attribute Selector appears.

2. He drills down to the PauseTimes attribute, as shown in Figure 23-4, select it and clicks OK.

Figure 23-4 Selecting an Attribute to Add to the Heap Graph

The new attribute should now be shown in the Heap graph. This synthetic attribute is a
somewhat special in that it only shows values just before and after a garbage collection,
causing the triangular-shaped plot, as shown in Figure 23-5. The value is shown in
milliseconds.
Oracle JRockit JVM Diagnostics Guide 23-5

Orac le JRock i t M iss ion Cont ro l Use Cases
Figure 23-5 Heap Graph with Pause Time Plot Added

Setting an Alert Trigger
In his search for bottlenecks in the system, Marcus looks at the CPU load graph and notices that
the CPU load for the JVM sometimes hits the roof. Marcus would like to know how often this
happens for a longer period of time. Instead of staying and watching the CPU graph continuously
he sets an alert trigger to alert him whenever the CPU load generated by the VM is high for a
longer period of time.

To set the alert, Marcus does the following:

1. Marcus goes to the Triggers tab and clicks Add… (under Trigger Rules).

The Add New Trigger Rule wizard appears.

2. He drills down and selects the VMGeneratedCPULoad as shown in Figure 23-6. He then
clicks Next >.
23-6 Oracle JRockit JVM Diagnostics Guide

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
Figure 23-6 Selecting an Attribute to Trigger On

3. He enters the conditions as shown in Figure 23-7.
Oracle JRockit JVM Diagnostics Guide 23-7

Orac le JRock i t M iss ion Cont ro l Use Cases
Figure 23-7 Setting Conditions for Triggering

Since the CPU load value ranges from 0-1, Marcus sets the Max trigger value to 0.95.
Marcus wants to be alerted when the CPU usage is high for at least five minutes and sets
Sustained [s] to 300. He sets the Limit period [s] to 10 to prevent triggers less than 10
seconds apart.

4. He clicks Next >.

5. The Add New Trigger Rule: Select Action dialog box appears (Figure 23-8). Marcus selects
Application alert and clicks Next >.

Figure 23-8 Selecting the Trigger Action
23-8 Oracle JRockit JVM Diagnostics Guide

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
6. Marcus skips the optional constraints of when to arm the trigger by clicking Next >.

7. Marcus names the rule as shown in Figure 23-9 (CPU load for JRockit > 0.95) and clicks
Finish.

Figure 23-9 Naming the Rule

8. Marcus then activates the new rule by checking the box next to the rule name.

Figure 23-10 Trigger Selected

9. To verify that he is getting useful data, Marcus then returns to the Memory tab and checks the
CPU activity. He notices that the Trigger Alerts dialog box doesn't appear, so he edits the rule
by going back to the Triggers tab, selecting the rule and lowering the Max trigger value to
0.90 or so under Trigger Condition.

10. Since Marcus doesn’t want the Triggers Alert dialog box to appear every time an event is
triggered, he will uncheck Show dialog on alerts to prevent the this from happening (he can
display the dialog from the Window menu whenever he wants).
Oracle JRockit JVM Diagnostics Guide 23-9

Orac le JRock i t M iss ion Cont ro l Use Cases
Profiling Methods Online by Using the Console
Next, Marcus wants to see how many times and for how long some specific methods have run, a
process called method profiling. JRockit Mission Control has two tools for profiling methods:

To run create a runtime analysis with the JRockit Runtime Analyzer (JRA), which we will
demonstrate in Analyzing System Problems with the JRockit Runtime Analyzer. While this
is best way to find out which methods are most likely affecting performance, it is also the
more complex tool to run.

By using the Method Profiler tab in the Management Console. This tool provides efficient
and detailed method profiling while requiring a minimal amount of overhead and system
intrusion. It also allows you to profile an application for which you are already collecting
and viewing other information on the console.

To profile methods by using the Method Profiler tab, Marcus does the following

1. First, he needs to create a method profiling template by going to the Method Profiler tab and
click Add… in the Templates panel.

The Add Template dialog box appears.

2. He enters a name for the new template in the Add Template dialog box, as shown in
Figure 23-11.

Figure 23-11 Template Name Added

3. He then clicks OK.

The dialog box closes and the new template is added to the list (Figure 23-12).

Figure 23-12 DemoLeak Template Added
23-10 Oracle JRockit JVM Diagnostics Guide

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
4. He enables the new DemoLeak template by checking the box in front of the name, then selects
the template and clicks Add… in the DemoLeak panel (Figure 23-13).

Figure 23-13 DemoLeak Panel

Add class to method profiler dialog box appears.

5. In the Add class to method profiler dialog box, he enters java.util.Hashtable, as shown
in Figure 23-14

Figure 23-14 Adding java.util.Hashtable Class

6. He clicks OK.

7. In the DemoLeak panel, he expands the java.util.Hashtable class, scrolls down and
checks the boxes in front of the put(Object, Object) and remove(Object) methods, as
shown inn Figure 23-15.
Oracle JRockit JVM Diagnostics Guide 23-11

Orac le JRock i t M iss ion Cont ro l Use Cases
Figure 23-15 java.util.Hashtable Methods Selected

8. He then starts profiling by clicking the green play button in the Control Panel (Figure 23-16).

Figure 23-16 Start Profiling Button

9. To interpret the results, he examines the Profiling Information panel. He notes how the
number of invocations of Hashtable.put(Object, Object) grows slightly faster than the
number of invocations of Hashtable.remove(Object).

10. Marcus then stops profiling by clicking the red stop button in the Control Panel
(Figure 23-17).

Figure 23-17 Stop Profiling Button

Analyzing System Problems with the JRockit Runtime
Analyzer

Fiona is not happy with how the application DemoLeak is performing. She is particularly
concerned about the way her application performs the longer it runs. For example, while the
application works fine early in its run, after a while, it starts reporting the wrong results and
23-12 Oracle JRockit JVM Diagnostics Guide

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
throwing exceptions where it shouldn’t. She also notices that eventually, it hangs at roughly the
same time every time she runs it. To assess what the problem is, Fiona decides to create a runtime
analysis by use the JRockit Runtime Analyzer (JRA).

The JRA is an on-demand “flight recorder” that produces detailed recordings about the JVM and
the application it is running. The recorded profile can later be analyzed off line, using the JRA
Tool. Recorded data includes profiling of methods and locks, as well as garbage collection
statistics, optimization decisions, and, in JRockit Mission Control 3.0, latency analysis.

Getting Started
To start the diagnostics process, Fiona does the following:

1. She starts the JRockit Mission Control Client from the command line by typing:

jrockit\bin\jrmc

2. While the JRockit Mission Control Client starts, Fiona starts the DemoLeak by entering:

jrockit\bin\java DemoLeak

Creating the Recording
Next, Fiona creates a JRA recording from a local connection. To do so, Fiona does the following:

1. Launches the JRockit Mission Control Client and locates in the JRockit Browser the JRockit
JVM instance to which she wants to connect. This should be the one running the DemoLeak
class under Discovered/Local.

2. Right-clicks the mouse to display a context menu for the selected connection.

3. Selects Start JRA Recording to launch the Start JRA Recording wizard.

4. Selects the connection to the JRockit JVM instance on which she wants to start the recording.

5. Selects filename and directory and types a descriptive name for the recording in the Local
filename field. Note that the JRA recording file is created in the current directory of the
JRockit JVM process, unless Fiona specifies a different path. If an old file already exists, it
will be overwritten by the new recording.

6. Enters the desired length of the recording (in seconds) in Recording time.

Note: If Fiona sets a recording length that is too short, for example, less than 30 seconds,
she will probably not get enough sample data for the recording to be meaningful.

7. Selects the sampling options, as described in Table 23-1:
Oracle JRockit JVM Diagnostics Guide 23-13

Orac le JRock i t M iss ion Cont ro l Use Cases
8. Clicks Finish.

The JRA recording progress window appears. When the recording is finished, it loads in
the JRA. Fiona will now look at the JRA Recording.

Looking at the Recording
Next, Fiona will use the JRockit Mission Control Client to view the JRA recording. First, she
opens the General tab by doing the following:

1. In the JRockit Mission Control Client, clicking File > Open file > Open JRA Recording.

2. Locating and selecting the recorded file and clicking Open.

3. Clicking OK.

The JRA General tab for that recorded file now opens, allowing Fiona to view the data in
the recording. The General tab contains information on the JVM, your system and your
application. It is divided into the panels described in Table 23-2:

Table 23-1 Selected Sampling Options

Sampling Option Description

Record samples of methods Records samples of methods

Use gc sampling Records garbage collection events

Use native sampling Records samples of native code

Compress recording Compresses recording to a zip file

Selected JRockits Shows the JRockit JVM instance from which she will create
her recording

Table 23-2 General Tab Sections

Data Field Description

General Information Contains all general information about the JVM, operating system,
recording time, and so on.

Memory Usage Contains information on how the JRockit JVM is using the memory.
23-14 Oracle JRockit JVM Diagnostics Guide

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
By looking at this tab, Fiona is able to verify which version of the JVM she was running. She can
also see that large object were allocated at a rate, or “frequency”, of 22.153 MB per second while
small objects were allocated at a significantly faster rate of 261.983 MB per second.

Examining the Methods Tab
Next, Fiona will look at the Methods tab. The Method tab lists the top hot methods with their
predecessors and successors during the recording. The Methods tab is divided into the following
panels described in Table 23-3:

VM Arguments Lists all startup options that were used.

Allocation Contains information on how your application allocates memory on the
Java heap.

Threads Contains information on thread usage.

Exceptions Contains exceptions related information.

Table 23-3 Methods Tab Panels

Field Description

Top Hot Methods A listing of the top hot methods. A hot method is defined as the
methods where the JVM spends most of its time during application
execution. Being “hot” might indicate that a specific method is
causing system problems.

Predecessors A listing of all methods called prior to calling the method Fiona
selected in the Top Hot Methods list. This information can be helpful
in determining if some aspect of a certain method is complicit is poor
system performance. If Fiona selects too many methods, no
information will appear in this section.

Successors A listing of all methods called after the calling method that Fiona
selected in the Top Hot Methods list. This information can be helpful
in determining if some aspect of a certain method is complicit is poor
system performance. If Fiona selects too many methods, no
information will appear in this section.

Table 23-2 General Tab Sections

Data Field Description
Oracle JRockit JVM Diagnostics Guide 23-15

Orac le JRock i t M iss ion Cont ro l Use Cases
Examining the Top Hot Methods
The method sampling in the JRockit JVM is based on CPU sampling. The Top Hot Methods
section lists all methods sampled during the recording and sorts them with the most sampled
method s first, as shown in Figure 23-18.

Figure 23-18 Top Hot Methods

Note: If Fiona enabled native sampling during the recording, she would see symbols with a
pound sign, such as jvm.dll#_qBitSetClear. These denote functions in native
libraries such as the JVM itself or various operating system libraries.

By looking at the list of top hot methods, Fiona sees that the three hottest methods are:

java.util.Hashtable.put(Object)

java.util.Hashtable.remove(Object,Object)

DemoLeak$DemoThread.put(int)

Starting with this information, Fiona has a good idea of where to start looking for possible areas
of concern. Fiona knows that the hottest methods are those that are sampled most often. In some
situations, the number of samplings in the hottest methods will dwarf those of the less-hot
methods. Hot methods are a good indicator of performance problems, especially memory leaks,
because the high amount of sampling affects how much time the JVM has been executing the
specific method.
23-16 Oracle JRockit JVM Diagnostics Guide

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
Examine Garbage Collection Events
Next Fiona examines the GC’s tab (Figure 23-19) to better understand system behavior and
garbage collection performance during runtime.

Figure 23-19 GC’s Tab

This tab is divided into the six panels described in Table 23-4
Oracle JRockit JVM Diagnostics Guide 23-17

Orac le JRock i t M iss ion Cont ro l Use Cases
Looking at the data in the Garbage Collections panel (Figure 23-20), Fiona sees that the three
longest garbage collection pause times are indexed 95 (856 ms), 41 (707 ms), and 73 (691 ms).

Figure 23-20 Garbage Collection Panel

This data implied that, as processing continued on her application, garbage collections were
taking longer. Fiona now has additional evidence to help diagnose what might be causing her

Table 23-4 GC Events Tab Panels

Panel Description

GC Events Overview timeline This timeline shows the entire recording based on when the recording
is initially started. Fiona uses this information to refocus the Heap
Usage graph.

Heap Usage graph This graph shows heap usage compared to pause times and how that
varies during the recording. When Fiona selects a specific area in the
GC Events Overview, she only sees that section of the recording. She
can change the graph content in the Heap Usage drop-down list
(marked 6 in Figure 23-19) to get a graphical view of the references
and finalizers after each old collection.

Garbage Collections events This list shows all garbage collection events that occurred during the
recording. When she clicks a specific event, Fiona will see a flag in the
Heap Usage graph for that particular event.

Details This panel contains all the details about the specific garbage collection
round. When Fiona selects a garbage collection in the Garbage
Collection list, the tabs in the Details section change depending on
whether or not she selected an old collection or a young collection.

Chart Configuration This panel lets Fiona change the appearance on the active chart.

Heap Usage Fiona uses this list to toggle the view on the Heap Usage chart to view
References and finalizers. It shows different types of reference counts
after each collection.
23-18 Oracle JRockit JVM Diagnostics Guide

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
application’s performance to deteriorate. She sees that garbage collection times are increasing,
particularly later during runtime, and that the garbage collections are freeing less space on the
heap. She can, with some confidence, predict that she is experiencing a memory leak.

Note: In this example, a memory leak is revealed to Fiona fairly quickly and she finds it because
the evidence is obviously pointing in that direction. In most cases, a memory leak will
reveal itself much more slowly and probably wouldn’t be obvious on the GC’s tab.
Instead, a user would get better results by using the JRockit Memory Leak Detector, as
described in Detecting a Memory Leak.

Examine the GC General Tab
Fiona can gain more insight into how garbage collection activity might be indicating a memory
leak by looking at the GC General tab (Figure 23-21).
Oracle JRockit JVM Diagnostics Guide 23-19

Orac le JRock i t M iss ion Cont ro l Use Cases
Figure 23-21 GC General Tab

This tab is divided into three panels that provide information about the garbage collection at a
glance. This tab is divided into the panels described in Table 23-5:

Table 23-5 GC General Tab

Panel Description

General This section shows overall statistics about the garbage collections
during the entire JRA recording.
23-20 Oracle JRockit JVM Diagnostics Guide

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
Fiona expands the stack tree down to user code and sees that many allocations are from the
hashtable type, which indicates that this type is allocation intense. Reducing the allocation of
this type would probably reduce the pressure on the memory management system.

Compare Object Statistics
Next, Fiona decides that it would be helpful to compare object statistics collected at the beginning
of the recording to those collected after the recording. At the beginning and at the end of a
recording session, snapshots are taken of the most common types and classes of object types that
occupy the Java heap; that is, the types of which the total number of instances occupy the most
memory. The results are shown on the Objects tab (Figure 23-22).

Garbage Collection Call Tree This section is a collection of all call traces that were sampled for all
garbage collections for the JRA recording.

GC Strategy Changes This section lists when a garbage collection strategy change took place
and how it changed.

Table 23-5 GC General Tab

Panel Description
Oracle JRockit JVM Diagnostics Guide 23-21

Orac le JRock i t M iss ion Cont ro l Use Cases
Figure 23-22 Objects Tab

The Object Statistics tab is divided into the panels described in Table 23-6.
.

Table 23-6 Object Statistics Tab

Panel Description

Start of Recording This section lists the most common types on the heap at the
beginning of the recording.

End of Recording This section lists the most common types on the heap at the
end of the recording.
23-22 Oracle JRockit JVM Diagnostics Guide

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
Fiona can again see that hashtable shows the most dramatic growth and is consuming the
greatest amount of memory on the heap. This again is a strong indication of not only a memory
leak but that said leak involves the hashtable object.

Examine Lock Profiling Information
Fiona then checks the lock statistics for clues to performance bottlenecks involving locks. She
opens the Locks tab (Figure 23-23) to investigate this information for both her application and
the specific JRockit JVM instance.

Figure 23-23 Locks Tab

The Lock Profiling tab is divided into the panels defined in Table 23-7.
Oracle JRockit JVM Diagnostics Guide 23-23

Orac le JRock i t M iss ion Cont ro l Use Cases
By looking at the Java Locks panel, Fiona can see immediately that the hashtable type has taken
over 300 million uncontended locks, compared to a relative few for other objects. While this
information does not point directly to a memory leak, it is indicative of poor performance.

Since the lock is mostly uncontended, Fiona could optimize her application by switching to an
unsynchronized data structure such as hashmap and provide synchronization only for the few
cases where contention may occur.

Detecting a Memory Leak
Since Fiona determined that a memory leak is causing her application to run poorly, she can take
advantage of the JRockit Memory Leak Detector to confirm her suspicions and begin corrective
action. A memory leak occurs when a program fails to release memory that is no longer needed.
The term is actually a misnomer, since memory is not physically lost from the computer. Rather,
memory is allocated to a program, and that program subsequently loses the ability to access it due
to program logic flaws.

Getting Started
To start the memory leak detection process, Fiona does the following:

Note: This procedure assumes that the application was stopped after the JRA recording was
completed. Had Fiona not stopped the application, she would be able to skip step 1 and
step 2

1. She starts the application by entering, at the command line:

java DemoLeak

2. While the application starts, she creates a connection to the server on which the application is
running.

3. Next, she starts the Memory Leak Detector by doing the following:

Table 23-7 Lock Profiling Tab Panels

Panel Description

Java Locks This section lists all locks in the application.

Native Locks This section lists all JVM internal locks.
23-24 Oracle JRockit JVM Diagnostics Guide

Detec t ing a Memory Leak
a. Right-clicking a Oracle JRockit JVM instance in the JRockit Browser to open a context
menu.

b. Selecting Start Memleak (Figure 23-24).

Figure 23-24 Starting The Memory Leak Detector from a Context Menu

Analyze the Java Application
Fiona starts the analysis from the Trend tab (Figure 23-25), which should open when she launches
the Memory Leak Detector.
Oracle JRockit JVM Diagnostics Guide 23-25

Orac le JRock i t M iss ion Cont ro l Use Cases
Figure 23-25 Trend Tab

Tip: The trend analysis should be running by default. If it is not running, you can start it by
clicking the start symbol among the trend analysis buttons (Figure 23-27).

The trend analysis page shows Fiona the statistics on memory usage trends for the object types
within the application. The JVM collects this data during garbage collections, which means that
at least two garbage collections must be done before any trends are shown.

Figure 23-26 Garbage Collection Button

1. In order to speed up the process, Fiona clicks on the Garbage Collection button (Figure 23-26)
a couple of times to start some garbage collections.
23-26 Oracle JRockit JVM Diagnostics Guide

Detec t ing a Memory Leak
Figure 23-27 Trends Analysis Buttons

2. Fiona then pauses the trend analysis by clicking the pause symbol among the trend analysis
buttons (Figure 23-27).

Figure 23-28 Show Referring Types

Fiona finds that a class named DemoObject shows the largest growth.

3. Fiona right-clicks the DemoObject class and selects “Show Referring Types” in the
drop-down menu, as seen in Figure 23-28.

Start Stop

Pause
Oracle JRockit JVM Diagnostics Guide 23-27

Orac le JRock i t M iss ion Cont ro l Use Cases
Figure 23-29 Types Tab

This opens the Types tab (Figure 23-29). Here Fiona can see that the DemoObjects are stored in
hashtable entries.

4. Fiona clicks on the plus sign on the java.util.Hashtabe$Entry node to expand the graph to
show types referring to the hashtable entries.

5. Fiona continues expanding the graph to the left until she finds nodes in gray that do not show
any growth trend.

Now Fiona can see that the DemoObjects are indeed stored in hashtable entries. The next step for
Fiona is to find out more about the instances holding on to the hashtable entries containing these
DemoObjects.
23-28 Oracle JRockit JVM Diagnostics Guide

Detec t ing a Memory Leak
Figure 23-30 List Instances

6. Fiona right-clicks the node that refers to the DemoObjects and selects List Instances in the
drop-down menu, as seen in Figure 23-30.

Figure 23-31 Show Instances Pointing To

Not all hashtable entries in the application point to the same type of objects, so Fiona gets a popup
that asks her to select the type of references she is interested in.

7. Fiona selects DemoObject in the popup (Figure 23-31), since this is the type that she is
interested in, and clicks Ok.

Figure 23-32 Show Referring Instances
Oracle JRockit JVM Diagnostics Guide 23-29

Orac le JRock i t M iss ion Cont ro l Use Cases
At the bottom of the Types tab Fiona gets a list of instances of java.util.Hashtable$Entry that refer
to DemoObjects.

8. Fiona right-clicks the topmost instance and selects “Show Referring Instances”
(Figure 23-32) to start analyzing the instances that hold on to this particular hashtable entry.

Figure 23-33 Instances Tab

This opens the Instances tab, as seen in Figure 23-33.

9. Just as in the Types tab, Fiona clicks on the plus signs to expand the graph to the left.

Fiona finds that the DemoObject is stored in a hashtable, which is held by a DemoThread. This
is the culprit causing the memory leak.

The Leak is Discovered
Judging from the evidence she collected using the Oracle JRockit Mission Control tools, Fiona
was able to not only identify her system problem as a memory leak, but was able to locate exactly
which object type was leaking the memory. The key to making the identification began with
23-30 Oracle JRockit JVM Diagnostics Guide

Detec t ing a Memory Leak
noting in her JRA recording the increasing length of garbage collections and the types upon
which those lengthening garbage collections were occurring. She then ran the Memory Leak
Detector to pinpoint which of the questionable types were actually the source of the leak. She was
able to spot types that continued to increase in their number of instances and allocations,
obviously holding on to memory so that it couldn’t be freed for allocating other objects. This, then
identified the memory leak and where it was occurring.
Oracle JRockit JVM Diagnostics Guide 23-31

Orac le JRock i t M iss ion Cont ro l Use Cases
23-32 Oracle JRockit JVM Diagnostics Guide

Part IV Diagnostics and
Troubleshooting
Chapter 24. About Diagnostics and Troubleshooting
Chapter 25. Diagnostics Roadmap
Chapter 26. The Oracle JRockit JVM Starts Slowly
Chapter 27. Long Latencies
Chapter 28. Low Overall Throughput
Chapter 29. The Oracle JRockit JVM’s Performance Degrades
Over Time
Chapter 30. The System is Crashing
Chapter 31. Understanding Crash Files
Chapter 32. The Oracle JRockit JVM is Freezing
Chapter 33. Submitting Problems to Oracle Support
Oracle JRockit JVM Diagnostics Guide

C H A P T E R 24
About Diagnostics and Troubleshooting
If you ever encounter a problem running the Oracle JRockit JVM, you have a number of options
available to you for resolving those issues. Many problems are within your ability, as a user, to
fix yourself while others will require the intervention of Oracle JRockit’s support organization.

What this Section Contains
The chapters in Diagnosing and Resolving Problems provide guidelines for selecting the best
option for your situation. These chapters examine potential JVM problems based upon the
symptoms that you observe when the issue arises. They provide instructions for obtaining greater
detail on the problem, including possible sources and causes, and, where possible, solutions you
can use to correct the problem. In situations where you need to escalate a problem to the support
organization, this document also provides guidelines for the type of information you need to
provide and instructions for gathering that data.

This section is compressed of these chapters:

Diagnostics Roadmap provides an overall scheme to follow when troubleshooting
problems with the JRockit JVM. This roadmap outlines the four steps you should follow to
arrive at the best solution to your problem.

The Oracle JRockit JVM Starts Slowly describes how you can recognize and troubleshoot
a slow-starting JVM.

Long Latencies describes how to recognize and troubleshoot long garbage collection
pauses that adversely affect system performance.
Oracle JRockit JVM Diagnostics Guide 24-1

About D iagnos t i cs and T roub leshoot ing
Low Overall Throughput describes how to recognize and troubleshoot when the application
runs too slowly.

The Oracle JRockit JVM’s Performance Degrades Over Time decibels measures you can
take when your application begins to behave erratically, return incorrect results, or throw
OutOfMemory exceptions.

The System is Crashing describes what to do when your system, whether the JVM or the
application you are running, stops completely sending signals.

Understanding Crash Files provides information on the crash files that the JRockit JVM
creates if the JVM crashes.

The Oracle JRockit JVM is Freezing describes what to do when the JVM or Java
application becomes unresponsive but hasn’t completely crashed.

Submitting Problems to Oracle Support provides the best practices to follow when you
need to report a Oracle JRockit JVM problem to Oracle Support.
24-2 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 25u
Diagnostics Roadmap
This chapter serves as a roadmap to how you should approach problems with the Oracle JRockit
JVM. At its most basic, this roadmap is comprised of four steps you should follow to arrive at the
best solution to your problem. The roadmap is comprised of these step:

Step 1. Eliminate Common Causes

Step 2. Observe the Symptoms

Step 3. Identify the Problem

Step 4. Resolve the Problem

Step 5. Send a Trouble Report (Optional)

Step 1. Eliminate Common Causes
Often, if you encounter a problem running an application on the JRockit JVM, the cause is
something extremely basic that you might be able to correct with only a small effort. Before
diagnosing issues with the JVM, go through the checklist in Table 25-1 to make sure that you
have ruled out the most common causes for JVM problems.

Note: The list is not in any particular order, which means that each item can be checked
separately.
Oracle JRockit JVM Diagnostics Guide 25-1

Diagnost ics Roadmap
Table 25-1 Common Causes for JRockit JVM Problems

Have You... Because...

Tried Reinstalling the
JRockit JVM?

Sometimes an installation can have gone wrong, that is why you should try to
reinstall the JRockit JVM and then try to reproduce the problem. You find the
relevant installation instructions in Installing Oracle JRockit Mission Control.

Installed the Latest Patches
from Other Software that
are Dependent on the
JRockit JVM?

The problem might have its origins in the application running on the JRockit JVM
and whatever those origins are, they might have been fixed in later releases of that
product.

Been Able to Reproduce
the Problem with the Latest
Updated Version of the
JRockit JVM?

The problem that you encounter might have been fixed in a later release of the
JRockit JVM. Make sure you have installed the latest release. If you are searching
for a specific problem that you need to know if it has been fixed, see the Oracle
JRockit JVM Release Notes.

If you have a service agreement with Oracle, you can ask for a patch.

Been Able to Reproduce
the Problem on the Same
Machine?

Knowing that this defect occurs every time the described steps are taken, is one of
the most helpful things you can know about it and tends to indicate a
straightforward programming error. If, however, it occurs at alternate times, or at
one time in ten or a hundred, thread interaction and timing problems in general
would be much more likely.

Been Able to Reproduce
the Problem on Another
Machine?

A problem that is not evident on another machine could help you find the cause.
A difference in hardware could make the problem disappear; for example, the
number of processors. Also, differences in the operating system and application
software installed might make a difference to the JRockit JVM. For example, the
visibility of a race condition in the JVM or a user Java application might be
influenced by the speed at which certain operations are performed by the JVM.

Tried to Disable the Code
Garbage Collector?

Code garbage collection can be disabled, while Java heap garbage collection
cannot. Although disabling the code garbage collector forces the JRockit JVM to
use more memory, if the problem exists in code garbage collection, the JVM
should perform normally when it is disabled. To disable code garbage collection,
use the command-line option -XXnoCodeGC at startup.

Ensured You are Using a
Supported Operating
System (OS) with the
Latest Patches Installed?

It is important to use an OS or distribution that supports the JRockit JVM and to
have the latest patches for operating components. For example, upgrading
libraries can solve problems.
25-2 Oracle JRockit JVM Diagnostics Guide

Step 2 . Observe the Symptoms
If none of these causes corrects your problem, proceed to Step 2. Observe the Symptoms.

Step 2. Observe the Symptoms
In most cases, when you encounter a problem, you will only see what’s happening with your
application. You won’t know the underlying cause of the problem or where the problem is
originating. Therefore, you need to be able to identify the symptom of the problem, rather than
its root causes, before you can actually begin resolving it. Table 25-2 provides a list of the most

Ensured You are Running
the Latest Version of
Third-Party JNI Code?

If you are running JNI code from a third party vendor, make sure you have the
latest version of that code installed. Look in the text dump, which you can create
by using jrcmd (please refer to Using jrcmd for more information) to see the list
of libraries (DLLs) that are loaded. From that list you can derive which updates
you might need.

Tried -XnoOpt to Turn off
Optimization?

Code optimization is a default process by which commonly-executed code is
recompiled to make it run more efficiently. The first time the JRockit JVM runs a
method, the method is compiled into machine code. This compilation is quick, but
the resulting code isn't as efficient as it could be. While this code is acceptable for
methods that are run once and discarded; however, if a method is used repeatedly,
the system can get a performance boost if the code for that particular method is
regenerated in a more efficient way. The JRockit JVM re-compiles—or
“optimizes”—these methods to make the code as efficient as possible. While
optimization makes code more efficient, the optimizing compilation takes longer.
If the optimizer itself has bugs, -XnoOpt will help you identify problems related
to those bugs.

Enabled Crash Dump Files
on the JRockit JVM?

The information that is available in the crash dump files are of interest to the
Oracle Support organization. If you have a Oracle Support Agreement, you can
provide your support agency with crash dump files to better find what problems
there might be.

Note: If you do not have a Oracle Support Agreement, you should not enable
crash dumps as they can grow quite large and occupy a lot of your disk
space.

Crash dump files can be very helpful to Oracle Support. Depending on the
platform, crash dump files might not be enabled by default. For more information
on crash dumps, please refer to Understanding Crash Files.

Table 25-1 Common Causes for JRockit JVM Problems

Have You... Because...
Oracle JRockit JVM Diagnostics Guide 25-3

Diagnost ics Roadmap
common problem symptoms that users tend to encounter when running into issues with the
JRockit JVM. Adjacent to the symptoms will be links to chapters in this section that describe the
most likely reason for the problem and provide detailed information on how to handle it.

Step 3. Identify the Problem
Once you have identified the symptom, you can usually identify the problem by following the
procedures outlined in the relevant sections of the linked chapter. For example, your symptom
might be that the JVM starts up unacceptably slow. By following the instructions outlined in the
chapter linked to that symptom, you will be able to determine if your problem is with
optimization or is for some other reason. Knowing the origin (and, where possible, location) of
the problem will be critical to successfully resolving it.

Table 25-2 list common symptoms associated with JVM problems and where, in this guide you
can find information pertaining to that symptom.

Table 25-2 Symptom/Chapter Matrix

If this is happening... Go to...

The JVM crashes and produces dump information The System is Crashing

The JVM takes too long to start up The Oracle JRockit JVM Starts
Slowly

Some transactions take too long to execute even though the overall
throughput is good

Long Latencies

The overall throughput is too low Low Overall Throughput

After running the JVM successfully for a while, it begins to
perform poorly; for example, the following is happening:
• The overall throughput degrades
• The overall throughput is unstable
• The JVM starts reporting the wrong results
• The JVM is throwing exceptions where it shouldn’t

The Oracle JRockit JVM’s
Performance Degrades Over Time

The JVM is freezing without crashing The Oracle JRockit JVM is Freezing
25-4 Oracle JRockit JVM Diagnostics Guide

Step 4 . Reso lve the P rob lem
Step 4. Resolve the Problem
Depending upon the type of problem you are encountering, you might be able to resolve it
yourself. The chapter linked to the symptom (Table 25-2) will provide the steps you need to
follow to effect that resolution. If the problem requires escalation to Oracle Support, the chapter
linked to the symptom will describe the sort of information you will need to provide when you
open a case with them.

Step 5. Send a Trouble Report (Optional)
If you are a licensed JRockit JVM user and you can’t resolve the problem on your own, you can
send a Trouble Reports to the Oracle Support organization (see Submitting Problems to Oracle
Support).
Oracle JRockit JVM Diagnostics Guide 25-5

Diagnost ics Roadmap
25-6 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 26
The Oracle JRockit JVM Starts Slowly
One major benefit of the Oracle JRockit JVM is that it is a Just-In-Time (JIT) compiling JVM
(see How the JRockit JVM Compiles Code for information on how code is compiled), meaning
the first time the JVM runs a method it is compiled into machine code. The JVM compiles all the
classes to native code the first time they are called. This slows down the application run at startup
when a lot of new methods are compiled, but in return the methods will run fast already the
second time they’re invoked. The methods most often run will later be recompiled by the JRockit
JVM and therefore optimized further for the following runs, ensuring that your application runs
even faster.

This section describes how you can recognize and troubleshoot a slow-starting JVM. It includes
information on the following subjects:

Possible Causes Behind a Slow Start

Diagnosing a Slow JVM Startup

Diagnosing a Slow Application Startup

Timing with nanoTime() and currentTimeMillis()

Recommended Solutions for a Slow Start

Possible Causes Behind a Slow Start
There are several possible causes for your application to seem slow in the beginning.
Oracle JRockit JVM Diagnostics Guide 26-1

The Orac l e JRock i t JVM Star ts S lowl y
One possible cause could be that your application is waiting for files to import or because a
large number of methods need compiling at the beginning of your program.

On rare occasions, the problem might lie in code optimization.

Also, the problem might be caused by your Java application and not the JVM. This sort of
problem often has to do with method or resource synchronization and probably can best be
handled by the Java developer responsible for the application.

Special Note If You Recently Switched JVMs to the JRockit
JVM
If you’ve recently switched from another JVM to the JRockit JVM, you might think the JVM is
starting too slowly. This is particularly noteworthy if you’ve switched to the JRockit JVM as your
production JVM from a third-party development JVM. Actually, what might appear to be a slow
start is normal operation. The JRockit JVM is designed for use with long-running applications.
As such, you should expect longer start-up times as code is compiled and optimized. The JVM is
not starting slow, it just has more information to process during startup. Once all of the methods
are compiled, the JVM should run much faster.

Diagnosing a Slow JVM Startup
To see if your application compiles a lot of methods in the beginning of the run, you can start it
with the option -Xverbose:codegen.

With this option set, the following information will be shown about the method that is being
compiled: name, memory location, duration of the compilation, and the amount of time that has
passed since the compilation started. See Listing 26-1 for an example of a -Xverbose:codegen
print out.

Listing 26-1 -Xverbose:codegen

[codegen] #775 1 (0x2) n jrockit/memory/AtomicInt.<init>(I)V
[codegen] #775 1 (0x2) n @0x7D62ED90-0x7D62ED9C 0.09 ms (277.99 ms)

[codegen] #776 1 (0x2) n jrockit/memory/AtomicInt.set(I)V
[codegen] #776 1 (0x2) n @0x7D62EDA0-0x7D62EDAA 0.08 ms (278.06 ms)
26-2 Oracle JRockit JVM Diagnostics Guide

Diagnos ing a S l ow App l i cat i on S ta r tup
Conversely, if you have a lot of methods that need to be compiled during startup, you will have
a fairly long startup time compared to if you would have few.

Once the JIT compilation is complete, the compiled methods will no longer need as much time
to run; however, the JRockit JVM continuously optimizes frequently-used methods during the
application run which, at times, can give the appearance of the JVM running slowly.

Diagnosing a Slow Application Startup
The startup time can also be extended if you have an application that is searching for a certain
file, for example, a data file. If you suspect that your application is causing the slow start, create
a JRA recording and analyze the application data in the JRockit Runtime Analyzer. This tool is
included in Oracle JRockit Mission Control.

If you are running the JRockit JVM R27.1 or later with JRockit Mission Control 2.0 or later,
complete instructions for creating and interpreting a JRA recording are available from the Oracle
JRockit Mission Control online help.

Timing with nanoTime() and currentTimeMillis()
To measure timing inside your application you can use the methods System.nanoTime() and
System.currentTimeMillis() in your application. Inserting these methods in your
application will, of course, consume resources at runtime but the performance impact should be
minimal.

System.nanoTime()
This method returns a monotonic timer value by using the most precise available system timer.
The returned value is in nanoseconds, however the factual resolution of the timer can vary
between OS and hardware. Note that there is no conventional zero point to which you can relate
the timer value. Hence, you must take the time at least twice in order to get any meaningful data.

nanoTime() uses different methods on different operating systems:

Windows: QueryPerformanceCounter()

Solaris: gethrtime()

Linux: clock_gettime() in librt if available, else gettimeofday().

To get information about timer resolution and, on Linux, the method used to get a time value, start
the JRockit JVM with the option -Xverbose:timing.
Oracle JRockit JVM Diagnostics Guide 26-3

The Orac l e JRock i t JVM Star ts S lowl y
Here is an example of a verbose timing report on Windows:
[INFO][timing] Counter timer using resolution of 1779720000Hz

System.currentTimeMillis()
This method returns the current time in milliseconds. The current time is defined as the time since
00:00:00 UTC, January 1, 1970.

Milliseconds and nanotime at application startup
To get the values of System.currentTimeMillis() and System.nanoTime() at the time the
JVM started, use the command line option -Xverbose:starttime. Verbose output for
starttime might look like this:
[startti] VM start time: 1152871839957 millis 171588375730523 nanos

The millis value is the same value that System.currentTimeMillis() would provide and the
nanos value is the same value that System.nanoTime() would provide.

Recommended Solutions for a Slow Start
This section provides information on possible solutions for a slow start.

Tune for Faster Startup

Eliminate Optimization Problems

Eliminate Application Problems

Open a Case with Oracle Support

Tune for Faster Startup
Sometimes the problem may be with how the JVM is tuned using command line options. See
Tuning For Faster JVM Startup for tips on how to tune the JVM for faster startup.

Eliminate Optimization Problems
Since, on some rare occasions, optimization can be the cause of a slow start, you should eliminate
it as a cause before you move on to any other solution.

If you suspect that the problem is with optimization, you can disable optimization completely by
starting the JVM with the -XnoOpt startup command. This command tells the JVM not to
26-4 Oracle JRockit JVM Diagnostics Guide

Recommended So lu t i ons fo r a S low S ta r t
optimize any code. If the JRockit JVM starts more quick after running with -XnoOpt, you can
assume your are experiencing optimization problems. You should report this to Oracle Support.

As a workaround you can try to exclude methods that take too long to optimize. To do so, use the
Ctrl-Break Handler print_threads to make a thread dump (please refer to Running Diagnostic
Commands for more information). This output will identify any methods that are causing
optimization problems. You can then use an optfile to exclude that method from the optimization
process (please refer to Creating and Using an Optfile for more information).

Eliminate Application Problems
If you determine that the slow start is due to problems in your Java application, you need to
investigate what is causing that problem from the application viewpoint. The problem will most
likely be with a method that is the victim of unnecessary synchronization or an insufficient
number of synchronized resources. Try to locate the methods that are causing the bottleneck and,
if possible, rewrite the code of your Java application.

Open a Case with Oracle Support
If you feel that it is the Oracle JRockit JVM that is taking too long to generate the code for each
method or if none of the tuning solutions suggested in Tuning For Faster JVM Startup resolve the
problem, you will need to open a case with Oracle Support. You can find instructions on how to
report a problem to Oracle, including the sort of information to include, in Submitting Problems
to Oracle Support
Oracle JRockit JVM Diagnostics Guide 26-5

The Orac l e JRock i t JVM Star ts S lowl y
26-6 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 27
Long Latencies
Long latencies may for example manifest as single transactions that time out in a transaction
based application while the overall performance is good. The problem usually lies in uneven
performance and non-deterministic latencies.

This chapter includes these topics:

The Problem is Usually with Tuning

If All Else Fails, Open a Case With Oracle Support

The Problem is Usually with Tuning
Long latencies often indicate that your application is not tuned for short and deterministic pause
times. Before engaging in time-consuming troubleshooting and mitigation tasks, you should
retune the Oracle JRockit JVM to optimize for short pause times and restart the application. For
detailed instructions on how to tune the JVM for short pause times, please refer to Tuning For
Low Latencies.

There is a certain trade-off between low latencies and high overall application throughput. High
latencies that cause transactions to time-out are often caused by garbage collection pauses. To
reduce the individual garbage collection pauses the garbage collector runs in a mostly concurrent
mode, where the garbage collection is, for the most part, done while the Java threads are still
running. This causes some extra work for the garbage collector, which has to keep track of
changes during the concurrent phases of the garbage collection. The garbage collections will also
be less efficient, since objects that are allocated during the concurrent garbage collection will not
be garbage collected until the next garbage collection. This can force the JVM to collect garbage
Oracle JRockit JVM Diagnostics Guide 27-1

Long Latenc ies
more often. Also, the heap might become more fragmented when compaction is limited to reduce
the pause times caused by compaction. All this reduces garbage collection pauses, but it will also
have a negative impact on overall throughput.

You can increase the overall throughput while keeping the latencies low by allowing longer
garbage collection pauses or by manually tuning the garbage collection using the tips in Tuning
For Better Application Throughput.

Troubleshooting Tips
This section lists some latency troubleshooting hints that apply for mostly concurrent garbage
collection, for example -XgcPrio:deterministic, -XgcPrio:pausetime, -Xgc:gencon and
-Xgc:singlecon.

GC Trigger Value Keeps Increasing
The garbage collection trigger (gctrigger) value determines how much free heap space should be
available when a concurrent garbage collection starts in order to allow the Java threads to
continue allocating objects during the entire garbage collection. The gctrigger value changes in
runtime in order to avoid situations where the heap becomes full during the concurrent garbage
collection. Monitor the gctrigger value in -Xverbose:memdbg outputs or in JRA recordings. If
the gctrigger value keeps increasing, the load on the application is to high for the concurrent
garbage collector. Decrease the load on the application.

GC Reason for Old Collections is Failed Allocations
Monitor the garbage collection reasons for the old collections with -Xverbose:memdbg or JRA.
The normal garbage collection reason for a mostly concurrent old collection is “heap too full”. If
the old collections are frequently triggered due to failed object allocation, the GC trigger is too
low. Increase the GC trigger value using the command line option -XXgcTrigger, or decrease
the load on the application.

Long Young Collection Pause Times
Monitor the pause times for young collections in -Xverbose:gcpause outputs or JRA
recordings. If the young collection pause times are too long, decrease the nursery size using the
-Xns command line option or run a single generational garbage collector.
27-2 Oracle JRockit JVM Diagnostics Guide

I f A l l E lse Fa i l s , Open a Case Wi th Orac le Suppor t
Long Pauses in Deterministic Mode
Monitor the garbage collection pause times in a JRA recording. Check the pause parts for pause
times that are too long. If the pause parts for Compaction are too long, decrease the pause target.
If the pause parts in Mark:Final, especially the ones concerning RefrenceQueues, are too long
you may have a problem with many java.lang.ref.Reference objects in your application.
The best way to handle this would be to re-design the Java application using fewer reference
objects. You could also try decreasing the heap size, which will cause reference objects to be
handled more often and reduce the amount of reference objects to handle at each old collection.

If All Else Fails, Open a Case With Oracle Support
If none of the tuning solutions suggested in Tuning For Low Latencies or in Troubleshooting Tips
resolve the problem, you will need to open a case with Oracle Support. You can find instructions
on how to report a problem to Oracle, including the sort of information to include, in Submitting
Problems to Oracle Support.
Oracle JRockit JVM Diagnostics Guide 27-3

Long Latenc ies
27-4 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 28
Low Overall Throughput
Low overall throughput manifests for example as a low score in benchmarks, too few transactions
executing per minute in a transaction based system or long processing times for large batches of
data.

This chapter includes these topics:

The Problem is Usually with Tuning

If All Else Fails, Open a Case With Oracle Support

The Problem is Usually with Tuning
A low overall throughput usually means that your JVM is not tuned to maximize application
throughput. Before engaging in time-consuming troubleshooting and mitigation tasks, you
should retune the Oracle JRockit JVM to optimize application throughput and restart the
application. For detailed instructions on how to tune the JVM for optimal throughput, please refer
to Tuning For Better Application Throughput

There is a certain trade-off between overall application throughput and low individual latencies.
A JVM that is tuned for optimal overall throughput spends as little CPU time in garbage
collection and memory management as possible to allow the Java application to run as much as
possible. To minimize unnecessary overhead and extra work during garbage collection, the Java
application should be paused for the duration of the entire garbage collection. This might cause
long individual pauses; however, in the long run, it will maximize the overall throughput. You
can reduce the latencies without losing too much overall throughput by, for example, limiting the
Oracle JRockit JVM Diagnostics Guide 28-1

Low Overa l l Throughput
compaction or using a generational garbage collector. See Tuning For Low Latencies for tips on
how to reduce the garbage collection pauses.

If All Else Fails, Open a Case With Oracle Support
If none of the tuning solutions suggested in Tuning For Better Application Throughput, resolve
the problem, you will need to open a case with Oracle Support. You can find instructions on how
to report a problem to Oracle, including the sort of information to include, in Submitting
Problems to Oracle Support.
28-2 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 29
The Oracle JRockit JVM’s Performance
Degrades Over Time
The Oracle JRockit JVM is designed to run in large server environments. Because of that, the
JVM needs to provide constant, even performance throughout an application run. Occasionally,
you might find that this performance begins to slip the longer the JVM runs. For example, your
application works fine early in its run but, after a while it starts to run slower and show an unstable
performance. This section provides information on how to recognize and address performance
degradation.

The Problem is Usually With Tuning

You Could be Experiencing Optimization Problems

If All Else Fails, Open a Case with Oracle Support

The Problem is Usually With Tuning
When system performance begins to falter the problem is often with tuning. Incorrectly tuned
compaction may for example cause the performance to degrade periodically as the fragmentation
on the heap increases until the garbage collector must perform a full compaction in order to avoid
throwing an OutOfMemoryError.

Before engaging in time-consuming troubleshooting and mitigation tasks, you should tune the
JRockit JVM for stable performance and restart the application. For detailed instructions on how
to tune the JVM for stable performance, please refer to Tuning For Stable Performance.
Oracle JRockit JVM Diagnostics Guide 29-1

The Orac l e JRock i t JVM’s Pe r fo rmance Degrades Over T ime
You Could be Experiencing Optimization Problems
Occasionally, when you encounter increasingly poor performance, you might be experiencing
optimization problems. These problems tend to show up after the program has been running fine
for a while and usually result in something like the following happening:

The JVM crashes (see The System is Crashing for more information).

NullPointerExceptions get thrown from unexpected points in the program.

A method starts returning the wrong results.

Generally, optimization won’t cause the sort of problems that you are experiencing with poor
performance; however, before you report the issue, you can run the JVM with -XnoOpt enable
to turn off code optimization just to eliminate this as a possible cause of the problem. If the
application runs properly after turning off optimization, you can assume the problem was there.
You should then follow the procedures for isolating and excluding the mis-optimizing method
described in Exclude the Offending Method.

You Could Be Experiencing a Memory Leak in Java
A memory leak in Java causes the application to run slower and slower over time, as the garbage
collector will have to work harder to free memory. In the end the JVM will throw an
OutOfMemoryError, but applications with a small memory leak can sometimes run for days until
that happens.

To look for initial signs of a memory leak you can do a JRA recording and check the heap usage
after each old collection. If this memory usage keeps increasing you may be looking at a memory
leak. If you are running the JRockit JVM R27.1 or higher with Oracle JRockit Mission Control
2.0 or later, complete instructions for creating and interpreting a JRA recording are available from
the JRockit Mission Control built-in help. If you are using an earlier version of the Oracle JRockit
JVM, please refer to Creating a JRA Recording with JRockit Mission Control 1.0 for these
instructions.

You can diagnose memory leaks using the Memory Leak Detector, which will help you pinpoint
the class that causes the memory leak. Complete instructions for using the Memory Leak Detector
are available in the built-in help in Oracle JRockit Mission Control 2.0 and later releases.
29-2 Oracle JRockit JVM Diagnostics Guide

I f A l l E lse Fa i l s , Open a Case w i th Orac le Suppor t
If All Else Fails, Open a Case with Oracle Support
If none of the tuning solutions suggested in Tuning For Stable Performance resolve the problem,
you will need to open a case with Oracle Support. You can find instructions on how to report a
problem to Oracle, including the sort of information to include, in Submitting Problems to Oracle
Support
Oracle JRockit JVM Diagnostics Guide 29-3

The Orac l e JRock i t JVM’s Pe r fo rmance Degrades Over T ime
29-4 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 30
The System is Crashing
A Java application may stop running for several reasons. The most common reason is of course
that the application finished running or was halted normally. Other reasons may be Java
application errors, unhandled exceptions or irrecoverable Java errors like OutOfMemoryError.
Occasionally you may encounter a JVM crash, which means that the JVM itself has encountered
a problem from which it hasn’t managed to recover gracefully. You can identify a JVM crash by
the dump information that the Oracle JRockit JVM prints out in case of a crash.

This document describes how to diagnose and resolve JVM crashes. It includes information on
the following subjects:

Notifying Oracle Support

Classify the Crash

Out Of Virtual Memory Crash

Stack Overflow Crash

Unsupported Linux Configuration Crash

JVM Crash

Notifying Oracle Support
Note that even if you do not have a Support contract with Oracle, you should notify Oracle
Support if you have encountered a problem in the JRockit JVM. This way, Oracle can make sure
Oracle JRockit JVM Diagnostics Guide 30-1

The Sys tem is Crash ing
that the problem is fixed in the next release. For information on communication with Oracle
Support, please refer to Submitting Problems to Oracle Support.

Classify the Crash
The first step in diagnosing and resolving a JVM crash is to classify the crash, i.e. trying to
determine where and why the crash occurred.

Using a Crash File
Whenever the JRockit JVM crashes, it creates a snapshot of the state of the computer and the
JVM process at the time of the crash and writes this information into one of these “crash files”:

dump file: The dump file is a text file that is like an executive summary of the full memory
image and the environment in which the JVM was run at the time of the crash. This file is
produced by the JVM itself when it crashes and is useful for classifying crashes; it can also
sometimes be used to identify problems that have already been fixed. This file rarely
reveals enough information to actually find the cause for the problem.

Core file: The core file is a binary crash file, as described in Understanding Crash Files.
By default this is a complete copy of the whole JVM process at the time of the crash. Core
files are produced on Unix-like systems, such as Linux and Solaris. The file name of the
core file is usually something like <pid>.core.

mdmp file or a “minidump” file: This is the Windows version of the core file.

Binary crash files (core files and mdmp files) are very helpful to the Oracle support organization
when solving JRockit JVM problems; however, if you don’t have a service agreement with
Oracle Systems, these files will not be of much help to you.

Determine the Crash Type
You can sometimes determine where and why the crash occurred by retrieving the text dump file
and reviewing it for information that points to the crash type. Checking the size of the binary
dump file may help in some cases, as well as checking the setup of the operating system.
Table 30-1 lists symptoms you can look for and the probable crash types corresponding to these
symptoms.
30-2 Oracle JRockit JVM Diagnostics Guide

Out Of V i r tua l Memory Crash
Out Of Virtual Memory Crash
The JVM reserves virtual memory for many purposes; for example the Java heap, Java methods,
thread stacks and JVM internal data structures. In addition, native (JNI) code can also allocate
memory. The process size consists of all the memory reserved by the JVM and is limited
according to the operating system limitations. If the virtual memory allocation of the JVM
process exceeds these limitations, the JVM will run out of virtual memory, which may cause it to
crash. This section discusses the following topics:

Verify the Out Of Virtual Memory Error

Troubleshoot the Out Of Virtual Memory Error

Verify the Out Of Virtual Memory Error
Before you can start debugging an Out Of Virtual Memory Error, you should first verify that the
error is indeed due to the JVM process running out of virtual memory. This section contains
information on:

Table 30-1 Crash Symptoms and Crash Types

Symptoms Probable Crash Type

The dump file indicates that the JVM process has run out of virtual
memory. See Understanding Crash Files for details.

Out Of Virtual Memory Crash

The core file or mdmp file size is close to the maximum virtual
memory size of the process on the OS. See Understanding Crash Files
for details.

Out Of Virtual Memory Crash

The dump file indicates that stack overflow errors have occurred. See
Understanding Crash Files for details.

Stack Overflow Crash

For Linux users only:
The dump file indicates that LD_ASSUME_KERNEL is set. See
Understanding Crash Files for details.

Unsupported Linux Configuration
Crash

For Linux users only:
You are using a non-standard or unsupported Linux configuration.

Unsupported Linux Configuration
Crash

None of the above apply or help solve the problem. JVM Crash
Oracle JRockit JVM Diagnostics Guide 30-3

The Sys tem is Crash ing
Virtual Memory Maximums

Checking the Binary mdmp or core File

Virtual Memory Maximums
Table 30-2 shows the maximum virtual memory available to a single process on the various
32-bit operating systems. Virtual memory is practically unlimited on 64-bit platforms.

Checking the Text dump File
The text dump file, if such has been created by the JVM, may indicate that memory allocations
have failed. See Understanding Crash Files for details. This is a strong indication that the JVM
process has run out of virtual memory.

Checking the Binary mdmp or core File
When the JRockit JVM crashes, it generates a binary crash file. By default this file contains a
copy of the entire JVM process. Check the size of this file to determine that the JVM process has
indeed run out of virtual memory.

1. Verify that the binary crash file size has not been limited with the command line option
-XXdumpSize or with the operating system command ulimit (Linux and Solaris only). Use
the command ulimit -a to verify that the crash file size is unlimited on Linux and Solaris.
If the size of the binary crash file has been limited, you can not use it to verify that the JVM
process has run out of virtual memory.

2. Compare the size of the mdmp or core file with the size of the heap and ensure that it is larger
than your heap size. This is a sanity check to verify that the binary crash file has not been
truncated for example due to limited disk space.

Table 30-2 Approximate Maximum Virtual Memory Available to IA32 Architectures

OS Max Process Virtual
Memory

Windows 2GB

Windows /3GB Startup Option 3GB

Linux (normally) 3GB
30-4 Oracle JRockit JVM Diagnostics Guide

Out Of V i r tua l Memory Crash
3. Determine if the size of the mdmp or core file is close to the maximum process size allowed
by the particular OS.

Troubleshoot the Out Of Virtual Memory Error
When you have verified that the JVM process has run out of virtual memory, you can start
troubleshooting in order to fix the problem. This section covers the following topics:

Upgrade to the Latest JRockit JVM Version Available

Reduce the Java Heap Size

Use the Windows /3GB Startup Option

Check for Memory Leaks in JNI Code

Record Virtual Memory Usage

If All Else Fails, Open a Case with Oracle Support

Upgrade to the Latest JRockit JVM Version Available
Make sure you are running the latest available JRockit JVM version. There have been many fixes
to address and reduce memory usage in the JVM over time. Using the latest JVM version for a
specific major JDK will ensure that you are running the most memory efficient one.

Reduce the Java Heap Size
The Java heap is only a part of the JVM’s total memory usage. If the Java heap is too large, the
JVM may fail to start or run out of virtual memory when Java methods are compiled and
optimized or native libraries are loaded. If this happens, you should try lowering the maximum
heap size setting.

Use the Windows /3GB Startup Option
On Windows 2000 Advanced Server and Datacenter, Windows 2003 and Windows XP you have
the option of starting the operating with the /3GB option by specifying so in BOOT.INI. This
option changes the maximum virtual memory process size from 2GB to 3GB.
Oracle JRockit JVM Diagnostics Guide 30-5

The Sys tem is Crash ing
Check for Memory Leaks in JNI Code
Check any JNI code you are using for memory leaks. Incorrectly written or used JNI code may
be leaking memory. This will grow the Java process until it reaches the maximum virtual memory
size on the platform.

Record Virtual Memory Usage
Recording virtual memory usage shows memory usage growth, which will help Oracle Support
identify and diagnose problems with running out of virtual memory. This section describes how
you can collect virtual memory usage statistics on:

Windows

Linux

Windows
Use the Windows tool perfmon to record the PrivateBytes process counter. Collect information
on the amount reserved virtual memory the JVM process. To do this:

1. Open Performance Monitor, which you can find in the Administrative tools.

2. Click + to open the Add Counters dialog box.

3. Open the Performance Object drop-down list and select Process.

4. Select the counter Private Bytes in the Process list.

5. Select the process that you want to monitor and click Add.

Linux
Create a script to record the virtual memory usage with a regular interval; for example:

top -b -n 10 > virtualmemory.log

This script will do “top” every ten seconds and put the data in a file called virtualmemory.log.
The virtual memory usage for all running processes can be found in the VIRT column in that file.
To see just the current status, type top and press [Shift]-[M] to sort the output by memory
usage. This usually puts the JVM process(es) at the top of the output.

Creating a recording like virtualmemory.log can be useful as it allows you to see that the
JRockit JVM process is actually growing and provide evidence to Oracle Support that the growth
is there.
30-6 Oracle JRockit JVM Diagnostics Guide

Stack Over f l ow Crash
If All Else Fails, Open a Case with Oracle Support
If none of these solutions works, you will need to open a case with Oracle Support. Please refer
to Submitting Problems to Oracle Support for details on what kind of information you need to
provide and how to submit that information.

Stack Overflow Crash
A stack overflow crash occurs when the JRockit JVM cannot gracefully handle a stack overflow
error. According to the J2SE Javadoc, a “gracefully” handled
java.lang.StackOverflowError is a java.lang.VirtualMachineError thrown “to
indicate that the JVM is broken or has run out of resources necessary for it to continue operating.”
For more information, please refer to these J2SE java.lang Javadocs:

Java SE 6:

– Class StackOverflowError

– Class VirtualMachineError

For J2SE 5.0:

– Class StackOverflowError

– Class VirtualMachineError

For J2SE 1.4.2

– Class StackOverflowError

– Class VirtualMachineError

The JRockit JVM R26 (and higher) dump files includes information on the number of stack
overflow errors thrown.

Verify the Stack Overflow Crash
A stack overflow crash is easy to identify: The text dump file says, Error Message: Stack
overflow somewhere near the top of the file. Other indications might be an extremely long stack
trace in the crash file or, paradoxically, no stack trace at all. If the dump file says something like
StackOverFlow: 2 StackOverFlowErrors occured, this is an indication that the crash might
be triggered by a previous stack overflow problem.
Oracle JRockit JVM Diagnostics Guide 30-7

The Sys tem is Crash ing
Troubleshoot a Stack Overflow Crash
This section describes some possible solutions to stack overflow errors.

Application Level Changes
Often, a stack overflow error is caused by the application being coded to require stack space that
exceeds the JRockit JVM’s memory limits. Examine the stack trace in the .dump file to determine
if the Java code can be changed to use less stack space.

Increase the Default Stack Size
If changing the stack requirements of the application is not possible, you can change the thread
stack size by using the -Xss option at JVM startup; for example:

-Xss:<value>[k|m]

Make the JRockit JVM More Robust Against Stack Overflow Errors
-XcheckedStacks makes the JRockit JVM more robust against stack overflow errors. It usually
prevents the JVM from dumping and throwing a java.lang.StackOverflowError. There is a
slight performance penalty when using this option as the JVM touches pages on the stack.

Unsupported Linux Configuration Crash
If your application crashes while running the JRockit JVM on Linux, even if the stack trace
indicates a reason the crash occurred, you should ensure that you are running on a supported
Linux configuration, as this might be contributing to the reason for the crash. You should do the
following:

Verify that the OS Version is Supported

Verify that You Have Installed the Correct glibc Binary

Verify that the OS Version is Supported
The JRockit JVM is generally only supported on generally available products from OS vendors.
The JRockit JVM does not support custom built kernels. To verify that your version of Linux is
supported, please refer to the specific section for your version of the JVM in Oracle JRockit JDK
Supported Configurations.
30-8 Oracle JRockit JVM Diagnostics Guide

JVM Crash
Verify that You Have Installed the Correct glibc Binary
Linux on IA32 must be configured to use the glibc compiled for i686 architecture, otherwise you
will see hangs and crashes with the JRockit JVM.

You can check what glibc is installed by running:

rpm -q --queryformat '\n%{NAME} %{VERSION} %{RELEASE} %{ARCH}\n' glibc

If the output says something like “i386”; for example:
glibc 2.3.4 2.25 i386

you are using an unsupported glibc. You need to upgrade your glibc version to one that doesn’t
say “i386”. Output from a supported system will say something like:

glibc 2.3.4 2.25 i686

Examine the Thread Library
If you have a core file in gdb, you can get a hint of what thread library you are using by running:

info shared

Look at the path of the loaded libpthread<x>.so.

If it is in /lib/, then you should ask for the result of the rpm command. If the output says
something like “i386”, you are using an unsupported glibc; you need to upgrade your glibc
version to one that doesn’t say “i386”.

JVM Crash
A JVM crash is caused by a programming error in the JRockit JVM. Identifying and
troubleshooting a JVM crash can help you find a temporary workaround until the problem is
solved in the JRockit JVM. It may also help Oracle Support to identify and fix the problem faster.

Code Generation Crash
This section describes how to identify and troubleshoot a code generation crash. It contains the
following subjects:

Identify a Code Generation Crash

The Problem Might Lie With an External Instrumentation Tool

If All Else Fails, Open a Support Case
Oracle JRockit JVM Diagnostics Guide 30-9

The Sys tem is Crash ing
Identify a Code Generation Crash
The most common cause for a code generation crash is a mis-compiled method. If the JRockit
JVM mis-compiles a method, either the JVM will crash or the method will do something other
than what the source code says. If the JVM crashes while generating code, the text dump file
should identify which method was being compiled at the time of the crash. It should be identified
on a line towards the top starting with Method.

Knowing which method was causing the problem is the first step in resolving the problem.

Troubleshoot the Code Generation Crash
If the JRockit JVM mis-compiles a method, the fault is likely to be with the JVM’s optimizing
compiler. To determine whether or not optimization itself is responsible, you can disable it by
restarting the application with the -XnoOpt command-line option specified; for example:

java -XnoOpt myApp

If the JRockit JVM executes your program as expected, the problem is with code optimization.

Exclude the Offending Method
If disabling optimization stopped the JRockit JVM from crashing, you should next try excluding
the offending method from optimization; you might be able run your application with almost full
optimization if you can prevent just that method from being optimized. If this does not work,
contact Oracle Support. Alternatively, try to use the -XXpreOpt command at startup to use the
optimizing compiler for everything (be aware that using the optimizing compiler all the time can
slow down the JVM startup).

You can exclude a method from optimization by using an optfile. If your application can run
successfully without the offending method being optimized, this workaround should solve your
problem.

Creating and Using an Optfile
An optfile is nothing more than a text file that contains directives, a single-character code that
tells the optimizer that certain methods should either not be optimized or be forced optimized.
Once you’ve created the file, you then use the -Djrockit.optfile=<filename> property
(where <filename> is the optfile) to indicate the name and location of the optfile.

The structure of the file is illustrated in Listing 30-1.
30-10 Oracle JRockit JVM Diagnostics Guide

JVM Crash
Listing 30-1 Sample optfile

 - java/lang/FloatingDecimal.dtoa
 - java/lang/Object
 - sun/awt/windows/WComponentPeer.set*

In Listing 30-1, the “-” at the beginning of each line tells the optimizing compiler to never
optimize this method. Thus, in this example, the “-” directive tell the optimizer to never optimize
the following:

All methods called dtoa in the FloatingDecimal class.

All methods in the Object class.

All methods in the sun.awt.windows.WComponentPeer class beginning with set.

Note: If you are using a version of the JRockit JVM earlier than R26.4, using “-” will not
disable regeneration of the method completely. If a method m is marked with a “-” and
the hotspot detector thinks it is a hotspot, it will regenerate that method but not optimize
it further.

“-” is the only useful directive with this workaround. The other directives are h (allow this
method to be optimized by the hotspot detector, but do not preoptimize it), p (preoptimize this
method and do not allow the hotspot detector to optimize it), and + (preoptimize this method and
allow the hotspot detector to optimize it), however, they are not useful in this workaround.

Verifying optfile Response
If you want to make sure your optfile does as you expect, use -Xverbose:opt and check the
output. You should not see the method you’re excluding.

Setting and optfile with a Ctrl-Break Handler
You can also use a Ctrl-Break Handler to set the optfile. The handler is called run_optfile and
takes a <filename> argument that is a regular optfile; for example:

run_optfile optfile=<filename>

When ctrl-break is pressed, any method matching the “-” directives in the optfile will not be
optimized.
Oracle JRockit JVM Diagnostics Guide 30-11

The Sys tem is Crash ing
Rules for Directives
When you create an optfile, the following rules apply:

Conflicting directives are applied from the top, the first match is used.

Wildcards (“*”) can be used last in a class or method name.

If a directive is given without specifying a method or descriptor, the directive will apply to
all methods and descriptors.

The Problem Might Lie With an External Instrumentation Tool
If you have eliminated a mis-compiled method as the problem for the crash and you are using an
external instrumentation tool (for example JProbe or OptimizeIt), you might want to investigate
whether this tool is causing the problem. These tools can alter bytecode, which can cause
unexpected behavior. In some instances, the problem lies directly with the tool; however, the
JRockit JVM might have issues with the tool that are causing the crash. To eliminate tools as a
cause for the crash, disable the tool(s) and rerun the application. If the crash happens again, your
problem is not with the instrumentation tool. If the application runs as expected, you should
consider using a different tool or running without the tool.

If All Else Fails, Open a Support Case
If the optfile workaround doesn’t alleviate the problem or if you cannot run the application
successfully without the problematic method optimized, you will need to open a case with Oracle
Support. You can find instructions on how to report a problem to Oracle, including the sort of
information to include, in Submitting Problems to Oracle Support.

For code generation crashes, you will need to provide the following data to Oracle Support:

The core (or .mdmp) file.

The .dump file

The class file containing the method that was being generated.

The source code for the class containing the method that was being generated.

Garbage Collection Crash
This section describes how to identify and troubleshoot crashes in garbage collection. It contains
the following information:
30-12 Oracle JRockit JVM Diagnostics Guide

JVM Crash
Consider Upgrading to the Latest Version of the JRockit JVM

Try One of These Workarounds

If All Else Fails, Open a Case with Oracle Support

Identify a Garbage Collection Crash
You can identify a garbage collection crash by looking at the stack trace in the text dump file. If
garbage collection functions appear in the stack trace, or if the thread that caused the crash is one
of the garbage collection threads, the crash is most likely to have occurred during garbage
collection. Garbage collection functions in the stack trace are identified by prefixes like mm, gc,
yc and oc.

Consider Upgrading to the Latest Version of the JRockit JVM
If you are experiencing garbage collection crashes, the simplest—and most
strongly-recommended—solution is to upgrade your version of the JRockit JVM to the latest one
available. This is because further diagnosis of the problem can be a a very complex and
time-consuming exercise. You can avoid the problem by upgrading because it might have been
fixed in the latest version of the JVM.

Try One of These Workarounds
If you do not (or cannot) upgrade to the latest version of the JVM or if you are already using the
latest version, try using any of the following workarounds to prevent garbage collection crashes:

Change the Garbage Collector

Disable Compaction

Disable Inlining

Use the Optimizing Compiler

Change the Garbage Collector
It is possible that the garbage collector you are using has bugs that you can avoid by changing to
another garbage collector. Be aware though, that if you change collector, you will not receive the
same performance profile from the Oracle JRockit JVM.

If you are using deterministic garbage collection, you cannot change to another garbage collector
and retain the deterministic garbage collection guarantees. Instead of changing your garbage
collector, you should open a case with Oracle Support.
Oracle JRockit JVM Diagnostics Guide 30-13

The Sys tem is Crash ing
If you are having problems with the default dynamic garbage collector
-Xgcprio:throughput, try switching to -Xgc:parallel or -Xgc:genpar.

If you are having problems with the dynamic garbage collector -Xgcprio:pausetime, try
switching to -Xgc:gencon or -Xgc:singlecon.

If you are using one of the static garbage collectors, you might want to try a different one.
For example, if you are using -Xgc:singlecon try switching to -Xgc:gencon or
-Xgc:singlepar

– Single-spaced concurrent (-Xgc:singlecon)

– Single-spaced parallel (-Xgc:singlepar or -Xgc:parallel)

– Generational concurrent (-Xgc:gencon)

– Single-spaced generational (-Xgc:genpar)

For more information on using static garbage collectors, please refer to Selecting a Static
Garbage Collection Strategy.

Disable Compaction
Bugs in heap compaction can sometimes cause trouble leading to crashes in garbage collection.
You can disable it by setting -XXnoCompaction at startup. Be aware that using this option can
lead to heap fragmentation and should only be used for troubleshooting purposes. If the heap
becomes too fragmented, you might encounter Out of Memory Errors.

Disable Inlining
Erroneous inlining may cause broken code, which makes the garbage collector lose track of live
objects. You can disable inlining by using the command-line option combination
-XXnoJITInline -XnoOpt. You must use both options because -XXnoJITInline only disables
inlining the first time a method is compiled. Unless you set -XnoOpt as well, methods can still
be inlined when code is optimized.

Note: If -XnoOpt (without -XXnoJITInline) resolves the problem, your issue might be with
code optimization. Conversely, if -XXnoJITInline without -XnoOpt resolves the
problem, you should notify Oracle Support about this.

Use the Optimizing Compiler
You might be experiencing garbage collection crashes because the non-optimizing JIT compiler
is generating broken code that makes the garbage collector lose track of live objects. Use the
30-14 Oracle JRockit JVM Diagnostics Guide

JVM Crash
-XXpreOpt command at startup to use the optimizing compiler for everything. Be aware that
using the optimizing compiler can slow down the JVM startup.

If All Else Fails, Open a Case with Oracle Support
If none of the above workarounds resolve the crash issue, you will need to open a case with Oracle
Support. You must include the following information:

For crashes in garbage collection, you must include a complete .dump or .mdmp file,
otherwise the support staff won’t be able to resolve your issue. Verify that the core .dump
or .mdmp file is at least as big as the Java heap.

If you can a reproduce the crash, include the steps you used to do so.

If you tried using another garbage collector, as described in Change the Garbage Collector,
indicate if one garbage collector worked better than another or if crashes continued
regardless of the collector used.

Include information on any workaround you attempted.

For information on communication with Oracle Support, please refer to Submitting Problems to
Oracle Support.
Oracle JRockit JVM Diagnostics Guide 30-15

The Sys tem is Crash ing
30-16 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 31
Understanding Crash Files
Your JVM process has suddenly crashed, which has resulted in the Oracle JRockit JVM creating
a snapshot, crash files, of the state of the computer and the JVM process at the time of the crash.
These crash files are written to disk and are called a bit different depending on which platform
you are using and the kind of information contained within the file (see Figure 31-1).

You can use some the information in the crash files to determine the nature of the problem that
caused the JVM to crash. The information contained in the crash files is also essential for the
support organization within the JRockit JVM to help solving problems with the JVM. When
submitting problem reports to the Oracle support organization, you need to include these crash
files (see Submitting Problems to Oracle Support for more information).

This section provides information on the differences between the crash files and how to enable
and disable them. You will also find example crash files and diagnostics leads on how to interpret
the information in the text crash file, which will enable you to identify solutions to how to either
fix your Java application or the way you use and set up the JRockit JVM.

This section includes information on the following subjects:

Differences Between Text dump Files and Binary core/mdmp Files

Location of Crash Files

Enabling Binary core Crash Files on Linux and Sun Solaris

Enabling Binary mdmp Crash Files on Windows

Binary Crash File Sizing
Oracle JRockit JVM Diagnostics Guide 31-1

Unders tanding Crash F i l es
Disabling Crash Files

Extracting Information From a Text dump File

Differences Between Text dump Files and Binary
core/mdmp Files

When the JRockit JVM crashes it creates two types of crash files (see Figure 31-1): a text crash
file called dump and a binary crash file called mdmp (a Windows platform minidump) or core (a
Linux and Sun platform core file). The format of the two types of crash files is:
jrockit.<pid>.dump and jrockit.<pid>.mdmp/core, where pid is the process id that
appears as a number, for example, jrockit.72.dump.

Figure 31-1 JRockit JVM creates two types of crash files

The information contained in the text dump file is information about the JVM at the point of time
for the crash. This information can give hints and leads to why the JVM has crashed. See
Listing 31-1 through Listing 31-4 for an example of the information contained in a text dump file.
The text dump file can be viewed in a regular text editor. To turn the creation of the text dump file
off, see Disabling Text dump Files.

The information in the binary core or mdmp crash file contains information about the entire
JRockit JVM process and needs to be opened in a debugger. The size of the binary crash file is
usually quite large, so you need to make sure there is enough disk space for the file to be
completely written to disk. By default, the JVM records a full binary crash file. To set the size of
the binary crash file, see Binary Crash File Sizing. To turn the creation of the binary crash file
off, see Disabling the Binary Crash Files.
31-2 Oracle JRockit JVM Diagnostics Guide

Binary Crash F i l e S i z ing
Binary Crash File Sizing
The size of the binary core or mdmp crash files vary tremendously. The text dump file is normally
a very small file, usually under 100kB. The binary crash files, on the other hand, are, by default,
set to log the entire JRockit JVM process (see Figure 31-2) and therefore become very large,
which demands greater storage capacity on your system.

You can se the crash file size using the command line option -XXdumpSize. The default setting
is -XXdumpSize:large. A large dump contains the entire JVM process including the Java heap.
While small and normal settings are also available, neither of these sizes are adequate for
troubleshooting a JVM crash since the Java heap is excluded.

If you don’t want a binary crash file, you can set -XXdumpSize:none. For more information on
this option, see -XXdumpSize in the Oracle JRockit JVM Command-Line Reference.

Figure 31-2 Difference in information saturation between small, normal, and large binary crash files

Note: Remember that you need to provide a <large> binary core or mdmp crash file with any
problem that you submit to the Oracle JRockit support organization.

If there is not enough memory on the disk where the crash file is written for the entire binary crash
file, the file will become as large as possible, i.e. fill up the disk.

Location of Crash Files
Both the binary crash files and the text dump files are saved to your current working directory (see
Enabling Binary core Crash Files on Linux and Sun Solaris). If you want to save the crash files
Oracle JRockit JVM Diagnostics Guide 31-3

Unders tanding Crash F i l es
in a different location, use the environment variable JROCKIT_DUMP_PATH and specify where you
want the information located. The path that you specify must exist and be writable.

Enabling Binary core Crash Files on Linux and Sun Solaris
For the Linux and Sun Solaris systems, you need to set ulimit -c <value> to something greater
than zero, for example, ulimit -c unlimited. This value is measured in blocks, with each
block equaling one kilobyte. You can set the value from either the command line or in a shell
script. To disable crash files on Linux and Solaris, set ulimit -c 0.

To specify the where the JRockit JVM should put the binary core crash file, enter the following:

export JROCKIT_DUMP_PATH=<path to directory>

Enabling Binary mdmp Crash Files on Windows
Binary mdmp files are always created on Windows. If you do not specify the variable
JROCKIT_DUMP_PATH, the crash files end up in the current directory (the directory from where
you start the JVM).

To specify the where JRockit JVM should put the crash file, enter the following:

set JROCKIT_DUMP_PATH=<path to directory>

Disabling Crash Files
The crash files are enabled by default so that you will be sure to get as much information as
possible about your application and the JRockit JVM process as possible in the event of a crash;
however, there might be times when you do not want the JVM to create any type of crash file, for
example, if you have limited disk space.

Before turning the creation of the crash files off, please remember that the text dump file is a small
and good source of information to get an initial grasp of what has gone wrong with the JVM and
the binary core or mdmp crash file is essential when creating a support case for the Oracle JRockit
support organization.

Disabling Text dump Files
If you suspect problems with the creation of text dump files you can turn off the text dump file by
using the option: -XXnoJrDump.
31-4 Oracle JRockit JVM Diagnostics Guide

Ex t rac t ing In fo rmat ion F rom a Text dump F i l e
Disabling the Binary Crash Files
You can turn off the binary crash file by using the option: -XXdumpSize:none.

Extracting Information From a Text dump File
A JVM crash means that something has happened that the JVM couldn’t handle gracefully. The
cause can be a programming error in the JVM, but a crash may also indicate a problem in the Java
code or in the JVM setup. The dump file is a good source of initial troubleshooting information
to help you identify the problem.

Symptoms to Look For
A dump file will not necessarily tell you exactly why the crash occurred, but it describes the
environment where the JRockit JVM was running and the state of the JVM when the crash
occurred. This gives some hints on where to start looking and can give an idea of the crash type.
There are however some easily identified symptoms that you can look for in the dump file:

1. Check the StackOverFlow field in the dump file. If this field indicates that stack overflow
errors have occurred, the crash is likely to have been caused by a stack overflow. See Stack
Overflow Crash for information on how to deal with stack overflow crashes.

2. Check for reports of Stack Overflow in the Error message field or in the stack trace near
the bottom of the dump file. Such occurrences may also indicate a stack overflow. See Stack
Overflow Crash for information on how to deal with stack overflow crashes.

3. Check the C Heap field in the dump file. If this field indicates that memory allocations have
failed, the process may have run out of virtual memory. See Out Of Virtual Memory Crash for
information on how to deal with out of virtual memory errors.

4. Check the LD_ASSUME_KERNEL field in the dump file. Having this Linux-specific environment
variable set usually leads to the JRockit JVM using unsupported system libraries and
becoming unstable. See Unsupported Linux Configuration Crash for information on dealing
with unsupported Linux configuration problems.

If none of these symptoms apply to your dump file you can try troubleshooting further using the
information in JVM Crash or open a support case. To open a support case you must have a service
agreement with Oracle.
Oracle JRockit JVM Diagnostics Guide 31-5

Unders tanding Crash F i l es
Example of a Text dump File
This section shows an example of what a text dump file might look like and explains the parts of
the dump file. The text dump file that has been used in this example is a combination of many
different dump files, so that more crash scenarios can be covered.

Remember that the text crash files are not full descriptions of what has happened in the crash and
the layout of the text crash file the JVM produces might differ from the examples given here.

The Beginning of the Text dump File
Listing 31-1 shows an example of the first part of a dump file.
31-6 Oracle JRockit JVM Diagnostics Guide

Ex t rac t ing In fo rmat ion F rom a Text dump F i l e
Listing 31-1 The initial information of a text dump file

JRockit JVM Dump (Crash File) Produced
Listing 31-1 shows the start of the text dump file. This section contains information about when
the crash occurred and for how long the JVM has been running. The file locations refer to the
location of both text and binary crash files.

JRockit JVM Dump
(Crash File) Produced

===== BEGIN DUMP =====================================

JRockit dump produced after 0 days, 22:10:26 on Thu Jul 27
10:57:54 2006

Additional information is available in:
/usr/bea/user_projects/domains/jal/jrockit.17727.dump
/usr/bea/user_projects/domains/jal/core or core.17727

Support Case
Information

If you see this dump, please open a support case with Oracle
and supply as much information as you can on your setup and
the program you were running. You can also search for
solutions to your problem at http://forum/Oracle in the forum
jrockit.developer.interest.general.

Error Message from
OS

Error Message: Illegal memory access. [54]
Signal info : si_signo=11, si_code=2 si_addr=0x20

JRockit JVM Version
and Garbage Collector
Information

Version : BEA JRockit(R)
R26.4.0-63-63688-1.4.2_11-20060626-2259-linux-ia64
GC : gencon : mmHeap->data = 0x2000000000ae0000, mmHeap->top
= 0x20000000bc2e0000 :
The nurserylist starts at 0x200000009fe9e610 and ends at
0x20000000a62bb358 : mmStartCompaction = 0x2000000000ae0000,
mmEndCompaction = 0x200000000c660000

CPU and Memory
Information

CPU : Intel Itanium 2
Number CPUs : 1
Tot Phys Mem : 8502312960 (8108 MB)

Operating System
Version Information

OS version : Red Hat Enterprise Linux ES release 4 (Nahant
Update 3) Linux version 2.6.9-34.EL
(bhcompile@altix2.build.redhat.com) (gcc version 3.4.5
20051201 (Red Hat 3.4.5-2)) #1 SMP Fri Feb 24 16:49:08 EST
2006 (ia64)

Thread and State
Information

Thread : NPTL
State : JVM is running
Oracle JRockit JVM Diagnostics Guide 31-7

Unders tanding Crash F i l es
Support Case Information
If you have a service agreement with Oracle, you can file a support case with your Oracle service
provider. If you do not have a service agreement, you can post your problem on the Oracle
JRockit JDK developer forum under jrockit.developer.interest.general. Posting your
problem on the forum is no guarantee to get it resolved, but the forum is a good source for
information on JRockit JVM problems.

Error Message from OS
The information block that starts with Error Message, shows the actual error message that the
operation threw at the time of the crash. Check your operating system vendor users information
to find out more about the error.

JRockit JVM Version and Garbage Collector Information
Use the Version description to see if you are running the latest version of the JRockit JVM, see
Oracle JRockit Supported Configurations for a complete list of supported versions.

GC stands for Garbage Collector and this description states which garbage collector that has been
used. In this example, the generational concurrent (gencon) garbage collector has been used.
Since the generational garbage collector has been used, there is a listing of where in the memory
the nursery starts and ends. The mmStartCompaction and mmEndCompaction values are a
description of where in the heap the compaction of the heap has taken place during the current or
latest garbage collection.

For more information on memory management in the JRockit JVM, see Understanding Memory
Management.

CPU and Memory Information
The information block that starts with CPU, describes how many CPUs that have been used and
how much memory (Tot Phys Mem) that has been consumed by the Java process, application, or
the JRockit JVM.

Operating System Version Information
The OS version states the operating system version that you are running on. Please make sure that
you are running on a supported operating system version, see Oracle JRockit JDK Supported
Configurations.
31-8 Oracle JRockit JVM Diagnostics Guide

Ex t rac t ing In fo rmat ion F rom a Text dump F i l e
Thread and State Information
The Thread field indicates the thread system that the JRockit JVM used at the time of the crash.
In this example the JVM used the Native POSIX Thread Library (NPTL).

The State of the JVM at the time of the crash was that it was running. Other valid states could be
starting up or shutting down.

Command Line and Environment Information
The second part of the example, see Listing 31-2, starts with the text Command Line.
Oracle JRockit JVM Diagnostics Guide 31-9

Unders tanding Crash F i l es
Listing 31-2 Looking at information about command line options in a text crash file

Command Line Option Information
Command Line lists all startup options that were sent to the JRockit JVM at startup. The example
in Listing 31-2 has used command line options for setting a generational concurrent garbage
collector (-Xgc:gencon), with an initial minimum and maximum Java heap (-Xms and -Xmx),
and a nursery size setting (-Xns).

Command Line : -Xms256m -Xmx256m -Xns:128m -Xgc:gencon
-Dweblogic.Name=AdminServer
-Dweblogic.ProductionModeEnabled=true
-Djava.security.policy=/product/bea815/weblogic81/server/lib
/weblogic.policy weblogic.Server
java.home : /product/download/jrockit-142_11/jre
j.class.path :
/product/download/jrockit-142_11/lib/tools.jar:/product/bea8
15/weblogic81/server/lib/weblogic_sp.jar:/product/bea815/web
logic81/server/lib/weblogic.jar::/product/bea815/weblogic81/
common/eval/pointbase/lib/pbserver44.jar:/product/bea815/web
logic81/common/eval/pointbase/lib/pbclient44.jar:/product/do
wnload/jrockit-142_11/jre/lib/rt.jar:/product/bea815/weblogi
c81/server/lib/webservices.jar::/product/lib/db2java.zip:/pr
oduct/lib/db2jcc.jar:/product/lib/db2jcc_license_cu.jar
j.lib.path :
/product/download/jrockit-142_11/jre/lib/i386/jrockit:/produ
ct/download/jrockit-142_11/jre/lib/i386:/product/download/jr
ockit-142_11/jre/../lib/i386:/product/bea815/weblogic81/serv
er/lib/linux/i686:/product/bea815/weblogic81/server/lib/linu
x/i686/oci920_8

JAVA_HOME : /product/download/jrockit-142_11
_JAVA_OPTIONS: <not set>

LD_LIBRARY_PATH:
/product/download/jrockit-142_11/jre/lib/i386/jrockit:/produ
ct/download/jrockit-142_11/jre/lib/i386:/product/download/jr
ockit-142_11/jre/../lib/i386:/product/bea815/weblogic81/serv
er/lib/linux/i686:/product/bea815/weblogic81/server/lib/linu
x/i686/oci920_8

LD_ASSUME_KERNEL: <not set>
C Heap : Good; no memory allocations have failed
StackOverFlow: 0 StackOverFlowErrors have occured
OutOfMemory : 0 OutOfMemoryErrors have occured

Command Line Option
Information

JAVA_HOME and
_JAVA_OPTIONS

LD_LIBRARY_PATH

LD_ASSUME_KERN
EL, C Heap,
StackOverFlow, and
OutOfMemory
31-10 Oracle JRockit JVM Diagnostics Guide

Ex t rac t ing In fo rmat ion F rom a Text dump F i l e
JAVA_HOME and _JAVA_OPTIONS
JAVA_HOME is the path to your Java home catalog; that is, where the JRockit JVM is installed.
_JAVA_OPTIONS is a list of command line options that will be automatically passed to all newly
started JRockit JVMs.

LD_LIBRARY_PATH
LD_LIBRARY_PATH is a Linux /Solaris specific environment variable that can make the JRockit
JVM find libraries other than the default system libraries. Sometimes, you need to set this
variable for running JNI code. You can set this variable so that the JVM starts using unsupported
libraries on otherwise supported platforms.

LD_ASSUME_KERNEL, C Heap, StackOverFlow, and OutOfMemory Information
The information block that starts with LD_ASSUME_KERNEL lists information of what might have
gone wrong prior to the crash. See Symptoms to Look For for more information on what to look
for in these fields.

Registers and Stack Information
The third part of the example, see Listing 31-3, starts with the text Registers.
Oracle JRockit JVM Diagnostics Guide 31-11

Unders tanding Crash F i l es
Listing 31-3 Verifying that the text crash file is correct.

Registers
The Registers section is only useful to Oracle Support personnel troubleshooting your issues. You
can ensure that the text crash file is not corrupt if the register ESP and the first number of the stack
match (Listing 31-3). If these two numbers do not match, you can suspect that the text dump file
itself is incorrect.

Stack Information
If the stack information says “unreadable” instead of showing numbers, the crash is probably
due to stack overflow. The Stack information section is usually much longer than the one shown
in Listing 31-3.

Stack Trace Information
The information block that starts with Stack, see Listing 31-4, describes what has happened and
where it happened in the thread stack at the point of the crash.

Registers (from context struct at 0x80d77ac/0x80d7874):

EAX = 00000009 EBX = b683c774
ECX = 226fad50 EDX = 226fad50
ESI = 226fad50 EDI = 00000000
ESP = b683c658 EIP = b73188b8
EBP = b683c658 EFL = 00010283

Stack:
b683c658 :b683c678 b73188f2 226fad50 0000000d b683c698
b7312383
b683c670 :209e2468 b3070c4c b683c6a8 b7312383 226fad50
b3070c4c
b683c688 :b3070c90 b3070c48 b683c774 b3070c7c b683c6c8
b732166e
b683c6a0 :09548670 b683c774 b683c6d8 b7312461 b683c774
b3070c7c
b683c6b8 :b683c770 091c7278 b683c774 b683c774 b683c770
b732173b
b683c6d0 :b3070c48 b683c774 b683c708 b73124a0 b683c774
b683c774

Registers

Stack Information
31-12 Oracle JRockit JVM Diagnostics Guide

Ex t rac t ing In fo rmat ion F rom a Text dump F i l e
The Thread Stack Trace shows what the crashing thread was doing when the JRockit JVM
crashed; for example, Listing 31-4 shows that a crash occurred during code generation.

Listing 31-4 Stack trace in the text crash file

Stack 0: start=0x108c64000, end=0x108cc4000, guards=0x108cb0000 (ok),
forbidden=0x108ca8000 Stack 1: start=0x108c44000, end=0x108c64000,
guards=0x108c58000 (ok), forbidden=0x108c60000

Thread Stack Trace:
at get_constant_alen+576()@0x2000000000631110<!-- this is the crashing point
at get_constant_alen+256()@0x2000000000630fd0
at alength_opt+96()@0x2000000000631300
at optStrengthReduction+320()@0x2000000000631c80
at optmanOptimizeMIR+656()@0x20000000005efbf0
at generateMethodWithStage+256()@0x20000000004a2920
at cmgrGenerateMethodFromPhase+320()@0x20000000004a2a70
at cmgrGenerateNormalMethod+240()@0x20000000004a27b0
at cmgrGenerateCode+672()@0x20000000004a2310
at generate_code2+896()@0x2000000000702830
at codegenThread+1312()@0x20000000007031c0
at tsiCallStartFunction+48()@0x20000000007b3640
at tsiThreadStub+336()@0x20000000007b53d0
at ptiThreadStub+80()@0x20000000007995c0
at start_thread+352()@0x20000000001317f0
at __clone2+208()@0x20000000002fb9f0
-- Java stack --

Additional information is available in:
/usr/bea/user_projects/domains/jal/jrockit.17727.dump
/usr/bea/user_projects/domains/jal/core or core.17727

If you see this dump, please open a support case with Oracle and supply as much
information as you can on your system setup and the program you were running.
You can also search for solutions to your problem at http://forums.bea.com in
the forum jrockit.developer.interest.general.

Extended, platform specific info:
libc release: 2.3.4-stable
Elf headers:
libc ehdrs: EI: 7f454c46010101000000000000000000 ET: 3 EM: 3 V: 1
ENTRY: 004e8f20 PHOFF: 00000034 SHOFF: 001346c4 EF: 0x0 HS: 52 PS: 32 PHN; 10
SS: 40 SHN: 70 STIDX: 67
libpthread ehdrs: EI: 7f454c46010101000000000000000000 ET: 3 EM: 3 V: 1
ENTRY: 00704840 PHOFF: 00000034 SHOFF: 000107c4 EF: 0x0 HS: 52 PS: 32 PHN; 9 SS:
40 SHN: 39 STIDX: 36
libjvm ehdrs: EI: 7f454c46010101000000000000000000 ET: 3 EM: 3 V: 1
Oracle JRockit JVM Diagnostics Guide 31-13

Unders tanding Crash F i l es
ENTRY: 0004ff30 PHOFF: 00000034 SHOFF: 0029d7c4 EF: 0x0 HS: 52 PS: 32 PHN; 3 SS:
40 SHN: 20 STIDX: 17

===== END DUMP ===
31-14 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 32
The Oracle JRockit JVM is Freezing
When the Oracle JRockit JVM or Java application becomes unresponsive but hasn’t crashed, it
is considered to be frozen. A frozen system occurs when the application stops answering requests
but the process is still there. A system can freeze in either the JVM or the application. Your first
action is to determine where it is freezing.

If you can get thread dumps from the JVM then the JVM is functional and the freeze is in
the Java application. See Java Application Freeze

If you cannot get thread dumps by using the procedures described below, then it is
probably freezing in the JVM, as it has stopped handling signals. See JVM Freeze.

Most often, a JVM freeze requires that you contact Oracle JRockit Support for resolution. This
section describes how to diagnose where a system is freezing and how to collect information that
will assist the support team resolve your problem.

This section includes information on the following subjects:

Java Application Freeze

JVM Freeze

Diagnosing Where the Freeze is Occurring
To determine whether the freeze is occurring in the application or in the JVM, try to generate a
thread dump by doing one of the following:

On Windows, press Ctrl-Break
Oracle JRockit JVM Diagnostics Guide 32-1

The Orac l e JRock i t JVM is F reez ing
On Linux and Solaris, send SIGQUIT (kill -3) to the parent Java Process ID.

On all platforms you can also get the thread dump by using jrcmd; for example:

jrcmd nnnn "print_threads nativestack=true"

where nnnn is the PID of the Java process. To get a list of the PIDs of all Java processes running
on the machine, run jrcmd without any command line parameters.

The result of the any of these procedures will indicate the kind of freeze happening:

If the system responds with a Java thread dump, then the system is freezing in the
application. To resolve this type of freeze, see Java Application Freeze.

If you cannot force a thread dump by using one of the above procedures, your application
is most likely freezing in the JVM. Please go to JVM Freeze for information on handling
this sort of freeze.

Java Application Freeze
An application freeze occurs when something in the Java application causes the system to become
unresponsive. This section describes how to handle a Java application freeze. It contains
information on the following subjects:

Resolving a Java Application freeze

If This Did Not Help

Resolving a Java Application freeze
Here are two ways you can work around a Java application freeze.

Use the thread dumps to view locks and deadlocks. If you are running the Oracle JRockit
JVM 1.4.2 or later, look at the bottom of the thread dump and see if you have lock chains
that could be the cause of the freeze.

Review the thread dumps to see if you can determine the cause of the freeze. If it is not
something you can easily fix from your end, you will have to submit a trouble report
against the offending application component.

If This Did Not Help
If none of the suggested workarounds corrects the situation, you will need to open a case with
Oracle Support, according to the process described in Submitting Problems to Oracle Support.
32-2 Oracle JRockit JVM Diagnostics Guide

JVM F reeze
When creating a support case for a Java application freeze, you need to include the following
information:

Three thread dumps from the application when it works fine.

Three thread dumps from the application when it has frozen.

One 120s JRA recording from the application when it works fine (see Creating a JRA
Recording with JRockit Mission Control 1.0)

One 120s JRA recording from the application when it has frozen.

JVM Freeze
If you cannot get thread dumps with Ctrl-Break or by sending SIGQUIT (kill -3) to the parent
Java process PID after a few tries, the JVM has stopped handling signals and is really freezing.
When this happens, you should open a case with Oracle Support and work with them to rectify
the problem. This section describes the ways you can force the JRockit JVM to crash in order to
create the necessary crash file. It contains information on the following subjects:

Collect Information About the JVM Freeze

Submit the Information to Oracle JRockit Support

Non-responding NFS Shares

Collect Information About the JVM Freeze
Since resolving a JVM freeze requires that you open a case with Oracle Support, you need to
collect as much information as you can about the state of the process that was running when the
JVM froze. Normally, this information would be written to a crash file, but since the JRockit JVM
technically hasn’t crashed, that file won’t be created unless you force the JVM to crash. This
section explains how to collect the necessary state information based upon your JVM
deployment.

Collecting Information on Linux Systems

Collecting Information on Windows Systems

Collecting State Information if the JRockit JVM is Running as a Service
Oracle JRockit JVM Diagnostics Guide 32-3

The Orac l e JRock i t JVM is F reez ing
Collecting Information on Linux Systems
To collect information for an JRockit JVM running on Linux, use one of these procedures:

Force a Crash with the Diagnostics Command enableforce_crash

Use SIGABRT (modern Linux Systems)

Force a Crash with the Diagnostics Command enableforce_crash
On versions of the JRockit JVM later than R25, you can use the command enableforce_crash
to force a crash and thus produce a crash file with the necessary state information. Add the
following option to the command line and use jrcmd to force a crash:

-Djrockit.ctrlbreak.enableforce_crash=true

Use SIGABRT (modern Linux Systems)
SIGABRT aborts the signal sent to the process and causes a crash, thus producing a crash file.
Invoke SIGABRT as described here:

1. Find the PID of the JRockit JVM process by using the following procedure:

Note: The following instructions are valid on 2.6 kernel-based Linux systems and on Red
Hat Enterprise Linux 3.0.

a. Assuming that the JRockit JVM process runs as the Linux user webadmin, enter the
following command:

pstree -p webadmin | grep java

b. If you get excessive garbage from pstree, try unsetting the LANG environment variable
first:

unset LANG

c. If pstree gives you only one Java process, you're done. Go to step 2.

d. If pstree gives you several processes, print the command line parameters for any process
by entering:

cat /proc/nnnn/cmdline | xargs --null -n1 echo

(where nnnn is the PID you are interested in; for example, 1234)

2. Use the command:

ls -l /proc/1234/cwd
32-4 Oracle JRockit JVM Diagnostics Guide

JVM F reeze
to see where the core file (the core dump crash file) will be created (assuming that the PID
is 1234).

3. Create the core file (and terminate the process) by entering:

ulimit -c unlimited

kill -SIGABRT 1234

(again assuming that the PID is 1234).

Collecting Information on Windows Systems
To collect information for JRockit JVM running on Windows, use one of these procedures:

Force a Crash with the Diagnostic Command enableforce_crash

Use windbg

Force a Crash with the Diagnostic Command enableforce_crash
On versions of JRockit JVM later than R25, you can use the diagnostic command
enableforce_crash to force a crash and thus produce a crash file with the necessary state
information. Add the following option to the command line and use jrcmd to force a crash:

-Djrockit.ctrlbreak.enableforce_crash=true

Use windbg
The windbg command can also create the necessary core file. Enter the command:

windbg.exe -Q -pd -p nnnn -c ".dump /u /ma hung.mdmp; q"

(where nnnn is the PID)

Note: windbg is included in the Debugging Tools for Windows package that you can download
from:

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Collecting State Information if the JRockit JVM is Running as a Service
If the JRockit JVM starts as a service, you can collect thread dumps by doing one of the
following:

If you are collecting information from your own machine, run jrcmd with the
print_threads Ctrl-Break handler. See Using jrcmd for background on jrcmd and
Available Diagnostic Commands for information on using print_threads.
Oracle JRockit JVM Diagnostics Guide 32-5

The Orac l e JRock i t JVM is F reez ing
If you are collecting information from another machine, use Oracle JRockit Mission
Control with the diagnostics bean.

If you are running the JRockit JVM with Oracle WebLogic Server, you might want to use
beasvc –dump to obtain thread-dumps from the JVM. For more information, please refer
to Setting Up a WebLogic Server Instance as a Windows Service.

– If you want to see the messages that a server instance prints to standard out and
standard error (including stack traces and thread dumps), redirect standard out and
standard error to a file, please refer to Setting Up a WebLogic Server Instance as a
Windows Service.

– To cause the WebLogic Server instance to print a thread dump to standard out, do either
of the following:

• Use the weblogic.Admin THREAD_DUMP command.

or

• Open a command prompt and enter the following command:

WL_HOME\bin\beasvc -dump -svcname:service-name

where WL_HOME is the directory in which you installed WebLogic Server and
service-name is the Windows service that is running a server instance; for example.:

D:\bea\weblogic81\server\bin\beasvc -dump -svcname:mydomain_myserver

Submit the Information to Oracle JRockit Support
Open a case with Oracle Support, who will continue to troubleshoot your JVM freeze until it is
resolved. Be sure to include any information pertinent to the freeze, including the all thread
dumps you’ve collected. For information on communication with Oracle Support, please refer to
Submitting Problems to Oracle Support.

Non-responding NFS Shares
Note: This information is for Linux users, only

In some cases, the freeze might be caused by a problem with the Network File System (NFS).
NFS is a protocol used by Linux computers to share disks across a network. An NFS share is any
disk on NFS set up to be shared by other computers. If you are using a machine that has NFS
shares (look for nfs in /etc/fstab), your application might be freezing because a Java
application is trying to access data on a non-responding NFS share. When that happens, the
default behavior for the thread doing the file access is not to respond to any signals until the NFS
32-6 Oracle JRockit JVM Diagnostics Guide

Non- respond ing NFS Shares
server comes back up. This means that the Oracle JRockit JVM cannot suspend the thread, and it
might freeze trying to suspend a thread until NFS services are restored.

Verify that your NFS server is configured correctly if you're having NFS problems.
Oracle JRockit JVM Diagnostics Guide 32-7

The Orac l e JRock i t JVM is F reez ing
32-8 Oracle JRockit JVM Diagnostics Guide

C H A P T E R 33
Submitting Problems to Oracle Support
Note: This chapter applies to customers who have a service level agreement with Oracle
Systems that includes the Oracle JRockit JDK. If you do not have one of those
agreements, you will not be able to open a case directly with Oracle. If you do have an
agreement, you need to go through your normal channels to get in contact with your
service agreement partner.

This chapter provides information on how which steps to take before submitting a trouble report.
You will also find information on how to help Oracle improve the Oracle JRockit JVM and its
performance. To get a quicker response to your problems, you must try all suitable diagnostics
that are provided in this document and you must also provide Oracle with as much information
about your problem as possible.

This chapter contains information on the following subjects

Check the Oracle JRockit JVM Forums First

Filing the Trouble Report

Check the Oracle JRockit JVM Forums First
Occasionally, you won’t be the only JRockit JVM user experiencing the specific problem.
Oracle’s vast user community provides mutual support to other users through various Oracle
JRockit JVM forums. You can post questions you might have about an issue to these forums and
participate in discussions about how to best use the JRockit JVM. To find a list of Oracle JRockit
JVM user forums, please see the Oracle JRockit News Group jrockit.developer.interest.general
at Dev2Dev Oracle JRockit Newsgroups page:
Oracle JRockit JVM Diagnostics Guide 33-1

Submit t ing P rob lems to Orac le Suppo r t
http://forums.bea.com/bea/category.jspa?categoryID=2010

Filing the Trouble Report
If you determine that you need to file a trouble report, this section discusses what you need to do
before opening the case to ensure that you supply the support personnel assigned to you issue as
complete picture of what is wrong as possible. The more information you can provide, the more
quickly will the support staff be able to resolve your issue.

Trouble Reporting Process Overview
When you encounter a problem with the JRockit JVM and can’t resolve it using the information
provided in JRockit JDK Tools, you need to collect the information indicated in the chapter of
that section that best describes your problem and open a case with Oracle Support. If you have a
service agreement with Oracle, the normal process is to contact your Front Line service provider,
who will make the initial attempts to correct the problem. If the case cannot be solved by the Front
Line staff, it is escalated to the Back Line staff, who will draw on their particular expertise to get
your JVM running again. For serious problems, the issue will be handled by the Engineering staff
(the JRockit JVM developers) which is located in Stockholm, Sweden (GMT + 1 hour and uses
Daylight Savings Time).

Identify Your Problem Type
Is you JVM process crashing? Is it running slowly or returning unpredictable results? These are
the kind of symptoms that indicate a problem with the JRockit JVM. Being able to identify what
kind of problem you are experiencing will help you know what kind of information you need to
include when you open the trouble report. The chapters in JRockit JDK Tools are organized by
problem type, or “symptom,” and list the sort of information you need to include with a trouble
report.

Verify That You’re Running a Supported Configuration
Before submitting a bug, verify that the environment where the problem arises is a supported
configuration. Please see Oracle JRockit JDK Supported Configurations at:

http://edocs.bea.com/jrockit/jrdocs/suppPlat/supp_plat.html

You should also verify that you are running the latest service pack or patch levels for your
respective operating system.
33-2 Oracle JRockit JVM Diagnostics Guide

F i l ing the T roub le Repor t
Verify the Problem has Not Been Fixed in a Subsequent
Version of the JRockit JVM
When a new update of the JRockit JVM becomes available, it becomes the default and many
problems with earlier versions might have been resolved. Therefore, you need to verify that the
problem you’ve encountered doesn’t exist on the latest version. Please look for the latest
download of the Oracle JRockit JVM at the following location:

http://commerce.bea.com/products/weblogicjrockit/jrockit_prod_fam.jsp

The download site includes links to the relevant documentation for the release you are looking
for. Please look at the release notes to find lists of the bug fixes in the release. If you suspect a
bug, then you should, as an early step in the diagnosis, check the list of fixes that are available in
the most recent update release. Sometimes it is not obvious if an issue is a duplicate of a bug that
is already fixed, so where possible, you should test with the latest update release to see if the
problem persists.

Collect Enough Information to Define Your Issue
In addition to testing with the latest update release, use the following guidelines to prepare for
submitting a trouble report:

Collect as much relevant data as possible. For example

– If a deadlock occurs, generate a thread-dump.

– In a crash occurs, locate the core file (where applicable) and the appropriate error file.

In all cases you must document the environment and the actions performed just before the
problem was encountered.

Where applicable, try to restore the original state and reproduce the problem using the
documented steps. This helps to determine if the problem is reproducible or an intermittent
issue.

If the issue is reproducible, try to narrow the problem. In some cases, a bug can be
demonstrated with a small standalone test case. Bugs demonstrated by small test cases will
typically be easy to diagnose when compared to test cases that consists of a large complex
application.
Oracle JRockit JVM Diagnostics Guide 33-3

Submit t ing P rob lems to Orac le Suppo r t
33-4 Oracle JRockit JVM Diagnostics Guide

	Oracle® JRockit JVM
	R27.6

	Oracle JRockit JVM Diagnostics Guide, R27.6
	What is the JRockit JVM?
	About the JDK

	JRockit JDK Versions
	What Platforms Does the JRockit JDK Support?
	Compatibility Information
	The Contents of a JRockit JDK Installation
	Development Tools
	Demo
	C Header Files
	Java Runtime Environment (JRE)
	Java Virtual Machine
	Standard Java SE JRE Features
	Note on JRE Class Files

	Additional Libraries
	Sample

	Attach API Support
	Oracle JRockit Documentation
	JRockit JVM Command Line Options
	JRockit JDK and JRockit Mission Control Support
	More than a “Black Box”
	How the JRockit JVM Compiles Code
	1. The JRockit JVM Runs JIT Compilation
	2. The JRockit JVM Monitors Threads
	3. The JRockit JVM Runs Optimization

	An Example Illustrating Some Code Optimizations
	Steps Taken to Optimize Class A

	The Heap and the Nursery
	Object Allocation
	Garbage Collection
	The Mark and Sweep Model
	Mostly Concurrent Mark and Sweep
	Parallel Mark and Sweep

	Generational Garbage Collection
	Dynamic and Static Garbage Collection Modes
	Compaction
	External and Internal Compaction
	Sliding Window Schemes
	Compaction Area Sizing

	Understanding Threads
	Default Stack Size for Java Threads
	Default Stack Size for JVM Internal Threads

	Understanding Locks
	Spinning and Sleeping
	Lock Chains
	Lock Chain Types

	About Application Migration
	Why Migrate?
	Migration Restrictions

	Migration Support
	Migration Procedures
	Environment Changes
	Other Tips
	Tuning the JRockit JVM for Your Application

	Testing the Application
	Why Test?
	How to Test

	Replicating Tools Supplied with the Sun JDK
	Command-line Option Compatibility Between the JRockit JVM and Sun
	Submitting Migration Tips
	Installing the Oracle JRockit JDK
	Setting Up and Checking Your Linux Environment
	Linux on IA32
	Using LD_ASSUME_KERNEL
	Running in a chroot(3) Environment

	Setting Up and Checking Your Windows Environment
	Setting Up and Checking Your Sun Solaris Environment
	Setting the Path to the License File
	How to Tune: An Overview
	What this Section Contains
	Pause Times vs. Throughput
	Concurrent vs. “Stop-the-World”
	Compaction Pauses vs. Throughput

	Performance vs. Memory Footprint
	Heap Size vs. Throughput
	Book Keeping vs. Pause Times

	Step 1: Basic Tuning
	Tuning the Heap Size
	Tuning the Garbage Collection
	Tuning the Nursery Size
	Tuning the Pause Target

	Step 2: Performance Tuning
	Lazy Unlocking
	Call Profiling
	Large Pages

	Step 3: Advanced Tuning
	Tuning Compaction
	Tuning the TLA size
	Further Information

	Best Practices
	Oracle WebLogic Server
	Oracle WebLogic SIP Server
	Oracle WebLogic Event Server
	Oracle Workshop
	“Utility” Applications
	“Batch” Runs

	Setting the Heap and Nursery Size
	Setting the Heap Size
	Setting the Heap Size on 64-bit Systems

	Setting the Nursery and Keep Area Size
	Keep Area

	Selecting and Tuning a Garbage Collector
	Selecting a Dynamic Garbage Collection Mode
	Throughput Mode
	Pausetime Mode
	Deterministic Mode

	Selecting a Static Garbage Collection Strategy
	Garbage Collector Strategy Selection Workflow
	Changing Garbage Collection Strategy During Runtime

	Tuning the Concurrent Garbage Collection Trigger

	Tuning the Compaction of Memory
	Fragmentation vs. Garbage Collection Pauses
	Adjusting Compaction
	Setting the Compaction Ratio
	Setting the Compact Set Limit
	Turning Off Compaction
	Using Full Compaction

	Optimizing Memory Allocation Performance
	Setting the Thread Local Area Size

	Lock Profiling
	Disabling Spinning Against Fat Locks
	Adaptive Spinning Against Fat Locks
	Lock Deflation
	Lazy Unlocking
	Measuring Latencies
	Tune the Garbage Collection
	Dynamic Garbage Collection Mode Optimized for Deterministic Pauses
	Dynamic Garbage Collection Mode Optimized for Short Pauses
	Static Generational Concurrent Garbage Collection

	Tune the Heap Size
	Manually Tune the Nursery Size
	Manually Tune Compaction
	Tune When to Trigger a Garbage Collection
	Measuring Your Application’s Throughput
	Select Garbage Collector
	Dynamic Garbage Collection Mode Optimized for Throughput
	Static Single-Spaced Parallel Garbage Collection
	Static Generational Parallel Garbage Collection

	Tune the Heap Size
	Manually Tune the Nursery Size
	Manually Tune Compaction
	Tune the Thread-Local Area Size
	Measuring the Performance Variance
	Tune the Heap Size
	Manually Tune the Nursery Size
	Tune the Garbage Collector
	Tune Compaction
	Measuring the Memory Footprint
	Set the Heap Size
	Select a Garbage Collector
	Tune Compaction
	Tune Object Allocation
	Measuring the Startup Time
	Setting the Heap Size
	Troubleshoot Your Application and the JVM
	What this Section Contains
	JRockit Mission Control Overhead
	Architectural Overview of the JRockit Mission Control Client
	JRockit Mission Control 3.0
	JRockit Mission Control 2.0
	JRockit Mission Control 1.0

	The JRockit Management Console
	The JRockit Runtime Analyzer
	Latency Analysis Tool (JRockit Mission Control 3.0)
	JRA Sample Recordings
	Opening a Sample Recording

	The JRockit Memory Leak Detector
	More Information on JRockit Mission Control Versions
	Memory Management Verbose Log Modules
	Verbose Memory Module
	Initial Verbose Memory Outputs
	Verbose Memory Garbage Collection Outputs
	Verbose Memory Page Faults Warning

	Verbose Nursery Log Module
	Verbose Nursery Young Collection Output
	Verbose Nursery Size Adjustment Output

	Verbose Memdbg Log Module
	Initial Verbose Memdbg Output
	Verbose Memdbg Parallel Old Collection Output
	Verbose Memdbg Concurrent Old Collection Output
	Verbose Memdbg Young Collection Output
	Aborted Compactions
	Parallel Sweep in Concurrent Old Collections

	Verbose Compaction Log Module
	Aborted Compaction Verbose Output

	Verbose Gcpause Log Module
	Verbose Gcpause Parallel Old Collection Output
	Verbose Gcpause Concurrent Old Collection Output
	Verbose Gcpause Young Collection Output

	Verbose Gcreport Log Module
	Verbose Refobj and Referents Log Modules
	Verbose Refobj Output on Info Level
	Verbose Referents Output and Verbose Refobj on Debug Level

	Other Verbose Log Modules
	Verbose Opt Log Module
	Verbose Exceptions Log Module

	Creating Thread Dumps
	Reading Thread Dumps
	The Beginning of The Thread Dump
	Stack Trace for Main Application Thread
	Locks and Lock Chains
	Presentation of Locks Out of Order

	JVM Internal Threads
	Other Java Application Threads
	Lock Chains

	Thread Status in Thread Dumps
	Life States
	Run States
	Special States

	Troubleshooting with Thread Dumps
	Detecting Deadlocks
	Detecting Processing Bottlenecks
	Viewing The Runtime Profile of an Application

	Diagnostic Commands Overview
	Using jrcmd
	How jrcmd Communicates with the JRockit JVM
	How to Use jrcmd
	jrcmd Examples
	Listing JRockit JVM Processes
	Sending a Command to a Process
	Sending Several Commands

	Known Limitations of jrcmd

	Ctrl-Break Handler
	Available Diagnostic Commands
	Getting Help
	Downloading the TZUpdater
	Introduction to the TZUpdater
	System Requirements to Run the TZUpdater
	Using the TZUpdater
	Command-line Options Described
	Example of the Default way of Using TZUpdater

	Error Handling
	System-wide Usage
	Determining Your TZUpdater Version
	Removing TZUpdater Changes
	Known Issues
	Analyzing System Behavior with the JRockit Management Console
	Getting Started
	Analyzing Memory Usage
	Plotting Garbage Collection Times

	Setting an Alert Trigger
	Profiling Methods Online by Using the Console

	Analyzing System Problems with the JRockit Runtime Analyzer
	Getting Started
	Creating the Recording
	Looking at the Recording
	Examining the Methods Tab
	Examining the Top Hot Methods
	Examine Garbage Collection Events
	Examine the GC General Tab
	Compare Object Statistics
	Examine Lock Profiling Information

	Detecting a Memory Leak
	Getting Started
	Analyze the Java Application
	The Leak is Discovered

	What this Section Contains
	Step 1. Eliminate Common Causes
	Step 2. Observe the Symptoms
	Step 3. Identify the Problem
	Step 4. Resolve the Problem
	Step 5. Send a Trouble Report (Optional)
	Possible Causes Behind a Slow Start
	Special Note If You Recently Switched JVMs to the JRockit JVM

	Diagnosing a Slow JVM Startup
	Diagnosing a Slow Application Startup
	Timing with nanoTime() and currentTimeMillis()
	System.nanoTime()
	System.currentTimeMillis()
	Milliseconds and nanotime at application startup

	Recommended Solutions for a Slow Start
	Tune for Faster Startup
	Eliminate Optimization Problems
	Eliminate Application Problems
	Open a Case with Oracle Support

	The Problem is Usually with Tuning
	Troubleshooting Tips
	GC Trigger Value Keeps Increasing
	GC Reason for Old Collections is Failed Allocations
	Long Young Collection Pause Times
	Long Pauses in Deterministic Mode

	If All Else Fails, Open a Case With Oracle Support
	The Problem is Usually with Tuning
	If All Else Fails, Open a Case With Oracle Support
	The Problem is Usually With Tuning
	You Could be Experiencing Optimization Problems
	You Could Be Experiencing a Memory Leak in Java
	If All Else Fails, Open a Case with Oracle Support
	Notifying Oracle Support
	Classify the Crash
	Using a Crash File
	Determine the Crash Type

	Out Of Virtual Memory Crash
	Verify the Out Of Virtual Memory Error
	Virtual Memory Maximums
	Checking the Text dump File
	Checking the Binary mdmp or core File

	Troubleshoot the Out Of Virtual Memory Error
	Upgrade to the Latest JRockit JVM Version Available
	Reduce the Java Heap Size
	Use the Windows /3GB Startup Option
	Check for Memory Leaks in JNI Code
	Record Virtual Memory Usage
	If All Else Fails, Open a Case with Oracle Support

	Stack Overflow Crash
	Verify the Stack Overflow Crash
	Troubleshoot a Stack Overflow Crash
	Application Level Changes
	Increase the Default Stack Size
	Make the JRockit JVM More Robust Against Stack Overflow Errors

	Unsupported Linux Configuration Crash
	Verify that the OS Version is Supported
	Verify that You Have Installed the Correct glibc Binary
	Examine the Thread Library

	JVM Crash
	Code Generation Crash
	Identify a Code Generation Crash
	Troubleshoot the Code Generation Crash
	The Problem Might Lie With an External Instrumentation Tool
	If All Else Fails, Open a Support Case

	Garbage Collection Crash
	Identify a Garbage Collection Crash
	Consider Upgrading to the Latest Version of the JRockit JVM
	Try One of These Workarounds
	If All Else Fails, Open a Case with Oracle Support

	Differences Between Text dump Files and Binary core/mdmp Files
	Binary Crash File Sizing
	Location of Crash Files
	Enabling Binary core Crash Files on Linux and Sun Solaris
	Enabling Binary mdmp Crash Files on Windows

	Disabling Crash Files
	Disabling Text dump Files
	Disabling the Binary Crash Files

	Extracting Information From a Text dump File
	Symptoms to Look For
	Example of a Text dump File
	The Beginning of the Text dump File
	Command Line and Environment Information
	Registers and Stack Information

	Diagnosing Where the Freeze is Occurring
	Java Application Freeze
	Resolving a Java Application freeze
	If This Did Not Help

	JVM Freeze
	Collect Information About the JVM Freeze
	Collecting Information on Linux Systems
	Collecting Information on Windows Systems
	Collecting State Information if the JRockit JVM is Running as a Service

	Submit the Information to Oracle JRockit Support

	Non-responding NFS Shares
	Check the Oracle JRockit JVM Forums First
	Filing the Trouble Report
	Trouble Reporting Process Overview
	Identify Your Problem Type
	Verify That You’re Running a Supported Configuration
	Verify the Problem has Not Been Fixed in a Subsequent Version of the JRockit JVM
	Collect Enough Information to Define Your Issue

