Oracle® JRockit JVM

Command Line Reference
R27.6

April 2009

ORACLE

Oracle JRockit JVM Command Line Reference, R27.6
Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction

Introduction to Command-line Optionsco i 1-1
Standard OptioNSot 1-2
JRockit JVM Non-standard Optionscov it 1-3
Other JRockit JVM Start-up Commands. 1-3
Case-sensitivity with Command-Line Options, 1-4

Introduction to System Properties.ttt 1-4

2. -X Command-line Options

-Xbootelasspath. 2-2
OPEratiON . . oottt 2-2
Flags or Other Options Affected i 2-2
EXCOPHIONS . . oo 2-2

-Xbootelasspath/a 2-3
OPEratiON . . o ot 2-3
Flags or Other Options Affected i 2-3
EXCOPLIONS . . o 2-3

-Xbootelasspath/po 2-4
OPEratiON . . o ot 2-4
Flags or Other Options Affected i 2-4
EXCOPHIONS . . oo 2-4

SXCNECK: JNE oo 2-5

Oracle JRockit Command-Line Reference iii

(@] 01 14T] o 2-5

Flags or Other Options Affected. i 2-5
NONE . 2-5
EXCEPtIONS. . .o 2-5
XA Ty o 2-6
OPEIatiON. . . oottt 2-6
Default Value. 2-6
Flags or Other Options Affected. i 2-7
EXCOPtIONS. . .o 2-7
SXABDUG . o 2-8
OPEIatiON. . . oottt 2-8
Flags or Other Options Affected. i 2-8
NONE . 2-8
EXCOPtIONS. . .o 2-8
O e 2-9
OPEIatiON. . . oottt 2-9
Default Value. 2-11
Flags or Other Options Affected. i 2-11
EXCOPLIONS. . . ot 2-12
SXOCPAUSE. . o o 2-13
OPEratiON. . . oot 2-13
Flags or Other Options Affected. i i, 2-13
EXCOPLIONS. . . o 2-13
SXGOPIO . L 2-14
OPEratiON. . . oot 2-14
Default. . .. 2-15
Flags or Other Options Affected. i i, 2-15
EXCOPHIONS. . . o 2-16

Oracle JRockit Command-Line Reference

SXOCREPOI . . 2-17

OPEraAtiON . . o ot 2-17
Flags or Other Options Affected i, 2-18
EXCEPLIONS . . .o 2-18
SXIArgEPagES. .« . 2-19
OPEraAtiON . . o ot 2-19
How to Configure Large Pagest 2-19

Failure to Acquire Large Pages oo 2-20

Default Values 2-20
Other Options or Flags Affected 2-20
EXCEPLIONS . . . 2-20
SXMANAgEMENT . . o o 2-21
OPErAtiON . . oo 2-21
Default Value. 2-23
R26.4and Earlier 2-23

B0 R27. L e 2-23

Flags or Other Options Affected i, 2-23
EXCEPLIONS . . .o 2-23
XIS e 2-24
OPEraAtiON . . o o 2-24
Default Valueso 2-24
Flags or Other Options Affected i 2-24
Exceptions and Recommendations i i 2-25
XX . e 2-26
OPEraAtiON . . o o 2-26
Known Issue for LinUX USers.t 2-26

Default Value. 2-27
Flags or Other Options Affected i 2-27

Oracle JRockit Command-Line Reference

vi

EXCOPLIONS. . . 2-27

SXNOCIASSGC . . oo 2-28
OPEratiON. . . oot 2-28
Flags or Other Options Affected. i i, 2-28
EXCOPLIONS. . . 2-28

SXNONUPD o 2-29
OPEratioN. . . oo 2-29
Flags or Other Options Affected. i i, 2-29
EXCOPLIONS. . . o 2-29

81161 4 2-30
OPEratioN. . . oot 2-30
Default Value. 2-30
Flags or Other Options Affected. o i it 2-30
EXCOPLIONS. . . o 2-30

XS L 2-31
OPEratioN. . . oot 2-31
Default Value. 2-31
Flags or Other Options Affected. i 2-32
EXCOPLIONS. . . ot 2-32

SXpauseTargel 2-33
OPEratiON. . . oot 2-33
Default Value. 2-33
Flags or Other Options Affected. o i it 2-33
EXCOPLIONS. . . 2-34

XS e 2-35
OPEratiON. . . oot 2-35
Flags or Other Options Affected. it 2-35
EXCOPHIONS. . . o 2-35

Oracle JRockit Command-Line Reference

SXTUNJAWD . oot 2-36

OPEraAtiON . . o ot 2-36
Flags or Other Options Affected i 2-39
EXCEPLIONS . . .o 2-39
XS e 2-40
OPEraAtiON . . o ot 2-40
Default Value.o 2-40
Flags or Other Options Affected it 2-40
EXCEPLIONS . . . 2-41
SXSH O L 2-42
OPErAtiON . . oo 2-42
Flags or Other Options Affected i, 2-42
EXCEPLIONS . . .o 2-42
VIS .« e 2-43
OPErAtiON . . oo 2-43

LOg LeVEIS . o 2-54

Other Flags and Options Affected. oo 2-54
EXCEPLIONS . . .o 2-54
-XVErboseDeCcorationsot 2-55
OPEraAtiON . . o o 2-55
Default Value. 2-56
Flags or Other Options Affected i 2-56
EXCEPLIONS . . .o 2-56
SXVEIDOSELOG . « . oot 2-57
OPEraAtiON . . o o 2-57
Flags or Other Options Affected i, 2-57
EXCEPLIONS . . . 2-57
SXVErDOSETIMESIAMP . . . o .ot 2-58

Oracle JRockit Command-Line Reference vii

Flags or Other Options Affected. i it 2-58
EXCOPLIONS. . . 2-58
XV o 2-59
OPEratiON. . . oot 2-59
Default Value. 2-59
Other Flags or Options Affected. i 2-59
EXCOPLIONS. . . o 2-59

3. -XX Command-line Options

SXKAGGIESSIVE .« o ettt e e 3-2
OPEIAtION. . ot e 3-2
Default Value. 3-2
Flags or Options Affected. i 3-3
EXCEPLIONS. . oo 3-3

-XXallocClearChunks 3-4
OPEIALION. . ot 3-4
Default Value. 3-4
Flags or Other Options Affected i i 3-4
EXCEPLIONS. . oo 3-4

-XXallocClearChunkSize. o 3-5
OPEIALION. . ot 3-5
Default Value.o 3-5
Flags or Other Options Affected i i 3-5
EXCEPLIONS. « oo 3-5

-XXallocPrefetCh . ..o 3-6
OPEIALION. . ot 3-6
Default Value. 3-6

viii Oracle JRockit Command-Line Reference

Other Flags and Options Affected. oo 3-6

EXCEPLIONS . . .o 3-6
-XXallocRedoPrefetch 3-7
OPErAtION . . o ot 3-7
Default Value. 3-7
Other Flags and Options Affected. i i 3-7
EXCEPLIONS . . . 3-7
SXXeallProfiling . oo 3-8
OPErAtION . . o o 3-8
Default Value.o 3-8
Other Flags and Options Affected. i 3-8
EXCEPLIONS . . . 3-8
SXXCOMPACLRALIO oo 3-9
OPErAtION . . o ot 3-9
Default Value. 3-9
Flags or Other Options Affected i 3-9
EXCEPLIONS . . .o 3-10
-XXecompactSetLimit 3-11
OPEraAtiON . . o o 3-11
Default Values 3-11
Flags or Other Options Affected i 3-11
EXCEPLIONS . . .o 3-12
-XXcompactSetLimitPerObject 3-13
OPEraAtiON . . o o 3-13
Default Value. 3-13
Flags or Other Options Affected i 3-13
EXCEPLIONS . . . 3-13
SXXeompressedRers. . ..o 3-14

Oracle JRockit Command-Line Reference ix

OPBIALION. . .ttt 3-14

Default Value. 3-14
Flags or Other Options Affected. i 3-14
EXCOPLIONS. . . 3-14
-XXdisableFatSpin. . ..o 3-16
OPEratiON. . . oot 3-16
Flags or Other Options Affected. i i, 3-16
EXCOPLIONS. . . o 3-16
-XXdisableGCHEUNISEICS oo 3-17
OPEratioN. . . oot 3-17
Default Value. 3-17
Flags or Other Options Affected. i 3-17
EXCOPLIONS. . . o 3-17
SXXAumpRULISEate . . oo 3-18
OPEratioN. . . oot 3-18
Flags or Other Options Affected. i i, 3-18
EXCOPLIONS. . . 3-18
SXXAUMPSIZE. o 3-19
OPEratiON. . . oot 3-19
Flags or Other Options Affected. i i, 3-19
EXCOPLIONS. . . o 3-19
-XXexitONOULOTMEMONY . .. oo 3-20
OPEratiON. . . oot 3-20
Flags or Other Options Affected. i i, 3-20
EXCOPLIONS. . . o 3-20
-XXexternalCompactRatio. 3-21
OPEratiON. . . oot 3-21
Default Value. 3-21

Oracle JRockit Command-Line Reference

Flags or Other Options Affected i, 3-21

EXCEPLIONS . . .o 3-21
SXXFULICOMPACLION . ..o 3-23
OPEraAtiON . . o ot 3-23
Flags or Other Options Affected i, 3-23
EXCEPLIONS . . .o 3-23
SXXTULISYSEEMGC .o 3-24
OPErAtiON . . o o 3-24
Flags or Other Options Affected i, 3-24
EXCEPLIONS . . . 3-24
SXXGCTRIEAAS. . . ot 3-25
OPErAtiON . . oo 3-25
Default Value. 3-25
Flags and Other Options Affected. i, 3-25
EXCEPLIONS . . .o 3-25
O, oo I T o T 3-26
OPErAtiON . . oo 3-26
Default Value. 3-26
Other Flags and Options Affected. i i 3-26
EXCEPLIONS . . . 3-27
SXXNEAPPANTS . . . oo 3-28
OPEraAtiON . . o o 3-28
Default Value. 3-28
Flags or Other Options Affected i 3-28
EXCEPLIONS . . . 3-28
XM 3-29
OPEraAtiON . . o o 3-29
Other Flags Affected 3-29

Oracle JRockit Command-Line Reference Xi

Xii

EXCOPLIONS. . . 3-29

-XXinitialPointerVectorSize 3-30
OPEratiON. . . oot 3-30
Default Value. 3-30
Flags or Other Options Affected. o i it 3-30
EXCOPLIONS. . . 3-30

-XXinternalCompactRatio 3-31
OPEratioN. . . oot 3-31
Default Value. 3-31
Flags or Other Options Affected. i 3-31
EXCOPLIONS. . . o 3-31

04| - 3-33
OPEratioN. . . oot 3-33

Avoid Using Multiple Options. 3-36
Flags or Other Options Affected. it 3-37
EXCOPLIONS. . . 3-37

SXXKEEPANEARALIO. . . . ot 3-38
OPEratioN. . . oot 3-38
Default Value. 3-38
Flags or Other Options Affected. it 3-38
EXCOPLIONS. . . 3-38

-XXlargeObjectLimit. oo 3-39
OPEratiON. . . oot 3-39
Default Value. 3-39
Flags or Other Options Affected. o i it 3-39
EXCOPLIONS. . . 3-39

X XIAIGEPAGES . . . oot 3-40

SXXIazyUnlocKingo 3-41

Oracle JRockit Command-Line Reference

OPEIatiON . oot 3-41

Default Value. 3-41
Other Flags and Options Affected. o i, 3-41
EXCEPLIONS . . .o 3-41
-XXmaxPooledPointerVectorSize 3-42
OPEraAtiON . . o ot 3-42
Default Value.o 3-42
Flags or Other Options Affected i 3-42
EXCEPLIONS . . . 3-42
XKML 3-43
OPErAtiON . . oo 3-43
Default Value. 3-43
Flags or Other Options Affected it 3-43
EXCEPLIONS . . .o 3-43
SXXMINBIOCKSIZE. . . . 3-44
OPErAtiON . . oo 3-44
Default Value. 3-44
Flags or Other Options Affected i 3-44
EXCEPLIONS . . . 3-44
Default Value. 3-44
Flags or Other Options Affected i 3-45
EXCEPLIONS . . .o 3-45
SXXNOCOMPACHION « . . 3-46
OPEraAtiON . . o o 3-46
Flags or Other Options Affected it 3-46
EXCEPLIONS . . . 3-46
SXXNOJITINGING. .« 3-47
OPEraAtiON . . o o 3-47

Xiv

Flags and Other Options Affected. i, 3-47

EXCOPLIONS. . . 3-47
SXXNOSYSEMGC . .o 3-48
OPEratiON. . . oot 3-48
Flags or Other Options Affected. it 3-48
EXCOPLIONS. . . 3-48
SXXOPETRrEAdS. . . o oot 3-49
OPEratioN. . . oot 3-49
Default Value. 3-49
Other Options or Flags Affected. i 3-49
EXCOPLIONS. . . o 3-49
-XXpointerMatrixLinearSeekDistancet 3-50
OPEratioN. . . oot 3-50
Default Value. 3-50
Flags or Other Options Affected. o i it 3-50
EXCOPLIONS. . . o 3-50
SXXPHNESYSEMGC . . 3-51
OPBIALION. ot 3-51
Flags or Other Options Affected. i, 3-51
EXCOPHIONS. . . o 3-51
XKSBE G . o 3-52
OPBIALION. .« ot e 3-52
Flags or Other Options Affected. it 3-53
EXCOPLIONS. . . o 3-53
SXXStaticCOmMPACtioN. 3-54
OPEratiON. . . oot 3-54
Flags or Other Options Affected. it 3-54
EXCOPHIONS. . . o 3-54

Oracle JRockit Command-Line Reference

-XXthroughputCompactiont 3-56

OPEraAtiON . . o ot 3-56
Other Flags or Options Affected i 3-56
EXCEPLIONS . . .o 3-56
SXXURSIZE 3-57
OPEIatiON . oot 3-57
Default Value.o 3-58
Flags or Other Options Affected it 3-59
EXCEPLIONS . . . 3-59
0 3-60
OPErAtiON . . oo 3-60
Default Value. 3-60
Flags or Other Options Affected it 3-60
EXCEPLIONS . . .o 3-60
SXXUSEPOINEEIMALIIX . . o oo 3-61
OPEIatiON . o .ot 3-61
Flags or Other Options Affected i, 3-61
EXCEPLIONS . . .o 3-61
-XX:MaximumNUurseryPercentage.oovv e 3-62
OPEIatiON . o ot 3-62
Default Value. 3-62
EXCEPLIONS . . .o 3-62
-XX:(#]-)UseNewHashFunction. 3-63
OPEraAtiON . . o o 3-63
Default Value. 3-63
Flags or Other Options Affected it 3-63
EXCEPLIONS . . . 3-63
SXX:(#]-)UseThreadPriorities.ot 3-64

Oracle JRockit Command-Line Reference XV

OPEratiON. . . oot 3-64

Default Value. 3-64
Flags or Other Options Affected. o i it 3-64
EXCOPLIONS. . . 3-64
SXX(HF)USeSHNGCache. . ..o 3-65
OPEratiON. . . oot 3-65
Default Value. 3-65
Flags or Other Options Affected. o it 3-65
EXCOPLIONS. . . o 3-65

4. Oracle JRockit JVM System Properties

Xvi

JAVAVENAO . . . e 4-3
Java.vendor.url e 4-4
java.vendor.url.bug. e 4-5
JAVAVEISION. « . o e 4-6
JAVATUNEIME.VEISION . . . o o e e e 4-7
JAVAVMLINAME .« . oo e e e 4-8
JAVAVMLVENAON e 4-9
Java.vm.vendor.url 4-10
JAVAVMLVEISION oottt e e 4-11
java.vm.specification.version. 4-12
java.vm.specification.vendor 4-13
java.vm.specification.name 4-14
0S NMAIMIE. L . ottt et e 4-15
0S. AN, L o 4-16
OS.VEISTON © . o et ettt et e e e e e e 4-17

Oracle JRockit Command-Line Reference

Introduction

Welcome to the Oracle JRockit JVM Command-Line Reference. This document lists and
describes how to use the command-line options and system properties valid for use with Oracle
JRockit JVM.

This Introduction includes information on the following subjects:
e Introduction to Command-line Options

e Introduction to System Properties

Introduction to Command-line Options

Command-line options, also called start-up commands or start-up options, are self-descripting
tags that you enter either at the command line or include in start-up scripts for applications
running on a JVM. These options are used to override the JVM’s default settings and otherwise
define to the JVM how you want your application to run; for example, you can use the
command-line option -Xmx to set the maximum heap size or use -XxXnoCompaction to disable
heap compaction after a garbage collection.

Command-line options can be either standard—that is, valid for any JVM regardless of
manufacturer—or non-standard—aparticular to a specific brand of JVM. The options described in
this reference manual are non-standard and apply only to JRockit JVM.

Oracle JRockit JYM Command-Line Reference 1-1

Introduction

Standard Options

While a large volume of standard options for JVMs has been created, JRockit JVM does not
recognize all of them. The standard options JRockit JVM accepts are listed in Table 1-1:

Table 1-1 Standard Options fro JVMs

Option (Alternate Usage) Description
-agentlib When used with a specified library (-agentlib:<l ibname>), loads a
native agent library; for example:
e -—agentlib:hprof
e -—agentlib:jdwp=help
e -—agentlib:hprof=help
For more information, see JVMTI Agent Command Line Options.
-agentpath When uses with a full pathname
(-agentpath:<path-to-agent>), loads a native agent library
by full pathname. For more information, see JVMTI Agent
Command Line Options.
-client Selects the JRockit JVM Client JVM.
-javaagent Loads a Java programming language agent, see java.lang.instrument.
—-jrockit Selects the Oracle JRockit server JVM. This is equivalent to
-server and is the default.
-version Displays version information and then exits the application.
-showversion Displays version information and continues the application run.

-verbose:<area>[,<area>]

For more information on how this option works, see -Xverbose.

-cp or -classpath

Specifies a list of directories, JAR archives, and ZIP archives to

search for class files. Class path entries are separated by semicolons
(;) in Windows or colons (:) in Linux. Specifying -classpath or
-cp overrides any setting of the CLASSPATH environment variable.

-ea (-enableassertions)

Enables assertions, which are disabled by default. Depending upon
the arguments included with the option, -ea
(-enableassertions) will either simply enable assertions,
enable assertions in the specified package and any subpackages,
enable assertions in the unnamed package in the current working
directory, or enable assertions in the specified class.

1-2 Oracle JRockit JYM Command-Line Reference

Introduction to Command-line Options

Table 1-1 Standard Options fro JVMs

Option (Alternate Usage) Description

-da (-disableassertions) Disables assertions. Depending upon the arguments included with
the option, -da (-disableassertions) will either simply
disable assertions, disable assertions in the specified package and
any subpackages, disable assertions in the unnamed package in the
current working directory, or disable assertions in the specified class.

-esa Enable asserts in all system classes by setting the default assertion
(-enablesystemassertions) status for system classes to true.
-dsa Disables asserts in all system classes.

(-disablesystemassertions)

For documentation on these standard command-line options, please refer to Standard Options in
the Sun Microsystems document Java - The Java Application Launcher at:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html#standard

JRockit JVM Non-standard Options

JRockit JVM uses a set of non-standard options to control JVM behavior. Since these options are
non-standard, they will not work with other JVMs. If you attempt to use them with another JVM,
you will either receive results that can be erroneous or create an error condition and receive no

results at all. Conversely, JRockit JVM will not recognize another JVM’s non-standard options.

JRockit JVM’s non-standard options are divided into two groups:
e -X Command-line Options, which are the most commonly used non-standard options.

e -XX Command-line Options, which are often experimental options that have specific
system requirements for their implementation.

Since all of the options described in this manual are non-standard, they are subject to change or
deprecation at any time.

Other JRockit JVM Start-up Commands

Occasionally, you might encounter JRockit JVM internal properties set with the -D option. For
example, you might see something that looks like this:

-Djrockit.lockprofiling=true

Oracle JRockit JYM Command-Line Reference 1-3

Introduction

The -D option is used to set properties and their associated values, thus sending those parameters
to Java programs. In the Oracle JRockit JVM, some of those parameters are read by the JVM and
change how the JVM works. Because these -D properties are for internal use, they are not
discussed in this reference manual; however, as their number and efficacy increase, such
documentation might be added.

Case-sensitivity with Command-Line Options

As of Oracle JRockit JDK 5.0 R25, command-line options are no longer case-sensitive unless
explicitly stated; however, for this guide, to ensure readability of the commands, “camel
notation” is used to spell out a command (for example, -XgcPrio or -xXXnoCompaction).
Although you don’t have to use camel notation, if it makes the commands easier to read in the
context of your code, you can still do so.

Introduction to System Properties

1-4

System properties define traits or attributes of the current working environment. When the Java
application first starts up, the system properties are initialized with information about the runtime
environment, including information about the current user, the current version of the Java
runtime, and even the product vendor’s bug report URL.

Oracle JRockit JYM Command-Line Reference

-X Command-line Options

Non-standard, or -X, command line options are options that are exclusive to Oracle JRockit JVM
that change the behavior of JRockit JVM to better suit the needs of different Java applications.
These options are all preceded by -x and will not work on other JVMs (conversely, the
non-standard options used by other JVMs won't work with JRockit JVM).

Note: Since these options are non-standard, they are subject to change at any time.

This chapter is the complete reference to all -X startup flags that can be set in JRockit JVM. Each
option is listed in alphabetical order.

Oracle JRockit Command-Line Reference 2-1

-X Command-line Options

-Xbootclasspath

2-2

This option specifies a semicolon-separated list of directories, JAR archives, and zIP archives to
search for boot class files. These are used in place of the boot class files included in the Java 2
SDK.

Note: Applications that use this option to override a class in rt.jar should not be deployed.
Doing so would contravene the Java 2 Runtime Environment binary code license.

Operation

Format: -Xbootclasspath <directories and zips/jars separated by ; (Windows)
or : (Linux)>

Enter this option at startup to create the default classpath for bootstrap classes and resources. This
option must be entered in lower case, not camel notation, as shown in the example.

Flags or Other Options Affected

e -Xhootclasspath/a

e -Xbootclasspath/p

Exceptions

None

Oracle JRockit Command-Line Reference

-Xbootclasspath/a

-Xbootclasspath/a

This option is similar to -Xbootclasspath in that it specifies a semicolon-separated path of
directories, JAR archives, and ZIP archives; however, this list is appended to the default bootstrap
class path.

Operation

Format: -Xbootclasspath/a <directories and zips/jars separated by ;
(Windows) or : (Linux)>

Enter this option at startup to append a list of directories, JAR archives, and ZIP archives to the
default classpath for bootstrap classes and resources. This option must be entered in lower case,
not camel notation, as shown in the example.

Flags or Other Options Affected

e -Xbootclasspath

e -Xbootclasspath/p

Exceptions

None

Oracle JRockit Command-Line Reference 2-3

-X Command-line Options

-Xbootclasspath/p

2-4

This option is similar to -Xbootclasspath in that it specifies a semicolon-separated path of
directories, JAR archives, and ZIP archives; however, this list is prepended to the default
bootstrap class path.

Operation

Format: -Xbootclasspath/p <directories and zips/jars separated by ;
(Windows) or : (Linux)>

Enter this option at startup to prepend a list of directories, JAR archives, and ZIP archives to the
default classpath for bootstrap classes and resources. This option must be entered in lower case,
not camel notation, as shown in the example.

Flags or Other Options Affected

e -Xbootclasspath

e -Xbootclasspath/a

Exceptions

None

Oracle JRockit Command-Line Reference

-Xcheck:jni

Enables additional checks for JNI functions.

Operation

Format: -Xcheck: jni

Include this option at startup.

Flags or Other Options Affected

None

Exceptions

None

-Xcheck:jni

Oracle JRockit Command-Line Reference

2-5

-X Command-line Options

-XclearType

2-6

Deprecated

Use this option to define when the memory occupied by an object that has been garbage collected
will be cleared. You can set objects clearing at allocation time, garbage collection time, or when
a thread-local area is allocated.

Note: This option is deprecated as of the JRockit JVM R25. If you use it with that or any
subsequent releases, the JVM will accept the option without throwing an exception, but
nothing will happen.

The following information for -XclearType applies only to the JRockit JVM R24 and
earlier.

Operation

Format: -XclearType :<param>

Set the desired parameter (<param>) as described in Table 2-1 to define the when object clearing
will occur.

Table 2-1 Valid Parameters for -XclearType

<param> Description

alloc Starts clearing objects at allocation time.

gc Starts clearing objects when the garbage collection is running.

local Starts clearing objects when a thread-local area is allocated.
Default Value

If -XclearType is not set, object clearing will default to the following:
e |A32 systems: alloc

e |A64 systems:
— JRockit JVM R24: 1ocal
— JRockit JVM R23: gc

Oracle JRockit Command-Line Reference

Flags or Other Options Affected

None

Exceptions

None

-XclearType

Oracle JRockit Command-Line Reference

2-1

-X Command-line Options

-Xdebug

2-8

-Xdebug enables debugging capabilities in the JVM which are used by the Java Virtual Machine
Tools Interface (JVMTI). JVMTI is a low-level debugging interface used by debuggers and
profiling tools. With it, you can inspect the state and control the execution of applications running
in the JVM.

The subset of JVMTI that is most typically used by profilers is always available. However, the
functionality used by debuggers to be able to step through the code and set breakpoints has some
overhead associated with it and is not always available. To enable this functionality you must use
the —-Xdebug option.

WARNING: When running with -Xdebug the JVM is not running at its full speed. Thus, the
option should not be used for applications when running in production
environments.

Operation
Format: -Xdebug

Include this option at startup.

For Example:
Jjava -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n myApp

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference

-Xgc

-Xgc

Use -Xgc to set a static garbage collector. The static garbage collectors are classified as in
Table 2-2.

Table 2-2 Static Garbage Collectors

Single-Spaced Generational

Concurrent Single-spaced concurrent Generational concurrent
-Xgc:singlecon -Xgc:gencon

Parallel Single-spaced parallel Generational parallel
-Xgc:singlepar (since R27.2) or -Xgc:genpar (since R27.2)

-Xgc:parallel

Under some circumstances, the performance of these static garbage collectors might meet your
needs better than the dynamic garbage collection modes or the default collectors available with
the -server or -client flags. Additionally, if you want to use scripts written for the earlier
versions of JRockit JVM that implement these collectors, those scripts will continue to work
without requiring any modification—unless they use the generational copy garbage collector,
which is no longer available.

Operation

Format: -Xgc:<gcType>

Use -Xgc with one of the garbage collection types (<gcType>) listed in Table 2-3 to get the
desired garbage collector algorithm:

Oracle JRockit Command-Line Reference 2-9

-X Command-line Options

2-10

Table 2-3 Valid Garbage Collection Types for -Xgc

<gcType>

Description

singlecon

Sets a single-spaced (non-generational) concurrent garbage collector. This
is a mostly concurrent garbage collector, which means that it will perform
most of its garbage collection chores concurrently with the Java
application. All objects are maintained in a single space, or “generation.”
The singlecon garbage collection trades lower application throughput for
minimal pause times.

gencon

Sets a generational, concurrent garbage collector. With this type of garbage
collector, objects are allocated in the young generation (the nursery). When
the nursery is full, JRockit JVM stops all Java threads and moves the live
objects in the young generation to the old generation. This is a mostly
concurrent garbage collector, which means that it will perform most of its
garbage collection chores concurrently with the Java application. The
gencon garbage collector is better than the singlecon garbage collector for
most applications that allocate a lot of small, short-lived objects. The
gencon garbage collection trades minimal pause times for larger heap sizes
and lower application throughput.

Oracle JRockit Command-Line Reference

-Xgc

Tahle 2-3 Valid Garbage Collection Types for -Xgc

<gcType>

Description

singlepar
parallel

Sets a single-spaced, parallel garbage collector. A parallel garbage
collector stops all Java threads when the heap is full and uses every CPU to
perform a complete garbage collection of the entire heap. A parallel
collector can have longer pause times than concurrent collectors, but it
maximizes throughput. Even on single CPU machines, this maximized
performance makes parallel the recommended garbage collector, provided
that your application can tolerate the longer pause times.

The singlepar synonym is available in R27.2 and later releases.

genpar

Sets a generational garbage collector. With this type of garbage collector,
objects are first allocated in the young generation. When the nursery is full,
JRockit JVM stops all Java threads and performs a parallel nursery
collection, that is, it uses all CPU resources available and moves all live
objects in the young generation to the old generation. The old generation
collector stops all Java threads when the heap is full and a complete parallel
garbage collection is performed. This collector will prioritize throughput to
pause times.

This collector is generally better than the singlepar garbage collector for
applications that allocate a lot of short-lived objects. While it performs
more garbage collections than the singlepar collector, the individual pause
times of the genpar collector are shorter and it creates less fragmentation in
the old generation space.

This option is available in R27.2 and later releases.

Default Value

These defaults apply to -Xgc:

e singlecon is the default garbage collector when JRockit JVM is run in -client mode

e The default garbage collector when JRockit JVM is run in -server mode is the dynamic
garbage collection mode optimized for throughput, and thus not one of the static garbage
collectors that you can set with -Xgc.

Flags or Other Options Affected

When you specify -Xgc, the following options are affected:

Oracle JRockit Command-Line Reference 2-11

-X Command-line Options

e Setting -XXsetGC will override -Xgc and vice versa. The option specified first on the
command line will be ignored.

e Setting -Xgc will override part of the effect of -server and -client.

Exceptions

When using -Xgc, be aware of the following exceptions:

e |[f you set a static garbage collector, you will not be able to fully use the management API;
that is, some functions of the API will not be available.

e You cannot use -Xgc together with either of the following options:
— -XgcPrio

— —-XpauseTarget

2-12 Oracle JRockit Command-Line Reference

-XgcPause

-XgcPause

The -Xgcpause option prints out the pause times caused by the garbage collector during a run.
The pause times are shown during runtime on your screen during the running of the application.

The effect of this option is identical to -Xverbose:gcpause.

Operation
Format: -XgcPause

Use this option at startup. As pauses are encountered, they will print a report to your screen, as
shown in Listing 2-1.

Listing 2-1 Output from -Xgcpause used with the Static Garbage Collector -Xgc:gencon

[memory] old collection phase 0-2 pause time: 100.794255 ms

[memory] nursery collection pause time: 4.121775 ms

[memory] nursery collection pause time: 185.137069 ms

[memory] old collection phase 4-5 pause time: 147.672697 ms

[memory] (pause includes yc: 142.537 ms, compaction: 1.317 ms, update ref: 1.41
3 ms)

[memory] nursery collection pause time: 7.075705 ms

[memory] old collection phase 5 pause time: 0.300176 ms

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference 2-13

-X Command-line Options

-XgcPrio

2-14

-XgcPrio sets a dynamic garbage collection mode. This garbage collector combines all types of
garbage collection heuristics and optimizes the performance accordingly. When running this

garbage collector, you only need to determine whether your application responds best to optimal
memory throughput during collection or minimized pause times. The dynamic garbage collector
will then adapt its choice of collector type, in runtime, to what is suiting your application the best.

Note: This command line option is supported with JRockit JDK 1.4.2_10 R26.2 and later
versions, as well as all versions of JRockit JDK 5.0 and JRockit JDK 6.

Operation

Format: -XgcPrio:<gcType>
Combine -XgcPrio with one of the garbage collection types (<gcType>) described in Table 2-4:

Table 2-4 Garbage Collection Types Valid for -XgcPrio

<gcType> Description

throughput The garbage collector is optimized for application throughput. This means
that the garbage collector works as effectively as possible, giving as much
CPU resources to the Java threads as possible. This may, however, cause
non-deterministic pauses when the garbage collector stops all Java threads
for garbage collection.The throughput priority should be used when
non-deterministic pauses do not impact the application’s behavior.

Oracle JRockit Command-Line Reference

-XgcPrio

Tahle 2-4 Garbage Collection Types Valid for -XgcPrio

<gcType>

Description

pausetime

The garbage collector is optimized for short pauses. This means that the
garbage collection will work concurrently with the Java application when
necessary, in order to avoid pausing the Java threads. This inflicts a slight
performance overhead to the application, as the concurrent garbage
collector demands more system resources (CPU time and memory) than
the parallel garbage collector that is used for optimal throughput. The
target pause time is by default 200 ms. To change the default pause target,
see -XpauseTarget.

deterministic

The garbage collector is optimized for very short and deterministic pause
times.The garbage collector will aim on keeping the garbage collection
pauses below a given pause target. How well it will succeed depends on the
application and the hardware. For example, a pause target on 30 ms has
been verified on an application with 1 GB heap and an average of 30% live
data or less at collection time, running on the following hardware:

2 x Intel Xeon 3.6 GHz, 2 MB level 2 cache, 4 GB RAM
4 x Intel Xeon 2.0 GHz, 0.5 MB level 2 cache, 8 GB RAM

Running on slower hardware, with a different heap size and/or with more
live data might break the deterministic behavior or cause performance
degradation over time, while faster hardware or less live data might allow
you to set a lower pause target.

The pause target for deterministic mode is by default 30 ms, and can be
changed with the command line option -XpauseTarget.

Default

e The default garbage collector in -server mode is the dynamic garbage collection mode
optimized for throughput (-Xgcprio: throughput).

e The default garbage collector in -client mode is static, using the single generational
concurrent garbage collection strategy (-Xgc:singlecon)

Flags or Other Options Affected

Use of -XgcPrio will affect certain options as described here:

e Setting -XgcPrio will override part of the effect of ~server and -client.

Oracle JRockit Command-Line Reference 2-15

-X Command-line Options

o If you have set -Xns it overrides the dynamic nursery sizing; see -Xns.

e You can use -XpauseTarget to set pause times for -XgcPrio:pausetime and
XgcPrio:deterministic.

Exceptions

You cannot combine the dynamic garbage collector with a static garbage collector set with -Xgc
or -XXsetGC.

If you set -XXdisableGCHeuristics, then there will be no change of garbage collection
strategy as a result of the -XgcPrio option.

2-16 Oracle JRockit Command-Line Reference

-XgcReport

-XgcReport

The -XgcReport option generates an end-of-run report that shows garbage collection statistics.
You can use this report to determine if you’re using the most effective garbage collector for your
application or not.

The report divides the statistics into “young collections” and “old collections”, and for each of
the types the following information is printed:

Number of collections: The total number of garbage collections of this type during the run.

Total promoted: The total number of objects and amount of bytes promoted from young
space to old space by this type of garbage collections during the run.

Max promoted: The maximum number of objects and amount of bytes promoted by any
single garbage collection of this type during the run.

Total GC time: The total time spent in this type of garbage collections during the run. For
concurrent garbage collections the total garbage collection time and the total garbage
collection pause time will differ.

Mean GC time: The average time spent in a single garbage collection of this type during
the run. For concurrent garbage collections the garbage collection time and the garbage
collection pause time will differ.

Maximum GC pauses: The three longest garbage collection pauses caused by this type of
garbage collection during the run.

The effect of this option is identical to -Xverbose:gcreport.

Operation

Format: -XgcReport

As shown in Listing 2-2, the -Xgcreport shows a detailed profile of collections on both the
young generation and the old generation.

Listing 2-2 Dynamic Xgcprio:pausetime + Xgcreport (at the end of the application run):

[memory] Memory usage report

[memory]

Oracle JRockit Command-Line Reference 2-11

-X Command-line Options

[memory] young collections

[memory 1] number of collections = 50

[memory 1] total promoted = 4628936 (size 260614072)
[memory 1] max promoted = 108102 (size 6083128)

[memory 1] total GC time = 4.381 s

[memory 1] mean GC time = 87.623 ms

[memory 1] maximum GC Pauses = 125.264 , 153.122, 244.682 ms
[memory 1]

[memory] old collections

[memory 1] number of collections = 6

[memory 1] total promoted = 0 (size 0)

[memory 1] max promoted = 0 (size 0)

[memory 1] total GC time = 0.701 s (pause 0.701 s)
[memory 1] mean GC time = 116.833 ms (pause 116.830 ms)
[memory 1] maximum GC Pauses = 134.081 , 190.973, 215.381 ms
[memory 1]

[memory 1] number of parallel mark phases =6

[memory 1] number of parallel sweep phases =4

[memory 1] number of concurrent sweep phases = 2

Mon Nov 1 16:50:34 WEST 2004

Flags or Other Options Affected

None

Exceptions

None

2-18 Oracle JRockit Command-Line Reference

-XlargePages

-XlargePages

This option tells the JRockit JVM to use large pages, if they are available, for the Java heap and
other areas in the JVM. Large pages allow your application to more effectively use the translation
look-aside buffer (TLB) in the processor.

Note: While this option duplicates the functionality of -xXlargePages, this is the preferred
option for enabling large pages.

Operation

Format: -XlargePages

Windows, Linux and Solaris all support multiple page sizes on x86, IPF and SPARC
architectures. x86 supports 4 KB and 4 MB (2 KB and 2 MB in PAE mode), while IPF and
SPARC support a wider range of different sizes, from 4 KB to 256M, depending on model.

Format: -XlargePages:exitOnFailure=true

By default the JVM will continue running without large pages if large pages cannot be acquired
when -XlargePages is enabled. Use this extended option to override this behavior and force the
JVM to exit if enough large pages can’t be acquired. This extended option is supported in JRockit
JVM R27.5 and later releases.

How to Configure Large Pages

If you use this option, you will need to configure large pages on you machine. To do so, use one
of the following procedures.

On Linux

1. Reserve memory to be used for large pages by executing the following command:
echo nn > /proc/sys/vm/nr_hugepages
Where nn is the number of desired pages.

You should do this step as soon as possible after the machine has been started since
ongoing memory usage creates fragmentation and Linux might be unable to allocate the
number of specified pages.

Note: The following steps might need to be completed by your system administrator, unless
you have administrative privileges.

Oracle JRockit Command-Line Reference 2-19

-X Command-line Options

2-20

2. To enable the JRockit JVM to allocate large pages, make a hugetblfs file system available
by using this command:

mount -t hugetlbfs nodev /mnt/hugepages

3. Grantthe user executing the Java application read and write permission to the file system. You
can do this with either the mount command or with the chmod and chown commands.

For a more thorough description of large pages on Linux, read the file vm/hugetlbpage. txt
available in the documentation for the Linux kernel.

On Windows

1. As Administrator, give the user who will run the application the permission to lock pages in
memory by opening the Start menu and selecting:

Control Panel>Administrative>Tools>Local Security Policy>Local Policies>User
Rights>Assignments>Lock pages in memory.

2. Select Lock pages in memory.

3. Make enough free consecutive memory available by either logging off your computer or
rebooting it.

On Solaris
Nothing has to be configured in the O/S to enable an application to use large pages.

Failure to Acquire Large Pages
If the JRockit JVM fails to acquire large pages, it will print a warning and continue; for example:

[WARN] Unable to acquire large pages for the heap, using normal pages

Default Values

-XXlargePages is disabled by default.

Other Options or Flags Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference

-Xmanagement

-Xmanagement

This option starts the JRockit JVM concurrently with the management server and allows you to
either enable and configure or explicitly disable security features such as SSL encryption and

authentication.

Operation

Format: -Xmanagement[:<argumentl>=<valuel>[,<argument2>=<value2>]]

where argumentn and valuen is as defined in Table 2-5.

Table 2-5 -Xmanagement Arguments

Argument

Description

autodiscovery=<true|false>

Enables or disables autodiscovery, which allows
Oracle JRockit Mission Control to automatically
discover running JRockit JVM instances through the
multicast-based JRockit Discovery Protocol.

Valid with JRockit JVM 5.0.

ssl=<true]false>

Enables or disables SSL encryption.
Valid with JRockit JVM 5.0.

authenticate=<true|false>

Enables or disables authentication.
Valid with JRockit JVM 5.0.

port=<portNumber>

Identifies the port that the management server will
open for remote access.

Valid with JRockit JVM 5.0.

class=

This option loads the class and causes its empty
constructor to be called early in JVM startup. From the
constructor, a new thread is then started, from which
your management client is run. Further arguments
cannot be given to -Xmanagement after the class
argument.

For Example:

e java -Xmanagement:ssl=false,authenticate=false myApplication

Oracle JRockit Command-Line Reference 2-21

-X Command-line Options

2-22

Disables SSL encryption and authentication.

e java -Xmanagement:autodiscovery=true myApplication
Enables autodiscovery.

e java -Xmanagagement:port=1234 myApplication
Tells the management server to open port 1234,

The implementation of this option in JRockit JVM R27.1.0 represents a change from previous
versions of the product. In past versions, this option enabled the management server running:

e A JMX agent (for JRockit JVM versions based on J2SE 5.0).

e Oracle’s proprietary RMP protocol (for JRockit JVM versions based on J2SE 1.4.2).

The original RMP implementation had no security features. JRockit JVM 5.0 contains new
security features—authentication and SSL encryption—that were introduced in J2SE 5.0, but
similar security features were not enabled in the JRockit JVM 1.4.2.

Due to the security risks and the mission-critical nature of most JRockit JVM deployments, the
new default behavior of the JRockit JVM requires that you either disable security explicitly or
configure and enable security. If you don’t take these steps, the management server will not open
a port for remote access and may cause the JVM startup to halt with an error message concerning
the security configuration.

Specifying -Xmanagement also enables a local in-memory agent to improve the user experience
from a developer perspective. For example, a developer running a WLS instance on JRockit JVM
on a one machine can specify —Xmanagement to enable the local in-memory agent to connect to
it from an Oracle JRockit Mission Control Client on another machine. On the other hand, the
developer would not need to specify —Xxmanagement to get local access from JRockit Mission
Control: the in-memory agent is always accessible locally. Thus, if you have a number of JRockit
JVM instances running on your machine and you start a JRockit Mission Control Client, it will
automatically discover and allow access to those JVMs. Security is enforced by only allowing
this type of local access if the JRockit JVM instance and the JRockit Mission Control Client are
being run by the same user. Note that this will only work if the monitored JRockit JVM is R27.1
and later.

To enable the management agent without security you must now specify that SSL and
authentication should be disabled. Also, the JMX server port must now be specified explicitly
with the JRockit JVM 5.0.

For maximum usability, you should also enable the autodiscovery mechanism, which allows
JRockit Mission Control to automatically discover running JRockit JVM instances through the

Oracle JRockit Command-Line Reference

-Xmanagement

multicast based JRockit Discovery Protocol. Note that this will normally only work on the local

subnet.

To limit the number of RMP connections running at the same time, you can set
-Djrockit.managementserver._.maxconnect.

Default Value

The default value is based on the version of the JRockit JVM you are running:
R26.4 and Earlier
J2SE 5.0:

e RIMX server is enabled on port 7091.

e SSL and authentication off by default.
J2SE 1.4.2:

o RMP server is enabled on port 7090

e SSL and authentication are not available.

5.0 R27.1
e Local agent is enabled.

e Remote agent is enabled on if security is enabled or explicitly disabled.

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference

2-23

-X Command-line Options

-Xms

2-24

The -Xms option sets the initial and minimum Java heap size. The Java heap (the “heap”) is the
part of the memory where blocks of memory are allocated to objects and freed during garbage
collection.

Note: -Xms does not limit the total amount of memory that the JVM can use.

Operation
Format: -Xms<size>[g|G|m|M]k]K]
Combine -xms with a memory value and add a unit.

For Example:
Jjava -Xms:64m myApp
sets the initial and minimum java heap to 64 MB.

If you do not add a unit, you will get the exact value you state; for example, 64 will be interpreted
as 64 bytes, not 64 megabytes or 64 kilobytes.

For best performance, set -Xms to the same size as the maximum heap size, for example:

Jjava -Xgcprio:throughput -Xmx:64m -Xms:64m myApp

Default Values

If you do not set this, the minimum Java heap size defaults to (depending on which mode you are
running):

e —server mode: 25% of the amount of free physical memory in the system, up to 64 MB
and at least 8 MB

e —client mode: 25% of the amount of free physical memory in the system, up to 16 MB
and at least 8 MB

o If the nursery size is set with -Xns, the default initial heap size will be scaled up to at least
twice the nursery size.

Flags or Other Options Affected

None

Oracle JRockit Command-Line Reference

-Xms

Exceptions and Recommendations

The initial Java heap cannot be set to a smaller value than 8 MB, which is the minimum Java heap
size. If you attempt to set it to a smaller value, JRockit JVM defaults to 8 MB.

The -Xms value cannot exceed the value set for -Xmx (the maximum Java heap size).

Oracle JRockit Command-Line Reference 2-25

-X Command-line Options

-Xmx

2-26

This option sets the maximum Java heap size. The Java heap (the “heap”) is the part of the
memory where blocks of memory are allocated to objects and freed during garbage collection.
Depending upon the kind of operating system you are running, the maximum value you can set
for the Java heap can vary.

Note: -Xmx does not limit the total amount of memory that the JVM can use.

Operation

Format: -Xmx<size>[g|G|m|M]k]K]
Combine -Xmx with a memory value

For Example:

Java -Xmx:1g myApp

sets the maximum java heap to 1 gigabyte.

If you do not add a unit, you will get the exact value you state; for example, 64 will be interpreted
as 64 bytes, not 64 megabytes or 64 kilobytes.

The -Xmx option and -Xms option in combination are used to limit the Java heap size. The Java
heap can never grow larger than -Xmx. Also, the -Xms value can be used as “minimum heap size”
to set a fixed heap size by setting -Xms = -Xmx when, for example, you want to run benchmark
tests.

Known Issue for Linux Users

The JRockit JVM R26.0.0 on Linux 1A32 can experience problems setting up memory for object
allocation. When this happens, you will receive the following message:

[JRockit] ERROR: Fatal error in JRockit during memory setup phase.
Try to reduce the heap size using -Xmx:<size>m, i.e. “-Xmx:16m”. Could
not create the Java virtual machine.

and JRockit JVM will be exited.

The workaround for this situation is to try different -Xmx values until you find a heap size that is
setup correct.

Note: This known issue is valid for R26.0.0.

Oracle JRockit Command-Line Reference

-Xmx

Default Value

If you do not set this, the maximum java heap size depends on the platform and the amount of
memory in the system as described in Table 2-6.

Table 2-6 Default Maximum Heap Sizes

Release Platform Default Maximum Heap Size

R27.2 and older Windows 75% of total physical memory upto 1 GB

R27.2 and older Linux, Solaris 50% of available physical memory up to
1GB

R27.3and newer Windows on a 64 bit platform 75% of total physical memory up to 2 GB

R27.3and newer Linux or Solaris on a 64 bit platform 50% of available physical memory up to
2GB

R72.3and newer Windows on a 32 bit platform 75% of total physical memory upto 1 GB

R27.3and newer Linux on a 32 bit platform 50% of available physical memory up to
1GB

Flags or Other Options Affected

None.

Exceptions

When using-Xmx, be aware of the following exceptions:

o If both -Xmx and -Xms are specified the value of -Xmx must be larger than or equal to that
of -Xms.

e If both -Xmx and -Xns are specified the value of -Xmx must be larger than or equal to that
of -Xns.

e The minimum value for -Xmx is 16 MB.

Oracle JRockit Command-Line Reference 2-27

-X Command-line Options

-XnoClassGC

2-28

This option disables garbage collection of classes. Using -XnoClassGC can save some garbage
collection time, which will shorten interruptions during the application run.

Operation
Format: -XnoClassGC

When you specify -XnoClassGC at startup, the class objects in the application specified by
myApp will be left untouched during garbage collection and will always be considered live. This
can result in more memory being permanently occupied which, if not used carefully, will throw
an out of memory exception.

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference

-Xnohup

-Xnohup

This option helps to prevent possible interference when JRockit JVM is running as a service and
receives CTRL_LOGOFF_EVENT or SIGHUP. Upon receiving such events, the VM tries to initiate a
shutdown but this shutdown will fail, since the operating system will not actually terminate the
process.

Note: -Xnohup is similar to the Sun Microsystems command-line option -Xrs, developed for
their HotSpot JVM. The JRockit JVM supports both -Xra and -Xnohup. If you use -Xra,
you will see the same behavior that you would see with -Xnohup.

Operation
Format: -Xnohup

If you are running JRockit JVM as a service (for example, the servlet engine for a web server),
enter the command at startup to prevent the JVM from watching for or processing
CTRL_LOGOFF_EVENT or SIGHUP events.

Flags or Other Options Affected

None

Exceptions

If you specify -Xnohup, be aware of the following:
e Pressing Ctrl-Break to create a thread dump does not work.

e User code is responsible for causing shutdown hooks to run, for example, by calling
System.exit() when JRockit JVM is to be terminated.

Oracle JRockit Command-Line Reference 2-29

-X Command-line Options

-XnoOpt

2-30

This option turns off adaptive optimization. While optimized code generally runs faster than code
that hasn’t been optimized, occasionally, the time required to optimize code results in undesirable
delays processing. -XnoOpt lets you avoid these delays by turning off optimization. This option
is also helpful when you suspect that a JVM or application problem, such as a system crash or
poor startup performance, might be related to optimization. You can turn optimization off and
retry your application. If it then runs successfully, you can safely assume that the problem lies
with code optimization.

Operation

Format: -XnoOpt

Note that if you use -XnoOpt, you will continue to compile code that might be inefficient and
might have a deleterious affect on application performance.

Default Value

If -XnoOpt is not set, the JVM will optimize code as usual.

Flags or Other Options Affected

If you use -XXnoJITInline, you must also use -XnoOpt. -XXnoJITInline only disables
inlining the first time a method is compiled. Unless you set -XnoOpt as well, methods can still
be inlined when code is optimized.

Exceptions

None

Oracle JRockit Command-Line Reference

-Xns

-Xns

-Xns sets the nursery size. the JRockit JVM uses a nursery when the generational garbage
collection model is used, that is, when the dynamic garbage collector has determined that the
generational garbage collection model should be used or when the static generational concurrent
garbage collector (-Xgc:gencon) has been selected. You can also use -Xns to set a static nursery
size when running a dynamic garbage collector (-XgcPrio).

Operation

Format: -Xns:<size>[g|G|m|M]Kk]K]
Combine -xns with a memory value
For Example:

Jjava -Xns:10m myApp

sets the nursery to 10 MB of the heap.

The nursery size value cannot exceed the maximum value set for the heap.

Default Value

Default value depends upon whether you use a dynamic garbage collector (the default garbage
collector) or the select a static garbage collector, see Table 2-7

Tahle 2-7 Default Nursery Sizes

Releases Options used Default value
All -server (default) Dynamic, since the default garbage collector is dynamic.
All -client None, since the default garbage collector in -client mode is single spaced.
All -Xgc:gencon or 2MB
-Xgc:genpar
together with -client
All -Xgc:gencon 10 MB * the number of hardware threads up to 25% of the heap size
R27.3 -Xgc:genpar Dynamic
and later

Oracle JRockit Command-Line Reference 2-31

-X Command-line Options

Tahle 2-7 Default Nursery Sizes

Releases Options used Default value
All -Xgcprio:throughput Dynamic
All -Xgcprio:pausetime Dynamic

Flags or Other Options Affected

None

Exceptions

When using -Xns, be aware of the following exceptions:

e You can set -xXns only when using a dynamic garbage collector (-XgcPrio) or a static
generational garbage collector (-Xgc:gencon or -Xgc:genpar).

e The value must be at least four times the size of -xXlargeObjectLimit and it may not be
greater than -Xmx.

2-32 Oracle JRockit Command-Line Reference

-XpauseTarget

-XpauseTarget

This option sets a pause target for the dynamic garbage collection mode optimizing for short
pauses (-XgcPrio:pausetime) and the dynamic garbage collection mode optimizing for
deterministic pauses (-XgcPrio:deterministic). The target value is used as a pause time goal.
The target helps the dynamic garbage collector to more precisely configure itself to keep pauses
near the target value. Using this option allows you to specify the pause target to be between 1 ms
and 5 seconds. If you are using the deterministic garbage collector, you can set values below 200
ms you must have a valid license for -XgcPrio:deterministic.

Operation
Format: -XpauseTarget=<target value>
Or

-XpauseTarget=<target value> -Xgcprio:pausetime

Remember that the target set by this option is considered a soft goal; that is, if specifying the
target to 100 ms, the garbage collector will try to tune itself towards a configuration that will
make the pauses become as near 100 ms as possible. However, if you have an application and
heap configuration that will not be able to meet this target however much the garbage collector
is tuned (statically or dynamically), the target will be missed. This option only specified the
desired pause times, not the maximum allowed pause time.

Used with care this option will improve pause times, however if used with less care, it might
stress the garbage collector to less appreciated behavior.

Default Value

If you are using -XpauseTarget with -XgcPrio:pausetime, the default setting for the target
is 500 ms. If you are using -XgcPrio:deterministic, the default value is 30 ms.

Flags or Other Options Affected

Normally, this option requires that you use it with a dynamic pause optimizing garbage collection
mode (-XgcPrio:pausetime Or -XgcPrio:deterministic). If you don’t specify a garbage
collector, this option will change from the default garbage collector to the pause time optimizing
garbage collector (the same collector used when specifying -XgcPrio:pausetime).

If you are using Oracle JRockit Real Time, set -XgcPauseTarget to below 200 ms, and don’t
specify a garbage collector, the garbage collector will be set to -XgcPrio:deterministic.

Oracle JRockit Command-Line Reference 2-33

-X Command-line Options

Exceptions

When using -XpauseTarget, be aware of the following exceptions:

o If you have specified garbage collector other than a dynamic pause-time optimizing
garbage collector, the option for pause target cannot be used, as you can’t optimize for
pause times and be static or throughput-optimizing at the same time.

e If you are usimg the deterministic garbage collector, you can specify pause targets below
200 ms as well.

2-34 Oracle JRockit Command-Line Reference

-Xrs

-Xrs

Note: -Xrs is a non-standard option developed by Sun Microsystems for their HotSpot JVM.
JRockit JVM continues to support this option; however the JRockit JVM non-standard
option -Xnohup provides the same functionality.

-Xrs reduces usage of operating-system signals by the JVM. If the JVM is run as a service (for
example, the servlet engine for a web server), it can receive CTRL_LOGOFF_EVENT but should not
initiate shutdown since the operating system will not actually terminate the process. To avoid
possible interference such as this, the -Xrs command-line option does not install a console
control handler, implying that it does not watch for or process CTRL_C_EVENT,
CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN_EVENT.

Operation

Format: -Xrs

If you are running JRockit JVM as a service (for example, the servlet engine for a web server),
enter the command at startup to prevent the JVM from watching for or processing
CTRL_LOGOFF_EVENT or SIGHUP events.

Flags or Other Options Affected

None

Exceptions

If you specify -Xnohup, be aware of the following:
e Pressing Ctrl-Break to create a thread dump does not work.

e User code is responsible for causing shutdown hooks to run, for example, by calling
System.exit() when JRockit JVM is to be terminated.

Oracle JRockit Command-Line Reference 2-35

-X Command-line Options

-Xrunjdwp

This option loads the JPDA reference implementation of JDWP. This library resides in the target
VM and uses JVMDI and JNI to interact with it. It uses a transport and the JDWP protocol to
communicate with a separate debugger application.

Operation

Format: -Xrunjdwp:<namel>[=<valuel>],<name2>[=<value2>]. ..

The -Xrunjdwp option can be further qualified by specifying one of the sub-options listed in
Table 2-8.

Table 2-8 -Xrunjdwp Sub-options

Name Required? Default Description
Value

help no N/A Prints a brief help message and exits the VM.

transport yes none Name of the transport to use in connecting to debugger
application.

server no “n” If “y”, listen for a debugger application to attach; otherwise,
attach to the debugger application at the specified
address.

If “y” and no address is specified, choose a transport address
at which to listen for a debugger application, and print the
address to the standard output stream.

address yes, if Transport address for the connection. If server=n, attempt to
server=n attach to debugger application at this address. If server=y,
no, listen for a connection at this address.
otherwise

2-36 Oracle JRockit Command-Line Reference

Table 2-8 -Xrunjdwp Sub-options

launch

onthrow

onuncau
ght

stdalloc

no

no

no

no

none

none

-Xrunjdwp

At completion of JDWP initialization, launch the process
given in this string. This option is used in combination with
onthrow and/or onuncaught to provide “Just-In-Time
debugging” in which a debugger process is launched when a
particular event occurs in this VM.

Note that the launched process is not started in its own
window. In most cases the launched process should be a small
application which in turns launches the debugger application
in its own window.

The following strings are appended to the string given in this
argument (space-delimited). They can aid the launched
debugger in establishing a connection with this VM. The
resulting string is executed.

The value of the transport sub-option.

The value of the address sub-option (or the generated
address if one is not given)

Delay initialization of the JDWP library until an exception of
the given class is thrown in this VM. The exception class
name must be package-qualified.Connection establishment is
included in JDWP initialization, so it will not begin until the
exception is thrown.

If “y”, delay initialization of the JDWP library until an
uncaught exception is thrown in this VM. Connection
establishment is included in JDWP initialization, so it will not
begin until the exception is thrown. See the JDI specification
for com.sun.jdi.ExceptionEvent for a definition of uncaught
exceptions.

By default, the JDWP reference implementation uses an
alternate allocator for its memory allocation. If “y”, the
standard C runtime library allocator will be used. This option
is mainly for testing; use it with care. Deadlocks can occur in
this VM if the alternative allocator is disabled.

Oracle JRockit Command-Line Reference 2-317

-X Command-line Options

2-38

Table 2-8 -Xrunjdwp Sub-options

strict no “n” If “y”, assume strict JVMDI conformance. This will disable
all workarounds to known bugs in JVMDI implementations.
This option is mainly for testing and should be used with care.

suspend no “y” If “y”, VMStartEvent has a suspend Policy of
SUSPEND_ALL. If “n”, VMStartEvent has a suspend policy
of SUSPEND_NONE.

For example:

Jjava -Xrunjdwp:transport=dt_socket,server=y,address=8000 myApp
This command:

e Listens for a socket connection on port 8000.

e Suspends this VM before main class loads (suspend=y by default).

e Once the debugger application connects, it can send a JDWP command to resume the VM.

-Xrunjdwp:transport=dt_shmem,server=y, suspend=n

This command:
e Chooses an available shared memory transport address and print it to stdout.
e Listens for a shared memory connection at that address.

e Allows the VM to begin executing before the debugger application attaches.
-Xrunjdwp:transport=dt_socket,address=myhost:8000

This command:
e Attaches to a running debugger application via socket on host myhost at port 8000.

e Suspends this VM before main class loads.

-Xrunjdwp:transport=dt_shmem,address=mysharedmemory

This command:

e Attaches to a running debugger application via shared memory at transport address
mysharedmemory.

e Suspends this VM before main class loads.

Oracle JRockit Command-Line Reference

-Xrunjdwp

-Xrunjdwp:transport=dt_socket,server=y,address=8000,onthrow=java. io. IOExceptio
n, launch=/usr/local/bin/debugstub

This command:
o Waits for an instance of java. io. 10Exception to be thrown in this VM.
e Suspends the VM (suspend=y by default).
e Listens for a socket connection on port 8000.

e Executes the following:
/usr/local/bin/debugstub dt_socket myhost:8000

This program can launch a debugger process in a separate window which will attach to this
VM and begin debugging it.

-Xrunjdwp:transport=dt_shmem,server=y,onuncaught=y, launch=d:\bin\debugstub.exe

This command:
e Waits for an uncaught exception to be thrown in this VM.
e Suspends the VM.
e Selects a shared memory transport address and listen for a connection at that address.

e Executes the following:

d:\bin\debugstub.exe dt_shmem <address>
where <address> is the selected shared memory address.

This program can launch a debugger process in a separate window which will attach to this
VM and begin debugging it.

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference 2-39

-X Command-line Options

-Xss

-Xss sets the thread stack size. Thread stacks are memory areas allocated for each Java thread for
their internal use. This is where the thread stores its local execution state.

Operation
Format: -Xss<size>[g|G|m|M]K]K]
Combine -Xss with a memory value

For Example:
Java -Xss:512k myApp
sets the default stack size to 512 kilobytes.

If you do not add a unit, you will get the exact value you state; for example, 64 will be 64 bytes,
not 64 megabytes or 64 kilobytes.

Default Value

-Xss default values are platform-specific, as defined in Table 2-9.

Tahle 2-9 -Xss Default Values

Platform Default
Windows 1A32 64 KB

Linux 1A32 128 KB
Windows x86_64 128 KB

Linux x86_64 256 KB
Windows |1A64 320 KB

Linux 1A64 1024 KB (1 MB)
Solaris Sparc 512 KB

Flags or Other Options Affected

None

2-40 Oracle JRockit Command-Line Reference

-Xss

Exceptions

None

Oracle JRockit Command-Line Reference 2-41

-X Command-line Options

-XstrictFP

2-42

This option enables strict floating point arithmetics globally for all methods in all classes. With
-XstrictFP set, the JVM calculates with more precision, and with a greater range of values than
the Java specification requires. When you use -XstrictFP, the compiler generates code that
adheres strictly to the Java specification to ensure identical results on all platforms. Without
-XstrictFP, the JVM will not be as strict in enforcing floating point values.

This option is similar to the Java keyword strictfp; however, that keyword applies at the class
level whereas -XstrictFP applies globally. See the Java Language Specification for more
details on strictfp.

Operation

Format: -XstrictFP

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference

-Xverbose

-Xverhose

-Xverbose lets JRockit JVM output specific information about the system. The output is by
default printed to the standard output for error messages (stderr) but you can redirect it to a file
by using the -XverboseL.og command line option. The information displayed depends on the
parameter specified with the option; for example, specifying the parameter cpuinfo displays
information about your CPU and indicates whether or not the JVM can determine if hyper
threading is enabled. Table 2-10 lists the parameters available for the -Xverbose option.

Operation

Format: -Xverbose:<param[=level]>

Where param is one of the parameters described in Table 2-10 and Ievel the log level, as
described in Log Levels.

For Example:

Jjava -Xverbose:gcpause=debug myClass

enables pause time sampling and information during a run and logs messages with detailed
information of JRockit JVM’s behavior.

Note: To use more than one parameter, separate them with a comma; for example:

-Xverbose:gc,opt

Table 2-10 -Xverhose Parameters

This Parameter... Prints to the screen...

class The names of classes loaded; sample output might look like this:

[INFO J[class] Initializing bootstrap classes...

[INFO J[class] created: # 0 java/lang/Object
(/1ocalhome/jrockits/R27.5.0_R27.5.0-110_1.5.0/jre/lib/rt_jar)
[INFO J[class] 0 java/lang/Object success (0.45 ms)

[INFO J[class 1] created: # 2 java/io/Serializable
(/Vocalhome/jrockits/R27.5.0_R27.5.0-110_1.5.0/jre/lib/rt_jar)
[INFO J[class] 2 java/io/Serializable success (0.08 ms)

Oracle JRockit Command-Line Reference 2-43

-X Command-line Options

Tahle 2-10 -Xverhose Parameters

This Parameter... Prints to the screen...

codegen The names of each method that is being compiled. Verbose output for codegen might
look like this:

[codegen] 0 : 17.9411 ms

[codegen] 0 68592131 1 java.lang.Object.unlockFatReal_jvmpi
(Ljava.lang.Object;Ljava.lang.Thread;1)V: 17.94 ms

[codegen] 1 : 2.0262 ms

[codegen] 00 2
java.lang.Object.acquireMonitor(Ljava.lang.Object;11)I1: 19.97
ms

[codegen] 2 1 4.4926 ms

[codegen] 010 3
Jjava.lang.Object.unlockFat(Ljava.lang.Object;Ljava.lang.Thread
;DV: 24.46 ms

[codegen] 3 : 0.3328 ms

cpuinfo Technical information about your CPUs. Verbose output for cpuinfo might look like
this:
[cpuinfo] Vendor: Genuinelntel
[cpuinfo] Type: Original OEM
[cpuinfo] Family: Pentium 4
[cpuinfo] Brand: Intel(R) Pentium(R) 4 Mobile CPU 1.60GHz

[cpuinfo] Supports: On-Chip FPU

[cpuinfo] Supports: Virtual Mode Extensions
[cpuinfo] Supports: Debugging Extensions
[cpuinfo] Supports: Page Size Extensions

exceptions Displays exception types and messages (excluding the common types of exceptions).
Verbose output for exceptions might look like this:

[excepti][00002] java/lang/NumberFormatException: null

2-44 Oracle JRockit Command-Line Reference

-Xverbose

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

exceptions=de
bug

Displays exception types and messages (excluding the common types of exceptions).It
also displays stacktraces; Verbose output for exceptions=debug might look like this:

[excepti][00002] java/lang/NumberFormatException: null
at
jJjava/lang/Integer._parselnt(Ljava/lang/String; 1)1 (Integer.

jJava:415)

at java/lang/Integer._<init>(Ljava/lang/String;)V(Integer.
jJava:620)

at sun/net/InetAddressCachePolicy.<clinit>(QV
(InetAddressCachePolicy. java:77)

at jrockit/vm/RNI.c2java(llll)V(Native Method)

at jrockit/vm/RNI._generateFixedCode(l) 1 (Native Method)

at java/net/InetAddress.<clinit>(V(InetAddress. java:640)

at jrockit/vm/RNI.c2java(llll)V(Native Method)

at jrockit/vm/RNI._generateFixedCode(l) 1 (Native Method)

at java/net/InetSocketAddress.<init>(Ljava/lang/String;I1)V
(InetSocketAddress. java:124)

at java/net/Socket._<init>(Ljava/lang/String;)V
(Socket.java:178)

at Ex.main([Ljava/lang/String;)V(Ex.java:5)

at jrockit/vm/RNI._c2java(llll)V(Native Method)

--- End of stack trace

exceptions=tr
ace

The same information as debug, but includes the common types of exceptions. Verbose
output for exceptions=trace will look the same as
-Xverbose:exceptions=debug but also prints exceptions of types:

e java.util _EmptyStackException
e java.lang.ClassNotFoundException
e jJava.security.PrivilegedActionException

Oracle JRockit Command-Line Reference 2-4%5

-X Command-line Options

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

load

The name of each loaded Java or
[INFO J[load] opened

/localhome/jrockits/R27.

[INFO J[load] opened

/l1ocalhome/jrockits/R27.

[INFO J[load] opened

/localhome/jrockits/R27.

[INFO J[load] opened

/localhome/jrockits/R27.

_jar
[INFO J[load] Loaded

/localhome/jrockits/R27.

verify.so
[INFO J[load] Loaded

/localhome/jrockits/R27.

jJjava.so
[INFO J[load] Loaded

/localhome/jrockits/R27.

ive_threads/libhpi.so
[INFO J[load] Loaded
/l1ocalhome/jrockits/R27
zip.so

native library:

zip

5.0 R27.5.0-110_1.5.
zip

5.0 _R27.5.0-110_1.5.
zip

5.0 _R27.5.0-110_1.5.
zip
5.0_R27.5.0-110_1.5.

native library:
5.0_R27.5.0-110_1.5.

native library:
5.0_R27.5.0-110_1.5.

native library:
5.0_R27.5.0-110_1.5.

native library:
.5.0_R27.5.0-110_1.5.

0/jre/lib/rt_jar
O/jre/lib/jsse.jar
o/jre/lib/jce.jar

0/jre/lib/charsets

0/jre/lib/i386/1ib

0/jre/lib/i386/1ib

0/jre/lib/i1386/nat

0/jre/1ib/i386/1ib

gcpause

-Xverbose:gcpause gives the same output as -XgcPause.

gcreport

-Xverbose:gcreport gives the same output as -XgcReport.

2-46 Oracle JRockit Command-Line Reference

-Xverbose

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

memdbg

Turns on memory printout and adds new special memdbg printouts. Verbose output for
memdbg might look like this:

[memory] 12.875: nursery GC 89648K->89716K (89716K), 3.296 ms
[memdbg 1 nursery GC 291: promoted 1510 objects (69744 bytes)
in 3.296 ms

[memdbg] Page faults before GC: 36784, page faults after GC:
36800, pages in heap: 22429

[finalizer] (YC) Pending finalizers 0->0

[memdbg] old collection 7 started

[memdbg] Compacting 8 heap parts at index 112 (type 2)
(exceptional 0)

[memdbg] starting parallel marking phase

[memdbg] ending marking phase [memdbg] current generational
GC work score: 0.142956

[memdbg] last single generational GC work score: 0.081486
[memdbg] current error: -0.042956

[memdbg] previous nursery size: 736760

[memdbg] requested nursery size: 711984

[memdbg] starting parallel sweeping phase

[memdbg] ending sweeping phase

[memory] 11.841-12.025: GC 89716K->67088K (89716K), 184.000 ms
[memdbg] Page faults before GC: 36827, page faults after GC:
37036, pages in heap: 22429

[finalizer] (OC) Pending finalizers 0->0

Oracle JRockit Command-Line Reference 2-47

-X Command-line Options

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

memdbg with
-XgcPrio:
throughput

Turns on memory printout and adds new special memdbg printouts. A report for a JVM
running a dynamic garbage collector optimized for application throughput
(-XgcPrio:throughput) with memdbg specified might look like this:

[memdbg] nursery GC 3: promoted 22788 objects (1246K) in 28.472
ms

[memdbg] Page faults before GC: 24768, page faults after GC:
25288, pages in heap: 19170

[finaliz] (YC) Pending finalizers 0->0

[memdbg] old collection 2 started

[memdbg] OC reasons: Large obj: 1 (4021248 bytes), TLA: 1,
Promotion: 0, GCTrigger: 1, SystemGC: O, Other: O

[memdbg] Compacting 8 heap parts at index O (type 1)
(exceptional 0)

[memdbg] starting parallel marking phase

[memdbg] ending marking phase

[memdbg] current generational GC work score: 0.266484
[memdbg] last single generational GC work score: 0.000000
[memdbg] current error: -0.166484

[memory] Changing GC strategy to single generation, parallel
mark and parallel sweep

[memdbg] starting parallel sweeping phase

[memdbg] ending sweeping phase

[memdbg] expanding the heap from 74 MB to 87 MB

[memory] 15.882-16.157: GC 76680K->69203K (89716K), 275.413 ms
[memdbg] Page faults before GC: 25288, page faults after GC:
25765, pages iIn heap: 22429

[finaliz] (OC) Pending finalizers 0->0

memory;
gc

Information about the memory management system, including:
» Start time of collection (seconds since JVM start)

» End time of collection (seconds since JVM start)

* Memory used by objects before collection (KB)

» Memory used by objects after collection (KB)

» Size of heap after collection (KB)

» Total time of collection (seconds or milliseconds)

» Total pause time during collection (milliseconds)

The information displayed by -Xverbose:memory or -Xverbose:gc will vary
depending upon the type of garbage collector you are using.

2-48 Oracle JRockit Command-Line Reference

-Xverbose

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

memory;
gc
with gencon

A report for a JVM running a generational concurrent collector (-Xgc :gencon) with
memory or gc specified might look like this:

[memory] GC strategy: gencon

[memory] heap size: 65536K, maximal heap size: 785672K, nursery
size: 16384K

[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause>
ms

[memory] <s/start> - start time of collection (seconds since
Jjvm start)

[memory] <end> - end time of collection (seconds since jvm
start)

[memory] <before> - memory used by objects before collection
(KB)

[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)

[memory] <pause> - total pause time during collection
(milliseconds)

[memory] 1.069: parallel nursery GC 24995K->24810K (65536K),
40.038 ms

[memory] 1.535: parallel nursery GC 46818K->46701K (65536K),
31.319 ms

[memory] 8.698-9.247: GC 48085K->46437K (65536K), 230.190 ms
[memory] 9.252-9.915: GC 49055K->55834K (76680K), 216.105 ms
[memory] 9.928: parallel nursery GC 63287K->63287K (76680K),
20.282 ms

Oracle JRockit Command-Line Reference 2-49

-X Command-line Options

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

memory; gc

with singlecon

A report for a JVM running a single generation concurrent collector (-Xgc:singlecon)
with memory or gc specified might look like this:

[memory] GC strategy: singlecon

[memory] heap size: 65536K, maximal heap size: 785672K
[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause>
ms

[memory] <s/start> - start time of collection (seconds since
jvm start)

[memory] <end> - end time of collection (seconds since jvm
start)

[memory] <before> - memory used by objects before collection
(KB)

[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)

[memory] <pause> - total pause time during collection
(milliseconds)

[memory] 30.220-30.693: GC 65058K->55006K (76680K), 101.591 ms
[memory] 30.749-31.290: GC 76680K->73168K (89716K), 90.350 ms
[memory] 31.297-31.904: GC 79089K->89716K (104968K), 2.386 ms

memory ;
gc
with parallel

A report for a JVM running a parallel collector (-Xgc:parallel) with memory or gc
specified might look like this:

[memory] GC strategy: parallel

[memory] heap size: 65536K, maximal heap size: 785672K
[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause>
ms

[memory] <s/start> - start time of collection (seconds since
Jjvm start)

[memory] <end> - end time of collection (seconds since jvm
start)

[memory] <before> - memory used by objects before collection
(KB)

[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)

[memory] <pause> - total pause time during collection
(milliseconds)

[memory] 1.563-1.805: GC 65536K->55018K (76680K), 242.030 ms
[memory] 1.871-2.114: GC 76680K->73161K (89716K), 242.675 ms
[memory] 2.167-2.478: GC 89716K->86478K (104968K), 310.974 ms

2-50 Oracle JRockit Command-Line Reference

-Xverbose

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

memory; A report for a JVM running a dynamic garbage collector optimized for application
gc throughput (-XgcPrio:throughput) with memory or gc specified might look like this:
with -Xgcprio: [memory] GC strategy: System optimized over throughput (initial
throughput strategy singleparpar)
[memory] heap size: 65536K, maximal heap size: 785672K
[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause>
ms
[memory] <s/start> - start time of collection (seconds since
Jjvm start)
[memory] <end> - end time of collection (seconds since jvm
start)
[memory] <before> - memory used by objects before collection
(KB)
[memory] <after> - memory used by objects after collection (KB)
[memory] <heap> - size of heap after collection (KB)
[memory] <pause> - total pause time during collection
(milliseconds)
[memory] Changing GC strategy to generational, parallel mark
and parallel sweep
[memory] 1.669-1.904: GC 65536K->54455K (76680K), 234.978 ms
[memory] 1.923: parallel nursery GC 66150K->67136K (76680K),
105.995 ms
[memory] 2.039: parallel nursery GC 71236K->71203K (76680K),
58.620 ms
[memory] 2.107: parallel nursery GC 75303K->76680K (76680K),
36.650 ms
[memory] Changing GC strategy to single generation, parallel
mark and parallel sweep
[memory] 2.164-2.482: GC 76680K->69340K (89716K), 318.158 ms
opt Information about all methods that get optimized. Verbose output for opt might look like

this:

[opt] 280 2434 0 ObjAlloc.main([Ljava.lang.String;)V: 0.00 ms
[opt] O : 9.8996 ms

Oracle JRockit Command-Line Reference 2-51

-X Command-line Options

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

referents

The reference objects for each old generation garbage collection and the reference to which
they point. -Xverbose: referents corresponds to the option
-Djrockit.verboserefs in earlier JRockit JVM versions, prior to R27.2.

Each reference type is broken down by reference class and referent. In the case of handles,
only referents are shown; there are no references. The different counters tell how many
instances of each type exists and how they are reachable (or cleared).

The header/footer of the report informs what type of collection took place, how long ago
the last old collection happened and how much memory that was free at that time is
reported. If any soft references are present the user is told which softly reachable referents
are collected based on when they where last looked up through get().

The performance overhead of this log module is high.

refobj

Information on reference objects and handles at each garbage collection. At info level the
output is a summary of reference objects of different types and how many of them are
“activated”. A reference object is activated when the reachability requirements for the
reference object type are fulfilled. Upon activation, the memory management system can
clear the reference, enqueue it in a reference queue or enqueue it for finalization,
depending on the type of reference.

At debug level this module displays an improved version of the information previously
displayed by -Xverbose:referents.

The performance overhead of this log module is low on info level. On debug level, the
performance overhead is high.

This module is available in JRockit JVM R27.5 and later versions.

stackoverflow

Stack overflow errors as they occur. This output will typically be several pages long with
the same information repeated ad nauseum.This is because, if the stack overflows, the
stack trace will be extremely long and this parameter will cause the entire long stacktrace
to print.

2-52 Oracle JRockit Command-Line Reference

-Xverbose

Tahle 2-10 -Xverhose Parameters

This Parameter...

Prints to the screen...

starttime

The values of System.currentTimeMillis() and System.nanoTime() at the
time JRockit JVM started. These can be used to correlate log output between different
processes. Verbose output for starttime might look like this:

[startti] VM start time: 1152871839957 millis 171588375730523
nanos

Where:

« millisisthe number of milliseconds elapsed since midnight, January 1, 1970 UTC.
This is same value that System.currentTimeMi I I's() would render.

* nanos measures time to the resolution of one-billionth of a second (a nanosecond);
however, the time from which nanoTime () is measured (the start time) is
unspecified so that the most efficient method of measurement for different operating
systems can be used. It is the same value that System.nanoTime() would render.

systemgc

Notifies of garbage collections started by a call to System.gc() or for a reason marked
as “other” in JRA recordings and -Xverbose :memdbg outputs, for example a call to
a JMAPI function that implicitly starts a garbage collection or to the diagnostics command
runsystemgc.

A garbage collection started by a direct call to System.gc() will result in a verbose
output similar to:
[INFO J[sysgc] GC requested by thread 1

The thread number in this output is the thread ID of the thread that requests the garbage
collection.

The output for a garbage collection started by other means will have the reason for the
garbage collection printed out, for example:

[INFO J[sysgc] GC triggered for reason: Set Nursery Size
Note: In JRockit JVM R27.3 and older versions, all the -Xverbose:systemgc

outputs look the same. Furthermore, some of the garbage collections printed by
-Xverbose:systemgc and treated as “other” were not printed out.

timing

The timer resolution and, on Linux, the method used to get a time value. This is the
resolution of the timer used by the System.nanoTime() method.

Here is an example of a verbose timing report on Windows:
[INFO J[timing] Counter timer using resolution of 1779720000Hz

verboserefs

Gives the same output as referents.

Oracle JRockit Command-Line Reference 2-53

-X Command-line Options

Log Levels

Log levels identify the levels of information recorded in the log. JRockit JVM uses six logging
levels, as described in Table 2-11.

Table 2-11 -Xverhose Log Levels

Log Level Description

quiet No logging. No messages or errors are generated.

error Only error messages are logged.

warn Warning messages are logged along with errors. Still a low logging level, warn is

usually used to warn about events that could possibly lead to an error later on.

info At the info level, not only are errors and warnings logged, but also informational
messages about the current state of JRockit JVM and various JVM events. This is
the default logging level if -Xverbose is used without arguments.

debug debug logs messages with detailed information of JRockit JVM’s behavior.
Ususally, debug provides too much information for day to day logging, but useful
for debugging.

trace trace provides very verbose logging. This level is used by modules where even
the debug level would be cluttered by the amount of information generated.
Typically, trace is used when up to ten or one hundred pages of text per minute
needs to be logged.

Other Flags and Options Affected
-Xverbose must be set for the following options to work:

e -XverboseDecorations
e -Xverboselog

e —-XverboseTimeStamp

Exceptions

None

2-54 Oracle JRockit Command-Line Reference

-XverboseDecorations

-XverhoseDecorations

Use this option to set the “decorations” JRockit JVM adds to verbose printouts. Decorations are
additional information—usually system-related—used to enhance the meaningfulness of verbose
output; for example, the name of the module in which the message originated or number of
milliseconds elapsed since the current JRockit JVM session started.

Operation

Format: -Xverbosedecorations=<decoration names>
For Example:
If you include:

Jjava -Xverbose:gcpause -XverboseDecorations=timestamp,module myApp

at startup, the output will include these decorations:
e A human readable timestamp.

e The name of the module in which the message originated.
Note: You canalso use the control-break handler verbosity with the argument decorations.

The possible decorations are listed in Table 2-12.

Table 2-12 Verbose Output Decorations

Decoration Description
level Prints the logging level for the message.
millis Prints the number of milliseconds elapsed since midnight, January 1, 1970

UTC. This is same value that would be generated by
System.currentTimeMills().

millisstart Prints the number of milliseconds elapsed since JRockit JVM started.

module Prints the module in which the message originated, same as the arguments
to -Xverbose.

Oracle JRockit Command-Line Reference 2-55

-X Command-line Options

2-56

Tahle 2-12 Verhose Output Decorations

Decoration Description

nanos Prints the same value that System.nanoTime() would render.
“nanoTime” measures time to the resolution of one-billionth of a second (a
nanosecond); however, the time from which nanoTime () is measured
(the start time) is unspecified so that the most efficient method of
measurement for different operating systems can be used.

nanosstart Prints the number of nanoseconds since JRockit JVM started.

pid Prints the process ID.

threadid Prints the thread's index. This is the same value provided by idx in thread
dumps.

timestamp Prints a human readable timestamp. This is the same value you would
receive if you used the -XverboseTimeStamp option.

If you use -XverboseDecorations without specifying a decoration, the verbose output will
display the module, timestamp, and pid (in that order); for example:

D:\jrockits\R27.1.0_R27.1.0-23_1.4._2\bin>java -Xverbose:load
-Xverbosedecorations -cp L:\src\ HelloWorld

[load][Wed Sep 13 19:43:14 2006][00728] opened zip
D:\jrockits\R27.1.0_R27.1.0-23_1.4.2\jre\lib\rt._jar

Flags or Other Options Affected

This option can only be used if -Xverbose is also set, as that option turns on verbose logging.

Exceptions

None

Oracle JRockit Command-Line Reference

-Xverboselog

-XverhoselLog

This option sends messages (such as verbose output and error messages) from the Oracle JRockit
JVM to the specified file instead of stderr.

Operation

Format: -Xverboselog:myFile.txt

When this command is used with a filename and extension (for example, myFile. txt), the JVM
will write any logging information to the specified file.

For Example:

Java -Xverbose:gcpause -Xverboselog:verboseText.txt myApp

writes verbose logging information for the class myApp to a file called verboseText. txt

Flags or Other Options Affected

This option can only work if -Xverbose is set, as that option turns on verbose logging.

Exceptions

This option does not print to screen.

Oracle JRockit Command-Line Reference 2-57

-X Command-line Options

-XverboseTimeStamp

2-58

This option adds a timestamp to the verbose printout, which can be useful when logging events.

Operation

Format: -XverboseTimeStamp

You can force a timestamp to print out with other information generated by -Xverbose if you
combine it with the command -XverboseTimeStamp.

For Example:

Java -Xverbose -XverboseTimeStamp myApp

The printout generated by -XverboseTimeStamp will precede the information printed by
-Xverbose, as shown here:

L:\src>D:\jrockits\R27.1.0 R27.1.0-13_1.4._.2\bin\java -Xverbose
-XverboseTimeStamp HelloWorld

[load][Mon Sep 25 09:57:56 2006][00624] opened zip
D:\jrockits\R27.1.0_R27.1.0-13_1.4.2\jre\lib\rt._jar

Flags or Other Options Affected

This option is only effective if verbose logging is enabled either by using -Xverbose or by
enabling it at runtime.

Exceptions

None

Oracle JRockit Command-Line Reference

-Xverify

-Xverify

This option allows you to manually verify the correctness of the bytecode. By performing these
checks once at class loading time, as opposed to repeatedly during execution, this option helps
improve runtime efficiency.

Operation

Format: -Xverify:<param>

Combine this option with one of the parameters described in Table 2-13.

Table 2-13 -Xverify Parameters

<param> Description

none Will not verify the bytecode. Note that, while using this parameter can
lessen start-up time, you will lose some of the protection provided by Java.

remote Verify just those classes loaded over network.
all Verify all classes/
Default Value

If you don’t use this option, the default is to verify just those classes loaded over the network
(-Xverify:remote).

Other Flags or Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference 2-59

-X Command-line Options

2-60 Oracle JRockit Command-Line Reference

-XX Command-line Options

This section describes Oracle JRockit JVM’s -xx command-line options; these options are all
prefaced by -XX. To implement some of the options, specific system requirements must be met,
otherwise, the particular option will not work. We recommend that you use these options only

e If you have a thorough understanding of your system.

e Are aware that, if used improperly, these options can have negative effect on the stability
or performance of your system.

These options are subject to change without notice.

Note: This section contains an ever-changing list of options and is continually republished as
necessary to include any new -XX options and to indicate any deprecated -Xx options.

Oracle JRockit Command-Line Reference 3-1

-XX Command-line Options

-XXaggressive

-XXaggressive is a collection of configurations that make the JVM perform at a high speed and
reach a stable state as soon as possible. To achieve this goal, the JVM uses more internal
resources at startup; however, it requires less adaptive optimization once the goal is reached. We
recommend that you use this option for long-running, memory-intensive applications that work
alone.

Note: What this option configures is subject to change between releases.

Operation

Format: -XXagressive:<param>

Combine -xXaggressive with one of the parameters listed in Table 3-1

Table 3-1 Parameters for -XXaggresive

<param> Description

opt Schedules adaptive optimizations earlier and enables new optimizations,
which are expected to be the default in future releases.

memory Configures the memory system for memory-intensive workloads and sets
an expectation to enable large amounts of memory resources to ensure high
throughput. JRockit JVM will also use large pages, if available.

Note: Large pages cannot be swapped in some operating systems. In
these cases they are only recommended in a well-balanced system.

For Example:
Jjava -XXaggressive:opt myApp

By specifying -XXagressive with the opt parameter, adaptive optimizations will be scheduled
earlier in runtime and new optimizations will be enabled.

Default Value

If neither opt nor memory is specified, the application will run as if both were specified.

3-2 Oracle JRockit Command-Line Reference

-XXaggressive

Flags or Options Affected

This option will set several things, which can be reset or changed by adding the explicit options
on the command line after -xXaggressive.

Exceptions

None

Oracle JRockit Command-Line Reference 3-3

-XX Command-line Options

-XXallocClearChunks

3-4

This option allows you to clear a TLA for references and values at TLA allocation time and
pre-fetch the next chunk. When an integer, a reference, or anything else is declared, it has a
default value of 0 or null (depending upon type). At the appropriate time, you will need to clear
these references and values to free the memory on the heap so Java can use—or reuse—it. You
can do either when the object is allocated or, by using this option, when you request a new TLA.

Operation

Format: -XXallocClearChunks
or.
-XXallocClearChunks=<true | false>

This is a boolean option and is generally recommended on |A64 systems; ultimately, its use
depends upon the application. If you want to set the size of chunks cleared, combine this option
with -xXal locClearChunkSi ze.

Default Value

By default, this mechanism is disabled. If you use this option but do not specify a boolean value,
the default is true.

Flags or Other Options Affected

None

Exceptions

While this mechanism is, by default, disabled, it is included in aggressive:memory on 1A64
systems.

Oracle JRockit Command-Line Reference

-XXallocClearChunkSize

-XXallocClearChunkSize

When used with -xXal locClearChunkSize, this option sets the size of the chunks to be cleared.

Operation

Format: -XXal locClearChunks -XXallocClearChunkSize=<size>[k|K][m|M][glG]

Combine this option with —XXal locClearChunks to set the size of the chunks to be cleared
For Example:
java -XXallocClearChunks -XXallocClearChunkSize=256m myApp

Default Value

If this option is used but no value is specified, the default is 512 bytes.

Flags or Other Options Affected

See Operation for a description of how this option works with -XXal locClearChunks.

Exceptions

This option cannot be used unless -xXal locClearChunks is also used.

Oracle JRockit Command-Line Reference 3-5

-XX Command-line Options

-XXallocPrefetch

With this option a thread-local area is split into chunks and, when a new chunk is reached, the
subsequent chunk is prefetched.

Note: To fully benefit from this feature on Intel Xeon servers, you should disable hardware
prefetching in the computer’s BIOS.

Operation

Format: -XXal locPrefetch[=true|false]
For Example:

To enable: java -XgcPrio:pausetime -XXallocPrefetch myApp

To disable: java -XgcPrio:pausetime -XXallocPrefetch=Ffalse myApp

Default Value

This feature is enabled by default on most platforms.

Other Flags and Options Affected

You must set this option must if you want to also use -xXal locRedoPrefetch.

Exceptions

None

3-6 Oracle JRockit Command-Line Reference

-XXallocRedoPrefetch

-XXallocRedoPrefetch

With this option, an additional chunk (that is, two chunks subsequent) is prefetched whenever a
new chunk is used.

Note: To fully benefit from this feature on Intel Xeon servers, you should disable hardware
prefetching in the computer’s BIOS.

Operation

Format: -XXal locRedoPrefetch[=true|false]
For Example:

To enable: java -XXallocPrefetch -XXallocRedoPrefetch myApp

To disable: java -XXallocPerfetch -XXallocRedoPrefetch=false myApp

Default Value

This feature is enabled by default on most platforms.

Other Flags and Options Affected

None

Exceptions

This option will not work unless -xXal locPrefetch is set.

Oracle JRockit Command-Line Reference 3-7

-XX Command-line Options

-XXcallProfiling

3-8

This option enables the use of call profiling for code optimizations. Profiling records useful
runtime statistics specific to the application and can—in many cases—increase performance
because JVM can then act on those statistics.

Note: This option is supported with the JRockit JVM R27.3.0 and later version. It may become
default in future versions.

Operation

Format: -XXcallProfiling
For Example:

jJava -XXcallProfiling myApp

Default Value

This option is disabled by default. You must enable it to use it.

Other Flags and Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference

-XXcompactRatio

-XXcompactRatio

This option sets the compaction ratio. Compaction is the garbage collector’s main weapon against
fragmentation. The idea is to look at a part of the heap and move all the live objects in that part
together to create larger consecutive areas of free space. While the JVM is compacting the heap,
all threads that want to access objects have to stand still because the JVM is moving the objects
around. Consequently, only a part of the heap is compacted to reduce pause time.

In some cases, when the garbage collection time is too long it might be beneficial to reduce the
compaction area to reduce the pause times. In some other cases, especially when you are
allocating very large arrays, it may be necessary to increase the compaction area to reduce the
fragmentation on the heap and thus make allocation faster.

Note: Since JRockit JVM now employs dynamic compaction, —~XXcompactRatio is rarely
used anymore.

Operation

Format: -XXcompactRatio:<nn>

Specify a ratio ([nn]) of the compaction rate with a percentage size of the heap.
For Example:

If

Java -XXcompactRatio:10 myApp

issetina 500 MB heap, the garbage collector will compact 50 MB of the heap at each garbage/old
collection.

Default Value

If you are running a static compaction, the default is approximately 6%; however, if you are not
using static compaction, the default applies only at the beginning of the run.

Flags or Other Options Affected

Use of - XXcompactRatio will affect certain options, as described here:

e Setting -XXcompactRatio while running -XgcPrio:deterministic or -XgcPrio:
pausetime might result in non-deterministic pause times.

Oracle JRockit Command-Line Reference 3-9

-XX Command-line Options

e -XXful ICompaction is equivalent to -XXcompactRatio: 100 and they will override each
other.

e You should not use this option together with -XXthroughputCompaction as that might
reduce the throughput

Exceptions

When using -XXcompactRatio, be aware of the following exceptions:

e You cannot use -xXcompactRatio together with -XXnoCompaction since this will disable
compaction.

e You cannot set all three of -XXcompactRatio, -XXinternalCompactRatio, and
-XXexternalCompactRatio at the same time. Setting two of these options simultaneously

is allowed.

3-10 Oracle JRockit Command-Line Reference

-XXcompactSetLimit

-XXcompactSetLimit

This option sets the maximum number of references to objects in the compaction area.

Compaction is the process of moving live objects closer together in the Java heap to create larger
free areas that can be used for allocation of large objects. The JRockit JVM compacts a small part
of the Java heap at each garbage collection. The references to the objects in the compacted area
are stored in a compact-set. When running non-deterministic garbage collection, the number of
references to the compaction area will affect the compaction pause. This option can be used to
limit the size of the compact-set and thus limit the compaction pause somewhat.

Operation

Format: -XXcompactSetLimit:<size>

Enter the preferred compaction limit following the command.
For Example:

Jjava -XXcompactSetLimit:10000 myApp

sets the compaction limit to 10,000 references to objects in the compaction area.

Default Values

By default the limit is a dynamic value. The default initial value depends on the garbage collector
and release. Table 3-2 lists those defaults.

Tahle 3-2 -XXcompactSetLimit Defaults

Releases Garbage Collection Type Default Initial Value

R27.1and older A static garbage collector or -Xgcprio:pausetime 91490

R27.2 and later A static garbage collector or -Xgcprio:pausetime 299900

All -Xgcprio:throughput 7600010

All -Xgcprio:deterministic 10200

Flags or Other Options Affected

None

Oracle JRockit Command-Line Reference 3-11

-XX Command-line Options

Exceptions

When using -XcompactSetLimit, be aware of the following exceptions:

e When the compaction area size is increased due to failing object allocation, the
compact-set limit is ignored.
e You cannot use -XXcompactSetLimit together with any of the following options:
— -XXnoCompaction
— =-XXfullCompaction

— —XXusePointerMatrix

3-12 Oracle JRockit Command-Line Reference

-XXcompactSetLimitPerObject

-XXcompactSetLimitPer0Object

WARNING: This is an advanced tuning option. You should only use it if you understand
how it works and are prepared to accept the consequences of its misuse.

This option sets the maximum number of references to any single object in the compaction area.
If the number of references to an object exceeds this value, the object will not be moved during
the compaction.

Compaction is the process of moving live objects closer together in the Java heap to create larger
free areas that can be used for allocation of large objects. JRockit JVM compacts a small part of
the Java heap at each garbage collection. When an object is moved during compaction, the
references to that object must be updated. Moving an object with a lot of references to it is thus
more costly than moving an object with only a few references to it.

Operation

Format: -XXcompactSetLimitPerObject:<size>
For example:

Jjava -XXcompactSetLimitPerObject:500 myApp

sets the compaction limit per object to 500 references.

Default Value

The default value is 100

Flags or Other Options Affected

None

Exceptions

This option can only be used if one of the following options is also set:
e -XgcPrio:deterministic
e -XgcPrio:pausetime

o -XXusePointerMatrix

Oracle JRockit Command-Line Reference 3-13

-XX Command-line Options

-XXcompressedRefs

3-14

This flag governs the use of compressed references, limiting all pointers stored on the heap to 32
bits. Compressed references use fewer Java heap resources and transport less data on the memory
bus, thus improving performance. This option is also useful because it frees space on the heap
that might not have been available had the references not been compressed.

Operation

Format: -XXcompressedRefs[=[true] 1| false|0]]
For Example:

Jjava -XgcPrio:pausetime -XXcompressedRefs=true myApp

enables compressed references.
or

Jjava -XgcPrio:pausetime -XXcompressedRefs=0 myApp

disables compressed references.

Default Value

If -XXcompressedRefs is not specified, compressed references are enabled on all 64-bit
machines as long as the heap size is less than 4 GB. This is typically controlled using the -Xmx
flag.

Note: Inthe JRockit JVM R26.4 and earlier, compressed references are disabled by default.

Flags or Other Options Affected

Other command-line options are affected by -xXcompressedRefs as described here:

o If you use this option with an initial heap size (-Xms) that is too large, execution will stop
and an error message will be generated.

o |f you do not specify compressed references explictly by using this option and you specify
either an initial heap (-Xms) or a maximum heap (-Xmx) that is too large for compressed
references, JRockit JVM will stop.

Exceptions

The following exceptions apply:

Oracle JRockit Command-Line Reference

-XXcompressedRefs

o If compressed references are not available on given hardware or operating system, a
warning will be printed and execution will be stopped.

e The heap size will be limited to less than 4 GB; therefore, you can only use this option for
applications that demand less than 4 GB of live data. The heap will be reduced to meet this
size limitation if you specify a larger initial (-Xms) or maximum (-Xmx) heap size.

Oracle JRockit Command-Line Reference 3-15

-XX Command-line Options

-XXdisableFatSpin

3-16

This option disables the fat lock spin code in Java, allowing threads that block trying to acquire
a fat lock go to sleep directly.

Obijects in Java become a lock as soon as any thread enters a synchronized block on that object.
All locks are held (that is, stayed locked) until released by the locking thread. If the lock is not
going to be released very fast, it can be inflated to a “fat lock.” “Spinning” occurs when a thread
that wants a specific lock continuously checks that lock to see if it is still taken, spinning in a tight
loop as it makes the check. Spinning against a fat lock is generally beneficial although, in some
instances, it can be expensive and might affect performance. -XxdisableFatSpin allows you to
turn off spinning against a fat lock and eliminate the potential performance hit.

Operation

Format: -XXdisableFatSpin

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference

-XXdisableGCHeuristics

-XXdisahleGCHeuristics

This option disables the garbage collector strategy changes. Compaction heuristics and nursery
size heuristics are not affected by this option.

Operation

Format: -XXdisableGCHeuristics

Default Value

By default, the garbage collection heuristics are enabled.

Flags or Other Options Affected

None

Exceptions

In releases prior to R27.5, this option requires that either -XgcPrio: throughput or
-XgcPrio:pausetime is being used. It does not work with -Xgc or -XXsetGC. Note that
-XgcPrio:throughput is default.

In the JRockit JVM R27.5 and later releases this option also disables temporary strategy changes
to parallel mark or sweep in the static concurrent garbage collectors.

Oracle JRockit Command-Line Reference 3-17

-XX Command-line Options

-XXdumpFullState

3-18

Usually when the JRockit JVM crashes it saves out the state of the process (called a core dump),
but the heap is removed from this state since it is huge and would take up a lot of disk space. With
this option we will save all the process state including the heap. More disk space will be used, but
it makes it much easier for us to use the core dump to find out what the problem was that caused
the crash. This option saves a significant amount of information to disk. If you don’t want to save
all the information that -XXdumpFul IState saves, use -XXdumpSize:normal.

This option is the default.

Operation

Format: -XXdumpFul IState

Flags or Other Options Affected

-XXdumpFul 1State is equivalent to -XXdumpsize: large. For more information, see
-XXdumpSize.

Exceptions

None

Oracle JRockit Command-Line Reference

-XXdumpSize

-XXdumpSize

This option causes a dump file to be generated and allows you to specify the relative size of that
file (that is, small, medium, or large).

Operation

Format: -XXdumpsize:<File Size>

Use the command with one of the parameters listed in Table 3-3 to specify the relative size of the

dump file.

Table 3-3 Parameters for -XXdumpsize

<Flle Size>

Description

none

does not generate a dump file.

small

On Windows, a small dump file is generated (on Linux a full core dump
is generated). A small dump only include the thread stacks including their
traces and very little else. This was the default in the JRockit JVM 8.1

with service packs 1 and 2, as well as 7.0 with service pack 3 and higher).

normal

Causes a normal dump to be generated on all platforms. This dump file
includes all memory except the java heap. This is the default value for the
JRockit JVM 1.4.2 and later.

large

Includes everything that is in memory, including the Java heap. This
option makes -XXdumpSize equivalent to -XXdumpFul 1State.

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference 3-19

-XX Command-line Options

-XXexitOnOut0fMemory

This option makes JRockit JVM exit on the first occurrence of an out of memory error. It can be
used if you prefer restarting an instance of JRockit JVM rather than handling out of memory
errors.

Operation
Format: -XXexitOnOutOfMemory

Enter this command at startup to force JRockit JVM to exit on the first occurrence of an out of
memory error

Flags or Other Options Affected

None

Exceptions

None

3-20 Oracle JRockit Command-Line Reference

-XXexternalCompactRatio

-XXexternalCompactRatio

This option sets the number of heap parts to compact during external compaction (also called
“evacuation”).

Note: You can change the total number of heap parts by using the command line option
-XXheapParts.

Operation

Format: -XXexternalCompactRatio=nn
For Example:
Java -XXexternalCompactRation=12 myApp

Default Value

The default number of parts to compact is 8 for -XgcPrio: throughput, for all other garbage
collection modes it is dynamic.

Flags or Other Options Affected

Using this option together with -XgcPrio or -XXthroughputCompaction disables parts of the
dynamic compaction heuristics and can affect performance.

Exceptions

When using -XXexternalCompactRatio, be aware of these exceptions:

e The external compact ratio set by this option is ignored when external compaction of the
end of the heap is done for the purpose of shrinking the heap. It is also ignored if an
increased compact ratio is required for avoiding an Out of Memory Error

e You cannot use -XXexternalCompactRatio together with the following options:

— -XXstaticCompaction

— —-XXnoCompaction

e You cannot set these three options simultaneously:
— -XXcompactRatio
— -XXinternalCompactRatio

— -XXexternalCompactRatio

Oracle JRockit Command-Line Reference 3-21

-XX Command-line Options

Setting two of them is allowed.

3-22 Oracle JRockit Command-Line Reference

-XXfullCompaction

-XXfullCompaction

-XXful ICompaction causes full compaction at all times, compacting the entire heap at each old
collection. Compaction is the process of moving live objects closer together in the Java heap to
create larger free areas that can be used for allocation of large objects. By default, the JRockit
JVM compacts a small part of the Java heap at each garbage collection. Full compaction can
increase the application throughput by minimizing the fragmentation of the heap but can also
cause extremely long garbage collection pauses during the compaction.

Operation
Format: -XXful ICompaction

Enter this command at startup to force full compaction. This is the only way to ensure that full
compaction occurs.

Flags or Other Options Affected

When using -XxXful ICompaction, be aware of the following:

e Setting -xXFful ICompaction is the same as setting -XXcompactRatio:100.

e You should not use this option together with -XXthroughputCompaction as that might
reduce the throughput.

Exceptions

You cannot use -xXful ICompaction together with any of the following options:
o -XXnoCompaction
o -XXcompactSetLimit

e -XXstaticCompaction

Oracle JRockit Command-Line Reference 3-23

-XX Command-line Options

-XXfullSystemGC

3-24

This option causes the garbage collector to do a full garbage collection every time System.gc(Q)
is called. Full garbage collection includes old space collection and the elimination of soft
references. Use this option when you want the garbage collector to do maximum garbage
collecting every time you explicitly invoke a garbage collection from Java.

This option is useful when the default garbage collector doesn’t free enough memory; however,
using it can cause longer garbage collection pauses.

Operation
Format: -XXful ISystemGC

When you use this option, if an old space collection is already running when System.gc() is
called, it will first wait for it to finish and then trigger a new old space collection.
-XXful ISystemGC frees all softly referenced objects.

Flags or Other Options Affected

None

Exceptions

You cannot use -XXful 1SystemGC together with -XXnoSystemGC.

Oracle JRockit Command-Line Reference

-XXgcThreads

-XXgcThreads

This option specifies how many garbage collection threads the garbage collector will use. This
applies both to parallel nursery and parallel old space collectors as well as the concurrent and
deterministic collector.

Operation

Format: -XXgcthreads:<# threads>
For Example:

Jjava -XgcPrio:pausetime -XXgcThreads:4 myApp

sets “4” as the number of garbage collection threads the garbage collector can use during the
parallel phases.

Default Value

By default, these values are based on the number of cores and hardware threads on the machine.

Flags and Other Options Affected

None

Exceptions
This option is valid only from JRockit JDK 5.0 P26.0.0 and JRockit JDK 5.0 R26.4.0.

Oracle JRockit Command-Line Reference 3-25

-XX Command-line Options

-XXgcTrigger

3-26

This option determines how much free memory should remain on the heap when a concurrent
garbage collection starts. If the heap becomes full during the concurrent garbage collection, the
Java application can’t allocate more memory until the garbage collection frees some heap space,
which might cause the application to pause. While the trigger value will tune itself in runtime to
prevent the heap from becoming too full, this automatic tuning may take too long. Instead, you
can use -XxgcTrigger to set from the start a garbage collection trigger value more appropriate
to your application.

If the heap becomes full during the concurrent mark phase, the sweep phase will revert to parallel
sweep (unless -XxnoParSweep has been specified). If this happens frequently and the garbage
collection trigger doesn't increase automatically to prevent this, use -xXgcTrigger to manually
increase the garbage collection trigger.

Operation

Format: -XXgcTrigger:nn

Where nn is the amount of free heap, as a percentage of the heap, available when a garbage
collections triggered.

For example:
Java -XXgcTrigger:50 myApp

With this option set, JRockit JVM will trigger a garbage collection when 50% of the heap—for
example, about 512 MB on a 1 GB heap—or less remains free. The current value of the garbage
collection trigger will appear in the -Xverbose :memdbg outputs whenever the trigger changes.

Default Value

If -XXgcTrigger isn’t specified, the system will try to automatically find a good percentage
value. If -XXgcTrigger:nn is specified, it will be used instead and no automatic process is
involved.

Other Flags and Options Affected

None

Oracle JRockit Command-Line Reference

-XXgcTrigger

Exceptions

The garbage collector ignores the -XXgcTrigger value when it runs both parallel mark and
parallel sweep, for example if you specify -Xgc:singlepar or -Xgc:genpar on the command
line.

Oracle JRockit Command-Line Reference 3-27

-XX Command-line Options

-XXheapParts

3-28

This option sets the number of heap parts to a specified, static value.

Operation

Format: -XXheapParts=nn

For Example:
Jjava -XXheapParts=64 myApp

Default Value

The default number of heap parts is 128. The number of heap parts can increase during runtime.

Flags or Other Options Affected

The options -xXexternalCompactRatio and -XXinternalCompactRatio use heap parts as a
unit. Changing the number of heap parts will thus affect how you should set these options.

Exceptions

None

Oracle JRockit Command-Line Reference

-XXhpm

-XXhpm

This option uses hardware performance counters instead of software sampling in the HotSpot
detector, which drives optimizations. The hardware performance counters gives higher accuracy
for the hot spots sampling with better performance. This option is disabled b default.

Operation

Format: -XXhpm

Other Flags Affected

None

Exceptions

This option is available with and supported on Itanium for Red Hat 4.0 and SuSE 9.0.

Oracle JRockit Command-Line Reference 3-29

-XX Command-line Options

-XXinitialPointerVectorSize

3-30

WARNING: This is an advanced tuning option. You should only use it if you understand
how it works and are prepared to accept the consequences of its misuse.

This option sets the initial size of each “row” in the pointer matrix. The pointer matrix is a data
structure used for storing references during compaction if -XgcPrio:deterministic or
-XgcPrio:pausetime is used, or if -XXusePointerMatrix is set. Increasing the initial pointer
vector size will increase the JRockit JVM’s memory footprint, but may in some cases increase
the application throughput.

Operation

Format: -XXinitialPointerVectorSize:<size>
For Example:

Jjava -XXinitialPointerVectorSize:40 myApp

sets the initial pointer vector size to 40 references.

Default Value

The default value is 20

Flags or Other Options Affected

None

Exceptions

This option works only when either -XgcPrio:deterministic or -XgcPrio:pausetime are
used or if -XXusePointerMatrix is set.

Oracle JRockit Command-Line Reference

-XXinternalCompactRatio

-XXinternalCompactRatio

Sets the number of heap parts to compact during internal compaction.

Note: The total number of heap parts can be changed with the command line option
-XXheapParts.

Operation

Format: -XXinternalCompactRatio=nn

For Example:
Jjava -XgcPrio:throughput -XXinternalCompactRatio=12 myApp

Sets the number of heap parts to compact to 12. Note that, since -XgcPrio: throughput is being
used with this command, this overrides the default value of eight parts.

Default Value

The default number of parts to compact is 8 for -XgcPrio: throughput, for all other garbage
collection modes it is dynamic.

Flags or Other Options Affected

Using this option together with -XgcPrio or -XXthroughputCompaction disables parts of the
dynamic compaction heuristics and can affect performance.

Exceptions

When using -XXinternalCompactRatio, be aware of the following exceptions:

e The internal compact ratio set by this option is ignored if a temporarily increased
compaction is required for avoiding an Out of Memory Error.

e You cannot use -xXXinternalCompactRatio together with the following options:
— -XXstaticCompaction
— —-XXnoCompaction

e You cannot set these three options simultaneously:
— -XXcompactRatio

— -XXinternalCompactRatio

Oracle JRockit Command-Line Reference 3-31

-XX Command-line Options

— -XXexternalCompactRatio

You can set two of them at the same time, however.

3-32 Oracle JRockit Command-Line Reference

-XXjra

-XXjra

This option enables JRA recordings. A JRA recording is a way for you to get statistics on the
JRockit JVM instance you are running.

Note: This command was added beginning with JRockit JVM 1.4.2_04. Prior to that, a separate
command was required for each permutation of the command, as described in Table 3-4.

Operation

Format: Format is determined by your JRockit JVM version:

e [f you are running the JRockit JVM version 1.4.2_04 or later use the command -xXjra
together with the parameters listed in the JRockit JVM 1.4.2_04 or Later in Table 3-4; for

example:

-XXjra:delay

e If you are running the JRockit JVM version 1.4.2_03 or earlier, you need to set each
parameter with its own startup option (listed in JRockit JVM 1.4.2_03 or Earlier in
Table 3-4).; for example:

-XXjrabelay

Table 3-4 Command Line Startup Parameters for JRA

JRockit JVM 1.4.2_04 or Later

JRockit JYM 1.4.2_03 or
Earlier

Description

delay

-XXjraDelay

Amount of time, in seconds, to wait before
recording starts.

recordingtime

-XXjraRecordingTime

Duration, in seconds, for the recording. This
is an optional parameter. If you don’t use it,
the default is 60 seconds)

filename

-XXjraFilename

The name of recording file. This is an
optional parameter. If you don’t use it, the
default is jrarecording.xml.

sampletime

-XXjraSampleTime

The time, in milliseconds, between samples.
Do not use this parameter unless you are
familiar with how it works. This is an
optional parameter.

Oracle JRockit Command-Line Reference 3-33

-XX Command-line Options

Table 3-4 Command Line Startup Parameters for JRA

JRockit JVM 1.4.2_04 or Later JRockit JVM 1.4.2_03 or

Description

Displays method samples in native code; that
is, you will see the names of functions written
in C-code. This is an optional parameter.

Enables stack traces when set to true, with
a maximum depth of 16 (default) or the value
of the tracedepth parameter.

When methodtraces is set to false it uses
the default value from the hotspotdetector
(3), or if the hotspotdetector is not running
(-Xnoopt) it uses no stack traces.

Earlier
nativesamples -XXjraNativeSamples
methodtraces Not applicable
tracedepth Not applicable

Allows you to set the maximum stack trace
depth value in JRA recordings above the
default of 16 frames.

Note: You can also increase the maximum
stack trace depth by using his
parameter with the jrarecording
control-break handler.

heapstat=<true | false> Notapplicable

Allows you to enable or disable the tracking
of heap statistics.

e -XXjra:heapstat=true enables
heap statistic tracking

e -XXjra:heapstat=false disables
heap statistic tracking.

This tracking is enabled by default but, under
certain circumstances can adversely affect
transaction latency. In those situations, it is
strongly recommended that you disable heap
statistic tracking.

methodsampling=<true | Notapplicable When set to true, this command enables
false> method sampling.

gcsampling=<true | Not applicable When set to true, this command enables the
false> presentation of garbage collection

information.

3-34 Oracle JRockit Command-Line Reference

Table 3-4 Command Line Startup Parameters for JRA

-XXjra

JRockit JVM 1.4.2_04 or Later

JRockit JVM 1.4.2_03 or
Earlier

Description

zip=<true | false>

Not applicable

When set to true, this command causes the
recording file to be sipped up into a smaller
file.

hwsampling=<true |
false>

Not applicable

When set to true and if it is possible on the
machine, this command tells the JRA to
sample the hardware.

threaddump=<true |
false>

Not applicable

When set to true, this command forces a
thread dump at the beginning and at the end
of the recording.

threaddumpinterval=nn[
ns|ms|s]

Not applicable

Forces a thread dump at the specified interval
(=nn). The interval can be set in nanoseconds
(ns), milliseconds (ms) or seconds (s); for
example:

threaddumpinterval=10ms

sets the thread dump interval at 10
milliseconds.

latency=<true | false>

Not applicable

When set to true, this command enables the
Latency Analysis Tool (LAT).

latencythreshold=nn[ns
Ims|s]

Not applicable

Tells the LAT to record only those events that
last longer than time the specified. The
interval can be set in nanoseconds (ns),
milliseconds (ms) or seconds (s); for
example:

latencythreshold=10ms

instructs the LAT to record only events that
last longer10 milliseconds

Oracle JRockit Command-Line Reference 3-35

-XX Command-line Options

Table 3-4 Command Line Startup Parameters for JRA

JRockit JVM 1.4.2_04 or Later JRockit JVM 1.4.2_03 or Description

Earlier
cpusamples=<true | Not applicable When set to true, this command tells the
false> JRA to sample CPU usage during the
recording.
cpusamplesinterval=nn[Notapplicable This command sets the interval for CPU
ns|ms|s] sampling during the recording. The interval

can be set in nanoseconds (ns), milliseconds
(ms) or seconds (s); for example:

cpusamplesinterval=10ms

say that CPU usage will be sampled every 10
milliseconds.

For Example:

Java -XXjra:delay=10, recordingtime=100, filename=jrarecording2.xml myApp
would result in a recording that:

e Commenced ten seconds after the JRockit JVM started (delay=10).

e Lasted 100 seconds (recordingtime=100).

e Was written to a file called jrarecording2.xml (filename=jrarecording2.xml).

To replicate this data with the JRA version released with the JRockit JVM 1.4.2_03 or older, you
would need to enter the following four separate commands:

e —-XXjraDelay=10
o -XXjraRecordingTime=100

e -XXjraFilename=jrarecording2.xml

Avoid Using Multiple Options

Do not add multiple -xXj ra options to the command line. If you do, all -XXj ra options except
the final one will be discarded; for example, if you enter:

Java -XXjra:filename=apa.jra -XXjra:delay=10 -XXjra:time=11 Hello

You get the same result as if you’d simply entered:

3-36 Oracle JRockit Command-Line Reference

-XXjra

Jjava -XXjra:time=11 Hello

This is because each time -XXjra is parsed, the default values are reset, then the sub-arguments
given to this argument are parsed and set. Instead, to get the result you expect from the first
example, you should enter:

Java -XXjra:filename=apa.jra,delay=10,time=11 Hello

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference 3-37

-XX Command-line Options

-XXkeepAreaRatio

3-38

This option sets the size of the keep area within the nursery as a percentage of the nursery. The
keep area prevents newly allocated objects from being promoted to old space too early.

Note: This option is only available in JRockit JVM R27.3 and later releases.

Operation

Format: -XXkeepAreaRatio:<percentage>
For Example:

Jjava -XXkeepAreaRatio:10 myApp

sets the keep area size to 10% of the nursery size.

Default Value

By default the keep area is 25% of the nursery size. The keep area may not exceed 50% of the
nursery size.

Flags or Other Options Affected

None

Exceptions

The keep area ratio is only valid when the garbage collector is generational.

Oracle JRockit Command-Line Reference

-XXlargeObjectLimit

-XXlargeObjectLimit

This option sets a size for when an object is considered large (in terms of memory management).
Obijects larger than the limit are considered large and will not be allocated in TLAs. These are
default limits that you can change by using the -xXlargeObjectLimit:nn. These limits apply
to JRockit JVM 1.4.2 and higher only.

Operation

Format: -XXlargeObjectLimit:<size>[k|K]1[mIM][glG]

Combine the -XXlargeObjectLimit with a memory value and unit (<value><unit>).
For Example:

Java -XXlargeObjectLimit:6K myApp

sets the large object limit to 6 kilobytes. There is no minimum or maximum large object limit.

Default Value

If no value is specified, the default is set to whichever is the lower value of the minimum TLA
size and the preferred TLA size divided by 2.

Flags or Other Options Affected

When you set the minimum and/or the preferred TLA size, the large object limit as well as the
minimum block size (set with -xXminBlockSize) may be adjusted automatically by JRockit
JVM if necessary. At all times, the following relations are maintained between minimum and
preferred TLA size, large object limit, and minimum block size:

-XXlargeObjectLimit <= -XXtlaSize:min <= -XXminBlockSize
-XXtlaSize:min <= -XXtlaSize:preferred

If you set two or more of the options, then you must make sure that the values you use fulfil these
criteria.

It is recommended to that you primarily set the TLA size parameters for memory management
tuning purposes, while you let JRockit JVM automatically adjust the large object limit and
minimum block size if necessary.

Exceptions

None

Oracle JRockit Command-Line Reference 3-39

-XX Command-line Options

-XXlargePages

This an old option that tells JRockit JVM to use large pages, if they are available, for the Java

heap and other areas in the JVM. Large pages allow your application to more effectively use the
translation look-aside buffer (TLB) in the processor.

Note: This is no longer the preferred option for enabling large pages. Instead, you should use
-XlargePages.

3-40 Oracle JRockit Command-Line Reference

-XXlazyUnlocking

-XXlazyUnlocking

When -XXlazyUnlocking is set, locks will not be released when a critical section is exited.
Instead, once a lock is acquired, the next thread that tries to acquire such a lock will have to ensure
that the lock is or can be released. It does this by determining if the initial thread still uses the
lock. A shared lock will convert to a normal lock and not stay in lazy mode.

Operation

Format: -XXlazyUnlocking
For Example:

jJava -XXlazyUnlocking myApp

This example enables lazy unlocking in JRockit JVM R27.4 and older releases.
R27.5 Format: -XXlazyUnlocking:enable=<true]false>
For Example:

Java -XXlazyUnlocking:enable=false myApp

This example disables lazy unlocking in JRockit JVM R27.5.

Default Value

In R27.5 lazy unlocking is enabled by default in Java SE 6 versions of JRockit JVM on all
platforms except 1A64 and with all garbage collection modes except the deterministic garbage
collection mode.

Lazy unlocking is disabled by default in older releases.

Other Flags and Options Affected

None

Exceptions

This option is intended for applications with many unshared locks. Be aware that it can introduce
performance penalties with applications that have many short-lived but shared locks.

Oracle JRockit Command-Line Reference 3-411

-XX Command-line Options

-XXmaxPooledPointerVectorSize

3-42

WARNING: This is an advanced tuning option. You should only use it if you understand
how it works and are prepared to accept the consequences of its misuse.

This option sets the maximum limit for pooling large pointer vectors between garbage
collections. The pointer vectors are rows in the “pointer matrix,” a data structure used for storing
references during compaction if -XgcPrio:deterministic or -XgcPrio:pausetime is used,
or if -XXusePointerMatrix is set. Increasing the maximum pooled pointer vector size will
increase JRockit JVM’s memory footprint, but can, in some cases, increase the application
throughput.

Operation

Format: -XXmaxPooledPointerVectorSize:<size>
For Example:

Java -XXmaxPooledPointerVectorSize:8000 myApp

sets the maximum limit for pooling large pointer vectors to 8,000.

Default Value
The default value is 5120

Flags or Other Options Affected

None

Exceptions

This option only has effect when -XgcPrio:deterministic or -Xgcprio:pausetime is used,
or if -XXusePointerMatrix is set.

Oracle JRockit Command-Line Reference

-XXmme

-XXmme

This flag enables the mixed mode Java execution feature (MME). This feature is supported on
64-bit Intel Itanium Linux system. It allows user Java applications that contain 32-bit 1A-32 JNI
native code to run on an unmodified Intel Itanium platform.

Operation

Format: -XXmme
To enable mixed mode Java execution, enter this:

Java -XXmme myApp

Default Value

If -XXmme is not specified, the mixed mode Java execution feature is disabled.

Flags or Other Options Affected

None

Exceptions

This feature is only available on 64-bit Intel Itanium systems. Currently, the only supported
operating system is Red Hat Enterprise Linux 4 Update 4 with Intel 1A-32 Execution Layer v6 or
later installed.

Oracle JRockit Command-Line Reference 3-43

-XX Command-line Options

-XXminBlockSize

3-44

-XXminblocksize setsthe minimum block size, which is the smallest memory area that will be
returned to the freelist. Consequently, this option sets the smallest available chunk of memory on
the freelists.

Note: This option might not always be the best solution for setting a block size. In most
instances, you will experience better results if you use -XXtlaSize.

Operation

Format: -XXminBlockSize:<memSize>
Where <memSize> is the size of the memory area that will be returned to the freelist.

To speed up garbage collection and object allocation, the JVM ignores free chunks smaller than
the minimum block size. Free chunks smaller than the minimum block size cannot be used for
object allocation; these free chunks are called “dark matter.” Dark matter is wasted heap memory.
Increasing the minimum block size will make allocation of large objects faster and may speed up
garbage collection, but may also increase the amount of dark matter. An increased amount of dark
matter will increase the number of garbage collections.

Default Value
The default block size is 2 KB.

Flags or Other Options Affected

None

Exceptions

If two or more of -XXlargeObjectLimit, -XXtlaSize, and -XXminBlockSize are set, they
must have the following relationship:

-XXlargeObjectLimit <= -XXtlaSize <= -XXminBlockSize

Default Value

If no value is specified, the default is set to whichever is the lower value of the minimum TLA
size and the preferred TLA size divided by 2.

Oracle JRockit Command-Line Reference

-XXminBlockSize

Flags or Other Options Affected

The large object limit (set with -xXlargeObjectLimit) as well as the minimum block size may
be adjusted automatically by JRockit JVM if you set the minimum and/or the preferred TLA size,

At all times, the following relations are maintained between minimum and preferred TLA size,
large object limit, and minimum block size:

-XXlargeObjectLimit <= -XXtlaSize:min <= -XXminBlockSize

-XXtlaSize:min <= -XXtlaSize:preferred

If you set two or more of the options, then you must make sure that the values you use fulfil these
criteria.

It is recommended to that you primarily set the TLA size parameters for memory management
tuning purposes, while you let JRockit JVM automatically adjust the large object limit and
minimum block size if necessary.

Exceptions

None.

Oracle JRockit Command-Line Reference 3-45

-XX Command-line Options

-XXnoCompaction

3-46

Disables compaction during garbage collection. Compaction is the process of moving live objects
closer together in the Java heap to create larger free areas that can be used for allocation of large
objects. Disabling compaction may reduce garbage collection pause times, but may also lead to
fragmentation in the Java heap and thus lower the application throughput or in the worst case
cause an OutOfMemoryError to be thrown.

Operation

Format: -XXnocompaction

During every garbage collection, at least a partial compaction is done. If you prefer no
compaction, assuming the application can survive without it, you must use this command at
startup to disable it.

Flags or Other Options Affected

None

Exceptions

You cannot use the following options if compaction is disabled:
o -XXcompactRatio
o -XXFullCompaction
o -XXcompactSetLimit

e —-XXstaticCompaction

Oracle JRockit Command-Line Reference

-XXnoJITInline

-XXnoJITInline

This option turns off JIT inlining through JRockit JVM. “JIT inlining” inlines calls to small
methods as soon as they are encountered in the code pipeline.

Note: Using this option will cause a small performance penalty.

Operation

Format: -XXnoJITInline

Flags and Other Options Affected

You should only use this option in combination with -XnoOpt. -XXnoj i tinline only disables
inlining the first time a method is compiled. Unless you set -XnoOpt as well, methods can still
be inlined when code is optimized.

Exceptions

None

Oracle JRockit Command-Line Reference 3-47

-XX Command-line Options

-XXnoSystemGC

3-48

This option prevents a call to System.gc () from starting a garbage collection. If your application
uses System.gc() and you want to the garbage collector itself to decide when to run the
collection (default behavior), you should use this option. This option is useful in some debugging
situations and might also enhance performance as it prevents unnecessary garbage collection
from happening.

Operation
Format: -XXnoSystemGC

Simply enter the command in the above format at startup. This option can cause longer garbage
collection pauses in some cases, but generally, it makes the application perform better.

Flags or Other Options Affected

This option will also cause -XXprintSystemGC to print out different information than if this
option is not used.

Exceptions

You cannot use -XXnoSystemGC together with -XXful 1SystemGC.

Oracle JRockit Command-Line Reference

-XXoptThreads

-XXoptThreads

This option tells the JVM how many threads to use for the optimizing methods. The work of
optimizing methods run in the background.

Operation

Format: -XXoptThreads:<# threads>

Enter this option at the command line.
For Example:

Java -XgcPrio:pausetime -XXoptThreads:3 myApp

tells the JVM to use three threads for the optimizing methods.

Default Value

If -XXoptThreads is not specified, one thread is used for the optimizing methods.

Other Options or Flags Affected

None

Exceptions
This option is valild only from JRockit JVM 5.0 P26.0.0 and JRockit JVM 5.0 R26.4.0.

Oracle JRockit Command-Line Reference 3-49

-XX Command-line Options

-XXpointerMatrixLinearSeekDistance

3-50

WARNING: This is an advanced tuning option. You should only use it if you understand
how it works and are prepared to accept the consequences of its misuse.

This option sets the linear seek distance in the pointer matrix. The pointer matrix is a data
structure used for storing references during compaction if -XgcPrio:deterministic or
-XgcPrio:pausetime is used, or if -XXusePointerMatrix is set. Decreasing the linear seek
distance increases JRockit JVM's memory footprint, but can, in some cases, increase the
application throughput.

Operation

Format: -XXpointerMatrixLinearSeekDistance:<distance>
For Example:

Jjava -XXpointerMatrixLinearSeekDistance:5 myApp

sets the linear seek distance to 5

Default Value

The default value is 10

Flags or Other Options Affected

None

Exceptions

This option works only when -XgcPrio:deterministic or -XgcPrio:pausetime is used, or
if -XXusePointerMatrix is set.

Oracle JRockit Command-Line Reference

-XXprintSystemGC

-XXprintSystemGC

This option causes printing of the thread ID of the thread requesting the garbage collection. This
option provides information about the frequency with which System_gc() is invoked. The
printout is different if using -XxnoSystemGC. With that option, the thread ID is not printed,;
instead, the only information appearing indicates that System.gc() was called but the request
was denied.

Operation
Format: -XXprintSystemGC

Entering this option as shown above causes the threadlD to be printed out whenever
System.gc() is invoked.

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference 3-51

-XX Command-line Options

-XXsetGC

3-52

This option turns off the dynamic garbage collector and sets the static garbage collector of your
choice. Applications with static behavior and work load might benefit from having a static
garbage collector instead of a dynamic one. In such cases this option would be beneficial. This
option offers more garbage collector mode selections than -Xgc.

Operation

Format: -XXsetGC: [gen/single|par/con|par/con] myApp

You can choose a garbage collector that is either generational or single spaced with a parallel or
a concurrent mark and uses either a parallel sweep or a concurrent sweep.

e Generational Garbage Collection

During a two-generational garbage collection, the heap is divided into two sections: an old
generation and a young generation—also called the “nursery.” Objects are allocated in the
nursery and when it is full, the JVM stops all Java threads and moves the live objects from
the nursery, young generation, to the old generation.

e Single-spaced Garbage Collection

The single-spaced option of garbage collection means that all objects live out their lives in
a single space on the heap, regardless of their age. In other words, a single-spaced garbage
collector does not have a nursery.

e Concurrent Mark/Sweep Algorithm

The concurrent garbage collection algorithm does its marking and sweeping “concurrently”
with all other processing; that is, it does not stop Java threads to do the complete garbage
collection.

o Parallel Garbage Collection Mark/Sweep Algorithm

The parallel garbage collection algorithm stops Java threads when the heap is full and uses
every CPU to perform a complete mark and sweep of the entire heap. A parallel garbage
collector can have longer pause times than concurrent garbage collectors, but it maximizes
application throughput. Even on single CPU machines, this maximized performance makes
parallel the recommended garbage collector, provided that your application can tolerate the
longer pause times.

For Example:

The command:

Oracle JRockit Command-Line Reference

-XXsetGC

Jjava -XXsetGC:genparcon myApp

sets the garbage collection option to generational (two-spaced) with a parallel mark algorithm and
a concurrent sweep algorithm.

The command:

Jjava -XXsetGC:singleconpar myApp

sets the garbage collection option to single-spaced with a concurrent mark algorithm and a
parallel sweep algorithm.

WARNING: Use this option only if you know the different effects of different garbage
collection strategies. The garbage collector modes offered by -Xgc are sufficient
for most applications.

Flags or Other Options Affected

When you specify -XXsetGC, the following options are affected:
e Setting -xXsetGC will override -Xgc and vice versa

e Setting -XxsetGC will override part of the effect of -server and -client.

Exceptions

When using -XXsetGC, be aware of the following exceptions:

o |If you set a static garbage collector, you will not be able to fully use the management API,
that is, some functions of the API will not be available.

e You cannot use -XXsetGC together with any of the following options:
— -XgcPrio

— -XpauseTarget

Oracle JRockit Command-Line Reference 3-53

-XX Command-line Options

-XXstaticCompaction

3-54

This option sets a static compact ratio and simple “sliding window” heuristics for compaction
area choice.

Compaction is the process of moving live objects closer together in the Java heap to create larger
free areas that can be used for allocation of large objects. JRockit JVM uses partial compaction,
where only a small part of the Java heap is compacted each garbage collection. The default
heuristics for choosing the compaction area size and position aim at keeping the compaction
pause times even. If the application isn't sensitive to pausetimes, a static compaction area size and
simple “sliding window” compaction area choice may increase performance.

Operation

Format: -XXstaticCompaction

Compaction occurs in a “sliding window” scheme, meaning that only part of the heap is
compacted during each garbage collection. How much of the heap that is compacted each time
can be specified using -xXXcompactRatio. By default about 6%, or 8/128, of the heap is
compacted each time. This means that in the first garbage collection parts 1-8 are compacted, in
the second, parts 9-16 are compacted, and so on. After compacting parts 120-128 the “window”
starts over at part 1-8. The compaction type for static mode is external (evacuation).

For Example:
e java -XXstaticCompaction myApp
Specifies static compaction.
e java -XXstaticCompaction -XXcompactRatio:10 myApp

Specifies static compaction and that 10% of the Java heap should be compacted each
garbage collection.

Flags or Other Options Affected

You can use -XXcompactRatio to specify the size of the compaction area.

Exceptions

When using -XstaticCompaction, be aware of the following exceptions:

e The compaction area may temporarily increase if object allocation is failing due to
fragmentation on the Java heap.

Oracle JRockit Command-Line Reference

-XXstaticCompaction

e You cannot use -XXstaticCompaction together with the following options:

-XXnoCompaction
-XXfullCompaction
-XXthroughputCompaction
-XXinternalCompactRatio

-XXexternalCompactRatio

Oracle JRockit Command-Line Reference

3-55

-XX Command-line Options

-XXthroughputCompaction

3-56

This option adjusts the compaction ratio dynamically, based upon the ratio of live data in the
heap. This option can improve application throughput for applications with a high allocation rate
but low ratio of live data.

Operation

Format: -XXthroughputCompaction

Enter this option at the command line.

Other Flags or Options Affected

When using -XXthroughputCompaction, be aware of the following:

e This option should not be used together with, -xXXful ICompaction, -XXcompactRatio,
-XXinternalCompactRatio, or -XXexternalCompactRatio as these options limit the
compaction ratio in other ways.

o If used together with -XgcPrio:pausetime, -Xgcprio:deterministic, or
-XpauseTarget the pausetimes may become too long and non-deterministic.

Exceptions

When using -XXthroughputCompaction, be aware of these exceptions:
e This option is valild only on JRockit JVM 5.0 P26.0.0 and later.

e You cannot use -XXthroughputCompaction together with the following options:
— -XXnoCompaction

— -XXstaticCompaction

Oracle JRockit Command-Line Reference

-XXtlaSize

-XXtlaSize

Sets the thread-local area size.

To increase performance JRockit JVM uses thread-local areas (TLA) for object allocation. This
option can be used to tune the size of the thread-local areas, which may affect performance.

Operation

Format: -XXtlaSize:<param>=<size>[k|K][mIM]1[g]lG]

Where <param> is one of the parameters listed in Table 3-5.

Table 3-5 -XXtlaSize Parameters

Parameter Description

min=<size> Sets the minimum size of a TLA.

preferred=<size> Sets the preferred size of a TLA. The system will try to get TLAS of this size
if possible, but will accept TLAs down to the minimum size, if that's what’s
available. Occasionally, a TLA might get larger than the preferred size, too.
The preferred size must not be lower than the minimum size.

fixed=<size> Sets TLAs to a fixed size. This is equivalent to setting both min and
preferred to the same value, and mimics the behavior in older versions of
the JRockit JVM. You cannot combine Fixed with any of min or
preferred.

There are no upper or lower limits to -xXtlaSize. The default value is 2KB.

Use this option with caution, as changing the thread-local area size can have severe impact on the
performance.

Specify <size> in bytes, using the normal k,M,G suffixes.
For example:

-XXtlasize:min=2k,preferred=16k

sets the default for large heaps.
-XXtlasize:min=8k,preferred=512k

set a TLA size suitable for heaps of several GB.

Oracle JRockit Command-Line Reference 3-57

-XX Command-line Options

Note: The old style of setting TLA size (that is, -XXtlasize=256k) is still supported but has
been deprecated. If you use the old style, JRockit JVM will interpret the option as if the
Ffixed parameter was used; for example, -XXtlasize=256k would be interpreted as
-XXtlasize: fixed=256k.

Default Value

The default value for the minimum size is 2 kB. The minimum value cannot be lower than the
large object limit. If the large object limit is explicitly set higher than the minimum TLA size
(with -xXl1argeObjectLimit), then the minimum TLA size will be raised to match the large

object limit.

The default value for the preferred size depends on the heap size or the nursery size and the
garbage collector selected at startup.Table 3-6 lists the default sizes for the different

configurations.

Table 3-6 Default Preferred TLA Sizes

Releases Garbage Collectors Default Preferred TLA Size
R26.4 and older All 2 kB
R27.1- R27.2 All 2 kB - 16 kB depending on the

heap size.

R27.3 and later

-XgcPrio:deterministic,

-Xgc:singlecon

16 kB

R27.3 and later

-XgcPrio:pausetime,
-Xgc:gencon

16 kB - 256 kB depending on the
nursery size

R27.3 and later

-XgcPrio:throughput,
-Xgc:genpar

16 kB - 64 kB depending on the
heap size

R27.3 and later

-Xgc:parallel

16 kB - 256 kB depending on the
heap size

R27.3 and later

Nursery size set with —-Xns

16 kB - 256 kB depending on the
nursery size

3-58 Oracle JRockit Command-Line Reference

-XXtlaSize

Flags or Other Options Affected

When you set the minimum and/or the preferred TLA size, the large object limit (set with
-XXlargeObjectLimit) and the minimum block size (set with -xXminBlockSize) may be
adjusted automatically by JRockit JVM if necessary. At all times, the following relations are
maintained between minimum and preferred TLA size, large object limit, and minimum block
size:

-XXlargeObjectLimit <= -XXtlaSize:min <= -XXminBlockSize

-XXtlaSize:min <= -XXtlaSize:preferred

If you set two or more of the options, then you must make sure that the values you use fulfil these
criteria. By default, the large object limit will be set to whichever is the lower value of the
minimum TLA size and the preferred TLA size divided by 2. The default minimum block size is
2k.

It is recommended to that you primarily set the TLA size parameters for memory management
tuning purposes, while you let JRockit JVM automatically adjust the large object limit and
minimum block size if necessary.

Exceptions

None.

Oracle JRockit Command-Line Reference 3-59

-XX Command-line Options

-XXtsf

3-60

This option enables the trace scheduler framework (TSF) on 64-bit Intel Itanium systems.

Note: This option replaces the -Dj rockit.codegen.tracesched=<true|] false>
argument available in previous releases of the JRockit JVM.

Operation

Format: -XXtsf=<true|false>
To enable the trace scheduler framework, enter:

Jjava -Xtsf=true myApp

The following line will be logged when TSF is enabled:

[INFO] Trace scheduling is enabled.

Default Value

If -XXtsf=is not specified or if it is set to False, the trace scheduler framework feature is
disabled.

Flags or Other Options Affected

None

Exceptions

This feature is only available on 64-bit Intel Itanium systems.

Oracle JRockit Command-Line Reference

-XXusePointerMatrix

-XXusePointerMatrix

WARNING: This is an advanced tuning option. You should only use it if you understand
how it works and are prepared to accept the consequences of its misuse.

This option indicates that the pointer matrix should be used instead of the pointerset. The pointer
matrix is default when running -Xgcprio:deterministic Or -Xgcprio:pausetime.

Operation

Format: -XXusePointerMatrix

For Example:
Jjava -XXusePointerMatrix myApp

Flags or Other Options Affected

You should not use this option together with -XgcPrio:throughput, as it alters or disables
many of the throughput-specific compaction heuristics.

Exceptions

You cannot use this option together with -XXcompactSetLimit.

Oracle JRockit Command-Line Reference 3-61

-XX Command-line Options

-XX:MaximumNurseryPercentage

3-62

This option lets you set an upper nursery size limit in that will be relative to the free heap space available
after the latest old collection. Do this by specifying the limit as a percentage value of the available free heap
size.

Operation

Format: -XX:MaximumNurseryPercentage=<value> [1-95]

If you try to set the upper nursery size limit to a value lower than 1 or higher than 95, you will get
an error message.

For Example:

Jjava -XX:MaximumNurseryPercentage=80 myApp

Default Value

The default value is 95.

Exceptions

You cannot use this option with a single-spaced (non-generational) garbage collector. The option
can be used both with a static generational garbage collector or with dynamic garbage collection.

Oracle JRockit Command-Line Reference

-XX:(+I-)UseNewHashFunction

-XX:(+I-)UseNewHashFunction

This option enables a new, faster hash function for HashMap that was introduced in Java 5.0
Update 8 and is part of the JRockit JVM as of R27.1.0. This hash function can improve
performance through improved hash spread, but changes the order in which elements are stored
in the HashMap. For compatibility reasons, JRockit JVM 5.0 uses the old hash function by default
unless started with -XXaggressive.

Note: This flag is supported as of JRockit JVM 5.0 R27.1. It is not available in JRockit JVM
1.4.2.

Operation

Format: -X:[+]-JuseNewHashFunction

This option uses Sun’s implementation format; that is, you must place the colon (:) between the
-xX and the option name followed by a the necessary operator to indicate enabling (+) or
disabling (-) the new hash function.

For Example:

-XX:+UseNewHashFunction

Explicitly enables the new hash function.

-XX:-UseNewHashFunction

Explicitly disables the new hash function.

Default Value

The new hash function is disabled by default in the JRockit JVM 5.0.

Flags or Other Options Affected

-XXaggressive enables use of the new hash function unless it is explictly disabled using
-XX:-UseNewHashFunction.

Exceptions

None

Oracle JRockit Command-Line Reference 3-63

-XX Command-line Options

-XX:(+I-)UseThreadPriorities

3-64

This option enables you to control the priority of Java threads using
java.lang.Thread.setPriority() and related APIs. If this feature is disabled, using these
APIs has no effect.

WARNING: This feature is experimental and not supported by Oracle at this time. Improper
use can cause serious performance issues.

Operation

Format: -XX:[+]-]JUseThreadPriorities

This option uses Sun’s implementation format; that is, you must place the colon (:) between the
-xX and the option name followed by a the necessary operator to indicate enabling (+) or
disabling (-) the use of java.lang.Thread.setPriority() and related APIs.

For example:
-XX:+UseThreadPriorities
Explicitly enables use of the APIs.
-XX:-UseThreadPriorities

Explicitly disables use of the APIs.

Default Value

-XX:-UseThreadPriorities. Thread priorities are disabled by default.

Flags or Other Options Affected

None

Exceptions

Availability of this option is determined by the platform you are running on.
e Windows: Available in JRockit JVM R26.0.0 and later.

e Linux: Available in Oracle JRockit JVM R26.4.0 and later. You must have root privileges
to use thread priorities on most Linux versions.

e Solaris: Not available.

Oracle JRockit Command-Line Reference

-XX:(+1-)UseStringCache

-XX:(+1-)UseStringCache

This option enables caching of commonly allocated strings. This option was introduced in Oracle
JRockit 6 as of P28.0.0. It is not available in JRockit JVM 1.4.2 or 1.5.0.

Operation

Format: -X:[+]-JuseStringCache

This option uses Sun’s implementation format; that is, you must place the colon (:) between the
-xX and the option name followed by a the necessary operator to indicate enabling (+) or
disabling (-) the string cache.

For Example:
-XX:+UseStringCache

Explicitly enables the string cache.
-XX:-UseStringCache

Explicitly disables the string cache.

Default Value

The string cache is disabled by default.

Flags or Other Options Affected

None

Exceptions

None

Oracle JRockit Command-Line Reference 3-65

-XX Command-line Options

3-66 Oracle JRockit Command-Line Reference

CHAPTERa

Oracle JRockit JVM System Properties

The System class maintains a set of properties—key/value pairs—that define traits or attributes
of the current working environment. When the Java application first starts up, the system
properties are initialized with information about the runtime environment, including information
about the current user, the current version of the Java runtime, and even the product vendor’s bug
report URL.

This chapter describes the key system properties available with the Oracle JRockit JVM:
e java.vendor
e java.vendor.url
e java.vendor.url.bug
e java.version
e java.runtime.version
e java.vm.name
e java.vm.vendor
e java.vm.vendor.url
e java.vm.version
e java.vm.specification.version

e java.vm.specification.vendor

Oracle JRockit Command-Line Reference 4-1

Oracle JRockit JVM System Properties

42

e java.vm.specification.name
e 0s.name
e os.arch

e 0s.version

As described above, system properties are part of the System class as defined by J2SE 1.4.2 and
5.0. You can obtain these properties in a Java class simply by calling the getProperty()
method. Listing 4-1 shows how the getProperty() method is used to get system properties.

Listing 4-1 Obtaining System Properties

String os_name = System.getProperty(‘'os.name™);
String os_arch = System.getProperty(‘'os.arch™);
String java_home System.getProperty(*'java.home™);
String java_vm_name System.getProperty(*'jJava.vm.name');

Oracle JRockit Command-Line Reference

java.vendor

java.vendor

This property identifies the J2SE JDK/JRE product vendor. This includes:
e Sun: “Sun Microsystems Inc.”

e JRockit: “Oracle”
For example:

Oracle

Oracle JRockit Command-Line Reference

43

Oracle JRockit JVM System Properties

java.vendor.url

This property identifies the J2SE JDK/JRE product vendor URL; for example:

e Sun: “http://java.sun.com/”

o JRockit: “http://www.bea.com/”

4-4 Oracle JRockit Command-Line Reference

java.vendor.url.bug

java.vendor.url.bug

This property identifies the J2SE JDK/JRE product vendor bug report URL. This includes:
e Sun: “http://java.sun.com/cgi-bin/bugreport.cgi”

e JRockit: “http://support.bea.com”

Oracle JRockit Command-Line Reference

4-5

Oracle JRockit JVM System Properties

java.version

This property identifies the J2SE JDK/JRE product version; that is, which version of the JDK or
JSE you are running. The version number also appears on the first line of the output and is
common to Sun JRE and Oracle JRockit JRE. The information generated by this property appears
in this format:

<jdk_major_version>.<jdk_minor_version>._.<jdk_micro_version>[_<jdk_update_versi
on>][-<milestone>]

The value appears in bold in the example version output below:

java version "1.5.0_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_03-b07)
BEA JRockit(R) (build dra-45238-20050523-2021-win-ia32, R25.2.0-28)

For more information on java.version, please refer to:

http://java.sun.com/j2se/versioning_naming.html

4-6 Oracle JRockit Command-Line Reference

java.runtime.version

java.runtime.version

This property identifies the J2SE JDK/JRE product version and build identifier. The value also
appears on the second line of the java -version output in the following format:

<jdk_major_version>.<jdk_minor_version>.<jdk _micro_version>[_<jdk_update_versi
on>][-<milestone>]-<build_number>

The value appears in bold in the example version output below:

java version “1.5.0_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_03-b07)
BEA JRockit(R) (build dra-45238-20050523-2021-win-ia32, R25.2.0-28)

This value is common to both the Sun JRE and JRockit JRE.
For more information, please refer to:

http://java.sun.com/j2se/versioning_naming.html

Oracle JRockit Command-Line Reference 4-1

Oracle JRockit JVM System Properties

java.vm.name

This property identifies the JVM implementation. It appears on the third line of java -version
output. Depending upon the JVM you are using, the VM name will appear as either:

e Sun: “Java HotSpot(TM) Client VM” “Java HotSpot(TM) Server VM”
or

o JRockit: “JRockit(R)”

The value appears in bold in the example version output below:

java version "1.5.0_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_03-b07)
BEA JRockit(R) (build dra-45238-20050523-2021-win-ia32, R25.2.0-28

4-8 Oracle JRockit Command-Line Reference

java.vm.vendor

java.vm.vendor

This property identifies the JVM implementation vendor; for example:

e Sun: “Sun Microsystems Inc.”

e JRockit: “Oracle”

Oracle JRockit Command-Line Reference

4-9

Oracle JRockit JVM System Properties

java.vm.vendor.url

This property identifies the JVM implementation vendor URL; for example:

e Sun: “http://java.sun.com/”

o JRockit: “http://www.bea.com/”

4-10 Oracle JRockit Command-Line Reference

java.vm.version

java.vm.version

This property identifies the JVM implementation version. The version ID appear on the third line
of java -version output. This ID is the main method to distinguish between JRockit JVM
versions. Below are examples from a few different releases of the JRockit JVM

e JRockit JVM R24.5.0: ari-49095-20050826-1856-win-ia32
e JRockit JVM 5.0 SP2: dra-45238-20050523-2021-win-ia32
e JRockit JVM R26.4.0: R26.4.0-63-63688-1.5.0_06-20060626-2259-win-ia32

e JRockit JVM R27.3.1: R27.3.1-1-85830-1.6.0_01-20070716-1248-windows-ia32
The value appears in bold in the example version output below:

java version "1.5.0_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_03-b07)
BEA JRockit(R) (build dra-45238-20050523-2021-win-ia32, R25.2.0-28)

Oracle JRockit Command-Line Reference 41

Oracle JRockit JVM System Properties

java.vm.specification.version

This property identifies the version of the Java Virtual Machine specification upon which your
JRockit JVM instance is based.

For example:
1.0

4-12 Oracle JRockit Command-Line Reference

java.vm.specification.vendor

java.vm.specification.vendor

This property identifies the vendor of the Java Virtual Machine specification upon which your
JRockit JVM instance is based.

For example:

Sun Microsystems Inc

Oracle JRockit Command-Line Reference 4-13

Oracle JRockit JVM System Properties

java.vm.specification.name

This property identifies the name of the Java Virtual Machine specification upon which your
JRockit JVM instance is based.

For example:

Java Virtual Machine Specifications

4-14 Oracle JRockit Command-Line Reference

0s.name

0s.name
This property identifies the operating system. For the JRockit JVM, this includes:
o \Windows versions
e Linux versions

e Solaris
For example:

Windows XP

For additional information on O/S support, please refer to Oracle JRockit JDK Supported
Configurations at

http://edocs.bea.com/jrockit/jrdocs/suppPlat/supp_plat.html

Oracle JRockit Command-Line Reference 4-15

Oracle JRockit JVM System Properties

os.arch
This property identifies the operating system architecture. For Oracle JRockit JVM, this includes:
e x86 on IA32
e amd64 on AMD64
e ia64 on Itanium

e sparcv9 on Solaris SPARC
For example:
x86

For additional information on supported architectures, please refer to Oracle JRockit JDK
Supported Configurations at

http://edocs.bea.com/jrockit/jrdocs/suppPlat/supp_plat.html

4-16 Oracle JRockit Command-Line Reference

0S.version

os.version

This property identifies the operating system version. For example:
5.1

For additional information on O/S support, please refer to Oracle JRockit JDK Supported
Configurations at

http://edocs.bea.com/jrockit/jrdocs/suppPlat/supp_plat.html

Oracle JRockit Command-Line Reference 4-11

Oracle JRockit JVM System Properties

4-18 Oracle JRockit Command-Line Reference

	Oracle® JRockit JVM
	R27.6

	Oracle JRockit JVM Command Line Reference, R27.6
	Contents
	Introduction
	Introduction to Command-line Options
	Standard Options
	Table 1-1 Standard Options fro JVMs

	JRockit JVM Non-standard Options
	Other JRockit JVM Start-up Commands
	Case-sensitivity with Command-Line Options

	Introduction to System Properties
	-X Command-line Options

	-Xbootclasspath
	Operation
	Flags or Other Options Affected
	Exceptions

	-Xbootclasspath/a
	Operation
	Flags or Other Options Affected
	Exceptions

	-Xbootclasspath/p
	Operation
	Flags or Other Options Affected
	Exceptions

	-Xcheck:jni
	Operation
	Flags or Other Options Affected
	None
	Exceptions

	-XclearType
	Operation
	Table 2-1 Valid Parameters for -XclearType

	Default Value
	Flags or Other Options Affected
	Exceptions

	-Xdebug
	Operation
	Flags or Other Options Affected
	None
	Exceptions

	-Xgc
	Table 2-2 Static Garbage Collectors
	Operation
	Table 2-3 Valid Garbage Collection Types for -Xgc

	Default Value
	Flags or Other Options Affected
	Exceptions

	-XgcPause
	Operation
	Listing 2-1 Output from -Xgcpause used with the Static Garbage Collector -Xgc:gencon
	[memory] old collection phase 0-2 pause time: 100.794255 ms [memory] nursery collection pause time: 4.121775 ms [memory] nurs...
	Flags or Other Options Affected
	Exceptions

	-XgcPrio
	Operation
	Table 2-4 Garbage Collection Types Valid for -XgcPrio

	Default
	Flags or Other Options Affected
	Exceptions

	-XgcReport
	Operation
	Listing 2-2 Dynamic Xgcprio:pausetime + Xgcreport (at the end of the application run):
	[memory] Memory usage report
	[memory]
	[memory] young collections [memory] number of collections = 50 [memory] total promoted = 4628936 (size 260614072) [memory] m...
	[memory]
	[memory] old collections [memory] number of collections = 6 [memory] total promoted = 0 (size 0) [memory] max promoted = 0 (...
	[memory]
	[memory] number of parallel mark phases = 6 [memory] number of parallel sweep phases = 4 [memory] number of concurrent sweep phases = 2 Mon Nov 1 16:50:34 WEST 2004
	Flags or Other Options Affected
	Exceptions

	-XlargePages
	Operation
	How to Configure Large Pages
	On Linux
	1. Reserve memory to be used for large pages by executing the following command:
	2. To enable the JRockit JVM to allocate large pages, make a hugetblfs file system available by using this command:
	3. Grant the user executing the Java application read and write permission to the file system. You can do this with either the mount command or with the chmod and chown commands.

	On Windows
	1. As Administrator, give the user who will run the application the permission to lock pages in memory by opening the Start menu and selecting:
	2. Select Lock pages in memory.
	3. Make enough free consecutive memory available by either logging off your computer or rebooting it.

	On Solaris

	Failure to Acquire Large Pages

	Default Values
	Other Options or Flags Affected
	Exceptions

	-Xmanagement
	Operation
	Table 2-5 -Xmanagement Arguments

	Default Value
	R26.4 and Earlier
	5.0 R27.1

	Flags or Other Options Affected
	Exceptions

	-Xms
	Operation
	Default Values
	Flags or Other Options Affected
	Exceptions and Recommendations

	-Xmx
	Operation
	Known Issue for Linux Users

	Default Value
	Table 2-6 Default Maximum Heap Sizes

	Flags or Other Options Affected
	Exceptions

	-XnoClassGC
	Operation
	Flags or Other Options Affected
	Exceptions

	-Xnohup
	Operation
	Flags or Other Options Affected
	Exceptions

	-XnoOpt
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-Xns
	Operation
	Default Value
	Table 2-7 Default Nursery Sizes

	Flags or Other Options Affected
	Exceptions

	-XpauseTarget
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-Xrs
	Operation
	Flags or Other Options Affected
	Exceptions

	-Xrunjdwp
	Operation
	Table 2-8 -Xrunjdwp Sub-options

	-Xrunjdwp:transport=dt_socket,server=y,address=8000,onthrow=java.io.IOExceptio n,launch=/usr/local/bin/debugstub
	-Xrunjdwp:transport=dt_shmem,server=y,onuncaught=y,launch=d:\bin\debugstub.exe
	Flags or Other Options Affected
	Exceptions

	-Xss
	Operation
	Default Value
	Table 2-9 -Xss Default Values

	Flags or Other Options Affected
	Exceptions

	-XstrictFP
	Operation
	Flags or Other Options Affected
	Exceptions

	-Xverbose
	Operation
	Table 2-10 -Xverbose Parameters
	Log Levels
	Table 2-11 -Xverbose Log Levels

	Other Flags and Options Affected
	Exceptions

	-XverboseDecorations
	Operation
	Table 2-12 Verbose Output Decorations

	Default Value
	Flags or Other Options Affected
	Exceptions

	-XverboseLog
	Operation
	Flags or Other Options Affected
	Exceptions

	-XverboseTimeStamp
	Operation
	Flags or Other Options Affected
	Exceptions

	-Xverify
	Operation
	Table 2-13 -Xverify Parameters

	Default Value
	Other Flags or Options Affected
	Exceptions

	a
	-XX Command-line Options
	-XXaggressive
	Operation
	Table 3-1 Parameters for -XXaggresive

	Default Value
	Flags or Options Affected
	Exceptions

	-XXallocClearChunks
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXallocClearChunkSize
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXallocPrefetch
	Operation
	Default Value
	Other Flags and Options Affected
	Exceptions

	-XXallocRedoPrefetch
	Operation
	Default Value
	Other Flags and Options Affected
	Exceptions

	-XXcallProfiling
	Operation
	Default Value
	Other Flags and Options Affected
	Exceptions

	-XXcompactRatio
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXcompactSetLimit
	Operation
	Default Values
	Table 3-2 -XXcompactSetLimit Defaults

	Flags or Other Options Affected
	Exceptions

	-XXcompactSetLimitPerObject
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXcompressedRefs
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXdisableFatSpin
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXdisableGCHeuristics
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXdumpFullState
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXdumpSize
	Operation
	Table 3-3 Parameters for -XXdumpsize

	Flags or Other Options Affected
	Exceptions

	-XXexitOnOutOfMemory
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXexternalCompactRatio
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXfullCompaction
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXfullSystemGC
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXgcThreads
	Operation
	Default Value
	Flags and Other Options Affected
	Exceptions

	-XXgcTrigger
	Operation
	Default Value
	Other Flags and Options Affected
	Exceptions

	-XXheapParts
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXhpm
	Operation
	Other Flags Affected
	Exceptions

	-XXinitialPointerVectorSize
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXinternalCompactRatio
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXjra
	Operation
	Table 3-4 Command Line Startup Parameters for JRA
	Avoid Using Multiple Options

	Flags or Other Options Affected
	Exceptions

	-XXkeepAreaRatio
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXlargeObjectLimit
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXlargePages
	-XXlazyUnlocking
	Operation
	Default Value
	Other Flags and Options Affected
	Exceptions

	-XXmaxPooledPointerVectorSize
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXmme
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXminBlockSize
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXnoCompaction
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXnoJITInline
	Operation
	Flags and Other Options Affected
	Exceptions

	-XXnoSystemGC
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXoptThreads
	Operation
	Default Value
	Other Options or Flags Affected
	Exceptions

	-XXpointerMatrixLinearSeekDistance
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXprintSystemGC
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXsetGC
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXstaticCompaction
	Operation
	Flags or Other Options Affected
	Exceptions

	-XXthroughputCompaction
	Operation
	Other Flags or Options Affected
	Exceptions

	-XXtlaSize
	Operation
	Table 3-5 -XXtlaSize Parameters

	Default Value
	Table 3-6 Default Preferred TLA Sizes

	Flags or Other Options Affected
	Exceptions

	-XXtsf
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XXusePointerMatrix
	Operation
	Flags or Other Options Affected
	Exceptions

	-XX:MaximumNurseryPercentage
	Operation
	Default Value
	Exceptions

	-XX:(+|-)UseNewHashFunction
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XX:(+|-)UseThreadPriorities
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions

	-XX:(+|-)UseStringCache
	Operation
	Default Value
	Flags or Other Options Affected
	Exceptions
	Oracle JRockit JVM System Properties
	Listing 4-1 Obtaining System Properties

	java.vendor
	java.vendor.url
	java.vendor.url.bug
	java.version
	<jdk_major_version>.<jdk_minor_version>.<jdk_micro_version>[_<jdk_update_versi on>][-<milestone>]

	java.runtime.version
	<jdk_major_version>.<jdk_minor_version>.<jdk_micro_version>[_<jdk_update_versi on>][-<milestone>]-<build_number>

	java.vm.name
	java.vm.vendor
	java.vm.vendor.url
	java.vm.version
	java.vm.specification.version
	java.vm.specification.vendor
	java.vm.specification.name
	os.name
	os.arch
	os.version

