
Oracle® JRockit Mission Control
Introduction to Oracle JRockit Mission Control

3.1.0

April 2009

Oracle JRockit Mission Control Introduction to Oracle JRockit Mission Control, 3.1.0

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Introduction to Oracle JRockit Mission Control Client
Supportability Statement . 1-2

Installation Information . 1-2

Starting the JRockit Mission Control Client . 1-2

JRockit Mission Control FAQ. 1-2

JRockit Mission Control Documentation . 1-4

JRockit Mission Control Support . 1-5

Is There a Forum Where I Can Discuss JRockit Mission Control?. 1-5

Giving Feedback the JRockit Mission Control Development Team. 1-5

Accessibility Notes for JRockit Mission Control Client
Screen Readers. 2-1

JRockit Mission Control Accessibility Mode . 2-2

Workarounds . 2-3

Abbreviations Used in the JRockit Mission Control Client . 2-4

Abbreviations and Acronyms

JRockit Mission Control Communications
JRockit Mission Control Client Communications Overview . 4-1

J2SE 1.4 . 4-2

J2SE 5.0 and Later. 4-3

All Versions . 4-3
Introduction to Oracle JRockit Mission Control iii

Integration with the Eclipse IDE
Benefits of the Integration . 5-1

Differences between the Eclipse Version and the RCP Version . 5-2

Making the JRockit JVM Your JVM. 5-2

Selecting a Perspective . 5-4

Jumping to Application Source . 5-7

Overview of JRockit Mission Control Client 3.1.0
New Features in JRockit Mission Control 3.1.0 . 6-1

Architectural Overview of JRockit Mission Control 3.1.0 . 6-2

Starting JRockit Mission Control . 6-3

The JRockit Browser . 6-3

The JRockit Management Console . 6-4

The JRockit Runtime Analyzer (JRA). 6-5

The JRockit Memory Leak Detector . 6-6

Overview of JRockit Mission Control 2.0
Architectural Overview of JRockit Mission Control 2.0. 7-1

Starting JRockit Mission Control . 7-3

The JRockit Browser . 7-3

The JRockit Management Console . 7-3

The JRockit Runtime Analyzer (JRA). 7-4

The JRockit Memory Leak Detector . 7-5

Overview of Oracle JRockit 1.0
Architectural Overview of JRockit Mission Control 1.0. 8-1

The JRockit Management Console . 8-2

The JRockit Runtime Analyzer (JRA). 8-3

The JRockit Memory Leak Detector . 8-3
Introduction to Oracle JRockit Mission Control iv

Oracle JRockit Mission Control Client Use Cases
Analyzing System Behavior with the JRockit Management Console 9-1

Analyzing System Problems with the JRockit Runtime Analyzer 9-12

Detecting a Memory Leak . 9-24
Introduction to Oracle JRockit Mission Control v

vi Introduction to Oracle JRockit Mission Control

C H A P T E R 1
Introduction to Oracle JRockit Mission
Control Client
Oracle JRockit Mission Control Client is a tools suite introduced with Oracle JRockit JVM
R26.0.0. It includes tools to monitor, manage, profile, and eliminate memory leaks in your Java
application without introducing the performance overhead normally associated with these types
of tools.

The JRockit Mission Control’s low performance overhead is a result of using data collected as
part of the JRockit JVM’s normal adaptive dynamic optimization. This also eliminates the
problem with the Heisenberg anomaly that can occur when tools using byte code instrumentation
alters the execution characteristics of the system. The JRockit Mission Control functionality can
always be available on-demand and the small performance overhead is only in effect while the
tools are running.

This section contains information on the following subjects:

Supportability Statement

Installation Information

Starting the JRockit Mission Control Client

JRockit Mission Control FAQ

JRockit Mission Control Documentation

JRockit Mission Control Support

Is There a Forum Where I Can Discuss JRockit Mission Control?

Giving Feedback the JRockit Mission Control Development Team
Introduction to Oracle JRockit Mission Control 1-1

In t roduct ion to Orac le JRock i t M iss i on Cont ro l C l i ent
Supportability Statement
JRockit Mission Control Client connects to all versions of the JRockit JVM from R26.4 up
through the release with which it shipped. Connections to older versions of JRockit JVM might
be possible, but are not officially supported.

JRockit Mission Control Client will open JRA-recordings created by all JRockit JVM versions
from R26.4 up through the release with which it shipped. Some features (for example, latency
recordings) might not be available since they were not implemented in the older recordings.

Installation Information
Installation instructions can be found in Installing Oracle JRockit Mission Control.

Starting the JRockit Mission Control Client
The JRockit Mission Control Client executable is located in JROCKIT_HOME/bin. If this
directory is on your system path, you can start JRockit Mission Control by simply typing jrmc
in a command (shell) prompt.

Otherwise, you have to type the full path to the executable file, as shown below:
JROCKIT_HOME\bin\jrmc.exe (Windows)

JROCKIT_HOME/bin/jrmc (Linux)

On Windows installations, you can start JRockit Mission Control from the Start menu.

JRockit Mission Control FAQ
This topic lists and provides answers to questions frequently asked about JRockit Mission
Control.

I can not connect the JRockit Mission Control Client. What could be the problem?

When attempting to connect to JRockit Mission Control I get a stack trace indicating that
JRockit Mission Control attempts to communicate with a strange IP or host name.

I'm getting exceptions during startup about classes not being found

JRockit Mission Control can't find any local JVMs

Why can't I see any Method Profiling information in my JRA recording?
1-2 Introduction to Oracle JRockit Mission Control

JRock i t M iss i on Cont ro l FAQ
When using the Memory Leak Detector, nothing happens in the growth column of the
trend table

I can not connect the JRockit Mission Control Client. What could be the problem?
Consider the following:

Are you using the correct protocol?

The easiest way is to ensure that you are using the same version of the JRockit JVM you
want to monitor as the JVM running the JRockit Mission Control client. If that is not an
option, you can use the radio buttons in the connection dialog box in the JRockit Mission
Control Client to select which protocol to use: 1.4 will select RMP and 1.5 and later will
select JMXRMI.

For earlier versions of JRockit Mission Control these radio buttons don’t exist and, to
make a JRockit JVM 5.0 instance connect to a 1.4 version, you must explicitly specify the
JMX Service URL. The format of the service URL is:

service:jmx:rmp://<hostname>:<port>

for example:

service:jmx:rmp://localhost:7091

Are the correct ports opened?

JMX over RMI uses two ports and that one of the ports will not be known beforehand.

Is the communication caught in the firewall?

Please see JRockit Mission Control Communications for more information.

When attempting to connect to JRockit Mission Control I get a stack trace indicating
that JRockit Mission Control attempts to communicate with a strange IP or host name.
Sometimes RMI can have a problem determining which address to use. This can happen because
of

Access restrictions in the Security manager.

The machine being multihomed and RMI picking the wrong interface.

A misconfigured hosts file or a number of different network related configuration
problems.

If all else fails you can try specifying the java.rmi.server.hostname system property. Please note
that this can affect applications running in the JVM.
Introduction to Oracle JRockit Mission Control 1-3

In t roduct ion to Orac le JRock i t M iss i on Cont ro l C l i ent
I'm getting exceptions during startup about classes not being found
Make sure you are using the proper launcher to start up the JRockit Mission Control Client. You
must only use JROCKIT_HOME/bin/jrmc.

JRockit Mission Control can't find any local JVMs
Make sure you are using the proper launcher to start up the JRockit Mission Control Client. You
must only use JROCKIT_HOME/bin/jrmc.

Why can't I see any Method Profiling information in my JRA recording?
In versions prior to 3.1.0, by default the JRockit Mission Control Client didn’t show tabs if data
had not been recorded for them. If you are using an earlier version of the product, ensure that
method profiling was enabled for your JRA recording and that the application was under load. If
the JRockit JVM is spending most of the time with none of the threads doing any work, no
samples will be recorded. If you still want to create a JRA recording with method sampling and
a low load, try increasing the sampling frequency.

When using the Memory Leak Detector, nothing happens in the growth column of the
trend table
The algorithm needs at least three data points to kick in and the data is collected as part of the old
space mark phase of the garbage collection. If you see no data, possibly not enough garbage has
been collected for these collections to occur. To speed up the process, try clicking the garbage
can in the toolbar of the Memory Leak application to force three successive garbage collections,
with a brief pause in between each collection.

JRockit Mission Control Documentation
Documentation for JRockit Mission Control 1 is available on eDocs:

http://edocs.bea.com/jrockit/tools/index.html

Documentation for JRockit Mission Control 2 and 3 is available both as online help with the
installation of the tool and as PDFs on eDocs:

http://edocs.bea.com/jrockit/tools/index.html

Note: The PDFs for JRockit Mission Control 2 on eDocs are not the full versions. Look in the
Help menu for full documentation.
1-4 Introduction to Oracle JRockit Mission Control

JRock i t M iss i on Cont ro l Suppor t
JRockit Mission Control Support
You are entitled to support if you have an Enterprise licence.

Is There a Forum Where I Can Discuss JRockit Mission
Control?

If you have any questions you are welcome to share them in the Oracle JRockit forum, which is
monitored by the Oracle JRockit engineering team. To access the news group, go to:

http://forums.oracle.com/forums/forum.jspa?forumID=561

Giving Feedback the JRockit Mission Control
Development Team

If you have any suggestions about how to improve the JRockit Mission Control or information
on how it is most commonly used in your development environments, we would be grateful to
receive your input. This information helps us improve these tools going forward.

Please send an e-mail with feedback and your ideas on how we can improve Oracle JRockit
Mission Control to:
jrockit-improve@oracle.com

We will consider this feedback, along with other ideas we collect, to improve the product and
make it even easier to use. Oracle’s goal is to simplify the tasks and provide excellent
functionality.
Introduction to Oracle JRockit Mission Control 1-5

In t roduct ion to Orac le JRock i t M iss i on Cont ro l C l i ent
1-6 Introduction to Oracle JRockit Mission Control

C H A P T E R 1
Accessibility Notes for JRockit Mission
Control Client
Oracle is dedicated to providing high quality information technology that is accessible to people
with disabilities. To this end, Oracle has undertaken a substantial project to ensure the
accessibility of Oracle JRockit Mission Control Client. Oracle is implementing these
enhancements and will continue to address all accessibility issues that come to its attention.

This document includes information on the following subjects:

Screen Readers

JRockit Mission Control Accessibility Mode

Workarounds

Abbreviations Used in the JRockit Mission Control Client

Screen Readers
Oracle supports a number of different screen readers, technology that translates screen-based
information into spoken word to assist vision-impaired users.

Configuration options are currently available for the JAWS™ screen reader produced by
Freedom Scientific, Inc. For information on configuring this product, please refer to the Freedom
Scientific screen reader website, at:

http://www.freedomscientific.com/documentation/screen-readers.asp

Note: If you are using JAWS, be aware that tab/page switching does not work as expected.
Please refer to Switching Between Tabs/Pages for a workaround.
Introduction to Oracle JRockit Mission Control 2-1

Access ib i l i t y Notes fo r JRock i t Miss ion Cont ro l C l i ent
JRockit Mission Control Accessibility Mode
Throughout JRockit Mission Control Client, dials and charts are used to display performance
data. For most users, these charts provide a valuable graphical view of the data that can reveal
trends and help identify minimum and maximum values for performance metrics; however,
charts do not convey information in a manner that can be read by a screen reader. To remedy this
problem, you can configure JRockit Mission Control Client accessibility mode to provide dial and
chart data in tabular format.

Configuring the Accessibility Mode
The accessibility mode is configured from JRockit Mission Control Client preferences window.
To enable it, do the following:

1. With JRockit Mission Control Console running, select Windows > Preferences...

The Preferences window appears (Figure 1-1).

Figure 1-1 Preferences Window
2-2 Introduction to Oracle JRockit Mission Control

Workarounds
2. In the Accessibility Options pane, select Use accessibility mode and, under that, select the
accessibility options you want to enable:

– Render dials as tables presents data shown on the velocimeters as table data.

– Render graphs as tables presents data shown in graphs as table data.

3. Select OK.

4. Stop and restart the Console.

Note: If you configuring the accessibility mode before actually starting the console, the new
configuration will appear when you start the console.

For Additional Information
For important information on using a screen reader to read table data, please refer to Reading
Table Data with a Screen Reader.

Workarounds
This section contains additional instructions for enhancing your experience with JRockit Mission
Control’s accessibility features. These instructions include:

Switching Between Tabs/Pages

Reading Table Data with a Screen Reader

Reading Console General/Overview Tab Data

Resizing Online Help Text

Switching Between Tabs/Pages
When reaching a tab component in the JRockit Mission Control GUI, JAWS erroneously tells the
user “to switch pages, press Ctrl+Tab”. The correct way to switch between tabs/pages is to use
the left/right arrow keys.

Reading Table Data with a Screen Reader
To read JRockit Mission Control table data more efficiently with screen reading software, copy
and paste the table data into a text editor and read it from there. To copy and paste, do the
following:
Introduction to Oracle JRockit Mission Control 2-3

Access ib i l i t y Notes fo r JRock i t Miss ion Cont ro l C l i ent
1. Right-click the table you want to read to open the context menu.

2. Select all items by selecting Select All.

3. Select Copy.

4. Paste the text in a text editor.

Reading Console General/Overview Tab Data
To read data from the JRockit Mission Control Console, General/Overview tab with screen
reading software, select Window > Preferences > JRockit Mission Control and choose Render
dials as tables and Render charts as tables in the right panel.

Resizing Online Help Text
Vision-impaired users might find it difficult to read the online help documents in the standalone
(RCP) version of JRockit Mission Control unless the text size is increased. If they need to change
the font size, they must view the help in another browser.

JRockit Mission Control will use the default web browser specified in the operating system; you
can't specify a different one from within JRockit Mission Control. How you specify a browser in
the operating system depends on the version of the operating system.

To change rhe default viewer for JRockit Mission Control Help, do the following:

1. Select Window > Preferences

The Preferences dialog box appears.

2. Under Specify how help information is displayed, select Use external browser.

3. Click Apply or OK.

Note: Due to a limitation in the Eclipse help viewer, currently you cannot resize its text. If you
need to resize the text the workaround is to use an external browser.

Abbreviations Used in the JRockit Mission Control Client
JRockit Mission Control Client uses a number of abbreviations and acronyms to save space on
the GUI and in the documentation. Wherever possible, these abbreviations and acronyms are
spelled out upon first usage; however, that is not always possible. Therefore, we have included a
list of all common JRockit Mission Control Client abbreviations and acronyms in Abbreviations
and Acronyms.
2-4 Introduction to Oracle JRockit Mission Control

C H A P T E R 2
Abbreviations and Acronyms
This document lists the abbreviations and acronyms used in Oracle JRockit Mission Control
Client (Table 2-1).

Table 2-1 Abbreviations and Acronyms Used in Oracle JRockit Mission Control Clien

Abbreviation Meaning

GC Garbage Collection (memory management)

JDK Java Development Kit

JDP JRockit Discovery Protocol

JIT Just In Time (compilation)

JMX Java Management Extensions

JRA JRockit Runtime Analyser

JVM Java Virtual Machine

MBean Managed Bean (Java)

MLP Memory Leak Protocol

RCP Rich Client Platform (Eclipse)

RMI Remote Method Invocation (Java)
Introduction to Oracle JRockit Mission Control 3-1

Abbrev iat i ons and Ac ronyms
RMP Rockit Management Protocol (communication)

SSL Secure Sockets Layer (communication)

TLA Thread Local Area (memory management)

Table 2-1 Abbreviations and Acronyms Used in Oracle JRockit Mission Control Clien

Abbreviation Meaning
3-2 Introduction to Oracle JRockit Mission Control

C H A P T E R 3
JRockit Mission Control
Communications
Depending upon which J2SE version on which you are running the Oracle JRockit JVM, certain
aspects of the communications protocols will differ. This chapter describes the protocols and their
differences resultant from the different J2SE version.

This section includes information on the following subjects:

JRockit Mission Control Client Communications Overview

J2SE 1.4

J2SE 5.0 and Later

All Versions

JRockit Mission Control Client Communications Overview
Figure 3-1 illustrates the communication topology for Oracle JRockit Mission Control.
Introduction to Oracle JRockit Mission Control 4-1

JRock i t M iss ion Cont ro l Communicat i ons
Figure 3-1 JRockit Mission Control Communications Topology

J2SE 1.4
J2SE 1.4 versions of JRockit Mission Control uses RMP (Rockit Management Protocol.), an
older legacy protocol that has existed since the 1.3 versions of the Oracle JRockit JDK. RMP uses
a single socket. You can specify the port of the listening socket by using the -Xmanagement:port
option; for example -Xmanagement:port=7090. Table 1-1 lists additional system properties
you can use to further configure the agent.

Table 3-1 Additional Communication Settings for JRockit Mission Control on J2SE 1.4

System Property Description Default

jrockit.managementserver.address Bind to a specific interface Not enabled, listens
on all interfaces)
4-2 Introduction to Oracle JRockit Mission Control

J2SE 5 .0 and Late r
J2SE 5.0 and Later
J2SE 5.0 and later versions of the JRockit JDK use JMXRMI (JMX over RMI). This protocol
uses one port for the RMI registry, which is configured with the -Xmanagement:port option,
and a second port (on an anonymous port) for communication with the RMI server. Note that you
cannot configure the port for the RMI server; however, you can write your own agent that defines
a fixed port for the RMI server. Please see the following link for further information:

http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html#g

dfvv

Table 3-2 lists the options available for the -Xmanagement flag:

For a more comprehensive discussion on what these options mean, please see:

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

All Versions
For all J2SE versions, you can use the -Xmanagement option autodiscovery to make the JRockit
JVM use the JRockit Discovery Protocol (JDP) to announce its presence; for example
-Xmanagement:autodiscovery=true.

Table 3-3 lists additional system properties you can use to control the behavior of the JDP server:

jrockit.managementserver.timeout Socket time-out in MS 4000

jrockit.managementserver.maxconnect Maximum number of
connections

4

Table 3-1 Additional Communication Settings for JRockit Mission Control on J2SE 1.4

System Property Description Default

Table 3-2 -Xmanagement Option

Option Description Default

authenticate Use password authentication True

ssl Use secure sockets layer True

port What port to use for the RMI registry 7091
Introduction to Oracle JRockit Mission Control 4-3

JRock i t M iss ion Cont ro l Communicat i ons
All versions of JRockit Mission Control also employ an additional protocol when using the
Memory Leak Detector. The memleak server is not written in Java; rather it is an integral part of
the JVM. This is because a potential use case for the memleak server is to optionally be able to
start it when an out of memory condition occurs in the JVM. When such a condition occurs, it is
impossible to execute Java code because no heap would be available.

MLP (MemLeak Protocol) is used by the native memleak server during a memleak session.
JRockit Mission Control communicates over RMP (1.4) or JMXRMI (5.0 and higher) to ask the
Oracle JRockit JVM to start up the server. You can configure the port on which you want to start
the memleak server on, and to use for the session, by using Oracle JRockit Mission Control
preferences. See Figure 3-1 for schematic of this process.

Table 3-3 System Properties Used to Control the JDP Server

System property Description Default

jrockit.managementserver.discovery.per
iod

The time to wait
between multicasting
the presence in ms

5000

jrockit.managementserver.discovery.ttl The number of router
hops the packets being
multicasted should
survive

1

jrockit.managementserver.discovery.add
ress

The multicast
group/address to use

232.192.1.212

jrockit.managementserver.discovery.tar
getport

The target port to
broadcast

7090(1.4)/7091(1.5)
4-4 Introduction to Oracle JRockit Mission Control

C H A P T E R 4
Integration with the Eclipse IDE
In addition to the standalone Rich Client Platform (RCP) version of Oracle JRockit Mission
Control 3.1.0, the toolset is also available as a plug-in to the Eclipse IDE (Eclipse 3.3 or above).
This version of JRockit Mission Control provides seamless integration of JRockit Mission
Control’s application profiling and monitoring toolset with the Eclipse development platform. By
integrating the JRockit Mission Control Client with Eclipse, you can combine the features of
Eclipse with the power toolset in JRockit Mission Control.

This document describes this integration and provides instructions for using the special
functionality enabled by integrating the JRockit Mission Control Client with Eclipse. The topics
include:

Benefits of the Integration

Differences between the Eclipse Version and the RCP Version

Making the JRockit JVM Your JVM

Selecting a Perspective

Jumping to Application Source

Benefits of the Integration
When the JRockit Mission Control Client is run within the Eclipse IDE, you have access to IDE
features that aren’t otherwise available in the toolset when it is run as a standalone Rich Client
Platform (RCP) application. The most significant of these features is the ability to see specific
Introduction to Oracle JRockit Mission Control 5-1

In teg rat ion wi th the Ec l ipse IDE
code in the running application by opening it directly from the JRockit Mission Control Client, a
function called Jump-to-Source.

The other obvious benefit of integrating the JRockit Mission Control Client with the Eclipse IDE
is that it allows you to profile and monitor an application during their development phase just as
you would during their production phase. This allows you to spot potential runtime problems
before you actually deploy your application to production; for example, you might, while
monitoring an application during its development notice a memory leak. By catching the memory
leak during development, you can correct it before you migrate your application to a production
environment.

Differences between the Eclipse Version and the RCP
Version

Generally, the Eclipse version of the JRockit Mission Control Client works identically to the RCP
version. Any component in the Eclipse version offers the same functionality and user interface as
the comparable component delivered on the RCP.

The biggest difference that Eclipse version of the JRockit Mission Control Client has over the
RCP version is the Jump-to-Source feature, described in Jumping to Application Source. With
this feature, you can not only see the name of a “problem” class or method displayed in the
JRockit Mission Control Client, but you can jump from the displayed name directly to that class
or method’s source, where you can evaluate the code to see what might be causing the problem.
Jump-to-Source is enabled for the Management Console, the JRockit Runtime Analyzer, and the
Memory Leak Detector.

Making the JRockit JVM Your JVM
While JRockit Mission Control can work with many different Java Virtual Machines, it is highly
recommended that you use the Oracle JRockit JVM as your JVM when running Mission Control
on the Eclipse platform. Not only will you avail yourself of the JRockit JVM’s exceptional
performance, but by using this JVM, Mission Control’s autodetect feature will be enabled, which
makes it simple to connect Mission Control to your locally running application.

To run Eclipse (and thus the JRockit Mission Control Client) on the JRockit JVM

1. Go to your file system browser (for example, Windows Explorer).
5-2 Introduction to Oracle JRockit Mission Control

Making the JRock i t JVM Your JVM
2. Locate your Eclipse installation folder (for example, C:\Program Files\Eclipse) and,
with a file editor other than Notepad, open the file eclipse.ini. It will look something like
the example in Listing 4-1.

Listing 4-1 eclipse.ini Example

-showsplash
org.eclipse.platform
--launcher.XXMaxPermSize
256M
-vmargs
-Dosgi.requiredJavaVersion=1.5
-Xms40m
-Xmx512m

3. Make the following changes to eclipse.ini:

– Remove all flags related to non-Oracle JRockit JVMs (for example,
--launcher.XXMaxPermSize 256M)

– On the third line down (after org.eclipse.platform), add the following:

-vm
<Full path to JRockit JVM’s javaw file>

The full path to JRockit's javaw file might look like this on Windows:
C:\Program Files\Java\jrockit-R27.4.0-jdk1.6.0_02\bin\javaw.exe

or like this on Linux and Solaris:

$HOME/jrockit-R27.4.0-jdk1.6.0_02/bin/javaw

– Depending upon your particular JRockit JVM implementation and the applications
running on it, you can set any valid JRockit JVM command-line option. For example,
you might want to set a garbage collector that meets your system priorities by using the
-XgcPrio: option or increase (or decrease) the initial and maximum heap size by
changing the values for -Xms and -Xmx.

For more information on tuning the JVM, please refer to Profiling and Performance
Tuning in the Oracle JRockit JVM Diagnostics Guide.
Introduction to Oracle JRockit Mission Control 5-3

In teg rat ion wi th the Ec l ipse IDE
For more information on the available command-line options, please refer to the Oracle
JRockit JVM Command-Line Reference.

4. When you are done making the necessary changes to eclipse.ini, save and close the file.
Listing 4-2 shows an example of the eclipse.ini file updated to make Oracle JRockit JVM the
JVM.

Listing 4-2 Updated eclipse.ini file for a Windows implementation

-showsplash
org.eclipse.platform
-vm
C:\Program Files\Java\jrockit-R27.4.0-jdk1.6.0_02\bin\javaw.exe
-vmargs
-Dosgi.requiredJavaVersion=1.5
-Xms256m
-Xmx512m
-XgcPrio:pausetime

Selecting a Perspective
A “perspective” defines a set of views and their relative positions within the Eclipse window; in
other words, it is a template for graphically presenting different types of information in Eclipse.
For example, the Java perspective combines views that you would commonly use while editing
Java source files, while the Debug perspective contains the views that you would use while
debugging Java programs.

JRockit Mission Control for Eclipse come with a predefined perspective called JRockit Mission
Control. This perspective shows the JRockit Mission Control Client interface so that you can use
the tools in JRockit Mission Control to profile applications as you develop them in Eclipse.

This topic will show you how:

To open the Mission Control Perspective

To change perspective from Mission Control

To reopen the Mission Control Standard Perspective
5-4 Introduction to Oracle JRockit Mission Control

Se lec t ing a Pe rspec t i ve
To open the Mission Control Perspective

1. In top right corner of the Eclipse window, click the Open Perspective icon (Figure 4-1).

Figure 4-1 Open Perspective Icon

The Open Perspective context menu appears (Figure 4-2).

Figure 4-2 Open Perspective Context Menu

2. Select Other...

The Open Perspective dialog box appears (Figure 4-3).

Open Perspective
Icon
Introduction to Oracle JRockit Mission Control 5-5

In teg rat ion wi th the Ec l ipse IDE
Figure 4-3 Open Perspective Dialog Box

3. Select Mission Control and click OK.

The Eclipse window reconfigures to show the Mission Control Standard Perspective
(Figure 4-4).

Figure 4-4 Mission Control Standard Perspective
5-6 Introduction to Oracle JRockit Mission Control

Jumping to Appl ica t i on Source
To change perspective from Mission Control
You can change perspectives from Mission Control to another perspective by using one of the
methods described in Table 4-1:

To reopen the Mission Control Standard Perspective
If you have already opened the Mission Control Standard Perspective for this project, a Mission
Control button will appear next to the Open Perspective button in the top right corner of the
Eclipse window (Figure 4-5).

Figure 4-5 Open Standard Mission Control Perspective Button

To reopen the perspective, simply click that button.

Jumping to Application Source
When running JRockit Mission Control in an Eclipse IDE you can select a method or class and
jump from the JRockit Mission Control Client directly to the source code where that method or
class is declared. An editor will open up showing you the source file. Jump-to-Source is available
in JRA, the Management Console and the Memory Leak Detector:

This topic contains the following information:

Table 4-1 Changing Perspectives

If... Do this...

You’ve never opened
the perspective

1. Click the Open Perspective icon.
2. Either:

– Select the perspective you want to open.
– If the perspective name does not appear on the context menu,

select Other... to open the Open Perspective dialog box and
select the perspective from there.

You’ve opened the
perspective before

If you’ve opened the perspective before, a button for that perspective will
appear in the top right corner of the Standard Mission Control Perspective,
near the Open Perspective icon. Simply click the button for the perspective
you want to open.
Introduction to Oracle JRockit Mission Control 5-7

In teg rat ion wi th the Ec l ipse IDE
Using Jump-to-Source

JRockit Mission Control Plug-ins with Jump-to-Source Enabled

Using Jump-to-Source
To jump from the JRockit Mission Control Client to source code
Note: The following procedure is generic. See JRockit Mission Control Plug-ins with

Jump-to-Source Enabled for a list of plug-ins where this feature is enabled.

1. On the table, tree or other GUI component listing classes or methods, right-click the class or
method for which you want to see the source code.

A context menu appears (Figure 4-6).

Figure 4-6 Jump to Source Command on the Context Menu

2. Select Open Method (or Open Type, if you are jumping from to a class call).

The associated source code will appear in a new editor.

JRockit Mission Control Plug-ins with Jump-to-Source
Enabled
Note: This feature only works with versions of the JRockit Mission Control Client integrated

into the Eclipse IDE.

Table 4-2 lists the Oracle JRockit Mission Control plug-ins where Jump-to-Source is enabled.
5-8 Introduction to Oracle JRockit Mission Control

Jumping to Appl ica t i on Source
Table 4-2 Plug-ins with Jump-to-Source Enabled

Plug-in Component

Management Console • Threads tab
– Stack traces for selected threads

• Exception Counter
– Profiling Information table

JRA • Methods Tab
– The tables and both the trees.

• GCs Tab
– The GC method call tree for a garbage collection.

• GC General Tab
– Garbage collection call trees.

• Objects Tab
– Both Start of Recording and End of recording

• Optimizations:
– In the table.

• Locks
– Java Locks

• Latency Log
– Event Details
– Event Properties
– Stack Trace

• Latency Log
– Event Property Histogram,

• Latency Traces
– The trace trees.

Memory Leak Detector • Trend Table
• Application Stack Traces
Introduction to Oracle JRockit Mission Control 5-9

In teg rat ion wi th the Ec l ipse IDE
5-10 Introduction to Oracle JRockit Mission Control

C H A P T E R 5
Overview of JRockit Mission Control

Client 3.1.0
The Oracle JRockit Mission Control Client 3.1.0 tools suite includes tools to monitor, manage,
profile, and eliminate memory leaks in your Java application without introducing the
performance overhead normally associated with these types of tools.

This section contains information on the following subjects:

Architectural Overview of JRockit Mission Control 3.1.0

Starting JRockit Mission Control

The JRockit Browser

The JRockit Management Console

The JRockit Runtime Analyzer (JRA)

The JRockit Memory Leak Detector

New Features in JRockit Mission Control 3.1.0
JRockit Mission Control 3.1.0 contains a large number of new features that will provide more
information more seamlessly and improve the overall user experience. For descriptions of these
features, please refer to New Features and Enhancements in this Release at:

http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/tools/relnote
stools/relnotestools3.html#wp1091816
Introduction to Oracle JRockit Mission Control 6-1

Overv iew o f JRock i t M iss ion Cont ro l C l i ent 3 .1 .0
Architectural Overview of JRockit Mission Control 3.1.0
With the new Rich Client Platform (RCP) based JRockit Mission Control, you can launch the
Memory Leak Detector, the JRockit Runtime Analyzer, and the JRockit Management Console
from within the JRockit Mission Control. Figure 5-1 depicts how JRockit Mission Control looks
when all tools are loaded.

Figure 5-1 Architectural Overview of JRockit Mission Control 3.1.0

When a JRA recording is started from within the JRockit Mission Control Client, it records the
status of the JRockit JVM process for the time that you have specified and creates a ZIP file
containing an XML file with the recorded data and optionally a binary file with latency data
together with the corresponding data producer specification files. The ZIP file is automatically
opened in the JRockit Runtime Analyzer tool upon completion of the recording, valid for JDK
level 1.5 and later (marked 5 in Figure 5-1). Typical information that is recorded during a JRA
recording is Java heap distribution, garbage collections, method samples, and lock profiling
information (optional). New for the Oracle JRockit Mission Control 3.1.0 release, is that you can
also record thread latency data. When viewing Latency data in the JRA Tool, the Latency Events
Details become visible (marked 2 in Figure 5-1).
6-2 Introduction to Oracle JRockit Mission Control

Star t ing JRock i t M iss i on Cont ro l
To view real-time behavior of your application and of Oracle JRockit JVM, you can connect to
an instance of the JRockit JVM and view real-time information through the JRockit Management
Console (marked 4 in Figure 5-1). Typical data that you can view is thread usage, CPU usage,
and memory usage. All graphs are configurable and you can both add your own attributes and
redefine their respective labels. In the Management Console you can also create rules that trigger
on certain events, for example, an mail will be sent if the CPU reaches 90% of the size.

With the JMX Agent you have access to all MBeans deployed in the platform MBean server.
From these MBeans, you can read attribute information, such as garbage collection pause times.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The Memory Leak Detector connects to the JMX (RMP)
Agent that instructs to start a Memory Leak server where all further communication takes place.

Starting JRockit Mission Control
The JRockit Mission Control Client executable is located in JROCKIT_HOME/bin. If this
directory is on your system path, you can start the JRockit Mission Control Client by simply
typing jrmc in a command (shell) prompt.
Otherwise, you have to type the full path to the executable file, as shown below:

JROCKIT_HOME\bin\jrmc.exe (Windows)
JROCKIT_HOME/bin/jrmc (Linux)

On Windows installations, you can start JRockit Mission Control from the Start menu.

The JRockit Browser
The JRockit Browser (see Figure 5-2) was new for the JRockit Mission Control 2.0 release. This
tool allows you to set up and manage all running instances of JRockit JVM on your system. From
the JRockit Browser you activate different tools, such as starting a JRA recording, connecting a
Management Console, and starting memory leak detection. Each JRockit JVM instance is
referred to as a Connector.
Introduction to Oracle JRockit Mission Control 6-3

Overv iew o f JRock i t M iss ion Cont ro l C l i ent 3 .1 .0
Figure 5-2 The JRockit Browser

The JRockit Management Console
The JRockit Management Console (see Figure 5-3) is used to monitor a JRockit JVM instance.
Several Management Consoles can be running concurrently side by side. The tool captures and
presents live data about memory, CPU usage, and other runtime metrics. For the Management
Console that is connected to JRockit JDK 5.0, information from any JMX MBean deployed in the
Oracle JRockit JVM internal MBean server can be displayed as well. For a Console connected to
Oracle JRockit JDK 1.4, RMP capabilities are exposed by a JMX proxy. JVM management
includes dynamic control over CPU affinity, garbage collection strategy, memory pool sizes, and
more.
6-4 Introduction to Oracle JRockit Mission Control

The JRock i t Runt ime Ana lyze r (JRA)
Figure 5-3 The JRockit Management Console

The JRockit Runtime Analyzer (JRA)
The JRockit Runtime Analyzer (see Figure 5-4) is an on-demand “flight recorder” that produces
detailed recordings about the JVM and the application it is running. The recorded profile can later
be analyzed off line, using the JRA. Recorded data includes profiling of methods and locks, as
well as garbage collection statistics, optimization decisions, and event latencies.
Introduction to Oracle JRockit Mission Control 6-5

Overv iew o f JRock i t M iss ion Cont ro l C l i ent 3 .1 .0
Figure 5-4 The JRockit Runtime Analyzer

The JRockit Memory Leak Detector
Note: The Memory Leak Detector is not encrypted; therefore, you should never use it on a

public network. An encryption protocol will be available in a future edition of this
product.

The JRockit Memory Leak Detector (see Figure 5-5) is a tool for discovering and finding the
cause for memory leaks in a Java application. The JRockit Memory Leak Detector’s trend
analyzer discovers slow leaks, it shows detailed heap statistics (including referring types and
instances to leaking objects), allocation sites, and it provides a quick drill down to the cause of
6-6 Introduction to Oracle JRockit Mission Control

The JRock i t Memory Leak Detec to r
the memory leak. The Memory Leak Detector uses advanced graphical presentation techniques
to make it easier to navigate and understand the sometimes complex information.

Figure 5-5 The JRockit Memory Leak Detector
Introduction to Oracle JRockit Mission Control 6-7

Overv iew o f JRock i t M iss ion Cont ro l C l i ent 3 .1 .0
6-8 Introduction to Oracle JRockit Mission Control

C H A P T E R 6
Overview of JRockit Mission Control 2.0
The Oracle JRockit Mission Control 2.0 tools suite includes tools to monitor, manage, profile,
and eliminate memory leaks in your Java application without introducing the performance
overhead normally associated with these types of tools.

This section contains information on the following subjects:

Architectural Overview of JRockit Mission Control 2.0

Starting JRockit Mission Control

The JRockit Browser

The JRockit Management Console

The JRockit Runtime Analyzer (JRA)

The JRockit Memory Leak Detector

Architectural Overview of JRockit Mission Control 2.0
With the new Rich Client Platform (RCP) based JRockit Mission Control, you can launch the
Memory Leak Detector, the JRockit Runtime Analyzer, and the JRockit Management Console
from within the JRockit Mission Control (see Figure 6-1).
Introduction to Oracle JRockit Mission Control 7-1

Overv iew o f JRock i t M iss ion Cont ro l 2 .0
Figure 6-1 Architectural Overview of JRockit Mission Control 2.0

With the JMX Agent you have access to all MBeans deployed in the platform MBean server.
From these MBeans, you can read attributes information, such as garbage collection pauses.

When a JRA recording is started from within JRockit Mission Control, it records the status of the
JRockit JVM process for the time that you have specified and creates an XML file. This file is
automatically opened in the JRockit Runtime Analyzer. Typical information that is recorded
during a JRA recording is Java heap distribution, garbage collections, method optimizations, and
method profiling information.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The Memory Leak Detector connects to the JMX (RMP)
Agent that instructs to start a Memory Leak server where all further communication takes place.
7-2 Introduction to Oracle JRockit Mission Control

Star t ing JRock i t M iss i on Cont ro l
Starting JRockit Mission Control
The JRockit Mission Control executable is located in JROCKIT_HOME/bin. If this directory is on
your system path, you can start JRockit Mission Control by simply typing jrmc in a command
(shell) prompt.
Otherwise, you have to type the full path to the executable file, as shown below:

JROCKIT_HOME/bin/jrmc.exe (Windows)
JROCKIT_HOME\bin\jrmc (Linux)

On Windows installations, you can start JRockit Mission Control from the Start menu.

The JRockit Browser
The JRockit Browser (see Figure 6-2) is new for the JRockit Mission Control 2.0 release. This
tool allows you to set up and manage all running instances of JRockit JVM on your system. From
the JRockit Browser you activate recordings, set up a tree view of different JRockit JVM
instances to monitor, start other JRockit Mission Control tools, etc. Each JRockit JVM instance
is referred to as a Connector.

Figure 6-2 The JRockit Browser

The JRockit Management Console
The JRockit Management Console (see Figure 6-3) is used to monitor a JRockit JVM instance.
Several Management Consoles can be running concurrently side by side. The tool captures and
presents live data about memory, CPU usage, and other runtime metrics. For the Management
Console that is connected to Oracle JRockit JDK 5.0, information from any JMX MBean
deployed in the JRockit JVM internal MBean server can be displayed as well. For a Console
connected to Oracle JRockit JDK 1.4, RMP capabilities are exposed by a JMX proxy. JVM
Introduction to Oracle JRockit Mission Control 7-3

Overv iew o f JRock i t M iss ion Cont ro l 2 .0
management includes dynamic control over CPU affinity, garbage collection strategy, memory
pool sizes, and more.

Figure 6-3 The JRockit Management Console

The JRockit Runtime Analyzer (JRA)
The JRockit Runtime Analyzer (see Figure 6-4) is an on-demand “flight recorder” that produces
detailed recordings about the JVM and the application it is running. The recorded profile can later
be analyzed off line, using the JRA tool. Recorded data includes profiling of methods and locks,
as well as garbage collection statistics, optimization decisions, and object statistics.
7-4 Introduction to Oracle JRockit Mission Control

The JRock i t Memory Leak Detec to r
Figure 6-4 The JRockit Runtime Analyzer

The JRockit Memory Leak Detector
The JRockit Memory Leak Detector (see Figure 6-5) is a tool for discovering, and finding the
cause for memory leaks in a Java application. The JRockit Memory Leak Detector’s trend
analyzer discovers slow leaks, it shows detailed heap statistics (including referring types and
instances to leaking objects), allocation sites, and it provides a quick drill down to the cause of
the memory leak. The Memory Leak Detector uses advanced graphical presentation techniques
to make it easier to navigate and understand the sometimes complex information.
Introduction to Oracle JRockit Mission Control 7-5

Overv iew o f JRock i t M iss ion Cont ro l 2 .0
Figure 6-5 The JRockit Memory Leak Detector
7-6 Introduction to Oracle JRockit Mission Control

C H A P T E R 7
Overview of Oracle JRockit 1.0
The Oracle JRockit Mission Control 1.0 tools suite was introduced with Oracle JRockit JDK
R26.0.0. These tools are run as standalone tools to the JRockit JVM.

This section contains information on the following subjects:

Architectural Overview of JRockit Mission Control 1.0

The JRockit Management Console

The JRockit Runtime Analyzer (JRA)

The JRockit Memory Leak Detector

Architectural Overview of JRockit Mission Control 1.0
JRockit Mission Control is available on Oracle JRockit JDK 1.4.2 (R26.2 and later) and JRockit
JVM 5.0 (R26.0 and later), see Figure 1-1. The difference between the two is the connection
agent used by the JRockit Management Console and the JRockit Management Console user
interface itself.

The RMP Agent (JRockit JDK 1.4.2) provides access, among other things, to live data about
memory and CPU usage. With the addition of the JMX Agent (available with JRockit JDK 5.0)
you will also get access to MBeans available to the platform MBean server. From these MBeans,
you can read attributes information, such as garbage collection pauses.

When a JRA recording is started, for example, from the Management Console, it records the
status of the JRockit JVM process for the time that you have specified. When the recording is
completed, the information is saved to an XML file. This XML file can be viewed and analyzed
Introduction to Oracle JRockit Mission Control 8-1

Overv iew o f Orac le JRock i t 1 .0
in the JRockit Runtime Analyzer tool. Typical information that is recorded during a JRA
recording is Java heap distribution, garbage collections, and method optimizations.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The Memory Leak Detector connects to the JMX (RMP)
Agent that instructs to start a Memory Leak server where all further communication takes place.

Figure 1-1 Architectural Overview of JRockit Mission Control 1.0

The JRockit Management Console
The JRockit Management Console is used to monitor and manage multiple (or single) JRockit
JVM instances. It captures and presents live data about memory, CPU usage, and other runtime
metrics. For the Management Console that is running on JRockit JDK 5.0, information from any
JMX MBean deployed in the JRockit JVM internal MBean server (JMX Agent in Figure 1-1) can
be displayed as well. JVM management includes dynamic control over CPU affinity, garbage
collection strategy, memory pool sizes, and more.
8-2 Introduction to Oracle JRockit Mission Control

The JRock i t Runt ime Ana lyze r (JRA)
The JRockit Runtime Analyzer (JRA)
The JRockit Runtime Analyzer (JRA) is an on-demand “flight recorder” that produces detailed
recordings about the JVM and the application it is running. The recorded profile can later be
analyzed off line, using the JRA tool. Recorded data includes profiling of methods and locks, as
well as garbage collection statistics, optimization decisions, and object statistics.

The JRockit Memory Leak Detector
The JRockit Memory Leak Detector is a tool for discovering, and finding the cause for memory
leaks in a Java application. The JRockit Memory Leak Detector’s trend analyzer discovers slow
leaks, it shows detailed heap statistics (including referring types and instances to leaking objects),
allocation sites, and it provides a quick drill down to the cause of the memory leak. The Memory
Leak Detector uses advanced graphical presentation techniques to make it easier to navigate and
understand the sometimes complex information.
Introduction to Oracle JRockit Mission Control 8-3

Overv iew o f Orac le JRock i t 1 .0
8-4 Introduction to Oracle JRockit Mission Control

C H A P T E R 2
Oracle JRockit Mission Control Client
Use Cases
This chapter demonstrates various ways Oracle JRockit Mission Control Client can be used to
monitor and manage application running on the Oracle JRockit JVM. It includes the following
use cases:

Analyzing System Behavior with the JRockit Management Console

Analyzing System Problems with the JRockit Runtime Analyzer

Detecting a Memory Leak

Analyzing System Behavior with the JRockit Management
Console

Marcus wants to monitor his application, DemoLeak which he’s running on an instance of the
JRockit JVM, to ensure that he has tuned it to provide the best possible performance. To do this,
he will run the JRockit Management Console concurrent with the application run. The
Management Console will provide realtime information about memory, CPU usage, and other
runtime metrics. The Management Console is a multi-tabbed interface, each tab allowing him to
monitor and/or manage an aspect of a running application. Which tabs his version of the
Management Console uses depends on which Java plug-ins he has installed with the console.
When fully-implemented, the console will include eight tabs and one menu, which map to seven
plug-ins.
Introduction to Oracle JRockit Mission Control 9-1

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Getting Started
To get started, Marcus launches the JRockit Mission Control Client from the command prompt,
by entering:

jrockit\bin\jrmc

While the JRockit Mission Control Client is starting up, he launches the DemoLeak application.
At the command prompt, he enters:

jrockit\bin\java DemoLeak

Next, he starts the Management Console with a local connection.

To launch the Management Console, Marcus does the following:

1. In the JRockit Browser, he locates the JRockit JVM instance to which he wants to connect. In
this case, it will be the one running the DemoLeak class under Discovered/Local.

Figure 2-1 Locating the Appropriate JRockit JVM Instance

2. He right-clicks the mouse to open a context menu for the connection.
9-2 Introduction to Oracle JRockit Mission Control

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
Figure 2-2 Context Menu for Selected JRockit JVM Instance

3. He selects Start Console.

After a few moments, the Management Console appears in the right panel of the JRockit
Mission Control Client. Note that in Marcus’s implementation of the JRockit Mission
Control Client, he can see the following tabs:

– Overview

– MBean Browser

– Memory

– Threads

– Runtime

– Triggers

– Exception Count

– Method Profiler

Analyzing Memory Usage
One way to spot problems with application performance to is to see how it uses memory during
runtime. To analyze how his application is using the memory available to it, Marcus will use the
Introduction to Oracle JRockit Mission Control 9-3

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Memory Tab. This tab focuses on heap usage, memory usage, and garbage collection schemes.
The information provided on this tab can greatly assist Marcus in determining whether he has
configured the JRockit JVM to provide optimal application performance.

To analyze memory usage, Marcus does the following:

1. First, he examines the Heap graph, which shows the used Java heap growing until it reaches
80% to 90% of the available heap before a garbage collection is triggered. At that, point the
graph falls back, indicating that new heap space is available. As the graph in Figure shows,
this cycle repeats itself throughout the run.

Figure 2-3 Heap Graph

2. Next, he takes a look at the Memory Statistics and Garbage Collector panels, which show
additional information about memory usage and the garbage collector, respectively. If
necessary, Marcus can change some of the values from this tab; for example he could change
the allocated Java heap size or the garbage collection strategy if he felt that those originally
selected weren’t allowing the application to run optimally.

Plotting Garbage Collection Times
Next, he decides to see the duration for each garbage collection. Overly long garbage collection
times are a common cause of poor application performance. To see the duration of the garbage
collections, Marcus can plot this information on the Heap graph.

The graphs shown in the various tabs are all preconfigured with a few useful default attributes,
but any numerical attribute from any MBean can be added. In addition to the standard MBeans
in J2SE 5.0 and the JRockit JVM specific MBeans, JRockit Mission Control itself provides so
called synthetic MBeans that derives attributes from multiple other attributes. One such attribute
is the garbage collection times

Note: The attribute for garbage collection durations is called PauseTimes even though the Java
application isn’t necessarily paused during the whole garbage collection. When a
concurrent garbage collector is in use, the garbage collector runs concurrently with the
Java application for the most part of the garbage collection duration. The misleading
9-4 Introduction to Oracle JRockit Mission Control

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
naming of the attribute is a known issue and will be fixed in upcoming releases. The
correct name of the attribute would be Duration.

To do this, Marcus does the following:

1. In the Memory tab, he clicks Add… (to the right of the Heap graph).

The Attribute Selector appears.

2. He drills down to the PauseTimes attribute, as shown in Figure 2-4, select it and clicks OK.

Figure 2-4 Selecting an Attribute to Add to the Heap Graph

The new attribute should now be shown in the Heap graph. This synthetic attribute is a
somewhat special in that it only shows values just before and after a garbage collection,
causing the triangular-shaped plot, as shown in Figure 2-5. The value is shown in
milliseconds.
Introduction to Oracle JRockit Mission Control 9-5

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Figure 2-5 Heap Graph with Pause Time Plot Added

Setting an Alert Trigger
In his search for bottlenecks in the system, Marcus looks at the CPU load graph and notices that
the CPU load for the JVM sometimes hits the roof. Marcus would like to know how often this
happens for a longer period of time. Instead of staying and watching the CPU graph continuously
he sets an alert trigger to alert him whenever the CPU load generated by the VM is high for a
longer period of time.

To set the alert, Marcus does the following:

1. Marcus goes to the Triggers tab and clicks Add… (under Trigger Rules).

The Add New Trigger Rule wizard appears.

2. He drills down and selects the VMGeneratedCPULoad as shown in Figure 2-6. He then clicks
Next >.
9-6 Introduction to Oracle JRockit Mission Control

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
Figure 2-6 Selecting an Attribute to Trigger On

3. He enters the conditions as shown in Figure 2-7.
Introduction to Oracle JRockit Mission Control 9-7

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Figure 2-7 Setting Conditions for Triggering

Since the CPU load value ranges from 0-1, Marcus sets the Max trigger value to 0.95.
Marcus wants to be alerted when the CPU usage is high for at least five minutes and sets
Sustained [s] to 300. He sets the Limit period [s] to 10 to prevent triggers less than 10
seconds apart.

4. He clicks Next >.

5. The Add New Trigger Rule: Select Action dialog box appears (Figure 2-8). Marcus selects
Application alert and clicks Next >.

Figure 2-8 Selecting the Trigger Action
9-8 Introduction to Oracle JRockit Mission Control

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
6. Marcus skips the optional constraints of when to arm the trigger by clicking Next >.

7. Marcus names the rule as shown in Figure 2-9 (CPU load for JRockit > 0.95) and clicks
Finish.

Figure 2-9 Naming the Rule

8. Marcus then activates the new rule by checking the box next to the rule name.

Figure 2-10 Trigger Selected

9. To verify that he is getting useful data, Marcus then returns to the Memory tab and checks the
CPU activity. He notices that the Trigger Alerts dialog box doesn't appear, so he edits the rule
by going back to the Triggers tab, selecting the rule and lowering the Max trigger value to
0.90 or so under Trigger Condition.

10. Since Marcus doesn’t want the Triggers Alert dialog box to appear every time an event is
triggered, he will uncheck Show dialog on alerts to prevent the this from happening (he can
display the dialog from the Window menu whenever he wants).
Introduction to Oracle JRockit Mission Control 9-9

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Profiling Methods Online by Using the Console
Next, Marcus wants to see how many times and for how long some specific methods have run, a
process called method profiling. JRockit Mission Control has two tools for profiling methods:

To run create a runtime analysis with the JRockit Runtime Analyzer (JRA), which we will
demonstrate in Analyzing System Problems with the JRockit Runtime Analyzer. While this
is best way to find out which methods are most likely affecting performance, it is also the
more complex tool to run.

By using the Method Profiler tab in the Management Console. This tool provides efficient
and detailed method profiling while requiring a minimal amount of overhead and system
intrusion. It also allows you to profile an application for which you are already collecting
and viewing other information on the console.

To profile methods by using the Method Profiler tab, Marcus does the following

1. First, he needs to create a method profiling template by going to the Method Profiler tab and
click Add… in the Templates panel.

The Add Template dialog box appears.

2. He enters a name for the new template in the Add Template dialog box, as shown in
Figure 2-11.

Figure 2-11 Template Name Added

3. He then clicks OK.

The dialog box closes and the new template is added to the list (Figure 2-12).

Figure 2-12 DemoLeak Template Added
9-10 Introduction to Oracle JRockit Mission Control

Ana l y z ing Sys tem Behav io r w i th the JRock i t Management Conso le
4. He enables the new DemoLeak template by checking the box in front of the name, then selects
the template and clicks Add… in the DemoLeak panel (Figure 2-13).

Figure 2-13 DemoLeak Panel

Add class to method profiler dialog box appears.

5. In the Add class to method profiler dialog box, he enters java.util.Hashtable, as shown
in Figure 2-14

Figure 2-14 Adding java.util.Hashtable Class

6. He clicks OK.

7. In the DemoLeak panel, he expands the java.util.Hashtable class, scrolls down and
checks the boxes in front of the put(Object, Object) and remove(Object) methods, as
shown inn Figure 2-15.
Introduction to Oracle JRockit Mission Control 9-11

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Figure 2-15 java.util.Hashtable Methods Selected

8. He then starts profiling by clicking the green play button in the Control Panel (Figure 2-16).

Figure 2-16 Start Profiling Button

9. To interpret the results, he examines the Profiling Information panel. He notes how the
number of invocations of Hashtable.put(Object, Object) grows slightly faster than the
number of invocations of Hashtable.remove(Object).

10. Marcus then stops profiling by clicking the red stop button in the Control Panel (Figure 2-17).

Figure 2-17 Stop Profiling Button

Analyzing System Problems with the JRockit Runtime
Analyzer

Fiona is not happy with how the application DemoLeak is performing. She is particularly
concerned about the way her application performs the longer it runs. For example, while the
application works fine early in its run, after a while, it starts reporting the wrong results and
throwing exceptions where it shouldn’t. She also notices that eventually, it hangs at roughly the
9-12 Introduction to Oracle JRockit Mission Control

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
same time every time she runs it. To assess what the problem is, Fiona decides to create a runtime
analysis by use the JRockit Runtime Analyzer (JRA).

The JRA is an on-demand “flight recorder” that produces detailed recordings about the JVM and
the application it is running. The recorded profile can later be analyzed off line, using the JRA
Tool. Recorded data includes profiling of methods and locks, as well as garbage collection
statistics, optimization decisions, and, in JRockit Mission Control 3.1.0, latency analysis.

Getting Started
To start the diagnostics process, Fiona does the following:

1. She starts the JRockit Mission Control Client from the command line by typing:

jrockit\bin\jrmc

2. While the JRockit Mission Control Client starts, Fiona starts the DemoLeak by entering:

jrockit\bin\java DemoLeak

Creating the Recording
Next, Fiona creates a JRA recording from a local connection. To do so, Fiona does the following:

1. Launches the JRockit Mission Control Client and locates in the JRockit Browser the JRockit
JVM instance to which she wants to connect. This should be the one running the DemoLeak
class under Discovered/Local.

2. Right-clicks the mouse to display a context menu for the selected connection.

3. Selects Start JRA Recording to launch the Start JRA Recording wizard.

4. Selects the connection to the JRockit JVM instance on which she wants to start the recording.

5. Selects filename and directory and types a descriptive name for the recording in the Local
filename field. Note that the JRA recording file is created in the current directory of the
JRockit JVM process, unless Fiona specifies a different path. If an old file already exists, it
will be overwritten by the new recording.

6. Enters the desired length of the recording (in seconds) in Recording time.

Note: If Fiona sets a recording length that is too short, for example, less than 30 seconds,
she will probably not get enough sample data for the recording to be meaningful.

7. Selects the sampling options, as described in Table 2-1:
Introduction to Oracle JRockit Mission Control 9-13

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
8. Clicks Finish.

The JRA recording progress window appears. When the recording is finished, it loads in
the JRA. Fiona will now look at the JRA Recording.

Looking at the Recording
Next, Fiona will use the JRockit Mission Control Client to view the JRA recording. First, she
opens the General tab by doing the following:

1. In the JRockit Mission Control Client, clicking File > Open file > Open JRA Recording.

2. Locating and selecting the recorded file and clicking Open.

3. Clicking OK.

The JRA General tab for that recorded file now opens, allowing Fiona to view the data in
the recording. The General tab contains information on the JVM, your system and your
application. It is divided into the panels described in Table 2-2:

Table 2-1 Selected Sampling Options

Sampling Option Description

Record samples of methods Records samples of methods

Use gc sampling Records garbage collection events

Use native sampling Records samples of native code

Compress recording Compresses recording to a zip file

Selected JRockits Shows the JRockit JVM instance from which she will create
her recording

Table 2-2 General Tab Sections

Data Field Description

General Information Contains all general information about the JVM, operating system,
recording time, and so on.

Memory Usage Contains information on how the JRockit JVM is using the memory.
9-14 Introduction to Oracle JRockit Mission Control

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
By looking at this tab, Fiona is able to verify which version of the JVM she was running. She can
also see that large object were allocated at a rate, or “frequency”, of 22.153 MB per second while
small objects were allocated at a significantly faster rate of 261.983 MB per second.

Examining the Methods Tab
Next, Fiona will look at the Methods tab. The Method tab lists the top hot methods with their
predecessors and successors during the recording. The Methods tab is divided into the following
panels described in Table 2-3:

VM Arguments Lists all startup options that were used.

Allocation Contains information on how your application allocates memory on the
Java heap.

Threads Contains information on thread usage.

Exceptions Contains exceptions related information.

Table 2-3 Methods Tab Panels

Field Description

Top Hot Methods A listing of the top hot methods. A hot method is defined as the
methods where the JVM spends most of its time during application
execution. Being “hot” might indicate that a specific method is
causing system problems.

Predecessors A listing of all methods called prior to calling the method Fiona
selected in the Top Hot Methods list. This information can be helpful
in determining if some aspect of a certain method is complicit is poor
system performance. If Fiona selects too many methods, no
information will appear in this section.

Successors A listing of all methods called after the calling method that Fiona
selected in the Top Hot Methods list. This information can be helpful
in determining if some aspect of a certain method is complicit is poor
system performance. If Fiona selects too many methods, no
information will appear in this section.

Table 2-2 General Tab Sections

Data Field Description
Introduction to Oracle JRockit Mission Control 9-15

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Examining the Top Hot Methods
The method sampling in the JRockit JVM is based on CPU sampling. The Top Hot Methods
section lists all methods sampled during the recording and sorts them with the most sampled
method s first, as shown in Figure 2-18.

Figure 2-18 Top Hot Methods

Note: If Fiona enabled native sampling during the recording, she would see symbols with a
pound sign, such as jvm.dll#_qBitSetClear. These denote functions in native
libraries such as the JVM itself or various operating system libraries.

By looking at the list of top hot methods, Fiona sees that the three hottest methods are:

java.util.Hashtable.put(Object)

java.util.Hashtable.remove(Object,Object)

DemoLeak$DemoThread.put(int)

Starting with this information, Fiona has a good idea of where to start looking for possible areas
of concern. Fiona knows that the hottest methods are those that are sampled most often. In some
situations, the number of samplings in the hottest methods will dwarf those of the less-hot
methods. Hot methods are a good indicator of performance problems, especially memory leaks,
because the high amount of sampling affects how much time the JVM has been executing the
specific method.
9-16 Introduction to Oracle JRockit Mission Control

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
Examine Garbage Collection Events
Next Fiona examines the GC’s tab (Figure 2-19) to better understand system behavior and
garbage collection performance during runtime.

Figure 2-19 GC’s Tab

This tab is divided into the six panels described in Table 2-4
Introduction to Oracle JRockit Mission Control 9-17

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Looking at the data in the Garbage Collections panel (Figure 2-20), Fiona sees that the three
longest garbage collection pause times are indexed 95 (856 ms), 41 (707 ms), and 73 (691 ms).

Figure 2-20 Garbage Collection Panel

This data implied that, as processing continued on her application, garbage collections were
taking longer. Fiona now has additional evidence to help diagnose what might be causing her

Table 2-4 GC Events Tab Panels

Panel Description

GC Events Overview timeline This timeline shows the entire recording based on when the recording
is initially started. Fiona uses this information to refocus the Heap
Usage graph.

Heap Usage graph This graph shows heap usage compared to pause times and how that
varies during the recording. When Fiona selects a specific area in the
GC Events Overview, she only sees that section of the recording. She
can change the graph content in the Heap Usage drop-down list
(marked 6 in Figure 2-19) to get a graphical view of the references and
finalizers after each old collection.

Garbage Collections events This list shows all garbage collection events that occurred during the
recording. When she clicks a specific event, Fiona will see a flag in the
Heap Usage graph for that particular event.

Details This panel contains all the details about the specific garbage collection
round. When Fiona selects a garbage collection in the Garbage
Collection list, the tabs in the Details section change depending on
whether or not she selected an old collection or a young collection.

Chart Configuration This panel lets Fiona change the appearance on the active chart.

Heap Usage Fiona uses this list to toggle the view on the Heap Usage chart to view
References and finalizers. It shows different types of reference counts
after each collection.
9-18 Introduction to Oracle JRockit Mission Control

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
application’s performance to deteriorate. She sees that garbage collection times are increasing,
particularly later during runtime, and that the garbage collections are freeing less space on the
heap. She can, with some confidence, predict that she is experiencing a memory leak.

Note: In this example, a memory leak is revealed to Fiona fairly quickly and she finds it because
the evidence is obviously pointing in that direction. In most cases, a memory leak will
reveal itself much more slowly and probably wouldn’t be obvious on the GC’s tab.
Instead, a user would get better results by using the JRockit Memory Leak Detector, as
described in Detecting a Memory Leak.

Examine the GC General Tab
Fiona can gain more insight into how garbage collection activity might be indicating a memory
leak by looking at the GC General tab (Figure 2-21).
Introduction to Oracle JRockit Mission Control 9-19

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Figure 2-21 GC General Tab

This tab is divided into three panels that provide information about the garbage collection at a
glance. This tab is divided into the panels described in Table 2-5:

Table 2-5 GC General Tab

Panel Description

General This section shows overall statistics about the garbage collections
during the entire JRA recording.
9-20 Introduction to Oracle JRockit Mission Control

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
Fiona expands the stack tree down to user code and sees that many allocations are from the
hashtable type, which indicates that this type is allocation intense. Reducing the allocation of
this type would probably reduce the pressure on the memory management system.

Compare Object Statistics
Next, Fiona decides that it would be helpful to compare object statistics collected at the beginning
of the recording to those collected after the recording. At the beginning and at the end of a
recording session, snapshots are taken of the most common types and classes of object types that
occupy the Java heap; that is, the types of which the total number of instances occupy the most
memory. The results are shown on the Objects tab (Figure 2-22).

Garbage Collection Call Tree This section is a collection of all call traces that were sampled for all
garbage collections for the JRA recording.

GC Strategy Changes This section lists when a garbage collection strategy change took place
and how it changed.

Table 2-5 GC General Tab

Panel Description
Introduction to Oracle JRockit Mission Control 9-21

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Figure 2-22 Objects Tab

The Object Statistics tab is divided into the panels described in Table 2-6.
.

Table 2-6 Object Statistics Tab

Panel Description

Start of Recording This section lists the most common types on the heap at the
beginning of the recording.

End of Recording This section lists the most common types on the heap at the
end of the recording.
9-22 Introduction to Oracle JRockit Mission Control

Analyz ing Sys tem P rob lems w i th the JRock i t Runt ime Ana lyze r
Fiona can again see that hashtable shows the most dramatic growth and is consuming the
greatest amount of memory on the heap. This again is a strong indication of not only a memory
leak but that said leak involves the hashtable object.

Examine Lock Profiling Information
Fiona then checks the lock statistics for clues to performance bottlenecks involving locks. She
opens the Locks tab (Figure 2-23) to investigate this information for both her application and the
specific JRockit JVM instance.

Figure 2-23 Locks Tab

The Lock Profiling tab is divided into the panels defined in Table 2-7.
Introduction to Oracle JRockit Mission Control 9-23

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
By looking at the Java Locks panel, Fiona can see immediately that the hashtable type has taken
over 300 million uncontended locks, compared to a relative few for other objects. While this
information does not point directly to a memory leak, it is indicative of poor performance.

Since the lock is mostly uncontended, Fiona could optimize her application by switching to an
unsynchronized data structure such as hashmap and provide synchronization only for the few
cases where contention may occur.

Detecting a Memory Leak
Since Fiona determined that a memory leak is causing her application to run poorly, she can take
advantage of the JRockit Memory Leak Detector to confirm her suspicions and begin corrective
action. A memory leak occurs when a program fails to release memory that is no longer needed.
The term is actually a misnomer, since memory is not physically lost from the computer. Rather,
memory is allocated to a program, and that program subsequently loses the ability to access it due
to program logic flaws.

Getting Started
To start the memory leak detection process, Fiona does the following:

Note: This procedure assumes that the application was stopped after the JRA recording was
completed. Had Fiona not stopped the application, she would be able to skip step 1 and
step 2

1. She starts the application by entering, at the command line:

java DemoLeak

2. While the application starts, she creates a connection to the server on which the application is
running.

3. Next, she starts the Memory Leak Detector by doing the following:

Table 2-7 Lock Profiling Tab Panels

Panel Description

Java Locks This section lists all locks in the application.

Native Locks This section lists all JVM internal locks.
9-24 Introduction to Oracle JRockit Mission Control

Detec t ing a Memory Leak
a. Right-clicking a Oracle JRockit JVM instance in the JRockit Browser to open a context
menu.

b. Selecting Start Memleak (Figure 2-24).

Figure 2-24 Starting The Memory Leak Detector from a Context Menu

Analyze the Java Application
Fiona starts the analysis from the Trend tab (Figure 2-25), which should open when she launches
the Memory Leak Detector.
Introduction to Oracle JRockit Mission Control 9-25

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Figure 2-25 Trend Tab

Tip: The trend analysis should be running by default. If it is not running, you can start it by
clicking the start symbol among the trend analysis buttons (Figure 2-27).

The trend analysis page shows Fiona the statistics on memory usage trends for the object types
within the application. The JVM collects this data during garbage collections, which means that
at least two garbage collections must be done before any trends are shown.

Figure 2-26 Garbage Collection Button

1. In order to speed up the process, Fiona clicks on the Garbage Collection button (Figure 2-26)
a couple of times to start some garbage collections.
9-26 Introduction to Oracle JRockit Mission Control

Detec t ing a Memory Leak
Figure 2-27 Trends Analysis Buttons

2. Fiona then pauses the trend analysis by clicking the pause symbol among the trend analysis
buttons (Figure 2-27).

Figure 2-28 Show Referring Types

Fiona finds that a class named DemoObject shows the largest growth.

3. Fiona right-clicks the DemoObject class and selects “Show Referring Types” in the
drop-down menu, as seen in Figure 2-28.

Start Stop

Pause
Introduction to Oracle JRockit Mission Control 9-27

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
Figure 2-29 Types Tab

This opens the Types tab (Figure 2-29). Here Fiona can see that the DemoObjects are stored in
hashtable entries.

4. Fiona clicks on the plus sign on the java.util.Hashtabe$Entry node to expand the graph to
show types referring to the hashtable entries.

5. Fiona continues expanding the graph to the left until she finds nodes in gray that do not show
any growth trend.

Now Fiona can see that the DemoObjects are indeed stored in hashtable entries. The next step for
Fiona is to find out more about the instances holding on to the hashtable entries containing these
DemoObjects.
9-28 Introduction to Oracle JRockit Mission Control

Detec t ing a Memory Leak
Figure 2-30 List Instances

6. Fiona right-clicks the node that refers to the DemoObjects and selects List Instances in the
drop-down menu, as seen in Figure 2-30.

Figure 2-31 Show Instances Pointing To

Not all hashtable entries in the application point to the same type of objects, so Fiona gets a popup
that asks her to select the type of references she is interested in.

7. Fiona selects DemoObject in the popup (Figure 2-31), since this is the type that she is
interested in, and clicks Ok.

Figure 2-32 Show Referring Instances
Introduction to Oracle JRockit Mission Control 9-29

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
At the bottom of the Types tab Fiona gets a list of instances of java.util.Hashtable$Entry that refer
to DemoObjects.

8. Fiona right-clicks the topmost instance and selects “Show Referring Instances” (Figure 2-32)
to start analyzing the instances that hold on to this particular hashtable entry.

Figure 2-33 Instances Tab

This opens the Instances tab, as seen in Figure 2-33.

9. Just as in the Types tab, Fiona clicks on the plus signs to expand the graph to the left.

Fiona finds that the DemoObject is stored in a hashtable, which is held by a DemoThread. This
is the culprit causing the memory leak.

The Leak is Discovered
Judging from the evidence she collected using the Oracle JRockit Mission Control tools, Fiona
was able to not only identify her system problem as a memory leak, but was able to locate exactly
which object type was leaking the memory. The key to making the identification began with
9-30 Introduction to Oracle JRockit Mission Control

Detec t ing a Memory Leak
noting in her JRA recording the increasing length of garbage collections and the types upon
which those lengthening garbage collections were occurring. She then ran the Memory Leak
Detector to pinpoint which of the questionable types were actually the source of the leak. She was
able to spot types that continued to increase in their number of instances and allocations,
obviously holding on to memory so that it couldn’t be freed for allocating other objects. This, then
identified the memory leak and where it was occurring.
Introduction to Oracle JRockit Mission Control 9-31

Orac le JRock i t M iss ion Cont ro l C l i ent Use Cases
9-32 Introduction to Oracle JRockit Mission Control

	Oracle® JRockit Mission Control
	3.1.0

	Oracle JRockit Mission Control Introduction to Oracle JRockit Mission Control, 3.1.0
	Contents
	Introduction to Oracle JRockit Mission Control Client
	Supportability Statement
	Installation Information
	Starting the JRockit Mission Control Client
	JRockit Mission Control FAQ
	I can not connect the JRockit Mission Control Client. What could be the problem?
	When attempting to connect to JRockit Mission Control I get a stack trace indicating that JRockit Mission Control attempts to communicate with a strange IP or host name.
	I'm getting exceptions during startup about classes not being found
	JRockit Mission Control can't find any local JVMs
	Why can't I see any Method Profiling information in my JRA recording?
	When using the Memory Leak Detector, nothing happens in the growth column of the trend table

	JRockit Mission Control Documentation
	JRockit Mission Control Support
	Is There a Forum Where I Can Discuss JRockit Mission Control?
	Giving Feedback the JRockit Mission Control Development Team
	Accessibility Notes for JRockit Mission Control Client

	Screen Readers
	JRockit Mission Control Accessibility Mode
	Configuring the Accessibility Mode
	1. With JRockit Mission Control Console running, select Windows > Preferences...
	Figure 1-1 Preferences Window
	2. In the Accessibility Options pane, select Use accessibility mode and, under that, select the accessibility options you want to enable:
	3. Select OK.
	4. Stop and restart the Console.

	For Additional Information

	Workarounds
	Switching Between Tabs/Pages
	Reading Table Data with a Screen Reader
	1. Right-click the table you want to read to open the context menu.
	2. Select all items by selecting Select All.
	3. Select Copy.
	4. Paste the text in a text editor.

	Reading Console General/Overview Tab Data
	Resizing Online Help Text
	1. Select Window > Preferences
	2. Under Specify how help information is displayed, select Use external browser.
	3. Click Apply or OK.

	Abbreviations Used in the JRockit Mission Control Client
	Abbreviations and Acronyms
	Table 2-1 Abbreviations and Acronyms Used in Oracle JRockit Mission Control Clien

	JRockit Mission Control Communications

	JRockit Mission Control Client Communications Overview
	Figure 3-1 JRockit Mission Control Communications Topology

	J2SE 1.4
	Table 3-1 Additional Communication Settings for JRockit Mission Control on J2SE 1.4

	J2SE 5.0 and Later
	Table 3-2 -Xmanagement Option

	All Versions
	Table 3-3 System Properties Used to Control the JDP Server
	Integration with the Eclipse IDE

	Benefits of the Integration
	Differences between the Eclipse Version and the RCP Version
	Making the JRockit JVM Your JVM
	To run Eclipse (and thus the JRockit Mission Control Client) on the JRockit JVM
	1. Go to your file system browser (for example, Windows Explorer).
	2. Locate your Eclipse installation folder (for example, C:\Program Files\Eclipse) and, with a file editor other than Notepad, open the file eclipse.ini. It will look something like the example in Listing 4-1.

	Listing 4-1 eclipse.ini Example
	3. Make the following changes to eclipse.ini:
	4. When you are done making the necessary changes to eclipse.ini, save and close the file. Listing 4-2 shows an example of the eclipse.ini file updated to make Oracle JRockit JVM the JVM.

	Listing 4-2 Updated eclipse.ini file for a Windows implementation

	Selecting a Perspective
	To open the Mission Control Perspective
	1. In top right corner of the Eclipse window, click the Open Perspective icon (Figure 4-1).
	Figure 4-1 Open Perspective Icon
	Figure 4-2 Open Perspective Context Menu
	2. Select Other...

	Figure 4-3 Open Perspective Dialog Box
	3. Select Mission Control and click OK.

	Figure 4-4 Mission Control Standard Perspective

	To change perspective from Mission Control
	Table 4-1 Changing Perspectives

	To reopen the Mission Control Standard Perspective
	Figure 4-5 Open Standard Mission Control Perspective Button

	Jumping to Application Source
	Using Jump-to-Source
	To jump from the JRockit Mission Control Client to source code
	1. On the table, tree or other GUI component listing classes or methods, right-click the class or method for which you want to see the source code.
	Figure 4-6 Jump to Source Command on the Context Menu
	2. Select Open Method (or Open Type, if you are jumping from to a class call).

	JRockit Mission Control Plug-ins with Jump-to-Source Enabled
	Table 4-2 Plug-ins with Jump-to-Source Enabled

	Overview of JRockit Mission Control Client 3.1.0

	New Features in JRockit Mission Control 3.1.0
	http://download.oracle.com/docs/cd/E13150_01/jrockit_jvm/jrockit/tools/relnote stools/relnotestools3.html#wp1091816

	Architectural Overview of JRockit Mission Control 3.1.0
	Figure 5-1 Architectural Overview of JRockit Mission Control 3.1.0

	Starting JRockit Mission Control
	The JRockit Browser
	Figure 5-2 The JRockit Browser

	The JRockit Management Console
	Figure 5-3 The JRockit Management Console

	The JRockit Runtime Analyzer (JRA)
	Figure 5-4 The JRockit Runtime Analyzer

	The JRockit Memory Leak Detector
	Figure 5-5 The JRockit Memory Leak Detector
	Overview of JRockit Mission Control 2.0

	Architectural Overview of JRockit Mission Control 2.0
	Figure 6-1 Architectural Overview of JRockit Mission Control 2.0

	Starting JRockit Mission Control
	The JRockit Browser
	Figure 6-2 The JRockit Browser

	The JRockit Management Console
	Figure 6-3 The JRockit Management Console

	The JRockit Runtime Analyzer (JRA)
	Figure 6-4 The JRockit Runtime Analyzer

	The JRockit Memory Leak Detector
	Figure 6-5 The JRockit Memory Leak Detector
	Overview of Oracle JRockit 1.0

	Architectural Overview of JRockit Mission Control 1.0
	Figure 1-1 Architectural Overview of JRockit Mission Control 1.0

	The JRockit Management Console
	The JRockit Runtime Analyzer (JRA)
	The JRockit Memory Leak Detector
	Oracle JRockit Mission Control Client Use Cases

	Analyzing System Behavior with the JRockit Management Console
	Getting Started
	1. In the JRockit Browser, he locates the JRockit JVM instance to which he wants to connect. In this case, it will be the one running the DemoLeak class under Discovered/Local.
	Figure 2-1 Locating the Appropriate JRockit JVM Instance
	2. He right-clicks the mouse to open a context menu for the connection.

	Figure 2-2 Context Menu for Selected JRockit JVM Instance
	3. He selects Start Console.

	Analyzing Memory Usage
	1. First, he examines the Heap graph, which shows the used Java heap growing until it reaches 80% to 90% of the available heap b...
	Figure 2-3 Heap Graph
	2. Next, he takes a look at the Memory Statistics and Garbage Collector panels, which show additional information about memory u...

	Plotting Garbage Collection Times
	1. In the Memory tab, he clicks Add… (to the right of the Heap graph).
	2. He drills down to the PauseTimes attribute, as shown in Figure 2-4, select it and clicks OK.

	Figure 2-4 Selecting an Attribute to Add to the Heap Graph
	Figure 2-5 Heap Graph with Pause Time Plot Added

	Setting an Alert Trigger
	1. Marcus goes to the Triggers tab and clicks Add… (under Trigger Rules).
	2. He drills down and selects the VMGeneratedCPULoad as shown in Figure 2-6. He then clicks Next >.

	Figure 2-6 Selecting an Attribute to Trigger On
	3. He enters the conditions as shown in Figure 2-7.

	Figure 2-7 Setting Conditions for Triggering
	4. He clicks Next >.
	5. The Add New Trigger Rule: Select Action dialog box appears (Figure 2-8). Marcus selects Application alert and clicks Next >.

	Figure 2-8 Selecting the Trigger Action
	6. Marcus skips the optional constraints of when to arm the trigger by clicking Next >.
	7. Marcus names the rule as shown in Figure 2-9 (CPU load for JRockit > 0.95) and clicks Finish.

	Figure 2-9 Naming the Rule
	8. Marcus then activates the new rule by checking the box next to the rule name.

	Figure 2-10 Trigger Selected
	9. To verify that he is getting useful data, Marcus then returns to the Memory tab and checks the CPU activity. He notices that ...
	10. Since Marcus doesn’t want the Triggers Alert dialog box to appear every time an event is triggered, he will uncheck Show dialog on alerts to prevent the this from happening (he can display the dialog from the Window menu whenever he wants).

	Profiling Methods Online by Using the Console
	1. First, he needs to create a method profiling template by going to the Method Profiler tab and click Add… in the Templates panel.
	2. He enters a name for the new template in the Add Template dialog box, as shown in Figure 2-11.

	Figure 2-11 Template Name Added
	3. He then clicks OK.

	Figure 2-12 DemoLeak Template Added
	4. He enables the new DemoLeak template by checking the box in front of the name, then selects the template and clicks Add… in the DemoLeak panel (Figure 2-13).

	Figure 2-13 DemoLeak Panel
	5. In the Add class to method profiler dialog box, he enters java.util.Hashtable, as shown in Figure 2-14

	Figure 2-14 Adding java.util.Hashtable Class
	6. He clicks OK.
	7. In the DemoLeak panel, he expands the java.util.Hashtable class, scrolls down and checks the boxes in front of the put(Object, Object) and remove(Object) methods, as shown inn Figure 2-15.

	Figure 2-15 java.util.Hashtable Methods Selected
	8. He then starts profiling by clicking the green play button in the Control Panel (Figure 2-16).

	Figure 2-16 Start Profiling Button
	9. To interpret the results, he examines the Profiling Information panel. He notes how the number of invocations of Hashtable.put(Object, Object) grows slightly faster than the number of invocations of Hashtable.remove(Object).
	10. Marcus then stops profiling by clicking the red stop button in the Control Panel (Figure 2-17).

	Figure 2-17 Stop Profiling Button

	Analyzing System Problems with the JRockit Runtime Analyzer
	Getting Started
	1. She starts the JRockit Mission Control Client from the command line by typing:
	2. While the JRockit Mission Control Client starts, Fiona starts the DemoLeak by entering:

	Creating the Recording
	1. Launches the JRockit Mission Control Client and locates in the JRockit Browser the JRockit JVM instance to which she wants to connect. This should be the one running the DemoLeak class under Discovered/Local.
	2. Right-clicks the mouse to display a context menu for the selected connection.
	3. Selects Start JRA Recording to launch the Start JRA Recording wizard.
	4. Selects the connection to the JRockit JVM instance on which she wants to start the recording.
	5. Selects filename and directory and types a descriptive name for the recording in the Local filename field. Note that the JRA ...
	6. Enters the desired length of the recording (in seconds) in Recording time.
	7. Selects the sampling options, as described in Table 2-1:

	Table 2-1 Selected Sampling Options
	8. Clicks Finish.

	Looking at the Recording
	1. In the JRockit Mission Control Client, clicking File > Open file > Open JRA Recording.
	2. Locating and selecting the recorded file and clicking Open.
	3. Clicking OK.

	Table 2-2 General Tab Sections

	Examining the Methods Tab
	Table 2-3 Methods Tab Panels
	Examining the Top Hot Methods
	Figure 2-18 Top Hot Methods

	Examine Garbage Collection Events
	Figure 2-19 GC’s Tab
	Table 2-4 GC Events Tab Panels

	Figure 2-20 Garbage Collection Panel

	Examine the GC General Tab
	Figure 2-21 GC General Tab
	Table 2-5 GC General Tab

	Compare Object Statistics
	Figure 2-22 Objects Tab
	Table 2-6 Object Statistics Tab

	Examine Lock Profiling Information
	Figure 2-23 Locks Tab
	Table 2-7 Lock Profiling Tab Panels

	Detecting a Memory Leak
	Getting Started
	1. She starts the application by entering, at the command line:
	2. While the application starts, she creates a connection to the server on which the application is running.
	3. Next, she starts the Memory Leak Detector by doing the following:

	a. Right-clicking a Oracle JRockit JVM instance in the JRockit Browser to open a context menu.
	b. Selecting Start Memleak (Figure 2-24).
	Figure 2-24 Starting The Memory Leak Detector from a Context Menu

	Analyze the Java Application
	Figure 2-25 Trend Tab
	Figure 2-26 Garbage Collection Button
	1. In order to speed up the process, Fiona clicks on the Garbage Collection button (Figure 2-26) a couple of times to start some garbage collections.

	Figure 2-27 Trends Analysis Buttons
	2. Fiona then pauses the trend analysis by clicking the pause symbol among the trend analysis buttons (Figure 2-27).

	Figure 2-28 Show Referring Types
	3. Fiona right-clicks the DemoObject class and selects “Show Referring Types” in the drop-down menu, as seen in Figure 2-28.

	Figure 2-29 Types Tab
	4. Fiona clicks on the plus sign on the java.util.Hashtabe$Entry node to expand the graph to show types referring to the hashtable entries.
	5. Fiona continues expanding the graph to the left until she finds nodes in gray that do not show any growth trend.

	Figure 2-30 List Instances
	6. Fiona right-clicks the node that refers to the DemoObjects and selects List Instances in the drop-down menu, as seen in Figure 2-30.

	Figure 2-31 Show Instances Pointing To
	7. Fiona selects DemoObject in the popup (Figure 2-31), since this is the type that she is interested in, and clicks Ok.

	Figure 2-32 Show Referring Instances
	8. Fiona right-clicks the topmost instance and selects “Show Referring Instances” (Figure 2-32) to start analyzing the instances that hold on to this particular hashtable entry.

	Figure 2-33 Instances Tab
	9. Just as in the Types tab, Fiona clicks on the plus signs to expand the graph to the left.

	The Leak is Discovered

