
BEA JRockit JDK
Mission
Control

Using the Monitoring and
Management APIs

2.0
December 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Using the Monitoring and Management APIs iii

Contents

Using JMAPI
Special Note on Monitoring and Management API Support .1

Using the Javadoc .2

Getting Started .2

Using JMAPI to Subscribe to Events. .3

Using JMAPI to Access the BEA JRockit Profiler .5

Using JMAPI to Access Exception Counting .6

Accessing JMAPI from Code Running in BEA JRockit Having a Security Manager 6

iv Using the Monitoring and Management APIs

Using the Monitoring and Management APIs 1

Using JMAPI

This document provides a short introduction to the BEA JRockit Monitoring and Management
APIs (JMAPI) an API that provides a way to monitor and manage the BEA JRockit JVM.

This section includes information on the following subjects:

Special Note on Monitoring and Management API Support

Using the Javadoc

Getting Started

Using JMAPI to Subscribe to Events

Using JMAPI to Access the BEA JRockit Profiler

Using JMAPI to Access Exception Counting

Accessing JMAPI from Code Running in BEA JRockit Having a Security Manager

Special Note on Monitoring and Management API Support
If you are using BEA JRockit 5.0 R26.0.0 or later, JMAPI is no longer the preferred
management API for BEA JRockit; however, we have provided these procedures to facilitate
legacy versions of the JVM (that is, any version built on J2SE 1.4.2 or earlier, such as BEA
JRockit 1.4.2 R26.2.0). Instead of JMAPI, the preferred monitoring and management tool for
BEA JRockit and other JVMs is the Monitoring and Management of JVMs API specified by
JSR-174. This API provides Java applications, system management tools, and RAS-related tools
with the ability to monitor the health of the JVM as well as manage certain run-time controls. It

Using JMAP I

2 Using the Monitoring and Management APIs

supports JVM monitoring and management from within Java applications as well as remote
access by system management applications and RAS-related tools. These are standard interfaces
available in the Java 5.0 API, under java.lang.management. BEA JRockit provides extensions
to these APIs, called JLMEXT, that you can obtain at the BEA JRockit Mission Control dev2dev
page.

Note: JLMEXT is still a “work in progress” and is subject to change between releases. Any
changes will be noted in future BEA JRockit Mission Control Release Notes.

Using the Javadoc
This document is simply an overview of JMAPI.While it provides basic instructions on how to
implement this interface and describes some of its capabilities, the best source of documentation
are the Javadocs, available at:

http://edocs.bea.com/jrockit/releases/R27/javadoc/manapi/docs/index.html

http://edocs.bea.com/jrockit/releases/5026x/javadoc/jlmext/docs/index.html

Getting Started
To implement JMAPI, you first need to fetch a reference to an actual instance of JVM by using
the JVMFactory.

JVMFactory provides a static method to fetch an instance of JVM. This is the starting
point for working with the API.

JVM provides basic information about the JVM and is also the interface used to access the
different information subsystems available. These subsystems are:

– ClassLibrary, which provides a way to monitor and manage the set of currently
loaded Classes and ClassLoaders.

– CompilationSystem, which provides a way to monitor and manage the way methods
and constructors are compiled.

– Machine, which provides information about the hardware the JVM is running on, like
CPUs, network adapters and memory.

– MemorySystem, which provides heap and garbage collection data.

– OperatingSystem, which passes information about the OS the JVM is running on.

Using JMAPI to Subscr ibe to Events

Using the Monitoring and Management APIs 3

– ProfilingSystem, which provides a way to perform lightweight profiling of the JVM,
for instance invocation counting.

– ThreadSystem, which provides thread stack dumps, thread snapshots, thread counts
and means to access the threads running in BEA JRockit.

To fetch the instance of JVM, you need to add code such as the following:

com.bea.jvm.JVM myJVM = com.bea.jvm.JVMFactory.getJVM();

From the JVM instance you can access the different subsystems, such as the memory system. From
the memory system you can, among other things, ask for heap size information or access the
GarbageCollector. Reading the currently used heap size (in bytes) looks like this:

Listing 1 Reading the Current Heap Size

com.bea.jvm.JVM myJVM = com.bea.jvm.JVMFactory.getJVM();

long heapSize = myJVM.getMemorySystem().getUsedHeapSize();

To check if we are using a parallel garbage collector with a nursery, you might include something
similar to the example in Listing 2:

Listing 2 Checking the Garbage Collector Type

com.bea.jvm.GarbageCollector myGC =

myJVM.getMemorySystem().getGarbageCollector();

boolean isParallelWithNursery = myGC.isParallel() &&

 myGC.isGenerational();

Using JMAPI to Subscribe to Events
You can use JMAPI to subscribe to a number of different events:

ClassLoadEvent, which reports loaded and unloaded classes.

CompilationListener, which reports compiled methods and constructors.

Using JMAP I

4 Using the Monitoring and Management APIs

GarbageCollectionEvent, which is fired after a garbage collection.

Listing 3 shows how to add an anonymous ClassLoadListener that prints out the name of the
class that was loaded/unloaded:

Listing 3 Adding and Anonymous ClassLoadListener

JVM myJVM = JVMFactory.getJVM();

myJVM.getClassLibrary().addClassLoadListener(new

 ClassLoadListener()

 {

 public void onClassLoad(ClassLoadEvent event)

 {

 String prefix = (event.getEventType() ==

 ClassLoadEvent.CLASS_LOADED) ? "Loaded" : "Unloaded";

 System.out.println(prefix + " : " +

 event.getClassObject().getName());

 }

 });

Listing 4 shows how to add an anonymous CompilationListener that prints out the
method/constructor that was compiled and the optimization level used.

Listing 4 Adding an Anonymous CompilationListener

JVM myJVM = JVMFactory.getJVM();
myJVM.getCompilationSystem().addCompilationListener(
 new CompilationListener()
 {
 public void onMethodCompilation(
 CompilationEvent event)
 {
 String prefix = "Compiled " + (event.hasConstructor() ? " constructor " +
 event.getConstructor().getClass().getName() : "method " +
 event.getMethod().getClass().getName());
 System.out.println(prefix + " : Optimization lvl " +
 event.getOptimizationLevel().getDescription());

Us ing JMAPI to Access the BEA JRock i t P ro f i l e r

Using the Monitoring and Management APIs 5

 }
 });

Using JMAPI to Access the BEA JRockit Profiler
The BEA JRockit JVM includes a very efficient, low overhead profiler to get method invocation
counts and method timing information.

Listing 6 shows how to call a method in an example class (shown in Listing 5), then print out how
many times it has been invoked and the total time spent in that method.

Listing 5 Example Class A

public class A

{

 public boolean check(Object obj)

 {

 return this.getClass().isInstance(obj);

 }

}

Listing 6 Calling a Method in an Example Class

ProfilingSystem profiler =

 JVMFactory.getJVM().getProfilingSystem();

A a = new A();

Method [] methods = A.class.getDeclaredMethods();

profiler.setInvocationCountEnabled(methods[0], true);

profiler.setTimingEnabled(methods[0], true);

for (int i = 0; i < 100000; i++) a.check(a);

System.out.println("Profiling system: check method invoked " +

 myJVM.getProfilingSystem().getInvocationCount(methods[0]) + "

 times");

System.out.println("Time spent in method " +

Using JMAP I

6 Using the Monitoring and Management APIs

 myJVM.getProfilingSystem().getTiming(methods[0])

 + " ms");

Using JMAPI to Access Exception Counting
JMAPI also provides access to an exception counter that allows you to count how many
exceptions of a certain class—and, optionally, all of its subclasses—have been thrown. Listing 7
shows an example of counting IOExceptions.

Listing 7 Counting IOExceptions with JMAPI

profiler.setExceptionCountEnabled(IOException.class,

 true, false);

for (int i = 0; i < 10000; i++)

{

 try

{

throw new IOException();

}

catch (Exception e)

{

 // Deliberately left blank.

}

}

System.out.println("Profiling system: exception counts = "

 + myJVM.getProfilingSystem().

 getExceptionCount(IOException.class));

Accessing JMAPI from Code Running in BEA JRockit
Having a Security Manager

To access JMAPI from code running in BEA JRockit that has a security manager, the permission
com.bea.jvm.ManagementPermission “createInstance” must first be granted to that code.

Access ing JMAPI f rom Code Running in BEA JRock i t Hav ing a Secur i t y Manager

Using the Monitoring and Management APIs 7

For more information on how to grant code permissions, see Permissions in the JavaTM 2
Standard Edition Development Kit (JDK).

If the code has not been granted the permission, any attempt to access JMAPI will result in a
SecurityException being thrown.

Listing 8 shows a simple policy statement, granting all code the permission to access the JMAPI:

Listing 8 Accessing JMAPI from Code Having a Security Manager

grant{

 // Needed to access the JRockit Management API.

 permission com.bea.jvm.ManagementPermission "createInstance";

 };

Using JMAP I

8 Using the Monitoring and Management APIs

