
Oracle® WebLogic Integration
Introducing Trading Partner Integration

10g Release 3 (10.3)

November 2008

Oracle WebLogic Integration Introducing Trading Partner Integration, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Introducing Trading Partner Integration iii

Contents

1. Introduction
About Trading Partner Integration . 1-1

Visual Public/Private Process Integration . 1-2

Support for Leading Industry Protocols and Standards . 1-2

Trading Partner Management (TPM) and Repository Access 1-2

Easy Access to Run-Time Information . 1-3

High Performance and Availability . 1-3

High Security, Auditing, and Non-Repudiation. 1-3

Trading Partner Enablement . 1-3

Trading Partner Management Concepts . 1-3

About Trading Partner Management . 1-4

Trading Partners . 1-5

Services, Service Profiles, and Protocol Bindings. 1-7

Exchanging Data in the TPM Repository . 1-8

Default TPM Repository Settings . 1-9

MBean APIs for Third-Party Access . 1-10

Trading Partner Business Process Concepts . 1-10

About Business Processes for Trading Partner Integration 1-10

Conversations and Roles . 1-11

Types of Business Processes . 1-13

Messaging Concepts . 1-17

Messaging Services for Trading Partner Integration . 1-17

iv Introducing Trading Partner Integration

Business Protocol .1-18

Business Message. .1-18

Run-Time Processing of Business Messages .1-19

Run-Time Monitoring Concepts .1-23

Message Tracking. .1-24

Viewing Run-Time Statistics .1-25

Summary of Trading Partner Integration Phases. .1-26

Phase 1: Plan the Solution .1-27

Phase 2: Design, Build, and Test the Solution .1-27

Phase 3: Deploy the Solution .1-28

Phase 4: Administer and Tune the Solution .1-29

Next Steps .1-29

2.Introducing ebXML Solutions
About ebXML Solutions .2-1

About ebXML .2-2

ebXML Support in Oracle WebLogic Integration .2-2

ebXML Concepts. .2-3

ebXML Protocol Layer. .2-4

ebXML Business Messages .2-4

Reliable Messaging .2-6

ebXML Business Processes. .2-7

Guidelines for Building ebXML Business Processes. .2-8

ebXML Initiator Business Processes .2-10

ebXML Participant Business Processes . 2-11

Tasks for Implementing an ebXML Solution .2-11

Before You Begin . 2-11

Planning the ebXML Solution .2-12

Introducing Trading Partner Integration v

Building the ebXML Solution .2-12

Deploying the ebXML Solution .2-14

Managing the ebXML Solution .2-15

3.Introducing RosettaNet Solutions
About RosettaNet Solutions. .3-1

About RosettaNet .3-2

RosettaNet Support in Oracle WebLogic Integration .3-3

RosettaNet Concepts .3-4

RosettaNet Protocol Layer .3-5

Partner Interface Processes (PIPs) .3-5

Public and Private Business Processes .3-5

PIP Design Patterns .3-6

RosettaNet Business Messages .3-10

RosettaNet Business Processes .3-15

Guidelines for Designing RosettaNet Business Processes3-15

RosettaNet Initiator Business Processes .3-16

RosettaNet Participant Business Processes. .3-17

Tasks for Implementing a RosettaNet Solution .3-17

Before You Begin .3-18

Planning the RosettaNet Solution .3-18

Building the RosettaNet Solution .3-19

Deploying the RosettaNet Solution .3-20

Managing the RosettaNet Solution .3-22

4.Trading Partner Integration Security
Before You Begin .4-1

Security Framework for Trading Partner Integration .4-2

vi Introducing Trading Partner Integration

Summary of Security Features .4-2

Oracle WebLogic Server Default Security Configuration .4-3

Components of Trading Partner Integration Security. .4-3

Default Domain Security Configuration .4-8

Credential Stores .4-9

Trading Partner Integration Resources Requiring Security Policies 4-11

Transport-Level Security .4-11

Authentication . 4-11

Authenticating Remote Users in Two-Way Authentication4-21

Verifying Certificates in Two-Way Authentication .4-26

Authorization .4-31

Message-Level Security. .4-34

Digital Signatures .4-34

NonRepudiation .4-37

Encryption—PKCS7 Enveloped Data for RosettaNet 2.04-45

Using Proxy Servers with Trading Partner Integration .4-47

Configuring Trading Partner Integration to Use an Outbound HTTP Proxy Server4-47

Configuring Oracle WebLogic Integration with a Web Server and a Oracle WebLogic
Proxy Plug-In .4-49

Implementing Security for Trading Partner Integration .4-50

A.Example: ebXML Security Configuration
Before You Begin . A-3

Step 1: Generating a Test Certificate. A-4

Configuring Windows to Run OpenSSL . A-4

Creating a Public/Private Key Pair. A-5

Generating the Test Certificate . A-5

Step 2: Configuring Keystores for Oracle WebLogic Integration. A-5

Introducing Trading Partner Integration vii

Step 3: Configuring the Local Trading Partner in Oracle WebLogic Integration 1 . . . A-9

Configuring the Local Trading Partner. A-9

Adding the Test Certificate to the Keystore . A-10

Editing the Trading Partner Binding. A-12

Step 4: Configuring the SSL Settings in Oracle WebLogic Server A-13

Step 5: Exporting the WebLogic Integration Trading Partner Data A-16

Step 6: Configuring the Local Trading Partner in WebLogic Integration 2 A-17

Step 7: Configuring the Remote Trading Partner in WebLogic Integration A-17

Step 8: Creating Services and Service Profiles in WebLogic Integration A-18

Creating the Trading Partner Service . A-18

Creating the Process Service. A-19

Creating the Service Profile . A-20

Step 9: Configuring the iPlanet Server . A-21

Creating the Trust Database . A-22

Requesting a Trial Digital Certificate from Verisign . A-22

Installing the iPlanet Server Certificate . A-23

Requesting a Trusted CA Certificate from Verisign . A-24

Installing the Trusted CA Certificate . A-24

Installing the WebLogic Integration 2 certificate . A-25

Configuring iPlanet for SSL . A-25

B.Example: RosettaNet Security Configuration
Keystores Used in the Example . B-3

Before You Begin . B-4

Step 1: Configuring the Local Trading Partner for the Trading Partner 1 Setup. B-5

Configuring the Local Trading Partner. B-5

Adding the Certificates . B-7

Editing the Trading Partner Binding. B-8

viii Introducing Trading Partner Integration

Enabling the Trading Partner Profile . B-9

Exporting the Trading Partner Data . B-9

Exporting the Server Certificate . B-10

Step 2: Configuring the Local Trading Partner for the Trading Partner 2 Setup B-11

Step 3: Importing the Remote Trading Partner Information . B-12

Step 4: Creating Services and Service Profiles in Oracle WebLogic Integration B-13

Testing Tips . B-16

Listing the Keystore Content . B-17

Enabling the Trace Raw Messages Option. B-18

Introducing Trading Partner Integration 1-1

C H A P T E R 1

Introduction

The topic describes basic concepts, architecture, and tasks for creating Oracle WebLogic
Integration(WLI) solutions for trading partner integration. It contains the following sections:

About Trading Partner Integration

Trading Partner Management Concepts

Trading Partner Business Process Concepts

Messaging Concepts

Run-Time Monitoring Concepts

Summary of Trading Partner Integration Phases

Next Steps

For more information on Oracle WebLogic Integration, see Introducing Oracle WebLogic
Integration. For a hands-on walkthrough of building and running example ebXML and
RosettaNet solutions in Oracle WebLogic Integration, see Tutorials for Trading Partner
Integration

About Trading Partner Integration
Oracle WebLogic Integration allows you to automate and manage relationships with your trading
partners so that you can streamline your business processes (with customers, suppliers,
distributors, and other partners) and get a top-down view of business transactions across the value
chain. Trading partner integration is also known as business-to-business (or B2B) integration.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/overview/
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/overview/
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/index.html

In t roduct ion

1-2 Introducing Trading Partner Integration

Oracle WebLogic Integration provides the following trading partner integration capabilities:

Visual Public/Private Process Integration

Support for Leading Industry Protocols and Standards

Trading Partner Management (TPM) and Repository Access

Easy Access to Run-Time Information

High Performance and Availability

High Security, Auditing, and Non-Repudiation

Trading Partner Enablement

Visual Public/Private Process Integration
WLI leverages the unified programming model and run-time framework of Oracle Workshop for
WebLogic to provide end-to-end business process integration via easily implemented controls
and templates.

Support for Leading Industry Protocols and Standards
WLI supports the following B2B protocols and standards:

ebXML 1.0 and 2.0, which is described in Chapter 2, “Introducing ebXML Solutions.”

RosettaNet 1.1 and 2.0, which is described in Chapter 3, “Introducing RosettaNet
Solutions.”

Web Services, which is described in “TPM Control For Business Processes and Web
Services” on page 1-15, “TPM Repository Lookups Via Process and Service Broker
Controls” on page 1-15, and in “Building Web Services” in the Oracle Workshop for
WebLogic Help.

Trading Partner Management (TPM) and Repository Access
Oracle WebLogic Integration provides sophisticated trading partner management capabilities
through the unified Oracle WebLogic Integration Administration Console, which enables
administrators to easily manage a central repository of trading partner profile information,
including protocol bindings used for secure message exchanges between trading partners,
services representing public processes, security, and bulk import / export capabilities. Authorized

http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/webservices/conBuildingWebServiceswithWebLogicWorkshop.html

T rad ing Par tne r Management Concepts

Introducing Trading Partner Integration 1-3

business processes and web services can dynamically access trading partner information via
easily implemented controls. In addition to the Administration Console, MBean APIs are also
provided so that third-party MBean clients can be written to access the TPM repository, as
described in “MBean APIs for Third-Party Access” on page 1-10.

Easy Access to Run-Time Information
WLI provides flexible run-time tracking, audit, and reporting capabilities to show a top-down
view of trading partner activities and business transactions across the value chain.

High Performance and Availability
WLI provides fast and reliable business message exchanges between trading partners, supporting
the clustered configuration for scalability and fail-over, message persistence for recovery,
low-level acknowledgements and receipts, and transactional integrity.

High Security, Auditing, and Non-Repudiation
Oracle WebLogic Integration ensures the private, secure, and reliable business message
exchanges among trading partners using transport level security with SSL and message level
security with digital signature and encryption. The certificates and private keys used for various
purposes are kept in protected keystores while the passwords are kept in encrypted forms in the
Oracle WebLogic Integration Passwordstore.

Trading Partner Enablement
Oracle WebLogic Integration works with Oracle WebLogic Integration – Business Connect, a
lightweight B2B server that is designed for small trading partners who do not have their own B2B
server. For trading partners who want a zero-install solution, Oracle WebLogic Integration can
be easily extended to offer a browser or FTP interface.

Trading Partner Management Concepts
The basic building blocks of trading partner integration are trading partner profiles, services, and
service profiles. This topic introduces the concepts you need to understand regarding trading
partner management. It contains the following sections:

About Trading Partner Management

Trading Partners

In t roduct ion

1-4 Introducing Trading Partner Integration

Services, Service Profiles, and Protocol Bindings

Exchanging Data in the TPM Repository

Default TPM Repository Settings

MBean APIs for Third-Party Access

About Trading Partner Management
All trading partner profile, service, and service profile information resides in the Trading Partner
Management (TPM) repository, which is stored in a relational database. Administrators use the
Oracle WebLogic Integration Administration Console to maintain the TPM repository.

Figure 1-1 shows the Trading Partner Management home page in the Oracle WebLogic
Integration Administration Console, which allows administrators to manage trading partner
profiles, security certificates, protocol bindings, services, message tracking and auditing, trading
partner activity, system defaults, and importing / exporting trading partner profile information.

T rad ing Par tne r Management Concepts

Introducing Trading Partner Integration 1-5

Figure 1-1 Trading Partner Management in the Oracle WebLogic Integration Administration Console

For more information about the Trading Partner Management module in the Oracle WebLogic
Integration Administration Console, see Trading Partner Management in Using the Oracle
WebLogic Integration Administration Help.

Trading Partners
In WLI, a trading partner is understood to be an entity that has an agreement with another entity
to participate in a specific business transaction, or service, by playing a predefined role associated
with a distinct business purpose. Trading partner applications form the nodes in system-to-system
interactions among business partners.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMOverview

In t roduct ion

1-6 Introducing Trading Partner Integration

Types of Trading Partners
A group of trading partners can:

Exist entirely within a company, spanning multiple corporate departments. For example,
the business purpose for such a community might be inventory management.

Span multiple companies across firewalls and over the Internet. For example, the business
purpose might be supply chain management or multistep purchasing interactions.

Include trading partners both within a company and in other companies. For example, one
or more of the trading partners within a company communicates with trading partners in
other companies across the Internet.

Trading Partner Profiles
A trading partner profile includes the trading partner’s identifying information, and any
certificates or protocol bindings required to conduct the business transactions. You use the Oracle
WebLogic Integration Administration Console to manage trading partner information. For more
information about managing trading partner profiles, see Trading Partner Management in Using
the Oracle WebLogic Integration Administration Help.

Basic and Extended Properties
By default, each trading partner has the following set of basic properties:

Table 1-1 Basic Trading Partner Properties

Property Description

Business name Name of the trading partner.

Business ID Used for uniquely identifying trading partners in business processes.

Business ID type Categorizes the type of business ID, such as a DUNs number, customer or
vendor ID number, and so on.

Type Designates whether this trading partner is local to the host system or a
remote trading partner.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPProfiles

T rad ing Par tne r Management Concepts

Introducing Trading Partner Integration 1-7

In addition to these default properties, you can add custom extensions (extended properties) for
individual trading partners in the TPM repository to support application-specific requirements.
For example, you might want to include additional contact information, bank account
information for electronic transfers, or internal vendor IDs to your trading partners. You can
retrieve these properties from business processes and web services using the TPM control and
also by navigating subtrees within an XML document. For more information about managing
extended properties in the Oracle WebLogic Integration Administration Console, see Trading
Partner Management in Using the Oracle WebLogic Integration Administration Help.

Digital Certificates
Oracle WebLogic Integration uses digital certificates associated with trading partners to
authenticate their identity during message exchanges. For more information about how digital
certificates are stored and used in Oracle WebLogic Integration, see Transport-Level Security.
For more information about managing certificates in the Oracle WebLogic Integration
Administration Console, see Adding Certificates to a Trading Partner and Deleting Certificates,
Bindings, or Custom Extensions in Trading Partner Management in Using the Oracle WebLogic
Integration Administration Help.

Services, Service Profiles, and Protocol Bindings
This topic describes services, service profiles, and protocol bindings.

Status Makes the trading partner visible (enabled) or hidden (disabled) for certain
operations, such as business process or web service access to the trading
partner information in the TPM repository. For more information, see
Trading Partner Management in Using the Oracle WebLogic
Integration Administration Help

Description Brief description of the trading partner.

Default Trading Partner If selected, then the trading partner is designated the default trading
partner for sending or receiving messages for the local host system in the
absence of specific trading partner information.

Contact information Email, address, phone, and fax information

Table 1-1 Basic Trading Partner Properties

Property Description

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#EnablingDisablingServiceProfiles
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPCustomProperties
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPCustomProperties
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPCertificates
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

In t roduct ion

1-8 Introducing Trading Partner Integration

Services
A service represents a business process that is either offered by a local trading partner, or a
business process that is being called via a control on a remote trading partner.

In the case of a service offered by a local trading partner, this element directly corresponds
to a web service or process type deployed in the local domain.

In the case of a service called by a local trading partner, the service corresponds to a
control in the local domain that is used to invoke the remote service.

For more information about managing services in the Oracle WebLogic Integration
Administration Console, see “Adding Services” and “Deleting Services” in Trading Partner
Management in Using the Oracle WebLogic Integration Administration Help.

Service Profiles
Service profiles encapsulate the concept of an agreement between two trading partners on the
service bindings to be used. Service profiles specify the protocol binding and URL endpoints for
the local and remote trading partners that offer and call the service. For more information about
managing service profiles in the Oracle WebLogic Integration Administration Console, see
Trading Partner Management in Using the Oracle WebLogic Integration Administration Help.

Protocol Bindings
Protocol bindings specify the business protocol (ebXML 1.0 or 2.0, or RosettaNet 1.1 or 2.0),
transport protocol (such as HTTP 1.0, HTTP 1.1, or HTTPS 1.1), URL end-point, time-outs,
number of retries, retry intervals, digital certificates, and other information. For more information
about managing protocol bindings in the Oracle WebLogic Integration Administration Console,
see Trading Partner Management in Using the Oracle WebLogic Integration Administration
Help.

Note: When you are using the ebXML protocol for Trading Partner messaging, the values used
for Retry Number, Retry Interval, and Persist Duration are always the values of the
remote trading partner, not the local Trading Partner.

Exchanging Data in the TPM Repository
Oracle WebLogic Integration provides bulk management utilities that simplify the tasks of
managing the TPM repository and exchanging trading partner and service information with other
trading partners or porting the information to other servers. Data is exchanged using an

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

T rad ing Par tne r Management Concepts

Introducing Trading Partner Integration 1-9

intermediary XML data file that conforms to the tpm.xsd schema that ships with Oracle
WebLogic Integration.

To perform export, import, or bulk delete operations in Oracle WebLogic Integration, you can use
either the Oracle WebLogic Integration Administration Console or a bulk loader command line
utility. For more information about bulk management of the TPM repository, see Importing and
Exporting Management Data in Trading Partner Management in Using the Oracle WebLogic
Integration Administration Help:

When you export TPM data using the console or the bulk loader utility, a file suitable for import
is created. For more information about the file structure, and how the file is used in import, export,
and bulk delete operations, see Using the Bulk Loader in Managing Oracle WebLogic Integration
Solutions.

Default TPM Repository Settings
When you create a new Oracle WebLogic Integration domain using the Oracle WebLogic
Configuration Wizard, the Configuration Wizard automatically populates the Trading Partner
Management (TPM) repository with default trading partners and protocol bindings. For more
information about creating a domain using Configuration Wizard, see Creating Oracle WebLogic
Domains Using the Configuration Wizard in the Oracle WebLogic documentation.

Default Trading Partners
The Oracle WebLogic Integration domain provides two preconfigured trading partners for
development and testing:

For more information about the Trading Partner Integration tutorials, see Tutorials for Trading
Partner Integration.

Table 1-2 Default Trading Partner Configuration in Oracle WebLogic Integration Domain

Trading Partner Name Trading
Partner ID

Description

Test_TradingPartner_1 000000001 Default local trading partner. In the tutorials, this trading
partner is usually the initiator of conversations.

Test_TradingPartner_2 000000002 In the tutorials, this trading partner is usually the
participant in conversations.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/manage/bulkloader.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/index.html

In t roduct ion

1-10 Introducing Trading Partner Integration

Default Protocol Bindings
Each default trading partner comes with the following preconfigured protocol bindings:

ebXML 1.0

ebXML 2.0

RosettaNet Implementation FrameWork (RNIF) 1.1

RNIF 2.0

Each protocol binding (except ebXML 1.0) is marked as default. At run-time, the default binding
can be used automatically in the absence of specific protocol information. If you are using
ebXML 1.0, configure protocol bindings explicitly in the Oracle WebLogic Integration
Administration Console.

MBean APIs for Third-Party Access
Oracle WebLogic Integration supports user-written applications that use Java Management
Extensions (JMX) Management Beans (MBeans) to access the TPM repository:

Configuration MBean APIs are used to configure settings in the TPM repository.

Monitoring MBean APIs are used to retrieve run-time statistics.

For more information about the MBean APIs, see the Oracle WebLogic Integration Javadoc.

Trading Partner Business Process Concepts
This section introduces the concepts you need to understand regarding trading partner business
processes. It contains the following sections:

About Business Processes for Trading Partner Integration

Conversations and Roles

Types of Business Processes

About Business Processes for Trading Partner Integration
In Oracle WebLogic Integration, trading partners communicate with each other via Oracle
Workshop for WebLogic business processes that collaborate using the leading B2B protocols—
ebXML or RosettaNet. You build, test, and run business processes using Oracle Workshop for

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html

Trad ing Par tne r Bus iness P rocess Concepts

Introducing Trading Partner Integration 1-11

WebLogic unified programming model and run-time framework. Oracle WebLogic Integration
provides controls, templates, and other mechanisms so that you can implement such business
processes easily and quickly. For an introduction to building business processes in Oracle
WebLogic Integration, see Tutorial: Building Your First Business Process.

For more information about building business processes for particular business protocols, see:

ebXML Business Processes

RosettaNet Business Processes

Conversations and Roles
This section describes conversations between trading partners and the roles that trading partners
play in conversations.

Conversations
When trading partners exchange business messages for a business purpose, they participate in a
conversation. A conversation is a series of one or more business messages exchanged between
trading partners. The nature of each conversation is determined by its business purpose—whether
it is a complex or simple conversation, whether it is a long-running or short-lived conversation,
and so on.

Roles: Initiators and Participants
The business messages that can be exchanged between participants in the conversation are
determined by the roles that the trading partners play in the conversation. Each conversation
always involves the following two roles:

Initiator—The trading partner who begins the business exchange by requesting some
service of a trading partner.

Participant—The trading partner who is responsible for providing the service and
responding to the initiator.

Role-Based Design Patterns
These two roles are fundamental to all business processes involved in conversations, as the design
patterns for initiator and participant business processes are very different. In a conversation, the
business processes perform very different work but in a collaborative manner—the initiator
business process sends a request to the participant, the participant business process receives the
request and sends the response back to the initiator, and so on.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html

In t roduct ion

1-12 Introducing Trading Partner Integration

Each trading partner that participates in the conversation in a given role must implement the
collaborative business process required for its role. Collaborative business process encapsulate
the processes required to handle the right business messages at the right time for a given trading
partner’s role in a conversation.

Role Naming
These roles are often named according to the nature of the conversation. For example, if the
conversation involves a supplier sending an invoice to a buyer and getting a confirmation that the
invoice was received, then the supplier is the initiator of the conversation and the buyer is the
participant. The invoice is the request document and the confirmation is the response document.

Collaborative Business Processes
In the Oracle WebLogic Integration environment, a collaborative business process is a business
process that implements a role in a conversation for a trading partner. The message choreography
for a conversation is defined by collaborative business process.

Sample Conversation
Figure 1-2 shows basic interactive business processes between trading partners. The Buyer
business process sends an order to the Seller using an agreed-upon business protocol (ebXML or
RosettaNet). The Seller business process receives the request, writes the order to a database,
receives an invoice from an internal back-end system, and then sends the invoice to the Buyer
using the same business protocol.

Trad ing Par tne r Bus iness P rocess Concepts

Introducing Trading Partner Integration 1-13

Figure 1-2 Collaborative, Role-Based Business Processes In a Conversation

Types of Business Processes
This section describes different categories of business processes within trading partner
conversations.

Initiator and Participant Business Processes
This topic describes the Oracle WebLogic Integration controls and templates that you can use for
initiator and participant business processes.

Initiator Business Processes and Oracle Workshop for WebLogic Controls
The Table 1-3 describes the Oracle Workshop for WebLogic controls that you use in initiator
business processes to handle communications with participants:

In t roduct ion

1-14 Introducing Trading Partner Integration

Participant Business Processes and Oracle Workshop for WebLogic Templates
The Table 1-4 describes the Oracle Workshop for WebLogic templates that you use in participant
business processes to handle communications with conversation initiators:

Table 1-3 Oracle Workshop for WebLogic Controls Used in Initiator Business Processes

Control Name Description

ebXML Control The ebXML control enables Oracle WebLogic Integration business processes
to exchange business messages and data with trading partners via ebXML. The
ebXML control supports both the ebXML 1.0 and ebXML 2.0 messaging
services. You use ebXML controls in only initiator business processes to
manage the exchange of ebXML business messages with participants. For
more information about using the ebXML control, see ebXML Control in the
Java Docs for Oracle WebLogic Integration Classes and “ebXML Initiator
Business Processes” on page 2-10.

RosettaNet Control Enables Oracle WebLogic Integration business processes to exchange
business messages and data with trading partners via RosettaNet. You use
RosettaNet controls only in initiator business processes to manage the
exchange of RosettaNet business messages with participants. For more
information about using the RosettaNet control, see RosettaNet Control in the
Java Docs for Oracle WebLogic Integration Classes and “RosettaNet Initiator
Business Processes” on page 3-16.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.html

Trad ing Par tne r Bus iness P rocess Concepts

Introducing Trading Partner Integration 1-15

TPM Control For Business Processes and Web Services
The TPM (Trading Partner Management) control provides Oracle Workshop for WebLogic
business processes and web services with query (read-only) access to trading partner and service
information stored in the TPM repository. Access to the TPM repository is restricted to active
trading partners, services, and active service profiles and their children. For more information
about using the TPM control in business processes and web services, see TPM Control in the
Oracle Workshop for WebLogic Help. For more information about using web services, see
“Building Web Services” in the Oracle Workshop for WebLogic Help.

TPM Repository Lookups Via Process and Service Broker Controls
Business processes and web services can also access data in the TPM repository via Process and
Service Broker controls. These controls provide the lookupTPMProperties XQuery function
that can be used in selectors. For more information about these controls, see Process Control and
Service Broker Control in the Using Integration Controls Guide.

Table 1-4 Oracle Workshop for WebLogic Templates Used in Participant Business Processes

Business Protocol Description

ebXML participant
business process file

Template provides a head start for building public participant business
processes for ebXML conversations. Although this file is not required to build
ebXML participant business processes, it includes the nodes and business
process annotations needed to integrate easily with ebXML initiator business
processes. For information about using the participant business processes file,
see Building ebXML Participant Business Processes and
@com.bea.wli.jpd.EbXML Annotation in the Java Docs for Oracle
WebLogic Integration Classes.

RosettaNet participant
business process file

Template provides a head start for building public participant business
processes for RosettaNet conversations. Although this file is not required to
build RosettaNet participant business processes, it includes the nodes and
business process annotations needed to integrate easily with RosettaNet
initiator business processes. For information about using participant business
processes, see Building RosettaNet Participant Business Processes and
@com.bea.wli.jpd.RosettaNet in the Java Docs for Oracle
WebLogic Integration Classes.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/controls/controlsProcess.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideRosettaNetCustomizing.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/controls/controlsService.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/controls/controlsTPM.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/webservices/conBuildingWebServiceswithWebLogicWorkshop.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideEbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html

In t roduct ion

1-16 Introducing Trading Partner Integration

Public and Private Business Processes
Business processes can span multiple applications, corporate departments, and business partners
(trading partners) behind a firewall and over the Internet. An enterprise’s business processes can
be divided into two broad categories: public and private.

Public Business Processes
Public processes are interface processes. Their definitions and designs are known, understood,
and agreed upon by the organizations using them, and may be customized or standardized across
an industry or industry segment, as in the case of RosettaNet Partner Interface Processes (PIPs).
They are part of a formal contract between trading partners that specifies the content and
semantics of message interchanges. These processes can be implemented in different ways by
different trading partners.

In the context of trading partner integration, when collaborative business processes are intended
to be reused in multiple conversations with different trading partners, the business processes
should be designed as public processes.

Private Business Processes
Participants in a conversation can also implement private, non-collaborative business processes,
which can integrate their back-end processing. Private processes are the business processes
conducted within an organization. Their definitions and designs are specific to that organization
and are not visible outside it. Within trading partner enterprises, private processes interface with
public processes and with back-end business systems. In the context of public processes, private
processes can be thought of as sub-business processes or subprocesses that implement tasks that
are part of the public business process. For example, a trading partner may implement a private
business process that works in conjunction with a collaborative business process and that
implements the processes that occur locally to a trading partner, but that are not necessarily
dictated by the service agreement.

Success and Failure Paths
In a conversation, business processes have two ultimate outcomes—success or failure:

The success path involves sending a business message and receiving an acknowledgement
from the remote trading partner that the business message was received.

The failure path handles the following problem scenarios:

– The remote trading partner did not receive a business message that was sent.

Messag ing Concepts

Introducing Trading Partner Integration 1-17

– The local trading partner did not receive an acknowledgement that the remote trading
partner received the business message.

– The remote trading partner sends an error (the business message was rejected or some
other error occurred).

– The remote trading partner takes too long to reply (the business process expires).

Business processes need to fully implement and account for all of these possible scenarios using
such Oracle Workshop for WebLogic mechanisms as timer controls, retry loops, parallel
branches, and so on.

Each failed business message is saved to a file and the file URI and other information
(MessageID, FromTP, ToTP, ProcessURI, ProcessInstance, and Timestamp), if available, is
enqueued to a dedicated JMS queue named wli.b2b.failedmessage.queue. Custom queue
listeners or event generator can be created to handle message failures.

Messaging Concepts
This section describes the concepts you need to understand how Oracle WebLogic Integration
handles the delivery of business messages to and from trading partners. It contains the following
sections:

Messaging Services for Trading Partner Integration

Business Protocol

Business Message

Run-Time Processing of Business Messages

Message Tracking

Messaging Services for Trading Partner Integration
Oracle WebLogic Integration provides reliable, role-based XML messaging that supports
enhanced send and receive capabilities, including support for large messages. To support the fast
and reliable exchange of business messages among trading partners, Oracle WebLogic
Integration provides the following messaging services at run-time:

Generating and processing all non-content message headers (for RosettaNet) or envelopes
(for ebXML)

MIME packing and unpacking of the message

In t roduct ion

1-18 Introducing Trading Partner Integration

Message encryption / decryption

Digital signature generation / validation

XML validation

Message persistence for recovery purposes

Duplicate message detection

Maintaining a history of messaging activity

Support for a cluster environment for scalability

Business Protocol
A business protocol is associated with a business process, which governs the exchange of
business information between trading partners. It specifies the structure of business messages,
how to process the messages, and how to route them to the appropriate recipients. A business
protocol may also specify characteristics of messages related to persistence and reliability.

Business Message
A business message is the basic unit of communication among trading partners and is exchanged
as part of a conversation. A business message contains one or more XML business documents,
one or more attachments, or a combination of both.

Business Message Formats
The contents and format of a business message depend on the business protocol chosen for the
conversation. For more information about specific message formats, see the following topics:

“RosettaNet Business Messages” on page 3-10

“ebXML Business Messages” on page 2-4

Attachments
Business messages can include attachments in XML and non-XML formats. Oracle Workshop
for WebLogic business process support the following Java types for attachments:

Messag ing Concepts

Introducing Trading Partner Integration 1-19

Note: Attachments can also be typed XML or typed MFL data as long as you specify the
corresponding XML Bean or MFL class name in the parameter.

For more information about these data types, see Working with Data Types in the Guide to
Building Business Processes.

To expedite the processing of business messages in JMS queues at run-time, Oracle WebLogic
Integration stores larger attachments temporarily in a Document Store database.

Run-Time Processing of Business Messages
This section describes how ebXML and RosettaNet business messages are processed at runtime.
Inbound and outbound business messages traverse different paths. The overall flow is the same,
regardless of the underlying business protocol, although Oracle WebLogic Integration’s
messaging infrastructure provides specialized underlying components to handle ebXML and
RosettaNet business messages separately.

Table 1-5 Types of Attachments in Business Messages

Data Type Description

XmlObject Default. Represents data in untyped XML format. The XML
data is not specified at design time.

XmlObject[] An array of one or more XmlObject elements. Only available
for ebXML messages.

RawData Represents any non-XML structured or unstructured data.
Examples include PDF, DOC, GIF, JPG, and other binary files.

RawData[] An array of one or more RawData elements. Only available for
ebXML messages.

MessageAttachment[] Array containing one or more parts of an ebXML or RosettaNet
business message. Message parts can be untyped XML data
(XmlObject data type) or non-XML data (RawData data
type). Used when sending different kinds of payloads (XML
and non-XML) in the same message. The actual number of
message parts might not be known until processed. To learn
about working with MessageAttachment objects, see
Using Message Attachments.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideDataTypes.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/controls/controlsMsgAttach.html

In t roduct ion

1-20 Introducing Trading Partner Integration

Outgoing Message Path
Figure 1-3 shows the path of an outgoing business message:

Figure 1-3 Path for Outgoing Trading Partner Messages

1. The preceding figure illustrates the following process flow:A business message is sent from
a Oracle WebLogic Integration business process.

– For initiator business processes, the business message is sent via a particular method on
the applicable (ebXML or RosettaNet) control.

– For participant business processes, the business message is sent via a method on the
business process callback.

2. The applicable encoder (RosettaNet or ebXML) packages the message appropriately using
input from:

– the outgoing business message

– any protocol-specific properties specified in annotations, such as the protocol name and
version

– trading partner and service information retrieved from the TPM repository

Messag ing Concepts

Introducing Trading Partner Integration 1-21

Packaging differs based on the business protocol used and settings configured in the TPM
repository. For example, the encoder handles encryption (for RosettaNet), digital
signatures, generation of required message headers, MIME packaging, message
persistence, and so on.

3. The message is persisted in the Oracle WebLogic Integration document store and forwarded
it to the applicable JMS queue:

– ebXML: wli.internal.b2b.ebxmlencoder.queue

– RosettaNet: wli.internal.b2b.rosettanetencoder.queue

4. The message-driven bean associated with the queue sends the message out asynchronously
over HTTP(S) to the endpoint URL for the remote trading partner.

– ebXML: WLI-B2B ebXML

– RosettaNet: WLI-B2B RosettaNet

5. Message tracking information for the outbound message is sent to the message tracking queue
(wli.internal.msgtracking.queue). A message-driven bean that listens to this queue
updates the various message tracking tables based on the tracking level set in the Trading
Partner Management module of the Oracle WebLogic Integration Administration Console.

For configuration instructions, see “Configuring the Mode and Message Tracking” in
Trading Partner Management in Using the Oracle WebLogic Integration Administration
Help.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring

In t roduct ion

1-22 Introducing Trading Partner Integration

Path for Incoming Trading Partner Messages
Figure 1-4 shows the path of an incoming business message:

Figure 1-4 Incoming Message Path

This figure illustrates the following process flow:

1. An incoming trading message, sent to the local trading partner, is received by the Transport
Servlet Filter, which is specified in B2BdefaultWebApp/WEB-INF/web.xml.

2. The Transport Servlet Filter inspects the URL and determines whether the incoming request
is a TPI URL / request.

– If it is destined for TPI, then the Transport Servlet Filter authenticates the remote
trading partner (ensuring that the trading partner name is valid by retrieving its value
from a valid certificate associated with the trading partner), and then forwards the
message to the Transport Servlet, WLI-B2B HTTP Transport (packaged in b2b.war).

– If it is not destined for TPI, the message continues on to other filters and the final
destination servlet.

3. The Transport Servlet sends the message to the applicable decoder (RosettaNet or ebXML),
which unpacks the message.

Run-T ime Moni to r ing Concepts

Introducing Trading Partner Integration 1-23

Unpacking differs based on the business protocol used and settings configured in the TPM
repository. For example, the decoder disassembles the various MIME parts of the message,
validating the XML components (for RosettaNet), handles any required decryption (for
RosettaNet), handles any digital signature verification, and so on.

4. The decoder persists the message (payload in ebXML, or Service Content in RosettaNet), plus
any attachments, in the Oracle WebLogic Integration Document Store.

5. The decoder determines the destination and originator parties, the service name, and other
relevant information that helps in dispatching the message.

6. The decoder dispatches the message to the Async Dispatcher Queue.

– If the decoder determines that this message is part of a new exchange, a new process
instance will be requested.

– If this message is part of an ongoing exchange, the decoder will request that the
message be dispatched to a particular receive node within an existing process instance.

The message parts will be packaged as appropriate for the receive node’s method signature.

7. For RosettaNet, the decoder also responds to the sending trading partner that the business
message was received.

Note: For ebXML, the decoder does a similar thing, but it depends on which reliable
message option you have selected.

8. The Async Dispatcher Module dispatches the message to the appropriate receive node on the
business process.

9. Message tracking information for an inbound message is sent to the Message Tracking queue
(wli.internal.msgtracking.queue). The message-driven bean listening to this queue
will update the various message tracking tables based on the tracking level set in the Trading
Partner Management module of the Oracle WebLogic Integration Administration Console.
For configuration instructions, see Trading Partner Management in Using the Oracle
WebLogic Integration Administration Help.

Run-Time Monitoring Concepts
Oracle WebLogic Integration the following run-time monitoring capabilities for trading partner
integration:

Message Tracking

Viewing Run-Time Statistics

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring

In t roduct ion

1-24 Introducing Trading Partner Integration

Message Tracking
Oracle WebLogic Integration tracks the flow and state information of business messages that are
sent to, or retrieved from, other trading partners. You can view run-time data and statistics on the
Message Tracking module in the Oracle WebLogic Integration Administration Console to
perform real-time monitoring, process analysis, troubleshooting, and reporting for business
messages.

Figure 1-5 shows a summary of business messages:

Figure 1-5 Summary of sent and recieved messages

Figure 1-6 shows the details of a single business message:

Run-T ime Moni to r ing Concepts

Introducing Trading Partner Integration 1-25

Figure 1-6 Message Details

Oracle WebLogic Integration maintains message history information in the run-time repository.
You configure the message tracking level for individual services profiles, as described in
“Adding Service Profiles to a Service” in Trading Partner Management in Using the Oracle
WebLogic Integration Administration Help. WLI maintains message history information in the
run-time database, for which you can schedule periodic archives and purges. For more
information about message tracking, see Monitoring Messages in Trading Partner Management
in Using the Oracle WebLogic Integration Administration Help.

Viewing Run-Time Statistics
The Statistics module in the Oracle WebLogic Integration Administration Console displays
run-time statistics for the system and for service profiles. Figure 1-7 shows system summary
statistics:

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#MonitoringMessages

In t roduct ion

1-26 Introducing Trading Partner Integration

Figure 1-7 System summary

Figure 1-8 shows service profile statistics:

Figure 1-8 Service Profile

For more information, see Viewing Statistics in Trading Partner Management in Using the Oracle
WebLogic Integration Administration Help.

Summary of Trading Partner Integration Phases
This topic provides an overview of the phases, tasks, and tools involved in implementing trading
partner integration solutions. It includes the following sections:

Phase 1: Plan the Solution

Phase 2: Design, Build, and Test the Solution

Phase 3: Deploy the Solution

Phase 4: Administer and Tune the Solution

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#ViewingStatistics

Summary o f T rad ing Par tne r I n teg ra t i on Phases

Introducing Trading Partner Integration 1-27

Phase 1: Plan the Solution
The first phase is to plan the solution, which involves:

Determining the trading partners with which you want to integrate.

Define the business processes that you want to implement with each trading partner.

Determine the business protocol(s) used to communicate with each trading partner.

For more information, see the following topics:

– Planning the RosettaNet Solution

– Planning the ebXML Solution

Phase 2: Design, Build, and Test the Solution
In this phase, you design, build, and test the solution using the following tools:

Oracle Workshop for WebLogic, which provides a unified programming model and
run-time framework to provide end-to-end business process integration via easily
implemented controls and templates. Before you begin using Oracle Workshop for
WebLogic, it is recommended that you complete the following tutorials so that you know
how to build business processes and create data transformations in Oracle Workshop for
WebLogic:

– Tutorial: Building Your First Business Process.

– Tutorial: Building Your First Data Transformation.

Oracle WebLogic Configuration Wizard, which you use to create a domain for your
RosettaNet solution based on the Oracle WebLogic Integration domain template. The
Configuration Wizard automatically populates the Trading Partner Management (TPM)
repository with default trading partners and protocol bindings (described in “Default TPM
Repository Settings” on page 1-9) and default security settings (described in Default
Domain Security Configuration). For more information about the Configuration Wizard,
see Creating Oracle WebLogic Domains Using the Configuration Wizard in the Oracle
WebLogic documentation.

XMLSPY or similar XML editor (optional) to convert the RosettaNet PIP DTDs to XSD
files, if you want to use the Oracle Workshop for WebLogic visual mapper tools for data
transformation. For more information, see “Converting RosettaNet DTD Schemas to XSD
Schemas” in “Tutorial: Building RosettaNet Solutions” in Tutorials for Trading Partner
Integration.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dttutorial/
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html

In t roduct ion

1-28 Introducing Trading Partner Integration

For more information about the tasks associated with each business protocol, see the following
topics:

“Building the RosettaNet Solution” on page 3-19

“Building the ebXML Solution” on page 2-12

Phase 3: Deploy the Solution
After you have designed, built, and tested the trading partner integration solution, you deploy it
in a production environment using the following tools:

Oracle WebLogic Integration Administration Console, which provides sophisticated trading
partner management capabilities, enabling administrators to easily manage a central
repository of trading partner profile information, including protocol bindings used for
secure message exchanges between trading partners, services representing public processes,
security, and bulk import / export capabilities. For detailed instructions on using the Oracle
WebLogic Integration Administration Console, see Using the Oracle WebLogic Integration
Administration Help

Oracle WebLogic Server Administration Console, which provides crucial functionality for
configuring and managing Oracle WebLogic domains, including clustering, high
availability / fail-over, security, application deployment, and other key services. For
detailed information, see Managing Oracle WebLogic Integration Solutions.

Bulk Loader, which provides import / export capabilities for trading partner information
stored in the TPM repository. For instructions on using the bulk loader, see Using the
Trading Partner Bulk Loader in Managing Oracle WebLogic Integration Solutions.

For comprehensive information about deploying Oracle WebLogic Integration, see
Deploying Oracle WebLogic Integration Solutions

For detailed information about resources that you deploy in the production environment,
see “Trading Partner Integration Resources” in the Introduction to Deploying Oracle
WebLogic Integration Solutions

For more information about the tasks associated with each business protocol, see the
following topics:

– Deploying the RosettaNet Solution

– Deploying the ebXML Solution

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/manage/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/manage/bulkloader.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/manage/bulkloader.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/intro.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/intro.html

Next S teps

Introducing Trading Partner Integration 1-29

Phase 4: Administer and Tune the Solution
After you have deployed a trading partner integration solution in a production environment, you
use the same tools—the Oracle WebLogic Integration Administration Console and the Oracle
WebLogic Server Administration Console—to monitor and tune your deployment.

For more information, see the following topics:

Using the Oracle WebLogic Integration Administration Help

Managing the RosettaNet Solution

Managing the ebXML Solution

Next Steps
At this point, you can proceed to the following topics:

For an introduction to using the ebXML business protocol for trading partner integration,
see Chapter 2, “Introducing ebXML Solutions.”

For an introduction to using the RosettaNet business protocol for trading partner
integration, see Chapter 3, “Introducing RosettaNet Solutions.”

For an overview of security in trading partner integration solutions, see Trading Partner
Integration Security

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/index.html

In t roduct ion

1-30 Introducing Trading Partner Integration

Introducing Trading Partner Integration 2-1

C H A P T E R 2

Introducing ebXML Solutions

This topic provides an introduction to implementing ebXML solutions with Oracle WebLogic
Integration. It contains the following sections:

About ebXML Solutions

ebXML Concepts

ebXML Business Processes

Tasks for Implementing an ebXML Solution

This topic focuses on information that is relevant to ebXML solutions only. Before you begin, be
sure to read the Chapter 1, “Introduction” to learn basic concepts for integrating trading partners
using Oracle WebLogic Integration. In addition, for a hands-on walkthrough of building example
ebXML solutions, see “Tutorial: Building ebXML Solutions” in Tutorials for Trading Partner
Integration.

About ebXML Solutions
An ebXML solution is any Oracle WebLogic Integration solution that involves exchanging
business messages with trading partners using the ebXML business protocol. This topic describes
ebXML and how it is supported in WLI. It contains the following sections:

About ebXML

ebXML Support in Oracle WebLogic Integration

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html

In t roduc ing ebXML So lu t i ons

2-2 Introducing Trading Partner Integration

About ebXML
The ebXML business protocol is sponsored by UN/CEFACT and OASIS. The ebXML Web site
(http://www.ebxml.org) describes ebXML as “a modular suite of specifications that enables
enterprises of any size and in any geographical location to conduct business over the Internet.
Using ebXML, companies now have a standard method to exchange business messages, conduct
trading relationships, communicate data in common terms and define and register business
processes.”

ebXML Specifications
Oracle WebLogic Integration supports the following ebXML specifications:

ebXML Message Service Specification v2.0

ebXML Message Service Specification v1.0

These specification defines the message envelope and header document schema used to transfer
ebXML messages with a communication protocol such as HTTP. They provide a set of layered
extensions to the base Simple Object Access Protocol (SOAP) and SOAP Messages with
Attachments specifications. The ebXML Message Service provides security and reliability
features that are not provided in the specifications for SOAP and SOAP Messages with
Attachments. For more information, see ebXML specifications page on the ebXML web site.

SOAP Specifications
Information about SOAP, including the following documents, can be found at the World Wide
Web Consortium (W3C) Web site (http://www.w3c.org):

Simple Object Access Protocol (SOAP) 1.1

SOAP Messages with Attachments

ebXML Support in Oracle WebLogic Integration
This topic describes supported and unsupported ebXML features in this release of Oracle
WebLogic Integration.

Supported ebXML 1.0 and 2.0 Features
Oracle WebLogic Integration supports the following ebXML 1.0 and ebXML 2.0 features:

http://www.ebxml.org
http://www.w3c.org
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.ebxml.org/specs/

ebXML Concepts

Introducing Trading Partner Integration 2-3

Unsupported ebXML 2.0 Features
This release of Oracle WebLogic Integration does not support certain optional features of
ebXML2.0, including:

Message Status Service

Synchronous reply mode of communication

Message Order Module

Multi-Hop Module

This release does not provide XML DSIG at each payload level of an ebXML message.

ebXML Concepts
This topic describes ebXML concepts that you need to understand before implementing ebXML
business processes in Oracle WebLogic Integration. It contains the following sections:

Table 2-1 Oracle WebLogic Integration Support for ebXML 1.0 and 2.0 Features

Feature Support

Packaging For ebXML 1.0 and 2.0—SOAP, SOAP headers, and
attachments

Security • Transport-level security: HTTP/S
• Message-level security: digital signatures (XML DSig) for

protection of the entire message from message tampering
(ebXML 1.0 and 2.0).

For more information, see Chapter 4, “Trading Partner
Integration Security.”

Reliable Messaging • ebXML 1.0: Best effort, and Once and only once
• ebXML 2.0: At least once, At most once, Best effort, and

Once and only once

For more information, see Reliable Messaging.

Clustering, High
Availability, and Recovery

For ebXML 1.0 and 2.0

In t roduc ing ebXML So lu t i ons

2-4 Introducing Trading Partner Integration

ebXML Protocol Layer

ebXML Business Messages

Reliable Messaging

ebXML Protocol Layer
The ebXML protocol layer provides the ability to send and receive messages via the Internet
according to the ebXML Message Service specifications for transport, message packaging, and
security. The ebXML 1.0 and 2.0 message service specifications are independent of the
communication protocol used. Oracle WebLogic Integration supports the HTTP(S)
communication protocol.

ebXML Business Messages
A business message is the basic unit of communication between trading partners. Business
messages are exchanged as part of a conversation. The roles in a conversation are implemented
by business processes, which choreograph the exchange of business messages.

Diagram of an ebXML Business Message
The following figure represents the structure of a business message exchanged in a conversation
based on the ebXML business protocol.

ebXML Concepts

Introducing Trading Partner Integration 2-5

Figure 2-1 ebXML Business Message

An ebXML business message contains one XML business document and one or more
attachments. An ebXML message is a communication protocol-independent MIME/Multipart
message envelope, referred to as a message package. All message packages are structured in
compliance with the SOAP Messages with Attachments specification.

Logical MIME Parts of an ebXML Business Message
The message package shown in the preceding figure illustrates the following logical MIME parts:

Header Container—Logical container in which one SOAP 1.1-compliant message is
stored. This SOAP message is an XML document; its root element is the SOAP Envelope,
which, in turn, contains the following elements:

– SOAP Header—Contains ebXML-specific header elements, including the ebXML
MessageHeader element that specifies details such as from and to business IDs,
service that relates to the business process, and action that relates to a node in the
business process. The SOAP Header is a generic mechanism for adding features to a
SOAP message.

In t roduc ing ebXML So lu t i ons

2-6 Introducing Trading Partner Integration

– SOAP Body—Container for message service handler control data and information
related to the payload parts of the message.

Payload Container—Zero or more payloads. Each payload can contain XML or
non-XML (binary) data.

Oracle WebLogic Integration provides a mechanism in Oracle Workshop for WebLogic business
processes for retrieving the ebXML message envelope that relates to the Header container from
incoming business messages. For more information, see @com.bea.wli.jpd.EbXML and
@EBXMLControl.EbXML in the Java Docs for Oracle WebLogic Integration Classes.

Message Attachments
An ebXML message can have any combination of payloads. The payloads can be all binary, all
XML, or a mixture of both. Any payload is sent as a MIME attachment to the SOAP message—
the SOAP body is not used to carry the payload.

Oracle WebLogic Integration provides a MessageAttachment[] data type that business
processes can use to retrieve payloads from an ebXML message, particularly when payloads
consist of mixed data types or when the number of payloads or the order of payloads is not known
in advance. It provides methods for determining the content of a payload (isXmlObject and
isRawData) and retrieving the contents of the payload (getXmlObject and getRawData) as
untyped XML data (XmlObject data type) or non-XML data (RawData data type). To learn about
working with MessageAttachment objects, see Using Message Attachments.

Reliable Messaging
The ebXML business protocol supports reliable messaging, an optional but important capability
that allows you to configure different levels of quality of delivery service. Reliable messaging has
a reliability versus performance trade-off, as increasing the level of guarantee increases run-time
requirements on system resources. Configure reliable messaging in the Oracle WebLogic
Integration Administration Console, as described in “Defining an ebXML 1.0 or 2.0 Binding” in
Trading Partner Management in Using Oracle WebLogic Integration Administration Console
Help.

Of the eight qualities of service policies defined in the ebXML 2.0 Specification, Oracle
WebLogic Integration supports the following four (non-multihop) policies, which determine how
acknowledgements and duplicate messages are handled:

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/controls/controlsMsgAttach.html

ebXML Bus iness P rocesses

Introducing Trading Partner Integration 2-7

ebXML Business Processes
This topic describes Oracle Workshop for WebLogic business processes that implement ebXML
conversations. It contains the following sections:

Guidelines for Building ebXML Business Processes

ebXML Initiator Business Processes

ebXML Participant Business Processes

Table 2-2 Supported Reliable Messaging Policies

Policy Description

Best Effort (ebXML 1.0
and 2.0)

Best effort. No reliable messaging (no acknowledgement or duplicate
elimination).

Once and Only Once
(ebXML 1.0 and 2.0)

Requires acknowledgement and duplicate elimination. If a message is not
acknowledged, it is resent. If a duplicate message is received, it is ignored.
If this policy is selected, you can specify:
• Number of Retries—Number of times Oracle WebLogic Integration

resends a message in specific situations, such as timeouts, network
failures, and so on.

• Interval—Number of seconds that Oracle WebLogic Integration waits
before trying to resend a message.

• Persistence Duration—(Optional) Amount of time the message will be
kept in the repository. After this time, the message will be deleted and
any subsequent message sent with same ID will not be considered a
duplicate. If specified, the configured persistence duration must be
greater than the internally set TimeToLive, which is calculated as:
((Retries +1) * RetryInterval) < TimeToLive < Persistence Duration

Atleast Once
(ebXML 2.0 only)

Requires acknowledgement, but not duplicate elimination. If selected, you
can specify the number of retries and persistence duration.

Atmost Once
(ebXML 2.0 only)

Requires duplicate elimination, but not acknowledgement.

In t roduc ing ebXML So lu t i ons

2-8 Introducing Trading Partner Integration

Guidelines for Building ebXML Business Processes
When designing business processes for ebXML solutions, consider the following guidelines:

You should thoroughly understand the content, choreography, roles, and other aspects of
the business processes that you want to implement. For example, you should understand:

– the design pattern

– the number and nature of business messages exchanged

– the contents of each business message

– the success path for the conversation (such as request / response sends and receipt
acknowledgements)

– the possible failure paths, such as retries, timeouts, and errors

You should thoroughly understand data transformations, if any, that occur between the
ebXML business message and back-end systems. For each transformation, you use a
transformation control to convert the service content of the ebXML business message to /
from the format(s) used in the private processes. For more information, see “Creating a
Transformation Control and a Transformation Method” in the Javadoc for Oracle
WebLogic Integration Classes.

Initiator business processes can have multiple conversations with different participants.
Within a single business process, each ebXML conversation requires its own separate
ebXML control instance. If the conversation needs to involve a different participant, or if it
involves the same participant with different reliable messaging or security, create a
different ebXML control file. Each ebXML control in the initiator business process and
each business process JPD on participant side represents a service in the TPM repository.

Decide which action mode you want to use for the initiator and participant business
processes. The action mode determine the value specified in the eb:Action element in the
message header of the ebXML message, which becomes important in cases where multiple
message exchanges occur within the same conversation. You can use one of the following
values in the ebxml-action-mode business process property:

– default—Sets the eb:Action element to SendMessage (default name) and
onMessage is the control callback method name.

– non-default—Sets the eb:Action element to the name of the method (on the
ebXML control) that sends the message in the initiator business process. For sending a
message from the initiator to the participant, this name must match the method name of
the Client Request node in the corresponding participant business process. For sending
a message from the participant to the initiator, the method name in the callback

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/Transform.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/Transform.html

ebXML Bus iness P rocesses

Introducing Trading Partner Integration 2-9

interface for the client callback node in the participant business process must match the
method name (on the ebXML control) in the control callback interface in the initiator
business process.

Using non-default is recommended to ensure recovery and high availability.
If unspecified, the ebxml-action-mode element is set to non-default.

Determine how you want to specify the business process properties:

– Statically—using hard-coded annotations (@EBXMLControl.EbXML on the ebXML
control in initiator business processes and the @com.bea.wli.jpd.EbXML in participant
business processes).

– Dynamically—using pass-in values, such as business IDs, and calling the
setProperties method (only applicable to the ebXML control using
@EBXMLControl.EbXML).

Note: To ensure proper routing, the ebXML service name specified in the initiator and
participant business processes must match. In addition, for non-default action mode,
the method names in the ebXML control instance in the initiator business process
must match the method names in the corresponding participant business process.

To explicitly handle acknowledgements and errors, you can use onAck and onError nodes.

– For default Action mode, you must use an Event Choice node, as the order in which
acks and messages arrive is not guaranteed. For more information about the Event
Choice node, see “ Receiving Multiple Events” in Guide to Building Business
Processes

– For non-default Action mode, these nodes can be modeled in any form, including
sequentially.

To retrieve message envelopes for incoming business messages, use the
@com.bea.wli.jpd.EbXML (for participant business processes) and
@EBXMLControl.EbXML (in the callback of the ebXML control for initiator business
processes). For example:

– For a participant business process:
@com.bea.wli.jpd.EbXML.ebxml-method message-envelope="{env}"

public void request(XmlObject payload, XmlObject env) {

}

– For an initiator business process:
@EBXMLControl.EbxmlMethod envelope="{env}"

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbxmlMethod.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideMultiDesign.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbXML.html

In t roduc ing ebXML So lu t i ons

2-10 Introducing Trading Partner Integration

public void onMessage(MessageAttachment[] reply, XmlObject env);

To retrieve message envelopes for outgoing business messages, you specify the return
value of the send method as XMLObject and provide explicit casting in the business
process, as in the following example:

– For an initiator business process:

public XmlObject send(messageAttachement[] msg)

XmlObject envelope = (XmlObject) control.send(msg)

– For a participant business process:

public XmlObject send(messageAttachement[] msg)

XmlObject envelope = (XmlObject) callback.send(msg)

Thoroughly test the implementation by simulating the choreography between the initiator
and participant business processes with sample data. By default, the Trading Partner
Management module runs in Test (development) mode, which allows you to run business
processes on the same machine (collocated) using preconfigured trading partners and a
default binding that uses the ebXML 2.0 protocol. The endpoints for both partners use
127.0.0.1:7001. The delivery-semantics is Once and Only Once. The ebxml service
name can be anything as long as it is same for both the initiator and participant business
processes. For more information, see “Default TPM Repository Settings” on page 1-9.

ebXML Initiator Business Processes
In Oracle WebLogic Integration, initiator business process use an ebXML control to enable
Oracle Workshop for WebLogic business processes to exchange business messages and data with
trading partners via ebXML. You use ebXML controls only in initiator business processes to
manage the exchange of ebXML business messages with participants. The ebXML control
provides methods for sending business messages, acknowledgements, and errors, and it provides
callback methods to handle responses from participants.

For detailed information about using the ebXML control in business processes, see the following
topics:

ebXML Control

ebXML Control Interface

@EBXMLControl.EbxmlMethod

For an introduction to initiator business processes, see “Initiator and Participant Business
Processes” on page 1-13.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/controls/controlsebXMLExample.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/ProcessControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbxmlMethod.html

Tasks fo r Implement ing an ebXML So lu t ion

Introducing Trading Partner Integration 2-11

ebXML Participant Business Processes
In Oracle WebLogic Integration, you can easily create a new ebXML participant business process
using a Oracle Workshop for WebLogic template, the ebXML participant business process file.
This template provides a head start for building public participant business processes for ebXML
conversations. Although this file is not required to build ebXML participant business processes,
it includes the nodes and business process annotations needed to integrate easily with ebXML
initiator business processes, as well as standard choreography patterns such as
acknowledgements, time-outs, retries, and errors. For information about using participant
business processes, see Building ebXML Participant Business Processes and
@com.bea.wli.jpd.EbXML in the Javadoc for Oracle WebLogic Integration Classes. For an
introduction to participant business processes, see “Initiator and Participant Business Processes”
on page 1-13.

Tasks for Implementing an ebXML Solution
This topic provides a high-level, end-to-end overview of the tasks involved with implementing
an ebXML solution. It includes the following topics:

Before You Begin

Planning the ebXML Solution

Building the ebXML Solution

Deploying the ebXML Solution

Managing the ebXML Solution

Note: This topic describes, in a general way, the tasks that are typically involved in
implementing an ebXML solution. The process of implementing ebXML solutions is
iterative, and it can vary in scope and sequence depending on your unique business
requirements and environment.

Before You Begin
Before you begin implementing an ebXML solution, we recommend that you review the
following documents:

Chapter 1, “Introduction,” to learn basic concepts for integrating trading partners using
Oracle WebLogic Integration.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideEbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html

In t roduc ing ebXML So lu t i ons

2-12 Introducing Trading Partner Integration

“Tutorial: Building ebXML Solutions” to learn basic concepts that are unique to ebXML
solutions

Planning the ebXML Solution
Once you have decided to use ebXML as the business protocol for your trading partner
integration (as described in “Phase 1: Plan the Solution” on page 1-27), you need to plan the
solution by determining certain factors in your implementation:

With which trading partners will you integrate?

For each trading partner, you need to determine:

– Which business process(es) will you integrate?

– What information about that trading partner is required for your implementation (for
example, their business ID and other basic profile information). For more information,
see “Trading Partner Profiles” on page 1-6.

For each business process, you need to determine:

– Which ebXML version (1.0 or 2.0) is required for exchanging business messages?

– What role (initiator or participant role) will your organization play in the business
message exchange?

– Do you need to create business processes for just your role, or for both roles in the
business process?

– What are the back-end integration requirements for each business process? Will you
use private business processes, and if so, what private business processes are required?
What is the data format of, and connections with, associated back-end systems?

– Does your implementation need to meet legal standards for nonrepudiation, which is
described in NonRepudiation?

– What qualities of service are required for reliable messaging, as described in Reliable
Messaging?

The Tutorials for Trading Partner Integration provide examples of different ebXML solutions.
For more information, see Tutorial: Building ebXML Solutions.

Building the ebXML Solution
After planning your ebXML solution, you build the business processes that implement the design
patterns you are using. For more information about design-time tools, see Phase 2: Design, Build,

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html

Tasks fo r Implement ing an ebXML So lu t ion

Introducing Trading Partner Integration 2-13

and Test the Solution. For conceptual information about ebXML business processes, see ebXML
Business Processes.

“Tutorial: Building ebXML Solutions” provides a detailed examples of the typical tasks required
to build an ebXML solution.

To build an ebXML solution, you would typically complete the following steps:

1. Using the Oracle WebLogic Configuration Wizard, create a new domain based on the Oracle
WebLogic Integration domain template. For instructions, see Creating Oracle WebLogic
Domains Using the Configuration Wizard in the Oracle WebLogic documentation.

2. From the Tutorials for Trading Partner Integration, copy the example implementation
associated with the design pattern that you want to use, if available.

3. Change the ebXML annotations for the new business processes:

– For initiator business processes, you change the serviceName attribute (and others if
needed) in the @EBXMLControl.EbXML

– For participant business processes, you change the ebxmlServiceName attribute (and
others if needed) in the @com.bea.wli.jpd.EbXML.

4. Rename the JPD and files and change the names of other components to be more descriptive
of the new business process implementation, if you want.

– For more information about modifying the ebXML control in initiator business
processes, see ebXML Control in the Javadoc for Oracle WebLogic Integration Classes.

– For more information about building ebXML participant business processes, see
Building ebXML Participant Business Processes in the Guide to Building Business
Processes.

5. Ensure that the ebXML Service name is the same for both the initiator and participant
business processes.

6. For non-default Action mode, ensure that method names are the same for both the initiator
and participant business processes.

7. Change the implementation of any back-end integration as needed.

8. Make any other changes to the business processes as needed.

9. Test the ebXML solution using the default TPM repository configuration (described in
Default TPM Repository Settings) and security settings (described in Default Domain
Security Configuration).

http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideEbXML.html

In t roduc ing ebXML So lu t i ons

2-14 Introducing Trading Partner Integration

Deploying the ebXML Solution
Once you have built and tested your ebXML solution, you deploy the solution in a production
environment. For more information about deployment tools, see “Phase 3: Deploy the Solution”
on page 1-28. For detailed information about deploying Oracle WebLogic Integration solutions,
see Deploying Oracle WebLogic Integration Solutions.

To deploy an ebXML solution, you would typically complete the following steps:

1. If necessary, using the Oracle WebLogic Configuration Wizard, create a new domain based
on the Oracle WebLogic Integration domain template. For instructions, see Creating Oracle
WebLogic Domains Using the Configuration Wizard in the Oracle WebLogic documentation.

2. Start Oracle WebLogic Server in production mode.

3. Using the Oracle WebLogic Integration Administration Console, complete the following
tasks:

Note: If you have already defined trading partner information in your development
environment, you can export this information to an external file, and then import this
file into the production environment. For more information, see Importing and
Exporting Data in Trading Partner Management in Using Oracle WebLogic
Integration Administration Console Help.

a. Add trading partners to the TPM repository, including basic profile information, such as
trading partner IDs. For instructions, see “Adding Trading Partner Profiles” in Trading
Partner Management.

b. For each trading partner, define the protocol bindings (including ebXML version—1.0 or
2.0—and other settings) to be used for message exchanges with this trading partner.
For more information, see “Defining Protocol Bindings” in Trading Partner Management.

c. For protocol bindings, you can (optionally) define signature transforms, as described in
Configuring Signature Transforms for ebXML Bindings in Adding Protocol Bindings to
a Trading partner in Trading Partner Management.

d. Define the services that you will use in your deployment. For more information, see
Adding Services in Trading Partner Management.

e. For each trading partner, define the service profiles (protocol bindings and URL endpoints
for local and remote trading partners) associated with each service. For more information,
see Adding Services in Trading Partner Management.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPProfiles
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPProfiles
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#wp1290369
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#wp1290369
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

Tasks fo r Implement ing an ebXML So lu t ion

Introducing Trading Partner Integration 2-15

4. Using the Oracle WebLogic Server Administration Console and Oracle WebLogic Integration
Administration Console, implement security for your deployment, as described in
“Implementing Security for Trading Partner Integration” on page 4-50.

5. Configure your domain (clustering, high availability, load balancing, fail-over, and so on) as
needed for your production environment. For more information, see Deploying Oracle
WebLogic Integration Solutions.

6. Deploy the application and other Oracle WebLogic Integration resources associated with your
ebXML solution. For more information, see Deploying Oracle WebLogic Integration
Solutions

Managing the ebXML Solution
Once you have deployed your ebXML solution, you would typically monitor run-time
performance, message volumes, resource utilization, and other factors to ensure optimum
operation on your solution. For more information about monitoring tools, see Phase 4:
Administer and Tune the Solution.

For instructions on monitoring trading partner integration resources, see Viewing Statistics and
Monitoring Messages in Trading Partner Management in Using Oracle WebLogic Integration
Administration Console Help.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#ViewingStatistics
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#tpmMonitorMessages

In t roduc ing ebXML So lu t i ons

2-16 Introducing Trading Partner Integration

Introducing Trading Partner Integration 3-1

C H A P T E R 3

Introducing RosettaNet Solutions

This topic provides an introduction to implementing RosettaNet solutions with Oracle WebLogic
Integration. It contains the following sections:

About RosettaNet Solutions

RosettaNet Concepts

RosettaNet Business Processes

Tasks for Implementing a RosettaNet Solution

This topic focuses on information that is relevant to RosettaNet solutions only. Before you begin,
be sure to read the Chapter 1, “Introduction” to learn basic concepts for integrating trading
partners using Oracle WebLogic Integration. In addition, for a hands-on walkthrough of example
RosettaNet solutions, see “Tutorial: Building RosettaNet Solutions,” in Tutorials for Trading
Partner Integration.

About RosettaNet Solutions
A RosettaNet solution is any Oracle WebLogic Integration solution that involves exchanging
business messages with trading partners using the RosettaNet business protocol. This topic
describes RosettaNet and how it is supported in Oracle WebLogic Integration. It contains the
following sections:

About RosettaNet

RosettaNet Support in Oracle WebLogic Integration

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/index.html

In t roduc ing Rose t taNe t So lut ions

3-2 Introducing Trading Partner Integration

About RosettaNet
RosettaNet is a business protocol that enables enterprises to conduct business over the Internet.
The RosettaNet Consortium (http://www.rosettanet.org) is an independent, nonprofit
consortium of major information technology, electronic component, and semiconductor
manufacturing companies working to create and implement industry-wide, open process
standards. These processes are designed to standardize the electronic business interfaces used
between participating supply chain partners. The RosettaNet Implementation Framework (RNIF)
specification (available at http://www.rosettanet.org) is a guideline for applications that
implement RosettaNet Partner Interface Processes (PIPs). These PIPs are standardized
electronic business processes used between trading partners. For a list of PIPs, see
http://www.rosettanet.org.

Understanding RosettaNet
The following RosettaNet documents are necessary reading if you want to implement your own
PIP using the support for RosettaNet provided by Oracle WebLogic Integration, and
recommended reading if you want to fully understand the sample RosettaNet PIP
implementations. These documents are available at http://www.rosettanet.org:

RosettaNet Implementation Framework v1.1 (RNIF 1.1) —The RNIF is an open, common
networked-application framework designed to allow RosettaNet supply chain and solution
partners to collaborate in executing RosettaNet PIPs.

RosettaNet Implementation Framework v2.0 (RNIF 2.0)

RNIF Technical Advisories—RNIF Technical Advisories are updates and additional
information for RNIF 1.1 and RNIF 2.0.

RNIF Technical Recommendations—Technical Recommendations describe features or
enhancements not yet available in a published version of the RNIF v1.1. Implementation of
Technical Recommendations is optional.

RNIF Business Signals, Service Header & Preamble—The RNIF business signals, service
header & preamble document contains message guidelines and XML document type
definitions (DTDs) for the RNIF business signals, service header, and preamble.

Understanding a PIP Blueprint—reference for PIP blueprint components and evaluation.
Available under Supporting Documents in the Standards Section.

PIPs of interest—PIPs are specialized system-to-system, XML-based dialogs that define
business processes between supply chain companies. Each PIP includes a technical

http://www.rosettanet.org
http://www.rosettanet.org
http://www.rosettanet.org
http://www.rosettanet.org

About Rose t taNe t So lut ions

Introducing Trading Partner Integration 3-3

specification based on the RosettaNet Implementation Framework (RNIF), a Message
Guideline document with a PIP-specific version of the Business Dictionary, and XML
document type definitions (DTDs) for PIP-specific messages.

RosettaNet Support in Oracle WebLogic Integration
This topic describes supported and unsupported RosettaNet features in this release of Oracle
WebLogic Integration.

Supported RosettaNet 1.1 and 2.0 Features
Oracle WebLogic Integration supports the following RosettaNet 1.1 and RosettaNet 2.0 features:

Table 3-1 Oracle WebLogic Integration Support for RosettaNet 1.1 and 2.0 Features

Feature Supported (X=Yes)

RNIF 1.1 RNIF 2.0

Packaging

• RosettaNet Objects (RNO) X

• RosettaNet Business Message (RBM) with standard multipart MIME /
headers

X

• Attachments X X

Security

• Transport-level security (HTTP/S) X X

• Digital signatures to protect messages from tampering X X

• Standard S/MIME and encryption for message privacy X

Message Handling

• Duplicate message removal X X

• Message persistence X X

• High-level ACK X X

• High-level retry X X

In t roduc ing Rose t taNe t So lut ions

3-4 Introducing Trading Partner Integration

Unsupported RosettaNet Features
This release of Oracle WebLogic Integration does not support the following RNIF 2.0 features:

RosettaNet Concepts
This topic describes RosettaNet concepts that you need to understand before implementing PIPs
in Oracle WebLogic Integration. It contains the following sections:

RosettaNet Protocol Layer

Partner Interface Processes (PIPs)

• Message status returned X X

• Explicit choreography. X X

Performance and Availability

• Clustering X X

• High Availability X X

• Recovery X X

Table 3-2 Unsupported RosettaNet Features

Feature Support

Synchronous response
messages

This Oracle WebLogic Integration release supports asynchronous
one-action and two-action activities only. It does not support
synchronous one-action and two-action activities.

Use of SMTP transport
with RNIF 2.0

While strongly biased toward HTTP transport, the RNIF 2.0 is
transport independent and includes documentation showing how
SMTP transport might be used. This Oracle WebLogic Integration
release supports HTTP and HTTPS transport but not SMTP.

Table 3-1 Oracle WebLogic Integration Support for RosettaNet 1.1 and 2.0 Features (Continued)

Feature Supported (X=Yes)

RNIF 1.1 RNIF 2.0

Rose t taNe t Concepts

Introducing Trading Partner Integration 3-5

Public and Private Business Processes

PIP Design Patterns

RosettaNet Business Messages

RosettaNet Protocol Layer
The RosettaNet protocol layer provides the ability to send and receive messages by way of the
Internet according to the RNIF 1.1 and RNIF 2.0 specifications for transport, message packaging,
and security.

When a Oracle WebLogic Integration trading partner receives a RosettaNet message, the
transport servlet forwards the message to the RosettaNet decoder. The RosettaNet decoder
processes the protocol-specific message headers, identifies the trading partner that sent the
message, and forwards the RosettaNet message to a JMS queue. When a Oracle WebLogic
Integration trading partner sends a RosettaNet message, the RosettaNet encoder takes the
message from the send-side JMS outbound event queue and forwards it to the transport service.

Partner Interface Processes (PIPs)
RosettaNet PIPs define the public processes in which trading partners participate while
performing transactions. A PIP defines the roles, choreography, contents of business messages,
and other design details for a particular RosettaNet message exchange. For example, PIP 3A2
(Query Price and Availability) defines the process that a Customer trading partner performs with
a Product Supplier trading partner to get information about the price and availability of goods
that the Customer wants to buy and the Product Supplier wants to sell. Trading partners
participating in PIPs need to implement the public process defined by their role in the PIP, and
they need to connect their internal systems, as well as their private processes and business
processes, to the public process.

Public and Private Business Processes
RosettaNet business processes follow the RosettaNet design strategy of separating public and
private business processes. Public business processes provide for the exchange of business
messages between trading partners, while private business processes interact with internal,
back-end systems. Public business processes have standardized, highly structured PIP
choreographies, while private business processes are highly customized to a trading partner’s
internal environment. Private processes communicate with public processes via well-defined

In t roduc ing Rose t taNe t So lut ions

3-6 Introducing Trading Partner Integration

interfaces, typically based on JMS queues. For more information, see Public and Private Business
Processes.

PIP Design Patterns
RosettaNet PIPs follow one of the following design patterns:

Asynchronous single-action activity

Asynchronous two-action activity

Synchronous single-action /two-action activity

In Oracle WebLogic Integration, RosettaNet PIPs are implemented as public business processes.
Because the RosettaNet PIPs follow just a few general design patterns, once you have
implemented a single PIP, you can easily implement other PIPs with similar design patterns by
copying the implementation and making a few changes (such as changing the business message
schema definitions and business process properties).

For more information about RosettaNet design patterns and choreography, see the RosettaNet
Implementation Framework Core Specification (version V02.00.01) at
http://www.rosettanet.org.

Asynchronous Single-Action Activity
The asynchronous single-action (or one-action) activity design pattern involves a single action
(business message) from the sender and a signal (a protocol response, such as an
acknowledgement, ack-reject, or error) from the recipient back to the sender:

1. The initiator sends a business message to the participant.

2. Upon receiving the request business message, the participant sends a receipt
acknowledgement to the initiator.

This design pattern is typical of one-way sends with acknowledgements, such as notifications
from one trading partner to another. An example of this design pattern is PIP3B2 (Notify of
Advance Shipment), which is described at http://www.rosettanet.org.

Figure 3-1 is an example of how, in Oracle WebLogic Integration, public and private business
processes might be involved in an asynchronous one-action collaboration.

http://www.rosettanet.org
http://www.rosettanet.org

Rose t taNe t Concepts

Introducing Trading Partner Integration 3-7

Figure 3-1 Public and Private Business Processes in an Asynchronous One-Action Activity Design Pattern

In this sample scenario, the message flow proceeds along the following path:

1. The initiator’s private business process creates the notification document (in some internal
data format) and submits it to the public business process.

2. The initiator’s public business process receives the notification document, converts it to the
appropriate PIP format, and sends it to the participant trading partner.

Note: For outbound and inbound messages, Oracle WebLogic Integration automatically
handles the packaging of the non-payload portion of RosettaNet business messages
(such as the version, content length, headers, and digital signatures), as well as
transport-level security and message-level security.

3. On the participant side, Oracle WebLogic Integration handles the process of receiving the
RosettaNet business message from the initiator, validating the contents of the inbound
business message, and forwarding the document to the appropriate public business process.

4. The participant’s public business process receives the notification document from the initiator
and sends an acknowledgement of receipt to the initiator.

5. The participant’s public business process converts the document from the PIP format to the
appropriate internal data format, and then submits the document to the private business
process.

Alternatively, the private business processes on either end could handle the conversion from the
private data format to the appropriate RosettaNet PIP. In addition, private and public business
processes might use internal means to indicate whether or not the overall process succeeded.

In t roduc ing Rose t taNe t So lut ions

3-8 Introducing Trading Partner Integration

Asynchronous Two-Action Activity
The asynchronous two-action activity design pattern involves two actions—a single action
(business message) from the sender to the recipient, and a single action (business message) from
the recipient back to the sender, and their corresponding signals (protocol responses, such as
acknowledgements, ack-rejects, or errors) to each other:

1. The initiator sends a business message request to the participant.

2. The participant sends a receipt acknowledgement to the initiator.

3. The participant sends a business message response to the initiator.

4. The initiator sends a receipt acknowledgement to the participant.

This design pattern is typical of two-way, bi-directional communications between trading
partners, such as a request / reply activities, that require mutual confirmation. An example of this
design pattern in PIP3A4 (Request Purchase Order), which is described at
http://www.rosettanet.org.

Figure 3-2 is an example of how, in Oracle WebLogic Integration, public and private business
processes might be involved in an asynchronous two-action collaboration.

Figure 3-2 Public and Private Business Processes in an Asynchronous Two-Action Activity Design Pattern

In this sample scenario, the message flow proceeds along the following path:

http://www.rosettanet.org

Rose t taNe t Concepts

Introducing Trading Partner Integration 3-9

1. The initiator’s private business process creates the request (in some internal data format) and
submits it to the public business process.

2. The initiator’s public business process receives the request, converts it to the appropriate PIP
format, and sends it to the participant trading partner.

Note: For outbound and inbound messages, Oracle WebLogic Integration automatically
handles the packaging of the non-payload portion of RosettaNet business messages
(such as the version, content length, headers, and digital signatures), as well as
transport-level security and message-level security.

3. On the participant side, Oracle WebLogic Integration handles the process of receiving the
RosettaNet business message from the initiator, validating the contents of the inbound
business message, and forwarding the document to the appropriate public business process.

4. The participant’s public business process receives the request document from the initiator and
sends an acknowledgement of receipt to the initiator.

5. The participant’s public business process converts the request document from the PIP format
to the appropriate internal data format, and then submits the request to the private business
process.

6. The participant’s private business process handles the request, creates a response in some
internal format, and sends the response to the participant’s public business process.

7. The participant’s public business process converts the response from the internal data format
to the PIP format, and then sends the response document to the initiator.

8. On the initiator side, Oracle WebLogic Integration handles the process of receiving the
RosettaNet business message from the initiator, validating the contents of the inbound
business message, and forwarding the document to the appropriate public business process.

9. The participant’s public business process receives the response document and sends an
acknowledgement of receipt to the participant.

10. The initiator’s public business process converts the response document from the PIP format
to the appropriate internal data format, and then submits the response to the private business
process.

As with the single-action activity design pattern, the private business processes on either end
could handle the conversion from the private data format to the appropriate RosettaNet PIP. In
addition, private and public business processes might use internal means to indicate whether or
not the overall process succeeded.

In t roduc ing Rose t taNe t So lut ions

3-10 Introducing Trading Partner Integration

Synchronous One-Action / Two-Action Activity
RosettaNet also specifies synchronous versions of the asynchronous design patterns, in which an
immediate response is required. The current release of Oracle WebLogic Integration does not
support synchronous design patterns.

RosettaNet Business Messages
Oracle WebLogic Integration supports sending and receiving RosettaNet messages according to
the RosettaNet Implementation Framework (RNIF) 1.1 and 2.0. A business message exchanged
via the RosettaNet 1.1 protocol is called a RosettaNet Object (RNO). The business message
exchanged via the RosettaNet 2.0 protocol is called a RosettaNet Business Message (RBM).

Note: In this document, we refer to both RNOs and RBMs as RosettaNet business messages.

The RNIF provides exchange protocols for implementation of the PIPs. The RNIF specifies
information exchange between trading partner servers using XML, covering transport, routing
and packaging, security, signals, and trading partner agreements. Some elements of RosettaNet
messages are common across all RosettaNet messages, while other elements are unique to
specific PIPs. To ensure that RosettaNet messages are structured and processed in a consistent
manner, each PIP comes with a message guideline and XML document type definition (DTD).

Note: Oracle WebLogic Integration supports character encoding for sending messages. Oracle
WebLogic Integration uses UTF-8 character encoding in all RosettaNet messages.

Components of a RosettaNet Business Message
This section describes the components of RosettaNet business messages.

RosettaNet Object (RNO) for RNIF 1.1
Figure 3-3 shows the components of a RosettaNet business message for RNIF 1.1.

Rose t taNe t Concepts

Introducing Trading Partner Integration 3-11

Figure 3-3 Components of a RosettaNet Object (RNO) for RNIF 1.1

Table 3-3 describes the components of an RNO:

Table 3-3 Components of an RNO

Component Description

Version Specifies the RNIF version (1.1), in binary format.

Content Length Length of the multi-part MIME message, in binary format.

Headers Includes the following headers:
• Preamble Header
• Service Header

In t roduc ing Rose t taNe t So lut ions

3-12 Introducing Trading Partner Integration

RosettaNet Business Message (RBM) for RNIF 2.0
The RosettaNet Implementation Framework 2.0 introduced the following notable differences in
the composition of a RosettaNet Business Message (RBM):

In RNIF 2.0, the Delivery Header was added.

In RNIF 2.0 (but not in RNIF 1.1), the Service Header and Content can be encrypted.
Using the Oracle WebLogic Integration Administration Console, you can configure the
system to encrypt the Service Content, Service Header, and any attachments when a
message is sent. For more information about encryption, see “Encryption—PKCS7
Enveloped Data for RosettaNet 2.0” on page 4-45.

Table 3-4 shows the components of an RBM:

Content
(Payload)

Includes the following components:
• Service Content—contains either an action or a signal message.
• Attachments—Optional. Can contain zero or more attachments, which consist of

XML and non-XML (binary) data. Examples of possible attachments include
Word documents, GIF images, PDF files, and so on. The information for each
attachment is contained in the Service Header of the message.

Digital Signature
(Optional)

Optional. Digital signature.
• Length of the signature in binary format.
• Signature (PKCS7) in binary format.

Table 3-3 Components of an RNO (Continued)

Component Description

Rose t taNe t Concepts

Introducing Trading Partner Integration 3-13

Figure 3-4 Components of a RosettaNet Business Message for RNIF 2.0

Table 3-4 describes the components of a RBM:

Table 3-4 Components of an RBM

Component Description

Headers Includes the following headers:
• Preamble Header
• Delivery Header
• Service Header

Payload Includes the following components:
• Service Content—Contains either an action or a signal message.
• Attachments—Optional. Can contain zero or more attachments, which consist of

XML and non-XML (binary) data. Examples of possible attachments include
Word documents, GIF images, PDF files, and so on. The information for each
attachment is contained in the Service Header of the message.

In t roduc ing Rose t taNe t So lut ions

3-14 Introducing Trading Partner Integration

Oracle WebLogic Integration Handles the Non-Payload Portion of RosettaNet Messages
When sending and receiving RosettaNet business messages, Oracle WebLogic Integration
automatically handles the non-payload portion (version, content length, headers, and digital
signatures) of the business message, as well as packaging, transport-level security, and
message-level security, so that Oracle Workshop for WebLogic business processes can focus on
Service Content and attachments.

Validation of RosettaNet Business Messages
The RosettaNet PIP definitions contain detailed validation rules for messages exchanged in the
PIP. These rules are significantly more stringent than the validation expressed within an XML
Document Type Definition (DTD). The required validation rules are expressed in XML schema
documents (XSD), which are based on the World Wide Web Consortium (W3C) 2000 XML
Schema Definitions (XSD) schema.

Oracle WebLogic Integration provides message validation services for both RNIF 1.1 and RNIF
2.0 messages. The validation performed depends on the following factors:

 The validateServiceHeader variable settings. If this is set to true, the service header of all
messages sent and received for a template are validated. The type of validation performed is
dependent on the validation settings of the business process.

The validation options specified in the business process.

Schema validation according to the XSD schemas you have included in your project.

Configuring RosettaNet Message Validation
To configure these options in the Oracle WebLogic Integration Administration Console:

1. Add a service for RosettaNet, as described in Adding Services in Trading Partner
Management.

2. Edit this service, as described in “Viewing and Changing Services” in Trading Partner
Management.

3. On the View and Edit Service Details page, click Add Defaults.

4. Configure validation options for RosettaNet business messages.

Further Reading on RosettaNet Message Validation
For more information about RosettaNet message validation, see the following documents:

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

Rose t taNe t Bus iness P rocesses

Introducing Trading Partner Integration 3-15

The RosettaNet Implementation Framework (RNIF) specification, which provides an
explanation of the exception handling process, is available at the following URL:

http://www.rosettanet.org

Information about XML schema tools, usage, specifications, and development is available
at the following URL:

http://www.w3.org/XML/Schema

The XML Schema Part 0: Primer, which provides useful descriptions of the features and
capabilities of XML schema, is available at the following URL:

http://www.w3.org/TR/xmlschema-0/

RosettaNet Business Processes
This topic describes Oracle Workshop for WebLogic business processes that implement
RosettaNet PIPs. It contains the following sections:

Guidelines for Designing RosettaNet Business Processes

RosettaNet Initiator Business Processes

RosettaNet Participant Business Processes

Guidelines for Designing RosettaNet Business Processes
The specification for each RosettaNet PIP is highly structured. It specifies roles, message
choreography, business message structure, and other design details. Implementing a RosettaNet
business process requires adherence to the PIP specification for that PIP role. Therefore, when
designing business processes for RosettaNet solutions, consider the following guidelines:

You should thoroughly understand the schema, choreography, roles, and other aspects of
the PIP that you want to implement. For example, you should understand:

– the design pattern (asynchronous one-action and two-action activities)

– the number and nature of business messages exchanged

– the schema for each business message

– the success path for the message exchange (such as request / response sends and receipt
acknowledgements)

– the possible failure paths, such as retries, timeouts, errors, rejections, and notifications
of failure

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/XML/Schema
http://www.rosettanet.org

In t roduc ing Rose t taNe t So lut ions

3-16 Introducing Trading Partner Integration

For a list of PIPs, see http://www.rosettanet.org.

You should obtain every provided DTD schema that the PIP provides for business
messages. You might need to convert this DTD schema to an XSD schema for Oracle
WebLogic Integration, as described in “Converting RosettaNet DTD Schemas to XSD
Schemas” in “Tutorial: Building RosettaNet Solutions”

You should thoroughly understand the data transformation between any private processes
and the Service Content exchanged in the public (PIP) business processes. For each
transformation, you use a transformation control to convert the Service Content and
attachments of the RosettaNet business message to / from the format(s) used in the private
processes. For more information, see Creating a Transformation Control and a
Transformation Method in the Java Doc for Oracle WebLogic Integration Classes.

Determine how you want to specify the business process properties:

– Statically—using hard-coded annotations (@RosettaNetControl.RosettaNet on the
RosettaNet control in initiator business processes and the @com.bea.wli.jpd.RosettaNet
in participant business processes). This is recommended for specifying certain static
information about the PIP, such as the PIP name and version.

– Dynamically—using passed-in values, such as DUNS numbers, for initiator and
participant IDs, and then calling the setProperties method. You can also use
XQuery selectors to extract the business IDs and other information from incoming
messages.

Thoroughly test the implementation by simulating the choreography between the initiator
and participant business processes with sample data. By default, Oracle WebLogic
Integration runs in Test (development) mode, which allows you to run business processes
on the same machine (collocated) using preconfigured trading partners and a default
binding that uses either the RNIF 1.1 or 2.0 protocol. The endpoints for both partners use
127.0.0.1:7001. For more information, see “Default TPM Repository Settings” on
page 1-9.

RosettaNet Initiator Business Processes
In Oracle WebLogic Integration, initiator business processes use a RosettaNet control to enable
Oracle Workshop for WebLogic business processes to exchange business messages and data with
trading partners via RosettaNet. You use RosettaNet controls only in initiator business processes
to manage the exchange of RosettaNet business messages with participants. The RosettaNet
control provides methods for sending business messages, acknowledgements, and errors, and it
provides callback methods to handle responses from participants.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html#wp1066069
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html#wp1066069
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html
http://www.rosettanet.org
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/Transform.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/Transform.html

Tasks fo r Implement ing a Roset taNet So lu t ion

Introducing Trading Partner Integration 3-17

For detailed information about using the RosettaNet control in business processes, see the
following topics in RosettaNet Control in the Using Integration Controls Guide:

Overview: RosettaNet Control

Creating a New RosettaNet Control

Using a RosettaNet Control

RosettaNet Control Interface

@RosettaNetControl.RosettaNet

For an introduction to initiator business processes, see Initiator and Participant Business
Processes.

RosettaNet Participant Business Processes
In Oracle WebLogic Integration, you can easily create a new RosettaNet participant business
process using a Oracle Workshop for WebLogic template (the RosettaNet participant business
process file). This template provides a head start for building public participant business
processes for RosettaNet message exchanges. Although this file is not required to build
RosettaNet participant business processes, it includes the nodes and business process annotations
needed to integrate easily with RosettaNet initiator business processes, as well as standard
choreography patterns such as acknowledgements, time-outs, retries, and errors. For information
about creating participant business processes, see:

 Building RosettaNet Participant Business Processes and @com.bea.wli.jpd.RosettaNet in
the Oracle Workshop for WebLogic Help

“Tutorial: Building RosettaNet Solutions”

For an introduction to participant business processes, see “Initiator and Participant Business
Processes” on page 1-13.

Tasks for Implementing a RosettaNet Solution
This topic provides a high-level, end-to-end overview of the tasks involved with implementing a
RosettaNet solution. It includes the following topics:

Before You Begin

Planning the RosettaNet Solution

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/controls/controlsRosettaNetExample.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideRosettaNetCustomizing.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html

In t roduc ing Rose t taNe t So lut ions

3-18 Introducing Trading Partner Integration

Building the RosettaNet Solution

Deploying the RosettaNet Solution

Managing the RosettaNet Solution

Note: This topic describes, in a general way, the tasks that are typically involved in
implementing a RosettaNet solution. The process of implementing RosettaNet solutions
is iterative, and it can vary in scope and sequence depending on your unique business
requirements and environment.

Before You Begin
Before you begin implementing a RosettaNet solution, we recommend that you review the
following documents:

Chapter 1, “Introduction,” to learn basic concepts for integrating trading partners using
Oracle WebLogic Integration.

This chapter, to learn basic concepts that are unique to RosettaNet solutions.

“Tutorial: Building RosettaNet Solutions”

Planning the RosettaNet Solution
Once you have decided to use RosettaNet as the business protocol for your trading partner
integration (as described in Phase 1: Plan the Solution), you need to plan the solution by
determining certain factors in your implementation:

With which trading partners will you integrate?

For each trading partner, you need to determine:

– Which business process(es) will you integrate?

– What information about that trading partner is required for your implementation (for
example, their DUNS number and other profile information). For more information, see
Trading Partner Profiles.

For each business process, you need to determine:

– Which RosettaNet PIP(s) are used? Which version of the PIPs will be implemented?

– Which RNIF version (1.1 or 2.0) is required for exchanging business messages?

– What role (RosettaNet role name) will your organization play in the PIP?

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html

Tasks fo r Implement ing a Roset taNet So lu t ion

Introducing Trading Partner Integration 3-19

– Do you need to create business processes for just your role, or for both roles in the
business process?

– What are the back-end integration requirements for each PIP? What private business
processes are required? What is the data format of, and connections with, associated
back-end systems?

– Does your implementation need to meet legal standards for nonrepudiation, which is
described in NonRepudiation?

The Tutorials for Trading Partner Integration provide examples of different RosettaNet
solutions. To learn more, see Tutorial: Building RosettaNet Solutions.

Building the RosettaNet Solution
After planning your RosettaNet solution, you build the business processes that implement the
PIP(s) according to the RosettaNet PIP specifications. For more information about design-time
tools, see Phase 2: Design, Build, and Test the Solution. For conceptual information about
RosettaNet business processes, see RosettaNet Business Processes.

The “Tutorial: Building RosettaNet Solutions” provides a detailed walkthrough of the typical
tasks that are required to build a RosettaNet solution.

To build a RosettaNet solution, you would typically complete the following steps:

1. Using the Oracle WebLogic Configuration Wizard, create a new domain based on the Oracle
WebLogic Integration domain template. For instructions, see Creating Oracle WebLogic
Configurations Using the Configuration Wizard in the Oracle WebLogic documentation.

2. Download the PIP distribution, including the specification and any DTDs, from the
RosettaNet web site at http://www.rosettanet.org.

3. Optionally, convert any DTDs to XSD files, as described in “Converting RosettaNet DTD
Schemas to XSD Schemas” in “Tutorial: Building RosettaNet Solutions” in Tutorials for
Trading Partner Integration.

4. From the Tutorials for Trading Partner Integration, copy the example PIP implementation
associated with the design pattern that you want to use. For more information about design
patterns, see PIP Design Patterns.

5. In Oracle Workshop for WebLogic, import the schema for the new PIP into the project and
then change the schema definition to the new PIP.

6. Change the RosettaNet annotations for the new PIP:

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://www.rosettanet.org
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html

In t roduc ing Rose t taNe t So lut ions

3-20 Introducing Trading Partner Integration

– For public initiator business processes, you change the pip and pipVersion attributes
(and others if needed) in the @RosettaNetControl.RosettaNetAnnotation.

– For public participant business processes, you change the pipName and pipVersion
attributes (and others if needed) in the @com.bea.wli.jpd.RosettaNet

7. Rename the JPD and change the names of other components to be more descriptive of the new
PIP implementation, if you want.

– For more information about modifying the RosettaNet control in initiator business
processes, see RosettaNet Control in the Java Doc for Oracle WebLogic Integration
Classes.

– For more information about building RosettaNet participant business processes, see
Building RosettaNet Participant Business Processes in the Java Doc for Oracle
WebLogic Integration Classes.

8. Change the implementation of any private business processes as needed.

9. Make any other changes to the business processes as needed.

10. Test the RosettaNet solution using the default TPM repository configuration (described in
Default TPM Repository Settings) and security settings (described in Default Domain
Security Configuration).

Note: When you first set up connections to RosettaNet trading partners, it is a good idea to run
your configuration in Test mode to take advantage of the additional debugging features
provided by this mode. To run your Web Logic Integration RosettaNet configurations in
Test mode, you specify two annotations in the setProperties method:

-Set global-usage-code to Test.

-Set debug-mode to true.

For more information about the setProperties method, see RosettaNet Control
Interface.

Deploying the RosettaNet Solution
Once you have built and tested your RosettaNet solution, you deploy the solution in a production
environment. For more information about deployment tools, see Phase 3: Deploy the Solution.
For detailed information about deploying Oracle WebLogic Integration solutions, see Deploying
Oracle WebLogic Integration Solutions.

To deploy a RosettaNet solution, you would typically complete the following steps:

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideRosettaNetCustomizing.html

Tasks fo r Implement ing a Roset taNet So lu t ion

Introducing Trading Partner Integration 3-21

1. If necessary, using the Oracle WebLogic Configuration Wizard, create a new domain based
on the Oracle WebLogic Integration domain template. For instructions, see Creating Oracle
WebLogic Domains Using the Configuration Wizard in the Oracle WebLogic documentation.

2. Start Oracle WebLogic Server in production mode.

3. Using the Oracle WebLogic Integration Administration Console, complete the following
tasks:

Note: If you have already defined trading partner information in your development
environment, you can export this information to an external file, and then import this
file into the production environment. For more information, see Importing and
Exporting Data in Trading Partner Management in Using Oracle WebLogic
Integration Administration Console Help.

a. Add trading partners to the TPM repository, including basic profile information, such as
the DUNS number used for trading partner IDs. For more information, see “Adding
Trading Partner Profiles” in Trading Partner Management in Using Oracle WebLogic
Integration Administration Console Help.

b. For each trading partner, define the protocol bindings (including RNIF version—1.1 or
2.0—and other settings) to be used for message exchanges with this trading partner.
For instructions, see “Defining a RosettaNet 1.1 or 2.0 Binding” in Adding Protocol
Bindings to a Trading partner in Trading Partner Management.

c. Define the PIP Notification of Failure roles, as described in “Configuring PIP Notification
of Failure Roles for RosettaNet Bindings” in Trading Partner Management .

d. Define the services that you will use in your deployment. For instructions, see Adding
Services in Trading Partner Management.

e. For each trading partner, define the service profiles (protocol bindings and URL endpoints
for local and remote trading partners) associated with each service. For instructions, see
“Adding Service Profiles to a Service” in Adding Services in Trading Partner
Management.

4. Using the Oracle WebLogic Server Administration Console and Oracle WebLogic Integration
Administration Console, implement security for your deployment, as described in
Implementing Security for Trading Partner Integration.

5. Configure your domain (clustering, high availability, load balancing, fail-over, and so on) as
needed for your production environment. For instructions, see Deploying Oracle WebLogic
Integration Solutions.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPProfiles
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#wp1290369
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#wp1290369
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html

In t roduc ing Rose t taNe t So lut ions

3-22 Introducing Trading Partner Integration

6. Deploy the application and other Oracle WebLogic Integration resources associated with your
RosettaNet solution. For instructions, see Deploying Oracle WebLogic Integration Solutions

Managing the RosettaNet Solution
Once you have deployed your RosettaNet solution, you would typically monitor run-time
performance, message volumes, resource utilization, and other factors to ensure optimum
operation on your solution. For more information about monitoring tools, see Phase 4:
Administer and Tune the Solution.

For instructions on monitoring trading partner integration resources, see the following topics in
in Trading Partner Management in Using Oracle WebLogic Integration Administration Console
Help:

Viewing Statistics

Monitoring Messages

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#ViewingStatistics
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/index.html
http://e-docs.bea.com/wli/docs102/adminhelp/tpm.html#MonitoringMessages

Introducing Trading Partner Integration 4-1

C H A P T E R 4

Trading Partner Integration Security

This topic describes security concepts and tasks in Oracle WebLogic Integration trading partner
integration solutions. It includes the following sections:

Before You Begin

Security Framework for Trading Partner Integration

Transport-Level Security

Message-Level Security

Using Proxy Servers with Trading Partner Integration

Implementing Security for Trading Partner Integration

Before You Begin
Before you begin implementing Oracle WebLogic Integration security for trading partner
integration, be sure to read the following documents:

“Using Oracle WebLogic Integration Security” in Deploying Oracle WebLogic Integration
Solutions.

Introduction to Oracle WebLogic Security.

Security summary page, which provides a compendium of Oracle WebLogic security
topics.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/deploy/secure.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secintro/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/security.html

T rad ing Par tne r In tegra t i on Secur i t y

4-2 Introducing Trading Partner Integration

To learn about the basic concepts for trading partner integration in Oracle WebLogic
Integration, see the Chapter 1, “Introduction.”

Security Framework for Trading Partner Integration
This topic describes the Oracle WebLogic Integration security framework for trading partner
integration. It includes the following sections:

Summary of Security Features

Oracle WebLogic Server Default Security Configuration

Components of Trading Partner Integration Security

Default Domain Security Configuration

Credential Stores

Trading Partner Integration Resources Requiring Security Policies

Summary of Security Features
Oracle WebLogic Integration leverages certain functionality from the Oracle WebLogic Server
security framework and provides additional features for trading partner integration. Oracle
WebLogic Integration supports secure business transactions between trading partners through:

Transport-level security, including authentication via userID/passwords and digital
certificates, and role and policy based access control to Oracle WebLogic Integration
resources

Message-level security, including the use of digital signatures, encryption (for RosettaNet
2.0 only), and support for other non-repudiation features such as secure audit logs and
timestamp providers

Integrated trading partner management and security management capabilities in the Oracle
WebLogic Integration Administration Console

Default security configurations in Oracle WebLogic Integration domains

Embedded LDAP support

Secur i t y F ramework fo r T rad ing Par tner In tegrat ion

Introducing Trading Partner Integration 4-3

Oracle WebLogic Server Default Security Configuration
Oracle WebLogic Integration security is based on the Oracle WebLogic Server security
framework—namely, the Default Security Configuration. For more information, see “The
Default Security Configuration in Oracle WebLogic Server” in “Overview of Security
Management” in Managing Oracle WebLogic Security.

Components of Trading Partner Integration Security
The Oracle WebLogic security model for trading partner integration:

Uses the security features of the underlying Oracle WebLogic Server to perform
authentication and authorization of principals before granting access to trading partner
integration resources.

Is extensible by allowing you to incorporate your own or third-party vendor tools to verify
trading partner digital certificates and implement nonrepudiation support, which is a
requirement for critical business messages.

Figure 4-1shows the entities and features in Oracle WebLogic Server and Oracle WebLogic
Integration that support trading partner integration.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/overview.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/overview.html

T rad ing Par tne r In tegra t i on Secur i t y

4-4 Introducing Trading Partner Integration

Figure 4-1 Oracle WebLogic Security Model for Trading Partner Integration

Table 4-1 describes the features in this security model.

Secur i t y F ramework fo r T rad ing Par tner In tegrat ion

Introducing Trading Partner Integration 4-5

Table 4-1 Components in the Trading Partner Integration Security Model

Type of Certificate Description

Service authorization The service profile defines the business messages that a given trading partner
may send and receive. When a business message arrives for a trading partner,
Oracle WebLogic Integration, as part of the business message authorization
process, examines the contents of the business message to validate it against
the service profile. Oracle WebLogic Integration verifies that the content of
the incoming business message is consistent with the business messages that
the trading partner is bound, by the service profile, to either send or receive.
This authorization scheme ensures that only the business messages that are
consistent with the relevant service profile have access to trading partner
integration resources. For more information, see Service Authorization.

Data encryption
service

The data encryption service encrypts business messages for the business
protocols that require it. Data encryption works by using a combination of the
sender’s certificate, private key, and the recipient’s certificate to encode the
business message. The message can then be decrypted only by the recipient
using the recipient’s private key.

User management The User Management module of the Oracle WebLogic Integration
Administration Console to manage the users, groups, and roles defined in the
default security realm. For instructions on configuring users, groups, and roles
in the Oracle WebLogic Integration Administration Console, see User
Management in Using Worklist Console.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklistadminhelp/users.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklistadminhelp/users.html

T rad ing Par tne r In tegra t i on Secur i t y

4-6 Introducing Trading Partner Integration

Authentication and
authorization in the
Transport Servlet Filter
(in
B2BDefaultWebApp)

The Transport Servlet Filter is a Oracle WebLogic Integration-specific servlet
filter that serves as the entry point for both HTTP and HTTPS access to trading
partner integration resources, including:
• Oracle Workshop for WebLogic business processes
• JDBC dataSources that are used to access the TPM repository
• JMS destinations

For more information about these resources, see Trading Partner Integration
Resources Requiring Security Policies.

The Transport Servlet Filter performs either basic or mutual authentication and
it authorizes access to URL (Web) resources. A Transport Servlet Filter is
dynamically registered in the Oracle WebLogic Server environment for
trading partners bound to a specific service profile. For more information, see:
• Authenticating Trading Partner Messages
• “URL (Web) and EJB (Enterprise JavaBean) Resources” and “Application

Resources” in “Types of Oracle WebLogic Resources” in Securing Oracle
WebLogic Resources.

Authentication for
outbound request via
the SSL protocol

Oracle WebLogic Integration authenticates the recipient for all outbound
messages (using the SSL certificate obtained in the SSL handshake) to ensure
that the messages are consistent with the relevant service profile to which they
are bound. For more information, see Authentication.

TPMUserNameMappe
r class

The TPMUserNameMapper class maps a trading partner certificate to the
corresponding Oracle WebLogic Server user that has been configured for the
trading partner. The TPMUserNameMapper class implements the
weblogic.security.providers.authentication.UserNameMa
pper interface. You can configure this class or write your own class. For more
information, see Authenticating Remote Users in Two-Way Authentication
and reference information for the UserNameMapper interface.

Table 4-1 Components in the Trading Partner Integration Security Model

Type of Certificate Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/javadocs/weblogic/security/providers/authentication/UserNameMapper.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secwlres/types.html

Secur i t y F ramework fo r T rad ing Par tner In tegrat ion

Introducing Trading Partner Integration 4-7

Nonrepudiation
framework

The trading partner integration security system provides a means to implement
nonrepudiation support. Nonrepudiation is the ability of a trading partner to
approve or disapprove having previously sent or received a particular business
message to or from another trading partner. Nonrepudiation requires the
following services:
• Digital signatures
• Secure timestamps
• Secure audit log

Oracle WebLogic Integration provides Service Provider Interfaces (SPIs) that
allow you to incorporate your own or a trusted third-party’s implementation.
In addition, Oracle WebLogic Integration provides an audit log provider that
can be used for demo / development purposes. For more information about
nonrepudiation, see NonRepudiation.

Identity keystore Store private keys for local trading partners and certificates for both the local
and remote trading partners. These certificates are of the following types:
• Client certificate—Digital certificate of the remote or local trading

partner.
• Server certificate—Digital certificate of the remote trading partner.
• Signature certificate—Used for each trading partner business message if

digital signature support is required.
• Encryption certificate—Used for each trading partner if business message

encryption is required.

For more information about these certificates, see Types of Digital
Certificates. For more information about the identity keystore, see Keystore
for Private Keys and Certificates.

Trust keystore Store all the trusted CA certificates associated with any certificate used in
Oracle WebLogic Integration in this KeyStore. For more information, see
Keystore for Private Keys and Certificates.

PasswordStore All passwords are kept in encrypted form in the Oracle WebLogic Integration
PasswordStore, which uses the JCE security provider. For more information,
see Oracle WebLogic Integration PasswordStore for Encrypted Passwords.

Table 4-1 Components in the Trading Partner Integration Security Model

Type of Certificate Description

T rad ing Par tne r In tegra t i on Secur i t y

4-8 Introducing Trading Partner Integration

Default Domain Security Configuration
When you create a new domain using the Oracle WebLogic Configuration Wizard and the Oracle
WebLogic Integration template, the new domain contains default security settings, including:

Default Oracle WebLogic Integration roles and groups. Default security policies define the
roles authorized to access specific Oracle WebLogic Integration resources. For more
information, see “Oracle WebLogic Integration Users, Groups, and Roles” in User
Management in Using Worklist Console.

B2BDefaultWebApp, on which you can configure policies for access control in trading
partner authorization, which is described in Authenticating Trading Partner Messages. For
configuration instructions, see “URL (Web) and EJB (Enterprise JavaBean) Resources” and
“Application Resources” in “Types of Oracle WebLogic Resources” in Securing Oracle
WebLogic Resources.

PasswordStore, which is described in Oracle WebLogic Integration PasswordStore for
Encrypted Passwords.

Default identity and trust keystores, which are described in Keystore for Private Keys and
Certificates.

Default trading partners and services profiles, described in Default TPM Repository
Settings, which you can use for development and testing (in Test mode). You can configure
one trading partner as local and the other as remote, and you can add test certificates to
these trading partners for testing purposes, as described in Keystore for Private Keys and
Certificates.

Authentication for
inbound requests via
SSL protocol

When an inbound trading partner message arrives, both the trading partner and
the Oracle WebLogic Server system exchange certificates to establish each
other’s identity. When the SSL handshake is completed, the trading partner’s
network connection to the Oracle WebLogic Server system is established.

For information about configuring the SSL protocol in Oracle WebLogic
Server to provide mutual authentication, see SSL Protocol.

Policies for Oracle
WebLogic resources

A security policy is an association between a Oracle WebLogic resource and
one or more users, groups, or security roles that is designed to protect the
Oracle WebLogic resource against unauthorized access. For more
information, see “Security Policies” in Securing Oracle WebLogic Resources.

Table 4-1 Components in the Trading Partner Integration Security Model

Type of Certificate Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secwlres/types.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklistadminhelp/users.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklistadminhelp/users.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secwlres/sec_poly.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secwlres/types.html

Secur i t y F ramework fo r T rad ing Par tner In tegrat ion

Introducing Trading Partner Integration 4-9

Credential Stores
Oracle WebLogic Integration provides the following credential stores to store passwords, private
keys, and certificates:

Oracle WebLogic Integration PasswordStore for Encrypted Passwords

Keystore for Private Keys and Certificates

Oracle WebLogic Integration PasswordStore for Encrypted Passwords
All passwords are kept in encrypted form in the PasswordStore. Oracle WebLogic Integration
does not require clear-text passwords. The PasswordStore uses the JCE security provider.
Configuration of passwords is controlled through an MBean API and passwords are accessed
using password-aliases.

You use the Oracle WebLogic Integration Administration Console to manage passwords in the
PasswordStore. For more information, see the following topics in System Configuration in Using
Oracle WebLogic Integration Administration Console Help :

“Adding Passwords to the Password Store”

“Listing and Locating Password Aliases”

“Changing the Password for a Password Alias”

“Deleting Passwords from the PasswordStore”

Keystore for Private Keys and Certificates
Oracle WebLogic Integration requires that you use keystores to store all private keys and
certificates. A keystore is a protected database that holds keys and certificates. If you have keys
and certificates and use message encryption, digital signatures, or SSL, you must use a keystore
for storing those keys and certificates and make the keystore available to applications that might
need it for authentication or signing purposes.

Types of Keystores
When you set up a Oracle WebLogic Integration domain for trading partner integration, the
following keystores are configured:

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/system.html

T rad ing Par tne r In tegra t i on Secur i t y

4-10 Introducing Trading Partner Integration

Default Keystores for the Test Environment
When you create a new domain using the Oracle WebLogic Configuration Wizard and the Oracle
WebLogic Integration template, the new domain contains Demo Keystores of type JKS.

Utilizes the JDK bundled Java KeyStore (JKS) provider, which implements the keystore as
a file

Protects each private key with an individual password

Protects the entire keystore with a password

Keystores in a Production Environment
You can use the Demo keystores in a development / testing environment, but you must explicitly
create new identity and trust keystores for a production environment. To create a keystore and
make it available for trading partner integration:

1. If the identity and trust keystores do not already exist in your domain, create them according
to the instructions in “Storing Private Keys, Digital Certificates, and Trusted Certificate
Authorities” in “Configuring SSL” in Managing Oracle WebLogic Security.

2. Configure the keystores using the Oracle WebLogic Server Administration Console
according to the instructions in “Configuring KeyStores” in “Configuring SSL” in Managing
Oracle WebLogic Security.

3. Add trading partner certificates to the identity keystore.

4. Add trusted certificate authority certificates to the trust keystore.

Table 4-2 Types of Certificates Used in Oracle WebLogic Integration

Type of Certificate Description

Identity keystore Stores private keys for local trading partners and certificates for both the local
trading partner and remote trading partners. Certificates are of the following
types: client, server, signature, and encryption certificates. Oracle WebLogic
Integration retrieves private keys and certificates from this keystore to use for
SSL, message encryption, and digital signatures. For more information about
certificates, see Digital Certificates.

Trust keystore Oracle WebLogic Server uses the trust keystore to locate trusted CAs for SSL.
Oracle WebLogic Integration uses it to locate the trusted CAs while verifying
signature and encryption.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-11

For information about refreshing the keystore using the Oracle WebLogic Integration
Administration Console, see “Refreshing the Keystore” in Trading Partner Management in Using
Oracle WebLogic Integration Administration Console Help .

Note: In a clustered domain, you need to create and configure a separate keystore for each
Oracle WebLogic server.

Trading Partner Integration Resources Requiring Security
Policies
You can configure security policies for trading partner integration resources, such as:

B2BDefaultWebApp and endpoint URIs of protocol bindings of local trading partners in
the TPM repository

Oracle Workshop for WebLogic business processes

JDBC dataSources that are used to access the TPM repository

JMS destination (for message tracking, asynchronous dispatcher queues for trading partner
integration business processes)

For more information, see Securing Oracle WebLogic Resources.

Transport-Level Security
Transport-level security involves authentication and encryption at the transport level
(HTTP/HTTPS) and authorization at the endpoint. This topic describes transport-level security
concepts and tasks for trading partner integration. It contains the following sections:

Authentication

Authenticating Remote Users in Two-Way Authentication

Verifying Certificates in Two-Way Authentication

Authorization

Authentication
In Oracle WebLogic Integration, authentication is the process of verifying an identity claimed
by—or for—a system entity. Authentication is concerned with who an entity is—it is the

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secwlres/index.html

T rad ing Par tne r In tegra t i on Secur i t y

4-12 Introducing Trading Partner Integration

association of an identity with an entity. Oracle WebLogic Integration examines and validates
digital certificates against security information stored in the TPM repository.

For trading partner integration, Oracle WebLogic Integration uses the following approaches to
authentication:

Username and password—Human users (administrators) as well as trading partners use
usernames and passwords as credentials to prove their identity. For more information, see
Types of Authentication.

Digital certificates—Trading partners use digital certificates to prove their identity to
Oracle WebLogic Integration. For more information, see Digital Certificates.

Trading partner authentication is configured in the protocol bindings that define communications
between trading partners. For more information, see “Defining Protocol Bindings” in Trading
Partner Management in Using Oracle WebLogic Integration Administration Console Help .

SSL Protocol
The SSL protocol provides secure connections by enabling two applications linked through a
network connection to authenticate the other’s identity and by encrypting the data exchanged
between the applications. An SSL connection begins with a handshake during which the
applications exchange digital certificates, agree on the encryption algorithms to use, and generate
encryption keys used for the remainder of the session.

The SSL protocol provides the following security features that Oracle WebLogic Integration
supports:

Server authentication—The server uses its digital certificate, issued by a trusted
certificate authority, to authenticate itself to clients.

Client authentication—Optionally, clients might be required to authenticate themselves to
the server by providing their own digital certificates. This type of authentication is also
referred to as mutual authentication. The authentication model in Trading Partner
Integration uses mutual authentication.

Both types of authentication can be used while exchanging business messages between trading
partners. In addition, administrators can use HTTPS from a Web Browser to access the Oracle
WebLogic Integration Administration Console and Oracle WebLogic Server Administration
Console.

Administrators use a Web browser to access the Oracle WebLogic Integration Administration
Console. You can use the Hypertext Transfer Protocol with SSL (HTTPS) to secure this type of
network communication. For more information about SSL, see:

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-13

 “Configuring SSL” in Managing Oracle WebLogic Security.

Example: ebXML Security Configuration

Types of Authentication
Oracle WebLogic Integration supports the following types of authentication:

Authentication Levels
Trading Partner Integration incorporates a two-level authentication process:

Table 4-3 Trading Partner Certificates Configured in Trading Partner Integration

Authentication Type Description

Basic With basic authentication, a user ID and password are requested from the user
and sent to Oracle WebLogic Server. Oracle WebLogic Server checks the
information and, if it is trustworthy, grants access to the protected Oracle
WebLogic resource. For example:
• Oracle WebLogic Integration will provide information for outgoing

messages
Configuration—TPM repository and Web Application Servlets

• WLS will authenticate for incoming messages
Configuration—User management in the Oracle WebLogic Integration
Administration Console, deployment descriptor of B2BDefaultWebApp

One-Way
(Server-Side)
Authentication

With one-way (server-side) authentication, the server provides its identity to the
client via a certificate. The client is not authenticated, and therefore the
application does not have any access to the identity of the client. This mechanism
is primarily used for transport-level encryption only to provide privacy of the
message. You might want to use server-side authentication, however, if you do
not want to require certificate-based authentication among your trading partners.
This is the default authentication for Oracle WebLogic Integration domains.

One-Way
(Server-Side) Plus
Basic Authentication

With one-way (server-side) plus basic authentication, the server provides its
identity to the client via a certificate, and the client provides its identity to the
server via a user ID and password. You would use this type of authentication to
have client authentication as well as transport-level encryption.

Two-Way (Mutual)
Authentication

With two-way (mutual) authentication, both the client and the server are
required to authenticate themselves to each other by means of digital certificates
or other forms of proof material.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

T rad ing Par tne r In tegra t i on Secur i t y

4-14 Introducing Trading Partner Integration

Verification of the trading partner certificate, which is described in Authenticating Remote
Users in Two-Way Authentication.

Authentication of the incoming trading partner message, which is described in
Authenticating Trading Partner Messages.

Both levels are required for end-to-end access control (authorization) on Oracle WebLogic
Integration resources. After a trading partner business message has passed both levels of
authentication, Trading Partner Integration engine performs the authorization process on the
business message. To protect trading partner integration resources, the authorization process
requires at least basic or mutual authentication, which are described in Types of Authentication.

Digital Certificates
Digital certificates are electronic documents used to verify the unique identities of principals and
entities over networks such as the Internet. A digital certificate securely binds the identity of a
user or entity, as verified by a trusted third party (known as a certificate authority), to a particular
public key. The combination of the public key and the private key provides a unique identity to
the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific user or entity. The recipient of a digital certificate can verify that the certificate,
including the public key of the subject, was issued and signed by a trusted certificate authority
(CA). The recipient does this by using the trusted certificate authority’s public key to ensure that
the digital signature was created using the corresponding CA private key. If such verification is
successful, this chain of reasoning provides assurance that the corresponding private key is held
by the subject named in the digital certificate, and that the digital signature was created by that
particular certificate authority.

Digital certificates are stored in the identity keystore. For more information, see Keystore for
Private Keys and Certificates.

Information in Digital Certificates
A digital certificate typically includes a variety of information, such as:

The name of the subject (holder, owner) and other identification information required to
uniquely identify the subject, such as a URL or an e-mail address

The subject’s public key

The name of the certificate authority that issued the digital certificate

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-15

A serial number

The validity period (or lifetime) of the digital certificate (defined by a start date and an end
date)

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any application
complying with the X.509 standard. The public key infrastructure (PKI) in Oracle WebLogic
Server recognizes digital certificates that comply with X.509 version 1 (X.509v1) or version 3
(X.509v3).

Certificate Authorities
Digital certificates are issued by a certificate authority. Any trusted third-party organization or
company that is willing to vouch for the identities of those to whom it issues digital certificates
and public keys can be a certificate authority. When a certificate authority creates a digital
certificate, the certificate authority signs it with its private key, to ensure the detection of
tampering. The certificate authority then returns the signed digital certificate to the requesting
subject.

The subject can verify the signature of the issuing certificate authority by using the public key of
the certificate authority. The certificate authority makes its public key available by providing a
digital certificate issued from a higher-level certificate authority attesting to the validity of the
public key of the lower-level certificate authority. Figure 4-2 describes how the hierarchy of
certificate authorities is terminated by a self-signed digital certificate known as the root
certificate.

T rad ing Par tne r In tegra t i on Secur i t y

4-16 Introducing Trading Partner Integration

Figure 4-2 Certificate Authority Hierarchy

Before you use a digital certificate, verify a digital signature, or decrypt a business message, make
sure that the digital certificate is issued by a trusted certificate authority. Regardless of who
encrypts the business message, the digital certificate of the business message must be trusted,
which is established by the certificate authority.

Types of Digital Certificates
Oracle WebLogic Integration supports the following types of certificates in trading partner
integration:

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-17

Table 4-4 Certificates Supported in Trading Partner Integration

Type Description

Client
certificate

Digital certificate of the remote or local trading partner. Configuring the client certificate
is required when using the SSL protocol.

Certificate is:
• Type X.509 version 1 or 3
• Privacy Enhanced Mail (PEM) or Definite Encoding Rules (DER) encoded. (The

filename extension specifies the encoding type: .pem or .der.)
• Required for all trading partner types when HTTPS with mutual authentication is

used.

Private Key is:
• PEM or DER encoded. (The filename extension specifies the encoding type: .pem

or .der.)
• Required only for local trading partner type
• Password-protected or plain text

Note: When importing a plain-text private key using the Oracle WebLogic Integration
Administration Console, use the password of the identity keystore.

Server
certificate

Digital certificate of the remote trading partner. Configuring the server certificate is
required when using the SSL protocol.

Certificate is:
• Type X.509 version 1 or 3
• PEM or DER encoded. (The filename extension specifies the encoding type: .pem

or .der.)
• Required for remote trading partner types when HTTPS is used with mutual

authentication

T rad ing Par tne r In tegra t i on Secur i t y

4-18 Introducing Trading Partner Integration

Guidelines for Using Trading Partner Certificates
Note the following general rules about configuring trading partner certificates:

Each trading partner may have one client certificate and an unlimited number of encryption
and signature certificates. A remote trading partner also has a server certificate for the
system on which it is hosted. The name of this server certificate must be specified when
you configure that trading partner.

Signature
certificate

Certificate required of each trading partner if digital signature support, a requirement for
nonrepudiation, is configured. Used in message-level security. For a description of
digital signature support, see Digital Signatures.

Certificate is:
• Type X.509 version 1 or 3
• DER encoded (ebXML or RosettaNet) or PEM encoded (ebXML only)
• Read by using the RSA CertJ package (for RosettaNet) or RSA/DSA for (ebXML

XMLDSIG)
• Required for all trading partner types that use a digital signature service

Private Key is:
• Presented only in PKCS8 format
• Always password-protected.

Encryption
certificate

Certificate required of each trading partner when business message encryption is
configured. Used in message-level security. Note that encryption support is available
only with the RosettaNet protocols.

Certificate is:
• Type X.509 version 1 or 3
• DER encoded
• Read by using the RSA CertJ package
• Required for all trading partner types that use an encryption service

Private Key is:
• Presented only in PKCS8 format
• Always password-protected.

Table 4-4 Certificates Supported in Trading Partner Integration (Continued)

Type Description

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-19

For each certificate, there is a trading partner type: Local or Remote. In the Oracle
WebLogic Integration Administration Console, configuration options differ between local
and remote trading partners. For example, the tab for configuring a remote trading partner
does not contain fields for entering information about private keys because information
about private keys should be set only for local trading partners.

For local trading partners, you do not configure a server certificate in the Trading Partner
Management module of the Oracle WebLogic Integration Administration Console.
However, the Server PrivateKey alias and pass phrase should be configured in the Oracle
WebLogic Server Administration Console.

Passwords are required for private keys of the local trading partner. If no password is
provided, Oracle WebLogic Integration uses the KeyStore password to store the private
keys in the identity keystore.

You can configure certificates using the default trading partners described in Default
Domain Security Configuration. For example, you can configure TP1 as the local trading
partner and TP2 as the remote trading partner. If you configure TP2 as the remote trading
partner, you can configure certificates on the local machine and export them to the
different machine (using the TPM import / export features described in Importing and
Exporting Data in Trading Partner Management in Using Oracle WebLogic Integration
Administration Console Help). However, before importing on the remote machine, you
must first create the private key in the keystore on the remote machine—you cannot copy
the private key configuration to the remote machine.

Digital Certificates for Local and Remote Trading Partners
Configuration requirements regarding digital certificates differ between local and remote trading
partners.

For local trading partners, you configure:

– client certificates plus private keys

– signature certificates plus private keys

– encryption certificates plus private keys

You do not configure a server certificate for a local trading partner. A client certificate, as
well as encryption and signature certificates, are required if mutual authentication with
SSL is used. All of these certificates require associated private keys. You can use the same
certificate and private key pair for all of these functions, as long as the key-usage in the
certificate covers these functions.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#importexportdata
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

T rad ing Par tne r In tegra t i on Secur i t y

4-20 Introducing Trading Partner Integration

For remote trading partners, you configure the following certificates only:

– client certificates

– server certificates

– signature certificates

– encryption certificates

You do not specify private keys for remote trading partner certificates. If you are using
mutual authentication with SSL, then encryption and signature, client, and server
certificates are required.

Configuring Digital Certificates
You use the Oracle WebLogic Integration Administration Console to configure digital
certificates. Digital certificates are stored in the identity keystore. Before you can configure
digital certificates, the trading partner must be defined in the TPM repository and the identity
keystore must be configured. For more information, see Keystore for Private Keys and
Certificates.

For configuration instructions, see Adding Certificates to a Trading Partner in Trading Partner
Management in Using Oracle WebLogic Integration Administration Console Help .

Note: Oracle WebLogic Integration does not validate any of the trading partner certificates
against a trusted Certificate Authority as you load them into the keystore.

Authenticating Trading Partner Messages
As described in Authentication Levels, after a trading partner’s certificate has been validated by
Oracle WebLogic Server, Trading Partner Integration engine needs to authenticate the trading
partner message before the message itself can be serviced. Authenticating the trading partner
message involves verifying that the sender of the business message is a valid trading partner listed
in the TPM repository. After a trading partner message has been authenticated, the trading
partner’s identity is recognized and access to various trading partner integration resources is
provided—based on the configured policies—while processing that message.

Figure 4-3 shows the process of authenticating a trading partner message.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPCertificates
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-21

Figure 4-3 Authenticating a Trading Partner Message

In Figure 4-3 note the following:

The Transport Servlet Filter is the entry point into Trading Partner Integration engine.
When the trading partner message arrives in the Transport Servlet Filter, as shown by
callout 1, the Transport Servlet Filter verifies the trading partner message, ensuring that the
trading partner name is valid by retrieving its value from a valid certificate associated with
the trading partner.

When the trading partner message is authenticated, the trading partner is authorized for
access to Oracle WebLogic Integration resources, such as business processes, the TPM
repository, and other resources described in Trading Partner Integration Resources
Requiring Security Policies.

Authenticating Remote Users in Two-Way Authentication
This section describes the TPMUserNameMapper class, which helps find the association between
a remote trading partner’s identity and a Oracle WebLogic Server user.

Note: TPMUserNameMapper applies only to two-way authentication. If your deployment uses a
different authentication mechanism, you can skip this section.

T rad ing Par tne r In tegra t i on Secur i t y

4-22 Introducing Trading Partner Integration

About the TPMUserNameMapper Class
Note: TPMUserNameMapper applies only to remote—not local—trading partners. When

configuring a local trading partner, you do not need to provide a Oracle WebLogic Server
username for that trading partner.

The TPMUserNameMapper class helps find the association between a remote trading partner’s
identity and a Oracle WebLogic Server user. When you configure a trading partner profile in
Oracle WebLogic Integration, you also specify the trading partner name bound to that profile. To
associate a user with a trading partner in the Oracle WebLogic Integration Administration
Console, specify the trading partner username, which is a Oracle WebLogic Server username.

At run time, Oracle WebLogic Server maps the digital certificate for that trading partner to the
trading partner user, as shown in Figure 4-4.

Figure 4-4 Mapping a Trading Partner Certificate to a Oracle WebLogic Server User

If mutual authentication is used (CLIENT-CERT in web.xml and SSL configured for mutual
authentication in Oracle WebLogic Server), the TPMUserNameMapper uses two schemes to find
the certificate to the user mapper in the following manner. When a trading partner message
arrives in Oracle WebLogic Server from a remote trading partner, TPMUserNameMapper is
invoked just before completing the SSL handshake. First, it looks into the TPM repository for a
trading partner-Oracle WebLogic Server user association using the fingerprint of the client
certificate of the remote trading partner. If not found, it tries to map an attribute of the client
certificate to the WLS user.

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-23

Configuring the DefaultIdentityAsserter to Use TPMUserNameMapper
You need to configure the DefaultIdentityAsserter settings in Oracle WebLogic Server to
use TPMUserNameMapper so that the WebService/SOAP, ebXML and RosettaNet protocols can
use the same UserNameMapper in Oracle WebLogic Integration.

To configure the TPMUserNameMapper:

1. Start Oracle WebLogic Server in the Oracle WebLogic Integration domain you are using for
trading partner integration.

2. Start the Oracle WebLogic Server Administration Console.

3. In the left navigation pane, navigate to the Oracle WebLogic Integration domain you are using
for trading partner integration, and then choose:

Security > Realms > myrealm > Providers > Authentication > DefaultIdentityAsserter

The Oracle WebLogic Server Administration Console displays the configuration tabs for
the DefaultIdentityAsserter.

T rad ing Par tne r In tegra t i on Secur i t y

4-24 Introducing Trading Partner Integration

Figure 4-5 Configuration of the Default Identity Asserter

4. In the Name Mapper Class Name field, type
com.bea.b2b.security.TPMUserNameMapper.

5. From the list of available Active types, select X.509 and click the right arrow.

6. You can also configure Oracle WebLogic Integration to attempt to map an attribute of the
client certificate to a WLS user if Oracle WebLogic Integration cannot find the association in
the TPM repository. To configure this functionality:

a. Click the Provider Specific tab.

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-25

Figure 4-6 Mapping Client Certificate Attribute

b. Select the Default User Name Mapper Attribute Type (C, CN, E, L, O, or OU), which is
the attribute of the subject distinguished name (DN) in a digital certificate used to create
a username.Ensure that the Use Default User Name Mapper checkbox not checked.

c. Select the Default User Name Mapper Attribute Delimiter, which is the delimiter that ends
the user name. (The User Name Mapper uses everything to the left of the delimiter to
create a username).

7. Click Save.

8. Restart Oracle WebLogic Server.

T rad ing Par tne r In tegra t i on Secur i t y

4-26 Introducing Trading Partner Integration

Implementing a Custom UserNameMapper
The com.bea.b2b.security.TPMUserMapper class implements the Oracle WebLogic Server
weblogic.security.providers.authentication.UserNameMapper interface. You could
create your own implementation of this API, if you wanted, but using the TPMUserNameMapper
class provides you access to the TPM repository as well. For more information, see “Interface
UserNameMapper”.

Verifying Certificates in Two-Way Authentication
To verify a trading partner’s digital certificate in Oracle WebLogic Integration, you use a
certificate verification provider (CVP). The Trading Partner Integration security framework
provides a Service Provider Interface (SPI) that allows you to insert a Java class implementing
SPI that can call out to a third-party service to verify trading partner certificates. Such an
implementation, called a certificate verification provider, can call out to one of the following
certificate verification applications:

A Certificate Revocation List (CRL) implementation

An Online Certificate Status Protocol (OCSP) implementation that interacts with a trusted
third-party entity, such as a certificate authority, for real-time certificate status checking

Your own certificate verification implementation

If you are using a certificate verification provider (CVP), you need to configure it in the Oracle
WebLogic Integration Administration Console, as described in Specifying the Certificate
Verification Provider in Trading Partner Management in Using Oracle WebLogic Integration
Administration Console Help .

Benefits of Certificate Verification
The purpose of trading partner certificate verification is to validate the trading partner’s digital
certificate. For example, verifying a certificate may involve some or all of the following tasks:

Traversing the certificate chain to the root certificate authority

Checking a certificate revocation list (CRL) for all the certificates in the chain to identify
any of those that have been revoked

Performing a real-time certificate check with a trusted vendor, who can verify the
certificate

Checking to make sure all dates in the certificate chain are valid

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/javadocs/weblogic/security/providers/authentication/UserNameMapper.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/javadocs/weblogic/security/providers/authentication/UserNameMapper.html

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-27

Verifying the signature of each certificate in the chain

Configuring and using a CVP implementation is optional, but doing so can provide an additional
level of security in the certificate verification process.

When Oracle WebLogic Integration Uses the Certificate Verification Provider
The CVP is used by Oracle WebLogic Integration in the following cases:

inbound SSL and mutual authentication

outbound SSL and mutual authentication

Certificate Verification Process
Figure 4-7 is an example of the sequence of events that occur during the certificate verification
process in Oracle WebLogic Integration for an incoming message using SSL and mutual
authentication.

T rad ing Par tne r In tegra t i on Secur i t y

4-28 Introducing Trading Partner Integration

Figure 4-7 Trading Partner Certificate Verification in Oracle WebLogic Integration

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-29

Note the following callouts in Figure 4-7.

Implementing a Certificate Verification Provider
A certificate verification provider (CVP) Java class must implement the
com.bea.wli.security.verification.CertificateVerificationProvider interface.
You have two choices for what a CVP class can call out to:

A trusted third-party vendor that conforms to the service provider interface, as described in
Using the Service Provider Interface.

Your own certificate verification application.

Table 4-5 Certificate verification callouts

Callout Description

1 Certificate verification is used in SSL. The trading partner and the Oracle WebLogic
Server system perform an SSL handshake, during which they exchange certificates to
establish each other’s identity. The Certificate Authority of the trading partner digital
certificate must be trusted in Oracle WebLogic Server. During this handshake, Oracle
WebLogic Server verifies the following:
• The Certificate Authority of the trading partner certificate must be one that is trusted

in the Oracle WebLogic Server environment.
• The trading partner certificate has not expired.

When the SSL handshake is completed, the trading partner’s network connection to the
Oracle WebLogic Server system is established.

2 Oracle WebLogic Server dispatches the message to Oracle WebLogic Integration which
verifies the following:
• The validity of the certificate (lifetime).
• That the keyusage is a valid and specified in Oracle WebLogic Integration

3 Oracle WebLogic Integration invokes the CVP interface to the implementation that calls
out to the third-party certificate verification service.

4 The CVP implementation calls out to the third-party certificate verification service, which
returns the status of the trading partner certificate.

5 The CVP implementation returns the appropriate status of the certificate to Oracle
WebLogic Integration.

T rad ing Par tne r In tegra t i on Secur i t y

4-30 Introducing Trading Partner Integration

Regardless of which choice you pick, you need to create a Java implementation of the CVP SPI
that calls out to the application that performs the actual certificate verification. Creating,
compiling, and configuring this CVP application is explained in the subsections that follow.

Using the Service Provider Interface
Trading Partner Integration allows you to implement a CVP via the
com.bea.wli.security.verification.CertificateVerificationProvider interface,
which provides the CVP service provider interface (SPI). If you implement or use a CVP using
the SPI described in this section, you must later configure this CVP in the Oracle WebLogic
Integration Administration Console so that the CVP is invoked properly during run time.

The com.bea.wli.security.verification.CertificateVerificationProvider
interface has the following methods, which a CVP application must implement:

void init()

This method is automatically invoked by Trading Partner Integration engine to invoke any
custom initialization processes in the class you create that implements this interface. This
method is invoked only once, at the startup of Oracle WebLogic Integration.

public String verify(X509Certificate[] certs)

This method validates the certificate chain obtained during the SSL handshake. It should
return one of the following String values:

– good—the trading partner certificate is valid and not expired.

– revoked—the trading partner certificate has been revoked by one of the certificate
authorities in the certificate chain, or the trading partner certificate has expired.

– unknown—none of the certificate authorities in the certificate chain is able to establish
the validity of the trading partner certificate.

The implementer can choose the validation procedure performed by this method. For
example, this method can check certificate revocation lists (CRLs) stored in files, it can
check the certificate status in real-time using the Online Certificate Status Protocol
(OCSP), or it can use any other mechanism, as appropriate.

Notes: If you implement a CVP, you need to add a default public constructor for the CVP with
no arguments. Neither the constructor nor any methods in the class should throw any
exceptions.

If you do not configure a CVP, any certificate issued by a trusted certificate authority is
considered by Trading Partner Integration engine to be valid.

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-31

Compiling the Certificate Verification Provider Class
If you implement a CVP, after you create the CVP Java class, you must compile it and place it in
the system CLASSPATH.

Configuring a Certificate Verification Provider with Trading Partner Integration
You must configure the CVP via the Oracle WebLogic Integration Administration Console or the
Bulk Loader utility. After you configure the CVP, restart Oracle WebLogic Server so that the
CVP can take effect. If you do not configure a CVP, any certificate issued by a trusted certificate
authority is considered by Trading Partner Integration engine to be valid.

You use the Oracle WebLogic Integration Administration Console to configure a CVP. For more
information, see “Specifying the Certificate Verification Provider” in Trading Partner
Management in Using Oracle WebLogic Integration Administration Console Help .

After you configure a CVP, restart Oracle WebLogic Server so that the CVP can take effect.

Note: When you are running Oracle WebLogic Integration in iterative development mode, no
security verification settings are active. The CVP is only active in development mode.

Authorization
Authorization determines whether access is provided to trading partner integration resources,
such as:

B2BDefaultWebApp and endpoint URIs of protocol bindings of local trading partners in
the TPM repository

Oracle Workshop for WebLogic business processes

JDBC dataSources that are used to access the TPM repository

JMS destination (for message tracking, asynchronous dispatcher queues for trading partner
integration business processes)

Roles and Policies
Permission to access trading partner resources is assigned through policies and roles—for any
resource that needs to be protected, its security policy will be defined based on roles. Individual
users/entity will thus be able to get access depending upon the roles that they belong to. Whereas
authentication is concerned with who an entity is—it is the association of an identity with an
entity—authorization is concerned with what that identity is allowed to see and do.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring

T rad ing Par tne r In tegra t i on Secur i t y

4-32 Introducing Trading Partner Integration

Note: Authorization is available (but not required) with basic, one-way plus basic, and mutual
authentication.

Authorization Levels
For trading partner integration, Oracle WebLogic Integration incorporates two levels of
authorization:

Authorization of the trading partner for access to the Transport Servlet Filter.

Authorization in the service associated with the trading partner business message.

Trading Partner Authorization
Oracle WebLogic Server performs trading partner authorization. When the trading partner
message arrives in Oracle WebLogic Server, and the trading partner and Oracle WebLogic Server
complete the mutual or basic (username and password) authentication procedure, authorization
is performed by Oracle WebLogic Server to access the Transport Servlet Filter.

The preferred way to configure the B2BDefaultWebApp is to use the Oracle WebLogic Server
Administration Console to set policies on the B2BDefaultWebApp for access to URLs. For
instructions, see “URL (Web) and EJB (Enterprise JavaBean) Resources” in “Types of Oracle
WebLogic Resources” in Securing Oracle WebLogic Resources.

In addition to configuring B2BDefaultWebApp, you can also configure other trading partner
integration resources (such as the JDBC dataSources used to access the TPM repository, Oracle
Workshop for WebLogic business processes, and JMS destinations) that need to be configured as
well. For more information, see Authorization. Alternatively, you can specify Transport Servlet
Filter ACLs in the web.xml file. However, this is not the recommended approach. The following
example shows a web.xml file that specifies the ACLs for a Transport Servlet Filter named
B2BTransport.

Example Transport Servlet Filter ACL
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
1.2//EN

" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

...

...

<!-- Authentication -->

 <security-constraint>

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secwlres/
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secwlres/

T ranspor t -Leve l Secur i t y

Introducing Trading Partner Integration 4-33

 <web-resource-collection>

 <web-resource-name>B2BTransport</web-resource-name>

 <url-pattern>*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>PremiumTradingPartner</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>CLIENT-CERT</auth-method>

 </login-config>

 <security-role>

 <role-name>PremiumTradingPartner</role-name>

 </security-role>

</web-app>

In the preceding code example:

B2BTransport is the Transport Servlet Filter whose endpoint is defined in the TPM repository.

PremiumTradingPartner is a Oracle WebLogic Server user group in which all the trading partner
Oracle WebLogic Server users are members.

CLIENT-CERT specifies that the mode of authentication required to access the Transport Servlet
Filter is SSL with mutual authentication. You can also use HTTP basic authentication.

Service Authorization
When Trading Partner Integration engine performs service authorization, the server examines the
content of the trading partner business message with respect to the service profile to which the
trading partner is bound. That is, for a service profile, a trading partner may send only a specific
set of business messages. Trading Partner Integration engine validates the business message
against the following information specified in the service profile for a particular service:

Party information (trading partner)

Service name

Protocol binding

T rad ing Par tne r In tegra t i on Secur i t y

4-34 Introducing Trading Partner Integration

Once the service authorization is complete for an incoming business message, access to the B2B
resources is dictated by Oracle WebLogic resource policies.

Message-Level Security
Message-level security involves digital signatures, encryption, and non-repudiation for individual
business messages. This topic describes message-level security concepts and tasks for trading
partner integration. It contains the following sections:

Digital Signatures

NonRepudiation

Encryption—PKCS7 Enveloped Data for RosettaNet 2.0

Using digital signatures prevents tampering with business messages. Using encryption ensures
message privacy. Nonrepudiation allows trading partners to prove or disprove having previously
sent or received a particular business message to or from another trading partner.

Message-level security is configured in the protocol bindings that define communications
between trading partners. For more information, see “Defining Protocol Bindings” in Trading
Partner Management in Using Oracle WebLogic Integration Administration Console Help .

Digital Signatures
Digital signatures provide a means of preventing anyone or anything from tampering with the
contents of a business message, especially when the business message is in transit between two
trading partners. After verifying a signature, Oracle WebLogic Integration uses a Certificate
Verification Provider (if two-way authentication is configured), as described in Authenticating
Remote Users in Two-Way Authentication. Digital signatures are required for nonrepudiation,
which is described at NonRepudiation.

Oracle WebLogic Integration Support for Digital Signatures
Oracle WebLogic Integration supports the following types of digital signatures:

XML Digital Signatures (XMLDSig) for ebXML 1.0 and ebXML 2.0

Public Key Cryptography Standard 7 (PKCS7) Enveloped Data for RosettaNet 1.1 and 2.0.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings

Message-Leve l Secur i t y

Introducing Trading Partner Integration 4-35

About Digital Signatures
A digital signature itself is a set of data appended to a business message consisting of an
encrypted, one-way hash value of data packaged in a specific format (for example, PKCS7
SignedData or XMLDSIG signature). A digital signature:

Validates that the contents of a digitally signed message have not been tampered with.

Contains the identity of the sender of the business message.

The data required to create a digital signature is obtained from the trading partner configuration
data in the TPM repository. The information required to create a digital signature also includes
the following:

Trading partner signature certificate and private key

Certificate authority certificate for the trading partner signature certificate

For ebXML, an XPath transform (optional)

You can configure whether to sign business messages or not in the protocol bindings that define
communications between trading partners. For more information, see “Defining Protocol
Bindings” in Trading Partner Management in Using Oracle WebLogic Integration
Administration Console Help .

After validating a signature, Oracle WebLogic Integration invokes the certificate verification
provider (CVP), which is described in Certificate Verification Process.

XMLDSig for ebXML 1.0 and ebXML 2.0
Oracle WebLogic Integration supports XMLDSig for ebXML 1.0 and ebXML 2.0 message
exchanges between trading partners.

Supported XMLDSig Features
Oracle WebLogic Integration supports the following XMLDSig features:

Digital signatures for multipart messages

– ebXML SOAP Envelope

– One or more part(s)

Signed acknowledgements (ebXML 2.0 only)

Sender verification

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings

T rad ing Par tne r In tegra t i on Secur i t y

4-36 Introducing Trading Partner Integration

For more information about XMLDSig, see “XML-Signature Syntax and Processing” on the
W3C web site at the following URL:
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html

Supported XMLDSig Algorithms
Oracle WebLogic Integration uses the following algorithms for XMLDSig:

Signature Algorithm

– DSA-SHA1
http://www.w3.org/2000/09/xmldsig#dsa-sha1

– RSA-SHA1
http://www.w3.org/2000/09/xmldsig#rsa-sha1

Digest Algorithm
SHA1 http://www.w3.org/2000/09/xmldsig#sha1

Canonicalization Algorithm
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Transform Algorithms

– Enveloped Signature
http://www.w3.org/2000/09/xmldsig#enveloped-signature

– Xpath
http://www.w3.org/TR/1999/REC-xpath-19991116

– Canonicalization
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Digital Signature with PKCS7 Enveloped Data for RosettaNet 1.1 and
RosettaNet 2.0
For RosettaNet 1.1 and 2.0, Oracle WebLogic Integration supports digital signature with PKCS7
Enveloped Data.

Supported PKCS7 Enveloped Data Digital Signature Features
Oracle WebLogic Integration supports PKC7 enveloped data for digital signatures for RosettaNet
1.1 and 2.0. Digital signatures for multipart messages apply to:

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html

Message-Leve l Secur i t y

Introducing Trading Partner Integration 4-37

Service Header (optional)

Service Content

One or more attachments

Supported PKCS7 Enveloped Data Digital Signature Algorithms
Oracle WebLogic Integration supports the following PKC7 enveloped data algorithms:

Hash algorithm name: SHA1 and MD5

Signature algorithm name: RSA

NonRepudiation
Nonrepudiation, or the ability to provide legal evidence of the involvement of a denying party, is
a legal requirement for critical business messages. Nonrepudiation is the ability of a trading
partner to prove or disprove having previously sent or received a particular business message to
or from another trading partner. Oracle WebLogic Integration supports:

Nonrepudiation of origin—Links the message received and the sender of the message. It
provides legal evidence that you have sent a business message.

Nonrepudiation of receipt—Links the message processed and the recipient of the
message. It provides legal evidence that you have received a business message.

Nonrepudiation is configured in the protocol bindings that define communications between
trading partners. For more information, see “Defining Protocol Bindings” in Trading Partner
Management in Using Oracle WebLogic Integration Administration Console Help .

Nonrepudiation Example
Trading Partner A has agreed to purchase 1000 ergonomic chairs from Trading Partner B. In the
course of this agreement, Trading Partner A has sent a business message to Trading Partner B
agreeing to buy the chairs at a set price. Later, though, Trading Partner A disputes the original
price and denies having sent a message in which they agreed to pay that price.

If a reliable nonrepudiation system has been in place, Trading Partner B can disprove Trading
Partner A’s claim by producing a document from Trading Partner A specifying the amount
Trading Partner A agreed to pay. Further, if this original document is digitally signed,
timestamped, recorded, and secured by a trusted third-party source, the validity of this document
has full legal recourse.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings

T rad ing Par tne r In tegra t i on Secur i t y

4-38 Introducing Trading Partner Integration

Nonrepudiation Services
To support nonrepudiation, Oracle WebLogic Integration provides the following services:

Digital signatures—Used to digitally sign a business document before it is sent to the
recipient.

Secure Audit log SPI—Used to store digitally signed business messages with a secure
timestamp. Audit logging is necessary for nonrepudiation.

Secure timestamp SPI—Used to sequence the occurrence of events in the business
transaction.

Digital Signatures
Digital signatures are required for nonrepudation because they provide a means of preventing
anyone or anything from tampering with the contents of a business message, especially when the
business message is in transit between two trading partners. For more information, see Digital
Signatures.

Secure Audit Log
A secure audit log is required for nonrepudation because it typically stores each business message
with its digital signature and secure timestamp, allowing a trading partner to reconstruct the
sequence of messages and other system events that have occurred during the exchange of
business messages with other trading partners, along with the data exchanged.

The default audit log provider
(com.bea.wli.security.audit.DefaultAuditLogProvider) logs to a file named
secureaudit.log. This file is based on the logging subsystem and is protected by only the
underlying operating system’s file permissions system. This file is not digitally signed or
encrypted. It should be used only for demo or development purposes, not in a production
environment.

You enable and disable the audit log and specify the audit log class in the Oracle WebLogic
Integration Administration Console. For more information, see “Configuring Secure Audit
Logging” in Trading Partner Management in Using Oracle WebLogic Integration
Administration Console Help .

Audit Log Messages
All log messages correspond to the DTD log-message.dtd, which defines the contents for each
message type.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring

Message-Leve l Secur i t y

Introducing Trading Partner Integration 4-39

All audit log messages have the following three identifiers:

Location—the location, in Oracle WebLogic Integration, in which the message is stored

Type—the message type

Data—the actual information that is being logged

The following table describes the contents of the data for each of the message types. All the log
messages contain the timestamp obtained from the timestamp provider that is configured in
Oracle WebLogic Integration.

Audit Log DTD
The following code example shows the log-message.dtd file:

Listing 4-1 Sample log-message.dtd file

<!ELEMENT LOG (non-repudiation-origin| non-repudiation-receipt |

application)>
<!ATTLIST LOG time-stamp CDATA #REQUIRED >
<!ATTLIST LOG location CDATA #IMPLIED >
<!ATTLIST LOG Principal CDATA #IMPLIED >

Table 4-6 Message type data contents

Message Type Description

NRR Nonrepudiation of receipt. Contains that name of the trading
partner receiving the business message and the application
data.

NRO Nonrepudiation of origin. Contains the name of the trading
partner sender, the business message, and the application
data.

APP Is logged from any trading partner Java class via the
Audit.log(byte[] data) method.The data format for
this message type is any stringified XML document. Because
the application is logging the message, the contents of the
data are controlled by the application itself.

T rad ing Par tne r In tegra t i on Secur i t y

4-40 Introducing Trading Partner Integration

<!ELEMENT non-repudiation-origin (#PCDATA)>
<!ELEMENT non-repudiation-receipt (#PCDATA)>
<!ELEMENT application (#PCDATA)>

Using the SPI for the Secure Audit Log
Trading Partner Integration engine provides a Service Provider Interface (SPI) for you to
configure a trusted, third-party provider of the secure audit log. If you incorporate a secure audit
log service from a trusted third-party provider, you need to create a class that implements the
com.bea.wli.security.audit.AuditLogProvider interface. In the methods of your class
(for example, log), you call out to the third party audit log provider.

Note: If you implement an audit log service using the SPI described in this section, you must
configure this service later in the Oracle WebLogic Integration Administration Console
so that the service is invoked properly during run time.

The com.bea.wli.security.audit.AuditLogProvider interface has the following
methods, which a secure audit log application must implement:

void init()

This method initializes the audit log.

void log (java.lang.String component,
 java.lang.String type,
 byte[] data,
 java.lang.String principal)

This method is invoked to log a message in the secure audit log. It has the following
parameters:
– java.lang.String component

Contains the component that is logging the message
– java.lang.String type

Specifies the type of the nonrepudiation message
– byte[] data

Contains the data to be logged
– java.lang.String principal

Contains the name of the trading partner who is logging this message

Message-Leve l Secur i t y

Introducing Trading Partner Integration 4-41

Your implementation of the secure audit interface must include a default public constructor with
no arguments. Neither the constructor nor any methods in the class that implements the
AuditLogProvider interface should throw any exceptions.

Writing to the Audit Log Directly
As an alternative to writing a Java implementation of the
com.bea.wli.security.audit.AuditLogProvider interface to call out to an application
that writes to the audit log, you can write an application that writes to the audit log directly via an
invocation to the com.bea.wli.security.audit.Audit.log(byte[] data) method, as
shown in the following code example from a business process. In this example, the bolded code
shows the statements that have been added to show writing to the audit log.

Listing 4-2 Example of Writing to the Audit Log Directly

package orderprocessing;

import com.bea.jpd.JpdContext;

import org.apache.xmlbeans.XmlObject;

import com.bea.data.MessageAttachment;

// Import the Audit class from the WLI security package

import com.bea.wli.security.audit.Audit;

/**

* @jpd:process process::

* <process name="ServerBuyer">

* <clientRequest name="Receive order request from client" method="start"/>

* <controlSend name="Send PO to enterprise server seller"

method="sendOrder"/>

* <controlReceive name="Receive PO receipt from enterprise server seller"

method="orderService_onMessage"/>

* <clientCallback name="sendAck" method="sendAck"/>

* </process>::

T rad ing Par tne r In tegra t i on Secur i t y

4-42 Introducing Trading Partner Integration

*

*/

@com.bea.wli.jpd.Process(process = "<process name=\"ServerBuyer\">" +

 " <clientRequest name=\"Receive order request
from client\" method=\"start\"/>" +

 " <controlSend name=\"Send PO to enterprise
server seller\" method=\"sendOrder\"/>" +

 " <controlReceive name=\"Receive PO receipt
from enterprise server seller\" method=\"orderService_onMessage\"/>" +

 " <clientCallback name=\"sendAck\"
method=\"sendAck\"/>" +

 "</process>")

public class EnterpriseServerBuyer implements com.bea.jpd.ProcessDefinition

{

public com.bea.tutorial.b2B.order.OrderDocument pcOrder;

/**

* @jc:ebxml ebxml-service-name="SecureOrderService" from="BEA-IT-id"
to="SUN-id" ebxml-action-mode="default"

* @common:control

*/

@Control()

 @EBXMLControl.EbXML(serviceName = "SecureOrderService",

 from = "BEA-IT-id",

 to = "SUN-id",

 ebXMLActionMode = EBXMLControl.EbXML.ActionMode.DEFAULT)

private SecureOrderServiceControl orderService;

/**

*@common:context

*/

@com.bea.wli.jpd.Context()

Message-Leve l Secur i t y

Introducing Trading Partner Integration 4-43

JpdContext context;

public void start(String str)

{

//create an order

pcOrder = ...

}

public void sendOrder()

{

//#START: CODE GENERATED - PROTECTED SECTION - you can safely add code

above this comment in this method. #//

// input transform

// method call

orderService.sendOrder(pcOrder);

// output transform

// output assignments

//#END : CODE GENERATED - PROTECTED SECTION - you can safely add code

below this comment in this method. #//

}

public void orderService_onMessage(MessageAttachment[] reply)

{

//assume only one object of type XmlObject in reply

XmlObject xo = reply[reply.length - 1].getXmlObject();

if(Audit.isEnabled()) {

Audit.log(xo.toString().getBytes());

}

}

T rad ing Par tne r In tegra t i on Secur i t y

4-44 Introducing Trading Partner Integration

public Callback callback;

public interface Callback {

public void onAck(String reply);

}

void sendAck() {

callback.onAck("This is an ACK from ServerBuyer.jpd.");

}

}

Timestamp Provider
A timestamp provider is required for nonrepudation because a secure timestamp service attaches
a Coordinated Universal Time (UTC) timestamp to the secure audit log when business messages
are also logged to the secure audit log, providing precise time and date information.

For example, when a trading partner receives a business message, a timestamp is entered as a
nonrepudiation of receipt (NRR) message in the audit log. When a trading partner sends a
business message, a timestamp is entered as a nonrepudiation of origin (NRO) message in the
audit log.

You configure the timestamp provider in the Oracle WebLogic Integration Administration
Console. For more information, see “Configuring Secure Audit Logging” in Trading Partner
Management in Using Oracle WebLogic Integration Administration Console Help .

Exclusive and Default Timestamps
Trading Partner Integration engine prohibits more than one secure timestamp provider from
being registered in Oracle WebLogic Integration. This restriction ensures that all timestamps
created in Oracle WebLogic Integration are ordered chronologically.

Note: If you do not configure a secure timestamp service provider in Oracle WebLogic
Integration, system time is used for timestamping system events and signatures if the
default log provider is used.

Using the SPI for the Secure Timestamp Service
Trading Partner Integration includes a Service Provider Interface (SPI) so that you can
incorporate a secure timestamp service from a trusted third-party provider.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring

Message-Leve l Secur i t y

Introducing Trading Partner Integration 4-45

If you incorporate a secure timestamp service from a trusted third-party provider, you need to
create a Java class that implements the com.bea.wli.security.time.TimestampProvider
interface. In the methods (for example, getTimestamp) of your class implementing the
com.bea.wli.security.time.TimestampProvider interface, you call out to the third party
timestamp provider.

Trading Partner Integration allows you to create a customized secure timestamp service by
implementing the com.bea.wli.security.time.TimestampProvider interface. If you
implement a timestamp using the SPI described in this section, you must configure this service
later in the Oracle WebLogic Integration Administration Console so that the service is invoked
properly during run time.

The com.bea.wli.security.time.TimestampProvider interface has the following
methods, which a timestamp application must implement:

String getTimestamp()

This method returns a string specifying the time in Coordinate Universal Time (UTC)
format.

long getTimestampInMillis()

This method returns a string specifying the UTC time in milliseconds.

Your implementation of the timestamp interface must include a default public constructor with
no arguments. Neither the constructor nor any methods in the class that implements the
TimeStampProvider interface should throw any exceptions.

Encryption—PKCS7 Enveloped Data for RosettaNet 2.0
Oracle WebLogic Integration encrypts business messages for the business protocols that require
it. In this Oracle WebLogic Integration release, message encryption is supported only for
RosettaNet 2.0.

How Oracle WebLogic Integration Handles Data Encryption
Figure 4-8 shows how data encryption is performed using the public and private keys.

T rad ing Par tne r In tegra t i on Secur i t y

4-46 Introducing Trading Partner Integration

Figure 4-8 Message Encryption in Trading Partner Integration

Data encryption works by using a combination of the sender’s certificate, private key, and the
recipient’s certificate to encode a business message. The message can then be decrypted only by
the recipient using the recipient’s private key.

Supported Encryption Algorithms
The Oracle WebLogic Integration message encryption service supports the following algorithms:

RC5

For more information, see the RSA web site at: http://www.rsasecurity.com/

Data Encryption Standard (DES)

Triple Data Encryption Standard (3DES)

You use the Oracle WebLogic Integration Administration Console to enable or disable business
messages encryption in the protocol bindings that define communications between trading
partners. For more information, see “Defining Protocol Bindings” in Trading Partner
Management in Using Oracle WebLogic Integration Administration Console Help .

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings

Us ing P roxy Serve rs w i th T rad ing Par tne r In tegrat i on

Introducing Trading Partner Integration 4-47

Using Proxy Servers with Trading Partner Integration
This topic describes how to use proxy servers with trading partner integration. It includes the
following sections:

Configuring Trading Partner Integration to Use an Outbound HTTP Proxy Server

Configuring Oracle WebLogic Integration with a Web Server and a Oracle WebLogic
Proxy Plug-In

Configuring Trading Partner Integration to Use an Outbound
HTTP Proxy Server
If you are using Oracle WebLogic Integration in a security-sensitive environment, you may want
to use Oracle WebLogic Integration behind a proxy server. A proxy server allows trading partners
to communicate across intranets or the Internet without compromising security. A proxy server
is used to:

Hide, from external hackers, the local network addresses of the Oracle WebLogic Servers
that host Oracle WebLogic Integration

Restrict access to the external network

Monitor external network access to the Oracle WebLogic Servers that host Oracle
WebLogic Integration

When proxy servers are configured on the local network, network traffic is tunneled through, or
delegated to, the proxy server and then to the external network. Figure 4-9 illustrates how a proxy
server might be used in the Oracle WebLogic Integration environment.

T rad ing Par tne r In tegra t i on Secur i t y

4-48 Introducing Trading Partner Integration

Figure 4-9 Proxy Server

To configure a proxy server in the Oracle WebLogic Integration Administration Console, see
“Configuring a Proxy Host” in Trading Partner Management in Using Oracle WebLogic
Integration Administration Console Help .

Note: If you configure a proxy server, you also need to add permissions to read and write the
ssl.proxyHost and ssl.proxyPort system properties for the Oracle WebLogic
Server. These system properties are stored in the weblogic.policy file, which is
located in the directory where you installed Oracle WebLogic Server. Add the following
lines to the grant section of the weblogic.policy file:

permission java.util.PropertyPermission "ssl.proxyHost", "read, write";
permission java.util.PropertyPermission "ssl.proxyPort", "read, write";

In addition, you need to specify the following WebLogic Web Server system properties:

-http.proxyHost
-http.proxyPort
-https.proxyHost (if proxy server is configured for SSL tunneling)
-https.proxyPort (if proxy server is configured for SSL tunneling)

The weblogic.common.ProxyAuthenticator interface is used to obtain
authentication information to communicate with the proxy. For more information, see
Interface ProxyAuthenticator

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring
http://e-docs.bea.com/wls/docs92/javadocs/weblogic/common/ProxyAuthenticator.html

Us ing P roxy Serve rs w i th T rad ing Par tne r In tegrat i on

Introducing Trading Partner Integration 4-49

Configuring Oracle WebLogic Integration with a Web Server
and a Oracle WebLogic Proxy Plug-In
You can configure Oracle WebLogic Integration with a Web server, such as an Apache server,
that is programmed to service business messages from a remote trading partner. A Web server
can provide the following services:

Receive business messages from a remote trading partner

Authenticate a trading partner digital certificate

Services Provided by Oracle WebLogic Proxy Plug-In
The Web server uses the Oracle WebLogic proxy plug-in, which you can configure to provide
the following services:

Forward business messages received by the Web server to Oracle WebLogic Integration,
which is running inside a secure internal network.

Extract the remote trading partner certificate from the Web server and forward it to Oracle
WebLogic Server for authentication. Oracle WebLogic Integration can then authenticate
the trading partner certificate and business message.

Topology Using Oracle WebLogic Proxy Plug-In
The topology of an environment that uses a Web server, the Oracle WebLogic proxy plug-in, and
Oracle WebLogic Integration is illustrated in Figure 4-10.

Figure 4-10 Using a Web Server and the Oracle WebLogic Proxy Plug-In

T rad ing Par tne r In tegra t i on Secur i t y

4-50 Introducing Trading Partner Integration

When using the Oracle WebLogic Proxy plug-in, note that:

Even though the proxy plug-in uses HTTP, you must configure Oracle WebLogic
Integration to use the HTTPS protocol when using the proxy plug-in to forward business
messages.

If a trading partner in a conversation uses Microsoft IIS as a proxy server, all the
certificates used in the conversation must be trusted by a well-known Certificate Authority,
such as VeriSign or Entrust. The use of self-signed certificates will cause a request passed
through the IIS proxy server to fail. This is a restriction in IIS, not Oracle WebLogic
Integration.

Configuring the Web Server
To configure the Web server, see Configuring Web Server Functionality for Oracle WebLogic
Server.

The following code example provides the segment of httpd.conf (for an Apache server) needed
to configure the proxy plug-in:
LoadModule foo_module libexec/mod_foo.so
LoadModule weblogic_module libexec/mod_wl_ssl.extension

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
 WebLogicHost myhost
 WebLogicPort 80
</Location>

Here, extension is the file extension used by your Unix installation.

Implementing Security for Trading Partner Integration
For development and testing purposes, you use the default security configuration that is generated
when you create a new Oracle WebLogic Integration domain using the Oracle WebLogic
Configuration Wizard. For more information, see Default Domain Security Configuration.

For a production environment, you need to configure security as part of your deployment. This
topic provides a summary of the tasks that you need to complete. It contains the following
sections:

Configure Users, Groups, and Roles

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_wls/web_server.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_wls/web_server.html

Implement ing Secur i t y fo r T rad ing Par tne r In tegrat i on

Introducing Trading Partner Integration 4-51

Configure Trading Partner Profiles

Configure the Keystores

Configure Certificates

Configure SSL

Configure Transport-Level and Message-Level Options in Service Profiles

Configure Users, Groups, and Roles
You use the User Management module of the Oracle WebLogic Integration Administration
Console to manage the users, groups, and roles defined in the default security realm. For
instructions on configuring users, groups, and roles in the Oracle WebLogic Integration
Administration Console, see Use

in Using Worklist Console.

Configure Trading Partner Profiles
You need to configure the profiles for trading partners with whom you will exchange business
messages. For an introduction to trading partner profiles, see Trading Partner Profiles. For
instructions on configuring trading partner profiles in the Oracle WebLogic Integration
Administration Console, see the following topics in Trading Partner Management in Using
Oracle WebLogic Integration Administration Console Help :

Adding Trading Partner Profiles

Deleting Trading Partner Profiles

Configure the Keystores
You need to create and configure the identity and trust keystore for certificates and private keys.
For an introduction to the keystore, see Keystore for Private Keys and Certificates. For
instructions on creating and configuring the keystore, see the following topics:

If the identity and trust keystores do not already exist, create them according to the
instructions in “Storing Private Keys, Digital Certificates, and Trusted Certificate
Authorities” in “Configuring SSL” in Managing Oracle WebLogic Security.

Configure the keystores using the Oracle WebLogic Server Administration Console
according to the instructions in “Configuring KeyStores” in “Configuring SSL” in
Managing Oracle WebLogic Security.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklistadminhelp/users.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

T rad ing Par tne r In tegra t i on Secur i t y

4-52 Introducing Trading Partner Integration

Configure Certificates
You need to add digital certificates to trading partners. For an introduction to certificates, see
Digital Certificates. For instructions on configuring certificates in the Oracle WebLogic
Integration Administration Console, see Adding Certificates to a Trading Partner in Trading
Partner Management in Using Oracle WebLogic Integration Administration Console Help :

“Adding Certificates to a Trading Partner

Configure SSL
You need to configure SSL for transport-level security using the Oracle WebLogic Server
Administration Console. For an introduction, see SSL Protocol. For configuration instructions,
see “Configuring SSL” in Managing Oracle WebLogic Security.

Configure Transport-Level and Message-Level Options in Service Profiles
You need to decide the transport-level security and message-level security options that you want
to use in your message exchanges, and then configure those options in the service profile for each
trading partner. For example, you might use mutual authentication with one trading partner and
basic authentication with another. Similarly, you might implement nonrepudiation with a
customer or vendor, but not with a trading partner that is within your organization.

For instructions on how to managing service profiles in the Oracle WebLogic Integration
Administration Console, see the following topics in Trading Partner Management in Using
Oracle WebLogic Integration Administration Console Help .

Adding Service Profiles to a Service

Deleting Service Profiles from a Service

Enabling and Disabling Trading Partner and Service Profiles

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPCertificates
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#DeletingServices
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Introducing Trading Partner Integration A-1

A P P E N D I X A

Example: ebXML Security Configuration

This example demonstrates how to configure the security settings for ebXML message exchange
between trading partners over HTTPS protocol through a proxy server. Although any proxy
server can be used in this configuration, the example demonstrates how to configure the iPlanet
Web Server 6.0 (Sun ONE 6.0) as the proxy server. A demonstration version of this server is
available for download at http://wwws.sun.com/software/download/products/3f186391.html.

In the Figure A-1, the example involves two trading partners. Both the trading partners, Trading
Partner 1 and Trading Partner 2 are configured in Oracle WebLogic Integration. The WLI
instance that hosts Trading Partner 1 is termed as WLI 1 and the WLI instance that hosts Trading
Partner 2 is termed WLI 2.

Figure A-1 Trading Partner Configuration

In the preceding figure:

Messages are sent from Trading Partner 1 to Trading Partner 2 using HTTPS protocol
through a secure connection.

http://wwws.sun.com/software/download/products/3f186391.html

Example : ebXML Secur i t y Conf igurat ion

A-2 Introducing Trading Partner Integration

Acknowledgements and responses are sent from the participant to the initiator through an
iPlanet proxy server.

Note: In production scenarios, firewalls are usually configured between Oracle WebLogic
Integration 1 and the proxy server and between the proxy server and Oracle WebLogic
Integration 2. To keep the IP addresses simple in this sample, the firewalls are left out of
the examples.

The following topics are discussed in this section:

“Before You Begin” on page A-3
This topic provides links to suggested tutorial which you can complete before starting on
this sample if you are unfamiliar with Oracle WebLogic Integration and Oracle WebLogic
Server concepts.

“Step 1: Generating a Test Certificate” on page A-4
To be able to run this example, you need to generate a test certificate to use as client and
server certificate for Oracle WebLogic Integration and Oracle WebLogic Server. This
section describes how to generate this certificate using the OpenSSL tool.

“Step 2: Configuring Keystores for Oracle WebLogic Integration” on page A-5
Before you can import the test certificate you created in the previous section, you need to
configure the keystores accordingly. This section will show you how to do just that.

“Step 3: Configuring the Local Trading Partner in Oracle WebLogic Integration 1” on
page A-9

In this section, you configure the default trading partner Test_TradingPartner_1 to be your
local trading partner in Oracle WebLogic Integration. You then edit the trading partner
bindings and add the appropriate certificates to the trading partner and keystore.

“Step 4: Configuring the SSL Settings in Oracle WebLogic Server” on page A-13
After you have loaded the certificates into the keystore, you need to go back to the Oracle
WebLogic Server Console and configure the SSL settings with the appropriate aliases for
the certificates in the keystore. This section provides a step by step procedure for how to
configure the correct server SSL settings.

“Step 5: Exporting the WebLogic Integration Trading Partner Data” on page A-16
In this section, you export the local trading partner information from Oracle WebLogic
Integration 1 into an xml file. Later on, you use this xml file to configure the remote
trading partner.

Befo re You Begin

Introducing Trading Partner Integration A-3

“Step 6: Configuring the Local Trading Partner in WebLogic Integration 2” on page A-17
In this step you configure the default trading partner Test_TradingPartner_2 to be your
local trading partner with Oracle WebLogic Integration at the other end. You then edit
the trading partner bindings and add the appropriate certificates to the trading partner
and keystore.

“Step 7: Configuring the Remote Trading Partner in WebLogic Integration” on page A-17
In this section, you import the file which you exported from Oracle WebLogic
Integration 2 in the preceding section and configure the information imported to be used
as the remote trading partner profile.

“Step 8: Creating Services and Service Profiles in WebLogic Integration” on page A-18
In this step, you configure the Services and the Service profiles for the local and the
remote trading partner profiles in Oracle WebLogic Integration.

“Step 9: Configuring the iPlanet Server” on page A-21
In this procedure, you complete the iPlanet proxy server configuration install the
appropriate server and trusted certificates needed for the message exchange between
your two trading partners.

Related Topics
Managing Oracle WebLogic Security

Trading Partner Integration Security

Guide to Building Business Processes

Before You Begin
The instructions in this sample is geared towards users that are already familiar with Oracle
WebLogic Integration tasks and procedures.

If you are new to Oracle WebLogic Integration, consider completing Tutorial: Building
Your First Business Process before using this sample.

If you are also new to ebXML business processes, consider completing Tutorial: Building
ebXML Solutions before proceeding.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html

Example : ebXML Secur i t y Conf igurat ion

A-4 Introducing Trading Partner Integration

Step 1: Generating a Test Certificate
Before you can configure and run this example, you need to generate a certificate which you will
later on import into your Oracle WebLogic Integration keystore. Once the certificate is imported
into the keystore, you can use it as an encryption, a signature, or a client certificate for Oracle
WebLogic Integration and also as a Oracle WebLogic Server certificate. In a production
environment, you would most likely have several certificates, but since this example is for testing
only, you use one certificate for both client and server purposes.

You can generate the test certificate using any tool, however, the procedures in this section
describe how to generate the certificates using OpenSSL. This is an open source tool which can
be downloaded from www.openssl.org.

Before you create the certificate, you need to create the a Public/Private key pair that you then
use to create the test certificate. If you are running OpenSSL in a Windows environment, you
must first complete the “Configuring Windows to Run OpenSSL” below, before you can create
the key pair. stand

This step includes the following procedures:

“Configuring Windows to Run OpenSSL” on page A-4

“Creating a Public/Private Key Pair” on page A-5

“Generating the Test Certificate” on page A-5

Configuring Windows to Run OpenSSL
The following steps should be completed to configure your Windows environment to run
OpenSSL:

1. In a DOS command window, type the following to set the OPENSSL_CONF environment
variable to point to the OpenSSL configuration file:
$ set OPENSSL_CONF=c:\openssl-[X.X.X]-src\apps\gencert.conf

Where [X.X.X] is the version of your OpenSSL installation, for example 0.9.7.

Note: Due to the fact that Internet Explorer uses files of the type .cnf for Speed Dial
configuration files, the OpenSSL configuration file might appear without the .cnf
suffix and may have a shortcut icon.

2. Randomly select any five large files on your hard drive and then copy them to a folder where
you intend to create the keys and certificates.

http://www.openssl.org

Step 2 : Conf igu r ing Keys to res f o r Orac le WebLogic In tegrat ion

Introducing Trading Partner Integration A-5

3. Rename the files to file1, file2, file3, file4, and file5. These files will be used by the
OpenSSL facility to create the public/private key pair.

4. Verify that your path includes c:\openssl\bin.

You are now ready to create a public/private key pair using OpenSSL.

Creating a Public/Private Key Pair
The following section describes how to create 1024-bit RSA public/private key pair using
OpenSSL:

In a DOS command window, type the following:
$ openssl genrsa rand file1:file2:file3:file4:file5 out WLCert.key 1024

where file1:file2:file3:file4:file5 represents the five large files you created in
Configuring Windows to Run OpenSSL.

You are now ready to create any type of X.509 certificate using OpenSSL.

Generating the Test Certificate
To generate the self-signed test certificate, complete the following procedure:

1. In a DOS command window, type the following:
$ openssl req new key WLCert.key out WLCert.csr

2. In a DOS command window, type the following:
$ openssl x509 req days 30 -in WLCert.csr signkey WLCert.key
-outWLCert.crt

You should now have two new files, WLCert.key and WLCert.crt, in your directory.

Step 2: Configuring Keystores for Oracle WebLogic
Integration

Digital certificates are stored in two types of keystores in Oracle WebLogic Integration:

Identity keystore—the keystore which stores private keys for local trading partners and
certificates for both the local and remote trading partners.

Trust keystore—the keystore which stores the trusted certificate authority certificates
associated with any certificates used in Oracle WebLogic Integration.

Example : ebXML Secur i t y Conf igurat ion

A-6 Introducing Trading Partner Integration

This example assumes that you have created your own keystores and trusts. However, you can
also complete this example by using the demonstration keystore file (DemoIdentity.jks) and
the demonstration trust (DemoTrust.jks) that are part of your Oracle WebLogic Server
installation and therefore Oracle WebLogic Integration installation. These Java Key Store files
are located in the following location:

BEA_HOME\wlserver_<version>\server\lib\

where BEA_HOME is the directory in which you installed your product.

Since the underlying server used by Oracle WebLogic Integration is the Oracle WebLogic Server
application, this section demonstrates how to use the Oracle WebLogic Server Administration
Console to configure the keystores.

To configure the keystores:

1. Start your Oracle WebLogic Server.

2. Open the Oracle WebLogic Server Console.

3. Login using the username and password specified when you created the Oracle WebLogic
Integration domain. (The default username and password for the default domains is
weblogic/weblogic.)

4. In the left pane, navigate to Servers > server_name
Where server_name is the name of your Oracle WebLogic Server.

5. Select the Keystores tab.

6. From the Keystores drop-down menu, select Custom Identity And Custom Trust, as shown
in Figure A-2.

Figure A-2 Setting KeyStore Tab

7. Click Continue.

The Configure Keystore Properties screen appears.

8. In the fields described, enter the following information:

Custom Identity

Step 2 : Conf igu r ing Keys to res f o r Orac le WebLogic In tegrat ion

Introducing Trading Partner Integration A-7

– Custom Identity Key Store File Name: The fully qualified path to your identity
keystore.
If you are using the demonstration keystores, enter
BEA_HOME\wlserver_<version>\server\lib\DemoIdentity.jks

Where BEA_HOME is the directory in which you installed Oracle WebLogic Server.

– Custom Identity Key Store Type: The type of the keystore. Generally, this attribute is
JKS. If this attribute is not specified, the default keystore type defined in the security
policy file for the JDK is used.
If you are using the demonstration keystores, enter JKS.

– Custom Identity Store Pass Phrase: The password defined when creating the
keystore. Confirm the password.
If you are using the demonstration keystores, enter
DemoIdentityKeyStorePassPhrase.

Note: This attribute is optional or required depending on the type of keystore. All
keystores require the passphrase in order to write to the keystore. Some keystores do
not require the passphrase to read from the keystore. Whether or not you define this
property depends on the requirements of the keystore. For example, Oracle WebLogic
Server only reads from the keystore so a passphrase is not required, however, Oracle
WebLogic Integration writes to keystores and therefore requires a passphrase.

Custom Trust

– Custom Trust Store File Name: The fully qualified path to your trust keystore.
If you are using the demonstration keystores, enter
BEA_HOME\wlserver_<version>\server\lib\DemoTrust.jks.

Where BEA_HOME is the directory in which you installed Oracle WebLogic Server.

– Custom Trust Key Store Type: The type of the keystore. Generally, this attribute is
JKS. If this attribute is not specified, the default keystore type defined in the security
policy file for the JDK is used.
If you are using the demonstration keystores, enter JKS.

– Custom Trust Key Store Pass Phrase: The password defined when creating the
keystore. Confirm the password.
If you are using the demonstration keystores, enter DemoTrustKeyStorePassPhrase.

Note: This attribute is optional or required depending on the type of keystore. All
keystores require the passphrase in order to write to the keystore. Some keystores do
not require the passphrase to read from the keystore. Whether or not you define this
property depends on the requirements of the keystore. For example, Oracle WebLogic

Example : ebXML Secur i t y Conf igurat ion

A-8 Introducing Trading Partner Integration

Server only reads from the keystore so a passphrase is not required, however, Oracle
WebLogic Integration writes to keystores and therefore requires a passphrase.

9. Click Save.

10. Click SSL tab. You use this screen to configure the SSL configuration for your Oracle
WebLogic Server.

Note: However, since you need to load the private key you created in Creating a Public/Private
Key Pair into the keystore before you can configure the SSL settings, you can minimize
this window for now. Instead restart your Oracle WebLogic Server and continue to the
next section, “Step 3: Configuring the Local Trading Partner in Oracle WebLogic
Integration 1,” which includes loading the private key into the keystore.

To learn more about the setting you just entered, see “Configuring Keystores” in Configuring
SSL.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Step 3 : Conf igur ing the Loca l T rad ing Par tner in Orac l e WebLog ic In tegra t i on 1

Introducing Trading Partner Integration A-9

Step 3: Configuring the Local Trading Partner in Oracle
WebLogic Integration 1

Oracle WebLogic Integration contains two default trading partners named
Test_TradingPartner_1(TP 1)and Test_TradingPartner_2(TP 2). In this section, you configure
Test_TradingPartner_1 to be your local trading partner in Oracle WebLogic Integration 1(WLI
1).

Note: Before you start any of the procedures in this section, you must have configured your
keystores as described in Step 2: Configuring Keystores for Oracle WebLogic Integration
and restarted your Oracle WebLogic Server after completing the keystore configuration.

This section contains the following procedures:

Configuring the Local Trading Partner

Adding the Test Certificate to the Keystore

Editing the Trading Partner Binding

Configuring the Local Trading Partner
The following procedure describes how to configure the default trading partner
Test_TradingPartner_1 to act as the local trading partner in your Oracle WebLogic Integration
application:

1. If it is not already running, start your Oracle WebLogic Server.

2. Open the Oracle WebLogic Integration Administration Console.

3. Navigate to Trading Partner Management > Profile Management

The View and Edit Trading Partner Profiles screen appears with the two trading partners
Test_TradingPartner_1 and Test_TradingPartner_2 listed, as shown in Figure A-3.

Example : ebXML Secur i t y Conf igurat ion

A-10 Introducing Trading Partner Integration

Figure A-3 Editing Trading partner Profiles
o

Since you are going to import the configuration for the remote trading partner from Oracle
WebLogic Integration 2, you can delete Test_TradingPartner_2 from the list.

4. Select Test_TradingPartner_2 by clicking on the option box next to it.

5. Click Delete.

You now need to add the appropriate certificates to your local trading partner so that they will be
imported into the keystore.

Adding the Test Certificate to the Keystore
The following procedure describes how to add the certificate, which you created in “Generating
the Test Certificate” on page A-5, to your local trading partner configuration:

1. Click Test_TradingPartner_1.

The details of your trading partner, including general information, bindings, and certificates
are displayed. Note that there are no certificates configured for this trading partner.

2. Click Add Certificate

The Add Certificate (Step 1 of 2) screen appears.

3. Select the Import certificate from file option.

4. Click Next

The Add Certificate (Step 2 of 2) screen appears. You use this screen to import a client
certificate file to be stored in the key store and used by the local trading partner. However,
before you can create the client certificate, you have to create a password alias.

Step 3 : Conf igur ing the Loca l T rad ing Par tner in Orac l e WebLog ic In tegra t i on 1

Introducing Trading Partner Integration A-11

5. Click Add alias...,

The Add New Password Alias screen appears.

6. In the Password Alias Name field, enter TP1-client.

7. Enter TP1Client as password to use for this alias and confirm it.

8. Click Submit.

The Add Certificate (Step 2 of 2) screen appears again, with the alias values you just
entered.

9. In the Name field, enter TP1ClientCert.

10. From the Type drop-down list, select CLIENT.

11. Next to the Import Certificate Location, click Browse.

12. Navigate to the WLCert.crt file which you created in “Generating the Test Certificate” on
page A-5.

13. Next to the Private Key Location, click Browse.

14. Navigate to the WLCert.key file which you created in “Generating the Test Certificate” on
page A-5.

15. Make sure that the Import Certificate in Keystore option is selected.

16. Click Create certificate.

By selecting CLIENT from the Type drop-down list, you specified the certificate to be a client
certificate. You can add a signature certificate by using this same procedure, but instead selecting
SIGNATURE from the Type drop-down list.

You can review all your configurations of the Test_TradingPartner_1 trading partner by
navigating to Trading Partner Management > Profile Management and clicking on the
Test_TradingPartner_1 trading partner.

The next step is to edit the protocol bindings for your trading partner.

Example : ebXML Secur i t y Conf igurat ion

A-12 Introducing Trading Partner Integration

Editing the Trading Partner Binding
The default trading partner you just configured to be the local trading partner for Oracle
WebLogic Integration, contains two ebXML default bindings. The following steps describes how
to edit the ebXML 2.0 binding with the correct transport protocol and signature settings:

1. In the left pane, click Bindings.

2. From the Name drop-down list, select Test_TradingPartner_1.

3. Click Go.

The Edit Binding screen appears.

4. In the list of bindings, click TP1-ebxml20-binding.

The View Binding Details screen appears

5. Click Edit Binding.

6. Make the following edits:

Transport Configuration

– Transport Protocol: HTTPS

– End Point: specify the URL to use https instead of http protocol and change the port
number to the SSL port number to the port number of your Oracle WebLogic Server
domain.This is usually the even number immediately following your local port number.
For example, for local port number 7001, the SSL port number is 7002.

7. Click Submit.

Your new binding settings are saved. To learn more about how to configure ebXML bindings
including how to configure signatures and signature transforms, see “Adding Protocol Bindings
to a Trading Partner” in Trading Partner Management.

Since you have completed the configuration of the local trading partner and have imported the
test certificate into the keystore, you can now return to the Oracle WebLogic Server console and
configure the SSL settings.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPPProtocolBindings
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

Step 4 : Conf igur ing the SSL Se t t ings in Orac le WebLog ic Se rve r

Introducing Trading Partner Integration A-13

Step 4: Configuring the SSL Settings in Oracle WebLogic
Server

Although you specified the certificate you loaded into the keystore as a client certificate when
you configured the Oracle WebLogic Integration, for testing purposes you can also use this
certificate as the server certificate for Oracle WebLogic Server. You just have to configure the
server with the correct alias in the SSL settings.

You configure the SSL settings on the Oracle WebLogic Server in the WebLogic Console:

1. If the console window you opened in Step 2: Configuring Keystores for Oracle WebLogic
Integration is still opened, return to it. If not, complete the following procedure:

a. If not already started, start your Oracle WebLogic Server:

b. Open the Oracle WebLogic Server Console.

From Oracle WebLogic Integration, you do this by selecting Tools > WebLogic Server
> WebLogic Console.

c. Login using the username and password specified when you created the WebLogic
Integration domain. (The default username and password for the default domains is
weblogic/weblogic.)

d. In the left pane, navigate to Servers > server name
Where server name is the name of your WebLogic Server.

e. Select the Keystores & SSL tab.

f. Scroll down to the SSL Configuration part of the screen and click Change.

g. From the Identity and Trust Locations drop-down menu, select Key Stores.

h. Click Continue.

2. On the Review SSL Private Key Settings screen, enter the following information:

– Private Key Alias: TP1-client

This is the alias you specified when loading the private key for WebLogic Server from
the keystore in Adding the Test Certificate to the Keystore.

– Passphrase: TP1Client

This is the password specified when loading the private key for WebLogic Server into
the keystore in Adding the Test Certificate to the Keystore.

Example : ebXML Secur i t y Conf igurat ion

A-14 Introducing Trading Partner Integration

3. Click Continue.

An alert screen appears, which informs you that you need to restart your server. You can
ignore this for now, instead restart your server after you have completed all the SSL
configuration steps.

4. Click Finish.

The Keystore Configuration screen appears.

5. Scroll to the end of the screen and click Show to display the Advanced Options. The
Advanced options is where you configure mutual authentication.

6. From the Two Way Client Cert Behavior, select Client Certs Requested And Enforced.
This option assures mutual authentication behavior.

7. Click Apply.

To learn more about the settings you just entered, see “Configuring Two-Way SSL” in
Configuring SSL.

8. If you have not already done so, restart the WebLogic Server.

9. If the keystores are configured correctly, you should see details similar to the following in the
WebLogic Sever Log:
<Feb 1, 2007 4:11:45 PM IST> <Notice> <Security> <achepuri02>
<examplesServer> <[ACTIVE] ExecuteThread: '0' for queue:
'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <>
<1170326505038> <BEA-090082> <Security initializing using security
realm myrealm.>

<Feb 1, 2007 4:11:49 PM IST> <Notice> <WebLogicServer> <achepuri02>
<examplesServer> <Main Thread> <<WLS Kernel>> <> <> <1170326509604>
<BEA-000365> <Server state changed to STANDBY>

<Feb 1, 2007 4:11:49 PM IST> <Notice> <WebLogicServer> <achepuri02>
<examplesServer> <Main Thread> <<WLS Kernel>> <> <> <1170326509604>
<BEA-000365> <Server state changed to STARTING>

<Feb 1, 2007 4:12:04 PM IST> <Warning> <HTTP> <achepuri02>
<examplesServer> <[ACTIVE] ExecuteThread: '0' for queue:
'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <>
<1170326524145> <BEA-101369>
<weblogic.servlet.internal.WebAppServletContext@1dab0f0 - appName:
'BEA_WLS_DBMS_ADK', name: 'BEA_WLS_DBMS_ADK_Web', context-path:
'/BEA_WLS_DBMS_ADK_Web': The encoding jsp-descriptor param has been
deprecated. Consider declaring the encoding in the jsp-config element
(web.xml) or as a page directive (pageEncoding) instead.>

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Step 4 : Conf igur ing the SSL Se t t ings in Orac le WebLog ic Se rve r

Introducing Trading Partner Integration A-15

<Feb 1, 2007 4:12:18 PM IST> <Notice> <Log Management> <achepuri02>
<examplesServer> <[STANDBY] ExecuteThread: '5' for queue:
'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <>
<1170326538816> <BEA-170027> <The server initialized the domain log
broadcaster successfully. Log messages will now be broadcasted to the
domain log.>

<Feb 1, 2007 4:12:19 PM IST> <Notice> <WebLogicServer> <achepuri02>
<examplesServer> <Main Thread> <<WLS Kernel>> <> <> <1170326539377>
<BEA-000365> <Server state changed to ADMIN>

<Feb 1, 2007 4:12:19 PM IST> <Notice> <WebLogicServer> <achepuri02>
<examplesServer> <Main Thread> <<WLS Kernel>> <> <> <1170326539407>
<BEA-000365> <Server state changed to RESUMING>

<Feb 1, 2007 4:12:21 PM IST> <Notice> <Security> <achepuri02>
<examplesServer> <[ACTIVE] ExecuteThread: '2' for queue:
'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <>
<1170326541089> <BEA-090171> <Loading the identity certificate and
private key stored under the alias DemoIdentity from the jks keystore
file C:\bea_GA\WEBLOG~1\server\lib\DemoIdentity.jks.>

<Feb 1, 2007 4:12:21 PM IST> <Notice> <Security> <achepuri02>
<examplesServer> <[ACTIVE] ExecuteThread: '2' for queue:
'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <>
<1170326541360> <BEA-090169> <Loading trusted certificates from the
jks keystore file C:\bea_GA\WEBLOG~1\server\lib\DemoTrust.jks.>

<Feb 1, 2007 4:12:21 PM IST> <Notice> <Security> <achepuri02>
<examplesServer> <[ACTIVE] ExecuteThread: '2' for queue:
'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <>
<1170326541370> <BEA-090169> <Loading trusted certificates from the
jks keystore file C:\bea_GA\JROCKI~1\jre\lib\security\cacerts.>

<Feb 1, 2007 4:12:21 PM IST> <Error> <Server> <achepuri02>
<examplesServer> <DynamicListenThread[Default[2]]> <<WLS Kernel>> <>
<> <1170326541620> <BEA-002606> <Unable to create a server socket for
listening on channel "Default[2]". The address 127.0.0.1 might be
incorrect or another process is using port 7001:
java.net.BindException: Address already in use: JVM_Bind.>
.
.
.

You have now completed the WebLogic Server configuration. To learn more about WebLogic
Server SSL configuration, see Configuring SSL. The next step is to export the
Test_TradingPartner_1 data so that you can import this data later on when you configure the
remote trading partner in WebLogic Integration 2.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/ssl.html

Example : ebXML Secur i t y Conf igurat ion

A-16 Introducing Trading Partner Integration

Step 5: Exporting the WebLogic Integration Trading
Partner Data

Instead of configuring both the company profile and partner profile by going through the
configuration screens in WLI 2, you can import data that has been exported from WLI 1directly
into WLI 2 and have the partner profile automatically configured.

Complete the following procedure to export the WebLogic Integration trading partner data:

1. If it is not already running, start your WebLogic Server.

2. Open the WebLogic Integration Administration Console.

3. Navigate to Trading Partner Management > Profile Management

4. In the left pane, click Import/Export.

5. In the Import/Export pane, select Export.

6. Select the Trading Partner option.

7. Click Browse next to Trading Partner.

8. Deselect all but the Test_TradingPartner_1 trading partner.

9. Click Done.

10. For the Format option, retain WLI Standard option that is selected by default.

11. Click Export.

12. If a File Download dialogue opens, click Save.

13. In the Save As window navigate to a location in which you want to save the exported file to.

14. Enter TP1.xml as the filename and click Save.

Note: Remember the navigation path to the file. You need this when you import your
trading partner information.

You have completed the WebLogic Integration local trading partner configuration. To learn more
about creating, configuring, and managing trading partners in WebLogic Integration, see Trading
Partner Management.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

Step 6 : Conf igur ing the Loca l T rad ing Par tne r in WebLog ic In tegra t i on 2

Introducing Trading Partner Integration A-17

You can create your remote trading partner in WLI 1 using the procedures you just completed for
Test_TradingPartner_1. However, in this example you take a short cut by importing the company
profile settings from WLI 2 and use that as the remote trading partner.

The next step shows you how to configure a trading partner named Test_TradingPartner_2 as the
company profile partner in the WLI 2 application and how to export the company profile
information into a file that you can then import into WLI 1.

Step 6: Configuring the Local Trading Partner in
WebLogic Integration 2

In this section, you configure the default trading partner Test_TradingPartner_2 to be your local
trading partner with WLI 1 at the other end. You then edit the trading partner bindings and add
the appropriate certificates to the trading partner and keystore. Then export TPM data.

To configure the Test_Trading Partner_2 in WebLogic Integration 2, follow the same steps
through 2 to 5.

Step 7: Configuring the Remote Trading Partner in
WebLogic Integration

In this section, you create a remote trading partner in the WLI 1 application by importing the
company profile information which you exported from WLI 2.

In WLI 1, import the TPM file you that you exported from WLI 2 in step 5(TP2.xml). Open the
TP2.xml file and change type = Local to type = Remote before importing it in WLI 1. Repeat the
same to import the TPM file that you exported from WLI 1.

The following steps describes the importing procedure:

1. If it is not already running, start your WebLogic Server.

2. Open the WebLogic Integration Administration Console.

3. Navigate to Trading Partner Management > Profile Management

4. In the Import/Export pane, click Import.

5. In the File Name field, enter the path to TP2.xml location to the file you exported from
WebLogic Integration.

6. Select WLI 2 as the Import Format.

Example : ebXML Secur i t y Conf igurat ion

A-18 Introducing Trading Partner Integration

7. Click Import.

After successfully importing the trading partner information, remember to review the new trading
partner profile and make sure that the end point URL is correct. You do this by navigating to
Profile Management, clicking on Test_TradingPartner_2, and clicking on its binding. When you
click on Test_TradingPartner_2, note that three certificates (client, server, signature) were
automatically created in the Company Profile in WLI 2 and imported into WLI 1.

Now that you have configured both the local and the remote trading partner for WLI, the next step
is to add services and service profiles to those trading partners.

Step 8: Creating Services and Service Profiles in
WebLogic Integration

Once the Test_TradingPartner_1 and Test_TradingPartner_2 configurations are completed, you
have to create services and corresponding service profiles for those trading partners.

For WLI 2, create a process service with the name as the URL of the participant jpd process.
Configure the service profiles for the local and remote trading partner profiles in WebLogic
Integration.

In Oracle WebLogic Integration:

A service represents a business process that is either offered by a local trading partner, or a
business process that is being called via a control on a remote trading partner.

Service profiles encapsulate the concept of an agreement between two trading partners on
the service bindings to be used. Service profiles specify the protocol binding and URL
endpoints for the local and remote trading partners that offer and call the service.

To be able to configure the services correctly, the business process which initiates the ebXML
message exchange must be currently deployed. This section contains the following procedures:

Creating the Trading Partner Service

Creating the Process Service

Creating the Service Profile

Creating the Trading Partner Service
Complete the following steps to add a service to your trading partner profile in WLI 1.

Step 8 : Crea t ing Serv ices and Se rv i ce Pro f i l es in WebLogic In tegrat ion

Introducing Trading Partner Integration A-19

1. Deploy your ebXML initiator business process.

If you are not familiar with how to build and deploy ebXML business processes, consider
completing one of the exercises in Tutorials: Building ebXML Solutions.

2. In the WebLogic Integration Administration Console, navigate to Trading Partner
Management > Service Management.

3. In the left pane, click Create New.

The Add Service screen appears.

4. Click Browse and navigate to the appropriate service control.

5. From the Type drop-down menu, select Service Control.

6. From the Business Protocol drop-down menu, select EBXML.

7. Click Add Service.

Your service is created and the View And Edit Service Details screen appears on which you add
the service profile.

Creating the Process Service
Complete the following steps to add a service to your trading partner profile in WLI 2.

1. Deploy your ebXML initiator business process.

If you are not familiar with how to build and deploy ebXML business processes, consider
completing one of the exercises in Tutorials: Building ebXML Solutions.

2. In the WebLogic Integration Administration Console, navigate to Trading Partner
Management > Service Management.

3. In the left pane, click Create New.

The Add Service screen appears.

4. Click Browse and navigate to the appropriate process.

5. From the Type drop-down menu, select Process.

6. Type an appropriate JPD URL. For example, /testWeb/processes/Process.jpd

7. From the Business Protocol drop-down menu, select EBXML.

8. Click Add Service.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html

Example : ebXML Secur i t y Conf igurat ion

A-20 Introducing Trading Partner Integration

Your process is created and the View And Edit Service Details screen appears on which you add
the process service.

Creating the Service Profile
After you have created the trading partner service, you create a service profile which specify the
protocol binding and URL endpoints for the local and remote trading partners that offer and call
the service. The following procedure describes how to add a service profile:

1. On the View And Edit Service Details screen, click Add Service Profile.

The Add Service Profile screen is displayed.

2. From the Name drop-down menus, select your LOCAL and REMOTE trading partners.

3. Specify your LOCAL and REMOTE trading partners according to the following table:

Note: Similarly, for WLI 2, the local trading partner will be Test_TradingPartner_2 and
remote trading partner will be Test_TradingPartner_1.

Also, make sure you change the endpoint URLs to use https, not http. If they are set
to the wrong protocol, follow the directions in Editing the Trading Partner Binding to
select the correct one.

4. Click Submit.

5. On the next screen, click Yes to begin configuring authentication.

6. From the Choose type of Authentication Mode options, select Mutual for both the LOCAL
and REMOTE trading partners.

Note: Although it is not enforced, typically the same type of authentication is selected for
both the local and remote trading partner.

7. Click Next.

8. On the next screen, select:

Table A-1 Local and Remote Trading Partner for WLI 1

LOCAL REMOTE

Name Test_TradingPartner_1 Test_TradingPartner_2

Binding wli-ebxml20-secure-binding wli-ebxml20-secure-binding

Step 9 : Conf igur ing the iP lane t Server

Introducing Trading Partner Integration A-21

a. TP1-clt as the client certificate for the LOCAL trading partner.

b. xxxx-client as the client certificate for the REMOTE trading partner.

c. xxxx-server as the server certificate for the REMOTE trading partner.

Where xxxx is a number which was randomly generated when you imported the WLI 2
self-signed certificate file.

9. To preview to the configuration, click Preview config.

10. Click Add.

Authentication is added and the View and Edit Service Details page is displayed.

Note: If there is an error, the Add Authentication page is redisplayed. A message indicating
the problem is displayed above the input requiring correction.

Note: Repeat the same steps for configuring Service Profile in WLI 2.

You have now created a service and its service profile. To learn more about services and service
profiles, see “Adding Services” and “Adding Service Profiles to a Service” in Trading Partner
Management. The next step is to configure the iPlanet SSL settings and then proceed to complete
the configuration of WLI 2.

Step 9: Configuring the iPlanet Server
This section describes how to configure your iPlanet Web Server as the proxy server for this
sample.

If you do not already have iPlanet Web Server installed, you can download it from Sun’s website
the following location:
http://www.sun.com/software/download/products/3f186391.html

Refer to the product documentation to install and start the iplanet admin and managed server.

This section contains the following procedures:

Creating the Trust Database

Requesting a Trial Digital Certificate from Verisign

Installing the iPlanet Server Certificate

Requesting a Trusted CA Certificate from Verisign

Installing the Trusted CA Certificate

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://www.sun.com/software/download/products/3f186391.html

Example : ebXML Secur i t y Conf igurat ion

A-22 Introducing Trading Partner Integration

Installing the WebLogic Integration 2 certificate

Configuring iPlanet for SSL

Creating the Trust Database
Before you can configure your iPlanet server certificates, you have to create a trust database in
which to store the certificates. To do so, complete the following procedure:

1. Open the iPlanet administration console.

2. Navigate to Servers > Mange Servers.

3. Select a managed server and click Manage.

The Managed Server Configuration screen appears.

4. Select the Security tab.

5. Click Create Database.

6. Enter and confirm a password for the database.

7. Click OK.

A dialog window confirming the successful initialization appears. The next step is to request a
trial digital certificate from Verisign which you use as the server certificate for iPlanet and also
imported later on into the Partner Profile in WebLogic Integration 2.

Requesting a Trial Digital Certificate from Verisign
You can request a trial digital certificate from Verisign to use for testing purposes. The certificate
is valid for a limited number of days. To request a certificate, complete the following steps:

1. Navigate to Managed Server Console > Security > Request a Certificate.

2. Select the New certificate option.

3. From the Submit to Certificate Authority via option, select CA Email Address and enter
your email address.

4. From the Cryptographic Module drop-down list, select internal.

5. In the Key Pair File Password field, enter the password you want to use as the iPlanet server
private key password.

Step 9 : Conf igur ing the iP lane t Server

Introducing Trading Partner Integration A-23

6. Enter your name and contact information details in the remaining fields.

7. Click OK.

A confirmation message is displayed in the Managed Server Console.

8. Copy all the text between -----BEGIN NEW CERTIFICATE REQUEST----- and -----END
NEW CERTIFICATE REQUEST----- and paste it into a text file. This is your certificate
request which you send to a certificate authority such as Verisign.

9. Using a web browser, navigate to
http://www.verisign.com/products/srv/trial/step1.html.

10. Follow the directions on the Verisign site.

After you complete the request, Verisign will send you an email with the digital certificate.
Copy the content and save it in a file named iPlanetServer.pem. This file is your digital
certificate for the iPlanet Server.

You have completed the trial digital certificate request process. The next step is to install the
digital trial certificate as the iPlanet server certificate.

Installing the iPlanet Server Certificate
You are now ready to install the server certificate for iPlanet. The following procedure describes
the steps to complete:

1. Navigate to Managed Server Console > Security > Install Certificate

The Install a Server Certificate screen appears.

2. Enter the following information:

– Certificate For: This Server

– Cryptographic Module: internal

– Key Pair File Password: the same password as in Requesting a Trial Digital
Certificate from Verisign.

– Message text (with headers): enter the contents of the iPlanetServer.pem file that
you created in Requesting a Trial Digital Certificate from Verisign.

3. Click OK.

The Add Server Certificate screen appears with the details of the certificate you are adding.

4. Click Add Server Certificate.

http://www.verisign.com/products/srv/trial/step1.html

Example : ebXML Secur i t y Conf igurat ion

A-24 Introducing Trading Partner Integration

You have successfully added the server certificate. The next step is to download and convert the
trusted CA server certificate.

Requesting a Trusted CA Certificate from Verisign
In addition to the server certificate you just installed, you also need a trusted certificate from an
Certificate Authority such as Verisign. To request a trusted certificate from Verisign, complete
the following procedure:

1. Using a web browser, navigate to
http://www.verisign.com/server/trial/faq/index.html to retrieve a CA
certificate for the iPlanet server from Verisign.

2. Click Accept.

3. Save the certificate on your local drive as a file named iPlanetCA.der.

The server certificate is in binary format. Before you can use it with iPlanet, you must convert it
to PEM format. The der2pem command line utility included with WebLogic Server can be used
to convert the certificate. To learn how to use the utility, see “der2pem” in Using the WebLogic
Server Java Utilities in the WebLogic Server Command Reference.

Follow the procedure described to convert the iPlanetCA.der file to iPlanetCA.pem.

Note: A DER format file contains binary data and can only be used for a single certificate. A
PEM format file supports multiple digital certificates. For example, a certificate chain
can be included. The order of the files is important, they should be in the order of trust.
The server digital certificate should be the first digital certificate in the file, the issuer of
the digital certificate should be next, and so on, until you get to the self-signed root
certificate authority certificate.

After you have completed the conversion, the next step is to install the trusted CA certificate.

Installing the Trusted CA Certificate
To install the trusted certificate you just requested, do the following:

1. Navigate to Managed Server Console > Security > Install Certificate

2. Enter the following information:

– Certificate For: Trusted Certificate Authority (CA)

– Cryptographic Module: internal

http://www.verisign.com/server/trial/faq/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/admin_ref/utils.html

Step 9 : Conf igur ing the iP lane t Server

Introducing Trading Partner Integration A-25

– Certificate Name: Verisign CA.

– Message is in this file: enter the location of the iPlanetCA.pem file you created in
Requesting a Trusted CA Certificate from Verisign

3. Click OK.

The Add Server Certificate screen appears with the details of the certificate you are adding.

4. Click Add Server Certificate.

You have successfully installed the trusted CA certificate.

The next step is to install the WebLogic Integration 2 certificate.

Installing the WebLogic Integration 2 certificate
Use the procedures described in “Installing the Trusted CA Certificate” on page A-24 to import
the TP2.xml file which you exported to create WLI 2 CA certificate for your iPlanet server.

You have now successfully installed the necessary iPlanet certificates. There is just one final step
required to get the iPlanet configuration to work with SSL.

Configuring iPlanet for SSL
1. Open the iPlanet administration console.

2. Navigate to Servers > Mange Servers.

3. Select Preference > Edit Listen Sockets.

4. In the Security column, select On.

5. Click OK.

6. Click Attributes.

7. In the Client Authorization column, click Off to change it to On. This assures mutual
authentication.

8. As the final configuration step, you need to modify two of the installed iPlanet configuration
files:

– To your obj.conf file add the following lines of code:
<Object name="myProxy" ppath="*">
PathCheck fn="get-client-cert" method="(GET|POST)" dorequest="1"

Example : ebXML Secur i t y Conf igurat ion

A-26 Introducing Trading Partner Integration

Service fn=wl_proxy FileCaching="OFF" Debug="ALL"
KeepAliveEnabled=false DebugConfigInfo="ON"
WebLogicHost=172.16.17.183\
WebLogicPort=7001 WLLogFile="C:/depot/newlog.txt" SecureProxy="OFF"
WLProxySSL="ON" RequireSSLHostMatch="False"
</Object>

– To your magnus.conf file, add the following lines of code:
Init fn="load-modules"
shlib="D:/iPlanet/Servers/bin/https/bin/proxy36.dll"
funcs="wl_proxy,wl_init"
Init fn="wl_init"

This concludes the iPlanet configuration step. To learn more about the settings you just
configured, see Installing and Configuring the Netscape Enterprise Server Plug-In in Using Web
Server Plug-Ins With WebLogic Server.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/plugins/nsapi.html

Introducing Trading Partner Integration B-1

A P P E N D I X B

Example: RosettaNet Security
Configuration

This example demonstrates how to configure the security settings for RosettaNet message
exchange between trading partners over HTTPS protocol, using mutual authentication. In this
example, both trading partners are configured on Oracle WebLogic Integration as shown in the
figure below:

In the preceding figure:

Messages (and acknowledgements) are sent from Trading Partner 1 to Trading Partner 2
through mutual authentication HTTPS.

Acknowledgements and responses are sent from Trading Partner 2 process through mutual
authentication HTTPS.

The following topics are discussed in this section:

“Keystores Used in the Example” on page B-3
This section discusses the use of keystores in Oracle WebLogic Integration and describes
the demonstration keystores used in this example.

Example : Roset taNet Secur i t y Conf igura t i on

B-2 Introducing Trading Partner Integration

“Before You Begin” on page B-4
If you are unfamiliar with Oracle WebLogic Integration concepts, you may want to
complete the tutorials and read the resources listed in this section before you attempt to
complete this example.

“Step 1: Configuring the Local Trading Partner for the Trading Partner 1 Setup” on
page B-5

In this section, you configure the default trading partner Test_TradingPartner_1 to be the
local trading partner for the initiator business process. You then add certificates to the
trading partner and configure the binding for that trading partner. Lastly, you export the
trading partner data into an XML file which, you later import as the remote trading partner
for the Trading Partner 2 setup.

“Step 2: Configuring the Local Trading Partner for the Trading Partner 2 Setup” on
page B-11

This section describes how to configure all the trading partner data that you completed on
the Trading Partner 1 machine, on the Trading Partner 2 machine. Once you have
completed this section, both of your remote trading partners are configured.

“Step 3: Importing the Remote Trading Partner Information” on page B-12
Instead of going through all the configuration steps that you did for the local trading
partners for the remote trading partners, you just import the previously exported trading
partner data into your Oracle WebLogic Integration application. The importing procedure
configure the remote trading partner for you automatically. This section describes how to
import your trading partner data files.

“Step 4: Creating Services and Service Profiles in Oracle WebLogic Integration” on
page B-13

Once you have set up all the trading partner configurations, you need to create services
and service profiles for the trading partners. The procedures in this section describes how
to do just that.

“Testing Tips” on page B-16
This section contains useful tips and tools that you can use when you test your RosettaNet
applications.

Related Topics
Managing Oracle WebLogic Security

Trading Partner Integration Security

Tutorial: Building RosettaNet Solutions

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html

Keys to res Used in the Example

Introducing Trading Partner Integration B-3

Building Your First Business Processes

Keystores Used in the Example
The procedures in this example uses the demonstration keystore which is included in your Oracle
WebLogic Integration installation. This keystore file can only to be used for testing purposes.
This Java Key Store files is located in the following location:

BEA_HOME\wlserver_<version>\server\lib\DemoIdentity.jks

where BEA_HOME is the directory in which you installed your product.

You can use any other keystore to complete the example, however, the demonstration keystore
already has some of the certificates necessary loaded into it. If you need details about how to
create and load certificates into your custom keystore, see Step 1: Generating a Test Certificate
and Step 2: Configuring Keystores for Oracle WebLogic Integration in Example: ebXML
Security Configuration.

In this sample, the following terminology is used:

Client certificate—the digital certificate used in mutual authentication.

Encryption certificate—the certificate used for encryption.

Signature certificate—the certificate used to sign messages for authenticity of the sender
and integrity of messages.

Server certificate—the digital certificate of the server on which the remote application is
running.

Note: Oracle WebLogic Integration requires remote trading partners to have both a client and
server certificate configured while local trading partners only need a client certificate.

Identity keystore—the keystore which stores private keys for local trading partners and
certificates for both the local and remote trading partners.

Trust keystore—the keystore which stores the trusted certificate authority certificates
associated with any certificates used in Oracle WebLogic Integration.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html

Example : Roset taNet Secur i t y Conf igura t i on

B-4 Introducing Trading Partner Integration

Before You Begin
The instructions in this sample is geared towards users that are already familiar with the basic
Oracle WebLogic Server and Oracle WebLogic Integration tasks and procedures. If you are new
to these Oracle WebLogic applications, consider completing Tutorial: Building Your First
Business Process before using this sample. It is further assumed that you are familiar with
RosettaNet concepts and how to configure RosettaNet business processes in Oracle WebLogic
Integration. If you are new to RosettaNet business processes, consider completing Tutorial:
Building RosettaNet Solutions before proceeding.

This sample configuration involves a participant process and a initiator process created and
deployed in Oracle WebLogic Integration, either on two different computers or on two different
domains on the same machine. Before you can start the security configuration part of this sample,
you must complete the following:

1. If you are going to run the Trading Partner 1 and the Trading Partner 2 processes on the same
computer, create two domains with different port numbers. Be sure to make the domains SSL
enabled.

For instructions of how to create a domain, see Creating Oracle WebLogic Domains Using
the Configuration Wizard.

When you create a new Oracle WebLogic Integration domain using the Configuration
Wizard, the Configuration Wizard automatically populates the Trading Partner
Management (TPM) repository with default trading partners and bindings. You will use
these default trading partners in this sample.

If you are using a point based database, you will have to configure your second domain to
point to a different database instance, i.e. use a different port number, since local and
remote trading partners are not allowed to use the same database in Oracle WebLogic
Integration. You do this by changing the default port number from 9093 to, for example,
9090 in the following files:

– config.xml (2 instances)
– URLS.dat

– If you are using a Windows operating system: startWeblogic.cmd and
stopWeblogic.cmd

– If you are using an Unix operating system: startWeblogic.sh and
stopWeblogic.sh.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html
http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/index.html

Step 1 : Conf igur ing the Loca l T rad ing Par tner fo r the T rad ing Par tne r 1 Se tup

Introducing Trading Partner Integration B-5

These files are all located in: BEA_HOME\user_projects\domains\domainName
where BEA_HOME is the directory in which you installed Oracle WebLogic Integration and
domainName is the name of your second domain (such as tptutorial2).

2. Create the initiator process.

3. Create the participant process.

For instructions on how to create business processes, see Tutorial: Building Your First
Business Process. To learn more about RosettaNet processes, see Tutorial: Building
RosettaNet Solutions.

If you are running both processes on one computer in different domains, both domains use
the same keystores. It is important that you only have the current process and
corresponding domain running when you are configuring trading partner information, or
simultaneous updates to the keystore may occur and overwrite each other.

Step 1: Configuring the Local Trading Partner for the
Trading Partner 1 Setup

In this section, you configure the default trading partner Test_TradingPartner_1 to be the local
trading partner for the initiator business process. You then add certificates to the trading partner
and configure the binding for that trading partner. Lastly, you export the trading partner data into
an XML file which, you later import as the remote trading partner for the participant. This section
contains the following procedures:

Configuring the Local Trading Partner

Adding the Certificates

Editing the Trading Partner Binding

Enabling the Trading Partner Profile

Exporting the Trading Partner Data

Exporting the Server Certificate

Configuring the Local Trading Partner
To configure Test_TradingPartner_1 to be your local trading partner, complete the following
procedure:

1. Start Oracle Workshop for WebLogic.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html

Example : Roset taNet Secur i t y Conf igura t i on

B-6 Introducing Trading Partner Integration

2. Open the application which contains the initiator process that you created in Before You
Begin

3. If you are running both processes on the same computer in different domains, navigate to
Tools > Application Properties....

The Application Properties window opens.

4. Select the domain that you want to use from the Server Home Directory drop-down menu
or by using the Browse... button.

5. Click OK.

6. If it is not already running, start your Oracle WebLogic Server.

7. Open the Oracle WebLogic Integration Administration Console.

8. Navigate to Trading Partner Management > Profile Management.

The View and Edit Trading Partner Profiles screen appears with the two trading partners
Test_TradingPartner_1 and Test_TradingPartner_2 listed, as shown in Figure B-1

Figure B-1 Trading Partner Profiles

Since you are going to import the configuration for the remote trading partner later on, you
delete Test_TradingPartner_2 from the list at this point.

9. Select Test_TradingPartner_2 by clicking on the option box next to it.

10. Click Delete.

You now need to add the appropriate certificates—client, encryption, and digital signature—to
your local trading partner.

Step 1 : Conf igur ing the Loca l T rad ing Par tner fo r the T rad ing Par tne r 1 Se tup

Introducing Trading Partner Integration B-7

Adding the Certificates
To add the appropriate certificates to your local trading partner:

1. Click Test_TradingPartner_1.

The details of your trading partner, including general information, bindings, and certificates
are displayed. Note that there are no certificates configured for this trading partner.

2. Click Add Certificate

The Add Certificate (Step 1 of 2) screen appears.

3. Select the Generate a certificate for TEST USE only option.

Note: The certificates you create in this sample is only for demo use and should never be
used in production mode.

4. Click Next

The Add Certificate (Step 2 of 2) screen appears. You use this screen to create a client
certificate to be stored in the keystore and used by the local trading partner. However,
before you can create the client certificate, you have to create a password alias.

5. Click Add alias..., as shown below.

The Add New Password Alias screen appears.

6. In the Password Alias Name field, enter init-rn20-clt.

7. Enter and confirm a password to use for this alias.

8. Click Submit.

The Add Certificate (Step 2 of 2) screen appears again, with the alias values you just
entered.

9. In the Name field, enter init-clt.

10. If not already selected, from the Type drop-down list, select CLIENT.

11. If not already selected, select the Import Certificate in Keystore option.

12. Click Create certificate.

Example : Roset taNet Secur i t y Conf igura t i on

B-8 Introducing Trading Partner Integration

By selecting CLIENT from the Type drop-down list, you specified the certificate to be a client
certificate. Using the instructions in step 2-6, create:

A digital SIGNATURE certificate named init-sig.

An ENCRYPTION certificate named init-enc.

You have completed adding the three certificates. The next step is to edit the binding for the
Test_TradingPartner_1 trading partner.

Editing the Trading Partner Binding
To edit the default bindings for your local trading partner:

1. In the left pane, click Bindings.

2. From the Name drop-down list, select Test_TradingPartner_1.

3. Click Go.

The Edit Binding screen appears.

4. In the list of bindings, click TP1-rn20-binding.

The View Binding Details screen appears

5. Click Edit Binding.

6. Make the following edits:

Transport Configuration

– Transport Protocol: HTTPS

– End Point: specify the URL to use https instead of http protocol and change the port
number to the SSL port number you specified in “Before You Begin” on page B-4
when you created your domain.This is usually the even number immediately following
your local port number. For example, for local port number 7001, the SSL port number
is 7002.

Message Level Encryption Configuration

– Encryption Certificate: init-enc

– Encryption Level: Entire Payload

– Cipher Algorithm: 3DES

Digital Signature Configuration for Non Repudiation

Step 1 : Conf igur ing the Loca l T rad ing Par tner fo r the T rad ing Par tne r 1 Se tup

Introducing Trading Partner Integration B-9

– Signature Certificate: init-sig

– Signature Required: select this option

– Signature Receipt Required: select this option

– Hash Function: SHA1

7. Click Submit.

You have completed editing the binding information. Before you proceed further, make sure that
the trading partner profile you just configured is enabled.

Enabling the Trading Partner Profile
Complete the following procedure to enable the trading partner profile that you just created and
configured:

1. Navigate to Trading Partner Management > Profile Management.

2. In the Status column, make sure that a green ball is displayed:

3. If a red ball is showing in the Status column, select the trading partner and click Enable.

Rather than entering all the Test_TradingPartner_1 configuration data again for the participant
business process computer/domain, you export the data from the initiator process
computer/domain and then import it as the remote trading partner configuration for the
participant.

Exporting the Trading Partner Data
To import the trading partner data from the local trading partner:

1. In the left pane, click Import/Export.

2. In the Import/Export pane, select Export.

3. Select the Trading Partner option.

4. Click Browse next to Trading Partner.

5. Deselect all but the Test_TradingPartner_1 trading partner.

Example : Roset taNet Secur i t y Conf igura t i on

B-10 Introducing Trading Partner Integration

6. Click Done.

7. For the Format option, select WLI Standard.

8. Click Export.

9. If a File Download dialog opens, click Save.

10. In the Save As window navigate to the location which you want to save the exported file to.

11. Enter TradingPartner1 as a filename and click Save.

Note: Remember the navigation path to the file. You will need this when you import your
trading partner information later on.

12. Open TradingPartner1.xml in a text editor.

13. Change all instances of LOCAL to REMOTE.

14. In the trading-partner element, set the is-default attribute to false.

15. Save and close the file.

You have now completed the configuration of your the initiator local trading partner. The next
section explains how to use the keytool utility to export the Test_TradingPartner_1 server
certificate which, you will import later when setting up services and service profiles for the
participant computer/domain.

Exporting the Server Certificate
1. At the command line prompt, navigate to BEA_HOME\wlserver_<version>\server\lib

where BEA_HOME is the directory in which you installed your Oracle WebLogic Integration
installation.

2. Enter the following: keytool -export -alias demoidentity -file
servercert1.crt -keystore DemoIdentity.jks -storepass
DemoIdentityKeyStorePassPhrase

This exports your server certificate into a file named servercert1.crt.

Note: If you are running both business processes on the same computer in different
domains, both domains are accessing the same keystore. To avoid any problems
associated with this configuration, create a copy of the servercert1.crt and name
it servercert2.crt which, and use it as the second domains server certificate.

Step 2 : Conf igur ing the Loca l T rad ing Par tner fo r the T rad ing Par tne r 2 Se tup

Introducing Trading Partner Integration B-11

You have now completed the Test_TradingPartner_1 configuration. To learn more about
creating, configuring, and managing trading partners in Oracle WebLogic Integration, see
Trading Partner Management.

The next step is to configure the local trading partner information for the participant side of the
sample.

Step 2: Configuring the Local Trading Partner for the
Trading Partner 2 Setup

You configure the trading partner profile for the participant side of the sample in much the same
way that you created the initiator side. Use the instructions in Step 1: Configuring the Local
Trading Partner for the Trading Partner 1 Setup to complete the following:

1. If you are running two domains on the same computer, stop the Oracle WebLogic Server
which is running on your initiator domain.

2. Open the participant business process that you created in Before You Begin.

3. If you are running both processes on the same computer, make sure that the participant
process is configured to use the domain that is not the one used by the initiator process.

4. Start your Oracle WebLogic Server.

5. Deploy your participant process.

6. Open the Oracle WebLogic Administration Console.

7. Navigate to Trading Partner Management > Profile Management.

8. Delete Test_TradingPartner_1.

9. Select Test_TradingPartner_2 to be the default trading partner:

a. Click on Test_TradingParnter_2 to view its profile settings.

b. If Default Trading Partner is not already set to true, click Edit Profile and select the
Default Trading Partner option.

10. In the Test_TradingPartner_2 profile create the following test certificates:

– A CLIENT certificate named part-clt

– A digital SIGNATURE certificate named part-sig.

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html#TPMConfiguring

Example : Roset taNet Secur i t y Conf igura t i on

B-12 Introducing Trading Partner Integration

– An ENCRYPTION certificate named part-enc

Note: This step is similar to Adding the Certificates, but you need to use the port numbers
of the second computer/domain for your configuration.

11. Configure the binding for Test_TradingPartner_2.

12. Make sure that the trading partner is enabled.

13. Export the trading partner information to a file named TradingPartner2.xml.

14. In the TradingPartner2.xml file, change all instances of LOCAL to REMOTE and in the
trading-partner element, set the is-default attribute to false.

15. If you are using a two computer configuration, use the JDK keytool utility to export the
Test_TradingPartner_2 server certificate.

You have completed configuring Test_TradingPartner_2. The next step is to import the remote
trading partner profiles for the two trading partners.

Step 3: Importing the Remote Trading Partner
Information

Rather than recreating the information that you already created for each local trading partners
when you create the remote trading partners, you import the XML files that you exported in Step
1: Configuring the Local Trading Partner for the Trading Partner 1 Setup and Step 2: Configuring
the Local Trading Partner for the Trading Partner 2 Setup.

This set of instructions are the same for both Trading Partner 1 and Trading Partner 2. Go through
this section twice, once for your Trading Partner 1 configuration and once for your Trading
Partner 2 configuration.

To import the trading partner data:

1. Navigate to Trading Partner Management > Profile Management.

2. In the left pane, click Import/Export.

The Import Trading Partner Management Data screen is displayed.

3. Click Browse and navigate to the file which corresponds to your trading partner according to
the following table:

Step 4 : Crea t ing Se rv ices and Serv i ce P ro f i l es in Orac le WebLogic In tegrat ion

Introducing Trading Partner Integration B-13

4. Select WLI Standard as the Import Format.

5. Click Import.

After successfully importing the trading partner information, remember to review the new trading
partner profile and make sure that the end point URL is correct. If they need to be changed, edit
your bindings as described in Editing the Trading Partner Binding.

Step 4: Creating Services and Service Profiles in Oracle
WebLogic Integration

Once the local and remote trading partner configurations are completed, you have to create
services and corresponding service profiles for those trading partners. In Oracle WebLogic
Integration, a service represents a business process that is either offered by a local trading partner,
or a business process that is being called via a control on a remote trading partner. Service profiles
specify the protocol binding and URL endpoints for the local and remote trading partners that
offer and call the service.

Note: Make sure that the process that you want to create the service and service profile for is
deployed before you start this procedure.

This section is the same for both trading partner configuration. Complete the following procedure
twice, once for your Trading Partner 1 configuration and once for your Trading Partner 2
configuration:

1. Deploy the process that has the trading partner you want to configure and open your
administration console.

Note: If you are running both trading partner configurations on the same machine in
different domains, it is important that you only have the server that you are currently
configuring running. Otherwise, you could end up with simultaneous updates to the
keystores that could overwrite each, since both domains access the same keystore.

Table 4-7 Local and Remote Trading Partners

Current Local Trading Partner Import File

Test_TradingPartner_1 TradingPartner2.xml

Test_TradingPartner_2 TradingPartner1.xml

Example : Roset taNet Secur i t y Conf igura t i on

B-14 Introducing Trading Partner Integration

2. In the Oracle WebLogic Integration Administration Console, navigate to Trading Partner
Management > Service Management.

3. In the left pane, click Create New.

The Add Service screen appears.

4. Click Browse and navigate to one of the following:

– If you are configuring Test_TradingPartner_1, the service control which corresponds
to your initiator process,

– If you are configuring Test_TradingPartner_2, your deployed participant process,

5. From the Type drop-down menu select one of the following:

– Service Control, if you are configuring Test_TradingPartner_1.

– Process, if you are configuring Test_TradingPartner_2.

6. From the Business Protocol drop-down menu, select RosettaNet.

7. Click Add Service.

The View and Edit Service Details screen appears.

8. Click Add Service Profile.

The Add Service Profile screen appears.

9. From the Name drop-down menus, select your LOCAL and REMOTE trading partners
according toTable 4-8.

10. From the Binding drop-down menus, select your LOCAL and REMOTE bindings
according to Table 4-9.

Table 4-8 Local and Remote Trading Partners

 Process Currently Deployed Local Trading Partner Remote Trading Partner

Initiator Process Test_TradingPartner_1 Test_TradingPartner_2

Participant Process Test_TradingPartner_2 Test_TradingPartner_1

Step 4 : Crea t ing Se rv ices and Serv i ce P ro f i l es in Orac le WebLogic In tegrat ion

Introducing Trading Partner Integration B-15

11. Click Submit.

12. On the next screen, click Yes.

The Add Authentication (Step 1 of 2) screen appears.

13. From the Choose type of Authentication Mode options, select Mutual for both the
REMOTE and LOCAL trading partner.

Note: Although it is not enforced, typically the same type of authentication is selected for
both the local and remote trading partner.

14. Click Next.

The Add Authentication (Step 2 of 2) screen appears. On this screen, you import the server
certificate for your remote trading partner.

15. Next to the Server Certificate drop-down list, click Add Certificate....

16. Select Import certificate from file.

17. Click Next.

18. Click Add alias....

The Add New Password Alias screen appears.

19. In the Password Alias Name field, enter any name.

20. Enter and confirm a password to use for this alias.

21. Click Submit.

22. Next to the Import Certificate Location field, click Browse.

23. Navigate to one of the following:

Table 4-9 Local and Remote Bindings

 Process Currently Deployed Local Binding Remote Binding

Initiator Process TP1-rn20-binding TP2-rn20-binding

Participant Process TP2-rn20-binding TP1-rn20-binding

Example : Roset taNet Secur i t y Conf igura t i on

B-16 Introducing Trading Partner Integration

– servercert1.crt, if you are configuring Test_TradingPartner_2

– servercert2.crt, if you are configuring Test_TradingPartner_1.

24. Click Create Certificate.

Authentication is added and the View and Edit Service Details page is displayed.

Note: If there is an error, the Add Authentication page is redisplayed. A message indicating
the problem is displayed above the input requiring correction.

25. Make sure that all of your trading partners and your service profiles are enabled.

You have successfully created a service and its service profile. To learn more about services and
service profiles, see Trading Partner Management.

This concludes this sample. To test your sample you simply run the two processes that you
created in Before You Begin. Before you test your sample, you may want to review Testing Tips.

Testing Tips
Before you test your sample, you can use the keytool utility to make sure that your keystore
entries are properly configured. If you want to test that your encryption works properly, you can
use the Trace Raw Messages option to save the raw messages that are sent to a specific location
in your file system.

Note: When you first set up connections to RosettaNet trading partners, it is a good idea to run
your configuration in Test mode to take advantage of the additional debugging features
provided by this mode. To run your Web Logic Integration RosettaNet configurations in
Test mode, you specify two annotations in the setProperties method:

-Set global-usage-code to Test.

-Set debug-mode to true.

For more information about the setProperites method, see RosettaNet Control
Interface.

This section contains the following testing tips:

Listing the Keystore Content

Enabling the Trace Raw Messages Option

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.RosettaNet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

Tes t ing T ips

Introducing Trading Partner Integration B-17

Listing the Keystore Content
You can use the JDK keytool utility to make sure that your key store entries are properly
configured. The keystore used in this sample, is the demo keystore, DemoIdentity.jks, which
is installed automatically when you install your product.

1. At the command line prompt, navigate to BEA_HOME\wlserver_<version>\server\lib\
where BEA_HOME is the directory in which you installed Oracle WebLogic Server

2. Enter the following keytool command: keytool -list -keystore DemoIdentity.jks
-storepass DemoIdentityKeyStorePassPhrase

The resulting list should look similar to the following:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 9 entries:

secdomain1-client, Sat Oct 18 15:12:15 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
53:13:78:D4:D0:E1:0D:EA:F4:6F:A1:19:6F:BE:4B:AF
secdomain2-sig, Sat Oct 18 16:44:00 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
97:24:2D:B5:CC:F3:FF:E5:06:E0:BD:CC:B6:E2:EF:E6
secdomain1servcert, Sat Oct 18 17:07:30 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
0F:AB:D0:92:0E:28:20:2C:70:4B:54:3E:84:AC:7F:E7
secdomain1-sig, Sat Oct 18 15:10:11 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
AD:9F:BA:80:44:F2:7D:54:65:2C:7B:86:8B:2F:AA:D7
secdomain2-enc, Sat Oct 18 16:44:00 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
3E:6C:A9:E8:5E:03:51:80:AD:6A:76:41:44:76:37:7B
secdomain2servcert, Sat Oct 18 16:46:15 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
0F:AB:D0:92:0E:28:20:2C:70:4B:54:3E:84:AC:7F:E7
secdomain1-enc, Sat Oct 18 15:10:47 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
51:AB:CD:71:A2:E9:26:C8:CC:B2:A8:4C:49:DB:F1:CA
secdomain2-client, Sat Oct 18 16:43:59 PDT 2003, trustedCertEntry,
Certificate fingerprint (MD5):
F9:FA:43:6E:DE:00:FB:FB:D5:68:EF:F6:2A:77:FD:01
demoidentity, Sat Oct 18 13:25:12 PDT 2003, keyEntry,
Certificate fingerprint (MD5):
0F:AB:D0:92:0E:28:20:2C:70:4B:54:3E:84:AC:7F:E7

Example : Roset taNet Secur i t y Conf igura t i on

B-18 Introducing Trading Partner Integration

Enabling the Trace Raw Messages Option
The Trace Raw Messages option enables you to save raw messages in a specified location. You
can then open these messages to review your security settings, such as encryption and signatures.

1. In the Oracle WebLogic Integration Administration Console, navigate to Trading Partner
Management > Configuration.

The General Configuration screen appears.

2. Specify the Message Tracking Level and Mode by selecting from the drop-down menu.

3. In the Directory field, enter the path to the folder which you want the raw messages to be
written to.

4. From the Trace Raw Messages options, select Yes.

5. Click Submit.

After you have run your processes, check the specified directory for any raw messages.

Introducing Trading Partner Integration 1-1

Index

A
attachments 1-18
authentication

about authentication 4-11
basic authentication 4-13
client authentication 4-12
levels of 4-13
one-way (server-side) authentication 4-13
one-way (server-side) plus basic

authentication 4-13
remote users using two-way authentication

4-21
server authentication 4-12
TPMUserNameMapper class 4-22
trading partner messages 4-20
two-way (mutual) authentication 4-13
types of 4-13

authorization 4-33
defined 4-31
levels of 4-32
policies 4-31
roles 4-31
service authorization 4-33
trading partner authorization 4-32

B
B2BDefaultWebApp 4-6, 4-11
basic properties, trading partners 1-6
bindings 1-8
business IDs 1-6
business messages 1-18
business processes 4-11

private 1-16
public 1-16

business protocols 1-18

C
certificate authorities 4-15
certificate verification 4-26
client certificates 4-17
controls

ebXML controls 2-10
Process control 1-15
RosettaNet controls 3-16
Service Broker control 1-15
TPM control 1-15

conversations 1-11
credential stores 4-9

keystores 4-9
PasswordStore 4-9

D
data encryption 4-45
DefaultIdentityAsserter 4-23
design patterns

role-based 1-11
RosettaNet 3-6

digital certificates 1-7, 4-14
certificate authorities 4-15
client certificates 4-17
encryption certificates 4-18
server certificates 4-17
signature certificates 4-18

digital signatures

1-2 Introducing Trading Partner Integration

defined 4-34
PKCS7 enveloped data 4-36
XMLDSig 4-35

documentation
PIPs 3-2
RosettaNet Implementation Framework

(RNIF) 3-2

E
ebXML

about ebXML 2-2
architecture 2-7
concepts 2-3
ebXML controls 2-10
messages 2-4
participant business processes 2-11
protocol layer 2-4
specifications 2-2
support in WebLogic Integration 2-2
tasks 2-11
XMLDSig 4-35

encryption 4-45
encryption certificates 4-18
extended properties, trading partners 1-6

F
failure paths 1-16

I
identity keystore 4-9
initiator role 1-11

J
JDBC connection pools 4-11
JMS destination 4-11

K
keystores 4-9

default keystores 4-10
production environment 4-10
types of 4-9

L
local trading partners 1-6

M
message attachments 1-18
message tracking 1-24
message-level security

defined 4-34
digital signatures 4-34
nonrepudiation 4-37

monitoring
message tracking 1-24
run-time statistics 1-25

N
nonrepudiation

defined 4-37
digital signatures 4-38
example 4-37
secure audit log 4-38
services 4-38
timestamp provider 4-44

P
participant role 1-11
Partner Interface Processes (PIPs) 3-5
PasswordStore 4-9
payloads 1-18
PIPs

defined 3-5
documentation 3-2

PKCS7 enveloped data 4-36

Introducing Trading Partner Integration 1-3

policies 4-31
private business processes 3-5
Process controls and TPM lookups 1-15
protocol bindings 1-8
protocol bindings, default protocol bindings 1-10
proxy servers

outbound HTTP proxy servers 4-47
using with trading partner integration 4-47
WebLogic proxy plug-ins 4-49

R
recommended reading

RosettaNet Implementation Framework
(RNIF) 3-2

technical advisorys 3-2
reliable messaging 2-6
remote trading partners 1-6
RNIF documentation 3-2
roles 1-11, 4-31
roles, naming 1-12
RosettaNet 3-2

about RosettaNet 3-2
architecture 3-15
business messages 3-10
concepts 3-4
design patterns 3-6, 3-10

asynchronous single-action activity 3-6
asynchronous two-action activity 3-8

encryption 4-45
participant business processes 3-17
Partner Interface Processes (PIPs) 3-5
PKCS7 enveloped data 4-36
protocol layer 3-5
public business processes 3-5
RosettaNet Business Message (RBM) 3-12
RosettaNet controls 3-16
RosettaNet Object (RNO) 3-10
support in WebLogic Integration 3-3
tasks 3-17
validation of business messages 3-14

S
secure audit log 4-38
security

authentication 4-11
authorization 4-31
certificate authorities 4-15
certificate verification 4-26
components of 4-3
credential stores 4-9
default Integration domain configuration 4-3
default security configuration 4-8
digital certificates 4-14
encryption 4-45
features, summary of 4-2
groups 4-51
implementing, steps for 4-50
keystores 4-9
message-level security 4-34
nonrepudiation 4-37
PasswordStore 4-9
proxy servers 4-47
resources to protect 4-11
roles 4-51
SSL protocol 4-12
transport-level security 4-11
users 4-51

server certificates 4-17
service authorization 4-33
Service broker controls and TPM lookups 1-15
service profiles 1-8
services 1-8
signature certificates 4-18
Simple Object Access Protocol (SOAP) 2-2
SSL protocol 4-12
statistics 1-25
success paths 1-16

T
timestamp provider 4-44
TPM control and web services 1-15

1-4 Introducing Trading Partner Integration

TPM repository
defined 1-4
lookups 1-15

TPMUserNameMapper class 4-22
trading partner integration

defined 1-1
deploying solutions 1-28
designing solutions 1-27
managing solutions 1-29
phases for implementing 1-26
planning solutions 1-27

trading partner management 1-4
trading partners

about trading partners 1-5
authorization 4-32
basic properties 1-6
business IDs 1-6
certificates 1-7
default trading partner 1-7, 1-9
extended properties 1-6
local 1-6
profiles 1-6
remote 1-6
types of 1-6

Transport Servlet Filter 4-6, 4-21
transport-level security 4-11
trust keystore 4-9

U
UserNameMapper interface 4-26

V
verifying certificates 4-26

W
web services

TPM control 1-15
TPM lookups via Process and Service

Broker controls 1-15

X
XMLDSig 4-35

	Oracle® WebLogic Integration
	10g Release 3 (10.3)

	Oracle WebLogic Integration Introducing Trading Partner Integration, 10g Release 3 (10.3)
	Introduction
	About Trading Partner Integration
	Visual Public/Private Process Integration
	Support for Leading Industry Protocols and Standards
	Trading Partner Management (TPM) and Repository Access
	Easy Access to Run-Time Information
	High Performance and Availability
	High Security, Auditing, and Non-Repudiation
	Trading Partner Enablement

	Trading Partner Management Concepts
	About Trading Partner Management
	Trading Partners
	Types of Trading Partners
	Trading Partner Profiles
	Basic and Extended Properties
	Digital Certificates

	Services, Service Profiles, and Protocol Bindings
	Services
	Service Profiles
	Protocol Bindings

	Exchanging Data in the TPM Repository
	Default TPM Repository Settings
	Default Trading Partners
	Default Protocol Bindings

	MBean APIs for Third-Party Access

	Trading Partner Business Process Concepts
	About Business Processes for Trading Partner Integration
	Conversations and Roles
	Conversations
	Roles: Initiators and Participants

	Types of Business Processes
	Initiator and Participant Business Processes
	Public and Private Business Processes
	Success and Failure Paths

	Messaging Concepts
	Messaging Services for Trading Partner Integration
	Business Protocol
	Business Message
	Business Message Formats
	Attachments

	Run-Time Processing of Business Messages
	Outgoing Message Path

	Run-Time Monitoring Concepts
	Message Tracking
	Viewing Run-Time Statistics

	Summary of Trading Partner Integration Phases
	Phase 1: Plan the Solution
	Phase 2: Design, Build, and Test the Solution
	Phase 3: Deploy the Solution
	Phase 4: Administer and Tune the Solution

	Next Steps

	Introducing ebXML Solutions
	About ebXML Solutions
	About ebXML
	ebXML Specifications
	SOAP Specifications

	ebXML Support in Oracle WebLogic Integration
	Supported ebXML 1.0 and 2.0 Features
	Unsupported ebXML 2.0 Features

	ebXML Concepts
	ebXML Protocol Layer
	ebXML Business Messages
	Diagram of an ebXML Business Message
	Logical MIME Parts of an ebXML Business Message
	Message Attachments

	Reliable Messaging

	ebXML Business Processes
	Guidelines for Building ebXML Business Processes
	ebXML Initiator Business Processes
	ebXML Participant Business Processes

	Tasks for Implementing an ebXML Solution
	Before You Begin
	Planning the ebXML Solution
	Building the ebXML Solution
	Deploying the ebXML Solution
	Managing the ebXML Solution

	Introducing RosettaNet Solutions
	About RosettaNet Solutions
	About RosettaNet
	Understanding RosettaNet

	RosettaNet Support in Oracle WebLogic Integration
	Supported RosettaNet 1.1 and 2.0 Features
	Unsupported RosettaNet Features

	RosettaNet Concepts
	RosettaNet Protocol Layer
	Partner Interface Processes (PIPs)
	Public and Private Business Processes
	PIP Design Patterns
	Asynchronous Single-Action Activity
	Asynchronous Two-Action Activity
	Synchronous One-Action / Two-Action Activity

	RosettaNet Business Messages
	Components of a RosettaNet Business Message
	Validation of RosettaNet Business Messages

	RosettaNet Business Processes
	Guidelines for Designing RosettaNet Business Processes
	RosettaNet Initiator Business Processes
	RosettaNet Participant Business Processes

	Tasks for Implementing a RosettaNet Solution
	Before You Begin
	Planning the RosettaNet Solution
	Building the RosettaNet Solution
	Deploying the RosettaNet Solution
	Managing the RosettaNet Solution

	Trading Partner Integration Security
	Before You Begin
	Security Framework for Trading Partner Integration
	Summary of Security Features
	Oracle WebLogic Server Default Security Configuration
	Components of Trading Partner Integration Security
	Default Domain Security Configuration
	Credential Stores
	Oracle WebLogic Integration PasswordStore for Encrypted Passwords
	Keystore for Private Keys and Certificates

	Trading Partner Integration Resources Requiring Security Policies

	Transport-Level Security
	Authentication
	SSL Protocol
	Types of Authentication
	Authentication Levels
	Digital Certificates
	Authenticating Trading Partner Messages

	Authenticating Remote Users in Two-Way Authentication
	About the TPMUserNameMapper Class
	Configuring the DefaultIdentityAsserter to Use TPMUserNameMapper
	Implementing a Custom UserNameMapper

	Verifying Certificates in Two-Way Authentication
	Benefits of Certificate Verification
	When Oracle WebLogic Integration Uses the Certificate Verification Provider
	Certificate Verification Process
	Implementing a Certificate Verification Provider

	Authorization
	Roles and Policies
	Authorization Levels

	Message-Level Security
	Digital Signatures
	Oracle WebLogic Integration Support for Digital Signatures
	About Digital Signatures
	XMLDSig for ebXML 1.0 and ebXML 2.0
	Digital Signature with PKCS7 Enveloped Data for RosettaNet 1.1 and RosettaNet 2.0

	NonRepudiation
	Nonrepudiation Example
	Nonrepudiation Services
	Digital Signatures
	Secure Audit Log
	Timestamp Provider

	Encryption-PKCS7 Enveloped Data for RosettaNet 2.0
	How Oracle WebLogic Integration Handles Data Encryption
	Supported Encryption Algorithms

	Using Proxy Servers with Trading Partner Integration
	Configuring Trading Partner Integration to Use an Outbound HTTP Proxy Server
	Configuring Oracle WebLogic Integration with a Web Server and a Oracle WebLogic Proxy Plug-In
	Services Provided by Oracle WebLogic Proxy Plug-In
	Topology Using Oracle WebLogic Proxy Plug-In
	Configuring the Web Server

	Implementing Security for Trading Partner Integration
	Configure Users, Groups, and Roles
	Configure Trading Partner Profiles
	Configure the Keystores
	Configure Certificates
	Configure SSL
	Configure Transport-Level and Message-Level Options in Service Profiles

	Example: ebXML Security Configuration
	Before You Begin
	Step 1: Generating a Test Certificate
	Configuring Windows to Run OpenSSL
	Creating a Public/Private Key Pair
	Generating the Test Certificate

	Step 2: Configuring Keystores for Oracle WebLogic Integration
	Step 3: Configuring the Local Trading Partner in Oracle WebLogic Integration 1
	Configuring the Local Trading Partner
	Adding the Test Certificate to the Keystore
	Editing the Trading Partner Binding

	Step 4: Configuring the SSL Settings in Oracle WebLogic Server
	Step 5: Exporting the WebLogic Integration Trading Partner Data
	Step 6: Configuring the Local Trading Partner in WebLogic Integration 2
	Step 7: Configuring the Remote Trading Partner in WebLogic Integration
	Step 8: Creating Services and Service Profiles in WebLogic Integration
	Creating the Trading Partner Service
	Creating the Process Service
	Creating the Service Profile

	Step 9: Configuring the iPlanet Server
	Creating the Trust Database
	Requesting a Trial Digital Certificate from Verisign
	Installing the iPlanet Server Certificate
	Requesting a Trusted CA Certificate from Verisign
	Installing the Trusted CA Certificate
	Installing the WebLogic Integration 2 certificate
	Configuring iPlanet for SSL

	Example: RosettaNet Security Configuration
	Keystores Used in the Example
	Before You Begin
	Step 1: Configuring the Local Trading Partner for the Trading Partner 1 Setup
	Configuring the Local Trading Partner
	Adding the Certificates
	Editing the Trading Partner Binding
	Enabling the Trading Partner Profile
	Exporting the Trading Partner Data
	Exporting the Server Certificate

	Step 2: Configuring the Local Trading Partner for the Trading Partner 2 Setup
	Step 3: Importing the Remote Trading Partner Information
	Step 4: Creating Services and Service Profiles in Oracle WebLogic Integration
	Testing Tips
	Listing the Keystore Content
	Enabling the Trace Raw Messages Option

	Index

