
Oracle® WebLogic Server
Getting Started With WebLogic Web Services Using JAX-RPC

10g Release 3 (10.3)

July 2008

Oracle WebLogic Server Getting Started With WebLogic Web Services Using JAX-RPC, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Getting Started With WebLogic Web Services Using JAX-RPC iii

Contents

1. Introduction

2. Use Cases and Examples
Creating a Simple HelloWorld Web Service . 2-1

Creating a Web Service With User-Defined Data Types . 2-7

Creating a Web Service from a WSDL File . 2-16

Invoking a Web Service from a Stand-alone Java Client . 2-25

Invoking a Web Service from a WebLogic Web Service . 2-31

3. Developing WebLogic Web Services
Overview of the WebLogic Web Service Programming Model . 3-2

Configuring Your Domain For Web Services Features. 3-2

Developing WebLogic Web Services Starting From Java: Main Steps 3-3

Developing WebLogic Web Services Starting From a WSDL File: Main Steps 3-5

Creating the Basic Ant build.xml File . 3-7

Running the jwsc WebLogic Web Services Ant Task . 3-8

Examples of Using jwsc . 3-10

Advanced Uses of jwsc. 3-11

Running the wsdlc WebLogic Web Services Ant Task . 3-12

Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc 3-14

Deploying and Undeploying WebLogic Web Services . 3-16

Using the wldeploy Ant Task to Deploy Web Services . 3-17

Using the Administration Console to Deploy Web Services 3-18

iv Getting Started With WebLogic Web Services Using JAX-RPC

Browsing to the WSDL of the Web Service . 3-19

Configuring the Server Address Specified in the Dynamic WSDL 3-20

Testing the Web Service . 3-22

Integrating Web Services Into the WebLogic Split Development Directory Environment . .
3-23

4. Programming the JWS File
Overview of JWS Files and JWS Annotations . 4-1

Java Requirements for a JWS File . 4-2

Programming the JWS File: Typical Steps . 4-3

Example of a JWS File. 4-5

Specifying that the JWS File Implements a Web Service (@WebService Annotation)4-6

Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation) . 4-6

Specifying the Context Path and Service URI of the Web Service (@WLHttpTransport
Annotation) . 4-7

Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and
@OneWay Annotations) . 4-8

Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam Annotation) . 4-9

Customizing the Mapping Between the Operation Return Value and a WSDL Element
(@WebResult Annotation) . 4-10

Accessing Runtime Information About a Web Service . 4-11

Using JwsContext to Access Runtime Information . 4-11

Guidelines for Accessing the Web Service Context . 4-12

Methods of the JwsContext. 4-13

Using the Stub Interface to Access Runtime Information . 4-18

Should You Implement a Stateless Session EJB?. 4-19

Programming Guidelines When Implementing an EJB in Your JWS File 4-19

Getting Started With WebLogic Web Services Using JAX-RPC v

Example of a JWS File That Implements an EJB . 4-20

Programming the User-Defined Java Data Type. 4-21

Throwing Exceptions. 4-24

Invoking Another Web Service from the JWS File. 4-26

Programming Additional Miscellaneous Features Using JWS Annotations and APIs . . 4-26

Sending Binary Data Using MTOM/XOP . 4-27

Streaming SOAP Attachments . 4-29

Using SOAP 1.2 . 4-30

Specifying that Operations Run Inside of a Transaction . 4-31

Getting the HttpServletRequest/Response Object . 4-32

JWS Programming Best Practices . 4-34

5. Understanding Data Binding
Overview of Data Binding. 5-1

Supported Built-In Data Types . 5-2

XML-to-Java Mapping for Built-in Data Types. 5-2

Java-to-XML Mapping for Built-In Data Types . 5-4

Supported User-Defined Data Types. 5-6

Supported XML User-Defined Data Types . 5-6

Supported Java User-Defined Data Types . 5-8

6. Invoking Web Services
Overview of Web Services Invocation . 6-1

Invoking Web Services Using JAX-RPC . 6-2

Examples of Clients That Invoke Web Services . 6-3

Invoking a Web Service from a Stand-alone Client: Main Steps 6-3

Using the clientgen Ant Task To Generate Client Artifacts . 6-4

Getting Information About a Web Service . 6-6

vi Getting Started With WebLogic Web Services Using JAX-RPC

Writing the Java Client Application Code to Invoke a Web Service 6-7

Compiling and Running the Client Application . 6-8

Sample Ant Build File for a Stand-Alone Java Client . 6-10

Invoking a Web Service from Another Web Service . 6-12

Sample build.xml File for a Web Service Client . 6-13

Sample JWS File That Invokes a Web Service . 6-15

Using a Stand-Alone Client JAR File When Invoking Web Services 6-17

Using a Proxy Server When Invoking a Web Service . 6-18

Using the HttpTransportInfo API to Specify the Proxy Server 6-18

Using System Properties to Specify the Proxy Server . 6-21

Client Considerations When Redeploying a Web Service . 6-22

WebLogic Web Services Stub Properties . 6-22

Setting the Character Encoding For the Response SOAP Message 6-25

7. Administering Web Services
Overview of WebLogic Web Services Administration Tasks . 7-1

Administration Tools. 7-2

Using the Administration Console . 7-3

Invoking the Administration Console . 7-4

How Web Services Are Displayed In the Administration Console 7-5

Creating a Web Services Security Configuration. 7-6

Using the WebLogic Scripting Tool . 7-7

Using WebLogic Ant Tasks . 7-7

Using the Java Management Extensions (JMX) . 7-8

Using the Java EE Deployment API . 7-9

Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads
7-9

Getting Started With WebLogic Web Services Using JAX-RPC vii

8. Upgrading WebLogic Web Services From Previous Releases to
10g Release 3

Upgrading a 9.2 or 10.0 WebLogic Web Service to 10g Release 3 8-1

Upgrading a 9.0 or 9.1 WebLogic Web Service to 10g Release 3 8-1

Upgrading an 8.1 WebLogic Web Service to 10g Release 3 . 8-2

Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 10g Release 3:
Main Steps. 8-3

Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 10g Release 3: Main
Steps . 8-10

Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes 8-20

viii Getting Started With WebLogic Web Services Using JAX-RPC

Getting Started With WebLogic Web Services Using JAX-RPC 1-1

C H A P T E R 1

Introduction

This document describes how to program WebLogic Web Services using Java API for
XML-based RPC (JAX-RPC). JAX-RPC is a Sun Microsystems specification that defines the
Java APIs for making XML-based remote procedure calls (RPC). In particular, these APIs are
used to invoke and get a response from a Web Service using SOAP 1.1, and XML-based protocol
for exchange of information in a decentralized and distributed environment.

Note: JAX-WS is designed to take the place of JAX-RPC in Web services and Web
applications. To compare the features that are supported for JAX-WS and JAX-RPC, see
“How Do I Choose Between JAX-WS and JAX-RPC?” in Introducing WebLogic Web
Services.

The following table summarizes the contents of this guide.

Table 1-1 Content Summary

This section . . . Describes how to . . .

Use Cases and Examples Review and run common use cases and examples.

Developing WebLogic
Web Services

Develop Web Services using the WebLogic development
environment.

Programming the JWS File Program the JWS file that implements your Web Service.

Understanding Data
Binding

Use the Java Architecture for XML Binding (JAXB) data binding.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_intro/overview.html#choose

1-2 Getting Started With WebLogic Web Services Using JAX-RPC

For an overview of WebLogic Web Services, standards, samples, and related documentation, see
Introducing WebLogic Web Services.

For information about WebLogic Web Service security, see Securing WebLogic Web Services.

Invoking Web Services Invoke your Web Service from a stand-alone client or another Web
Service.

Administering Web
Services

Administer WebLogic Web Services using the Administration
Console.

Upgrading WebLogic Web
Services From Previous
Releases to 10g Release 3

Upgrade a Web Service from a previous release.

Table 1-1 Content Summary (Continued)

This section . . . Describes how to . . .

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_intro/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/index.html

Getting Started With WebLogic Web Services Using JAX-RPC 2-1

C H A P T E R 2

Use Cases and Examples

The following sections describe common Web Service use cases and examples:

“Creating a Simple HelloWorld Web Service” on page 2-1

“Creating a Web Service With User-Defined Data Types” on page 2-7

“Creating a Web Service from a WSDL File” on page 2-16

“Invoking a Web Service from a Stand-alone Java Client” on page 2-25

“Invoking a Web Service from a WebLogic Web Service” on page 2-31

Each use case provides step-by-step procedures for creating simple WebLogic Web Services and
invoking an operation from a deployed Web Service. The examples include basic Java code and
Ant build.xml files that you can use in your own development environment to recreate the
example, or by following the instructions to create and run the examples in an environment that
is separate from your development environment.

The use cases do not go into detail about the processes and tools used in the examples; later
chapters are referenced for more detail.

Creating a Simple HelloWorld Web Service
This section describes how to create a very simple Web Service that contains a single operation.
The Java Web Service (JWS) file that implements the Web Service uses just the one required JWS
annotation: @WebService. A JWS file is a standard Java file that uses JWS metadata annotations
to specify the shape of the Web Service. Metadata annotations were introduced with JDK 5.0, and

2-2 Getting Started With WebLogic Web Services Using JAX-RPC

the set of annotations used to annotate Web Service files are called JWS annotations. WebLogic
Web Services use standard JWS annotations. For a complete list of JWS annotations that are
supported, see “Web Service Annotation Support” in WebLogic Web Services Reference.

The following example shows how to create a Web Service called HelloWorldService that
includes a single operation, sayHelloWorld. For simplicity, the operation returns the inputted
String value.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory, as follows:

 prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/hello_world
 prompt> mkdir src/examples/webservices/hello_world

4. Create the JWS file that implements the Web Service.

Open your favorite Java IDE or text editor and create a Java file called
HelloWorldImpl.java using the Java code specified in “Sample HelloWorldImpl.java
JWS File” on page 2-4.

The sample JWS file shows a Java class called HelloWorldImpl that contains a single
public method, sayHelloWorld(String). The @WebService annotation specifies that
the Java class implements a Web Service called HelloWorldService. By default, all
public methods are exposed as operations.

5. Save the HelloWorldImpl.java file in the src/examples/webservices/hello_world
directory.

6. Create a standard Ant build.xml file in the project directory
(myExamples/hello_world/src) and add a taskdef Ant task to specify the full Java
classname of the jwsc task:

<project name="webservices-hello_world" default="all">

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support

Creat ing a S imple He l loWor ld Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 2-3

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

See “Sample Ant Build File for HelloWorldImpl.java” on page 2-5 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside of the
build-service target:

 <target name="build-service">

 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">

 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"

 type="JAXRPC"/>

 </jwsc>

 </target>

The jwsc WebLogic Web Service Ant task generates the supporting artifacts (such as the
deployment descriptors, serialization classes for any user-defined data types, the WSDL
file, and so on), compiles the user-created and generated Java code, and archives all the
artifacts into an Enterprise Application EAR file that you later deploy to WebLogic Server.

8. Execute the jwsc Ant task by specifying the build-service target at the command line:

prompt> ant build-service

See the output/helloWorldEar directory to view the files and artifacts generated by the
jwsc Ant task.

9. Start the WebLogic Server instance to which the Web Service will be deployed.

10. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
helloWorldEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

2-4 Getting Started With WebLogic Web Services Using JAX-RPC

 <wldeploy action="deploy"
 name="helloWorldEar" source="output/helloWorldEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/HelloWorldImpl/HelloWorldImpl?WSDL

You construct the URL using the values of the contextPath and serviceUri attributes
of the WLHttpTransport JWS annotation; however, because the JWS file in this use case
does not include the WLHttpTransport annotation, use the default values for the
contextPath and serviceUri attributes: the name of the Java class in the JWS file.
These attributes will be set explicitly in the next example, “Creating a Web Service With
User-Defined Data Types” on page 2-7. Use the hostname and port relevant to your
WebLogic Server instance.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

To run the Web Service, you need to create a client that invokes it. See “Invoking a Web Service
from a Stand-alone Java Client” on page 2-25 for an example of creating a Java client application
that invokes a Web Service.

Sample HelloWorldImpl.java JWS File
package examples.webservices.hello_world;

// Import the @WebService annotation

import javax.jws.WebService;

@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic

Creat ing a S imple He l loWor ld Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 2-5

 * Web Service with a single operation: sayHelloWorld
 */

public class HelloWorldImpl {
 // By default, all public methods are exposed as Web Services operation
 public String sayHelloWorld(String message) {
 try {
 System.out.println("sayHelloWorld:" + message);
 } catch (Exception ex) { ex.printStackTrace(); }

 return "Here is the message: '" + message + "'";
 }
}

Sample Ant Build File for HelloWorldImpl.java
The following build.xml file uses properties to simplify the file.

<project name="webservices-hello_world" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="helloWorldEar" />

 <property name="example-output" value="output" />

 <property name="ear-dir" value="${example-output}/helloWorldEar" />

 <property name="clientclass-dir" value="${example-output}/clientclasses"

/>

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

2-6 Getting Started With WebLogic Web Services Using JAX-RPC

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client" />

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"

 type="JAXRPC"/>

 </jwsc>

 </target>

 <target name="deploy">

 <wldeploy action="deploy" name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" name="${ear.deployed.name}"

 failonerror="false"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="client">

 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl?WSD

L"

 destDir="${clientclass-dir}"

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 2-7

 packageName="examples.webservices.hello_world.client"

 type="JAXRPC"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/hello_world/client/**/*.java"/>

 </target>

 <target name="run">

 <java classname="examples.webservices.hello_world.client.Main"

 fork="true" failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg

 line="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl"

/>

 </java> </target>

</project>

Creating a Web Service With User-Defined Data Types
The preceding use case uses only a simple data type, String, as the parameter and return value
of the Web Service operation. This next example shows how to create a Web Service that uses a
user-defined data type, in particular a JavaBean called BasicStruct, as both a parameter and a
return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a Web
Service, other than to create the Java source of the data type and use it correctly in the JWS file.
The jwsc Ant task, when it encounters a user-defined data type in the JWS file, automatically
generates all the data binding artifacts needed to convert data between its XML representation
(used in the SOAP messages) and its Java representation (used in WebLogic Server). The data
binding artifacts include the XML Schema equivalent of the Java user-defined type, the
JAX-RPC type mapping file, and so on.

The following procedure is very similar to the procedure in “Creating a Simple HelloWorld Web
Service” on page 2-1. For this reason, although the procedure does show all the needed steps, it
provides details only for those steps that differ from the simple HelloWorld example.

2-8 Getting Started With WebLogic Web Services Using JAX-RPC

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/complex

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/complex

 prompt> mkdir src/examples/webservices/complex

4. Create the source for the BasicStruct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
BasicStruct.java, in the project directory, using the Java code specified in “Sample
BasicStruct JavaBean” on page 2-10.

5. Save the BasicStruct.java file in the src/examples/webservices/complex
subdirectory of the project directory.

6. Create the JWS file that implements the Web Service using the Java code specified in “Sample
ComplexImpl.java JWS File” on page 2-11.

The sample JWS file uses several JWS annotations: @WebMethod to specify explicitly that
a method should be exposed as a Web Service operation and to change its operation name
from the default method name echoStruct to echoComplexType; @WebParam and
@WebResult to configure the parameters and return values; @SOAPBinding to specify the
type of Web Service; and @WLHttpTransport to specify the URI used to invoke the Web
Service. The ComplexImpl.java JWS file also imports the
examples.webservice.complex.BasicStruct class and then uses the BasicStruct
user-defined data type as both a parameter and return value of the echoStruct() method.

For more in-depth information about creating a JWS file, see Chapter 4, “Programming the
JWS File.”

7. Save the ComplexImpl.java file in the src/examples/webservices/complex
subdirectory of the project directory.

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 2-9

8. Create a standard Ant build.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the jwsc task:

<project name="webservices-complex" default="all">

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

See “Sample Ant Build File for ComplexImpl.java JWS File” on page 2-13 for a full
sample build.xml file.

9. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside of the
build-service target:

<target name="build-service">

 <jwsc

 srcdir="src"

 destdir="output/ComplexServiceEar" >

 <jws file="examples/webservices/complex/ComplexImpl.java"

 type="JAXRPC">

 <WLHttpTransport

 contextPath="complex" serviceUri="ComplexService"

 portName="ComplexServicePort"/>

 </jws>

 </jwsc>

</target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of Web Service (JAX-WS
or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant task
specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTP/S transport, as well as the name of the port in the generated
WSDL. This value overrides the value specified in the JWS file using the
@WLHttpTransport attribute. For more information about defining the context path,
see “Defining the Context Path of a WebLogic Web Service” in WebLogic Web
Services Reference.

10. Execute the jwsc Ant task:

prompt> ant build-service

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#how_to_determine_final_context_root

2-10 Getting Started With WebLogic Web Services Using JAX-RPC

See the output/ComplexServiceEar directory to view the files and artifacts generated by
the jwsc Ant task.

11. Start the WebLogic Server instance to which the Web Service will be deployed.

12. Deploy the Web Service, packaged in the ComplexServiceEar Enterprise Application, to
WebLogic Server, using either the Administration Console or the wldeploy Ant task. For
example:

 prompt> ant deploy

13. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
ComplexServiceEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

 <wldeploy action="deploy"
 name="ComplexServiceEar" source="output/ComplexServiceEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port,
and wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

14. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/complex/ComplexService?WSDL

To run the Web Service, you need to create a client that invokes it. See “Invoking a Web Service
from a Stand-alone Java Client” on page 2-25 for an example of creating a Java client application
that invokes a Web Service.

Sample BasicStruct JavaBean
package examples.webservices.complex;

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 2-11

/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */

public class BasicStruct {

 // Properties

 private int intValue;
 private String stringValue;
 private String[] stringArray;

 // Getter and setter methods

 public int getIntValue() {
 return intValue;
 }

 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }

 public String getStringValue() {
 return stringValue;
 }

 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }

 public String[] getStringArray() {
 return stringArray;
 }

 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }

 public String toString() {
 return "IntValue="+intValue+", StringValue="+stringValue;
 }
}

Sample ComplexImpl.java JWS File
package examples.webservices.complex;

// Import the standard JWS annotation interfaces

2-12 Getting Started With WebLogic Web Services Using JAX-RPC

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface

import weblogic.jws.WLHttpTransport;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")

// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and service
// URI used to build the URI of the Web Service is "complex/ComplexService"

@WLHttpTransport(contextPath="complex", serviceUri="ComplexService",
 portName="ComplexServicePort")

/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 */

public class ComplexImpl {

 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 2-13

 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".

 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)

 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }

 // Standard JWS annotation to expose method "echoStruct" as a public operation
 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".

 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)

 {
 System.out.println("echoComplexType called");
 return struct;
 }
}

Sample Ant Build File for ComplexImpl.java JWS File
The following build.xml file uses properties to simplify the file.

<project name="webservices-complex" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

2-14 Getting Started With WebLogic Web Services Using JAX-RPC

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="complexServiceEAR" />

 <property name="example-output" value="output" />

 <property name="ear-dir" value="${example-output}/complexServiceEar" />

 <property name="clientclass-dir" value="${example-output}/clientclass" />

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client"/>

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}"

 keepGenerated="true"

 >

 <jws file="examples/webservices/complex/ComplexImpl.java"

 type="JAXRPC">

 <WLHttpTransport

 contextPath="complex" serviceUri="ComplexService"

 portName="ComplexServicePort"/>

 </jws>

 </jwsc>

Creat ing a Web Serv i ce Wi th User-De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 2-15

 </target>

 <target name="deploy">

 <wldeploy action="deploy"

 name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}"/>

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" failonerror="false"

 name="${ear.deployed.name}"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}"/>

 </target>

 <target name="client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.complex.client"

 type="JAXRPC"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/complex/client/**/*.java"/>

 </target>

 <target name="run" >

 <java fork="true"

 classname="examples.webservices.complex.client.Main"

 failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"

2-16 Getting Started With WebLogic Web Services Using JAX-RPC

 />

 </java>

 </target>

</project>

Creating a Web Service from a WSDL File
Another common use case of creating a Web Service is to start from an existing WSDL file, often
referred to as the golden WSDL. A WSDL file is a public contract that specifies what the Web
Service looks like, such as the list of supported operations, the signature and shape of each
operation, the protocols and transports that can be used when invoking the operations, and the
XML Schema data types that are used when transporting the data. Based on this WSDL file, you
generate the artifacts that implement the Web Service so that it can be deployed to WebLogic
Server. You use the wsdlc Ant task to generate the following artifacts.

JWS service endpoint interface (SEI) that implements the Web Service described by the
WSDL file.

JWS implementation file that contains a partial (stubbed-out) implementation of the
generated JWS SEI. This file must be customized by the developer.

Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values.

Optional Javadocs for the generated JWS SEI.

Note: The only file generated by the wsdlc Ant task that you update is the JWS implementation
file. You never need to update the JAR file that contains the JWS SEI and data binding
artifacts.

Typically, you run the wsdlc Ant task one time to generate a JAR file that contains the generated
JWS SEI file and data binding artifacts, then code the generated JWS file that implements the
interface, adding the business logic of your Web Service. In particular, you add Java code to the
methods that implement the Web Service operations so that the operations behave as needed and
add additional JWS annotations.

After you have coded the JWS implementation file, you run the jwsc Ant task to generate the
deployable Web Service, using the same steps as described in the preceding sections. The only
difference is that you use the compiledWsdl attribute to specify the JAR file (containing the JWS
SEI file and data binding artifacts) generated by the wsdlc Ant task.

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-RPC 2-17

The following simple example shows how to create a Web Service from the WSDL file shown
in “Sample WSDL File” on page 2-20. The Web Service has one operation, getTemp, that returns
a temperature when passed a zip code.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a working directory:

 prompt> mkdir /myExamples/wsdlc

3. Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
TemperatureService.wsdl and is located in the /myExamples/wsdlc/wsdl_files
directory. See “Sample WSDL File” on page 2-20 for a full listing of the file.

4. Create a standard Ant build.xml file in the project directory and add a taskdef Ant task to
specify the full Java classname of the wsdlc task:

<project name="webservices-wsdlc" default="all">

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

</project>

See “Sample Ant Build File for TemperatureService” on page 2-22 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

5. Add the following call to the wsdlc Ant task to the build.xml file, wrapped inside of the
generate-from-wsdl target:

 <target name="generate-from-wsdl">

 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc" />

2-18 Getting Started With WebLogic Web Services Using JAX-RPC

 </target>

The wsdlc task in the examples generates the JAR file that contains the JWS SEI and data
binding artifacts into the output/compiledWsdl directory under the current directory. It
also generates a partial implementation file (TemperaturePortTypeImpl.java) of the
JWS SEI into the output/impl/examples/webservices/wsdlc directory (which is a
combination of the output directory specified by destImplDir and the directory hierarchy
specified by the package name). All generated JWS files will be packaged in the
examples.webservices.wsdlc package.

6. Execute the wsdlc Ant task by specifying the generate-from-wsdl target at the command
line:

prompt> ant generate-from-wsdl

See the output directory if you want to examine the artifacts and files generated by the
wsdlc Ant task.

7. Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
JWS implementation file using your favorite Java IDE or text editor to add Java code to the
methods so that they behave as you want.

See “Sample TemperaturePortType Java Implementation File” on page 2-22 for an
example; the added Java code is in bold. The generated JWS implementation file
automatically includes values for the @WebService and @WLHttpTransport JWS
annotations that correspond to the values in the original WSDL file.

Note: There are restrictions on the JWS annotations that you can add to the JWS
implementation file in the “starting from WSDL” use case. See “wsdlc” in the
WebLogic Web Services Reference for details.

For simplicity, the sample getTemp() method in TemperaturePortTypeImpl.java
returns a hard-coded number. In real life, the implementation of this method would actually
look up the current temperature at the given zip code.

8. Copy the updated TemperaturePortTypeImpl.java file into a permanent directory, such
as a src directory under the project directory; remember to create child directories that
correspond to the package name:

prompt> cd /examples/wsdlc
prompt> mkdir src/examples/webservices/wsdlc
prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
\
 src/examples/webservices/wsdlc/TemperaturePortTypeImpl.java

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#wsdlc

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-RPC 2-19

9. Add a build-service target to the build.xml file that executes the jwsc Ant task against
the updated JWS implementation class. Use the compiledWsdl attribute of jwsc to specify
the name of the JAR file generated by the wsdlc Ant task:

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"

 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"

 type="JAXRPC">

 <WLHttpTransport

 contextPath="temp" serviceUri="TemperatureService"

 portName="TemperaturePort">

 </WLHttpTransport>

 </jws>

 </jwsc>

 </target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of Web Services (JAX-WS
or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc Ant task
specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTP/S transport, as well as the name of the port in the generated
WSDL. This value overrides the value specified in the JWS file using the
@WLHttpTransport attribute.

10. Execute the build-service target to generate a deployable Web Service:

prompt> ant build-service

You can re-run this target if you want to update and then re-build the JWS file.

11. Start the WebLogic Server instance to which the Web Service will be deployed.

2-20 Getting Started With WebLogic Web Services Using JAX-RPC

12. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
wsdlcEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

 <wldeploy action="deploy" name="wsdlcEar"
 source="output/wsdlcEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

Substitute the values for wls.username, wls.password, wls.hostname, wls.port, and
wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

13. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL. Use the hostname and port relevant to your WebLogic Server
instance. Note that the deployed and original WSDL files are the same, except for the host
and port of the endpoint address.

You can use the clean, build-service, undeploy, and deploy targets in the build.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

To run the Web Service, you need to create a client that invokes it. See “Invoking a Web Service
from a Stand-alone Java Client” on page 2-25 for an example of creating a Java client application
that invokes a Web Service.

Sample WSDL File
<?xml version="1.0"?>

<definitions
 name="TemperatureService"

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-RPC 2-21

 targetNamespace="http://www.bea.com/wls103"
 xmlns:tns="http://www.bea.com/wls103"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >

 <message name="getTempRequest">
 <part name="zip" type="xsd:string"/>
 </message>

 <message name="getTempResponse">
 <part name="return" type="xsd:float"/>
 </message>

 <portType name="TemperaturePortType">
 <operation name="getTemp">
 <input message="tns:getTempRequest"/>
 <output message="tns:getTempResponse"/>
 </operation>
 </portType>

 <binding name="TemperatureBinding" type="tns:TemperaturePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getTemp">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
 namespace="http://www.bea.com/wls103" />
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.bea.com/wls103" />
 </output>
 </operation>
 </binding>

 <service name="TemperatureService">
 <documentation>
 Returns current temperature in a given U.S. zipcode
 </documentation>
 <port name="TemperaturePort" binding="tns:TemperatureBinding">
 <soap:address
 location="http://localhost:7001/temp/TemperatureService"/>
 </port>
 </service>

</definitions>

2-22 Getting Started With WebLogic Web Services Using JAX-RPC

Sample TemperaturePortType Java Implementation File
package examples.webservices.wsdlc;

import javax.jws.WebService;

import weblogic.jws.*;

/**

 * TemperaturePortTypeImpl class implements web service endpoint

 * interface TemperaturePortType */

@WebService(

 serviceName="TemperatureService",

 targetNamespace="http://www.bea.com/wls103"

 endpointInterface="examples.webservices.wsdlc.TemperaturePortType)

@WLHttpTransport(

 contextPath="temp",

 serviceUri="TemperatureService",

 portName="TemperaturePort")

public class TemperaturePortTypeImpl implements

examples.webservices.wsdlc.TemperaturePortType {

 public TemperaturePortTypeImpl() { }

 public float getTemp(java.lang.String zip) {

 return 1.234f;

 }

}

Sample Ant Build File for TemperatureService
The following build.xml file uses properties to simplify the file.

<project default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

Creat ing a Web Serv ice f rom a WSDL F i l e

Getting Started With WebLogic Web Services Using JAX-RPC 2-23

 <property name="ear.deployed.name" value="wsdlcEar" />

 <property name="example-output" value="output" />

 <property name="compiledWsdl-dir" value="${example-output}/compiledWsdl"

/>

 <property name="impl-dir" value="${example-output}/impl" />

 <property name="ear-dir" value="${example-output}/wsdlcEar" />

 <property name="clientclass-dir" value="${example-output}/clientclasses"

/>

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="wsdlc"

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all"

 depends="clean,generate-from-wsdl,build-service,deploy,client" />

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="generate-from-wsdl">

 <wsdlc

 srcWsdl="wsdl_files/TemperatureService.wsdl"

 destJwsDir="${compiledWsdl-dir}"

 destImplDir="${impl-dir}"

 packageName="examples.webservices.wsdlc" />

 </target>

 <target name="build-service">

2-24 Getting Started With WebLogic Web Services Using JAX-RPC

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"

 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"

 type="JAXRPC">

 <WLHttpTransport

 contextPath="temp" serviceUri="TemperatureService"

 portName="TemperaturePort"/>

 </jws>

 </jwsc>

 </target>

 <target name="deploy">

 <wldeploy action="deploy" name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" name="${ear.deployed.name}"

 failonerror="false"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="client">

 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/temp/TemperatureService?WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.wsdlc.client"

 type="JAXRPC">

 <javac

Invok ing a Web Serv ice f rom a S tand-a lone Java C l i ent

Getting Started With WebLogic Web Services Using JAX-RPC 2-25

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/wsdlc/client/**/*.java"/>

 </target>

 <target name="run">

 <java classname="examples.webservices.wsdlc.client.TemperatureClient"

 fork="true" failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg

 line="http://${wls.hostname}:${wls.port}/temp/TemperatureService"

/>

 </java>

 </target>

</project>

Invoking a Web Service from a Stand-alone Java Client
When you invoke an operation of a deployed Web Service from a client application, the Web
Service could be deployed to WebLogic Server or to any other application server, such as .NET.
All you need to know is the URL to its public contract file, or WSDL.

In addition to writing the Java client application, you must also run the clientgen WebLogic
Web Service Ant task to generate the artifacts that your client application needs to invoke the
Web Service operation. These artifacts include:

The Java class for the JAX-RPC Stub and Service interface implementations for the
particular Web Service you want to invoke.

The Java class for any user-defined XML Schema data types included in the WSDL file.

The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

A client-side copy of the WSDL file.

2-26 Getting Started With WebLogic Web Services Using JAX-RPC

The following example shows how to create a Java client application that invokes the
echoComplexType operation of the ComplexService WebLogic Web Service described in
“Creating a Web Service With User-Defined Data Types” on page 2-7. The echoComplexType
operation takes as both a parameter and return type the BasicStruct user-defined data type.

Note: It is assumed in this procedure that you have created and deployed the ComplexService
Web Service.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/simple_client

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the Java client application (shown later on in this procedure):

 prompt> cd /myExamples/simple_client
 prompt> mkdir src/examples/webservices/simple_client

4. Create a standard Ant build.xml file in the project directory and add a taskdef Ant task to
specify the full Java classname of the clientgen task:

<project name="webservices-simple_client" default="all">

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

</project>

See “Sample Ant Build File For Building Stand-alone Client Application” on page 2-29 for
a full sample build.xml file. The full build.xml file uses properties, such as
${clientclass-dir}, rather than always using the hard-coded name output directory for
client classes.

5. Add the following calls to the clientgen and javac Ant tasks to the build.xml file,
wrapped inside of the build-client target:

 <target name="build-client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

Invok ing a Web Serv ice f rom a S tand-a lone Java C l i ent

Getting Started With WebLogic Web Services Using JAX-RPC 2-27

 destDir="output/clientclass"

 packageName="examples.webservices.simple_client"

 type="JAXRPC"/>

 <javac

 srcdir="output/clientclass" destdir="output/clientclass"

 includes="**/*.java"/>

 <javac
 srcdir="src" destdir="output/clientclass"
 includes="examples/webservices/simple_client/*.java"/>

</target>

The clientgen Ant task uses the WSDL of the deployed ComplexService Web Service
to generate the necessary artifacts and puts them into the output/clientclass directory,
using the specified package name. Replace the variables with the actual hostname and port
of your WebLogic Server instance that is hosting the Web Service.

The clientgen Ant task also automatically generates the
examples.webservices.complex.BasicStruct JavaBean class, which is the Java
representation of the user-defined data type specified in the WSDL.

The build-client target also specifies the standard javac Ant task, in addition to
clientgen, to compile all the Java code, including the stand-alone Java program described
in the next step, into class files.

The clientgen Ant task also provides the destFile attribute if you want the Ant task to
automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see “clientgen” in the WebLogic Web Services Reference.

6. Create the Java client application file that invokes the echoComplexType operation.

Open your favorite Java IDE or text editor and create a Java file called Main.java using
the code specified in “Sample Java Client Application” on page 2-28.

The Main client application takes a single argument: the WSDL URL of the Web Service.
The application then follows standard JAX-RPC guidelines to invoke an operation of the
Web Service using the Web Service-specific implementation of the Service interface
generated by clientgen. The application also imports and uses the BasicStruct
user-defined type, generated by the clientgen Ant task, that is used as a parameter and
return value for the echoStruct operation. For details, see Chapter 6, “Invoking Web
Services.”

7. Save the Main.java file in the src/examples/webservices/simple_client
subdirectory of the main project directory.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#clientgen

2-28 Getting Started With WebLogic Web Services Using JAX-RPC

8. Execute the clientgen and javac Ant tasks by specifying the build-client target at the
command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated by the
clientgen Ant task.

9. Add the following targets to the build.xml file, used to execute the Main application:

 <path id="client.class.path">
 <pathelement path="output/clientclass"/>
 <pathelement path="${java.class.path}"/>
 </path>

 <target name="run" >

 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg
line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
 </java>

 </target>

The run target invokes the Main application, passing it the WSDL URL of the deployed
Web Service as its single argument. The classpath element adds the clientclass
directory to the CLASSPATH, using the reference created with the <path> task.

10. Execute the run target to invoke the echoComplexType operation:

 prompt> ant run

If the invoke was successful, you should see the following final output:

run:
 [java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the build.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Java Client Application
The following provides a simple Java client application that invokes the echoComplexType
operation.

package examples.webservices.simple_client;

Invok ing a Web Serv ice f rom a S tand-a lone Java C l i ent

Getting Started With WebLogic Web Services Using JAX-RPC 2-29

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

// import the BasicStruct class, used as a param and return value of the
// echoComplexType operation. The class is generated automatically by
// the clientgen Ant task.

import examples.webservices.complex.BasicStruct;

/**
 * This is a simple stand-alone client application that invokes the
 * echoComplexType operation of the ComplexService Web service.
 */

public class Main {

 public static void main(String[] args)
 throws ServiceException, RemoteException {

 ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();

 BasicStruct in = new BasicStruct();

 in.setIntValue(999);
 in.setStringValue("Hello Struct");

 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
}

Sample Ant Build File For Building Stand-alone Client
Application
The following build.xml file defines tasks to build the stand-alone client application. The
example uses properties to simplify the file.

<project name="webservices-simple_client" default="all">

 <!-- set global properties for this build -->

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="example-output" value="output" />

 <property name="clientclass-dir" value="${example-output}/clientclass" />

2-30 Getting Started With WebLogic Web Services Using JAX-RPC

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="clean" >

 <delete dir="${clientclass-dir}"/>

 </target>

 <target name="all" depends="clean,build-client,run" />

 <target name="build-client">

 <clientgen

 type="JAXRPC"

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.simple_client"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/simple_client/*.java"/>

 </target>

 <target name="run" >

 <java fork="true"

 classname="examples.webservices.simple_client.Main"

 failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />

 </java>

 </target>

</project>

Invok ing a Web Serv i ce f r om a WebLogic Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 2-31

Invoking a Web Service from a WebLogic Web Service
You can also invoke a Web Service (WebLogic, .NET, and so on) from within a deployed
WebLogic Web Service, rather than from a stand-alone client.

The procedure is similar to that described in “Invoking a Web Service from a Stand-alone Java
Client” on page 2-25 except that instead of running the clientgen Ant task to generate the client
stubs, you use the <clientgen> child element of <jws>, inside of the jwsc Ant task. The jwsc
Ant task automatically packages the generated client stubs in the invoking Web Service WAR
file so that the Web Service has immediate access to them. You then follow standard JAX-RPC
programming guidelines in the JWS file that implements the Web Service that invokes the other
Web Service.

The following example shows how to write a JWS file that invokes the echoComplexType
operation of the ComplexService Web Service described in “Creating a Web Service With
User-Defined Data Types” on page 2-7.

Note: It is assumed that you have successfully deployed the ComplexService Web Service.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your domain
directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as subdirectories that correspond
to the package name of the JWS and client application files (shown later on in this procedure):

 prompt> cd /myExamples/service_to_service
 prompt> mkdir src/examples/webservices/service_to_service

4. Create the JWS file that implements the Web Service that invokes the ComplexService Web
Service.

Open your favorite Java IDE or text editor and create a Java file called
ClientServiceImpl.java using the Java code specified in “Sample
ClientServiceImpl.java JWS File” on page 2-34.

The sample JWS file shows a Java class called ClientServiceImpl that contains a single
public method, callComplexService(). The Java class imports the JAX-RPC stubs,

2-32 Getting Started With WebLogic Web Services Using JAX-RPC

generated later on by the jwsc Ant task, as well as the BasicStruct JavaBean (also
generated by clientgen), which is the data type of the parameter and return value of the
echoComplexType operation of the ComplexService Web Service.

The ClientServiceImpl Java class defines one method, callComplexService(), which
takes two parameters: a BasicStruct which is passed on to the echoComplexType
operation of the ComplexService Web Service, and the URL of the ComplexService
Web Service. The method then uses the standard JAX-RPC APIs to get the Service and
PortType of the ComplexService, using the stubs generated by jwsc, and then invokes
the echoComplexType operation.

5. Save the ClientServiceImpl.java file in the
src/examples/webservices/service_to_service directory.

6. Create a standard Ant build.xml file in the project directory and add the following task:

<project name="webservices-service_to_service" default="all">

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

The taskdef task defines the full classname of the jwsc Ant task.

See “Sample Ant Build File For Building ClientService” on page 2-35 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, deploy, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped inside of the
build-service target:

<target name="build-service">

 <jwsc
 srcdir="src"
 destdir="output/ClientServiceEar" >
 <jws

file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">

 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>

Invok ing a Web Serv i ce f r om a WebLogic Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 2-33

 <clientgen
 type="JAXRPC"
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
</target>

In the preceding example, the <clientgen> child element of the <jws> element of the
jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc should also
generate and compile the client artifacts needed to invoke the Web Service described by
the WSDL file.

In this example, the package name is set to examples.webservices.complex, which is
different from the client application package name,
examples.webservices.simple_client. As a result, you need to import the
appropriate class files in the client application:

import examples.webservices.complex.BasicStruct;
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

If the package name is set to the same package name as the client application, the import
calls would be optional.

8. Execute the jwsc Ant task by specifying the build-service target at the command line:

prompt> ant build-service

9. Start the WebLogic Server instance to which you will deploy the Web Service.

10. Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wldeploy Ant task. In either case, you deploy the
ClientServiceEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="deploy">

 <wldeploy action="deploy" name="ClientServiceEar"
 source="ClientServiceEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />

 </target>

2-34 Getting Started With WebLogic Web Services Using JAX-RPC

Substitute the values for wls.username, wls.password, wls.hostname, wls.port, and
wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/ClientService/ClientService?WSDL

See “Invoking a Web Service from a Stand-alone Java Client” on page 2-25 for an example of
creating a Java client application that invokes a Web Service.

Sample ClientServiceImpl.java JWS File
The following provides a simple Web Service client application that invokes the
echoComplexType operation.

package examples.webservices.service_to_service;

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic.jws.WLHttpTransport;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")

@WLHttpTransport(contextPath="ClientService", serviceUri="ClientService",
 portName="ClientServicePort")

public class ClientServiceImpl {

 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)

Invok ing a Web Serv i ce f r om a WebLogic Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 2-35

 throws ServiceException, RemoteException
 {

 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();

 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");

 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";

 }
}

Sample Ant Build File For Building ClientService
The following build.xml file defines tasks to build the client application. The example uses
properties to simplify the file.

The following build.xml file uses properties to simplify the file.

<project name="webservices-service_to_service" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />

 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

2-36 Getting Started With WebLogic Web Services Using JAX-RPC

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client" />

 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>

 <target name="build-service">

 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >

 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">

 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>

 <clientgen
type="JAXRPC"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>

 </jwsc>

 </target>

 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

 <target name="client">

Invok ing a Web Serv i ce f r om a WebLogic Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 2-37

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXRPC"/>

 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>

 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>

 </target>

 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg

line="http://${wls.hostname}:${wls.port}/ClientService/ClientService"/>

 </java>

 </target>

</project>

2-38 Getting Started With WebLogic Web Services Using JAX-RPC

Getting Started With WebLogic Web Services Using JAX-RPC 3-1

C H A P T E R 3

Developing WebLogic Web Services

The following sections describe the iterative development process for WebLogic Web Services:

“Overview of the WebLogic Web Service Programming Model” on page 3-2

“Configuring Your Domain For Web Services Features” on page 3-2

“Developing WebLogic Web Services Starting From Java: Main Steps” on page 3-3

“Developing WebLogic Web Services Starting From a WSDL File: Main Steps” on
page 3-5

“Creating the Basic Ant build.xml File” on page 3-7

“Running the jwsc WebLogic Web Services Ant Task” on page 3-8

“Running the wsdlc WebLogic Web Services Ant Task” on page 3-12

“Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc” on
page 3-14

“Deploying and Undeploying WebLogic Web Services” on page 3-16

“Browsing to the WSDL of the Web Service” on page 3-19

“Configuring the Server Address Specified in the Dynamic WSDL” on page 3-20

“Testing the Web Service” on page 3-22

“Integrating Web Services Into the WebLogic Split Development Directory Environment”
on page 3-23

3-2 Getting Started With WebLogic Web Services Using JAX-RPC

Overview of the WebLogic Web Service Programming
Model

The WebLogic Web Services programming model centers around JWS files—Java files that use
JWS annotations to specify the shape and behavior of the Web Service—and Ant tasks that
execute on the JWS file. JWS annotations are based on the metadata feature, introduced in
Version 5.0 of the JDK (specified by JSR-175), and include standard annotations defined by the
Web Services Metadata for the Java Platform specification (JSR-181) as well as additional ones.
For a complete list of JWS annotations that are supported, see “Web Service Annotation Support”
in WebLogic Web Services Reference. For additional detailed information about this
programming model, see “Anatomy of a WebLogic Web Service” in Introducing WebLogic Web
Services.

The following sections describe the high-level steps for iteratively developing a Web Service,
either starting from Java or starting from an existing WSDL file:

“Developing WebLogic Web Services Starting From Java: Main Steps” on page 3-3

“Developing WebLogic Web Services Starting From a WSDL File: Main Steps” on
page 3-5

Iterative development refers to setting up your development environment in such a way so that
you can repeatedly code, compile, package, deploy, and test a Web Service until it works as you
want. The WebLogic Web Service programming model uses Ant tasks to perform most of the
steps of the iterative development process. Typically, you create a single build.xml file that
contains targets for all the steps, then repeatedly run the targets, after you have updated your JWS
file with new Java code, to test that the updates work as you expect.

Configuring Your Domain For Web Services Features
After you have created a WebLogic Server domain, you can use the Configuration Wizard to
update the domain, using a Web Services-specific extension template, so that the resources
required by certain WebLogic Web Services features are automatically configured. Although use
of this extension template is not required, it makes the configuration of JMS and JDBC resources
much easier.

The Web Services extension template automatically configures the resources required for the
following features:

Web Services Reliable Messaging

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_intro/overview.html#anatomy

Deve lop ing WebLogic Web Serv ices S tar t ing F rom Java : Main S teps

Getting Started With WebLogic Web Services Using JAX-RPC 3-3

Buffering

JMS Transport

To update your domain so that it is automatically configured for these Web Services features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Extend an Existing WebLogic Domain.

3. Click Next.

4. Select the domain to which you want to apply the extension template.

5. Click Next.

6. Select Extend My Domain Using an Existing Extension Template.

7. Enter the following value in the Template Location text box:

WL_HOME/common/templates/applications/wls_webservice.jar

where WL_HOME refers to the main WebLogic Server directory.

8. Click Next.

9. If you want to further configure the JMS and JDBC resources, select Yes. This is not typical.

Otherwise, click Next.

10. Verify that you are extending the correct domain, then click Extend.

11. Click Done to exit.

For detailed instructions about using the Configuration Wizard to create and update WebLogic
Server domains, see Creating WebLogic Domains Using the Configuration Wizard.

Developing WebLogic Web Services Starting From Java:
Main Steps

This section describes the general procedure for developing WebLogic Web Services starting
from Java—in effect, coding the JWS file from scratch and later generating the WSDL file that
describes the service. See “Use Cases and Examples” on page 2-1 for specific examples of this
process.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/../../common/docs100/confgwiz/index.html

3-4 Getting Started With WebLogic Web Services Using JAX-RPC

The following procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing environment to
develop WebLogic Web Services.

Note: This procedure does not use the WebLogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate
Web Services development into it, see “Integrating Web Services Into the WebLogic
Split Development Directory Environment” on page 3-23 for details.

Table 3-1 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd (Windows)
or setDomainEnv.sh (UNIX) command, located in the bin subdirectory of
your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where
BEA_HOME is the top-level installation directory of the Oracle products and
domainName is the name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source for any
user-defined data types, and the Ant build.xml file. You can name the
project directory anything you want.

3 Create the JWS file that
implements the Web Service.

See “Programming the JWS File” on page 4-1.

4 Create user-defined data types.
(Optional)

If your Web Service uses user-defined data types, create the JavaBeans that
describes them. See “Programming the User-Defined Java Data Type” on
page 4-21.

5 Create a basic Ant build file,
build.xml.

See “Creating the Basic Ant build.xml File” on page 3-7.

6 Run the jwsc Ant task against
the JWS file.

The jwsc Ant task generates source code, data binding artifacts, deployment
descriptors, and so on, into an output directory. The jwsc Ant task generates
an Enterprise application directory structure at this output directory; later you
deploy this exploded directory to WebLogic Server as part of the iterative
development process. See “Running the jwsc WebLogic Web Services Ant
Task” on page 3-8.

7 Deploy the Web Service to
WebLogic Server.

See “Deploying and Undeploying WebLogic Web Services” on page 3-16.

Deve lop ing WebLog ic Web Se rv ices S ta r t ing F rom a WSDL F i l e : Ma in S teps

Getting Started With WebLogic Web Services Using JAX-RPC 3-5

See “Invoking Web Services” on page 6-1 for information on writing client applications that
invoke a Web Service.

Developing WebLogic Web Services Starting From a
WSDL File: Main Steps

This section describes the general procedure for developing WebLogic Web Services based on
an existing WSDL file. See “Developing WebLogic Web Services” on page 3-1 for a specific
example of this process.

The procedure is just a recommendation; if you have set up your own development environment,
you can use this procedure as a guide for updating your existing environment to develop
WebLogic Web Services.

It is assumed in this procedure that you already have an existing WSDL file.

Note: This procedure does not use the WebLogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate
Web Services development into it, see “Integrating Web Services Into the WebLogic
Split Development Directory Environment” on page 3-23 for details.

8 Browse to the WSDL of the Web
Service.

Browse to the WSDL of the Web Service to ensure that it was deployed
correctly. See “Browsing to the WSDL of the Web Service” on page 3-19.

9 Test the Web Service. See “Testing the Web Service” on page 3-22.

10 Edit the Web Service. (Optional) To make changes to the Web Service, update the JWS file, undeploy the Web
Service as described in “Deploying and Undeploying WebLogic Web
Services” on page 3-16, then repeat the steps starting from running the jwsc
Ant task (Step 6).

Table 3-1 Steps to Develop Web Services Starting From Java (Continued)

Step Description

3-6 Getting Started With WebLogic Web Services Using JAX-RPC

Table 3-2 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd (Windows)
or setDomainEnv.sh (UNIX) command, located in the bin subdirectory of
your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where
BEA_HOME is the top-level installation directory of the Oracle products and
domainName is the name of your domain.

2 Create a project directory. The project directory will contain the generated artifacts and the Ant
build.xml file.

3 Create a basic Ant build file,
build.xml.

See “Creating the Basic Ant build.xml File” on page 3-7.

4 Put your WSDL file in a
directory that the build.xml
Ant build file is able to read.

For example, you can put the WSDL file in a wsdl_files child directory of
the project directory.

5 Run the wsdlc Ant task against
the WSDL file.

The wsdlc Ant task generates the JWS service endpoint interface (SEI), the
stubbed-out JWS class file, JavaBeans that represent the XML Schema data
types, and so on, into output directories. See “Running the wsdlc WebLogic
Web Services Ant Task” on page 3-12.

6 Update the stubbed-out JWS file
generated by the wsdlc Ant
task.

The wsdlc Ant task generates a stubbed-out JWS file. You need to add your
business code to the Web Service so it behaves as you want. See “Updating the
Stubbed-out JWS Implementation Class File Generated By wsdlc” on
page 3-14.

7 Run the jwsc Ant task against
the JWS file.

Specify the artifacts generated by the wsdlc Ant task as well as your updated
JWS implementation file, to generate an Enterprise Application that
implements the Web Service. See “Running the jwsc WebLogic Web Services
Ant Task” on page 3-8.

8 Deploy the Web Service to
WebLogic Server.

See “Deploying and Undeploying WebLogic Web Services” on page 3-16.

Creat ing the Bas ic Ant bu i ld . xml F i l e

Getting Started With WebLogic Web Services Using JAX-RPC 3-7

See “Invoking Web Services” on page 6-1 for information on writing client applications that
invoke a Web Service.

Creating the Basic Ant build.xml File
Ant uses build files written in XML (default name build.xml) that contain a <project> root
element and one or more targets that specify different stages in the Web Services development
process. Each target contains one or more tasks, or pieces of code that can be executed. This
section describes how to create a basic Ant build file; later sections describe how to add targets
to the build file that specify how to execute various stages of the Web Services development
process, such as running the jwsc Ant task to process a JWS file and deploying the Web Service
to WebLogic Server.

The following skeleton build.xml file specifies a default all target that calls all other targets
that will be added in later sections:

<project default="all">

 <target name="all"

 depends="clean,build-service,deploy" />

9 Browse to the WSDL of the Web
Service.

Browse to the WSDL of the Web Service to ensure that it was deployed
correctly. See “Browsing to the WSDL of the Web Service” on page 3-19.

The URL used to invoke the WSDL of the deployed Web Service is essentially
the same as the value of the location attribute of the <address> element
in the original WSDL (except for the host and port values which now
correspond to the host and port of the WebLogic Server instance to which you
deployed the service.) This is because the wsdlc Ant task generated values
for the contextPath and serviceURI of the @WLHttpTransport
annotation in the JWS implementation file so that together they create the
same URI as the endpoint address specified in the original WSDL.

10 Test the Web Service. See “Testing the Web Service” on page 3-22.

11 Edit the Web Service. (Optional) To make changes to the Web Service, update the JWS file, undeploy the Web
Service as described in “Deploying and Undeploying WebLogic Web
Services” on page 3-16, then repeat the steps starting from running the jwsc
Ant task (Step 6).

Table 3-2 Steps to Develop Web Services Starting From Java (Continued)

Step Description

3-8 Getting Started With WebLogic Web Services Using JAX-RPC

 <target name="clean">

 <delete dir="output" />

 </target>

 <target name="build-service">

 <!--add jwsc and related tasks here -->

 </target>

 <target name="deploy">

 <!--add wldeploy task here -->

 </dftarget>

</project>

Running the jwsc WebLogic Web Services Ant Task
The jwsc Ant task takes as input a JWS file that contains JWS annotations and generates all the
artifacts you need to create a WebLogic Web Service. The JWS file can be either one you coded
yourself from scratch or one generated by the wsdlc Ant task. The jwsc-generated artifacts
include:

JSR-109 Web Service class file.

All required deployment descriptors, including:

– Standard and WebLogic-specific Web Services deployment descriptors:
webservices.xml and weblogic-webservices.xml.

– JAX-RPC mapping files.

– Java class-implemented Web Services: web.xml and weblogic.xml.

– EJB-implemented Web Services: ejb-jar.xml and weblogic-ejb-jar.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

The XML Schema representation of any Java user-defined types used as parameters or
return values to the Web Service operations.

The WSDL file that publicly describes the Web Service.

If you are running the jwsc Ant task against a JWS file generated by the wsdlc Ant task, the jwsc
task does not generate these artifacts, because the wsdlc Ant task already generated them for you

Running the jwsc WebLog ic Web Se rv ices Ant Task

Getting Started With WebLogic Web Services Using JAX-RPC 3-9

and packaged them into a JAR file. In this case, you use an attribute of the jwsc Ant task to
specify this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files (including
your JWS file), packages the compiled classes and generated artifacts into a deployable JAR
archive file, and finally creates an exploded Enterprise Application directory that contains the
JAR file.

To run the jwsc Ant task, add the following taskdef and build-service target to the
build.xml file:

<taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service">

 <jwsc

 srcdir="src_directory"

 destdir="ear_directory"

 >

 <jws file="JWS_file"

 compiledWsdl="WSDLC_Generated_JAR"

 type="WebService_type"/>

 </jwsc>

 </target>

where:

ear_directory refers to an Enterprise Application directory that will contain all the
generated artifacts.

src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

JWS_file refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

WSDLC_Generated_JAR refers to the JAR file generated by the wsdlc Ant task that
contains the JWS SEI and data binding artifacts that correspond to an existing WSDL file.

Note: You specify this attribute only in the “starting from WSDL” use case; this procedure
is described in “Developing WebLogic Web Services Starting From a WSDL File:
Main Steps” on page 3-5.

3-10 Getting Started With WebLogic Web Services Using JAX-RPC

WebService_type specifies the type of Web Service. This value can be set to JAXWS or
JAXRPC.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This means that, by
default, it is assumed that Java files referenced by the JWS file (such as JavaBeans input
parameters or user-defined exceptions) are in the same package as the JWS file. If this is not the
case, use the sourcepath attribute to specify the top-level directory of these other Java files. See
“jwsc” in WebLogic Web Services Reference for more information.

Examples of Using jwsc
The following build.xml excerpt shows a basic example of running the jwsc Ant task on a JWS
file:

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="output/helloWorldEar">

 <jws

 file="examples/webservices/hello_world/HelloWorldImpl.java"

 type="JAXRPC"/>

 </jwsc>

 </target>

In the example:

The Enterprise application will be generated, in exploded form, in
output/helloWorldEar, relative to the current directory.

The JWS file is called HelloWorldImpl.java, and is located in the
src/examples/webservices/hello_world directory, relative to the current directory.
This implies that the JWS file is in the package examples.webservices.helloWorld.

A JAX-RPC Web Service is generated.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#jwsc

Running the jwsc WebLog ic Web Se rv ices Ant Task

Getting Started With WebLogic Web Services Using JAX-RPC 3-11

The following example is similar to the preceding one, except that it uses the compiledWsdl
attribute to specify the JAR file that contains wsdlc-generated artifacts (for the “starting with
WSDL” use case):

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="output/wsdlcEar">

 <jws

 file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"

 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"

 type="JAXRPC"/>

 </jwsc>

 </target>

In the preceding example, the TemperaturePortTypeImpl.java file is the stubbed-out JWS
file that you updated to include your business logic. Because the compiledWsdl attribute is
specified and points to a JAR file, the jwsc Ant task does not regenerate the artifacts that are
included in the JAR.

To actually run this task, type at the command line the following:

 prompt> ant build-service

Advanced Uses of jwsc
This section described two very simple examples of using the jwsc Ant task. The task, however,
includes additional attributes and child elements that make the tool very powerful and useful. For
example, you can use the tool to:

Process multiple JWS files at once. You can choose to package each resulting Web Service
into its own Web application WAR file, or group all of the Web Services into a single
WAR file.

Specify the transports (HTTP/HTTPS/JMS) that client applications can use when invoking
the Web Service, possibly overriding any existing @WLXXXTransport annotations.

3-12 Getting Started With WebLogic Web Services Using JAX-RPC

Automatically generate the JAX-RPC client stubs of any other Web Service that is invoked
within the JWS file.

Update an existing Enterprise Application or Web application, rather than generate a
completely new one.

See “jwsc” in the WebLogic Web Services Reference for complete documentation and examples
about the jwsc Ant task.

Running the wsdlc WebLogic Web Services Ant Task
The wsdlc Ant task takes as input a WSDL file and generates artifacts that together partially
implement a WebLogic Web Service. These artifacts include:

JWS service endpoint interface (SEI) that implements the Web Service described by the
WSDL file.

JWS implementation file that contains a partial (stubbed-out) implementation of the
generated JWS SEI. This file must be customized by the developer.

Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values.

Optional Javadocs for the generated JWS SEI.

The wsdlc Ant task packages the JWS SEI and data binding artifacts together into a JAR file that
you later specify to the jwsc Ant task. You never need to update this JAR file; the only file you
update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsdl targets to the
build.xml file:

 <taskdef name="wsdlc"

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

 <target name="generate-from-wsdl">

 <wsdlc

 srcWsdl="WSDL_file"

 destJwsDir="JWS_interface_directory"

 destImplDir="JWS_implementation_directory"

 packageName="Package_name"

 type="WebService_type"/>

 </target>

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#jwsc

Running the wsd lc WebLog ic Web Se rv ices Ant Task

Getting Started With WebLogic Web Services Using JAX-RPC 3-13

where:

WSDL_file refers to the name of the WSDL file from which you want to generate a partial
implementation, including its absolute or relative pathname.

JWS_interface_directory refers to the directory into which the JAR file that contains
the JWS SEI and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFile_wsdl.jar, where WSDLFile refers to the
root name of the WSDL file. For example, if the name of the WSDL file you specify to the
file attribute is MyService.wsdl, then the generated JAR file is MyService_wsdl.jar.

JWS_implementation_directory refers to the top directory into which the stubbed-out
JWS implementation file is generated. The file is generated into a subdirectory hierarchy
corresponding to its package name.

The name of the generated JWS file is PortTypeImpl.java, where PortType refers to
the name attribute of the <portType> element in the WSDL file for which you are
generating a Web Service. For example, if the port type name is MyServicePortType,
then the JWS implementation file is called MyServicePortTypeImpl.java.

Package_name refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the wsdlc
Ant task generates a package name based on the targetNamespace of the WSDL.

WebService_type specifies the type of Web Service. This value can be set to JAXWS or
JAXRPC.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcWsdl and destJwsDir attributes of the wsdlc Ant task are required. Typically,
however, you generate the stubbed-out JWS file to make your programming easier. Oracle
recommends you explicitly specify the package name in case the targetNamespace of the
WSDL file is not suitable to be converted into a readable package name.

The following build.xml excerpt shows an example of running the wsdlc Ant task against a
WSDL file:

 <taskdef name="wsdlc"

 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

 <target name="generate-from-wsdl">

 <wsdlc

 srcWsdl="wsdl_files/TemperatureService.wsdl"

 destJwsDir="output/compiledWsdl"

3-14 Getting Started With WebLogic Web Services Using JAX-RPC

 destImplDir="impl_output"

 packageName="examples.webservices.wsdlc"

 type="JAXRPC" />

 </target>

In the example:

The existing WSDL file is called TemperatureService.wsdl and is located in the
wsdl_files subdirectory of the directory that contains the build.xml file.

The JAR file that will contain the JWS SEI and data binding artifacts is generated to the
output/compiledWsdl directory; the name of the JAR file is
TemperatureService_wsdl.jar.

The package name of the generated JWS files is examples.webservices.wsdld.

The stubbed-out JWS file is generated into the
impl_output/examples/webservices/wsdlc directory relative to the current directory.

Assuming that the port type name in the WSDL file is TemperaturePortType, then the
name of the JWS implementation file is TemperaturePortTypeImpl.java.

A JAX-RPC Web Service is generated.

To actually run this task, type the following at the command line:

 prompt> ant generate-from-wsdl

See “wsdlc” in WebLogic Web Services Reference for more information.

Updating the Stubbed-out JWS Implementation Class File
Generated By wsdlc

The wsdlc Ant task generates the stubbed-out JWS implementation file into the directory
specified by its destImplDir attribute; the name of the file is PortTypeImpl.java, where
PortType is the name of the portType in the original WSDL. The class file includes everything
you need to compile it into a Web Service, except for your own business logic.

The JWS class implements the JWS Web Service endpoint interface that corresponds to the
WSDL file; the JWS SEI is also generated by wsdlc and is located in the JAR file that contains
other artifacts, such as the Java representations of XML Schema data types in the WSDL and so
on. The public methods of the JWS class correspond to the operations in the WSDL file.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#wsdlc

Updat ing the Stubbed-out JWS Implementat ion C lass F i l e Gene ra ted By wsd lc

Getting Started With WebLogic Web Services Using JAX-RPC 3-15

The wsdlc Ant task automatically includes the @WebService and @WLHttpTransport
annotations in the JWS implementation class; the values of the attributes corresponds to the
equivalent values in the WSDL. For example, the serviceName attribute of @WebService is the
same as the name attribute of the <service> element in the WSDL file; the contextPath and
serviceUri attributes of @WLHttpTransport together make up the endpoint address specified
by the location attribute of the <address> element in the WSDL.

When you update the JWS file, you add Java code to the methods so that the corresponding Web
Service operations operate as required. Typically, the generated JWS file contains comments
where you should add code, such as:

 //replace with your impl here

In addition, you can add additional JWS annotations to the file, with the following restrictions:

You can include the following annotations from the standard (JSR-181) javax.jws
package in the JWS implementation file: @WebService, @HandlerChain,
@SOAPMessageHandler, and @SOAPMessageHandlers. If you specify any other JWS
annotation from the javax.jws package, the jwsc Ant task returns error when you try to
compile the JWS file into a Web Service.

You can specify only the serviceName and endpointInterface attributes of the
@WebService annotation. Use the serviceName attribute to specify a different <service>
WSDL element from the one that the wsdlc Ant task used, in the rare case that the WSDL
file contains more than one <service> element. Use the endpointInterface attribute to
specify the JWS SEI generated by the wsdlc Ant task.

You can specify WebLogic-specific JWS annotations, as required.

After you have updated the JWS file, Oracle recommends that you move it to an official source
location, rather than leaving it in the wsdlc output directory.

The following example shows the wsdlc-generated JWS implementation file from the WSDL
shown in “Sample WSDL File” on page 2-20; the text in bold indicates where you would add
Java code to implement the single operation (getTemp) of the Web Service:

package examples.webservices.wsdlc;

import javax.jws.WebService;
import weblogic.jws.*;

/**
 * TemperaturePortTypeImpl class implements web service endpoint interface
 * TemperaturePortType */

3-16 Getting Started With WebLogic Web Services Using JAX-RPC

@WebService(
 serviceName="TemperatureService",
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType")

@WLHttpTransport(
 contextPath="temp",
 serviceUri="TemperatureService",
 portName="TemperaturePort")

public class TemperaturePortTypeImpl implements TemperaturePortType {

 public TemperaturePortTypeImpl() {

 }

 public float getTemp(java.lang.String zipcode)

 {

 //replace with your impl here

 return 0;

 }

}

Deploying and Undeploying WebLogic Web Services
Because Web Services are packaged as Enterprise Applications, deploying a Web Service simply
means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the Administration
Console to using the weblogic.Deployer Java utility. There are also various issues you must
consider when deploying an application to a production environment as opposed to a
development environment. For a complete discussion about deployment, see Deploying
Applications to WebLogic Server.

This guide, because of its development nature, discusses just two ways of deploying Web
Services:

Using the wldeploy Ant Task to Deploy Web Services

Using the Administration Console to Deploy Web Services

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/deployment/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/deployment/index.html

Deploy ing and Undep loy ing WebLog ic Web Se rv ices

Getting Started With WebLogic Web Services Using JAX-RPC 3-17

Using the wldeploy Ant Task to Deploy Web Services
The easiest way to deploy a Web Service as part of the iterative development process is to add a
target that executes the wldeploy WebLogic Ant task to the same build.xml file that contains
the jwsc Ant task. You can add tasks to both deploy and undeploy the Web Service so that as you
add more Java code and regenerate the service, you can redeploy and test it iteratively.

To use the wldeploy Ant task, add the following target to your build.xml file:

 <target name="deploy">

 <wldeploy action="deploy"

 name="DeploymentName"

 source="Source" user="AdminUser"

 password="AdminPassword"

 adminurl="AdminServerURL"

 targets="ServerName"/>

 </target>

where:

DeploymentName refers to the deployment name of the Enterprise Application, or the
name that appears in the Administration Console under the list of deployments.

Source refers to the name of the Enterprise Application EAR file or exploded directory that
is being deployed. By default, the jwsc Ant task generates an exploded Enterprise
Application directory.

AdminUser refers to administrative username.

AdminPassword refers to the administrative password.

AdminServerURL refers to the URL of the Administration Server, typically
t3://localhost:7001.

ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web Service.

For example, the following wldeploy task specifies that the Enterprise Application exploded
directory, located in the output/ComplexServiceEar directory relative to the current directory,
be deployed to the myServer WebLogic Server instance. Its deployed name is
ComplexServiceEar.

 <target name="deploy">

3-18 Getting Started With WebLogic Web Services Using JAX-RPC

 <wldeploy action="deploy"

 name="ComplexServiceEar"

 source="output/ComplexServiceEar" user="weblogic"

 password="weblogic" verbose="true"

 adminurl="t3://localhost:7001"

 targets="myserver"/>

 </target>

To actually deploy the Web Service, execute the deploy target at the command-line:

 prompt> ant deploy

You can also add a target to easily undeploy the Web Service so that you can make changes to its
source code, then redeploy it:

 <target name="undeploy">

 <wldeploy action="undeploy"

 name="ComplexServiceEar"

 user="weblogic"

 password="weblogic" verbose="true"

 adminurl="t3://localhost:7001"

 targets="myserver"/>

 </target>

When undeploying a Web Service, you do not specify the source attribute, but rather undeploy
it by its name.

Using the Administration Console to Deploy Web Services
To use the Administration Console to deploy the Web Service, first invoke it in your browser
using the following URL:

 http://[host]:[port]/console

where:

host refers to the computer on which WebLogic Server is running.

port refers to the port number on which WebLogic Server is listening (default value is
7001).

Then use the deployment assistants to help you deploy the Enterprise application. For more
information on the Administration Console, see the Administration Console Online Help.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/index.html

Brows ing to the WSDL o f the Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 3-19

Browsing to the WSDL of the Web Service
You can display the WSDL of the Web Service in your browser to ensure that it has deployed
correctly.

The following URL shows how to display the Web Service WSDL in your browser:

 http://[host]:[port]/[contextPath]/[serviceUri]?WSDL

where:

host refers to the computer on which WebLogic Server is running (for example,
localhost).

port refers to the port number on which WebLogic Server is listening (default value is
7001).

contextPath refers to the context root of the Web Service. There are many places to set
the context root (the contextPath attribute of the @WLHttpTransport annotation, the
<WLHttpTransport>, <module>, or <jws> element of jwsc) and certain methods take
precedence over others. See “Defining the Context Path of a WebLogic Web Service” in
WebLogic Web Services Reference for a complete explanation.

serviceUri refers to the value of the serviceUri attribute of the @WLHttpTransport
JWS annotation of the JWS file that implements your Web Service or
<WLHttpTransport> child element of the jwsc Ant task; the second takes precedence
over the first. If you do not specify any serviceUri attribute in either the JWS file or the
jwsc Ant task, then the serviceUri of the Web Service is the default value: the name of
the JWS file without its *.java extension.

For example, assume you specified the following @WLHttpTransport annotation in the JWS file
that implements your Web Service

 ...

 @WLHttpTransport(contextPath="complex",

 serviceUri="ComplexService",

 portName="ComplexServicePort")

 /**

 * This JWS file forms the basis of a WebLogic Web Service.

 *

 */

 public class ComplexServiceImpl {

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#how_to_determine_final_context_root

3-20 Getting Started With WebLogic Web Services Using JAX-RPC

 ...

Further assume that you do not override the contextPath or serviceURI values by setting
equivalent attributes for the <WLHttpTransport> element of the jwsc Ant task. Then the URL
to view the WSDL of the Web Service, assuming the service is running on a host called ariel at
the default port number (7001), is:

 http://ariel:7001/complex/ComplexService?WSDL

Configuring the Server Address Specified in the Dynamic
WSDL

The WSDL of a deployed Web Service (also called dynamic WSDL) includes an <address>
element that assigns an address (URI) to a particular Web Service port. For example, assume that
the following WSDL snippet partially describes a deployed WebLogic Web Service called
ComplexService:

<definitions name="ComplexServiceDefinitions"
 targetNamespace="http://example.org">

...

 <service name="ComplexService">
 <port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
 <s1:address location="http://myhost:7101/complex/ComplexService"/>
 </port>
 </service>

</definitions>

The preceding example shows that the ComplexService Web Service includes a port called
ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address by
examining the contextPath and serviceURI attributes of the @WLXXXTransport annotations
or jwsc elements, as described in “Browsing to the WSDL of the Web Service” on page 3-19.
However, the method WebLogic Server uses to determine the protocol and host section of the
address (http://myhost:7101, in the example) is more complicated, as described below. For
clarity, this section uses the term server address to refer to the protocol and host section of the
address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed Web
Service depends on whether the Web Service can be invoked using HTTP/S or JMS, whether you

Conf igu r ing the Se rver Address Spec i f i ed in the Dynamic WSDL

Getting Started With WebLogic Web Services Using JAX-RPC 3-21

have configured a proxy server, whether the Web Service is deployed to a cluster, or whether the
Web Service is actually a callback service.

The following sections reflect these different configuration options, and provide links to
procedural information about changing the configuration to suit your needs.

Web Service is not a callback service and can be invoked using HTTP/S

Web Service is not a callback service and can be invoked using JMS Transport

Web Service is a callback service

Web Service is invoked using a proxy server

It is assumed in the sections that you use the WebLogic Server Administration Console to
configure cluster and standalone servers.

Web Service is not a callback service and can be invoked
using HTTP/S
1. If the Web Service is deployed to a cluster, and the cluster Frontend Host, Frontend HTTP

Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in the
server address of the dynamic WSDL.

See “Configure HTTP Settings for a Cluster” in the Administration Console Online Help.

2. If the preceding cluster values are not set, but the Frontend Host, Frontend HTTP Port,
and Frontend HTTPS Port values are set for the individual server to which the Web Service
is deployed, then WebLogic Server uses these values in the server address.

See “Configure HTTP Protocol” in the Administration Console Online Help.

3. If these values are not set for the cluster or individual server, then WebLogic Server uses the
server address of the WSDL request in the dynamic WSDL.

Web Service is not a callback service and can be invoked
using JMS Transport
1. If the Web Service is deployed to a cluster and the Cluster Address is set, then WebLogic

Server uses this value in the server address of the dynamic WSDL.

See “Configure Clusters” in the Administration Console Online Help.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusterHTTP.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusters.html

3-22 Getting Started With WebLogic Web Services Using JAX-RPC

2. If the cluster address is not set, or the Web Service is deployed to a standalone server, and the
Listen Address of the server to which the Web Service is deployed is set, then WebLogic
Server uses this value in the server address.

See “Configure Listen Addresses” in the Administration Console Online Help.

Web Service is a callback service
1. If the callback service is deployed to a cluster, and the cluster Frontend Host, Frontend

HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in
the server address of the dynamic WSDL.

See “Configure HTTP Settings for a Cluster’ in the Administration Console Online Help.

2. If the callback service is deployed to either a cluster or a standalone server, and the preceding
cluster values are not set, but the Frontend Host, Frontend HTTP Port, and Frontend
HTTPS Port values are set for the individual server to which the callback service is deployed,
then WebLogic Server uses these values in the server address.

See “Configure HTTP Protocol” in the Administration Console Online Help.

3. If the callback service is deployed to a cluster, but none of the preceding values are set, but
the Cluster Address is set, then WebLogic Server uses this value in the server address.

See “Configure Clusters” in the Administration Console Online Help.

4. If none of the preceding values are set, but the Listen Address of the server to which the
callback service is deployed is set, then WebLogic Server uses this value in the server address.

See “Configure Listen Addresses” in the Administration Console Online Help.

Web Service is invoked using a proxy server
Although not required, Oracle recommends that you explicitly set the Frontend Host,
FrontEnd HTTP Port, and Frontend HTTPS Port of either the cluster or individual server to
which the Web Service is deployed to point to the proxy server.

See “Configure HTTP Settings for a Cluster” or “Configure HTTP Protocol” in the
Administration Console Online Help.

Testing the Web Service
After you have deployed a WebLogic Web Service, you can use the Web Services Test Client,
included in the WebLogic Administration Console, to test your service without writing code. You

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusterHTTP.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusters.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureListenAddresses.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/clusters/ConfigureClusterHTTP.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureListenAddresses.html

In tegrat ing Web Serv ices In to the WebLogic Sp l i t Deve lopment D i rec to r y Env i ronment

Getting Started With WebLogic Web Services Using JAX-RPC 3-23

can quickly and easily test any Web Service, including those with complex types and those using
advanced features of WebLogic Server such as conversations. The test client automatically
maintains a full log of requests allowing you to return to the previous call to view the results.

To test a deployed Web Service using the Administration Console, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:

http://[host]:[port]/console

where:

– host refers to the computer on which WebLogic Server is running.

– port refers to the port number on which WebLogic Server is listening (default value is
7001).

2. Follow the procedure described in “Test a Web Service” in the Administration Console
Online Help.

Integrating Web Services Into the WebLogic Split
Development Directory Environment

This section describes how to integrate Web Services development into the WebLogic split
development directory environment. It is assumed that you understand this WebLogic feature and
have set up this type of environment for developing standard Java Platform, Enterprise Edition
(Java EE) Version 5 applications and modules, such as EJBs and Web applications, and you want
to update the single build.xml file to include Web Services development.

For detailed information about the WebLogic split development directory environment, see
“Creating a Split Development Directory for an Application” in Developing Applications With
WebLogic Server and the splitdir/helloWorldEar example installed with WebLogic Server,
located in the WL_HOME/samples/server/examples/src/examples directory, where
WL_HOME is the top-level directory of your WebLogic Server installation.

1. In the main project directory, create a directory that will contain the JWS file that implements
your Web Service.

For example, if your main project directory is called /src/helloWorldEar, then create a
directory called /src/helloWorldEar/helloWebService:

prompt> mkdir /src/helloWorldEar/helloWebService

2. Create a directory hierarchy under the helloWebService directory that corresponds to the
package name of your JWS file.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/TestAWebService.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/splitcreate.html

3-24 Getting Started With WebLogic Web Services Using JAX-RPC

For example, if your JWS file is in the package examples.splitdir.hello package,
then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
prompt> mkdir examples/splitdir/hello

3. Put your JWS file in the just-created Web Service subdirectory of your main project directory
(/src/helloWorldEar/helloWebService/examples/splitdir/hello in this
example.)

4. In the build.xml file that builds the Enterprise application, create a new target to build the
Web Service, adding a call to the jwsc WebLogic Web Service Ant task, as described in
“Running the jwsc WebLogic Web Services Ant Task” on page 3-8.

The jwsc srcdir attribute should point to the top-level directory that contains the JWS
file (helloWebService in this example). The jwsc destdir attribute should point to the
same destination directory you specify for wlcompile, as shown in the following example:

 <target name="build.helloWebService">

 <jwsc
 srcdir="helloWebService"
 destdir="destination_dir"
 keepGenerated="yes" >

 <jws file="examples/splitdir/hello/HelloWorldImpl.java"
 type="JAXRPC" />

 </jwsc>

 </target>

In the example, destination_dir refers to the destination directory that the other split
development directory environment Ant tasks, such as wlappc and wlcompile, also use.

5. Update the main build target of the build.xml file to call the Web Service-related targets:

 <!-- Builds the entire helloWorldEar application -->

 <target name="build"
 description="Compiles helloWorldEar application and runs appc"
 depends="build-helloWebService,compile,appc" />

Note: When you actually build your Enterprise Application, be sure you run the jwsc Ant
task before you run the wlappc Ant task. This is because wlappc requires some of
the artifacts generated by jwsc for it to execute successfully. In the example, this
means that you should specify the build-helloWebService target before the appc
target.

In tegrat ing Web Serv ices In to the WebLogic Sp l i t Deve lopment D i rec to r y Env i ronment

Getting Started With WebLogic Web Services Using JAX-RPC 3-25

6. If you use the wlcompile and wlappc Ant tasks to compile and validate the entire Enterprise
Application, be sure to exclude the Web Service source directory for both Ant tasks. This is
because the jwsc Ant task already took care of compiling and packaging the Web Service.
For example:

<target name="compile">

 <wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
 excludes="appStartup,helloWebService">
 ...
 </wlcomplile>

...
</target>

<target name="appc">

 <wlappc source="${dest.dir}" deprecation="yes" debug="false"
 excludes="helloWebService"/>

</target>

7. Update the application.xml file in the META-INF project source directory, adding a <web>
module and specifying the name of the WAR file generated by the jwsc Ant task.

For example, add the following to the application.xml file for the helloWorld Web
Service:

<application>

...

 <module>
 <web>
 <web-uri>examples/splitdir/hello/HelloWorldImpl.war</web-uri>
 <context-root>/hello</context-root>
 </web>
 </module>

...

</application>

Note: The jwsc Ant task always generates a Web Application WAR file from the JWS file that
implements your Web Service, unless your JWS file explicitly implements
javax.ejb.SessionBean. In that case you must add an <ejb> module element to the
application.xml file instead.

Your split development directory environment is now updated to include Web Service
development. When you rebuild and deploy the entire Enterprise Application, the Web Service

3-26 Getting Started With WebLogic Web Services Using JAX-RPC

will also be deployed as part of the EAR. You invoke the Web Service in the standard way
described in “Browsing to the WSDL of the Web Service” on page 3-19.

Getting Started With WebLogic Web Services Using JAX-RPC 4-1

C H A P T E R 4

Programming the JWS File

The following sections provide information about programming the JWS file that implements
your Web Service:

“Overview of JWS Files and JWS Annotations” on page 4-1

“Java Requirements for a JWS File” on page 4-2

“Programming the JWS File: Typical Steps” on page 4-3

“Accessing Runtime Information About a Web Service” on page 4-11

“Should You Implement a Stateless Session EJB?” on page 4-19

“Programming the User-Defined Java Data Type” on page 4-21

“Throwing Exceptions” on page 4-24

“Invoking Another Web Service from the JWS File” on page 4-26

“Programming Additional Miscellaneous Features Using JWS Annotations and APIs” on
page 4-26

“JWS Programming Best Practices” on page 4-34

Overview of JWS Files and JWS Annotations
There are two ways to program a WebLogic Web Service from scratch:

4-2 Getting Started With WebLogic Web Services Using JAX-RPC

1. Annotate a standard EJB or Java class with Web Service Java annotations, as defined by
JSR-181, the JAX-WS specification, and by the WebLogic Web Services programming
model.

2. Combine a standard EJB or Java class with the various XML descriptor files and artifacts
specified by JSR-109 (such as, deployment descriptors, WSDL files, data mapping
descriptors, data binding artifacts for user-defined data types, and so on).

Oracle strongly recommends using option 1 above. Instead of authoring XML metadata
descriptors yourself, the WebLogic Ant tasks and runtime will generate the required descriptors
and artifacts based on the annotations you include in your JWS. Not only is this process much
easier, but it keeps the information about your Web Service in a central location, the JWS file,
rather than scattering it across many Java and XML files.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains the Java
code that determines how your Web Service behaves. A JWS file is an ordinary Java class file
that uses Java metadata annotations to specify the shape and characteristics of the Web Service.
The JWS annotations you can use in a JWS file include the standard ones defined by the Web
Services Metadata for the Java Platform specification (JSR-181) plus a set of additional
annotations based on the type of Web Service you are building—JAX-WS or JAX-RPC. For a
complete list of JWS annotations that are supported for JAX-WS and JAX-RPC Web Services,
see “Web Service Annotation Support” in WebLogic Web Services Reference.

When programming the JWS file, you include annotations to program basic Web Service
features. The annotations are used at different levels, or targets, in your JWS file. Some are used
at the class-level to indicate that the annotation applies to the entire JWS file. Others are used at
the method-level and yet others at the parameter level.

Java Requirements for a JWS File
When you program your JWS file, you must follow a set of requirements, as specified by the Web
Services Metadata for the Java Platform specification (JSR-181). In particular, the Java class that
implements the Web Service:

Must be an outer public class, must not be declared final, and must not be abstract.

Must have a default public constructor.

Must not define a finalize() method.

Must include, at a minimum, a @WebService JWS annotation at the class level to indicate
that the JWS file implements a Web Service.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#annotation_support

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-RPC 4-3

May reference a service endpoint interface by using the
@WebService.endpointInterface annotation. In this case, it is assumed that the service
endpoint interface exists and you cannot specify any other JWS annotations in the JWS file
other than @WebService.endpointInterface and @WebService.serviceName.

If JWS file does not implement a service endpoint interface, all public methods other than
those inherited from java.lang.Object will be exposed as Web Service operations. This
behavior can be overridden by using the @WebMethod annotation to specify explicitly the
public methods that are to be exposed. If a @WebMethod annotation is present, only the
methods to which it is applied are exposed.

Programming the JWS File: Typical Steps
The following procedure describes the typical steps for programming a JWS file that implements
a Web Service.

Note: It is assumed that you have created a JWS file and now want to add JWS annotations to it.

For more information about each of the JWS annotations, see “JWS Annotation Reference” in
WebLogic Web Services Reference. See Programming Advanced Features of WebLogic Web
Services Using JAX-RPC for information on using other JWS annotations to program more
advanced features, such as Web Service reliable messaging, conversations, SOAP message
handlers, and so on.

Table 4-1 Steps to Program the JWS File

Step Description

1 Import the standard JWS
annotations that will be used in
your JWS file.

 The standard JWS annotations are in either the javax.jws or
javax.jws.soap package. For example:
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

2 Import the WebLogic-specific
annotations used in your JWS
file.

The WebLogic-specific annotations are in the weblogic.jws package. For
example:
import weblogic.jws.WLHttpTransport;

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv_rpc/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv_rpc/index.html

4-4 Getting Started With WebLogic Web Services Using JAX-RPC

3 Add the standard required
@WebService JWS annotation
at the class level to specify that
the Java class exposes a Web
Service.

See “Specifying that the JWS File Implements a Web Service (@WebService
Annotation)” on page 4-6.

4 Add the standard
@SOAPBinding JWS
annotation at the class level to
specify the mapping between the
Web service and the SOAP
message protocol. (Optional)

In particular, use this annotation to specify whether the Web Service is
document-literal, RPC-encoded, and so on. See “Specifying the Mapping of
the Web Service to the SOAP Message Protocol (@SOAPBinding
Annotation)” on page 4-6.

Although this JWS annotation is not required, Oracle recommends you
explicitly specify it in your JWS file to clarify the type of SOAP bindings a
client application uses to invoke the Web Service.

5 Add the WebLogic-specific
@WLHttpTransport JWS
annotation at the class level to
specify the context path and
service URI used in the URL
that invokes the Web Service.
(Optional)

See “Specifying the Context Path and Service URI of the Web Service
(@WLHttpTransport Annotation)” on page 4-7.

Although this JWS annotation is not required, Oracle recommends you
explicitly specify it in your JWS file so that it is clear what URL a client
application uses to invoke the Web Service.

6 Add the standard @WebMethod
annotation for each method in
the JWS file that you want to
expose as a public operation.
(Optional)

Optionally specify that the operation takes only input parameters but does not
return any value by using the standard @Oneway annotation. See “Specifying
That a JWS Method Be Exposed as a Public Operation (@WebMethod and
@OneWay Annotations)” on page 4-8.

7 Add @WebParam annotation to
customize the name of the input
parameters of the exposed
operations. (Optional)

See “Customizing the Mapping Between Operation Parameters and WSDL
Elements (@WebParam Annotation)” on page 4-9.

8 Add @WebResult annotations
to customize the name and
behavior of the return value of
the exposed operations.
(Optional)

See “Customizing the Mapping Between the Operation Return Value and a
WSDL Element (@WebResult Annotation)” on page 4-10.

9 Add your business code. Add your business code to the methods to make the WebService behave as
required.

Table 4-1 Steps to Program the JWS File (Continued)

Step Description

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-RPC 4-5

Example of a JWS File
The following sample JWS file shows how to implement a simple Web Service.

package examples.webservices.simple;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interfaces

import weblogic.jws.WLHttpTransport;

// Standard JWS annotation that specifies that the porType name of the Web
// Service is "SimplePortType", the service name is "SimpleService", and the
// targetNamespace used in the generated WSDL is "http://example.org"

@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")

// Standard JWS annotation that specifies the mapping of the service onto the
// SOAP message protocol. In particular, it specifies that the SOAP messages
// are document-literal-wrapped.

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and
// service URI used to build the URI of the Web Service is
// "simple/SimpleService"

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
 portName="SimpleServicePort")

/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 *
 */

public class SimpleImpl {

 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: sayHello.

4-6 Getting Started With WebLogic Web Services Using JAX-RPC

 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

Specifying that the JWS File Implements a Web Service
(@WebService Annotation)
Use the standard @WebService annotation to specify, at the class level, that the JWS file
implements a Web Service, as shown in the following code excerpt:

@WebService(name="SimplePortType", serviceName="SimpleService",

 targetNamespace="http://example.org")

In the example, the name of the Web Service is SimplePortType, which will later map to the
wsdl:portType element in the WSDL file generated by the jwsc Ant task. The service name is
SimpleService, which will map to the wsdl:service element in the generated WSDL file. The
target namespace used in the generated WSDL is http://example.org.

You can also specify the following additional attributes of the @WebService annotation:

endpointInterface—Fully qualified name of an existing service endpoint interface file.
This annotation allows the separation of interface definition from the implementation. If
you specify this attribute, the jwsc Ant task does not generate the interface for you, but
assumes you have created it and it is in your CLASSPATH.

portname—Name that is used in the wsdl:port.

None of the attributes of the @WebService annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) for the default values of each attribute.

Specifying the Mapping of the Web Service to the SOAP
Message Protocol (@SOAPBinding Annotation)
It is assumed that you want your Web Service to be available over the SOAP message protocol;
for this reason, your JWS file should include the standard @SOAPBinding annotation, at the class
level, to specify the SOAP bindings of the Web Service (such as, RPC-encoded or
document-literal-wrapped), as shown in the following code excerpt:

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-RPC 4-7

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,

 use=SOAPBinding.Use.LITERAL,

 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

In the example, the Web Service uses document-wrapped-style encodings and literal message
formats, which are also the default formats if you do not specify the @SOAPBinding annotation.

You can also use the WebLogic-specific @weblogic.jws.soap.SOAPBinding annotation to
specify the SOAP binding at the method level; the attributes are the same as the standard
@javax.jws.soap.SOAPBinding annotation.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the Web Service
operation parameters represent the entire SOAP message body, or whether the parameters are
elements wrapped inside a top-level element with the same name as the operation.

The following table lists the possible and default values for the three attributes of the
@SOAPBinding (either the standard or WebLogic-specific) annotation.

Specifying the Context Path and Service URI of the Web
Service (@WLHttpTransport Annotation)
Use the WebLogic-specific @WLHttpTransport annotation to specify the context path and
service URI sections of the URL used to invoke the Web Service over the HTTP transport, as well
as the name of the port in the generated WSDL, as shown in the following code excerpt:

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",

 portName="SimpleServicePort")

Table 4-2 Attributes of the @SOAPBinding Annotation

Attribute Possible Values Default Value

style SOAPBinding.Style.RPC
SOAPBinding.Style.DOCUMENT

SOAPBinding.Style.DOCUMENT

use SOAPBinding.Use.LITERAL
SOAPBinding.Use.ENCODED

SOAPBinding.Use.LITERAL

parameterS
tyle

SOAPBinding.ParameterStyle.BARE
SOAPBinding.ParameterStyle.WRAP
PED

SOAPBinding.ParameterStyle.WRAP
PED

4-8 Getting Started With WebLogic Web Services Using JAX-RPC

In the example, the name of the port in the WSDL (in particular, the name attribute of the <port>
element) file generated by the jwsc Ant task is SimpleServicePort. The URL used to invoke
the Web Service over HTTP includes a context path of simple and a service URI of
SimpleService, as shown in the following example:

http://host:port/simple/SimpleService

For reference documentation on this and other WebLogic-specific annotations, see “JWS
Annotation Reference” in the WebLogic Web Services Reference.

Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)
Use the standard @WebMethod annotation to specify that a method of the JWS file should be
exposed as a public operation of the Web Service, as shown in the following code excerpt:

public class SimpleImpl {

 @WebMethod(operationName="sayHelloOperation")

 public String sayHello(String message) {

 System.out.println("sayHello:" + message);

 return "Here is the message: '" + message + "'";

 }

...

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a public
operation of the Web Service. The operationName attribute specifies, however, that the public
name of the operation in the WSDL file is sayHelloOperation. If you do not specify the
operationName attribute, the public name of the operation is the name of the method itself.

You can also use the action attribute to specify the action of the operation. When using SOAP
as a binding, the value of the action attribute determines the value of the SOAPAction header
in the SOAP messages.

You can specify that an operation not return a value to the calling application by using the
standard @Oneway annotation, as shown in the following example:

 public class OneWayImpl {

 @WebMethod()

 @Oneway()

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html

Programming the JWS F i l e : T yp i ca l S teps

Getting Started With WebLogic Web Services Using JAX-RPC 4-9

 public void ping() {

 System.out.println("ping operation");

 }

...

If you specify that an operation is one-way, the implementing method is required to return void,
cannot use a Holder class as a parameter, and cannot throw any checked exceptions.

None of the attributes of the @WebMethod annotation is required. See the Web Services Metadata
for the Java Platform (JSR 181) for the default values of each attribute, as well as additional
information about the @WebMethod and @Oneway annotations.

If none of the public methods in your JWS file are annotated with the @WebMethod annotation,
then by default all public methods are exposed as Web Service operations.

Customizing the Mapping Between Operation Parameters
and WSDL Elements (@WebParam Annotation)
Use the standard @WebParam annotation to customize the mapping between operation input
parameters of the Web Service and elements of the generated WSDL file, as well as specify the
behavior of the parameter, as shown in the following code excerpt:

 public class SimpleImpl {

 @WebMethod()

 @WebResult(name="IntegerOutput",

 targetNamespace="http://example.org/docLiteralBare")

 public int echoInt(

 @WebParam(name="IntegerInput",

 targetNamespace="http://example.org/docLiteralBare")

 int input)

 {

 System.out.println("echoInt '" + input + "' to you too!");

 return input;

 }

...

In the example, the name of the parameter of the echoInt operation in the generated WSDL is
IntegerInput; if the @WebParam annotation were not present in the JWS file, the name of the
parameter in the generated WSDL file would be the same as the name of the method’s parameter:

4-10 Getting Started With WebLogic Web Services Using JAX-RPC

input. The targetNamespace attribute specifies that the XML namespace for the parameter is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the parameter maps to an XML element.

You can also specify the following additional attributes of the @WebParam annotation:

mode—The direction in which the parameter is flowing (WebParam.Mode.IN,
WebParam.Mode.OUT, or WebParam.Mode.INOUT). The OUT and INOUT modes may be
specified only for parameter types that conform to the JAX-RPC definition of Holder
types. OUT and INOUT modes are only supported for RPC-style operations or for
parameters that map to headers.

header—Boolean attribute that, when set to true, specifies that the value of the parameter
should be retrieved from the SOAP header, rather than the default body.

None of the attributes of the @WebParam annotation is required. See the Web Services Metadata
for the Java Platform (JSR 181) for the default value of each attribute.

Customizing the Mapping Between the Operation Return
Value and a WSDL Element (@WebResult Annotation)
Use the standard @WebResult annotation to customize the mapping between the Web Service
operation return value and the corresponding element of the generated WSDL file, as shown in
the following code excerpt:

 public class Simple {

 @WebMethod()

 @WebResult(name="IntegerOutput",

 targetNamespace="http://example.org/docLiteralBare")

 public int echoInt(

 @WebParam(name="IntegerInput",

 targetNamespace="http://example.org/docLiteralBare")

 int input)

 {

 System.out.println("echoInt '" + input + "' to you too!");

 return input;

 }

...

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-RPC 4-11

In the example, the name of the return value of the echoInt operation in the generated WSDL is
IntegerOutput; if the @WebResult annotation were not present in the JWS file, the name of the
return value in the generated WSDL file would be the hard-coded name return. The
targetNamespace attribute specifies that the XML namespace for the return value is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the return value maps to an XML element.

None of the attributes of the @WebResult annotation is required. See the Web Services Metadata
for the Java Platform (JSR 181) for the default value of each attribute.

Accessing Runtime Information About a Web Service
The following sections describe how to access runtime information about a Web Service:

Using JwsContext to Access Runtime Information—Use the Web Service context to access
and change runtime information about the service in your JWS file.

Using the Stub Interface to Access Runtime Information—Get and set properties on the
Stub interface in the client file.

Using JwsContext to Access Runtime Information
When a client application invokes a WebLogic Web Service that was implemented with a JWS
file, WebLogic Server automatically creates a context that the Web Service can use to access, and
sometimes change, runtime information about the service. Much of this information is related to
conversations, such as whether the current conversation is finished, the current values of the
conversational properties, changing conversational properties at runtime, and so on. (See
“Creating Conversational Web Services” in Programming Advanced Features of WebLogic Web
Services Using JAX-RPC for information about conversations and how to implement them.)
Some of the information accessible via the context is more generic, such as the protocol that was
used to invoke the Web Service (HTTP/S or JMS), the SOAP headers that were in the SOAP
message request, and so on.

You can use annotations and WebLogic Web Service APIs in your JWS file to access runtime
context information, as described in the following sections.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv_rpc/conversation.html

4-12 Getting Started With WebLogic Web Services Using JAX-RPC

Guidelines for Accessing the Web Service Context

The following example shows a simple JWS file that uses the context to determine the protocol
that was used to invoke the Web Service. The code in bold is discussed in the programming
guidelines described following the example.

package examples.webservices.jws_context;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Context;

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.Protocol;

@WebService(name="JwsContextPortType", serviceName="JwsContextService",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="contexts", serviceUri="JwsContext",
 portName="JwsContextPort")

/**
 * Simple web service to show how to use the @Context annotation.
 */

public class JwsContextImpl {

 @Context
 private JwsContext ctx;

 @WebMethod()
 public String getProtocol() {

 Protocol protocol = ctx.getProtocol();

 System.out.println("protocol: " + protocol);
 return "This is the protocol: " + protocol;
 }

}

Use the following guidelines in your JWS file to access the runtime context of the Web Service,
as shown in the code in bold in the preceding example:

Import the @weblogic.jws.Context JWS annotation:

import weblogic.jws.Context;

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-RPC 4-13

Import the weblogic.wsee.jws.JwsContext API, as well as any other related APIs that
you might use (the example also uses the weblogic.wsee.jws.Protocol API):

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.Protocol;

See the weblogic.wsee.* Javadocs for more documentation about the context-related
APIs.

Annotate a private variable, of data type weblogic.wsee.jws.JwsContext, with the
field-level @Context JWS annotation:

@Context
private JwsContext ctx;

WebLogic Server automatically assigns the annotated variable (in this case, ctx) with a
runtime implementation of JwsContext the first time the Web Service is invoked, which is
how you can later use the variable without explicitly initializing it in your code.

Use the methods of the JwsContext class to access runtime information about the Web
Service. The following example shows how to get the protocol that was used to invoke the
Web Service

Protocol protocol = ctx.getProtocol();

See “Methods of the JwsContext” on page 4-13 for the full list of available methods.

Methods of the JwsContext
The following table summarizes the methods of the JwsContext that you can use in your JWS
file to access runtime information about the Web Service. See weblogic.wsee.* Javadocs for
detailed reference information about JwsContext, and other context-related APIs, as Protocol
and ServiceHandle.

4-14 Getting Started With WebLogic Web Services Using JAX-RPC

Table 4-3 Methods of JwsContext

Method Returns Description

isFinished() boolean Returns a boolean value specifying whether the current
conversation is finished, or if it is still continuing.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

finishConversati
on()

void Finishes the current conversation.

This method is equivalent to a client application invoking a
method that has been annotated with the @Conversation
(Conversation.Phase.FINISH) JWS annotation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

setMaxAge(java.u
til.Date)

void Sets a new maximum age for the conversation to an absolute
Date. If the date parameter is in the past, WebLogic Server
immediately finishes the conversation.

This method is equivalent to the maxAge attribute of the
@Conversational annotation, which specifies the default
maximum age of a conversation. Use this method to override this
default value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-RPC 4-15

setMaxAge(String
)

void Sets a new maximum age for the conversation by specifying a
String duration, such as 1 day.

Valid values for the String parameter are a number and one of
the following terms:
• seconds

• minutes

• hours

• days

• years

For example, to specify a maximum age of ten minutes, use the
following syntax:
ctx.setMaxAge("10 minutes")

This method is equivalent to the maxAge attribute of the
@Conversational annotation, which specifies the default
maximum age of a conversation. Use this method to override this
default value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getMaxAge() long Returns the maximum allowed age, in seconds, of a conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getCurrentAge() long Returns the current age, in seconds, of the conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

resetIdleTime() void Resets the timer which measures the number of seconds since the
last activity for the current conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

Table 4-3 Methods of JwsContext (Continued)

Method Returns Description

4-16 Getting Started With WebLogic Web Services Using JAX-RPC

setMaxIdleTime(l
ong)

void Sets the number of seconds that the conversation can remain idle
before WebLogic Server finishes it due to client inactivity.

This method is equivalent to the maxIdleTime attribute of the
@Conversational annotation, which specifies the default idle
time of a conversation. Use this method to override this default
value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

setMaxIdleTime(S
tring)

void Sets the number of seconds, specified as a String, that the
conversation can remain idle before WebLogic Server finishes it
due to client inactivity.

Valid values for the String parameter are a number and one of
the following terms:
• seconds

• minutes

• hours

• days

• years

For example, to specify a maximum idle time of ten minutes, use
the following syntax:
ctx.setMaxIdleTime("10 minutes")

This method is equivalent to the maxIdleTime attribute of the
@Conversational annotation, which specifies the default idle
time of a conversation. Use this method to override this default
value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getMaxIdleTime() long Returns the number of seconds that the conversation is allowed to
remain idle before WebLogic Server finishes it due to client
inactivity.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

Table 4-3 Methods of JwsContext (Continued)

Method Returns Description

Access ing Runt ime In fo rmat ion About a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-RPC 4-17

getCurrentIdleTi
me()

long Gets the number of seconds since the last client request, or since
the conversation's maximum idle time was reset.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getCallerPrincip
al()

java.securi
ty.Principa
l

Returns the security principal associated with the operation that
was just invoked, assuming that basic authentication was
performed.

isCallerInRole(S
tring)

boolean Returns true if the authenticated principal is within the specified
security role.

getService() weblogic.ws
ee.jws.Serv
iceHandle

Returns an instance of ServiceHandle, a WebLogic Web
Service API, which you can query to gather additional information
about the Web Service, such as the conversation ID (if the Web
Service is conversational), the URL of the Web Service, and so on.

getLogger(String
)

weblogic.ws
ee.jws.util
.Logger

Gets an instance of the Logger class, which you can use to send
messages from the Web Service to a log file.

getInputHeaders(
)

org.w3c.dom
.Element[]

Returns an array of the SOAP headers associated with the SOAP
request message of the current operation invoke.

setUnderstoodInp
utHeaders(boolea
n)

void Indicates whether input headers should be understood.

getUnderstoodInp
utHeaders()

boolean Returns the value that was most recently set by a call to
setUnderstoodInputHeader.

setOutputHeaders
(Element[])

void Specifies an array of SOAP headers that should be associated with
the outgoing SOAP response message sent back to the client
application that initially invoked the current operation.

getProtocol() weblogic.ws
ee.jws.Prot
ocol

Returns the protocol (such as HTTP/S or JMS) used to invoke the
current operation.

Table 4-3 Methods of JwsContext (Continued)

Method Returns Description

4-18 Getting Started With WebLogic Web Services Using JAX-RPC

Using the Stub Interface to Access Runtime Information
The javax.xml.rpc.Stub interface enables you to dynamically configure the Stub instance in
your Web Service client file. For example, you can set the target service endpoint dynamically
for the port Stub instance, as follows:

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");

ComplexPortType port = service.getComplexServicePort();

((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,

 "http://localhost:8010/MyContext/MyService");

For more information about developing Web Service clients, see “Invoking Web Services” on
page 6-1.

The following table summarizes the methods of the Stub interface that you can use in your JWS
file to access runtime information about the Web Service.

The following table defined the javax.xml.rpc.Stub property values that you can access from
the Stub instance.

Table 4-4 Methods of Stub Interface

Method Returns Description

_getProperty() java.lang.O
bject

Gets the value of the specified configuration property.

_getPropertyName
s()

java.util.I
terator

Returns an Iterator view of the names of the properties that can be
configured on the Stub instance.

_setProperty() void Sets the name and value of a configuration property for the Stub
instance.

Table 4-5 Properties of Stub Interface

Property Type Description

ENDPOINT_ADDRESS
_PROPERTY

java.lang.S
tring

Target service endpoint address.

PASSWORD_PROPERT
Y

java.lang.S
tring

Password used for authentication.

Should You Implement a S tate less Sess i on E JB?

Getting Started With WebLogic Web Services Using JAX-RPC 4-19

Should You Implement a Stateless Session EJB?
The jwsc Ant task always chooses a plain Java object as the underlying implementation of a Web
Service when processing your JWS file.

Sometimes, however, you might want the underlying implementation of your Web Service to be
a stateless session EJB so as to take advantage of all that EJBs have to offer, such as instance
pooling, transactions, security, container-managed persistence, container-managed relationships,
and data caching. If you decide you want an EJB implementation for your Web Service, then
follow the programming guidelines in the following section.

Programming Guidelines When Implementing an EJB in Your
JWS File
The general guideline is to always use EJBGen annotations in your JWS file to automatically
generate, rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB. EJBGen annotations work in the
same way as JWS annotations: they follow the JDK 5.0 metadata syntax and greatly simplify your
programming tasks.

For more information on EJBGen, see “EJBGen Reference” in Programming WebLogic
Enterprise JavaBeans.

Follow these guidelines when explicitly implementing a stateless session EJB in your JWS file.
See “Example of a JWS File That Implements an EJB” on page 4-20 for an example; the relevant
sections are shown in bold:

Import the standard Java Platform, Enterprise Edition (Java EE) Version 5 EJB classes:

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

SESSION_MAINTAIN
_PROPERTY

java.lang.S
tring

Flag specifying whether to participate in a session with a service
endpoint.

USERNAME_PROPERT
Y

java.lang.S
tring

User name used for authentication.

Table 4-5 Properties of Stub Interface (Continued)

Property Type Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ejb/EJBGen_reference.html

4-20 Getting Started With WebLogic Web Services Using JAX-RPC

Import the EJBGen annotations, all of which are in the weblogic.ejbgen package. At a
minimum you need to import the @Session annotation; if you want to use additional
EJBGen annotations in your JWS file to specify the shape and behavior of the EJB, see the
“EJBGen Reference” in Programming WebLogic Enterprise JavaBeans for the name of the
annotation you should import.

import weblogic.ejbgen.Session;

At a minimum, use the @Session annotation at the class level to specify the name of the
EJB:

@Session(ejbName="TransactionEJB")

@Session is the only required EJBGen annotation when used in a JWS file. You can, if
you want, use other EJBGen annotations to specify additional features of the EJB.

Ensure that the JWS class implements SessionBean:

public class TransactionImpl implements SessionBean {...

You must also include the standard EJB methods ejbCreate(), ejbActivate() and so
on, although you typically do not need to add code to these methods unless you want to
change the default behavior of the EJB:

 public void ejbCreate() {}
 public void ejbActivate() {}
 public void ejbRemove() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}

If you follow all these guidelines in your JWS file, the jwsc Ant task later compiles the Web
Service into an EJB and packages it into an EJB JAR file inside of the Enterprise Application.

Example of a JWS File That Implements an EJB
The following example shows a simple JWS file that implement a stateless session EJB. The
relevant code is shown in bold.

package examples.webservices.transactional;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Transactional;

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ejb/EJBGen_reference.html

Programming the User-De f ined Java Data Type

Getting Started With WebLogic Web Services Using JAX-RPC 4-21

import weblogic.ejbgen.Session;

@Session(ejbName="TransactionEJB")

@WebService(name="TransactionPortType", serviceName="TransactionService",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="transactions", serviceUri="TransactionService",
 portName="TransactionPort")

/**
 * This JWS file forms the basis of simple EJB-implemented WebLogic
 * Web Service with a single operation: sayHello. The operation executes
 * as part of a transaction.
 *
 */

public class TransactionImpl implements SessionBean {

 @WebMethod()
 @Transactional(value=true)

 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }

 // Standard EJB methods. Typically there's no need to override the methods.

 public void ejbCreate() {}
 public void ejbActivate() {}
 public void ejbRemove() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}
}

Programming the User-Defined Java Data Type
The methods of the JWS file that are exposed as Web Service operations do not necessarily take
built-in data types (such as Strings and integers) as parameters and return values, but rather, might
use a Java data type that you create yourself. An example of a user-defined data type is
TradeResult, which has two fields: a String stock symbol and an integer number of shares
traded.

If your JWS file uses user-defined data types as parameters or return values of one or more of its
methods, you must create the Java code of the data type yourself, and then import the class into
your JWS file and use it appropriately. The jwsc Ant task will later take care of creating all the

4-22 Getting Started With WebLogic Web Services Using JAX-RPC

necessary data binding artifacts, such as the corresponding XML Schema representation of the
Java user-defined data type, the JAX-RPC type mapping file, and so on.

Follow these basic requirements when writing the Java class for your user-defined data type:

Define a default constructor, which is a constructor that takes no parameters.

Define both getXXX() and setXXX() methods for each member variable that you want to
publicly expose.

Make the data type of each exposed member variable one of the built-in data types, or
another user-defined data type that consists of built-in data types.

These requirements are specified by JAX-RPC; for more detailed information and the complete
list of requirements, see the JAX-RPC specification.

The jwsc Ant task can generate data binding artifacts for most common XML and Java data
types. For the list of supported user-defined data types, see “Supported User-Defined Data
Types” on page 5-6. See “Supported Built-In Data Types” on page 5-2 for the full list of
supported built-in data types.

The following example shows a simple Java user-defined data type called BasicStruct:

package examples.webservices.complex;

/**

 * Defines a simple JavaBean called BasicStruct that has integer, String,

 * and String[] properties

 */

public class BasicStruct {

 // Properties

 private int intValue;

 private String stringValue;

 private String[] stringArray;

 // Getter and setter methods

 public int getIntValue() {

 return intValue;

 }

 public void setIntValue(int intValue) {

 this.intValue = intValue;

 }

Programming the User-De f ined Java Data Type

Getting Started With WebLogic Web Services Using JAX-RPC 4-23

 public String getStringValue() {

 return stringValue;

 }

 public void setStringValue(String stringValue) {

 this.stringValue = stringValue;

 }

 public String[] getStringArray() {

 return stringArray;

 }

 public void setStringArray(String[] stringArray) {

 this.stringArray = stringArray;

 }

}

The following snippets from a JWS file show how to import the BasicStruct class and use it as
both a parameter and return value for one of its methods; for the full JWS file, see “Sample
ComplexImpl.java JWS File” on page 2-11:

package examples.webservices.complex;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface

import weblogic.jws.WLHttpTransport;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")

...

public class ComplexImpl {

 @WebMethod(operationName="echoComplexType")
 public BasicStruct echoStruct(BasicStruct struct)

4-24 Getting Started With WebLogic Web Services Using JAX-RPC

 {
 return struct;
 }
}

Throwing Exceptions
When you write the error-handling Java code in methods of the JWS file, you can either throw
your own user-defined exceptions or throw a javax.xml.rpc.soap.SOAPFaultException
exception. If you throw a SOAPFaultException, WebLogic Server maps it to a SOAP fault and
sends it to the client application that invokes the operation.

If your JWS file throws any type of Java exception other than SOAPFaultException, WebLogic
Server tries to map it to a SOAP fault as best it can. However, if you want to control what the
client application receives and send it the best possible exception information, you should
explicitly throw a SOAPFaultException exception or one that extends the exception. See the
JAX-RPC specification for detailed information about creating and throwing your own
user-defined exceptions.

The following excerpt describes the SOAPFaultException class:

public class SOAPFaultException extends java.lang.RuntimeException {
 public SOAPFaultException (QName faultcode,
 String faultstring,
 String faultactor,
 javax.xml.soap.Detail detail) {...}
 public Qname getFaultCode() {...}
 public String getFaultString() {...}
 public String getFaultActor() {...}
 public javax.xml.soap.Detail getDetail() {...}
}

Use the SOAP with Attachments API for Java 1.1 (SAAJ)
javax.xml.soap.SOAPFactory.createDetail() method to create the Detail object, which
is a container for DetailEntry objects that provide detailed application-specific information
about the error.

You can use your own implementation of the SOAPFactory, or use Oracle 's, which can be
accessed in the JWS file by calling the static method
weblogic.wsee.util.WLSOAPFactory.createSOAPFactory() which returns a
javax.xml.soap.SOAPFactory object. Then at runtime, use the
-Djavax.xml.soap.SOAPFactory flag to specify Oracle’s SOAPFactory implementation as
shown:

Throwing Except ions

Getting Started With WebLogic Web Services Using JAX-RPC 4-25

-Djavax.xml.soap.SOAPFactory=weblogic.xml.saaj.SOAPFactoryImpl

The following JWS file shows an example of creating and throwing a SOAPFaultException
from within a method that implements an operation of your Web Service; the sections in bold
highlight the exception code:

package examples.webservices.soap_exceptions;

import javax.xml.namespace.QName;
import javax.xml.soap.Detail;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.rpc.soap.SOAPFaultException;

// Import the @WebService annotation

import javax.jws.WebService;

// Import WLHttpTransport

import weblogic.jws.WLHttpTransport;

@WebService(serviceName="SoapExceptionsService",
 name="SoapExceptionsPortType",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="exceptions",
 serviceUri="SoapExceptionsService",
 portName="SoapExceptionsServicePort")
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHelloWorld
 *
 */

public class SoapExceptionsImpl {

 public SoapExceptionsImpl() {

 }

 public void tirarSOAPException() {

 Detail detail = null;

 try {

 SOAPFactory soapFactory = SOAPFactory.newInstance();
 detail = soapFactory.createDetail();

4-26 Getting Started With WebLogic Web Services Using JAX-RPC

 } catch (SOAPException e) {
 // do something
 }

 QName faultCode = null;
 String faultString = "the fault string";
 String faultActor = "the fault actor";
 throw new SOAPFaultException(faultCode, faultString, faultActor, detail);
 }
}

The preceding example uses the default implementation of SOAPFactory.

Note: If you create and throw your own exception (rather than use SOAPFaultException) and
two or more of the properties of your exception class are of the same data type, then you
must also create setter methods for these properties, even though the JAX-RPC
specification does not require it. This is because when a WebLogic Web Service receives
the exception in a SOAP message and converts the XML into the Java exception class,
there is no way of knowing which XML element maps to which class property without
the corresponding setter methods.

Invoking Another Web Service from the JWS File
From within your JWS file you can invoke another Web Service, either one deployed on
WebLogic Server or one deployed on some other application server, such as .NET. The steps to
do this are similar to those described in “Invoking a Web Service from a Stand-alone Java Client”
on page 2-25, except that rather than running the clientgen Ant task to generate the client stubs,
you include a <clientgen> child element of the jwsc Ant task that builds the invoking Web
Service to generate the client stubs instead. You then use the standard JAX-RPC APIs in your
JWS file the same as you do in a stand-alone client application.

See “Invoking a Web Service from Another Web Service” on page 6-12 for detailed instructions.

Programming Additional Miscellaneous Features Using
JWS Annotations and APIs

The following sections describe additional miscellaneous features you can program by specifying
particular JWS annotations in your JWS file or using WebLogic Web Services APIs:

“Sending Binary Data Using MTOM/XOP” on page 4-27

“Streaming SOAP Attachments” on page 4-29

Programming Add i t i ona l Misce l laneous Featu res Us ing JWS Annota t ions and AP Is

Getting Started With WebLogic Web Services Using JAX-RPC 4-27

“Using SOAP 1.2” on page 4-30

“Specifying that Operations Run Inside of a Transaction” on page 4-31

“Getting the HttpServletRequest/Response Object” on page 4-32

Sending Binary Data Using MTOM/XOP
SOAP Message Transmission Optimization Mechanism/XML-binary Optimized Packaging
(MTOM/XOP) describes a method for optimizing the transmission of XML data of type
xs:base64Binary in SOAP messages. When the transport protocol is HTTP, MIME
attachments are used to carry that data while at the same time allowing both the sender and the
receiver direct access to the XML data in the SOAP message without having to be aware that any
MIME artifacts were used to marshal the xs:base64Binary data. The binary data optimization
process involves encoding the binary data, removing it from the SOAP envelope, compressing it
and attaching it to the MIME package, and adding references to that package in the SOAP
envelope.

The MTOM specification does not require that, when MTOM is enabled, the Web Service
runtime use XOP binary optimization when transmitting base64binary data. Rather, the
specification allows the runtime to choose to do so. This is because in certain cases the runtime
may decide that it is more efficient to send base64binary data directly in the SOAP Message;
an example of such a case is when transporting small amounts of data in which the overhead of
conversion and transport consumes more resources than just inlining the data as is. The
WebLogic Web Services implementation for MTOM for JAX-RPC service, however, always
uses MTOM/XOP when MTOM is enabled.

Support for MTOM/XOP in WebLogic JAX-RPC Web Services is implemented using the
pre-packaged WS-Policy file Mtom.xml. WS-Policy files follow the WS-Policy specification;
this specification provides a general purpose model and XML syntax to describe and
communicate the policies of a Web Service, in this case the use of MTOM/XOP to send binary
data. The installation of the pre-packaged Mtom.xml WS-Policy file in the types section of the
Web Service WSDL is as follows (provided for your information only; you cannot change this
file):

<wsp:Policy wsu:Id="myService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsoma:OptimizedMimeSerialization

xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeseriali
zation" />

4-28 Getting Started With WebLogic Web Services Using JAX-RPC

 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file; the
snippet indicates that the Web Service uses MTOM/XOP:

<wsdl:binding name="BasicHttpBinding_IMtomTest"
 type="i0:IMtomTest">
 <wsp:PolicyReference URI="#myService_policy" />
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xml WS-Policy file with a Web Service at development-time by
specifying the @Policy metadata annotation in your JWS file. Be sure you also specify the
attachToWsdl=true attribute to ensure that the dynamic WSDL includes the required reference
to the Mtom.xml file; see the example below.

You can associate the Mtom.xml WS-Policy file with a Web Service at deployment time by
modifying the WSDL to add the Policy to the types section just before deployment.

You can also attach the file at runtime using by the Administration Console; for details, see
“Associate a WS-Policy File With A Web Service” in the Administration Console Online Help.
This section describes how to use the JWS annotation.

Note: In this release of WebLogic Server, the only supported Java data type when using
MTOM/XOP is byte[]; other binary data types, such as image, are not supported.

In addition, this release of WebLogic Server does not support using MTOM with
message-level security. In practical terms this means that you cannot specify the
Mtom.xml WS-Policy file together with the Encrypt.xml, Sign.xml, Wssc-dk.xml, or
Wssc-sct.xml WS-Policy files in the same JAX-RPC Web Service.

To send binary data using MTOM/XOP, follow these steps:

1. Use the WebLogic-specific @weblogic.jws.Policy annotation in your JWS file to specify
that the pre-packaged Mtom.xml file should be applied to your Web Service, as shown in the
following simple JWS file (relevant code shown in bold):

package examples.webservices.mtom;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Policy;

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ConfigureWSPolicyFile.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#Policy

Programming Add i t i ona l Misce l laneous Featu res Us ing JWS Annota t ions and AP Is

Getting Started With WebLogic Web Services Using JAX-RPC 4-29

@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="mtom",
 serviceUri="MtomService",
 portName="MtomServicePort")

@Policy(uri="policy:Mtom.xml", attachToWsdl=true)

public class MtomImpl {

 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

2. Use the Java byte[] data type in your Web Service operations as either a return value or input
parameter whenever you want the resulting SOAP message to use MTOM/XOP to send or
receive the binary data. See the implementation of the echoBinaryAsString operation
above for an example; this operation simply takes as input an array of byte and returns it as
a String.

3. The WebLogic Web Services runtime has built in MTOM/XOP support which is enabled if
the WSDL for which the clientgen Ant task generates client-side artifacts specifies
MTOM/XOP support. In your client application itself, simply invoke the operations as usual,
using byte[] as the relevant data type.

See the SOAP Message Transmission Optimization Mechanism specification for additional
information about the MTOM/XOP feature itself as well as the version of the specification
supported by WebLogic JAX-RPC Web Services.

Streaming SOAP Attachments
Using the @weblogic.jws.StreamAttachments JWS annotation, you can specify that a Web
Service use a streaming API when reading inbound SOAP messages that include attachments,
rather than the default behavior in which the service reads the entire message into memory. This
feature increases the performance of Web Services whose SOAP messages are particular large.

See “weblogic.jws.StreamAttachments” in the WebLogic Web Services Reference for an example
of specifying that attachments should be streamed.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#StreamAttachments

4-30 Getting Started With WebLogic Web Services Using JAX-RPC

Using SOAP 1.2
WebLogic Web Services use, by default, Version 1.1 of Simple Object Access Protocol (SOAP)

as the message format when transmitting data and invocation calls between the Web Service and
its client. WebLogic Web Services support both SOAP 1.1 and the newer SOAP 1.2, and you are
free to use either version.

To specify that the Web Service use Version 1.2 of SOAP, use the class-level
@weblogic.jws.Binding annotation in your JWS file and set its single attribute to the value
Binding.Type.SOAP12, as shown in the following example (relevant code shown in bold):

package examples.webservices.soap12;

import javax.jws.WebMethod;

import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Binding;

@WebService(name="SOAP12PortType",

 serviceName="SOAP12Service",

 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="soap12",

 serviceUri="SOAP12Service",

 portName="SOAP12ServicePort")

@Binding(Binding.Type.SOAP12)

/**

 * This JWS file forms the basis of simple Java-class implemented WebLogic

 * Web Service with a single operation: sayHello. The class uses SOAP 1.2

 * as its binding.

 *

 */

public class SOAP12Impl {

 @WebMethod()

 public String sayHello(String message) {

 System.out.println("sayHello:" + message);

 return "Here is the message: '" + message + "'";

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#Binding

Programming Add i t i ona l Misce l laneous Featu res Us ing JWS Annota t ions and AP Is

Getting Started With WebLogic Web Services Using JAX-RPC 4-31

 }

}

Other than set this annotation, you do not have to do anything else for the Web Service to use
SOAP 1.2, including changing client applications that invoke the Web Service; the WebLogic
Web Services runtime takes care of all the rest.

See “weblogic.jws.Binding” in the WebLogic Web Services Reference for additional information
about this annotation.

Note:

Specifying that Operations Run Inside of a Transaction
When a client application invokes a WebLogic Web Service operation, the operation invocation
takes place outside the context of a transaction, by default. If you want the operation to run inside
a transaction, specify the @weblogic.jws.Transactional annotation in your JWS file, and set
the boolean value attribute to true, as shown in the following example (relevant code shown in
bold):

package examples.webservices.transactional;

import javax.jws.WebMethod;

import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Transactional;

@WebService(name="TransactionPojoPortType",

 serviceName="TransactionPojoService",

 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="transactionsPojo",

 serviceUri="TransactionPojoService",

 portName="TransactionPojoPort")

/**

 * This JWS file forms the basis of simple WebLogic

 * Web Service with a single operation: sayHello. The operation executes

 * as part of a transaction.

 *

 */

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#Binding
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#Transactional

4-32 Getting Started With WebLogic Web Services Using JAX-RPC

public class TransactionPojoImpl {

 @WebMethod()

 @Transactional(value=true)

 public String sayHello(String message) {

 System.out.println("sayHello:" + message);

 return "Here is the message: '" + message + "'";

 }

}

If you want all operations of a Web Service to run inside of a transaction, specify the
@Transactional annotation at the class-level. If you want only a subset of the operations to be
transactional, specify the annotation at the method-level. If there is a conflict, the method-level
value overrides the class-level.

See “weblogic.jws.Transactional” in the WebLogic Web Services Reference for information
about additional attributes.

Getting the HttpServletRequest/Response Object
If your Web Service uses HTTP as its transport protocol, you can use the
weblogic.wsee.connection.transport.servlet.HttpTransportUtils API to get the
javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse objects from the JAX-RPC
ServletEndpointContext object, as shown in the following example (relevant code shown in
bold and explained after the example):

package examples.webservices.http_transport_utils;

import javax.xml.rpc.server.ServiceLifecycle;
import javax.xml.rpc.server.ServletEndpointContext;
import javax.xml.rpc.ServiceException;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#Transactional

Programming Add i t i ona l Misce l laneous Featu res Us ing JWS Annota t ions and AP Is

Getting Started With WebLogic Web Services Using JAX-RPC 4-33

@WebService(name="HttpTransportUtilsPortType",
 serviceName="HttpTransportUtilsService",
 targetNamespace="http://example.org")

@WLHttpTransport(contextPath="servlet", serviceUri="HttpTransportUtils",
 portName="HttpTransportUtilsPort")

public class HttpTransportUtilsImpl implements ServiceLifecycle {

 private ServletEndpointContext wsctx = null;

 public void init(Object context) throws ServiceException {
 System.out.println("ServletEndpointContext inited...");
 wsctx = (ServletEndpointContext)context;
 }

 public void destroy() {
 System.out.println("ServletEndpointContext destroyed...");
 wsctx = null;
 }

 @WebMethod()
 public String getServletRequestAndResponse() {

 HttpServletRequest request =
 HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());
 HttpServletResponse response =
 HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

 System.out.println("HttpTransportUtils API used successfully.");
 return "HttpTransportUtils API used successfully";

 }

}

The important parts of the preceding example are as follows:

Import the required JAX-RPC and Servlet classes:

import javax.xml.rpc.server.ServiceLifecycle;
import javax.xml.rpc.server.ServletEndpointContext;
import javax.xml.rpc.ServiceException;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

Import the WebLogic HttpTransportUtils class:

import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;

4-34 Getting Started With WebLogic Web Services Using JAX-RPC

Because you will be querying the JAX-RPC message context, your JWS file must
explicitly implement ServiceLifecycle:

public class HttpTransportUtilsImpl implements ServiceLifecycle

Create a variable of data type ServletEndpointContext:

 private ServletEndpointContext wsctx = null;

Because the JWS file implements ServiceLifecycle, you must also implement the init
and destroy lifecycle methods:

 public void init(Object context) throws ServiceException {
 System.out.println("ServletEndpointContext inited...");
 wsctx = (ServletEndpointContext)context;
 }
 public void destroy() {
 System.out.println("ServletEndpointContext destroyed...");
 wsctx = null;
 }

Finally, in the method that implements the Web Service operation, use the
ServletEndpointContext object to get the HttpServletRequest and
HttpServletResponse objects:

HttpServletRequest request =
 HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());
HttpServletResponse response =
 HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

JWS Programming Best Practices
The following list provides some best practices when programming the JWS file:

When you create a document-literal-bare Web Service, use the @WebParam JWS annotation
to ensure that all input parameters for all operations of a given Web Service have a unique
name. Because of the nature of document-literal-bare Web Services, if you do not
explicitly use the @WebParam annotation to specify the name of the input parameters,
WebLogic Server creates one for you and run the risk of duplicating the names of the
parameters across a Web Service.

In general, document-literal-wrapped Web Services are the most interoperable type of Web
Service.

Use the @WebResult JWS annotation to explicitly set the name of the returned value of an
operation, rather than always relying on the hard-coded name return, which is the default
name of the returned value if you do not use the @WebResult annotation in your JWS file.

JWS Prog ramming Bes t P ract ices

Getting Started With WebLogic Web Services Using JAX-RPC 4-35

Use SOAPFaultExceptions in your JWS file if you want to control the exception
information that is passed back to a client application when an error is encountered while
invoking a the Web Service.

Even though it is not required, Oracle recommends you always specify the portName
attribute of the WebLogic-specific @WLHttpTransport annotation in your JWS file. If
you do not specify this attribute, the jwsc Ant task will generate a port name for you when
generating the WSDL file, but this name might not be very user-friendly. A consequence
of this is that the getXXX() method you use in your client applications to invoke the Web
Service will not be very well-named. To ensure that your client applications use the most
user-friendly methods possible when invoking the Web Service, specify a relevant name of
the Web Service port by using the portName attribute.

4-36 Getting Started With WebLogic Web Services Using JAX-RPC

Getting Started With WebLogic Web Services Using JAX-RPC 5-1

C H A P T E R 5

Understanding Data Binding

The following sections provide information about data binding and the data types (both built-in
and user-defined) that are supported:

“Overview of Data Binding” on page 5-1

“Supported Built-In Data Types” on page 5-2

“Supported User-Defined Data Types” on page 5-6

Overview of Data Binding
With the emergence of XML as the standard for exchanging data across disparate systems, Web
Service applications need a way to access documents that are in XML format directly from the
Java application. Specifically, the XML content needs to be converted to a format that is readable
by the Java application. Data binding describes the conversion of data between its XML and Java
representations.

As in previous releases, WebLogic Web Services support a full set of built-in XML Schema,
Java, and SOAP types, as specified by the JAX-RPC specification, that you can use in your Web
Service operations without performing any additional programming steps. Built-in data types are
those such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types, including Apache
XmlBeans (in package org.apache.xmlbeans), as input parameters and return values of your
Web Service. User-defined data types are those that you create from XML Schema or Java
building blocks, such as <xsd:complexType> or JavaBeans. The WebLogic Web Services Ant

5-2 Getting Started With WebLogic Web Services Using JAX-RPC

tasks, such as jwsc and clientgen, automatically generate the data binding artifacts needed to
convert the user-defined data types between their XML and Java representations. The XML
representation is used in the SOAP request and response messages, and the Java representation is
used in the JWS that implements the Web Service.

Note: As of WebLogic Server 9.1, using XMLBeans 1.x data types (in other words, extensions
of com.bea.xml.XmlObject) as parameters or return types of a WebLogic Web Service
is deprecated. New applications should use XMLBeans 2.x data types.

Supported Built-In Data Types
The following sections describe the built-in data types supported by WebLogic Web Services and
the mapping between their XML and Java representations. As long as the data types of the
parameters and return values of the back-end components that implement your Web Service are
in the set of built-in data types, WebLogic Server automatically converts the data between XML
and Java.

If, however, you use user-defined data types, then you must create the data binding artifacts that
convert the data between XML and Java.WebLogic Server includes the jwsc and wsdlc Ant
tasks that can automatically generate the data binding artifacts for most user-defined data types.
See “Supported User-Defined Data Types” on page 5-6 for a list of supported XML and Java data
types.

XML-to-Java Mapping for Built-in Data Types
The following table lists the supported XML Schema data types (target namespace
http://www.w3.org/2001/XMLSchema) and their corresponding Java data types.

For a list of the supported user-defined XML data types, see “Java-to-XML Mapping for Built-In
Data Types” on page 5-4.

Table 5-1 Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

boolean boolean

byte byte

short short

Suppor ted Bu i l t - In Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 5-3

int int

long long

float float

double double

integer java.math.BigInteger

decimal java.math.BigDecimal

string java.lang.String

dateTime java.util.Calendar

base64Binary byte[]

hexBinary byte[]

duration java.lang.String

time java.util.Calendar

date java.util.Calendar

gYearMonth java.util.Calendar

gYear java.util.Calendar

gMonthDay java.util.Calendar

gDay java.util.Calendar

gMonth java.util.Calendar

anyURI java.net.URI

NOTATION java.lang.String

token java.lang.String

normalizedString java.lang.String

Table 5-1 Mapping XML Schema Built-in Data Types to Java Data Types (Continued)

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

5-4 Getting Started With WebLogic Web Services Using JAX-RPC

Java-to-XML Mapping for Built-In Data Types
For a list of the supported user-defined Java data types, see “Supported Java User-Defined Data
Types” on page 5-8.

language java.lang.String

Name java.lang.String

NMTOKEN java.lang.String

NCName java.lang.String

NMTOKENS java.lang.String[]

ID java.lang.String

IDREF java.lang.String

ENTITY java.lang.String

IDREFS java.lang.String[]

ENTITIES java.lang.String[]

nonPositiveInteger java.math.BigInteger

nonNegativeInteger java.math.BigInteger

negativeInteger java.math.BigInteger

unsignedLong java.math.BigInteger

positiveInteger java.math.BigInteger

unsignedInt long

unsignedShort int

unsignedByte short

Qname javax.xml.namespace.QName

Table 5-1 Mapping XML Schema Built-in Data Types to Java Data Types (Continued)

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

Suppor ted Bu i l t - In Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 5-5

Table 5-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates
a primitive data type)

Equivalent XML Schema Data Type

int int

short short

long long

float float

double double

byte byte

boolean boolean

char string (with facet of length=1)

java.lang.Integer int

java.lang.Short short

java.lang.Long long

java.lang.Float float

java.lang.Double double

java.lang.Byte byte

java.lang.Boolean boolean

java.lang.Character string (with facet of length=1)

java.lang.String string

java.math.BigInteger integer

java.math.BigDecimal decimal

java.util.Calendar dateTime

java.util.Date dateTime

byte[] base64Binary

5-6 Getting Started With WebLogic Web Services Using JAX-RPC

Supported User-Defined Data Types
The tables in the following sections list the user-defined XML and Java data types for which the
jwsc and wsdlc Ant tasks can automatically generate data binding artifacts, such as the
corresponding Java or XML representation, the JAX-RPC type mapping file, and so on.

If your XML or Java data type is not listed in these tables, and it is not one of the built-in data
types listed in “Supported Built-In Data Types” on page 5-2, then you must create the
user-defined data type artifacts manually.

Supported XML User-Defined Data Types
The following table lists the XML Schema data types supported by the jwsc and wsdlc Ant tasks
and their equivalent Java data type or mapping mechanism.

javax.xml.namespace.QName Qname

java.net.URI anyURI

javax.xml.datatype.XMLGre
gorianCalendar

anySimpleType

javax.xml.datatype.Durati
on

duration

java.lang.Object anyType

java.awt.Image base64Binary

javax.activation.DataHand
ler

base64Binary

javax.xml.transform.Sourc
e

base64Binary

java.util.UUID string

Table 5-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates
a primitive data type)

Equivalent XML Schema Data Type

Suppor ted User -De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 5-7

For details and examples of the data types, see the JAX-RPC specification.

Table 5-3 Supported User-Defined XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping Mechanism

<xsd:complexType> with elements of both simple
and complex types.

JavaBean

<xsd:complexType> with simple content. JavaBean

<xsd:attribute> in <xsd:complexType> Property of a JavaBean

Derivation of new simple types by restriction of an
existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element. Facets not enforced during serialization and
deserialization.

<xsd:list> Array of the list data type.

Array derived from soapenc:Array by restriction
using the wsdl:arrayType attribute.

Array of the Java equivalent of the arrayType data
type.

Array derived from soapenc:Array by restriction. Array of Java equivalent.

Derivation of a complex type from a simple type. JavaBean with a property called _value whose type
is mapped from the simple type according to the rules
in this section.

<xsd:anyType> java.lang.Object

<xsd:any> javax.xml.soap.SOAPElement or
org.apache.xmlbeans.XmlObject

<xsd:any[]> javax.xml.soap.SOAPElement[] or
org.apache.xmlbeans.XmlObject[]

<xsd:union> Common parent type of union members.

<xsi:nil> and <xsd:nillable> attribute Java null value.

If the XML data type is built-in and usually maps to a
Java primitive data type (such as int or short), then
the XML data type is actually mapped to the
equivalent object wrapper type (such as
java.lang.Integer or java.lang.Short).

5-8 Getting Started With WebLogic Web Services Using JAX-RPC

Supported Java User-Defined Data Types
The following table lists the Java user-defined data types supported by the jwsc and wsdlc Ant
tasks and their equivalent XML Schema data type.

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

Table 5-3 Supported User-Defined XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping Mechanism

Table 5-4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported data
type.

<xsd:complexType> whose content model is a
<xsd:sequence> of elements corresponding to
JavaBean properties.

Array and multidimensional array of any supported
data type (when used as a JavaBean property)

An element in a <xsd:complexType> with the
maxOccurs attribute set to unbounded.

java.lang.Object

Note: The data type of the runtime object must be
a known type.

<xsd:anyType>

Apache XMLBeans (that are inherited from
org.apache.xmlbeans.XmlObject only)

Note: The Web Service that uses an Apache
XMLBeans data type as a return type or
parameter must be defined as
document-literal-wrapped or
document-literal-bare.

See Apache XMLBeans.

java.util.Collection Literal Array

java.util.List Literal Array

java.util.ArrayList Literal Array

java.util.LinkedList Literal Array

Suppor ted User -De f ined Data Types

Getting Started With WebLogic Web Services Using JAX-RPC 5-9

Note: The following user-defined Java data type, used as a parameter or return value of a
WebLogic Web Service in Version 8.1, is no longer supported:

JAX-RPC-style enumeration class

Additionally, generics are not supported when used as a parameter or return value. For
example, the following Java method cannot be exposed as a public operation:
public ArrayList<String> echoGeneric(ArrayList<String> in) {
 return in;
}

java.util.Vector Literal Array

java.util.Stack Literal Array

java.util.Set Literal Array

java.util.TreeSet Literal Array

java.utils.SortedSet Literal Array

java.utils.HashSet Literal Array

Table 5-4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type

5-10 Getting Started With WebLogic Web Services Using JAX-RPC

Getting Started With WebLogic Web Services Using JAX-RPC 6-1

C H A P T E R 6

Invoking Web Services

The following sections describe how to invoke WebLogic Web Services:

“Overview of Web Services Invocation” on page 6-1

“Invoking a Web Service from a Stand-alone Client: Main Steps” on page 6-3

“Invoking a Web Service from Another Web Service” on page 6-12

“Using a Stand-Alone Client JAR File When Invoking Web Services” on page 6-17

“Using a Proxy Server When Invoking a Web Service” on page 6-18

“Client Considerations When Redeploying a Web Service” on page 6-22

“WebLogic Web Services Stub Properties” on page 6-22

“Setting the Character Encoding For the Response SOAP Message” on page 6-25

Note: The following sections do not include information about invoking message-secured Web
Services; for that topic, see “Updating a Client Application to Invoke a Message-Secured
Web Service” in Securing WebLogic Web Services.

Overview of Web Services Invocation
Invoking a Web Service refers to the actions that a client application performs to use the Web
Service. Client applications that invoke Web Services can be written using any technology: Java,
Microsoft .NET, and so on.

There are two types of client applications:

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html#security_client
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html#security_client

6-2 Getting Started With WebLogic Web Services Using JAX-RPC

Stand-alone—A stand-alone client application, in its simplest form, is a Java program that
has the Main public class that you invoke with the java command. It runs completely
separately from WebLogic Server.

A Java EE component deployed to WebLogic Server—In this type of client application,
the Web Service runs inside a Java Platform, Enterprise Edition (Java EE) Version 5
component deployed to WebLogic Server, such as an EJB, servlet, or another Web Service.
This type of client application, therefore, runs inside a WebLogic Server container.

The sections that follow describe how to use Oracle’s implementation of the JAX-RPC
specification to invoke a Web Service from a Java client application. You can use this
implementation to invoke Web Services running on any application server, both WebLogic and
non-WebLogic. In addition, you can create a stand-alone client application or one that runs as part
of a WebLogic Server.

Note: You cannot use a dynamic client to invoke a Web Service operation that implements
user-defined data types as parameters or return values. A dynamic client uses the
JAX-RPC Call interface. Standard (static) clients use the Service and Stub JAX-RPC
interfaces, which correctly invoke Web Services that implement user-defined data types.

Invoking Web Services Using JAX-RPC
The Java API for XML based RPC (JAX-RPC) is a Sun Microsystems specification that defines
the APIs used to invoke a Web Service. WebLogic Server implements the JAX-RPC
specification.

The following table briefly describes the core JAX-RPC interfaces and classes.

Table 6-1 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface or Class Description

Service Main client interface.

ServiceFactory Factory class for creating Service instances.

Stub Base class of the client proxy used to invoke the operations of a Web
Service.

Call Used to dynamically invoke a Web Service.

JAXRPCException Exception thrown if an error occurs while invoking a Web Service.

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-RPC 6-3

Examples of Clients That Invoke Web Services
WebLogic Server includes examples of creating and invoking WebLogic Web Services in the
WL_HOME/samples/server/examples/src/examples/webservices directory, where
WL_HOME refers to the main WebLogic Server directory. For detailed instructions on how to build
and run the examples, open the WL_HOME/samples/server/docs/index.html Web page in
your browser and expand the WebLogic Server Examples->Examples->API->Web Services
node.

Invoking a Web Service from a Stand-alone Client: Main
Steps

The following table summarizes the main steps to create a stand-alone client that invokes a Web
Service. See also “Using a Stand-Alone Client JAR File When Invoking Web Services” on
page 6-17.

Note: It is assumed that you use Ant in your development environment to build your client
application, compile Java files, and so on, and that you have an existing build.xml file
that you want to update with Web Services client tasks. For general information about
using Ant in your development environment, see “Creating the Basic Ant build.xml File”
on page 3-7. For a full example of a build.xml file used in this section, see “Sample Ant
Build File for a Stand-Alone Java Client” on page 6-10.

Table 6-2 Steps to Invoke a Web Service from a Stand-alone Client

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd
(Windows) or setDomainEnv.sh (UNIX) command, located in the
bin subdirectory of your domain directory. The default location of
WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where
BEA_HOME is the top-level installation directory of the Oracle products
and domainName is the name of your domain.

2 Update your build.xml file to
execute the clientgen Ant
task to generate the needed
client-side artifacts to invoke a
Web Service.

See “Using the clientgen Ant Task To Generate Client Artifacts” on
page 6-4.

6-4 Getting Started With WebLogic Web Services Using JAX-RPC

Using the clientgen Ant Task To Generate Client Artifacts
The clientgen WebLogic Web Services Ant task generates, from an existing WSDL file, the
client artifacts that client applications use to invoke both WebLogic and non-WebLogic Web
Services. These artifacts include:

The Java class for the JAX-RPC Stub and Service interface implementations for the
particular Web Service you want to invoke.

The Java class for any user-defined XML Schema data types included in the WSDL file.

The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

A client-side copy of the WSDL file.

For additional information about the clientgen Ant task, such as all the available attributes, see
“Ant Task Reference” in the WebLogic Web Services Reference.

Update your build.xml file, adding a call to the clientgen Ant task, as shown in the following
example:

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

3 Get information about the Web
Service, such as the signature of
its operations and the name of
the ports.

See “Getting Information About a Web Service” on page 6-6.

4 Write the client application Java
code that includes code for
invoking the Web Service
operation.

See “Writing the Java Client Application Code to Invoke a Web Service”
on page 6-7.

5 Create a basic Ant build file,
build.xml.

See “Creating the Basic Ant build.xml File” on page 3-7.

6 Compile and run your Java
client application.

See “Compiling and Running the Client Application” on page 6-8.

Table 6-2 Steps to Invoke a Web Service from a Stand-alone Client (Continued)

Step Description

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-RPC 6-5

 <target name="build-client">

 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="clientclasses"

 packageName="examples.webservices.simple_client"

 type="JAXRPC"/>

 </target>

Before you can execute the clientgen WebLogic Web Service Ant task, you must specify its
full Java classname using the standard taskdef Ant task.

You must include the wsdl and destDir attributes of the clientgen Ant task to specify the
WSDL file from which you want to create client-side artifacts and the directory into which these
artifacts should be generated. The packageName attribute is optional; if you do not specify it, the
clientgen task uses a package name based on the targetNamespace of the WSDL. The type
is also optional; if not specified, it defaults to JAXRPC.

In this example, the package name is set to the same package name as the client application,
examples.webservices.simple_client. If you set the package name to one that is different
from the client application, you would need to import the appropriate class files. For example, if
you defined the package name as examples.webservices.complex, you would need to import
the following class files in the client application:

import examples.webservices.complex.BasicStruct;

import examples.webservices.complex.ComplexPortType;

import examples.webservices.complex.ComplexService;

Note: The clientgen Ant task also provides the destFile attribute if you want the Ant task
to automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see “clientgen” in the WebLogic Web Services Reference.

If the WSDL file specifies that user-defined data types are used as input parameters or return
values of Web Service operations, clientgen automatically generates a JavaBean class that is
the Java representation of the XML Schema data type defined in the WSDL. The JavaBean
classes are generated into the destDir directory.

Note: The package of the Java user-defined data type is based on the XML Schema of the data
type in the WSDL, which is different from the package name of the JAX-RPC stubs.

For a full sample build.xml file that contains additional targets from those described in this
procedure, such as clean, see “Sample Ant Build File for a Stand-Alone Java Client” on
page 6-10.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/anttasks.html#clientgen

6-6 Getting Started With WebLogic Web Services Using JAX-RPC

To execute the clientgen Ant task, along with the other supporting Ant tasks, specify the
build-client target at the command line:

prompt> ant build-client

See the clientclasses directory to view the files and artifacts generated by the clientgen Ant
task.

Getting Information About a Web Service
You need to know the name of the Web Service and the signature of its operations before you
write your Java client application code to invoke an operation. There are a variety of ways to find
this information.

The best way to get this information is to use the clientgen Ant task to generate the Web
Service-specific JAX-RPC stubs and look at the generated *.java files. These files are generated
into the directory specified by the destDir attribute, with subdirectories corresponding to either
the value of the packageName attribute, or, if this attribute is not specified, to a package based on
the targetNamespace of the WSDL.

The ServiceName.java source file contains the getPortName() methods for getting the
Web Service port, where ServiceName refers to the name of the Web Service and
PortName refers to the name of the port. If the Web Service was implemented with a JWS
file, the name of the Web Service is the value of the serviceName attribute of the
@WebService JWS annotation and the name of the port is the value of the portName
attribute of the @WLHttpTransport annotation.

The PortType.java file contains the method signatures that correspond to the public
operations of the Web Service, where PortType refers to the port type of the Web Service.
If the Web Service was implemented with a JWS file, the port type is the value of the name
attribute of the @WebService JWS annotation.

You can also examine the actual WSDL of the Web Service; see “Browsing to the WSDL of the
Web Service” on page 3-19 for details about the WSDL of a deployed WebLogic Web Service.
The name of the Web Service is contained in the <service> element, as shown in the following
excerpt of the TraderService WSDL:

 <service name="TraderService">

 <port name="TraderServicePort"

 binding="tns:TraderServiceSoapBinding">

 ...

 </port>

 </service>

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-RPC 6-7

The operations defined for this Web Service are listed under the corresponding <binding>
element. For example, the following WSDL excerpt shows that the TraderService Web
Service has two operations, buy and sell (for clarity, only relevant parts of the WSDL are
shown):

 <binding name="TraderServiceSoapBinding" ...>

 ...

 <operation name="sell">

 ...

 </operation>

 <operation name="buy">

 </operation>

 </binding>

Writing the Java Client Application Code to Invoke a Web
Service
In the following code example, a stand-alone application invokes a Web Service operation. The
client application takes a single argument: the WSDL of the Web Service.The application then
uses standard JAX-RPC API code and the Web Service-specific implementation of the Service
interface, generated by clientgen, to invoke an operation of the Web Service.

The example also shows how to invoke an operation that has a user-defined data type
(examples.webservices.complex.BasicStruct) as an input parameter and return value.
The clientgen Ant task automatically generates the Java code for this user-defined data type.

package examples.webservices.simple_client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

// import the BasicStruct class, used as a param and return value of the
// echoComplexType operation. The class is generated automatically by
// the clientgen Ant task.

import examples.webservices.complex.BasicStruct;

/**
 * This is a simple stand-alone client application that invokes the
 * the echoComplexType operation of the ComplexService Web service.
 */

6-8 Getting Started With WebLogic Web Services Using JAX-RPC

public class Main {

 public static void main(String[] args)
 throws ServiceException, RemoteException {

 ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();

 BasicStruct in = new BasicStruct();

 in.setIntValue(999);
 in.setStringValue("Hello Struct");

 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());
 }
}

In the preceding example:

The following code shows how to create a ComplexPortType stub:

 ComplexService service = new ComplexService_Impl (args[0] +
"?WSDL");
 ComplexPortType port = service.getComplexServicePort();The
ComplexService_Impl stub factory implements the JAX-RPC Service interface. The
constructor of ComplexService_Impl creates a stub based on the provided WSDL URI
(args[0] + "?WSDL"). The getComplexServicePort() method is used to return an
instance of the ComplexPortType stub implementation.

The following code shows how to invoke the echoComplexType operation of the
ComplexService Web Service:

 BasicStruct result = port.echoComplexType(in);

The echoComplexType operation returns the user-defined data type called BasicStruct.

The method of your application that invokes the Web Service operation must throw or catch
java.rmi.RemoteException and javax.xml.rpc.ServiceException, both of which are
thrown from the generated JAX-RPC stubs.

Compiling and Running the Client Application
Add javac tasks to the build-client target in the build.xml file to compile all the Java files
(both of your client application and those generated by clientgen) into class files, as shown by
the bold text in the following example:

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-RPC 6-9

 <target name="build-client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="clientclasses"

 packageName="examples.webservices.simple_client"

 type="JAXRPC"/>

 <javac

 srcdir="clientclasses"

 destdir="clientclasses"

 includes="**/*.java"/>

 <javac

 srcdir="src"

 destdir="clientclasses"

 includes="examples/webservices/simple_client/*.java"/>

 </target>

In the example, the first javac task compiles the Java files in the clientclasses directory that
were generated by clientgen, and the second javac task compiles the Java files in the
examples/webservices/simple_client subdirectory of the current directory; where it is
assumed your Java client application source is located.

In the preceding example, the clientgen-generated Java source files and the resulting compiled
classes end up in the same directory (clientclasses). Although this might be adequate for
prototyping, it is often a best practice to keep source code (even generated code) in a different
directory from the compiled classes. To do this, set the destdir for both javac tasks to a
directory different from the srcdir directory. You must also copy the following
clientgen-generated files from clientgen’s destination directory to javac’s destination
directory, keeping the same subdirectory hierarchy in the destination:

packageName/ServiceName_internaldd.xml

packageName/ServiceName_java_wsdl_mapping.xml

packageName/ServiceName_saved_wsdl.wsdl

where packageName refers to the subdirectory hierarchy that corresponds to the package of the
generated JAX-RPC stubs and ServiceName refers to the name of the Web Service.

To run the client application, add a run target to the build.xml that includes a call to the java
task, as shown below:

6-10 Getting Started With WebLogic Web Services Using JAX-RPC

<path id="client.class.path">

 <pathelement path="clientclasses"/>

 <pathelement path="${java.class.path}"/>

</path>

<target name="run" >

 <java

 fork="true"

 classname="examples.webServices.simple_client.Main"

 failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />

</target>

The path task adds the clientclasses directory to the CLASSPATH. The run target invokes
the Main application, passing it the URL of the deployed Web Service as its single argument.

See “Sample Ant Build File for a Stand-Alone Java Client” on page 6-10 for a full sample
build.xml file that contains additional targets from those described in this procedure, such as
clean.

Rerun the build-client target to regenerate the artifacts and recompile into classes, then
execute the run target to invoke the echoStruct operation:

 prompt> ant build-client run

You can use the build-client and run targets in the build.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Ant Build File for a Stand-Alone Java Client
The following example shows a complete build.xml file for generating and compiling a
stand-alone Java client. See “Using the clientgen Ant Task To Generate Client Artifacts” on
page 6-4 and “Compiling and Running the Client Application” on page 6-8 for explanations of
the sections in bold.

<project name="webservices-simple_client" default="all">

 <!-- set global properties for this build -->

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

I nvok ing a Web Serv ice f r om a Stand-a lone C l i en t : Ma in Steps

Getting Started With WebLogic Web Services Using JAX-RPC 6-11

 <property name="example-output" value="output" />

 <property name="clientclass-dir" value="${example-output}/clientclass" />

 <path id="client.class.path">

 <pathelement path="${clientclass-dir}"/>

 <pathelement path="${java.class.path}"/>

 </path>

 <taskdef name="clientgen"

 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="clean" >

 <delete dir="${clientclass-dir}"/>

 </target>

 <target name="all" depends="clean,build-client,run" />

 <target name="build-client">

 <clientgen

 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

 destDir="${clientclass-dir}"

 packageName="examples.webservices.simple_client"

 type="JAXRPC"/>

 <javac

 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"

 includes="**/*.java"/>

 <javac

 srcdir="src" destdir="${clientclass-dir}"

 includes="examples/webservices/simple_client/*.java"/>

 </target>

 <target name="run" >

 <java fork="true"

 classname="examples.webservices.simple_client.Main"

 failonerror="true" >

 <classpath refid="client.class.path"/>

 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"

 />

 </java>

 </target>

6-12 Getting Started With WebLogic Web Services Using JAX-RPC

</project>

Invoking a Web Service from Another Web Service
Invoking a Web Service from within a WebLogic Web Service is similar to invoking one from a
stand-alone Java application, as described in “Invoking a Web Service from a Stand-alone Client:
Main Steps” on page 6-3. However, instead of using the clientgen Ant task to generate the
JAX-RPC stubs of the Web Service to be invoked, you use the <clientgen> child element of
the <jws> element, inside the jwsc Ant task that compiles the invoking Web Service. In the JWS
file that invokes the other Web Service, however, you still use the same standard JAX-RPC APIs
to get Service and PortType instances to invoke the Web Service operations.

This section describes the differences between invoking a Web Service from a client in a Java EE
component and invoking from a stand-alone client. It is assumed that you have read and
understood “Invoking a Web Service from a Stand-alone Client: Main Steps” on page 6-3. It is
also assumed that you use Ant in your development environment to build your client application,
compile Java files, and so on, and that you have an existing build.xml that builds a Web Service
that you want to update to invoke another Web Service.

The following list describes the changes you must make to the build.xml file that builds your
client Web Service, which will invoke another Web Service. See “Sample build.xml File for a
Web Service Client” on page 6-13 for the full sample build.xml file:

Add a <clientgen> child element to the <jws> element that specifies the JWS file that
implements the Web Service that invokes another Web Service. Set the required wsdl
attribute to the WSDL of the Web Service to be invoked. Set the required packageName
attribute to the package into which you want the JAX-RPC client stubs to be generated.

The following list describes the changes you must make to the JWS file that implements the client
Web Service; see “Sample JWS File That Invokes a Web Service” on page 6-15 for the full JWS
file example.

Import the files generated by the <clientgen> child element of the jwsc Ant task. These
include the JAX-RPC stubs of the invoked Web Service, as well as the Java representation
of any user-defined data types used as parameters or return values in the operations of the
invoked Web Service.

Note: The user-defined data types are generated into a package based on the XML Schema
of the data type in the WSDL, not in the package specified by clientgen. The
JAX-RPC stubs, however, use the package name specified by the packageName
attribute of the <clientgen> element.

Invok ing a Web Se rv ice f rom Ano ther Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 6-13

Update the method that contains the invoke of the Web Service to either throw or catch
both java.rmi.RemoteException and javax.xml.rpc.ServiceException.

Get the Service and PortType JAX-RPC stubs implementation and invoke the operation
on the port as usual; see “Writing the Java Client Application Code to Invoke a Web
Service” on page 6-7 for details.

Sample build.xml File for a Web Service Client
The following sample build.xml file shows how to create a Web Service that itself invokes
another Web Service; the relevant sections that differ from the build.xml for building a simple
Web Service that does not invoke another Web Service are shown in bold.

The build-service target in this case is very similar to a target that builds a simple Web
Service; the only difference is that the jwsc Ant task that builds the invoking Web Service also
includes a <clientgen> child element of the <jws> element so that jwsc also generates the
required JAX-RPC client stubs.

<project name="webservices-service_to_service" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />

 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />

 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy,client" />

6-14 Getting Started With WebLogic Web Services Using JAX-RPC

 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>

 <target name="build-service">

 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >

 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXRPC">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>

 </jwsc>

 </target>

 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

 <target name="client">

 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXRPC"/>

 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>

Invok ing a Web Se rv ice f rom Ano ther Web Serv i ce

Getting Started With WebLogic Web Services Using JAX-RPC 6-15

 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>

 </target>

 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg

line="http://${wls.hostname}:${wls.port}/ClientService/ClientService"/>

 </java>

 </target>

</project>

Sample JWS File That Invokes a Web Service
The following sample JWS file, called ClientServiceImpl.java, implements a Web Service
called ClientService that has an operation that in turn invokes the echoComplexType
operation of a Web Service called ComplexService. This operation has a user-defined data type
(BasicStruct) as both a parameter and a return value. The relevant code is shown in bold and
described after the example.

package examples.webservices.service_to_service;

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic.jws.WLHttpTransport;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

6-16 Getting Started With WebLogic Web Services Using JAX-RPC

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")

@WLHttpTransport(contextPath="ClientService", serviceUri="ClientService",
 portName="ClientServicePort")

public class ClientServiceImpl {

 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 throws ServiceException, RemoteException
 {

 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePort();

 // Create service and port stubs to invoke ComplexService
 ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
 ComplexPortType port = service.getComplexServicePortTypePort();
 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");

 return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",
" + result.getStringValue() + "'";

 }
}

Follow these guidelines when programming the JWS file that invokes another Web Service; code
snippets of the guidelines are shown in bold in the preceding example:

Import any user-defined data types that are used by the invoked Web Service. In this
example, the ComplexService uses the BasicStruct JavaBean:

import examples.webservices.complex.BasicStruct;

Import the JAX-RPC stubs of the ComplexService Web Service; the stubs are generated
by the <cliengen> child element of <jws>:

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

Ensure that your client Web Service throws or catches ServiceException and
RemoteException:

Using a S tand-A lone C l ient JAR F i l e When Invok ing Web Serv ices

Getting Started With WebLogic Web Services Using JAX-RPC 6-17

throws ServiceException, RemoteException

Create the JAX-RPC Service and PortType instances for the ComplexService:

ComplexService service = new
 ComplexService_Impl(serviceUrl + "?WSDL");
ComplexPortType port = service.getComplexServicePortTypePort();

Invoke the echoComplexType operation of ComplexService using the port you just
instantiated:

BasicStruct result = port.echoComplexType(input);

Using a Stand-Alone Client JAR File When Invoking Web
Services

It is assumed in this document that, when you invoke a Web Service using the client-side artifacts
generated by the clientgen or wsdlc Ant tasks, you have the entire set of WebLogic Server
classes in your CLASSPATH. If, however, your computer does not have WebLogic Server
installed, you can still invoke a Web Service by using the stand-alone WebLogic Web Services
client JAR file, as described in this section.

The standalone client JAR file supports basic client-side functionality, such as:

Use with client-side artifacts created by both the clientgen Ant tasks

Processing SOAP messages

Using client-side SOAP message handlers

Using MTOM

Invoking both JAX-WS and JAX-RPC Web Services

Using SSL

The stand-alone client JAR file does not, however, support invoking Web Services that use the
following advanced features:

Web Services reliable SOAP messaging

Message-level security (WS-Security)

Conversations

Asynchronous request-response

6-18 Getting Started With WebLogic Web Services Using JAX-RPC

Buffering

JMS transport

To use the stand-alone WebLogic Web Services client JAR file with your client application,
follow these steps:

1. Copy the file WL_HOME/server/lib/wseeclient.zip from the computer hosting
WebLogic Server to the client computer, where WL_HOME refers to the WebLogic Server
installation directory, such as /bea/wlserver_10.3.

2. Unzip the wseeclient.zip file into the appropriate directory. For example, you might unzip
the file into a directory that contains other classes used by your client application.

3. Add the wseeclient.jar file (unzipped from the wseeclient.zip file) to your
CLASSPATH.

Note: Also be sure that your CLASSPATH includes the JAR file that contains the Ant
classes (ant.jar). This JAR file is typically located in the lib directory of the Ant
distribution.

Using a Proxy Server When Invoking a Web Service
You can use a proxy server to proxy requests from a client application to an application server
(either WebLogic or non-WebLogic) that hosts the invoked Web Service. You typically use a
proxy server when the application server is behind a firewall. There are two ways to specify the
proxy server in your client application: programmatically using the WebLogic
HttpTransportInfo API or using system properties.

Using the HttpTransportInfo API to Specify the Proxy Server
You can programmatically specify within the Java client application itself the details of the proxy
server that will proxy the Web Service invoke by using the standard java.net.* classes and the
WebLogic-specific HttpTransportInfo API. You use the java.net classes to create a Proxy
object that represents the proxy server, and then use the WebLogic API and properties to set the
proxy server on the JAX-RPC stub, as shown in the following sample client that invokes the echo
operation of the HttpProxySampleService Web Service. The code in bold is described after
the example:

package dev2dev.proxy.client;

import javax.xml.rpc.Stub;

Us ing a Proxy Se rve r When Invok ing a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-RPC 6-19

import java.net.Proxy;

import java.net.InetSocketAddress;

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

/**

 * Sample client to invoke a service through a proxy server via

 * programmatic API

 */

public class HttpProxySampleClient {

 public static void main(String[] args) throws Throwable{

 assert args.length == 5;

 String endpoint = args[0];

 String proxyHost = args[1];

 String proxyPort = args[2];

 String user = args[3];

 String pass = args[4];

 //create service and port

 HttpProxySampleService service = new HttpProxySampleService_Impl();

 HttpProxySamplePortType port =

service.getHttpProxySamplePortTypeSoapPort();

 //set endpoint address

 ((Stub)port)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, endpoint);

 //set proxy server info

 Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,

Integer.parseInt(proxyPort)));

 HttpTransportInfo info = new HttpTransportInfo();

 info.setProxy(p);

((Stub)port)._setProperty("weblogic.wsee.connection.transportinfo",info);

 //set proxy-authentication info

((Stub)port)._setProperty("weblogic.webservice.client.proxyusername",user)

;

((Stub)port)._setProperty("weblogic.webservice.client.proxypassword",pass)

;

6-20 Getting Started With WebLogic Web Services Using JAX-RPC

 //invoke

 String s = port.echo("Hello World!");

 System.out.println("echo: " + s);

 }

}

The sections of the preceding example to note are as follows:

Import the required java.net.* classes:

import java.net.Proxy;
import java.net.InetSocketAddress;

Import the WebLogic HttpTransportInfo API:

import weblogic.wsee.connection.transport.http.HttpTransportInfo;

Create a Proxy object that represents the proxy server:

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parseInt(proxyPort)));

The proxyHost and proxyPort arguments refer to the host computer and port of the
proxy server.

Create an HttpTransportInfo object and use the setProxy() method to set the proxy
server information:

HttpTransportInfo info = new HttpTransportInfo();
info.setProxy(p);

Use the weblogic.wsee.connection.transportinfo WebLogic stub property to set
the HttpTransportInfo object on the JAX-RPC stub:

((Stub)port)._setProperty("weblogic.wsee.connection.transportinfo",info
);

Use weblogic.webservice.client.proxyusername and
weblogic.webservice.client.proxypassword WebLogic-specific stub properties to
specify the username and password of a user who is authenticated to access the proxy
server:

((Stub)port)._setProperty("weblogic.webservice.client.proxyusername",us
er);

((Stub)port)._setProperty("weblogic.webservice.client.proxypassword",pa
ss);

Us ing a Proxy Se rve r When Invok ing a Web Serv ice

Getting Started With WebLogic Web Services Using JAX-RPC 6-21

Alternatively, you can use the setProxyUsername() and setProxyPassword() methods
of the HttpTransportInfo API to set the proxy username and password, as shown in the
following example:

 info.setProxyUsername("juliet".getBytes());
 info.setProxyPassword("secret".getBytes());

Using System Properties to Specify the Proxy Server
When you use system properties to specify the proxy server, you write your client application in
the standard way, and then specify the following system properties when you execute the client
application:

proxySet=true

proxyHost=proxyHost

proxyPort=proxyPort

weblogic.webservice.client.proxyusername=proxyUsername

weblogic.webservice.client.proxypassword=proxyPassword

where proxyHost is the name of the host computer on which the proxy server is running,
proxyPort is the port to which the proxy server is listening, proxyUsername is the authenticated
proxy server user and proxyPassword is the user’s password.

The following excerpt from an Ant build script shows an example of setting these system
properties when invoking a client application called clients.InvokeMyService:

 <target name="run-client">

 <java fork="true"

 classname="clients.InvokeMyService"

 failonerror="true">

 <classpath refid="client.class.path"/>

 <arg line="${http-endpoint}"/>

 <jvmarg line=

 "-DproxySet=true

 -DproxyHost=${proxy-host}

 -DproxyPort=${proxy-port}

 -Dweblogic.webservice.client.proxyusername=${proxy-username}

 -Dweblogic.webservice.client.proxypassword=${proxy-passwd}"

 />

 </java>

 </target>

6-22 Getting Started With WebLogic Web Services Using JAX-RPC

Client Considerations When Redeploying a Web Service
WebLogic Server supports production redeployment, which means that you can deploy a new
version of an updated WebLogic Web Service alongside an older version of the same Web
Service.

WebLogic Server automatically manages client connections so that only new client requests are
directed to the new version. Clients already connected to the Web Service during the
redeployment continue to use the older version of the service until they complete their work, at
which point WebLogic Server automatically retires the older Web Service. If the client is
connected to a conversational or reliable Web Service, its work is considered complete when the
existing conversation or reliable messaging sequence is explicitly ended by the client or because
of a timeout.

You can continue using the old client application with the new version of the Web Service, as
long as the following Web Service artifacts have not changed in the new version:

WSDL that describes the Web Service

WS-Policy files attached to the Web Service

If any of these artifacts have changed, you must regenerate the JAX-RPC stubs used by the client
application by re-running the clientgen Ant task.

For example, if you change the signature of an operation in the new version of the Web Service,
then the WSDL file that describes the new version of the Web Service will also change. In this
case, you must regenerate the JAX-RPC stubs. If, however, you simply change the
implementation of an operation, but do not change its public contract, then you can continue
using the existing client application.

WebLogic Web Services Stub Properties
WebLogic Server provides a set of stub properties that you can set in the JAX-RPC Stub used to
invoke a WebLogic Web Service. Use the Stub._setProperty() method to set the properties,
as shown in the following example:

((Stub)port)._setProperty(WLStub.MARSHAL_FORCE_INCLUDE_XSI_TYPE,"true");

Most of the stub properties are defined in the WLStub class. See
weblogic.wsee.jaxrpc.WLStub for details.

WebLogic Web Serv ices S tub Proper t i es

Getting Started With WebLogic Web Services Using JAX-RPC 6-23

The following table describes additional stub properties not defined in the WLStub class.

Table 6-3 Additional Stub Properties

Stub Property Description

weblogic.wsee.transport.connecti
on.timeout

Specifies, in seconds, how long a client application that is
attempting to invoke a Web Service waits to make a
connection. After the specified time elapses, if a
connection hasn’t been made, the attempt times out.

weblogic.wsee.transport.read.tim
eout

Specifies, in seconds, how long a client application waits
for a response from a Web Service it is invoking. After the
specified time elapses, if a response hasn’t arrived, the
client times out.

weblogic.wsee.security.bst.serve
rVerifyCert

Specifies the certificate that the client application uses to
validate the signed response from WebLogic Server. By
default, WebLogic Server includes the certification used
to validate in the response SOAP message itself; if this is
not possible, then use this stub property to specify a
different one.

This stub property applies only to client applications that
run inside of a WebLogic Server container, and not to
stand-alone client applications.

The value of the property is an object of data type
java.security.cert.X509Certificate.

6-24 Getting Started With WebLogic Web Services Using JAX-RPC

weblogic.wsee.security.bst.serve
rEncryptCert

Specifies the certificate that the client application uses to
encrypt the request SOAP message sent to WebLogic
Server. By default, the client application uses the public
certificate published in the Web Service’s WSDL; if this
is not possible, then use this stub property to specify a
different one.

This stub property applies only to client applications that
run inside of a WebLogic Server container, and not to
stand-alone client applications.

The value of the property is an object of data type
java.security.cert.X509Certificate.

weblogic.wsee.marshal.forceInclu
deXsiType

Specifies that the SOAP messages for a Web Service
operation invoke should include the XML Schema data
type of each parameter. By default, the SOAP messages
do not include the data type of each parameter.

If you set this property to True, the elements in the SOAP
messages that describe operation parameters will include
an xsi:type attribute to specify the data type of the
parameter, as shown in the following example:
<soapenv:Envelope>
...
 <maxResults
xsi:type="xs:int">10</maxResults>
...

By default (or if you set this property to False), the
parameter element would look like the following
example:

<soapenv:Envelope>
...
 <maxResults>10</maxResults>
...

Valid values for this property are True and False;
default value is False.

Table 6-3 Additional Stub Properties (Continued)

Stub Property Description

Set t ing the Charac te r Encod ing Fo r the Response SOAP Message

Getting Started With WebLogic Web Services Using JAX-RPC 6-25

Setting the Character Encoding For the Response SOAP
Message

Use the weblogic.wsee.jaxrpc.WLStub.CHARACTER_SET_ENCODING WLStub property to
set the character encoding of the response (outbound) SOAP message. You can set it to the
following two values:

UTF-8

UTF-16

The following code snippet from a client application shows how to set the character encoding to
UTF-16:

 Simple port = service.getSimpleSoapPort();

 ((Stub)

port)._setProperty(weblogic.wsee.jaxrpc.WLStub.CHARACTER_SET_ENCODING,

"UTF-16");

 port.invokeMethod();

See weblogic.wsee.jaxrpc.WLStub for additional WLStub properties you can set.

6-26 Getting Started With WebLogic Web Services Using JAX-RPC

Getting Started With WebLogic Web Services Using JAX-RPC 7-1

C H A P T E R 7

Administering Web Services

The following sections describe how to administer WebLogic Web Services:

“Overview of WebLogic Web Services Administration Tasks” on page 7-1

“Administration Tools” on page 7-2

“Using the Administration Console” on page 7-3

“Using the WebLogic Scripting Tool” on page 7-7

“Using WebLogic Ant Tasks” on page 7-7

“Using the Java Management Extensions (JMX)” on page 7-8

“Using the Java EE Deployment API” on page 7-9

“Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute
Threads” on page 7-9

Overview of WebLogic Web Services Administration
Tasks

When you use the jwsc Ant task to compile and package a WebLogic Web Service, the task
packages it as part of an Enterprise Application. The Web Service itself is packaged inside the
Enterprise application as a Web application WAR file, by default. However, if your JWS file
implements a session bean then the Web Service is packaged as an EJB JAR file. Therefore, basic

7-2 Getting Started With WebLogic Web Services Using JAX-RPC

administration of Web Services is very similar to basic administration of standard Java Platform,
Enterprise Edition (Java EE) Version 5 applications and modules. These standard tasks include:

Installing the Enterprise application that contains the Web Service.

Starting and stopping the deployed Enterprise application.

Configuring the Enterprise application and the archive file which implements the actual
Web Service. You can configure general characteristics of the Enterprise application, such
as the deployment order, or module-specific characteristics, such as session time-out for
Web applications or transaction type for EJBs.

Creating and updating the Enterprise application’s deployment plan.

Monitoring the Enterprise application.

Testing the Enterprise application.

The following administrative tasks are specific to Web Services:

Configuring the JMS resources used by Web Service reliable messaging and JMS transport

Configuring the WS-Policy files associated with a Web Service endpoint or its operations.

Note: If you used the @Policy annotation in your Web Service to specify an associated
WS-Policy file at the time you programmed the JWS file, you cannot change this
association at run-time using the Administration Console or other administrative
tools. You can only associate a new WS-Policy file, or disassociate one you added at
run-time.

Viewing the SOAP handlers associated with the Web Service.

Viewing the WSDL of the Web Service.

Creating a Web Service security configuration.

Administration Tools
There are a variety of ways to administer Java EE modules and applications that run on WebLogic
Server, including Web Services; use the tool that best fits your needs:

Using the Administration Console

Using the WebLogic Scripting Tool

Using WebLogic Ant Tasks

Using the Admin is t rat ion Conso le

Getting Started With WebLogic Web Services Using JAX-RPC 7-3

Using the Java Management Extensions (JMX)

Using the Java EE Deployment API

Using the Administration Console
The WebLogic Server Administration Console is a Web browser-based, graphical user interface
you use to manage a WebLogic Server domain, one or more WebLogic Server instances, clusters,
and applications, including Web Services, that are deployed to the server or cluster.

One instance of WebLogic Server in each domain is configured as an Administration Server. The
Administration Server provides a central point for managing a WebLogic Server domain. All
other WebLogic Server instances in a domain are called Managed Servers. In a domain with only
a single WebLogic Server instance, that server functions both as Administration Server and
Managed Server. The Administration Server hosts the Administration Console, which is a Web
Application accessible from any supported Web browser with network access to the
Administration Server.

You can use the System Administration Console to:

Install an Enterprise application.

Start and stop a deployed Enterprise application.

Configure an Enterprise application.

Configure Web applications.

Configure EJBs.

Create a deployment plan.

Update a deployment plan.

Test the modules in an Enterprise application.

Configure JMS resources for Web Service reliable messaging.

Associate the WS-Policy file with a Web Service.

View the SOAP message handlers of a Web Service.

View the WSDL of a Web Service.

Create a Web Service security configuration

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/DeployEnterpriseApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/StopDeployedEnterpriseApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/ConfigureEnterpriseApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/web_applications/ConfigureWebApplications.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/ejb/ConfigureEJBModules.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/CreateDeploymentPlan.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/UpdateDeploymentPlan.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/applications/TestAppModules.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ConfigureWSPolicyFile.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ViewSoapMessageHandlers.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ViewWsdl.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/webservicesecurity/CreateDefaultWSSConfig.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/taskhelp/webservices/ConfigureJMSResourcesForReliableMessaging.html

7-4 Getting Started With WebLogic Web Services Using JAX-RPC

Invoking the Administration Console
To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

host refers to the computer on which the Administration Server is running.

port refers to the port number where the Administration Server is listening for connection
requests. The default port number for the Administration server is 7001.

Click the Help button, located at the top right corner of the Administration Console, to invoke
the Online Help for detailed instructions on using the Administration Console.

The following figure shows the main Administration Console window.

Figure 7-1 WebLogic Server Administration Console Main Window

Using the Admin is t rat ion Conso le

Getting Started With WebLogic Web Services Using JAX-RPC 7-5

How Web Services Are Displayed In the Administration
Console
Web Services are typically deployed to WebLogic Server as part of an Enterprise Application.
The Enterprise Application can be either archived as an EAR, or be in exploded directory format.
The Web Service itself is almost always packaged as a Web Application; the only exception is if
your JWS file implements a session bean in which case it is packaged as an EJB. The Web Service
can be in archived format (WAR or EJB JAR file, respectively) or as an exploded directory.

It is not required that a Web Service be installed as part of an Enterprise application; it can be
installed as just the Web Application or EJB. However, Oracle recommends that users install the
Web Service as part of an Enterprise application. The WebLogic Ant task used to create a Web
Service, jwsc, always packages the generated Web Service into an Enterprise application.

To view and update the Web Service-specific configuration information about a Web Service
using the Administration Console, click on the Deployments node in the left pane and, in the
Deployments table that appears in the right pane, locate the Enterprise application in which the
Web Service is packaged. Expand the application by clicking the + node; the Web Services in the
application are listed under the Web Services category. Click on the name of the Web Service to
view or update its configuration.

The following figure shows how the HelloWorldService Web Service, packaged inside the
helloWorldEar Enterprise application, is displayed in the Deployments table of the
Administration Console.

7-6 Getting Started With WebLogic Web Services Using JAX-RPC

Figure 7-2 Web Service Displayed in Deployments Table of Administration Console

Creating a Web Services Security Configuration
When a deployed WebLogic Web Service has been configured to use message-level security
(encryption and digital signatures, as described by the WS-Security specification), the Web
Services runtime determines whether a Web Service security configuration is also associated with
the service. This security configuration specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption,
and so on. A single security configuration can be associated with many Web Services.

Because Web Services security configurations are domain-wide, you create them from the
domainName > WebService Security tab of the Administration Console, rather than the
Deployments tab. The following figure shows the location of this tab.

Using the WebLog ic Sc r ip t ing Too l

Getting Started With WebLogic Web Services Using JAX-RPC 7-7

Figure 7-3 Web Service Security Configuration in Administration Console

Using the WebLogic Scripting Tool
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to
interact with and configure WebLogic Server domains and instances, as well as deploy Java EE
modules and applications (including Web Services) to a particular WebLogic Server instance.
Using WLST, system administrators and operators can initiate, manage, and persist WebLogic
Server configuration changes.

Typically, the types of WLST commands you use to administer Web Services fall under the
Deployment category.

For more information on using WLST, see WebLogic Scripting Tool.

Using WebLogic Ant Tasks
WebLogic Server includes a variety of Ant tasks that you can use to centralize many of the
configuration and administrative tasks into a single Ant build script. These Ant tasks can:

Create, start, and configure a new WebLogic Server domain, using the wlserver and
wlconfig Ant tasks.

Deploy a compiled application to the newly-created domain, using the wldeploy Ant task.

See “Using Ant Tasks to Configure and Use a WebLogic Server Domain” and “wldeploy Ant
Task Reference” in Developing Applications With WebLogic Server for specific information
about the non-Web Services related WebLogic Ant tasks.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_scripting/reference.html#deployment_commands
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_scripting/index.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/ant_tasks.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/wldeploy.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/wldeploy.html

7-8 Getting Started With WebLogic Web Services Using JAX-RPC

Using the Java Management Extensions (JMX)
A managed bean (MBean) is a Java bean that provides a Java Management Extensions (JMX)
interface. JMX is the Java EE solution for monitoring and managing resources on a network. Like
SNMP and other management standards, JMX is a public specification and many vendors of
commonly used monitoring products support it.

WebLogic Server provides a set of MBeans that you can use to configure, monitor, and manage
WebLogic Server resources through JMX. WebLogic Web Services also have their own set of
MBeans that you can use to perform some Web Service administrative tasks.

There are two types of MBeans: runtime (for read-only monitoring information) and
configuration (for configuring the Web Service after it has been deployed).

The configuration Web Services MBeans are:

WebserviceSecurityConfigurationMBean

WebserviceCredentialProviderMBean

WebserviceSecurityMBean

WebserviceSecurityTokenMBean

WebserviceTimestampMBean

WebserviceTokenHandlerMBean

The runtime Web Services MBeans are:

WseeRuntimeMBean

WseeHandlerRuntimeMBean

WseePortRuntimeMBean

WseeOperationRuntimeMBean

WseePolicyRuntimeMBean

For more information on JMX, see the WebLogic Server MBean Reference and the following
sections in Developing Custom Management Utilities With JMX:

Understanding WebLogic Server MBeans

Accessing WebLogic Server MBeans with JMX

Managing a Domain’s Configuration with JMX

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityConfigurationMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityConfigurationMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceSecurityTokenMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceTimestampMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WebserviceTokenHandlerMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseeRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseeHandlerRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseePortRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseeOperationRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/mbeans/WseePolicyRuntimeMBean.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jmx/understandWLS.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jmx/accessWLS.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jmx/editWLS.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/wlsmbeanref/index.html

Using the Java EE Dep loyment AP I

Getting Started With WebLogic Web Services Using JAX-RPC 7-9

Using the Java EE Deployment API
In Java EE 5, the J2EE Application Deployment specification (JSR-88) defines a standard API
that you can use to configure an application for deployment to a target application server
environment.

The specification describes the Java EE Deployment architecture, which in turn defines the
contracts that enable tools or application programmers to configure and deploy applications on
any Java EE platform product. The contracts define a uniform model between tools and Java EE
platform products for application deployment configuration and deployment. The Deployment
architecture makes it easier to deploy applications: Deployers do not have to learn all the features
of many different Java EE deployment tools in order to deploy an application on many different
Java EE platform products.

See Deploying Applications to WebLogic Server for more information.

Using Work Managers to Prioritize Web Services Work
and Reduce Stuck Execute Threads

After a connection has been established between a client application and a Web Service, the
interactions between the two are ideally smooth and quick, whereby the client makes requests and
the service responds in a prompt and timely manner. Sometimes, however, a client application
might take a long time to make a new request, during which the Web Service waits to respond,
possibly for the life of the WebLogic Server instance; this is often referred to as a stuck execute
thread. If, at any given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular Web Service gets into this state fairly often, you can specify how the service
prioritizes the execution of its work by configuring a Work Manager and applying it to the
service. For example, you can configure a response time request class (a specific type of Work
Manager component) that specifies a response time goal for the Web Service.

The following shows an example of how to define a response time request class in a deployment
descriptor:

<work-manager>

 <name>responsetime_workmanager</name>

 <response-time-request-class>

 <name>my_response_time</name>

 <goal-ms>2000</goal-ms>

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/deployment/index.html

7-10 Getting Started With WebLogic Web Services Using JAX-RPC

 </response-time-request-class>

</work-manager>

You can configure the response time request class using the Administration Console, as described
in “Work Manager: Response Time: Configuration” in the Administration Console Online Help.

For more information about Work Managers in general and how to configure them for your Web
Service, see “Using Work Managers to Optimize Scheduled Work” in Configuring WebLogic
Server Environments.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_wls/self_tuned.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/ConsoleHelp/pagehelp/Corecoreworkresponsetimerequestclassconfigtitle.html

Getting Started With WebLogic Web Services Using JAX-RPC 8-1

C H A P T E R 8

Upgrading WebLogic Web Services
From Previous Releases to 10g Release
3

The following sections describe how to upgrade a pre-10g Release 3 (10.3) WebLogic Server
Web Service to run in the 10g Release 3 Web Service runtime environment:

“Upgrading a 9.2 or 10.0 WebLogic Web Service to 10g Release 3” on page 8-1

“Upgrading a 9.0 or 9.1 WebLogic Web Service to 10g Release 3” on page 8-1

“Upgrading an 8.1 WebLogic Web Service to 10g Release 3” on page 8-2

Upgrading a 9.2 or 10.0 WebLogic Web Service to 10g
Release 3

No steps are required to upgrade a 9.2 or 10.0 WebLogic Web Service to 10g Release 3; you can
redeploy the Web Service to WebLogic Server 10g Release 3 without making any changes or
recompiling.

Upgrading a 9.0 or 9.1 WebLogic Web Service to 10g
Release 3

If your 9.0/9.1 Web Service used any of the following features, then you must recompile the Web
Service before you redeploy it to WebLogic Server 10g Release 3:

Conversations

@weblogic.jws.Context JWS annotation

8-2 Getting Started With WebLogic Web Services Using JAX-RPC

weblogic.wsee.jws.JwsContext API

To recompile, simply rerun the jwsc Ant task against the JWS file that implements your Web
Service.

If your 9.0/9.1 Web Service did not use these features, then you can redeploy it to WebLogic
Server 10g Release 3 without making any changes or recompiling it.

Upgrading an 8.1 WebLogic Web Service to 10g Release 3
This section describes how to upgrade an 8.1 WebLogic Web Service to use the new Version 10g
Release 3 Web Services runtime environment. The 10g Release 3 runtime is based on the Web
Services for Java EE 1.2 specification. The 10g Release 3 programming model uses standard JDK
1.5 metadata annotations, as specified by the Web Services Metadata for the Java Platform
specification (JSR-181).

Note: 8.1 WebLogic Web Services will continue to run, without any changes, on 10g Release
3 of WebLogic Server because the 8.1 Web Services runtime is still supported in 10 g
Release 3, although it is deprecated and will be removed from the product in future
releases. For this reason, Oracle highly recommends that you follow the instructions in
this chapter to upgrade your 8.1 Web Service to 10g Release 3.

Upgrading your 8.1 Web Service includes the following high-level tasks; the procedures in later
sections go into more detail:

Update the 8.1 Java source code of the Java class or stateless session EJB that implements
the Web Service so that the source code uses JWS annotations.

10g Release 3 WebLogic Web Services are implemented using JWS files, which are Java
files that contains JWS annotations. The jwsc Ant Task always implements the Web
Service as a plain Java file unless you explicitly implement javax.ejb.SessionBean in
your JWS file. This latter case is not typical. This programming model differs from that of
8.1, where you were required to specify the type of backend component (Java class or
EJB).

Update the Ant build script that builds the Web Service to call the 10g Release 3
WebLogic Web Service Ant task jwsc instead of the 8.1 servicegen task.

In the sections that follow it is assumed that:

You previously used servicegen to generate your 8.1 Web Service and that, more
generally, you use Ant scripts in your development environment to iteratively develop Web
Services and other Java Platform, Enterprise Edition (Java EE) Version 5 artifacts that run

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-3

on WebLogic Server. The procedures in this section direct you to update existing Ant
build.xml files.

You have access to the Java class or EJB source code for your 8.1 Web Service.

This section does not discuss the following topics:

Upgrading a JMS-implemented 8.1 Web Service, because the 10g Release 3 WebLogic
Web Services runtime does not support JMS-implemented services.

Upgrading Web Services from versions previous to 8.1.

Upgrading a client application that invokes an 8.1 Web Service to one that invokes a 10g
Release 3 Web Service. For details on how to write a client application that invokes a 10g
Release 3 Web Service, see Chapter 6, “Invoking Web Services.”

Upgrading an 8.1 Java Class-Implemented WebLogic Web
Service to 10g Release 3: Main Steps
To upgrade an 8.1 Java class-implemented Web Service to use the 10g Release 3 WebLogic Web
Services runtime:

1. Open a command window and set your WebLogic Server 10g Release 3 environment by
executing the setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located
in the bin subdirectory of your 10g Release 3 domain directory.

The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/upgrade_pojo

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the new 10g Release 3 JWS file (shown later in this procedure) that
corresponds to the old 8.1 Java class:

 prompt> cd /myExamples/upgrade_pojo
 prompt> mkdir src/examples/webservices/upgrade_pojo

4. Copy the old Java class that implements the 8.1 Web Service to the
src/examples/webservices/upgrade_pojo directory of the working directory. Rename
the file, if desired.

8-4 Getting Started With WebLogic Web Services Using JAX-RPC

5. Edit the Java file, as described in the following steps. See the old and new sample Java files
in “Example of an 8.1 Java File and the Corresponding 10g Release 3 JWS File” on page 8-5
for specific examples.

a. If needed, change the package name and class name of the Java file to reflect the new 10g
Release 3 source environment.

b. Add import statements to import both the standard and WebLogic-specific JWS
annotations.

c. Add, at a minimum, the following JWS annotation:

– The standard @WebService annotation at the Java class level to specify that the JWS
file implements a Web Service.

Oracle recommends you also add the following annotations:

– The standard @SOAPBinding annotation at the class-level to specify the type of Web
Service, such as document-literal-wrapped or RPC-encoded.

– The WebLogic-specific @WLHttpTransport annotation at the class-level to specify the
context and service URIs that are used in the URL that invokes the deployed Web
Service.

– The standard @WebMethod annotation at the method-level for each method that is
exposed as a Web Service operation.

See Chapter 4, “Programming the JWS File,” for general information about using JWS
annotations in a Java file.

d. You might need to add additional annotations to your JWS file, depending on the 8.1 Web
Service features you want to carry forward to 10g Release 3. In 8.1, many of these features
were configured with attributes of servicegen. See “Mapping of servicegen Attributes
to JWS Annotations or jwsc Attributes” on page 8-20 for a table that lists equivalent JWS
annotation, if available, for features you enabled in 8.1 using servicegen attributes.

6. Copy the old build.xml file that built the 8.1 Web Service to the 10g Release 3 working
directory.

7. Update your Ant build.xml file to execute the jwsc Ant task, along with other supporting
tasks, instead of servicegen.

Oracle recommends that you create a new target, such as build-service, in your Ant
build file and add the jwsc Ant task call to compile the new JWS file you created in the
preceding steps. Once this target is working correctly, you can remove the old
servicegen Ant task.

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-5

The following procedure lists the main steps to update your build.xml file; for details on
the steps, see the standard iterative development process outlined in Chapter 3,
“Developing WebLogic Web Services.”

See “Example of an 8.1 and Updated 10g Release 3 Ant Build File for Java
Class-Implemented Web Services” on page 8-7 for specific examples of the steps in the
following procedure.

a. Add the jwsc taskdef to the build.xml file.

b. Create a build-service target and add the tasks needed to build the 10g Release 3 Web
Service, as described in the following steps.

c. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_pojo/src, in this example) and the destdir attribute to the
root Enterprise application directory you created in the preceding step.

Set the file attribute of the <jws> child element to the name of the new JWS file,
created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on the 8.1
Web Service features you want to carry forward to 10g Release 3. In 8.1, many of these
features were configured using attributes of servicegen. See “Mapping of servicegen
Attributes to JWS Annotations or jwsc Attributes” on page 8-20 for a table that
describes if there is an equivalent jwsc attribute for features you enabled using
servicegen attributes.

8. Execute the build-service Ant target. Assuming all the tasks complete successfully, the
resulting Enterprise application contains your upgraded 10g Release 3 Web Service.

See “Deploying and Undeploying WebLogic Web Services” on page 3-16 and “Browsing to the
WSDL of the Web Service” on page 3-19 for additional information about deploying and testing
your Web Service.

Based on the sample Java code shown in the following sections, the URL to invoke the WSDL
of the upgraded 10g Release 3 Web Service is:

http://host:port/upgradePOJO/HelloWorld?WSDL

Example of an 8.1 Java File and the Corresponding 10g Release 3 JWS File
Assume that the following sample Java class implemented a 8.1 Web Service:

package examples.javaclass;

8-6 Getting Started With WebLogic Web Services Using JAX-RPC

/**
 * Simple Java class that implements the HelloWorld Web service. It takes
 * as input an integer and a String, and returns a message that includes these
 * two parameters.
 */

public final class HelloWorld81 {

 /**
 * Returns a text message that includes the integer and String input
 * parameters.
 *
 */
 public String sayHello(int num, String s) {

 System.out.println("sayHello operation has been invoked with arguments " +
s + " and " + num);

 String returnValue = "This message brought to you by the letter "+s+" and
the number "+num;

 return returnValue;
 }

}

An equivalent JWS file for a 10g Release 3 Java class-implemented Web Service is shown below,
with the differences shown in bold. Note that some of the JWS annotation values are taken from
attributes of the 8.1 servicegen Ant task shown in “Example of an 8.1 and Updated 10g Release
3 Ant Build File for Java Class-Implemented Web Services” on page 8-7.

WARNING: Because the following JWS file uses WebLogic-specific JWS annotations, the
generated Web Service will be based on JAX-RPC rather than JAX-WS.

package examples.webservices.upgrade_pojo;

// Import standard JWS annotations

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

// Import WebLogic JWS anntoation

import weblogic.jws.WLHttpTransport;

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-7

/**
 * Simple Java class that implements the HelloWorld92 Web service. It takes
 * as input an integer and a String, and returns a message that includes these
 * two parameters.
 */

@WebService(name="HelloWorld92PortType", serviceName="HelloWorld",
 targetNamespace="http://example.org")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="upgradePOJO", serviceUri="HelloWorld",
 portName="HelloWorld92Port")

public class HelloWorld92Impl {

 /**
 * Returns a text message that includes the integer and String input
 * parameters.
 *
 */

 @WebMethod()
 public String sayHello(int num, String s) {

 System.out.println("sayHello operation has been invoked with arguments " +
s + " and " + num);

 String returnValue = "This message brought to you by the letter "+s+" and
the number "+num;

 return returnValue;
 }
}

Example of an 8.1 and Updated 10g Release 3 Ant Build File for Java
Class-Implemented Web Services
The following simple build.xml file shows the 8.1 way to build a WebLogic Web Service using
the servicegen Ant task; in the example, the Java file that implements the 8.1 Web Service has
already been compiled into the examples.javaclass.HelloWorld81 class:

<project name="javaclass-webservice" default="all" basedir=".">

 <!-- set global properties for this build -->

 <property name="source" value="."/>

 <property name="build" value="${source}/build"/>

8-8 Getting Started With WebLogic Web Services Using JAX-RPC

 <property name="war_file" value="HelloWorldWS.war" />

 <property name="ear_file" value="HelloWorldApp.ear" />

 <property name="namespace" value="http://examples.org" />

 <target name="all" depends="clean, ear"/>

 <target name="clean">

 <delete dir="${build}"/>

 </target>

 <!-- example of old 8.1 servicegen call to build Web Service -->

 <target name="ear">

 <servicegen

 destEar="${build}/${ear_file}"

 warName="${war_file}">

 <service

 javaClassComponents="examples.javaclass.HelloWorld81"

 targetNamespace="${namespace}"

 serviceName="HelloWorld"

 serviceURI="/HelloWorld"

 generateTypes="True"

 expandMethods="True">

 </service>

 </servicegen>

 </target>

</project>

An equivalent build.xml file that calls the jwsc Ant task to build a 10g Release 3 Web Service
is shown below, with the relevant tasks discussed in this section in bold. In the example, the new
JWS file that implements the 10g Release 3 Web Service is called HelloWorld92Impl.java:

<project name="webservices-upgrade_pojo" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-9

 <property name="ear.deployed.name" value="upgradePOJOEar" />

 <property name="example-output" value="output" />

 <property name="ear-dir" value="${example-output}/upgradePOJOEar" />

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy" />

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/upgrade_pojo/HelloWorld92Impl.java" />

 </jwsc>

 </target>

 <target name="deploy">

 <wldeploy action="deploy" name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" name="${ear.deployed.name}"

 failonerror="false"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

</project>

8-10 Getting Started With WebLogic Web Services Using JAX-RPC

Upgrading an 8.1 EJB-Implemented WebLogic Web Service
to 10g Release 3: Main Steps
The following procedure describes how to upgrade an 8.1 EJB-implemented Web Service to use
the 10g Release 3 WebLogic Web Services runtime.

The 10g Release 3 Web Services programming model is quite different from the 8.1 model in that
it hides the underlying implementation of the Web Service. Rather than specifying up front that
you want the Web Service to be implemented by a Java class or an EJB, the jwsc Ant task always
picks a plain Java class implementation, unless you have explicitly implemented
javax.ejb.SessionBean in the JWS file, which is not typical. For this reason, the following
procedure does not show how to import EJB classes or use EJBGen, even though the 8.1 Web
Service was explicitly implemented with an EJB. Instead, the procedure shows how to create a
standard JWS file that is the 10g Release 3 equivalent to the 8.1 EJB-implemented Web Service.

1. Open a command window and set your 10g Release 3 WebLogic Server environment by
executing the setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located
in the bin subdirectory of your 10g Release 3 domain directory.

The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the Oracle products and domainName is the name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/upgrade_ejb

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the new 10g Release 3 JWS file (shown later on in this procedure) that
corresponds to your 8.1 EJB implementation:

 prompt> cd /myExamples/upgrade_ejb
 prompt> mkdir src/examples/webservices/upgrade_ejb

4. Copy the 8.1 EJB Bean file that implemented javax.ejb.SessionBean to the
src/examples/webservices/upgrade_ejb directory of the working directory. Rename
the file, if desired.

Note: You do not need to copy over the 8.1 Home and Remote EJB files.

5. Edit the EJB Bean file, as described in the following steps. See the old and new sample Java
files in “Example of 8.1 EJB Files and the Corresponding 10g Release 3 JWS File” on
page 8-13 for specific examples.

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-11

a. If needed, change the package name and class name of the Java file to reflect the new 10g
Release 3 source environment.

b. Optionally remove the import statements that import the EJB classes (javax.ejb.*).
These classes are no longer needed in the upgraded JWS file.

c. Add import statements to import both the standard and WebLogic-specific JWS
annotations.

d. Ensure that the JWS file does not implement javax.ejb.SessionBean anymore by
removing the implements SessionBean code from the class declaration.

e. Remove all the EJB-specific methods:
– ejbActivate()

– ejbRemove()

– ejbPassivate()

– ejbCreate()

f. Add, at a minimum, the following JWS annotation:

– The standard @WebService annotation at the Java class level to specify that the JWS
file implements a Web Service.

Oracle recommends you also add the following annotations:

– The standard @SOAPBinding annotation at the class-level to specify the type of Web
Service, such as document-literal-wrapped or RPC-encoded.

– The WebLogic-specific @WLHttpTransport annotation at the class-level to specify the
context and service URIs that are used in the URL that invokes the deployed Web
Service.

– The standard @WebMethod annotation at the method-level for each method that is
exposed as a Web Service operation.

See Chapter 4, “Programming the JWS File,” for general information about using JWS
annotations in a Java file.

g. You might need to add additional annotations to your JWS file, depending on the 8.1 Web
Service features you want to carry forward to 10g Release 3. In 8.1, many of these features
were configured using attributes of servicegen. See “Mapping of servicegen Attributes
to JWS Annotations or jwsc Attributes” on page 8-20 for a table that lists equivalent JWS
annotation, if available, for features you enabled in 8.1 using servicegen attributes.

8-12 Getting Started With WebLogic Web Services Using JAX-RPC

6. Copy the old build.xml file that built the 8.1 Web Service to the 10g Release 3 working
directory.

7. Update your Ant build.xml file to execute the jwsc Ant task, along with other supporting
tasks, instead of servicegen.

Oracle recommends that you create a new target, such as build-service, in your Ant
build file and add the jwsc Ant task call to compile the new JWS file you created in the
preceding steps. Once this target is working correctly, you can remove the old
servicegen Ant task.

The following procedure lists the main steps to update your build.xml file; for details on
the steps, see the standard iterative development process outlined in Chapter 3,
“Developing WebLogic Web Services.”

See “Example of an 8.1 and Updated 10g Release 3 Ant Build File for an 8.1
EJB-Implemented Web Service” on page 8-17 for specific examples of the steps in the
following procedure.

a. Add the jwsc taskdef to the build.xml file.

b. Create a build-service target and add the tasks needed to build the 10g Release 3 Web
Service, as described in the following steps.

c. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_ejb/src, in this example) and the destdir attribute to the
root Enterprise application directory you created in the preceding step.

Set the file attribute of the <jws> child element to the name of the new JWS file,
created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on the 8.1
Web Service features you want to carry forward to 10g Release 3. In 8.1, many of these
features were configured using attributes of servicegen. See “Mapping of servicegen
Attributes to JWS Annotations or jwsc Attributes” on page 8-20 for a table that
indicates whether there is an equivalent jwsc attribute for features you enabled using
servicegen attributes.

8. Execute the build-service Ant target. Assuming all tasks complete successfully, the
resulting Enterprise application contains your upgraded 10g Release 3 Web Service.

See “Deploying and Undeploying WebLogic Web Services” on page 3-16 and “Browsing to the
WSDL of the Web Service” on page 3-19 for additional information about deploying and testing
your Web Service.

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-13

Based on the sample Java code shown in the following sections, the URL to invoke the WSDL
of the upgraded 10g Release 3 Web Service is:

http://host:port/upgradeEJB/HelloWorldService?WSDL

Example of 8.1 EJB Files and the Corresponding 10g Release 3 JWS File
Assume that the Bean, Home, and Remote classes and interfaces, shown in the next three
sections, implemented the 8.1 stateless session EJB which in turn implemented an 8.1 Web
Service.

The equivalent 10g Release 3 JWS file is shown in “Equivalent 10g Release 3 JWS File” on
page 8-16. The differences between the 8.1 and 10g Release 3 classes are shown in bold. Note
that some of the JWS annotation values are taken from attributes of the 8.1 servicegen Ant task
shown in “Example of an 8.1 and Updated 10g Release 3 Ant Build File for an 8.1
EJB-Implemented Web Service” on page 8-17.

8.1 SessionBean Class
package examples.statelessSession;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

/**
 * HelloWorldBean is a stateless session EJB. It has a single method,
 * sayHello(), that takes an integer and a String and returns a String.
 * <p>
 * The sayHello() method is the public operation of the Web service based on
 * this EJB.
 */

public class HelloWorldBean81 implements SessionBean {

 private static final boolean VERBOSE = true;
 private SessionContext ctx;

 // You might also consider using WebLogic's log service
 private void log(String s) {
 if (VERBOSE) System.out.println(s);
 }

 /**
 * Single EJB business method.
 */
 public String sayHello(int num, String s) {

8-14 Getting Started With WebLogic Web Services Using JAX-RPC

 System.out.println("sayHello in the HelloWorld EJB has "+
 "been invoked with arguments " + s + " and " + num);

 String returnValue = "This message brought to you by the "+
 "letter "+s+" and the number "+num;

 return returnValue;
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbActivate() {
 log("ejbActivate called");
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbRemove() {
 log("ejbRemove called");
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbPassivate() {
 log("ejbPassivate called");
 }

 /**
 * Sets the session context.
 *
 * @param ctx SessionContext Context for session
 */
 public void setSessionContext(SessionContext ctx) {
 log("setSessionContext called");
 this.ctx = ctx;
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-15

 */
 public void ejbCreate () throws CreateException {
 log("ejbCreate called");
 }

}

8.1 Remote Interface
package examples.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/**
 * The methods in this interface are the public face of HelloWorld.
 * The signatures of the methods are identical to those of the EJBean, except
 * that these methods throw a java.rmi.RemoteException.
 */

public interface HelloWorld81 extends EJBObject {

 /**
 * Simply says hello from the EJB
 *
 * @param num int number to return
 * @param s String string to return
 * @return String returnValue
 * @exception RemoteException if there is
 * a communications or systems failure
 */
 String sayHello(int num, String s)
 throws RemoteException;
}

8.1 EJB Home Interface
package examples.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

/**
 * This interface is the Home interface of the HelloWorld stateless session EJB.
 */
public interface HelloWorldHome81 extends EJBHome {

 /**
 * This method corresponds to the ejbCreate method in the

8-16 Getting Started With WebLogic Web Services Using JAX-RPC

 * HelloWorldBean81.java file.
 */
 HelloWorld81 create()
 throws CreateException, RemoteException;

}

Equivalent 10g Release 3 JWS File
The differences between the 8.1 and 10g Release 3 files are shown in bold. The value of some
JWS annotations are taken from attributes of the 8.1 servicegen Ant task shown in “Example
of an 8.1 and Updated 10g Release 3 Ant Build File for an 8.1 EJB-Implemented Web Service”
on page 8-17.

WARNING: Because the following JWS file uses WebLogic-specific JWS annotations, the
generated Web Service will be based on JAX-RPC rather than JAX-WS.

package examples.webservices.upgrade_ejb;

// Import the standard JWS annotations

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic specific annotation

import weblogic.jws.WLHttpTransport;

// Class-level annotations

@WebService(name="HelloWorld92PortType", serviceName="HelloWorldService",
 targetNamespace="http://example.org")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="upgradeEJB", serviceUri="HelloWorldService",
 portName="HelloWorld92Port")

/**
 * HelloWorld92Impl is the JWS equivalent of the HelloWorld81 EJB that
 * implemented the 8.1 Web Service. It has a single method,
 * sayHello(), that takes an integer and a String and returns a String.
 */

public class HelloWorld92Impl {

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-17

 /** the sayHello method will become the public operation of the Web
 * Service.
 */

 @WebMethod()
 public String sayHello(int num, String s) {

 System.out.println("sayHello in the HelloWorld92 Web Service has "+
 "been invoked with arguments " + s + " and " + num);

 String returnValue = "This message brought to you by the "+
 "letter "+s+" and the number "+num;

 return returnValue;

 }

}

Example of an 8.1 and Updated 10g Release 3 Ant Build File for an 8.1
EJB-Implemented Web Service
The following simple build.xml file shows the 8.1 way to build an EJB-implemented WebLogic
Web Service using the servicegen Ant task. Following this example is an equivalent
build.xml file that calls the jwsc Ant task to build a 10g Release 3 Web Service.

<project name="ejb-webservice" default="all" basedir=".">

 <!-- set global properties for this build -->

 <property name="source" value="."/>

 <property name="build" value="${source}/build"/>

 <property name="ejb_file" value="HelloWorldWS.jar" />

 <property name="war_file" value="HelloWorldWS.war" />

 <property name="ear_file" value="HelloWorldApp.ear" />

 <property name="namespace" value="http://examples.org" />

 <target name="all" depends="clean,ear"/>

 <target name="clean">

 <delete dir="${build}"/>

 </target>

 <!-- example of old 8.1 servicegen call to build Web Service -->

 <target name="ejb">

 <delete dir="${build}" />

 <mkdir dir="${build}"/>

8-18 Getting Started With WebLogic Web Services Using JAX-RPC

 <mkdir dir="${build}/META-INF"/>

 <copy todir="${build}/META-INF">

 <fileset dir="${source}">

 <include name="ejb-jar.xml"/>

 </fileset>

 </copy>

 <javac srcdir="${source}" includes="HelloWorld*.java"

 destdir="${build}" />

 <jar jarfile="${ejb_file}" basedir="${build}" />

 <wlappc source="${ejb_file}" />

 </target>

 <target name="ear" depends="ejb">

 <servicegen

 destEar="${build}/${ear_file}"

 warName="${war_file}">

 <service

 ejbJar="${ejb_file}"

 targetNamespace="${namespace}"

 serviceName="HelloWorldService"

 serviceURI="/HelloWorldService"

 generateTypes="True"

 expandMethods="True">

 </service>

 </servicegen>

 </target>

</project>

An equivalent build.xml file that calls the jwsc Ant task to build a 10g Release 3 Web Service
is shown below, with the relevant tasks discussed in this section in bold:

<project name="webservices-upgrade_ejb" default="all">

 <!-- set global properties for this build -->

 <property name="wls.username" value="weblogic" />

 <property name="wls.password" value="weblogic" />

 <property name="wls.hostname" value="localhost" />

 <property name="wls.port" value="7001" />

 <property name="wls.server.name" value="myserver" />

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-19

 <property name="ear.deployed.name" value="upgradeEJB" />

 <property name="example-output" value="output" />

 <property name="ear-dir" value="${example-output}/upgradeEJB" />

 <taskdef name="jwsc"

 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <taskdef name="wldeploy"

 classname="weblogic.ant.taskdefs.management.WLDeploy"/>

 <target name="all" depends="clean,build-service,deploy" />

 <target name="clean" depends="undeploy">

 <delete dir="${example-output}"/>

 </target>

 <target name="build-service">

 <jwsc

 srcdir="src"

 destdir="${ear-dir}">

 <jws file="examples/webservices/upgrade_ejb/HelloWorld92Impl.java" />

 </jwsc>

 </target>

 <target name="deploy">

 <wldeploy action="deploy" name="${ear.deployed.name}"

 source="${ear-dir}" user="${wls.username}"

 password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

 <target name="undeploy">

 <wldeploy action="undeploy" name="${ear.deployed.name}"

 failonerror="false"

 user="${wls.username}" password="${wls.password}" verbose="true"

 adminurl="t3://${wls.hostname}:${wls.port}"

 targets="${wls.server.name}" />

 </target>

</project>

8-20 Getting Started With WebLogic Web Services Using JAX-RPC

Mapping of servicegen Attributes to JWS Annotations or
jwsc Attributes
The following table maps the attributes of the 8.1 servicegen Ant task to their equivalent 10g
Release 3 JWS annotation or jwsc attribute.

The attributes listed in the first column are a mixture of attributes of the main servicegen Ant
task and attributes of the four child elements of servicegen (<service>, <client>,
<handlerChain>, and <security>)

See “JWS Annotation Reference” and “jwsc” in the WebLogic Web Services Reference for more
information about the 10g Release 3 JWS annotations and jwsc Ant task.

Table 8-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

contextURI contextPath attribute of the WebLogic-specific
@WLHttpTransport annotation.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

destEAR destdir attribute of the jwsc Ant task.

keepGenerated keepGenerated attribute of the jwsc Ant task.

mergeWithExistingWS No equivalent.

overwrite No equivalent.

warName name attribute of the <jws> child element of the jwsc Ant
task.

ejbJAR

(attribute of the service child
element)

No direct equivalent, because the jwsc Ant task generates Web
Service artifacts from a JWS file, rather than a compiled EJB or
Java class.

Indirect equivalent is the file attribute of the <jws> child
element of the jwsc Ant task that specifies the name of the JWS
file.

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_ref/annotations.html#jwsc

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-21

excludeEJBs

(attribute of the service child
element)

No equivalent.

expandMethods

(attribute of the service child
element)

No equivalent.

generateTypes

(attribute of the service child
element)

No equivalent.

ignoreAuthHeader

(attribute of the service child
element)

No equivalent.

includeEJBs

(attribute of the service child
element)

No equivalent.

javaClassComponents

(attribute of the service child
element)

No direct equivalent, because the jwsc Ant task generates Web
Service artifacts from a JWS file, rather than a compiled EJB or
Java class.

Indirect equivalent is the file attribute of the <jws> child
element of the jwsc Ant task that specifies the name of the JWS
file.

JMSAction

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10g Release 3 release.

JMSConnectionFactory

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10g Release 3 release.

JMSDestination

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10g Release 3 release.

Table 8-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes (Continued)

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

8-22 Getting Started With WebLogic Web Services Using JAX-RPC

JMSDestinationType

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10g Release 3 release.

JMSMessageType

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10g Release 3 release.

JMSOperationName

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10g Release 3 release.

protocol

(attribute of the service child
element)

One of the following WebLogic-specific annotations:
• @WLHttpTransport

• @WLJmsTransport

Note: Because these are WebLogic-specific annotations, you
can use them to generate only a JAX-RPC Web
Service, and not a JAX-WS Web Service.

serviceName

(attribute of the service child
element)

serviceName attribute of the standard @WebService
annotation.

serviceURI

(attribute of the service child
element)

serviceUri attribute of the WebLogic-specific
@WLHttpTransport or @WLJmsTransport annotations.

Note: Because these are WebLogic-specific annotations, you
can use them to generate only a JAX-RPC Web
Service, and not a JAX-WS Web Service.

style

(attribute of service child element)
style attribute of the standard @SOAPBinding annoation.

typeMappingFile

(attribute of the service child
element)

No equivalent.

Table 8-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes (Continued)

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-23

targetNamespace

(attribute of the service child
element)

targetNamespace attribute of the standard @WebService
annotation.

userSOAP12

(attribute of the service child
element)

value attribute of the WebLogic-specific
@weblogic.jws.Binding JWS annotation

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

clientJarName

(attribute of client child element)
No equivalent.

packageName

(attribute of the client child
element)

No direct equivalent.

Use the packageName attribute of the clientgen Ant task to
generate client-side Java code and artifacts.

saveWSDL

(attribute of the client child
element)

No equivalent.

userServerTypes

(attribute of the client child
element)

No equivalent.

handlers

(attribute of the handlerChain
child element)

Standard @HandlerChain or @SOAPMessageHandlers
annotation.

name

(attribute of the handlerChain
child element)

Standard @HandlerChain or @SOAPMessageHandlers
annotation.

Table 8-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes (Continued)

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

8-24 Getting Started With WebLogic Web Services Using JAX-RPC

duplicateElimination

(attribute of the reliability child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains Web Service reliable messaging
policy assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Using Web Service Reliable Messaging” in Programming
Advanced Features of WebLogic Web Services Using JAX-RPC.

persistDuration

(attribute of the reliability child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains Web Service reliable messaging
policy assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Using Web Service Reliable Messaging” in Programming
Advanced Features of WebLogic Web Services Using JAX-RPC.

enablePasswordAuth

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” in Securing WebLogic Web Services.

Table 8-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes (Continued)

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv/rm.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_adv/rm.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html

Upgrad ing an 8 .1 WebLog ic Web Se rv ice to 10g Re lease 3

Getting Started With WebLogic Web Services Using JAX-RPC 8-25

encryptKeyName

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” in Securing WebLogic Web Services.

encryptKeyPass

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” in Securing WebLogic Web Services.

password

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” in Securing WebLogic Web Services.

Table 8-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes (Continued)

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html

8-26 Getting Started With WebLogic Web Services Using JAX-RPC

signKeyName

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” in Securing WebLogic Web Services.

signKeyPass

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” in Securing WebLogic Web Services.

username

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC Web Service,
and not a JAX-WS Web Service.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” in Securing WebLogic Web Services.

Table 8-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes (Continued)

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/webserv_sec/message.html

	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Getting Started With WebLogic Web Services Using JAX-RPC, 10g Release 3 (10.3)
	Introduction
	Use Cases and Examples
	Creating a Simple HelloWorld Web Service
	Creating a Web Service With User-Defined Data Types
	Creating a Web Service from a WSDL File
	Invoking a Web Service from a Stand-alone Java Client
	Invoking a Web Service from a WebLogic Web Service

	Developing WebLogic Web Services
	Overview of the WebLogic Web Service Programming Model
	Configuring Your Domain For Web Services Features
	Developing WebLogic Web Services Starting From Java: Main Steps
	Developing WebLogic Web Services Starting From a WSDL File: Main Steps
	Creating the Basic Ant build.xml File
	Running the jwsc WebLogic Web Services Ant Task
	Examples of Using jwsc
	Advanced Uses of jwsc

	Running the wsdlc WebLogic Web Services Ant Task
	Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc
	Deploying and Undeploying WebLogic Web Services
	Using the wldeploy Ant Task to Deploy Web Services
	Using the Administration Console to Deploy Web Services

	Browsing to the WSDL of the Web Service
	Configuring the Server Address Specified in the Dynamic WSDL
	Testing the Web Service
	Integrating Web Services Into the WebLogic Split Development Directory Environment

	Understanding Data Binding
	Overview of Data Binding
	Supported Built-In Data Types
	XML-to-Java Mapping for Built-in Data Types
	Java-to-XML Mapping for Built-In Data Types

	Supported User-Defined Data Types
	Supported XML User-Defined Data Types
	Supported Java User-Defined Data Types

	Invoking Web Services
	Overview of Web Services Invocation
	Invoking Web Services Using JAX-RPC
	Examples of Clients That Invoke Web Services

	Invoking a Web Service from a Stand-alone Client: Main Steps
	Using the clientgen Ant Task To Generate Client Artifacts
	Getting Information About a Web Service
	Writing the Java Client Application Code to Invoke a Web Service
	Compiling and Running the Client Application
	Sample Ant Build File for a Stand-Alone Java Client

	Invoking a Web Service from Another Web Service
	Sample build.xml File for a Web Service Client
	Sample JWS File That Invokes a Web Service

	Using a Stand-Alone Client JAR File When Invoking Web Services
	Using a Proxy Server When Invoking a Web Service
	Using the HttpTransportInfo API to Specify the Proxy Server
	Using System Properties to Specify the Proxy Server

	Client Considerations When Redeploying a Web Service
	WebLogic Web Services Stub Properties
	Setting the Character Encoding For the Response SOAP Message

	Administering Web Services
	Overview of WebLogic Web Services Administration Tasks
	Administration Tools
	Using the Administration Console
	Invoking the Administration Console
	How Web Services Are Displayed In the Administration Console
	Creating a Web Services Security Configuration

	Using the WebLogic Scripting Tool
	Using WebLogic Ant Tasks
	Using the Java Management Extensions (JMX)
	Using the Java EE Deployment API
	Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

	Upgrading WebLogic Web Services From Previous Releases to 10g Release 3
	Upgrading a 9.2 or 10.0 WebLogic Web Service to 10g Release 3
	Upgrading a 9.0 or 9.1 WebLogic Web Service to 10g Release 3
	Upgrading an 8.1 WebLogic Web Service to 10g Release 3
	Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 10g Release 3: Main Steps
	Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 10g Release 3: Main Steps
	Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

