
Siebel

Order Management Infrastructure
Guide

January 2020

Siebel
Order Management Infrastructure Guide

January 2020

Part Number: F12765-02

Copyright © 2020, Oracle and/or its aliates. All rights reserved

Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permied in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you nd any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specic supplemental regulations. As such, use, duplication, disclosure, modication, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its aliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its aliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its aliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its aliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are ctitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
Order Management Infrastructure Guide

Contents

Preface .. i

1 What’s New in This Release 1
What’s New in Siebel Order Management Infrastructure Guide, Siebel CRM 20.1 Update .. 1

What’s New in Siebel Order Management Infrastructure Guide, Siebel CRM 19.1 Update ... 1

2 Service-Oriented Architecture 3
Service-Oriented Architecture ... 3

About Business Services ... 3

About Service-Oriented Architecture ... 3

How Siebel C/OM Is Built on a Service-Oriented Architecture .. 5

How Siebel C/OM Can Be Integrated with Other SOA Applications ... 5

Web Services for Customer Order Management .. 8

3 Signals 17
Signals .. 17

About the Signals Mechanism ... 17

Creating Signal Actions ... 19

Invoking Signals from Controls and Custom Script ... 24

Using Recursion with Signals .. 25

Migrating Signals Between Environments .. 25

4 Variable Maps 27
Variable Maps .. 27

About Variable Maps ... 27

Components of Variable Maps .. 29

Supported Source Types for Variables ... 31

About Using Variable Maps ... 35

Variable Map Methods of the Context Service Business Service .. 41

5 PSP Engine 43
PSP Engine .. 43

Siebel
Order Management Infrastructure Guide

About the Product Selection and Pricing Engine ... 43

Components of the PSP Engine ... 46

PSP Driver Workow .. 51

Conditions and Actions for PSP Procedures .. 53

About Temporary Variables ... 58

Row Set Transformation Toolkit Methods .. 58

Conguring PSP Procedures ... 74

Creating a Custom PSP Application .. 79

Calling a PSP Procedure from an External Application ... 80

About Logging of PSP .. 80

About Troubleshooting of PSP ... 80

About Tuning Performance of PSP .. 83

6 PSP Waterfall 95
PSP Waterfall ... 95

About Waterfalls ... 95

About Conguring Waterfall Output ... 97

7 Unied Messaging 103
Unied Messaging ... 103

About Unied Messaging ... 103

Components of Unied Messaging ... 104

Unied Messaging Service Business Service Methods ... 109

Creating Message Types ... 110

Conguring the Display of Messages ... 112

Implementing Multilingual Substituted Text ... 113

Implementing a Custom Message-Generation Engine ... 114

About Working with Message Responses ... 114

About Suppressing Duplicate Messages .. 115

Suppressing Duplicate Messages .. 116

Migrating Message Types Between Environments .. 117

Tuning Performance of Unied Messaging .. 117

Using Unied Messaging with the PSP Engine .. 117

8 Data Validation Manager 119
Data Validation Manager ... 119

Siebel
Order Management Infrastructure Guide

About Data Validation Manager .. 119

Roadmap for Implementing Data Validation Processing ... 120

Process of Administering Data Validation Rules ... 120

Process of Invoking the Data Validation Manager Business Service .. 129

9 Approvals Manager 135
Approvals Manager .. 135

About Approval Processing .. 135

ISS Approval Business Service Methods ... 136

Dening Approval Items and Approval Stages .. 137

About Invoking the Approvals Manager Business Service from a Workow .. 138

Approving or Declining Approval Stages (End User) .. 141

10 Asset-Based Ordering Methods Reference 143
Asset-Based Ordering Methods Reference .. 143

Product Manipulation Toolkit Business Service Methods ... 143

Order Entry Toolkit Business Service Methods ... 197

Account Administration Toolkit Business Service Methods .. 206

Complex Product Auto Match Business Service Method ... 209

11 Projected Asset Cache 213
Projected Asset Cache ... 213

About Projected Asset Cache ... 213

Projected Asset Cache Business Service Methods ... 214

Using the VORD Projected Asset Cache Business Service .. 218

12 Compound Product Validation 221
Compound Product Validation ... 221

About Compound Product Validation Engine Business Service .. 221

Compound Product Validation Engine Business Service Methods ... 222

13 Copy Service 227
Copy Service .. 227

About Copy Service ... 227

Copy Service Methods .. 228

Siebel
Order Management Infrastructure Guide

14 Data Transfer Utilities Business Service 239
Data Transfer Utilities Business Service ... 239

About Data Transfer Utilities ... 239

About Data Maps ... 246

Example of Dening Data Maps to Use with the DTU ... 251

Examples of Invoking the DTU ... 253

Data Transfer Utilities Methods .. 256

15 Other Component Business Services for C/OM 261
Other Component Business Services for C/OM .. 261

Context Service Business Service .. 262

ISS ATP Service ... 262

ISS Credit Card Transaction Service .. 264

ISS Credit Check Service .. 264

ISS Disable Service .. 265

ISS Package Product Service ... 267

ISS Payment Prole Service ... 267

ISS Promotion Agreement Manager ... 268

ISS Promotion CP Admin Service ... 273

ISS Promotion Edit UI Service ... 274

ISS Promotion Management Service ... 275

ISS Revenue Synchronization Service .. 281

ISS Sequence Service ... 281

ISS Service Product Service ... 282

ISS Shipping Calculation Service .. 282

ISS Shipping Cost Service .. 282

ISS Smart Part Number Generation Service .. 283

ISS Spread Discount Service ... 283

ISS Tax Calculation Service .. 283

ISS Template Service ... 284

Siebel
Order Management Infrastructure Guide

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To nd guides for Oracle Applications, go to the Oracle Help Center at hp://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an e-mail to:
oracle_fusion_applications_help_ww_grp@oracle.com.

i

http://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel
Order Management Infrastructure Guide

Preface

ii

Siebel
Order Management Infrastructure Guide

Chapter 1
What’s New in This Release

1 What’s New in This Release

What’s New in Siebel Order Management Infrastructure
Guide, Siebel CRM 20.1 Update
No new features have been added to this guide for this release. This guide has been updated to reect only product
name changes.

What’s New in Siebel Order Management Infrastructure
Guide, Siebel CRM 19.1 Update
No new features have been added to this guide for this release. This guide has been updated to reect only product
name changes.

1

Siebel
Order Management Infrastructure Guide

Chapter 1
What’s New in This Release

2

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

2 Service-Oriented Architecture

Service-Oriented Architecture
This chapter discusses Oracle’s Siebel order management which is based on a service-oriented architecture (SOA), and
the services that form the foundation of Customer Order Management (C/OM) functions. This chapter includes the
following topics:

• About Business Services

• About Service-Oriented Architecture

• How Siebel C/OM Is Built on a Service-Oriented Architecture

• How Siebel C/OM Can Be Integrated with Other SOA Applications

• Web Services for Customer Order Management

About Business Services
A business service denes reusable business logic that can be executed within the Object Manager. Business services
are the building blocks of all C/OM functions.

Generally, a business service:

• Can be a built-in service that is dened in Web Tools or a run-time service that is dened in the Siebel client
application by administrators

• Can be based on the CSSService Class (standard business service) or on specialized classes (specialized
business service)

Note: Specialized business services are used only by internal Siebel Engineering personnel. Do not
use specialized business services unless their behavior is specically documented.

• Can be congured by properties or scripts (wrien in Siebel VB or Siebel eScript)

• Can be used for generic code libraries that are called from other scripts

• Can be referred to by commands associated with a menu item or toolbar buon

About Service-Oriented Architecture
Service-oriented architecture (SOA) is the environment that supports the building of applications using service
technology. Siebel order management is a composite application built following the discipline of SOA.

SOA allows for sharing of business logic across multiple access channels, using data and application features wherever
they reside. An SOA application must include the following:

• Smart clients. A set of clients—connected or mobile, and with multiple form factors—provides for multichannel,
role-based access to the application. The clients are “smart” in the sense that appropriate application code is

3

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

transparently loaded into the client, allowing high interactivity with no administration overhead; a smart client
oers the advantage of both browser technology and client or server technology, without the drawbacks of
either. Smart clients support role-based user interfaces.

• Business processes. SOA supports process-enabled applications. Each process is declaratively dened as an
orchestration of services. The location of services is transparent to the applications, and the processes may
cross applications. Various sections of a process may be implemented in dierent applications, each executed
under the control of its own process controller, whether BPEL-compatible or custom.

• Application services. All application functions are modeled using service technology. All services—whether
data services, business services, or integration services—follow the service paradigm. Data services use the
methods associated with data. Business services may drive role-based user interfaces or they may implement
automated steps. Integration services (or integration applications) map services consumed to services oered
between applications, so that all services appear to be local to each application, smoothing out the dierences
in object structure and service interface semantics.

• Data sources and service sources. At the logic level, all applications are peers as providers and consumers of
services and data.

The following gure illustrates a service-oriented architecture.

SOA allows for abstraction of the application interface from the application’s implementation. Because of this
abstraction and standardization, generalized (coarse-grained) services can be used for a wide range of needs. Using
generalized services means that there is reduced demand for new services, and services can be reused in unforeseen
contexts. At the same time, services that are ne-grained can be used for the composition of new services.

4

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

How Siebel C/OM Is Built on a Service-Oriented
Architecture
Siebel order management is a composite application following the principles of SOA as follows:

• Services are autonomous, and they act independently of one another. C/OM business functions are based
on independent services involving pieces of code and data. Each service is a unique piece of code that stands
alone, independent of other services. Services share standards, schema, and contract—but because services
are autonomous, each one has its own implementation, deployment, and operational environment. For this
reason, a service can be rewrien or replaced with no impact on partner services.

• Messaging carries information between services. Services interact through messaging. The only way into and
out of a service is through messages. A message’s schema describes the format and content of the message. A
message’s contract describes the message sequences allowed in and out of the service. The schema denition
and the contract denition give a service its black box nature. A partner service of any given service is aware
only of the sequencing of messages owing back and forth, not of the service’s inner workings.

• Boundaries are explicit. Explicit boundaries mean that there is no ambiguity regarding the location of each part
of the code; it is clear whether the code resides inside or outside of the service. The same principle applies to
data. It is known whether a database table resides inside or outside the service.

• Service location and compatibility are describable and discoverable. Policies exist as formal criteria for geing
a service to do its work and for specifying service location. The criteria are located in a document that outlines
the service’s rules for use and its location.

In this release, C/OM business processes are implemented as workows that invoke a series of internal services. The
SOA also allows C/OM applications to incorporate external services into any business process.

Because Siebel order management is built upon SOA principles, C/OM business functions are encapsulated in well-
dened services. Data is passed to and from services as hierarchical documents.

The C/OM Signals mechanism provides the service invocation framework. The C/OM Variable Maps mechanism
denes, constructs, and persists the data passed to and from the services.

The service-oriented architecture of Siebel order management also means that C/OM business processes and functions
can be exposed (as stateless services), so that they can be called by external applications. The service denition and
run-time is supported by the Siebel ASI framework.

How Siebel C/OM Can Be Integrated with Other SOA
Applications
Web Services is the most common enabler of SOA. Siebel Business Applications support both inbound and outbound
Web Services. The Siebel application can:

• Generate and read WSDL

• Process and transform XML

• Receive and process Web Service requests over HTTP

5

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

• Invoke an external Web Service from any Siebel event, script, or Workow

Outbound Integration of C/OM Services
You can call an external service from C/OM. Predened integration interfaces can be implemented or hosted by an
external application. Service can be provided by an external application, an integration server, a Siebel business service,
or a Siebel business process (workow).

The following gure illustrates services integration for outbound integration.

Calling an External Service from C/OM
The workow process shown in the following gure provides an example of calling an external service from Siebel
order management. The gure shows a workow process that includes a subprocess called Check Inventory Levels. The
subprocess includes a step called Perform Inventory Check, which involves a Web service invocation.

6

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

Web Service Performance
C/OM services such as Pricer or Eligibility are designed to work on batches of data to improve end-user response times.
Any external service called by Pricer or Eligibility must support a batched interface that processes an entire set of data
(such as all line items in an order) in a single invocation. Thus the overhead associated with Web Service invocation and
with context establishment within the Web Service is only incurred once instead of, potentially, hundreds of times.

How Siebel C/OM Can Be Used with SOA
Siebel customer order management can be used as a service by any SOA application though the process ow illustrated
in the following gure. In this ow:

• The external application UI rst identies (through a business process extraction layer) the right set of Web
services that it needs to call to support the business process event.

• The external application layer then:

◦ Identies the right sequence of Web service invocations.

◦ Prepares the input to these Web services, and generates the SOAP message appropriately.

• The Siebel Business Application server Web service listener will receive the soap message, and if needed,
facilitates session management and converts the SOAP message to a native property set.

7

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

• The signal service invokes a COM signal, or calls the native service and invokes the COM order management
workow or business service to complete the task.

• Once the task is completed in the Siebel Business Application, the Siebel application returns a SOAP message
back to the calling application which in turn extracts the output and updates the UI.

Web Services for Customer Order Management
The Web services used for customer order management are listed in the following table.

• Web Services in Version 8.1 describes the new, modied, and consolidated web services to support release 8.1 of
the software.

• The following table lists the workows that you must activate in order to use the Web services for customer
order management.

For more information about these Web services and for information about enabling Web services, see Siebel CRM Web
Services Reference .

8

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

Namespace Name

hp://siebel.com/OrderManagement/
ABO

ABOWebService

hp://siebel.com/OrderManagement/
Asset

AssetWebService

hp://siebel.com/OrderManagement/
Quote/PSP

CalculatePriceWS

hp://siebel.com/OrderManagement/
External/PSP

CalculatePriceWS

hp://siebel.com/OrderManagement/
Catalog

CatalogWebService

hp://siebel.com/OrderManagement/
Contact

ContactWebService

hp://www.siebel.com/
OrderManagement/ContextService

ContextServiceWrapperService

hp://siebel.com/OrderManagement/
Quote/PSP

EligibilityCompatibility

hp://siebel.com/OrderManagement/
Order

OrderWebService

hp://siebel.com/OrderManagement/
Congurator

ProductCongurator

hp://siebel.com/OrderManagement/
Quote/PSP

ProductRecommendation

hp://siebel.com/OrderManagement/
Promotion

PromotionWebService

hp://siebel.com/OrderManagement/
Quote

QuoteAddItemsWS

hp://siebel.com/OrderManagement/
Quote

QuoteWebService

9

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

Web Services in Version 8.1
This topic describes the new, modied, and consolidated web services to support release 8.1 of the software:

• The rst table in this topic lists the Web services that are new for customer order management.

• The second table in this topic lists the new self service Web services that were added for customer order
management.

• The third table in this topic lists the new Communications, Media, and Utilities (CMU) Web services for customer
order management.

• The fourth table in this topic lists the Web services that were modied for customer order management.

• The fth table in this topic lists the Web services that have been consolidated for customer order management.

New Web Services
The following table lists the Web services that are new for customer order management.

Type Web Service Name Description

Get Categories

Retrieves a list of all available product categories in a single
Web service interaction.

Catalog

Publish Catalogs

Retrieves all catalog objects (categories, products, aributes,
 aribute domains) for a given catalog including private
catalog objects based on current catalog access control, and
eligibility enforcement options.

Price Lists

Gets all active price lists for a given context.

Order Detail

Quote Detail

Shopping Cart

Quoting

New UI data service (UDS) based on Quote and Order Web
services that activate and return only the information (elds)
that you requested.

Get Promotion

Gets commitments for a given promotion asset.

Modify Promotion or Asset

Upgrades or migrates a promotion instance to another
promotion. Supports promotion upgrade or downgrade
process from an external application.

Promotion

Modify Promotion or Asset

Modies a promotion or asset item from an external
application through the modify asset Web service.

New Self Service Web Services
The following table lists the new self service Web services that were added for customer order management.

10

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

Self Service Web Service Description

SelfServicePostLogin

Loads the logged in users responsibilities, contact details and primary account. If the primary account
is null, loads the root account of the logged in user’s contact.

SelfServiceRegistration

Performs the following actions for user registration:

• Creates a user

• Creates a contact

• Creates an account, if required

• Assigns responsibilities

• Triggers approval process, if applicable

This Web service also performs the reset password and update password transactions.

SelfServiceContact

Allows you to insert, delete, update, and query a contact, contact details, and the accounts associated
with a contact.

SelfServiceAccount

Allows you to insert, delete, update, and query accounts, account addresses, and contacts associated
with accounts.

SelfServiceAccountRootPath

Queries the account hierarchy details of the requested account.

SelfServiceAllAccountsList

Queries accounts and account details.

SelfServiceUser

Retrieves user details and user responsibilities.

SelfServiceWebSite

Allows you to insert, update, delete, and query the Self Service site and its details.

OrderDetailWebService

Queries Order header, Order Line, Order Payments, Order Approval, and Shipment details.

SelfServiceSmtpEmail

Send an email using the Outbound Communications Manager business service.

SelfServiceTemplateRule

Queries the Self Service Site template rules.

SelfServiceTimeZone

Queries the time zone and time zone translation details.

SelfServicePaymentHistory

Gets the payment history for a contact or account.

SelfServiceAccountBillingProle

Performs Insert, Delete, Update, and Query on the accounts billing prole.

SelfServiceAddress

Gets the Address details for a particular account or contact.

SelfServiceResponsibility

Queries responsibilities.

11

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

New Communications, Media, and Utilities Web Services
The following table lists the new Communications, Media, and Utilities (CMU) Web services for customer order
management.

CMU Web Service Description

CatalogWebService

Equivalent to the Publish Catalogs Web service.

OrderDetailWebService

Equivalent to the Order Detail Web service.

SelfServiceAccount

Equivalent to the SelfServiceAccount Web service.

SelfServiceAllAccountsList

Equivalent to the SelfServiceAllAccountsList Web service.

Modied Web Services
The following table lists the Web services that were modied for customer order management.

Web Service Description

PromotionWebService

The following methods have been added:

• Promotion Commitments

• Upgrade Promotion

QuoteWebService

Allows you to insert, update, query, and delete the quote header, quote item, and quote payments.

ProductCongurator

To support release 8.1 of the software, updates the Web service:

• To meet all new requirements

• To x any issues found

Consolidated Web Services
The following table lists the Web services that have been consolidated for customer order management.

Web Service Description

QuoteCheckOutWebService

This is the Submit Order Web service that invokes the QuoteCheckOut workow. The workow
consolidates the submit order functionality, and the credit card validation process.

QuotingWebService

This Web service is used to save a quote, and it invokes the Web Channel Quoting Workow. This
workow consolidates the following processes:

• Run the eligibility and compatibility workow

12

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

Web Service Description

• Re-price the quote

• Calculate delta for ABO quote

• Perform promotion instance check

• Calculating shipping charge

• Calculate Tax

SelfServiceRegistration

This is the self service registration process, and it invokes the SelfServiceRegistration workow. It
consolidates the following processes:

• Create a user

• Create a contact

• Create an account, if required

• Assign responsibilities to the user

• Trigger approval process, if applicable

SelfServicePostLogin

SelfServicePostLogin is invoked after a user logs into the self service application, and it invokes the
SelfServicePostLogin workow. It consolidates the following processes:

• Load contact details and responsibilities

• Load primary account id and root account details

Workows to Activate for Customer Order Management
In addition, to use the Web services for customer order management, you must activate the following workows:

• CalculatePriceExternal

• Check Eligibility & Compatibility - Default

• Compatibility Multiple Popup Workow

• Congurator Eligibility Compatibility Workow

• Congurator External Validate Workow

• Congurator Load

• Congurator PAC Query

• Congurator Product Info Lookup

• Congurator Save

• Contact - New Order

• Contact - New Quote

• ContextServiceWrapperService-OrderHeader-Verify

• ContextServiceWrapperService-OrderItem-Verify

• ContextServiceWrapperService-QuoteHeader-Verify

• ContextServiceWrapperService-QuoteItem-Verify

13

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

• Get Cong Item Price

• Get Product List Price

• Goto_Order

• Goto_Quote

• ISS Approval (Agreement)

• ISS Approval (Order)

• ISS Approval (Quote)

• ISS Post Approval Workow (Agreement)

• ISS Post Approval Workow (Order)

• ISS Post Approval Workow (Quote)

• ISS Promotion Agreement Covered Assets Sub Process

• ISS Promotion Agreement Management Sub Process

• ISS Promotion Commitment Compliance Check SubProcess

• ISS Promotion Create Agreement Details

• ISS Promotion Disconnect Integration SubProcess

• ISS Promotion Disconnect Process

• ISS Promotion Disconnect Process - for Verify

• ISS Promotion Recommendation SubProcess

• ISS Promotion Upgrade Process

• ISS Promotion Verify SubProcess

• ISS Validation (Agreement)

• ISS Validation (Order)

• ISS Validation (Quote)

• PSP Driver Workow Process

• PSP Dynamic Matrix - Refresh Matrix Cache

• PSP Refresh Cache On Cache Key - Price List

• PSP Waterfall Driver Workow Process

• PSP Waterfall Synch Test Workow

• PSP Waterfall Synch to DB Workow

• Pricing Procedure - Bundle Discount Unit Test

• Pricing Procedure - Calculate Net Price

• Pricing Procedure - Default

• Pricing Procedure - Keep Discount Flag

• Pricing Procedure - Service

• Pricing Procedure - Volume Discount

• Product Compatibility - Default

14

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

• Product Eligibility & Compatibility - Default

• Product Recommendation Delete Msgs

• Product Recommendation Driver Workow

• Product Recommendation Get Recommended Products

• SIS OM Active Order Sub-Process

• SIS OM Active Order Sub-Process - Contact

• SIS OM Active Quote Sub-process - Contact

• SIS OM Apply Completed Service Order Line Item to Service Prole

• SIS OM Auto Select Order Billing and Service Accounts

• SIS OM Go to Products & Services Sub-Process

• SIS OM Go to Quote Detail View Sub-Process

• SIS OM Modify Products & Services Process

• SIS OM Modify Products & Services Process - Contact

• SIS OM Modify Products & Services Process - Quote & Order

• SIS OM New Products & Services Process

• SIS OM New Products & Services Process - Contact

• SIS OM New Products & Services Process - VORD

• SIS OM Prole Process

• SIS OM Prole Process - Order

• SIS OM Quote To Order Workow PMT Version

• SIS OM Submit Order Process

• SIS OM Suspend, Resume Asset Sub-Process

• SIS OM Suspend, Resume Asset Sub-Process - Contact

• SIS OM Suspend, Resume Products & Services Process

• SIS OM Suspend, Resume Products & Services Process - Contact

• SIS OM Suspend, Resume Products & Services Process - Quote & Order

• SIS OM Ungroup Order

• SIS OM Ungroup Quote

For more information about activating workows, see these Web services and for information about enabling Web
services, see Siebel Business Process Framework: Workow Guide .

15

Siebel
Order Management Infrastructure Guide

Chapter 2
Service-Oriented Architecture

16

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

3 Signals

Signals
In earlier releases, Siebel order management functions and function calls were handled locally by the code in the calling
object or business component. In this release, every interaction between C/OM components occurs through an API
invocation that you can congure or redirect. These API invocations are called signals. A signal is a request to perform a
business function.

Each API invocation supports a congurable set of input arguments. The API is handled by a series of business service
methods and workows that you dene using the Administration - Order Management screen, then the Signals view.

This chapter includes the following topics:

• About the Signals Mechanism

• Creating Signal Actions

• Invoking Signals from Controls and Custom Script

• Using Recursion with Signals

• Migrating Signals Between Environments

About the Signals Mechanism
Within Siebel order management, you use the Signals mechanism to invoke congurable business logic. Signals are
used to hold together all the C/OM services, and they are used to call external services. You congure signals in the run-
time client.

Nearly all buons and engines within Siebel order management invoke business logic by raising a signal. The business
logic invoked comes in the form of one or more business service methods or workows.

Signals are versioned objects. The numbering assigned to a signal version means that a new version of a signal can be
developed while you are using the current version in the same production environment.

A signal action property species the business service or workow to invoke when the signal is raised. Signal action
parameters are the input arguments to signal action workows or business service methods.

Components of the Signals Mechanism
The following gure shows how a signal created using the Administration - Order Management screen, then the Signals
view is routed through a signal dispatcher to invoke a business service method or workow.

17

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

Signals Administration
Administer signals using the Administration - Order Management screen, then the Signals view. Use the Signals view
for creating new signals, working with existing signals, and releasing signals into production. In the Versions list applet,
click the Work Space hyperlink to access the Actions and Properties tabs, and the Parameters list applet, for the selected
signal.

Signal Dispatcher
Signals are dispatched by the Context Service business service. The Context Service business service reads and caches
signal denitions, and then when a business component raises the signal, Context Service executes the appropriate
business service or workow.

For more information about the Context Service business service, see Variable Maps and Context Service Business
Service.

Signal Sources
All applications supported by the Siebel order management infrastructure can be sources of signals. A signal can be
invoked by any C/OM business component. Signals are not supported on non-C/OM business components.

Signals are invoked through the standard InvokeMethod call. If the method is not handled by logic or script on the
source business component, then the signal dispatcher (Context Service business service) is invoked to handle the
signal.

Signal Actions
A signal action can be either a business service method or a workow. By seing the Service Type eld using the
Administration - Order Management screen, Signals, and then the Actions view, you dene whether the action is a
business service method or a workow.

18

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

Creating Signal Actions
You create and modify signal actions in the Signals view. You can set the sequence for a group of actions, set input
arguments for actions, and set lter values that determine when an action executes. Use the following procedure to
create and modify signal actions.

The Signals view lists and describes all the standard signals that are available in your Siebel Business Application. The
following table lists some of the signals that are relevant to order management and pricing administration.

Signal Name Description

ApproveItem

Invoked by clicking Generate Approvals in quote, order, and agreement views. Reprices and then
generates approval requests for the current line item.

CalculatePriceAndCheckEligibility

Invoked by Add Item and Verify. Performs Pricing and Eligibility on selected rows.

CalculatePrice

Invoked by clicking Reprice or selecting a product for a line item. Establishes context, calls the pricing
procedure, and then synchronizes any updates back to the database.

CalculatePriceAll

Invoked by clicking Reprice All. Establishes context, calls the pricing procedure, and then synchronizes
any updates back to the database.

CalculatePriceExternal

This signal is called when a user calls the method CalculatePriceExternal for the Pricing Manager
business service; it is used to calculate the price of a product externally.

CalculatePrice_eSales

Invoked by clicking Reprice in Siebel eSales. Establishes context, calls the pricing procedure, and then
synchronizes any updates back to the database.

CalculatePriceAll_eSales

Invoked by clicking Reprice All in Siebel eSales. Establishes context, calls the pricing procedure, and
then synchronizes any updates back to the database.

CalculatePrice_Congurator

Invoked by clicking Reprice in Siebel Congurator. Establishes context, calls the pricing procedure, and
then synchronizes any updates back to the CP instance.

CheckEligibility

Invoked by the Verify Eligibility Status menu item on the line items applet. Executes the eligibility
procedure for the current line item.

CheckEligibilityAll

Not invoked out-of-the-box. Executes the eligibility procedure for all line items.

CopyOrder

Invoked when copying Order records.

CopyQuote

Invoked when copying Quote records.

Get Cong Item Price

Called when the user calls the GetCongItemPrice method of the Pricing Manager business service; it
is used to get the price of a congurable item externally.

19

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

Signal Name Description

Get Product List Price

Called when the user calls the GetProductListPrice method of the Pricing Manager business service; it
is used to get the product list price of the product, as well as other price list eld values (for example,
 MSRP Price and Cost).

GetUserProdPrice

Calculates the list price and net price for a list of products using the login user prole as context.

MergeIntoOnePackage

Invoked by the Package menu item in quote, order, and agreement views. Calls the ISS Package
Product Service to combine the selected line items into a package; it then reprices the package.

OrderTemplate

Invoked by clicking Add Items in the Catalog or Favorites list applet. Calls the ISS Template Service to
copy line items from favorites in to the shopping cart.

OrderTemplateCopy

Invoked by the ISS Template Service to copy template line items to the current order.

OrderTemplateSelectItems

Invoked by the ISS Template Service to copy template line items from the available product applet to
the current order.

Product Recommendation Signal

Invoked by a product selection or by a current line item change. Calls the Product Recommendation
Driver Workow to generate and display product recommendation messages.

QuotesAndOrdersValidate

Invoked by clicking the Verify buon on a Header or Line Item. On Header: runs Pricing and Eligibility,
 veries promotions, validates data rules, and validates CP. On Line Item: checks eligibility and validates
CP.

QuoteTemplateCopy

Invoked by the ISS Template Service to copy template line items to the current quote.

QuoteTemplateSelectItems

Invoked by the ISS Template Service to copy template line items from the available product applet to
the current quote.

SetFieldValue

Invoked whenever a eld value changes in the quote, order or agreement header, or line items. Triggers
various processing depending on the eld changed.

SpreadDiscount

Invoked by clicking Spread in the spread discount pop-up applet. Calls the Spread Discount Driver
Workow Process to query the selected line items and spread the specied discount.

SpreadDiscount - All

Invoked by clicking Spread in the spread discount pop-up applet when Type is set to All. Calls the
Spread Discount Driver Workow Process to query all the line items and spread the specied discount.

VerifyItem

Invoked by clicking the Verify buon or menu item in quotes, orders or agreements. Calls workows to
reprice and check eligibility. Then calls the FINS Validator business service to execute validation rules.

To create and modify signal actions
1. Navigate to the Administration - Order Management screen, then the Signals view.
2. In the Signals list applet, select an existing signal to modify, or create a new signal record.

20

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

3. Lock the signal by checking the Locked Flag box.

This locks the object for your user ID.
4. If you are creating a new signal, give it a name and description, and then save the record.
5. In the Versions list applet, click the Work Space link to drill down to the Actions list applet.
6. In the Actions list applet, create a new action, or select an existing signal action.
7. Complete the elds.

a. Set the Sequence eld value to reect the sequence number of a particular action relative to other
actions for the signal.

b. Set the Service Type eld to specify whether the action is a business service method or a workow:

- If you specied that the signal action is a workow, enter the workow’s name in the Service Name
eld and enter “RunProcess” in the Service Method eld.

- If you specied that the signal action is a business service method, enter the business service
name in the Service Name eld and enter the method name in the Service Method eld.

c. (Optional) Set lter elds for the action as described in the table that follows.

Filter elds limit the execution of a signal action. The action occurs only if all lter eld values specied
match the current situation.

Filter Field Allowed Values Description

Application Name

Any “Application” repository object
name

Used to dene industry-specic or channel-specic
logic.

Mode

Any string from the ISS_MODE LOV

Must match the value of the Mode user property on the
business component (such as Quote, Order, Asset or
Agreement).

Instance Type

Any string from the ISS_INSTANCE_
TYPE LOV

Must match the integration component name from the
integration object specied in the business component
“Instance Uniform Name EAI Object:[Current Business
Object]” user property, for example, “Header”, “Line
Item”, or “Payments”.

Fields

A semi-colon-separated list of eld
names (example: “Account; Product; Net
Price”)

The business component elds for which the action
is executed. The action occurs if the active eld in the
calling business component appears in the list.

Condition

A Siebel logical expression that returns
TRUE or FALSE.

If the condition is not empty, the action is only invoked
when the condition returns TRUE.

8. (Optional) In the Parameters list applet (at the end), enter input arguments for the action.

As an example, parameters for the CalculatePrice signal are listed in the following table:

21

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

Input Argument Example Value

CPScope

Whole

RowScope

Selected

SubPSPWFName

Pricing Procedure - Default

Variable Map - Context

Default Pricing Variable Map - Context

Variable Map - Row Set

Default Pricing Variable Map - Row Set

9. (Optional) You can specify a CanInvoke check by completing the elds in the Properties list applet. See
Modifying Signal Properties for Signal Actions.

10. Navigate back to the Signals list applet.
11. Click the Release New Version buon to release the signal version.
12. If you are creating a new signal action, create a buon, script or workow to invoke the signal. See Invoking

Signals from Controls and Custom Script.
13. Test the signal.

You test the signal by triggering the appropriate event.

Note: After releasing a new version, you must start a new user session (by logging out and logging in
again) to test the latest version.

14. Using Application Deployment Manager (ADM), promote the updated signal denition to the production
environment. For information about using ADM, see Siebel Application Deployment Manager Guide .

Modifying Signal Properties for Signal Actions
Signal properties are similar to user properties on repository objects. Signal properties are name-value pairs used to
congure processing. In this release, the only supported use of signal properties is to provide a CanInvoke check.

Note: For some signals (for example, the QuoteAndOrderValidate signal), the CanInvoke property for the
signal can cause related buons to be disabled. Removing the property, however, results in enabling the
related buon. Name: CanInvoke:Order Value: [Status] = LookupValue('ORDER_STATUS', 'Open')

To modify signal properties for a Can Invoke check
• (Optional) You can specify a CanInvoke check by completing the elds in the Properties list applet as follows:

◦ Name. CanInvoke:[Mode]

◦ Value. A Boolean expression using one of the following:

22

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

- Business component elds. The expression can be comprised of real business elds or pseudo
business elds supported by Context Service. Allowed elds include the following:

Field Comment

[$IsNewRecordPending]

None

[$HasActiveRow]

None

[$IsInQueryMode]

None

[$CanUpdate]

Returns ‘Y’ or ‘N’

[$GetType]

Returns instance type such as ‘Line Item’, ‘Header’, ‘XA’

- Prole aributes. As an example, the following table shows a properties seing for the
SetFieldValue signal:

Property Example Aributes

CanInvoke:Any
 GetProfileAttr('Block Variable Map

 Operations')='N' OR
GetProfileAttr('Block Variable Map Operations') IS
 NULL

Example of Signal Properties Seings for a Can Invoke Check
An example of the elds set for a CanInvoke check is listed in the following table.

Name Value

CanInvoke:Any

[Account Id] is not null

CanInvoke:Quote

[Status] = LookupValue('ORDER_STATUS', 'Open')

23

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

Note: If CanInvoke logic exists for a specic Mode, it overwrites the CanInvoke logic dened for the mode Any.
In the example for Signal Properties Seings, using Quote mode, the CanInvoke logic used will be [Status] =
LookupValue('ORDER_STATUS', 'Open') instead of [Account Id] is not null.

Invoking Signals from Controls and Custom Script
Siebel order management business components route unrecognized InvokeMethod calls to the Context Service
business service’s RaiseSignal method. All business components of class CSSBCOrderMgmtBase, CSSBCPecBase, and
their subclasses, support this routing.

Note: CSSBCPecBase only supports standard signals. It does not support custom signals.

You can invoke signals from controls, such as buons. You can also invoke signals from a script.

Invoking Signals from a Buon
Use the following procedure to invoke signals from a buon.

To invoke a signal from a buon
1. In Web Tools, create or open a workspace and then navigate to Object Explorer.

To use the workspace dashboard, see Using Siebel Tools .
2. Click Applet and then locate the applet you must modify.
3. Expand the applet list in Object Explorer and click Control.
4. Set the MethodInvoked property of the control to the signal name.
5. Save your changes using the gear icon and submit the workspace for delivery.

Invoking Signals from a Script
Use the following procedure to invoke signals from a script.

To invoke a signal from a script
1. Access the Siebel Script Editor in Siebel Tools by selecting the aected object in the Object Explorer.
2. Right-click the object, and choose Edit Scripts.
3. Modify the script to execute the InvokeMethod method on the appropriate C/OM business component, passing

the signal name as the MethodName input argument.

For example:

pQuoteBC.InvokeMethod("Calculate Tax");

24

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

Using Recursion with Signals
Recursion of signals is supported, but you cannot use recursive variable map APIs such as GetRowSet and SyncRowSet
in recursed signals. If your recursive signal calls recursive variable map APIs, you will receive an error message. When
this happens, you must revisit the denition of the signal and make modications to make sure these variable map APIs
are not involved (for example, you might remove GetRowSet and SyncRowSet, or instead add a CanInvoke method to
skip the signal).

Recursive variable map APIs are not supported because these APIs read data from, or write data to, the database. This
kind of recursive read and write is not safe.

For details on how to use signal properties and prole aributes when making sure your recursion works properly with
signals, see Modifying Signal Properties for Signal Actions.

Migrating Signals Between Environments
Signals can be moved between environments, such as from the development environment to the test environment,
by using the Application Deployment Manager (ADM). For information about using ADM, see Siebel Application
Deployment Manager Guide .

You can also export a specic version of a signal using the Export Version applet menu in the Signal Version list applet.
To import a signal, navigate to the Administration - Products screen, then the Joint Workspace view. This is a joint
workspace for all types of versioned objects (signals, variable maps, products, product aributes, and so on). For more
information about import and export, see Siebel Product Administration Guide .

25

Siebel
Order Management Infrastructure Guide

Chapter 3
Signals

26

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

4 Variable Maps

Variable Maps
This chapter explains how variable maps are used by PSP procedures to handle transactional data. It includes the
following topics:

• About Variable Maps

• Components of Variable Maps

• Supported Source Types for Variables

• About Using Variable Maps

• Variable Map Methods of the Context Service Business Service

About Variable Maps
Siebel order management applications that use the PSP engine—such as for pricing, eligibility, and product
recommendation—require a consistent way of loading, querying, and synchronizing transactional data. For example,
the Quote Item and Order Entry - Line Items business components represent fundamentally the same concept, but can
use dierent eld names to represent the same value. Variable maps meet this requirement.

Variable maps are also used to extend the capabilities of customizable product linked items. A linked item can now refer
to a value in a Context property set constructed by the variable maps mechanism. For more information about linked
items, see Siebel Product Administration Guide .

Variable maps provide a mechanism for mapping transactional data to a common namespace regardless of the data
source. PSP procedures rely on variable maps to map the name of a variable used by a PSP procedure to a eld in a
Siebel business component or to an aribute used in aribute pricing.

The variable map mechanism employs the Context Service business service, which provides a set of APIs for
constructing a property set from the current ordering context and synchronizing changes to that property set back to
the source. You can congure the set of data queried and wrien by a particular transaction.

Note: The variable map APIs work only during an event triggered on a business component derived from
CSSBCOrderMgmtBase, CSSBCPecBase, and their subclasses.

You dene the particular variable map used by a PSP procedure in the Signals Administration views (navigate to the
Administration - Order Management screen, then the Signals view).

Concepts of Variable Maps
A variable is a name-value pair in a property set. A variable map is a denition of how to construct a property set in a
given situation and of which changes to save.

Each variable has one or more variable sources that dene how to retrieve the variable value in a given mode (such
as Quote, Order, or Any). The source type of a variable source can be a business object query, the active business

27

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

component instance, a business service, a prole aribute, a system preference, or a server parameter. A child variable
map is another variable map that is executed for each row retrieved by the current variable map and aached as a child
property set. A Business Service source can also construct a child property set for each row. The following gure shows
example child variable map output, in relation to the parent variable map output.

Variable Map Types
There are three types of variable maps:

• Context. Loads a single row containing shared header-level details (such as Channel, Account Type, User Role).

• Row Set. Loads any iteration of rows (such as order line items or shipments for an order).

• XA. Loads product aributes for a line item.

Working with Variable Maps
You create variable maps using the Administration - Order Management screen, then the Variable Maps views. Here you
dene the variables that are queried and wrien in various situations.

To access the Variable Maps views, navigate to the Administration - Order Management screen, then the Variable Maps
view, and in the Versions list applet, click the Work Space hyperlink. Variable Maps views include the following:

• Variable Maps view. Create new variable maps, update existing variable maps, release a variable map into
production.

• Child Variable Maps view. Dene child variable maps to be executed and aached to the parent. These are
returned as a child property set of each row in the parent property set.

• Modes view. Dene modes for variable maps. Set the mode according to the Mode user property on the
business component invoking the signal that causes the variable map to be executed.

28

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

To congure mappings from business component eld names to the variable map namespace, use the Integration
Object object type in Web Tools. For more information, see About Using ISS Integration Objects with the Variable Map
Mechanism.

Components of Variable Maps
See the following gure for a graphical representation of the interaction of variable map components. The way the
variable map mechanism works follows the following process:

1. An administrator denes a variable map using the Variable Maps views. This denition is stored in the Siebel
database.

2. A user of a Siebel order management application makes a request (for example, by clicking the Reprice buon).
The request triggers a signal, which in turn launches a controller workow.

3. The controller workow invokes the Context Service business service’s GetRowSetData method, passing the
variable map name for the line item row set, as well as the required CPScope (such as the entire customizable
product [CP]) and the required RowScope (such as the currently selected rows).

4. The Context Service business service retrieves the variable map denition (either from the database or from the
cache).

5. The Context Service business service issues the required queries and business service calls to construct a
property set.

For source type Instance, the path specied for the variable is translated into a query against the active
business component using one of the ISS mapping integration objects. For more information, see About Using
ISS Integration Objects with the Variable Map Mechanism.

6. The Context Service business service returns the resultant row set property set to the controller workow.
7. The controller workow invokes a PSP procedure to update the row set (for example, to aach prices).
8. The controller workow invokes the Context Service business service’s SyncRowSetData method passing the

variable map name for the line item row set and the updated row set property set.
9. The Context Service business service writes any updated eld values back to the Siebel database.

The following gure shows how, in the process described in these steps, the various components of the variable maps
mechanism interact.

29

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

About Using ISS Integration Objects with the Variable Map
Mechanism
A schema of a particular entity, an integration object is metadata; it is a generalized representation or model of a
particular set of data. A Siebel integration object is an object stored in the Siebel repository that represents a Siebel
business object. An ISS integration object is a special type of Siebel integration object used exclusively within Siebel
Order Management.

Generally, a Siebel integration object is used by Siebel EAI to transfer data between Siebel objects and external objects.
ISS integration objects, on the other hand, are used to create mappings between business components and their
Uniform Name mappings. In this way, while ISS integration uses the Siebel EAI structure used by a Siebel integration
object—that is, a structure designed for data transfer—its main purpose is dierent from that of Siebel integration
objects.

Using ISS integration objects, you can apply the same uniform names, such as “Line Item”, to dierent business
components (such as Quote Item, Order Item, and so on), because there is no dierence between these business
components as far as the PSP engine is concerned.

For general information about integration objects and how to build them, see Integration Platform Technologies: Siebel
Enterprise Application Integration .

For information about conguring ISS integration objects, see Conguring ISS Integration Objects.

30

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

Conguring ISS Integration Objects
Integration object conguration is used to create uniform eld names for dierent physical business components
(such as Quote Item, Order Item, and so on). When dening variable maps then, you can specify one source path for all
modes.

Note: To avoid errors when trying to retrieve data from business components, it is recommended that you
always dene the component eld names in integration objects, and use the uniform name in the variable
source path for necessary modes only.

At run time, the user property of the business component that raised the signal determines which integration object
to use. For each business component, there are various user properties (such as the property called Instance Uniform
Name EAI Object:Catalog).

To congure ISS integration objects
1. For the business component that raises the signal, set the value of the user property Instance Uniform Name

EAI Object:[BusObj] to the integration object name, for example:

Instance Uniform Name EAI Object:Catalog

In this example, Catalog refers to the business object that the business component is in at run time.
2. From the integration object denition, use the value in Integration Object Component Name as the Instance

Type.

For example, use Header for the Quote business component in the Catalog business object.

Note: For each business object, each business component within it must have a unique Instance type
—for example, no two business components within the Quote business object can be referred to as
Header.

Supported Source Types for Variables
A variable can be derived from a number of sources. The same variable can be derived in dierent ways, depending on
the Mode user property of the business component invoking the signal that causes the variable map to be executed.

For example, the Quote Item business component has Mode set to Quote. Using Mode set to Quote, you retrieve the
Product ID from the [Product ID] eld in the Quote Item business component for the current quote. Using a dierent
seing, Mode set to Conguration, you retrieve the [Product ID] from the [Product ID] value in the Line Items property
set of the product instance currently being congured.

The default seing is Mode = Any.

Note: Variable maps work only when invoked by a signal.

31

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

You dene the driving integration object component for each business component’s mode by navigating to the
Administration - Order Management screen, Variable Maps, then the Modes view. The driving integration object
component for a mode is the component over which the variable map iterates to generate an output property set.

You set the mode using the user property called Mode. Existing modes are: Asset, Quote, Order, Payment, Product,
Agreement, Conguration.

Note: You can congure your own modes. See Creating Variable Maps.

A variable can be derived from the sources listed in the following table.

Source Type Path Example

Business Object

[BOName]/[BCName]/[FieldName] Account/Account/Region

Business Service

[BusSvcName]/[BusSvcMethod] ABC Assets BS/Get
External Assets

Instance

$Current/[IntegrationObjectComponentType]/
[IntegrationObjectComponentField]

$Current/Line Items/
Quantity

Prole Aribute

ProfileAttributeName AnonymousUserZipCode

System

[LoginName], or [LogInId], or
[LogInPassword], or Today

Today

Server Parameter

[ServerParameter] PARAM_PSP_ELIGIBILITY_D
ISPL_MODE

Business Object
The Business Object source type, shown in the Variable Sources list applet in the following gure, is used to query
business components that are not in the current context.

Note: You can also query for joined business components (such as Account and Address).

For more information, see Querying with the Business Object Source Type.

32

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

Business Service
Used with business services (such as Projected Asset Cache), the Business Service source type allows you to invoke
a business service to populate one or more variables, and to populate a child property set of the current row. The
following gure shows the Business Service source type.

Using the Business Service source type, you can populate multiple variables or child variable maps in a single method
invocation. This is possible if the variables are invoking the same business service and method with the same inputs.
This consolidated call to the business service can happen regardless of the number of variables (that is, Property Set,
another one, or a mix of two) needing to be populated.

Note: Make sure the values for the Sequence eld contain appropriate numbers. In the example shown in
the gure, Account Id is an input for the business service. This input uses the value of variable Account Id,
therefore the Sequence value for Account Id must be smaller than the Sequence value for Credit Score.

33

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

For details on how to populate multiple variables or child variable maps in a consolidated call to the business service,
see Using the Business Service Source Type to Populate Variables.

Instance
The Instance source type can be used to refer to both of the following:

• The current UI context when viewing quotes and orders

• The current customizable product instance being congured

Used for Siebel order management business components (such as Order Line Item), the Instance source type, shown
in the Business Component User Properties list applet in the following gure, allows you to query active UI business
components to retrieve variable values. The business component queried can be a regular, external, or virtual business
component.

Used for customizable product instance property sets, the Instance source type retrieves data from the business
component initiating the signal that causes the GetRowSetData method to be called. Data can also be retrieved from
any parent or child business component.

Mapping Integration Objects
For business components, the Instance source type uses mapping of integration objects to resolve the dierent
business component naming and eld naming between Quotes, Orders, Assets, and Agreements. You map integration
objects using Web Tools.

For a customizable product with Instance source type, the instances are loaded by Congurator services and the
structure of these instances is hierarchical with three types: Header, Line Item, and XA. No other types are supported for
a customizable product. The namespace mapping is a simple match between the type specied in the variable source
path and the customizable product Instance type.

For more information about using the Instance source type, see Using the Instance Source Type for the Customizable
Product Instance Property Sets.

The following topics include further information about creating and using variable maps:

• About Variable Maps

• Components of Variable Maps

34

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

• Supported Source Types for Variables

• About Using Variable Maps

• Variable Map Methods of the Context Service Business Service

Note: For variable map information that is specic to pricing, see Siebel Pricing Administration Guide .

About Using Variable Maps
The following topics provide information about how variable maps are used and dened:

• Querying with the Business Object Source Type

• Using the Business Service Source Type to Populate Variables

• Using the Instance Source Type for the Customizable Product Instance Property Sets

• Creating Variable Maps

• Dening the Variable Map Used by a PSP Procedure

• Migrating Variable Maps Between Environments

Querying with the Business Object Source Type
You can query a business component for values by using the Business Object source type.

To query a business component to retrieve variable values
• In the Variable Sources list applet, set the following elds:

Field Value

Source Type

“Business Object”

Path

[Business Object]/[Business Component]/[Field Name]

Search Specication

[Business Component Search Spec]

Sort Specication (Optional)

[Business Component Sort Spec]

The Search Specication can include any previously evaluated variable value in {}. Use the Sequence column to provide
a correct evaluation sequence.

35

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

Using the Business Service Source Type to Populate Variables
The Business Service source type allows you to invoke a business service to populate:

• One or more variables as described in Invoking a Business Service to Populate Variables.

• A child property set of the current row as described in Invoking a Business Service to Populate a Child Property
Set.

Invoking a Business Service to Populate Variables
Use the following procedure to invoke a business service to populate variables.

To invoke a business service to populate variables

1. In the Variable Sources list applet, set the following elds:

Field Value

Source Type

“Business Service”

Path

[BusSvcName]/[BusSvcMethod]

2. In the Variable Source Parameters list applet:

a. Add variable source parameters for each input argument. The variable source parameters can be a literal
string or another variable value.

b. Add variable source parameters for each output argument, and specify which variable to populate.

Invoking a Business Service to Populate a Child Property Set
Use the following procedure to invoke a business service to populate a child property set of the current row.

To invoke a business service to populate a child property set of the current row

1. In the Variable Denitions list applet, set Type (the variable type) to Property Set.
2. In the Variable Sources list applet, set the following elds:

Field Value

Source Type

“Business Service”

Path

[BusSvcName]/[BusSvcMethod]

3. In the Variable Source Parameters list applet:

36

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

a. Add variable source parameters for each input argument. The variable source parameters can be a literal
string or another variable value.

b. Add variable source parameters for each output argument and specify which variable to populate.

Using a Single Invocation to Populate Multiple Variables or Child Variable Maps
Use the following procedure to populate multiple variables or child variable maps using a single invocation.

To populate multiple variables or child variable maps in a single method invocation

• Specify the Source and all the In or Out parameters under a single variable.

It is recommended that other variables have only a denition, no source. This reduces the burden on the
Context Service because a separate call to the business service will be issued if there is a second variable having
the same business service source.

Note: A best practice is to compare the source and source parameters from dierent variables to
determine whether to consolidate. If the values of all these variables can be obtained through a single
call to the business service, combine them and only specify the business service or method as a source
under one variable. Otherwise, the same call will be issued multiple times, giving the same result each
time.

Using the Instance Source Type for the Customizable Product
Instance Property Sets
If you are working with customizable product instance property sets, use the Instance source type. The Instance source
type retrieves data from the business component initiating the signal that causes the GetRowSetData method to be
called. Data can also be retrieved from any parent or child business component.

To dene the data element to be retrieved
• In the Variable Sources list applet, set the Path to:

$Current/[IntegrationObjectComponentType]/[IntegrationObjectComponentField]

Examples:

$Current/Header/Price List Id
$Current/Line Item/Quantity

Uniform component and eld names are dened by integration objects: ISS Quote, ISS Order, ISS Agreement,
and ISS Asset.

Each of these integration objects denes the specic business components and elds that provide data for a
generic value such as Line Item or Quantity. For example, ISS Quote integration component Line Item maps to
the Quote Item business component, whereas ISS Order has the Line Item integration component mapped to
Order Entry – Line Items.

37

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

Note: To expose a custom business component eld in a variable map, you must rst add it to the
corresponding ISS [XXX] integration object.

The ISS integration objects associated with a particular business component are dened by user properties on
the business component, for example: Instance Uniform Name EAI Object: [Business Object].

Note: Make sure that you create a user property for every business object in which the business
component can be exposed.

Creating Variable Maps
You create and modify variable maps in the Variable Maps views of the run-time client. Use the following procedure to
implement a new variable map.

To implement a new variable map
1. Navigate to the Administration - Order Management screen, then the Variable Maps view.
2. In the Variable Maps list applet, create a new record.
3. Give the variable map a name.
4. Lock the variable map by checking the Locked Flag eld.

This locks the object for your user ID.
5. In the Versions list applet, click the Work Space hyperlink to drill down on the variable map version.
6. Click the Modes tab to access the Modes view.
7. In the Modes list applet, dene the variable map modes.
8. Click the Details tab and create variable denitions and variable maps.

a. In the Variable Denitions list applet, you can dene the list of variables in the variable map. These names
are independent of the source.

The In or Out eld denes whether the variable map can update the variable.
b. In the Variable Sources list applet, you can dene the source of the variable for each mode.

9. Dene child variable maps, as necessary.
10. Navigate back to the Variable Maps list applet and click the Release New Version buon to release the variable

map version.
11. Test the variable map in the run-time client by executing a reprice or another PSP procedure.
12. Using Application Deployment Manager (ADM), promote the updated signal denition to the production

environment.

For information about ADM, see Siebel Application Deployment Manager Guide .

Updating an Existing Variable Map
Use the following procedure to update an existing variable map.

To update an existing variable map

1. Navigate to the Administration - Order Management screen, then the Variable Maps view.
2. Select the variable map and lock it by checking the Locked Flag eld.

38

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

This locks the object for your user ID.
3. In the Versions list applet, click the Work Space hyperlink to drill down on the variable map version.
4. Modify the variables as necessary.
5. Navigate back to the Variable Maps list applet and click the Release New Version buon to release the variable

map version.
6. Test the variable map in the run-time client by executing a reprice or another PSP procedure.
7. Using Application Deployment Manager, promote the updated signal denition to the production environment.

For information about ADM, see Siebel Application Deployment Manager Guide .

Conguring a Custom Mode User Property for a Business Component
Use the following procedure to congure a customer Mode user property for the driving business component.

To congure a custom Mode user property for the driving business component

1. On the business component that raises the signal, set the Mode user property.
2. In the Variable Maps, then Modes view, declare the new mode for one or more variable maps.
3. Dene variable sources for the mode.

Behavior of the On Null Property When Dening Variables in a Variable Map
When dening variables in a variable map, note that the On Null property behaves as follows:

• If a path is specied for a variable, then that variable appears in the Row Set with whatever value is retrieved. In
this instance, the On Null property is an empty string.

• If no path is specied for a variable and the On Null property is set to Ignore, then the variable is not included in
the Row Set.

• If no path is specied for a variable, the On Null Property is set to Default, and a default value is specied, then
the variable is included in the Row Set with the default value.

Dening the Variable Map Used by a PSP Procedure
Variable maps are used by the context service to create the property sets that are used by PSP Procedures. You specify
the variable maps used by a PSP procedure in the Parameters list applet of the Administration - Order Management
screen, then the Signals view.

Note: Certain methods of the Context Service business service include variable map arguments for these
denitions. See Variable Map Methods of the Context Service Business Service.

The PSP procedure is independent of the calling context. Most order management signals invoke the PSP Driver
Workow Process (shown in the second gure in this topic), which is a generic controller workow. The controller
workow uses variable maps to construct inputs for the PSP procedure. Those variable maps are dened in the signal
that invokes the controller workow.

Signal parameters dene the scope of line items retrieved using the variable map, and they dene the variable maps
used to retrieve Context and Row Set data. The following gure shows example signal parameters.

39

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

Example of Variable Map Methods in Use
The following gure shows the PSP Driver Workow Process, which is a generic example of a controller workow. PSP
Driver Workow Process uses variable maps to retrieve data that is then synchronized back to the database.

As shown in the previous gure, the PSP Driver Workow Process steps perform as follows:

• Get Context Row Set. Calls the Context Service business service method GetRowSetData to retrieve header-
level information using the Context variable map (Variable Map - Context).

• Get Row Set. Calls the Context Service business service method GetRowSetData to retrieve row-level
information using the Row Set variable map (Variable Map - Row Set) and to scope input arguments.

• Dispatch Service. Calls the sub workow process dened in the calling signal and passes in the input argument.

• Set Pricing Date. Sets pricing date based on whether it is for scenario testing:

◦ Set system time stamp if it is not for scenario testing:

{Context.Effective Pricing Date} = TimeStamp()

◦ Set Active JWS Test DT if it is for scenario testing:

40

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

{Context.Effective Pricing Date} = GetProfileAttr("Active JWS Test DT")

• Sync Row Set. Calls the Context Service business service method SyncRowSetData to write any updates back to
the database (for example, updates to prices).

To dene the variable map used by a PSP procedure
1. Navigate to the Administration - Order Management screen, then the Signals view.
2. In the Signals list applet, select the signal that will invoke the PSP procedure.
3. In the Versions list applet, click the Work Space hyperlink to access the Actions list.
4. In the Actions list applet, enter the name of the controller workow in the Service Name eld.

Note: Most PSP signals invoke the generic PSP Driver Workow Process.

5. In the Parameters list applet, (scroll down, if necessary), enter parameters for the signal, as follows:
◦ Using Scope arguments and values, dene the scope of line items retrieved by the variable map.

◦ Using Variable Map parameters, dene the variable maps used to retrieve Context and Row Set data.

Migrating Variable Maps Between Environments
You can move variable maps between environments (such as from development to test) by using the Application
Deployment Manager (ADM). For information about using ADM, see Siebel Application Deployment Manager Guide .

You can also export a specic version of a variable map using the Export Version applet menu in the Variable Map
Version list applet. To import a variable map, navigate to the Administration - Products screen, then the Joint Workspace
view. This is a joint workspace for all types of versioned objects (signals, variable maps, products, product aributes,
and so on). For more information about import or export, see Siebel Product Administration Guide .

When exported, a variable map and its child variable maps are exported together into an XML le. When imported
through the joint workspace, both parent and child variable maps will be imported and listed in the Joint Workspace
view.

Note: You must go to each of these variable maps separately to release them.

Variable Map Methods of the Context Service Business
Service
The Context Service business service provides the APIs shown in the following table for variable maps.

Method Arguments Description

GetRowSetData

[in] CPCollapseAll: String

By default, if the CPScope requires expansion of
the customizable product to read all products, after

41

Siebel
Order Management Infrastructure Guide

Chapter 4
Variable Maps

Method Arguments Description

GetRowSetData, this customizable product is expanded on
the UI unless this ag is set to be true, in which case the
customizable product is collapsed.

[in] CPScope: String

Component, Master, Whole, Component, and Subcomponents.
This argument denes which parts of the current customizable
product are queried.

[out] PropSet: Hierarchy

A row set property set containing the query results.

[in] RowScope: String

Current, Selected, or All. Denes which rows the Context
Service service will read data from.

[in] VariableMap: String

The variable map dening objects to query.

[in] RowSet: Hierarchy

The updated row set property set.

SyncRowSetData

[in] VariableMap: String

The variable map dening objects to update.

42

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

5 PSP Engine

PSP Engine
This chapter describes the Product Selection and Pricing (PSP) engine and explains the how-to aspects of working with
PSP. It includes the following topics:

• About the Product Selection and Pricing Engine

• Components of the PSP Engine

• PSP Driver Workow

• Conditions and Actions for PSP Procedures

• About Temporary Variables

• Row Set Transformation Toolkit Methods

• Conguring PSP Procedures

• Creating a Custom PSP Application

• Calling a PSP Procedure from an External Application

• About Logging of PSP

• About Troubleshooting of PSP

• About Tuning Performance of PSP

About the Product Selection and Pricing Engine
The Product Selection and Pricing (PSP) engine is a generalized procedural logic engine for transforming an input row
set into an output row set. PSP is an extension of Siebel Workow. A PSP procedure is a workow process that includes a
Business Service step employing methods of the Row Set Transformation Toolkit business service.

A PSP procedure transforms a set of input rows into a set of output rows by executing matrix lookups, conditional logic,
and external function calls. In this release, the functions of pricing, eligibility (product, aribute, and promotion), and
product recommendation use the PSP engine.

For example, Siebel Pricer uses PSP procedures to apply all of the dierent types of discounts that are available with a
particular product. Because these discounts are based on a PSP procedure rather than on C++ code, you can:

• Change the order in which discounts are applied.

• Customize the calculations used by discounts.

• Extend the precongured pricing PSP procedure to calculate additional costs or prices and margin.

Advantages of PSP Usage
The following are some of the benets of using PSP procedures as a basis for Siebel order management tasks:

• Highly congurable procedural logic eliminates or reduces the need for custom script.

43

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

• PSP methods and infrastructure are optimized for performance (for example, with set-based processing,
caching, and SQL query consolidation).

• The PSP framework can be extended for use with external services and functions.

• Integrators can learn this one framework and use it for pricing, eligibility, and so on.

PSP Concepts
A PSP procedure is the sequence of steps involved in transforming an input row set into an output row set. Examples
of steps include a call to a business service, an instance of a transform, a conditional branch, a subprocedure call, or a
terminator (an end step). A PSP procedure is any workow that uses methods from the Row Set Transformation Toolkit
business service.

A controller workow is the invocation mechanism for the PSP engine. A PSP procedure is always called by a controller
workow. A controller workow retrieves contextual information, invokes a generic PSP procedure, and then processes
the results. It insulates the underlying PSP logic (such as a pricing procedure) from the calling context (such as repricing
a quote or pricing an XML order passed in through a Web service). For more details on controller workows, see
Controller Workow.

A row set is a property set that conforms to the structure dened in About Row Sets. It is used to represent the set of
data upon which the PSP engine operates (such as data for quote line items).

The Row Set Transformation Toolkit is a business service that exposes a set of methods called transforms. Transform
methods are called by steps within a PSP procedure. A transform accepts one or more input row sets, performs a series
of operations (such as database queries), and then returns an updated version of the row sets as output. Special step
input arguments called actions dene the processing performed by a particular step. An action can perform a wide
variety of updates to the input row set (such as seing the Net Price eld value). Most transforms have a dened set of
transform conditions that occur while the transform is executing (for example, the Simple Look-Up transform queries
the database and then raises one or more of the following conditions: On First Match, On Match, On Last Match, On No
Match). The condition raised depends on the result of the SQL query. Actions are aached to these conditions.

How PSP Procedures Are Built
PSP procedures are created in the same way that standard workows are created, in the Business Process Designer. The
Process Designer is a user interface to help you arrange process objects. You access it from the Workow Process object
in Siebel Tools. For more information about building workows, see Siebel Business Process Framework: Workow Guide
.

Like a standard workow, a PSP procedure has a start step and an end step. A PSP procedure diers from a standard
workow in that the steps of a standard workow perform actions, while the steps of a PSP procedure transform row
sets in some way, as shown in the following gure. In the following gure, a set of product information that includes
data on product IDs, names, and quantities is transformed into a new set of information that includes an additional
product as well as pricing information for each product.

44

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

The PSP engine transforms row sets using the methods in the Row Set Transformation Toolkit business service. For
more information about these methods, see Row Set Transformation Toolkit Methods.

About Row Sets
A type of property set, a row set is a memory structure used to pass data between business services. A row set is a
group of rows where each row contains multiple name-value pairs (paired values). A row within a row set can have
multiple child property sets with name-value pairs; the hierarchy goes no deeper than these child property sets.

The following gure provides a graphical example of a row set. In this gure, the second layer of boxes labeled "Row 1,"
"Row 2," and "Row 3" are the rows within this example row set. Each of these rows 1 through 3 have name-value pairs for
data labeled "ID," "Price List ID," "Product ID," "NRC Price," and "MRC Price." Additionally, each of these rows 1 through 3
contains child property sets, called "NRC Price Waterfall Row Set" and "MRC Price Waterfall Row Set." The child property
sets contain their own rows with name-value pairs, for a deeper level of pricing data.

45

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

For more information about Siebel property sets, see Integration Platform Technologies: Siebel Enterprise Application
Integration .

Components of the PSP Engine
The PSP engine is comprised of the pieces shown in the following gure and described in the following topics:

• Controller Workow

• Variable Maps

• PSP Procedures

46

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

• PSP, Siebel Workow, and Siebel Tools

• Row Set Transformation Toolkit Business Service

• Custom Business Services

Controller Workow
A controller workow invokes the PSP engine every time a PSP procedure is called. The controller workow insulates
the PSP procedure from the calling context. The various calling contexts, such as Siebel Congurator, a product picklist,
or a Web service, each have separate controller workows. The PSP Driver Workow Process is an example of a prebuilt
controller workow. You can congure your own controller workows to meet your organization’s particular needs.

Note: PSP Driver Workow Process is the generic controller workow. For more information, see PSP Driver
Workow.

While the PSP procedure transforms row sets in memory, the controller workow passes those row sets to the PSP
procedure and then determines what to do with the PSP procedure’s output. The typical ow is:

• An end user clicks a buon or makes some other choice in the interface.

• This end-user action triggers a signal which executes the controller workow.

• The controller workow establishes the inputs for the PSP procedure by nding data and constructing this data
into row sets. The controller workow can use the variable maps mechanism to construct the row sets.

• The controller workow calls the PSP procedure and passes the inputs to it.

• The PSP procedure transforms the inputs and sends the transformed row set back to the controller workow.

• The controller workow determines what to do with these transformed rows. For example, it might display the
transformed rows on the screen or write them to the database.

The PSP procedure’s only function is to transform row sets in memory. The controller workow executes any other
actions.

The following gure shows an example of a controller workow.

47

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

This controller workow and its called PSP procedure operate as follows:

1. Get Shared Context Variables. This rst step (after the Start step) obtains the needed data by using the variable
maps mechanism (the Context Service business service) to populate a property set containing context variables
shared by all rows (such as Channel, Account Type, or User Role).

2. Get Selected Line Items as Row Set. This step instructs the Context Service business service to populate a
property set containing the input row set.

3. Price. This Subprocess step calls the Price PSP procedure, passing the context variables and the input row set.
The Price PSP procedure transforms the row set and passes the values back to the controller workow.

4. Update Line Items. This step, which also uses variable maps, updates the line items with the values from the
transformed row set. That is, it saves the newly calculated prices.

Variable Maps
Variable maps, using the Context Service business service, help the controller workow to construct inputs to PSP
procedures and process the output of PSP procedures. The Context Service business service optimizes the querying
and updating of row set data by reading data directly from the active business component, thereby eliminating
unnecessary SQL queries. Context Service provides a row-level delta that determines which line items to update.
Batched SQL eliminates unnecessary network round-trips.

The Context Service business service:

• Constructs the input row sets. Context Service converts business component data, XML, or property set data to
a common format. It translates from various name spaces to the PSP name space. It denes the subset of elds
required by the PSP procedure.

• Writes the output row set back to its source. Context Service converts from the common format back to the
business component data, XML, or property set data. It translates from the PSP name space to the target name
space.

Note: Most PSP procedures use the Context Service business service, but it is not required for all PSP
procedures. For example, a Web service could invoke Siebel Pricer with a property set directly generated from
the input XML document by XSLT, without using the Context Service business service.

For more information about variable maps and the Context Service business service, see Variable Maps.

PSP Procedures
A PSP procedure is any workow that uses methods from the Row Set Transformation Toolkit business service. These
methods of the Row Set Transformation Toolkit business service are called PSP transforms. A transform, such as the
Simple Look-Up method, processes an input row set. There are a number of transforms that process input row sets in
dierent ways. For example, the Simple Look-Up transform uses a simple search expression to look up each input row in
a business component, while the Split transform takes an input row set, evaluates a condition for each of its rows, then
splits the input row set into two output row sets.

48

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Note: In addition to invoking Row Set Transformation Toolkit business service methods, a PSP procedure can
invoke methods from custom business services.

Each step in a PSP procedure is a parameterized call to a transform method. A PSP procedure can call another PSP
procedure as a subprocess, to provide for modularization of logic.

The Siebel Business Process Designer interface is used to create both the PSP procedure and the controller workow
that invokes it. Like any workow process, a PSP procedure can make use of any standard Siebel Workow feature.

The following gure shows an example of a PSP procedure used in pricing. Each step is a parameterized call to a
method in the Row Set Transformation Toolkit.

Notice that one of the steps splits the input row set into multiple temporary subsets. Later steps perform logic on these
subsets. The last step merges these subsets, so they form a single row set again.

PSP, Siebel Workow, and Siebel Tools
Siebel Workow—the application you use to dene, manage, and enforce your organization’s business processes
by creating workow processes—is also the application you use to create, edit, and execute PSP procedures. Siebel
Workow’s Process Designer resides in Siebel Tools.

Note: Siebel Workow is also known as Siebel Business Process Designer, which is the conguration interface
and the administrative interface for Siebel Workow.

You congure PSP procedures and their controller workows from the Workow Process object, a top-level (highest
level) object in the Object Explorer within Siebel Tools. In this way, you use the Process Designer to enter transforms for
PSP procedure steps as input arguments.

49

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

For more information about Siebel Workow, see Siebel Business Process Framework: Workow Guide . For more
information about conguring PSP procedures, see Conguring PSP Procedures.

Row Set Transformation Toolkit Business Service
The Row Set Transformation Toolkit is a business service that provides the following methods (also known as
transforms) for manipulating and transforming row sets:

• Aggregate Method. Calculate the minimum, maximum, average, sum, or count of sub-groups of the row set.

• Conditional Action Method. Evaluate a Boolean expression for each row and perform actions based on the
result.

• Dynamic Look-Up Method. Look up each input row in a business component using a dynamic search
expression (example: aribute adjustment).

• Dynamic Subprocedure Method. Send each input row to the specied subprocedure for individual processing.
Each row can be associated with a dierent subprocedure.

• Hierarchical Look-Up Method. Look up the closest, best, or accumulated value in an adjustment table for each
row by considering each parent in a hierarchy (example: parent company discount).

• Hierarchical Method. Process a hierarchy of input rows from start to end or end to start (example: customizable
product price roll-up).

• Merge Method. Combine two or more row sets into a single row set.

• Query Method. Query a business component and generate a row set.

• Row Set Look-Up Method. Look up each input row in the specied row set (example: check compatibility
between a product and the list of products currently owned by the customer).

• Rule Set Look-Up Method. Look up the rules for each input rule set and test the rules against the row set.
Perform actions if the rule set passes or fails (example: identify applicable bundles or promotions).

• Simple Look-Up Method. Look up each input row in a business component using a simple search expression
(example: list price, exclusive eligibility).

• Split Method. Split an input row set into two output row sets by evaluating a condition for each row.

For each of these methods, you specify a condition and actions, as described in Conditions and Actions for PSP
Procedures. All the methods support the same action syntax and capabilities. Each method exposes a unique set of
conditions and variables.

For details on each of these methods, see Row Set Transformation Toolkit Methods.

Custom Business Services
In addition to calling Row Set Transformation Toolkit business service methods, PSP procedures can call custom
methods that you write using Siebel VB or Siebel eScript. For more information, see Siebel VB Language Reference and
Siebel eScript Language Reference .

50

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

PSP Driver Workow
A controller workow is the invocation mechanism for each PSP procedure. The workow called PSP Driver Workow
Process is the default controller workow. When a signal calls the controlling workow for a process, it passes the
names of the PSP procedures to the PSP Driver Workow.

Note: PSP Driver Workow is the default controller workow, but you can congure your own controller
workow to replace the default if you nd that modications are necessary for your organization’s
requirements. You congure a controller workow in the same way that you congure a standard workow
process. You specify the arguments of a controller workow in the signal denition, so for your custom
controller workow, navigate to the Administration - Order Management screen, then the Signals view in order
to change this denition. For information about conguring workow processes, see Siebel Business Process
Framework: Workow Guide .

Arguments for the default PSP Driver Workow are shown in the following gure. PSP Driver Workow is set as the
controller workow for the signal CalculatePriceAll in the Service Name eld of the Actions tab.

The PSP Driver Workow acts as the controller workow for the pricing and eligibility PSP procedures. It calls the
Context Service to construct a property set called Row Set containing the selected rows from the source object (Quote,
Order, Agreement, or Customizable Product). It also calls the Context Service to construct a property set called Context
that contains header-level information shared by all rows (for example: Account Type, Credit Score). It then invokes
the PSP procedure specied in its input arguments. The PSP procedure updates and returns a new version of Row Set.
Finally, the controller workow instructs the Context Service to save any changes in Row Set back to the source object.

51

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

The PSP Driver Workow, shown in the following gure, does the following:

1. Asks the Context Service to generate two property sets (row sets): the shared Context and the Row Set
containing individual line items. These are representations of the Line Item and Header business components
using variable maps. For more information about variable maps, see Variable Maps.

2. Dispatches to the workow indicated by the process property PSPWorkowName. For example, in the event the
user selected RepriceAll, this step dispatches to the Pricing Procedure - Default workow to perform all pricing
operations.

3. Synchronizes the updated PSP information back to the input data source (Quote, Order, Agreement, or
Customizable Product). The synchronization can be skipped by seing the Sync process property.

52

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

The following table provides a list of the steps in the PSP Driver Workow Process, showing also the business service
and method called by each step.

Step Name Type Business Service Method Description

Get Context Row Set

Business
Service

Context Service

GetRowSetData

Generate the Context
Property Set which represents
the Header Buscomp.

Get Row Set

Business
Service

Context Service

GetRowSetData

Generate the Row Set
Property Set which represents
the Line Item Buscomp.

Set Pricing Date

Business
Service

Context Service

GetRowSetData

Set pricing date.

Dispatch Service

Business
Service

ISS PSP Dispatch Service

CallPSPWorkow

Dynamically dispatch to a
sub-process.

Need to Sync?

Decision
Point

None

None

A user decision point of
whether synchronization is
needed.

Sync Row Set

Business
Service

Context Service

SyncRowSetData

Synchronizes information
back to data sources using
Context Service.

Conditions and Actions for PSP Procedures
Steps of PSP procedures can call Row Set Transformation Toolkit business service methods. Each Row Set
Transformation Toolkit method (transform) performs a parameterized set of actions based on conditions that occur as
the method executes.

53

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Conditions and actions for each step are entered as input arguments in Siebel Workow’s Process Designer in Siebel
Tools, as shown in an example in the following gure:

• In the Input Argument eld, select the condition name.

• In the Value eld, enter the processing to perform if the condition is true.

• You can specify multiple actions for one condition by using a dierent index number for the condition name. In
the following table example, there are multiple actions for the On True 1 condition, with the condition name On
True 1_1, On True 1_2, and On True 1_3.

• Some Row Set Transformation Toolkit business service methods can include one or more Boolean conditions
to which the other conditions refer. In the following gure example, Condition 1 is a Boolean condition which
checks the values in the Eective From and Eective To elds. The conditions On True 1_1, On True 1_2, and On
True 1_3 are true if this Boolean condition is true.

• Actions are executed in the sequence specied by the index on the name. For example, the action for On True
1_1 executes before the action for On True 1_2.

PSP-Supported Action Expression Constructs
The following table denes the types of action expressions supported by PSP.

Action Examples

Set a property of a row to the value of an
expression

{Row.Eligibility Status} =
LookupValue('ELIGIBILITY_STATUS','No')

{Parent.Roll-Up Amount} = ToNumber({Parent.Roll-Up
Amount}) + ToNumber({Row.Net Price})

Remove a property from a row

{Row} -= {Row.Temp Roll-Up Price}

Move a row from one row set to another

{Output Row Set} += {Row}
{Row Set} += {Output}

Copy a row to another row set

{Output Row Set} += Copy({Row})

Construct a new row and aach it as a
child to the specied row set or row

{Row}.{Waterfall} += New(‘Waterfall’, Text = ‘Hello’, Value
= 10)
{Row Set} += New(‘Row’, Text = {Match.Text})

Delete the current row from a row set

{Row Set} -= {Row}
{Output Row Set} -= {Output}

54

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

PSP-Specic Functions Used in Action Expressions
Action expressions support the full Siebel Query Language syntax including functions such as LookupValue, IfNull, IIF,
and InvokeServiceMethod. For more information about Siebel Query Language, see Siebel Tools Online Help .

In addition to Siebel Query Language syntax functions, action expressions can include the PSP-specic functions shown
in the following table.

Function Description

ToNumber({Row.Qty}) Convert the specied property value to a number.

All values are stored as a string in a property set.

ToDate({Row.Effective Start
Date})

Convert the specied property value to a date.

All values are stored as a string in a property set.

ToCurrency({Row.Net Price},
 {Row.Currency Code})

Convert the specied property to a currency.

All values are stored as a string in a property set.

AdjustPrice({Row.Net Price},
 {Row.Currency Code},
 {Match.Adjustment Type},
 {Match.Adjustment Amount},
 {Match.Currency Code},
 {Match.Exchange Date})

Apply the specied pricing adjustment. This function automatically converts the currency of monetary
adjustments to match the currency of the line item.

LookUpMessage('Pricer Waterfall
- Selected Contract Adjustment',
[Account] = {Row.Temp Contract
Account})

Retrieve substituted, translated text from the UMS business service. Payload variables are specied as
name-value pairs after the message type.

For more information about the Unied Messaging framework, see Unied Messaging For details on
using the UMS business service in a PSP procedure, see Using Unied Messaging with the PSP Engine.

GetXA({Row}, ‘Color’) Get an aribute value for a row.

The GetXA method has two dierent signatures:

1. GetXA({Row},<Aribute Name>)
2. GetXA({Row}, "Name", <Aribute Name>, "LICValue")

For more information about the second signature, see Using the Four-Parameter GetXA Signature.

Sum({Row Set}, ‘Extended Net
Price’)

Sum the value of a eld for all children of a property set.

Avg({Row}.{Shipments}, ‘Cost’) Calculate the average value of a eld for all children of a property set.

Min({Row Set}, ‘Score’) Get the minimum value of a eld for all children of a property set.

Max({Row Set}, ‘Score’) Get the maximum value of a eld for all children of a property set.

55

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Function Description

Count({Children}) Count the children of a property set.

Round({Row.Price},
 {Context.Precision})

Round a number to the specied decimal places.

Using the Four-Parameter GetXA Signature
Use the four-parameter GetXA signature if the aribute that you want to obtain is of type integer, otherwise errors can
result in calculations especially where numerous digits are involved.

To use the four-parameter GetXA signature in a workow, you must add an additional step to retrieve LICValues for the
aributes as described in the following procedure.

To use the four-parameter GetXA signature in a workow

1. Add an additional step to retrieve LICValues for the aributes as follows:

a. In the workow editor, create a new "Business Service" before executing the GetXA step.
b. Set the Business Service Name to "Pricing Manager" and Method to "PopulateArLICValue"
c. Set the following input parameter:

Input Argument Type Property Name

Row Set

Process Property

Row Set

d. Set the following output parameter:

Property Name Type Output Argument

Row Set

Output Argument

Row Set

2. Use the following four-parameter GetXA signature:

 GetXA({Row}, "Name", <Attribute Name>, "LICValue")

for example, as follows:

{Row.Temp Attr} = ToNumber(GetXA({Row},"Name","Attribute Name","LICValue"))

56

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

LookUpMessage API
The Unied Messaging framework’s UMS business service processes all translations using the LookUpMessage API in a
PSP action script. For example, for a pricing waterfall, it might use the following script:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage({Row.Temp
List Price Message}, [Price List] = {Match.Price List}), [Currency Code] =
{Row.Currency Code}, [Price] = {Row.List Price})

For details on using the UMS business service in a PSP procedure, see Using Unied Messaging with the PSP Engine.

Row Set Variables Used in Action Expressions
Action expressions operate on the row set variables shown in the following table.

Variable Description

{Row Set}

The input row set for the step (specied as an input argument).

{Context}

The input property set of variables shared by all rows (specied as an input argument).

{Context} acts as a set of default values for every {Row}. If {Row.Value} is not specied, then PSP
automatically returns {Context.Value}. This also works for {Parent.Value} in the Hierarchical transform.
If no value is found in {Row} or {Context}, then an error is raised.

{Output Row Set}

The optional output row set for the step. Most steps allow rows to be updated and wrien to both {Row
Set} and {Output Row Set}.

{Row}

The {Row Set} row currently being processed by the transform.

{Output}

The last row added to the {Output Row Set} property set.

{Parent}

The parent row of {Row}. (Hierarchical transform only.)

{Children}

A row set containing the child rows of {Row}. (Hierarchical transform only.)

{Match}

A property set containing name-value pairs from a joined record in a business component or other row
set. (Look-Up transforms only.)

{Property Set.Name}

The value of property “Name” in the property set. (Examples: {Row.Net Price} or {Match.Discount %})

{Property Set}.{Type}

The child row set of “Property Set” of type “Type”. (Example: {Row}.{Net Price Waterfall})

57

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Conditions and Action Variables Vary by Transform
All Row Set Transformation Toolkit business service methods (transforms) support the same action syntax and
capabilities. However, each method exposes a unique set of conditions and variables. For example:

• The Simple Look-Up transform joins each input row to a business component. It exposes On First Match, On
Match, On Last Match, and On No Match conditions.
Actions can reference:

◦ Any eld in the input row (for example, {Row.Product Id}), or

◦ The joined business component (for example, {Match. List Price}).

◦ The Hierarchical transform sorts the input row set into a series of tree structures and then navigates each
tree from start to end or end to start. It exposes On Leaf Row, On Row, On Parent Row, and On Top Row
conditions. Actions can reference:

- The current row (example: {Row.Roll-Up Price})
- Its immediate parent row (example: {Parent.Price})
- Its child rows (example: {Children.Qty}).

For more information about the conditions and actions for each method, see Row Set Transformation Toolkit Methods.

About Temporary Variables
You can create temporary variables simply by using a name that is not dened in the Variable Maps.

A temporary variable persists for the life of the property set unless you explicitly delete it using a {Row} -= {Row.Temp
Variable} action. In general, there is no need to delete temporary variables, because they create lile overhead in having
a few temp variables.

It is recommended that you use a naming convention for temporary variables, such as beginning each one with Temp
(for example, Temp Roll Up Price), to make sure that they do not conict with the names of other variables.

Note: Variable names are case sensitive. For example, if you try to refer to the {Row.Net Price} variable and
you mistakenly use {Row.NEt Price}, the application will not recognize the variable.

Row Set Transformation Toolkit Methods
PSP procedures use the methods in the Row Set Transformation Toolkit to manipulate and transform row sets. The Row
Set Transformation Toolkit includes the following methods:

• Aggregate Method

• Conditional Action Method

• Dynamic Look-Up Method

58

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

• Dynamic Subprocedure Method

• Hierarchical Look-Up Method

• Hierarchical Method

• Merge Method

• Query Method

• Row Set Look-Up Method

• Rule Set Look-Up Method

• Simple Look-Up Method

• Split Method

Aggregate Method
The Aggregate method calculates the sum, average, minimum, maximum, or count of subgroups of the input row set.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Output Row Set is always created and contains the aggregation results. Each row contains the Group
By elds plus the Aggregate Fields (example: Price List ID, Product ID, Qty). For the Count aggregate
type, the output row contains the Group By elds plus a eld called Count.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Aggregate Type

Sum, Avg, Min, Max, or Count.

Aggregate Field

The eld to aggregate (example: Qty). Required for all types except Count. Multiple elds can be
aggregated by specifying a comma-separated list of eld names.

Group By

Optional. A comma-separated list of row eld names. Denes the groups of aggregates. (Example:
Price List ID, Product ID).

Example
The following gure shows an example of arguments for a PSP procedure step named Sum Product Quantity, which
calls the Aggregate method.

59

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Conditional Action Method
The Conditional Action method evaluates one or more Boolean expression for each row in the row set and performs
actions on the row based on whether the conditions are true.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Optional. The property set used for output.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Condition [1..10]

Optional. Boolean expressions that must be satised to initiate corresponding actions. Executed like an
If…Else If…Else If…Else statement.

On True [1..10]_[1..10]

Actions to perform if the corresponding condition is true.

On Default [1..10]

Actions to perform if none of the conditions is true.

Example
The following gure shows an example of arguments for a PSP procedure step named Keep Price, which calls the
Conditional Action method.

60

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Dynamic Look-Up Method
The Dynamic Look-Up method looks up each input row in a dynamic matrix using a dynamic search expression. For
example, it could be used for aribute adjustments.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Optional. The property set used for output.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Dynamic Matrix Name

The name of the dynamic matrix to query.

Cache Enabled

Optional. Whether to cache query results. Y or N. The default is N.

On First Match [1..20]

Actions to perform on the rst query result for each input row.

On Match [1..20]

Actions to perform on every query result for each input row.

On Last Match [1..20]

Actions to perform on the last query result for each input row.

On No Match [1..20]

Actions to perform if there are no query results for an input row.

Example
The following gure shows an example of arguments for a PSP procedure step named Matrix Adjustment, which uses
the Dynamic Look-Up method.

61

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Dynamic Subprocedure Method
The Dynamic Subprocedure method sends each input row to the specied subprocedure for individual processing. Each
row can be associated with a dierent subprocedure.

Note: Rows are grouped together into an input row set and passed to each subprocedure in a single
invocation.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Subprocedure Expression

Denes the procedure to execute for the row.

[Input Arguments]

Any other input arguments to be passed to the subprocedures.

Example
The following gure shows an example of arguments for a PSP procedure step named Execute Line Specic Pricing.

Hierarchical Look-Up Method
The Hierarchical Look-Up method looks up the closest, best, or accumulated value in an adjustment table for each row
by considering each parent in a hierarchy. For example, it could be used to give discounts to companies based on their
parent-company discounts.

62

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Optional. The property set used for output.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Hierarchy Business Object

The business object to query to retrieve the hierarchy (example: Account).

Hierarchy Business Component

The business component to query to retrieve the hierarchy (example: Account).

Row ID Field

The hierarchical ID eld in the input row (example: “Account Id”.

HBC ID Field

The ID eld of the hierarchy business component (example: “Id”).

HBC Parent Field

The parent ID eld in the hierarchy business component (example: “Parent Account Id”).

HBC Visibility Mode

Optional. The visibility mode of the hierarchy business component query.

HBC Search Specication

Optional. An additional search specication that is applied to the hierarchy query.

Business Object

The business object to query for matching records (example: Agreement).

Business Component

The business component to query for matching records (example: Agreement Item).

Search Specication

A search expression comprised of business component elds, literals, and variable values from
{Context} and {Row}. For example:

[Product Id] = {Row.Product Id} AND [Effective From] <=
Today() AND ([Effective To] IS NULL OR [Effective To]
>= Today())

In Memory Search Specication

Optional. Additional terms that are ANDed with the Search Specication. The In Memory Search
Specication is executed in memory. This can be used only if Cache Enabled is Y.

Cache Search Specication

Optional. Additional terms that dene the key values for the Level 1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see About PSP Cache Performance Statistics.

Sort Specication Optional. A comma-separated list of business component elds used to sort the query result.

63

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Input Argument Description

Cache Enabled

Optional. Species whether to cache query results. Y or N. The default is N.

BC ID Field

The hierarchy object ID eld on the query business component (example: Account Id).

On First Match [1..20]

Actions to perform on the rst query result for each input row.

On Match [1..20]

Actions to perform on every query result for each input row.

On Last Match [1..20]

Actions to perform on the last query result for each input row.

On No Match [1..20]

Actions to perform if there are no query results for an input row.

Implementing Aggregate Functions
The arguments for the Hierarchical Look-Up method are used with the aggregate functions shown in the following
table. See the following table for further description.

Aggregate Function Approach

Closest

On First Match condition, set the output row value to a match record value.

Minimum

On Match condition, set the output row value to the value of an expression:

{Row.Value} = IIF({Match.Value} < {Row.Value},
{Match.Value}, {Row.Value})

Maximum

On Match condition, set the output row value to the value of an expression:

{Row.Value} = IIF({Match.Value} > {Row.Value},
{Match.Value}, {Row.Value})

Accumulated

On Match condition, set the output row value to the value of an expression:

{Row.Value} = {Row.Value} + {Match.Value}

Note: This can be adjusted to support compounding adjustments.

Example
The following gure shows an example of arguments for a PSP procedure step named Hierarchical Contract
Adjustment, which uses the Hierarchical Look-Up method.

64

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Hierarchical Method
The Hierarchical method processes a hierarchy of input rows from start to end or end to start. For example, it could be
used for a customizable product price roll-up.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Optional. The property set used for output.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Row Id Field

The ID eld in {Row} (example: “Id”).

Parent Field

The name of the parent ID eld that denes the hierarchy in the input row set.

Direction

Up or Down. Indicates the direction of traversal of the tree.

On Top Row [1..20]

Actions to perform on the rst row in each tree.

On Row [1..20]

Actions to perform on every row.

On Parent Row [1..20]

Actions to perform on every row that has children beneath it in a tree.

On Leaf Row [1..20]

Actions to perform on rows that have no children.

65

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Example
The following gure shows an example of arguments for a PSP procedure step named Customizable Product Roll-Up,
which uses the Hierarchical method.

Merge Method
The Merge method combines two or more row sets into a single row set.

Arguments

Input Argument Description

Row Set

The target row set into which all other row sets will be merged.

Row Set [1..20]

The row sets to merge.

Example
The following gure shows an example of arguments for a PSP procedure step named Merge Ineligible, which uses the
Merge method.

Query Method
The Query method queries a business component and generates a row set.

66

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Output Row Set

The property set used for output.

Business Object

The business object to query.

Business Component

The business component to query.

Search Specication

A search expression comprised of business component elds, literals, and variable values from
{Context}. For example:

[Account Id] = {Context.Account Id}

In Memory Search Specication

Optional. Additional terms that are ANDed with the Search Specication. The In Memory Search
Specication is executed in memory. This can be used only if Cache Enabled is Y.

Cache Search Specication

Optional. Additional terms that dene the key values for the Level 1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see Logging of Performance.

Process Condition

A Boolean condition that is evaluated to determine whether to process the query.

Sort Specication

Optional. A comma-separated list of business component elds used to sort the query result.

Cache Enabled

Optional. Species whether to cache query results. Y or N. the default is N.

On First Match [1..20]

Actions to perform on the rst query result.

On Match [1..20]

Actions to perform on every query result.

On Last Match [1..20]

Actions to perform on the last query result.

On No Match [1..20]

Actions to perform if there are no query results.

Example
The following gure shows an example of arguments for a PSP procedure step named Get Account Address, which uses
the Query method.

67

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Row Set Look-Up Method
The Row Set Look-Up method looks up each input row in another row set using a specied search expression. For
example, it could be used to check for compatibility.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Optional. The property set used for output.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Match Row Set

The row set that will be matched with the input row set.

Search Specication

A search expression comprised of literals and variable values from {Context}, {Row}, and {Match}. For
example:

{Row.Product Id} = {Match.Product Id}

On First Match [1..20]

Actions to perform on the rst match for each input row.

On Match [1..20]

Actions to perform on every match for each input row.

On Last Match [1..20]

Actions to perform on the last match for each input row.

On No Match [1..20]

Actions to perform if there are no matches for an input row.

Example
The following gure shows an example of arguments for a PSP procedure step named Flag Incompatible Rows, which
uses the Row Set Look-Up method.

68

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Rule Set Look-Up Method
The Rule Set Look-Up method looks up the rules for each input rule set and tests the rules against the row set. Then
it performs actions if the rule set passes or fails. For example, it could be used for identifying applicable bundles or
promotions.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Optional. The property set used for output.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Business Object

The business object to query to retrieve the rules.

Business Component

The business component to query to retrieve the rules.

Search Specication

A search expression comprised of business component elds, literals, and variable values from
{Context} and {Row}. For example:

[Required Flag] = 'Y'

In Memory Search Specication

Optional. Additional terms that are ANDed with the Search Specication. The In Memory Search
Specication is executed in memory. This can be used only if Cache Enabled is Y.

Cache Search Specication

Optional. Additional terms that dene the key values for the Level 1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see Logging of Performance.

Sort Specication

Optional. A comma-separated list of business component elds used to sort the query result.

69

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Input Argument Description

Cache Enabled

Optional. Species whether to cache query results. Y or N. The default is N.

Rule Set Field

The eld in the business component that groups the rules into a rule set (example: Promotion Id,
 Bundle Id).

Row Join Field

The eld in the {Row} that is joined to a matching rule (example: Product Id). This transform tests all
rows that join to see if the rule expression is satised.

Rule Join Field

The eld in the rule business component that is joined to a matching {Row} (example: Product Id).

Rule Expression

Optional. A Boolean expression that denes whether a rule is satised by a row; for example:

"{Match.Min Qty} = 0)

OR

{Match.Min Qty} <= {Row.Qty}")

Pass Only If All Rules Match

Y or N. This indicates whether to execute the On Pass … conditions only if all rules in a rule set pass, or
whether to execute those conditions for any rule that is satised.

Row Set Sort Specication

Optional. A comma-separated list of {Row} eld names that determine the sequence in which rows in
{Row Set} are processed as they are compared with the rules. This transform is used to make sure that
the highest value item is given away in a buy-one-get-one-free scenario. This transform is required for
backward compatibility.

Rule Sets

A property set containing a list of rule sets to test. Each child property set can contain the following
elds:

• [Rule Set Sequence Id] (optional)

• [Sequence] (optional)

• A value for the "Rule Set Field" (example: [Bundle Id])

• [Next Sequence on Fail] (optional)

For example, the list of promotions that requires integrity checking or the list of bundles associated
with the current price list.

If the [Next Sequence on Pass] eld is populated, then the Rule Sets transform skips to that value of
[Sequence] if the current rule set passes.

If the [Next Sequence on Fail] eld is populated, then the transform skips to that value of [Sequence] if
the current rule set fails.

Note: There may be multiple sequences of rule sets in the Rule Sets property set. Individual
rule-set sequences are identied by the optional [Rule Set Sequence Id] eld.

Aributes of the rule set being evaluated are exposed to action syntax as {Rule Set.Value}.

On Pass First Match

Occurs for the rst row in the row set that matches a rule in a rule set for which the evaluation criteria
are satised.

70

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Input Argument Description

For 'On Pass … [Rule]' conditions, {Row} and {Match} variables are available to actions.

On Pass Match

Occurs for every row in the row set that matches a rule in a rule set for which the evaluation criteria are
satised.

For 'On Pass … [Rule]' conditions, {Row} and {Match} variables are available to actions.

On Pass Last Match

Occurs for the last row in the row set that matches a rule in a rule set for which the evaluation criteria
are satised.

For 'On Pass … [Rule]' conditions, {Row} and {Match} variables are available to actions.

On Fail First Rule

Occurs for the rst rule not satised in a failed rule set.

Note: For On Fail … [Rule] conditions, only the {Match} variable is available to actions.

On Fail Rule

Occurs for each rule that was not satised in a failed rule set.

On Fail Last Rule

Occurs for the last rule that was not satised in a failed rule set.

Example
The following gure shows an example of arguments for a PSP procedure step named Identify Applicable Bundles,
which uses the Rule Set Look-Up method.

71

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Simple Look-Up Method
The Simple Look-Up method looks up each input row in a business component using a simple search expression. For
example, it could be used to look up list price or exclusive eligibility.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Output Row Set

Optional. The property set used for output.

Process Condition

A Boolean condition that is evaluated to determine whether to process each row.

Business Object

The business object to query.

Business Component

The business component to query.

Search Specication

A search expression comprised of business component elds, literals, and variable values from
{Context} and {Row}. For example:

[Price List Id] = {Row.Price List Id} AND [Product Id]
= {Row.Product Id}

In Memory Search Specication

Optional. Additional terms that are ANDed with the Search Specication. The In Memory Search
Specication is executed in memory. This can be used only if Cache Enabled is Y.

Cache Search Specication

Optional. Additional terms that dene the key values for the Level 1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see About PSP Cache Performance Statistics.

Sort Specication

Optional. A comma-separated list of business component elds used to sort the query result.

Cache Enabled

Optional. Species whether to cache query results. Y or N. The default is N.

On First Match [1..20]

Actions to perform on the rst query result for each input row.

On Match [1..20]

Actions to perform on every query result for each input row.

On Last Match [1..20] Actions to perform on the last query result for each input row.

72

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Input Argument Description

On No Match [1..20]

Actions to perform if there are no query results for an input row.

Example
The following gure shows an example of arguments for a PSP procedure step named In Price List, which uses the
Simple Look-Up method.

Split Method
The Split method splits an input row set into two output row sets by evaluating a condition for each row.

Arguments

Input Argument Description

Context

Optional. Property set of variables shared across all rows.

Row Set

The set of rows to process.

Condition

A Boolean expression that references {Context} and {Row} eld values.

On True Row Set

The row set to which rows are moved if Condition evaluates to True.

Example
The following gure shows an example of arguments for a PSP procedure step named Inclusive Eligibility, which uses
the Split method.

73

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Conguring PSP Procedures
You congure, test, and release a PSP procedure as you would any workow process. For information about creating
workow processes, see Siebel Business Process Framework: Workow Guide .

Note: Workow processes which rely on the UI context and on variable maps and signals can only be tested in
the workspace but cannot be simulated.

Use the following sequence of steps:

1. Create or edit a PSP procedure in the Siebel Tools development environment.
2. From within Siebel Tools, start the Siebel Client in debug mode.
3. In the Siebel Client, test the behavior of the PSP procedure.
4. Activate the PSP procedure in production.

The following topics contain more information about conguring PSP procedures:

• Creating PSP Procedures

• Best Practices for Conguring PSP Procedures

• Conguring Eligibility, Compatibility, and Pricing

Creating PSP Procedures
PSP procedures are created in the same way that standard workow processes are created. For information about
creating workow processes, see Siebel Business Process Framework: Workow Guide .

To create a PSP procedure
1. In Siebel Tools, create a workow process.
2. To one or more of the workow’s steps, add Row Set Transformation Toolkit methods as input arguments.

CAUTION: PSP requires that each input property set for a PSP procedure step must also be dened as
an output property set, even though the input property set is technically not output. This is required by a
workow performance optimization that makes sure input and output property sets are not copied when the
transform method is invoked.

74

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Best Practices for Conguring PSP Procedures
To reduce the work of maintenance and to tune performance, follow these guidelines for designing PSP procedures:

• Use the standard PSP procedures as your starting point. Trim and tune each PSP procedure to match your
business requirements. PSP procedure execution is critical to the end-user response time of your Siebel
application. Always review the standard, shipped PSP procedures and trim them as necessary, for example:

◦ Eliminate steps that are not required in your implementation.

◦ Eliminate variables from the default variable maps that are not required to support your business logic.

Note: These tuning guidelines can have a major impact on performance and scalability. For help
with tuning, create a service request (SR) on My Oracle Support. Alternatively, you can phone
Global Customer Support directly to create an SR or get a status update on your SR. Support
phone numbers are listed on My Oracle Support.

• Add useful subprocedures. In every case for which the same set of steps is invoked from multiple places,
consider creating a subprocedure for those steps. Then call the subprocedure rather than repeating the set of
steps.

• Remove unnecessary subprocedures. Avoid or remove subprocedures that are not required by your
organization’s particular needs. This is recommended because subprocedure calls involve copying the row set,
which adds to performance overhead.

• Keep the logic generic. Do not implement account-specic or product-specic logic in a PSP procedure.
Because this logic changes frequently, it is best for it to be maintained by marketing administrators.

Conguring Eligibility, Compatibility, and Pricing
Dierent information is required to congure eligibility, compatibility, and pricing in the following scenarios:

• In an asset-based ordering (ABO) environment. For more information, see Eligibility, Compatibility, and Pricing
Using the Congurator in an ABO Environment.

• In a non-ABO environment. For more information, see Eligibility, Compatibility, and Pricing Using the
Congurator in a Non-ABO Environment.

• When using the line item UI, as opposed to the Congurator UI

◦ The line item UI refers to the Line Items applet in Siebel application. Access the Line Items applet by
navigating to (for example) the Sales Order screen, List, then the Line Items view.

◦ This Line Items applet contains a Customize buon, which allows you to start the Congurator if the
product in the order line item can be congured. The Congurator creates a new view (the Congurator
UI) to display the line item in a dierent way, and allow you to recongure the line item.
For more information, see Eligibility, Compatibility, and Pricing Using the Line Item UI.

This topic describes the conguration that is necessary in Business Components, Integration Objects, and Business
Service Properties to set up eligibility, compatibility, and pricing for these dierent scenarios.

For information about how to congure additional elds for use in eligibility, compatibility, and pricing, see Conguring
an Additional Field For Use in Eligibility, Compatibility, and Pricing.

75

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Eligibility, Compatibility, and Pricing Using the Congurator in an ABO Environment
This topic describes how to enable ABO for a Siebel Developer Web Client and a Siebel Application Object Manager.

Enabling Asset Based Ordering for a Siebel Developer Web Client
Use the following procedure to enable ABO for a Siebel Developer Web client.

To enable Asset Based Ordering for a Siebel Developer Web Client

• Set the AssetBasedOrderingEnabled parameter in your conguration le (siebel.cfg) to True.

Then when you click the Customize buon in the quote items applet or order line items applet in your Siebel
Business Application:

◦ No signal is raised.

◦ The SIS OM Edit Delta Quote Line Item workow is invoked

◦ The following integration objects are used to build the Congurator instance property set:

SIS OM Quote

SIS OM Order

SIS OM Asset

Enabling Asset Based Ordering for a Siebel Application Object Manager
Use the following procedure to enable ABO for a Siebel Application Object Manager.

To enable Asset Based Ordering for a Siebel Application Object Manager

1. Set the AssetBasedOrderingEnabled parameter in your Siebel Business Application by navigating to the
Administration - Server Conguration screen, Enterprises, Component Denitions, and then the Parameters
view.

2. Query for the object manager component where you want to enable ABO.
3. Query for the parameter Order Management - Enable Asset Based Ordering, and set the Current Value to True.
4. Save this record.

Then when you click the Customize buon in the quote items applet or order line items applet in your Siebel
Business Application:

◦ No signal is raised.

◦ The SIS OM Edit Delta Quote Line Item workow is invoked

◦ The following integration objects are used to build the Congurator instance property set:

SIS OM Quote

SIS OM Order

SIS OM Asset

76

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Eligibility, Compatibility, and Pricing Using the Congurator in a Non-ABO
Environment
This topic describes how to disable ABO for a Siebel Developer Web Client and a Siebel Application Object Manager.

Disabling Asset Based Ordering for a Siebel Developer Web Client
Use the following procedure to disable ABO for a Siebel Developer Web client.

To disable Asset Based Ordering for a Siebel Developer Web Client
• Set the AssetBasedOrderingEnabled parameter in your conguration le (siebel.cfg) to False.

Then when you click the Customize buon in the quote items applet or order line items applet in your Siebel
Business Application:

◦ The Customize signal is raised.

◦ The Congurator Load workow is invoked

◦ The following integration objects are used to build the Congurator instance property set:
7.7 Quote Integration Object
7.7 Order Entry Integration Object

Disabling Asset Based Ordering for a Siebel Application Object Manager
Use the following procedure to disable ABO for a Siebel Application Object Manager.

To disable Asset Based Ordering for a Siebel Application Object Manager
1. Set the AssetBasedOrderingEnabled parameter in your Siebel Business Application by navigating to the

Administration - Server Conguration screen, Enterprises, Component Denitions, and then Parameters view.
2. Query for the object manager component where you want to disable ABO.
3. Query for the parameter Order Management - Enable Asset Based Ordering, and set the Current Value to False.
4. Save this record.

Then when you click the Customize buon in the quote items applet or order line items applet in your Siebel
Business Application:

◦ The Customize signal is raised.

◦ The Congurator Load workow is invoked

◦ The following integration objects are used to build the Congurator instance property set:
7.7 Quote Integration Object
7.7 Order Entry Integration Object

Eligibility, Compatibility, and Pricing Using the Line Item UI
When the user clicks on the Reprice (Pricing) buon or Verify (Eligibility) buon in the quote items applet or order line
items applet in the Siebel Business Application, the following integration object is used to for Eligibility, Compatibility,
and Pricing evaluation:

• ISS Quote

77

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Conguring an Additional Field For Use in Eligibility, Compatibility, and Pricing
When RaiseSignal is called from a business component (for example, Reprice All from quote), the instance is a
BusComp pointer and data is pulled from the business component that is currently in memory (that is, the business
component that the applet within the view is based on). When the instance is a BusComp pointer, the integration object
is determined by the 'Instance Uniform Name EAI Object*' user properties on that business component.

• Example: Reprice All from the "Quote Item List Applet (Pricing)" on the "Quote Item Detail View (Pricing)" view:

Integration Object (ABO Mode) - ISS Quote

Integration Object (Non ABO Mode) - ISS Quote

When RaiseSignal is called from the Congurator, the instance is a CxObj pointer and data is pulled from the
Congurator instance property set. When the instance is a CxObj pointer, the integration object is determined
by the nal property set that is passed into Congurator.

• Example: Eligibility Check within congurator when launched from Quote UI:

Integration Object (ABO Mode) - SIS OM Asset

Integration Object (Non-ABO Mode) - 7.7 Quote Integration Object

The following procedure describes the objects that must be modied in order to involve an additional eld in the
eligibility, compatibility, and pricing processes. Using this procedure ensures consistent behavior between quotes and
orders in the line item UI and in the Congurator UI, in both ABO mode and in non-ABO mode.

To include additional elds in eligibility, compatibility and pricing

1. Add the eld to the following business components:

MACD Quote Item

MACD Order Entry - Line Items

Product Eligibility BusComp
2. Add the eld to the following integration objects:

◦ Quote UI:

ISS Quote

◦ Order UI:

ISS Order

◦ Congurator UI (ABO Mode):

SIS OM Quote

SIS OM Order

SIS OM Asset

◦ Congurator UI (non-ABO Mode):

7.7 Quote Integration Object

7.7 Order Entry Integration Object

78

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

3. Copy the value of the additional eld used in the pricing process by creating the corresponding business
service user properties for the SIS OM PMT Service.

4. Add the eld to the following variable maps:

◦ Quote UI and Order UI:
Default Eligibility Variable Map - Context, and Product Eligibility Variable Map - Context
Default Pricing Variable Map - Context

◦ Congurator UI (ABO Mode):
Cfg Eligibility Variable Map - Context
Default Pricing Variable Map - Context

◦ Congurator UI (non-ABO Mode):
Cfg Eligibility Variable Map - Context
Default Pricing Variable Map - Context

5. Update the following workow processes as necessary:
.Product Eligibility & Compatibility - Default
.Pricing Procedure - Default

Creating a Custom PSP Application
PSP is a general-purpose mechanism that can be used anywhere in the Siebel application. For example, you can create
a custom PSP procedure to determine the allowed shipping methods for a line item on an order, or you can create a
custom PSP procedure to determine the disclosures that must be read to a customer before the purchase of a product.

Your custom PSP application must include the following:

• Matrix tables, business components, and the administrative UI to capture the rules.

• Signals to invoke the controller workow. See Signals.

• A controller workow that establishes the input context and row set and processes the PSP output.

• A PSP procedure that transforms the input row set.

• If necessary, scripted business service methods that extend the set of Row Set Transformation Toolkit business
service methods. See Creating a Custom Transform.

Creating a Custom Transform
PSP procedures can invoke any custom business service method that you create using Siebel VB or Siebel eScript.
Custom business service methods for PSP follow these guidelines:

• The row set and context are passed as inputs to the custom business service method.

• Wherever possible, parameterize new methods to make them exible and applicable to multiple situations.

• The method uses standard property set APIs to read and write from the row set.

• The row set must be returned as an explicit output argument of the business service method.

79

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

For more information, see Siebel VB Language Reference or Siebel eScript Language Reference .

Calling a PSP Procedure from an External Application
You can invoke a PSP procedure from an external application by using a Web service ASI or a business service API.

To call a PSP procedure from an external application
1. Create a Web Service ASI or expose a business service API.
2. Use the Web Service ASI or business service API to invoke a controller workow.
3. Use the controller workow to do the following:

a. Convert the XML input document to a row set using the XSLT or the Siebel Data Mapper.
b. Construct a Context property set (if required) from the XML input document using XSLT or the Siebel

Data Mapper.
c. Invoke the standard PSP procedure.
d. Construct an XML response from the output row set.

About Logging of PSP
PSP transforms support logging for troubleshooting and performance tuning. Logging is implemented using the
standard Siebel logging mechanisms. See Siebel System Monitoring and Diagnostics Guide .

With one exception, all PSP logging events have the primary purpose of supporting troubleshooting. The PSP logging
event called PSP Cache supports performance tuning.

Troubleshooting PSP
There are several server parameters used for PSP logging. For details on using PSP logging events for troubleshooting,
see About Troubleshooting of PSP.

Tuning Performance of PSP
For details on using the PSP Cache event and other logging events for performance tuning, see About Tuning
Performance of PSP and Logging of Performance.

About Troubleshooting of PSP
To manage PSP logging-related server parameters, navigate to the Administration - Server Conguration screen,
Servers, and then the Events view, and query on “PSP*”.

The server parameters for PSP logging are listed in the following table. PSP Cache Event is used for performance tuning,
while all the other server parameters described in this topic are used for troubleshooting.

80

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Event Type Alias

PSP Cache Event

PSPCache

PSP Data Event

PSPData

PSP Parser Event

PSPParser

PSP Transform Event

PSPTransform

PSP Pricer Service Event

Note: The PSP Pricer Service
Event logging parameter is used
only in implementations that
include Siebel Pricer.

PSPPricerSvc

Like all other Siebel-standard log events, the default log level is 1, and the log level can be set from 1 to 5. The higher the
log level is set, the more messages are logged. Log level seings generate the types of data listed in the following table.

The data logged by the PSP logging-related server parameters is explained in the topics that follow.

Level Type of Data Logged

1

Error messages

2

Warnings

3

Information

4

Detailed information

5

Debugging information

PSP Cache Event
Log levels and data logged for PSP Cache Event are listed in the following table. PSP Cache Event is used for logging for
PSP Cache, and for tuning performance of PSP transforms.

For more information about this event, see Logging of Performance. For information about other events used to log
performance of PSP, see Logging of Performance.

Level Data Logged

3 PSP Cache miss or hit

81

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Level Data Logged

Keys: rst-level key, second-level key

PSP Data Event
Log levels and data logged for PSP Data Event are listed in the following table. PSP Data Event is used for logging of PSP
transform input arguments.

Level Data Logged

4

Input arguments (excluding the hierarchy arguments) of each transform are logged as Name:Value
pairs.

5

The whole input property set of each transform is logged as an XML string.

PSP Parser Event
Log levels and data logged for PSP Parser Event are listed in the following table. PSP Parser Event is used for logging of
PSP Parser.

Level Data Logged

5

Debugging information for PSP parser.

PSP Transform Event
Log levels and data logged for PSP Transform Event are listed in the following table. PSP Transform Event is used for
logging of PSP transforms.

Level Data Logged

Business service name

Number of rows processed.

3

Number of rows deleted.

82

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Level Data Logged

4

Transform progress information.

5

Debugging information for PSP transforms.

PSP Pricer Service Event
Log levels and data logged for PSP Pricer Service Event are listed in the following table. PSP Pricer Service Event is used
for logging of Pricer service APIs.

Level Data Logged

5

Debugging information for PSP Pricer business service.

About Tuning Performance of PSP
Consider the following when tuning the performance of your precongured and custom PSP procedures:

Precongured PSP Procedures
Tune the precongured PSP procedures by:

• Removing steps that your implementation does not require

• Eliminating unused values from the variable maps

General Design Guidelines
Follow these general design guidelines to further improve the performance of PSP:

• Optimize eligibility PSP procedures by:

◦ Executing low-cost tests rst

◦ Performing high-cost tests (such as Web Service calls) only in post-pick processing

• Build performance hints into the procedure denition. Use the Process Condition input argument in each step
to identify the subset of rows in the row set that require processing (example: "{Row.Promotion Id} IS NOT
NULL"). This can eliminate unnecessary SQL and in-memory operations.

83

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

• When multiple steps operate on the same subset of rows, split the row set, perform the operations on the
subset of rows, and then merge the two split row sets afterwards.

• Avoid unnecessary subprocedures. Subprocedure calls involve copying the row set, which it is best to avoid
where possible.

• Optimize external Web Service calls by:

◦ Designing the Web Service interface to be set-based

◦ Making sure that a single invocation will process all rows in the row set

• Use PSP Cache for caching of database query results. For more information about how to tune PSP
performance with caching, see Logging of Performance.

SQL Queries
Use the following guidelines to improve the SQL query performance of PSP:

• Minimize the number of SQL queries executed. Consolidate multiple Simple Look-Up steps into one step if the
steps use data from the same reference data business component with the same search specication.

• Tune SQL queries by:

◦ Querying through thin business components to minimize Siebel Object Manager overhead and reduce
query complexity.

◦ Making sure that all search specications have index coverage.

Logging of Performance
PSP provides extensive logging of performance-related data. Analyze the PSP log to determine which steps are
consuming the most processing time and where the caching can be further optimized.

PSP logging that takes place in the server environment is more eective than PSP logging that takes place locally,
because in the server environment there is only one environment variable controlling the log level for all the events.

You can use the events listed in the following table to log the performance of PSP.

Event Type Alias Description

Object Manager Business Service Operation
and SetErrorMsg Log

ObjMgrBusServiceLog

Logs the performance of business service
methods which include the PSP transform
methods.

Workow Performance

WfPerf

Logs the performance at the workow level
or step level.

PSP Cache Event

For more information, see Logging of
Performance.

PSPCache

Logs the performance of PSP Cache.

84

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

When debugging the pricer, the price waterfall output provides valuable clues as to which transforms and actions were
executed. For more details on logging, see About Logging of PSP.

About PSP Cache

Siebel PSP Cache is a mechanism designed to improve performance of PSP transforms. PSP Look-Up transforms use
caching to reduce the number of SQL statements executed by the database. The cache stores the results of PSP Look-
Up transform queries. The cache key is the business object, the business component, the search specication, and the
sort specication.

The PSP Cache of query results is shared across all user sessions on an Object Manager. A particular query is issued
only once for each Object Manager and then shared by all users. This sharing maximizes the probability of a cache hit
and improves performance and scalability for all users on the server.

Transforms Involving Database Queries
Of all the PSP methods (transforms) provided by the Row Set Transformation Toolkit business service, those that involve
database queries are the following:

• Simple Look-Up

• Query

• Hierarchical Look-Up

• Rule Set Look-Up

• Dynamic Look-Up

There are two ways that PSP Cache is implemented: one is special for the Dynamic Look-Up transform, and the other is
for the rest of the transforms:

• PSP Dynamic Look-Up Transform Cache. This cache is used when the Dynamic Look-Up transform performs a
query. For more information, see About Using the PSP Dynamic Look-Up Transform Cache.

• PSP Generic Cache. This cache is used when all transforms other than the Dynamic Look-Up transform perform
a query. For more information, see Using the PSP Generic Cache.

The following topics contain more information about PSP Cache:

• Enabling PSP Cache

• Seing Cache Size

• Using the PSP Generic Cache

• Optimizing PSP Cache

• Dening a Cache Refresh Key

• Conguring a Clear Cache Buon

• About Using the PSP Dynamic Look-Up Transform Cache

• About PSP Cache Performance Statistics

85

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Enabling PSP Cache
You turn the PSP Cache on or o using an input argument, at the PSP procedure step level (that is, one input argument
for each step that involves caching). By default, caching is disabled.

To enable caching, add an input argument to the step involving a Look-Up transform or Query transform, as follows:

 Cache Enabled = Y

Note: If Cache Enabled is not dened for a PSP procedure step, the default value is N and caching is not
enabled.

Seing Cache Size
To control cache size, use the following server parameters:

• PSP Level 1 Cache Max Item Count. The server parameter with this display name is
PSPCacheMaxItemCntLevel1. This is the maximum number of business component or cache refresh key
combinations; for example:

 Price List Item/Price List Id = ’12-12345’)

The default value is 10000.

• PSP Level 2 Cache Max Item Count. The server parameter with this display name is PSPCacheMaxItemCntLevel2.
This is the maximum number of distinct queries cached for each PSP Level 1 Item. The default value is 10000.

When either Level 1 or Level 2 cache reaches capacity, the least recently used query results are dropped to make space
for new cache entries.

It is not possible to directly control the amount of memory consumed by the PSP cache by seing a total size for PSP
cache, as the architecture does not count the memory of each cache item.

Note: You must restart the Siebel server for any parameter changes to take eect.

For information about seing server parameters, see Siebel System Administration Guide .

Using the PSP Generic Cache
The PSP Generic Cache is the cache used for all transforms that involve database queries except the Dynamic Look-Up
transform. The Simple Look-Up, Query, Hierarchical Look-Up, and Rule Set Look-Up transforms use PSP Generic Cache.

86

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Topics that relate only to PSP Generic Cache and not to PSP Dynamic Look-Up Transform Cache are the following:

• Optimizing PSP Cache

• Dening a Cache Refresh Key

• Conguring a Clear Cache Buon

Optimizing PSP Cache
To maximize the cache hit rate (and hence, performance and scalability), partition the transform search specication
into a high selectivity clause that is executed by the database and used as part of the PSP cache key (the Search
Specication input argument) and a low selectivity clause that is executed by the PSP transform itself to further lter the
query results (the In Memory Search Specication input argument). When you use the In Memory Search Specication
input argument in combination with a Search Specication input argument, your search specication is, eectively,
“[Search Specification] AND [In Memory Search Specification]”. The two search specication input arguments are
divided by purpose as follows:

• Search Specication. Use this input argument to dene highly selective search criteria executed by the
database.

• In Memory Search Specication. Use this input argument to dene low selectivity search criteria executed by
the Siebel Server.

Note: The Dynamic Look-Up transform does not support the In Memory Search Specication input
argument. This transform dynamically generates its own search specication.

The order of search implementation is as follows: rst the Search Specication input argument is applied to the
database query. Next, the returned result set is further ltered in memory by applying the In Memory Search
Specication input argument.

Example values for Search Specication and In Memory Search Specication are shown in the following table for the
Pricer Simple Volume Discount step.

Input Argument Value

Search Specication

[Volume Discount Id] = {Row.Volume Discount Id} AND [Volume
Discount Method] = LookupValue('VOL_DISCNT_METHOD', 'SIMPLE')

In Memory Search Specication

[Minimum Quantity] <= {Row.Extended Quantity Requested} AND
([Maximum Quantity] >= {Row.Extended Quantity Requested} OR
[Maximum Quantity] IS NULL) AND [Volume Discount Start Date] <=
Timestamp() AND ([Volume Discount End Date] >= Timestamp() OR
[Volume Discount End Date] IS NULL)

The example shown in the previous table results in one query for each volume discount that retrieves all result rows.
All subsequent queries against that volume discount are served from the cache regardless of the values for [Extend
Quantity Requested] or Timestamp().

Note: In Memory Search Specication execution does not use sophisticated database features such as
indexes. Make sure the result set searched in memory is not too large. For example, loading an entire price list
in one query is not likely to improve performance; search a subset of the price list.

87

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

For information about PSP Cache performance, see About PSP Cache Performance Statistics.

Dening a Cache Refresh Key
One complication caused by the PSP engine's extensive use of caching is that changes to reference data (such as price
list line items) that are currently in cache are not reected immediately after an updated version of the reference data is
released. The PSP Cache persists until a Siebel Server is restarted. To enable administrative updates against a running
system, every administration view that maintains data cached by PSP has a Clear Cache buon that causes all PSP
caches on all object managers in the Siebel Enterprise to purge a subset of the cached data for that particular business
component. That subset of data is dened by the cache refresh key for the business component.

When implementing PSP Cache through the PSP Generic Cache, you can control the granularity of the cache refresh
by dening a cache refresh key for a business component. If no cache refresh key is dened, the business component
is refreshed as a whole. To improve performance, you can use a cache refresh key to clear only a selected part of the
cache.

A business component can have only one cache refresh key. Some business components have a cache refresh key that
comes precongured. For example, the Price List Item business component has a cache refresh key of Price List Id.
This means that when the user clicks the Clear Cache buon in the Price List list applet, only the selected price lists are
cleared from the cache.

You dene a cache refresh key by adding user properties to the Row Set Transformation Toolkit business service. For
each cache refresh key, one pair of user properties is required, as shown in the following table.

Name Value

Cache Key: Price List Item

Price List ID

Cache Key: [BC Name]

[Key Field 1], [Key Field 2]

Note: You must update a workspace with the changes and then deliver it for the changes to take eect.

Search Specication and Cache Refresh Key
If a cache refresh key is dened for a business component, then every query against that business component must
provide the cache key eld values in its Search Specication or in the Cache Search Specication input argument.

Note: Failure to specify the cache refresh key values will result in an error.

Use the Cache Search Specication input argument to avoid unnecessary clauses in the Search Specication executed
by the database. The transform will look rst at the Cache Search Specication, and then at the Search Specication to
identify cache key values.

The syntax and structure of the Cache Search Specication input argument are shown in the following example:

[Price List Id] = {Context.Price List Id} AND [Price List Item Id] = {Row.Price List

88

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Item Id}

Row Set Transformation Toolkit Methods for PSP Cache Refresh
The Row Set Transformation Toolkit methods listed in the following table, with their corresponding input arguments and
output arguments support refreshing of the PSP cache:

Method Description

Get Cache Key

In: Business Component Name

Out: Row Set

Checks the cache key denitions for the specied business
component and constructs a property set containing the cache key
values for each selected row in the active business component. This
enables multiselect when clearing cache entries (such as price lists).

Refresh Cache

Clears the entire PSP cache.

Refresh BC

In: Business Component Name

Clears all PSP cache entries for the specied business component.

Note: Refresh BC does not clear the cache if the business
component has a cache key dened.

Refresh BC On Cache Key

In: Business Component Name

In: Row Set

Clears all PSP cache entries for the specied business component
and cache key values. The input Row Set is typically the output of
the Get Cache Key method.

When the user clicks the Clear Cache buon for business components without a cache key, the Refresh BC method is
called directly by a run-time event. For business components with a cache key (for example, Price List Item has one
precongured), the methods Get Cache Key and Refresh BC On Cache Key are invoked by a workow that is triggered by
a run-time event.

Conguring a Clear Cache Buon
The PSP cache persists until the Siebel Server is restarted, but you can force a refresh of cached data across all
servers in the enterprise. In the Administration - Pricing views, Clear Cache buons exist for this purpose, to allow
administrative updates against a running system. All objects cached by PSP must support a Clear Cache buon that
forces this refresh of cached data.

Requirements for conguring Clear Cache buons vary as follows:

• If the business component does not have a cache refresh key dened, a run-time event must be dened to
refresh the cache. See Clear Cache Buon for BusComps without a Cache Refresh Key.

• If the business component does have a cache refresh key dened, a workow and a run-time event must be
dened to refresh the cache. See Clear Cache Buon for BusComps with a Cache Refresh Key.

89

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Note: Although there is a Clear Cache buon in the Administration - Pricing screen, then the Aribute
Adjustments view, the run-time event for this buon is xed. This is the Clear Cache buon associated with
the PSP Dynamic Look-Up Transform Cache. Do not try to congure this Clear Cache buon as you would the
Clear Cache buon used by the PSP Generic Cache.

Clear Cache Buon for BusComps without a Cache Refresh Key
In this case, you must dene a run-time event to refresh the cache.

To congure a new Clear Cache buon for a business component without a cache refresh key
dened

1. Create a control in the desired applet where the method invoked is EventMethodCacheRefresh.
2. Navigate to the Administration - Runtime Events screen, then the Action Sets view, and create a new record in

the Action Sets list applet.
3. Give the record a name, such as “Cache Refresh BC - Applet Name”.
4. Create a new record in the middle list applet, with the following values:

◦ Name is PSP Refresh

◦ Action Type is BusService

5. In the More Info form applet (at the end), enter the following values:

◦ Business Service Name is Row Set Transformation Toolkit

◦ Business Service Method is Refresh BC

◦ Business Service Context is a list of business component names with commas as the separator, and with
each business component name included in quotation marks
Example:
Business Service Context ="ProcessName", "PSP Refresh Cache On Cache Key -
Price List"

6. Navigate to the Administration - Runtime Events screen, then the Events view, and create a new record with the
following values:

◦ Object Type is Applet

◦ Object Name is the name of the applet referred to in Step 1

◦ Event is InvokeMethod

◦ Subevent is EventMethodCacheRefresh

◦ Action Set Name is the name of the action set created in Step 2

Clear Cache Buon for BusComps with a Cache Refresh Key
In this case, you must dene a workow and a run-time event to refresh the cache.

To congure a new Clear Cache buon for a business component with a cache refresh key dened
1. Create a control in the desired applet where the Method Invoked is EventMethodCacheRefresh, add the control

to the desired applet web template.
2. Dene the cache keys by adding user properties to the Row Set Transformation Toolkit business service,

according to the format shown in the following table, for example:

90

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Property Value

Name

Cache Key: Price List Item

Value

Price List Id

3. Create a workow that does the following:

a. Calls the Get Cache Key method to determine the selected cache key values.
b. Invokes the Refresh BC On Cache Key method for each business component that shares the same cache

key. The following gure shows an example of a Clear Cache workow.

4. Navigate to the Administration - Runtime Events screen, then the Action Sets view, and create a new record in
the Action Sets list applet with a name such as “Cache Refresh BC - Applet Name”.

5. Create a new record in the middle list applet, with the following values:

Property Value

Name

PSP Refresh

Action Type

BusService

6. In the More Info form applet (at the end), enter the following values:

Property Value

Business Service Name

Workow Process Manager

Business Service Method

RunProcess

Business Service Context

Process Name

91

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

For example:

Business Service Context = PSP Refresh Cache On Cache Key - Price List

7. Navigate to the Administration - Runtime Events screen, then the Events view, and create a new record with the
following values:

Property Value

Object Type

Applet

Object Name

The name of the applet referred to in Step 1

Event

InvokeMethod

Subevent

EventMethodCacheRefresh

Action Set Name

The name of the action set created in Step 4

About Using the PSP Dynamic Look-Up Transform Cache
The Dynamic Look-Up transform has its own cache, called the PSP Dynamic Look-Up Transform Cache. You enable this
for a particular step by seing Cache Enabled to Y, the same as for the generic PSP cache. No other cache-specic input
arguments are supported for the Dynamic Look-Up Transform.

The Dynamic Look-Up transform supports a precongured Clear Cache buon; do not modify this precongured Clear
Cache buon.

Note: This is the Clear Cache buon in the Administration - Pricing screen, then the Aribute Adjustments
view. The run-time event for this buon is xed. Do not try to congure this Clear Cache buon as you would
the Clear Cache buon used by the PSP Generic Cache.

About PSP Cache Performance Statistics
To view statistics on PSP Cache performance, navigate to the Administration - Server Management screen, Tasks, and
then the Statistics view, and query on “PSP*”. The Siebel application provides the following statistics:

• PSP Cache Hit Total. An integer that indicates how many times the cached query results are used.

• PSP Cache Miss Total. An integer that indicates how many times a query cannot be found in PSP Cache for
which a database query has been conducted.

92

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

Note: The higher the value of PSP Cache Hit Total /(PSP Cache Hit Total + PSP Cache Miss Total), the
beer performance exhibited by PSP Cache.

93

Siebel
Order Management Infrastructure Guide

Chapter 5
PSP Engine

94

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

6 PSP Waterfall

PSP Waterfall
This chapter explains the PSP Waterfall mechanism. A PSP procedure can create waterfall output to explain calculations
it has made or actions it has taken. The PSP Waterfall business service displays or saves that output. This chapter
includes the following topics:

• About Waterfalls

• About Conguring Waterfall Output

• Saving Waterfall Data

About Waterfalls
A waterfall is an applet or a pop-up window that provides line-item explanation about eld values— displaying any
combination of values such as text, numbers, or dates—such as the gures that were used to arrive at a particular value
in a eld. As one example of a waterfall, the pricing waterfall shown in the following gure shows the details of the
calculation used to arrive at the net price. This example shows a base price used for an item ordered, minus the discount
given to arrive at the net price.

As another example, you might implement a waterfall on a product’s eligibility status, to show the end user all the
reasons a product cannot be purchased (rather than just one reason).

All text displayed to the end user in waterfalls is translatable. the Unied Messaging Service (UMS) business service
dynamically translates and substitutes waterfall text . The UMS business service processes all translations through the
LookUpMessage API in PSP action script:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage({Row.Temp
List Price Message}, [Price List] = {Match.Price List}), [Currency Code] =
{Row.Currency Code}, [Price] = {Row.List Price})

For more information about UMS, see Unied Messaging.

A PSP Procedure Generates Waterfall Output Each Time It
Executes
Waterfall output is generated on demand when the user clicks a waterfall-enabled eld, but the PSP procedure
generates the waterfall output every time it executes. The waterfall’s output may be ignored much of the time, but when

95

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

the user drills into a waterfall-enabled eld, the procedure reruns to generate and then display the waterfall output for
that record and eld.

For example, the values for the pricing waterfall in the following gure are generated when the user clicks the Net Price
eld in a Quote or Order line item. The waterfall pop-up window appears displaying these values. The user clicks OK to
hide the pop-up window. But even if the user does not click the Net Price eld to view the pricing waterfall, the same
waterfall output is generated (but not saved or displayed without conguration) when the PSP procedure executes.

A Controller Workow Invokes the PSP Waterfall Business Service
The following gure shows how the PSP Waterfall mechanism generates and saves waterfall output. For a PSP
procedure that generates waterfall output, such as the Pricing PSP procedure shown in the diagram, a controller
workow invokes the PSP waterfall business service.

The PSP engine supports the creation of a waterfall with an unlimited number of sequenced child rows to explain each
name-value pair in the row. It is the child rows’ type that denes the waterfall to which they belong. For example, “Net
Price Waterfall” is the type for each of the child rows that compose the Net Price waterfall. Multiple waterfalls can be
created for one row, up to one for each name-value pair.

Each waterfall has a congurable set of name-value pairs. For example, a pricing waterfall uses dierent elds than an
eligibility waterfall.

Waterfalls and Performance
Waterfall output is generated every time a PSP procedure executes. For example, when the user clicks a Net Price to
display its waterfall, that record is repriced and fresh waterfall output is generated for display. This process keeps the
waterfall output and net price in sync. This process requires minimal overhead, because it is done in memory.

96

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

If a line item is read-only (for example, because it has already been submied as an order), then it is not possible to
reprice the item. In this case, the waterfall virtual business component looks for saved waterfall output for that line item
and the waterfall displays that saved waterfall output instead.

Note: The ReadOnlyOrderStatus user property is overwrien by the Business Component read-only
eld user property (if the value for the business component user property is active). For example, if
ReadOnlyOrderStatus for a BC User Property is set to Billed, Submied, Completed, and read-only status for
Submied is Active, then the record is read-only for the status value Submied (not for Billed and Completed).

Waterfall output is only saved to the database upon user request. Writing waterfall records to a database can be costly.
The waterfall records are wrien in the background to minimize end-user latency. For more information, see Saving
Waterfall Data.

Conguration of Waterfalls
When conguring waterfalls, refer to the information provided in the following topics:

• About Conguring Waterfall Output

• Saving Waterfall Data

About Conguring Waterfall Output
The waterfall output of a PSP procedure is soft-coded in the step actions. Each line item of waterfall output is created by
an action that adds a child record to a named child property set of a {Row}. The following is an example PSP action that
creates a row of waterfall output:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage('Pricer -
Dynamic Matrix Adjustment', [Price Book] = {Match.Price Book}), [Adjustment Type] =
{Match.Adjustment Type}, [Adjustment Amount] = {Match.Adjustment Amount}, [Currency
Code] = {Row.Currency Code}, [Price] = {Row.Start Price})

In this example, a waterfall record is added to the Net Price Waterfall child property set of the current {Row}.

The elds wrien to the waterfall record are soft-coded in the action expression (in this case, Text, Adjustment Type,
Adjustment Amount, Currency Code, Price). One common conguration is to add additional elds to an existing
waterfall. Adding New Fields to an Existing Waterfall describes this conguration.

Another common conguration is to create a new waterfall output for an additional calculated value. For example, a
pricing procedure could calculate the Net Price and the Cost of a line item. A waterfall explanation of the calculation
of Cost could be exposed as a drill-down link on the Cost eld in the UI. You can create many waterfalls for a particular
{Row} by dening dierent child property set names (such as, {Row.Cost Waterfall} += New("Waterfall", …)). See
Creating a New Waterfall for detailed instructions.

Further conguration information appears in Saving Waterfall Data.

97

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

Adding New Fields to an Existing Waterfall
You can add as many new elds as you like to an existing waterfall using the following procedure as an example. This
example adds an Accounting Code eld to the existing Net Price waterfall.

To add a new eld to an existing waterfall
1. In Siebel Tools, revise the PSP procedure (for example, revise Pricing Procedure - Calculate Net Price).
2. Add an extra comma-separated argument to the += New() function in every action that generates waterfall

output. For example:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage('Pricer -
Dynamic Matrix Adjustment', [Price Book] = {Match.Price Book}), [Adjustment Type]
= {Match.Adjustment Type}, [Adjustment Amount] = {Match.Adjustment Amount},
[Currency Code] = {Row.Currency Code}, [Price] = {Row.Start Price}, [Accounting
Code] = {Match.Accounting Code})

The syntax [Accounting Code] = {Match.Accounting Code} adds the new eld.
3. Add the new eld to the waterfall virtual business component (for example, Net Price Waterfall VBC).
4. Add the new eld to the waterfall pop-up applet (for example, Net Price Waterfall Popup List Applet).
5. (Optional) If the new eld needs to be wrien to the database:

a. Add the new eld to the tables used to store this waterfall type (for example, S_QTEIT_WTR_LOG,
S_ORDIT_WTR_LOG, S_AGRIT_WTR_LOG).

b. Add the new eld to the business components used to persist this waterfall type (for example,Quote Line
Item Waterfall, Order Entry Line Item Waterfall, Service Agreement Line Item Waterfall).

c. Navigate to the Administration Application screen, then the Data Maps view. Add the new eld to the
waterfall data map objects (for example, Quote Waterfall Data Map Object, Order Waterfall Data Map
Object, Service Agreement Waterfall Data Map Object).

Creating a New Waterfall
You can add a new waterfall output to any PSP procedure. A PSP procedure can have multiple waterfall outputs.

Note: It is recommended that you copy the conguration of the Net Price Waterfall when creating a new
waterfall output.

The following topics contain information about creating new waterfalls:

• Populating Child Waterfall Property Sets

• Exposing the Waterfall Output

• Saving Waterfall Data

Populating Child Waterfall Property Sets
When creating a new waterfall output, you rst populate a child waterfall property set for each output row of the PSP
procedure.

98

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

To populate a child waterfall property set for each output row of a PSP procedure

1. Create new UMS message types to format text for your new waterfall output. See Creating Message Types.
2. Dene PSP actions to create the waterfall output in your PSP procedure.

a. Use the {Row.Waterfall Name} += New() syntax to create a new waterfall record and append it to the
desired waterfall property set. The New() function has the following syntax:

New('Waterfall', Name 1 = Value 1, Name 2 = Value 2,.)

Name n and Value n are the waterfall output eld names and values; for example:

Currency Code = USD

b. Use the LookUpMessage function to format text in the appropriate language with variable values
substituted through a call to the UMS business service, with the following syntax:

LookUpMessage('Message Name', Name 1 = Value 1, Name 2 = Value 2,.)

Name n and Value n are the payload eld names and values that will be used by the UMS business
service to construct the message text; for example:

Price List = Americas Price List

Exposing the Waterfall Output
Next, you expose the waterfall output on the user interface.

To expose the waterfall output as a drilldown on a eld in the UI

1. Create a new virtual business component based on class CSSBCVWaterfall.

a. Create elds for each waterfall output column.
b. Create a eld called Name, which is used internally to query the correct data by the waterfall name.
c. Compile the virtual business component.

2. Create a new pop-up applet based on class CSSSWEFrameListPopupWaterfall using the VBC created in Step 1.

a. Set its search specication to query the eld Name with a value of the created waterfall, such as:

Name = "Cost Waterfall"

b. Dene the column layout.
c. Compile the applet.

3. Create a drilldown link to the new pop-up applet in each list applet that displays the eld calculated by the PSP
procedure.

a. Add a drilldown object to the applet dening the eld on which the drilldown is displayed and the
drilldown name. Leave all other elds blank.

Example:

Name = "Waterfall Popup 2"; Field = "Cost"

99

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

b. Add a user property to the applet indicating which waterfall pop-up applet to display upon each drill-
down:

Example:

Name = "Waterfall Popup Applet 2"; Value = "Cost Waterfall Popup List Applet"

Note: Multiple waterfall drilldown links are supported by incrementing the index at the end of
the Waterfall Popup Applet N drilldown name.

Applet classes CSSSWEFrameListQuoteItemEC and CSSSWEFrameListWaterfall support waterfall drill-
down.

Note: CSSSWEFrameListWaterfall is derived from class CSSSWEFrameListBase directly.

c. Compile the applet.

Saving Waterfall Data
Waterfall data is saved using Data Transfer Utility (DTU). You can congure the application to save waterfall records
manually or automatically as described in this topic.

To enable persistence of the new waterfall data in the database

1. (One option is to do this by using a command.) In the Siebel application, navigate to the Administration -
Order Management screen, then the Signals view, and add a new signal to save the waterfall output. Use
SaveWaterfall-Order as an example.

a. In Siebel Tools, add a command to invoke the signal when the user selects a menu option. Use
SaveWaterfall-Order as an example. Values are described as follows:

Display Name: [Name to be displayed]

Name: [Name of the command]

Method: [Signal Name]
b. Create a custom table to store the waterfall output (for example, CX_COST_WATERFALL).
c. Create a business component (BC) based on the table with the same eld names as in the virtual

business component used to display the waterfall.
d. Create a data map object. Use Order Waterfall Data Map Object as an example.

In the Siebel application, navigate to the Administration - Application screen, then the Data Map
Administration view, and create a new data map object.

The source is the VBC and the destination is the BC.
2. (Another option is to save the waterfall data manually by using an applet menu buon or an applet buon.) As

in Step 1, add a new signal to save the waterfall output.

a. In Siebel Tools, add an applet menu buon (call it Save Waterfall).
b. Add an object to Applet Method Menu Item of the waterfall-triggering applet, and then expose it to the

applet. Values are as follows:

Command Name: [The command added to save this waterfall]

100

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

Text: Save Waterfall

Alternatively, you can add an applet buon (Save Waterfall) in Siebel Tools by adding a control to the
waterfall-triggering applet and then exposing it to the applet. Use the following values:

Name: Save Waterfall

Method Invoked: [The signal added to save this waterfall]

Caption: Save Waterfall

For more information about creating and using signals, see Signals For more information about DTU, see the topic
about Data Transfer Utility in Siebel Finance Guide .

PSP Waterfall Business Service Methods
The PSP Waterfall business service provides the methods described in the following table.

Method Arguments Description

ShowWaterfallPopup

Name = Popup Applet Name

Value = the name of the waterfall
popup applet

Example: “Quote Line Item Waterfall
Popup List Applet”

Display the waterfall pop-up for the current line item.

SyncToDB

See SyncToDB Input Arguments

Generate waterfall records for the current quote, order, or
agreement and write them to the database.

For more information, see Saving Waterfall Data.

SyncToDB Input Arguments
The SyncToDB method provides the input arguments described in the following table.

Note: You may prefer to use SyncToDB in a signal, rather than directly in a command, for synchronizing
waterfall data to the database. If so, use the guidance provided in Saving Waterfall Data.

Argument Type Value

Pricing Output Row Set Type

String

RowSet

Waterfall Data Map Object

String

Quote Waterfall Data Map Object

Waterfall Name Field

String

Name

Waterfall Parent Id Field String Item Id

101

Siebel
Order Management Infrastructure Guide

Chapter 6
PSP Waterfall

Argument Type Value

Waterfall Parent Id Variable

String

ID

Waterfall Signal

String

PSPWaterfallAll

Waterfall Synch Process

String

PSP Waterfall Synch to DB Workow

Waterfall Sequence Number Field

String

Sequence Num

102

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

7 Unied Messaging

Unied Messaging
This chapter describes the Unied Messaging framework used by Siebel Business Applications. It includes the following
topics:

• About Unied Messaging

• Components of Unied Messaging

• Unied Messaging Service Business Service Methods

• Creating Message Types

• Conguring the Display of Messages

• Implementing Multilingual Substituted Text

• Implementing a Custom Message-Generation Engine

• About Working with Message Responses

• About Suppressing Duplicate Messages

• Suppressing Duplicate Messages

• Migrating Message Types Between Environments

• Tuning Performance of Unied Messaging

• Using Unied Messaging with the PSP Engine

About Unied Messaging
The Unied Messaging framework is the mechanism used by Siebel Business Applications to display messages to users.
The foundation of the Unied Messaging framework is the Unied Messaging Service (UMS) business service. For
Siebel order management uses, UMS messages recommend products and promotions, explain eligibility, provide price
waterfalls, and display results of checks on promotion commitments and integrity. For example, a message prompts
a customer service representative (CSR) to cross-sell baeries and a camera case when a customer is purchasing a
camera. Messages come to the user in the form of a pop-up applet or rows in a list applet in a view.

The Unied Messaging framework supports the display of dynamic, actionable messages. The framework is an entity
independent of the source and type of messages displayed. The Unied Messaging framework natively supports
advanced features such as translation of message text, substitution of textual values into the message template,
logging of message responses, and suppression of duplicate messages when appropriate (such as advice to a CSR
against trying the same upsell if the customer has already rejected it).

In Siebel order management, a message is guidance, a recommendation, or an explanation presented to an end user
in response to a buon click or an action the end user takes. For example, the Order Catalog view might display the
following message when an end user orders an item that is temporarily unavailable:

The product you have selected is on back order until [date].

103

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

A message’s text is constructed from a xed message template as well as substitutable text fragments, such as the
name of a product.

Messages displayed are sorted by score. The message-generation algorithm sets the score. For the simple
precongured rules-based messages, the user enters the score in an administration view. Make sure that your
messages use a consistent scoring scheme so that the most important messages of any type appear at the start of the
list. The default message-generation algorithms can be extended to call out to a propensity-based scoring algorithm to
dynamically score the messages that are displayed based on self-learned rules.

Concepts of Unied Messaging
A message type stores the denition of a message, including its text, its bitmap (such as a graphic of an exclamation
point), and its display mode (active or passive). A message type with an active display mode means that a dialog box
is displayed to the user and the user must provide a response; a passive message type means that the message is
displayed to the user without requiring a response. A message type group is a list of values used to group message
types, making them available in picklists.

Payload is the contents of the message delivered to the end user. The message type payload is a list of all payload elds
that must be provided with every message of a certain type.

A message type response is an allowed response to a message. The allowed responses and their associated actions
are soft-coded in an administration view. For example, a precongured upsell message has “Accept” and “Reject”
responses. You can congure an additional “Send E-Mail” response that automatically emails the upsell product details
to the customer.

A message response is a logged response to a message.

Message Types Administration
You implement Unied Messaging for Siebel order management using the Administration - Order Management screen,
then the Message Types views, as follows:

• All Message Types view. Create new message types. Work with existing message types. Enter text for
messages. Aach titles and bitmaps to messages. Specify whether messages are active or passive. Specify the
group to which the message type belongs.

• Payload view. Create and work with payload variables, which substitute values into message text and which are
used for automated response processing.

• Responses view. Create the possible responses for a message type. Control response logging. Control message
suppression. Enable automated processing of responses.

• Translations view. Enter translations for message text.

Components of Unied Messaging
The following gure shows the interaction between the components of Unied Messaging.

104

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Registered Message Display Services
The UMS business service relies on pluggable message display services that are responsible for displaying messages
and accepting user responses. These message display services are the following:

• List Applet Message Display service

• Pop-up Applet Message Display service

The following gure shows the interaction between UMS and registered message display services.

Message display services subscribe to updates to the message cache in the UMS. A message display service subscribes
when it is included in the user interface. A message display service unsubscribes when it is not included in the user
interface. More than one message display service can be subscribed at the same time.

Update Messages Method
The UMS calls the Update Messages method on the message display service every time the message cache is updated.

Process Response Method
The message display service invokes the Process Response method on the UMS when the user selects a response in the
UI.

For more information about UMS business service methods, see Unied Messaging Service Business Service Methods.

105

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Custom Message Display Services
If necessary, you can develop your own message display service for use with the UMS as long as it adheres to the
protocol of method invocations described in Registered Message Display Services. Using a custom message display
service, you may choose to provide a dierent UI layout or a lter to display only a subset of messages.

Payload Variables
A payload variable is a name-value pair associated with a message instance. It can be substituted into the nal message
text, saved to the database when a response is logged, used as the scope for duplicate message suppression, or used to
process a response. For example:

[Product Id] = "12-E2345", [Product] = "Canon F150", [Account] = "Marriott HQ"

The payload property set is passed with the message to message display services and automated response services.
The payload structure is a set of name-value pairs.

Any payload variable can be substituted into the text by enclosing its name in []. Any payload variable can be logged to
the response table as long as a Response Field mapping is specied.

Payload variables are also used for message suppression. See About Suppressing Duplicate Messages.

You create payload variables using the Administration - Order Management screen, Message Types, and then the
Payload view.

Message Property Set
Characteristics of a message’s structure are described in the following table.

Aribute Type Description

Message Id

String

A unique identier for the message. This is used to make sure
the same message does not display twice. Every time a message
is displayed, it must be assigned the same message ID to enable
suppression of repeated messages. This is also used to identify the
message when an action is selected.

Message Type

String

The message type of the message. Refers to a row in the Message
Types table.

Score

Number

An integer between 1 and 100 indicating the priority of the
message. This is used to determine the order in which passive
messages are displayed.

Display Mode

String

(Optional) Indicates how to display the message. Seed data values
are “Active” and “Passive”. You (the integrator) can extend this list.

106

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Aribute Type Description

Note: This input is optional. If not specied for a
particular message, then the Display Mode defaults from
the message type.

[Payload]

Property Set

A list of name-value pairs that are used to specialize the display and
processing of the message.

Examples:

Line Item Id = “12-ABC123"
Upsell Product = “Canon 128 MB Memory
Card"

The payload aributes are dened in the Message Type
administration view. They are stored as sibling properties of
Message Id, Score, and so on.

Message List Property Set
The example that follows shows the structure of a sample message list called “Message List.”

Note: Lines in boldface are required properties.

This sample message list consists of a set of messages. Each message has a child property set providing the payload
properties.

CCFPropertySet@0013B0AC p#1 c#1 type="" vt=0 value=""
{
 p["Source"] = "Product Recommendation";
 c[0] CCFPropertySet@0BC04D00 p#0 c#2 type="Message List" vt=0 value=""
 {
 c[0] CCFPropertySet@0BDE0408 p#61 c#2 type="Message" vt=0 value=""
 {
 p["Message Type"] = "Cross-Sell Recommendation";
 p["Score"] = "66";
 p["Message Id"] = "42-4Z1RL";
 p["Display Mode"] = "Passive";

 c[0] CCFPropertySet@0BF0E578 p#14 c#0 type="Payload" vt=0 value=""
 {
 p["Doc Id"] = "42-528T1";
 p["Account Id"] = "";
 p["Related Product Id"] = "99-28GJ1";
 p["Contact Id"] = "";
 p["Line Item Id"] = "42-528VT";
 p["Related Product"] = "10GB Hard Drive";
 p["Reason"] = "Test XSell";
 p["Campaign Id"] = "";
 p["Net Price"] = "";
 p["Prod Id"] = "98-4NVN0";
 p["Currency Symbol"] = "$";
 p["Document Type"] = "Quote";
 p["Product"] = "1006667";

107

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

 p["Party Id"] = "";
 }
 }
 c[1] CCFPropertySet@0BD18070 p#61 c#2 type="Message" vt=0 value=""
 {
 p["Message Type"] = "Upsell Recommendation";
 p["Message Type Id"] = "04-E8VXZ";
 p["Score"] = "77";
 p["Message Id"] = "42-4Z1RN";

 c[0] CCFPropertySet@0BE4B178 p#14 c#0 type="Payload" vt=0 value=""
 {
 p["Doc Id"] = "42-528T1";
 p["Account Id"] = "";
 p["Related Product Id"] = "99-28GSH";
 p["Contact Id"] = "";
 p["Line Item Id"] = "42-528VT";
 p["Related Product"] = "10MB USB Home Networking Adapter";
 p["Reason"] = "Test UpSell";
 p["Campaign Id"] = "";
 p["Net Price"] = "";
 p["Prod Id"] = "98-4NVN0";
 p["Currency Symbol"] = "$";
 p["Document Type"] = "Quote";
 p["Product"] = "1006667";
 p["Party Id"] = "";
 }
 }
 }
}

Message Responses
A message type with an active display mode means that a dialog box is displayed to the user, and the user must provide
a response. A message type response is an allowed response to a message. Dening message type responses is part of
the process of creating a message type.

You create message type responses using the Administration - Order Management screen, Message Types, and then
the Responses view. For information about creating message type responses, see Creating Message Types.

Message Translations
The Unied Messaging framework allows for translations of message text and message response text. If you are
implementing message translations, you enter the translations as part of the process of creating a message type. You
create message type translations using the Administration - Order Management screen, Message Types, and then the
Translations view. For information about creating message translations, see Creating Message Types.

108

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Unied Messaging Service Business Service Methods
The Unied Messaging Service (UMS) business service exposes the APIs described in the following table for updating
the messages in the UMS cache, formaing messages, and aaching a new message display service. These APIs can be
called from any run-time event, signal, workow, or custom script.

Method Arguments Description

Add Messages

[in] Source: String

[in] Message List: Hierarchy

Add a new list of messages to the message cache.
Associate each message with the specied source.

Update Messages

[in] Source: String

[in] Message List: Hierarchy

Replace the current set of cached messages for
the specied source with the new list of messages.
Associate each message with the specied source.

Delete Messages

[in] Source: String

[in] Message List: Hierarchy

Delete all cached messages associated with the
source or, if specied, the list of messages provided.

Note: For deletion, only the message IDs
need to be identied in the message list.

Get Messages

[out] Message List: Hierarchy

Output all unsuppressed, cached messages
(regardless of source) including information derived
from the message type (such as allowed responses).

Process Response

[in] Source: String

Message Id: String

[in] Response: String

Process the end-user response to the specied
message as dened by the message type.

Reset

Not applicable

Delete all cached messages.

Subscribe

[in] Business Service: String

[in] Method Name: String

Add a Message Display business service to the list of
services that are informed when a change occurs to
the set of messages in the cache.

Unsubscribe

[in] Business Service: String

Remove the specied business service from the list
of services that are informed when a change occurs
to the set of messages in the cache.

Format Message

[in/out] Message: Hierarchy

Substitute and translate the text for the input
message. The message is not displayed.

109

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Creating Message Types
A message type stores the denition of a message, including its text, its bitmap, and its display mode. The process of
creating a message type involves adding a new message type record, adding message translations, dening message
type responses, and creating translations for message type responses.

To implement a new message type
1. Navigate to the Administration - Order Management screen, then the Message Types view.
2. In the All Message Types list applet, create a new message type record.
3. Complete the elds for the new message type record. Message Type elds are described in the table that

follows.

Field Comments

Title

Enter the title that will be displayed on the popup applet for an active message. For
example:

Recommendation

Display Mode

Select the display mode. Options are:

◦ Passive. The message is displayed on the screen, but it does not demand a
response from the user.

◦ Active. The message is displayed in a dialog box, and the user must select a
response (such as “Accept” or “Reject”) to close the message and continue.

Group

Use this eld to group related messages together. This eld constrains pick applets in
administration views, such as in the Administration - Product screen, then the Product
Recommendations view.

Bitmap

Select the graphic that will be displayed on this message. For example, you might
display an exclamation point graphic for an alert.

Note: The Bitmap eld applies only to messages with active display mode.

Short Text

Enter a short message to be displayed, using text and eld names. For example:

We recommend [Related Product].

Note: Short Text is generally not used, except by a custom message display
service.

Full Text Enter a message to be displayed, using text and eld names. For example:

110

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Field Comments

We recommend [Related Product] for [Net Price]. [Reason]

4. (Optional) If this text must be translated, click the Translations tab.

◦ Add records to the Translations list, and enter the translation for the content of the Full Text eld. You
must add one record for each language being translated. Translations elds are described in the table
that follows.

Field Comments

Language

Enter the code for the language of this translation. For example, enter FRA
for French.

Title

Enter the title that will be displayed on the popup applet for an active
message. For example:

Un Recommendation

Short Text

Enter a short message to be displayed, using text and eld names. For
example:

Nous recommendons [Related Product].

Note: Short Text is generally not used, except by a custom
message display service.

Full Text

Enter a message to be displayed, using text and eld names. For example:

Nous recommendons [Related Product] pour [Net Price].
 [Reason]

5. Click the Payload tab, and specify the payload variables to be substituted into the Full Text eld. Payload elds
are described in the table that follows.

Field Comments

Payload

Enter the name of the payload variable to be substituted with text. For example:

Campaign Id

Response

Choose from a picklist of values built from the elds of the UMS Response business
component (which is based on the S_COMMUNICATION table). For example:

Campaign Offer Id

111

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Field Comments

The response eld is the eld used to record the user response to messages.

6. Create a response for the message type.
a. Write a custom business service to process the new response.

For information about how to write a response-handler business service, see Aaching a Business
Service to a Message Response.
For example, the custom business service creates an activity to mail product literature to the customer.

b. Compile a new SRF.
c. In the Administration - Order Management screen, then the Message Types view, select the message

type for which you are creating a response.
d. Click the Responses tab.
e. Add the new response to the message type:

- Complete the required elds: Name, Business Service, Method.
- Set the Log ag to indicate whether to log this response.
- Set the Suppress Repetition ag and its corresponding eld, if this response causes suppression of

the message.
- Resequence the existing responses so that buons appear in the correct sequence on the user

interface.
7. Create translations for the message type response.

Translations for the message type response make sure that the text displayed on the actionable buons is in
the correct language.

Note: Translation records are not required if your implementation is mono-lingual. For single-
language implementations, the default text in the message type and in the message type response is
used.

8. Test the application by creating a situation where the message is displayed, and then clicking New Response.

Conguring the Display of Messages
When conguring the display of messages, you can choose between two precongured mechanisms stored in the UMS,
as follows:

• Add a list applet to a view. If you want the messages to be displayed at all times, then include the UMF
Messages list applet in a view.

• Expose an icon on an applet. If you do not want to give up the screen space that an applet requires, then
expose the UMF “You've got messages” icon on an applet.

Adding a Message Applet to a View
Use the following procedure to add a message applet to a view.

112

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

To add a message applet to a view
1. Add the UMF Message List Applet - SI to the view.
2. Add the UMF Passive Virtual Business Component to the Business Object of the view.

Adding a Message Icon to a View
Use the following procedure to a message icon to a view.

To add a “You’ve got messages” icon to a view
1. Create a new buon with the following seings:

◦ HTML Bitmap = ICON_TOOLBAR_MSGS

◦ HTML Disabled Bitmap= ICON_TOOLBAR_MSGS_OFF

◦ HTML Type = MiniBuon

◦ Method Invoked = MessagePopup

2. Add a user property with the following seings:

◦ Name = “Named Method 1: Message Popup”

◦ Value = 'INVOKESVC','UMF UI Service','PopupListApplet'

3. Add a user property with the following seings:

◦ Name = 'Named Method Check Can Invoke’

◦ Submethods = MessagePopup

◦ Value = Y

Implementing Multilingual Substituted Text
The UMS automatically translates the Title, Short Text, and Full Text for a message. Payload elds must be either
language-independent (such as Price or Product ID), or they must be translated by the message-generation engine. In
this case, you must create translatable payload text for the message.

To implement multilingual substituted text
1. Add a custom child business component and associated administration view to the payload entity to store the

language overrides for each language code.
2. Add a calculated eld to the payload business component to store the system language.
3. Add an outer join from the payload business component to the translation business component with a search

specication that matches the parent Id and the system language code.
4. Add a joined eld for the translated eld to the payload business component.
5. Add a calculated eld that selects the translated text if it is not null or if it otherwise defaults to the default

language text in the payload business component (example: IfNull([Language Text], [Text])).

113

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

The message-generation engine uses the calculated eld value (example: [Language Text]) to get translated text where
available.

Implementing a Custom Message-Generation Engine
Any workow or custom script can add, update, or delete messages stored and displayed by the Unied Messaging
framework. The PSP engine provides a framework for implementing a custom message-generation engine. For
example, you might implement a PSP procedure to generate disclosures that must be read before a product can be sold
(such as “Are you 21”) and then display those messages via Unied Messaging. This topic provides the general approach
to implementing a custom message-generation engine.

To implement a custom message-generation engine
1. Create new message types with associated responses and automated execution business services.
2. Create a PSP procedure that generates a Message List property set and passes that list to the UMS using the

Update Messages method.
a. Use a new source name to distinguish these messages from others that are similar.
b. Make sure all payload variables are populated.
c. Make sure each message ID is unique and invariant.

3. Set up run-time events or signals to execute the new message-generation engine at the desired points in the UI
process ow.

Note: Make sure to set up events that clear messages when they no longer apply.

4. Add the Message Display list applet or enable the Pop-Up Message list applet for the views where the new
messages are relevant.

About Working with Message Responses
For each message type, you can specify multiple possible responses. Each response is displayed as a buon labeled with
the Name text (or a language-specic translation of the Name text). Buons are displayed from left to right, sorted by
Sequence #.

Further information about message responses is organized as follows:

• Logging Message Responses

• Aaching a Business Service to a Message Response

Logging Message Responses
You set logging of message responses using the Administration - Order Management screen, Message Types, and then
the Responses view.

In the Responses list applet, use the Log ag to indicate whether responses are to be logged for a message type. You
can use this for suppression of duplicate messages and to analyze the eectiveness of messaging.

114

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Responses are logged to the S_COMMUNICATION table. This table stores marketing campaign responses. and you can
view message responses in the existing campaign analysis views.

With response logging enabled, the following message elds are logged:

• Message Type Id

• Message Id

• Response

• Display Mode

• Score

• Language Code

• Position In Message List

• All payload elds with an associated Response Field mapping

Aaching a Business Service to a Message Response
When the user selects a message type response (for example, by clicking the Accept buon for an upsell message),
the active message display service informs the UMS by calling its Process Response method. The UMS then calls the
business service method associated with that response.

You dene which business service method will handle a response using the Administration - Order Management screen,
Message Types, and then the Responses view.

The Siebel application provides prebuilt methods for handling upsell and cross-sell in the Product UpSell CrossSell
Service business service. You can implement your own automated response-handling logic (such as for sending an
email with product details) by scripting your own business service method. This method must process the Payload
argument, as described in the following table.

Argument Type Description

Payload

Hierarchy

A property set containing all payload variables provided with the
message when it was added to the UMS. The message-generation
engine must provide values required to process the message in the
payload variables.

About Suppressing Duplicate Messages
Opportunities to communicate a message (such as an upsell) to a customer are limited. It is important to deliver the
message that provides the highest likelihood of a new sale. Repeating a previously rejected message to the customer is
unlikely to generate a new sale; instead, you are more likely to make a sale by presenting a new message, even if it has a
lower score.

The Unied Messaging framework provides a exible mechanism for suppressing duplicate messages. You can
implement message suppression for particular responses (such as, implement suppression for “Reject” but not

115

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

“Accept”) and for any scope (such as, for an instruction to never show this message again to the customer, or to not
show the message again for this order).

Checking for duplicate messages occurs in two instances:

• When new messages are provided to the UMS, (for example, with the Add Messages or Update Messages
methods).

• After a new response has been processed (using the Process Response method).

Suppress Repetition Flag
The UMS aempts to suppress duplicate messages if the Suppress Repetition ag is set for one or more of the
responses for a message type.

Suppression Scope
The Field column indicates the scope of the message suppression (for example: Party Id, Document Id, or Line Item Id).

Note: Logging must be enabled and the scope variable must be mapped to a eld in the response table in
order for duplicate suppression to work.

All responses for a particular message suppression scope (such as Party ID) are loaded with a single query and cached
until the scope changes, for example, with a new caller.

For further information, see Suppressing Duplicate Messages.

Suppressing Duplicate Messages
You set suppression of duplicate messages using the Administration - Order Management screen, Message Types, and
then the Responses view.

A message is suppressed if a response has been logged for that message ID, response, and scope value; for example:

[Party Id] = '12-W123')

For this reason, the message ID must be unique and invariant.

To enable suppression of duplicate messages
1. Navigate to the Administration - Order Management screen, then the Message Types view.
2. In the All Messages Types list applet, select the message type for which you want to suppress duplicates.
3. Click the Responses tab to see the Responses list applet.
4. In the Responses list applet, check the Suppress Repetition ag to set suppression for the message type

response.
5. In the Field eld, specify the scope of the suppression, for example, the suppression may be limited to the Party

ID eld.

116

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

Migrating Message Types Between Environments
Message types can be exported and imported using the applet menu on the All Message Types list applet.

Tuning Performance of Unied Messaging
Note the following considerations when tuning performance of the UMS:

• Message type denitions are stored in an object manager-level cache. Messages are cached in memory and
never wrien to the database. The Message Display list applet is based on a virtual business component that
pulls data directly from the in-memory cache.

• Avoid using duplicate message suppression for business-to-business accounts. Duplicate suppression
processing has to load all previous responses for the account at the beginning of the call. Loading more than
100 responses will result in a perceptible delay. If you must use duplicate message suppression in business-to-
business situations, congure the message suppression to suppress duplicates by quote or by order instead of
by account.

• Limit the number of messages displayed. It is generally accepted that the user will not view more than three or
four recommendations at a time.

• Carefully consider the events that trigger the message-generation mechanism. In general, the message-
generation mechanism will have a larger overhead than the UMS.

Using Unied Messaging with the PSP Engine
PSP applications such as Pricer and Eligibility use the UMS to format translated, substituted text for waterfall output or
for eligibility reasons. The PSP action syntax provides an API, LookUpMessage, that in turn invokes the Format Message
method on the UMS. This method simply returns the formaed text. It does not add the message to the UMS cache.
Messages formaed in this way do not support automated responses, duplicate suppression, or logging.

To use the new message type with a PSP procedure
1. After completing Step 5 in Creating Message Types, add an action to the PSP procedure that invokes

the LookUpMessage function for the new message type, passing the payload elds. See Example of a
LookUpMessage Call.

The LookUpMessage function allows the UMS to process translations of the message text.
2. Test the revised PSP procedure.

Example of a LookUpMessage Call
You can use the example that follows as a model for an invocation of the LookUpMessage function.

{Row.Eligibility Reason} = LookUpMessage('Eligibility - Not In Contract Error',

117

Siebel
Order Management Infrastructure Guide

Chapter 7
Unied Messaging

[Account] = {Row.Account Id})

The PSP engine calls the method Format Message. Arguments for this method are described in the following table.

Method Arguments Description

Format Message

[in/out] Message: Hierarchy

Substitute and translate the text for the input
message. The message is not displayed.

118

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

8 Data Validation Manager

Data Validation Manager
This chapter discusses the data validation manager. It includes the following topics:

• About Data Validation Manager

• Roadmap for Implementing Data Validation Processing

• Process of Administering Data Validation Rules

• Process of Invoking the Data Validation Manager Business Service

About Data Validation Manager
Many companies are governed by various regulatory agencies, as well as internal processes and procedures, to verify
the quality and accuracy of their transactions. Data validation is a key component of many business processes, and can
involve many types of transactions, including orders, applications, claims, and various other service requests.

The Data Validation Manager business service can validate business component data based on a set of rules. In the case
of a rule violation, a custom error message appears or a user-dened error code is returned. The validation rules are
dened using the Siebel Query Language and can be conveniently constructed using the Personalization Business Rules
Designer. The business service centralizes the creation and management of data validation rules without requiring
extensive Siebel Tools conguration.

The Data Validation Manager business service reduces the need for custom scripts, decreases implementation costs,
and increases application performance.

Note: There is no specic encryption support built into the Data Validation Manager. The Data Validation
Manager inherits the CSSQuery function at the business component level, and uses the CSSQuery
functionality to actually check the expression.

The Data Validation Manager features:

• Search automatically for the proper rule set to execute based on active business objects and views.

• Write validation rules based on elds from multiple business components.

• Apply a validation rule to a set of child business component records to see if a violation occurs from one or
more records.

• Invoke specic actions to be performed as a result of a validation.

• Write validation rules that operate on dynamic data supplied at run time together with data from business
component elds.

• Automatic logging of data validation events.

119

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Some example business rules which can be enforced by the Data Validation Manager business service are:

• In an insurance company, claim adjusters are required to enter a closed date whenever they close a claim. If
the adjuster tries to close a claim without a closed date, an error message appears and the claim record is not
commied to the database.

• In a retail bank, dierent data validation rules are required for each of dozens of dierent service request types.
When a customer service representative creates a new service request, the Data Validation manager identies
the appropriate validation rule set for the specic type of service request and executes the data validation rules
of that rule set.

• At a health insurance company, customer service representatives use activity plans and activities to track
service requests, and all activities must be closed before the service request can be closed. When the CSR
closes the SR, the DVM loops through all associated activities making sure status of each is closed. If any are
still open, the SR cannot be closed.

Roadmap for Implementing Data Validation Processing
To automate data validation processing, perform the following processes:

1. Process of Administering Data Validation Rules.
2. Process of Invoking the Data Validation Manager Business Service

Process of Administering Data Validation Rules
This process is part of Roadmap for Implementing Data Validation Processing.

To support a given data validation business rule in your organization, you rst create a data validation rule set. The
rule set is a container which has one or more rule set arguments and one or more validation rules. The rules contain
expressions which are evaluated as being true or false. If the expression is evaluated as being false, validation rule
actions determine the appropriate error handling behavior.

To administer data validation rules, perform the following tasks:

1. Dening Error Messages for Data Validation
2. Dening a Data Validation Rule Set
3. Dening Rule Set Arguments
4. Dening Validation Rules
5. Dening Validation Rule Actions
6. Activating a Data Validation Rule Set

Dening Error Messages for Data Validation
This task is a step in Process of Administering Data Validation Rules.

Before dening data validation rules, you must dene the error messages that these rules display. When you create a
validation rule, you can choose among these messages to specify the error message that the rule displays.

120

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Note: When creating a validation rule, you also have the option of typing in a message for the rule, provided
that the Err Msg Txt eld on the applet is not set to read-only. If the Err Msg Txt eld on the applet is set
to read-only, then you cannot enter a message when creating a validation rule; instead, you must select a
message that you have already created.

To activate a rule set
1. Navigate to Administration - Data Validation, and then Validation Messages view.
2. In the Validation Messages list, add a record for each new rule set and complete the necessary elds. Some

elds are described in the table that follows.

Field Comments

Message Code

Enter a numeric code or error code that will be associated with the rule.

This code is an alphanumeric value that the application logs in the validation history
record and store in the Return Code output argument of the business service, if the
expression is evaluated to be false. The existing value of that output argument will be
overwrien. Therefore the Return Code output argument of the business service will
contain the Return Code of the last rule that is evaluated as FALSE. Maximum number
of characters for return code is 30.

For more information, see Viewing a Validation History.

Message Level

Enter the level of the error message. This is usually something like Quote or Order, but it
can be any text that describes the level.

Message Source

Enter the source of the error. This is the process that generated the error, such as Quote
Validation or Quote Approval.

Message Text

Enter the text that is displayed as the error message.

Dening a Data Validation Rule Set
This task is a step in Process of Administering Data Validation Rules.

You dene validation rule sets in the Administration - Data Validation screen. You can either revise an existing rule set or
create a new one.

• Dening a New Validation Rule Set

• Revising an Existing Validation Rule Set

You can import and export validation rule sets by selecting Export Rule Set and Import Rule Set from the menu buon
on the Rule Sets list. The validation rule set is saved as an XML le for importing and exporting purposes.

• Exporting a Validation Rule Set

121

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

• Importing a Validation Rule Set

To create a validation rule set, specify the business object and business component you want to validate. The validation
rule set will have one or more arguments and contain one or more individual rules.

Dening a New Validation Rule Set
Use the following procedure to dene a new validation rule set.

To dene a new validation rule set
1. Navigate to Administration - Data Validation, and then Rule Sets view.
2. In the Validation Rule Set list, add a record for each new rule set and complete the necessary elds. Some elds

are described in the table that follows.

Field Comments

Name

Enter a name for this rule set. You can execute a particular rule set by seing this name
as the value of the Rule Set Name input argument of the Data Validation Manager.

Version

Displays a numeric value to dierentiate various versions of the same rule set. Clicking
the Revise buon creates a new version of an existing rule set with the version number
incremented by one.

Group

Enter the group that this rules set is in. You can group a number of rule sets together by
giving them a common group name. You can then execute these rule sets in one call by
seing this group name as the value of the Group input argument of the Data Validation
Manager. Data Validation Manager executes these rule sets one by one in no particular
order.

(Note: If both the Rule Set Name and Group input arguments are specied, the Group
input argument will be ignored.)

Business Component

Select the business component to be validated.

Status

Displays the rule set status. Options include:

◦ In Progress. Default status that appears when the administrator rst creates a new
rule set or revises an existing rule set. A rule set can only be edited when its status
is In Progress.

◦ Active. Status that appears when the administrator clicks the Activate buon. A
rule set can only be invoked when its status is Active.

◦ Outdated. Status that appears when the administrator activates a newer version of
the rule set.

◦ Inactive. Status that appears when the administrator selects Deactivate Rule Set
from the applet level menu.

Business Object

Select the business object to be validated.

Business object is one of the selection criteria under which a rule set is selected for
execution. If the Object Search Type input argument of the business service is set to

122

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Field Comments

\Business Object, Data Validation Manager will check if the active business object
matches the rule set's Business Object value. If there is a match, the rule set will not be
excluded based on the Business Object criteria. It may be selected or excluded based on
other criteria.

Note: This business object must have a primary business component dened.

Start Date

Enter the date when the rule set becomes eective.

End Date

Enter the last date this rule set can be used. If not populated, the rule set never expires.

Conditional Expression

Enter a selection criterion under which a rule set is selected for execution. If the
Conditional Expression is specied (not NULL) for a rule set, Data Validation Manager
will exclude the rule set from execution if the conditional expression is evaluated to be
FALSE at run time.

If the Conditional Expression is not specied, it is interpreted as TRUE.

Conditional Expression provides a mechanism to perform dierent validations on the
same business component based on certain eld values. For example, you might have
many dierent types of service requests, and each type needs to be validated in a
dierent way. Using conditional expressions based on the Service Request type, Data
Validation Manager can select the appropriate rule set to execute.

Aggregate Error

When this check box is selected, Data Validation Manager ignores the Immediate
Display ag of each rule it processes. It aggregates all the error messages of the rules
that are FALSE into one string, and then display the aggregated error message to the
end user.

Revising an Existing Validation Rule Set
Use the following procedure to revise an existing validation rule set.

To revise an existing validation rule set

1. Navigate to Administration - Data Validation, and then Rule Sets view.
2. In the Validation Rule Set list, select a rule set and click Revise.

Clicking Revise creates a new version of the rule set and sets the Status to In Progress.
3. Make the appropriate changes in the Validation Rule Set form and click Activate.

Clicking Activate changes the Status from In Progress to Active and makes the record read-only. The old
validation rule set still appears, but the status is now Outdated.

123

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Note: You can delete a Validation Rule Set in the same way you delete any other record in Siebel Business
Applications. When you delete a Validation Rule Set, that rule set’s Validation History is also deleted.

Exporting a Validation Rule Set
Use the following procedure to export a validation rule set.

To export a validation rule set

1. Navigate to Administration - Data Validation.
2. In the Validation Rule Set list, select the rule set or rule sets that you want to export.
3. From the applet menu, choose Export Rule Set.
4. Follow the on-screen prompts to save the rule set as an XML le.

Importing a Validation Rule Set
Use the following procedure to import a validation rule set.

To import a validation rule set

1. Navigate to Administration- Data Validation.
2. In the Validation Rule Set list, choose Import Rule Set from the applet menu.
3. In the Validation Rule Set Import dialog box, locate the le you wish to import and click Import.

The imported rule set appears having a status of In Progress.
4. To activate the imported validation rule set, select it in the Validation Rule Set list and click Activate.

Clicking Activate changes the rule set Status to Active and makes the record read-only.

Dening Rule Set Arguments
This task is a step in Process of Administering Data Validation Rules.

You can write a validation expression of a rule which contains user-dened arguments using a syntax such as:

[Some Buscomp Field Name] = [&Argument Name]

These arguments must be rst dened in the Arguments list. Values of these arguments can be set using the Default
Value eld. They can also be set at run time by supplying an input argument to the Data Validation Manager business
service. The input argument name must be the same as the argument name dened in the Arguments list.

Business service input arguments will overwrite whatever default values you have specied in the Arguments list. The
default values only take eect when input arguments are not provided.

You can only dene arguments for validation rule sets that have a status of In Progress.

To dene a rule set argument
1. Navigate to Administration - Data Validation.
2. In the Rule Sets list, select a rule set with a status of In Progress and drill down on the rule set name.
3. Click the Arguments view tab.
4. In the Arguments list, add a new record, and complete the necessary elds. Some elds are described in the

following table.

124

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Field Comments

Argument Name

A string that species the name of the argument. You use the notation [&Argument
Name] to refer to the value of the argument in a rule expression.

Default Value

The value that the argument will take on in the absence of a business service input
argument of the same name.

Comments

Free text eld to provide explanations for the argument.

Dening Validation Rules
This task is a step in Process of Administering Data Validation Rules.

For each rule set, you dene one or more validation rules. These rules represent the validation criteria.

You can only dene rules for validation rule sets that have a status of In Progress.

To dene a validation rule
1. Navigate to Administration - Data Validation.
2. In the Rule Sets list, select a rule set with a status of In Progress and drill down on the rule set name.
3. Click the Rules view tab.
4. In the Rules list, add a new record, and complete the necessary elds. Some elds are described in the following

table.

Field Comments

Sequence #

Identies the numeric sequence of this rule in the rule set. The application evaluates
rules in numerical order based on this number.

Business Component

The business component upon which the rule is based.

Expression

A statement expressed in Siebel Query Language. The application evaluates whether
the expression is true or false. If true, the data validation manager proceeds to evaluate
the next rule. If false, the application performs the actions dened for the rule.

You can refer to a business component eld value using the notion [Field]. For example,
 if the business component of the rule is Opportunity, then an expression [Sales Stage]
IS NOT NULL means that you want to know of the Sales Stage eld of the Opportunity
business component contains a value or not.

125

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Field Comments

You can use the syntax [BC.Field] to refer to a eld of a business component dierent
from the one of the validation rule. For example, you may have a rule which has its
business component set as Opportunity. You can write the following expression stating
what is valid:

[Sales Stage] IS NOT NULL AND [Account.Status] = "Active"

[Account.Status] refers to the Status eld of the Account business component. Without
a prex, [Sales Stage] refers to the Sales Stage eld of the business component
(Opportunity) of the rule.

You can also use the syntax [&Argument] to refer to a rule set argument. For example,
 you may have a rule expression [&Answer] = "Yes". Here the rule set argument
Answer has already been dened in the Arguments List Applet. Once dened, the
argument becomes a business service input argument which you can populate with
dynamic values at run time (for example, through a workow).

You can either enter the statement directly in the eld or click the Expression select
buon to launch the Expression Designer. The Expression Designer allows you to
construct an expression by pointing and clicking on a pop up window, perform syntax
validation, and lookup denitions of built-in functions supported by the Siebel Query
Language.

For more information about the Expression Designer, see Developing and Deploying
Siebel Business Applications .

Message

Displays the text of the error message from the Return Code eld.

If the expression is evaluated to be false, the application either displays the error
message or writes it to a log le. The maximum number of characters is 250.

For more information viewing the validation log le, see Viewing a Validation History.

Apply To

This eld takes on two values: Current Record and All Records.

When Current Record is chosen, Data Validation Manager applies the validation rule
to the current active business component record. When All Records is chosen, Data
Validation Manager applies the validation rule to all business component records.

If the business component on the rule is the same as the one on the rule set, then this
eld is read only. If the business components on the two are not the same, you can
choose Current Record or All Records.

Return Code

Select the return code and error message for this rule.

The Validation Messages dialog box allows you to select codes and associated error
messages that you dened in the step Dening Error Messages for Data Validation.

126

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Field Comments

CAUTION:
If you type a return code rather than selecting if from the dialog box, the error
message is not copied into the rule. The error message for this rule will be
blank.

Start Date

Corresponds to the time when the rule becomes eective. A rule is only evaluated if the
Start Date is equal to or earlier than the current date.

End Date

Species the last date this rule can be used. If not populated, the rule set never expires.
A rule is only evaluated if the End Date is equal to or later than the current date.

5. After the Rules list applet, click the Rule Detail view tab and complete the necessary elds. Some elds are
described in the table that follows.

Field Comments

Stop on Error

If the expression is evaluated to be false and this eld is checked (TRUE), the application
will ignore all subsequent rules.

Immediate Display

Denes error message behavior. If the expression is evaluated to be false, and both
Immediate Display and Stop on Error ags are checked (enabled), the application
immediately displays the specied message.

Note: If, for the rule set, Aggregate Errors is enabled, the Immediate Display
ag for each rule is ignored. Instead, the application aggregates all error
messages of the rules that are FALSE into one string, and then display the
aggregated error message to the end user.

Message

The text of the error message. If the expression is evaluated to be false, the application
either displays the error message or writes it to a log le. The maximum number of
characters is 250.

For more information viewing the validation log le, see Viewing a Validation History.

Dening Validation Rule Actions
This task is a step in Process of Administering Data Validation Rules.

127

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

The Data Validation Manager business service can perform a sequence of actions when a rule expression is evaluated to
be FALSE. Each action can be set to update a business component in the active business object or to execute a business
service.

Each action has a sequence number. Data Validation Manager executes the actions in ascending order of their
sequence numbers.

To dene a data validation rule action
1. Navigate to Administration - Data Validation, and then Rule Sets view.
2. In the Validation Rule Set list, select the rule for which you want to dene an action, and drill down on the Name

hyperlink.
3. Click the Actions view tab.
4. In the Actions list, add a new record, and complete the necessary elds. Some elds are described in the table

that follows.

Field Comments

Sequence #

Identies the numeric sequence of this rule in the rule action. The application executes
actions in numerical order based on this number.

Type

Determines whether the action is to update the current active business component or
execute a business service. Can either be Business Component or Business Service.

Business Component

Name of business component which you want to update. This eld is editable only when
Type is set to Business Component.

Business Service Name

Name of the business service you want to invoke. This eld is editable only when Type is
set to Business Service.

Business Service Method

Method of the business service you want to invoke.

Business Service Context

Name - value pairs which you can use to pass certain values as input arguments to the
business service. For example, "input argument 1", "value 1", "input argument 2", "value
2".

For each action record of type Business Component, enter the eld and value information as described in the table that
follows.

Field Comments

Field

Name of the business component eld you want to update.

Value

Value with which you want to update the business component eld. This value must be a constant and
cannot be an expression.

128

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Field Comments

Activating a Data Validation Rule Set
This task is a step in Process of Administering Data Validation Rules.

The nal step in administering data validation rules is to activate the rule set. Only then can it be executed by the Data
Validation Manager business service.

After you have added and dened all rule set arguments and rules, activate the rule set. After you activate the rule set, it
becomes read-only and can not be edited.

You can only dene arguments and rules for validation rule sets that have a status of In Progress. If you want to revise
an existing rule set, see Revising an Existing Validation Rule Set.

To activate a rule set
1. Navigate to Administration - Data Validation.
2. In the Rule Sets list, select the rule set you wish to activate.

Note: The status of the rule set must be In Progress in order for you to activate it.

3. Click Activate.

Clicking Activate changes the status of the rule set to Active and makes the record read-only.

Process of Invoking the Data Validation Manager
Business Service
This process is part of Roadmap for Implementing Data Validation Processing.

You can invoke the Data Validation Manager two dierent ways:

• Invoking Data Validation Manager from a Runtime Event

• Invoking Data Validation Manager from a Workow

In either case, you can aect how the business service works by populating certain input arguments of the business
service.

You can view the results of the business service execution by viewing the validation history log (see Viewing a Validation
History).

Invoking Data Validation Manager from a Runtime Event
This task is a step in Process of Invoking the Data Validation Manager Business Service.

129

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

You can invoke the Data Validation Manager business service from a runtime event. When the specied runtime
event occurs, the application invokes the business service. To invoke the business service from an event, you rst
dene the event in the Administration - Runtime Events view. For more information about runtime events, see Siebel
Personalization Administration Guide .

To dene a runtime event to invoke the Data Validation Manager
1. Navigate to Administration - Runtime Events, and then Action Sets.
2. In the Actions Sets list, add a record and complete the necessary elds.

Some elds are described in the table that follows.

Field Comments

Action Type

Species the type of action. Select BusService.

Sequence

Number describing the order in which the action occurs. Execution begins with the
action with the lowest sequence number. Actions with the same sequence number are
executed in random order. Actions occur in sequence until all actions are completed.

Active

Check the box to indicate whether the action will be triggered or not. Inactive actions
are ignored when the event occurs. This is a quick way to turn o an action without
changing the start and end dates.

3. In the More Info form, complete the elds using the values described in the table that follows.

Field Value Comments

Business Service Name

Data Validation Manager

Name of the business service to invoke, if the
conditional expression evaluates to TRUE
and the type is BusService.

Enter the value exactly as shown.

Business Service Method

Validate

Method to invoke on the business service.

Enter the value exactly as shown.

Business Service Context

Example:

"Rule Set Name", "Validation", "Enable Log",
 "Y"

These input arguments are equivalent to
those presented in Step 2.

Name-value pairs to specify the inputs to
the business service method. Both the name
and the value must be enclosed by quotation
marks and separated by a comma and a
space after the comma.

130

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

CAUTION: Failure to use the syntax specied in the Business Service Context eld may result in
errors.

4. In the link bar, click Events to associate an event with the action set.
5. In the Events list, add a record and complete the elds as described in the table that follows.

Field Comments

Name

Optional. Select an event alias from the drop-down list. Selecting a name automatically
populates the Object Type, Object Name, Event, and Subevent elds. This is based on
the event template created in the Event Aliases list.

For more information about creating event aliases, see Siebel Personalization
Administration Guide .

Sequence

Required. An event can trigger multiple action sets. Enter numbers in this eld to control
when the action set associated with this event in this record executes relative to other
action sets associated with this event.

Object Type

Required. Select BusComp from the drop-down list.

Object Name

The name of the application, business component, or applet (depending on the object
type) to which the event occurs.

Event

Required. Select from the drop-down list. The choices depend on which object type you
choose. Valid values include:

◦ Use the PreWriteRecord business component event if you want to control whether
a record can be wrien to the database, based on the outcome from the validation.

◦ Use the PreDeleteRecord business component event if you want to control whether
a record can be deleted from the database, based on the outcome from the
validation.

Action Set

Required. Select an action set to run when the event occurs. The Name name is dened
in the Action Sets view tab. For more information, see Step 3.

6. Either close down and relaunch the server or mobile clients, or select Reload Runtime Events from the applet
menu.

Invoking Data Validation Manager from a Workow
This task is a step in Process of Invoking the Data Validation Manager Business Service.

131

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

You can invoke the Data Validation Manager business service from a workow. This topic describes some of the possible
steps you can include to enable this invocation. You may need to modify and expand on this procedure to accommodate
more complex business requirements. The workow process you create must contain the following steps:

• Start. Initiates the process instance. When the conditions have been met, the application initiates the process
instance.

• Business Service. A step in a process in which an automated call is made to the Data Validation Manager
service. A workow process denition can have one or more business service steps.

• End. A step in a process that species when a process instance is nished.

Note: The workow that makes a call to the Data Validation Service must be invoked from a runtime event.
If it is invoked from a script, the script passes no record context to the Data Validation Manager. The context
is passed only with a runtime event. Thus, if you try to invoke a workow using a script, the child business
component context is not passed to Data Validation Manager, so it cannot validate the data correctly.

For more information about how to create a start step, business service step, and end step in a workow, see Siebel
Business Process Framework: Workow Guide .

To invoke Data Validation Manager from a workow
1. Create the workow in Siebel Tools.
2. When you create the business service step, include the following information:

a. In the Business Service form, complete the elds described in the following table.

Field Value

Business Service

Data Validation Manager

Method

Validate

b. In the Input Arguments list, create new records to establish your Input Arguments as described in the
following table.

Input Argument Comments

Active Object

Can aain a value of Y or N. If the value is N or if this input argument is
not entered into the list applet, the Business Object and Object Id input
arguments must be established and cannot be NULL.

BusObj

The name of the business object (that is, the functional area) to which the
event occurs. It is required if an Active Object has not been specied or has a
value of N.

By default, the business service uses the primary business component of the
business object (if dened).

132

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Input Argument Comments

Enable Log

Valid options include:

- Y - Application logs all instances when the rule set runs.

- N - Application does not track any instances of when the rule set runs.

For more information about the Validation log le, see Viewing a Validation
History.

Object Id

The row ID of the principle business component of the business object. It is
required if an Active Object has not been specied or has a value of N.

Object Search Type

Value is View or Business Object and determines which of these two
arguments is used as criteria.

Group

Group name to which to restrict data validation rule set selection.

Rule Set Name

In the Value eld, enter the name of the rule set to be invoked. For more
information, see Dening a New Validation Rule Set.

If the data is valid, both the Return Code and the Return Message eld remain empty.

Note: If the data is invalid, in addition to lling in the Return Code and Return Message, the workow engine
also generates the generic error message "Error invoking business service." This error message is an expected
result of how the workow engine treats content populated into the Error Message process property by a
business service. It does not indicate that the Data Validation Manager failed.

Viewing a Validation History
You can view a history of validation events in the Validation History view. All events display in chronological order.

To view the validation history
• Navigate to Administration - Data Validation, and then Validation History view.

The Validation History view appears, displaying validation events. Some elds are described in the table that
follows.

Field Comments

BusComp Name

The business component that was validated.

133

Siebel
Order Management Infrastructure Guide

Chapter 8
Data Validation Manager

Field Comments

Date

The date the validation event happened.

Last Step #

Sequence number of the rule evaluated to be false or the last rule in the rule set.

Return Code

The rule's Return Code eld value.

Return Message

The rule's Message eld value.

Started By

The login name of the user who executed this rule.

Status

Species the status of the validation result:

◦ Errored Out. Indicates Stop on Error is True. The current rule is evaluated to be
false and further rule evaluation is halted.

◦ Error Proceed. Indicates Stop on Error is False; the current rule is evaluated to be
false and the application proceeds to evaluate the next rule.

◦ Completed. Indicates the application has reached the last rule of the rule set and
the rule is evaluated to be True.

For more information about dening rule sets and conguring the Return Code and Return Message elds, see Dening
Validation Rules.

134

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

9 Approvals Manager

Approvals Manager
Using the Approvals engine, you can dene a set of approvers who must approve a requested item. The Approvals
engine processes the dened set of approvers by notifying each approver with a Universal Inbox record or an email.

Approval processes happen in one of two ow types: sequential or parallel. For sequential approval processes, the
Approvals engine maintains the context of a specied sequence of approvers, and alerts the next approver after the
previous approver has approved the request. For parallel approval processes, multiple approvers can take action at the
same time.

The Approvals engine allows the requester to monitor the approval process using the Approvals view in the Quotes,
Orders, and Agreements screens. Navigate to the Administration - Application screen, then the Approval Admin view to
access the Approvals view.

In order to integrate Universal Inbox with Siebel order management, you use the Approvals view and the Approval
Manager business service.

This chapter includes the following topics:

• About Approval Processing

• ISS Approval Business Service Methods

• Dening Approval Items and Approval Stages

• About Invoking the Approvals Manager Business Service from a Workow

• Approving or Declining Approval Stages (End User)

About Approval Processing
In Siebel order management, administrators can dene a number of approval levels without the need for programming,
scripting, or conguring. You can dene both basic or multiple-step approval processing levels based on the needs of
your organization. You can invoke approval processing from a script, a workow, or a run-time event.

Approval Item
An approval item is an approval process invoked by the Approvals engine. An approval item can be one of two types:
parallel or sequential. An approval item with an Approval Flow Type of Parallel is set so that all approvers receive the
approval request at the same time. An approval item with an Approval Flow Type of Sequential is set so that each
approver receives the approval request only after the prior person approves. If an approver rejects the request, no other
approvers further along in the sequence sees the approval request.

135

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

Approval Stage
The approval stage is the set of individuals who must approve the approval item. An approval item can have multiple
approval stages.

Approval Types
The individual that is set as an approver can be one of the following approval types:

• Employee. A specic employee within the organization.

• Position. A general position within the organization.

• Either of the aforementioned. Employee and Position are both multi-value groups. The third option is Either. If
there is more than one owner or position specied against an approval item, then either one of them is allowed
to approve or deny the Inbox item.

• Note: If your organization denes the relationship between Employee and Position as 1:1, the
distinction between Approval Types is irrelevant. If your organization chooses to use the approval type
Position, only the primary employee for the position is alerted.

Automating an approval process involves the following steps:

• Administrator denes approval items and approval stages. For more information, see Dening Approval Items
and Approval Stages.

• Administrator invokes approval processing. For more information, see About Invoking the Approvals Manager
Business Service from a Workow.

• End users approve or decline an approval stage. For more information, see Approving or Declining Approval
Stages (End User).

Interaction of the Approvals engine parts is shown in the following gure.

ISS Approval Business Service Methods
The ISS Approval business service has the following APIs:

• CreateNewApprovalTasks Method

136

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

• GetApprovalStatus Method

• SetApprovalDecision Method

CreateNewApprovalTasks Method
This method creates new approval task instances by copying a template from Approval Stage. You must pass in the
Approval Level Name, Requesting Bus Comp, Inbox Type, and Object ID.

For more information about this method, including a description of all method arguments, see the topic about order
management interface methods reference in Siebel Order Management Guide .

GetApprovalStatus Method
This method returns the approval status for the inbox item. The status is one of the following: Approved, Declined, or In
Progress. You must pass in the Approval Level Name, Approval Item ID, Inbox Type, and Object Id.

For more information about this method, including a description of all method arguments, see the topic about order
management interface methods reference in Siebel Order Management Guide .

SetApprovalDecision Method
This method sets the approval status for a given stage level. You must pass in the Stage ID, Inbox Type, Object ID, Seq
Num, Inbox Item Id, Owner Info Id, and Action LIC.

Note: Only Approval Type EMPLOYEE is supported. Position-based and Either approval is not supported
with the Universal Inbox. These are only supported with the My Approval Inbox (Siebel Industry Applications).
However, Position Type Approval is supported in the sense that it dynamically routes the approval to the
primary employee for the position. But it is not the standard Siebel position-based visibility.

For more information about this method, including a description of all method arguments, see the topic about order
management interface methods reference in Siebel Order Management Guide .

Dening Approval Items and Approval Stages
An administrator denes the approval process by creating approval items and approval stages using the Administration
- Application screen, then the Approval Admin view.

To dene approval items and stages
1. Navigate to the Administration - Application screen, then the Approval Admin view.
2. In the Approval Item list, add a record and enter a name in the Approval Item eld.
3. In the Approval Flow Type eld, select one of the following:

137

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

◦ Sequential. Indicates this approval item is distributed to approvers one after another in the sequence
specied in the Approval Stage list applet. The application routes the approval item to the next approver
only if the current approver approves the request. If any one approver in the approval chain declines the
request, the approval item is rejected, and no further routing is conducted.

◦ Parallel. Indicates this approval item is distributed to all approvers simultaneously for approval. The
approval item is rejected if at least one approver declines the approval request.

After you have dened an approval item, the next step is to dene the appropriate approval stages. The
Approval Item and Approval Stage list applets have a parent-child relationship.

4. In the Approval Stage list, add a record for each approval stage and complete the necessary elds.

Some elds are described in the following table.

Field Description

Sequence #

Identies the numeric sequence of this approval stage in the current approval item. The
application executes approval stages in numerical order based on this number.

Approval Type

Species whether the approver is a position or an employee.

Owner Login Name

Indicates the login name tied to this approval stage. Relevant only if Approval Type is
Employee.

Owner Position

Indicates the position tied to this approval stage. Relevant only if Approval Type is
Position.

End users use the Inbox screen to approve an approval item. For more information, see Approving or Declining Approval
Stages (End User).

About Invoking the Approvals Manager Business Service
from a Workow
You can invoke the FINS Approval Item Service from a seed data workow. To do this, click the Generate Approvals
menu option on the Quote, Order, or Agreement header applet. The workow shown in the following is the one invoked
through the signal ApproveItem.

You can also invoke the FINS Approval Item Service from a workow by creating a workow process in Siebel Tools
containing the following steps:

• Start. Initiates the process instance. When the conditions have been met, the application initiates the process
instance. See Conguring the Start Step for a Workow That Invokes the Approvals Manager Business Service.

138

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

• Business Service. A step in a process that makes an automated call to the FINS Approval Item Service. A
workow process denition can have one or more business service steps. See Conguring the Business Service
Step for a Workow That Invokes the Approvals Manager Business Service.

• End. A step in a process that species when a process instance is nished.

In order for your workow to execute correctly, the Start and Business Service steps must meet the minimum
requirements described in the referenced sections. For more information about workows, see Siebel Business Process
Framework: Workow Guide .

An example of a workow that invokes the Approvals Manager business service is the ISS Approval (Order) workow,
shown in the following gure.

Conguring the Start Step for a Workow That Invokes the
Approvals Manager Business Service
The following table details some of the start step parameters for the workow process.

Field Comments Example

Event

The specic event that happens to the object.
The set of available events is dierent for
dierent object types.

Use the WriteRecord business component event
if you want to trigger the approval process after
the record is wrien to the database.

Use the WriteRecordNew business component
event if you want to trigger the approval
process after a new record is wrien to the
database.

Event Object

The name of the application, business
component, or applet to which the event
occurs.

Contact

Event Object Type

The type of object to which the event
occurs. This can be an application, business
component, or applet.

BusComp

139

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

Field Comments Example

Name

The name of the Next step branch.

The name of the branch must be unique or you
cannot import or export the workow process.

Next Step

The name of the step that follows when
conditions are met.

Picklist of existing process steps.

Type

The type of branch.

The value can be one of the following:

• Condition. This value indicates that a
condition is dened for the branch.

• Default. This value indicates that if
nothing else is satised, then this branch
is followed. Additionally, if this value
is used, any conditions dened for the
branch are ignored.

Conguring the Business Service Step for a Workow That Invokes
the Approvals Manager Business Service
The rst and second table in this topic detail some of the business service step parameters and input arguments for the
workow process.

Field Value

Business Service

ISS Approval Business Service

Methods

CreateNewApprovalTasks

GetApprovalStatus

SetApprovalDecision

Input Argument Property Name Comments

Approval Identier

Object Id

Row Id of the object (for example, a Service
Request) that needs approval processing.

Approval Item Name

Approval Item Name

Name of the Approval Item dened in the
Administration - Application screen, then the
Approval Admin view.

140

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

Input Argument Property Name Comments

Requesting Buscomp

Requesting Buscomp

Name of the buscomp object (for example,
 a Service Request) that needs approval
processing.

Approving or Declining Approval Stages (End User)
End users approve approval items in the Inbox views. Users can view approval items by login name or position. For more
information about seing up approval processing, see Dening Approval Items and Approval Stages.

The ISS Post Approval workows (query on ISS Post Approval Workow *) are invoked to execute the ISS Approval
service after the approver takes action in the Inbox views.

To approve or decline an approval stage
1. Navigate to the Inbox views.
2. Select one of the following views:

◦ My Approvals. Displays all approval items associated with the user’s login name.

◦ My Position Approvals. Displays all approval items associated the current user’s position.

3. To view additional details about an approval item, drill down on the Approval Identier hyperlink.
4. In that Status eld, select Approve or Decline.

Once you select a status, the application populates the Approval By and Approval Date eld and sets the record
to read-only.

141

Siebel
Order Management Infrastructure Guide

Chapter 9
Approvals Manager

142

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

10 Asset-Based Ordering Methods Reference

Asset-Based Ordering Methods Reference
This chapter is a reference that explains the methods developed for the business services used for the asset-based
ordering parts of C/OM. It includes the following topics:

• Product Manipulation Toolkit Business Service Methods

• Order Entry Toolkit Business Service Methods

• Account Administration Toolkit Business Service Methods

• Complex Product Auto Match Business Service Method

Product Manipulation Toolkit Business Service Methods
The Product Manipulation Toolkit (PMT) business service is a set of methods that can be linked to implement order
processing workows. These workows maintain the service prole as orders are provisioned.

The two primary methods in this toolkit are:

• Delta. Creates a Quote or Order that denes the changes required to convert the initial state of an Asset into the
nal state of an Asset.

• Apply. Applies changes dened in Quotes and Orders to an Asset, puing the Asset into a new state.

The toolkit also provides a number of methods to support Delta and Apply.

This topic begins with a description of User Properties Used by PMT Methods. Then this topic describes all the methods
that the PMT business service calls, which are summarized in the following table.

Method Comment

Delta Method

Generates the actions necessary to change an existing product with components (asset) into a new
product with components. The set of actions can be wrien to a quote or an order.

Apply Method

Applies changes dened by a Sales order line item to a customizable asset.

Trim Method

Eliminates line items from a delta quote or delta order if they do not meet the requirements specied
in the input arguments. This action produces a new trimmed quote or order. The method determines
which changes in a customizable order item to apply to the service prole stored in Assets.

Explode Method

Creates multiple instances of a product. The number of instances is determined by the value of the
eld dened by the ExplodeOnField argument. For each new instance, the value of ExplodeOnField
is set to 1. An existing instance is considered for explosion only if it meets the conditions specied by
ConditionFieldNames and ConditionValues.

143

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Method Comment

Explode Siebel Object Method

Functions like Explode except that it also loads the SiebelMessage integration object from the Siebel
database with a specied business component and synchronizes it back to the database after the
explosion.

Find Orders Method

Given the asset integration ID of a root line item, this method nds all instances of order items
that have the same asset integration ID. The order header, matching line item, its child items and
aributes are returned as part of the output. Other lines item in the same order header with a dierent
integration IDs are not returned.

Logical Delete Method

Converts any item of a product instance that has a Deleted action code to an Update action code and
an Inactive status. Logical Delete only works with a product instance of the Order type. In other words,
 the Integration Object passed in the Siebel Message is based on the Order Entry business object.

Assign New Service IDs Method

Assigns a service point ID, associated with a specied premise, to each item of the input complex
object where the service point type matches the service type of the product.

Convert Product Instance Method

Converts a product instance of one type to another; for example, quote to order.

Get Instance Method

Gets a complex product instance from the Product Congurator.

Get Prole Aribute Method

Returns the value of the specied aribute of the user prole.

Is Fully Ex Method

Checks a product instance to determine if an explode operation is required, based upon the value
specied by ExplodeOnField. If the eld value is greater than 1 for any component of the product
instance, the method returns N. Otherwise, the method returns Y.

Is Module Licensed Method

Determines whether or not the specied module is licensed.

Merge Method

Merges the components of one integration object (product instance) under the header of another
integration object.

Quote To Revenue Method

Generates revenue line items for each line item in a quote that matches the criteria specied by the
input conditions. The line items are associated with the opportunity from which the quote was created.

Recongure Product Instance Method

Displays the asset that was passed to the Product Congurator as input, in the Congurator UI.

Reset Method

Clears out all cached product instances.

Retrieve Next Object From List Method

Given a hierarchical integration object with multiple root components at the second level, this method
returns an integration object that contains the header, one root component, its children and their
aributes.

Set Action Method

Sets the Action Code eld of all items in the hierarchy of a given product instance to the specied
value.

Set Exception Error Message Method

Called from the workow to get the localized error message text that is associated with the input error
code.

144

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Method Comment

Set Field Value Method

Sets a specied eld to the given values for all items in the product instance that meet an optional
condition.

Set Multiple Field Values Method

Sets specied elds to the given values for all items in the product instance.

Set Output Header Method

Caches the output header that will be used by the Apply and Delta methods.

Set Product Instance Method

Caches a product instance that will be used as an input arguments for Apply and Delta methods.

Set Prole Aribute Method

Assigns values to aributes in a user prole.

Synchronize Method

Synchronizes product instance to the database. Optionally, this method also reprices the instance after
it is synchronized by calling Pricing Manager Reprice or RepriceAll. This method calls the EAI Siebel
Adapter Execute method to synchronize or upsert.

Update Multi Object List Method

After a root integration component is stripped from the integration object by the Retrieve Next Object
From List method, this method returns the resulting integration object.

Update Order Line Item Completed Flag
Method

Sets the Order Item Processed Flag of the root order line item to Y, if its status and that of all its child
items is Complete, Rejected, or ‘-‘.

Get Cfg Buon Click Information Method

Identies the buon the user has clicked in the Complex Product view.

Refresh Business Component Method

Reexecutes all instances of the specic buscomp to get data from the database.

Invoke BC Method

Allows a business component-based method to be invoked from a workow. Acts as a bridge to pass
the business component name and method name, along with the parameters, and returns the value
required from the workow to the specied business component

Iterate Process For Selected Rows Method

Loops through all selected rows in the active business component and initiates the specied workow
process for each row.

Get Selected Row Count Method

Returns the number of rows selected in the active business component (for example, the business
component that initiated the workow).

Get First Selected Row Values Method

Queries the active business component for a given set of eld values (specied by the Fields
argument) to be assembled and returned in the output property set.

Ungroup Method

Creates multiple instances of a product. The number of instances is determined by the value of the
eld dened by the ExplodeOnField argument. For each new instance, the value of ExplodeOnField
is set to 1. An existing instance is considered for explosion only if it meets the conditions specied by
ConditionFieldNames and ConditionValues.

145

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

User Properties Used by PMT Methods
The following user properties are used by PMT methods:

• Alias Action Code. Used by Delta and Apply to extend the standard set of action codes by creating aliases.

Syntax:

Alias Action Code = "<action code>","<alias action code>","<expr to satisfy on
Delta>"

Example:

Name = Alias Action Code 1

Value = "Update", "Suspend", "[Old Asset Status] = "Active" AND [Asset Status] =
"Suspended"

• Asset Integration Object Name. Name of the integration object that is based upon the Asset business object.

• Aribute Integration Component Name. Name of the integration component that is based on the extended
aribute business component. For example, Quote Item XA is a line item’s extended aribute. This value must
be the same for all three integration objects: asset, quote, and order.

• Aribute Item Map. Used by the Convert Product Instance, Delta, and Apply methods to map Asset, Quote, and
Order aribute elds. It allows the methods to transform one data type (Asset, Quote, or Order) to another data
type (Asset, Quote, or Order).

Syntax:

Name = Src Int Obj Name.Src Int Comp Name:Dest Int Obj Name.Dest Int Comp Name
Map #

Value = [Src Field]:[Dst Field]

Example:

Name = SIS OM Quote.XA:SIS OM Order.XA Map 20

Value = [Name]:[Name]

• Cancel Buon Return. Output value of the Get Cfg Buon Click Info method when the Cancel buon is clicked in
the Complex Product view.

• Delta Line Item Compare Field. Used by the Delta method to determine which Asset line item elds are
compared to determine if two line items are dierent.

Syntax:

Delta Line Item Compare Field = [Asset line item Integration Field]:[Quote/Order
line item Integration object field]

• Delta Old Field. Used by the Delta method to capture the old value of a line item eld when it is changed by a
Modify Order.

Syntax:

146

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Delta Old Field # = [field name]:[field name to store old value]

Example:

Name = Delta Old Field 1

Value = [Status]:[Old Status]

• Delta XA Compare Field. Used by the Delta method to determine which Asset Line Item’s aribute elds are
compared to determine if two line item’s aributes are dierent.

Delta Line Item Compare Field = [Asset line item Integration Field]:[Quote/Order
line item Integration object field]

Example: If an Order line item’s Account Id eld is mapped to the Asset Line item’s Owner Account Id, PMT user
property Quote Integration Object Name is set to SISOM Order, and user property Asset Integration Object
name is set to SIS OM Asset, the following user property is created:

SIS OM Order Line Item:SIS OM Asset Line Map 20 [Account Id]:[Owner Account Id]

• Delta XA Old Field. Used by the Delta method to capture the old value of an XA eld when it is changed by a
Modify Order.

Syntax:

Delta XA Old Field # = [field name]:[field name to store old value]

Example:

Name = Delta XA Old Field 1

Value = [Value]:[Old Value]

• Done Buon Return. Output value of the Get Cfg Buon Click Info method when the Done buon is clicked in
the Complex Product view.

• Header Integration Component Name. Name of the integration component that is based on header business
components. A Quote is a header of a Quote, an Order is a header of an Order, and so on. This value must be
the same for all three integration objects: asset, quote, and order.

• Header Map. Similar to the Aribute Item Map except that this user property maps header elds.

Syntax:

Name = Src Int Obj Name.Src Int Comp Name:Dest Int Obj Name.Dest Int Comp Name
Map #

Value = [Src Field]:[Dst Field]

• Line Item Integration Component Name. Name of the integration component that is based on line item
business components. Quote Item is a line item component, Order Item is a line item component, and so on.
This value must be the same for all three integration objects: asset, quote, and order.

• Line Item Map. Similar to the Aribute Item Map except that this user property maps line item elds.

Syntax:

147

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Name = Src Int Obj Name.Src Int Comp Name:Dest Int Obj Name.Dest Int Comp Name
Map #

Value = [Src Field]:[Dst Field]

Example: If an Order line item's Account Id eld is mapped to the Asset Line item's Owner Account Id, PMT
user property Order Integration Object Name is set to SIS OM Order, and user property Asset Integration Object
name is set to SIS OM Asset, the following user property is created:

Name = SIS OM Order.Line Item:SIS OM Asset.Line Item Map 20

Value = [Account Id]:[Owner Account Id]

• Order Integration Object Name. Name of the integration object that is based on an Order business object.

• Quote Integration Object Name. Name of the integration object that is based on a Quote business object.

• Workow Product Conguration View. Species which view the Product Congurator is to use when PMT
method Recongure Product Instance is invoked.

Note: The name of the view must be added to both of the following views in the Siebel client: (1)
Application Admin screen, then the Views view (2) Application Admin screen, then the Responsibilities
view

Syntax:

SIS OM Reconfigure Complex Product View Name: Account

SIS OM Complex Product Runtime Instance View - Account

Delta Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It generates the actions necessary
to change an existing product with components (asset) into a new product with components. The set of actions can be
wrien to a quote or an order.

Delta compares two complex assets (original and modied) and returns a quote or order. The return contains line items
that specify the actions required to change the asset from the original state to the nal state.

Note: An update occurs if a eld in the product or any of its aributes changes. The list of elds being
compared is dened by the Delta Line Item Compare Field user properties. This list of elds is congurable to
support customer extensions to the database.

Arguments

Argument Description

SiebelMessage

[in] Hierarchical property set containing the nal Asset (output returned from call to PMT business
service method Recongure Product Instance Method).

148

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

SiebelMessage

[out] Hierarchical property set containing a quote or order header, complex line items, and aributes.

SplitQtyChange

[in] Value is N. Controls whether a new line item is created upon an increase in the quantity of an asset
component. This argument is optional. By default the component line item is split.

Returns
Property Set containing the complex quote or order.

Remarks
Because Delta is used frequently, the following additional information about the method is useful.

User Properties
The Delta method uses the following user properties:

• Asset Integration Object Name

• Quote Integration Object Name

• Order Integration Object Name

• Delta Line Item Compare Field

• Delta XA Compare Field

• Delta Old Field

• Delta XA Old Field

• Line Item Map

• Aribute Item Map

• Alias Action Code

For descriptions of these user properties, see User Properties Used by PMT Methods.

Before Invocation
Before Delta is invoked, the system must call two other methods:

• Set Product Instance

Saves the original asset’s conguration before the Product Congurator is called. For more information, see
Recongure Product Instance Method.

• Set Output Header

Saves the quote or order header that will be the Delta output. If a line item or aribute is associated with the
Quote or Order property set, it is stripped from the property set returned by the Delta method. For more
information, see Set Output Header Method.

149

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Processing
During Delta processing, the method:

• Compares the before and after images to determine the correct action codes for output.

• Passes all elds in the new customizable asset through to the delta quote or delta order. This includes all
custom elds.

Delta compares a user-congurable set of elds. This includes the parent component ID to make sure that
changes to the product with components structure are reected as an update.

Increasing Quantities of an Asset Component
If the user edits a customizable asset and increases the quantity of an existing component, the result is two line items.
The rst line item represents the original asset. The second line item adds new copies of that asset. If the original line
item is changed, the Delta action is Update or NULL.

Action Field in the Quote and Order Aribute Tables
Delta logic populates an Action eld in the quote aribute and order aribute tables. This eld allows order provisioning
logic to determine which of the aributes of a service product has changed.

For example, a delta quote can be represented as shown in the following gure. In this example, the call forwarding
number changed but the number of rings did not.

Action Codes Reset Upon Delta Line Item or Aribute Changes
When a delta-enabled eld in a line item changes (because of direct user input or a process such as repricing) or an
aribute of a line item changes, the action code is automatically set. This is shown in the following table.

Original Action New Action

None

Update

Add

Add

Update

Update

150

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Original Action New Action

Delete

Delete

Note: Make the Action eld Read-Only to avoid possible violations of conguration rules that could be caused
by changing the action code of a line item.

Alias Action Codes
The Delta method has been extended to support Alias Action Codes. Delta replaces one of the standard action codes
(Add, Update, Delete, -) with an alias action code if a certain condition is met. For example, an action code of Update
may be replaced by Suspend if the status eld changes from Active to Suspended. Alias action codes are evaluated for
components but not aributes. Alias action codes are specied by the Alias Action Code user properties.

Old Value Support
When performing a modify order in Siebel Customer Order Management versions prior to 7.7, you can view the changes
made to a product but only the end state, and values prior to the modify are lost. Downstream provisioning systems
require both the prior and current values. For example, a change in bandwidth from 56K to 1024K might require a new
piece of equipment to be installed at the wire center whereas a change form 2048K to 1024K is simply a downgrade
using the existing equipment.

The Delta method has been extended to store the values of elds prior to their being changed. The prior value is the
value of the eld in the initial property set being considered by Delta.

Service Item Unique Keys (Asset Integration Id)
The Delta and Apply method operations depend upon the unique keys to each service item. Typically, the unique
key is an invariable combination of elds in the service item record. Because no combination of user-entered elds is
certain to be unique or invariable, the Siebel application provides a hidden Asset Integration Id eld that stores a unique
identier for each service item.

The asset integration ID links the service item to the quotes and orders that modify it. On creation of a quote to add a
new service item a new asset integration ID is generated from the row ID of the quote line item The quote is converted
to an order at which time a new asset integration ID is generated from the row ID of the order line item. This occurs
only if the action code of the quote line item is ‘Add’ to enforce uniqueness if multiple orders are created from the same
quote.

When the completed order is converted into an asset the asset integration ID is copied from the order line item to asset.
When the asset is subsequently modied (Modify or Disconnect) the asset integration ID is copied to the quote and
order line items.

Action Types
Each action types is implemented as a soft-coded list of values. This soft coding supports a multilingual user interface
and allows for industry specic terminology. The action types supported by the Siebel application are listed in the
following table.

Action Type Comments

Add None

151

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Action Type Comments

Update

None

Delete

None

None

No action

Examples
Review the following examples in the following sections:

Generating a Delta Quote to Update an Asset
The following example shows how this method generates a delta quote to update an asset.

1. A conguration session starts with the GCI One Bundle in the state shown in the diagram that follows.

2. A CSR updates the customizable asset, as in the diagram that follows.

3. The Delta method generates the delta quote shown in the diagram that follows.

152

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Generating a Delta Quote to Add a New Asset
The following example shows how this method generates a delta quote to add a new asset.

1. A conguration session starts with no existing asset. The user congures a new customizable product, as in the
diagram that follows.

2. The Delta method generates the following delta quote.

Generating a Delta Quote to Disconnect an Asset
The following example shows how this method generates a delta quote to disconnect an asset.

1. The user selects a customizable asset in the service prole view, as in the diagram that follows.

153

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. The user clicks Disconnect.
A workow runs Delta with the current state of the customizable asset and an empty customizable asset as
input arguments. The resultant delta quote is shown in the diagram that follows.

Generating a Delta Property Set to Add More Assets
The following example shows how this method generates a delta property set to add more copies of an asset.

1. The user selects a customizable asset in the service prole view, as in the diagram that follows.

154

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. The user makes various changes including changing the quantity of Calling Card from one to three, as in the
diagram that follows.

3. Delta generates the delta property set as shown in the diagram that follows. The calling card record is split out
into the original, unchanged asset and an action to add the new copies of the original calling card.

Identifying Changes in Product Structure
The following example shows how this method is used to change a product structure.

1. The user selects a customizable product in the customer prole view, as in the diagram that follows.

155

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. Since this asset was created, the customizable product structure has changed to group all features beneath a
Feature Package component. When the product is loaded into the Congurator, it is relinked and displayed as
shown in the diagram that follows.

3. When the new structure is saved, Delta identies the new Feature Package component and marks the Call
Forwarding feature for update because its parent has changed. This is shown in the diagram that follows.

156

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Apply Method

• Trim Method

• Recongure Product Instance Method

• Set Output Header Method

• Set Product Instance Method

Apply Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It applies changes dened by a Sales
order line item to a customizable asset. This method uses, as a base, an asset that is cached as a result of a call to set
the Product Instance and optionally, a header (asset, quote, or order), passed in during the Set Output Header.

Arguments

Argument Description

OpenOrders

[in] Output result of a call to Business Service Find Orders. (Optional).

For more information, see the section about input arguments.

Note: Either OpenOrders or SiebelMessage is acceptable as input but not both.

SiebelMessage [in] Contains a single complex Open Order or an Open Quote Line Item. (Optional)

157

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

Note: Either SiebelMessage or OpenOrders is acceptable as input but not both.

SiebelMessage

[out] Output asset image representing a future congurable asset.

Is Apply Result Empty

[out] Y if all the line items are removed from the result, or if the information supplied to create an asset
is insucient information.

Note: Either SiebelMessage or Is Apply Result Empty is returned as output but not both.

Returns
An asset PropertySet that represents the original input asset plus the changes dened in the input quote or order line
item.

Remarks
The following sections about the Apply method are useful.

Input Arguments
To meet its requirements as a general-purpose tool for processing throughout the Asset-Quote-Order life cycle, the
Apply method can accept a variety of arguments as input. All input parameters are optional to a varying degree, and the
combination of parameters will be determined by the data present and the desired operation.

Apply handles four possible input parameters:

• OpenOrders [input] PropertySet representing a series of Open Orders

OpenOrders can be passed as one of two arguments directly in the Apply method invocation. When a single
OpenOrder is to be processed, this argument can be supplied through a standard SiebelMessage PropertySet,
obtained through a call to a standard Siebel Adapter. It can be either an Order or a Quote subtype (Quote only
on Modify Quote Workows).

When more than one Open Order is involved in creating the Output Asset, OpenOrders is supplied by a multiple
hierarchy OpenOrders type, obtained by invoking the Find Orders Business Service method. Apply checks
for the presence of OpenOrders rst, and only looks for the single-order SiebelMessage if OpenOrders is not
supplied. If both are supplied, only OpenOrders is processed. If neither is supplied and Input Asset is supplied,
the Apply method passes the Input Asset PropertySet back as the Output Asset PropertySet.

• SiebelMessage [input] PropertySet

This input represents a single Open Order. See the previous description.

• Asset [input] PropertySet

158

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

This argument is passed through the Set Product Instance method invocation before Apply is invoked. The
Input Asset PropertySet is the base Asset upon which all changes from Open Orders are applied. If no Assets
related to the Open Orders are being applied, the call to Set Product Instance is skipped.

• Header[output] PropertySet

This argument is passed through the method invocations before Apply is invoked. Ordinarily, the Output
Header normally is not supplied. However, if it is supplied, it is passed into the Business Service by a separate
invocation of Set Output Header immediately before Apply is invoked.

Under most operating conditions, Apply determines the contents of the Output Header from the Input Asset
or the Input Orders. However, when the Output Header is supplied, it is passed into the Business Service by
a separate invocation of SetOutputHeader immediately before Apply is invoked. The Output Header can be a
SiebelMessage PropertySet of type Asset, Order or Quote. It can be either an empty header without subordinate
data or a fully formed hierarchy with associated child item data. When child item data is carried with the Output
Header, the child item data is removed.

Generally, the Output Header gives the Apply method specic data to create an update Output Header for later
synchronization by a Siebel Adapter. Use it only if the Output Header that results from Input Asset or the Input
Open Order processing is insucient for resynchronization.

It is also possible (and occasionally valid) to invoke Apply without passing any arguments at all. If no input is specied
at all, Apply returns a value of Y in the Is Apply Result Empty Process Property. This result is also returned when the
resulting Asset contains only a header, but no items.

Creating a hybrid asset order
Apply creates a hybrid asset-order to simulate the future conguration of a complex product. Taking an asset
representing a complex product as input, Apply overlays all unprocessed items and aributes of that product from all
its open orders onto the asset. Because the asset’s items and aributes are already provisioned, their action codes will
carry the internationalized equivalent of the *(blank) value.

Service Item Unique Keys
The Apply and Delta method operations depend upon the unique keys to each service item. For more information, see
the description of Delta Method.

Apply assumes that the asset used as a base on which to apply open orders was set using Set Product Instance. If no
asset is supplied, either the rst Open Order or the single (SiebelMessage) Open Quote or Order will be used as the basis
for creating a new complex asset. If neither asset nor Open Order is supplied, the method returns an Empty result.

Exception Handling
Apply handles all service quote or sales order actions even if they include possible conicts. For example, if a service
quote line item instructs the method to modify a service item that is already disconnected, Apply logic ignores the
service quote line item. The exception conditions handled by Apply are listed in the following steps.

Apply is executed in two steps:

1. SetProductInstance (Asset PropSet)

This action initializes internal structures and stores the passed PropertySets that are the result of an earlier
invocation of Siebel EAI Adapters. Because a business service is limited to a single hierarchy for each invocation,
the PMT business service is invoked twice to pass both PropertySets.

159

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Note: The Asset PropertySet is assumed to be a single hierarchy representing a single complex item,
keyed by the integration ID for the root of the complex item.

2. Apply (OpenOrders PropSet)

This action does the following:

◦ Retrieves the Asset PropertySet from its internal storage (established by calling Set Product Instance) and
instantiates the output complex object from it.

◦ Instantiates a complex object from the OpenOrders PropertySet input parameter.

◦ Iterates through the OpenOrder PropertySet, applying each item in turn, repeating for each open order in
ascending chronological sequence.

◦ Whenever the hierarchical structure is altered, Apply xes the output hierarchy to reect the OpenOrder.

◦ Returns the output property set.

Note: The OpenOrders PropertySet is assumed to be one of a Null hierarchy, a single hierarchy
representing one complex item, or a container of iterations of a complex item, each representing
a change over time. The integration ID for the root of the complex item is the key for the item.

The Apply method handles the exception conditions listed in the table that follows.

Exception Action Reason

Instruction to add an item that
already exists.

Ignores the add instruction. Aributes and
the price are not updates.

The instruction is outdated.
Therefore, the aributes are
unreliable.

Instruction to update an item that no
longer exists.

Ignores the update instruction.

The instruction is outdated. It cannot
be performed.

Instruction to delete an item that no
longer exists.

Ignores the delete instruction.

The action has already occurred.

Instruction to do nothing to an item
that does not exist.

No action.

A sequencing problem may have
occurred.

Examples
Review the following Apply method examples.

Add, Update, Delete a Complex Order
The following example shows how this method applies add, update, and delete instructions on an order to an existing
asset.

1. Start with a customizable asset, as in the diagram that follows.

160

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. Apply a delta order, as in the diagram that follows.

For more information, see Delta Method.
3. A new customizable asset is created, as in the diagram that follows.

161

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Process a new installation
The following example shows how this method is used to process a new installation.

1. Start with no asset.
2. Apply a new installation.

3. A new customizable asset is created, as in the diagram that follows.

Ignores Instructions to Process Absent Items
The following example shows how this method is used to process a delta quote that includes an update to an absent
item.

1. Start with a customizable asset from an external prole management system, as in the diagram that follows.

162

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. Apply a delta quote that was generated a week before, as in the diagram that follows.

Note: The calling card referred to in the delta quote was removed from the prole after the quote was
created. The [UPDATE] Calling Card branch is ignored.

3. The Apply method ignores updates to the service item that no longer exists, but successfully executes the
remaining changes. This is shown in the diagram that follows.

163

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Ignores Instructions to Add an Already Existing Item
The following example shows how this method is used to process a delta quote that contains an invalid add instruction.

1. Start with a customizable asset from an external prole management system, as in the diagram that follows.

2. Apply a delta quote that was generated a week before.

Note: The second local line, (650) 213-7575, already exists in the service prole. It was provisioned by
an external system user.

3. Apply ignores add commands where the service item already exists and successfully executes the remaining
changes.

Process Instructions to Update the Parent of a Component
The following example shows how this method is used to process a delta quote that updates the parent component.

1. Start with a customizable asset in the old product format, as in the diagram that follows.

164

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. Apply a delta order that updates the parent component of the Call Forwarding feature, as in the diagram that
follows.

3. The Apply method adds the Feature Package product beneath the local line and reaaches the existing Call
Forwarding feature to the Feature Package, as in the diagram that follows.

165

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Delta Method

• Trim Method

• Explode Method

• Set Product Instance Method

Trim Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It eliminates line items from a
delta quote or delta order based on a soft coded rule or Keep Specication. This method is used, in the Order to Asset
workow, to identify changes in an order item that are ready to apply to the service prole stored in Assets.

For a line item to be kept in the product instance hierarchy, KeepSpec must be TRUE for that line item. All children of the
line item will also be removed if the parent is removed.

Arguments

Argument Description

KeepSpec

[in] A Boolean expression based on elds in the current line item. If the line item is to be retained,
 KeepSpec must return True. (Required)

Object Id

[in] Row Id of the root line item that is used to load the hierarchy if a SiebelMessage is not passed in.
(Optional)

Input Object Type [in] Type of object to which Object Id relates. Must be specied is Object Id is specied. (Optional)

166

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

SiebelMessage

[in] Hierarchy to be used if an Object Id is not supplied. (Optional)

SiebelMessage

[out] Resulting product instance.

Is Trim Result Empty

[out] Y or N value. Y if all line items are removed in the result. Otherwise, N.

Returns
Removes selected line items from the product instance.

Remarks
If the KeepSpec input is TRUE for a line item, it is kept in the product instance hierarchy. If not, it is eliminated. All
children of the line item are removed if the parent is removed.

When Trim is called, the method starts at the highest item in the product hierarchy and works recursively down through
its children. If the KeepSpec evaluates to TRUE for a line item, it is kept in the product instance hierarchy. If not, it and all
of its children are eliminated. For example, the KeepSpec for the Order to Asset workow is:

(([Status] = LookupValue('FS_ORDER_STATUS', 'Complete')) OR ([Action Code] =
LookupValue('DELTA_ACTION_CODE', 'Existing'))) AND ([Convert To Asset Flag] = 'Y')

To process items with status other than Complete or Existing, add the status values to the KeepSpec
Input Argument.

Examples
Review the examples in the following sections:

Trimming Pending and Failed Items
The following example shows how this method is used to eliminate pending and failed items.

1. A new installation is partially complete, as in the diagram that follows.

167

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. Trim eliminates all Pending and Failed items. It also eliminates the 200 Minutes Free product because that
product has set Track As Asset to N. This is shown in the diagram that follows.

Trimming Orphaned Items
If an item fails to meet the KeepSpec criteria, this method removes all of its children. The following example shows this
situation.

1. A user starts a new installation in which a parent item is Pending and a child item is Complete, as in the diagram
that follows.

168

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. Trim eliminates all Pending or Failed items and their children, Complete or not, as in the diagram that follows.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Delta Method

• Apply Method

Explode Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It creates multiple instances of a
product. The number of instances is determined by the value of the eld specied by the ExplodeOnField argument.
For each new instance, the value of ExplodeOnField is set to 1. An existing instance is considered for explosion only if it
meets the conditions specied by ConditionFieldNames and ConditionValues.

Note: Explode works for a quantity set at any level of the product hierarchy.

To exclude elds from being copied from the existing instance to the new instance, add user properties to the SIS OM
PMT Business Service. You can use the ExclusionFieldsUserPropertyTag input argument to identify the User Properties
series used for this purpose.

Arguments

Argument Description

RootItemId

[in] Root Item Id. Only the subcomponents of the root line item with a Row Id specied by the
RootItemId are considered for Explode. (Optional)

ExplodeOnField

[in] Value of the eld specied by ExplodeOnField determines the number of instances created by
Explode. For each new instance, the value of the ExplodeOnField is set to 1. (Required)

169

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

ConditionFieldNames

[in] Comma separated list of component eld names. An existing instance is exploded only if the
conditions specied by ConditionFieldNames and ConditionValues are met. (Optional)

ConditionValues

[in] Comma separated list of condition values. Standard Siebel expressions (such as LookupValue) are
supported. An existing instance is exploded only if the conditions specied by ConditionFieldNames
and ConditionValues are met. (Optional)

ExclusionFieldsUserPropertyTag

[in] Name of the series of user properties that identify elds to exclude when the object instance is
copied. The user property name is congurable and specied by ExclusionFieldsUserPropertyTag.
(Optional)

SiebelMessage

[in] Product instance to be exploded. (Required)

SiebelMessage

[out] Product instance (integration object) representing the exploded business component. (Required)

Is Exploded

[out] Status ag (Y or N) which indicates whether the SiebelMessage has been exploded or not.
(Optional)

Returns
Product set containing multiple copies of the original component.

Remarks
Explode copies any product component whose quantity is greater then (>) 1. It creates multiple copies, each with
quantity set to 1. By default, products with the Convert to Asset ag set to N are ignored. This method inputs and
outputs a property set containing product changes.

A user congurable list identies elds that are excluded during the copy. For example, a user would not create multiple
copies of a unique identier such as a telephone number.

The following information about the Explode method is useful.

Excluded Fields
All elds, including prices, are copied as they are into each new instance of the service item, except the following
columns that cannot be copied, by default:

• Asset Integration Id

• Conict Id

• Created

• Sequence Number

• Updated

• Id

• Integration Id

• Quantity

170

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

• Service Point Id

• Extended Quantity

User Properties
This method uses the default user properties, listed here, to dene a list of integration component elds that are not
copied when the parent integration object is exploded.

• Exclude From Explode.SIS OM Order.Line Item 11 to Exclude From Explode.SIS OM Order.Line Item 20

• Exclude From Explode.SIS OM Quote.Line Item 1 to Exclude From Explode.SIS OM Quote.Line Item 10

The general format for all these user properties is:

<User Prop Name>.<Integration Object Name>.<Integration Component Name>#

• Examples

Review the following Explode method example.

Copying Components Whose Quantity Exceeds 1
The following example shows this method creates multiple copies of a component.

1. Start with an order to add multiple Calling Cards as part of a GCI One Bundle.
2. Explode copies all components with quantity > 1. The diagram that follows provides an example.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Delta Method

• Apply Method

• Trim Method

• Explode Siebel Object Method

• Is Fully Ex Method

171

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Explode Siebel Object Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It functions like Explode Method
except that it also loads the SiebelMessage integration object from the Siebel database with a specied business
component and synchronizes it back to the database after the explosion.

Arguments

Argument Description

IntObjectName

[in] Name of the integration object representing the business component that will be exploded.
(Required)

PrimaryRowId

[in] Siebel object row ID of the business component that will be exploded. (Required)

RootItemId

[in] Root Item Id. Only the subcomponents of the root line item specied by the RootItemId are
considered for Explode. (Optional)

ExplodeOnField

[in] Value of the eld specied by ExplodeOnField determines the number of instances created by
Explode. For each new instance, the value of the ExplodeOnField is set to 1. (Required)

ConditionFieldNames

[in] Comma separated list of integration eld names. An existing instance is exploded only if the
conditions specied by ConditionFieldNames and ConditionValues are met.

ConditionValues

[in] Comma separated list of condition values. Standard Siebel expressions (such as LookupValue)
are supported in each comma separated value. An existing instance is exploded only if the conditions
specied by ConditionFieldNames and ConditionValues are met.

ExclusionFieldsUserPropertyTag

[in] Name of the series of user properties that identify elds to exclude when the object instance is
copied. The user property name is congurable and specied by ExclusionFieldsUserPropertyTag.
(Optional)

SiebelMessage

[out] Product instance (integration object) representing the exploded business component. (Optional)

Is Exploded

[out] Status ag (Y or N) which indicates whether the SiebelMessage has been exploded or not.
(Optional)

User Properties
This method has the following default user properties:

• Exclude From Explode.SIS OM Order.Line Item 11 to Exclude From Explode.SIS OM Order.Line Item 20

• Exclude From Explode.SIS OM Quote.Line Item 1 to Exclude From Explode.SIS OM Quote.Line Item 10

172

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Explode Method

• Is Fully Ex Method

Find Orders Method
This method is one of the Product Manipulation Toolkit Business Service Methods. Given the asset integration ID of
a root line item, this method nds all instances of order items that have the same integration ID. The order header,
matching line item, its child items and aributes are returned as part of the output. Any other line item in the same
order header that does not have a matching integration ID will not be returned.

Arguments

Argument Description

Asset Integration Id

[in] Root asset integration ID that is used to open order items to an asset. (Required)

Search Spec

[in] Additional search specication used to look for open orders. This is a business component search
spec that will be applied to the ‘Order Entry - Line Item (Asset Based) BC. (Optional)

Sort Order Item By

[in] Comma separated list of eld names. Each eld name is optionally followed by the string
(DESCENDING). For example, Last Name (DESCENDING), First Name. This forces the method to sort
the order line item it locates by the given eld names. (Optional)

Open Orders

[out] A single hierarchy of type OpenOrders that has child hierarchies for each open order that is found.

Related Information
See the topic about workows in Siebel Order Management Guide .

Logical Delete Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It converts any item of a product
instance that has a Deleted action code to an Update action code and an Inactive status. Logical Delete only works with
a product instance of the Order type. In other words, the Integration Object passed in the SiebelMessage is based on the
Order Entry business object.

173

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

ObjectId

[in] ID of the object to be loaded. If this optional argument is provided, the SiebelMessage argument is
ignored. (Optional)

SiebelMessage

[in] Primary argument if there is no Object Id. This must be an Order type input. (Required)

SiebelMessage

[out] Result of the logical delete.

Remarks
This method takes a complex object as input. It goes through the hierarchy of the complex object and changes all
Deleted action codes to Update. Then, it sets the status of the associated line items to Inactive.

Related Information
See the topic about workows in Siebel Order Management Guide .

Get Prole Aribute Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It returns the value of the specied
aribute of the user prole.

Arguments

Argument Description

Prole Aribute Name

[in] Name of the user prole aribute to be retrieved.(Required)

Prole Aribute Value

[out] Value of the prole aribute. This value is NULL if the aribute is not set. (Required)

Returns
Value of the user prole aribute.

Related Information
See the topic about workows in Siebel Order Management Guide , and Set Prole Aribute Method.

174

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Get Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It gets a complex product instance
from the Product Congurator.

Arguments

Argument Description

Object Id

[in] Key used to return the preloaded complex asset. The argument Instance Id returned by the
Recongure Product Instance method is passed here.

Instance Id

[out] Passed to this method as output from Recongure Product Instance, this key is used to return a
complex asset that was loaded into the Product Congurator when Recongure Product Instance was
invoked.

SiebelMessage

[out] Complex product instance returned by the Congurator runtime session.

Returns
Complex product instance.

Related Information
See the topic about workows in Siebel Order Management Guide , and Recongure Product Instance Method.

Convert Product Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It converts a product instance of one
type to another; for example, quote to order.

Arguments

Argument Description

Output Object Type

[in] The input product instance to be converted to this type. (Required)

Object Id

[in] ID of the object to be converted. If Object Id is specied Input, Input Object Type must also be
specied. (Optional)

Input Object Type

[in] Type of the input product instance. (Only required if Object Id is specied)

SiebelMessage

[in] Product instance to be converted. Not required if Object Id and Input Object Type are specied.
(Optional)

175

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

Generate New Item Integration Id

[in] If the line item’s action code is Add (Y or N value), this argument forces the system to generate a
new unique ID for the Asset Integration Id eld. (Optional)

Note: The Integration Id and the Service Id are not the same thing. The Integration Id is
the internal unique identier. The Service Id is a free text eld that the user may use for
telephone numbers, and so on.

Upsert Result

[in] Insert and synchronize the resulting product instance back to the database (Y or N value).
(Optional)

SiebelMessage

[out] Product instance to be converted. Not required if the Object Id and Input Object Type are
specied.

Returns
Product type change.

Remarks
This method uses the mapping of integration component elds as user properties. The name has the following format:

Source Int Obj Name.Source Int Comp Name:Dest Int Obj Name.Dest Int Comp Name Map #

The user property value format is:

[Src FieldName]:[Dest Field Name]

Note: Src Field Name must be unique for each group of user property mappings.

Related Information
See the topic about workows in Siebel Order Management Guide .

Assign New Service IDs Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It assigns a service point ID,
associated with a specied premise, to each item of the input complex product for which the service type of the service
point matches the service type of the product.

If a free service point is not available for a product component, a service point is not assigned to it. On the other hand, if
multiple service point IDs are available for the same service type, the system will pick one of them randomly.

176

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

Premise AddressId

[in] Row Id of the address to which services are moving. (Required)

SiebelMessage

[in] Service Point Ids are set for this product instance. (Required)

SiebelMessage

[out] Product instance with the newly assigned service point IDs. (Required)

Returns
New service point IDs.

User Properties
This method uses the following user properties:

• Line Item Integration Object Service Account Id Field Name

• Line Item Integration Object Service Point Id Field Name

• Line Item Integration Object Service Type Field Name

• Service Point BC Address Id Field Name

• Service Point BC Owner Account Id Field Name

• Service Point BC Service Point Id Field Name

• Service Point BC Service Type Field Name

• Service Point Business Component Name

• Service Point Business Object Name

Related Information
See the topic about workows in Siebel Order Management Guide .

Is Fully Ex Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It checks a product instance to
determine if an explode operation is required, based upon the value specied by ExplodeOnField. If the eld value is
greater than one for any component of the product instance, the method returns N. Otherwise, the method returns Y.

Arguments

Argument Description

RootItemId

[in] If supplied, only subcomponents of the root item specied by RootItemId are considered for
Explode processing. (Optional)

177

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

ExplodeOnField

[in] Field (name) that is checked to determine whether explosion is necessary. (Required)

ConditionFieldNames

[in] Comma separated list of integration component eld names. (Optional)

ConditionValues

[in] Comma separated list of values. Standard Siebel expressions (such as LookupValue) are supported
in each comma separated value. (Optional)

SiebelMessage

[in] Product instance to be checked for explode processing. (Required)

Result

[out] Y or N ag indicating whether the input SiebelMessage has been exploded. (Required)

Returns
Y or N.

Remarks
Primarily used in the Apply Completed Service Order Line Item to Service Prole workow, this method double checks
to determine if the service order line items created from the Siebel database (earlier in the workow) have been fully
exploded or not. In other words, it determines whether all line items and the subcomponents were previously processed
by the Explode method.

Related Information
See the following methods:

• Explode Method

• Explode Siebel Object Method

Is Module Licensed Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It determines whether the specied
module is licensed.

Arguments

Argument Description

Module Name

[in] Name of the module being checked. (Required)

Result

[out] Y if the module is licensed; otherwise N.

178

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Returns
Y (module licensed) or N (module not licensed).

Related Information
See ViewCart Method.

Merge Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It merges the components of one
integration object (product instance) under the header of another integration object.

Note: Before this method is called, Set Product Instance must be called to cache the target product instance.

Arguments

Argument Description

SiebelMessage

[in] Source product instance to be merged. (Required)

SiebelMessage

[out] Merged product instances. (Required)

Returns
A single product instance containing the merged assets.

Remarks
This method receives two property sets as input, each containing a complex object with hierarchical assets, quotes, or
order items. It copies all the line items from the source complex object to the target (cached) complex object. The target
object’s header information (quote or order headers) are retained. The merged complex object is returned in an output
argument property set.

Related Information
See the topic about workows in Siebel Order Management Guide , and Set Product Instance Method.

Quote To Revenue Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It generates revenue line items for
each line item in a quote that matches the criteria specied by the input conditions. The line items are associated with
the opportunity from which the quote was created.

179

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

SiebelMessage

[in] Contains a product instance hierarchy.

RootItemId

[in] Root item ID.

ConditionFieldNames

[in] Names of elds whose value must equal that specied by ConditionValues. In these cases, the
quote line item will be converted to a revenue line item. In the SIS OM Update Revenue workow, the
condition elds are action code, price type and extended amount.

ConditionValues

[in] Values that elds must have to satisfy the condition. In the SIS OM Update Revenue workow, the
action code must be Add or Update, price type must be One-Time or Recurring, and extended amount
must be non-zero.

ExcludedFieldsUserPropertyTag

[in] User properties tag identifying elds that are not copied from the quote line item to the revenue
line item.

Returns
Revenue line items.

Remarks
The following discussions list user properties associated with this method. They also indicate how the method adds
revenue and determines: revenue amount, revenue dates, number of revenue items, frequency of revenue line items,
annually recurring charges, quarterly recurring charges, monthly recurring charges, weekly recurring charges, and daily
recurring charges.

User Properties
This method used the following user properties:

• Quote To Revenue.Quote Item.Due Date Field. Quote Line Item business component eld that determines the
rst date on which revenue will be added. Out of the box, the quote line item is the due date.

• Quote To Revenue.Quote Item.Amount Field. Quote Line Item business component eld used as the revenue
amount. Out of the box this is the extended amount.

• Quote To Revenue.Quote Item.Item Price Field. Quote Line Item business component eld containing the item
price.

• Quote To Revenue.Quote Item.Price Type Field. Quote Line Item business component eld containing the price
type.

• Quote To Revenue.Quote Item.Unit of Measure Field. Quote Line Item business component containing the unit
of measure.

• Quote To Revenue.Quote Item.Occurence Field. Quote Line Item business component eld containing the
number of revenue occurrences.

• Quote To Revenue.Quote Item.Extended Quantity Field. Quote Line Item business component eld containing
the extended quantity.

180

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

• Quote To Revenue.Quote Item.Description Field. Quote Line Item business component eld containing the
description.

• Quote To Revenue.Quote Item.Product Id Field. Quote Line Item business component eld containing the
product ID.

• Quote To Revenue.Revenue.Quantity Field. Revenue business component eld containing the quantity.

• Quote To Revenue.Revenue.Quotable Field. Revenue business component eld indicating whether the revenue
is quotable.

• Quote To Revenue.Revenue.Date Field. Revenue business component eld containing the revenue date.

• Quote To Revenue.Revenue.Price Field. Revenue business component eld containing the product price.

• Quote To Revenue.Revenue.Revenue Field. Revenue business component eld containing the revenue.

• Quote To Revenue.Revenue.Description Field. Revenue business component eld containing the description.

• Quote To Revenue.Revenue.Product Id Field. Revenue business component eld containing the product Id.

Adding Revenue
This method:

• Adds revenue only for quote line items with an Add or Update action code. Quote line items ‘-’, and Deleted
action codes are ignored.

• Adds revenue only for quote line items that have an extended amount not equal to zero.

Negative extended amounts are added to revenue.

• Adds revenue only for price types that are one-time and recurring. It is not calculated for usage.

• Adds revenue based on product components (in a quote line item).

Determining Revenue Amount
This method:

• Uses a user property to dene the Quote Item business component eld that is used for the revenue amount.
The default is the Extended Amount eld.

• Uses the value of this eld as the revenue amount for all periods.

Determining Revenue Dates
This method:

• Uses a user property to dene the Quote Item business component eld that, in turn, is used to calculate the
rst revenue date. The default is the Due Date eld.

Determining Number of Revenue Items
The forecast number of revenue occurrences for a product is dened in product administration. When a quote line item
is created the number of forecast revenue occurrences is copied from the product into the quote line item. There, it can
be overridden through the UI or by conguration.

181

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

This method:

• Adds revenue for products with one time price types once on the due date of the quote line item, regardless of
the number of occurrences dened.

• Adds revenue for products with recurring price types as many times as the number of occurrences.

Determining Frequency of Revenue Line Items
This method:

• Adds revenue as it occurs (weekly, monthly, quarterly or annually) instead of grouping it into monthly totals.

• Adds the rst revenue, for any quote line item, on the due date plus one UoM.

The following UoMs that are allowed: Per Year, Per Month, Per Quarter, Per Week, and Per Day.

Determining Annually Recurring Charges
This method:

• Adds revenue on the same day every year, starting on the end date of the rst period. For example, if the due
date is 7-11-01, the default date of the rst billing cycle is 7-11-02 and revenue is added for 7-11-02, 7-11-03 and
so on, for as many occurrences as the quote line item species.

If the end date of the rst period falls on February 29th, the revenue date for nonleap years is February 28th.

Determining Quarterly Recurring Charges
This method:

• Adds revenue on the same day every three months, starting on the date of the rst billing cycle, the default
value of which is 3 months after the quote line item due date. For example, if the due date is 7-11-01, revenue is
added for 10-11-01, 1-11-02, 4-11-02, 7-11-01 and so on, for as many occurrences as product species.

If the end date of the rst period falls on the 29th, 30th or 31st of a month, the revenue date for months that have fewer
days is the last day of the same month.

Determining Monthly Recurring Charges
This method:

• Adds revenue on the same day every month, starting on the date of the rst billing cycle which defaults to one
month after the quote line item due date. For example, if the due date is 7-11-01, revenue is added for 8-11-01,
9-11-01 and so on, for as many occurrences as the product species.

If the due date falls on the 29th, 30th or 31st of a month, the revenue date for months with fewer days is the last day of
the same month.

Determining Weekly Recurring Charges
This method:

• Adds revenue every 7 days starting on the date of the rst billing cycle which defaults to 7 days after the quote
line item due date. For example, if the due date is 7-11-01, revenue is added for 7-18-01, 7-25-01, 8-1-01 and so
on, for as many occurrences as the product species.

182

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Determining Daily Recurring Charges
The method:

• Adds revenue every day, starting on the date of the rst billing cycle which defaults to one day after the quote
line item due date. For example, if the due date is 7-11-01, revenue is added for 7-12-01, 7-13-01, 7-14-01 and so
on, for as many occurrences as the product species.

Recongure Product Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It displays, in the Congurator UI, the
asset that was passed to the Product Congurator as input.

Note: This method does not return the asset updated by Product Congurator. Instead an event occurs
for the primary business component when the Done buon is clicked. At that time, you can invoke the Get
Instance method to obtain the updated asset from the Product Congurator.

Arguments

Argument Description

Complex Product

[in] This product instance, based on Asset, is used as input to the Congurator.

Row Id

[in] Row Id of the Asset.

Event Name

[in] Name of the event that is triggered when the user clicks the Done buon.

Primary Business Component Name

[in] Name of the primary business component of the business object associated with the workow that
calls this method. This business component receives the event specied by Event Name.

Pricing Business object

[in] Name of the business object to be used for pricing.

Price List Id

[in] ID of the price list to be used.

Currency Code

[in] Currency code.

Exchange Date

[in] Date of the exchange.

Instance Id

[out] Returned key. This output can be passed (as input) to the Get Instance method to return a
complex asset, loaded into the Product Congurator.

Returns
Product Congurator display of the recongured complex asset.

183

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

User Properties
This method applies the user properties listed in the following steps.

Note: This view must use the same business object as the workow that invokes the Recongure Product
Instance method.

• Asset Integration Object Name:

Name of Integration Object based on Asset business components.

• Complex Product Runtime View Name

Name of view for Product Congurator UI.

Geing an Updated Asset
This method does not return the Asset updated by the Product Congurator. Instead, an event occurs for the primary
business components, passed as parameters to this method, when the Product Congurator’s Done buon is clicked. At
that time, the system can call PMT business service method Get Complex Asset to obtain the updated Asset from the
Product Congurator.

Related Information
See the topic about workows in Siebel Order Management Guide , and Get Instance Method.

Reset Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It clears out all cached product
instances.

Arguments
None

Returns
There are no cached products.

Remarks
This method has no input or output arguments.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Set Product Instance Method

• Set Output Header Method

184

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Retrieve Next Object From List Method
This method is one of the Product Manipulation Toolkit Business Service Methods. Given a hierarchical integration
object with multiple root components at the second level (for example, Asset), this method returns an integration object
that contains the header, one root component, its children and their aributes.

Arguments

Argument Description

SiebelMessage

[in] Integration object to retrieve the root component from. (Required)

Integration Id

[out] Integration Id of the retrieved root integration component. (Optional)

Object Id

[out] Row Id of the retrieved root integration component. (Optional)

Remaining Number of Objects

[out] Number of root integration components left in the input integration object. (Required)

SiebelMessage

[out] New instance of the integration object containing the header and rst root component (including
its children and aributes) of the object retrieved. (Required)

Remarks
This method can be called multiple times with the same input argument, each time it returns the next root component.
And, it is used in conjunction with Update Multi Object List to form a loop control mechanism.

Related Information
See the topic about workows in Siebel Order Management Guide , and Update Multi Object List Method.

Set Action Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It sets the Action Code eld of all
items in the hierarchy of a given product instance to the specied value.

Arguments

Argument Description

Action Code

[in] Set the action codes of all line items in the hierarchy SiebelMessage to this value. (Required)

SiebelMessage

[in] Product instance whose action code will be updated. (Required)

185

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

SiebelMessage

[out] Updated product instance.

Returns
Newly set action codes.

Remarks
This method takes a property set containing a complex item as input along with an action code parameter. It goes
through the complex item and sets the action code to the value of the action code argument.

Related Information
See the following methods:

• Set Field Value Method

• Set Multiple Field Values Method

Set Exception Error Message Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is called from the workow to get
the localized error message text that is associated with the input error code.

Arguments

Argument Description

Error Code

[in] Error code dened in the repository. (Required)

Error Message

[out] Localized error message text. (Required)

Dependencies
Strings corresponding to the supplied Error Code must be dened in the Siebel Database. The seven predened error
messages are dened in the Siebel repository with the message key prexed with IDS_SISOM_ERR_MOVEWF.

Related Information
See the topic about workows in Siebel Order Management Guide .

186

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Set Field Value Method
It is used optionally to congure conditions so that updates are only run on the subset of items in the hierarchy that
satisfy the conditions.

Arguments

Argument Description

Field Name

[in] Name of the eld to be changed. (Required)

SiebelMessage

[in] Product instance. (Required)

Value

[in] Literal. (Required)

ConditionFieldNames

[in] Comma separated list of integration component eld names. (Optional)

ConditionValues

[in] Comma separated list of values. Standard Siebel expressions (such as LookupValue) are supported.
(Optional)

Generate new Id

[In] Y or N ag indicating whether to generate a new Row Id for each item.

SiebelMessage

[out] Updated product instance. (Required)

Returns
New eld values.

Remarks
As input, this method receives one property set containing a complex object and two strings representing a eld name
and eld value. The method goes through the line items hierarchy of the complex object wrapped by the property set,
and for each item that satises the optional conditions, locates the named eld of each line item, and sets it to the value
provided.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Set Action Method

• Set Multiple Field Values Method

187

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Set Multiple Field Values Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It sets specied elds to the given values for all items in the product instance.

Arguments

Argument Description

Field Names

[in] Comma separated list of names of elds whose values are to be set. (Required)

Values

[in] Comma separated list of values to which the elds are set. (Required)

SiebelMessage

[in] Product instance hierarchy whose eld values are to be set. (Required)

ConditionFieldNames

[in] Comma separated list of integration component eld names. (Optional)

ConditionValues

[in] Comma separated list of values. Standard Siebel expressions (such as LookupValue) are supported.
(Optional)

SiebelMessage

[out] Updated product instance. (Required)

Returns
Product instance with updated eld values.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Set Action Method

• Set Field Value Method

Set Output Header Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It caches the output header that will
be used by the Delta method.

188

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

SiebelMessage

[in] Product instance containing the header to be used for the Delta method output.

Returns
Cached output header.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Delta Method

• Set Action Method

• Set Product Instance Method

Set Product Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It caches a product instance that will be used as an input arguments for Apply and Delta methods.

Arguments

Argument Description

SiebelMessage

[in] Product instance being saved. (Required)

Returns
Cached product instance.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Delta Method

• Apply Method

• Set Output Header Method

189

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Set Prole Aribute Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It assigns values to aributes in a user prole.

Arguments

Input Argument Description

Prole Aribute Name

[in] Name of the aribute being set. (Required)

Prole Aribute Value

[in] Value to which the aribute will be set. A NULL value clears the aribute. (Required)

Returns
New aribute values.

Related Information
See Get Prole Aribute Method.

Synchronize Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It synchronizes product instance to the database. Optionally, this method also reprices the instance after it is
synchronized by calling the Pricing Manager Reprice-RepriceAll. This method calls the EAI Siebel Adapter Upsert
method to synchronize.

Arguments

Argument Description

InMemoryPricing

[in] With this argument set to TRUE, only the instance of the CP (root and subcomponents) in
memory is repriced. If it set to FALSE, the CalculatePriceAll method is called, which reprices the entire
document. If there is a pricing relationship between the line items, such as a total discount, then
you need to set it to FALSE in order to call CalculatePriceAll. Note that this parameter has a severe
performance impact if it set to FALSE for large quotes or orders with many line items. Default is FALSE.
(Boolean, Optional)

Message Id

[in] Passed through to the EAI Siebel Adapter Upsert method. (Optional)

PrimaryRowId

[in] Row Id of the business component to be synchronized. (Required)

190

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

Reprice

[in] Y or N ag indicating whether to reprice or not. (Optional)

RootItemId

[in] If this input is given, only reprice the root line item with a Siebel Object Row Id that corresponds to
this RootItemId and any new line items that were created from it after an Explode operation. (Optional)

SiebelMessage

[in] Product instance to be synchronized.

StatusObject

[in] Passed through to EAI Siebel Adapter Upsert method. (Optional)

SiebelMessage

[out] Synchronized product instance.

Returns
Synchronized product instance.

Remarks
This method is used when the object to be synchronized has modied quantity or price elds, requiring a repricing. It is
primarily used after Explode.

Related Information
See the topic about workows in Siebel Order Management Guide , and Explode Method.

Update Multi Object List Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

After a root integration component and its children are stripped from the integration object, this method (in conjunction
with Retrieve Next Object From List) returns the resulting integration object.

Arguments

Argument Description

SiebelMessage

[out] Integration object left behind after the rst root component is retrieved. (Required)

Returns
New integration object.

Remarks
This method is used in conjunction with Retrieve Next Object From List to form a loop control mechanism.

191

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Related Information
See the topic about workows in Siebel Order Management Guide , and Retrieve Next Object From List Method.

Update Order Line Item Completed Flag Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It sets the Order Item Processed Flag
of the root order line item to Y, if its status and the status of all its child items is one of the values passed in Complete
Statuses, or if it is '-'.

Note: This method only works with product instance of type Order.

Arguments

Argument Description

SiebelMessage

[in] Product instance being updated. (Required)

Synchronize

[in] Defaults to N. (Optional)

Complete Statuses

[in] The default values are Complete or Rejected. To set the Processed Flag for other status values, add
those Status values to this input argument.

Update Order Items

[out] Comma separated list of row IDs for line items that were updated by this method.

Returns
Order Item Processed Flag set to Y or N.

Related Information
See the topic about workows in Siebel Order Management Guide .

Get Cfg Buon Click Information Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is used to identify whether a user
clicks on the Cancel or Done buon from Complex Product View.

192

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Input Argument Description

Business Object Name

(Required) Name of business that Business Component belongs to.

Result

[Out] Either Cancel or Done depending on the buon clicked by the user. The actual string value
returned is specied by the Cancel Buon Return and Done Buon Return user properties respectively.
(Required).

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Recongure Product Instance Method

• Get Instance Method

Refresh Business Component Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It reexecutes all instance of the
specic buscomp to get data from the database, and also queries all records again.

Arguments

Argument Description

Business Object Name

[in] Name of business the buscomp belongs to.

Business Component Name

[in] Name of the buscomp you want to refresh with data from database.

Refresh Result

[out] Either Fail, NoRefresh, or Succeed. Fail means the method could not refresh because of
insucient input argument. NoRefresh means the method did not nd any instance of the specied
buscomp. Succeed means it refreshed at lease one instance of the specied buscomp. (Optional)

Related Information
See the topic about workows in Siebel Order Management Guide .

Invoke BC Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is a generic method that allows one
to invoke a Business Component-based method from Workow. A Business Service method is invoked from a workow

193

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

by default. This method acts as a bridge to allow one to pass in the Business Component name and the method name,
along with the parameters and return value required from Workow to the Business Component specied.

Arguments

Argument Description

BC Name

[in] A string to specify the name of Business Component on which you want to invoke its method.
(Required)

Method Name

[in] A string to specify the name of the method in the specied Business Component that you want to
invoke. (Required)

Param 0

[in] A string to pass in the rst argument to the method. (Optional)

Param 1

[in] A string to pass in the second argument to the method. (Optional)

Param 2

[in] A string to pass in the third argument to the method. (Optional)

Param 3

[in] A string to pass in the fourth argument to the method. (Optional)

Return Property Name

[out] A string to pass out the output of the method. (Optional)

Iterate Process For Selected Rows Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It loops through all the selected rows
in the active business component and invokes the specied workow for each row. Input arguments to the workow
come from the xed inputs plus the values of specied eld names are transformed into workow argument names
based upon the specied mappings.

Arguments

Input Argument Description

All Asset List

[in] A property set containing a list of Row IDs.

Fields

[In] Comma separated list of eld names in the active business component. (Required)

Fixed Inputs

[In] Comma separated list of name-value pairs (Required). For example:

'Active Document Id='+[&Active Document Id] '+'Price List
Id='+[&Price List Id]

List Type [in] String

194

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Input Argument Description

Mappings

[In] Comma separated list of eld mappings of the form:

 [Bus Comp Field Name]=[Workflow Input Argument]

Process

[In] Name of the workow process to be initiated for each row of the active business component.
(Required)

Delete Connection

[In] Y or N ag indicating whether to cascade the process to the connections associated with selected
nodes in a network scenario. (Optional)

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Get Selected Row Count Method

• Get First Selected Row Values Method

Get Selected Row Count Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It returns the number of rows
selected in the active business component, that is, the business component that initiated the workow.

Arguments

Argument Description

Row Count

[Out] The number of selected rows. (Required)

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Iterate Process For Selected Rows Method

• Get First Selected Row Values Method

Get First Selected Row Values Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It queries the active business
component for a given set of eld values for the rst selected row. The elds to be retrieved are specied by the Fields

195

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

argument. If the Mapping input argument is specied the values of the elds in the query are remapped to dierent eld
names in the output property set.

Arguments

Argument Description

Fields

[In] Comma separated list of eld names in the active business component for which values are to be
retrieved.

Mappings

[In] Comma separated list of mappings of the form:

[Bus Comp Field Name]=[Property Set Field Name]

SiebelMessage

[Out] Property set containing the requested values.

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Iterate Process For Selected Rows Method

• Get Selected Row Count Method

Ungroup Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is a business component-based
version of Explode. It creates multiple instances of a product. The number of instances is determined by the value of
the eld specied by the Quantity Field argument. For each new instance, the value of the Quantity Field is set to 1. An
existing instance is considered for ungrouping only if it meets the conditions specied by the Condition Field Names
and Condition Values arguments. The updated business component instances are wrien to the database.

Arguments

Argument Description

Line Item BC Name

[In] Name of the line item business component to be ungrouped. (Required)

Extended Aribute BC Name

[In] Name of the XA business component associated with the line item business component.
(Required)

Quantity Field

[In] Name of eld in the line item business component that is used to determine the number of
instances to be created. (Required)

Header Id

[In] Row Id of the header business component instance. (Required)

Header Id Field [In] Name of the eld in the header business component that stores the Row Id. (Required)

196

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

Root Item Id

[In] Id of the root item in the line item business component. (Required)

Root Item Id Field

[In] Name of the eld in the line item business component that stores the Root Item Id. (Required)

Parent Item Id Field

[In] Name of the eld in the line item business component that stores the Parent Item Id. (Required)

Line Number Field

[In] Name of the eld in the line item business component that stores the Line Number. (Required)

XA Header Id Field

[In] Name of the eld in the XA business component that stores the Header Id. (Required)

XA Parent Root Id Field

[In] Name of the eld in the XA business component that stores the Parent Root Id. (Required)

XA Line Item Id Field

[In] Name of the eld in the XA business component that stores the Line Item Id. (Required)

Condition Field Names

[In] Comma separated list of eld names. An existing instance is ungrouped only if the conditions
specied by Condition Field Names and Condition Values are met. (Optional)

Condition Values

[In] Comma separated list of condition values. Standard Siebel expressions (such as LookupValue) are
supported. An existing instance is ungrouped only if the conditions specied by Condition Field Names
and Condition Values are met. (Optional)

Integer Fields to Split

[In] Comma separated list of elds of type Integer for which the value is to split between the multiple
instances. For example, if an instance has a eld value of 12 and a quantity of 4, the integer eld will
have a value of 3 in each of the multiple instances. (Optional)

Number Fields to Split

[In] Comma separated list of elds of type Number for which the value is to split between the multiple
instances. (Optional)

Related Information
See the topic about workows in Siebel Order Management Guide , and the following methods:

• Explode Method

• Explode Siebel Object Method

Order Entry Toolkit Business Service Methods
The Order Entry Toolkit (OET) business service is a set of methods that allow Siebel order management processes to be
implemented in eSales workows. The business service includes methods to manipulate the user's account information,
validate payment information, and navigate to eSales views. These methods summarized in the following table.

197

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Method Comment

CreateAccount Method

Creates a new account, associates it with the User and associates specied addresses to that account.
The method also sets a specied eld in the Quote BC, if it is required.

CreateOrder Method

Converts a quote to an order.

GetBCCount Method

Gets the number of rows and rst row ID in a BC for the input Search Spec. If Parent and Child BC
names are provided, the search spec is applied to the Parent BC. If no Parent BC is provided, the Search
Spec in applied to the one input BC.

GotoView Method

Navigates to the view specied in the input argument.

SelectPrimary Method

Selects a record in the picklist into a eld.

SetLIAccounts Method

Rolls down the Service and Billing Account eld values from the Quote or Order Header to the line
items, if the value is NULL.

SubmitOrder Method

Submits the Pending Order by changing the Order Header and Line Items status to Open. Optionally,
 sets the Order ID to a dened (user property) Prole Aribute.

ValidatePayment Method

Validates the payment method, verifying that only one payment method at a time is specied for a
quote.

ValidateQuote Method

Sets the Invalid Flag for all line items that have a base price of 0 except those that have an Action Code
set to Delete.

ViewCart Method

Navigates to the CME Shopping Cart if licensed; otherwise, to the standard Shopping Cart.

CreateAccount Method
This method is one of the Order Entry Toolkit Business Service Methods. It creates a new account, associates it to the
user and associates specied addresses to that account. The method also sets a specied eld in the Quote BC, if it is
required.

Arguments

Argument Description

Account Name

[in] Name of the new account. (Required)

Account Type

[in] Type of new account. (Required)

Address Id 1

[in] ID of an existing address associated with the new account. (Optional)

Address Id 2 [in] ID of an existing address associated with the new account. (Optional)

198

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

You can add more Address IDs by incrementing the number.

Quote Account Field

[in] Quote business component eld to be populated with the Account Id. (Optional)

New Account Id

[out] Row ID of the newly created account.

Returns
Row ID of new account.

User Properties
This method uses the following user properties:

• CreateAccount: Account BC Name

Name of the business component that is used to create the new account. The default is Account.

• CreateAccount: Account and Address Intersection BC Name

Name of the business component based on the Account-Address Intersection table that is used to associate
addresses to the new account. The default is Com Account Address Intersection.

• CreateAccount: Intersection Account Field Name

Account foreign key eld in the intersection business component. The default is Account Id.

• CreateAccount: Intersection Address Field Name

Address foreign key in the intersection business component. The default is Address Id.

This method invokes AssociateAccountToUser method in the CUT Account Administration Toolkit Service business
service.

Related Information
See the following methods:

• GetBCCount Method

• ValidatePayment Method

CreateOrder Method
This method is one of the Order Entry Toolkit Business Service Methods. It converts a quote to an order.

199

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

Quote Id

[in] Quote identier. (Required)

Return Error Code

[in] Direction to return an error code. (Optional)

Order Id

[out] Order identier. (Optional)

Error Message

[out] Error message. (Optional)

Returns
A new Order.

Dependencies
This method rst invokes the Shopping Service’s CreateOrder Method, and then it invokes SubmitOrder.

GetBCCount Method
This method is one of the Order Entry Toolkit Business Service Methods. It gets the number of rows and rst row ID in a
BC for the input Search Spec. If Parent and Child BC names are provided, the search spec is applied to the Parent BC. If
no Parent BC is provided, the Search Spec in applied to the one input BC.

Arguments

Argument Description

BC Name

[in] Name of the business component whose rows will be counted. (Required)

BC SearchSpec

[in] Free text search specication. (Optional)

BusObj Name

[in] The business components belongs to this business object. If a BusObj Name is not specied, the
business service business object is used. (Optional)

Parent BC Name

[in] Name of the parent business component to which the search criteria is applied. (Optional)

Field Name

[in] Field name to be used as additional input for the search specication. (Optional)

Field Value

[in] Value to be used as additional input for the search specication. (Optional)

Count [out] Number of rows. (Optional)

200

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

First RowId

[out] First rowId of the rows. (Optional)

Returns
Number of rows and rst row Id.

Related Information
See the topic about workows in Siebel Order Management Guide , and CreateAccount Method.

GotoView Method
This method is one of the Order Entry Toolkit Business Service Methods. It navigates to the View specied in the input
argument.

Arguments

Argument Description

View

[in] Name of the view to navigate to. (Required)

KeepContext

[in] Set this to TRUE to maintain the context. The destination view must be based on the same
business object as to originating view to keep the context.

SelectPrimary Method
This method is one of the Order Entry Toolkit Business Service Methods. It selects a record in the picklist into a eld.

Arguments

Argument Description

PickList Field

[in] Name of the picklist eld. (Required)

Primary Row Id

[in] Primary rowId (Optional)

Primary ID Field

[in] Name of the eld that stores the primary Id. Not required if Primary Row Id is specied. (Optional)

Business Component Name [in] Name of the business component to which the eld belongs. (Optional)

201

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Argument Description

IntersectionTable Field

[in] Name of the eld in the intersection table that stores the primary Id. (Optional)

Execute BusComp at Finish

[in] TRUE if Base BC is executed after this operation; otherwise, FALSE. The default is TRUE (case
sensitive). (Optional)

ReturnVal

[out] Success or Fail.

Returns
Success or Fail.

Related Information
See the topic about workows in Siebel Order Management Guide .

SetLIAccounts Method
This method is one of the Order Entry Toolkit Business Service Methods. It rolls down the Service and Billing Account
eld values from the Quote or Order Header to the line items, if the value is NULL.

Arguments

Input Argument Description

Parent BC Name

[in] Parent BC name. (Required)

Parent Row Id

[in] Parent row Id. (Required)

Line Item BC Name

[in] Line item BC name. (Required)

Returns
New line item values.

Related Information
See the topic about workows in Siebel Order Management Guide , and GetBCCount Method.

202

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

SubmitOrder Method
This method is one of the Order Entry Toolkit Business Service Methods. It submits the Pending Order by changing the
Order Header and Line Items status to Open. Optionally, it sets the Order Id to a dened (user property) Prole Aribute.

Arguments

Argument Description

Order Id

[in] Order identier. (Required)

Parent Fieldmap LHS

[in] LHS value of the eld map used by user properties for eld names in the Parent business
component. (Optional)

Parent Fieldmap RHS

[in] RHS value of the eld map used by user properties for eld values in the Parent business
component. (Optional)

Line Item Fieldmap LHS

[in] LHS value of the eld map uses by user properties for eld names in the Line Item business
component. (Optional)

Line Item Fieldmap RHS

[in] RHS value of the eld map uses by user properties for eld names in the Line Item business
component. (Optional)

Return Error Code

[in] Direction to return an error code. (Optional)

Error Message

[out] Error message. (Optional)

User Properties
The following user properties are associated with this method:

• Order Field|Value FieldMap X—Field map value. See the next user property denition.

• Order Item Field|Value FieldMap X—Field map value.

Replace X with a numbers starting from 1 and increments of 1. The last FieldMap must have a value of End.

• SubmitOrder: Order Header Buscomp—Default = Order Entry - Order.

• SubmitOrder: Line Item Buscomp—Default = Order Entry - Line Items.

• SubmitOrder: Line Item Set Field Condition. Default is Status=FS_ORDER_STATUS Pending.

203

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

ValidatePayment Method
This method is one of the Order Entry Toolkit Business Service Methods. It validates the payment method, verifying that
only one payment method at a time is specied for a quote.

Arguments

Argument Description

Bill To Account

[in] The account whose payment is being validated. (Required)

Credit Card Number

[in] Credit card number associated with the account. (Required)

Credit Card Type

[in] Type of credit card associated with the account. (Required)

Expiration Month

[in] Expiration month of the credit card. (Required)

Expiration Year

[in] Expiration year of the credit card. (Required)

PO Number

[in] PO number for the account. (Optional)

Return Error Code

[in] Direction to return an error code. (Optional)

Error Message

[out] Error message. (Required)

Returns
Error messages.

Related Information
See the topic about workows in Siebel Order Management Guide , and CreateAccount Method.

ValidateQuote Method
This method is one of the Order Entry Toolkit Business Service Methods. It sets the Invalid Flag for all line items that
have a base price of 0 except those that have an Action Code set to Delete.

204

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

Quote Id

[in] Quote identier. (Required)

Return Error Code

[in] Direction to return an error code. (Optional)

Invalid

[out] Indicates an invalid quote. (Optional)

Error Message

[out] Error message. (Optional)

ReturnVal

[out] Indicates that the quote is valid. (Optional)

Dependency
Invokes the Shopping Service’s ValidateQuote method.

ViewCart Method
This method is one of the Order Entry Toolkit Business Service Methods. It navigates to the CME Shopping Cart if
licensed; otherwise, to the standard Shopping Cart.

Arguments
No input or output arguments.

Remarks
The following user properties may be specied for the Shopping Service:

• Module Name

Licensed Module Name. The default is CME eSales.

• Default Shopping Cart View

Name of the view to display if a module is not specied or if the module is specied but not licensed. The default is
Current Quote View (eSales).

• Licensed Shopping Cart View

Name of the view to display if the module identied by module name is licensed. The default is CUT Current Quote View
(e Sales).

Related Information
See the topic about workows in Siebel Order Management Guide , and ValidatePayment Method.

205

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Account Administration Toolkit Business Service
Methods
The Account Administration Toolkit (AAT) business service is a set of methods that are used to manipulate accounts for
eSales workows.

These methods are summarized in the following table.

Method Comment

PickAccount Method

Sets an Account to current for a user session and sets its price list as the default price list.

SetPrimary Method

Picks a record from a picklist and puts it into the set of elds specied in the picklist eld’s pickmap.

AssociateAccountToUser Method

Associates an Account with a User.

EstablishMtoM Method

Establishes an Account to Contact M:M relationship.

PickAccount Method
This method is one of the Account Administration Toolkit Business Service Methods. It sets an account to current status
for a user session. It also sets the account’s price list as the default price list.

Arguments

Argument Description

Account Id

[in] Row Id of the Account that is set to current status. (Optional)

Account Name

[in] Name of the account. (Optional)

Master Account Id

[in] Row Id of the ultimate parent of the account. (Optional)

BusComp Name

[in] Name of the account business component. (Optional)

User Properties
• SelectCurrent:Login BO/BS—Default = CUT Account Login|CUT Account Login

• SelectCurrent:BusComp Name to Refresh—Default = Account

206

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

SetPrimary Method
This method is one of the Account Administration Toolkit Business Service Methods. It picks a record from a picklist and
puts it into the set of elds specied in the picklist eld’s pickmap.

Arguments

Argument Description

BusComp Name

[in] Name of the business component into which the picklist record will be picked. (Required)

PickList Field

[in] Field name in the business component that has the picklist dened. (Required)

Primary Id

[in] Row Id of the Picklist record that is picked. (Required)

Row Id

[in] Row Id of the business component into which the picklist record is picked. (Required)

User Properties
• SelectPrimary: Source Buscomp—Default = User Prole (eApps)

• SelectPrimary: Source Picklist Field Name—Default =Primary Account Name

AssociateAccountToUser Method
This method is one of the Account Administration Toolkit Business Service Methods. It establishes an Account to
Contract M:M relationship.

Arguments

Argument Description

Account Id

[in] Account identier. (Required)

Contact Id

[in] Contact identier. (Required)

BusComp Name

[in] Name of the business component from which this method is to be invoked. (Optional)

BusComp ToBe Refreshed

[in] Name of the business component that is refreshed after the operation in order to show updated
data. (Optional)

207

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

User Properties
• AssociateAccountToUser: Account and Contact Intersection BC—Default = Account Contact.

• AssociateAccountToUser: Default BC—Default = Account

• AssociateAccountToUser: Default BD to Re-Execute—Default = Account Id

• AssociateAccountToUser: Intersection BC Contact Field—Default = Contact Id

• AssociateAccountToUser: Intersection BC Date Field—Default =Start Date

• AssociateAccountToUser: Primary Contact Id Field—Default = Primary Contact Id

EstablishMtoM Method
This method is one of the Account Administration Toolkit Business Service Methods. It establishes an M:M relationship
between two entities.

Arguments

Argument Description

MtoMlntXBCName

[in] Intersection business component name. (Required)

MtoMlntXDestFldName

[in] Intersection business component destination eld value. (Required)

MtoMlntXDestFldValue

[in] Intersection business component destination eld value. (Required)

MtoMlntXSrcFldName

[in] Intersection business component source eld name. (Required)

MtoMlntXSrcFldValue

[in] Intersection business component source eld value. (Required)

Invoke BC Method
This method is one of the Account Administration Toolkit Business Service Methods. It is a generic method that allows
one to invoke a Business Component-based method from Workow. A Business Service method is invoked from a
workow by default. This method acts as a bridge to allow one to pass in the Business Component name and the
method name, along with the parameters and return value required from Workow to the Business Component
specied.

208

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

BC Name

[in] A string to specify the name of Business Component on which you want to invoke its method.
(Required)

Method Name

[in] A string to specify the name of the method in the specied Business Component that you want to
invoke. (Required)

Param 0

[in] A string to pass in the rst argument to the method (Optional)

Param 1

[in] A string to pass in the second argument to the method (Optional)

Param 2

[in] A string to pass in the third argument to the method (Optional)

Param 3

[in] A string to pass in the fourth argument to the method (Optional)

Return Property Name

[out] A string to pass out the output of the method (Optional)

Note: Precongured, you can nd the usage of this method in the SIS OM Quote to Order Workow

Complex Product Auto Match Business Service Method
The Complex Product AutoMatch Business Service includes one method that is used to match components in a quote,
order, or asset with components in the current version of the product model, the Auto Match method.

Auto Match
Auto Match compares the input product instance to the customizable product denition. For each product or class that
cannot be located in the denition of the relationship specied by the product instance, Auto Match searches for that
product or class in another relationship under the same parent in the product denition hierarchy. If the product or
class exists in one or more relationships, the product instance is updated so that the product or class is associated with
the rst of those relationships. If the product or class cannot be found in any relationship in the customizable product
denition, the product or class is removed from the product instance. The details of each change made by Auto Match
are added to the AutoMatchReport and returned as the output of the method with the modied product instance.

209

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

Arguments

Argument Description

SiebelMessage

[in] Product instance to be transformed by Auto Match.

AutoMatchReport

[in] Product instance that has been transformed by Auto Match.

Examples
Review the following Auto match method examples.

Service Prole Upgraded from SCE 6.x
The following example shows how this method is used when a service prole record is upgraded.

Note: In the following examples, a port is an instance of a relationship.

1. The following diagram shows a service prole record that has been upgraded from SCE 6.x:

2. The customizable product denition was reimplemented as shown in the following diagram (rounded boxes
represent a class).

210

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

3. Auto match assigns the following port IDs without error, as shown in the following diagram.

Note: The Installation component port IDs were assigned without ambiguity because each of their parent
components only have one port that supports the Installation product. Also, the erroneous port ID originally
assigned to the Nokia cell phones was replaced by the correct port ID without generating an error.

Service Prole Imported from a Legacy System
The following example shows how this method is used when a service prole is imported from a legacy system.

1. The service prole record shown in the following diagram was imported from a legacy system.

211

Siebel
Order Management Infrastructure Guide

Chapter 10
Asset-Based Ordering Methods Reference

2. The customizable product denition is shown in the following diagram.

3. Auto match does its best to assign port IDs, as shown in the following diagram.

Note: The DSL Service component was deleted because it does not exist beneath Local Line. The Voice-Mail
component was reparented and associated with the Calling Features class. The Call Forwarding component
could have been associated with the product relationship or as a member of the Calling Features class. Hence,
it was assigned to the rst port found (the product relationship) and a warning message was issued.

212

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

11 Projected Asset Cache

Projected Asset Cache
This chapter describes the VORD Projected Asset Cache business service, also referred to as “Projected Asset Cache.”
This chapter includes the following topics:

• About Projected Asset Cache

• Projected Asset Cache Business Service Methods

• Using the VORD Projected Asset Cache Business Service

The “VORD” in the name of this business service originally stood for Vertical Order Management, but this business
service is now used generally in Siebel Enterprise Applications as well as Siebel Industry Applications.

About Projected Asset Cache
The Projected Asset Cache is a persistent business service that loads all assets, open orders, and quote line items
matching a specied search specication into memory using the most ecient SQL queries possible. Projected Asset
Cache is used by the Compound Product Validation. It is used by Network Validation to populate the network nodes pick
applet. It is also used by Compatibility for cross-product compatibility checking. The Projected Asset Cache can be used
by any application that needs a consolidated view of product instances across the quote-to-order-to-asset lifecycle.

Projected Asset Cache automatically converts between the dierent eld names in the Quote, Order, and Asset business
components. The cache is always stored and queried using the Asset eld names. Open Order and Quote line items are
applied to the existing assets to generate a future projected state of the assets for a specied date.

The Projected Asset Cache business service supports multiple concurrent cache instances. When the cache is initialized,
a unique identier is returned. Subsequent queries must specify the identier of the cache to query.

The following are two key functions to the Projected Asset Cache.

Retrieve Data
To retrieve data, the Projected Asset Cache queries the following business components:

• Quote Item: Quote Item XA

• Order Entry - Line Item: Order Item XA

• Asset Mgmt - Asset: Asset Mgmt - Asset XA

Within these business components, Projected Asset Cache limits the retrieval of data to only those elds and aributes
required by the rules checkers. To nd this information, the Projected Asset Cache:

• Loads all the Asset records

• Finds all open orders associated with these Asset records

• Loads all quote line items for the current quote associated with the Compound Product.

213

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

The Projected Asset Cache then uses a predened Field Mapping Service business service to translate the eld names
among business components.

Build the Future Requested State
After retrieving the data, the Projected Asset Cache builds the future requested state of the product instances. It takes
into consideration all assets matching the search specication and applies all open orders due to complete prior to the
specied date. It then applies the current quote or order to generate the future requested state.

The array of projected assets generated is stored in the business service. It is available for performing validations until it
is released or a new initialization of the Projected Asset Cache occurs.

Because the Projected Asset Cache can include any eld in the Asset Mgmt - Asset business component, and because
it also includes data from the Quote Item and Order Line Item business components, the elds must be mapped across
three dierent business components.

This mapping is done by the Field Mapping Service business service. You add mappings by creating new user properties
on the Field Mapping Service business service.

The following table gives an example of one eld mapping, which translates the Service Point Serial Number eld in the
Asset Mgmt - Asset business component to the corresponding eld in the Quote Item business component and in the
Order Entry - Line Item business component.

Name Value

Asset Mgmt - Asset:Quote Item Map 2

[Service Point Serial Number]:[Service Point]

Asset Mgmt - Asset:Order Entry - Line
Items Map 2

[Service Point Serial Number]:[Service Point]

Note: If you add custom elds to the business components from which the Projected Asset Cache retrieves
data, and you want to use these elds either in simple expression rules or custom rules as part of a custom
business service, you must add new eld mappings.

Projected Asset Cache Business Service Methods
Projected Asset Cache methods are summarized in the following table.

Method Comment

Initialize Method

Creates a new cache for assets that match the specied search expression.

Query Method

Filters the list of assets in the Projected Asset Cache to those that match the Search Expression.

214

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

Method Comment

Reset Method

Removes a specied cache from the Projected Asset Cache.

Retrieve Method

Supports a combined query of the Initialize and Query methods.

Using the VORD Projected Asset Cache Business Service shows an example of how to structure the input parameters for
the VORD Projected Asset Cache in a workow.

Initialize Method
The Initialize method creates a new cache for assets that match the specied search expression. It applies open orders
until the specied future date. It applies line items from the specied quote.

The Initialize method retrieves only those elds and aributes specied by the Field and Aribute input arguments. If a
Future Date is provided, open order lines satisfying the search expression that have a due date prior to the Future Date
are applied to the associated assets. If a Quote Id is provided, the quote line items of the specied quote that satisfy the
search expression are applied to the associated assets.

Arguments

Argument Description

Search Expression

[in] Search Expression with which to initialize the cache. Only Assets, Quote Line Items, Order Line
Items and aributes that satisfy the search expression will be loaded into the cache. (Required)

Field

[in] Property set of elds to be retrieved by the Projected Asset Cache. (Optional)

Aribute

[in] Property set of aributes to be retrieved by the Projected Asset Cache. (Optional)

Future Date

[in] Project assets on this date. Only orders that have a due date less than this future date will be
applied. (Optional)

Quote Id

[in] Row ID of the quote for which line items are to be queried and loaded into the Projected Asset
Cache. (Optional)

Asset Cache Key

[out] Unique identier with which to access the Projected Asset Cache. Used by the Query method.

Related Information
See Query Method and Validate Method.

215

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

Query Method
The Query method lters the list of components in the Projected Asset Cache to those that match the Search
Expression. It then counts the number of components, sums the values of Aggregate Field, or calculates the minimum,
maximum or average for each unique combination of group-by elds, and sorts the result by the Sort Field. This
method is analogous to a SQL SELECT statement of the form:

SELECT * | COUNT(*) | SUM([Aggregate Field]) | MAX([Aggregate Field]) |
MIN([Aggregate Field]) | AVG([Aggregate Field]), [Calculated Field] WHERE [Search
Expression] GROUP BY [Group By Field] HAVING [Having Expression] SORT BY [Sort By
Field]".

The search expression supports a list of AND clauses and OR clauses with the following operators:

=, <>, !=, <, >, >=, <=

Arguments

Argument Description

Asset Cache Key

[in] Unique identier with which to query the cache. The key identies the projected asset cache to
validate, and it is returned by the Initialize method. (Required)

Search Expression

[in] Consider only assets that satisfy this Boolean expression. (Optional)

Example:

([Product Type] = “Connection") AND (([Service Address] =
"") OR ([To Service Address] = ""))

Aggregate Function

[in] The type of query executed against the projected asset cache. Valid values are "Sum", "Count",
 "Max", "Min", "Avg" or "". (Optional)

Note: Aggregate Function does not support the use of Date elds.

Aggregate Field

[in] The asset eld considered by an aggregate query. Example: Bandwidth. (Optional)

Note:
Date elds are not supported in aggregate queries.

Calculated Field

[in] Unique identier with which to query the cache. This key is returned by the Initialize method. The
Calculated Field consists of a property set containing denitions for calculated elds that are returned
as part of the result set. (Optional)

Example:

{‘Error Text’, ‘[Count] [Product]s have no Service Address
selected’}

216

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

Argument Description

Group By Field

[in] A property set containing a comma-separated list of elds or aributes used to group by when
evaluating an aggregate function. (Optional)

Example:

{‘Service Address’, ‘’},{‘To Service Address’, ‘’}

Having Expression

[in] Consider only groups that satisfy this Boolean expression. (Optional)

Example:

[Count] > 1

Sort By Field

[in] A property set containing a comma-separated list of elds by which to sort the result set.
(Optional)

Example:

{‘Product’, ‘’},{‘Service Id’, ‘’}

Result

[out] Property set of projected asset cache entries that satisfy the search expression. The property set
contains child property sets that represent rows of the result.

Example:

{{{‘Count’, ‘2’}, {‘Service Address’, ’50 Main St., Denver,
CO 80207’}, {‘To Service Address’, ‘101 California, New York
NY 10234’}},

{{‘Count’, ‘4’}, {‘Service Address’, ’50 Main St., Denver,
CO 80207’}, {‘To Service Address’, ‘901 Peach Tree, Atlanta,
GA 98765’}}}

Related Information
See Initialize Method and Validate Method.

Reset Method
The Reset method deletes the specied cache (or all caches, if not specied) from the Projected Asset Cache.

Argument

Argument Description

Asset Cache Key

[in] Unique identier with which to query the cache. This key is returned by the Initialize method.
(Optional)

217

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

Related Information
See Validate Method.

Retrieve Method
The Retrieve method supports a combined Initialize or Query, and is essentially a wrapper around Initialize + Query. The
input arguments are the same as those for Initialize. The output argument is that of Query.

Arguments

Argument Description

Search Expression

[in] Search Expression with which to initialize the cache. Only Assets, Quote Line Items, Order Line
Items and aributes that satisfy the search expression will be loaded into the cache. (Required)

Field

[in] Property set of elds to be retrieved by the Projected Asset Cache. (Optional)

Aribute

[in] Property set of aributes to be retrieved by the Projected Asset Cache. (Optional)

Future Date

[in] Project assets on this date. Only orders that have a due date less than this future date will be
applied. (Optional)

Quote Id

[in] Row ID of the quote for which line items are to be queried and loaded into the Projected Asset
Cache. (Optional)

Result

[out] Property set of projected asset cache entries that satisfy the search expression. The property set
contains child property sets that represent rows of the result.

Example:

{{{‘Count’, ‘2’}, {‘Service Address’, ’50 Main St., Denver, CO
80207’}, {‘To Service Address’, ‘101 California, New York NY 10234’}},

{{‘Count’, ‘4’}, {‘Service Address’, ’50 Main St., Denver, CO 80207’},
{‘To Service Address’, ‘901 Peach Tree, Atlanta, GA 98765’}}}

Using the VORD Projected Asset Cache Business Service

This topic shows how to structure the input parameters for the VORD Projected Asset Cache business service in a
workow.

218

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

To use VORD Projected Asset Cache business service in a workow
• The structure for all input parameters must be as follows:

◦ All values added to the input PropertySet must be added as child PropertySets.

◦ All child PropertySets must have their type set by the SetType PropertySet method.

For example, for each Field argument:

◦ Create a new PropertySet, set its type to Field, and then use the SetProperty method to set the eld
name.

◦ Add this new PropertySet as a child to the main property used in the business service.

For each Search Expression argument:

◦ Create a new PropertySet, sets its type to Search Expression, use the SetProperty method to set the
property name as Search Expression, and then set Search Expression as the property value.

◦ Add this new PropertySet as a child to the main property used in the business service.

Note: All elds used in the Search Expression eld must be present in the Field PropertySet.

Example:

var assetCacheSvc = TheApplication().GetService("VORD Projected Asset Cache");
var svcInputs = TheApplication().NewPropertySet();
var svcOutputs = TheApplication().NewPropertySet();
var field = TheApplication().NewPropertySet();
var search = TheApplication().NewPropertySet();
field.SetType("Field");
field.SetProperty("Network Element Type", "");
var CompoundProduct = "XXXXXXX";
search.SetType("Search Expression");
search.SetProperty("Search Expression", "([Compound Product Number] =
\""+CompoundProduct+"\")");
svcInputs.AddChild(field);
svcInputs.AddChild(search);
assetCacheSvc.InvokeMethod("Initialize", svcInputs, svcOutputs);
var assetCacheKey = svcOutputs.GetProperty("Asset Cache Key");

219

Siebel
Order Management Infrastructure Guide

Chapter 11
Projected Asset Cache

220

Siebel
Order Management Infrastructure Guide

Chapter 12
Compound Product Validation

12 Compound Product Validation

Compound Product Validation
This chapter is a reference that explains the methods developed for the Compound Product Validation Engine (CPVE)
business service. This chapter includes the following topic:

• About Compound Product Validation Engine Business Service

• Compound Product Validation Engine Business Service Methods

About Compound Product Validation Engine Business
Service
The Compound Product Validation Engine (CPVE) business service, VORD CPVE Validation Service, is a set of methods
that allows the Compound Product Validation Engine to be initiated through a Workow.

The CPVE business service includes methods to validate a network and display rule violations. These methods are
summarized in the following table.

Method Comment

FindFutureDate Method

Gets the due date of the current line item.

Format Violation Method

Formats rules violations in a single string that can be displayed to the user.

Validate Method

Executes the cross-product validation rules associated with a compound product and returns any rule
violations.

ValidateComplexProduct Method

Executes product validation expression validation rules associated with a complex product and returns
any rule violations.

ValidateComplexProductAll Method

Executes product validation expression validation rules associated with the complex product in the
document and returns any rule violations.

ValidateComplexProductFromPropertySet
Method

Executes product validation expression validation rules associated with the complex product in the
property set and returns any rule violations.

221

Siebel
Order Management Infrastructure Guide

Chapter 12
Compound Product Validation

Compound Product Validation Engine Business Service
Methods
The CPVE business service includes methods to validate a network and display rule violations. These methods are as
follows:

• FindFutureDate Method

• Format Violation Method

• Validate Method

• ValidateComplexProduct Method

• ValidateComplexProductAll Method

• ValidateComplexProductFromPropertySet Method

FindFutureDate Method
This method gets the value of the eld specied by FutureDateFieldName for the business component instance
identied by BusinessComponentName and RowId.

The FindFutureDate method requires the current UI BC context.

Arguments

Argument Description

BusinessComponentName

[in] Name of the business component from which to get the future date. (Required)

RowId

[in] Row Id of the business component instance for which to get the future date. (Required)

FutureDateFieldName

[in] Name of the eld in the business component that stores the date. (Required)

FutureDate

[out] Value of the return date. (Required)

Returns

The value of the date eld to use to validate the network at a date in the future.

Related Information
See the topic about workows in Siebel Order Management Guide .

222

Siebel
Order Management Infrastructure Guide

Chapter 12
Compound Product Validation

Format Violation Method
This method takes a property set of rules violations and formats them in a single string that can be displayed to the
user.

Arguments

Argument Description

RuleViolation

[in] Property set of child property sets of type 'RuleViolation'. (Required)

RuleViolationText

[out] Single string containing the formaed rules violations. (Required

Related Information
See the topic about workows in Siebel Order Management Guide , and Validate Method.

Validate Method
This method executes the cross-product validation rules associated with a compound product and returns any rule
violations. It queries the Business Component VORD Compound Product Rule for all the rules dened for the top
level product (highest-level network product) of the compound product (network). It then instantiates the business
service for each of the rules and asks them for the elds and aribute values they need. It then initializes the Projected
Asset Cache by asking it to build a future state of all the root line items within this compound product. This is done by
querying the Quote Item, Order Item, Asset and their XAs for the elds and aributes required by all the rules, and then
applying them to the associated assets. It then invokes the Validate method of each rules checker business service and
creates a consolidated list of rules violations.

The Validate method is called within the VORD Validate (Order) and VORD Validate (Quote) workows, which are
invoked from the Quote and Order Network Applets.

Arguments

Argument Description

CompoundProductNumber

[in] Compound Product Number (Network Id) associated with the compound product to be validated.
(Required)

FutureDate

[in] Date at which to validate the compound product. (Optional)

QuoteId

[in] Row Id of the current quote. (Optional)

CompoundProductNumber [out] Compound Product Number (Network Id) associated with the compound product. (Required)

223

Siebel
Order Management Infrastructure Guide

Chapter 12
Compound Product Validation

Argument Description

RuleViolationEmpty

[out] Y or N ag indicating whether there are any violations. (Required)

RootCompoundProduct

[out] Name of the compound product. (Required)

SiebelMessage

[out] Property set of child property sets of type 'RuleViolation'. (Required)

Related Information
See the topic about workows in Siebel Order Management Guide , and Format Violation Method.

ValidateComplexProduct Method
This method executes product validation expression validation rules associated with a complex product and returns
any rule violations. It queries the Business Component VORD Compound Product Rule for all the rules dened for the
top level product (network product) of the compound product (network). It then instantiates the business service for
each of the rules and asks them for the elds and aribute values they need. It then initializes the Projected Asset Cache
by asking it to build a future state of all the root line items within this compound product. This is done by querying the
Quote Item, Order Item, Asset and their XAs for the elds and aributes required by all the rules, and then applying
them to the associated assets. It then invokes the Validate method of each rules checker business service and creates a
consolidated list of rules violations.

The ValidateComplexProduct method is called within the VORD Validate Complex Product (Order) or VORD Validate
Complex Product (Quote) workows, which in turn are called within the Verify Item (Order) or Verify Item (Quote)
workows.

Arguments

Argument Description

FutureDate

[in] Date at which to validate the complex product. (Optional)

IsComplexProduct

[in] Y or N ag indicating whether the product is complex. (Optional)

QuoteId

[in] Row Id of the current quote. (Optional)

RootAssetIntegrationId

[in] Root Id of the integration asset. (Required)

RootProductId

[in] Root Id of the product. (Required)

RootProductName

[in] Root name of the product. (Optional)

RuleViolationEmpty [out] Y or N ag indicating whether there are any violations. (Required)

224

Siebel
Order Management Infrastructure Guide

Chapter 12
Compound Product Validation

Argument Description

Siebel Message

[out] Property set of child property sets of type 'RuleViolation'. (Required)

Related Information
See the topic about workows in Siebel Order Management Guide , Validate Method, and Format Violation Method.

ValidateComplexProductAll Method
This method executes product validation expression validation rules associated with the complex product in the
document and returns any rule violations. It queries the Business Component VORD Compound Product Rule for all the
rules dened for the top level product (network product) of the compound product (network). It then instantiates the
business service for each of the rules and asks them for the elds and aribute values they need. It then initializes the
Projected Asset Cache by asking it to build a future state of all the root line items within this compound product. This is
done by querying the Quote Item, Order Item, Asset and their XAs for the elds and aributes required by all the rules,
and then applying them to the associated assets. It then invokes the Validate method of each rules checker business
service and creates a consolidated list of rules violations.

The ValidateComplexProductAll method is called within the VORD Validate Complex Product All (Order) or VORD
Validate Complex Product All (Quote) workows, which in turn are called within the Verify Header (Order) or Verify
Header (Quote) workows.

The ValidateComplexProductAll method requires the current UI BC context.

Arguments

Argument Description

BusinessComponentName

[in] Name of the business component. (Required)

FutureDate

[in] Date at which to validate the complex product. (Optional)

QuoteId

[in] Row Id of the current quote. (Optional)

RuleViolationEmpty

[out] Y or N ag indicating whether there are any violations. (Required)

SiebelMessage

Property set of child property sets of type 'RuleViolation'. (Required)

Related Information
See the topic about workows in Siebel Order Management Guide , Validate Method, and Format Violation Method.

225

Siebel
Order Management Infrastructure Guide

Chapter 12
Compound Product Validation

ValidateComplexProductFromPropertySet Method
This method executes the product validation expression validation rules associated with the complex product in the
property set and returns any rule violations.

Arguments

Argument Description

IdFieldName

[in] Row Id of the eld name. (Required)

RecordSet

[in] The record set. (Optional)

RootProductId

[in] Root Id of the product. (Required)

RootProductName

[in] Root name of the product. (Optional)

RuleViolation

[out] The rule violation. (Optional)

RuleViolationEmpty

[out] Y or N ag indicating whether there are any violations. (Required)

Related Information
See the topic about workows in Siebel Order Management Guide , Validate Method, and Format Violation Method.

226

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

13 Copy Service

Copy Service
This chapter explains the use of the ISS Copy business service, or “Copy Service.” This chapter is organized as follows:

• About Copy Service

• Conguring Copy Maps

• Copy Service Methods

Note: The Copy method of the Copy Service is retained for backward compatibility, but it is recommended
that you use the Data Transfer Utility business service for new applications. For more information, see Data
Transfer Utilities Business Service.

About Copy Service
Siebel order management copies data from one document type to another as a transaction progresses. Example
transactions for which data is copied from one document type to another include the following:

• Quote-to-Agreement

• Opportunity-to-Quote

• Order-to-Agreement

• Agreement-to-Order

In earlier releases, the mapping between objects was either hard-coded (as in Quote-to-Agreement) or inconsistently
dened (such as with business component user properties or SIS OM PMT mappings). In this release, all mappings
between objects are dened in the Administration - Application screen, then the Data Map Administration views of the
run-time client.

Using the Administration - Data views and the ISS Copy business service, you can create new mappings and update
existing mappings. A mapping can support one or more business components from a business object (for example,
quote, quote line item, and quote payments).

CAUTION: For Quotes and Orders, ISS Copy service is only used to copy Line Items and Aribute records
during the base business component copy operation. After making changes to the repository (adding or
removing columns), you must also change the data map for CopyQuote and CopyOrder so that the desired set
of elds are copied.

The ISS Copy business service (or “Copy service”), provides a mechanism for copying data from one business object to
another. Use the Administration - Application screen, then the Data Map Administration views to dene the business
components and elds to be copied in a given situation.

227

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

Note: With Copy Service, data map object denitions are cached in the object manager. If you make changes
to the denitions, you must restart the Siebel server.

Conguring Copy Maps
For information about conguring copy maps, see the topics about creating and validating data maps in Business
Processes and Rules: Siebel Enterprise Application Integration .

Components of the Copy Service mechanism are shown in the following gure.

Data maps are cached in the Object Manager. Copy Service uses batched SQL updates for optimum throughput.

Copy Service Methods
The Copy Service includes the following methods, which can be called from script or signals:

• GetFieldValueFromInstance Method

• LoadInstanceFromBC Method

• SetFieldValueFromInstance Method

• PopAndReleaseInstance Method

• Copy Method

• RefreshBCFromInstance Method

• CleanupEAI Method

• CleanupInstance Method

• LoadEAI Method

• SetupLineNumbers Method

• SetupSyncUpsert Method

• StoreEAI Method

228

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

• CheckEligibilityHelper Method

• CalculatePriceHelper Method

GetFieldValueFromInstance Method
This method retrieves the business component eld value from the instance.

Arguments

Argument Description

InstanceName

[in] ISS business component instance name.

FieldName

[in] Business component eld name.

BusCompName

[in] Used to specify a business component other than the instance business component, if necessary.
(Optional)

FieldValue

[out] The eld value.

SearchSpec

[out] A search specication of the following format:

[FieldName] = "FieldValue"

LoadInstanceFromBC Method
The method loads the instance from the business component and pushes it into an instance. If SourceInstance is
specied, the new instance is created by cloning the source instance and positioning it on the same row ID. Alternatively,
BusObj, BusComp, and a search specication can be used to dene the new instance.

The instance business component loaded must not have a parent dened in the BusObj.

Arguments

Argument Description

SourceInstance

[in] The source ISS instance name. If specied, the new instance is constructed by positioning it on the
same row ID as the source instance. (Optional)

InstanceName

[in] Required if SourceInstance is specied. Otherwise, optional default to “TheInstance”. (Optional)

BusObjName

[in] Business object name. (Optional)

BusCompName

[in] Business component name. (Optional)

229

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

Argument Description

SearchSpec

[in] Search specication on the business component. (Optional)

InsertOnly

[in] If set to Y, ???? (Optional)

SetFieldValueFromInstance Method
The method sets the eld value to an instance.

Arguments

Argument Description

InstanceName

[in] ISS business component instance name.

FieldName

[in] business component eld name

BusCompName

[in] Used to specify a business component other than the instance business component, if necessary.
(Optional)

FieldValue

[in] Field value.

GetLOVValue

[in] LOV Type. If dened, the FieldValue is the LOV language-independent code. The actual eld value
will be the language-dependent display value as dened by LOV Type or Language independent code.
(Optional)

PopAndReleaseInstance Method
This method pops out and releases the instances.

Arguments

Argument Description

InstanceName

[in] The ISS instance name.

230

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

Copy Method
The method copies the source instance to the destination instance based on the dened copy map.

Arguments

Argument Description

SourceInstance

[in] Source instance name.

DestinationInstance

[in] Destination instance name.

MapName

[in] Data map name.

CachedUpdate

[in] Y or N. Performance option to allow for cached updates. All SQL generated in the operation is
issued to the database in one batch. Therefore, a SQL in the block cannot depend on a previous SQL
being commied to the database. (Optional)

Release

[in] Source, Destination, or All. If dened, the corresponding instance(s) is popped up and released
after the operation. (Optional)

RefreshBCFromInstance Method
The method refreshes the instance business component. If dened in the input argument, the line item business
component is also refreshed.

Arguments

Argument Description

InstanceName

[in] ISS business component instance name.

BusCompName

[in] Used to specify a buscomp other than the instance buscomp, if necessary. (Optional

BusCompLineItemName

[in] Line item buscomp name. (Optional)

CleanupEAI Method
CleanupEAI frees the memory used by the EAI data structure.

231

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

Syntax
Cleanup EAI <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

InstanceCollectionName

A string indicating the name of the instance collection

Usage
CleanupEAI frees the memory used by the EAI data structure. The name of collection is passed in as the
InstanceCollectionName property.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

CleanupInstance Method
CleanupInstance frees the memory used by the CxObj data structure.

Syntax
Cleanup Instance <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

InstanceName

A string indicating the name of the instance

Usage
CleanupInstance frees the memory used by the CxObj data structure. The name of instance is passed in as the
InstanceName property.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

232

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

LoadEAI Method
LoadEAI loads the product line item data structure through EAI and creates the CxObj memory structure for it.

Syntax
Load EAI <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

ParentObjectId

The Quote Id or Order Id or Agreement Id or parent Asset Id

IntegrationObjectName

The integration object name to use to load the object through EAI

SearchSpec

The search spec to apply when loading the object through EAI. Format:

[Header.Id] = 'QuoteId' AND [Line Item.Root Id] =
'RootId' (ex. "[Header.Id] = '2-4YOXR' AND [Line
Item.Root Id] = '2-4YOXX'")

InstanceCollectionName [optional]

A string indicating the name of the instance collection. Defaults to "TheInstanceCollection"

InstanceName [optional]

A string indicating the name of the instance. Defaults to "TheInstance"

RootId [optional]

The row ID of the root product. If empty, then a new row is created using the Product Id property. This
is used during Validation of a product.

ProductId [optional]

Only used if RootId is empty. A dummy memory structure is created using the Product Id.

Output Arguments

Input Argument Description

RootId

The row ID for the root product.

Usage
LoadEAI loads the product line item data structure through EAI and creates the CxObj memory structure for it. The
CxObj structure is cached for use later by Congurator UI service and Congurator Service and also by Eligibility &
Compatibility.

233

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

SetupLineNumbers Method
SetupLineNumbers updates the line numbers for the Line Item being customized corresponding to the CxObj.

Syntax
SetupLineNumbers <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

HeaderIntCompName

Header Integration Component Name

Integration Object Name

The integration object name to use to load the object through EAI

InstanceCollectionName

A string indicating the name of the instance collection

InstanceName

A string indicating the name of the instance

Line Number Field

Line number eld

LineItemIntCompName

Line Item Integration Component Name

Row Id

Line Item Id

Usage
SetupLineNumbers updates the line numbers for the Line Item being customized corresponding to the CxObj.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

SetupSyncUpsert Method
SetupSyncUpsert updates EAI operations on CxObj nodes for beer performance during the subsequent sync using EAI.

234

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

Syntax
SetupSyncUpsert <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

InstanceCollectionName

A string indicating the name of the instance collection

Usage
SetupSyncUpsert updates EAI operations on CxObj nodes for beer performance during the subsequent sync using EAI.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

StoreEAI Method
StoreEAI updates the line item by storing the CxObj structure using EAI.

Syntax
Store EAI <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

IntegrationObjectName

The integration object name to use to load the object through EAI

InstanceCollectionName [optional]

A string indicating the name of the instance collection. Defaults to "TheInstanceCollection".

ParentObjId

Quote Id, Order Id, Agreement Id, or Asset Id

Usage
StoreEAI updates the line item by storing the CxObj structure using EAI.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

235

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

CheckEligibilityHelper Method
Raises the GetEligibility signal on a congurator instance.

Syntax
CheckEligibilityHelper <inputArgs>, <outputArgs>

Input Arguments

Input Argument Description

InstanceName

Name of instance

Mode

Quote, Order, Asset or Agreement

Output Arguments

Output Argument Description

Status

SUCCESS or ERROR

Error Message

(Optional) Error message, if any

Usage
Raises the GetEligibility signal on a congurator instance. This is invoked from the Batch Validate workow. The
workow can be modied to skip this step if needed.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

CalculatePriceHelper Method
Raises the CalculatePrice signal on a congurator instance.

Syntax
CalculatePriceHelper <inputArgs>, <outputArgs>

236

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

Input Arguments

Input Argument Description

InstanceName

Name of instance

Mode

Quote, Order, Asset or Agreement

Output Arguments

Output Argument Description

Status

SUCCESS or ERROR

Error Number

(Optional) Error code, if any

Error Message

(Optional) Error message, if any

Usage
Raises the CalculatePrice signal on a congurator instance. This is invoked from the Batch Validate workow. The
workow can be modied to skip this step if needed.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile Web Client
Automation Server.

237

Siebel
Order Management Infrastructure Guide

Chapter 13
Copy Service

238

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

14 Data Transfer Utilities Business Service

Data Transfer Utilities Business Service
This chapter describes the Data Transfer Utilities business service. It includes the following topics:

• About Data Transfer Utilities

• About Data Maps

• Example of Dening Data Maps to Use with the DTU

• Examples of Invoking the DTU

• Data Transfer Utilities Methods

About Data Transfer Utilities
This business service allows you to transfer data from a source business component to a destination component. For
example, a user can enter data in one view, then use a toolbar command to navigate to another view. Data entered in
the rst view is automatically entered in the second view.

Considerations for Data Transfer Utilities
This topic covers considerations that are important when you use the Data Transfer Utilities.

CAUTION: Spool SQL statements during the development stage to verify that all operations are performed.

Use of Active Business Objects
Data Transfer Utilities execute inside a client's object manager.

The DTU reuses the current active business objects. It does not instantiate an independent source business object
unless directed. This leads to both a leaner memory use and beer performance. This is even more so if the destination
business object is the same as the source business object. In such a case, no new business objects are instantiated for
the business service.

Because of the reuse of active objects, you must exercise caution to preserve the current business object context. For
example, the business components must not be in the query state when DTU is launched.

Invocation Context
You can pass a reference to the active Buscomp to DTU, if you invoke the business service from Event Manager,
Buscomp Named Method, or from a workow process that is invoked by the event manager. You are not required to
have an active Buscomp.

239

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Not all Buscomp events can be used to invoke the DataTransfer method. For example, Query event in general must not
be used to trigger DataTransfer, as the buscomps are not in an updateable state.

In general, use PreDeleteRecord event; do not use DeleteRecord event. The Siebel event manager does not pass in a
reference to the active Buscomp in the DeleteRecord event.

Use special care when the service is used with other business services in a workow. Other business services should
not interfere the passing of a reference to the active buscomp. Use a spooled SQL statement to conrm the operations
carried out are correct.

Well-Positioned Buscomps
A well-positioned Buscomp is a Buscomp that has been positioned correctly, and whose position should not be
disturbed. DTU uses the following rule:

• The initiator Buscomp is a well-positioned Buscomp.

• The ascendants of a well-positioned Buscomp are well-positioned.

• For a given data map component, the buscomps involved in all its parent data map components are well
positioned.

If the source Buscomp is well-positioned:

• Data transfer is only invoked on the current row of the source BusComp. Otherwise, the operation is carried out
on all rows in the source BusComp at the moment of invocation.

• Advanced options such as source search spec, source sort spec should be empty.

If the destination Buscomp is well-positioned:

• You do not need to specify key elds to retrieve the destination record. Even if you do in this case, DTU would
ignore them.

• And if the current operation is Insert, it would change to Update by default, unless overridden by Operation
Overrides.

Example of Buscomp That is Not Well-Positioned
Calling the DTU Data Transfer method from an applet that is based on buscomp Quote, but which has the data mapped
source buscomp Opportunity. In this case:

• The UI context (Quote) does not match the data mapped buscomp (Opportunity), and

• DTU must query all Opportunity buscomp records, unless the RowId parameter is additionally passed, to
identify a single opportunity record.

Recursive Invocation
By default, you cannot use the DataTransfer operation to invoke another DataTransfer operation. In other words, at
anytime within a client's object manager, there is only one DataTransfer method in the call stack.

Using Named Parameters in DTU
You can use named parameters to pass in a run-time dynamic value into Data Transfer Utilities (DTU). For example,
imagine you want to pull a contact's latest information into your Buscomp. At design-time, you cannot foresee what is
the contact’s ID. Instead, you use a named parameter, &ContactId, and at run time, you pass in the value &ContactId.

240

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Named parameters are dened implicitly in two ways:

• Business Service Arguments. Pass in the named parameters when DTU is invoked. DTU knows an argument is a
named parameter if the argument name is prexed with an ampersand (&).

For example:

var psinputs, psoutputs;
var myContactId = '0-45TU890';
psinputs = TheApplication().NewPropertySet();
psoutputs = TheApplication().NewPropertySet();
psinputs.SetProperty ("DataMapObj", "My Test DTU Object");
psinputs.SetProperty ("Operation", "Update");
psinputs.SetProperty ("&ContactId", myContactId);
var obs = TheApplication().GetService("FINS Data Transfer Utilities");
obs.InvokeMethod ("DataTransfer",psinputs, psoutputs);

&ContactId serves as a named parameter.

The input value of a named parameter can be a calculation expression. In order to do so, set the value to:

Expr: "YourExpression"

which is the syntax of Buscomp eld predefault. At run time, the expression is evaluated against the initiator Buscomp.
For more information about initiator buscomp, see the argument description in DataTransfer Method.

• Assignment by DTU. At run time, you can transfer into a named parameter if the eld type is Parameter. When
this happens, if the named parameter is still not dened, it is instantiated.

A named parameter must be implicitly dened rst before it can be used. In other words, un-assigned named
parameters cannot be used.

Named parameters can be used to dene Data Map Component Advanced Options, and Data Map Field Source or
Destination that are of type Expression.

All named parameters are output into the DTU service output arguments.

Tip: Whenever a named parameter is used in DTU, it must be prexed with &.

Calculation Expressions in DTU
When Data Map Field Source or Destination Type is Expression, the Source or Destination Fields are calculation
expressions that follow Siebel Query Language syntax. See Siebel Personalization Administration Guide for more
information about Siebel Query Language.

DTU contains two extensions to Siebel Query Language: curly bracket pair {eld}, and named parameter.

Curly Bracket Pair {eld}
Use this syntax to refer to a buscomp eld at the other business component side. For example, if you dene the
following expression as the source:

{ContactId}

[ContactId] would be evaluated at the destination bsucomp. When {} is involved, please note that {} takes the highest
precedence over other operator. Thus, if you have an expression like:

241

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

‘{Last Name}' + 'Test'

{Last Name} has precedence over quotes "". If the person's last name is Agee, {Last Name} is evaluated to be "Agee". As
a result, the nal value is:

"Agee" Test

instead of

{Last Name} Test

Named Parameter
A calculation expression can contain named parameters, using the syntax of [&Parameter]. It is important to pre-x the
ampersand to indicate a named parameter. For example,

"Sadmin's opportunity #" + [&OpptyId]

For more information about named parameters, see Using Named Parameters in DTU.

Using DTU with Order Management Signals
Order Management signals are a powerful infrastructure that allow you to dene complicated runtime events. For more
information, see Signals.

DTU can be directly invoked through a signal. When this happens, the signal infrastructure passes the row ID of the
current instance buscomp to the RowId argument of DTU. This tells DTU which source buscomp record to work with.

In a rare case when you invoke DTU from a signal, but you do not want DTU to use RowId passed from the signal as the
context, simply set the IgnoreRowId argument to Y.

Since signals pass the RowId argument instead of the buscomp instance into DTU, a new instance of source buscomp is
always created.

About Working with Hierarchical Business Components
Hierarchical business components, such as Quote Item, are business components that dene a recursive hierarchical
foreign key eld to themselves. In Web Tools, these buscomps have the Hierarchical Parent Field aribute dened.
Sometimes, their buscomp user properties also contain a denition for Root ID Field Name. For more information, see
Siebel Tools Online Help .

When the data of a hierarchical buscomp is copied to another hierarchical buscomp, care must be taken to re-wire
the hierarchical foreign keys: the hierarchical parent eld and the root ID eld. They must be re-wired to point to the
corresponding destination records. DTU automatically re-wires those two foreign keys when a hierarchical buscomp is
copied to another hierarchical buscomp.

For performance reasons, many data map objects in Siebel Order Management use a aened version of a hierarchical
buscomp instead. For example, data map object QuoteToSalesOrder, which creates a sales order based on a quote,
contains the Line Item component that uses Quote Item (Simple) and Order Entry - Line Items (Simple). Both simple
buscomps are not hierarchical. The reason for using simple buscomps is performance, as hierarchical buscomps require
more CPU and memory. However, when those simple buscomps are used, you must dene the foreign key mapping

242

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

yourself. This is generally achieved using the eld-level advanced option ID Mapping Component described in the
following table.

This option was referred to as MapId in ISS Copy Service (described in Data Map Fields), which is not used by DTU in 8.0.
For more information, see ISS Copy Service and the Data Transfer Utility.

In rare cases, you do not want DTU to automatically set hierarchical parent ID and root ID when a hierarchical buscomp
is copied to another hierarchical buscomp. Set the component advanced option Disable Hierarchy to Y. You must type
this option yourself, as it is not available from the pick list in the data map administration screen.

ISS Copy Service and the Data Transfer Utility
The DataTransfer method of the DTU replaces the Copy method of the ISS Copy Service. DTU oers more functionality
and usability.

ISS Copy Service is still supported. Earlier congurations that use the Copy Service will still work with the Copy
Service in 8.0. Only the AutoOrderSalesQuote and AutoOrderServiceQuote signals are re-congured to use DTU. It is
recommended that new development be based on DTU.

Some dierences are between DTU and ISS Copy Service are:

• DTU does not require you to instantiate the source and destination instances rst. Instead DTU instantiates and
deletes them automatically. This makes the invocation easier and safer.

• Copy service data map eld options include:

◦ SequenceField. For the DTU data map, SequenceField is renamed as Sequence Field.

◦ MapId. For the DTU data map, MapId is renamed as the ID Mapping Component option. The dierence
is that the MapId option value is a source buscomp name, and ID Mapping Component is the data map
component name, as DTU allows a buscomp to be used in multiple components.

For backward compatibility, DTU still recognizes the copy service eld options.

Conguring Event-Based Commands for DTU
The Data Transfer Utilities (DTU) business service allows you to congure toolbar and menu commands based on Siebel
Event Manager.

To congure event-based commands
1. In Web Tools, create or open a workspace and then navigate to Object Explorer.

To use the workspace dashboard, see Using Siebel Tools .
2. Dene a command where:

Business Service is “FINS Data Transfer Utilities” and method is “FAFireEventxxx”.

The method name can be anything that begins with “FAFireEvent”. When the command is invoked, it, in turn,
invokes method EventMethodxxx on the primary buscomp of the active view, where xxx is of the same value as
in FAFireEventxxx.

3. Dene a toolbar.

243

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

4. Dene a toolbar item for the command you dened.
5. Save your changes and submit the workspace for delivery.
6. In the Siebel client, dene a run-time event that will receive EventMethodxxx.
7. Navigate to the Administration - Runtime Events screen, then the Events view, and create a Buscomp run-time

event as listed in the following table. See Siebel Personalization Administration Guide for more information
about run-time events.

Field Entry

Sequence

-1

Object Type

BusComp

Object Name

The name of the business component in which the event is invoked. For a toolbar
command, this is the primary business component in the view in which the command is
invoked.

Event

InvokeMethod

Sub Event

EventMethodxxx. Choose the same value for xxx that you chose for FAFireEvent.

Action Set Name

The action set that invokes Siebel Workow Manager or a business service.

Alternatively, you can dene a workow that has a Start step that contains run-time events. When the workow
is activated, both the Action Sets and run-time events are created automatically for you. For more information,
see Siebel Business Process Framework: Workow Guide .

8. Siebel run-time events are cached. After you make changes, click the Runtime Events applet menu item Reload
Runtime Events.

9. Congure dynamic enabling of the command. For more information, see Dynamic Enabling of Commands for
DTU.

10. Dene command visibility:

a. In Siebel Tools, navigate to Business Services, then FINS Data Transfer Utilities.
b. Dene a user property in which Name is MethodName GotoView, and Value is set to the name of a view.

MethodName is the name of the command method.

When you dene this user property, this method is enabled only for users who have visibility to the view
dened in the value. If the method does not contain a GotoView, visibility is not imposed on the method.

244

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Dynamic Enabling of Commands for DTU
When a command is invoked from a toolbar buon or menu, the Data Transfer Utilities business service invokes the
method EventMethodxxx on the primary business component of the active view. The primary business component
should be derived from CSSBCBase to allow the invocation to be captured by Siebel Event Manager.

When the view is changed, Siebel framework polls each command for the application-level toolbar buons and
application menu to determine whether the buon or menu items should be made read-only.

There are two mechanisms for the dynamic enabling and disabling of commands in DTU:

• Srf mode

• Mock Event Sink

The System Preference FINS DTU Enable FireEvent Mode is used to determine the mode. The value should be Srf or
Runtime Event. The default value is Srf.

Srf Mode
In the Srf mode, a FAFireEventxxx invocation on a buscomp is enabled if there is a user property underneath the FINS
Data Transfer Utilities business service as such that the name of the user property is:

Name: FAFireEventxxx Static Enabled BC [n]

Value: Buscomp Name

You can dene multiple Buscomps for a FAFireEventxxx method.

Srf mode is introduced primarily for performance reasons. Compared with Runtime Event mode, it allows fast enabling
and disabling of a command buon without actually invoking a run-time event. Srf mode is the default mode.

Mock Event Sink
When System Preference FINS DTU Enable FireEvent Mode is Runtime Event, Data Transfer Utilities determines at
run time whether a FAFireEventxxx method should be disabled or not by initializing Mock Event Mode. It sets up a
global mock event ag within the client’s object manager. It then invokes EventMethodxxx on the primary business
component of the active view. If this EventMethodxxx is nally captured by a Mock Event Sink, a global response
ag is set. When the Data Transfer Utilities nds out the response ag is set by a mock event sink, it enables the
FAFireEventxxx method for that particular view. Otherwise, the method is disabled.

Mock Event Sinks are specialized business service methods that capture mock events. They check whether the client’s
OM is in the mock event mode. If not, they do nothing. If so, they reply to the mock event by seing the response ag as
well as the output argument.

MockMethodReplied is Y.

TryMockMethod in Data Transfer Utilities is a mock event sink. DataTransfer method has a built-in mock event sink.

245

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Performance Tuning for DTU
You can improve performance of DTU by using the following tips:

• "When the operation is insert, and you are sure no duplicate records would be created in the process, do not
check Key ags. This means that DTU does not need to query the database to identify duplicates.

• Use BatchMode in the Option argument whenever possible.

• Use Cached Updates whenever possible.

• For bounded picklist elds, MVG primary ID, and MVG source ID elds, skip eld validation whenever possible.
Note that skipping the bounded picklist validation would also skip seing elds of the pick map.

• When a reference to the active instance buscomp is passed to DTU, it is a delicate balance to decide whether
or not to launch the DTU with a new instance of the source buscomp or re-use the current active instance. By
using the active instance, you avoid using CPU and memory for the new business object. On the other hand,
when DTU works o the active instance, it has to restore the buscomp context to its original state, causing
refreshing and looping of buscomps. When a large number of buscomps or buscomp records are involved , this
can be expensive. This is why the NewSrcBusObj option is used in the "Auto Order Web Service" example.

About Data Maps
Data maps are the logic dening the ow of data from one location to another. The DTU business service uses data
maps to transfer data from one location in the Siebel application to another.

This topic includes information about the following:

• Data Map Objects

• Data Map Components

• Data Map Component Advanced Options

• Data Map Fields

• Data Map Field Advanced Options

• Migrating Data Map Objects Between Environments

Data Map Objects
Data map objects indicate the data that is being transferred from the source business object to the destination business
object. You can use the Administration - Application screen, then the Data Map Administration view to dene data map
objects. Only Siebel administrators have access to this screen. Data map objects are described in the following table.

Object Description

Name

Data map object name. Enter a unique name.

Source Business Object

Source business object name.

246

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Object Description

Destination Business Object

Destination business object name. You can specify the same business object as both source and
destination business object.

Inactive

Check this box to make the data map object inactive.

Tip: Data map objects are cached in memory. Whenever you make changes to an existing data map object,
click the Clear Cache buon to refresh the cache so that your changes appear.

You can import or export data map objects as XML les through the Data Map Object applet menu items: XML Import,
XML Export.

Data Map Components
Data map components dene the mapping at the child business component level. Each data map object can contain
multiple data map components. You can arrange data map components in a parent-child hierarchy, but you must
specify a parent for all except one data map component. The parentless data map component is called the root data
map component. Data map components are described in the following table.

Component Description

Name

Data map component name. Enter a unique name for each data map component in a data map object.

Source or Destination Business
Component

Source or destination business component name.

If you specify a parent for this data map component, you must dene this business component as a
child of the source or destination business object to which the parent data map component is mapped.

Parent

Parent data map component name. If you:

• Specify a parent, the parent is mapped to particular source and destination business components.
Generally, you map the child data map component to a child of those source and destination
business components.

• Do not want to specify a parent, leave it empty to indicate that this is the root data map
component. Each data map object can have one or more root data map components.

Inactive

Check this box to make the data map component inactive.

Data Map Component Advanced Options
Fine-tune data transfer at the component level by using Advanced Options multi-value elds. Data map components
advanced options are described in the following table.

247

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

All advanced option values can contain named parameters. At run time, the named parameter is substituted by its run-
time value.

If the source Buscomp has been well positioned, the source search spec, the source sort spec, and source record row
number must be evaluated to be empty at run time, otherwise a wrong advanced option error is encountered. See Well-
Positioned Buscomps for more information.

Advanced Options does not apply to multi-value group subcomponents.

Component Description

Source Search Specication

Source Sort Specication

Denes the source Buscomp search spec and sort spec. The value can be a literal search spec or sort
spec string. It can also contain a named parameter. See Using Named Parameters in DTU. For example:

[Id] = [&ContactId]

where ContactId is a named parameter. At run time, only named parameters are replaced by their
string values.

Source Record Row Number

One can selectively transfer only a subset of source Buscomp records. This can be dened in three
formats:

• Start-End

• Start-

• Number

For example, 0-5, 4-, 0.

Note: The row number starts at 0.

Operation Override

This option allows one to override the operation at the component level. For example, if the current
operation is Insert, you can use this option to set some component to operate Update instead.

No Association

Y or N. Applicable to buscomps that have association list. By default, it is Y. Data Transfer Utilities rst
try to locate the desired destination record in the associate list. If successful, the located record is
associated. Otherwise, a new record is created.

If N, association of existing records is not aempted. A new record is created instead.

Cached Updates

The valid values include:

• Source Component

• Destination Component

• Source or Destination Component

This is a performance enhancement option that defers sending SQL statements to the database until
they can be sent together. Since none of the SQL statements is sent until the end, subsequent steps in
the block cannot be dependant on a previous step having been commied to the database.

When you turn on this option, make sure to conrm all SQL statements are generated correctly and
there is no inter-dependency.

Field Validation Y or N. By default it is Y.

248

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Component Description

By default, seing eld values in a Siebel BusComp triggers eld value validation. If you have a
bounded picklist, the new value is validated against the picklist and the elds in the pick maps are set.
Disabling eld validation also turns o picklists. It is a performance enhancement option.

Source Filter Specication

An expression in Siebel search specication syntax that is used to lter out records at the runtime. Only
source records whose lter specication evaluates to be true are transferred.

Filter specication diers from search specication in that search specication is imposed at the
database query, and lter specication is imposed while looping through the records.

Disable Order Management Signals

The valid values include

• Source Component

• Destination Component

• Source or Destination Component

When the Disable Order Management Signals option is imposed on the source or destination
components, buscomp operations on those buscomps do not trigger order management signals
during the data transfer process.

Data Map Fields
Data map elds dene the eld-to-eld mapping. Data map elds are described in the following table.

Field Description

Source Type or Destination Type

Type of the source or destination eld. Can be: Field, Expression, or Parameter:

• Field. A Siebel Buscomp eld.

• Parameter. A named parameter. The parameter must be prexed with an ampersand (&). See
Using Named Parameters in DTU. For example:

 &ContactId

• Expression. A Siebel calculation expression. See Calculation Expressions in DTU.

Source or Destination

The contents of these elds depends on the source and destination type.

If the type is:

• Field, use Buscomp eld name.

• Expression, use a Siebel calculation expression.

• Parameter, use a named parameter.

249

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Field Description

If the destination eld is a calculated expression, then the record is not used to update the destination
Buscomp. Instead, the result of the expression, evaluated at run time, is wrien back into the source
eld at the end of the data transfer operation of the component.

If the Source is:

• A Buscomp eld, then source Buscomp is updated.

• A Parameter, the corresponding named parameter value is updated.

• An Expression, nothing happens.

Key

Matches the destination records with source records.

For example, the Update operation updates the record in the destination business component whose
key destination elds all match those of the corresponding source elds.

Each data map component in general contains at least one key eld.

When there is no key dened, if the operation is:

• Insert, DTU would proceed without checking if a duplicate record with the same key elds already
exists.

• Update, it would update the current destination record.

If the destination business component is populated with an associated list business component, at
least one key eld is required.

Source or Destination Multi-Value Link

This link indicates that the source and destination elds are multi-value elds.

Data is transferred from one multi-value eld to another by dividing data map elds into several
subcomponents. All entries with the same source and destination multi-value link constitute a
subcomponent. Specify a key for each subcomponent.

Note: Data transfer from a multi-value eld to a single-value eld is not allowed.

Data Map Field Advanced Options
Data map eld advanced options allow you to ne tune data transfer operations at the eld level. These options are
described in the following table.

Option Description

Field Validation

Possible values are Y or N. The default is Y.

For more information, see the Field Value component in Data Map Component Advanced Options. If
Field Validation option is dened at both component and eld levels, the eld level denition wins.

Sequence Field

Possible values are Y or N. The default value is N.

250

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Option Description

If the value is Y, a sequence number starting from 1 and increased by 1 is assigned to the destination
eld in each record.

Id Mapping Component

The option is used to re-wire foreign keys. The valid values are the names of data map components
in the data map object. At run time, the source ID to destination ID mapping of the named data map
component denes the foreign key mapping used by the data map eld.

For example, when you copy from quote item to order item in a data map component Items, the
hierarchical parent ID of a quote item cannot be literally copied to the order item parent ID. It needs
to be re-wired to the corresponding order item ID. The ID mapping component must be Items, as the
quote to order ID mapping is used to look up the order parent ID eld using the value of the quote
parent ID eld.

For related information, see Conguring Event-Based Commands for DTU.

Migrating Data Map Objects Between Environments
Data map denitions are enabled for export and import by the Application Deployment Manager (ADM). For
information about using ADM, see Siebel Application Deployment Manager Guide .

Example of Dening Data Maps to Use with the DTU
This topic shows how data mapping is dened to convert a quote into a sales order using the DTU. This is in essence
Auto Quote function of the DTU. This example guides you though the mapping in the application.

The data copied over mainly consists of a three-level hierarchy:

• Header

• Line items

• Extended aributes (XA)

There are also other auxiliary entities such as payments, requested, and promised scheduled lines. This example shows
how header (Mapping Headers), line items (Mapping Line Items) and XA (Mapping the Extended Aributes) are mapped.
Other entities are mapped like either line items or XA. First, you must nd the data map object where the header, line
item, or XA are mapped as described in Finding the Data Map Object.

Finding the Data Map Object
You must nd the data map object where the header, line items, and XA are mapped.

To nd the data map object
1. Navigate to the Administration - Application screen, then the Data Map Administration view.
2. In the Data Map Object list, select the record named QuoteToSalesOrder.

251

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

The components of this data map object, including Header, Line Item, and XZ, appear in the Data Map
Component list, after the Data Map Object list.

Mapping Headers
First, look at the mapping of the header component, to see how the quote header buscomp is mapped to the order
header buscomp.

Notice that a calculation expression is used to look up the order type LOV to default the order type to sales order.

Two advanced options at the component level are of interest, because they are both important to improve performance:

• Cached Updates. Enables cached updates at the destination buscomp level. All updates at the order buscomp,
and its descendant buscomps, are cached and issued in one batch to the database.

• Skip Order Management Signals. Because of this option, seing eld values at the order buscomp does not
trigger order management signals that usually would invoke pricing and eligibility workows.

To view the header mapping
1. In the Data Map Component list, select the record named Header.
2. Look at the mapping in the Data Map eld list.

Notice that the record with Expression in the Source Type eld has the expression
LookupValue("FS_ORDER_TYPE","Sales Order"), which is used to default the order type to sales order.

3. Click the select buon in the Advanced Options eld of the Header record to see that Cached Updates and Skip
Order Management Signals are selected as options.

Mapping Line Items
Next, look at the Line Item component.

The record denes its parent as Header, so it is invoked as a child of the Header component.

To improve performance, use simple buscomps instead of the line item buscomps used in the Siebel Call Center user
interface. These improve performance because they are light-weight and, most important, because they are not dened
as hierarchical buscomps.

Because they are not hierarchical, you must dene their hierarchical parent elds in the mapping, using the Data Map
Field records with Root Quote Item ID and Parent Quote Item ID in their Source eld.

Both these records use the advanced option with the name ID Mapping Component to dene the foreign keys to dene
hierarchical parent elds.

Note: For backward compatibility, the application retains the advanced option MapId, which functions like ID
Mapping Component.

For more information, see Conguring Event-Based Commands for DTU.

252

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

To view the line item mapping
1. In the Data Map Component list, select the record named Line Item.
2. Look at Advanced Option and the mapping in the Data Map eld list.

Mapping the Extended Aributes
Next, look at the XA component.

Note that deep XA buscomps are used. In Web Tools, these buscomps are dened as children of the header buscomps,
not as children of line items. This improves performance, because one query can retrieve all grand-children XA
aributes that belong to a quote. To mirror the Tools conguration, XA is dened as a child of Header in the Data Map
Component.

As deep XA buscomps are dened as children of the header, you cannot rely on Siebel buscomp links to set the parent
line item IDs, which are stored in the Object Id eld. You also cannot literally take object ID from quote to order, as the
quote XA object ID points to a quote item, and the order XA object ID points to an order line item. You need to use ID
mapping to look up the foreign keys in the order side. This is realized by the advanced options:

• Name: ID Mapping Component

• Value: Line Item

Note: For backward compatibility, the application retains the advanced option MapId, which functions like ID
Mapping Component.

For more information, see Conguring Event-Based Commands for DTU.

To view the line item mapping
1. In the Data Map Component list, select the record named XA.
2. Look at Advanced Option and the mapping in the Data Map eld list.

Examples of Invoking the DTU
The following topics illustrate the two ways of invoking the DTU, as they are used in the Siebel application, and how to
use DTU services:

• Example of Invoking the DTU from a Signal: Auto Sales Order

• Example of Invoking DTU from a Workow: Auto Order Web Service

• Example of Using DTU Services shows how to use a DTU business service to copy data from one business
component to another business component.

Example of Invoking the DTU from a Signal: Auto Sales Order
Auto sales order is a function that creates a sales order from the current quote. It can be invoked by clicking the Sales
Order buon in the Quote screen, then the Order view. This buon invokes the signal AutoOrderSalesQuote. This
example shows you how this signal invokes the DTU.

253

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

To see how the signal Auto SalesOrderQuote invokes the DTU
1. Log into Siebel application as an administrator.
2. Navigate to the Administration - Order Management screen, then the Signals view.
3. Query for AutoOrderSalesQuote.
4. In the last version list applet, drill into version 3.
5. You can see the three actions taken by the signal. Be sure that the you have selected the action that uses the

method DataTransfer of the DTU Business Service, which copies the data into a new order.
6. In the Properties list, you can view the arguments of the DataTransfer method in the Parameter list, as shown in

the following table:

Name of Parameter Value

DataMapObj

QuoteToSalesOrder

Operation

Insert

Option

/BatchMode

SharedGlobalDestID

Y

At runtime, the signal infrastructure also passes the RowId of the current quote ID to DTU.
7. The SharedGlobalDestId parameter allows the destination record ID to be output to a shared global variable

called SharedGlobalDestId. This variable is picked up in by the RefreshBCFromInstance method, whose
arguments are shown in the following table:

Name of Parameter Value

BusCompName

Order Entry - Orders

InstanceName

ISS Instance

TargetRowIdShared Global

DTUSharedGlobalDestId

The TargetRowIdSharedGlobal argument repositions the order buscomp to this row ID after refreshing, which is
the row ID of the order just created.

254

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Example of Invoking DTU from a Workow: Auto Order Web
Service
The Auto Order web service exposes Siebel's auto order function as a web service. It takes a quote row ID as the input
argument, creates an order based on the quote, and returns a quote integration object. The web service is implemented
by a workow.

To see how the workow SISOMAuto OrderWebService invokes the DTU
1. In Oracle’s Siebel Tools, locate the workow SISOMAutoOrderWebService.
2. In this workow, select the step DTU Auto Order, which uses DTU to create a new order from a quote using the

DataTransfer method.
3. Display input arguments, which have the values shown in the following table:

Input Argument Sequence Type Value Property Name

DataMapObj

1

Literal

QuoteToSalesOrder None

Operation

2

Literal

Insert None

Option

3

Literal

/BatchMode/NewSrcBusObj None

RowID

4

Process Property

None Object Id

Notice that there are some subtle dierences from the input arguments of the previous example:

◦ Here, RowId is explicitly passed in as an argument, but when you use a signal, the order management
infrastructure implicitly passes in a RowId argument.

◦ The Option argument contains "NewSrcBusObj". In the previous example, since signals pass the "RowId"
argument instead of the buscomp instance into DTU, a new instance of the source buscomp is always
created. This workow species its Business Object as Quote. As a result, DTU receives a reference to
the quote business component as part of the invocation context. Because you use NewSrcBusObj in
this argument, DTU does not work o the instance of the quote buscomp associated with the workow.
Instead it creates a new instance of the quote business object. For information about why NewSrcBusObj
is used, see Performance Tuning for DTU.

4. Display the output argument for this step, which has the values shown in the following table:

Property Name Sequence Type Output Argument

ActiveOrderId

5

Output Argument

&OrderId

255

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

5. The newly created order ID is output through the DTU named parameter &OrderId. The parameter is dened in
the data map Header component data map eld view, which has the values shown in the following table:

Order Source Type Source Destination Type Destination

52

Parameter

&OrderId

Expression

[Id]

Example of Using DTU Services
The following example shows how to use the FINS Data Transfer Utility business service to copy data from one business
component to another business component.

To copy a business component and specify a search specication
1. Create an input property set and search specication as follows:

Operation = "Insert"
Option = "/NewSrcBusObj /NewDstBusObj"
DataMapObj = "CopyContact"
&ContactId = "<the contact row_id you want to copy>"

2. Congure DataMapObj ("CopyContact") to include a named parameter as follows:

a. Go to the root level data map component in the Data Map Component Applet.
b. Open the Advance Options Picker.
c. Add following New Advanced Option:

- Name: Source Search Specication
- Value: [Contact Id]=[&ContactId]

d. Clear cache.
3. In the business service simulator, invoke the FINS Data Transfer Utility business service using the DataTransfer

method, passing in the input property set specied in Example of Using DTU Services.

The Siebel CRM client starts copying all the contacts.
4. From the documentation, it may seem like the Init parameters are needed, but they are not. The InitBO/InitBC

input arguments cannot be used to construct a buscomp to start DTU. They are used to indicate from which
buscomp of the active busobj you want to use to launch DTU.

Data Transfer Utilities Methods
This topic describes the following Data Transfer Utilities business service methods.

256

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

DataTransfer Method
The DataTransfer method transfers data from the source business component to the destination business component.
Its arguments are described in the following table.

Argument Description

Data Map Object (Required)

The name of the data map object that denes the mapping.

Operation (Required)

Valid entries include Insert, Update, Delete, and Upsert.

GotoView (Optional)

The name of a view that appears to users after the data transfer operation.

Option (Optional)

A text eld that allows you to specify additional options for the operation. Supported options include:

• NewSrcBusObj. Force to instantiate a new Source business object. Use instead of NewBusObj.

• NewDstBusObj. Force to instantiate a new destination business object.

• RootNotCommied. Suggest DTU not to commit the root component, if possible.

• SrcRootAdminMode. Set the source Buscomp of the root data map component to Admin mode.
This is valid only if the root source Buscomp has not been executed.

• BatchMode. This is a performance enhancement option that suppresses runtime events, disables
undo, and defers eld pre-defaults until commiing the record. Batch mode is only enabled for
source or destination business objects that are not the active (initiator) business object.

The following syntax is recommended for dening Option:

/option1 /option2 …

For example,

/NewSrcBusObj /NewDstBusObj

Initiator Business Object (Optional)

Used as a sanity check. If the BusObject that invokes DTU is dierent from what is specied by the
InitBO argument, DTU exits as an external error.

Initiator Business Object is part of the invocation context. DTU receives a reference of the initiator
business object only when invoked from Runtime Evens, Buscomp Named Methods, or workow
processes with its business object dened. DTU can be invoked without an initiator business object.

Initiator Business Component (Optional)

By default, the Buscomp that invokes DTU serves as the InitBC. Initiator Buscomp plays an important
role in determining how records are transferred. Use the InitBC argument to set other Buscomp in the
Initiator BusObject as the Initiator Buscomp.

Initiator Search Specication or Initiator
Sort Specication (Optional)

Initiator Buscomp search spec and sort spec.

Initiator Buscomp Enumerate Flag
(Optional)

Y or N. By default, Initiator Buscomp Enumerate Flag is N. When it is true, DataTransfer is applied to
each record in the initiator Buscomp. When InitSearchSpec or InitSortSpec is specied, InitEnumFlag is
implicitly true, even if InitEnumFlg is set to N.

257

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Argument Description

MockMethodReplied

Y or N.

RowId (optional)

The ID of the root source buscomp record. For more information, see Using DTU with Order
Management Signals.

IgnoreRowId (optional)

Y or N. If Y, RowId argument is then ignored. For more information, see Using DTU with Order
Management Signals.

SharedGlobalDestId (optional)

Y or N. If Y, the destination record ID is output to a shared global called DTUSharedGlobalDestId.

Note: It is recommended that you specify both InitBO and InitBC specically when invoking DTU. DTU
requeries the initiator buscomp when InitSearchSpec, InitSortSpec, InitEnumFlg are used.

FAFireEventxxx Method
FAFireEventxxx is a hidden method that you can use to create a toolbar command. It invokes the method
“EventMethodxxx” on the primary business component of the active view. “EventMethodxxx” triggers the event
manager, which invokes either a workow or a business service.

GetActiveViewProp Method
This is an auxiliary function to retrieve the active view’s properties. It does not take any input arguments.

Arguments

Argument Description

Business Object

Business object name.

View

Active view name.

Screen

Active screen name.

Thread Applet

Thread applet name.

Is Administration Mode

Y or N.

View Mode Code

An integer representing Siebel view mode:

258

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

Argument Description

• 0: SalesRep View

• 1: Manager View

• 2: Personal View

• 3: AllView

TryMockMethod Method
This is an advanced auxiliary function for administration of the tool bar buon workow. It does not take any input
arguments.

Arguments

Argument Description

MockMethodReplied

Y or N.

QueueMethod Method
Launch a queue method on an applet in another view. When invoked, the UI navigates to the view specied, and then
the Queue method is invoked on the specied applet.

Other input arguments of this method will be cached into the application Shared Global, which can be retried back.

DTU DataTransfer method has built-in integration with the QueueMethod. When the input argument DataMapObject
has the format:

SharedGlobal: NameofSharedGlobal

The data map object name can be retrieved from Shared Global with the name NameofSharedGlobal.

Arguments

Argument Description

GotoView

Name of the view to go to.

Applet

Applet name.

Method

Queued method to be invoked on the applet.

259

Siebel
Order Management Infrastructure Guide

Chapter 14
Data Transfer Utilities Business Service

260

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

15 Other Component Business Services for C/
OM

Other Component Business Services for C/OM
This chapter describes the Context Service business service, as well as other important C/OM business services.
Information is provided as follows:

• Context Service Business Service

• ISS ATP Service

• ISS Credit Card Transaction Service

• ISS Credit Check Service

• ISS Disable Service

• ISS Package Product Service

• ISS Payment Prole Service

• ISS Promotion Agreement Manager

• ISS Promotion CP Admin Service

• ISS Promotion Edit UI Service

• ISS Promotion Management Service

• ISS Revenue Synchronization Service

• ISS Sequence Service

• ISS Service Product Service

• ISS Shipping Calculation Service

• ISS Shipping Cost Service

• ISS Smart Part Number Generation Service

• ISS Spread Discount Service

• ISS Tax Calculation Service

• ISS Template Service

Note: This chapter does not address three component business services that are addressed elsewhere in
this guide. For information about Data Validation Manager business service, see Data Validation Manager
For information about ISS Approval Business Service, see Approvals Manager For information about ISS Copy
Service, see Copy Service.

261

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Context Service Business Service
The Context Service business service has two main functions, as follows:

• The Context Service business service provides the infrastructure for the C/OM-specic invocation mechanism
called “Raise Signal” Through use of a signal, you invoke multiple actions (either of a business service or of
a workow) in a certain order. All associated actions are fully congurable by an integrator. A signal can be
triggered through UI buons—with the standard Siebel Invoke Method—or it can be triggered specically by
business services or business components.

• The Context Service business service acts as the data broker for other C/OM modules, such as Pricing,
Eligibility, Product Recommendation, Promotion, and so on. Through the variable map APIs (GetRowSetData
and SyncRowSetData), Context Service retrieves the current context data, and then constructs input property
sets for other business services. After the property sets are processed by other business services, they can be
synchronized back to the database through the SyncRowSetData API.

The Context Service business service provides APIs for constructing a property set from the current ordering context
and synchronizing changes to that property set back to the source.

It includes the following methods.

GetRowSetData Method
See Variable Map Methods of the Context Service Business Service.

SyncRowSetData Method
See Variable Map Methods of the Context Service Business Service.

ISS ATP Service
The ISS ATP business service contains methods for the ISS Fulllment Service.

It includes the following methods.

CSSISSFulllmentService::SetATPInputArgument Method
This method is called by the signal ATPInquire. It prepares input arguments before calling the ATP business service.

Arguments

Argument Description

ATPAction [in] The action to be specied at the line level: Inquire, Reserve, UnReserve.

262

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Argument Description

RowId

[in] The RowId to process

Mode

[in] "Order", "Quote"

Example Arguments
[ATP Action]= "Inquire";
[RowId]= "42-4ZBY1";
[Mode] = "Order";

CSSISSFulllment Service::ATPRunCheck Method
This method provides a business service wrapper function for ATP ASIs.

Arguments

Argument Description

Id

[in] The header ID for the quote or order.

Line Item Id

[in] If “inquire at line level” is called, this contains the line ID. If “inquire all” is called, then this is empty.

Inbound Integration Object

[in] The inbound internal integration object must be quote-specic or order-specic. This is used for
database write.

Outbound Integration Object

[in] The outbound internal integration object must be quote-specic or order-specic. This is used for
database query.

ATPAction

[in] The action to be specied at the line level: such as Inquire, Reserve, and so on.

Example Arguments
["ATP Action"] = "Inquire";
["Outbound Integration Object"] = "ATP Check Interface Request - Orders";
["Inbound Integration Object"] = "ATP Check Interface Response - Orders";
["Id"] = "99-2AICU";
["Line Item Id"] = "42-4ZBY1";
["Outbound Integration Object1"] = "ATP Check Interface Request - Orders";
["Inbound Integration Object1"] = "ATP Check Interface Response - Orders";

263

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

ISS Credit Card Transaction Service
The ISS Credit Card Transaction business service performs credit card authorization tasks.

It includes the following methods.

Auth Charge Method
This method authorizes and seles payment for the current payment line item.

Authorization Method
This method authorizes payment for the current payment line item.

Charge Method
This method seles payment for the current payment line item.

Refund Method
This method refunds payment for the current payment line item.

Reverse Method
This method reverses authorization of payment for the current payment line item.

ISS Credit Check Service
The ISS Credit Check business service performs credit status checks and writes status information to the database.

It includes the following methods.

CreditCheckRunCheck Method
This method runs a credit check for the selected order or quote from an external ASI source, then writes the credit
status to the database.

264

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Arguments

Argument Description

Id

[in] The ID of the quote or order.

Inbound Integration Object

[in] The internal inbound integration object for Quote or Order.

Outbound Integration Object

[in] The internal outbound integration object for Quote or Order.

Return Error

[in] A ag for which, when set to “N”, the function will return an OK regardless. (This is used for
situations in which even if the credit check errors out, you want to create the order.)

SetCreditCheckResults Method
This method writes the credit status data to the database. If the credit status is empty, it is set to indeterminate.

Arguments

Argument Description

Credit Status As Of

[in] The date that the status is valid.

Credit Status Code

[in] The status code. A number from 1 to 6 or a value pre-LOV lookup (such as Okay or Indeterminate).

Credit Status Message

[in] A string describing credit status.

Id

[in] The ID of the quote or order.

Return Error

[in] A ag that, when set to “N”, the function will return an OK regardless.

ISS Disable Service
ISS Disable business service is used to disable certain activities when using ISS Copy Service. This service is used in the
ReviseCopyQuote signal.

Note: For information about ISS Copy Service, see Copy Service.

265

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

It includes the following methods.

DisableCopyXAService Method
This method disables the generation of XA aribute copy on the business component.

Arguments

Argument Description

InstanceName

[in] ISS business component instance name.

BusCompName

[in] Name of the business component inside the ISS instance business object. The BusComp class
must be derived from CSSBCOrderMgmtBase.

DisableCheckCanInsert Method
This method skips the CanInsert check on the business component when new records are inserted.

Arguments

Argument Description

EnableCanInsert

[in] Y or N. When Y, the business component will skip the CanInsert check.

InstanceName

[in] ISS business component instance name.

BusCompName

[in] Name of the business component inside the ISS instance business object. The BusComp class
must be derived from CSSBCOrderMgmtBase.

RestoreServiceState Method
This method restores the business component state modied by DisableCopyXAService or SkipCheckCanInsert
methods.

Arguments

Argument Description

InstanceName

[in] ISS business component instance name.

266

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Argument Description

BusCompName

[in] Name of the business component inside the ISS instance business object. The BusComp class
must be derived from CSSBCOrderMgmtBase.

ISS Package Product Service
The ISS Package Product business service allows you to collect any number of simple products into a single package or
to remove simple products from a package when in the Quote Line Items or Order Line Items views. After selecting one
or more related simple products, you can then collect them into one package and treat the package as one line item.
Later, you can also separate a packaged collection into its separate pieces and treat the separate pieces as separate line
items.

Note: You cannot package customizable products. When you package simple products, they get collected into
one product called a Package. You cannot package Packages.

It includes the following methods.

MergeIntoOnePackage Method
This method collects simple products in one package.

RemoveFromPackage Method
This method takes one or more simple products out of a package.

ISS Payment Prole Service
The ISS Payment Prole business service provides the functions to update the existing prole from a Quote or Order, or
to create a new payment prole from the current Quote or Order for the current account.

It includes the following methods.

SaveAsPaymentProle Method
In the Quote or Order screen, Payment, and then the Payment Detail view, click Create Prole to bring up a pop-up
applet in which the user can specify a name for the payment prole.

267

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

UpdatePaymentProle Method
In the Quote or Order screen, Payment, and then the Payment Detail view, click Update Prole to update the existing
associated prole.

ISS Promotion Agreement Manager
The ISS Promotion Agreement Manager business service provides a set of methods that deal with commitments
associated with the promotion process to be implemented in workows.

This business service is used to check commitment compliance, and to generate agreements, agreement items, and
covered assets for promotions that require a commitment from the customer.

It includes the following methods.

CalculateDates Method
This method is used to calculate the Start and End dates for a new agreement.

Arguments

Argument Description

Root Product Id

[in] The row ID of the promotion record.

Promotion Source Instance Id

[in] Promotion instance upgrade integration ID. This is relevant only in the case of a promotion
upgrade. (Optional)

Start Date

[out] The start date of the new agreement.

End Date

[out] The end date of the new agreement.

Eective Date

[out] The eective date of the new agreement.

Old Agreement Id

[out] Row ID of the agreement for the original promotion. This is relevant only for promotion upgrades,
 when the input argument Promotion Source Instance Id is passed in.

Old Agreement Item Id

[out] Row ID of the agreement line item of the agreement for the original promotion. This is relevant
only for promotion upgrades, when the input argument Promotion Source Instance Id is passed in.

Old Promotion Id

[out] Row ID of the original promotion. This is relevant only for promotion upgrades, when the input
argument Promotion Source Instance Id is passed in.

268

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

CheckCommitmentCompliance Method
The CheckCommitmentCompliance method allows the user to verify commitment compliance on all records in the
current document. This method is invoked in the Verify Promotion workow process. This method returns a property
set of promotions that have violated an active agreement.

Arguments

Argument Description

Active Document Type

[in] The type of document that is currently active, for example, Quote or Order.

Advance To

[in] Date for which the penalty amount is calculated.

Buscomp Name

[in] Name of the business component.

Buscomp Additional SearchSpec

[in] Additional search specication that may be applied to the business component.

Sort Specication

[in] Sort specication for the business component.

Promotions Violated Flag

[out] A ag (Y or N) to indicate whether there are any promotions that violate an active agreement. "Y"
indicates existence of promotions violating active agreements after ltering on the current document
is done. "N" indicates absence of promotions violating any active agreements.

Violated Promotions

[out] List of promotion violations, if Promotions Violated ag is 'Y'.

FilterCurrentDocument Method
This method takes as input the property set of violated promotions returned by the CommitmentComplianceCheck
method and removes from the property set all promotions that exist in the current document with an action code set to
Delete.

Arguments

Argument Description

Buscomp Name

[in] Name of the business component.

Buscomp Additional SearchSpec

[in] Additional search specication that may be applied to the business component.

Active Document Id [in] Row ID of the active document, for example, Quote or Order.

269

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Argument Description

Promotions Violated Flag

[out] A ag (Y or N) to indicate whether there are any promotions that violate an active agreement. "Y"
indicates existence of promotions violating active agreements after ltering on the current document
is done. "N" indicates absence of promotions violating any active agreements.

Violated Promotions

[in] List of promotion violations.

Violated Promotions

[out] List of promotion violations, if Promotions Violated ag is 'Y'

FilterPAC Method
This method assumes that Projected Assets Cache has been initialized. This method queries the Projected Assets Cache
based on the search specication passed in as an input argument. If the promotion in the violated promotions list does
not exist in the Projected Assets Cache, then assume it is already deleted and remove it from the violated promotions
list.

Arguments

Argument Description

Asset Cache Key

[in] Cache key assuming that Projected Assets Cache has been initialized.

Search Expression

[in] Search specication to be used for querying Projected Assets Cache.

Violated Promotions

[in] List of promotion violations.

Violated Promotions

[out] List of promotion violations, if Promotions Violated ag is 'Y'.

GetPromotionDetails Method
This method is used in workows to load promotion-related elds from the input SiebelMessage. This method returns a
promotion status that is used in the workows for branching.

Arguments

Argument Description

SiebelMessage

[in] Contains a single complex Open Order line item.

270

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Argument Description

Account Id

[out] Row ID of the Account associated to the Order.

Asset Integration Id

[out] Asset integration ID that is used to open order items for an asset.

Contact Id

[out] Row ID of the Contact associated with the Order.

Old Promotion Id

[out] Row ID of the existing Promotion that is already an Asset. This is set in the SetOldAssetDetails
method. This argument is used in the case of a Promotion Upgrade.

Old Promotion Instance Id

[out] Promotion Instance Integration ID of the old promotion that is already an asset. This is set in the
SetOldAssetDetails method. This argument is used in the case of a Promotion Upgrade.

Product Type

[out] Type of the Root Product on the line item. For example, Product or Promotion.

Promotion Id

[out] Row ID of the Promotion associated with the line item.

Promotion Instance Id

[out] Promotion Instance Integration ID of the line item. This indicates the promotion instance with
which the line item is associated.

Promotion Rule Id

[out] Row ID of the promotion component rule that this line item references.

Promotion Source Instance Id

[out] Promotion Instance Upgrade Integration ID on the line item. This is relevant only in the case of a
promotion upgrade.

Root Product Id

[out] Row ID of the root product or promotion.

Root Product Name

[out] Name of the root product or promotion.

Status

[out] Promotion Status returned by this method. This argument is used in workows for branching.

InvokeCopyService Method
The InvokeCopyService method invokes the ISS Copy Service business service to copy the promotion details set up in
Promotion Administration—such as Charge Plans, Terms and Conditions, Conditional Charges, Related Assets—to the
corresponding Charge Plans, Terms and Conditions, Conditional Charges, Covered Assets in the Agreement that has
been created for the corresponding Account for this promotion.

271

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Arguments

Argument Description

DestBusCompName

[in] Name of the destination business component.

DestBusObjName

[in] Name of the destination business object.

DestinationSearchSpec

[in] Search specication used for the destination business component.

Map Object Name

[in] Name of the data map object that has been set up to do the eld-level copy from the source
business component to the destination business component.

SourceBusCompName

[in] Name of the source business component.

SourceBusObjName

[in] Name of the source business object.

SourceSearchSpec

[in] Search specication used for the source business component.

SetProleAributes Method
This method saves the Start, End, and Eective dates for the new agreement to be created for the promotion in the user
prole.

Arguments

Argument Description

Promotion Start Date

[in] Start date of the promotion agreement.

Promotion End Date

[in] End date of the promotion agreement.

Promotion Eective Date

[in] Eective date of the promotion agreement.

RemoveProleAributes Method
This method clears the Start Date, End Date, and Eective Date from the user prole.

272

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

SetOldAssetDetails Method
This method is invoked in workows to maintain the Row Id of the current asset, the Integration Id of the current asset,
the Row Id of the promotion associated with the current asset, the Promotion Instance Id of the current asset, and so on,
in internal storage, so these IDs can be used for further evaluation by the GetPromotionDetails method.

Arguments

Argument Description

SiebelMessage

[in] Contains a single complex Open Order line item.

ISS Promotion CP Admin Service
The ISS Promotion CP Admin business service allows you to add more constraints for a customizable product (CP)
when the CP is covered by a promotion. In the process of dening a promotion, you can change cardinality or add more
domain and aribute constraints for a CP when the CP is covered by a promotion rule. At run time, the constraints will
be checked against the CP when it is covered by the promotion. The CP constraints are cached along with the promotion
denition.

Note: When you make changes to the CP constraints under a promotion, you must clear the cached
promotion information.

It includes the following methods.

ClearCache Method
This method clears cached promotion information.

Arguments

Argument Description

Prod Prom Id

[in] String

Prod Prom Rule Id

[in] String

CfgRequest

[out] Hierarchy

273

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

GetPromotionConstraints Method
This method retrieves CP constraints for a promotion rule.

ISS Promotion Edit UI Service
The Promotion Edit UI business service provides a specialized user interface that displays promotions or products
grouped by each promotion rule. This service helps to generate required data structures and to render this Promotion
Edit UI.

This is the entry point function to invoke the Promotion Edit UI session from the product catalog.

Note: The business component that invokes this service must support the AddtoCart operation.

It includes the following methods.

ApplyEditPromotion Method
The ApplyEditPromotion function triggers the AddtoCart operation on the Promotion Selection Catalog business
component, then retrieves the LastItemId value from the prole aributes, and continues the rest of the Edit UI
rendering operations.

Note: The product type for the selected record must be set to Promotion.

Arguments

Argument Description

Promotion Def

[in] The Promotion Def Id of the selected promotion record.

Return View

[in] Returns the view name when the user completes an Edit UI session.

EditPromotion Method
This method is an entry function to enter a Promotion Edit UI session.

Note: The product type for the selected record must be set to Promotion.

274

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Arguments

Argument Description

Promotion Def

[in] The Promotion Def Id of the selected promotion record.

Promotion Instance

[in] The Promotion Instance Id of the selected promotion record.

Return View

[in] Returns the view name when the user completes an Edit UI session.

ISS Promotion Management Service
The ISS Promotion Management business service is used to handle product promotions at run time, such as Apply
Promotion, Integrity Check, Recommend Promotion, and so on. This service also provides functions to integrate with
Unied Messaging and to support Asset-Based Ordering, such as Load Message and Load Promotion-Related Assets.

It includes the following methods.

ApplyPromotion Method
This method applies the promotion in the current document.

Arguments

Argument Description

Active Document Id

[in] String

Prod Prom Id

[in] String

Prod Prom Instance Id

[in] String

Qty

[in] String

Target Document

[in] String

ClearAssociation Method
This method dissociates items with a promotion.

275

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Arguments

Argument Description

Active Document Id

[in] String

Index

[in] String

Prod Prom Instance Id

[in] String

Target Document

[in] String

List

[in] Hierarchy

ClearMessages Method
This method clears previous UMS messages related to promotion.

Argument

Argument Description

Promotion Messages

[in] String

CollectAssetList Method
This method collects assets selected by the user and assets not selected but covered by selected promotions.

Arguments

Argument Description

Active Document Id

[in] String

Target Document

[in] String

All Asset List

[out] Hierarchy

Promotion Instance List [out] Hierarchy

276

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Argument Description

Promotion Num

[out] String

SIS Delete Num

[out] String

SIS Select Num

SIS Delete Num

SIS Select Num

[out] Hierarchy

Unselected Prom Related List

[out] Hierarchy

Unused Selected List

[out] Hierarchy

GetContext Method
This method retrieves the current active document type and document ID.

Arguments

Argument Description

Active Document Id

[out] String

Target Document

[out] String

GetResponseType Method
This method retrieves the user's response type (for example: Accept or Reject) for a UMS message.

Argument

Argument Description

Message Response

[out] String

277

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

InitializePAC Method
This method loads the projected asset for a contact or account based on ABO Type.

Arguments

Argument Description

ABO Type

[in] String

Account Id

[in] String

Active Document Id

[in] String

Asset Cache Key

[in] String

Asset Cache Key

[out] String

Contact Id

[in] String

Target Document

[in] String

IntegrityCheck Method
This method executes an integrity check for promotions in the current document. It returns a ag indicating whether
there are violations, and if so, a list of all violations.

Arguments

Argument Description

ABO Type

[in] String

Account Id

[in] String

Active Document Id

[in] String

Contact Id

[in] String

Target Document [in] String

278

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Argument Description

Integrity Violation Flag

[out] String

Violation List

[out] Hierarchy

LoadMessage Method
This method invokes the UMS business service to display promotion-related UMS messages.

Arguments

Argument Description

Account Id

[in] String

Active Document Id

[in] String

Charge Amount

[in] String

Commitment End Date

[in] String

Commitment Start Date

[in] String

Contact Id

[in] String

Message Type

[in] String

Prod Prom Id

[in] String

Prod Prom Name

[in] String

Recommendation List

[in] Hierarchy

Target Document

[in] String

Violated Promotions

[in] Hierarchy

Violation List

[in] Hierarchy

279

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

LoadPromRelatedAssets Method
This method loads assets covered by a promotion, but not selected by the user.

Arguments

Argument Description

Account Id

[in] String

List Type

[in] String

Prod Prom Instance Id

[in] String

Unselected Prom Related List

[out] Hierarchy

MsgResponse Method
This method executes the response actions dened for a UMS message

RecommendPromotion Method
This method recommends promotions to the user based on items in the current document. It returns a ag indicating
whether there is any promotion to recommend, and if so, a list of recommended promotions.

Arguments

Argument Description

Account Id

[in] String

Active Document Id

[in] String

Any Recommendation

[out] String

Asset Cache Key

[in] String

Asset Cache Key

[out] String

280

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Argument Description

Match Percentage

[in] String

Recommendation List

[out] Hierarchy

Target Document

[in] String

Top Number

[in] String

ISS Revenue Synchronization Service
The ISS Revenue Synchronization business service is used to synchronize opportunity products with quote items. The
Quote method creates a new quote based on the current opportunity. The UpdateOppty method updates the source
opportunity after the quote is modied.

It includes the following methods.

Quote Method
This method is used to implement Auto Quote functionality that generates a quote based on the active opportunity.
The quote line items will be created according to the opportunity products for which the Auto Quote ag is checked. The
Quote method is invoked by a C/OM signal at Opportunity, Quote buscomp.

UpdateOppty Method
This method updates the opportunity with the current data in the line items of the quote or order. The method is
invoked by a C/OM signal.

ISS Sequence Service
The ISS Sequence business service is used to re-sequence all line items with sequential line numbers.

It includes the following method.

Sequence Method
This method re-sequences all line items with sequential line numbers.

281

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

ISS Service Product Service
The ISS Service Product business service adds a service product to the Quote, Order, or Agreement header and
associates it to a regular product. This means that this service product pertains only to the product to which it is
associated.

It includes the following method.

Service Method
This method creates a service (covered) product to cover the selected product.

ISS Shipping Calculation Service
The ISS Shipping Calculation business service calculates the shipping charges for a quote or order based on a
combination of factors including source location, destination, shipping carrier, shipping method, and weight.

It includes the following method.

CalculateShippingCost Method
The sole method in this business service performs a look-up of the shipping zone that corresponds to each line item of
the quote or order based on the source location, destination, shipping carrier, and shipping method. This result is, in
turn, used to perform a look-up of the shipping rate that corresponds to the shipping zone and weight.

ISS Shipping Cost Service
The ISS Shipping Cost business service calculates the shipping charges for an eSales quote or order based on factors
including shipping carrier and shipping method.

It includes the following method.

CalculateShippingCost Method
The sole method in this business service uses a customer-dened eScript to look up and calculate the shipping charges.

282

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

ISS Smart Part Number Generation Service
The ISS Smart Part Number Generation business service generates the Smart Part Number (SPN) for a product based
on aribute values of its product class.

You can dene SPNs for a product class using the Administration - Product screen, Product Class, and then the Part
Number Denitions view of the run-time client. A product class can have two types of part number denitions: Dynamic
and Predened.

When the user picks a product for a Quote item or for an Order item, the SPN of the chosen product is generated by
the ISS Smart Part Number Generation Service. The business service gets pointers for the item business component
and for the aributes business component, then it traverses its aributes and saves all aribute name-value pairs into
a property set that includes the ID and Integration ID of the product. The service also calls other business services to
generate the SPN for the product with the property set, and then it saves the SPN value to the Quote or Order item
business component.

It includes the following method.

Generate Part Number Method
This method generates the Smart Part Number (SPN) for a product based on the aribute values of its product class.

ISS Spread Discount Service
The ISS Spread Discount business service spreads the discount among selected Quote, Order, or Agreement line items,
or among all Quote, Order, or Agreement line items. The upper limit for currency code precision is 6 decimals.

The ISS Spread Discount Service includes the following method.

SpreadDiscount Method
This method species the input and output hierarchical property sets. The Spread Discount Driver Workow Process
(Spread Discount step) provides an example of this method’s usage.

ISS Tax Calculation Service
The ISS Tax Calculation business service is used to calculate tax for a quote or an order.

It includes the following methods.

283

Siebel
Order Management Infrastructure Guide

Chapter 15
Other Component Business Services for C/OM

Tax Calculation Method
This method prepares the appropriate parameters and invokes the Tax Calculator business service to call third-party
TaxWare software.

InternalTaxCalculation Method
This method calculates the tax amount based on the tax rate and total dened from Quote or Order.

ISS Template Service
A favorite is an object that has a structure similar to a quote or an order. The ISS Template business service allows the
user to store the current quote or order as a favorite. It can also retrieve all the items or selected items from a favorite to
add to the quote or order.

It includes the following methods.

SaveAsTemplate Method
This method allows the user to click on the Save as Favorite menu item in Quote or Order to bring up a pop-up applet
that prompts the user to specify a name for the template.

OrderTemplate Method
This method copies the saved favorite items into the current quote or order.

OrderTemplateSelectItems Method
This method copies selected favorite items into the current quote or order.

284

	Order Management Infrastructure Guide
	Preface
	What’s New in This Release
	What’s New in Siebel Order Management Infrastructure Guide, Siebel CRM 20.1 Update
	What’s New in Siebel Order Management Infrastructure Guide, Siebel CRM 19.1 Update

	Service-Oriented Architecture
	Service-Oriented Architecture
	About Business Services
	About Service-Oriented Architecture
	How Siebel C/OM Is Built on a Service-Oriented Architecture
	How Siebel C/OM Can Be Integrated with Other SOA Applications
	Outbound Integration of C/OM Services
	How Siebel C/OM Can Be Used with SOA

	Web Services for Customer Order Management
	Web Services in Version 8.1
	New Web Services
	New Self Service Web Services
	New Communications, Media, and Utilities Web Services
	Modified Web Services
	Consolidated Web Services

	Workflows to Activate for Customer Order Management

	Signals
	Signals
	About the Signals Mechanism
	Components of the Signals Mechanism
	Signals Administration
	Signal Dispatcher
	Signal Sources
	Signal Actions

	Creating Signal Actions
	Modifying Signal Properties for Signal Actions
	Example of Signal Properties Settings for a Can Invoke Check

	Invoking Signals from Controls and Custom Script
	Invoking Signals from a Button
	Invoking Signals from a Script

	Using Recursion with Signals
	Migrating Signals Between Environments

	Variable Maps
	Variable Maps
	About Variable Maps
	Concepts of Variable Maps
	Variable Map Types
	Working with Variable Maps

	Components of Variable Maps
	About Using ISS Integration Objects with the Variable Map Mechanism
	Configuring ISS Integration Objects

	Supported Source Types for Variables
	Business Object
	Business Service
	Instance

	About Using Variable Maps
	Querying with the Business Object Source Type
	Using the Business Service Source Type to Populate Variables
	Invoking a Business Service to Populate Variables
	Invoking a Business Service to Populate a Child Property Set
	Using a Single Invocation to Populate Multiple Variables or Child Variable Maps

	Using the Instance Source Type for the Customizable Product Instance Property Sets
	Creating Variable Maps
	Updating an Existing Variable Map
	Configuring a Custom Mode User Property for a Business Component
	Behavior of the On Null Property When Defining Variables in a Variable Map

	Defining the Variable Map Used by a PSP Procedure
	Example of Variable Map Methods in Use

	Migrating Variable Maps Between Environments

	Variable Map Methods of the Context Service Business Service

	PSP Engine
	PSP Engine
	About the Product Selection and Pricing Engine
	Advantages of PSP Usage
	PSP Concepts
	How PSP Procedures Are Built
	About Row Sets

	Components of the PSP Engine
	Controller Workflow
	Variable Maps
	PSP Procedures
	PSP, Siebel Workflow, and Siebel Tools
	Row Set Transformation Toolkit Business Service
	Custom Business Services

	PSP Driver Workflow
	Conditions and Actions for PSP Procedures
	PSP-Supported Action Expression Constructs
	PSP-Specific Functions Used in Action Expressions
	Using the Four-Parameter GetXA Signature
	LookUpMessage API

	Row Set Variables Used in Action Expressions
	Conditions and Action Variables Vary by Transform

	About Temporary Variables
	Row Set Transformation Toolkit Methods
	Aggregate Method
	Conditional Action Method
	Dynamic Look-Up Method
	Dynamic Subprocedure Method
	Hierarchical Look-Up Method
	Implementing Aggregate Functions

	Hierarchical Method
	Merge Method
	Query Method
	Row Set Look-Up Method
	Rule Set Look-Up Method
	Simple Look-Up Method
	Split Method

	Configuring PSP Procedures
	Creating PSP Procedures
	Best Practices for Configuring PSP Procedures
	Configuring Eligibility, Compatibility, and Pricing
	Eligibility, Compatibility, and Pricing Using the Configurator in an ABO Environment
	Eligibility, Compatibility, and Pricing Using the Configurator in a Non-ABO Environment
	Eligibility, Compatibility, and Pricing Using the Line Item UI
	Configuring an Additional Field For Use in Eligibility, Compatibility, and Pricing

	Creating a Custom PSP Application
	Creating a Custom Transform

	Calling a PSP Procedure from an External Application
	About Logging of PSP
	About Troubleshooting of PSP
	PSP Cache Event
	PSP Data Event
	PSP Parser Event
	PSP Transform Event
	PSP Pricer Service Event

	About Tuning Performance of PSP
	Preconfigured PSP Procedures
	General Design Guidelines
	SQL Queries
	Logging of Performance
	Transforms Involving Database Queries
	Enabling PSP Cache
	Setting Cache Size
	Using the PSP Generic Cache
	Optimizing PSP Cache
	Defining a Cache Refresh Key
	Search Specification and Cache Refresh Key
	Row Set Transformation Toolkit Methods for PSP Cache Refresh

	Configuring a Clear Cache Button
	Clear Cache Button for BusComps without a Cache Refresh Key
	Clear Cache Button for BusComps with a Cache Refresh Key

	About Using the PSP Dynamic Look-Up Transform Cache
	About PSP Cache Performance Statistics

	PSP Waterfall
	PSP Waterfall
	About Waterfalls
	A PSP Procedure Generates Waterfall Output Each Time It Executes
	A Controller Workflow Invokes the PSP Waterfall Business Service
	Waterfalls and Performance
	Configuration of Waterfalls

	About Configuring Waterfall Output
	Adding New Fields to an Existing Waterfall
	Creating a New Waterfall
	Populating Child Waterfall Property Sets
	Exposing the Waterfall Output
	Saving Waterfall Data
	SyncToDB Input Arguments

	Unified Messaging
	Unified Messaging
	About Unified Messaging
	Concepts of Unified Messaging
	Message Types Administration

	Components of Unified Messaging
	Registered Message Display Services
	Custom Message Display Services
	Payload Variables
	Message Property Set
	Message List Property Set
	Message Responses
	Message Translations

	Unified Messaging Service Business Service Methods
	Creating Message Types
	Configuring the Display of Messages
	Adding a Message Applet to a View
	Adding a Message Icon to a View

	Implementing Multilingual Substituted Text
	Implementing a Custom Message-Generation Engine
	About Working with Message Responses
	Logging Message Responses
	Attaching a Business Service to a Message Response

	About Suppressing Duplicate Messages
	Suppress Repetition Flag
	Suppression Scope

	Suppressing Duplicate Messages
	Migrating Message Types Between Environments
	Tuning Performance of Unified Messaging
	Using Unified Messaging with the PSP Engine
	Example of a LookUpMessage Call

	Data Validation Manager
	Data Validation Manager
	About Data Validation Manager
	Roadmap for Implementing Data Validation Processing
	Process of Administering Data Validation Rules
	Defining Error Messages for Data Validation
	Defining a Data Validation Rule Set
	Defining a New Validation Rule Set
	Revising an Existing Validation Rule Set
	Exporting a Validation Rule Set
	Importing a Validation Rule Set

	Defining Rule Set Arguments
	Defining Validation Rules
	Defining Validation Rule Actions
	Activating a Data Validation Rule Set

	Process of Invoking the Data Validation Manager Business Service
	Invoking Data Validation Manager from a Runtime Event
	Invoking Data Validation Manager from a Workflow
	Viewing a Validation History

	Approvals Manager
	Approvals Manager
	About Approval Processing
	Approval Item
	Approval Stage
	Approval Types

	ISS Approval Business Service Methods
	CreateNewApprovalTasks Method
	GetApprovalStatus Method
	SetApprovalDecision Method

	Defining Approval Items and Approval Stages
	About Invoking the Approvals Manager Business Service from a Workflow
	Configuring the Start Step for a Workflow That Invokes the Approvals Manager Business Service
	Configuring the Business Service Step for a Workflow That Invokes the Approvals Manager Business Service

	Approving or Declining Approval Stages (End User)

	Asset-Based Ordering Methods Reference
	Asset-Based Ordering Methods Reference
	Product Manipulation Toolkit Business Service Methods
	User Properties Used by PMT Methods
	Delta Method
	Apply Method
	Trim Method
	Explode Method
	Explode Siebel Object Method
	Find Orders Method
	Logical Delete Method
	Get Profile Attribute Method
	Get Instance Method
	Convert Product Instance Method
	Assign New Service IDs Method
	Is Fully Ex Method
	Is Module Licensed Method
	Merge Method
	Quote To Revenue Method
	Reconfigure Product Instance Method
	Reset Method
	Retrieve Next Object From List Method
	Set Action Method
	Set Exception Error Message Method
	Set Field Value Method
	Set Multiple Field Values Method
	Set Output Header Method
	Set Product Instance Method
	Set Profile Attribute Method
	Synchronize Method
	Update Multi Object List Method
	Update Order Line Item Completed Flag Method
	Get Cfg Button Click Information Method
	Refresh Business Component Method
	Invoke BC Method
	Iterate Process For Selected Rows Method
	Get Selected Row Count Method
	Get First Selected Row Values Method
	Ungroup Method

	Order Entry Toolkit Business Service Methods
	CreateAccount Method
	CreateOrder Method
	GetBCCount Method
	GotoView Method
	SelectPrimary Method
	SetLIAccounts Method
	SubmitOrder Method
	ValidatePayment Method
	ValidateQuote Method
	ViewCart Method

	Account Administration Toolkit Business Service Methods
	PickAccount Method
	SetPrimary Method
	AssociateAccountToUser Method
	EstablishMtoM Method
	Invoke BC Method

	Complex Product Auto Match Business Service Method
	Auto Match

	Projected Asset Cache
	Projected Asset Cache
	About Projected Asset Cache
	Retrieve Data
	Build the Future Requested State

	Projected Asset Cache Business Service Methods
	Initialize Method
	Query Method
	Reset Method
	Retrieve Method

	Using the VORD Projected Asset Cache Business Service

	Compound Product Validation
	Compound Product Validation
	About Compound Product Validation Engine Business Service
	Compound Product Validation Engine Business Service Methods
	FindFutureDate Method
	Format Violation Method
	Validate Method
	ValidateComplexProduct Method
	ValidateComplexProductAll Method
	ValidateComplexProductFromPropertySet Method

	Copy Service
	Copy Service
	About Copy Service
	Configuring Copy Maps

	Copy Service Methods
	GetFieldValueFromInstance Method
	LoadInstanceFromBC Method
	SetFieldValueFromInstance Method
	PopAndReleaseInstance Method
	Copy Method
	RefreshBCFromInstance Method
	CleanupEAI Method
	CleanupInstance Method
	LoadEAI Method
	SetupLineNumbers Method
	SetupSyncUpsert Method
	StoreEAI Method
	CheckEligibilityHelper Method
	CalculatePriceHelper Method

	Data Transfer Utilities Business Service
	Data Transfer Utilities Business Service
	About Data Transfer Utilities
	Considerations for Data Transfer Utilities
	Use of Active Business Objects
	Invocation Context
	Well-Positioned Buscomps
	Recursive Invocation

	Using Named Parameters in DTU
	Calculation Expressions in DTU
	Curly Bracket Pair {field}
	Named Parameter

	Using DTU with Order Management Signals
	About Working with Hierarchical Business Components
	ISS Copy Service and the Data Transfer Utility
	Configuring Event-Based Commands for DTU
	Dynamic Enabling of Commands for DTU
	Srf Mode
	Mock Event Sink

	Performance Tuning for DTU

	About Data Maps
	Data Map Objects
	Data Map Components
	Data Map Component Advanced Options
	Data Map Fields
	Data Map Field Advanced Options
	Migrating Data Map Objects Between Environments

	Example of Defining Data Maps to Use with the DTU
	Finding the Data Map Object
	Mapping Headers
	Mapping Line Items
	Mapping the Extended Attributes

	Examples of Invoking the DTU
	Example of Invoking the DTU from a Signal: Auto Sales Order
	Example of Invoking DTU from a Workflow: Auto Order Web Service
	Example of Using DTU Services

	Data Transfer Utilities Methods
	DataTransfer Method
	FAFireEventxxx Method
	GetActiveViewProp Method
	TryMockMethod Method
	QueueMethod Method

	Other Component Business Services for C/OM
	Other Component Business Services for C/OM
	Context Service Business Service
	GetRowSetData Method
	SyncRowSetData Method

	ISS ATP Service
	CSSISSFulfillmentService::SetATPInputArgument Method
	CSSISSFulfillment Service::ATPRunCheck Method

	ISS Credit Card Transaction Service
	Auth Charge Method
	Authorization Method
	Charge Method
	Refund Method
	Reverse Method

	ISS Credit Check Service
	CreditCheckRunCheck Method
	SetCreditCheckResults Method

	ISS Disable Service
	DisableCopyXAService Method
	DisableCheckCanInsert Method
	RestoreServiceState Method

	ISS Package Product Service
	MergeIntoOnePackage Method
	RemoveFromPackage Method

	ISS Payment Profile Service
	SaveAsPaymentProfile Method
	UpdatePaymentProfile Method

	ISS Promotion Agreement Manager
	CalculateDates Method
	CheckCommitmentCompliance Method
	FilterCurrentDocument Method
	FilterPAC Method
	GetPromotionDetails Method
	InvokeCopyService Method
	SetProfileAttributes Method
	RemoveProfileAttributes Method
	SetOldAssetDetails Method

	ISS Promotion CP Admin Service
	ClearCache Method
	GetPromotionConstraints Method

	ISS Promotion Edit UI Service
	ApplyEditPromotion Method
	EditPromotion Method

	ISS Promotion Management Service
	ApplyPromotion Method
	ClearAssociation Method
	ClearMessages Method
	CollectAssetList Method
	GetContext Method
	GetResponseType Method
	InitializePAC Method
	IntegrityCheck Method
	LoadMessage Method
	LoadPromRelatedAssets Method
	MsgResponse Method
	RecommendPromotion Method

	ISS Revenue Synchronization Service
	Quote Method
	UpdateOppty Method

	ISS Sequence Service
	Sequence Method

	ISS Service Product Service
	Service Method

	ISS Shipping Calculation Service
	CalculateShippingCost Method

	ISS Shipping Cost Service
	CalculateShippingCost Method

	ISS Smart Part Number Generation Service
	Generate Part Number Method

	ISS Spread Discount Service
	SpreadDiscount Method

	ISS Tax Calculation Service
	Tax Calculation Method
	InternalTaxCalculation Method

	ISS Template Service
	SaveAsTemplate Method
	OrderTemplate Method
	OrderTemplateSelectItems Method

