
Extensibility Guide
Oracle Financial Services Lending and Leasing

Release 14.9.0.0.0
Part No. F27106-01

May 2020

Table of Contents
1. PREFACE .. 1-1

1.1 AUDIENCE .. 1-1
1.2 CONVENTIONS USED .. 1-1
1.3 PRE-REQUISITE ... 1-1
1.4 ASSUMPTIONS .. 1-1

2. CUSTOMIZING AND EXTENDING THE APPLICATION ... 2-1
2.1 UNDERSTANDING CUSTOMIZING & EXTENDING THE APPLICATION .. 2-1
2.2 UNDERSTANDING CUSTOMIZATION LAYERS .. 2-1
2.3 INSTALLING CUSTOMIZATION TOOLS ... 2-3

3. USING JDEVELOPER FOR CUSTOMIZATIONS .. 3-1
3.1 ABOUT USING JDEVELOPER FOR CUSTOMIZATION ... 3-1
3.2 ABOUT CUSTOMIZING ORACLE ADF ARTIFACTS ... 3-1
3.3 CUSTOMIZING ORACLE ADF ARTIFACTS WITH JDEVELOPER ... 3-3
3.4 ADF CUSTOMIZATION BEST PRACTICES - DO’S AND DON’TS .. 3-5

3.4.1 Do’s ... 3-5
3.4.2 Don’ts .. 3-6

4. APPLICATION ARTIFACTS ... 4-1
4.1 ABOUT CUSTOMIZING ORACLE ADF APPLICATION ARTIFACTS ... 4-1
4.2 CUSTOMIZABLE APPLICATION LIBRARIES .. 4-1
4.3 ENABLE JDEVELOPER FOR CUSTOMIZATION .. 4-2
4.4 CUSTOMIZING THE SKIN ... 4-2
4.5 CUSTOMIZING OR ADDING RESOURCE BUNDLES .. 4-3
4.6 EDITING EXISTING BUSINESS COMPONENTS ... 4-7
4.7 EDITING PAGES .. 4-12
4.8 EDITING TASK FLOWS .. 4-12
4.9 CREATING CUSTOM BUSINESS COMPONENTS ... 4-13
4.10 CREATING CUSTOM TASK FLOWS .. 4-14
4.11 CREATING CUSTOM PAGES ... 4-14
4.12 EDITING THE UI SHELL TEMPLATE ... 4-15
4.13 REPLACING OFSLL LOGO .. 4-15
4.14 DEPLOYING ADF CUSTOMIZATIONS AND EXTENSIONS .. 4-16
4.15 DEPLOYMENT OPTIONS .. 4-17

5. CUSTOMIZING DATABASE OBJECTS .. 5-1
5.1 UI – PACKAGE INTERACTION LOGIC... 5-1
5.2 UI JAVA WRAPPER (U*JW) .. 5-1
5.3 DATABASE SCHEMA ... 5-2
5.4 WRAPPER ENGINE MODEL .. 5-3
5.5 BATCH JOB (BJ) ... 5-4
5.6 ENGINE WRAPPER (EW) ... 5-4
5.7 MAIN ENGINE (EM) ... 5-4
5.8 ENGINE FUNCTION (EN) ... 5-4
5.9 ENGINE VIEW ... 5-5
5.10 COMMON FEATURES ... 5-5
5.11 SEED DATA... 5-5
5.12 DEVELOPER’S TIPS ... 5-5

6. CREATING NEW CUSTOM BI PUBLISHER REPORT/LETTER ... 6-1
6.1 CREATE REPORT LAYOUT .. 6-8

6.2 CREATE XML DATA ... 6-10
6.3 ADD DYNAMICS TO REPORT ... 6-16
6.4 UPLOAD REPORT IN BIP ... 6-20

7. CUSTOMIZING EXISTING BASE BIP REPORTS ... 7-1

8. CUSTOMIZING EXISTING BASE BIP LETTERS ... 8-1

9. CREATE CUSTOM CORRESPONDENCE .. 9-1

10. GENERATING CORRESPONDENCE .. 10-1

11. SETTING UP THE OUTPUT FORMAT FOR BIP REPORTS ... 11-1

12. NAMING CONVENTION FOR CUSTOMIZED OBJECTS ... 12-1
13. RESTFUL WEB SERVICES EXTENSIBILITY ... 13-1

13.1 GENERIC POST TRANSACTION (POST) ... 13-2
13.1.1 Producer related transaction ... 13-2
13.1.2 Other Transactions .. 13-3

13.2 ACCOUNT ON BOARDING (POST) .. 13-7
13.3 PAYMENT POSTING (POST).. 13-18
13.4 ACCOUNT DETAIL (GET) ... 13-20
13.5 SCENARIO ANALYSIS (POST) ... 13-24
13.6 LOOKUPS (GET) ... 13-28
13.7 APPLICATION SEARCH (GET) ... 13-30
13.8 CALCULATOR (POST) .. 13-33
13.9 APPLICATION ENTRY (POST) ... 13-36
13.10 ACCOUNT SEARCH (GET) .. 13-49
13.11 CALL ACTIVITY (POST) ... 13-50
13.12 REMARKETING (PUT)... 13-53
13.13 INVOICE (POST) ... 13-55
13.14 APPLICATION COMMENT (GET/POST) .. 13-57
13.15 ACCOUNT COMMENT (GET/POST) .. 13-59
13.16 APPLICATION CHECKLIST (GET) .. 13-62
13.17 OUTGOING FILE LIST (GET) ... 13-64
13.18 OUTGOING FILE (POST) ... 13-66
13.19 INCOMING FILE (GET).. 13-67
13.20 PRODUCTS (GET) ... 13-67
13.21 ASSETS (GET) .. 13-69
13.22 ASSETS (PUT) .. 13-71
13.23 ASSET VALUATION (GET/PUT/POST) .. 13-74
13.24 ASSET SUB TYPES (GET) ... 13-78
13.25 APPLICATION STATUS CHANGE (PUT) ... 13-80
13.26 APPLICATION UPDATE (PUT) ... 13-81
13.27 APPLICATION ACH (POST) ... 13-91
13.28 APPLICATION DOCUMENT UPLOAD/DOWNLOAD/LIST SERVICE (POST/GET/GET) 13-94
13.29 ACCOUNT DOCUMENT UPLOAD/DOWNLOAD/LIST SERVICE (POST/GET/GET) 13-96
13.30 APPLICATION GET SERVICE (GET)... 13-98
13.31 SCHEDULER FORCE RESUBMIT SERVICE (PUT) ... 13-99
13.32 CREDIT LIMIT SERVICE (CUSTOMER/BUSINESS) [GET] ... 13-99
13.33 BUSINESS COMMENTS SERVICE (GET/POST) .. 13-102
13.34 CUSTOMER COMMENTS SERVICE (GET/POST) ... 13-104
13.35 CUSTOMER PREFERENCE SERVICE (GET/POST/PUT) ... 13-107
13.36 SCENARIO ANALYSIS SERVICE (PUT) .. 13-109
13.37 TRANSACTION PARAMETERS SERVICE (GET) .. 13-110
13.38 ASSET TRACKING ATTRIBUTE SERVICE(PUT).. 13-112
13.39 BUSINESS TRACKING ATTRIBUTE SERVICE(PUT) .. 13-114
13.40 CUSTOMER TRACKING ATTRIBUTE SERVICE(PUT) .. 13-116

13.41 ACCOUNT TRACKING ATTRIBUTE SERVICE(PUT) .. 13-118
13.42 CREDIT BUREAU WEB SERVICE(PUT).. 13-120
13.43 DELETE ACCOUNT WEB SERVICE(DELETE) ... 13-122
13.44 NEW CUSTOMIZATION FOR RESTFUL WEB SERVICE ... 13-124
13.45 SECURITIZATION WEB SERVICE(POST) ... 13-136
13.46 CALCULATE PARAMETER UPDATE SERVICE(PUT) ... 13-139
13.47 USER UPDATE SERVICE (PUT) ... 13-140
13.48 MASTER ACCOUNT ROLLEDUP DETAILS SERVICE (GET) .. 13-143

14. APPENDIX: REVISION HISTORY ... 14-1

 Page 1-1

1. Preface
This document provides an overview on extensibility capabilities supported by Oracle Financial
Services Lending and Leasing Application.

1.1 Audience
This document is intended for administrators and developers who want to customize and extend
the standard functionality provided by Oracle Financial Services Lending and Leasing Application.
Administrators should have a basic understanding of Oracle Financial Services Lending and
Leasing Application and Oracle Application Development Framework concepts. Developers
should have a basic understanding of the Java programming language, web applications, Oracle
JDeveloper, and Oracle Application Development Framework.

1.2 Conventions Used
Term Refers to

Application Oracle Financial Services Lending and Leasing

Customization application workspace OracleFSLLEnterpriseApp/
OracleFSLLEnterpriseApp.jws provided as part of
installer under /cust_lib folder

1.3 Pre-requisite
• You can find all the customizable libraries along with the necessary default projects as

part of the product release installer bundle under /cust_lib folder.
• You need to download and install JDeveloper 12.2.1.0.0.

1.4 Assumptions
• It is assumed that the customization team is familiar with ADF and this document ‘OFSLL

Extensibility Guide’ has been referred in detail.
• Since ADF is Java/J2EE based framework, it is assumed that the generic best practices

of Java/J2EE development are understood beforehand.

 Page 2-1

2. Customizing and Extending the Application
This chapter provides an overview of how to customize and extend the application and,
introduces the design time and runtime tools used in the process, such as Oracle JDeveloper,
Oracle Business Intelligence (BI) Publisher and Oracle Enterprise Manager Fusion Middleware
Control.

2.1 Understanding Customizing & Extending the Application
Oracle Financial Services Lending and Leasing application is based on Oracle Fusion
Middleware. User interfaces are implemented using Oracle Application Development Framework
(Oracle ADF) and standard Java technologies. Business intelligence frameworks provide a
number of reporting capabilities. Each of these areas of the application can be customized and
extended to suit your business needs.

Within this guide, the term customizing means to change a standard (existing) artifact. For
example, you can add an attribute to a standard business object, or you can change what is
displayed on a standard view page. The term extending means to create a completely new
artifact, such as a custom business object or custom view page. For customizations and
extensions of this application, there are two basic scenarios: personalization and design time
customizations and extensions.

Personalization

Personalization refers to the changes that every end user of the application can make to certain
artifacts in the user interface (UI) at runtime. These changes remain for that user each time that
user logs into the application. Personalization includes changes based on user behavior (such as
changing the width of a column in a table)

Design time customizations and extensions

Design time customizations and extensions include more complex changes, such as creating new
business objects or creating new view pages, and they require deployment into the runtime
environment. Design time customizations are done by Java developers using Oracle JDeveloper.
The customizations are then uploaded or deployed to a running instance of the application.

Most customizations, whether a personalization an end user makes, or a change a developer
makes using JDeveloper to create new source code, are stored in a business metadata
repository. Because these customizations are kept separate from the base code, you can safely
upgrade your application without overwriting or needing to redo your changes.

Customizations for the UI and for entity components are created in layers, meaning that you can
create them for specific industry, or for specific region or sites, and the changes will be shown
only when applicable. For more information about the metadata dictionary and customization
layers, see section 2.2 - ‘Understanding Customization Layers’.

2.2 Understanding Customization Layers
The application contains customization layer that allows you to make customizations which affect
only certain instances of an application. For example, the application has a layer for US region.
When you customize an artifact, you can choose to make that customization available only for US
region.

 Page 2-2

Customizations you make are not saved to the base standard artifact. Instead, they are saved to
an XML file that is stored in an Oracle Metadata Services (MDS) repository. This XML file acts
like a list of instructions that determines how the artifact looks or behaves in the application,
based on the layer that is controlling the current context. The MDS Customization Engine
manages this process.

For example, say you want to customize the Applicant fragment by adding a new Passport field,
but only for US region. Before you make your customization, you first select the layer to make
your customization in, in this case the region layer whose value is US. When you make your
customization by adding the new Passport field in the Application fragment, an XML file is
generated with the instructions to add the field, but only in the region layer, and only when the
value is US. The original page file remains untouched. The MDS Customization Engine then
stores the XML file in an MDS repository.

Now, whenever someone logs into the application and requests an artifact, the MDS
Customization Engine checks the repository for XML files that match the requested artifact and
the given context, and if there is a match, it layers the instructions on top of the base artifact. In
this example, whenever the Application page is requested (the artifact) by someone where US
region customization is applied, before the page is rendered, the MDS Customization Engine
pulls the corresponding XML file from the repository and layers it on top of the standard
Application page, thereby adding the new field.

All users of the application can personalize the pages. Users can move elements around on a
page, hide elements, and even add available elements to their page. When they do this
personalization, the MDS Customization Engine creates an XML file specific to that user.

For example, say User 1 personalizes the Application page. There will then be an XML file stored
in the repository, noting the changes that user made. When User 1 logs in, as in the previous
example, the MDS Customization Engine pulls the XML file with the customizations from the
repository and layers it on top of the standard Application page. In addition, the engine pulls the
XML file with User 1's personalization’s, allowing the user to see the personalization changes
along with the US region changes. When other users log in, they do not see User 1's
personalization changes.

Application
Page

Application Page

US Region
Customization Page Application Page with

customization

 Page 2-3

The application has following customization layers:

• Region: When customizations are made in this layer, they affect users of the application
for a specific region. This layer's XML files are added for everyone, whenever the artifact
is requested.

• Industry: When customizations are made in this layer, they affect users of the application
for a specific industry. This layer's XML files are added for everyone, whenever the
artifact is requested.

• Site: Customizations made in the Site layer affect users at a particular location.
• User: This is where all personalization’s are made. Users do not have to explicitly select

this layer.

These layers are applied in a hierarchy, and the highest layer in
that hierarchy in the current context is considered the tip. Within
the default customization layers, the Region layer is the base
layer, and the User layer is the tip. If customizations are done to
the same object, but in different layers, at runtime, the tip layer
customizations take precedence. For example, if you customize
the label for a field in the site layer and customize the same label
in the industry layer using JDeveloper, the site layer
customization will be displayed at runtime.

Because customizations are saved in these XML files, when you patch or upgrade your
application, the base artifacts can be updated without touching your changes. The base artifact is
replaced, and when the application is run after the patch or upgrade, the XML files are simply
layered on top of the new version. You do not need to redo your customizations.

Before you create customizations, you must select the layer to which you want your
customizations to be applied.

2.3 Installing Customization Tools
For procedures for setting up JDeveloper for customizations, see chapter 3, Using JDeveloper for
Customizations.

USER

SITE

INDUSTRY

REGION

 Page 3-1

3. Using JDeveloper for Customizations
This chapter describes how to configure JDeveloper for implementing customizations in the
application.

3.1 About Using JDeveloper for Customization
 JDeveloper is used when it is needed to customize or create business objects or new pages. The
procedures for each of these are different.

New custom objects created in JDeveloper are not saved into the MDS Repository, and so are
done in a standard application workspace using the Default role. However, when you customize
standard objects, those customizations are saved into the MDS Repository, and so must be done
using the Customization Developer role. Doing customizations using the customization
developer role ensures that the changes are saved to upgrade-safe MDS Repository, and not
written directly to the standard object. In future, when patch or upgrade Application, the
customizations held in these metadata files will not be touched, and so, it need not be re-done.

When customizing ADF artifacts, a special customization application workspace can be created;
using the Default role, for this application a default customization application workspace
(/OracleFSLLEnterpriseApp/OracleFSLLEnterpriseApp.jws) is provided. This workspace includes
all the artifacts that can be customized. This customization workspace can be configured, so that
when customizations are tested and deployed, they appear to be part of native Oracle Financial
Services Lending and Leasing Application.

Using the default workspace, it is possible to switch roles to customization developer and
customize the ADF artifacts required. After completion, the artifacts are packaged and deployed
in the workspace to the Oracle Financial Services Lending and Leasing environment.

Often, there is a need to perform both customizations (customizing an existing standard object)
and extensions (creating a new object). For example, suppose it is needed to create a new
business object and expose that new object in an existing application module. First, because a
new custom business object is being created, first a standard application workspace is created
and then entity object is created. After completion, the workspace is packaged as an ADF Library,
and placed into a directory. Next, using the default workspace provided, the new entity object
library and the library that contains the application module to which we need to add the entity
object is added. After both are imported, User should log in using the customization developer
role and make the customizations to the application module. After customizations are complete,
User would deploy the customizations to the test environment.

Note

Before running JDeveloper in customization mode for the application, see Section 4.3
“Enable JDeveloper for Customization” for pre-configuration requirement.

3.2 About Customizing Oracle ADF Artifacts
The application is built using Oracle ADF artifacts, including the following:

 Page 3-2

• Application modules: An application module is the transactional component that UI clients
use to work with application data. It defines an updateable data model along with top-
level procedures and functions (called service methods) related to a logical unit of work
that is related to an end-user task.

• Entity objects: An entity object represents a row in a database table and simplifies
modifying its data by handling all data manipulation language (DML) operations. It can
encapsulate business logic to ensure that the required business rules are consistently
enforced. An entity object can be associated with others to reflect relationships in the
underlying database schema, to create a layer of business domain objects, and to reuse
in multiple applications.

• View objects: A view object represents a SQL query and simplifies working with its
results. The SQL language is used to join, filter, sort, and aggregate data into the shape
required by the end-user task to be represented in the user interface. This includes the
ability to link a view object with other view objects to create master-detail hierarchies of
any complexity. When end users modify data in the user interface, view objects
collaborate with entity objects to consistently validate and save the changes.

• Task flows: Task flows define the flow of control throughout an application. They also can
be included in a page as a region, where users can navigate through a series of page
fragments, without leaving the original page.

• JSPX pages and page fragments: The view layer of the application consists of a small
number of pages per application. These pages then contain task flows, which in turn
contain a number of page fragments.

When Oracle ADF artifacts are customized, it generally happens in an overview editor that allows
making customizations declaratively. For example, below figure shows the editor for an entity
object. Among other things, validation can be set or UI display changes can be done.

For JSPX pages, a WYSIWYG environment is displayed where changes can be made using the
Design tab in the editor window or structure window.

 Page 3-3

3.3 Customizing Oracle ADF Artifacts with JDeveloper
To customize ADF artifacts, open the default customization application workspace provided,
using the Customization Developer role and customize the required artifacts.

Customizing the Artifacts

Users need to switch to the Customization Developer role before they can begin customizing.

1. Restart JDeveloper and select the Customization Developer role.

 Page 3-4

The artifacts from the imported library are displayed in the Application Navigator pane, under the
ADF Library Customizations node, and the artifact selected to customize opens in the editor
window.

 Page 3-5

2. In the Customization Context window (by default, displayed at the bottom of JDeveloper),
select the layer that you want the customizations written to.

Note the following:

In case you want to change the value from customization.properties, you can follow the below
steps

• Step 1: Extract the OfsllCustomization.jar using the following command.
Jar –xvf OfsllCustomization.jar

• Step 2: Modify the value in customization.properties
• Step 3: Remove the old OfsllCustomization.jar, to build the jar again, please issue the

following command
Jar -cvf OfsllCustomization.jar customization.properties oracle META-INF adf-loc.jar

3.4 ADF Customization Best Practices - Do’s and Don’ts
Listed below are some of the best practices that are captured during ADF customization. This list
is iterative and includes the critical points discussed and captured from previous customizations.

3.4.1 Do’s
• If there is a custom AM (Application Module) created as part of custom application, then

you can nest it under base root application module. It’s recommended to keep base
application module as the main root module and route all custom transaction through it.

• You always need not explicitly create AM instances in backing beans. Instead create
custom method in AMImpl class, expose them as client methods, and use operation
bindings to call such methods.

• Use ‘finally’ block to close expensive objects like RowSetIterators, Statements and
Connections, wherever applicable.

• Every ‘request’ that changes data in database should be complete i.e. commit or rollback
must happen at the end of request.

• Try to reuse View Objects (VOs). This is true for data display and list of value VOs.
• New VOs should be tuned according to the business use case by tuning the fetch size

and fetch mode properties.
• Use Bind Variables in VOs instead of hardcoded values in WHERE Clause, even for

static values.
• If new custom bounded taskflows are created to show data in new tabs then make sure

to control the taskflow activation and fetch data only when needed. For example, on click
of tab rather than launch of page itself (assuming that tab is not the first tab).

• Write layer appropriate code i.e. avoid business logic in view layer. Another indicator to
know would be, if you are importing jbo.* classes in view layer (backing bean) then you
are misplacing the code and it actually belongs to model layer.

• Test with AM pooling off to make sure there is no adverse impact of passivation of AM,
especially to transient and user entered values.

• Ensure that the ID for each component in the fragment is less than or equal to 7
characters in length.

• When bindings are created in the backing bean for any of the component in the fragment,
ensure to use component references and not the component directly. Refer to below
examples on the usage.

 Page 3-6

Example of correct usage:

private ComponentReference<RichInputText> scraOrderRefNbr;

public RichInputText getScraOrderRefNbr() {

 return scraOrderRefNbr == null ? null :
scraOrderRefNbr.getComponent();

}

public void setScraOrderRefNbr(RichInputText scraOrderRefNbr)
{

this.scraOrderRefNbr =
CommponentReference.newUIComponentReference(scraOrderRefNbr);

}

Example of worng usage:

private RichInputText doNotUse;

public void setDoNotUse(RichInputText doNotUse) {

 this.doNotUse = doNotUse;

}

public RichInputText getDoNotUse() {

 return doNotUse;

}

• Any calls to DB packages should be done from the AM Impl method (Not applicable for
pre/post insert/update which will be done directly at the respective Entity Impls) and that
method should be invoked from the backing bean through operation binding, so never
call the DB packages directly from the backing bean.

3.4.2 Don’ts
• Do not use value change listener to call database package that changes data in database

table. Since same database connection is not guaranteed on every request, this could
lead to uncommitted data hanging and probably undesirable results for other users who
got that database connection assigned to their request.

• Do not perform commit or rollback after read-only database calls.
• Do not explicitly create session object by initializing oracle.jbo.server.SessionImpl.
• Do not store component bindings/references in session scope beans. Use backingbean

or request scope beans.
• Avoid making multiple DB calls for a single operation which would badly affect the

performance of the system.
• Do not use system.out.println() or printStackTrace() anywhere in the code.

 Page 3-7

• Do not bind all the components in a fragment to the backing bean. Instead bind only the
components on which you are going to perform operations programmatically.

 Page 4-1

4. Application Artifacts
This chapter describes how to use Oracle JDeveloper to customize and extend application
artifacts defined by Oracle Application Development Framework (Oracle ADF) in Oracle Financial
Services Lending and Leasing Application.

4.1 About Customizing Oracle ADF Application Artifacts
With the customization features provided by Oracle Metadata Services (MDS), developers can
customize the application using JDeveloper, making modifications to suit the needs of a particular
group, such as a specific region or industry or site.

Using JDeveloper, you can implement customizations on existing artifacts that are provided. The
application can also be extended with new custom artifacts that are packaged into a JAR file, and
integrated using customizations on the existing application.

However customizations to the application require a lower level approach, for which JDeveloper
needs to be used.

4.2 Customizable Application Libraries
All customization in the application would be done on the ADF Libraries. List of libraries that can
be customized and set of default projects that can be used for building the projects are:

Library Name Description

adflibOfsllCommonModel.jar Contains all the application Business Objects such as
entity object, view object and application module.

adflibOfsllCommonUI.jar Contains all the User Interface fragments (JSFF) and
taskflows (TFs) and all re-useable templates.

Project Name Description

OracleFSLLEnterpriseApp/
OracleFSLLEnterpriseApp.jws

Enterprise EAR Application deployment project. This is
the default customization main project used to bundle all
the libraries into an EAR.

OracleFSLLCommonSkin/
OracleFSLLCommonSkin.jws

Application Skin project, containing images and CSS file.
The skin project changes can be handled through Oracle
ADF Skin Editor.

OracleFSLLCustomization/
OracleFSLLCustomization.jws

Customization project containing the customization layer
values i.e. region layer, Industry layer and site layer key
value pair.

Note

- Above projects are available as part of the application installer bundle under /cust_lib
folder.

 Page 4-2

- The customizable libraries can be extracted out of /core_as/*.ear file. Extract the *.war
out of *.ear and the libraries are under /WEB-INF/lib folder.

- Currently existing menu items cannot be customized as well as new menu items cannot
be added.

4.3 Enable JDeveloper for Customization
Before running the JDeveloper in Customization Developer role, JDeveloper needs to be
configured with following settings:

1. Open JDeveloper in Default role and open the OracleFSLLCustomization/
OracleFSLLCustomization.jws project and edit the customization.properties file with
appropriate values for Region key layer, Industry key layer and Site key layer.

3. Rebuild the OfsllCustomization.jar using the default deployment profile.

4. Edit the /cust_lib/CustomizationLayerValues.xml in Notepad and update the Region key
layer, Industry key layer and Site key layer with the values added as per required
customization.properties.

5. Copy the CustomizationLayerValues.xml onto JDeveloper installation location under
$JDEV_HOME/jdeveloper/jdev.

4.4 Customizing the Skin
One method of customizing skin is opening the bundled OracleFSLLCommonSkin/OracleFSLL
CommonSkin.jws project in Oracle ADF Skin Editor Application and customizes the skin details.
Once the skin details are customized the same can be bundled as ADF library and deployed to
the application server.

1. Open the OracleFSLLCommonSkin Project in Oracle ADF Skin Editor Application.

2. Select the component through selectors structure which needs to be customized.

3. Go to Property Inspector and make necessary changes.

 Page 4-3

4. Make ADF Library JAR through deployment profile defined with this project.

5. Copy the JAR into OracleFSLLEnterpriseApp to build the EAR.

Note

Skin can be customized using Oracle ADF Skin Editor which can be downloaded from Oracle
site. If the default skin family name is changed then trinidad-config.xml available in
OracleFSLLEnterpriseApp needs to be changed with new skin family name.

4.5 Customizing or Adding Resource Bundles
One method of customizing label is by overriding values for existing keys defined in the resource
bundle, but new keys cannot be added.

Because a new key cannot be defined in the shipped resource bundle, a new override bundle
needs to be created. This can be accomplished in JDeveloper by creating an XLIFF file from the
New Gallery. After the file is generated, new keys and their associated text in the XLIFF file can
be entered.

To make the newly created resource bundle available for customization, the resource bundle
needs to be registered with the customization project. Newly created resource bundle can be
present in customization project or as a separate project. To register the resource bundle with
customization project, package it into an ADF Library JAR file, and import the JAR file into the
customization project.

 Page 4-4

Step to override a message bundle which already exists in model or ui jar, is shown below:

1. Open the JDeveloper in Default role, select the application, click on Application (Menu) 
Application Properties. Select Resource Bundles, add the resource bundles here from jars
present under lib folder and check “Overridden” check box. This will register the all selected
bundles with adf-config.xml file.

 Page 4-5

 Page 4-6

2. The Edit or Override Resource Bundles, Go to Customization Role, Select “Edit Resource

Bundle” present under Application Menu. Navigate to the XLIFF Bundle that needs to
overridden from the jar under lib folder.

3. Change Display Value for the Key as per requirement.

 Page 4-7

4. Once changes are submitted, the override resource bundle folder would be created with

overridden values.

4.6 Editing Existing Business Components
Before you start customizing business objects, it has to be determined which business objects
need customizing. Then when customizing ADF artifacts, JDeveloper has to be launched in the
Customization Developer role, and the appropriate layer selected.

 Page 4-8

Task: Edit Attributes

The properties of an attribute can be customized from an entity object or view object using
JDeveloper. When an entity object opened or viewed in the overview editor, the attributes of the
object can be seen on click in the Attributes tab. When an attribute is selected, its properties are
displayed in the Property Inspector.

It is not necessary to modify the page after customizing the properties of an existing attribute.
Customizations to existing attributes are automatically reflected on the pages that show them.

However, if an attribute is modified so that it requires a different UI component, it must also be
updated in the page. For example, if a list of values (LOV) is added to an attribute, the page
needs to be edited to hide the existing UI component that displays the attribute, and a new UI
component added that can display the LOV.

Note that some attribute properties defined in the entity object can be overridden in the view
object. For example, the label text for a field can be defined in an entity object and subsequently
given a different label in the consuming view object. Then pages that use the view object display
the label from the view object.

 Page 4-9

Task: Add Attributes

Custom attributes can be added to an entity object or view object using JDeveloper. To do this,
JDeveloper must be launched in the Customization Developer role, a layer selected. Open an
entity object or view object in the overview editor, and click the Attributes tab to see the attributes
of the object. To add a custom attribute, click the Add icon.

To store the custom attribute in the database, first create the column that will be used to store it.

To display the custom attributes in the application, the pages also needs to be customized to
display them.

 Page 4-10

 Page 4-11

Task: Edit Entity Objects

In JDeveloper, edit entity objects using the overview editor. In the Application Navigator, right-
click an entity object, and choose Open. Then click on the navigator tabs to view and edit the
various features of the entity object.

Task: Edit View Objects

In JDeveloper, edit view objects using the overview editor. In the Application Navigator, right-click
a view object, and choose Open. Then click on the navigator tabs to view and edit the various
features of the view object

Task: Edit Application Modules

In JDeveloper, edit application modules using the overview editor. In the Application Navigator,
right-click an application module, and choose Open.

In JDeveloper, the following kinds of customizations can be made on an application module:

• Add new custom properties. This is done on the General page of the overview editor.
• Add new view object and application module instances. This is done on the Data Model

page of the overview editor.
• Add newly created subtype view objects. This is done on the Data Model page of the

overview editor.
• Add new application module configurations. This is done on the Configurations page of

the overview editor.

Once the changes are applied, the MDS file is created based on the customization layer value.
shown below.

 Page 4-12

4.7 Editing Pages
JDeveloper can be used to implement customizations on the pages that are used in the
application. When editing a page in JDeveloper, JDeveloper must be launched in the
Customization role.

Task: Edit Pages

In the Application Navigator, right-click the page that has to be customized and choose Open.
Either new component can be added or existing components properties can be changed via
property inspector.

4.8 Editing Task Flows
JDeveloper can be used to implement customizations on the task flows that are used in the
application. A task flow is a set of ADF Controller activities, control flow rules, and managed
beans that interact to allow a user to complete a task. Although conceptually similar, a task flow is
not the same as a human task, a task in the worklist, or a process flow.

A bounded task flow can be rendered in a JSF page or page fragment (.jsff) by using an ADF
region. This is typically done to allow reuse of the task flow, as necessary, throughout the
application. If a bounded task flow is modified, the changes apply to any ADF region that uses the
task flow.

 Page 4-13

Task: Edit Task Flows

In JDeveloper, the task flow diagram editor is used to implement customizations on existing task
flows. In the Application Navigator, right-click the task flow that has to be customized and choose
Open. The page is displayed in the diagram editor, where changes can be made to the existing
activities and control flow cases, or create new custom ones. And in the Overview editor also
changes can be made.

4.9 Creating Custom Business Components
JDeveloper can be used to extend the application by creating custom business components.
When creating custom business components in JDeveloper, JDeveloper must be launched in the
Default role. This role is used for creating new custom objects that needs to be added to the
application. The same workspace that was created for customization can be used. After the
custom business components are created, switch to the Customization Developer role, to make
changes to existing artifacts to integrate the new custom artifacts into the application.

Task: Create Custom Entity Objects

An entity object represents a row in a database table, and encapsulates the business logic and
database storage details of business entities.

In JDeveloper, entity objects can be created using the Create Entity Object wizard, which can be
launched from the New Gallery. In the Application Navigator, right-click the project that has to be
added to the entity object, and choose New. Then in the New Gallery, expand Business Tier, click
ADF Business Components, choose Entity Object, and click OK. Follow the prompts in the wizard
to create an entity object.

Task: Create Custom View Objects

A view object represents a SQL query and also collaborates with entity objects to consistently
validate and save the changes when end users modify data in the UI.

 Page 4-14

In JDeveloper, view objects can be created using the Create View Object wizard, which can be
launched from the New Gallery. In the Application Navigator, right-click the project that has to be
added to the view object, and choose New. Then in the New Gallery, expand Business Tier, click
ADF Business Components, choose View Object, and click OK. Follow the prompts in the wizard
to create a view object.

Task: Create Custom Application Modules

An application module encapsulates an active data model and the business functions for a logical
unit of work related to an end-user task.

In JDeveloper, application modules can be created using the Create Application Module wizard,
which can be launched from the New Gallery. In the Application Navigator, right-click the project
that has to be added to the application module, and choose New. Then in the New Gallery,
expand Business Tier, click ADF Business Components, choose Application Module, and click
OK. Follow the prompts in the wizard to create an application module.

Task: Add Validation

In JDeveloper, declarative validation rules can be created for entity objects and view objects to
help ensure the integrity of the data. To do this, open the entity object or view object in the
overview editor, and click the Business Rules navigation tab. Then select the attribute for which
validation needs to be provided, click the Create new validator icon, and use the Add Validation
Rule dialog to configure the rule.

4.10 Creating Custom Task Flows
JDeveloper can be used to create custom task flows that can be included in the application. A
task flow is a set of ADF Controller activities, control flow rules, and managed beans that interact
to allow a user to complete a task. Although conceptually similar, a task flow is not the same as a
human task, a task in the worklist, or a process flow.

Task: Create a Custom Task Flow

A custom task flow can be created in JDeveloper using the New Gallery, and then its activities
defined using the task flow diagram editor. In the Application Navigator, right-click the project that
has to be added to the task flow, and choose New. Then in the New Gallery, expand Web Tier,
and click JSF/Facelets. Then select ADF Task Flow, and click OK. In the Create Task Flow
dialog, specify the details about the type of task flow that needs to be created. Click OK and the
task flow is created and displayed in the diagram editor.

4.11 Creating Custom Pages
JDeveloper can be used to create custom pages that can be included in the application. When
creating custom pages in JDeveloper, JDeveloper must be launched in the Default role.

When creating the page (or dropping a view activity onto a task flow), it can be created either as a
JSF JSP or as a JSF JSP fragment. JSF fragments provide a simple way to create reusable page
content in a project, and are used for task flows as regions on a page. When a JSF page
fragment is modified, the JSF pages that consume the page fragment are automatically updated.

After extending the application with custom pages, it is required to make sure that security for the
new pages are implemented appropriately and that the new pages are deployed so that they are
accessible from the application.

 Page 4-15

Task: Create a Custom Page

In JDeveloper, pages can be created either by double-clicking a view activity in a task flow or by
using the New Gallery. In the Application Navigator, right-click the project to which the page has
to be added to, and choose New. Then in the New Gallery, expand Web Tier, and click
JSF/Facelets. Then select either Page or ADF Page Fragment, and click OK.

Task: Add a Custom Page to a Task Flow

If the page is created by double-clicking a view activity in a task flow, it is already added to the
task flow. If it is created using the New Gallery, it can be added to a task flow by dragging the
page from the Application Navigator and dropping it in the task flow diagram editor. Then connect
the page using a control flow.

4.12 Editing the UI Shell Template
To edit the UI Shell template in JDeveloper, in the Customization Developer role, select the
OfsllUiShellTemplate.jsf file and open and changes can be made as necessary.

4.13 Replacing OFSLL Logo
OFSLL Logo can be changed through one time customization. The image path of OFSLL logo is
referenced in both UI shell template and sign-in template through the OfsllHome.jsf and
OfsllSignIn.jsf respectively and the same can be customized by making changes to these JSF
files.

1. In the customization project, create a folder under public_html directory and add the new logo
file.

2. Launch Jdeveloper in Customization mode and load the customization project.

3. Open OfsllHome.jsf from ofsll library. Locate the line <f:attribute name="logoImagePath"
value="/adf/oracle/skin/images/ofsll_logo.gif"/> in the code.

 Page 4-16

4. From property inspector’s expression builder, change the value to refer the new logo file and

click ok. Customization file for OfsllHome.jsf gets created and refers to the new logo file at
runtime.

5. To refer the new logo in sign in page too, repeat steps 3 and 4 in OfsllSignIn.jsf.

4.14 Deploying ADF Customizations and Extensions
After customizing existing artifacts, JDeveloper can be used to deploy the customizations to
Oracle Weblogic Server.

The default customization workspace as described in Section 3.1, ‘About Using JDeveloper for
Customization’, contains a MAR profile. By default, the name of the MAR profile is
application_name_customizations. It will automatically include the customizations that are
implemented. This profile can be used to package the customizations for deployment.

When customizations are packaged from the customization workspace, the MAR file should
include only library customizations. Do not include the User Metadata or HTML Root Dir for
Project in the MAR profile, unless explicitly directed to do so by product documentation.

If the application is extended with new custom artifacts, JDeveloper can be used to package them
into an ADF Library JAR and place them into the proper location within the application directory
structure.

Task: Deploy the Customizations

JDeveloper can be used to deploy the customizations directly or to create a MAR, and then load
the MAR using WLST commands or the WebLogic Server Administration Console.

When customizations are deployed on ADF Business Component objects (such as entity objects
and view objects), the server must be restarted for the customizations to be picked up.

Task: Package New Artifacts into ADF Library

 Page 4-17

If the application is extended with new custom artifacts (or new artifacts are supplied with), these
artifacts must be packaged into an ADF library JAR and place the JAR files in the proper location
within the application.

The ADF library JAR for the new model artifacts (such as entity objects and view objects) should
be placed into the /APP-INF/lib directory. The ADF Library JAR for the new user interface artifacts
(such as pages) should be placed in the /WEB-INF/lib directory

4.15 Deployment Options
The Deployment or EAR creation of the application would be done through
OracleFSLLEnterpriseApp project. In this Project, JPR has the necessary deployment profiles
available. Deployment of the application on to Weblogic Server is defined as per “Install UI
Components to Application Server” document.

Note

- In Customization Developer role, the project creates the MAR deployment profile for
customization deployment.

- MAR deployment is same as EAR deployment.

 Page 5-1

5. Customizing Database Objects
5.1 UI – Package Interaction Logic

OFSLL uses the Oracle Fusion Middleware based ADF user interface. Below mentioned image
show how OFSLL user interfaces interacts with the Java wrapper.

5.2 UI Java Wrapper (U*JW)
If the java wrapper engine needs to be customized, follow the steps given below:

1. Select the Exit point for the customization.

2. Rename the exit point package file name with _xyz. Do not change Package name.

3. Change the variable CV from NON_CUSTOMIZED to CUSTOMIZED depending upon the
exit point before, replace or after.

4. Write the required customized engine library and call it in the java wrapper Exit Points
Package (EX).

 Page 5-2

Business Logic Engine (Process)

5.3 Database Schema
Oracle Financial Services Lending and Leasing has the below mentioned Database Objects

• Table
• Table Column
• Sequence
• Index
• View

Custom Pre-
processing
Program

Custom
Engine

Processing
Program

Custom Post-
processing
Program

Engines (EM, EN) and JW (Java Wrappers)

Pre-processing Exit Point

Replacement Processing Exit Point

Engine Processing

Post-processing Exit Point

 Page 5-3

 FVW – User Interface Views
 JVW – Java Interface Views
 EVW – Engine/Wrapper Signature Views
 PL/SQL Programs

5.4 Wrapper Engine model
Below mentioned is the naming convention for Wrapper Engine model used in Oracle Financial
Services Lending and Leasing.

XXXYYY_ZZ_ABC_99 XXXYYY_ZZ_ABC_99

XXX Module or Engine

YYY Function

ZZ Program Type

EM Engine Main

EN Engine Function

EW Engine Wrapper

EL Engine Library

EX Engine User Exits

A System

 0-Common

 1-Consumer

 2-Commercial

 (Always 0 for Wrapper)

B Product Type

 0-Common

 1-Loan

View Object

Entity Object UXX_YYY_JVW
(Java View)

UIX _XXX_FVW
(UIX FVW)

Tables

 Page 5-4

XXXYYY_ZZ_ABC_99 XXXYYY_ZZ_ABC_99

JW Java Wrapper

BJ Batch Job

BL Batch Job Library

CL Common Library

 2-Lease

 3-WFP

 (Always 0 for Wrapper)

C Product Sub Type

 0-Common

 1-Closed Ended

 2-Open Ended

 (Always 0 for Wrapper)

99 Running Sequence Number

 Starting 01 to 99

5.5 Batch Job (BJ)
Batch Job cannot be customized, it has to be developed as a new job.

5.6 Engine Wrapper (EW)
Engine Wrapper cannot be customized.

5.7 Main Engine (EM)
To customize the main engine, follow the steps given below:

• Select the Exit point for the customization.
• Rename the exit point package file name with _xyz. Do not change Package name.
• Change the variable CV from NON_CUSTOMIZED to CUSTOMIZED depending upon

the exit point before, replace or after.
• Write your customized engine and call it in the Engine Exit Points Package (EX).

5.8 Engine Function (EN)
To customize an engine function, follow the steps given below:

• Select the Exit point for the customization.
• Rename the exit point package file name with _xyz. Do not change Package name.
• Change the variable CV….from NON_CUSTOMIZED to CUSTOMIZED depending upon

the exit point before, replace or after.
• Write your customized engine function and call it in the Engine Exit Points Package (EX).

 Page 5-5

5.9 Engine View
To customize an Engine View (EVW), follow the steps given below:

• Do Not modify the OFSLL Base Engine View Script
• Create a copy of the OFSLL Base Engine View Script, rename and modify that Engine

View Script.

Do not modify the OFSLL Base Engine View Name.

5.10 Common Features
• Error Logging

 Alert Log
• Debugging

 Debug Log
• Version Control Header in each code unit

5.11 Seed Data
Oracle Financial Services Lending and Leasing Seed data tables are classified in following three
categories

System

• Only Oracle Financial Software Services Ltd. can change/update this data

Combination

• Oracle Financial Software Services Ltd. or customer can change/update this data. It is
recommended to identify all the new customized seed data records with a customer
identifier in the primary key.

Demo

• Oracle Financial Software Services Ltd. provides the demo data as sample demo
configurations. Customer can change/update/delete this data, this data should not be
used for production configurations.

All seed data tables have two Primary Keys - one is user defined codes and the other is a
system generated sequence number.

All seed data tables have a system defined indicator to indicate whether a record is system
defined.

All seed data are stored is in files and checked in the version control systems and sent as
merged statements in patch for changed (added or modified) data.

5.12 Developer’s Tips
Suppose the account number generation needs to be customized different from what OFSLL
generates; Requirement is to replace the baseline format with its own format (like ACC-
NNNNNNN).

 Page 5-6

Locate the procedure that generates the account number.

• Procedure “set_acc_nbr” from program “aaiacc_en_111_01.pkb” generates account
number in “YYYYMMNNNNNNND” format.

Identify the exit point package having the set_acc_nbr_xxx procedures where xxx is bfr – before,
afr - after and rep – replace.

• aaiprc_ex_111_01.pks and aaiprc_ex_111_01.pkb
• Create new package with name as xyzaaiacc_en_111_01.pkb. Add procedure to create

account number in new format.
• Copy “aaiprc_ex_111_01.pks” to “xyzaaiprc_ex_111_01.pks”
• Modify “xyzaaiprc_ex_111_01.pks”, change constant

From
CV_SET_ACC_NBR_REP CONSTANT VARCHAR2(30) :=
cmncon_cl_000_01.NOT_CUSTOMIZED;
To
CV_SET_ACC_NBR_REP CONSTANT VARCHAR2(30) :=
cmncon_cl_000_01.CUSTOMIZED;

• Copy “aaiprc_ex_111_01.pkb” to “xyz aaiprc_ex_111_01.pkb”
• Call new procedure from xyzaaiprc_ex_111_01

PROCEDURE set_acc_nbr_rep(
 iv_con_rec IN aai_con_evw%ROWTYPE
 ,iv_acc_aad_id IN OUT aai_con_evw.con_aad_id%TYPE
 ,iv_acc_nbr IN OUT aai_con_evw.con_acc_nbr%TYPE) IS
BEGIN
 xyzaaiprc_en_111_01.set_acc_nbr(iv_con_rec,iv_acc_aad_id, iv_acc_nbr);
END set_acc_nbr_rep;

The above example shows the usage with replacement exit point. Similar way “before” and
“after” exit points can be used to extend the business logic functions.

• Where ‘xyz’ is Customer Unique Id

 Page 6-1

6. Creating New Custom BI Publisher Report/Letter
Pre-Requisites

1. Changes to base reports not allowed

2. Basic knowledge on BIP and BIP client.

3. The reports should be placed into the same folder structure

• i.e. For Reports  Shared Folders/oracle/fll/xmlp/reports
• For Letters  Shared Folders/oracle/fll/xmlp/letters
• For Correspondences  Shared Folders/oracle/fll/xmlp/correspondence

Creating a New Report
1. Login into BIP console.

2. To Create a new report first create the data model , Click on Data Model on left.

3. On click on Data Model it will open the following Screen.

 Page 6-2

4. To create a New Data Set, Click on New Data Set and select the type “SQL Query”

The following screen is displayed.

 Page 6-3

5. Enter the new data model name (Use the same name while creating the report layout)

6. Select the Data Source.

7. Add the sql query. It depends on what data needed on the report and what should be the
parameters.

8. Click OK. A confirmation dialog is displayed to create the parameter. Select the parameter

and press OK.

 Page 6-4

9. The parameter is created as indicated below.

10. Save the data model. Select the directory in which you would need to save the details. For

Reports save in reports directory and for Letters save it in Letters directory.

11. You can also save with the same name and specify the description of the report.

 Page 6-5

12. Once the Data Model is created, create the sample data as indicated below.

13. Click on View Data on right side of the page.

 Page 6-6

14. Specify the following value in Parameter (P_STATUS).

 Page 6-7

15. Click ‘View’. The sample data is created as indicated.

16. Click on ‘Save As Sample Data’.

 Page 6-8

17. The Data model is created and can be use to create the report layout.

6.1 Create Report Layout
1. Navigate to Home Page and create the report layout as indicated below.

2. Click on Create > Report on LHS panel.

3. Select the ‘Use Data Model’ and click to browse the existing data model , and select the data

model just created.

 Page 6-9

4. Click ‘Open’.

5. Select ‘Use report Editor’ option (If user have the BIP Client installed on his machine , he can

create and the .rtf layout from MS Word).

6. Click ‘Finish’ and save the report with the same name as data model.

 Page 6-10

The below screen indicates the saved report.

6.2 Create XML data
Create XML data to create the layout on local editor (MS Word)

1. Navigate to Home Page and select the data model created.

 Page 6-11

2. Select ‘Data’ Tab.

3. Enter the Parameter Value and click ‘View’.

 Page 6-12

4. Click ‘Export’ (it will create the XML file locally in download folder).

5. Open MS Word (Ensure that the BIP client is installed on User’s Machine).

6. Access BI Publisher tab and click ‘Sample data’.

 Page 6-13

7. Select the same XML file from download.

8. Select ‘Open’. Required data is loaded.

 Page 6-14

9. You can use the available option is MS word to create the desired layout.

10. First use “All Fields” option. This creates all the fields from sample xml and create the layout
as follows in tabular form.

11. You can modify the headings, add new static text, logos and so on.

 Page 6-15

12. Save the layout with the same name as the data model and report in BIP.

13. To preview the layout, click ‘PDF’ in preview tab.

 Page 6-16

14. The report is displayed in PDF format.

6.3 Add Dynamics to Report
You can use table wizard to give more dynamic report as indicated.

1. Select the Table Wizard from BI Publisher tab.

 Page 6-17

2. Select the Table and press ‘Next’.

3. Use the same Data SET.

 Page 6-18

4. Select all the fields and press ‘Next’.

5. You can create the group as follows:

6. Click ‘Next’. You can give the sorting option as indicated.

 Page 6-19

7. Click ‘Next’. The wizard creates the layout as indicated.

8. You can add,modify static Text , logo in the layout and Save the layout with the same name

of datamodel or report.

 Page 6-20

9. Preview of the report layout is as indicated.

Now Layout is just created successfully and saved.

6.4 Upload Report in BIP
You can upload the report in BIP as indicated.

1. Navigate to BIP Console.

2. On Home page, use the search option and search for the new report created.

 Page 6-21

3. Click ‘Edit’ on New report layout.

 Page 6-22

4. The following screen is displayed and allows you to upload the layout.

5. Click ‘Upload’.

6. Specify the same layout name (new_report_demo) and choose the file.

 Page 6-23

7. Select the type as ‘RTF Template’ and locale as ‘English’.

8. Click ‘Upload’.

 Page 6-24

9. Click ‘Save’. The report is created successfully.

• Check the properties for caching and View a List for Output Format.
• Click on View Report to verify the report.
• Enter the parameter Value and press ‘Apply’.

Note; These are steps to create a new Report /Letter and then user can setup report/letter
accordingly from OFSLL. Please see section 7 and 8 for the Steps to setup report and letter
from UI (OFSLL).

 Page 7-1

7. Customizing Existing Base BIP Reports
To customize a report, follow the steps given below:

• Do not modify the OFSLL Base Report.
• Create a copy of the OFSLL Base Report, rename and modify that report. A new report

also can be created. Name the report as xyz_<report_name>.
• Register the new report and it’s parameters in OFSLL using reports setup.

Pre-Requisites
1. Please make sure that we should not change any base reports

2. The reports should be placed into the same folder structure

• i.e. For Reports  Shared Folders/oracle/fll/xmlp/reports
• For Letters  Shared Folders/oracle/fll/xmlp/letters
• For Correspondences  Shared Folders/oracle/fll/xmlp/correspondence

3. Consider a base report OUNUND_EM_111_11 (UNDERWRITING STATUS BY MONTH
AND PRODUCER LOAN)

4. Let us assume we will do some customizations on the base report and create a new report
called XYZOUNUND_EM_111_11 (Here XYZ is bank code)

5. Search for the base report and press More  Copy as shown in the image below.

6. After pressing copy go to the folder where you want to paste the new report and press the

Paste Resource button as shown in the image below

 Page 7-2

7. On pressing Paste Resource button, a new report will be created in the directory with name

as Copy of ounund_em_111_11

8. Select the particular report (Copy of ounund_em_111_11) and press More Rename as
shown in the image below

 Page 7-3

9. Enter the new name as xyzounund_em_111_11 and press Rename button as shown in the

image below

 Page 7-4

10. Do similar Copy, Paste and rename activity for the data model side also for the particular
report which will be with the same name as of the report in the same directory.

11. After the new report is ready i.e. xyzounund_em_111_11. We can now do our
customizations whatever is required on this new report.

12. So after Completing from bi publisher side we need to make an entry in the database for the
new report to be available in the front end application

13. Go to Setup System  Reports in the front end and add a new record with package name
as XYZOUNUND_EM_111_11 as shown in the image below

14. After Save and return please add the report parameters for the particular report as shown in
the image below.

 Page 7-5

15. Now open User Access Reports Tab and select the newly created report and add the

responsibility to it in Reports user access definition screen as shown in the image below

 Page 7-6

16. Now go to Servicing  Reports screen and you will be able to find the new report in the list

as shown in the image below

Note: There is no Impact on customization reports when a new base patch applied in the
system. All customized report will not be override, removed or modified.

 Page 8-1

8. Customizing Existing Base BIP Letters
Pre-Requisites
1. Please make sure that we should not change any base letters

2. The letters should be placed into the same folder structure

• For Letters  Shared Folders/oracle/fll/xmlp/letters
3. Consider a base report lcolt1_em_100_01 (Collection Letter)

4. Let us assume we will do some customizations on the base report and create a new report
called xyzlcolt1_em_100_01(Here XYZ is bank /customer code)

5. Search for the base letter and press More  Copy as shown in the image below

6. After pressing copy go to the folder where you want to paste the new report and press the

Paste Resource button as shown in the image below.

 Page 8-2

7. On pressing Paste Resource button, a new report will be created in the directory with name

as Copy of lcolt1_em_100_01

8. Select the particular report (Copy of lcolt1_em_100_01) and press More Rename as
shown in the image below

9. Enter the new name as xyzlcolt1_em_100_01 and press Rename button as shown in the

image below.

 Page 8-3

10. Do similar Copy, Paste and rename activity for the data model side also for the particular

report which will be with the same name as of the report in the same directory.

11. After the new report is ready i.e. xyzlcolt1_em_100_01. We can now do our customizations
whatever is required on this new report.

12. So after Completing from bi publisher side we need to make an entry in the database for the
new report to be available in the front end application

13. Go to Setup Products  Letters in the front end and add a new record with package name
as xyzlcolt1_em_100_01 as shown in the image below , Only one letter can be saved only
for following combination

• Letter Type
• Company
• Branch
• Product
• State
• Currency

 Page 8-4

14. Save and return.

Note: There is no Impact on customization letters when a new base patch applied in the
system. All customized letters will not be override, removed or modified.

 Page 9-1

9. Create Custom Correspondence
The Correspondence screen enables you to define who will receive the documents you created
on the Document Definition page by creating correspondence sets. Each document must belong
to a set, and a set can have more than one document.

You can set up the various documents and the data fields that the system compiles together when
creating a correspondence. The system provides two different document formats: Word or XFDF:
XML-based format.

Note

Oracle Financial Services Software assumes that the user is familiar with Word and the
Merge Document command. If the user is creating e-form documents with XFDF, then Or-
acle Financial Services Software assumes that person is familiar with Adobe forms.

To create a Correspondence

1. On the Oracle Financial Services Lending and Leasing home page, click Setup > Setup >
Administration > User > Correspondence > Loan/Line/Lease > Documents

2. In the Document definition block, add a record. For example: SAMPLE_LOAN_APP A brief
description is given below:

Field: Do this:

Code Specify the document code to define the name for the new docu- ment.

Description Specify the document description for the new document. This entry
appears in the Correspondence section on the Request page, when
you generate an ad hoc correspondence.

File Name Specify the document file name for the resulting file (Word or XFDF
document).

Level0 Type Select the level0 type from the drop-down list.

E-form Source Select the element e-form source from the drop-down list.

Product Select the document product from the drop-down list.

Source Select the document source type from the drop-down list.

Enabled Check this box to enable the document definition.
3. In the Document Elements section, add the elements required in the correspondence.

 Page 9-2

Brief description of the fields are given below:

Field: Do this:

Seq Specify the sequence number to order the document elements.

Type Select element type from the following from the drop-down list. This
list provides the following options:

System-defined – If you select, the value is supplied by the system
and cannot be changed in the Correspondence Request page.

Constant.

User Defined Element – If you select, you can choose the value
and change it in the Correspondence Request screen.

User Defined Constant – If you choose, you can choose the value,
but you cannot change it in the Correspondence Request screen.

Translated Element – If a document contains an e-form element
and you do not select this option, then the value will not be trans-
lated.

Element Name Select the element name from the drop-down list.

 Page 9-3

Field: Do this:

Description Specify element description.

Notes:

1. Check that the element name does not have blank spaces or
special characters, such as the forward slash “/” or backward slash
“\”.

2. If th element is system-defined, then the system will automati-
cally complete this field.

Data Type Select the element data type from the drop-down list.

Format Mask Select the element format mask from the drop-down list.

Default Value Specify the element default value.

Enabled Check this box to include the element in the document.

4. Click on Gen.Data File to generate PDF file of the report.

5. Copy and save the content in the pdf file as an xml file. The saved xml file should have the

same name as entered in the Code column of Document Definition section. For Example:
SAMPLE_LOAN_APP.xml.

 Page 9-4

6. Open MS Word.

Note

Oracle Financial Services Software assumes that BIP Desktop Tool is installed and the user
is familiar with the BIP Report Tool.

6. In BI Publisher Tab in MS Word, click on Sample XML and import the saved xml file. For

Example: SAMPLE_LOAN_APP.xml.
7. Create the template by inserting required elements tag.

8. The template created in MS Word should be saved with .rtf extension. For Example:
SAMPLE_LOAN_APP.rtf

Note: The .xml and .rtf file should be saved with the same name as entered in the ‘Code’ col-
umn of Document Definition section.

9. Upload the rtf template in the BIP and create the data model with SQL query as “select

CDO_XML_DOCUMENT from correspondence_docs where cdo_id = :docId”.

10. After the data model creation, launch the correspondence screen and click Correspondence
tab.

11. You can setup a correspondence with the created doc.

 Page 9-5

 Page 10-1

10. Generating Correspondence
You can generate a correspondence once the respective correspondence is created in the
database.

To generate a Correspondence

1. On the Oracle Financial Services Lending and Leasing home page, click Origination→
Origination→ Underwriting

2. Open the application for which the correspondence should be generated.

3. Click Correspondence tab. In the Correspondence section, click on Add.

4. Select the created Correspondence. Click Save and Add to save and add a new record.

5. Click to Save and Return save and return to main screen. Click Return to return to main
screen without modifications.

 Page 10-2

6. Click Generate to generate the selected correspondence and View Correspondence to view

the Correspondence in PDF format.

Note: There is no Impact on customization letters when a new base patch applied in the
system. All customized letters will not be override , removed or modified.

 Page 11-1

11. Setting up the output Format For BIP Reports
1. Go to catalog and select the desired report (XDO) , Press the edit.

2. On Edit it will open the following page, On right corner there is “View a List “ link , click on it.

3. It will open the Layout format, click on the “Output Formats” dropdown. Select the following

formats

 Page 11-2

HTML,PDF ,RTF,EXCEL (.xlsx),

4. And in the end of drop down select DATA(XML) and DATA(CSV).

5. Also please select the Default Format as “PDF”

 Page 11-3

6. Once Output Format is done, I would recommend to make the Caching “False” for online

reports as follows. On Right side Click on the Properties Button.

7. Select the TAB Caching, check if any of the caching is selected.

 Page 11-4

8. Unchecked all the caching if any of them are checked, By Default Document Caching is

always true, make it false.

9. Save the changes.

 Page 11-5

 Page 12-1

12. Naming Convention for Customized Objects
Object Naming

Convention
Comment

New Table <table_name>_xyz Same as Column Naming
Convention

New View <view_name>_xyz Same as Column Naming
Convention

New Column in OFSLL Base
Version Table

abc_<column_name>_xyz

New Column in OFSLL Base
Version View

abc_<column_name>_xyz

New Sequence abc_seqnum_xyz

New Unique Index abc_udx_xyz/ abc_udx2_xyz

New Non Unique Index abc_idx_xyz/ abc_idx2_xyz

New System Parameter (Seed
Data)

<system_parmeter>_xyz

New Lookup Type (Seed
Data)

<lookup_type>_xyz

New Lookup Code (Seed
Data)

<lookup_code>_xyz

New Other (Seed Data) <seed_code>_xyz

New Correspondence
Function

<function_name>_xyz

New Correspondence
Element

<element_name>_xyz

New Package Name (EM/EN) xyz<package_name>

New Package File
Name(EM/EN)

xyz<package_name>

New Package Name (EX) <package_name>

New Package File Name(EX) xyz<package_name>

New Report File Name xyz<report_name>

 Page 12-2

Object Naming
Convention

Comment

View File Name xyz<view file name>

• Where ‘xyz’ is Customer Unique Id
• Signature of Base OFSLL Package Functions, Package Procedures, Reports,

Correspondences and Faxes should not be changed.
• No New Functions or Procedures should be added to OFSLL Base Packages.
• List of Objects with exceptions must be published.

When checking-in custom code in version control software, follow theguidelines given below:

1. Instead of putting all the code in one directory, follow the Base Engine directory structure.

2. For New custom Engine Create a New Engine directory.

3. Follow the naming convention for the files. All package files should start with three-character
client name.

e.g.: ulnapp_el_100_01.pkb will become : xyzulnapp_el_100_01.pkb for XYZ Bank.

uln_evw.sql will become : xyzuln_evw.sql for XYZ Bank.

DDL scripts should end with the three-character client name.

e.g. crt_vw_applications.sql will become crt_vw_applications_xyz.sql for XYZ Bank.

 Page 13-1

13. RESTful Web Services Extensibility
Refer to the following section for details on extensibility for the below RESTful Web Services:

• Generic Post Transaction (POST)
• Account On Boarding (POST)
• Payment Posting (POST)
• Account Detail (GET)
• Scenario Analysis (POST)
• Lookups (GET)
• Application Search (GET)
• Calculator (POST)
• Application Entry (POST)
• Account Search (GET)
• Call Activity (POST)
• Remarketing (PUT)
• Invoice (POST)
• Application Comment (GET/POST)
• Account Comment (GET/POST)
• Application Checklist (GET)
• Outgoing File List (GET)
• Outgoing File (POST)
• Incoming File (GET)
• Products (GET)
• Assets (GET)
• Assets(PUT)
• Asset Valuations(GET/PUT/POST)
• Asset Sub Types (GET)
• Application Status Change (PUT)
• Application Update (PUT)
• Application ACH (POST)
• Application Document Upload/Download/List Service (POST/GET/GET)
• Account Document Upload/Download/List Service (POST/GET/GET)
• Application Get Service (GET)
• Scheduler Force Resubmit Service (PUT)
• Credit Limit Service (Customer/business) [GET]
• Business Comments Service (GET/POST)
• Customer Comments Service (GET/POST)
• Customer Preference Service (GET/POST/PUT)
• Scenario Analysis Service (PUT)

 Page 13-2

• Transaction Parameters Service (GET)
• Asset Tracking Attribute Service(PUT)
• Business Tracking Attribute Service(PUT)
• Customer Tracking Attribute Service(PUT)
• Account Tracking Attribute Service(PUT)
• Credit Bureau Web Service(PUT)
• Delete Account Web Service(DELETE)

13.1 Generic Post Transaction (POST)
Based on the type of element names in the below mentioned tables there is a sub element and
child element along with their data types. If any custom field is required which is of date type,
TransactionDateParameter should be used along with other fields and their values.

Same is applicable for other data types.

13.1.1 Producer related transaction

Element name Sub Element Child Element Data
Type

Values(Example)

TransactionDate
Parameter

 ParameterDetails

 ParameterName String NA

 ParameterValue Date(YY
YY-MM-
DDTHH:
MM:SS)

NA

TransactionString
Parameter

 ParameterDetails

 ParameterName String ACC_NBR

 ParameterValue String 123654

 ParameterDetails

 ParameterName String PTX_COMMENT

 ParameterValue String Test Comment

 ParameterDetails

 Page 13-3

Element name Sub Element Child Element Data
Type

Values(Example)

 ParameterName String PTX_REFERENCE

 ParameterValue String Test Reference

TransactionNumb
erParameter

 ParameterDetails

 ParameterName String PTX_AMT

 ParameterValue Number 150

13.1.2 Other Transactions

Element name Sub Element Child Element Data
Type

Values

TransactionDate
Parameter

 ParameterDetails

 ParameterName String

 ParameterValue Date(YY
YY-MM-
DDTHH:
MM:SS)

TransactionString
Parameter

 ParameterDetails

 ParameterName String

 ParameterValue String

TransactionNumb
erParameter

 ParameterDetails

 ParameterName String

 ParameterValue Number

 Page 13-4

Sample format

<?xml version="1.0" encoding="UTF-8"?>

<PostTransactionRequest>

 <UserCode></UserCode>

 <TransactionDetails>

 <TransactionType></TransactionType>

 <EntityReferenceNumber></EntityReferenceNumber>

 <TransactionCode></TransactionCode>

 <TransactionDateParameter>

 <ParameterDetails>

<ParameterName>DateParamName</ParameterName>

 <ParameterValue> DateParamValue</ParameterValue>

 </ParameterDetails>

 </TransactionDateParameter>

 <TransactionStringParameter>

 <ParameterDetails><ParameterName> StringParamName</ParameterName>

 <ParameterValue> StringParamValue</ParameterValue>

</ParameterDetails>

 </TransactionStringParameter>

 <TransactionNumberParameter>

 <ParameterDetails><ParameterName> NumberParamName</ParameterName>

 <ParameterValue> NumberParamValue</ParameterValue>

</ParameterDetails>

 </TransactionNumberParameter>

 <Result>

 <ResultId></ResultId>

 <Status></Status>

 <StatusDetails></StatusDetails>

 Page 13-5

 </Result>

 </TransactionDetails>

</PostTransactionRequest>

Below are the package details for generic post transaction

xcsupd_ew_100_01.xcsupd_ew_100_01 (iv_txn_tab_t IN xws_att_str_tab_t

 , iv_txn_result_rec_t OUT NOCOPY xcs_txn_result_rec_t);

 xcsupd_em_100_01.post_txn (iv_txn_tab_t IN xws_att_str_tab_t

 , iv_txn_result_rec_t OUT NOCOPY xcs_txn_result_rec_t);

 xcsupd_en_100_01.post_batch_txn (iv_txn_tab_t IN xws_att_str_tab_t

 , iv_txn_result_rec_t OUT NOCOPY xcs_txn_result_rec_t);

You can do the customization on xcsupd_en_100_01. post_batch_txn();

Below are the exit points:-

BEFORE:

xcsupd_ex_100_01.cv_post_batch_txn_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01.post_batch_txn_bfr (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

REPLACE:

xcsupd_ex_100_01.cv_post_batch_txn_rep = cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01.post_batch_txn_rep (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

AFTER:

xcsupd_ex_100_01.cv_post_batch_txn_afr = cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01.post_batch_txn_afr (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

You can do the customization on xcsupd_en_100_01. post_txns();

Below are the exit points:-

BEFORE:

xcsupd_ex_100_01.cv_post_txns_bfr= cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01.post_txns_bfr (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

REPLACE:

 Page 13-6

xcsupd_ex_100_01. cv_post_txns_rep = cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01. post_txns_rep (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

AFTER:

xcsupd_ex_100_01.cv_post_txns_afr= cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01. post_txns_afr (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

You can do the customization on xcsupd_em_100_01. post_txn();

Below are the exit points:-

BEFORE:

xcsupd_ex_100_01. cv_post_txn_bfr= cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01. post_txn_bfr (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

REPLACE:

xcsupd_ex_100_01. cv_post_txn_rep = cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01. post_txn_rep (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

AFTER:

xcsupd_ex_100_01. cv_post_txn_afr= cmncon_cl_000_01.CUSTOMIZED THEN

xcsupd_ex_100_01. post_txn_afr (iv_txn_tab_t, iv_txn_inp_rec_t, iv_txn_result_rec_t);

IN parameter is Tab Type object:

TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000))

OUT parameter is Rec Type object:

xcs_txn_result_rec_t AS OBJECT (

 XTR_BMT_ID NUMBER

 , XTR_TXN_RES XTR_TXN_RES_TAB_T

 , XTR_BMT_STATUS VARCHAR2(30)

 Page 13-7

 , XTR_TXN_ERROR VARCHAR2(2000))

 xtr_txn_res_rec_t AS OBJECT (

 XTR_TXN_RESULT VARCHAR2(4000))

IN OUT parameter is Rec Type object:

XWS_GEN_TXN_REC_T AS OBJECT (

 ACC_NBR VARCHAR2(50),
TCD_CODES XWS_TXN_CODES_REC_T,
TXN_AMT VARCHAR2(30),
BMT_SLOT_NO NUMBER,
CREATED_BY VARCHAR2(30),
BMT_BATCH_TXN_IND VARCHAR2(30),
USER_CODE VARCHAR2(30),
STANDARD_TXN_IND VARCHAR2(30),
EMAIL_CONFIRMATION_IND VARCHAR2(30),
EMAIL_TEMPLATE_NAME VARCHAR2(100),
TXN_DATE DATE,
COMMENTS VARCHAR2(2000),
BMT_ID NUMBER,
BMT_AAD_ID NUMBER,
ACC_PRODUCT_TYPE_CD VARCHAR2(30),
ACC_FUNDING_TYPE_CD VARCHAR2(30),
ACC_MASTER_ACC_IND VARCHAR2(30),
BMT_STATUS_CD VARCHAR2(30),
BMT_STATUS VARCHAR2(80),
POST_TRD VARCHAR2(30))

13.2 Account On Boarding (POST)
Below mentioned table has element name which indicates which type of custom data is passed in
that enclosing the name and its value in key name and key value respectively.

Element name Sub Element Data Type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Double)

DateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

 Page 13-8

Sample XML
<Custom>

 <StringData>

 <KeyName>Middle Name</KeyName>

 <KeyValue>Singh</KeyValue>

 </StringData>

 <NumberData>

 <KeyName>Age</KeyName>

 <KeyValue>25</KeyValue>

 </NumberData>

 <DateData>

 <KeyName>FiestPmtDate</KeyName>

 <KeyValue>2016-07-14T11:53:40</KeyValue>

 </DateData>

</Custom>

Below are the package details for Account on Boarding

 acxprc_ew_100_01.acxprc_ew_100_01 (iv_app_rec IN OUT NOCOPY acx_acc_rec_t

 , ov_res_rec IN OUT NOCOPY acx_res_rec_t);

 acxprc_em_100_01.process_account (iv_app_rec IN OUT NOCOPY acx_acc_rec_t

 , ov_res_rec IN OUT NOCOPY acx_res_rec_t);

 Lookup Validations- involves the following packages related to

 Application details 

 acxapp_en_100_01.chk_app(iv_app_rec.app_rec,ov_res_rec);

 Applicant details 

 acxapl_en_100_01.chk_apl(iv_app_rec.app_apl(j),ov_res_rec);

 Application Address details 

 acxapl_en_100_01.chk_apa(iv_app_rec.app_apl(j).apl_apa(k), ov_res_rec);

 Applicant Employment details 

 acxapl_en_100_01.chk_ape(iv_app_rec.app_apl(j).apl_ape(k), ov_res_rec);

 Applicant Telecoms details 

 acxapl_en_100_01.chk_apt(iv_app_rec.app_apl(j).apl_apt(k), ov_res_rec);

 Applicant Field investigation 

 Page 13-9

 acxafi_en_100_01.chk_afi(iv_app_rec.app_apl(j).apl_afi(k),ov_res_rec);

 Business Applicant details 

 acxbsd_en_100_01.chk_bsd(iv_app_rec.app_bsd,ov_res_rec);

 Business Applicant Affiliates 

 acxbsd_en_100_01.chk_bsl(iv_app_rec.app_bsd.bsd_bsl(i), ov_res_rec);

 Business Applicant Partners 

 acxbsd_en_100_01.chk_bsp(iv_app_rec.app_bsd.bsd_bsp(i), ov_res_rec);

 Business Applicant Address 

 acxbsd_en_100_01.chk_bsa(iv_app_rec.app_bsd.bsd_bsa(i), ov_res_rec);

 Business Applicant Telecoms 

 acxbsd_en_100_01.chk_bst(iv_app_rec.app_bsd.bsd_bst(i), ov_res_rec);

 Assets 

 acxase_en_100_01.chk_ase(iv_app_rec.app_ase(i),ov_res_rec,lv_axn_rec);

 Asset Valuation 

 acxase_en_100_01.chk_avl(iv_app_rec.app_ase(i).ase_avl(j),ov_res_rec);

 Asset Attributes 

 acxase_en_100_01.chk_atr(iv_app_rec.app_ase(i).ase_avl(j).atr(k),ov_res_rec);

 Asset Tracking 

 acxase_en_100_01.chk_atk(iv_app_rec.app_ase(i).ase_atk(j),ov_res_rec);

 Seller details 

 acxsdi_en_100_01.chk_sdi(iv_app_rec.app_sdi(i),ov_res_rec);

 Seller details Address 

 acxsdi_en_100_01.chk_sda(iv_app_rec.app_sdi(i).sda(j),ov_res_rec);

 Contract details 

 acxsdi_en_100_01.chk_sda(iv_app_rec.app_sdi(i).sda(j),ov_res_rec);

 Repayment Change Schedule 

 acxcon_en_100_01.chk_acs(iv_app_rec.app_con.con_rpmt.app_acs(i),

 ov_res_rec);

 Page 13-10

 Trade In 

 acxcon_en_100_01.chk_apd(iv_app_rec.app_con.con_apd(i), ov_res_rec);

 Subvention 

 acxcon_en_100_01.chk_asn(iv_app_rec.app_con.con_asn(i), ov_res_rec);

 ACH 

 acxcon_en_100_01.chk_aac(iv_app_rec.app_con.con_aac(i), ov_res_rec);

 PDC 

 acxcon_en_100_01.chk_pdc(iv_app_rec.app_con.con_pdc(i), ov_res_rec);

 References 

 acxcon_en_100_01.chk_aar(iv_app_rec.app_con.con_aar(i), ov_res_rec);

 Insurances 

 acxcon_en_100_01.chk_ins(iv_app_rec.app_con.con_ins(i), ov_res_rec);

 Repayment Options 

 acxcon_en_100_01.chk_aro(iv_app_rec.app_con.con_rpmt.app_aro,

 ov_res_rec);

 Recourse 

 acxcon_en_100_01.chk_recourse(iv_app_rec.app_con.con_rec,ov_res_rec);

 Deriving the product data 

 acxsel_el_100_01.select_product(iv_app_rec.app_rec.app_prd_product

 ,lv_prd_rec);

 Deriving the contract data 

 acxsel_en_111_01.sel_con_dtls (iv_app_rec.app_con, lv_prd_rec);

 acxsel_en_112_01.sel_con_dtls (iv_app_rec.app_con, lv_prd_rec);

 acxsel_en_121_01.sel_con_dtls (iv_app_rec.app_con, lv_prd_rec);

 Insertion in to the iTables 

 acxins_en_100_01.ins(iv_app_rec, ov_res_rec, lv_axn_rec,

 iv_app_rec.str_attr , iv_app_rec.num_attr,

 iv_app_rec.date_attr);

 Page 13-11

 Edits Validation 

 aceval_ew_100_01.aceval_ew_100_01(lv_app_rec ,lv_edi_rec);

 Account Creation 

 acraai_ew_100_01.acraai_ew_100_01(lv_con_rec);

 Any error occurs in the process 

 acxprc_el_100_01.insert_error(ov_res_rec , lv_axn_rec);

You can do the customization on the following packages

acxprc_em_100_01

BEFORE:

acxprc_em_100_01. CV_PROCESS_ACCOUNT_BFR = cmncon_cl_000_01.CUSTOMIZED
THEN

 acxprc_ex_100_01.process_account_bfr(iv_app_rec ,ov_res_rec);

REPLACE:

acxprc_ex_100_01.CV_PROCESS_ACCOUNT_REP = cmncon_cl_000_01.CUSTOMIZED
THEN

 acxprc_ex_100_01.process_account_bfr(iv_app_rec ,ov_res_rec);

AFTER:

acxprc_ex_100_01.CV_PROCESS_ACCOUNT_AFR = cmncon_cl_000_01.CUSTOMIZED
THEN

 acxprc_ex_100_01.process_account_afr(iv_app_rec,ov_res_rec);

acxins_en_100_01

For this package, all the procedures are having the before, replace and after exit points:-

The procedures are:-

Main procedure that calls other procedures to insert the payload data:-

 ins(iv_app_rec IN OUT NOCOPY acx_acc_rec_t ,ov_res_rec IN OUT NOCOPY acx_res_rec_t
,iv_axn_rec IN acx_axn_evw%ROWTYPE ,iv_ext_rec_str IN OUT NOCOPY xws_att_str_tab_t
,iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t ,iv_ext_rec_dt IN OUT NOCOPY
xws_att_date_tab_t);

Procedure to insert the application details:-

insert_app(iv_app_rec IN OUT NOCOPY acx_app_rec_t,iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

 Page 13-12

Procedure to insert the applicant details:-

insert_apl(iv_apl_rec IN OUT NOCOPY acx_apl_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the applicant telecoms details:-

insert_apt(iv_apt_rec IN OUT NOCOPY acx_apt_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the applicant address details:-

insert_apa(iv_apa_rec IN OUT NOCOPY acx_apa_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the applicant employment details:-

insert_ape(iv_ape_rec IN OUT NOCOPY acx_ape_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the applicant tracking details:-

insert_alt(iv_alt_rec IN OUT NOCOPY acx_alt_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the business details details:-

insert_bsd(iv_bsd_rec IN OUT NOCOPY acx_bsd_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the business affiliates details:-

insert_bsl(iv_bsl_rec IN OUT NOCOPY acx_bsl_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the business partners details:-

insert_bsp(iv_bsp_rec IN OUT NOCOPY acx_bsp_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the business address details:-

insert_bsa(iv_bsa_rec IN OUT NOCOPY acx_bsa_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the business telecoms details:-

 Page 13-13

insert_bst(iv_bst_rec IN OUT NOCOPY acx_bst_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application assets details:-

insert_ase(iv_ase_rec IN OUT NOCOPY acx_ase_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application asset valuations details:-

insert_avl(iv_avl_rec IN OUT NOCOPY acx_avl_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application asset attributes details:-

insert_atr(iv_atr_rec IN OUT NOCOPY acx_atr_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application asset tracking details:-

insert_atk(iv_atk_rec IN OUT NOCOPY acx_atk_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application asset tracking attribute details:-

insert_ata(iv_ata_rec IN OUT NOCOPY acx_ata_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application seller details:-

insert_sdi(iv_sdi_rec IN OUT NOCOPY acx_sdi_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, _ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application seller address details:-

insert_sda(iv_sda_rec IN OUT NOCOPY acx_sda_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application repayment schedule details:-

insert_apc(iv_apc_rec IN OUT NOCOPY acx_apc_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application payment change schedule details:-

 Page 13-14

insert_acs(iv_acs_rec IN OUT NOCOPY acx_acs_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, _ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application contract details:-

insert_acd(iv_acd_rec IN OUT NOCOPY acx_acd_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, _ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application contract insurance details:-

insert_acd_ins(iv_app_rec IN OUT NOCOPY acx_acc_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application insurance details:-

insert_ins(iv_ins_rec IN OUT NOCOPY acx_ins_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application tradein details:-

insert_apd(iv_apd_rec IN OUT NOCOPY acx_apd_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application subvention details:-

insert_asn(iv_asn_rec IN OUT NOCOPY acx_asn_rec_t, ov_res_rec IN OUT NOCOPY
acx_res_rec_t, iv_ext_rec_str IN OUT NOCOPY xws_att_str_tab_t, iv_ext_rec_num IN OUT
NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT NOCOPY xws_att_date_tab_t);

Procedure to insert the application subvention_details details:-

insert_asl(iv_asl_rec IN OUT NOCOPY acx_asl_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application ach details:-

insert_aac(iv_aac_rec IN OUT NOCOPY acx_aac_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application post dated check details:-

insert_pdc(iv_pdc_rec IN OUT NOCOPY acx_pdc_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application references details:-

 Page 13-15

insert_aar(iv_aar_rec IN OUT NOCOPY acx_aar_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application contract fees details:-

insert_afe(iv_afe_rec IN OUT NOCOPY acx_afe_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the application comment details:-

insert_acm(iv_acm_rec IN OUT NOCOPY acx_acm_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to update the application details:-

update_con(iv_con_rec IN OUT NOCOPY acx_con_rec_t, iv_aro_rec IN OUT NOCOPY
acx_aro_rec_t, iv_ext_rec_str IN OUT NOCOPY xws_att_str_tab_t, iv_ext_rec_num IN OUT
NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT NOCOPY xws_att_date_tab_t);

Procedure to insert the application tracking attribute details:-

insert_aat(iv_aat_rec IN OUT NOCOPY acx_aat_rec_t, iv_ext_rec_str IN OUT NOCOPY
xws_att_str_tab_t, iv_ext_rec_num IN OUT NOCOPY xws_att_num_tab_t, iv_ext_rec_dt IN OUT
NOCOPY xws_att_date_tab_t);

Procedure to insert the applicant field investigation details:-

insert_afd(iv_afd_rec IN OUT NOCOPY acx_afd_rec_t);

Procedure to insert the applicant field investigation_details details:-

insert_afd(iv_afd_rec IN OUT NOCOPY acx_afd_rec_t);

acxsel_en_111_01 (LOAN)

BEFORE

acxsel_ex_111_01.CV_SEL_CON_DTLS_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

 acxsel_ex_111_01.sel_con_dtls_bfr (iv_con_rec,iv_prd_rec);

REPLACE

acxsel_ex_111_01.CV_SEL_CON_DTLS_REP = cmncon_cl_000_01.CUSTOMIZED THEN

 acxsel_ex_111_01.sel_con_dtls_rep (iv_con_rec,iv_prd_rec);

AFTER

acxsel_ex_111_01.CV_SEL_CON_DTLS_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

 acxsel_ex_111_01.sel_con_dtls_afr (iv_con_rec,iv_prd_rec);

 Page 13-16

Similarly the exit points have been added for the line and lease products also for selecting
contract details in acxsel_en_112_01 and acxsel_en_121_01

Acraai_en_111_01 (LOAN)

BEFORE

acraai_ex_111_01.CV_CREATE_ACCOUNT_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.create_account_bfr (iv_con_rec);

REPLACE

acraai_ex_111_01.CV_CREATE_ACCOUNT_REP = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.create_account_rep (iv_con_rec);

AFTER

acraai_ex_111_01.CV_CREATE_ACCOUNT_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.create_account_afr (iv_con_rec);

BEFORE

acraai_ex_111_01.CV_SET_ACC_NBR_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.set_acc_nbr_bfr (iv_con_rec,iv_acc_aad_id,iv_acc_nbr);

REPLACE

acraai_ex_111_01.CV_SET_ACC_NBR_REP = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.set_acc_nbr_rep (iv_con_rec,iv_acc_aad_id,iv_acc_nbr);

AFTER

acraai_ex_111_01.CV_SET_ACC_NBR_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.set_acc_nbr_afr (iv_con_rec,iv_acc_aad_id,iv_acc_nbr);

acraai_en_111_02

BEFORE

acraai_ex_111_01.CV_LOAD_CURRENT_ACC_BFR = cmncon_cl_000_01.CUSTOMIZED
THEN

 acraai_ex_111_01.load_current_acc_bfr (iv_con_rec,iv_acc_aad_id);

REPLACE

acraai_ex_111_01.CV_LOAD_CURRENT_ACC_REP = cmncon_cl_000_01.CUSTOMIZED
THEN

 Page 13-17

 acraai_ex_111_01.load_current_acc_rep (iv_con_rec,iv_acc_aad_id);

AFTER

acraai_ex_111_01.CV_LOAD_CURRENT_ACC_AFR = cmncon_cl_000_01.CUSTOMIZED
THEN

 acraai_ex_111_01.load_current_acc_afr (iv_con_rec,iv_acc_aad_id);

BEFORE

acraai_ex_111_01.cv_convert_new_acc_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.convert_new_acc_bfr (iv_con_rec,iv_acc_aad_id);

REPLACE

acraai_ex_111_01.cv_convert_new_acc_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.convert_new_acc_rep (iv_con_rec,iv_acc_aad_id);

AFTER

acraai_ex_111_01.cv_convert_new_acc_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 acraai_ex_111_01.convert_new_acc_afr (iv_con_rec,iv_acc_aad_id);

Similarly the exit points have been added for the line and lease products also for inserting the
account details in acraai_en_112_01,acraai_en_112_02 and
acxsel_en_121_01,acraai_en_121_02.

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT

(

 ext_key_name VARCHAR2(30),

 ext_key_value DATE

);

/

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT

(

 ext_key_name VARCHAR2(30),

 ext_key_value NUMBER

);

/

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT

 Page 13-18

(

 ext_key_name VARCHAR2(30),

 ext_key_value VARCHAR2(4000)

);

/

13.3 Payment Posting (POST)
Below mentioned table has element name which indicates which type of custom data is passed in
that enclosing the name and its value in keyname and keyvalue respectively.

Element name Sub Element Data Type

CustomUserDefinedStringData KeyName String

KeyValue String

CustomUserDefinedNumberData KeyName String

KeyValue Number (Double)

CustomUserDefinedDateData KeyName String

KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>
 <CustomUserDefinedStringData>
 <KeyName>Middle Name</KeyName>
 <KeyValue>Singh</KeyValue>
 </CustomUserDefinedStringData>
 <CustomUserDefinedNumberData>
 <KeyName>Age</KeyName>
 <KeyValue>25</KeyValue>
 </CustomUserDefinedNumberData>
 <CustomUserDefinedDateData>
 <KeyName>FirstPmtDate</KeyName>
 <KeyValue>2016-07-14T11:53:40</KeyValue>
 </CustomUserDefinedDateData>
</Custom>

Below are the package details for Payment posting

xbtpmt_ew_100_01. xbtpmt_ew_100_01 (iv_pmt_axn_rec IN xbt_pmt_axn_rec_t

, iv_pmt_axn_result_tab_t OUT NOCOPY xbt_pmt_result_tab_t)

 Page 13-19

xbtpmt_em_100_01.post_pmt (iv_pmt_axn_rec IN xbt_pmt_axn_rec_t

, iv_pmt_axn_result_tab_t OUT NOCOPY xbt_pmt_result_tab_t)

You can do the customization on xbtpmt_em_100_01.post_pmt ();

Below are the exit points:-

BEFORE:

xbtpmt_ex_100_01.cv_post_pmt_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

xbtpmt_ex_100_01.post_pmt_bfr (iv_pmt_axn_rec IN xbt_pmt_axn_rec_t

, iv_pmt_axn_result_tab_t OUT NOCOPY xbt_pmt_result_tab_t)

REPLACE

xbtpmt_ex_100_01.cv_post_pmt_rep = cmncon_cl_000_01.CUSTOMIZED THEN

xbtpmt_ex_100_01.post_pmt_rep (iv_pmt_axn_rec IN xbt_pmt_axn_rec_t

, iv_pmt_axn_result_tab_t OUT NOCOPY xbt_pmt_result_tab_t)

AFTER :-

xbtpmt_ex_100_01.cv_post_pmt_afr = cmncon_cl_000_01.CUSTOMIZED THEN

xbtpmt_ex_100_01.post_pmt_afr (iv_pmt_axn_rec IN xbt_pmt_axn_rec_t

, iv_pmt_axn_result_tab_t OUT NOCOPY xbt_pmt_result_tab_t)

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE DATE);

/

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE NUMBER);

);

/

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT

(

 Page 13-20

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE VARCHAR2 (4000));

);

/

13.4 Account Detail (GET)
Below mentioned table has element name which indicates which type of custom data is passed in
that enclosing the name and its value in name and value respectively.

Element name Sub Element Data Type

CustomerAttributes Name String

 Value String

CustomElements Name String

 CustomData

CustomData UniqueId Number (Double)

 CustomAttributes

CustomAttributes Name String

 Value String

AccountAttributes Name String

 Value String

AddressAttributes Name String

 Value String

BusinessAttributes Name String

 Value String

TelecomAttributes Name String

 Value String

AffiliateAttributes Name String

 Value String

PartnersAttributes Name String

 Value String

 Page 13-21

Element name Sub Element Data Type

BusinessAddressAttributes Name String

 Value String

TransactionAttributes Name String

 Value String

AllocationsAttributes Name String

 Value String

CollateralAttributes Name String

 Value String

DetailsAttributes Name String

 Value String

StatementAttributes Name String

 Value String

StatementMessagesAttributes Name String

 Value String

AchAttributes Name String

 Value String

CreditCardAttributes Name String

 Value String

 Page 13-22

Sample XML
<CustomerDetails>

 <CustomerID>1001</CustomerID>

 <FirstName>METRO</FirstName>

 <LastName>FILE</LastName>

 <CustomerAttributes>

 <name>Last Name</name>

 <value>kulkarni</value>

 </CustomerAttributes>

</CustomerDetails>

Below are the package details for Account Details

xcsprc_ew_100_01(iv_usr_code IN VARCHAR2,

 iv_acc_nbr IN accounts.acc_nbr%TYPE,

 iv_action IN VARCHAR2,

 iv_acc IN OUT NOCOPY xcs_acc_rec_t

)

xcsprc_em_100_01.get_account_information (iv_usr_code IN VARCHAR2,

 iv_acc_nbr IN accounts.acc_nbr%TYPE,

 iv_action IN VARCHAR2,

 iv_acc IN OUT NOCOPY xcs_acc_rec_t

)

xcsacc_en_100_01.get_account_details(iv_acc_nbr IN accounts.acc_nbr%TYPE,

 iv_action IN VARCHAR2,

 iv_acc IN OUT NOCOPY xcs_acc_rec_t

)

xcsacc_el_100_01.populate_account_response(iv_acc IN OUT NOCOPY xcs_acc_rec_t)

You can do the customization on xcsacc_en_100_01.get_account_details();

BEFORE:-

IF xcsprc_ex_100_01.cv_get_account_details_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsprc_ex_100_01.get_account_details_bfr(iv_acc_nbr, iv_action, iv_acc);

 Page 13-23

END IF;

REPLACE

IF xcsprc_ex_100_01.cv_get_account_details_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsprc_ex_100_01.get_account_details_rep(iv_acc_nbr, iv_action, iv_acc);

ELSE

AFTER

IF xcsprc_ex_100_01.cv_get_account_details_afr = cmncon_cl_000_01.CUSTOMIZED

THEN

 xcsprc_ex_100_01.get_account_details_afr (iv_acc_nbr, iv_action, iv_acc);

END IF;

You can do the customization on xcsprc_em_100_01.get_account_information ();

BEFORE

IF xcsprc_ex_100_01.cv_get_account_information_bfr = cmncon_cl_000_01.CUSTOMIZED
THEN

 xcsprc_ex_100_01.get_account_information_bfr (iv_acc_nbr, iv_action, iv_acc);

END IF;

REPLACE

IF xcsprc_ex_100_01.cv_get_account_information_rep = cmncon_cl_000_01.CUSTOMIZED
THEN

 xcsprc_ex_100_01.get_account_information_rep (iv_acc_nbr, iv_action, iv_acc);

ELSE

AFTER

IF xcsprc_ex_100_01.cv_get_account_information_afr = cmncon_cl_000_01.CUSTOMIZED
THEN

 xcsprc_ex_100_01.get_account_information_afr (iv_acc_nbr, iv_action, iv_acc);

END IF;

Extensible parameters are tab type object

xws_custom_rec_t AS OBJECT(

 TAB_NAME VARCHAR2(80),

 Page 13-24

 TAB_DATA xws_custom_tab2_t);

xws_custom_rec2_t AS OBJECT(

 CUSTOM_ID NUMBER,

 CUSTOM_DATA xws_att_str_tab_t);

xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30)

 , ATT_VALUE VARCHAR2(4000));

13.5 Scenario Analysis (POST)
Below mentioned table has element name which indicates which type of custom data is passed
by enclosing the name and its value in keyname and keyvalue respectively.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyName String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Double)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

 Page 13-25

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>Middle Name</KeyName>

 <KeyValue>Oracle</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>Age</KeyName>

 <KeyValue>27</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>FirstPmtDate</KeyName>

 <KeyValue>2016-07-14</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "Middle Name",

 "KeyValue": "Oracle"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "Age",

 "KeyValue": "27"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "FirstPmtDate",

 "KeyValue": "2016-07-14"

 }

 }

}

Below are the package details for scenario analysis web service

Engine wrapper package:

xsaprc_ew_100_01. xsaprc_ew_100_01(iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_calculator_type IN VARCHAR2,

 Page 13-26

iv_action IN VARCHAR2,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

Wrapper package is used for two services (POST & GET), both services differentiated by
iv_action.

Engine main packages:

POST:

xsaprc_em_100_01.create_asa(iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_calculator_type IN VARCHAR2,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

Below are the exit points for post service

BEFORE:

xsaprc_ex_100_01.post_prc_bfr (iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_calculator_type IN VARCHAR2,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

REPLACE:

xsaprc_ex_100_01.post_prc_rep (iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_calculator_type IN VARCHAR2,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

AFTER:

xsaprc_ex_100_01.post_prc_afr (iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_calculator_type IN VARCHAR2,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

GET:

 Page 13-27

xsaprc_em_100_01.get_asa(iv_xsa_asa_rec IN OUT xae_cal_rec_t,

 iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

Below are the exit points for get service

BEFORE:

xsaprc_ex_100_01.get_prc_bfr (iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

REPLACE :

xsaprc_ex_100_01.get_prc_rep (iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

AFTER:

xsaprc_ex_100_01.get_prc_afr (iv_xsa_asa_rec IN OUT xae_cal_rec_t,

iv_result OUT VARCHAR2,

iv_err_desc OUT VARCHAR2)

IN parameters:

xae_cal_rec_t --- Rec Type Object

iv_calculator_type --- VARCHAR2

 iv_action --- VARCHAR2

OUT parameters:

xae_cal_rec_t --- Rec Type Object

iv_result --- VARCHAR2,

iv_err_desc --- VARCHAR2

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT
(

 ATT_NAME VARCHAR2 (30)

 Page 13-28

 , ATT_VALUE DATE);
/
CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT
(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE NUMBER);
);
/
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT
(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE VARCHAR2 (4000));
);
/

13.6 Lookups (GET)
Below mentioned table has element name which indicates which type of custom data is passed
by enclosing the name and its value in keyname and keyvalue respectively.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Double)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>StringName</KeyName>

 <KeyValue>StringValue</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>NumberName</KeyName>

 <KeyValue>NumberValue</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>DateName</KeyName>

 <KeyValue>DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

 Page 13-29

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for Lookup web service
xlkprc_ew_100_01.xlkprc_ew_100_01 (iv_req_rec_t IN xlk_req_rec_t

 ,iv_res_rec_t IN OUT NOCOPY xlk_resp_rec_t)

xlkprc_em_100_01.xlkprc_em_100_01 (iv_req_rec_t IN xlk_req_rec_t,

 iv_res_rec_t IN OUT xlk_resp_rec_t)

xlkprc_em_100_01.get_lookup (iv_lkt_type IN VARCHAR2,

 iv_res_rec_t IN OUT XLK_TYPE_REC_T)

You can do the customization on xlkprc_em_100_01.xlkprc_em_100_01();

BEFORE:-

IF xlkprc_ex_100_01.cv_xlkprc_em_100_01_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xlkprc_ex_100_01.xlkprc_em_100_01_bfr (iv_req_rec_t, iv_res_rec_t);

END IF;

REPLACE:-

IF xlkprc_ex_100_01.cv_xlkprc_em_100_01_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xlkprc_ex_100_01.xlkprc_em_100_01_rep (iv_req_rec_t, iv_res_rec_t);

ELSE

AFTER:-

 Page 13-30

IF xlkprc_ex_100_01.cv_xlkprc_em_100_01_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xlkprc_ex_100_01.xlkprc_em_100_01_afr (iv_req_rec_t, iv_res_rec_t);

END IF;

You can also do the customization on xlkprc_em_100_01.get_lookup();

BEFORE:-

IF xlkprc_ex_100_01.cv_get_lookup_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xlkprc_ex_100_01.get_lookup_bfr (iv_lkt_type, iv_res_rec_t);

END IF;

REPLACE:-

IF xlkprc_ex_100_01.cv_get_lookup_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xlkprc_ex_100_01.get_lookup_rep (iv_lkt_type, iv_res_rec_t);

ELSE

AFTER:-

IF xlkprc_ex_100_01.cv_get_lookup_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xlkprc_ex_100_01.get_lookup_afr (iv_lkt_type, iv_res_rec_t);

END IF;

Extensible parameters are rec type object
xws_att_str_rec_t AS OBJECT (
 ATT_NAME VARCHAR2(30)
 , ATT_VALUE VARCHAR2(4000));
xws_att_num_rec_t AS OBJECT (
 ATT_NAME VARCHAR2(30)
 , ATT_VALUE NUMBER);
xws_att_date_rec_t AS OBJECT (
 ATT_NAME VARCHAR2(30)
 , ATT_VALUE DATE);

13.7 Application Search (GET)
Below mentioned table has element name which indicates In response which type of custom data
is passed by enclosing the name and its value in KeyName and KeyValue respectively.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 Page 13-31

 KeyValue Number (Double)

CustomUserDefinedDateData KeyName String

 KeyValue Date (YYYY-MM-DDTHH:MM:SS)

Sample Response XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>Middle Name</KeyName>

 <KeyValue>Oracle</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>Age</KeyName>

 <KeyValue>27</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>FirstPmtDate</KeyName>

 <KeyValue>2016-07-14</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample Response JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "Middle Name",

 "KeyValue": "Oracle"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "Age",

 "KeyValue": "27"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "FirstPmtDate",

 "KeyValue": "2016-07-14"

 }

 }

}

Below are the package details for ApplicationSearch web service
xaeque_ew_100_01 (iv_que_rec IN xae_que_rec_t,

 Page 13-32

 iv_response_tab OUT NOCOPY xae_que_resp_tab_t)

xaeque_em_100_01.get_application_summary (iv_que_rec IN xae_que_rec_t,

 iv_response_tab OUT NOCOPY xae_que_resp_tab_t)

xaeque_en_100_01.get_apl_search_summary(iv_que_rec IN xae_que_rec_t,

 iv_response_tab OUT NOCOPY xae_que_resp_tab_t)

You can do the customization on xaeque_en_100_01.get_apl_search_summary();

BEFORE:-
IF xaeque_ex_100_01.cv_get_apl_search_summary_bfr = cmncon_cl_000_01.CUSTOMIZED
THEN

 xaeque_ex_100_01.get_apl_search_summary_bfr (iv_que_rec, iv_response_tab);

END IF;

REPLACE:-
IF xaeque_ex_100_01.cv_get_apl_search_summary_rep = cmncon_cl_000_01.CUSTOMIZED
THEN

 xaeque_ex_100_01.get_apl_search_summary_rep (iv_que_rec, iv_response_tab);

ELSE

AFTER:-
IF xaeque_ex_100_01.cv_get_apl_search_summary_afr = cmncon_cl_000_01.CUSTOMIZED
THEN

 xaeque_ex_100_01.get_apl_search_summary_afr (iv_que_rec, iv_response_tab);

END IF;

You can also do the customization on xaeque_em_100_01.get_application_summary();

BEFORE:-

IF xaeque_ex_100_01.cv_get_application_summary_bfr = cmncon_cl_000_01.CUSTOMIZED
THEN

 xaeque_ex_100_01.get_application_summary_bfr (iv_que_rec, iv_response_tab);

END IF;

REPLACE:-

IF xaeque_ex_100_01.cv_get_application_summary_rep = cmncon_cl_000_01.CUSTOMIZED
THEN

 xaeque_ex_100_01.get_application_summary_rep (iv_que_rec, iv_response_tab);

ELSE

AFTER:-

 Page 13-33

IF xaeque_ex_100_01.cv_get_application_summary_afr = cmncon_cl_000_01.CUSTOMIZED
THEN

 xaeque_ex_100_01.get_application_summary_afr (iv_que_rec, iv_response_tab);

END IF;

Extensible parameters are rec type objects
 xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30)

 , ATT_VALUE VARCHAR2(4000));

xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30)

 , ATT_VALUE NUMBER);

xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30)

 , ATT_VALUE DATE);

13.8 Calculator (POST)
Below mentioned table has element name which indicates which type of custom data is passed
by enclosing the name and its value in KeyName and KeyValue respectively.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Double)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

 Page 13-34

Sample Input/Output XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>First Name</KeyName>

 <KeyValue>ABC</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedStringData>

 <KeyName>Last Name</KeyName>

 <KeyValue>DEF</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>Phone Number</KeyName>

 <KeyValue>123456987</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedNumberData>

 <KeyName>Age</KeyName>

 <KeyValue>27</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>BirthDate</KeyName>

 <KeyValue>2017-02-24T15:00:43+05:30</KeyValue>

 </CustomUserDefinedDateData>

 <CustomUserDefinedDateData>

 <KeyName>ContractDate</KeyName>

 <KeyValue>2017-02-24T15:00:51+05:30</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample Input/Output JSON
"Custom" : {

 "CustomUserDefinedStringData" : [

 {

 "KeyName" : "First Name",

 "KeyValue" : "Test"

 },

 {

 "KeyName" : "Last Name",

 "KeyValue" : "ABC"

 }

],

 Page 13-35

 "CustomUserDefinedNumberData" : [

 {

 "KeyName" : "Age",

 "KeyValue" : "26"

 },

 {

 "KeyName" : "Phone Number",

 "KeyValue" : "123456987"

 }

],

 "CustomUserDefinedDateData" : [

 {

 "KeyName" : "BirthDate",

 "KeyValue" : "2017-02-24T14:52:44+05:30"

 },

 {

 "KeyName" : "ContractDate",

 "KeyValue" : "2017-02-24T14:54:22+05:30"

 }

]

 }

Below are the package details for Calculator web service

Wrapper package:

xaecal_ew_100_01.xaecal_ew_100_01 (iv_cal_rec IN OUT NOCOPY xae_cal_rec_t,

iv_calculator_type IN VARCHAR2,

iv_result OUT NUMBER,

iv_err_desc OUT VARCHAR2).

Main engine package has been modified:

xaecal_em_100_01. xaecal_em_100_01 (iv_cal_rec IN OUT NOCOPY xae_cal_rec_t,

iv_calculator_type IN VARCHAR2,

iv_result OUT NUMBER,

iv_err_desc OUT VARCHAR2).

Below are the exit point packages added.

BEFORE:-

 Page 13-36

xaecal_ex_100_01.CV_CAL_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaecal_ex_100_01.cal_bfr(iv_cal_rec ,iv_calculator_type ,iv_result ,iv_err_desc);

REPLACE:-

xaecal_ex_100_01.CV_CAL_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaecal_ex_100_01.cal_rep(iv_cal_rec ,iv_calculator_type ,iv_result ,iv_err_desc);

AFTER:-

xaecal_ex_100_01.CV_CAL_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaecal_ex_100_01.cal_afr(iv_cal_rec ,iv_calculator_type ,iv_result ,iv_err_desc);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE DATE);

/

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE NUMBER);

);

/

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE VARCHAR2 (4000));

);

/

13.9 Application Entry (POST)
Below mentioned table has element name which indicates which type of custom data is passed in
that enclosing the name and its value in keyname and keyvalue respectively.

Note: This block is unbounded and is part of other blocks . For Example: Address Block.

Element name Sub Element Data Type

CustomUserDefinedStringData KeyName String

 Page 13-37

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Double)

CustomUserDefinedDateData KeyName String

 KeyValue Date (YYYY-MM-DDTHH:MM:SS)

Sample XML FORMAT
<CustomFields>

 <CustomUserDefinedStringData>

 <KeyName>KEY_STRING</KeyName>

 <KeyValue>VALUE_STRING</KeyValue>

 </CustomUserDefinedStringData>

 <CustomNumberDataTypes>

 <KeyName>KEY_NUMBER</KeyName>

 <KeyValue>VALUE_NUMBER</KeyValue>

 </CustomNumberDataTypes>

 <CustomDateDataTypes>

 <KeyName>KEY_DATE</KeyName>

 <KeyValue>VALUE_DATE</KeyValue>

 </CustomDateDataTypes>

</CustomFields>

Below are the package details for Calculator web service

Wrapper engine:-
xaeprc_ew_100_02. xaeprc_ew_100_02

 (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

,ov_error_rec IN OUT NOCOPY xae_error_rec_t)

Main Engine:-
xaeprc_em_100_02.submit (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

,ov_error_rec IN OUT NOCOPY xae_error_rec_t)

Lookup Validations- involves the following packages related to
 Applicant -> xaeapl_en_100_02

 Applicant Address -> xaeapa_en_100_02

 Applicant Employment -> xaeape_en_100_02

 Applicant Telecom -> xaeapt_en_100_02

 Applicant Financial -> xaeapf_en_100_02

 Page 13-38

 Applicant liability -> xaeapb_en_100_02

 Applicant other income information -> xaeapi_en_100_02

 Decision trade in -> xaeapd_en_100_02

 Collateral valuation -> xaeavl_en_100_02

 Business details -> xaebsd_en_100_02

 Business address -> xaebsa_en_100_02

 Business partners -> xaebsp_en_100_02

 Business affiliates -> xaebsl_en_100_02

 Business telecom -> xaebst_en_100_02

 Business financials -> xaebsf_en_100_02

 Business liabilities -> xaebsb_en_100_02

 Below is the application entry main insert package

 xaeins_en_100_02.ins (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

 ,ov_error_rec IN OUT NOCOPY xae_error_rec_t

 ,iv_axn_rec IN xae_axn_evw%ROWTYPE)

 Page 13-39

You can do the customization on the following packages

xaeprc_em_100_02.submit

BEFORE:-

xaeprc_ex_100_03.CV_SUBMIT_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeprc_ex_100_03.submit_bfr (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

,ov_error_rec IN OUT NOCOPY xae_error_rec_t)

REPLACE:-

xaeprc_ex_100_03.CV_SUBMIT_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeprc_ex_100_03.submit_rep (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

,ov_error_rec IN OUT NOCOPY xae_error_rec_t)

AFTER:-

xaeprc_ex_100_03.CV_SUBMIT_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeprc_ex_100_03.submit_afr (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

,ov_error_rec IN OUT NOCOPY xae_error_rec_t)

xaeins_en_100_02.ins

BEFORE:-

xaeprc_ex_100_04.CV_INS_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeprc_ex_100_04.ins_bfr (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

,ov_error_rec IN OUT NOCOPY xae_error_rec_t

,iv_axn_rec IN xae_axn_evw%ROWTYPE)

REPLACE:-

xaeprc_ex_100_04.CV_INS_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeprc_ex_100_04.ins_rep(iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

,ov_error_rec IN OUT NOCOPY xae_error_rec_t

,iv_axn_rec IN xae_axn_evw%ROWTYPE)

AFTER:-

xaeprc_ex_100_04.CV_INS_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeprc_ex_100_04.ins_afr(iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

 Page 13-40

,ov_error_rec IN OUT NOCOPY xae_error_rec_

,iv_axn_rec IN xae_axn_evw%ROWTYPE)

xaeapp_en_100_02. chk(

 iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapp_ex_100_02.CV_CHK_BFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapp_ex_100_02.chk_bfr(iv_app_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapp_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapp_ex_100_02.chk_rep(iv_app_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapp_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapp_ex_100_02.chk_afr(iv_app_rec ,ov_error_rec ,iv_axn_rec);

xaeapl_en_100_02. chk(

 iv_apl_rec IN OUT NOCOPY xae_apl_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE);

BEFORE:-

xaeapl_ex_100_02.CV_CHK_BFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapl_ex_100_02.chk_bfr(iv_apl_rec, ov_error_rec, iv_axn_rec);

REPLACE:-

xaeapl_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapl_ex_100_02.chk_rep(iv_apl_rec, ov_error_rec, iv_axn_rec);

AFTER:-

xaeapl_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapl_ex_100_02.chk_afr(iv_apl_rec, ov_error_rec, iv_axn_rec);

 Page 13-41

xaeapa_en_100_02. chk(

 iv_apa_rec IN OUT NOCOPY xae_apa_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapa_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapa_ex_100_02.chk_bfr(iv_apa_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapa_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapa_ex_100_02.chk_rep(iv_apa_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapa_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapa_ex_100_02.chk_afr(iv_apa_rec ,ov_error_rec ,iv_axn_rec);

xaeape_en_100_02. chk(

 iv_ape_rec IN OUT NOCOPY xae_ape_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeape_ex_100_02.CV_CHK_BFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeape_ex_100_02.chk_bfr(iv_ape_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeape_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaeape_ex_100_02.chk_rep(iv_ape_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeape_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeape_ex_100_02.chk_afr(iv_ape_rec ,ov_error_rec ,iv_axn_rec);

xaeapi_en_100_02. chk(

 iv_api_rec IN OUT NOCOPY xae_api_rest_rec_t ,

 Page 13-42

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapi_ex_100_02.CV_CHK_BFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapi_ex_100_02.chk_bfr(iv_api_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapi_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapi_ex_100_02.chk_rep(iv_api_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapi_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapi_ex_100_02.chk_afr(iv_api_rec ,ov_error_rec ,iv_axn_rec);

xaeapt_en_100_02.chk(

 iv_apt_rec IN OUT NOCOPY xae_apt_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapt_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapt_ex_100_02.chk_bfr(iv_apt_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapt_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapt_ex_100_02.chk_rep(iv_apt_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapt_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapt_ex_100_02.chk_afr(iv_apt_rec ,ov_error_rec ,iv_axn_rec);

xaeapf_en_100_02.chk(

 iv_apf_rec IN OUT NOCOPY xae_apf_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

 Page 13-43

BEFORE:-

xaeapf_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapf_ex_100_02.chk_bfr(iv_apf_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapf_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapf_ex_100_02.chk_rep(iv_apf_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapf_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapf_ex_100_02.chk_afr(iv_apf_rec ,ov_error_rec ,iv_axn_rec);

xaeapb_en_100_02.chk(

 iv_apb_rec IN OUT NOCOPY xae_apb_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapb_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapb_ex_100_02.chk_bfr(iv_apb_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapb_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapb_ex_100_02.chk_rep(iv_apb_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapb_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapb_ex_100_02.chk_afr(iv_apb_rec ,ov_error_rec ,iv_axn_rec);

xaease_en_100_02.chk(

 iv_ase_rec IN OUT NOCOPY xae_ase_rest_rec2_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaease_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

 Page 13-44

xaease_ex_100_02.chk_bfr(iv_ase_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaease_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaease_ex_100_02.chk_rep(iv_ase_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaease_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaease_ex_100_02.chk_afr(iv_ase_rec ,ov_error_rec ,iv_axn_rec);

xaeavl_en_100_02.chk(

 iv_avl_rec IN OUT NOCOPY xae_avl_rest_rec2_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeavl_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeavl_ex_100_02.chk_bfr(iv_avl_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeavl_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeavl_ex_100_02.chk_rep(iv_avl_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeavl_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeavl_ex_100_02.chk_afr(iv_avl_rec ,ov_error_rec ,iv_axn_rec);

xaeapd_en_100_02.chk(

 iv_apd_rec IN OUT NOCOPY xae_apd_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapd_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapd_ex_100_02.chk_bfr(iv_apd_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

 Page 13-45

xaeapd_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapd_ex_100_02.chk_rep(iv_apd_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapd_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapd_ex_100_02.chk_afr(iv_apd_rec ,ov_error_rec ,iv_axn_rec);

xaebsd_en_100_02.chk(

 iv_bus_app_rec IN OUT NOCOPY xae_bsd_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsd_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsd_ex_100_02.chk_bfr(iv_bus_app_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsd_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsd_ex_100_02.chk_rep(iv_bus_app_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsd_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsd_ex_100_02.chk_afr(iv_bus_app_rec ,ov_error_rec ,iv_axn_rec);

xaebsa_en_100_02.chk(

 iv_bsa_rec IN OUT NOCOPY xae_bsa_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsa_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsa_ex_100_02.chk_bfr(iv_bsa_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsa_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsa_ex_100_02.chk_rep(iv_bsa_rec ,ov_error_rec ,iv_axn_rec);

 Page 13-46

AFTER:-

xaebsa_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsa_ex_100_02.chk_afr(iv_bsa_rec ,ov_error_rec ,iv_axn_rec);

xaebsp_en_100_02.chk(

 iv_bsp_rec IN OUT NOCOPY xae_bsp_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsp_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsp_ex_100_02.chk_bfr(iv_bsp_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsp_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsp_ex_100_02.chk_rep(iv_bsp_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsp_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsp_ex_100_02.chk_afr(iv_bsp_rec ,ov_error_rec ,iv_axn_rec);

xaebsl_en_100_02.chk(

 iv_bsl_rec IN OUT NOCOPY xae_bsl_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsl_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsl_ex_100_02.chk_bfr(iv_bsl_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsl_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsl_ex_100_02.chk_rep(iv_bsl_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsl_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

 Page 13-47

xaebsl_ex_100_02.chk_afr(iv_bsl_rec ,ov_error_rec ,iv_axn_rec);

xaebst_en_100_02.chk(

 iv_bst_rec IN OUT NOCOPY xae_bst_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebst_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebst_ex_100_02.chk_bfr(iv_bst_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebst_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebst_ex_100_02.chk_rep(iv_bst_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebst_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebst_ex_100_02.chk_afr(iv_bst_rec ,ov_error_rec ,iv_axn_rec);

xaebsf_en_100_02.chk(

 iv_bsf_rec IN OUT NOCOPY xae_bsf_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsf_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsf_ex_100_02.chk_bfr(iv_bsf_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsf_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsf_ex_100_02.chk_rep(iv_bsf_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsf_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsf_ex_100_02.chk_afr(iv_bsf_rec ,ov_error_rec ,iv_axn_rec);

xaebsb_en_100_02.chk(

 Page 13-48

 iv_bsb_rec IN OUT NOCOPY xae_bsb_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsb_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsb_ex_100_02.chk_bfr(iv_bsb_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsb_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsb_ex_100_02.chk_rep(iv_bsb_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsb_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsb_ex_100_02.chk_afr(iv_bsb_rec ,ov_error_rec ,iv_axn_rec);

Extensible parameters are Tab Type object
DATE:

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE DATE);

/

NUMBER:

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE NUMBER);

);

/

STRING:

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE VARCHAR2 (4000));

);

/

 Page 13-49

13.10 Account Search (GET)
Below are the package details for account search web service

Wrapper Engine package: -

 xcsacs_ew_100_01. xcsacs_ew_100_01 (iv_csh IN xcs_csh_rec_t,

 iv_acs OUT NOCOPY xcs_acs_tab_t);

Main Engine package:-

 xcsacs_em_100_01. get_account_summary (iv_csh IN xcs_csh_rec_t,

 iv_acs OUT NOCOPY xcs_acs_tab_t);

 xcsacs_en_100_01. get_acc_search_summary (iv_csh IN xcs_csh_rec_t,

 iv_acs OUT NOCOPY xcs_acs_tab_t);

Below are the Exit point package details

BEFORE:-

xcsacs_ex_100_01.cv_get_acc_search_summary_bfr =

 cmncon_cl_000_01.CUSTOMIZED THEN

 xcsacs_ex_100_01.get_acc_search_summary_bfr(iv_csh, iv_acs);

REPLACE:-

xcsacs_ex_100_01.cv_get_acc_search_summary_rep =

 cmncon_cl_000_01.CUSTOMIZED THEN

 xcsacs_ex_100_01.get_acc_search_summary_rep(iv_csh, iv_acs);

AFTER:-

xcsacs_ex_100_01.cv_get_acc_search_summary_afr =

 cmncon_cl_000_01.CUSTOMIZED THEN

 xcsacs_ex_100_01.get_acc_search_summary_afr(iv_csh, iv_acs);

Extensible parameters are Tab Type object

DATE:
CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)

 Page 13-50

 , ATT_VALUE DATE);

/

NUMBER:
CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE NUMBER);

);

/

STRING:
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE VARCHAR2 (4000));

);

/

13.11 Call Activity (POST)
Below mentioned are the custom fields which are part of response alone.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Double)

CustomUserDefinedDateData KeyName String

 KeyValue Date (YYYY-MM-
DDTHH:MM:SS)

 Page 13-51

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>StringName</KeyName>

 <KeyValue>StringValue</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>NumberName</KeyName>

 <KeyValue>NumberValue</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>DateName</KeyName>

 <KeyValue>DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for account search web service

Wrapper Engine package:-

xcscac_ew_100_01. xcscac_ew_100_01 (iv_cac_rec_t IN xcs_csc_rec_t,

 iv_cac_result_tab_t OUT NOCOPY xcs_cac_result_tab_t);

Main Engine package:-

 Page 13-52

xcscac_em_100_01.post_cac (iv_cac_rec_t IN xcs_csc_rec_t,

 Iv_cac_result_tab_t OUT NOCOPY xcs_cac_result_tab_t);

Below are the Exit point package details

BEFORE:-

xcscac_ex_100_01.cv_post_cac_bfr =

 cmncon_cl_000_01.CUSTOMIZED THEN

 xcscac_ex_100_01. post_cac_bfr(iv_cac_rec_t, iv_cac_result_tab_t);

REPLACE:-

xcscac_ex_100_01.cv_post_cac_rep =

 cmncon_cl_000_01.CUSTOMIZED THEN

 xcscac_ex_100_01. post_cac_rep (iv_cac_rec_t,iv_cac_result_tab_t);

AFTER:-

xcscac_ex_100_01.cv_post_cac_aftr =

 cmncon_cl_000_01.CUSTOMIZED THEN

 xcscac_ex_100_01.post_cac_aftr (iv_cac_rec_t,iv_cac_result_tab_t);

Extensible parameters are Tab Type object

DATE:
CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE DATE);

/

NUMBER:
CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT

(

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE NUMBER);

);

/

STRING:
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT

(

 Page 13-53

 ATT_NAME VARCHAR2 (30)
 , ATT_VALUE VARCHAR2 (4000));

);

/

13.12 Remarketing (PUT)
Below mentioned table has element name which indicates which type of custom data is passed
by enclosing the name and its value in keyname and keyvalue respectively.

Element name Sub element Data type

CustomUserDefinedStringData

 KeyName String

 KeyValue String

CustomUserDefinedNumberData

 KeyName String

 KeyValue Number (Double)

CustomUserDefinedDateData

 KeyName String

 KeyValue Date (YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>Middle Name</KeyName>

 <KeyValue>Oracle</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>Age</KeyName>

 <KeyValue>27</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>FirstPmtDate</KeyName>

 <KeyValue>2016-07-14</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

 Page 13-54

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "Middle Name",

 "KeyValue": "Oracle"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "Age",

 "KeyValue": "27"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "FirstPmtDate",

 "KeyValue": "2016-07-14"

 }

 }

}

Below are the package details for products web service

Engine wrapper package:

gaiprc_ew_100_01.gaiprc_ew_100_01(iv_gai_rec IN OUT gai_rec_t

 ,iv_service_type IN VARCHAR2)

Engine main packages:

GET:

gaiprc_em_100_01.get_remarketing(iv_gai_rec IN OUT gai_rec_t);

Below are the exit points for get service

BEFORE:

gaiprc_ex_100_01.get_remarketing_bfr (iv_gai_rec IN OUT gai_rec_t)

REPLACE:

gaiprc_ex_100_01.get_remarketing_rep (iv_gai_rec IN OUT gai_rec_t)

AFTER:

gaiprc_ex_100_01.get_remarketing_afr (iv_gai_rec IN OUT gai_rec_t)

PUT:

 Page 13-55

gaiprc_em_100_01.put_remarketing (iv_gai_rec IN OUT gai_rec_t);

Below are the exit points for get service.

BEFORE:

gaiprc_ex_100_01.put_remarketing_bfr(iv_gai_rec IN OUT gai_rec_t)

REPLACE:

gaiprc_ex_100_01.put_remarketing_rep (iv_gai_rec IN OUT gai_rec_t)

AFTER:

gaiprc_ex_100_01.put_remarketing_afr (iv_gai_rec IN OUT gai_rec_t)

13.13 Invoice (POST)
Below mentioned table has element name which indicates which type of custom data is passed
by enclosing the name and its value in keyname and keyvalue respectively.

Element name Sub element Data type

CustomUserDefinedStringData

 KeyName String

 KeyValue String

CustomUserDefinedNumberData

 KeyName String

 KeyValue Number (Double)

CustomUserDefinedDateData

 KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>Middle Name</KeyName>

 <KeyValue>Oracle</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>Age</KeyName>

 Page 13-56

 <KeyValue>27</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>FirstPmtDate</KeyName>

 <KeyValue>2016-07-14</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "Middle Name",

 "KeyValue": "Oracle"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "Age",

 "KeyValue": "27"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "FirstPmtDate",

 "KeyValue": "2016-07-14"

 }

 }

}

Below are the package details for products web service

Engine wrapper package:

gaiprc_ew_100_01.gaiprc_ew_100_01(iv_gai_rec IN OUT gai_rec_t

 ,iv_service_type IN VARCHAR2)

Engine main packages:

GET:

gaiprc_em_100_02.get_invoice(iv_gai_rec IN OUT gai_rec_t);

Below are the exit points for get service

BEFORE:

gaiprc_ex_100_02.get_invoice_bfr (iv_gai_rec IN OUT gai_rec_t)

 Page 13-57

REPLACE:

gaiprc_ex_100_02.get_invoice_rep (iv_gai_rec IN OUT gai_rec_t)

AFTER:

gaiprc_ex_100_02.get_invoice_afr (iv_gai_rec IN OUT gai_rec_t)

POST:

gaiprc_em_100_02. post_invoice (iv_gai_rec IN OUT gai_rec_t);

Below are the exit points for get service

BEFORE:

gaiprc_ex_100_02.post_invoice_bfr (iv_gai_rec IN OUT gai_rec_t)

REPLACE:

gaiprc_ex_100_02.post_invoice_rep (iv_gai_rec IN OUT gai_rec_t)

AFTER:

gaiprc_ex_100_02.post_invoice_afr (iv_gai_rec IN OUT gai_rec_t)

13.14 Application Comment (GET/POST)
Below mentioned are the custom fields. These fields will be part of response in case of GET
method and will be part of request in case of POST method.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

 Page 13-58

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName>Middle Name</KeyName>

 <KeyValue>Oracle</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>Age</KeyName>

 <KeyValue>27</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>FirstPmtDate</KeyName>

 <KeyValue>2016-07-14</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for application comment web service

Wrapper Engine package: -

 xaexcm_ew_100_01. xaexcm_ew_100_01 (iv_req_rec_t IN xae_acm_req_t

 , iv_res_rec_t IN OUT xae_acm_res_rec_t);

Main Engine package:-

 Page 13-59

 xaexcm_em_100_01. xaexcm_em_100_01 (iv_req_rec_t IN xae_acm_req_t,

 iv_res_rec_t IN OUT xae_acm_res_rec_t);

Below are the Exit point package details for xaexcm_em_100_01.xaexcm_em_100_01();
BEFORE:-

xaexcm_ex_100_01.cv_xaexcm_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaexcm_ex_100_01.xaexcm_em_100_01_bfr(iv_req_rec_t, iv_res_rec_t);

REPLACE:-
xaexcm_ex_100_01.cv_xaexcm_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaexcm_ex_100_01.xaexcm_em_100_01_rep(iv_req_rec_t, iv_res_rec_t);

AFTER:-
xaexcm_ex_100_01.cv_xaexcm_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaexcm_ex_100_01.xaexcm_em_100_01_afr(iv_req_rec_t, iv_res_rec_t);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.15 Account Comment (GET/POST)
Below mentioned are the custom fields. These fields will be part of response in case of GET
method and will be part of request in case of POST method.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 Page 13-60

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for applicationupdate web service

Wrapper Engine package:-

xcsxcm_ew_100_01. xcsxcm_ew_100_01 (iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

 Page 13-61

Main Engine package:-

 xcsxcm_em_100_01. post_acm (iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

 xcsxcm_em_100_01. get_acm(iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. post_acm();

BEFORE:-

xcsxcm_ex_100_01.cv_post_acm_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_bfr(iv_acm_rec_t);

REPLACE:-

xcsxcm_ex_100_01.cv_post_acm_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_rep(iv_acm_rec_t);

AFTER:-

xcsxcm_ex_100_01.cv_post_acm_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_afr(iv_acm_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. get_acm();

BEFORE:-

xcsxcm_ex_100_01.cv_get_acm_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_bfr(iv_acm_rec_t);

REPLACE:-

xcsxcm_ex_100_01.cv_get_acm_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_rep(iv_acm_rec_t);

AFTER:-

xcsxcm_ex_100_01.cv_get_acm_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_afr(iv_acm_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

 Page 13-62

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.16 Application Checklist (GET)
Below mentioned are the custom fields. These fields will be part of response.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 Page 13-63

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for application checklist web service

Wrapper Engine package:-

 xaexck_ew_100_01.xaexck_ew_100_01 (iv_req_rec_t IN xae_ack_req_t

 , iv_res_rec_t IN OUT xae_ack_res_t);

Main Engine package:-

 xaexck_em_100_01.xaexck_em_100_01 (iv_req_rec_t IN xae_ack_req_t,

 iv_res_rec_t IN OUT xae_ack_res_t);

Below are the Exit point package details for xaexck_em_100_01.xaexck_em_100_01();

BEFORE:-

xaexck_ex_100_01.cv_xaexck_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaexck_ex_100_01.xaexck_em_100_01_bfr (iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xaexck_ex_100_01.cv_xaexck_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaexck_ex_100_01.xaexck_em_100_01_rep (iv_req_rec_t, iv_res_rec_t);

AFTER:-

xaexck_ex_100_01.cv_xaexck_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaexck_ex_100_01.xaexck_em_100_01_afr (iv_req_rec_t, iv_res_rec_t);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 Page 13-64

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.17 Outgoing File List (GET)
Below mentioned are the custom fields. These fields will be part of response.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date (YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 Page 13-65

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for outgoing file list web service

Wrapper Engine package:-

 xpfopf_ew_100_01.xpfopf_ew_100_01 (iv_req_rec_t IN xws_opf_req_rec_t

 , iv_res_rec_t IN OUT xws_opf_resp_rec_t);

Main Engine package:-

 xpfopf_em_100_01.xpfopf_em_100_01 (iv_req_rec_t IN xws_opf_req_rec_t

 , iv_res_rec_t IN OUT xws_opf_resp_rec_t);

Below are the Exit point package details for xpfopf_em_100_01.xpfopf_em_100_01();

BEFORE:-

xpfopf_ex_100_01.cv_xpfopf_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfopf_ex_100_01.xpfopf_em_100_01_bfr (iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xpfopf_ex_100_01.cv_xpfopf_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfopf_ex_100_01.xpfopf_em_100_01_rep (iv_req_rec_t, iv_res_rec_t);

AFTER:-

xpfopf_ex_100_01.cv_xpfopf_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfopf_ex_100_01.xpfopf_em_100_01_afr (iv_req_rec_t, iv_res_rec_t);

Extensible parameters are Tab Type object

 Page 13-66

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.18 Outgoing File (POST)
Below are the package details for outgoing file web service

Wrapper Engine package:-

 xpfopf_ew_100_01.xpfopf_ew_100_01 (iv_req_rec_t IN xws_opf_req_rec_t

 , iv_res_rec_t IN OUT xws_opf_resp_rec_t);

Main Engine package:-

 xpfopf_em_100_01.xpfopf_em_100_01 (iv_req_rec_t IN xws_opf_req_rec_t

 , iv_res_rec_t IN OUT xws_opf_resp_rec_t);

Below are the Exit point package details for xpfopf_em_100_01.xpfopf_em_100_01();

BEFORE:-

xpfopf_ex_100_01.cv_xpfopf_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfopf_ex_100_01.xpfopf_em_100_01_bfr (iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xpfopf_ex_100_01.cv_xpfopf_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfopf_ex_100_01.xpfopf_em_100_01_rep (iv_req_rec_t, iv_res_rec_t);

AFTER:-

xpfopf_ex_100_01.cv_xpfopf_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfopf_ex_100_01.xpfopf_em_100_01_afr (iv_req_rec_t, iv_res_rec_t);

 Page 13-67

13.19 Incoming File (GET)
Below are the package details for incoming file web service

Wrapper Engine package:-

 xpfipf_ew_100_01.xpfipf_ew_100_01 (iv_req_rec_t IN OUT xws_ipf_req_rec_t);

Main Engine package:-

 xpfipf_em_100_01.xpfipf_em_100_01 (iv_req_rec_t IN OUT xws_ipf_req_rec_t);

Below are the Exit point package details for xpfopf_em_100_01.xpfopf_em_100_01();

BEFORE:-

xpfipf_ex_100_01.cv_xpfipf_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfipf_ex_100_01.xpfipf_em_100_01_bfr(iv_req_rec_t);

REPLACE:-

xpfipf_ex_100_01.cv_xpfipf_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfipf_ex_100_01.xpfipf_em_100_01_rep(iv_req_rec_t);

AFTER:-

xpfipf_ex_100_01.cv_xpfipf_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpfipf_ex_100_01.xpfipf_em_100_01_afr(iv_req_rec_t);

13.20 Products (GET)
Below mentioned are the custom fields. These fields will be part of response.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName> StringName </KeyName>

 Page 13-68

 <KeyValue> StringValue </KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for products web service

Wrapper Engine package:-

 xpdprc_ew_100_01.xpdprc_ew_100_01 (iv_req_rec_t IN xpd_req_rec_t

 , iv_res_rec_t IN OUT xpd_resp_rec_t);

Main Engine package:-

 xpdprc_em_100_01.xpdprc_em_100_01 (iv_req_rec_t IN xpd_req_rec_t

 , iv_res_rec_t IN OUT xpd_resp_rec_t);

 Page 13-69

Below are the Exit point package details for xpdprc_em_100_01.xpdprc_em_100_01();

BEFORE:-

xpdprc_ex_100_01.cv_xpdprc_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpdprc_ex_100_01.xpdprc_em_100_01_bfr (iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xpdprc_ex_100_01.cv_xpdprc_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xpdprc_ex_100_01.xpdprc_em_100_01_rep (iv_req_rec_t, iv_res_rec_t);

AFTER:-

xpdprc_ex_100_01.cv_xpdprc_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xpdprc_ex_100_01.xpdprc_em_100_01_afr (iv_req_rec_t, iv_res_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.21 Assets (GET)
Below mentioned are the custom fields. These fields will be part of response.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

 Page 13-70

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for assets web service

Wrapper Engine package:-

 xstprc_ew_100_01.xstprc_ew_100_01 (iv_req_rec_t IN xst_req_rec_t

 , iv_res_rec_t IN OUT xst_resp_rec_t);

Main Engine package:-

 Page 13-71

 xstprc_em_100_01. get_asset_types (iv_req_rec_t IN xst_req_rec_t

 , iv_res_rec_t IN OUT xst_resp_rec_t);

Below are the Exit point package details for xstprc_em_100_01.get_asset_types ();

BEFORE:-

xstprc_ex_100_01.cv_get_asset_types_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xstprc_ex_100_01.get_asset_types_bfr (iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xstprc_ex_100_01.cv_get_asset_types_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xstprc_ex_100_01.get_asset_types_rep (iv_req_rec_t, iv_res_rec_t);

AFTER:-

xstprc_ex_100_01.cv_get_asset_types_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xstprc_ex_100_01.get_asset_types_afr (iv_req_rec_t, iv_res_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.22 Assets (PUT)
Below mentioned are the custom fields. These fields will be part of response for PUT services.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

 Page 13-72

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 < StringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </ StringData>

 <NumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </NumberData>

 <DateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </DateData>

</Custom>

Sample JSON
"Custom": {

 "StringData": [

 {

 "KeyName": " StringName ",

 "KeyValue": " StringValue "

 }

],

 "NumberData": [

 {

 "KeyName": " NumberName ",

 "KeyValue": NumberValue

 }

],

 "DateData": [

 {

 "KeyName": " DateName ",

 Page 13-73

 "KeyValue": " DateValue"

 }

]

 }

Below are the package details for assets valuation web service

Wrapper Engine package:-

 xcsase_ew_100_01.xcsase_ew_100_01(iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

Main Engine package:-

 xcsase_em_100_01.xcsase_em_100_01(iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

Main Engine package calls below procedures as per service type:

put_asset(iv_xcs_ase_rec);

 Below are the Exit point package details for xcsase_em_100_01.xcsase_em_100_01:

BEFORE:-

xcsase_ex_100_01.CV_xcsase_ex_100_01_BFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.xcsase_ex_100_01_bfr (iv_xcs_ase_rec IN OUT xcs_ase_req_rec_t);

REPLACE:-

xcsase_ex_100_01.CV_xcsase_ex_100_01_REP= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.xcsase_ex_100_01_rep (iv_xcs_ase_rec IN OUT xcs_ase_req_rec_t);

AFTER:-

xcsase_ex_100_01.CV_xcsase_ex_100_01_AFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.xcsase_ex_100_01_afr (iv_xcs_ase_rec IN OUT xcs_ase_req_rec_t);

Below are the Exit point package details for PUT asset:

BEFORE:-

xcsase_ex_100_01.CV_put_asset_BFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.put_asset_bfr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

REPLACE:-

xcsase_ex_100_01.CV_put_asset_REP= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.get_put_rep (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

 Page 13-74

AFTER:-

xcsase_ex_100_01.CV_put_asset_AFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.put_asset_afr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.23 Asset Valuation (GET/PUT/POST)
Below mentioned are the custom fields. These fields will be part of response for GET/PUT/POST
services.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 < StringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </ StringData>

 Page 13-75

 <NumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </NumberData>

 <DateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </DateData>

</Custom>

Sample JSON
"Custom": {

 "StringData": [

 {

 "KeyName": " StringName ",

 "KeyValue": " StringValue "

 }

],

 "NumberData": [

 {

 "KeyName": " NumberName ",

 "KeyValue": NumberValue

 }

],

 "DateData": [

 {

 "KeyName": " DateName ",

 "KeyValue": " DateValue"

 }

]

 }

Below are the package details for assets valuation web service

Wrapper Engine package:-

 xcsase_ew_100_01.xcsase_ew_100_01(iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

Main Engine package:-

 xcsase_em_100_01.xcsase_em_100_01(iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

 Page 13-76

Main Engine package calls below procedures as per service type:

 GET: get_ase_avl(iv_xcs_ase_rec);

 PUT: put_ase_avl(iv_xcs_ase_rec);

 POST: post_ase_avl(iv_xcs_ase_rec);

Below are the Exit point package details for xcsase_em_100_01.xcsase_em_100_01:

BEFORE:-

xcsase_ex_100_01.CV_xcsase_ex_100_01_BFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.xcsase_ex_100_01_bfr (iv_xcs_ase_rec IN OUT xcs_ase_req_rec_t);

REPLACE:-

xcsase_ex_100_01.CV_xcsase_ex_100_01_REP= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.xcsase_ex_100_01_rep (iv_xcs_ase_rec IN OUT xcs_ase_req_rec_t);

AFTER:-

xcsase_ex_100_01.CV_xcsase_ex_100_01_AFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.xcsase_ex_100_01_afr (iv_xcs_ase_rec IN OUT xcs_ase_req_rec_t);

Below are the Exit point package details for GET:

BEFORE:-

xcsase_ex_100_01.CV_get_ase_avl_BFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.get_ase_avl_bfr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

REPLACE:-

xcsase_ex_100_01.CV_get_ase_avl_REP= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.get_ase_avl_rep (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

AFTER:-

xcsase_ex_100_01.CV_get_ase_avl_AFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.get_ase_avl_afr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

Below are the Exit point package details for PUT:

BEFORE:-

xcsase_ex_100_01.CV_put_ase_avl_BFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.put_ase_avl_bfr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

 Page 13-77

REPLACE:-

xcsase_ex_100_01.CV_put_ase_avl_REP= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.put_ase_avl_rep (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

AFTER:-

xcsase_ex_100_01.CV_put_ase_avl_AFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.put_ase_avl_afr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

Below are the Exit point package details for POST:

BEFORE:-

xcsase_ex_100_01.CV_post_ase_avl_BFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.post_ase_avl_bfr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

REPLACE:-

xcsase_ex_100_01.CV_post_ase_avl_REP= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.post_ase_avl_rep (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

AFTER:-

xcsase_ex_100_01.CV_post_ase_avl_AFR= cmncon_cl_000_01.CUSTOMIZED THEN

xcsase_ex_100_01.post_ase_avl_afr (iv_xcs_ase_rec IN OUT xcs_ase_req_tab_t)

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

 Page 13-78

13.24 Asset Sub Types (GET)
Below mentioned are the custom fields. These fields will be part of response.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>

 <CustomUserDefinedStringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </CustomUserDefinedDateData>

</Custom>

Sample JSON
{

 "Custom": {

 "CustomUserDefinedStringData": {

 "KeyName": "StringName",

 "KeyValue": "StringValue"

 },

 "CustomUserDefinedNumberData": {

 "KeyName": "NumberName",

 Page 13-79

 "KeyValue": "NumberValue"

 },

 "CustomUserDefinedDateData": {

 "KeyName": "DateName",

 "KeyValue": "DateValue"

 }

 }

}

Below are the package details for asset sub types web service

Wrapper Engine package:-

 xsbprc_ew_100_01.xsbprc_ew_100_01 (iv_req_rec_t IN xsb_req_rec_t

 , iv_res_rec_t IN OUT xsb_resp_rec_t);

Main Engine package:-

 xstprc_em_100_01. get_asset_sub_types (iv_req_rec_t IN xsb_req_rec_t

 , iv_res_rec_t IN OUT xsb_resp_rec_t);

Below are the Exit point package details for xsbprc_em_100_01.get_asset_sub_types ();

BEFORE:-

xsbprc_ex_100_01.cv_get_asset_sub_types_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xsbprc_ex_100_01.get_asset_sub_types_bfr (iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xsbprc_ex_100_01.cv_get_asset_sub_types_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xsbprc_ex_100_01.get_asset_sub_types_rep (iv_req_rec_t, iv_res_rec_t);

AFTER:-

xsbprc_ex_100_01.cv_get_asset_sub_types_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xsbprc_ex_100_01.get_asset_sub_types_afr (iv_req_rec_t, iv_res_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 Page 13-80

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.25 Application Status Change (PUT)
Below the custom packages.

Below are the package details for application status change web service

Wrapper Engine package:-

xaeasc_ew_100_01. xaeasc_ew_100_01 (iv_req_rec_t IN xae_app_asc_rec_t

 ,iv_res_rec_t IN OUT NOCOPY
xae_app_asc_res_rec_t)

Main Engine package:-

 xaeasc_em_100_01. app_status_change (iv_req_rec_t IN xae_app_asc_rec_t

 ,iv_res_rec_t IN OUT NOCOPY
xae_app_asc_res_rec_t)

Below are the Exit point package details for xaeasc_em_100_01. app_status_change ();

BEFORE:-

xaeasc_ex_100_01.cv_app_status_change_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeasc_ex_100_01.app_status_change_bfr(iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xaeasc_ex_100_01.cv_app_status_change_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeasc_ex_100_01.app_status_change_rep(iv_req_rec_t, iv_res_rec_t);

AFTER:-

xaeasc_ex_100_01.cv_app_status_change_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeasc_ex_100_01.app_status_change_afr(iv_req_rec_t, iv_res_rec_t);

 Page 13-81

13.26 Application Update (PUT)
Below mentioned table has element name which indicates which type of custom data is passed in
tha custom element block, enclosing the name and its value in keyname and keyvalue
respectively.

Note: This block is unbounded and is part of other blocks. Example: Address Block.

Element name Sub Element Data Type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML FORMAT
<CustomFields>

 <CustomUserDefinedStringData>

 <KeyName>str1234</KeyName>

 <KeyValue>str1234</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>str1234</KeyName>

 <KeyValue>3.1415926535</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>str1234</KeyName>

 <KeyValue>2012-12-13T12:12:12</KeyValue>

 </CustomUserDefinedDateData>

</CustomFields>

 Page 13-82

Sample JSON

"CustomFields": {
"CustomUserDefinedStringData": {
"KeyName": "str1234",
"KeyValue": "str1234"
},
"CustomUserDefinedNumberData": {
"KeyName": "str1234",
"KeyValue": "3.1415926535"
},
"CustomUserDefinedDateData": {
"KeyName": "str1234",
"KeyValue": "2012-12-13T12:12:12"
}
}

Below are the package details for applicationupdate web service

Wrapper Engine package:-

 xaeupd_ew_100_02.xaeupd_ew_100_02 (iv_app_upd_rec IN OUT NOCOPY
 xae_app_rest_rec_t,
 ov_error_rec IN OUT NOCOPY xae_error_rec_t);

Main Engine package:-

xaeupd_em_100_02.update_app (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t

 , ov_error_rec IN OUT NOCOPY xae_error_rec_t);

Lookup Validations- involves the following packages related to
 Applicant -> xaeapl_en_100_02

 Applicant Address -> xaeapa_en_100_02

 Applicant Employment -> xaeape_en_100_02

 Applicant Telecom -> xaeapt_en_100_02

 Applicant Financial -> xaeapf_en_100_02

 Applicant liability -> xaeapb_en_100_02

 Applicant other income information -> xaeapi_en_100_02

 Decision trade in -> xaeapd_en_100_02

 Collateral valuation -> xaeavl_en_100_02

 Business details -> xaebsd_en_100_02

 Business address -> xaebsa_en_100_02

 Business partners -> xaebsp_en_100_02

 Business affiliates -> xaebsl_en_100_02

 Business telecom -> xaebst_en_100_02

 Business financials -> xaebsf_en_100_02

 Page 13-83

 Business liabilities -> xaebsb_en_100_02

 Below is the application update main package

 xaeupd_en_100_02.ins (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t,

 iv_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

You can do the customization on the following packages

Below are the Exit point package details for xaeupd_em_100_02.update_app ();

BEFORE:-

xaeupd_ex_100_02.cv_update_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeupd_ex_100_02.update_app_bfr (iv_app_rec,ov_error_rec);

REPLACE:-

xaeupd_ex_100_02.cv_update_rep = cmncon_cl_000_01. CUSTOMIZED THEN

 xaeupd_ex_100_02.update_app_rep (iv_app_rec, ov_error_rec);

AFTER:-

xaeupd_ex_100_02.cv_update_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeupd_ex_100_02.update_app_afr (iv_app_rec, ov_error_rec);

xaeapl_en_100_02. chk(

 iv_apl_rec IN OUT NOCOPY xae_apl_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE);

BEFORE:-

xaeapl_ex_100_02.CV_CHK_BFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapl_ex_100_02.chk_bfr(iv_apl_rec, ov_error_rec, iv_axn_rec);

REPLACE:-

xaeapl_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapl_ex_100_02.chk_rep(iv_apl_rec, ov_error_rec, iv_axn_rec);

AFTER:-

 Page 13-84

xaeapl_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapl_ex_100_02.chk_afr(iv_apl_rec, ov_error_rec, iv_axn_rec);

xaeapa_en_100_02. chk(

 iv_apa_rec IN OUT NOCOPY xae_apa_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapa_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapa_ex_100_02.chk_bfr(iv_apa_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapa_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapa_ex_100_02.chk_rep(iv_apa_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapa_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapa_ex_100_02.chk_afr(iv_apa_rec ,ov_error_rec ,iv_axn_rec);

xaeape_en_100_02. chk(

 iv_ape_rec IN OUT NOCOPY xae_ape_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeape_ex_100_02.CV_CHK_BFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeape_ex_100_02.chk_bfr(iv_ape_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeape_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaeape_ex_100_02.chk_rep(iv_ape_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeape_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeape_ex_100_02.chk_afr(iv_ape_rec ,ov_error_rec ,iv_axn_rec);

 Page 13-85

xaeapi_en_100_02. chk(

 iv_api_rec IN OUT NOCOPY xae_api_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapi_ex_100_02.CV_CHK_BFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapi_ex_100_02.chk_bfr(iv_api_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapi_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapi_ex_100_02.chk_rep(iv_api_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapi_ex_100_02.CV_CHK_AFR =cmncon_cl_000_01.CUSTOMIZED THEN

xaeapi_ex_100_02.chk_afr(iv_api_rec ,ov_error_rec ,iv_axn_rec);

xaeapt_en_100_02.chk(

 iv_apt_rec IN OUT NOCOPY xae_apt_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapt_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapt_ex_100_02.chk_bfr(iv_apt_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapt_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapt_ex_100_02.chk_rep(iv_apt_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapt_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapt_ex_100_02.chk_afr(iv_apt_rec ,ov_error_rec ,iv_axn_rec);

xaeapf_en_100_02.chk(

 iv_apf_rec IN OUT NOCOPY xae_apf_rest_rec_t ,

 Page 13-86

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapf_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapf_ex_100_02.chk_bfr(iv_apf_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapf_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapf_ex_100_02.chk_rep(iv_apf_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapf_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapf_ex_100_02.chk_afr(iv_apf_rec ,ov_error_rec ,iv_axn_rec);

xaeapb_en_100_02.chk(iv_apb_rec IN OUT NOCOPY xae_apb_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapb_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapb_ex_100_02.chk_bfr(iv_apb_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeapb_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapb_ex_100_02.chk_rep(iv_apb_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapb_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapb_ex_100_02.chk_afr(iv_apb_rec ,ov_error_rec ,iv_axn_rec);

xaease_en_100_02.chk(

 iv_ase_rec IN OUT NOCOPY xae_ase_rest_rec2_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

 Page 13-87

xaease_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaease_ex_100_02.chk_bfr(iv_ase_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaease_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaease_ex_100_02.chk_rep(iv_ase_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaease_ex_100_02.CV_CHK_REP =cmncon_cl_000_01.CUSTOMIZED THEN

xaease_ex_100_02.chk_afr(iv_ase_rec ,ov_error_rec ,iv_axn_rec);

xaeavl_en_100_02.chk(

 iv_avl_rec IN OUT NOCOPY xae_avl_rest_rec2_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeavl_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeavl_ex_100_02.chk_bfr(iv_avl_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaeavl_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeavl_ex_100_02.chk_rep(iv_avl_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeavl_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeavl_ex_100_02.chk_afr(iv_avl_rec ,ov_error_rec ,iv_axn_rec);

xaeapd_en_100_02.chk(

 iv_apd_rec IN OUT NOCOPY xae_apd_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaeapd_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapd_ex_100_02.chk_bfr(iv_apd_rec ,ov_error_rec ,iv_axn_rec);

 Page 13-88

REPLACE:-

xaeapd_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapd_ex_100_02.chk_rep(iv_apd_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaeapd_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaeapd_ex_100_02.chk_afr(iv_apd_rec ,ov_error_rec ,iv_axn_rec);

xaebsd_en_100_02.chk(

 iv_bus_app_rec IN OUT NOCOPY xae_bsd_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsd_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsd_ex_100_02.chk_bfr(iv_bus_app_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsd_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsd_ex_100_02.chk_rep(iv_bus_app_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsd_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsd_ex_100_02.chk_afr(iv_bus_app_rec ,ov_error_rec ,iv_axn_rec);

xaebsa_en_100_02.chk(

 iv_bsa_rec IN OUT NOCOPY xae_bsa_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsa_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsa_ex_100_02.chk_bfr(iv_bsa_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsa_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

 Page 13-89

xaebsa_ex_100_02.chk_rep(iv_bsa_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsa_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsa_ex_100_02.chk_afr(iv_bsa_rec ,ov_error_rec ,iv_axn_rec);

xaebsp_en_100_02.chk(

 iv_bsp_rec IN OUT NOCOPY xae_bsp_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsp_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsp_ex_100_02.chk_bfr(iv_bsp_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsp_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsp_ex_100_02.chk_rep(iv_bsp_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsp_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsp_ex_100_02.chk_afr(iv_bsp_rec ,ov_error_rec ,iv_axn_rec);

xaebsl_en_100_02.chk(

 iv_bsl_rec IN OUT NOCOPY xae_bsl_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsl_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsl_ex_100_02.chk_bfr(iv_bsl_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsl_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsl_ex_100_02.chk_rep(iv_bsl_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

 Page 13-90

xaebsl_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsl_ex_100_02.chk_afr(iv_bsl_rec ,ov_error_rec ,iv_axn_rec);

xaebst_en_100_02.chk(

 iv_bst_rec IN OUT NOCOPY xae_bst_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebst_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebst_ex_100_02.chk_bfr(iv_bst_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebst_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebst_ex_100_02.chk_rep(iv_bst_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebst_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebst_ex_100_02.chk_afr(iv_bst_rec ,ov_error_rec ,iv_axn_rec);

xaebsf_en_100_02.chk(

 iv_bsf_rec IN OUT NOCOPY xae_bsf_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsf_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsf_ex_100_02.chk_bfr(iv_bsf_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsf_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsf_ex_100_02.chk_rep(iv_bsf_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsf_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsf_ex_100_02.chk_afr(iv_bsf_rec ,ov_error_rec ,iv_axn_rec);

 Page 13-91

xaebsb_en_100_02.chk(

 iv_bsb_rec IN OUT NOCOPY xae_bsb_rest_rec_t ,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t,

 iv_axn_rec IN OUT NOCOPY xae_axn_evw%ROWTYPE)

BEFORE:-

xaebsb_ex_100_02.CV_CHK_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsb_ex_100_02.chk_bfr(iv_bsb_rec ,ov_error_rec ,iv_axn_rec);

REPLACE:-

xaebsb_ex_100_02.CV_CHK_REP = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsb_ex_100_02.chk_rep(iv_bsb_rec ,ov_error_rec ,iv_axn_rec);

AFTER:-

xaebsb_ex_100_02.CV_CHK_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

xaebsb_ex_100_02.chk_afr(iv_bsb_rec ,ov_error_rec ,iv_axn_rec);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.27 Application ACH (POST)
Below mentioned table has element name which indicates which type of custom data is passed in
tha custom element block, enclosing the name and its value in keyname and keyvalue
respectively.

Note: This block is unbounded and is part of other blocks. Example: Address Block.

 Page 13-92

Element name Sub Element Data Type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML FORMAT
<CustomFields>

 <CustomUserDefinedStringData>

 <KeyName>str1234</KeyName>

 <KeyValue>str1234</KeyValue>

 </CustomUserDefinedStringData>

 <CustomUserDefinedNumberData>

 <KeyName>str1234</KeyName>

 <KeyValue>3.1415926535</KeyValue>

 </CustomUserDefinedNumberData>

 <CustomUserDefinedDateData>

 <KeyName>str1234</KeyName>

 <KeyValue>2012-12-13T12:12:12</KeyValue>

 </CustomUserDefinedDateData>

</CustomFields>

Sample JSON

"CustomFields": {
"CustomUserDefinedStringData": {
"KeyName": "str1234",
"KeyValue": "str1234"
},
"CustomUserDefinedNumberData": {
"KeyName": "str1234",
"KeyValue": "3.1415926535"
},
"CustomUserDefinedDateData": {
"KeyName": "str1234",
"KeyValue": "2012-12-13T12:12:12"
}
}

 Page 13-93

Below are the package details for applicationupdate web service

Wrapper Engine package:-

xaeaac_ew_100_01. xaeaac_ew_100_01 (iv_xae_app_aac_rec_t IN OUT

 xae_app_aac_rec_t);

Main Engine package:-

 xaeaac_em_100_01. post_ach (iv_xae_app_aac_rec_t IN OUT

 xae_app_aac_rec_t);

 xaeaac_em_100_01. get_ach (iv_xae_app_aac_rec_t IN OUT

 xae_app_aac_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. post_ach();

BEFORE:-

xaeaac_ex_100_01.cv_post_ach_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeaac_ex_100_01.post_ach_bfr(iv_xae_app_aac_rec_t);

REPLACE:-

xaeaac_ex_100_01.cv_post_ach_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeaac_ex_100_01.post_ach_rep(iv_xae_app_aac_rec_t);

AFTER:-

xaeaac_ex_100_01.cv_post_ach_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeaac_ex_100_01.post_ach_afr(iv_xae_app_aac_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. get_ach();

BEFORE:-

xaeaac_ex_100_01.cv_get_ach_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeaac_ex_100_01.get_ach_bfr(iv_xae_app_aac_rec_t);

REPLACE:-

xaeaac_ex_100_01.cv_get_ach_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeaac_ex_100_01.get_ach_rep(iv_xae_app_aac_rec_t);

AFTER:-

 Page 13-94

xaeaac_ex_100_01.cv_get_ach_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeaac_ex_100_01.get_ach_afr(iv_xae_app_aac_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.28 Application Document upload/download/list Service
(POST/GET/GET)

 Below are the package details for application document upload/download web service

Wrapper Engine package:-

xaeado_ew_100_01. xaeado_ew_100_01 (iv_ado_rec IN OUT xae_ado_req_rec_t);

Main Engine package:-

 xaeado_em_100_01. xaeado_em_100_01 (iv_ado_rec IN OUT xae_ado_req_rec_t);

 xaeado_em_100_01. post_app_doc (iv_ado_rec IN OUT xae_ado_req_rec_t);

 xaeado_em_100_01. get_app_doc (iv_ado_rec IN OUT xae_ado_req_rec_t);

xaeado_em_100_01. ins_ptt_doc_upload_temp (iv_ado_rec IN OUT
xae_ado_req_rec_t);

xaeado_em_100_01. write_blob (iv_ado_rec IN OUT NOCOPY xae_ado_req_rec_t,
iv_file_id IN NUMBER,

iv_dirname IN VARCHAR2);

Below are the Exit point package details for xaeado_em_100_01. write_blob ();

BEFORE:-

xaeado_ex_100_01.cv_write_blob_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 Page 13-95

 xaeado_ex_100_01.write_blob_bfr(iv_ado_rec, iv_file_id, iv_dirname);

REPLACE:-

xaeado_ex_100_01.cv_write_blob_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.write_blob_rep(iv_ado_rec, iv_file_id, iv_dirname);

AFTER:-

xaeado_ex_100_01.cv_write_blob_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.write_blob_afr(iv_ado_rec, iv_file_id, iv_dirname);

Below are the Exit point package details for xaeado_em_100_01.
ins_ptt_doc_upload_temp();

BEFORE:-

 xaeado_ex_100_01.cv_ins_ptt_doc_upload_temp_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.ins_ptt_doc_upload_temp_bfr(iv_ado_rec);

REPLACE:-

 xaeado_ex_100_01.cv_ins_ptt_doc_upload_temp_rep= cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.ins_ptt_doc_upload_temp_rep(iv_ado_rec);

AFTER:-

 xaeado_ex_100_01.cv_ins_ptt_doc_upload_temp_afr= cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.ins_ptt_doc_upload_temp_afr(iv_ado_rec);

Below are the Exit point package details for xaeado_em_100_01.post_app_doc ();

BEFORE:-

 xaeado_ex_100_01.cv_post_app_doc_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.post_app_doc_bfr(iv_ado_rec);

REPLACE:-

 xaeado_ex_100_01.cv_post_app_doc_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.post_app_doc_rep(iv_ado_rec);

AFTER:-

 xaeado_ex_100_01.cv_post_app_doc_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 Page 13-96

 xaeado_ex_100_01.post_app_doc_afr(iv_ado_rec);

Below are the Exit point package details for xaeado_em_100_01.get_app_doc ();

BEFORE:-

 xaeado_ex_100_01.cv_get_app_doc_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.get_app_doc_bfr(iv_ado_rec);

REPLACE:-

 xaeado_ex_100_01.cv_get_app_doc_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.get_app_doc_rep(iv_ado_rec);

AFTER:-

 xaeado_ex_100_01.cv_get_app_doc_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaeado_ex_100_01.get_app_doc_afr(iv_ado_rec);

13.29 Account Document upload/download/list Service
(POST/GET/GET)

Below are the package details for Account document upload/download web service

Wrapper Engine package:-

xcsado_ew_100_01. xcsado_ew_100_01 (iv_ado_rec IN OUT xcs_ado_req_rec_t)

Main Engine package:-

 xcsado_em_100_01. xcsado_em_100_01 (iv_ado_rec IN OUT xcs_ado_req_rec_t)

 xcsado_em_100_01. post_acc_doc(iv_ado_rec IN OUT xcs_ado_req_rec_t);

 xcsado_em_100_01. get_acc_doc (iv_ado_rec IN OUT xcs_ado_req_rec_t);

xcsado_em_100_01. ins_ptt_doc_upload_temp(iv_ado_rec IN OUT NOCOPY
xcs_ado_req_rec_t);

xaeado_em_100_01. write_blob (iv_ado_rec IN OUT NOCOPY xcs_ado_req_rec_t,

iv_file_id IN NUMBER,

iv_dirname IN VARCHAR2);

Below are the Exit point package details for xaeado_em_100_01. write_blob ();

BEFORE:-

 Page 13-97

xcsado_ex_100_01.cv_write_blob_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.write_blob_bfr(iv_ado_rec, iv_file_id, iv_dirname);

REPLACE:-

xcsado_ex_100_01.cv_write_blob_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.write_blob_rep(iv_ado_rec, iv_file_id, iv_dirname);

AFTER:-

xcsado_ex_100_01.cv_write_blob_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.write_blob_afr(iv_ado_rec, iv_file_id, iv_dirname);

Below are the Exit point package details for xcsado_em_100_01.
ins_ptt_doc_upload_temp();

BEFORE:-

 xcsado_ex_100_01.cv_ins_ptt_doc_upload_temp_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.ins_ptt_doc_upload_temp_bfr(iv_ado_rec);

REPLACE-

 xcsado_ex_100_01.cv_ins_ptt_doc_upload_temp_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.ins_ptt_doc_upload_temp_rep (iv_ado_rec);

 AFTER:-

 xcsado_ex_100_01.cv_ins_ptt_doc_upload_temp_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.ins_ptt_doc_upload_temp_afr (iv_ado_rec);

Below are the Exit point package details for xcsado_em_100_01.post_acc_doc ();

BEFORE:-

 xcsado_ex_100_01.cv_post_acc_doc_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.post_acc_doc_bfr(iv_ado_rec);

 REPLACE:-

 xcsado_ex_100_01.cv_post_acc_doc_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.post_acc_doc_rep(iv_ado_rec);

AFTER:-

 xcsado_ex_100_01.cv_post_acc_doc_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 Page 13-98

 xcsado_ex_100_01.post_acc_doc_afr(iv_ado_rec);

Below are the Exit point package details for xcsado_em_100_01.get_acc_doc ();

BEFORE:-

 xcsado_ex_100_01.cv_get_acc_doc_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.get_acc_doc_bfr (iv_ado_rec);

REPLACE-

 xcsado_ex_100_01.cv_get_acc_doc_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.get_acc_doc_rep (iv_ado_rec);

AFTER:-

 xcsado_ex_100_01.cv_get_acc_doc_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsado_ex_100_01.get_acc_doc_afr (iv_ado_rec);

13.30 Application Get Service (GET)
Below are the package details for application get web service

Wrapper Engine package:-

xaechk_ew_100_02. xaechk_ew_100_02 (iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t);

Main Engine package:-

xaechk_en_100_02. check_status (

 iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t)

 xaechk_en_100_02. populate_application_response

(iv_app_rec IN OUT NOCOPY xae_app_rest_rec_t,

 ov_error_rec IN OUT NOCOPY xae_error_rec_t

Below are the Exit point package details for xaechk_en_100_02. check_status ();

BEFORE:-

xaechk_ex_100_02.CV_CHECK_STATUS_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

 Page 13-99

 xaechk_ex_100_02.check_status_bfr(iv_app_rec);

REPLACE:-

xaechk_ex_100_02.CV_CHECK_STATUS_REP = cmncon_cl_000_01.CUSTOMIZED THEN

 xaechk_ex_100_02.check_status_rep(iv_app_rec);

AFTER:-

xaechk_ex_100_02.CV_CHECK_STATUS_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

 xaechk_ex_100_02.check_status_afr(iv_app_rec);

13.31 Scheduler Force ReSubmit Service (PUT)
Below are the package details for force resubmit job set web service

Wrapper Engine package:-

xaejbs_ew_100_02.xaejbs_ew_100_02 (iv_jbs_rec_t IN OUT NOCOPY job_jbs_rec_t,

iv_axn_rec_t IN OUT NOCOPY xac_axn_rec_t);

Main Engine package:-

xaejbs_em_100_02. Submit (iv_jbs_rec_t IN OUT NOCOPY job_jbs_rec_t,

iv_axn_rec_t IN OUT NOCOPY xac_axn_rec_t);

Below are the Exit point package details for xaejbs_em_100_02. Submit ();

BEFORE:-

xaejbs_ex_100_01.cv_submit_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaejbs_ex_100_01.submit_bfr (iv_jbs_rec_t, iv_axn_rec_t);

REPLACE-

xaejbs_ex_100_01.cv_submit_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xaejbs_ex_100_01.submit_rep (iv_jbs_rec_t, iv_axn_rec_t);

AFTER:-

xaejbs_ex_100_01.cv_submit_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xaejbs_ex_100_01.submit_afr (iv_jbs_rec_t, iv_axn_rec_t);

13.32 Credit Limit Service (Customer/Business) [GET]
Below mentioned are the custom fields. These fields will be part of response.

 Page 13-100

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 < StringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </ StringData>

 <NumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </NumberData>

 <DateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </DateData>

</Custom>

Sample JSON
"Custom": {

 "StringData": [

 {

 "KeyName": " StringName ",

 "KeyValue": " StringValue "

 }

],

 "NumberData": [

 {

 "KeyName": " NumberName ",

 "KeyValue": NumberValue

 }

],

 "DateData": [

 Page 13-101

 {

 "KeyName": " DateName ",

 "KeyValue": " DateValue"

 }

]

 }

Below are the package details for applicationupdate web service

Wrapper Engine package:-

xcscrl_ew_100_01. xcscrl_ew_100_01 (iv_xcs_crl_rec IN OUT xcs_crl_rec_t);

Main Engine package:-

 xcscrl_em_100_01. get_crl (iv_xcs_crl_rec IN OUT xcs_crl_rec_t);

Below are the Exit point package details for xcscrl_em_100_01. get_crl();

BEFORE:-

xcscrl_ex_100_01.cv_get_crl_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscrl_ex_100_01.get_crl_bfr(iv_xcs_crl_rec_t);

REPLACE:-

xcscrl_ex_100_01.cv_get_crl_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscrl_ex_100_01.get_crl_rep(iv_xcs_crl_rec_t);

AFTER:-

xcscrl_ex_100_01.cv_get_crl_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscrl_ex_100_01.get_crl_afr(iv_xcs_crl_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 Page 13-102

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.33 Business Comments Service (GET/POST)
Below mentioned are the custom fields. These fields will be part of response for both GET and
POST service and will be part of request for POST service.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>

 < StringData>

 <KeyName> StringName </KeyName>

 <KeyValue> StringValue </KeyValue>

 </ StringData>

 <NumberData>

 <KeyName> NumberName </KeyName>

 <KeyValue> NumberValue </KeyValue>

 </NumberData>

 <DateData>

 <KeyName> DateName </KeyName>

 <KeyValue> DateValue</KeyValue>

 </DateData>

</Custom>

Sample JSON
"Custom": {

 "StringData": [

 {

 "KeyName": " StringName ",

 "KeyValue": " StringValue "

 }

],

 "NumberData": [

 Page 13-103

 {

 "KeyName": " NumberName ",

 "KeyValue": NumberValue

 }

],

 "DateData": [

 {

 "KeyName": " DateName ",

 "KeyValue": " DateValue"

 }

]

 }

Below are the package details for applicationupdate web service

Wrapper Engine package:-

xcsxcm_ew_100_01. xcsxcm_ew_100_01 (iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

Main Engine package:-

 xcsxcm_em_100_01. post_acm (iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

 xcsxcm_em_100_01. get_acm(iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. post_acm();

BEFORE:-

xcsxcm_ex_100_01.cv_post_acm_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_bfr(iv_acm_rec_t);

REPLACE:-

xcsxcm_ex_100_01.cv_post_acm_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_rep(iv_acm_rec_t);

AFTER:-

xcsxcm_ex_100_01.cv_post_acm_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_afr(iv_acm_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. get_acm();

BEFORE:-

 Page 13-104

xcsxcm_ex_100_01.cv_get_acm_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_bfr(iv_acm_rec_t);

REPLACE:-

xcsxcm_ex_100_01.cv_get_acm_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_rep(iv_acm_rec_t);

AFTER:-

xcsxcm_ex_100_01.cv_get_acm_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_afr(iv_acm_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.34 Customer Comments Service (GET/POST)
Below mentioned are the custom fields. These fields will be part of response for both GET and
POST service and will be part of request for POST service.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 Page 13-105

Element name Sub element Data type

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName> StringName </KeyName>
 <KeyValue> StringValue </KeyValue>
 </ StringData>
 <NumberData>
 <KeyName> NumberName </KeyName>
 <KeyValue> NumberValue </KeyValue>
 </NumberData>
 <DateData>
 <KeyName> DateName </KeyName>
 <KeyValue> DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": " StringName ",
 "KeyValue": " StringValue "
 }
],
 "NumberData": [
 {
 "KeyName": " NumberName ",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": " DateName ",
 "KeyValue": " DateValue"
 }
]
 }

Below are the package details for applicationupdate web service

Wrapper Engine package:-

xcsxcm_ew_100_01. xcsxcm_ew_100_01 (iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

Main Engine package:-

 xcsxcm_em_100_01. post_acm (iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

 xcsxcm_em_100_01. get_acm(iv_acm_rec_t IN OUT xcs_acm_axn_rec_t);

 Page 13-106

Below are the Exit point package details for xaeaac_em_100_01. post_acm();

BEFORE:-

xcsxcm_ex_100_01.cv_post_acm_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_bfr(iv_acm_rec_t);

REPLACE:-

xcsxcm_ex_100_01.cv_post_acm_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_rep(iv_acm_rec_t);

AFTER:-

xcsxcm_ex_100_01.cv_post_acm_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.post_acm_afr(iv_acm_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. get_acm();

BEFORE:-

xcsxcm_ex_100_01.cv_get_acm_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_bfr(iv_acm_rec_t);

REPLACE:-

xcsxcm_ex_100_01.cv_get_acm_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_rep(iv_acm_rec_t);

AFTER:-

xcsxcm_ex_100_01.cv_get_acm_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsxcm_ex_100_01.get_acm_afr(iv_acm_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 Page 13-107

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.35 Customer Preference Service (GET/POST/PUT)
Below mentioned are the custom fields. These fields will be part of response for GET, PUT and
POST service and will be part of request for POST and PUT service.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>
 < CustomUserDefinedStringData>
 <KeyName> StringName </KeyName>
 <KeyValue> StringValue </KeyValue>
 </ CustomUserDefinedStringData>
 < CustomUserDefinedNumberData>
 <KeyName> NumberName </KeyName>
 <KeyValue> NumberValue </KeyValue>
 </ CustomUserDefinedNumberData>
 <CustomUserDefinedDateData>
 <KeyName> DateName </KeyName>
 <KeyValue> DateValue</KeyValue>
 </ CustomUserDefinedDateData>
</Custom>

Sample JSON
"Custom": {
 " CustomUserDefinedStringData": [
 {
 "KeyName": " StringName ",
 "KeyValue": " StringValue "
 }
],
 " CustomUserDefinedNumberData": [
 {
 "KeyName": " NumberName ",
 "KeyValue": NumberValue
 }
],

 Page 13-108

 " CustomUserDefinedDateData": [
 {
 "KeyName": " DateName ",
 "KeyValue": " DateValue"
 }
]
 }

Below are the package details for applicationupdate web service

Wrapper Engine package:-

xcscpr_ew_100_01.xcscpr_ew_100_01 (iv_xcs_cpr_rec_t IN OUT xcs_cpr_rec_t);

Main Engine package:-

 xcscpr_em_100_01.post_cpr (iv_xcs_cpr_rec_t IN OUT xcs_cpr_rec_t);

 xcscpr_em_100_01.get_cpr(iv_xcs_cpr_rec_t IN OUT xcs_cpr_rec_t);

 xcscpr_em_100_01.put_cpr(iv_xcs_cpr_rec_t IN OUT xcs_cpr_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. post_cpr();

BEFORE:-

xcscpr_ex_100_01.cv_post_cpr_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.post_cpr_bfr(iv_acm_rec_t);

REPLACE:-

xcscpr_ex_100_01.cv_post_cpr_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.post_cpr_rep(iv_acm_rec_t);

AFTER:-

xcscpr_ex_100_01.cv_post_cpr_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.post_cpr_afr(iv_acm_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. get_cpr();

BEFORE:-

xcscpr_ex_100_01.cv_get_cpr_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.get_cpr_bfr(iv_acm_rec_t);

REPLACE:-

 Page 13-109

xcscpr_ex_100_01.cv_get_cpr_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.get_cpr_rep(iv_acm_rec_t);

AFTER:-

xcscpr_ex_100_01.cv_get_cpr_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.get_cpr_afr(iv_acm_rec_t);

Below are the Exit point package details for xaeaac_em_100_01. put_cpr();

BEFORE:-

xcscpr_ex_100_01.cv_put_cpr_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.put_cpr_bfr(iv_acm_rec_t);

REPLACE:-

xcscpr_ex_100_01.cv_put_cpr_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.put_cpr_rep(iv_acm_rec_t);

AFTER:-

xcscpr_ex_100_01.cv_put_cpr_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscpr_ex_100_01.put_cpr_afr(iv_acm_rec_t);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.36 Scenario Analysis Service (PUT)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String
 KeyValue String
CustomUserDefinedNumberData KeyName String

 Page 13-110

 KeyValue Number (Decimal)
CustomUserDefinedDateData KeyName String
 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>
 < CustomUserDefinedStringData>
 <KeyName> StringName </KeyName>
 <KeyValue> StringValue </KeyValue>
 </ CustomUserDefinedStringData>
 < CustomUserDefinedNumberData>
 <KeyName> NumberName </KeyName>
 <KeyValue> NumberValue </KeyValue>
 </ CustomUserDefinedNumberData>
 <CustomUserDefinedDateData>
 <KeyName> DateName </KeyName>
 <KeyValue> DateValue</KeyValue>
 </ CustomUserDefinedDateData>
</Custom>

Sample JSON
"Custom": {
 " CustomUserDefinedStringData": [
 {
 "KeyName": " StringName ",
 "KeyValue": " StringValue "
 }
],
 " CustomUserDefinedNumberData": [
 {
 "KeyName": " NumberName ",
 "KeyValue": NumberValue
 }
],
 " CustomUserDefinedDateData": [
 {
 "KeyName": " DateName ",
 "KeyValue": " DateValue"
 }
]
 }

13.37 Transaction Parameters Service (GET)
Below mentioned are the custom fields. These fields will be part of response.

Element name Sub element Data type

CustomUserDefinedStringData KeyName String

 KeyValue String

 Page 13-111

CustomUserDefinedNumberData KeyName String

 KeyValue Number (Decimal)

CustomUserDefinedDateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>
 < CustomUserDefinedStringData>
 <KeyName> StringName </KeyName>
 <KeyValue> StringValue </KeyValue>
 </ CustomUserDefinedStringData>
 < CustomUserDefinedNumberData>
 <KeyName> NumberName </KeyName>
 <KeyValue> NumberValue </KeyValue>
 </ CustomUserDefinedNumberData>
 <CustomUserDefinedDateData>
 <KeyName> DateName </KeyName>
 <KeyValue> DateValue</KeyValue>
 </ CustomUserDefinedDateData>
</Custom>

Sample JSON
"Custom": {
 " CustomUserDefinedStringData": [
 {
 "KeyName": " StringName ",
 "KeyValue": " StringValue "
 }
],
 " CustomUserDefinedNumberData": [
 {
 "KeyName": " NumberName ",
 "KeyValue": NumberValue
 }
],
 " CustomUserDefinedDateData": [
 {
 "KeyName": " DateName ",
 "KeyValue": " DateValue"
 }
]
 }

Below are the package details for transaction parameter web service

Wrapper Engine package:-

xtpprc_ew_100_01.xtpprc_ew_100_01 (iv_req_rec_t IN xws_tcd_req_rec_t

 Page 13-112

 , iv_res_rec_t IN OUT xws_tcp_resp_rec_t);

Main Engine package:-

 xtpprc_em_100_01.xtpprc_em_100_01 (iv_req_rec_t IN xws_tcd_req_rec_t

 , iv_res_rec_t IN OUT xws_tcp_resp_rec_t);

Below are the Exit point package details for xtpprc_em_100_01.xtpprc_em_100_01();

BEFORE:-

xtpprc_ex_100_01.cv_xtpprc_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xtpprc_ex_100_01.xtpprc_em_100_01_bfr(iv_req_rec_t, iv_res_rec_t);

REPLACE:-

xtpprc_ex_100_01.cv_xtpprc_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xtpprc_ex_100_01.xtpprc_em_100_01_rep(iv_req_rec_t, iv_res_rec_t);

AFTER:-

xtpprc_ex_100_01.cv_xtpprc_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xtpprc_ex_100_01.xtpprc_em_100_01_afr(iv_req_rec_t, iv_res_rec_t);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.38 Asset Tracking Attribute Service(PUT)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

StringData KeyName String

 Page 13-113

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName>StringName</KeyName>
 <KeyValue>StringValue</KeyValue>
 </ StringData>
 < NumberData>
 <KeyName>NumberName</KeyName>
 <KeyValue>NumberValue</KeyValue>
 </ NumberData>
 <DateData>
 <KeyName>DateName</KeyName>
 <KeyValue>DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": "StringName",
 "KeyValue": "StringValue"
 }
],
 "NumberData": [
 {
 "KeyName": "NumberName",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": "DateName",
 "KeyValue": "DateValue"
 }
]
 }

Below are the package details for transaction parameter web service

Wrapper Engine package:-

 Page 13-114

xcsata_ew_100_01 .xcsata_ew_100_01 (iv_xcs_ata_rec IN OUT xcs_ata_atr_rec_t);

Main Engine package:-

xcsata_em_100_01.update_asset_tacking_atr (iv_xcs_ata_rec IN OUT xcs_ata_atr_rec_t);

Below are the Exit point package details for xcsata_em_100_01.update_asset_tacking_atr

();

BEFORE:-

xcsata_ex_100_01.cv_upd_ast_tracking_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsata_ex_100_01.upd_ast_tracking_bfr(iv_xcs_ata_rec);

REPLACE:-

xcsata_ex_100_01.cv_upd_ast_tracking_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsata_ex_100_01.upd_ast_tracking_rep(iv_xcs_ata_rec);

AFTER:-

xcsata_ex_100_01.cv_upd_ast_tracking_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsata_ex_100_01.upd_ast_tracking_afr(iv_xcs_ata_rec);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.39 Business Tracking Attribute Service(PUT)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

 Page 13-115

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName>StringName</KeyName>
 <KeyValue>StringValue</KeyValue>
 </ StringData>
 < NumberData>
 <KeyName>NumberName</KeyName>
 <KeyValue>NumberValue</KeyValue>
 </ NumberData>
 <DateData>
 <KeyName>DateName</KeyName>
 <KeyValue>DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": "StringName",
 "KeyValue": "StringValue"
 }
],
 "NumberData": [
 {
 "KeyName": "NumberName",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": "DateName",
 "KeyValue": "DateValue"
 }
]
 }

Below are the package details for transaction parameter web service

Wrapper Engine package:-

xcsbta_ew_100_01.xcsbta_ew_100_01 (iv_xcs_bta_rec IN OUT xcs_bta_atr_rec_t);

 Page 13-116

Main Engine package:-

xcsbta_em_100_01. update_business_tacking_atr (iv_xcs_bta_rec IN OUT xcs_bta_atr_rec_t);

Below are the Exit point package details for
xcsbta_em_100_01.update_business_tacking_atr();

BEFORE:-

xcsbta_ex_100_01.cv_upd_bsn_tracking_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsbta_ex_100_01.upd_bsn_tracking_bfr(iv_xcs_bta_rec);

REPLACE:-

xcsbta_ex_100_01.cv_upd_bsn_tracking_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsbta_ex_100_01.upd_bsn_tracking_rep(iv_xcs_bta_rec);

AFTER:-

xcsbta_ex_100_01.cv_upd_bsn_tracking_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsbta_ex_100_01.upd_bsn_tracking_afr(iv_xcs_bta_rec);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.40 Customer Tracking Attribute Service(PUT)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 Page 13-117

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName>StringName</KeyName>
 <KeyValue>StringValue</KeyValue>
 </ StringData>
 < NumberData>
 <KeyName>NumberName</KeyName>
 <KeyValue>NumberValue</KeyValue>
 </ NumberData>
 <DateData>
 <KeyName>DateName</KeyName>
 <KeyValue>DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": "StringName",
 "KeyValue": "StringValue"
 }
],
 "NumberData": [
 {
 "KeyName": "NumberName",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": "DateName",
 "KeyValue": "DateValue"
 }
]
 }

Below are the package details for transaction parameter web service

Wrapper Engine package:-

xcscta_ew_100_01.xcscta_ew_100_01 (iv_xcs_cta_rec IN OUT xcs_cta_atr_rec_t);

Main Engine package:-

 Page 13-118

xcscta_em_100_01.update_customer_tacking_atr (iv_xcs_cta_rec IN OUT xcs_cta_atr_rec_t);

Below are the Exit point package details for
xcscta_em_100_01.update_customer_tacking_atr();

BEFORE:-

xcscta_ex_100_01.cv_upd_cust_tracking_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscta_ex_100_01.upd_cust_tracking_bfr(iv_xcs_cta_rec);

REPLACE:-

xcscta_ex_100_01.cv_upd_cust_tracking_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscta_ex_100_01.upd_cust_tracking_rep(iv_xcs_cta_rec);

AFTER:-

xcscta_ex_100_01.cv_upd_cust_tracking_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscta_ex_100_01.upd_cust_tracking_afr(iv_xcs_cta_rec);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.41 Account Tracking Attribute Service(PUT)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

 Page 13-119

DateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName>StringName</KeyName>
 <KeyValue>StringValue</KeyValue>
 </ StringData>
 < NumberData>
 <KeyName>NumberName</KeyName>
 <KeyValue>NumberValue</KeyValue>
 </ NumberData>
 <DateData>
 <KeyName>DateName</KeyName>
 <KeyValue>DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": "StringName",
 "KeyValue": "StringValue"
 }
],
 "NumberData": [
 {
 "KeyName": "NumberName",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": "DateName",
 "KeyValue": "DateValue"
 }
]
 }

Below are the package details for transaction parameter web service

Wrapper Engine package:-

xcsact_ew_100_01.xcsact_ew_100_01 (iv_xcs_act_rec IN OUT xcs_act_atr_rec_t);

Main Engine package:-

xcsact_em_100_01.update_account_tacking_atr (iv_xcs_act_rec IN OUT xcs_act_atr_rec_t);

 Page 13-120

Below are the Exit point package details for
xcsact_em_100_01.update_account_tacking_atr();

BEFORE:-

xcsact_ex_100_01.cv_upd_acnt_tracking_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsact_ex_100_01.upd_acnt_tracking_bfr(iv_xcs_act_rec);

REPLACE:-

xcsact_ex_100_01.cv_upd_acnt_tracking_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsact_ex_100_01.upd_acnt_tracking_rep(iv_xcs_act_rec);

AFTER:-

xcsact_ex_100_01.cv_upd_acnt_tracking_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcsact_ex_100_01.upd_acnt_tracking_afr(iv_xcs_act_rec);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.42 Credit Bureau Web Service(PUT)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-

 Page 13-121

DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName>StringName</KeyName>
 <KeyValue>StringValue</KeyValue>
 </ StringData>
 < NumberData>
 <KeyName>NumberName</KeyName>
 <KeyValue>NumberValue</KeyValue>
 </ NumberData>
 <DateData>
 <KeyName>DateName</KeyName>
 <KeyValue>DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": "StringName",
 "KeyValue": "StringValue"
 }
],
 "NumberData": [
 {
 "KeyName": "NumberName",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": "DateName",
 "KeyValue": "DateValue"
 }
]
 }

Below are the package details for credit bureau web service

Wrapper Engine packages :-

xaecrb_ew_100_03.xaecrb_ew_100_03 (iv_crq_rec IN OUT NOCOPY xcs_crb_crq_res_rec_t);

xaecrb_em_100_03. xaecrb_em_100_03 (iv_crq_rec IN OUT NOCOPY xcs_crb_crq_res_rec_t);

Main Engine package:-

xaecrb_en_100_03.put_credit_request_detail (iv_crq_rec IN OUT NOCOPY
xcs_crb_crq_res_rec_t);

 Page 13-122

Below are the Exit point package details for xaecrb_en_100_03.put_credit_request_detail
();

BEFORE:-

 IF xaecrb_ex_100_03.cv_put_cr_req_dtl_bfr = cmncon_cl_000_01.customized THEN

 xaecrb_ex_100_03.put_cr_req_dtl_bfr (iv_crq_rec);

REPLACE:-

 IF xaecrb_ex_100_03.cv_put_cr_req_dtl_rep = cmncon_cl_000_01.customized THEN

 xaecrb_ex_100_03.put_cr_req_dtl_rep (iv_crq_rec);

AFTER:-

IF xaecrb_ex_100_03.cv_put_cr_req_dtl_afr = cmncon_cl_000_01.customized THEN

 xaecrb_ex_100_03.put_cr_req_dtl_afr (iv_crq_rec);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.43 Delete Account Web Service(DELETE)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 Page 13-123

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName>StringName</KeyName>
 <KeyValue>StringValue</KeyValue>
 </ StringData>
 < NumberData>
 <KeyName>NumberName</KeyName>
 <KeyValue>NumberValue</KeyValue>
 </ NumberData>
 <DateData>
 <KeyName>DateName</KeyName>
 <KeyValue>DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": "StringName",
 "KeyValue": "StringValue"
 }
],
 "NumberData": [
 {
 "KeyName": "NumberName",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": "DateName",
 "KeyValue": "DateValue"
 }
]
 }

Below are the package details for delete account web service

Wrapper Engine packages :-

xcsdac_ew_100_01. xcsdac_ew_100_01 (iv_xcs_dac_rec IN OUT xcs_dac_req_rec_t)

Main Engine package:-

xcsdac_em_100_01.xcsdac_em_100_01(iv_xcs_dac_rec IN OUT xcs_dac_req_rec_t));

 Page 13-124

Below are the Exit point package details for xcsdac_em_100_01. xcsdac_em_100_01 ();

BEFORE:-

 IF xcsdac_ex_100_01.cv_xcsdac_em_100_01_bfr =cmncon_cl_000_01.CUSTOMIZED THEN

 xcsdac_ex_100_01.xcsdac_em_100_01_bfr(iv_xcs_dac_rec);

REPLACE:-

 IF xcsdac_ex_100_01.cv_xcsdac_em_100_01_rep =cmncon_cl_000_01.CUSTOMIZED THEN

 xcsdac_ex_100_01.xcsdac_em_100_01_rep(iv_xcs_dac_rec);

AFTER:-

 IF xcsdac_ex_100_01.cv_xcsdac_em_100_01_afr =cmncon_cl_000_01.CUSTOMIZED THEN

 xcsdac_ex_100_01.xcsdac_em_100_01_afr(iv_xcs_dac_rec);

Extensible parameters are Tab Type object
CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

13.44 New Customization for RESTful Web Service
Below are the list of services introduced and it follows new naming statndard for custom elements
in request/response.

• Advance Disbursement Service (GET)
• Advance Disbursement Service (POST)
• Usage and Rental Service (GET)
• Collateral Usage History (POST)
• Asset Service (GET)
• Asset Service (POST)
• Application Contract Service (POST)
• User Create Service (POST)
• Rental Application Entry Service (POST)
• Vendor Create Service (POST)

 Page 13-125

• Vendor Update Service (PUT)
• Vendor Detail Fetch Service (GET)
• Vendor Comment Create service (POST)
• Vendor Comment Fetch Service (GET)
• Asset Valuation Create Service (POST)
• Asset Valuation Update Service (PUT)
• Asset Valuation Fetch Service (GET)
• Producer Comment Create Service (POST)
• Producer Comment Fetch Service (GET)
• Producer Contact Fetch Service (GET)
• Producer Contact Create Service (POST)
• Producer Compansaction Fetch Service (GET)
• Producer Holdback Fetch Service (GET)
• Producer Statement Fetch Service (GET)
• Subvention Detail Service (GET)
• Account Monitory Transaction History Fetch Service (GET)
• Webhook get maintenance details (GET)
• Webhook update event status details (PUT)
• Webhook Maintenance Post Service (POST)
• Webhook Maintenance Fetch Service (GET)
• Webhook Maintenance Update Service (PUT)
• User Update Service (PUT)
• Master Account Rolledup Balance Detail Service (GET)

Below mentioned are the custom fields. Custom fields will be supported in request/response for
POST/PUT services and will be supported only in response for GET services.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date (YYYY-MM-DDTHH:MM:SS)

Sample XML
<Custom>
 <StringData>

<KeyName>OrgName</KeyName>

 Page 13-126

<KeyValue>Oracle</KeyValue>
 </StringData>
 <NumberData>

<KeyName>BusinessPhoneNumber</KeyName>
<KeyValue>1234.01</KeyValue>

 </NumberData>
 <DateData>

<KeyName>CreationDate</KeyName>
<KeyValue>2017-12-18T00:00:00</KeyValue>

 </DateData>
</Custom>

Sample JSON
"Custom": {
 " StringData": [
 {
 "KeyName": " StringName ",
 "KeyValue": " StringValue "
 }
],
 " NumberData": [
 {
 "KeyName": " NumberName ",
 "KeyValue": NumberValue
 }
],
 " DateData": [
 {
 "KeyName": " DateName ",
 "KeyValue": " DateValue"
 }
]
 }

Below is the list of services which uses the Tracking Attribute in request/response similar to
Custom Elements for extensibilty.

• Producer Create Service (POST)
• Producer Update Service (PUT)
• Producer Fetch Service (GET)
• Account Tracking Attribute Fetch Service (GET)

Below mentioned are the Tracking Attribute fields. Tracking Attribute fields will be supported in
request/response for POST/PUT services and will be supported only in response for GET
services.

Element name Sub element Data type

StringData KeyName String
 KeyValue String
NumberData KeyName String

 Page 13-127

Element name Sub element Data type

 KeyValue Number (Decimal)
DateData KeyName String
 KeyValue Date(YYYY-MM-DDTHH:MM:SS)

Sample XML
<TrackingAttributes>
 <StringData>
 <KeyName>OrgName</KeyName>
 <KeyValue>Oracle</KeyValue>
 </StringData>
 <NumberData>
 <KeyName>BusinessPhoneNumber</KeyName>
 <KeyValue>1234.01</KeyValue>
 </NumberData>
 <DateData>
 <KeyName>CreationDate</KeyName>
 <KeyValue>2017-12-18T00:00:00</KeyValue>
 </DateData>
</TrackingAttributes>

Sample JSON
" TrackingAttributes ": {
 " StringData": [
 {
 "KeyName": " StringName ",
 "KeyValue": " StringValue "
 }
],
 " NumberData": [
 {
 "KeyName": " NumberName ",
 "KeyValue": NumberValue
 }
],
 " DateData": [
 {
 "KeyName": " DateName ",
 "KeyValue": " DateValue"
 }
]
 }

Below mentioned are the package details and exit points for the above listed services.

Service
name

Wrapper Package Main
Package

Exit Point Packages

Before Replace After

Advance XBTADV_EW_100_01. XBTADV_ XBTADV_EX_100_01

 Page 13-128

Service
name

Wrapper Package Main
Package

Exit Point Packages

Disburse
ment
Service
(GET)

XBTADV_EW_100_01(i
v_adv_axn_rec IN OUT
xbt_adv_axn_rec_t)

EM_100_0
1.GET_AD
V

GET_ADV_
BFR

GET_AD
V_REP

GET_ADV
_AFR

Advance
Disburse
ment
Service
(POST)

XBTADV_EW_100_01.
XBTADV_EW_100_01(i
v_adv_axn_rec IN OUT
xbt_adv_axn_rec_t)

XBTADV_
EM_100_0
1.POST_A
DV

XBTADV_EX_100_01

POST_ADV
_BFR

POST_A
DV_REP

POST_AD
V_AFR

Applicatio
n Contract
Service
(POST)

XAECON_EW_100_01.
XAECON_EW_100_01(
iv_xae_app_con_rec_t
IN OUT
xae_app_con_rec_t

XAECON_
EM_100_0
1.XAECON
_EM_100_
01

XAECON_EX_100_01

XAECON_E
M_100_01_
BFR

XAECON
_EM_100
_01_REP

XAECON_
EM_100_0
1_AFR

Rental
Applicatio
n Entry
Service
(POST)

xaernt_ew_121_01.xae
rnt_ew_121_01(
iv_xae_rnt_req_rec_t
IN xae_rnt_req_rec_t
,iv_xae_rnt_res_rec_t
OUT xae_error_rec_t)

XAERNT_
EM_121_0
1.XAERNT
_EM_121_
01

XAERNT_EX_121_01

XAERNT_E
M_121_01_
BFR

XAERNT
_EM_121
_01_REP

XAERNT_
EM_121_0
1_AFR

XAERNT_
EN_121_0
1.SET_RE
NTAL_DET
AILS

XAERNT_EX_121_02

SET_RENT
AL_DETAIL
S_BFR

SET_RE
NTAL_DE
TAILS_R
EP

SET_REN
TAL_DET
AILS_BFR

XAERNT_
EN_121_0
1.INITIALIZ
E_RNT_D
ETAILS

XAERNT_EX_121_02

INITIALIZE_
RNT_DETAI
LS_BFR

INITIALIZ
E_RNT_
DETAILS
_REP

INITIALIZE
_RNT_DE
TAILS_AF
R

xaernt_en_
121_01.ins

XAEINS_EX_121_01

INS_BFR INS_REP INS_AFR

Usage
and
Rental
Service
(GET)

XCMPRC_EW_121_01
.XCMPRC_EW_121_0
1(iv_xcm_rnt_rec IN
OUT
xcm_rnt_req_rec_t)

XCMPRC_
EM_121_0
1.XCMPRC
_EM_121_
01

XCMPRC_EX_121_01

XCMPRC_E
M_121_01_
BFR

XCMPRC
_EM_121
_01_REP

XCMPRC_
EM_121_0
1_AFR

Asset XCSASE_EW_100_02. XCSASE_ XCSASE_EX_100_02

 Page 13-129

Service
name

Wrapper Package Main
Package

Exit Point Packages

Service
(GET)

XCSASE_EW_100_02(
iv_xcs_ase_rec IN OUT
xcs_get_ase_tab_t)

EM_100_0
2.XCSASE
_EM_100_
02

XCSASE_E
X_100_02_
BFR

XCSASE
_EX_100
_02_REP

XCSASE_
EX_100_0
2_AFR

Asset
Service
(POST)

XCSASE_EW_100_01.
XCSASE_EW_100_01(
iv_xcs_ase_rec IN OUT
xcs_ase_req_rec_t)

XCSASE_
EM_100_0
1.XCSASE
_EM_100_
01

XCSASE_EX_100_01

XCSASE_E
X_100_01_
BFR

XCSASE
_EX_100
_01_REP

XCSASE_
EX_100_0
1_AFR

XCSASE_
EM_100_0
1.POST_A
SSET

XCSASE_EX_100_01

POST_ASS
ET_BFR

POST_A
SSET_R
EP

POST_AS
SET_AFR

Asset
Service

(PUT)

XCSASE_EW_100_01.
XCSASE_EW_100_01(
iv_xcs_ase_rec IN OUT
xcs_ase_req_rec_t)

XCSASE_
EM_100_0
1.PUT_AS
SET

XCSASE_EX_100_01

PUT_ASSE
T_BFR

PUT_AS
SET_RE
P

PUT_ASS
ET_AFR

Asset
Valuations
Service

(PUT)

XCSASE_EW_100_01.
XCSASE_EW_100_01(
iv_xcs_ase_rec IN OUT
xcs_ase_req_rec_t)

XCSASE_
EM_100_0
1.PUT_AS
E_AVL

XCSASE_EX_100_01

 PUT_ASE_
AVL_BFR

PUT_AS
E_AVL_R
EP

PUT_ASE
_AVL_AFR

Asset
Valuations
Service

(POST)

XCSASE_EW_100_01.
XCSASE_EW_100_01(
iv_xcs_ase_rec IN OUT
xcs_ase_req_rec_t)

XCSASE_
EM_100_0
1.POST_A
SE_AVL

XCSASE_EX_100_01

 POST_ASE
_AVL_BFR

POST_A
SE_AVL_
REP

POST_AS
E_AVL_AF
R

Asset
Valuations
Service

(GET)

XCSASE_EW_100_01.
XCSASE_EW_100_01(
iv_xcs_ase_rec IN OUT
xcs_ase_req_rec_t)

XCSASE_
EM_100_0
1.GET_AS
E_AVL

XCSASE_EX_100_01

 GET_ASE_
AVL_BFR

GET_AS
E_AVL_R
EP

GET_ASE
_AVL_AFR

 Page 13-130

Service
name

Wrapper Package Main
Package

Exit Point Packages

User
Service
(POST)

XUSUSR_EW_100_01.
XUSUSR_EW_100_01
(iv_xus_usr_rec_t IN
OUT xus_usr_rec_t)

XUSUSR_
EM_100_0
1.XUSUSR
_EM_100_
01

XUSUSR_EX_100_01

XUSUSR_E
M_100_01_
BFR

XUSUSR
_EM_100
_01_REP

XUSUSR_
EM_100_0
1_AFR

Account
Monitory
Transactio
n History
Fetch
Service
(GET)

XCSTXN_EW_100_01.
XCSTXN_EW_100_01(
iv_xcs_txn_hist_rec IN
OUT
xcs_txn_hist_rec_t)

XCSTXN_
EM_100_0
1.XCSTXN
_EM_100_
01

XCSTXN_EX_100_01

XCSTXN_E
X_100_01_
BFR

XCSTXN_
EX_100_0
1_BFR

XCSTXN_
EX_100_0
1_BFR

XCSTXN_
EM_100_0
1.GET_TX
N_HIST

XCSTXN_EX_100_01

GET_TXN_
HIST_BFR

GET_TXN
_HIST_R
EP

GET_TXN
_HIST_AF
R

Vendor
details
fetch
service
(GET)

XCSVEN_EW_100_01.
XCSVEN_EW_100_01(
iv_ven_req_t IN OUT
xcs_ven_req_t)

XCSVEN_
EM_100_0
1.GET_VE
N

XCSVEN_EX_100_01

GET_VEN_
BFR

GET_VE
N_REP

GET_VEN
_AFR

Vendor
Comment
fetch
service
(GET)

XCSVEN_EW_100_01.
COMMENT(iv_commen
t IN OUT
xcs_ven_vcm_rec_t)

XCSVEN_
EM_100_0
1.GET_CO
MMENT

XCSVEN_EX_100_01

GET_COM
MENT_BFR

GET_CO
MMENT_
REP

GET_COM
MENT_AF
R

Vendor
Create
Service
(POST)

XCSVEN_EW_100_01.
XCSVEN_EW_100_01(
iv_ven_req_t IN OUT
xcs_ven_req_t)

XCSVEN_
EM_100_0
1.XCSVEN
_EM_100_
01

XCSVEN_EX_100_01

XCSVEN_E
X_100_01_
BFR

XCSVEN
_EX_100
_01_REP

XCSVEN_
EX_100_0
1_AFR

XCSVEN_
EM_100_0
1.POST_V
EN

XCSVEN_EX_100_01

POST_VEN
_BFR

POST_V
EN_REP

POST_VE
N_AFR

Vendor
Comment
Create
Service
(POST)

XCSVEN_EW_100_01.
COMMENT(iv_commen
t IN OUT
xcs_ven_vcm_rec_t)

XCSVEN_
EM_100_0
1.POST_C
OMMENT

XCSVEN_EX_100_01

POST_CO
MMENT_BF
R

POST_C
OMMENT
_REP

POST_CO
MMENT_A
FR

Vendor XCSVEN_EW_100_01. XCSVEN_ XCSVEN_EX_100_01

 Page 13-131

Service
name

Wrapper Package Main
Package

Exit Point Packages

Update
Service
(PUT)

XCSVEN_EW_100_01(
iv_ven_req_t IN OUT
xcs_ven_req_t)

EM_100_0
1.UPD_VE
N

UPD_VEN_
BFR

UPD_VE
N_REP

UPD_VEN
_AFR

Producer
Create
Service
(POST)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_producer IN OUT
xpr_pro_dtl_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.POST_
PRODUCE
R

XPRPRC_EX_100_02

POST_PRO
DUCER_BF
R

POST_P
RODUCE
R_REP

POST_PR
ODUCER_
AFR

Producer
Fetch
Service
(GET)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_producer IN OUT
xpr_pro_dtl_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.GET_P
RODUCER

XPRPRC_EX_100_02

GET_PROD
UCER_BFR

GET_PR
ODUCER
_REP

GET_PRO
DUCER_A
FR

Producer
Update
Service
(PUT)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_producer IN OUT
xpr_pro_dtl_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.
PUT_PRO
DUCER

XPRPRC_EX_100_02

PUT_PROD
UCER_BFR

PUT_PR
ODUCER
_REP

PUT_PRO
DUCER_A
FR

Producer
Contact
Service
(POST)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_contactIN OUT
xpr_pro_pcn_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC XPRPRC_EX_100_02

 Page 13-132

Service
name

Wrapper Package Main
Package

Exit Point Packages

_EM_100_
02.POST_
CONTACT

POST_CO
MMENT_BF
R

POST_C
OMMENT
_REP

POST_CO
MMENT_A
FR

Producer
Contact
Service
(GET)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_contactIN OUT
xpr_pro_pcn_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.GET_C
ONTACT

XPRPRC_EX_100_02

GET_CONT
ACT_BFR

GET_CO
NTACT_
REP

GET_CON
TACT_AF
R

Producer
Comment
Service
(POST)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_comment IN OUT
xpr_pro_pcm_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.
POST_CO
MMENT

XPRPRC_EX_100_02

POST_CO
MMENT_BF
R

POST_C
OMMENT
_REP

POST_CO
MMENT
_AFR

Producer
Comment
Service
(GET)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_comment IN OUT
xpr_pro_pcm_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.
GET_COM
MENT

XPRPRC_EX_100_02

GET_COM
MENT_BFR

GET_CO
MMENT
_REP

GET_COM
MENT
_AFR

Producer
Subventio
n Service
(GET)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_subvention IN OUT
xpr_pro_sbv_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC XPRPRC_EX_100_02

 Page 13-133

Service
name

Wrapper Package Main
Package

Exit Point Packages

_EM_100_
02.
GET_SUB
VENTION

GET_SUBV
ENTION_B
FR

GET_SU
BVENTIO
N_REP

GET_SUB
VENTION_
AFR

Producer
Compens
ation
Service
(GET)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_compensation IN
OUT
xpr_pro_cmp_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.
GET_COM
PENSATIO
N

XPRPRC_EX_100_02

GET_COM
PENSATIO
N_BFR

GET_CO
MPENSA
TION_RE
P

GET_COM
PENSATI
ON_AFR

Producer
Statement
Service
(GET)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_statements IN OUT
xpr_pro_psm_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.
GET_STAT
EMNTS

XPRPRC_EX_100_02

GET_STAT
EMENTS_B
FR

GET_ST
ATEMEN
TS_REP

GET_STA
TEMENTS
_AFR

Producer
Holdback
Service
(GET)

XPRPRC_EW_100_02.
XPRPRC_EW_100_02(
iv_holdback IN OUT
xpr_pro_hlr_rec_t)

XPRPRC_
EM_100_0
2.
XPRPRC_
EM_100_0
2

XPRPRC_EX_100_02

XPRPRC_E
X_100_02_
BFR

XPRPRC
_EX_100
_02_REP

XPRPRC_
EX_100_0
2_AFR

XPRPRC
_EM_100_
02.
GET_HOL
DBACK_A
MOUNT

XPRPRC_EX_100_02

GET_HOLD
BACK_AMO
UNT_BFR

GET_HO
LDBACK
_AMOUN
T_REP

GET_HOL
DBACK_A
MOUNT_A
FR

Get
webhook
maintenan
ce (GET)

xcswhk_ew_100_01.
xcswhk_ew_100_01
(iv_evi_id IN
EVE_EVI_EVW.EVI_ID
%TYPE,
iv_evi_jmd_id IN

xcswhk_e
m_100_01.
xcswhk_e
m_100_01

xcswhk_ex_100_01

 Page 13-134

Service
name

Wrapper Package Main
Package

Exit Point Packages

OUT
EVE_EVI_EVW.EVI_J
MD_ID%TYPE,
 iv_evi_status_cd IN
OUT
EVE_EVI_EVW.EVI_S
TATUS_CD%TYPE,
iv_action IN
VARCHAR2,
iv_err_code OUT
VARCHAR2,
 iv_err_desc OUT
VARCHAR2,
 iv_whk_req_rec IN
OUT
xcs_whk_req_rec_t);

xcswhk_ex_10
0_01_afr

xcswhk_ex
_100_01_
REP

xcswhk
_ex_10
0_01_a
fr

xcswhk_e
m_100_01.
get_whk_s
etup

xcswhk_ex_100_01

get_whk_setup
_BFR

get_whk_s
etup_REP

get_wh
k_setu
p_AFR

Service
name Wrapper Package Main

Package Exit Point Packages

Web
hooks
update
event
status

xcswhk_ew_100_01.
xcswhk_ew_100_01
(iv_evi_id IN
EVE_EVI_EVW.EVI_ID
%TYPE,
iv_evi_jmd_id IN
OUT
EVE_EVI_EVW.EVI_J
MD_ID%TYPE,
 iv_evi_status_cd IN
OUT
EVE_EVI_EVW.EVI_S
TATUS_CD%TYPE,
iv_action IN
VARCHAR2,
iv_err_code OUT
VARCHAR2,
 iv_err_desc OUT
VARCHAR2,
 iv_whk_req_rec IN
OUT
xcs_whk_req_rec_t);

xcswhk_e
m_100_01.
update_ev
ent_status

xcswhk_ex_100_01

update_event_
status_bfr

update_ev
ent_status
_rep

update
_event
_status
_afr

Webhooks
maintenan
ce : Save

the
webservic
e details
(POST)

xcswhk_ew_100_02.xc
swhk_ew_100_02(iv_w
hk_set_rec IN OUT
xsc_whk_set_rec_t);

xcswhk_e
m_100_02.
xcswhk_e

m_100_02.

xcswhk_ex_10
0_02

post_whk_bfr post_whk_
afr

post_w
hk_rep

Webhook
Maintenan

ce :
retrieve

xcswhk_ew_100_02.xc
swhk_ew_100_02(iv_w
hk_set_rec IN OUT

xcswhk_e
m_100_02.
xcswhk_e

m_100_02.

xcswhk_ex_10
0_02

get_whk_bfr get_whk_r get_wh

 Page 13-135

Service
name

Wrapper Package Main
Package

Exit Point Packages

the
webservic

e
details(GE

T)

xsc_whk_set_rec_t); ep k_afr

Webhook
Maintenan

ce :
update the
webhook

maintenan
ce(PUT)

xcswhk_ew_100_02.xc
swhk_ew_100_02(iv_w
hk_set_rec IN OUT
xsc_whk_set_rec_t);

xcswhk_e
m_100_02.
xcswhk_e

m_100_02.

xcswhk_ex_10
0_02

put_whk_bfr
put_whk_r
ep

put_w
hk_afr

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE xws_att_str_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE VARCHAR2(4000));

CREATE OR REPLACE TYPE xws_att_num_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE NUMBER);

CREATE OR REPLACE TYPE xws_att_date_rec_t AS OBJECT (

 ATT_NAME VARCHAR2(30),

 ATT_VALUE DATE);

CREATE OR REPLACE TYPE XUS_USR_REC_T AS OBJECT (

XCS_USR_CODE VARCHAR2(30),

USR_CODE VARCHAR2(30),

USR_COM_COMPANY VARCHAR2(30),

USR_CMB_BRANCH VARCHAR2(30),

USR_CBD_DEPT VARCHAR2(30),

USR_FIRST_NAME VARCHAR2(30),

USR_MIDDLE_NAME VARCHAR2(30),

USR_LAST_NAME VARCHAR2(30),

USR_RESPONSIBILITY_CD VARCHAR2(30),

 Page 13-136

USR_RRQ_SUP_USR_CODE VARCHAR2(30),

USR_PHONE_NO1 NUMBER,

USR_PHONE_EXTN1 NUMBER,

USR_PHONE_NO2 NUMBER,

USR_PHONE_EXTN2 NUMBER,

USR_FAX_NO1 NUMBER,

USR_FAX_NO2 NUMBER,

USR_ENABLED_IND VARCHAR2(30),

USR_START_DT DATE,

USR_END_DT DATE,

USR_REPLACEMENT_USR_CODE VARCHAR2(30),

USR_REPLACEMENT_DT DATE,

USR_TYPE_CD VARCHAR2(30),

USR_TYPE_REFERENCE_ID NUMBER,

USR_EMAIL_ADDRESS VARCHAR2(160),

USR_TIME_ZONE_CD VARCHAR2(30),

USR_DEFAULT_LANGUAGE_CD VARCHAR2(30),

USR_TIME_ZONE_LEVEL_CD VARCHAR2(30),

STR_ATTR XWS_ATT_STR_TAB_T,

NUM_ATTR XWS_ATT_NUM_TAB_T,

DATE_ATTR XWS_ATT_DATE_TAB_T,

USR_RESULT XUS_RES_REC_T);

13.45 Securitization Web Service(POST)
Below mentioned are the custom fields. These fields will be part of both request and response.

Element name Sub element Data type

StringData KeyName String

 KeyValue String

 Page 13-137

NumberData KeyName String

 KeyValue Number (Decimal)

DateData KeyName String

 KeyValue Date(YYYY-MM-
DDTHH:MM:SS)

Sample XML
<Custom>
 < StringData>
 <KeyName>StringName</KeyName>
 <KeyValue>StringValue</KeyValue>
 </ StringData>
 < NumberData>
 <KeyName>NumberName</KeyName>
 <KeyValue>NumberValue</KeyValue>
 </ NumberData>
 <DateData>
 <KeyName>DateName</KeyName>
 <KeyValue>DateValue</KeyValue>
 </DateData>
</Custom>

Sample JSON
"Custom": {
 "StringData": [
 {
 "KeyName": "StringName",
 "KeyValue": "StringValue"
 }
],
 "NumberData": [
 {
 "KeyName": "NumberName",
 "KeyValue": NumberValue
 }
],
 "DateData": [
 {
 "KeyName": "DateName",
 "KeyValue": "DateValue"
 }
]
 }

Below are the package details for transaction parameter web service

Service
name

Wrapper Package Main
Package

Exit Point Packages

Before Replace After

 Page 13-138

Service
name

Wrapper Package Main
Package

Exit Point Packages

SECURITI
ZATION
(POST)

XCSSEC_EW_100_01.
XCSSEC_EW_100_01
(IV_SEC_POOL_REC_
T IN OUT
XCS_SEC_POOL_RE
C_T)

XCSSEC_
EM_100_0
1.
XCSSEC_
EM_100_0
1

XCSSEC_EX_100_01

XCSSEC_E
X_100_01_
BFR

XCSSEC
_EX_100
_01_REP

XCSSEC_
EX_100_0
1_AFR

Extensibility Parameters for Tab Types

CREATE OR REPLACE TYPE XCS_STATUS_REC_T AS OBJECT (

STATUS VARCHAR2(30),

DESCRIPTION VARCHAR2(2000));

CREATE OR REPLACE TYPE XCS_STATUS_TAB_T AS TABLE OF XCS_STATUS_REC_T;

CREATE OR REPLACE TYPE XCS_SEC_DTLS_REC_T AS OBJECT

(

 XCS_POOL_NAME VARCHAR2(30),

 XCS_ACC_NBR VARCHAR2(30),

 STATUS XCS_STATUS_TAB_T

);

CREATE OR REPLACE TYPE XCS_SEC_DTLS_TAB_T AS TABLE OF
XCS_SEC_DTLS_REC_T;

CREATE OR REPLACE TYPE XCS_SEC_POOL_REC_T AS OBJECT

(

 USER_CODE VARCHAR2(30),

 XCS_POOL_DTLS XCS_SEC_DTLS_TAB_T,

 STRING_ATTR XWS_ATT_STR_TAB_T,

 NUMBER_ATTR XWS_ATT_NUM_TAB_T,

 DATE_ATTR XWS_ATT_DATE_TAB_T,

 STATUS XCS_STATUS_TAB_T

);

 Page 13-139

13.46 Calculate Parameter Update Service(PUT)
Sample XML

<CalculateParameterRequest>

 <UserCode>USERNAME</UserCode>

 <ModuleName>SERVICING</ModuleName>

 <EntityNumber>ACC_NBR</EntityNumber>

 <AdditionalAttributeName>ACC_UDF2_NUM</AdditionalAttributeName>

</CalculateParameterRequest>

Sample JSON

{

 "CalculateParameterRequest": {

 "UserCode": "USERCODE",

 "ModuleName": "SERVICING",

 "EntityNumber": "ACC_NBR ",

 "AdditionalAttributeName": "ACC_UDF2_NUM"

 }

}

Below are the package details for Update Calculate Parameter Web Service

Wrapper Engine package:-

xcscup_ew_100_01.xcscup_ew_100_01 (iv_xcs_cup_rec IN OUT xcs_cup_rec_t);

Main Engine package:-

xcscup_em_100_01.xcscup_em_100_01 (iv_xcs_cup_rec IN OUT xcs_cup_rec_t);

Below are the Exit point package details for xcscup_em_100_01.update_cup ();

BEFORE:-

 xcscup_ex_100_01.cv_update_cup_bfr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscup_ex_100_01.update_cup_bfr (iv_xcs_cup_rec IN OUT xcs_cup_rec_t);

REPLACE:-

 Page 13-140

 xcscup_ex_100_01.cv_update_cup_rep = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscup_ex_100_01.update_cup_bfr (iv_xcs_cup_rec IN OUT xcs_cup_rec_t);

AFTER:-

 xcscup_ex_100_01. cv_update_cup_afr = cmncon_cl_000_01.CUSTOMIZED THEN

 xcscup_ex_100_01. update_cup_bfr (iv_xcs_cup_rec IN OUT xcs_cup_rec_t);

Extensible parameters are Tab Type object

CREATE OR REPLACE TYPE XCS_CUP_REC_T AS OBJECT(

 CUP_USERCODE VARCHAR2(30),

 CUP_MODULE_NAME VARCHAR2(80),

 CUP_MODULE_IDENTIFIER VARCHAR2(30),

 CUP_ADDITIONAL_ATTR VARCHAR2(30),

 CUP_RESULT XCS_RESULT_TAB_T)

13.47 User Update Service (PUT)
Sample XML

 <Custom>

 <StringData>

 <KeyName>OrgName</KeyName>

 <KeyValue>Oracle</KeyValue>

 </StringData>

 <NumberData>

 <KeyName>BusinessPhoneNumber</KeyName>

 <KeyValue>1234.01</KeyValue>

 </NumberData>

 <DateData>

 <KeyName>CreationDate</KeyName>

 <KeyValue>2017-12-18T00:00:00</KeyValue>

 Page 13-141

 </DateData>

 </Custom>

Sample JSON

"Custom": {

 "StringData": [

 {

 "KeyName": "OrgName",

 "KeyValue": "Oracle"

 }

],

 "NumberData": [

 {

 "KeyName": "BusinessPhoneNumber",

 "KeyValue": 1234.01

 }

],

 "DateData": [

 {

 "KeyName": "CreationDate",

 "KeyValue": "2017-12-18T00:00:00"

 }

]

 }

 }

Below are the package details for Update Calculate Parameter Web Service

Wrapper Engine package:-

xususr_ew_100_01.xususr_ew_100_01(iv_xus_usr_rec_t IN OUT xus_usr_rec_t);

 Page 13-142

Main Engine package:-

xususr_em_100_01.xususr_em_100_01(iv_xus_usr_rec_t IN OUT xus_usr_rec_t);

Below are the Exit point package details for

BEFORE:-

 xususr_ex_100_01.CV_XUS_USR_BFR = cmncon_cl_000_01.CUSTOMIZED THEN

 xususr_ex_100_01.xususr_ex_100_01_bfr(iv_xus_usr_rec_t);

REPLACE:-

 xususr_ex_100_01.CV_XUS_USR_REP = cmncon_cl_000_01.CUSTOMIZED THEN

 xususr_ex_100_01.xususr_ex_100_01_rep(iv_xus_usr_rec_t);

AFTER:-

 xususr_ex_100_01.CV_XUS_USR_AFR = cmncon_cl_000_01.CUSTOMIZED THEN

 xususr_ex_100_01.xususr_ex_100_01_afr(iv_xus_usr_rec_t);

Extensible parameters are Tab Type object

xus_usr_rec_t AS OBJECT (

 xcs_usr_code VARCHAR2(30),

 usr_code VARCHAR2(30),

 usr_com_company VARCHAR2(30),

 usr_cmb_branch VARCHAR2(30),

 usr_cbd_dept VARCHAR2(30),

 usr_first_name VARCHAR2(30),

 usr_middle_name VARCHAR2(30),

 usr_last_name VARCHAR2(30),

 usr_responsibility_cd VARCHAR2(30),

 usr_rrq_sup_usr_code VARCHAR2(30),

 usr_phone_no1 NUMBER,

 usr_phone_extn1 NUMBER,

 usr_phone_no2 NUMBER,

 usr_phone_extn2 NUMBER,

 Page 13-143

 usr_fax_no1 NUMBER,

 usr_fax_no2 NUMBER,

 usr_enabled_ind VARCHAR2(30),

 usr_start_dt DATE,

 usr_end_dt DATE,

 usr_replacement_usr_code VARCHAR2(30),

 usr_replacement_dt DATE,

 usr_type_cd VARCHAR2(30),

 usr_type_reference_id NUMBER,

 usr_email_address VARCHAR2(160),

 usr_time_zone_cd VARCHAR2(30),

 usr_default_language_cd VARCHAR2(30),

 usr_time_zone_level_cd VARCHAR2(30),

 str_attr XWS_ATT_STR_TAB_T,

 num_attr XWS_ATT_NUM_TAB_T,

 date_attr XWS_ATT_DATE_TAB_T,

 usr_result XUS_RES_REC_T,

 usr_req_type VARCHAR2(30));

13.48 Master Account Rolledup details service (GET)
Sample XML

 <Custom>

 <StringData>

 <KeyName>OrgName</KeyName>

 <KeyValue>Oracle</KeyValue>

 </StringData>

 <NumberData>

 Page 13-144

 <KeyName>BusinessPhoneNumber</KeyName>

 <KeyValue>1234.01</KeyValue>

 </NumberData>

 <DateData>

 <KeyName>CreationDate</KeyName>

 <KeyValue>2017-12-18T00:00:00</KeyValue>

 </DateData>

 </Custom>

Sample JSON

"Custom": {

 "StringData": [

 {

 "KeyName": "OrgName",

 "KeyValue": "Oracle"

 }

],

 "NumberData": [

 {

 "KeyName": "BusinessPhoneNumber",

 "KeyValue": 1234.01

 }

],

 "DateData": [

 {

 "KeyName": "CreationDate",

 "KeyValue": "2017-12-18T00:00:00"

 }

]

 Page 13-145

 }

 }

 Page 14-1

14. Appendix: Revision History

Section Section Name Release
Version Description of Change

13 RESTful Web Services
Extensibility

1.0 Added 13.47 USER UPDATE
SERVICE (PUT) and 13.48
MASTER ACCOUNT ROLLEDUP
DETAILS SERVICE (GET)

Extensibility Guide
May 2020
Version 14.9.0.0.0

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax:+91 22 6718 3001
https://www.oracle.com/industries/financial-services/index.html

Copyright © [2007] , [2020] , Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware
in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or recompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

https://www.oracle.com/industries/financial-services/index.html

	1. Preface
	1.1 Audience
	1.2 Conventions Used
	1.3 Pre-requisite
	1.4 Assumptions

	2. Customizing and Extending the Application
	2.1 Understanding Customizing & Extending the Application
	2.2 Understanding Customization Layers
	2.3 Installing Customization Tools

	3. Using JDeveloper for Customizations
	3.1 About Using JDeveloper for Customization
	3.2 About Customizing Oracle ADF Artifacts
	3.3 Customizing Oracle ADF Artifacts with JDeveloper
	3.4 ADF Customization Best Practices - Do’s and Don’ts
	3.4.1 Do’s
	3.4.2 Don’ts

	4. Application Artifacts
	4.1 About Customizing Oracle ADF Application Artifacts
	4.2 Customizable Application Libraries
	4.3 Enable JDeveloper for Customization
	4.4 Customizing the Skin
	4.5 Customizing or Adding Resource Bundles
	4.6 Editing Existing Business Components
	4.7 Editing Pages
	4.8 Editing Task Flows
	4.9 Creating Custom Business Components
	4.10 Creating Custom Task Flows
	4.11 Creating Custom Pages
	4.12 Editing the UI Shell Template
	4.13 Replacing OFSLL Logo
	4.14 Deploying ADF Customizations and Extensions
	4.15 Deployment Options

	5. Customizing Database Objects
	5.1 UI – Package Interaction Logic
	5.2 UI Java Wrapper (U*JW)
	5.3 Database Schema
	5.4 Wrapper Engine model
	5.5 Batch Job (BJ)
	5.6 Engine Wrapper (EW)
	5.7 Main Engine (EM)
	5.8 Engine Function (EN)
	5.9 Engine View
	5.10 Common Features
	5.11 Seed Data
	5.12 Developer’s Tips

	6. Creating New Custom BI Publisher Report/Letter
	6.1 Create Report Layout
	6.2 Create XML data
	6.3 Add Dynamics to Report
	6.4 Upload Report in BIP

	7. Customizing Existing Base BIP Reports
	8. Customizing Existing Base BIP Letters
	9. Create Custom Correspondence
	10. Generating Correspondence
	11. Setting up the output Format For BIP Reports
	12. Naming Convention for Customized Objects
	13. RESTful Web Services Extensibility
	13.1 Generic Post Transaction (POST)
	13.1.1 Producer related transaction
	13.1.2 Other Transactions

	13.2 Account On Boarding (POST)
	13.3 Payment Posting (POST)
	13.4 Account Detail (GET)
	13.5 Scenario Analysis (POST)
	13.6 Lookups (GET)
	13.7 Application Search (GET)
	13.8 Calculator (POST)
	13.9 Application Entry (POST)
	13.10 Account Search (GET)
	13.11 Call Activity (POST)
	13.12 Remarketing (PUT)
	13.13 Invoice (POST)
	13.14 Application Comment (GET/POST)
	13.15 Account Comment (GET/POST)
	13.16 Application Checklist (GET)
	13.17 Outgoing File List (GET)
	13.18 Outgoing File (POST)
	13.19 Incoming File (GET)
	13.20 Products (GET)
	13.21 Assets (GET)
	13.22 Assets (PUT)
	13.23 Asset Valuation (GET/PUT/POST)
	13.24 Asset Sub Types (GET)
	13.25 Application Status Change (PUT)
	13.26 Application Update (PUT)
	13.27 Application ACH (POST)
	13.28 Application Document upload/download/list Service (POST/GET/GET)
	13.29 Account Document upload/download/list Service (POST/GET/GET)
	13.30 Application Get Service (GET)
	13.31 Scheduler Force ReSubmit Service (PUT)
	13.32 Credit Limit Service (Customer/Business) [GET]
	13.33 Business Comments Service (GET/POST)
	13.34 Customer Comments Service (GET/POST)
	13.35 Customer Preference Service (GET/POST/PUT)
	13.36 Scenario Analysis Service (PUT)
	13.37 Transaction Parameters Service (GET)
	13.38 Asset Tracking Attribute Service(PUT)
	13.39 Business Tracking Attribute Service(PUT)
	13.40 Customer Tracking Attribute Service(PUT)
	13.41 Account Tracking Attribute Service(PUT)
	13.42 Credit Bureau Web Service(PUT)
	13.43 Delete Account Web Service(DELETE)
	13.44 New Customization for RESTful Web Service
	13.45 Securitization Web Service(POST)
	13.46 Calculate Parameter Update Service(PUT)
	13.47 User Update Service (PUT)
	13.48 Master Account Rolledup details service (GET)

	14. Appendix: Revision History

