
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oracle® Financial Services Analytical Applications 

Data Model Utilities 
User Guide 

Release 8 

E57634-01 

 
 
 
 
 
 
 

 
August 2021 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Oracle Financial Services Analytical Applications Data Model Utilities User Guide Release 8 

Part No. E57634-01 

Copyright © 2021 Oracle and/or its affiliates. All rights reserved. 

Primary Author: Arpana Danayak 

Contributing Author: Christopher Spofford, Brad Bruckschen, Aravind Venketaraman 

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, 
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. 
Reverse engineering, disassembly, or decompilation of this software, unless required by law for 
interoperability, is prohibited. 

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing. 

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, the following notice is applicable: 

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government. 

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications. 

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners. 

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group. 

This software or hardware and documentation may provide access to or information on content, products, 
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly 
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle 
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your 
access to or use of third-party content, products, or services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Contents 

Documentation Accessibility ......................................................................................................................... 9 
Access to Oracle Support ............................................................................................................................... 9 
Structure ............................................................................................................................................................ 9 
Related Information Sources ......................................................................................................................... 9 

Introduction ........................................................................................................................................................ 11 
List of Acronyms Used in the Document ................................................................................................... 11 
Boundaries and Limitations ........................................................................................................................... 1 
Adding Dimension Tables and Key Dimension (Leaf) Registration ....................................................... 2 
Adding Custom Instrument Tables ............................................................................................................ 23 
Adding Custom Transaction Tables ........................................................................................................... 28 
Adding Custom Lookup Tables .................................................................................................................. 31 
Object Registration and Validation ............................................................................................................. 38 
Defining Alternate Rate Output Columns ................................................................................................. 48 
User Defined Properties ............................................................................................................................... 49 
Modifying the Precision of Balance Columns In Ledger Stat ................................................................. 53 

Utilities ....................................................................................................................................................................... 1 
Reverse Population ......................................................................................................................................... 1 
Product Instrument Mapping ........................................................................................................................ 6 
Instrument Synchronization .......................................................................................................................... 9 
Stage Synchronization .................................................................................................................................. 13 
Ledger Load Undo ........................................................................................................................................ 17 
Data Slicing .................................................................................................................................................... 19 

Data Loaders .............................................................................................................................................................. 1 
Dimension Loaders ......................................................................................................................................... 2 
Simple Dimension Loader ............................................................................................................................ 20 
Historical Rates Data Loader ....................................................................................................................... 25 
Forecast Rate Data Loader ........................................................................................................................... 28 
Prepayment Rate Data Loader .................................................................................................................... 41 
Stage Instrument Table Loader ................................................................................................................... 46 
Customer T2T Loading ................................................................................................................................. 52 
DIM_Party Population ................................................................................................................................. 55 
Instrument Summary Table ......................................................................................................................... 56 
Transaction Summary Table Loader .......................................................................................................... 58 
Ledger Data Loader ...................................................................................................................................... 63 
Cash Flow Loader ......................................................................................................................................... 78 
Pricing Management Transfer Rate Population Procedure .................................................................... 92 
ALMBI Transformation ................................................................................................................................ 93 
Hierarchy Transformation ........................................................................................................................... 94 
Dim Dates Population .................................................................................................................................. 97 
Fact Ledger Stat Transformation ................................................................................................................. 97 
Financial Element Dimension Population ................................................................................................. 97 
Payment Pattern Loader ............................................................................................................................. 100 
GAP Limits Loader ...................................................................................................................................... 105 
Material Currency Identifier ...................................................................................................................... 109 
Behaviour Pattern Loader .......................................................................................................................... 112 

SCD Configuration .................................................................................................................................................... 1 
Overview of SCD Process .............................................................................................................................. 1 
Prerequisites ..................................................................................................................................................... 3 
Tables Used by the SCD Component ........................................................................................................... 3 



Executing the SCD Component ..................................................................................................................... 6 
Checking the Execution Status ...................................................................................................................... 8 

Mapping Export in Metadata Browser ................................................................................................................... 9 
Procedure ......................................................................................................................................................... 9 

Limit Management .............................................................................................................................................. 11 
Overview ......................................................................................................................................................... 11 
Functional Flow ............................................................................................................................................... 4 

 



Preface 

ix 

 

 

 

Documentation Accessibility 
For information about Oracle's commitment to accessibility, visit the Oracle 

Accessibility Program website at 

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc. 

 

Access to Oracle Support 
Oracle customers that have purchased support have access to electronic support 

through My Oracle Support. For information, visit 

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 

impaired. 

 

Structure 
 
 

1. Introduction 

2. Object Management 

3. Utilities 

4. Data Loaders 

5. Mapping Export in Metadata Browser 

6. SCD Configuration 

 

Related Information Sources 
• Oracle Financial Services Analytical Applications Infrastructure (OFSAAI) 

Installation and Configuration Guide 

• Oracle Financial Services Analytical Applications Infrastructure User Guide 

• Oracle Financial Services Cash Flow Engine Reference Guide 

• Oracle Financial Services Asset Liability Management (OFSALM) User Guide 

• Oracle Financial Services Profitability Management (OFSPM) User Guide 

• Oracle Financial Services Funds Transfer Pricing (OFSFTP) User Guide 

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


• Oracle Financial Services (OFSHM) Hedge Management User Guide 

x 

 

 

 



  1 

Introduction 1-1 

 

 

 
 

Introduction 

 
This document contains various chapters related to data model utilities and data 

loaders available within the OFSAA Applications. The four chapters present in this 

document are: Object Management, Utilities, Data Loaders, and Mapping Export in 

Metadata Browser. 

 

List of Acronyms Used in the Document 
 

Acronym Description 

AAI Analytical Applications Infrastructure 

ALM Asset Liability Management 

AMHM Attributes, Members and Hierarchy 

Management 

COA Chart Of Accounts 

F2T File to Table 

FDM Financial Data Manager 

GL General Ledger 

GTT Global Temporary Table 

HM Hedge Management 

ICC Information Command Center 

INFODOM Information Domain 

IP Internet Protocol 

OFS Oracle Financial Services 

OFSA Oracle Financial Services Applications 

OFSAA Oracle Financial Services Analytical 

Applications 

OFSAAI Oracle Financial Services Analytical 

Applications Infrastructure 

PFT Profitability 

PL/SQL Procedural Language /Structured Query 

Language 

T2T Table to Table 



List of Acronyms Used in the Document 

1-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

Acronym Description 

TP Transfer Pricing 

UDP User-Defined Property 

UI User Interface 



  2 

Object Management 2-1 

 

 

 
 

Object Management 

 
This chapter details the steps involved in adding various client data objects into the 

model. 

This chapter covers the following topics: 

• Boundaries and Limitations 

• Adding Dimension Tables and Key Dimension (Leaf) Registration 

• Adding Custom Instrument Tables 

• Adding Custom Transaction Tables 

• Adding Custom Lookup Tables 

• Adding Management Ledger Class tables 

• Object Registration and Validation 

• Defining Alternate Rate Output Columns 

• User Defined Properties 

• Modifying the Precision of Balance Columns In Ledger Stat 

 
Boundaries and Limitations 

 
Instrument Table - ID Numbers 

ID numbers can have a maximum length of 25 digits. 
 

Dimension Leaf Member Set Up 

Dimension Leaf values can have a maximum of 14 digits. 

Only 26 key (processing) dimensions are allowed in the database. Examples of seeded 

key leaf types are Common COA ID, Organizational Unit ID, GL Account 

ID, Product ID, Legal Entity ID. 

The maximum number of columns that the Oracle database allows in a unique index 

is 32. This is the overriding constraint. After subtracting IDENTITY_CODE, YEAR_S, 

ACCUM_TYPE_CD, CONSOLIDATION_CD, and ISO_CURRENCY_CD, this leaves 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2 -2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
27 columns available for Key Processing Dimensions (leaf dimensions). BALANCE_ 

TYPE_CD is now part of the unique index so this brings the maximum number of leaf 

columns down to 26. 

 

Balances 
 

 
Balances stored in Instrument tables are limited to 999,999,999,999.99. Balances stored 

in the LEDGER_STAT table are limited to 99,999,999,999.9999. The maximum 

precision for a balance used in a calculation process is 15 digits, with the range of 

1.7 e-308 to 1.7e+308. Calculation precision on larger numbers is compromised. 

 

Rates 

By default, rates stored in instrument tables are limited to 999.9999 and -999.9999. 

More precision can be achieved by increasing the number of decimals in the column. 

Internally, rates are stored with the same precision as balances. 

 

Hierarchy Level Limitation 

Hierarchies with 15+ level is NOT supported within any Enterprise Performance 

Management (EPM) - ALM/FTP/PFT/HM processes. 

 
Adding Dimension Tables and Key Dimension (Leaf) 
Registration 

The following section details the process in which users can add custom key 

dimensions to the OFSAA application. Users can view the registered dimension within 

the AMHM screens. Also, users can add members and hierarchies for the dimension 

through AMHM screens. 

For Simple dimensions, entries should also be made in REV_DESCRIPTION_TABLES 

for each Instrument and Transaction Table in which that new dimension will occur. 

Registering a new Key Dimension (called as Leaf in OFSA 4.5) requires the following 

steps: 

• Add a set of dimension tables to store leaf values in ERwin model. 

• Add the key dimension column to required Entities in ERwin model. 

• Assign the Processing Key Column Property (Key Dimension Columns only). 

• Upload the model. 

• Register the Key Dimension. 

• Modify Unique indexes (Key Leaf Dimension only). 

• Validate tables. 

Each of these steps is discussed in detail in the following sections. 

file:///D:/Workspace/DMU/dcommon/html/cpyr.htm
file:///D:/Workspace/DMU/dcommon/html/cpyr.htm


Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-3 

 

 

 
Additionally, perform the following steps to avoid the errors running due to 

Allocations that use a Portfolio table. 

1. Insert a row into REV_COLUMN_REQUIREMENTS for the custom dimension 
column. 

2. Add the custom dimension to the Portfolio classification by following the 
instructions in the section "Adding a new user defined column as a Portfolio 
column for use in all Instrument tables". 

 

Note: For more information on limitation for number of key 
(processing) dimensions, refer to Doc ID 1478920.1. 

 

 

Note: If an allocation using a Portfolio with expression fails, then 
you should do manual entries for standard columns in REV_ 
COLUMN_REQUIREMENTS through sql script which comes as part 
of installer. 

 

 

Adding Dimension Tables 
 

Adding Key Dimension Tables 

Each key dimension contains a set of the following tables: 

• DIM_<DIMENSION>_B - Stores leaf and node member codes within the 

dimension. 

• DIM_<DIMENSION>_TL - Stores names of leaf and node and their translations. 

• DIM_<DIMENSION>_ATTR - Stores attribute values for the attributes of the 

dimension. 

• DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and 

nodes that are part of hierarchies. 

 

Note: Replace <DIMENSION> with the keyword representing the 
key dimension. 

 

 

Seeded key dimension tables are present in 'ALM-FTP-PFT-HM-BSP — Dimensions' 

subject area within the ERwin model. The above tables need to be created for the new 

dimension. For more information on creating dimension tables in ERwin, see leaflet 

(AddingAndCustomizingLeaf.pdf). 

 

Note: For ease of use, user can copy an existing set of dimension 
tables such as for ORG_UNIT dimension and rename the tables (in 
both physical and logical view) to represent the new dimension. 

 

 

Table structure of one of the seeded key dimension is given below with remarks on 

how this can be used as the basis for modeling new key dimensions. 

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=79254288649203&id=1478920.1&_afrWindowMode=0&_adf.ctrl-state=ld28kdygk_4
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=79254288649203&id=1478920.1&_afrWindowMode=0&_adf.ctrl-state=ld28kdygk_4


Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

DIM_ORG_UNIT_B 

Stores the ID of the members (leaf and nodes) of the dimension. 
 

 
Column 

Name 

Logical 

Column 

Name 

 

 
Datatype 

 

 
NULL 

 
Column 

Description 

 

 
Remarks 

ORG_UNIT_ 

ID 

Organization 

Unit ID 

NUMBER(14) NOT NULL Leaf column 

which stores 

the id for the 

organization 

unit 

dimension 

Column name 

and 

description 

should reflect 

the new 

dimension. 

Datatype and 

other 

constraints 

should be 

retained. 

ORG_UNIT_ 

DISPLAY_ 

CODE 

Organization 

Unit Display 

Code 

NUMBER(14) NULL Leaf column 

which stores 

the display 

code for the 

organization 

unit 

dimension 

Column name 

and 

description 

should reflect 

the new 

dimension. 

Datatype and 

other 

constraints 

should be 

retained. 

ENABLED_ 

FLAG 

Enabled Flag VARCHAR2( 

1) 

NOT NULL Store if the 

item is 

enabled or not 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LEAF_ONLY_ 

FLAG 

Leaf or Node 

Flag 

VARCHAR2( 

1) 

NOT NULL Indicates if 

the member is 

leaf only or 

not 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-5 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

DEFINITION 

_LANGUAGE 

Definition 

Language 

VARCHAR2( 

4) 

NOT NULL Language that 

is used to 

define 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATED_ 

BY 

Created By VARCHAR2( 

30) 

NOT NULL Indicates who 

created this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATION_ 

DATE 

Creation Date TIMESTAMP NOT NULL Indicates 

when was this 

item created 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LAST_ 

MODIFIED_ 

BY 

Last Modified 

By 

VARCHAR2( 

30) 

NOT NULL Indicates who 

modified this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LAST_ 

MODIFIED_ 

DATE 

Last Modified 

Date 

TIMESTAMP NOT NULL Indicates 

when was this 

item modified 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

ORG_UNIT_ 

CODE 

ORG_UNIT_ 

CODE 

VARCHAR2( 

20) 

NULL This column 

is used by 

staging and 

contains the 

alpha-numeri 

c codes for 

each 

dimension 

member. 

Staging 

dimension 

table contains 

unique 

alpha-numeri 

c codes and a 

unique 

numeric 

identifier is 

generated 

while loading 

into 

ALM-FTP-PF 

T-HM-BSP 

dimension 

table. 

Column name 

and 

description 

should reflect 

the new 

dimension. 

Datatype and 

other 

constraints 

should be 

retained. 

 
 

 
DIM_ORG_UNIT_TL 

Stores the names and descriptions of the members (leaf and nodes) of the dimension in 

various languages. 

 
Column 

Name 

Logical 

Column 

Name 

 

 
Datatype 

 

 
NULL 

 
Column 

Description 

 

 
Remarks 

LANGUAGE Language VARCHAR2( 

4) 

NOT NULL Language Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-7 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

ORG_UNIT_ 

ID 

Organization 

Unit ID 

NUMBER(14) NOT NULL Leaf column 

which stores 

the id for the 

organization 

unit 

dimension 

Column name 

and 

description 

should reflect 

the new 

dimension. 

Datatype and 

other 

constraints 

should be 

retained. 

ORG_UNIT_ 

NAME 

Organization 

Unit Name 

VARCHAR2( 

150) 

NOT NULL Leaf column 

which stores 

the name for 

the 

organization 

unit 

dimension 

Column name 

and 

description 

should reflect 

the new 

dimension. 

Datatype and 

other 

constraints 

should be 

retained. 

DESCRIPTIO 

N 

Description VARCHAR2( 

255) 

NULL Description of 

an Item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATED_ 

BY 

Created By VARCHAR2( 

30) 

NOT NULL Indicates who 

created this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATION_ 

DATE 

Creation Date TIMESTAMP NOT NULL Indicates 

when was this 

item created 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

LAST_ 

MODIFIED_ 

BY 

Last Modified 

By 

VARCHAR2( 

30) 

NOT NULL Indicates who 

modified this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LAST_ 

MODIFIED_ 

DATE 

Last Modified 

Date 

TIMESTAMP NOT NULL Indicates 

when was this 

item modified 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

 
 

 
DIM_ORG_UNIT_ATTR 

Stores the values of the attributes of the members (leaf and nodes) of the dimension. 
 

 
Column 

Name 

Logical 

Column 

Name 

 

 
Datatype 

 

 
NULL 

 
Column 

Description 

 

 
Remarks 

ORG_UNIT_ 

ID 

Organization 

Unit ID 

NUMBER(14) NOT NULL Leaf column 

which stores 

the id for the 

organization 

unit 

dimension 

Column name 

and 

description 

should reflect 

the new 

dimension. 

Datatype and 

other 

constraints 

should be 

retained. 

ATTRIBUTE_ 

ID 

Attribute ID NUMBER(22) NOT NULL Stores 

attribute id 

number for a 

member of a 

dimension 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-9 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

DIM_ 

ATTRIBUTE_ 

NUMERIC_ 

MEMBER 

Numeric 

Dimension 

Value 

NUMBER(22) NULL This field 

stores the 

number 

values for the 

attribute of a 

member 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

DIM_ 

ATTRIBUTE_ 

VARCHAR_ 

MEMBER 

Varchar 

Dimension 

Value 

VARCHAR2( 

30) 

NULL This field 

stores the 

varchar 

values for the 

attribute of a 

member 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

NUMBER_ 

ASSIGN_ 

VALUE 

Numeric 

Value Of A 

Member 

NUMBER(22) NULL This field 

stores the 

number 

values for the 

attribute of a 

member 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

VARCHAR_ 

ASSIGN_ 

VALUE 

Varchar 

Member 

Value 

VARCHAR2( 

1000) 

NULL This field 

stores the 

varchar 

values for the 

attribute of a 

member 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

DATE_ 

ASSIGN_ 

VALUE 

Date Value DATE NULL Date value 

that is 

assigned 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

 

DIM_ORG_UNIT_HIER 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
Stores the parent-child relationship of various nodes and leaf within hierarchies of the 

dimension. 

 
Column 

Name 

Logical 

Column 

Name 

 

 
Datatype 

 

 
NULL 

 
Column 

Description 

 

 
Remarks 

HIERARCHY 

_ID 

Hierarchy ID NUMBER(10) NOT NULL Unique Id 

that is 

generated for 

every 

hierarchy that 

is created 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

PARENT_ID Parent ID NUMBER(14) NOT NULL Column that 

store the id of 

the child 

member 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CHILD_ID Child 

Member ID 

NUMBER(14) NOT NULL Store child id 

number for a 

dimension 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

PARENT_ 

DEPTH_ 

NUM 

Parent Depth 

Number 

NUMBER(14) NOT NULL Stores parent 

depth number 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CHILD_ 

DEPTH_ 

NUM 

Child Depth 

Number 

NUMBER(14) NOT NULL Stores child 

depth number 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-11 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

DISPLAY_ 

ORDER_ 

NUM 

Display Order 

Number 

NUMBER(14) NOT NULL Stores the 

display order 

number for 

the member 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

SINGLE_ 

DEPTH_ 

FLAG 

Single Depth 

Flag 

VARCHAR2( 

1) 

NOT NULL Indicates if 

the hierarchy 

is of single 

depth or not 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATED_ 

BY 

Created By VARCHAR2( 

30) 

NOT NULL Indicates who 

created this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATION_ 

DATE 

Creation Date TIMESTAMP NOT NULL Indicates 

when was this 

item created 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LAST_ 

MODIFIED_ 

BY 

Last Modified 

By 

VARCHAR2( 

30) 

NOT NULL Indicates who 

modified this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

LAST_ 

MODIFIED_ 

DATE 

Last Modified 

Date 

TIMESTAMP NOT NULL Indicates 

when was this 

item modified 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

 

Adding Simple Dimension Tables 

Simple dimensions are created to store CODE and Descriptions. These tables are used 

by the User Interfaces to list values in drop downs / radio buttons, and so on. For 

Simple dimensions, entries should also be made in REV_DESCRIPTION_TABLES for 

each Instrument and Transaction Table in which that new dimension will occur. The 

entries in REV_DESCRIPTION_TABLES are used by Data Element Filters as well as 

the procedures for Synchronize Instruments and Synchronize Stage. 

Each simple dimension contains a set of the following tables: 

• CD table — Stores the members for a simple dimension. 

• MLS table — Stores the members' multi lingual description. 

If you use simple dimensions where _CD column is VARCHAR2, you will need to 

classify the tables as follows:. 

FSI_ACCUMULATION_TYPE_CD, FSI_BILLING_METHOD_CD 

The CD table should be classified as 
 

295 Codes User Defined (base tbl) 

198 Codes Reserved (base tbl) 

 

The MLS table should be classified as 
 

296 MLS Descriptions User Defined 

197 MLS Descriptions Reserved 

 

Table structure of one of these seeded simple dimensions is given in the following 

section with remarks on how this can be used as the basis for modeling new simple 

dimensions. 

FSI_<DIM>_CD 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-13 

 

 

 
Stores the ID of the members (leaf and nodes) of the dimension. 

 

 
Column 

Name 

Logical 

Column 

Name 

 

 
Datatype 

 

 
NULL 

 
Column 

Description 

 

 
Remarks 

DIM_CD Dimension 

Code 

NUMBER(5) NOT NULL Leaf column 

which stores 

the code for 

the 

dimension. 

Stores the 

Dimension 

Code. 

LEAF_ONLY_ 

FLAG 

Leaf or Node 

Flag 

VARCHAR2( 

1) 

NOT NULL Indicates if 

the member is 

leaf only or 

not 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

ENABLED_ 

FLAG 

Enabled Flag VARCHAR2( 

1) 

NOT NULL Store if the 

item is 

enabled or not 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

DEFINITION 

_LANGUAGE 

Definition 

Language 

VARCHAR2( 

4) 

NOT NULL Language that 

is used to 

define 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATED_ 

BY 

Created By VARCHAR2( 

30) 

NOT NULL Indicates who 

created this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

CREATION_ 

DATE 

Creation Date TIMESTAMP NOT NULL Indicates 

when was this 

item created 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LAST_ 

MODIFIED_ 

BY 

Last Modified 

By 

VARCHAR2( 

30) 

NOT NULL Indicates who 

modified this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LAST_ 

MODIFIED_ 

DATE 

Last Modified 

Date 

TIMESTAMP NOT NULL Indicates 

when was this 

item modified 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

<DIM>_ 

DISPLAY_CD 

Dimension 

Display Code 

VARCHAR2() NULL Leaf column 

which stores 

the display 

code for the 

dimension 

Column name 

and 

description 

should reflect 

the new 

dimension. 

Datatype and 

other 

constraints 

should be 

retained. The 

length of this 

column is 

customizable. 

 

FSI_<DIM>_MLS 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-15 

 

 

 
Stores the members' multi lingual description. 

 

 
Column 

Name 

Logical 

Column 

Name 

 

 
Datatype 

 

 
NULL 

 
Column 

Description 

 

 
Remarks 

DIM_CD Dimension 

Code 

NUMBER(5) NOT NULL Leaf column 

which stores 

the code for 

the 

dimension. 

Stores the 

Dimension 

Code. 

LANGUAGE Language VARCHAR2( 

3) 

NOT NULL Language Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

<DIM> Dimension VARCHAR2( 

40) 

NOT NULL Name of the 

Dimension 

Stores the 

name of the 

Dimension. 

DESCRIPTIO 

N 

Description VARCHAR2( 

255) 

NULL Description of 

an Item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATED_ 

BY 

Created By VARCHAR2( 

30) 

NOT NULL Indicates who 

created this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

CREATION_ 

DATE 

Creation Date TIMESTAMP NOT NULL Indicates 

when was this 

item created 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-16 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

 
Column 

Name 

Logical 

Column 

Name Datatype NULL 

 
Column 

Description Remarks 
 

LAST_ 

MODIFIED_ 

BY 

Last Modified 

By 

VARCHAR2( 

30) 

NOT NULL Indicates who 

modified this 

item 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

LAST_ 

MODIFIED_ 

DATE 

Last Modified 

Date 

TIMESTAMP NOT NULL Indicates 

when was this 

item modified 

Internally 

used and 

hence should 

be retained in 

the same form 

within the 

new 

dimension 

table. 

 

Example for FSI_<DIM>_CD table: 
 

CREATE TABLE <XXXXX>_FSI_<DIM>_CD  -- ACME_FSI_ACCT_STATUS_CD 

(<DIM>_CD NUMBER(5) -- ACCT_STATUS_CD 

,LEAF_ONLY_FLAG VARCHAR2(1) 

,ENABLED_FLAG VARCHAR2(1) 

,DEFINITION_LANGUAGE VARCHAR2(4) 

,CREATED_BY VARCHAR2(30) 

,CREATION_DATE DATE 

,LAST_MODIFIED_BY VARCHAR2(30) 

,LAST_MODIFIED_DATE DATE 

<dim>_display_CD VARCHAR2() 

); 

Example for FSI_<DIM>_MLS table: 
 

CREATE TABLE <XXXXX>_FSI_<DIM>_MLS -- ACME_FSI_ACCT_STATUS_CD 

(<DIM>_CD NUMBER(5) -- ACCT_STATUS_CD 

,LANGUAGE VARCHAR2(3) 

,<DIM> VARCHAR2(40) -- ACCT_STATUS 

,DESCRIPTION VARCHAR2(255) 

,CREATED_BY VARCHAR2(30) 

,CREATION_DATE DATE 

,LAST_MODIFIED_BY VARCHAR2(30) 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-17 

 

 

 

,LAST_MODIFIED_DATE DATE 

); 

 

Adding Dimension Column To Required Objects 

Dimension column can be added to the following set of Client Data Objects: 

• Tables classified as 'Instruments' and 'Instrument Profitability' 

• Tables classified as 'Transaction Profitability' 

• Management Ledger table 

• Result tables of Asset Liability Management 

Dimension can be of the types — Ledger Only, Instruments Only, or Both. If the 

dimension is classified as 'Ledger Only', the dimension column needs to be added only 

to Ledger Stat table. 

If the dimension is classified Instruments only, the dimension column needs to be 

added to instruments and Transactions tables. If the dimension is classified as 'Both', 

the dimension column needs to be added to Ledger Stat table and other tables 

classified as Instruments and Transactions. 

For adding key dimension column to tables that are classified as 'Instruments' and 

'Instrument Profitability', add the column to LEAF_COLUMNS super-class table. 

For adding key dimension column to tables that are classified as 'Transaction 

Profitability', add the column to TRANS_LEAF_COLUMNS super-class table. 

For adding key dimension column to Ledger Stat table, add the column to LEDGER_ 

LEAF_COLUMNS super-class table. 

 

Note: Columns of super-class tables that are linked to sub-class table 
are rolled down to the sub-class table during 'Model Upload' 
operation. 

 

 

If both super-class and sub-class tables have some common columns, then the 

sub-class table column is retained and the column from the super-class table will be 

ignored. 

If both sub and super entities have common columns with same properties (such as 

datatype, size, and so on ), then there is no issue with model upload process. If sub 

and super entities have the common columns with different properties, then there will 

issue with model upload process. 

If you use Asset Liability Management, add the Dimension column directly to the 

following tables. Use the same column properties as the other dimension columns on 

the table when adding them. Add the column to the same indexes as the existing 

dimension columns. 

• FSI_O_RESULT_DETAIL_TEMPLATE 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-18 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• FSI_O_CONS_DETAIL_TEMPLATE 

• FSI_O_RESULT_MASTER 

• FSI_O_CONSOLIDATED_MASTER 

 
Assigning Processing Key Property 

'Processing Key' is a column level User Defined Property (UDP) in ERwin model. This 

property can have two values — Yes or No. Only those objects where the column was 

added to the unique index are affected. 

For tables classified as 'Transaction Profitability, this property needs to be set as 'Yes' 

for one or more of the key dimension columns. 

For Ledger Stat table, this property needs to be set as 'Yes' for all key dimension 

columns. 

Assigning Processing Key Property is not required for Simple Dimension. 
 

Uploading ERwin Model 

ERwin model with the above changes needs to be uploaded in OFSAAI environment. 

Uploading the model creates these additional tables and sets these properties within 

the atomic schema. 

After upload, user can verify the changes in the schema as well as query OFSAAI 

metadata tables like REV_COLUMN_PROPERTIES for viewing properties assigned to 

each column. 

For more information on data model upload process, see OFSAAI User Guide. 
 

Leaf Registration 

Oracle Financial Services Analytical Applications Infrastructure (OFSAAI) provides an 

Leaf Registration procedure to add the new Key Dimension Column to the 

Dimensions metadata registry (REV_DIMENSIONS_B, REV_DIMENSIONS_TL). 

 

Leaf Registration Procedure 

This procedure performs the following: 

• Registers key and simple dimension. 

• Invalidates all Client Data Objects when key dimension is registered. 

 
Executing Leaf Registration Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The 

function requires 19 parameters. The syntax for calling the procedure is: 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-19 

 

 

 
function rev_leaf_registration(batch_run_id varchar2, 

mis_date varchar2, 

memDataType varchar2, 

dimName varchar2, 

description varchar2, 

memberBTableName varchar2, 

memberTLTableName varchar2, 

hierarchyTableName varchar2, 

attributeTableName varchar2, 

memberCol varchar2, 

memberDispCodeCol varchar2, 

memberNameCol varchar2, 

memberDescCol varchar2, 

dimTypeCode varchar2, 

simpleDimFlag varchar2, 

keyDimFlag char, 

writeFlag varchar2, 

catalogTableType char, 

flattenedTableName in varchar2, 

membercodecol in varchar2 

) 

• batch_run_id : any string to identify the executed batch. 

• mis_date : in the format YYYYMMDD. 

• memDataType : member data type of Dimension as in 

NUMBER,VARCHAR2,CHAR. 

• dimName : name of the dimension to be added (less than 21 chars). 

• description : description of the dimension (less than 255 chars). 

• memberBTableName : Member Base Table Name input as either null or a value 

with suffix '_CD' or '_B'. 

• memberTLTableName : Member TL Table Name input as either null or name of 

the table. 

• hierarchyTableName : Hierarchy Table Name input as either null or name of the 

table. 

• attributeTableName : Attribute Table Name input as either null or name of the 

table. 

• memberCol : Member Column Name input as either null or name of the column. 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-20 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• memberDispCodeCol : Member Display Code Column Name input as either null 

or name of the column. For simple dimensions, enter the same field as the 

memberCol. Do not user display column for simple dimensions. 

• memberNameCol : Member Name Column input as either null or name of the 

column. 

• memberDescCol : Member Description Column input as either null or name of the 

column. 

• dimTypeCode : Code for the dimension Type as in 'PROD for product type', 

'ORGN for Organizational Unit', 'CCOA for Common Chart of Accounts', 'FINELE 

for Financial Element', 'GL for General Ledger Account', 'OTHER for any other 

type'. 

• All user defined dimensions will have DIMENSION_TYPE_CODE as 'OTHER'. 

User defined dimensions which are product related will have DIMENSION_ 

TYPE_CODE as 'PROD'. 

• simpleDimFlag : 'Y' or 'N' to determine Simple Dimension. 

Simple dimensions are created to store CODE and Descriptions. These tables are 
used by the User Interfaces to list values in drop downs / radio buttons, and so 
on. Simple dimensions are not reverse populated. 

Example 

Country, Currencies, Customer Type. 

• keyDimFlag : 'Y' or 'N' to determine Key Dimension. 

Key dimensions are dimensions which get reverse populated to the legacy tables. 

Example 

Product, Org Unit, General Ledger. 

• writeFlag : 'Y' or 'N' to determine whether Dimension should appear in drop 

down list in Dimension Management > Members. 

• catalogTableType : 'L', 'B', or 'I' to determine table type for key dimensions. For a 

Simple Dimension, this value should be set to Null. 

• flattenedTableName : Flattened Table Name input as either null or name of the 

table. 

• membercodecol: Alphanumeric Code column. Populates the MEMBER_CODE_ 

COLUMN column in REV_DIMENSIONS_B. The value provided should be a 

valid code column from the relevant DIM_<DIMENSION>_B (key dimension) or 

FSI_<DIM>_CD (simple dimension) table. For simple dimensions use the display 

code column. 

 

 
Example for Key Dimension: 

 
Declare 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

Object Management 2-21 

 

 

 

num number; 

Begin 

num := rev_leaf_registration('BATCH_NO_01', 

'20101216', 

'NUMBER', 

'SIMPLE DIMENSION', 

'SIMPLE DIMENSION DESC', 

'FSI_DIM_SIMPLE_CD', 

'FSI_DIM_SIMPLE_MLS', 

'null', 

'null', 

'SIMPLE_CD', 

'SIMPLE_CD', 

'SIMPLE_NAME_Dim', 

'SIMPLE_DESCRIPTION', 

'OTHER', 

'Y', 

'N', 

'Y', 

'B', 

'FLATTEN_PROD_TABLE', 

'SIMPLE_DISPLAY_CODE'); 

End; 

Example for Simple Dimension: 
 

Declare 

num number; 

Begin 

num := rev_leaf_registration('BATCH_NO_01', 

'20101216', 

'NUMBER', 

'SIMPLE DIMENSION', 

'SIMPLE DIMENSION DESC', 

'FSI_DIM_SIMPLE_CD', 

'FSI_DIM_SIMPLE_MLS', 

'null', 

'null', 

'SIMPLE_CD', 



Adding Dimension Tables and Key Dimension (Leaf) Registration 

2-22 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

'SIMPLE_DISPLAY_CODE', 

'SIMPLE_NAME_Dim', 

'SIMPLE_DESCRIPTION', 

'OTHER', 

'Y', 

'N', 

'Y', 

'B', 

'FLATTEN_PROD_TABLE'); 

 

End; 

 

 
To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- batch_leaf_registration 

• Parameter List:- Member Data type , Dimension Name, Dimension Description, 

Member Base Table Name, Member Translation Table Name, Hierarchy Table 

Name, Attribute Table Name, Member Column , Member Display Code Column, 

Member Name Column, Member Description Column , Dimension Type Code , 

Simple Dimension Flag , Key Dimension Flag , writeFlag, Catalog Table Type , 

Flatten Table Name 

 

Modify Unique Indexes 

For tables of 'Transaction Profitability' classification, key dimension column can be 

part of the unique index. If this column is intended to be part of the unique index, alter 

the unique index in the schema. 

For Ledger Stat table, all key dimension columns should form part of the unique 

index. Hence, alter the unique index in the schema to include this column. 

 
Executing Object Registration Validation 

Since leaf registration invalidates all Client Data Objects, Object Registration 

Validation procedure needs to be executed to validate the required tables. For more 

information on Executing Object Registration Validation, see Object Registration and 

Validation. 



Adding Custom Instrument Tables 

Object Management 2-23 

 

 

 

Adding Custom Instrument Tables 
Instrument and Account objects are tables storing financial services information about 

customers and accounts. These are most commonly used objects for OFSAA 

processing and reporting operations. There are seeded instrument tables that are 

packaged as part of each OFSAA. You can customize or remove any of them during 

implementation. In some cases, you might also require to add a custom instrument 

table. 

For Simple dimensions, entries should also be made in REV_DESCRIPTION_TABLES 

for each Instrument Table in which that new dimension will occur. The entries in 

REV_DESCRIPTION_TABLES are used by Data Element Filters as well as the 

procedures for Synchronize Instruments and Synchronize Stage. 

The following topics are covered in this section: 

• Super-class Entities 

• Steps in Creating Custom Instrument Table 

• Setting Table Classifications 

• Unique Index 

• Portfolio Selection 

• Object Registration Validation 

 
Super-class Entities 

Most instrument tables are used for OFSAA processing. OFSAA processing mandates 

the instrument table to have a certain set of columns. These columns have been put 

together in super-class entities. The following are the seeded super-class entities: 

• LEAF_COLUMNS — contains the key dimension columns that are part of the 

Instrument tables. 

• BASIC_INSTRUMENT_REQ — contains the basic instrument columns like ID_ 

NUMBER, IDENTITY_CODE etc. 

• MULTI_CUR_REQ — contains the columns required for multi-currency processing. 

• CASH_FLOW_EDIT_REQ — contains the columns required for Cash flow Edit 

processing. 

• CASH_FLOW_PROC_REQ — contains the columns required for Cash flow 

processing. 

• TP_BASIC_REQ — contains the columns required for Transfer Pricing processing. 

• TP_OPTION_COSTING_REQ — contains the columns required for Transfer 

Pricing Option Cost processing. 

• PORTFOLIO_REQ — contains the columns required for Portfolio table 

classification. 



Adding Custom Instrument Tables 

2-24 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• TRANS_LEAF_COLUMNS — contains the key dimension columns that are part of 

the transaction tables. 

• LEDGER_LEAF_COLUMNS — contains the key dimension columns that are part 

of the Ledger Stat table. 

• BASIC_LEDGER_CLASS_REQ — contains the columns required for Ledger Class 

tables example _Ledger. 

 

Note: Column Precision for Instrument Table: 

You can increase the size of the columns to make them hold a value of 
larger precision, but the new size will impact FTP and ALM engines 
as follow: 

• Values/fields read by the engine are restricted to the size that the c++ 
variables can hold within the engine memory. In fact, having a value 
larger than the allowed precision can cause the engine to read the value 
incorrectly. 

• Changing the size of the fields that these engines write into does not 
affect the precision of the results 

• An upgrade could rollback such changes unless you remember to do a 
model merge. 

 

Instrument table can link to any of the above super-class entities based on its purpose. 

For example, if the instrument table is used for Cash Flow Processing, then this table 

should be linked to the following super-class entities: 

• BASIC_INSTRUMENT_REQ 

• MULTI_CUR_REQ 

• LEAF_COLUMNS 

• CASH_FLOW_EDIT_REQ 

• CASH_FLOW_PROC_REQ 

 

Note: CASH_FLOW_PROC_REQ is required for all instrument 
tables where conditional assumptions will be applied. 

 

 

Refer to the following mapping table that specifies the list of super-class entities 

required for each table classification: 

Type of Client Data Object Table Classification List of Super-class entities 

Instrument Instrument BASIC_INSTRUMENT_REQ 

LEAF_COLUMNS 

Instrument ALM Standard BASIC_INSTRUMENT_REQ 

LEAF_COLUMNS MULTI_ 

CUR_REQ CASH_FLOW_ 

EDIT_REQ CASH_FLOW_ 

PROC_REQ 



Adding Custom Instrument Tables 

Object Management 2-25 

 

 

 
 

Type of Client Data Ob ject Table Classification List of Super-class entities 

Instrument TP Cash Flow BASIC_INSTRUMENT_REQ 

LEAF_COLUMNS MULTI_ 

CUR_REQ CASH_FLOW_ 

EDIT_REQ CASH_FLOW_ 

PROC_REQ TP_BASIC_REQ 

Instrument TP Non-Cash Flow BASIC_INSTRUMENT_REQ 

LEAF_COLUMNS MULTI_ 

CUR_REQ CASH_FLOW_ 

EDIT_REQ TP_BASIC_REQ 

Instrument TP Option Costing BASIC_INSTRUMENT_REQ 

LEAF_COLUMNS MULTI_ 

CUR_REQ CASH_FLOW_ 

EDIT_REQ TP_BASIC_REQ 

TP_OPTION_COSTING_REQ 

Instrument Instrument Profitability BASIC_INSTRUMENT_REQ 

MULTI_CUR_REQ 

PORTFOLIO 

Instrument Portfolio BASIC_INSTRUMENT_REQ 

LEAF_COLUMNS MULTI_ 

CUR_REQ PORTFOLIO 

Transaction Transaction Profitability TRANS_LEAF_COLUMNS 

Ledger Stat Ledger Stat LEDGER_LEAF_COLUMNS 

 

Steps in Creating Custom Instrument Table 

The following are the steps involved in creating a custom instrument table: 

• Create a new subject area within the ERwin model. 

• Move the required super-class tables as part of the subject area. 

• Create the custom instrument table in ERwin. Specify logical name, physical name 

and description for the table. Define any columns that do not come from any of the 

standard super-class tables as part of the custom instrument table. Specify logical, 

physical names, domain and other column properties for each column. 

• Create subtype relationship between the custom instrument table and various 

super-class entities. 

 

Note: User defined tables ( custom ) tables should not have 
"PORTFOLIO" keyword in the name of the table. 

 

 

Setting Table Classifications 

Table Classifications can be set for any Client Data Object. Table classification set 

against each Client Data Object is validated through Object Registration Validation 

process. 



Adding Custom Instrument Tables 

2-26 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
The following are the steps involved in setting table classification properties for the 

custom instrument table: 

• Choose Physical View within the ERwin model. 

• Go to UDP tab within Table Properties window. 

• Specify 'Yes' against required Table Classifications properties. 

Once the model is prepared using the above steps, user should upload the ERwin 

model. After uploading the model, user can check if the custom instrument table has 

been created in the schema with columns from super-class entities that have been 

linked to the custom instrument table as well as the columns present in the custom 

instrument table. Model upload also creates metadata entries within the following 

Object Registration tables: 

• REV_TABLES_B — Contains the list of table names. 

• REV_TABLES_TL — contains the list of table display names and descriptions in 

various languages. 

• REV_TAB_COLUMNS — contains the list of column names. 

• REV_TAB_COLUMNS_MLS — contains the list of column display names and 

descriptions in various languages. 

• REV_COLUMN_PROPERTIES — stores the column properties associated with 

each column. 

• REV_TABLE_CLASS_ASSIGNMENT — stores the table classification associated 

with each table. 

 
 

Note: • In case custom instrument table contains the column in the same 
name as that of the super-class table, then column present in the custom 
instrument table will take precedence over the equivalent column of the 
super-class table. In case multiple super-class tables contain the same 
column, user should ensure that all the columns have same datatype, as 
any column can be selected and it is not resolved in any specific order. 

• Physical order of the columns within the custom instrument table is 
determined in the following way: 

Columns present in the custom instrument table. 

Columns present in each of the linked super-class table. In case multiple 
super-class tables are linked to the custom instrument table, columns are 
rolled down from all super-class tables without any specific order. 

• Within any table, ERwin maintains three different column orders: 

Logical Order — Order of the columns as seen in Logical view of the 
model 

Physical Order — Order of the columns as seen in Physical view of the 
model. 

Database Order — Order of the columns as seen in the Database schema. 



Adding Custom Instrument Tables 

Object Management 2-27 

 

 

 

Unique Index 

Instrument tables require unique index on ID_NUMBER and IDENTITY_CODE 

column. This unique index needs to be created on the custom instrument table, 

post-model upload operation. 

Transaction tables require unique index on ID_NUMBER, IDENTITY_CODE and one 

of the key dimension columns. This unique index needs to be created on the custom 

transaction table, post-model upload operation. 

 

Note: The unique index may not contain any non-Key Dimension 
columns other than ID_NUMBER and IDENTITY_CODE. 

 

 

Portfolio Selection 

It enables users to define rules with a cross-instrument definition, since the Portfolio 

table classification contains columns (potentially including user-defined columns) that 

are common to all instruments. Any other specific instrument table selection (such as 

"Mortgages", and so on) would limit the rule definition to the specific instrument table. 

During processing of a "Portfolio" selection from an assumption rule, the engine will 

substitute the name of a specific table (e.g. instruments selected in the parent process 

rule). 

Adding a new user defined column as a Portfolio column for use in all Instrument tables 

Portfolio is available as a table selection in various modules including Infrastructure 

objects such as Filters and Expression rules. It is also available in application objects 

such as Profitability Management Allocation rules, and so on. To add a new 

user-defined column as a Portfolio column, use the following steps: 

1. Include the column in the PORTFOLIO super-type table in the Erwin Data Model 
to ensure that the column rolls down to all subtype tables. 

2. Complete incremental model upload to add the column to all subtype Portfolio 
tables. 

3. Manually insert a row into the Atomic schema REV_PROPERTY_COLUMNS table 
with TABLE_PROPERTY_CD = 40: 

For example, if your new column is "APPLE_BRANCH_CD" 

Insert into REV_PROPERTY_COLUMNS 

(TABLE_PROPERTY_CD,COLUMN_NAME,PROTECTED_FLG) values 

(40,'APPLE_BRANCH_CD',1); 

COMMIT; 

Data Element Filters created with custom columns will appear in Conditional 

Assumptions (within Funds Transfer Pricing) when properly registered. When 

creating a custom column in Instrument table(s)/Cash Flow related table(s), i.e. those 

containing BASIC_INSTRUMENT_REQ/CASH_FLOW_PROC_REQ in the data 

model, the custom column must have one of the Domains listed below: BALANCE, 



Adding Custom Transaction Tables 

2-28 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
CHAR,CODE, CODE_NUM, DATE, DESCRIPTION, FLAG, NUMBER, NUMERIC, 

RATE, SWITCH, VARCHAR2, CHAR_RANGE, PCT. 

 
Object Registration Validation 

Since leaf registration invalidates all Client Data Objects, Object Registration 

Validation procedure needs to be executed to validate the required tables. For more 

information on Object Registration Validation procedure, see Object Registration and 

Validation . 

 

Adding Custom Transaction Tables 
Transaction tables are used within Profitability Management processing. There are 

seeded transaction tables that are packaged as part of Profitability Management 

application. You can customize or remove any of them during implementation. In 

some cases, you might also require to add a custom transaction table. 

For Simple dimensions, entries should also be made in REV_DESCRIPTION_TABLES 

for each Transaction Table in which that new dimension will occur. The entries in 

REV_DESCRIPTION_TABLES are used by Data Element Filters as well as the 

procedures for Synchronize Instruments and Synchronize Stage. 

The following topics are covered in this section: 

• Super-class Entities 

• Steps In Creating Custom Transaction Table 

• Setting Table Classifications 

• Unique Index 

• Object Registration Validation 

 
Super-class Entities 

Profitability Management processing mandates the transaction table to have a certain 

set of columns. These columns have been put together in super-class entities. The 

following are the seeded super-class entities: 

TRANS_LEAF_COLUMNS — contains the key dimension columns that are part of the 

Transaction tables. 

 
Steps In Creating Custom Transaction Table 

The following are the steps involved in creating a custom transaction table: 

• Create a new subject area within the ERwin model. 

• Move TRANS_LEAF_COLUMNS into the new subject area. 

• Create the custom transaction table in ERwin. Specify logical name, physical name 

and description for the table. Define any columns that do not come from any of the 



Adding Custom Transaction Tables 

Object Management 2-29 

 

 

 
standard super-class tables as part of the custom transaction table. Specify logical, 

physical names, domain and other column properties for each column. 

• Create subtype relationship between the custom transaction table and TRANS_ 

LEAF_COLUMNS super-class entity. 

 
Setting Table Classifications 

Table Classifications can be set for any Client Data Object. Table classification set 

against each Client Data Object is validated through Object Registration Validation 

process. 

The following are the steps involved in setting table classification properties for the 

custom transaction table: 

• Choose Physical View within the ERwin model. 

• Go to UDP tab within Table Properties window. 

• Specify 'Yes' for 'Transaction Profitability' user defined property. 

Once the model is prepared using the above steps, user should upload the ERwin 

model. After uploading the model, user can check if the custom transaction table has 

been created in the schema with columns from super-class entities that have been 

linked to the custom transaction table as well as the columns present in the custom 

transaction table. Model upload also creates metadata entries within the following 

Object Registration tables: 

• REV_TABLES_B — Contains the list of table names. 

• REV_TABLES_TL — contains the list of table display names and descriptions in 

various languages. 

• REV_TAB_COLUMNS — contains the list of column names. 

• REV_TAB_COLUMNS_MLS - contains the list of column display names and 

descriptions in various languages. 

• REV_COLUMN_PROPERTIES - stores the column properties associated with each 

column. 

• REV_TABLE_CLASS_ASSIGNMENT - stores the table classification associated 

with each table. 

• REV_TABLE_CLASSIFICATION_TL - contains the list of table classification, 

language name and description associated with each table. 

• REV_TABLE_CLASSIFICATION_B - contains the list of table classification. 



Adding Custom Transaction Tables 

2-30 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 
 

 

Note: For Mortgages, TABLE_CLASSIFICATION_CD = 618 and 
TABLE_CLASSIFICATION = 'Mortgages' in REV_TABLE_ 
CLASSIFICATION_TL and REV_TABLE_CLASSIFICATION_B tables. 

For Embedded Options, TABLE_CLASSIFICATION_CD = 617 and 
TABLE_CLASSIFICATION = 'Embedded Options' in REV_TABLE_ 
CLASSIFICATION_TL and REV_TABLE_CLASSIFICATION_B tables. 

 

• REV_COLUMN_PROPERTY_CD - contains the column property Ids and currency 

basis associated with each column. 

• REV_COLUMN_PROPERTY_MLS - contains the column properties, language 

name and description associated with each column. 

 

Note: For Economic Value, COLUMN_PROPERTY_CD = 86 and 
COLUMN_PROPERTY = 'Economic Value' in REV_COLUMN_ 
PROPERTY_MLS and REV_COLUMN_PROPERTY_CD tables. 

 

 

Note: • In case custom transaction table contains the column in the same 
name as that of the super-class table, then column present in the custom 
transaction table will take precedence over the equivalent column of the 
super-class table. 

• Physical order of the columns within the custom transaction table is 
determined in the following way: 

Columns present in the custom transaction table. 

Columns present in each of the linked super-class table. 

• Within any table, ERwin maintains three different column orders: 

Logical Order — Order of the columns as seen in Logical view of the 
model. 

Physical Order — Order of the columns as seen in Physical view of the 
model. 

Database Order — Order of the columns as seen in the Database schema. 

 
 
 

Setting Processing Key Property 

'Processing Key' user defined property needs to be set for the following columns 

within the transaction table: 

• ID_NUMBER 

• IDENTITY_CODE 

• Leaf columns that are part of the unique index 

The following are the steps to set this property in ERwin: 

• Choose Physical View within the ERwin model. 

• Choose TRANS_LEAF_COLUMNS super-class table. 



Adding Custom Lookup Tables 

Object Management 2-31 

 

 

 

• Choose the leaf column that needs to be set 'Processing Key' property. 

• Go to UDP tab in Column Properties window for this column. 

• Specify 'Yes' against 'Processing Key' user-defined property. 

• Choose the custom transaction table. 

• Go to UDP tab in Column Properties window for ID_NUMBER and IDENTITY_ 

CODE columns. 

• Specify 'Yes' against 'Processing Key' user-defined property. 

 
Unique Index 

Transaction tables require unique index on the following columns: 

• ID_NUMBER 

• IDENTITY_CODE 

• At-least one of the key dimension columns. 

This unique index needs to be created on the custom transaction table, post-model 

upload operation. 

 
Object Registration Validation 

Since leaf registration in-validates all Client Data Objects, Object Registration 

Validation procedure needs to be executed to validate the required tables. For more 

information on Object Registration Validation procedure, see Object Registration and 

Validation. 

 

Adding Custom Lookup Tables 
Lookup tables are used within OFSAA Profitability Management application. Lookup 

tables have to be created and registered within OFSAAI, in order to display them in 

Lookup Table Driver definition of OFSAA Profitability Management application. 

The following topics are covered in this section: 

• Steps In Creating Lookup Table 

• Setting Column Properties 

• Setting Table Classifications 

• Registering Lookup Tables and Validation 

• Lookup Table Driver Definition 

 
Steps In Creating Lookup Table 

Lookup table has to be created in the ERwin model. The following are the steps: 

• Open the ERwin model in ERwin Data Modeler tool. 



Adding Custom Lookup Tables 

2-32 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Create a new subject area. 

• Create a table and add columns to the table. 

• Lookup table needs to at-least have one primary key column. 

• Lookup table needs to at-least have one numeric non-key column. Such numeric 

columns will be the return value of the lookup. 

• Specify logical names, comments and primary key for the table. 

• Specify logical names, domains and comments for the column. 

• Domains for the columns can be LEAF, BALANCE, RATE etc. 

• Save the model. 

 
Setting Column Properties 

'Processing Key' is a column level User Defined Property (UDP) in ERwin model. This 

property can have two values — Yes or No. 'Processing Key' property needs to be set 

for all the primary key columns of the lookup table. 

'Balance Range' is a column level User Defined Property (UDP) in ERwin model. This 

property can have two values — Yes or No. 'Balance Range' property needs to be set for 

the columns that can have range values in the lookup. 

The following are the steps for setting the above properties: 

• Open the ERwin model in ERwin Data Modeler tool. 

• Go to the subject area where lookup table was created. 

• Choose the table and open the columns of the table. 

• Go to UDP tab within the column properties for each column. 

• Specify the value for the required user defined properties. 

• Save the model. 

 
Setting Table Classifications 

Table Classifications can be set for any Client Data Object. Table classification set 

against each Client Data Object is validated through Object Registration Validation 

process. 

The following are the steps involved in setting table classification properties for the 

custom lookup table: 

• Choose Physical View within the ERwin model. 

• Go to UDP tab within Table Properties window. 

• Specify 'Yes' for 'PA Lookup Tables' user-defined property. 



Adding Management Ledger Class tables 

Object Management 2-33 

 

 

 

Registering Lookup Tables and Validation 

Upload the model and execute the object registration validation. 
 

Lookup Table Driver Definition 

Post registration and validation, the lookup table is available within Lookup Table 

Driver definition of OFSAA Profitability Management application. 

Following is the criteria for columns to be displayed in the Source - Lookup Mapping 

grid: 

• Column needs to be Primary Key or be part of composite primary key. 

• 'Processing Key' user defined property should be set for the column under UDP 

tab as shown below. 

Mapping of Column to Processing Key 

Following is the criteria for columns to be part of the Range: 

• 'Balance Range' user defined property should be set for the column under UDP tab 

as shown below. 

Mapping of Column for Range Property 

Following is the criteria for columns to be part Lookup Return Value: 

• Column should not be primary key/processing key or be part of composite 

primary key. 

• Column domain should be defined as NUMBER under General Tab as shown 

below. 

Mapping of Column for Look up Return Value 

 
Adding Management Ledger Class tables 

Beginning with release 8, OFSAA Profitability Management supports a Management 

Ledger table class. Management Ledger tables provide substantially identical 

functionality to the traditional Ledger/Stat table. Like Ledger/Stat, you may also 

customize the dimensionality of Management Ledger tables. Additionally, in addition 

to the seeded Management Ledger table (FSI-D-MANAGEMENT-LEDGER), you may 

also construct and customize additional ledger tables of the Management Ledger table 

class. 

The seeded FSI-D-MANAGEMENT-LEDGER table is loaded from STG_GL_DATA via 

a standard T2T rule (T2T_MANAGEMENT_LEDGER). If you choose to build 

additional Management Ledger tables, you will need to clone T2T_MANAGEMENT_ 

LEDGER to target your new ledger table. 

The following topics are covered in this section: 

• Super-class Entities 



Adding Management Ledger Class tables 

2-34 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Steps to create Custom Ledger Class Table 

• Setting Table Classifications 

• Setting Processing Key Property 

• Unique Index 

• Object Registration Validation 

 
Super-class Entities 

Profitability processing mandates the Ledger class table to have a certain set of 

columns. These columns have been put together in super-class entities. 

The following are the seeded super-class entities: 

• BASIC_LEDGER_CLASS_REQ — Contains the columns required for Ledger Class 

tables. 

 

 
• The FSI_D_MANAGEMENT_LEDGER.ENTERED_BALANCE column stores 

"entered" or "transacted" balances that correspond to the local currency in which 

the transactions were booked in your General Ledger. 

• The FSI_D_MANAGEMENT_LEDGER.FUNCTIONAL_BALANCE column stores 

balances in the Functional currency of your General Ledger 

 

Note: When Initially loading data from Staging fo Management 
Ledger, Entered and Functional currency balances should correspond 
to the values originally booked into your General Ledger. 

 

 

For a mono-currency implementation: 

• The Entered balance should equal the Functional balance on each Management 

Ledger row 

• The ISO_CURRENCY_CD for each Management Ledger row should match your 

Functional Currency (from FSI_DB_INFO). 

For multi-currency implementations: 

• When a Management Ledger row's ISO_CURRENCY_CD is the same as your 

Functional Currency, the Entered balance will equal the Functional balance 

• The Entered balance will equal the Functional balance for all statistical rows (ISO_ 

CURRENCY_CD = 002) 

• Generally, the Entered balance will NOT equal the Functional balance for 

Management Ledger rows where ISO_CURRENCY_CD is different than your 

Functional Currency 



Adding Management Ledger Class tables 

Object Management 2-35 

 

 

 

• The ratio of Entered balance to Functional balance -- the observed exchange rate 

for the row -- is determined within your source General Ledger. Typically, ending 

balances will match end-of-month exchange rates while P&L balances may reflect 

weighted monthly average exchange rates. 

 

Note: For more information on how Entered & Functional balances are used 

with applications, see the Appendix D: Multicurrency in the OFSAA 

Profitability Management User Guide on OHC. 
 

 

Steps to create Custom Ledger Class Table 

The following are the steps involved in creating a custom Ledger Class table: Create 

subtype relationship between the custom Ledger Class table and BASIC_LEDGER_ 

CLASS_REQ super-class entity. 

1. Create a new subject area within the ERwin model. 

2. Create the custom Ledger Class table in ERwin. Specify logical name, physical 
name and description for the table. Define any columns that do not come from any 
of the standard super-class tables as part of the custom Ledger Class table. Specify 
logical, physical names, domain and other column properties for each column. 

3. Move BASIC_LEDGER_CLASS_REQ into the new subject area 

 

Setting Table Classifications 

Table Classifications can be set for any Client Data Object. Table classification set 

against each Client Data Object is validated through Object Registration Validation 

process. 

The following are the steps involved in setting table classification properties for the 

custom Ledger Class table: 

• Choose Physical View within the ERwin model. 

• Go to UDP tab within Table Properties window. 

• Specify 'Yes' for 'Ledger Class ' user defined property. Once the model is prepared 

using the above steps, user should upload the ERwin model. After uploading the 

model, user can check if the custom Ledger Class has been created in the schema 

with columns from super-class entities that have been linked to the custom Ledger 

Class table as well as the columns present in the custom Ledger Class table. Model 

upload also creates metadata entries within the following Object Registration 

tables: 

• REV_TABLES_B — Contains the list of table names. 

• REV_TABLES_TL — contains the list of table display names and descriptions in 

various languages. 

• REV_TAB_COLUMNS — contains the list of column names 

https://docs.oracle.com/cd/E60202_01/pfthomepage.htm


Adding Management Ledger Class tables 

2-36 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• REV_TAB_COLUMNS_MLS — contains the list of column display names and 

descriptions in various languages. 

• REV_COLUMN_PROPERTIES — stores the column properties associated with 

each column. 

• REV_TABLE_CLASS_ASSIGNMENT — stores the table classification associated 

with each table. 

• In case custom Ledger Class table contains the column in the same name as 
that of the super-class table, then column present in the custom Ledger Class 
table will take precedence over the equivalent column of the super-class table. 

• Physical order of the columns within the custom Ledger Class table is 
determined in the following way: 

• Columns present in the custom Ledger Class table. 

• Columns present in each of the linked super-class table. 

• Within any table, ERwin maintains three different column orders: 

Logical Order — Order of the columns as seen in Logical view of the model. 

Physical Order — Order of the columns as seen in Physical view of the model. 

Database Order — Order of the columns as seen in the Database schema. 

 

Setting Processing Key Property 

'Processing Key' user defined property needs to be set for the following columns 

within the Ledger Class table: 

• Leaf columns that are part of the unique index 

The following are the steps to set this property in ERwin: 

• Choose Physical View within the ERwin model. 

• Choose BASIC_LEDGER_CLASS_REQ super-class table. 

• Choose the leaf column that needs to be set 'Processing Key' property. 

• Go to UDP tab in Column Properties window for this column. 

• Specify 'Yes' against 'Processing Key' user-defined property 

• Choose the custom Ledger Class table. 

• Go to UDP tab in Column Properties window for the columns. 

• Specify 'Yes' against 'Processing Key' user-defined property. 

 
Unique Index 

Ledger Class tables require unique index on the following columns: 

• IDENTITY_CODE 

• FISCAL_YEAR 

• CONSOLIDATION_CD 



Adding Management Ledger Class tables 

Object Management 2-37 

 

 

 

• ISO_CURRENCY_CD 

• LEGAL_ENTITY_ID 

• BALANCE_TYPE_CD 

• FISCAL_MONTH 

• Key dimension columns 

This unique index needs to be created on the custom Ledger Class table, post-model 

upload operation. 

 
Removing the Dimensions 

1. Select the subject area within the ERwin model. 

 

2. Delete the table. 

 
 



Object Registration and Validation 

2-38 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

 
 

Note: Before deleting the table, check the dependent tables. 
 
 

 

 

Object Registration Validation 

Since, leaf registration in-validates all Client Data Objects, the Object Registration 

Validation procedure needs to be executed to validate the required tables. 

 

Object Registration and Validation 
Table Classifications provide a means to designate how tables are used within the 

OFSAA suite of applications. Each table classification identifies a specific purpose for 

which an assigned table is allowed to be used. 

Some Table Classifications have requirements that must be satisfied in order for an 

object to be assigned to the classification. These requirements are designated by Table 

Properties associated to the Table Classifications. These Table Properties are either 

specific column name requirements or logic validations. 

Table Classification assignments are stored in REV_TABLE_CLASS_ ASSIGNMENT. 

 
 



Object Registration and Validation 

Object Management 2-39 

 

 

 

 
 

Note: FSI_D_CUSTOMER table should be registered against "Other 
table Class" and "Profitability-Other Class" in REV_TABLE_CLASS_ 
ASSIGNMENT table. 

Below SQL statements shouldbe executed explicitly to make the 

required entries in REV_TABLE_CLASS_ASSIGNMENT : 

Insert into REV_TABLE_CLASS_ASSIGNMENT 

(TABLE_NAME,OWNER,TABLE_CLASSIFICATION_CD,PROTECTED_ 

FLG,VALIDATED_FLAG) 

values ('FSI_D_CUSTOMER','<DB OWNER>',30,0,'Y'); 

Insert into REV_TABLE_CLASS_ASSIGNMENT 

(TABLE_NAME,OWNER,TABLE_CLASSIFICATION_CD,PROTECTED_ 

FLG,VALIDATED_FLAG) 

values ('FSI_D_CUSTOMER','<DB OWNER>',350,0,'Y'); 

where <DB OWNER> is atomic schema user name. 

 

Object Registration is a process of classifying a table with one or more table 

classifications depending on the purpose of the table. This step is performed within 

the ERwin model by setting various User Defined Properties for a client data object. 

Validation procedure validates table class assignment for a client data object and 

needs to be executed after model upload operation. 

The following topics are covered in this section: 

• User-Assignable Table Classification 

• Requirement For Table Classification 

• Validation Procedure 

• Executing the Validation Procedure 

• Exception Messages 

 
User-Assignable Table Classification 

User-Assignable Table Classifications are those that can be assigned by the 

administrator to user-defined and client data objects, including the OFSAAI 

Instrument tables. These Table Classifications identify processing and reporting 

functions for the OFSAA. Some of these Table Classifications have requirements that 

must be met in order for the classification to be assigned to a table or view. 

All User-Assignable Table Classifications are available for assignment within the 

ERwin model. The following table lists the User-Assignable Table Classifications: 

Code Table Classification Name 

20 Instrument 

50 Ledger Stat 

100 Portfolio 



Object Registration and Validation 

2-40 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

Code Table Classification Name 

200 TP Cash Flow 

210 TP Non-Cash Flow 

295 Codes User Defined (base tbl) 

296 MLS Descriptions User Defined 

300 Transaction Profitability 

310 Instrument Profitability 

320 User Defined 

330 Data Correction Processing 

360 RM Standard 

370 TP Option Costing 

500 PA Lookup Tables 

600 Derivative Instruments 

530 Break Funding 

197 MLS Descriptions Reserved 

198 Codes Reserved (base tbl) 

 

Requirement For Table Classification 

OFSAAI requires specific table structures, column names and column characteristics 

for OFSAA operations. These structures and requirements are embodied by the 

User-Assignable Table Classifications. 

Each Table Classification comprises individual Table Properties that define the 

requirements for that classification. Table Properties are two distinct types: those 

encompassing specific column requirements and those encompassing logic 

requirements via stored procedures. 

The following table provides the validation checks that are being done for each of the 

table classification: 

TABLE_ 

CLASSIFICATIO 

N_CD 

TABLE_ 

CLASSIFICATIO 

N 

 
TABLE_ 

PROPERTY 

 

 
DESCRIPTION 

 

 
Comments 

50 Ledger Stat Ledger Leaf 

Column Class 

Fields that are 

part of core 

modeling 

dimensions for 

Fusion PFT 

Checks if 

columns of 

super-type 

Ledger Leaf 

Column Class is 

present 

100 Portfolio Portfolio 

Requirements 

Dynamic list of 

Portfolio fields 

Checks if 

columns of 

super-type 

Portfolio 

Requirements is 

present 



Object Registration and Validation 

Object Management 2-41 

 

 

 
 

 

TABLE_ 

CLASSIFICATIO 

N_CD 

TABLE_ 

CLASSIFICATIO 

N 

 
TABLE_ 

PROPERTY DESCRIPTION Comments 
 

200 TP Cash Flow Basic Instrument 

Requirements 

Instrument 

Required fields 

Checks if 

columns of 

super-type Basic 

Instrument 

Requirements is 

present 

200 TP Cash Flow Cash Flow Proc. 

Requirements 

Fields required 

by TP and ALM 

Cash Flow 

processing 

Checks if 

columns of 

super-type Cash 

Flow Proc. 

Requirements is 

present 

    Note, this is 

required if 

Conditional 

Assumptions are 

being defined 

against the table. 

200 TP Cash Flow Cash Flow Edit 

Requirements 

Fields required 

by Cash Flow 

Edits in addition 

to Cash Flow 

fields 

Checks if 

columns of 

super-type Cash 

Flow Edit 

Requirements is 

present 

200 TP Cash Flow Multi-Currency 

Requirements 

Fields required 

for 

Multi-Currency 

Checks if 

columns of 

super-type 

Multi-Currency 

Requirements is 

present 

200 TP Cash Flow TP Basic 

Requirements 

Non-cash flow 

Transfer Pricing 

fields 

Checks if 

columns of 

super-type TP 

Basic 

Requirements is 

present 

200 TP Cash Flow Validate 

Instrument 

Leaves 

Validates that a 

table has all 'B' 

leaves 

Validation . 

Check if the table 

has all the key 

dimension leaf 

columns. The leaf 

columns should 

be of data type 

NUMBER 



Object Registration and Validation 

2-42 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

TABLE_ 

CLASSIFICATIO 

N_CD 

TABLE_ 

CLASSIFICATIO 

N 

 
TABLE_ 

PROPERTY DESCRIPTION Comments 
 

200 TP Cash Flow Validate 

Instrument Key 

Validate the 

unique key for 

Instrument (PA, 

TP, ALM) tables 

Validation . 

Instrument table 

should have 

index present on 

ID_NUMBER 

and IDENTITY_ 

CODE column 

210 TP Non-Cash 

Flow 

Basic Instrument 

Requirements 

Instrument 

Required fields 

Checks if 

columns of 

super-type Basic 

Instrument 

Requirements is 

present 

210 TP Non-Cash 

Flow 

Multi-Currency 

Requirements 

Fields required 

for 

Multi-Currency 

Checks if 

columns of 

super-type 

Multi-Currency 

Requirements is 

present 

210 TP Non-Cash 

Flow 

TP Basic 

Requirements 

Non-cash flow 

Transfer Pricing 

fields 

Checks if 

columns of 

super-type TP 

Basic 

Requirements is 

present 

210 TP Non-Cash 

Flow 

Validate 

Instrument 

Leaves 

Validates that a 

table has all 'B' 

leaves 

Validation . 

Check if the table 

has all the key 

dimension leaf 

columns. The leaf 

columns should 

be of data type 

NUMBER 

210 TP Non-Cash 

Flow 

Validate 

Instrument Key 

Validate the 

unique key for 

Instrument (PA, 

TP, ALM) tables 

Validation . 

Instrument table 

should have 

index present on 

ID_NUMBER 

and IDENTITY_ 

CODE column 

300 Transaction 

Profitability 

Basic Instrument 

Requirements 

Instrument 

Required fields 

Checks if 

columns of 

super-type Basic 

Instrument 

Requirements is 

present 



Object Registration and Validation 

Object Management 2-43 

 

 

 
 

 

TABLE_ 

CLASSIFICATIO 

N_CD 

TABLE_ 

CLASSIFICATIO 

N 

 
TABLE_ 

PROPERTY DESCRIPTION Comments 
 

300 Transaction 

Profitability 

Multi-Currency 

Requirements 

Fields required 

for 

Multi-Currency 

Checks if 

columns of 

super-type 

Multi-Currency 

Requirements is 

present 

300 Transaction 

Profitability 

Validate 

Instrument 

Leaves 

Validates that a 

table has all 'B' 

leaves 

Validation . 

Check if the table 

has all the key 

dimension leaf 

columns. The leaf 

columns should 

be of data type 

NUMBER 

300 Transaction 

Profitability 

Validate 

Transaction Key 

Validate the 

unique key for 

Transaction 

Profitability 

tables 

Transaction table 

should have 

composite index 

present on ID_ 

NUMBER and 

IDENTITY_ 

CODE and all the 

processing key 

columns. 

310 Instrument 

Profitability 

Basic Instrument 

Requirements 

Instrument 

Required fields 

Checks if 

columns of 

super-type Basic 

Instrument 

Requirements is 

present 

310 Instrument 

Profitability 

Multi-Currency 

Requirements 

Fields required 

for 

Multi-Currency 

Checks if 

columns of 

super-type 

Multi-Currency 

Requirements is 

present 

310 Instrument 

Profitability 

Validate 

Instrument 

Leaves 

Validates that a 

table has all 'B' 

leaves 

Validation . 

Check if the table 

has all the key 

dimension leaf 

columns. The leaf 

columns should 

be of data type 

NUMBER 



Object Registration and Validation 

2-44 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

TABLE_ 

CLASSIFICATIO 

N_CD 

TABLE_ 

CLASSIFICATIO 

N 

 
TABLE_ 

PROPERTY DESCRIPTION Comments 
 

310 Instrument 

Profitability 

Validate 

Instrument Key 

Validate the 

unique key for 

Instrument (PA, 

TP, ALM) tables 

Validation . 

Instrument table 

should have 

index present on 

ID_NUMBER 

and IDENTITY_ 

CODE column 

330 Data Correction 

Processing 

Validate 

Processing Key 

Validate the 

unique key for 

Processing tables 

Processing Key 

Column for a 

table have a 

matching unique 

index 

360 ALM Standard Basic Instrument 

Requirements 

Instrument 

Required fields 

Checks if 

columns of 

super-type Basic 

Instrument 

Requirements is 

present 

360 ALM Standard Cash Flow Proc. 

Requirements 

Fields required 

by TP and ALM 

Cash Flow 

processing 

Checks if 

columns of 

super-type Cash 

Flow Proc. 

Requirements is 

present 

360 ALM Standard Cash Flow Edit 

Requirements 

Fields required 

by Cash Flow 

Edits in addition 

to Cash Flow 

fields 

Checks if 

columns of 

super-type Cash 

Flow Edit 

Requirements is 

present 

360 ALM Standard Multi-Currency 

Requirements 

Fields required 

for 

Multi-Currency 

Checks if 

columns of 

super-type 

Multi-Currency 

Requirements is 

present 

360 ALM Standard Validate 

Instrument 

Leaves 

Validates that a 

table has all 'B' 

leaves 

Validation . 

Check if the table 

has all the key 

dimension leaf 

columns. The leaf 

columns should 

be of data type 

NUMBER 



Object Registration and Validation 

Object Management 2-45 

 

 

 
 

 

TABLE_ 

CLASSIFICATIO 

N_CD 

TABLE_ 

CLASSIFICATIO 

N 

 
TABLE_ 

PROPERTY DESCRIPTION Comments 
 

360 ALM Standard Validate 

Instrument Key 

Validate the 

unique key for 

Instrument (PA, 

TP, ALM) tables 

Validation . 

Instrument table 

should have 

index present on 

ID_NUMBER 

and IDENTITY_ 

CODE column 

370 TP Option 

Costing 

Basic Instrument 

Requirements 

Instrument 

Required fields 

Checks if 

columns of 

super-type Basic 

Instrument 

Requirements is 

present 

370 TP Option 

Costing 

Cash Flow Edit 

Requirements 

Fields required 

by Cash Flow 

Edits in addition 

to Cash Flow 

fields 

Checks if 

columns of 

super-type Cash 

Flow Edit 

Requirements is 

present 

370 TP Option 

Costing 

Multi-Currency 

Requirements 

Fields required 

for 

Multi-Currency 

Checks if 

columns of 

super-type 

Multi-Currency 

Requirements is 

present 

370 TP Option 

Costing 

TP Option 

Costing 

Requirements 

Fields required 

for Transfer 

Pricing Option 

Costing 

processing 

Checks if 

columns of 

super-type TP 

Option Costing 

Requirements is 

present 

370 TP Option 

Costing 

TP Basic 

Requirements 

Non-cash flow 

Transfer Pricing 

fields 

Checks if 

columns of 

super-type TP 

Basic 

Requirements is 

present 

370 TP Option 

Costing 

Validate 

Instrument 

Leaves 

Validates that a 

table has all 'B' 

leaves 

Validation . 

Check if the table 

has all the key 

dimension leaf 

columns. The leaf 

columns should 

be of data type 

NUMBER 



Object Registration and Validation 

2-46 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

TABLE_ 

CLASSIFICATIO 

N_CD 

TABLE_ 

CLASSIFICATIO 

N 

 
TABLE_ 

PROPERTY DESCRIPTION Comments 
 

370 TP Option 

Costing 

Validate 

Instrument Key 

Validate the 

unique key for 

Instrument (PA, 

TP, ALM) tables 

Validation. 

Instrument table 

should have 

index present on 

ID_NUMBER 

and IDENTITY_ 

CODE column 

500 PA Lookup 

Tables 

Validate PA 

Lookup 

Procedure to 

check if there is a 

primary key for 

the lookup tables. 

Validation. All 

Lookup table 

should have a 

primary key 

present 

530 Break Funding Break Funding 

Requirements 

Fields required 

as part of TP 

break funding 

Checks if 

columns of 

super-type Break 

Funding 

Requirements is 

present 

 

Specific column requirements for each table property can be obtained by querying 

REV_COLUMN_REQUIREMENTS table. 

 
Validation Procedure 

The OFSA_TAB_CLASS_REQ package contains all of the procedures and supporting 

functions that validates if a table meets the requirements for a particular Table 

Classification. 

The package performs the following validations: 

• VALIDATE_INST_KEY 

This procedure validates if a table has ID_NUMBER and IDENTITY_CODE, or 
ID_NUMBER, IDENTITY_CODE and AS_OF_DATE as its unique index and if the 
Processing key designated in Column Properties is ID_NUMBER, IDENTITY_ 
CODE. 

• UPDATABLE_INST_REQ_FIELDS 

This procedure checks that all of the Instrument Required Fields are also listed as 
updatable in USER_UPDATABLE_COLUMNS for the specified table or view. 

• VALIDATE_INST_LEAVES 

This procedure will validate a table has all the required leaf columns 

• VALIDATE_TRANS_KEY 

This procedure validates if a table has ID_NUMBER and IDENTITY_CODE and 
one or more 'B' Leaf Columns in its unique index and that these columns match 
the Processing key designated in Column Properties. 

• VALIDATE_CORR_KEY 



Object Registration and Validation 

Object Management 2-47 

 

 

 
This procedure will validate a table has a unique index with updatable columns. 

All the above procedures return a success or failure status. The REV_TAB_CLASS_ 

ASSIGNMENT table is updated as 'Y' if a table is successfully validated and 'N' in case 

of failure. 

 
Executing the Validation Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Atomic Schema Owner. 

The syntax for calling the procedure is: 

set serveroutput off 

Declare 

Output number; 

Begin 

Output := fsi_batchtableclassreq(pbatchid, pmis_date); 

End; 

 

Note: Since the package contains huge number of dbms_output 
statements, user should either increase the output buffer size or 
disable the server output. 

 

 

For Example: 
 

set serveroutput off 

Declare 

Output number; 

Begin 

Output := 

fsi_batchtableclassreq('INFODOM_INSTRUMENT_TABLE_VALIDATION_20131205_ 

1', 

'20131205'); 

End; 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- Batch_Table_Class_Req 

• Parameter List:- Batch Identifier and MISDATE 



Defining Alternate Rate Output Columns 

2-48 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Exception Messages 

The OFSA_TAB_CLASS_REQ packages throws the following exceptions. 

Exception 1: FAILED: Table Property 1030 - Validate Correction Key 

This exception occurs when no valid unique index found. 

Exception 2: FAILED: Table Property 1030 - Validate Correction Key 

This exception occurs when Processing Key Column Properties do not match unique 

index 

Exception 3: FAILED: Table Property 1030 - Validate Transaction Key 

This exception occurs when no valid unique index found. 

Exception 4: FAILED: Table Property 1000 - Validate Instrument Leaves 

This exception occurs when one or more Leaf Columns are missing or incorrectly 

registered. Check if the datatype of the LEAF columns is NUMBER and domain of 

these columns is LEAF. 

 

Defining Alternate Rate Output Columns 
This section details the steps required for defining Alternate Rate Output columns 

within the OFSAA Fund Transfer Pricing Application. 

The following topics are covered in this section: 

• Setting User Defined Properties in ERwin 

• Uploading the model and object registration 

 
User-Defined Properties 

The following are the user-defined properties that are available for identifying 

columns required for alternate rate output: 

• Transfer Pricing Output (Column Property — 80) 

• Option Cost Output (Column Property — 81) 

• Other Adj Spread Output (Column Property — 82) 

• Other Adj Amount Output (Column Property — 83) 

• Economic Value Output (Column Property — 86) 

• Liquidity_rate_column (Column Property — 95) 

• Liquidity_amount_column (Column Property — 96) 

• Basis_rate_column (olumn Property — 97) 

• Basis_amount_column (Column Property — 98) 

• Pricing_rate_column (Column Property — 99) 



User Defined Properties 

Object Management 2-49 

 

 

 

• Pricing_amount_column (Column Property — 100) 

User needs to assign one of the above properties to the columns that need to be used 

as Alternate Rate Output columns within the Fund Transfer Pricing application. 

The following are the steps to set the user-defined property to the column: 

1. Open the ERwin file in ERwin Data Modeler tool. 

2. Go to Main Subject Area. 

3. Go to Physical View. 

4. Choose the entity that contains the alternate rate output column. This entity can 
also be a super-type (like TP_BASIC_REQ). 

5. Select the column and open the column properties for the column. 

6. Go to UDP tab within column properties. 

7. Select 'YES' for one of the above user-defined properties. 

8. Save the model. 
 

Note: Setting the user-defined property of the columns within a 
super-type entity will apply to all the entities that are related to the 
super-type. 

 

 

Uploading the Model 

Upload the model in OFSAAI and perform object registration. After uploading the 

model, user can execute the below query to check if the user-defined properties are set 

for the columns. 

select * from rev_column_properties where column_property_cd in 

(80,81,82,83) 

where TABLE_NAME = <<table_name>> 

Replace <<table_name>> with the relevant table name and column name in the above 

query and execute the same. Above query returns the columns that are used for 

alternate rate outputs. 

 

User Defined Properties 
User Defined Properties are set for tables and columns within ERwin. 



User Defined Properties 

2-50 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 
 

 
 

Table Level User Defined Properties 

The following user defined properties can be set for the table: 
 

UDP Name Description List of values 

Instrument Property to identify if the 

table is classified as a basic 

instrument table. (that is, 

Instrument table classification 

code 20) 

YES / NO 

TP Cash Flow Property to identify if the 

table is classified as 'TP Cash 

Flow' for the purpose of 

generating Transfer Pricing 

rates using cash flow 

methods. 

YES / NO 

TP Non Cash Flow Property to identify if the 

table is classified as 'TP 

Non-Cash Flow' for the 

purpose of generating 

Transfer Pricing rates using 

non cash flow methods. 

YES / NO 

Transaction Profitability Property to identify if the 

table is classified as 

'Transaction' for the purpose 

of executing allocation rules. 

YES / NO 



User Defined Properties 

Object Management 2-51 

 

 

 
 

UDP Name Description List of values 

Portfolio Property to identify if the 

table is classified as 'Portfolio'. 

YES / NO 

User Defined Property to identify if the 

table is classified as 'User 

Defined' table for storing 

multi-lingual descriptions for 

codes. 

YES / NO 

Ledger Stat Property to identify if the 

table is classified as 'Ledger 

Stat' for the purpose of 

executing allocation rules. 

YES / NO 

ALM Standard Property to identify if the 

table is classified as 'ALM 

Standard' for the purpose of 

executing ALM cash flow 

engine to generate cash flows. 

YES / NO 

TP Option Costing Property to identify if the 

table is classified as 'TP 

Option Costing' for the 

purpose of generating 

Transfer Pricing rates with 

option costing. 

YES / NO 

Break Funding Property to identify if the 

table is classified as 'Break 

Funding' for the purpose of 

generating Break funding 

charges using Transfer Pricing 

engine. 

YES / NO 

MLS Descriptions Reserved Property to identify if the 

table is classified as 'Reserved' 

table for storing multi-lingual 

descriptions for codes. 

YES / NO 

Codes Reserved (base tbl) Property to identify if the 

table is classified as 'Reserved' 

table for storing codes of 

simple dimensions. 

YES / NO 

Codes User Defined (base tbl) Property to identify if the 

table is classified as 

'User-defined' table for storing 

codes of simple dimensions. 

YES / NO 

PA Lookup Tables Property to identify if the 

table is classified as 'Lookup 

Table' for the purpose of 

defining lookup table 

allocation rules. 

YES / NO 

Instrument Profitability Property to identify if the 

table is classified as 

'Instrument' for the purpose of 

executing allocation rules. 

YES / NO 



User Defined Properties 

2-52 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

UDP Name Description List of values 

Derivative Instruments Property to identify if the 

table is classified as 

'Derivatives' for the purpose 

of executing ALM cash flow 

engine to generate cash flows 

for derivative instruments. 

YES / NO 

Data Correction Processing Property to identify if the 

table is classified as 'Data 

Correction Processing' for the 

purpose of executing Cash 

Flow Edits engine. 

YES / NO 

 

Column Level User Defined Properties 

The following user defined properties can be set for the column: 
 

UDP Name Description List of values 

Balance Range Property to identify if the 

column within a table 

classified as 'PA Lookup 

Table' must be displayed 

under 'Range' within Lookup 

table definition. 

YES / NO 

Balance Property to identify if the 

column is of type 'Balance'. 

YES / NO 

Standard Rate Property to identify if the 

column is of type 'Standard 

Rate'. 

YES / NO 

Balance Weighted Object Property to identify if the 

column is of type 'Balance 

Weighted Object'. 

YES / NO 

Processing Key Property to identify if this 

column is used as a 

'Processing Key' within the 

instrument, transaction and 

ledger_stat table. 

YES / NO 

Frequency Multiplier Property to identify if the 

column is used to store 

'Frequency'. This property is 

used in Filters UI within 

OFSAAI. 

YES / NO 

Multiplier Related Field Property to specify the name 

of the column that is used to 

store the multiplier for the 

corresponding 'Frequency' 

column. This property is used 

in Filters UI within OFSAAI. 

Text 



Modifying the Precision of Balance Columns In Ledger Stat 

Object Management 2-53 

 

 

 
 

UDP Name Description List of values 

Related Field Property to specify the name 

of the column that is used to 

store the multiplier for the 

corresponding 'Term' column. 

This property is used in Filters 

UI within OFSAAI. 

Text 

Term Multiplier Property to identify if the 

column is used to store 'Term'. 

This property is used in Filters 

UI within OFSAAI. 

YES / NO 

Column Alias Property to specify an alias for 

the column. This is used 

within the staging loader 

program for loading 

LEDGER_STAT table. 

Text 

Statistic Property to identify if the 

column is of type 'Statistic'. 

YES / NO 

Transfer Pricing Output Property to identify if the 

column must be set as an 

alternate output column for 

writing transfer rates by 

transfer pricing engine. 

YES / NO 

Option Cost Output Property to identify if the 

column must be set as an 

alternate output column for 

writing option costing output 

by transfer pricing engine. 

YES / NO 

Other Adj Spread Output Property to identify if the 

column must be set as an 

alternate output column for 

writing other adjustment 

spread by transfer pricing 

engine. 

YES / NO 

Other Adj Amount Output Property to identify if the 

column must be set as an 

alternate output column for 

writing other adjustment 

amount by transfer pricing 

engine. 

YES / NO 

 

Modifying the Precision of Balance Columns In Ledger Stat 
Steps to modify the Precision 

1. Open the ALM/FTP/PFT model using All Fusion ERwin Data Modeler. 

2. Switch to ALM-FTP-PFT-HM-BSP — Ledger Stat subject area. 

3. Select Logical view. 

4. Edit the Ledger Stat table by double clicking the table in the Logical Layer. 



Modifying the Precision of Balance Columns In Ledger Stat 

2-54 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
5. Change the data type in Datatype tab to the revised precision and scale (example, 

NUMBER (22, 3)) for the following columns: 

• Month 01 Amount, Month 02 Amount, Month 03 Amount and so on 

• YTD 01 Amount, YTD 02 Amount, YTD 03 Amount and so on. 

 

6. Save the changes. 

7. Select the Physical view. 

8. Click LEDGER_STAT table and view the datatype of columns — MONTH_01 till 
MONTH_12 and YTD_01 till YTD_12. The data type of these columns should 
display the new precision and scale. 

9. Save the model as xml in All Fusion Repository Format. 

10. Perform incremental model upload. 
 

Note: In case, users decrease the precision and scale for the columns, 
such columns should not have any values during model upload. 

 

 
 



Utilities 3-1 

 

 

 

 

Utilities 
 

 
This chapter details the steps involved in executing various data model utilities that 

are available within OFSAA. 

This chapter covers the following topics: 

• Reverse Population 

• Product Instrument Mapping 

• Instrument Synchronization 

• Stage Synchronization 

• Ledger Load Undo 

• Data Slicing 

 
Reverse Population 

Reverse population procedure populates dimension members, attributes and 

hierarchies from new dimension tables to OFSA legacy set of dimension tables. ALM, 

TP and PFT engines refer to OFSA legacy tables for retrieving dimension member 

information. 

The following topics are covered in this section: 

• Tables As Part Of Reverse Population 

• Reverse Population Procedure 

• Executing the Reverse Population Function 

• Exception Messages 



3-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

Reverse Population 
 

 

 

 
 

Note: From PFT 8.0.4.0.14 release, below entry will be seeded into 
SETUP_PARAMETERS_MATER table: 

PARAM_SEQ PARAM_APP_ID PARAM_NAME PARAM_VALUE 

<SEQ NO> ALL FAIL_ON_HIERARCHY_MAX_DEPTH_ALL NO 

Allowed values are YES or NO. 

Default value for PARAM_VALUE is NO. 

Reverse population hierarchy loader looks for a record in SETUP_ 
PARAMETERS_MASTER table with PARAM_NAME = "FAIL_ON_ 
HIERARCHY_MAX_DEPTH_ALL" 

• If FAIL_ON_HIERARCHY_MAX_DEPTH_ALL parameter value is found 
in the SETUP_PARAMETERS_MASTER table and PARAM_VALUE 
is set to NO, then continue with current behavior. 

• If FAIL_ON_HIERARCHY_MAX_DEPTH_ALL parameter value is found 
in the SETUP_PARAMETERS_MASTER table and PARAM_VALUE 
is set to YES, abort the loader and batch execution fails. 

• If FAIL_ON_HIERARCHY_MAX_DEPTH_ALL parameter is not found 
in SETUP_PARAMETERS_MASTER table then continue with existing 
behavior. 

While saving a hierarchy from AMHM screen with more than 15 
levels, even if the parameter FAIL_ON_HIERARCHY_MAX_ 
DEPTH_ALL is set to YES, hierarchy gets saved and reverse 
population does not perform (which is the existing behavior). 

On running the reverse population batch (DIMENSION_ 
HIERARCHY_LOAD) for a hierarchy with more than 15 levels, the 
batch and task execution fails when the parameter FAIL_ON_ 
HIERARCHY_MAX_DEPTH_ALL is set to YES. Also, an error is 
logged in FSI_MESSAGE_LOG table. 

If the parameter is set to NO (or if the parameter is not available at 
all), then the reverse population batch will be successful, and only a 
warning message will be logged in FSI_MESSAGE_LOG which 
indicates the hierarchy has more than 15 levels. 

 

Tables As Part Of Reverse Population 

Dimension data is stored in the following set of tables: 

• DIM_<DIMENSION>_B - Stores leaf and node member codes within the 

dimension. 

• DIM_<DIMENSION>_TL - Stores names of leaf and node and their translations. 

• DIM_<DIMENSION>_ATTR - Stores attribute values for the attributes of the 

dimension. 

• DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and 

nodes that are part of hierarchies. 

Data present in the above set of dimension tables are transformed into the below set of 

OFSA Legacy tables. 



Reverse Population 

Utilities 3-3 

 

 

 
The reverse population routine synchronizes the dimension data between the new 

dimension tables and the OFSA Legacy tables. Reverse population occurs 

automatically if enabled in the AMHMConfig.properties file. In the 

AMHMConfig.properties file, set the Parameter value to Y for a specific Dimension Id. 

The setting in the AMHMConfig.properties only impacts dimension values entered 

through the interface. Reverse population must be executed as a batch for bulk 

loading. 

Reverse population will automatically occur with object migration for key dimension 

members on the Target instance if AMHMConfig.properties has a property with 

Key=HIERARCHY_REVERSE_POP-<Infodom in Upper Case>-<Dimension ID> 

Value=Y. 

For more information on how to define the reverse populate parameters in the 

AMHMConfig.properties file, see Oracle Financial Services Analytical Applications 

Infrastructure (OFSAAI) User Guide. 

• OFSA_LEAF_DESC — Stores the description of leaf members that are part of the 

dimension. 

• OFSA_NODE_DESC — Stores the description of nodes that are used within the 

hierarchy. 

• OFSA_DETAIL_LEAVES — Stores the attributes of Common COA dimension. 

• OFSA_DETAIL_OTHER_COA — Stores the attributes of GL or Product or any 

other key dimension. 

• OFSA_DETAIL_ELEM_B/OFSA_DETAIL_ELEM_MLS — Stores the attributes of 

Financial Elements dimension. 

• OFSA_IDT_ROLLUP — Stores the hierarchy as level-based. 

• OFSA_LEVEL_DESC — Stores the hierarchy levels. 

Reverse population is done for all key dimensions that are configured within the 

OFSAAI framework. 

 
Reverse Population Procedure 

The REVERSE_POPULATION package populates the OFSA legacy dimension tables 

from new dimension tables. 

The procedure performs the following functions: 

• Gets the list of source and target tables. The source tables for given dimension is 

stored in REV_DIMENSION_B table. The OFSA target table for a given dimension 

is stored in OFSA_CATALOG_OF_LEAVES. 

• The REVERSE POPULATION transposes the seeded attributes, leaf members and 

hierarchy data stored in the form of rows (new dimension table structure) to 

columns (OFSA). 



Reverse Population 

3-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• All exception messages are logged in the FSI_MESSAGE_LOG table. 

After the Reverse Population procedure is completed, you should query the OFSA 

legacy tables to look for dimension members. 

 
Executing the Reverse Population Function 

You can execute this function from either within a PL/SQL block or from ICC Batch 

screen within OFSAAI framework. 

To run the function with a PL/SQL block, follow the below steps: 

• Members Reverse Population 

Function fsi_batchMemberLoad(batch_run_id  varchar2, 

mis_date varchar2, 

pDimensionId varchar2, 

pMemberId     varchar2, 

pMode         varchar2) 

where 

• BATCH_RUN_ID is any string to identify the executed batch. 

• MIS_DATE in the format YYYYMMDD. 

• pDIMENSIONID is the dimension id. 

• pMEMBERID. This can be null. If value is provided, only that member id gets 
reverse populated. 

• If pMode value is 1, it means fresh insert, if value is 2 means update, and if 
value is 3 means delete. In batch mode, you can prefer to use 2. 

For Example: 

Declare 

num number; 

Begin 

num := fsi_batchmemberload ('INFODOM_ 

20100405','20100405',1,null,2); 

End; 

To execute the procedure from OFSAAI ICC framework, create a new Batch with 
the Task as TRANSFORM DATA and specify the following parameters for the 
task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- Batch_Member_Load 

• Parameter List:- Dimension ID, Member id, pMode 

• Hierarchy Reverse Population 



Reverse Population 

Utilities 3-5 

 

 

 

Function fsi_batchhierarchyload(batch_run_id varchar2, 

mis_date varchar2, 

pDimensionId varchar2, 

pHierarchyId varchar2, 

pMode varchar2) 

where 

• BATCH_RUN_ID is any string to identify the executed batch. 

• MIS_DATE in the format YYYYMMDD 

• .pDIMENSIONID is the dimension id. 

• pHIERARCHYID. This can be null. If value is provided, only that Hierarchy 
gets reverse populated 

• If pMode value is 1, it means fresh insert, if value is 2 means update, and if 
value is 3 means delete. In batch mode, you can prefer to use 2. 

For Example: 

Declare 

num number; 

Begin 

num := fsi_batchhierarchyload('INFODOM_ 

20100405','20100405' ,1,null,2); 

End; 

To execute the procedure from OFSAAI ICC framework, create a new Batch with 
the Task as TRANSFORM DATA and specify the following parameters for the 
task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:-Batch_Hier_Load 

• Parameter List:- Dimension ID, Hierarchy id, pMode 



Product Instrument Mapping 

3-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 
 

Note: The reverse population fsi_batchMemberLoad and fsi_ 
batchHierarchyLoad should be executed after fn_drmdataloader. The 
fsi_batchMemberLoad reverse populates the members and the fsi_ 
batchHierarchyLoad reverse populates the hierarchies to the legacy 
structures. 

fn_drmDataLoader supports 15 + level and any hierarchy with greater 
than 15 level cannot be used in ALM/PFT/FTP process. fsi_ 
batchHierarchyLoad does not support 15 + level, however, this 
method will work in case of 15+ level hierarchies; it will only skip 
such hierarchies, with a suitable message in the log table(s). 

The Hierarchy greater than 15 level are not supported within 
ALM/FTP/PFT/HM processes, OFSA_IDT_ROLLUP will not be 
populated, however nothing prevents the EPM application UIs from 
rendering 15+ level hierarchies . 

rev_batchHierFlatten supports a maximum of 20 levels including leaf. 
 

Exception Messages 

The Reverse Population procedure may cause some exceptions to appear. The text and 

explanation for each of these exceptions follows. If you call the procedure from a 

PL/SQL block you may want to handle them so that your program can proceed. 

Exception 1: Error. While getting dimension details 

This exception occurs when the reverse population procedure cannot find any data 

configured in the driver table (REV_DIMENSIONS_B). 

Exception 2: Error. While generating hierarchy Query 

This exception occurs when there is a problem generating hierarchy query 

dynamically. 

Exception 3: Error. While populating Nodes 

This exception occurs when there is an error populating the OFSA_NODE_DESC 

table. 

 

Product Instrument Mapping 
ALM and TP processes can be based on a set of data tables or a set of products. In case 

products are selected, ALM and TP engine internally gets the list of data tables 

mapped to these products and processes those data tables. During the period-ending 

load cycle, data is loaded into Client Data Objects such as Instrument tables. During 

this load process, all the distinct members of 'Product' type dimension that are present 

within each data table will be stored in a separate table (FSI_M_PROD_INST_TABLE_ 

MAP) by executing Product Instrument mapping procedure. 

The following topics are covered in this section: 

• Tables Requiring Synchronization 



Product Instrument Mapping 

Utilities 3-7 

 

 

 

• Product Instrument Table Map Procedure 

• Executing the PRODUCT_INSTRUMENT_TABLE_MAP Procedure 

• Exception Messages 

 
Tables Requiring Synchronization 

Product-instrument table mapping is required only for Instrument tables. Instrument 

tables are defined as all tables with the Instrument Table Classification (table_ 

classification_cd in (20,600,200,210)) on which all of the defined Leaf Columns exist. 

 

Product Instrument Table Map Procedure 

This function gives exact mapping of a particular 'Product' stored in multiple 

Instrument table, and mapping is stored in FSI_M_PROD_INST_TABLE_MAP for 

given AS_OF_DATE. The function outputs the mapping information only if the 

corresponding 'Product' definition exits in the corresponding dimension table. 

The procedure performs the following functions: 

• Gets the list of 'Product' type dimensions from dimension registry table (REV_ 

DIMENSIONS_B). 

• Gets the list of Instrument tables from REV_TABLE_CLASS_ASSIGNMENT. 

• Fetches the distinct set of members for each 'Product' type dimension from all 

instrument tables for a given AS_OF_DATE. 

• Stores the above set into a mapping table (FSI_M_PROD_INST_TABLE_MAP). 

• The function outputs message in the message log if the member definition which 

exists in the Instrument table is not found in the respective dimension table. 

After the Product-Instrument table mapping utility run is completed, you should 

query the mapping table to look for dimension members that are present as part of 

each instrument table. 

 
Executing the PRODUCT_INSTRUMENT_TABLE_MAP Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The 

procedure requires 3 parameters — Batch Id — which can be used to see the log of the 

procedure executed, MISDATE and the AS_OF_DATE. Identify the table name 

parameter by enclosing it in single quotes and uppercase, as shown in the following 

two examples. The syntax for calling the procedure is: 

Declare  

output number; 

Begin 



Product Instrument Mapping 

3-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Output:= fn_Product_Instrument_Map ('Batch_Id', 'MISDATE','AS_ 

OF_DATE'); 

End; 

AS_OF_DATE is the date for which mapping is required. 

MISDATE is the date for which batch is run. 

Both MISDATE and AS_OF_DATE should be passed as 'YYYYMMDD' format. 

An example of running the function from SQL*Plus for the FSI_D_TERM_DEPOSITS 

table follows: 

SQL> var output number; 

SQL> execute :output:= fn_Product_Instrument_Map ('Batch_Id', 

'20100131,'19991231'); 

To execute the stored procedure from within a PL/SQL block or procedure, see the 

example that follows. Call the procedure as often as required to synchronize all of 

your instrument tables. The appropriate table parameters are enclosed in single 

quotes. 

SQL> declare 

output number; 

begin 

output:= fn_Product_Instrument_Map ('Batch_Id', 

'MISDATE','AS_OF_DATE') 

end; 

/ 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type :- Select appropriate datastore from list 

• Datastore Name :- Select appropriate name from the list 

• IP address :- Select the IP address from the list 

• Rule Name :- Product_Inst_Mapping 

• Parameter List :- AS_OF_DATE 

 

Note: BATCHID and MISDATE will be passed explicitly in ICC 
framework. 

 

 

Exception Messages 

The Product to Instrument Mapping function may cause two exceptions to appear. 

The text and explanation for each of these exceptions follows. If you call the function 



Instrument Synchronization 

Utilities 3-9 

 

 

 
from a PL/SQL block you may want to handle them so that your program can 

proceed. 

Exception 1: Table does not exist 

The exception message reads: 

Table 'TABLE_NAME' does not exist. 

This exception occurs when the function does not find the Instrument table. 

Exception 2: Column does not exist 

The exception message reads: 

Column 'Column_Name' does not exists in the instrument table 'Table_Name' while 

processing dimension 'Dimension ID'. 

This error occurs when leaf column does not exist in the Instrument table. 
 

Instrument Synchronization 
During the period-ending load cycle, data is loaded into Client Data Objects such as 

Instrument tables and the LEDGER_STAT table. During this load process, it is possible 

for new, unidentified Dimension and Code values to be loaded into these tables. 

The Instrument Synchronization procedure identifies these new Dimension and Code 

values and inserts default description entries for them into the appropriate tables. The 

procedure performs both of these synchronizations simultaneously. OFSAAI requires 

that all Dimension and Code values have a corresponding description. This is required 

for any OFSAA reporting operation to return the correct results. It also ensures that 

Hierarchies work properly within the OFS analytical applications. 

The following topics are covered in this section: 

• Tables Requiring Synchronization 

• Dimension Member Synchronization 

• Code Synchronization 

• Executing the Synchronize Stage Procedure 

• Exception Messages 

 
Tables Requiring Synchronization 

Dimension member and Code value synchronization is required only for Instrument 

and LEDGER_STAT tables. Instrument tables are defined as all tables with the 

Instrument Table Classification (table_classification_cd = 20) on which all of the 

defined Key Dimension Columns exist. 



Instrument Synchronization 

3-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Dimension Member Synchronization 

The SYNCHRONIZE_INSTRUMENT procedure synchronizes the dimension member 

tables and the hierarchy tables with LEDGER_STAT and instrument tables, using 

default values for member descriptions and other information columns. You can then 

add the correct data to the new dimension members in AMHM member maintenance. 

The procedure performs the following functions: 

• Checks the specified table (LEDGER_STAT or instrument) for new dimension 

members in each of that table's key dimension columns and adds the new 

dimension value as leaf members to the respective dimension member tables. 

• Adds the new dimension member to the corresponding attribute tables with 

default values for mandatory attributes. 

• When new dimension members are added to the dimension tables these members 

include 'No Description' in the DESCRIPTION column and contain default values 

for mandatory attributes. 

• Reverse populates the newly added dimension members into legacy OFSA tables. 

During reverse population, new members are created as orphan members, under 

corresponding hierarchies. 

After the SYNCHRONIZE_INSTRUMENT utility run is completed you should look 

for any new dimension members using the AMHM member maintenance UI and enter 

the correct descriptions and other member information. You should also look at the 

orphan node of each Hierarchy for new dimension members and move these members 

to the appropriate branch in the rollup. 

 
Codes Synchronization 

The SYNCHRONIZE_INSTRUMENT procedure identifies code values in Instrument 

and LEDGER_STAT tables for which a corresponding description does not exist and 

inserts a default description into the appropriate Code Description object. This applies 

only to CODE columns categorized as User-Editable or User-Defined (refer table 

classification). CODE columns for which OFSAA reserves all of the values are not 

updated by this procedure. The procedure displays a warning message for any 

unidentified values in CODE columns where OFSAA reserves the entire range. 

For each CODE column (REV_DATA_TYPE_CD equals 3) on the specified object, the 

SYNCHRONIZE_INSTRUMENT procedure queries from REV_DESCRIPTION_ 

TABLES to identify the object storing the corresponding descriptions. If the resulting 

object is a User-Editable or User-Defined Code Description object (checks from REV_ 

TABLE_CLASS_ASSIGNMENT table), then the procedure inserts a default description 

for any code values for which a description record does not already exist. If the 

resulting object is an OFSAA Reserved Code Description object, then the procedure 

outputs a warning message indicating how many invalid code values exist in the 

specified Instrument or LEDGER_STAT table in the message log (FSI_MESSAGE_ 

LOG). 



Instrument Synchronization 

Utilities 3-11 

 

 

 
For example, if you are synchronizing the FSI_D_TERM_DEPOSITS table, the 

procedure queries all of the CODE columns on this table. An example of a Reserved 

CODE column is ACCRUAL_BASIS_CD. If the procedure finds any code values in this 

column that are not present in the corresponding Code Description object (FSI_ 

ACCRUAL_BASIS_CD), it outputs an error message indicating the number of invalid 

values present. OFSAA Reserved Code Description objects are identified by the 

following SQL statement: 

select table_name from rev_table_class_assignment 

where table_classification_cd = 197; 

An example of a User-Editable CODE column is SIC_CD. If the procedure finds any 

code values in SIC_CD in the FSI_D_TERM_DEPOSITS table that do not have a 

description in FSI_SIC_MLS, it creates a default description 'No Description' for each 

value. It is then up to the users to update these descriptions as appropriate. 

User-Editable Code Description objects are identified by the following SQL statement: 
 

select * from rev_description_tables 

where table_name = 'FSI_D_TERM_DEPOSITS' 

and description_table_name not in 

(select table_name from rev_table_class_assignment 

where table_classification_cd = 197) 

Executing the SYNCHRONIZE_INSTRUMENT Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The 

procedure requires 2 parameters - table name to be synchronized and the As of Date. 

Identify the table name parameter by enclosing it in single quotes and uppercase, as 

shown in the following two examples. The syntax for calling the procedure is: 

Declare 

output number; 

Begin 

synchronize_instrument('Batch_Id', 'TABLE_NAME', output) 

End; 

where table_name is either: 

The name of an Instrument table 

LEDGER_STAT 

An example of running the stored procedure from SQL*Plus for the FSI_D_TERM_ 

DEPOSITS table follows: 



Instrument Synchronization 

3-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

SQL> var output number; 

SQL> synchronize_instrument('INFODOM_20101231','FSI_D_TERM_ 

DEPOSITS',:output); 

To execute the stored procedure from within a PL/SQL block or procedure, see the 

example that follows. Call the procedure as often as required to synchronize all of 

your instrument tables. The appropriate table name and AS_OF_DATE is enclosed in 

single quotes. 

SQL> declare 

output number; 

begin 

synchronize_instrument('INFODOM_20101231','LEDGER_ 

STAT',output); 

end; 

/ 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

Datastore Type:- Select appropriate datastore from list 

Datastore Name:- Select appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- fn_Synchronize_Instrmts 

Parameter List:- Instrument Table Name or LEDGER_STAT 
 

Exception Messages 

The SYNCHRONIZE_INSTRUMENT procedure may cause some exceptions to 

appear. The text and explanation for each of these exceptions follows. If you call the 

procedure from a PL/SQL block you may want to handle them so that your program 

can proceed. 

Exception 1: Table is not an Instrument or LEDGER_STAT table 

The exception message reads: 

ORA-20002 Cannot process: table_name is not an OFSA Instrument or Ledger type 

table having all leaf columns. 

This exception occurs when the table_name parameter is not designated as an 

Instrument table or LEDGER_STAT table in the OFSAA Metadata. The procedure 

identified such tables based upon the Table Classification (Instrument or LEDGER_ 

STAT). 

Exception 2: Table has invalid seeded FINANCIAL_ELEM_ID values 



Stage Synchronization 

Utilities 3-13 

 

 

 

The exception message reads: 

ORA-20004 Cannot process: table_name has new FINANCIAL_ELEM_ID values that 

are within seeded range (less than 10000). 

This error occurs when user-defined leaf values are found in the DIM_FINANCIAL_ 

ELEMENTS_B table within the FDM Reserved seeded data range. The FDM seeded 

data range for OFSA_LEAF_DESC is WHERE LEAF_NUM_ID=0 and LEAF_ 

NODE<10000. If more records are found in this range than the seeded count for FDM 

version, the Synchronize Instrument procedure displays the error message and 

terminates. Delete any user-defined Financial Element leaf values within the FDM 

seeded data range in order to resolve this problem. 

Exception 3: Description table does not exist 

The exception message reads: 

WARNING: 'Description Table Name' code table could not be synchronized due to 

:ORA-00942: table or view does not exist. These tables must be synchronized 

manually. Failure to do so may result in inaccurate reports. 

This error occurs while inserting into the description table when user defined values 

are found in the Code column in dimension member and description table does not 

exist. 

 

Stage Synchronization 
The Stage Synchronization procedure identifies the new Code values from given stage 

table which will be treated as source and inserts default description entries for them 

into the appropriate Dimension and CD/MLS tables. The procedure performs both of 

these synchronizations simultaneously. 

OFSAAI requires that all Dimension and Code values have a corresponding 

description. This is required for any OFSAA reporting operation to return the correct 

results. 

The following topics are covered in this section: 

• Tables Requiring Synchronization 

• Dimension Member Synchronization 

• Codes Synchronization 

• Executing the SYNCHRONIZE_INSTRUMENT Procedure 

• Exception Messages 

 
Tables Requiring Synchronization 

Dimension member Code value synchronization is required only for Stage tables. 

Required data will be seeded in tables, such as rev_dimensions_b, rev_dimensions_ 



Stage Synchronization 

3-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
stage_map, and rev_description_tables during installation and before execution of this 

procedure. 

In case, new stage instrument table is being added then insert new set of data (or 

update the existing data in case of upgrade) in rev_description_tables for non key 

dimension table and in rev_dimensions_stage_map for key dimension tables. 

 
Dimension Member Synchronization 

The SYNCHRONIZE_STAGE procedure synchronizes the dimension member tables 

and Stage tables using default values for member descriptions and other information 

columns. 

This procedure performs the following functions: 

• Checks the specified table (Stage Table) for new dimension members in each of 

that table's key dimension columns and adds the new dimension value as leaf 

members to the respective dimension member tables. 

• Adds the new dimension member to the corresponding attribute tables with 

default values for mandatory attributes. 

• When new dimension members are added to the dimension tables these members 

include 'No Description_<ID column Value>' in the DESCRIPTION column and 

contain default values for mandatory attributes. 

 

Code Synchronization 

The SYNCHRONIZE_STAGE procedure identifies code values in stage tables for 

which a corresponding description does not exist in key dimension or CD/MLS tables 

and inserts a default description into the appropriate Code Description object. This 

applies only to CODE columns categorized as User-Editable or User-Defined (refer 

table classification). 

CODE columns for which OFSAA reserves all of the values are not updated by this 

procedure. This procedure displays a warning message for any unidentified values in 

the CODE columns where OFSAA reserves the entire range. 

If the resulting objects is a User-Editable or User-Defined Code Description object 

(checks from REV_TABLE_CLASS_ASSIGNMENT table), then the procedure inserts a 

default description for any code values for which a description record does not 

already exist. 

If the resulting object is an OFSAA Reserved Code Description object, then the 

procedure outputs a warning message indicating how many invalid code values exist 

in the specified Stage table in the message log file FSI_MESSAGE_LOG. 

For example, if you are synchronizing the STG_INVESTMENTS table, the procedure 

queries all of the CODE columns on this table. An example of a Reserved CODE 

column is ACCRUAL_BASIS_CD. If the procedure finds any code values in this 

column that are not present in the corresponding Code Description object (FSI_ 



Stage Synchronization 

Utilities 3-15 

 

 

 
ACCRUAL_BASIS_CD), it gives output as an error message indicating the number of 

invalid values present. 

OFSAA Reserved Code Description objects are identified by the following SQL 

statement: 

SELECT distinct member_base_table_name, description_table_name 

FROM rev_description_tables,REV_DIMENSIONS_B 

WHERE rev_description_tables.member_base_table_name=REV_ 

DIMENSIONS_B.Member_b_Table_Name 

and rev_description_tables.description_join_column_ 

name=REV_DIMENSIONS_B.MEMBER_DISPLAY_CODE_COL 

AND stg_table_name = 'STG_INVESTMENTS' 

AND rev_dimensions_b.member_code_column is not null 

AND description_table_name IN 

(SELECT table_name 

FROM rev_table_class_assignment 

WHERE table_classification_cd = 197) 

AND STG_CD_COLUMN_NAME IN 

(SELECT column_name 

FROM user_tab_columns 

WHERE table_name = 'STG_INVESTMENTS'); 

An example of a User-Editable CODE column is BRANCH_CD. If the procedure finds 

any code values in BRANCH_CD in the FSI_BRANCH_CD table that do not have a 

description in FSI_BRANCH_MLS, it creates a default description 'No Description_ 

<CD Column Value>' for each value. It is now, up to the users to update these 

descriptions as appropriate. 

User-Editable Code Description objects are identified by the following SQL statement: 
 

SELECT distinct member_base_table_name, description_table_name 

FROM rev_description_tables,REV_DIMENSIONS_B,user_tables 

WHERE rev_description_tables.member_base_table_name=REV_ 

DIMENSIONS_B.Member_b_Table_Name 

and rev_description_tables.description_join_column_name=REV_ 

DIMENSIONS_B.MEMBER_DISPLAY_CODE_COL 

and rev_description_tables.member_base_table_name=user_ 

tables.Table_Name 

AND stg_table_name = 'STG_INVESTMENTS' 



Stage Synchronization 

3-16 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

AND rev_dimensions_b.member_code_column is not null 

AND description_table_name NOT IN 

(SELECT table_name 

FROM  rev_table_class_assignment 

WHERE table_classification_cd = 197); 

Executing the Synchronize Stage Procedure 

You can execute the SYNCHRONIZE_STAGE procedure either from SQL*Plus or from 

within a PL/SQL block or from ICC Batch screen within OFSAAI framework. To run 

the procedure from SQL*Plus, logon to SQL*Plus as the Schema Owner. 

The procedure requires 2 parameters: The table name to be synchronized and As of 

Date. Identify the table name parameter by enclosing it in single quotes and 

uppercase, as shown in the following two examples. 

The syntax for calling the procedure is: 
 

Declare  

output number; 

Begin 

fsi_sync_stage('Batch_Id','TABLE_NAME', output) 

End; 

where table_name is: 

The name of an Stage table 

An example of running the stored procedure from SQL*Plus for the 

STG_INVESTMENTS table follows: 

SQL>var output number; 

SQL>fsi_sync_stage('INFODOM_20101231','STG_ 

INVESTMENTS',:output); 

To execute the stored procedure from within a PL/SQL block or procedure, see the 

example that follows. 

To call the procedure as often as required to synchronize all of your stage tables, the 

appropriate table name and AS_OF_DATE is enclosed in single quotes. 

SQL> declare 

output number; 

begin 

fsi_sync_stage('INFODOM_20101231','STG_INVESTMENTS', output); 



Ledger Load Undo 

Utilities 3-17 

 

 

 

end; 

/ 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

task as TRANSFORM DATA and specify the following parameters for the task: 

Datastore Type:- Select the appropriate datastore type from the list. 

Datastore Name:- Select the appropriate datastore name from the list. 

IP address:- Select the IP address from the list. 

Rule Name:- synchronize_stage 

Parameter List:- Stage Table Name 

 

Exception Messages 

The SYNCHRONIZE_STAGE procedure may cause some exceptions to appear. 

The text messages and explanation for each of these exceptions are as follows: 

 

Note: If you call the procedure from a PL/SQL block, you may want 
to handle them so that your program can proceed 

 

 
Exception 1: Description table does not exist 

The exception message reads: 

WARNING: 'Description Table Name' code table could not be synchronized due to 

:ORA-00942: table or view does not exist. These tables must be synchronized 

manually. Failure to do so may result in inaccurate reports. This error occurs while 

inserting into the description table when user defined values are found in the Code 

column in dimension member and description table does not exist. 

Exception 2: Values have been found for Reserved Code Description objects 

The exception message reads: 

WARNING: Following <count of values> values have been found in <stage table 

name>.<stage column name> <New found values> for Non Editable Dimension <CD 

table name>. 

 

Ledger Load Undo 
Data loaded into Ledger_Stat table can be undone using the UNDO engine. The 

following topics are included in this section: 

• Parameters 

• Undo Mechanism 

• Executing Undo Engine 



Ledger Load Undo 

3-18 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Exception Messages 

 

Parameters 
 

 
The following are the parameters to the UNDO engine: 

• Batch Run ID (Typical format is INFODOM_BATCHNAME_MISDATE_ 

EXECUTIONSEQUENCE) 

• IdentityCode-AsOfDate 

• Mode Of Execution 

Mode of execution for undoing the ledger load is 'L'. Identity Code and As Of Date are 

passed in the second parameters with a Hyphen (-) in between. 

OFSAAI Batch execution framework is used to invoke the Undo engine. 

 

Undo Mechanism 

• Undo Engine will set the STATUS_FLAG column in FSI_DATA_IDENTITY table 

to 'U' to indicate the start of operation. 

• The engine code reads all the records from FSI_DATA_IDENTITY table. For each 

record that is read, it checks whether 

SOURCE_TYPE = 0 

TABLE_NAME = 'ledger_stat' 

IDENTITY_CODE = <as entered by user>, and 

AS_OF_DATE = <as entered by user> 

After reading all the records from FSI_DATA_IDENTITY table, if a matching 
record is not found then an error message is logged in the FSI_MESSAGE_LOG 
table. However, if a matching record is found, then the Undo engine starts the 
undo process as detailed below. 

• Based on the IDENTITY_CODE and Year specified in the AS_OF_DATE, engine 

prepares and executes an update query to set the amount for the month specified 

in the AS_OF_DATE to zero and attaches a decode statement to calculate the Year 

To Date amount values from the Period Start month to Period End month. It also 

attaches any data filter if present to this query. 

• Engine also prepares and executes a delete query on LEDGER_STAT table, to 

delete all the records for which all the month values are 0 and IDENTITY_CODE 

equals to the value input by user. All entries relevant for the IDENTITY_CODE are 

also deleted from FSI_DATA_IDENTITY table. 

• If the undo fails for any reason, status would be set as 'C'. If Undo is completed 

successfully, the entry will be removed from FSI_DATA_IDENTITY table. 



Data Slicing 

Utilities 3-19 

 

 

 

Executing Undo Engine 

To execute the engine from OFSAAI ICC framework, create a new Batch with the Task 

as RUN EXECUTABLE and specify the following parameters for the task: 

Datastore Type:- Select appropriate datastore from list 

Datastore Name:- Select appropriate name from the list 

IP address:- Select the IP address from the list 

Parameter List:- ./LEDGER_LOAD_UNDO.sh, <Identity Code>-<As_Of_Date>,'L' 

To execute the engine from command line, the following is the syntax: 

./LEDGER_LOAD_UNDO.sh<parameters> 

Parameters: <Batch_Run_Id> <IdentityCode>-<As_of_date> 'L' 

 

Note: AS_OF_DATE should be passed in mm/dd/yyyy format. 
 

 

Exception Messages 

The ledger undo program throws both user defined exceptions and Oracle database 

related exceptions. These exception messages could be seen in FSI_MESSAGES_LOG 

table with the help of the Batch_Run_Id which was used during execution. The 

exception list includes all possible validations on the parameters that were passed and 

database related exceptions. 

 

Data Slicing 
 

Overview 
 

 
Data Slicing is a utility that will segment instrument data into equal parts by 

populating a numeric value into the DATA SLICE ID column. Data slicing should be 

used together with Multi-processing which is described in detail under Appendix F — 

Process Tuning in the FTP User Guide and Appendix B — Performance Tuning in the 

ALM User Guide. 

The purpose of segmenting data into equal parts is to balance the data volumes which 

are handled by each sub-process that is launched when multi-processing is enabled. 

The goal of multi-processing is to efficiently utilize the maximum amount of 

processing power of the application server during peak processing which leads to 

significantly shorter overall processing time. Through benchmark testing, we have 

found that breaking instrument data down into equal segments via the Data Slice ID 

column, is the most efficient way to use multi-processing. The alternative is to use one 

or more key dimension columns such as Organization Unit and Product ID. The 

shortcoming of using these other dimensions for segmenting data is that data is not 

evenly distributed across these dimensions so you end up with a few large segments 

and a large number of small segments which is not optimal for processing. Because 

https://docs.oracle.com/cd/E88857_01/PDF/8.0.6.0.0/Oracle%20Financial%20Services%20Funds%20Transfer%20Pricing%20User%20Guide%208.0.pdf
https://docs.oracle.com/cd/E88917_01/PDF/8.0.7.0.0/ALM807.pdf


Data Slicing 

3-20 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
each data segment is handled by the engine via a dedicated sub process, evenly 

distributing the data into equal segments provides the best results. 

Data Slices are utilized by the FTP, ALM and BSP engines only when multi-processing 

is enabled. The default multi-process setting is “1 Process”. This means a single sub 

process is launched when an FTP, ALM or BSP process is started and this one sub 

process will iterate through all of the data until processing is complete. Using a single 

process is fine for implementation and testing, but in production, users should identify 

the number of sub processes that will lead to the best performance. During Process 

Tuning, users can increase the number of sub processes to 2, 4, 8 or greater numbers 

depending on the number of CPU’s available on the server. In multi-processing, a 

value of “8” processes means that 8 sub processes are automatically launched and each 

sub process is responsible for processing all of the data for an entire data segment 

(Data Slice Cd). When a sub process finishes processing the data for a segment, a new 

sub process is launched and handles the next available data segment. This process 

repeats until all data segments have been processed. In terms relative improvements 

in performance, we have observed that a multi process value of “2” is approximately 

2x faster than one, 4 is approximately 4x faster and 8 is approximately 8x faster. We 

have noticed diminishing returns as the number of processes increases, so users will 

need to iterate on the number of processes setting to find the optimal value. 

 

Process flow 

To utilize this functionality the following steps must be performed before executing an 

ALM, BSP or FTP process with multi-processing enabled: 

1. Create members for the Data slicing dimension through the dimension 
management screen (Dimension Management -> Members). Members should be 
numeric values like 1, 2, 3, etc. It is advised that the maximum number of 
members be limited to the number of processors (CPU’s) available on the 
Application Server for executing ALM, BSP and FTP processes in the environment. 

2. Execute the database procedure ‘Upd_DataSlice_Dim_Code’ (via a seeded Batch 
“DATA_SLICE_POPULATE”: This procedure updates the Data Slice Id column in 
every instrument table with the values defined in step 1. Instrument records are 
equally distributed among all members. For more information, refer to Executing 
the Data Slicing Function section. 

 
 

Note: Numeric values are assigned individually within each 
instrument table, E.g. if you have 4000 records in table 1 and 4000 in 
table 2 and 4 unique data slice values, each table will get updated with 
1 through 4 data slices. 

 

 

3. Setup multi-processing (Common Object Maintenance > Process Tuning) Select 
the “Data Slice” dimension under the “Data Slicing Columns” section. Refer to the 
ALM and FTP user guides for more detailed steps. 



Data Slicing 

Utilities 3-21 

 

 

 

Executing the Data Slicing Function 

You can execute this procedure from the Batch processing screen (Common Object 

Maintenance > Operations). A seeded batch INFODOMNAME_DATA_SLICE_ 

POPULATE is provided with the Task component of TRANSFORM DATA. The 

following are parameters for the task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- Upd_DataSlice_Dim_Code 

• Parameter List:- Number Of Processes, List of Table names, Column Name. The 

last two parameter values must be enclosed in single quote 

Example: 8, 'FSI_D_MORTGAGES, FSI_D_ BORROWINGS', 'DATA_SLICE_ID' 

If you want to execute this procedure directly from the database, e.g. using SQL 

Developer or a similar tool, the function fn_POPULATE_DATA_SLICE_CODE can be 

used. This function requires five parameters – BATCH_RUN_ID, AS_OF_DATE, 

IN_NPROC, IN_SOURCETABLELIST, IN_COLUMN. The syntax for calling the 

procedure is: 

function fn_POPULATE_DATA_SLICE_CODE(BATCH_RUN_ID varchar2 ,AS_ OF_ 

DATE IN Varchar2,IN_NPROC IN Number, IN_SOURCETABLELIST IN 

Varchar2, IN_COLUMN IN Varchar2) 

Where, 

BATCH_RUN_ID is any string to identify the executed batch. When executed from 

Batch this parameter is automatically generated. When it is executed directly in 

database then an appropriate value must be passed. Example: 'OFSALMINFO_DATA_ 

SLICE_1' 

AS_OF_DATE in YYYYMMDD format enclosed in single quote. Example ‘20190101’ 

IN_NPROC this numeric value is used to identify the number of processes and will 

be same as number of members created for Data Slicing dimension. Example: 8 

IN_SOURCETABLELIST List of the tables with comma separated source values. 

Here, table name should be in single quote. If more than one table names are given 

then single quote should be at the beginning of list and another at the end of the list, 

for example : 'FSI_D_MORTGAGES, FSI_D_ BORROWINGS'. 

IN_COLUMN is the name of the column where Data Slide Id gets updated. 'DATA_ 

SLICE_ID' is the seeded column. You can choose another column if applicable as long 

as it is present in the instrument tables. 

Example: 



Data Slicing 

3-22 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

1. Navigate to Common Object Maintenance>Operations>Batch Maintenance 
screen. 

2. Search for the data slicing batch (INFODOMNAME_DATA_SLICE_POPULATE) 
as mentioned below: 

 
 

 

3. Edit the corresponding task as mentioned below. 

 

 

Example of Parameter List: 8, 'FSI_D_MORTGAGES, FSI_D_ BORROWINGS', 
'DATA_SLICE_ID' 

 
 

4. Navigate to Batch Execution. Search for the batch as mentioned below and execute 
it using “Batch Execution”. 

 

Note: When you are executing the batch, the batch execution date should be 

the same as the As of Date when the processes are getting executed. 
 

 
 

 
 



Data Slicing 

Utilities 3-23 

 

 

 
 

 

 
 
 

Note: • All the messages (including warning and error) are logged in the 
FSI_MESSAGE_LOG table. 

• It is a mandatory step to execute the above procedure with relevant 
parameters prior to executing ALM, BSP or FTP processes if you want to 
make use of this feature. 

• This feature is only relevant when multi-processing is enabled and will 
not result in any performance improvement when number of processes = 
1. 

• All parameters are mandatory in expected order and format. 



Data Slicing 

3-24 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 



4-1 

 

 

 

 

Data Loaders 
 

 
This chapter details the steps involved in executing various data loaders that are 

available within OFSAA. Data loaders move data from staging layer to processing 

layer. 

This chapter covers the following topics: 

• Dimension Loaders 

• Simple Dimension Loader 

• Historical Rates Data Loader 

• Forecast Rate Data Loader 

• Prepayment Rate Data Loader 

• Stage Instrument Table Loader 

• Customer T2T Loading 

• DIM_Party Population 

• Instrument Summary Table 

• Transaction Summary Table Loader 

• Ledger Data Loader 

• Cash Flow Loader 

• Pricing Management Transfer Rate Population Procedure 

• ALMBI Transformation 

• Hierarchy Transformation 

• Dim Dates Population 

• Fact Ledger Stat Transformation 

• Financial Element Dimension Population 

• Payment Pattern Loader 

• GAP Limits Loader 

• Material Currency Identifier 



4-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

Dimension Loaders 
 

 

 

• Behaviour Pattern Loader 

 
Dimension Loaders 

The Dimension Loader procedure populates dimension members, attributes and 

hierarchies from Staging dimension tables into dimension tables registered within 

OFSAAI AMHM framework. Users can view the members and hierarchies loaded by 

the dimension loader through AMHM screens. 

 

Note: The dimension loaders (drmDataLoader, STGDimDataLoader, 
and simpledimloader) load the strings into one target language only, 
the target language is derived from the database-login-session using 
USERENV. 

Refer to Support Note 1586342.1, if Hierarchy Filter is not reflecting 
correctly after making the changes to underlying Hierarchy. 

 

The following topics are covered in this section: 

• Dimension Loader Overview 

• Enhancements to Support Alphanumeric Code in Dimensions 

• Tables that are Part Of Staging 

• Populating STG_<DIMENSION>_HIER_INTF Table 

• Dimension Load Procedure 

• Setting up Dimension Loader 

• Executing the Dimension Load Procedure 

• Exception Messages 

• Executing the Dimension Load Procedure using Master Table approach 

• Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from 

DIM_<DIMENSION>_ATTR table 

• Truncate Stage Tables Procedure 



Dimension Loaders 

Data Loaders 4-3 

 

 

 

Dimension Loader Overview 
 
 
 

 

 
 

The dimension loader is used to: 

• Load dimension members and their attributes from the staging area into 

Dimension tables that are registered with the OFSAAI AMHM framework. 

• Create hierarchies in AMHM. 

• Load hierarchical relationships between members within hierarchies from the 

staging area into AMHM. 

Some of the features of the dimension loader are: 

• Multiple hierarchies can be loaded from staging tables. 

• Validations of members and hierarchies are similar to that of being performed 

within AMHM screens. 

• Members can be loaded incrementally or fully synchronized with the staging 

tables. 

 
 



Dimension Loaders 

4-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Enhancements to Support Alphanumeric Code in Dimensions 
 

Note: Dimension Loaders and UIs support capturing an 
alphanumeric code in addition to the numeric code. 

 

 

The following Data Model components are required to support dimension member 

code storage; changes in {6.0/7.3.0/7.3.1} are as follows: 

• Release 7.3.1: Dimension Configuration via manual updates to REV_ 

DIMENSIONS_B columns: MEMBER_DATA_TYPE_CODE and MEMBER_ 

CODE_COLUMN. (Also See: OFSAAI Installation & Configuration Guide 7.3 and 

AI Administration Guide) 

• Release 6.0 (7.3): Stage Dimension Interface Table alphanumeric member code 

column (v_< DIM >_code). 

• Release 6.0 (7.3): Stage Dimension Loader Program can directly load alphanumeric 

member codes 

• Release 6.1.1: Some new columns are added to Staging & Processor tables as a part 

of FSDF. These are not required by EPM applications and not part of the T2T or 

FSI_D tables. 

For further details on display of member codes in the user interfaces, see OFSAAI User 

Guide 7.3. 

 
Tables that are Part Of Staging 

Dimension data is stored in the following set of tables: 

• STG _<DIMENSION>_B_INTF - Stores leaf and node member codes within the 

dimension. 

• STG_<DIMENSION>_ TL_INTF - Stores names of leaf and node and their 

translations. 

• STG_<DIMENSION>_ ATTR_INTF - Stores attribute values for the attributes of 

the dimension. 

• STG_<DIMENSION>_ HIER_INTF - Stores parent-child relationship of members 

and nodes that are part of hierarchies. 

• STG_ORG_UNIT_B_INTF - Stores leaf and node member codes within the 

organization unit dimension. 

• STG_ORG_UNIT_TL_INTF - Stores names of leaf and node and their translations 

for the organization unit dimension. 

• STG_ORG_UNIT_ATTR_INTF - Stores attribute values for the attributes of the 

organization unit dimension. 



Dimension Loaders 

Data Loaders 4-5 

 

 

 

• STG_ORG_UNIIT_HIER_INTF - Stores parent-child relationship of members and 

nodes that are part of hierarchies for the organization unit dimension. 

• STG_HIERARCHIES_INTF - Stores master information related to hierarchies. 

Data present in the above set of staging dimension tables are loaded into the below set 

of dimension tables. 

• DIM_<DIMENSION>_ B - Stores leaf and node member codes within the 

dimension. 

• DIM_<DIMENSION>_TL - Stores names of leaf and node and their translations. 

• DIM_<DIMENSION>_ATTR - Stores attribute values for the attributes of the 

dimension. 

• DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and 

nodes that are part of hierarchies. 

• REV_HIERARCHIES - Stores hierarchy related information. 

• REV_HIERARCHY_LEVELS - Stores levels of the hierarchy. 

• REV_HIER_DEFINITIONS - Stores definitions of the hierarchies. 

Staging tables are present for all key dimensions that are configured within the 

OFSAAI framework. For any custom key dimension that is added by the Client, 

respective staging dimension tables like STG_<DIMENSION>_B_INTF, STG_< 

DIMENSION>_TL_INTF, STG_<DIMENSION>_ATTR_INTF, and STG_ 

<DIMENSION>_HIER_INTF have to be created in the ERwin model. 
 

Populating STG_<DIMENSION>_HIER_INTF Table 

The STG_<DIMENSION>_HIER_INTF table is designed to hold hierarchy structure. 

The hierarchy structure is maintained by storing the parent child relationship in the 

table. In the following hierarchy there are 4 levels. The first level node is 100, which is 

the Total Rollup. The Total Rollup node will have the N_PARENT_DISPLAY_CODE 

and N_CHILD_DISPLAY_CODE as the same. 

Column Name Column Description 

V_HIERARCHY_OBJECT_NAME Stores the name of the hierarchy 

N_PARENT_DISPLAY_CODE Stores the parent Display Code 

N_CHILD_DISPLAY_CODE Stores the child Display Code 

N_DISPLAY_ORDER_NUM Determines the order in which the structure 

(nodes, leaves) of the hierarchy should be 

displayed. This is used by the UI while 

displaying the hierarchy. There is no 

validation to check if the values in the column 

are in proper sequence. 

V_CREATED_BY Stores the created by user. Hard coded as -1 

V_LAST_MODIFIED_BY Stores the last modified by user. Hard coded 

as -1 



Dimension Loaders 

4-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
Hierarchy Structure 

 
 
 
 

 

Simple Data 
 

V_ 

HIERARCHY 

_OBJECT_ 

NAME 

 
N_PARENT_ 

DISPLAY_ 

CODE 

 
N_CHILD_ 

DISPLAY_ 

CODE 

 

 
N_DISPLAY_ 

ORDER_NUM 

 
V_ 

CREATED_ 

BY 

 
V_LAST_ 

MODIFIED_ 

BY 

INCOME 

STMT 

100 100 1 -1 -1 

INCOME 

STMT 

100 123456789012 

47 

2 -1 -1 

INCOME 

STMT 

123456789012 

47 

123456789012 

55 

1 -1 -1 

INCOME 

STMT 

123456789012 

55 

10001 1 -1 -1 

INCOME 

STMT 

123456789012 

55 

10002 2 -1 -1 

 
 



Dimension Loaders 

Data Loaders 4-7 

 

 

 
 

 

V_ 

HIERARCHY 

_OBJECT_ 

NAME 

 
N_PARENT_ 

DISPLAY_ 

CODE 

 
N_CHILD_ 

DISPLAY_ 

CODE 

 

 
N_DISPLAY_ 

ORDER_NUM 

 
V_ 

CREATED_ 

BY 

 
V_LAST_ 

MODIFIED_ 

BY 
 

INCOME 

STMT 

123456789012 

47 

123456789012 

57 

2 -1 -1 

INCOME 

STMT 

123456789012 

57 

10006 1 -1 -1 

INCOME 

STMT 

123456789012 

57 

10007 2 -1 -1 

INCOME 

STMT 

100 123456789012 

50 

3 -1 -1 

INCOME 

STMT 

123456789012 

50 

123456789012 

62 

2 -1 -1 

INCOME 

STMT 

123456789012 

62 

30005 1 -1 -1 

INCOME 

STMT 

123456789012 

50 

123456789012 

64 

1 -1 -1 

INCOME 

STMT 

123456789012 

64 

30006 1 -1 -1 

INCOME 

STMT 

123456789012 

64 

30007 2 -1 -1 

INCOME 

STMT 

123456789012 

64 

30008 3 -1 -1 

INCOME 

STMT 

123456789012 

64 

30009 4 -1 -1 

INCOME 

STMT 

100 123456789012 

68 

4 -1 -1 

INCOME 

STMT 

123456789012 

68 

3912228 1 -1 -1 

INCOME 

STMT 

3912228 20020 1 -1 -1 

INCOME 

STMT 

3912228 20021 2 -1 -1 

INCOME 

STMT 

3912228 20022 3 -1 -1 

 

Column REV_DIMENSIONS_B.MEMBER_CODE_COLUMN 

In release 7.3.1: With the introduction of alphanumeric support, REV_DIMENSIONS_ 

B.MEMBER_CODE_COLUMN column becomes important for successful execution of 

the dimension loader program and subsequent T2Ts. The value in this column should 

be a valid code column from the relevant DIM_<DIMENSION>_B (key dimension) or 

FSI_<DIM>_CD (simple dimension) table. The Leaf_registration procedure populates 

this column. The value provided to the Leaf registration procedure should be the 

correct DIM_<DIM>_B.<DIM>_CODE or FSI_<DIM>_CD.<DIM>_DISPLAY_CD 



Dimension Loaders 

4-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
column. Setting this will ensure that the values in this column are displayed for both 

numeric and alphanumeric dimensions as "Alphanumeric Code" in the UI. 

Configuration of an alphanumeric dimension also requires manual update of the 

REV_DIMENSIONS_B. MEMBER_DATA_TYPE_CODE column. 

For more information, see OFSAAI Installation and Configuration Guide. 
 

Dimension Load Procedure 

This procedure performs the following functions: 

• Gets the list of source and target dimension tables. The dimension tables for a 

given dimension are stored in REV_DIMENSIONS_B table. The stage tables for a 

given dimension are stored in FSI_DIM_LOADER_SETUP_DETAILS. 

• The parameter Synchronize Flag can be used to completely synchronize data 

between the stage and the dimension tables. If the flag = 'Y' members from the 

dimension table which are not present in the staging table will be deleted. If the 

flag is 'N' the program merges the data between the staging and dimension table. 

• The Loader program validates the members/attributes before loading them. 

The program validates the number of records in the base members table - STG_ 

<DIMENSION>_B_INTF and translation members table - STG_<DIMENSION>_TL_ 

INTF. The program exits if the number of records does not match 

In case values for mandatory attributes are not provided in the staging tables, the 

loader program populates the default value (as specified in the attribute maintenance 

screens within AMHM of OFSAAI) in the dimension table. 

The program validates for data types of attribute value. For example an attribute that 

is configured as 'NUMERIC' cannot have non-numeric values. 

Dimension Loader validates the attribute against their corresponding dimension table. 

If any of the attributes is not present, then an error message will be logged in FSI_ 

MESSAGE_LOG table. 

Dimension Loader will check the number of records in Dim_<Dim_Name>_B and 

Dim_<Dim_Name>_TL for the language. In case any mismatch is found, then an error 

will be logged and loading will be aborted. 

• If all the member level validations are successful the loader program inserts the 

data from the staging tables to the dimension tables 

Note: In release 6.0 (7.3) The stage dimension loader program is modified to move 
alphanumeric code values from STG_< DIMENSION >_B_INTF.V_< DIM >_ 
CODE to DIM_< DIM >_B.< DIM >_CODE column. Previously, the DIM_< 
DIM>_B.< DIM >_CODE column was populated using the fn_ 
updateDimensionCode procedure from the code attributes. With this 
enhancement users can directly load alphanumeric values. 

The fn_updateDimensionCode procedure is still available for users who do not 
want make any changes to their ETL procedures for populating the dimension 



Dimension Loaders 

Data Loaders 4-9 

 

 

 
staging tables (e.g. STG_< DIMENSION >_B_INTF,, STG_< DIMENSION>_ 
ATTR_INTF). 

• After this, the loader program loads hierarchy data from staging into hierarchy 

tables. 

• In case of hierarchy data the loader program validates if the members used in the 

hierarchy are present in the STG_<DIMENSION>_B_INTF table. 

• The program validates if the hierarchy contains multiple root nodes and logs error 

messages accordingly, as multiple root nodes are not supported. 

• Dimension Loader will check special characters in Hierarchy. Hierarchy name 

with special characters will not be loaded. 

• Following are the list of special characters which are not allowed in Hierarchy 

Name: 

^&\"' 

After execution of the dimension loader, the user must execute the reverse population 

procedure to populate OFSA legacy dimension and hierarchy tables. 

Dimension Leaf Member Set Up 

Dimension Leaf values can have a maximum of 14 digits. 

Only 26 key (processing) dimensions are allowed in the database. Examples of seeded 

key leaf types are Common COA ID, Organizational Unit ID, GL Account ID, Product 

ID, Legal Entity ID. 

The maximum number of columns that the Oracle database allows in a unique index is 

32. This is the overriding constraint. After subtracting IDENTITY_CODE, YEAR_S, 

ACCUM_TYPE_CD, CONSOLIDATION_CD, and ISO_CURRENCY_CD, this leaves 

27 columns available for Key Processing Dimensions (leaf dimensions). BALANCE_ 

TYPE_CD is now part of the unique index so this brings the maximum number of leaf 

columns down to 26. 

Deletion of Dimension Members used in a Hierarchy 

There is an integrity check performed during dimension data loading to confirm if 

dimension members are included in a hierarchy definition. If they are included, these 

members should typically not be deleted from the dimension member pool. If 

dimension members are deleted or made inactive as part of the data load, the 

validation will return an error message, "cannot delete a member that is used as part of 

a hierarchy." 

If you wish to override this validation, an additional parameter can be passed to the 

Dimension Data Loader program(fn_drmDataLoader), for example: "force_member_ 

delete". The parameter can be set to "Y" or "N". Inputting "Y" allows you to override 

the "used in hierarchy" dependency validation. Inputting "N" is the default behavior, 

which performs the validation check to confirm if members are used in a hierarchy or 

not. 



Dimension Loaders 

4-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
Below is the function: 

 

function fn_drmDataLoader(batch_run_id varchar2, 

as_of_date varchar2, 

pDimensionId varchar2, 

pSynchFlag char default 'Y', 

force_member_delete char default 

'N') 

 

Setting up Dimension Loader 

FSI_DIM_LOADER_SETUP_DETAILS table should have record for each dimension 

that has to be loaded using the dimension loader. The table contains seeded entries for 

key dimensions that are seeded with the application. 

The following are sample entries in the setup table: 
 

Column Name Description Sample Value 

n_dimension_id This stores the Dimension ID 1 

v_intf_b_table_name Stores the name of the Staging 

Base table 

Stg_org_unit_b_intf 

v_intf_member_column Stores the name of the Staging 

Member Column Name 

V_org_unit_id 

v_intf_tl_table_name Stores the name of the Staging 

Translation table 

Stg_org_unit_tl_intf 

v_intf_attr_table_name Stores the name of the Staging 

Member Attribute table 

Stg_org_unit_attr_intf 

v_intf_hier_table_name Stores the name of the Staging 

Hierarchy table 

Stg_org_unit_hier_intf 

d_start_time Start time of loader - updated 

by the loader program. 

 

d_end_time End time of loader - updated 

by the loader program. 

 

v_comments Stores Comments. Dimension loader for 

organization unit. 

v_status Status updated by the Loader 

program. 

 

v_intf_member_name_col Stores the name of the 

Member 

V_org_unit_name 

v_gen_skey_flag Flag to indicate if surrogate 

key needs to be generated for 

alphanumeric codes in the 

staging. Applicable only for 

loading dimension data from 

master tables. Not applicable 

for loading dimension data 

from interface tables. 

 



Dimension Loaders 

Data Loaders 4-11 

 

 

 
 

Column Name Description Sample Value 

 Note: Although the 

application UI may display an 

alphanumeric dimension 

member ID, the numeric 

member ID is the value stored 

in member-based assumption 

rules, processing results, and 

audit tables. 

 

 Implications for Object 

Migration: 

 

 Numeric dimension member 

IDs should be the same in 

both the Source and Target 

environments, to ensure the 

integrity of any 

member-based assumptions 

you wish to migrate. If you 

use the Master Table approach 

for loading dimension data 

and have set it up to generate 

surrogate keys for members, 

this can result in differing IDs 

between the Source and 

Target and therefore would be 

a concern if you intend to 

migrate objects which depend 

on these IDs. 

 

v_stg_member_column Name of the column that 

holds member code in the 

staging table. Applicable for 

loading dimension data from 

both master tables and 

interface tables.” (sample 

value “v_org_unit_code”) — 

this appears to be the 

alphanumeric code 

v_org_unit_code 

v_stg_member_name_col Name of the column that 

holds member name in the 

staging table. Applicable only 

for loading dimension data 

from master tables. Not 

applicable for loading 

dimension data from interface 

tables. 

 



Dimension Loaders 

4-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

Column Name Description Sample Value 

v_stg_member_desc_col Name of the column that 

holds description in the 

staging table. Applicable only 

for loading dimension data 

from master tables. Not 

applicable for loading 

dimension data from interface 

tables. 

 

Executing the Dimension Load Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from the ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The 

function requires 4 parameters — Batch Run Identifier, As of Date, Dimension 

Identifier, Synchronize flag (Optional). The syntax for calling the procedure is: 

function fn_drmDataLoader(batch_run_id varchar2, 

as_of_date varchar2, 

pDimensionId varchar2, 

pSynchFlag char default 'Y', 

force_member_delete char default 'N') 

where 

BATCH_RUN_ID is any string to identify the executed batch. 

AS_OF_DATE in the format YYYYMMDD. 

pDIMENSIONID dimension id. 

pSynchFlag this parameter is used to identify if a complete synchronization of data 

between staging and dimension table is required. The default value is 'Y'. 



Dimension Loaders 

Data Loaders 4-13 

 

 

 

 
 

Note: With Synch flag N, data is moved from Stage to Dimension 
tables. Here, an appending process happens. You can provide a 
combination of new Dimension records plus the data that has 
undergone change. New records are inserted and the changed data is 
updated into the Dimension table. 

With Synch flag Y, the Stage table data will completely replace the 
Dimension table data. 

There are a couple of checks in place to ensure that stage_dimension_ 
loader is equipped with similar validations that the UI provides. 

The Data Loader does a Dependencies Check before a member is 
deleted. The validation checks, if there are members used in the 
Hierarchy that are not present in the DIM_< DIM >_B table. This is 
similar to the process of trying to delete a member from the UI, which 
is being used in the Hierarchy definition. You are expected to remove 
or delete such Hierarchies from the UI before deleting a member. 

 

For Example: 
 

Declare 

num number; 

Begin 

num := fn_drmDataLoader ('INFODOM_20100405','20100405' 

,1,'Y','N'); 

End; 

To execute the procedure from the OFSAAI ICC framework, create a new Batch with 

the Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- fn_drmDataLoader 

• Parameter List:- Dimension ID, Synchronize Flag 

The fn_drmdataloader function calls STG_DIMENSION_LOADER package which 

loads data from the stg_<dimension>_hier_intf to the dim_<dimension>_hier table. 

From Release 8.0, RUNIT.sh utility is available to resave the UMM Hierarchy Objects. 

The data for AMHM hierarchies which is stored in dim_<dimension>_hier table is 

changed due to the fn_drmdataloader function, so the RUNIT.sh utility is executed to 

refresh the UMM hierarchies which have been implicitly created due to the AMHM 

hierarchies. This file resides under ficdb/bin area. 

To run the utility directly from the console: 

1. Navigate to $FIC_DB_HOME/bin of OFSAAI FIC DB tier to execute RUNIT.sh file 



Dimension Loaders 

4-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
2. The below parameter needs to be provided: 

• INFODOM- Specify the information domain name whose hierarchies are to be 
refreshed. This is the first parameter and mandatory parameter 

• USERID- specify the AAI user id who is performing this activity. This is 
second parameter and mandatory as well 

• HIERARCHY- specify the hierarchy code to be refreshed. In case multiple 
hierarchies need to be refreshed the same can be provided and tilde (~) 
separated values. This is third parameter and non-mandatory parameter 

For example: ./RUNIT.sh,<INFODOM>,<USERID>,<CODE1~CODE2~CODE3> 
 

Note: In case the third parameter is not specified, then all the 
hierarchies present in the infodom will be refreshed. 

 

 

To run the utility through the Operations module: 

3. Navigate to the Operations module and define a batch. 

4. Add a task by selecting the component as RUN EXECUTABLE. 

5. Under Dynamic Parameter List panel, specify 
./RUNIT.sh,<INFODOM>,<USERID>,<CODE1~CODE2~CODE3> in the 
Executable field. 

After saving the Batch Definition, execute the batch to resave the UMM Hierarchy 

Objects. 

 
Exception Messages 

The text and explanation for each of these exceptions follows. If you call the procedure 

from a PL/SQL block you may want to handle these exceptions appropriately so that 

your program can proceed without interruption. 

Exception 1: Error. errMandatoryAttributes 

This exception occurs when the stage Loader program cannot find any data default 

value for mandatory attributes. 

Exception 2: Error. errAttributeValidation 

This exception occurs when there is a data type mis-match between the attribute value 

and configured data-type for the attribute. 

Exception 3: Error. errAttributeMemberMissing 

If there is a mismatch in the count between the member's base and translation table. 
 

Executing the Dimension Load Procedure using Master Table approach 

FSI_DIM_LOADER_SETUP_DETAILS table should have a record for each dimension 

that has to be loaded. The table contains entries for key dimensions that are seeded 

with the application. 

The following columns must be populated for user-defined Dimensions. 



Dimension Loaders 

Data Loaders 4-15 

 

 

 
v_stg_member_column 

v_stg_member_name_col 

v_stg_member_desc_col 

 

Note: Before running DRM_DIMENSION_LOADER for Legal Entity 
dimension, update the value of FSI_DIM_LOADER_SETUP_ 
DETAILS.V_STG_MEMBER_COLUMN as V_LV_CODE (which is the 
column available in STG_LEGAL_ENTITY_B_INTF table). 

 

 

Additionally, the FSI_DIM_ATTRIBUTE_MAP table should be configured with 

column attribute mapping data. This table maps the columns from a given master 

table to attributes. 

N_DIMENSION_ID This stores the Dimension ID 

V_STG_TABLE_NAME This holds the source Stage Master table 

V_STG_COLUMN_NAME This holds the column from the master table 

V_ATTRIBUTE_NAME This holds the name of the attribute the 

column maps to 

V_UPDATE_B_CODE_FLAG This column indicates if the attribute value 

can be used to update the code column in the 

DIM_<Dimension>_B table. 

 Note: fn_STGDimDataLoader does not use 

FSI_DIM_ATTRIBUTE_MAP.V_UPDATE_B_ 

CODE_FLAG 

 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from the ICC Batch screen within OFSAAI framework. To run the procedure from 

SQL*Plus, login to SQL*Plus as the Schema Owner. The function requires 5 

parameters: — Batch Run Identifier , As of Date, Dimension Identifier , MIS-Date 

Required Flag, Synchronize flag (Optional). The syntax for calling the procedure is: 

function fn_STGDimDataLoader(batch_run_id varchar2, 

as_of_date varchar2, 

pDimensionId varchar2, 

pMisDateReqFlag char default 'Y', 

pSynchFlag char default 'N') 

where 

• BATCH_RUN_ID is any string to identify the executed batch. 

• AS_OF_DATE in the format YYYYMMDD. 

• pDIMENSIONID dimension id. 



Dimension Loaders 

4-16 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• pMisDateReqFlag is used to identify if AS-OF_DATE should be used in the where 

clause to filter the data. 

• pSynchFlag is used to identify if a complete synchronization of data between 

staging and fusion table is required. The default value is 'Y'. 

For Example 
 

Declare 

num number; 

Begin 

num := fn_STGDimDataLoader ('INFODOM_20100405','20100405' 

,1,'Y','Y' ); 

End; 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- fn_STGDimDataLoader 

• Parameter List:- Dimension ID, Mis Date Required Flag , Synchronize Flag 

Clients could face a problem while loading customer dimension into AMHM using the 

Master table approach. 

Configuring the setup table for CUSTOMER dimension is pretty confusing while 

dealing with attributes like FIRST_NAME , MIDDLE_NAME and LAST_NAME. 

Most clients would like to see FIRST_NAME , MIDDLE_NAME and LAST_NAME 

forming the name of the member within the customer dimension. 

Currently the STG_DIMENSION_LOADER disallows concatenation of columns. 

Moreover the concatenation might not ensure unique values. 

As a solution to this problem we can work on the following options: 

Approach 1 

1. Create a view on STG_CUSTOMER_MASTER table with FIRST_NAME, 
MIDDLE_NAME and LAST_NAME concatenated and identify this column as 
NAME. 

2. Configure the name column from the view in FSI_DIM_LOADER_SETUP_ 
DETAILS 

3. Increase the size of DIM_CUSTOMER_TL.name column. 

4. Disable the unique index on DIM_CUSTOMER_TL.NAME or append Customer_ 
code to the NAME column. 



Dimension Loaders 

Data Loaders 4-17 

 

 

 
5. The NAME column will be populated into the DIM_CUSTOMER_TL.NAME 

column. 

Approach 2 

Populate customer_code into the DIM_CUSTOMER_TL.NAME column. 
 

Updating DIM_<DIMENSION>_B <Dimension>_Code column with values 
from DIM_<DIMENSION>_ATTR table 

The stage dimension loader procedure does not insert or update the <Dimension>_ 

code column in the Dim_<Dimension>_B table. This is an alternate method for 

updating the < Dimension>_Code column in the Dim_< Dimension>_B table, retained 

to accommodate implementations prior to the enhancement where we enable loading 

the code directly to the dimension table instead of from the attribute table. It is not 

recommended for new installations. This section explains how the <Dimension>_code 

can be updated. 

Steps to be followed 

1. A new attribute should be created in the REV_DIM_ATTRIBUTES_B / TL table. 
 

Note: You should use the existing "CODE" attribute for the seeded 
dimensions. 

 

 

PRODUCT CODE, COMMON COA CODE and so on. 

2. The fsi_dim_attribute_map table should be populated with values. 

The following columns must be populated: 

N_DIMENSION_ID (Dimension id) 

V_ATTRIBUTE_NAME (The attribute name) 

V_UPDATE_B_CODE_FLAG (This flag should be 'Y'). Any given dimension can 
have only one attribute with V_UPDATE_B_CODE_FLAG as 'Y'. This should only 
be specified for the CODE attribute for that dimension. 

Example: 
 

N_DIMENSION_ID 4 

V_ATTRIBUTE_NAME 'PRODUCT_CODE' 

V_UPDATE_B_CODE_FLAG 'Y' 

V_STG_TABLE_NAME 'stg_product_master' 

V_STG_COLUMN_NAME 'v_prod_code' 

 
 

Note: The values in V_STG_TABLE_NAME and V_STG_COLUMN_ 
NAME are not used by the fn_updateDimensionCode procedure, 
however these fields are set to NOT NULL and should be populated. 

 

 

3. Load STG_<DIMENSION>_ATTR_INTF table with data for the new ATTRIBUTE 
created. 



Dimension Loaders 

4-18 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

 
 

Note: The attribute values must first be loaded using the stage 
dimension loader procedure, fn_drmDataLoader, before running this 
procedure. This procedure will pull values from the DIM_ 
<DIMENSION>_ATTR table. If these rows do not exist for these 
members prior to running this procedure, the DIM_<DIMENSION>_ 
B.<DIMENSION>_CODE field will not be updated. 

 

4. Execute the fn_updateDimensionCode function. The function updates the code 
column with values from the DIM_<DIMENSION>_ATTR table. 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from the ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Atomic Schema Owner. 

The function requires 3 parameters — Batch Run Identifier , As of Date, Dimension 

Identifier. The syntax for calling the procedure is: 

function fn_updateDimensionCode (batch_run_id varchar2, 

as_of_date varchar2, 

pDimensionId varchar2) 

where 

• BATCH_RUN_ID is any string to identify the executed batch. 

• AS_OF_DATE in the format YYYYMMDD. 

• pDIMENSIONID dimension id 

For Example 

Declare 

num number; 

Begin 

num := fn_updateDimensionCode ('INFODOM_ 

20100405','20100405',1 ); 

End; 

You need to populate a row in FSI_DIM_LOADER_SETUP_DETAILS. 

For example, for FINANCIAL ELEM CODE, to insert a row into FSI_DIM_LOADER_ 

SETUP_DETAILS, following is the syntax: 

INSERT INTO FSI_DIM_LOADER_SETUP_DETAILS (N_DIMENSION_ID) VALUES 

('0'); COMMIT; 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type:- Select appropriate datastore from list 



Dimension Loaders 

Data Loaders 4-19 

 

 

 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- Update_Dimension_Code 

• Parameter List:- Dimension ID 

 
Truncate Stage Tables Procedure 

This procedure performs the following functions: 

• The procedure queries the FSI_DIM_LOADER_SETUP_DETAILS table to get the 

names of the staging table used by the Dimension Loader program. 

• The MIS Date option only works to the "Master Table approach" (fn_ 

STGDimDataLoader) dimension loader. It is not applicable to dimension data 

loaded using the standard Dimension Load Procedure (fn_drmDataLoader). 

Executing the Truncate Stage Tables Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from the ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The 

function requires 4 parameters — Batch Run Identifier, As of Date, Dimension 

Identifier, Mis Date Required Flag. The syntax for calling the procedure is: 

function fn_truncateStageTable(batch_run_id varchar2, 

as_of_date varchar2, 

pDimensionId varchar2, 

pMisDateReqFlag char default 

'Y') 

 

 
where 

• BATCH_RUN_ID is any string to identify the executed batch. 

• AS_OF_DATE in the format YYYYMMDD. 

• pDIMENSIONID dimension id. 

• pMisDateReqFlag is used to identify the data needs to be deleted for a given MIS 

Date. The default value is 'Y'. 

 

 
For Example 

 

Declare 

num number; 



Simple Dimension Loader 

4-20 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Begin 

num := fn_truncateStageTable ('INFODOM_20100405','20100405' 

,1,'Y' ); 

End; 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- fn_truncateStageTable 

• Parameter List:- Dimension ID, MIS-Date required Flag 

 
Simple Dimension Loader 

Currently the dimension loader program works only for key dimensions. 

Simple Dimension Loader provides the ability to load data from stage tables to Simple 

dimension tables. 

For example, the user can load data into FSI_ACCOUNT_OFFICER_CD and FSI_ 

ACCOUNT_OFFICER_MLS using the Simple Dimension Loader program. 

Simple dimension of type 'writable and editable' can use this loading approach. This 

can be identified by querying rev_dimensions_b.write_flag = 'Y', rev_dimensions_ 

b.dimension_editable_flag ='Y' and rev_dimensions_b.simple_dimension_flag = 'Y'. 

The following topics are covered in this section: 

• Creating Simple Dimension Stage Table 

• Configuration of Setup Tables 

• Executing the Simple Dimension Load Procedure 

• Exception Messages 

 
Creating Simple Dimension Stage Table 

You can create stage tables for the required simple dimensions by using the following 

template: 

STG_<DIM>_MASTER 

COLUMN_NAME DATA TYPE PRIMARY KEY NULLABLE 

v_< DIM>_display_ 

code 

Varchar2(10) Y N 

d_Mis_date Date Y N 

v_Language Varchar2(10) Y N 



Simple Dimension Loader 

Data Loaders 4-21 

 

 

 
 

 STG_< DIM>_MASTER  

v_< DIM>_NAME Varchar2(40) fl N 

v_Description Varchar2(255) fl N 

v_Created_by Varchar2(30) fl Y 

v_Modified_by Varchar2(30) fl Y 

 

Here is a sample structure: 
 

STG_ACCOUNT_OFFICER_MASTER 

COLUMN_NAME DATA TYPE PRIMARY KEY NULLABLE 

v_acct_officer_ 

display_code 

Varchar2(10) Y N 

d_Mis_date Date Y N 

v_Language Varchar2(10) Y N 

v_Name Varchar2(40) fl N 

v_Description Varchar2(255) fl N 

v_Created_by Varchar2(30) fl Y 

v_Modified_by Varchar2(30) fl Y 

 

Here are some examples: 

• Example For FSI CD/MLS tables: 

CREATE TABLE <XXXXX>_FSI_<DIM>_CD -- ACME_FSI_ACCT_STATUS_CD 

(<DIM>_CD NUMBER(5) -- ACCT_STATUS_CD 

,LEAF_ONLY_FLAG VARCHAR2(1) 

,ENABLED_FLAG VARCHAR2(1) 

,DEFINITION_LANGUAGE VARCHAR2(10) 

,CREATED_BY VARCHAR2(30) 

,CREATION_DATE DATE 

,LAST_MODIFIED_BY VARCHAR2(30) 

,LAST_MODIFIED_DATE DATE 

<dim>_display_CD VARCHAR2(10) 

); 

• Example for FSI_<DIM>_MLS table: 

CREATE TABLE <XXXXX>_FSI_<DIM>_MLS -- ACME_FSI_ACCT_STATUS_CD 

(<DIM>_CD NUMBER(5) -- ACCT_STATUS_CD 

,LANGUAGE VARCHAR2(10) 

,<DIM> VARCHAR2(40) -- ACCT_STATUS 

,DESCRIPTION VARCHAR2(255) 



Simple Dimension Loader 

4-22 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

,CREATED_BY VARCHAR2(30) 

,CREATION_DATE DATE 

,LAST_MODIFIED_BY VARCHAR2(30) 

,LAST_MODIFIED_DATE DATE 

); 

 

Note: FSI_<DIM>_CD and FSI_<DIM>_MLS should follow the 
same standards as mentioned above, else Loader will not work as 
expected. 

 

 

Configuration of Setup Tables 

REV_DIMENSIONS_B Table 

The REV_DIMENSIONS_B table holds the following target table information: 

The target FSI_<DIM>_CD/MLS table can be retrieved from REV_DIMENSIONS_B 

table as follows: 

dimension_id ---> Holds the id of the simple dimension that needs to be loaded. 

member_b_table_name ---> Holds the name of the FSI_<DIM>_CD target table. For 

example, FSI_ACCOUNT_OFFICER_CD 

member_tl_table_name ---> Holds the name of the FSI_<DIM>_MLS table name. For 

example, FSI_ACCOUNT_OFFICER_MLS 

member_col ---> Holds the Column Name for which Surrogate needs to be generated. 

For example, ACCOUNT_OFFICER_CD 

member_code_column ---> Holds the Name of the joining column name from FSI_ 

<DIM>_CD Display code column. For example, ACCOUNT_OFFICER_DISPLAY_CD 

key_dimension_flag ---> N 

dimension_editable_flag ---> Y 

write_flag ---> Y 

simple_dimension_flag ---> Y 

Setup Table Configuration Mapping 

The FSI_DIM_LOADER_SETUP_DETAILS stores the STG_<DIM>_MASTER table 

details as follows: 

FSI_DIM_LOADER_SETUP_DETAILS STG_<DIM>_MASTER 

N_DIMENSION_ID <dimension_id> For example, 617 

V_INTF_B_TABLE_NAME Stage table name 

 For example, STG_ACCOUNT_OFFICER_ 

MASTER 

V_GEN_SKEY_FLAG Default will be 'Y', it generates Surrogate Key. 



Simple Dimension Loader 

Data Loaders 4-23 

 

 

 
 

FSI_DIM_LOADER_SETUP_DETAILS STG_<DIM>_MASTER 

 When 'N' then stage display code column will 

be used as a surrogate key. 

 For example, FSI_ACCOUNT_OFFICER_ 

CD.ACCOUNT_OFFICER_DISPLAY_CD 

should be numeric. 

V_STG_MEMBER_COLUMN Stores the stage display code column. 

 For example, STG_ACCOUNT_OFFICER_ 

MASTER.v_acct_officer_display_code 

V_STG_MEMBER_NAME_COL Stores the stage column name. 

 For example, STG_ACCOUNT_OFFICER_ 

MASTER. v_Name 

V_STG_MEMBER_DESC_COL Stores the stage description column name. 

 For example, STG_ACCOUNT_OFFICER_ 

MASTER. v_description 

 

Executing the Simple Dimension Load Procedure 

There are two ways to execute the simple dimension load procedure: 

• Running Procedure Using SQL*Plus 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner: 

function fn_simpledimloader(batch_run_id VARCHAR2, as_of_date VARCHAR2, 
pdimensionid VARCHAR2, 

pMisDateReqFlag char default 'Y', psynchflag CHAR DEFAULT 'N') 
 
 

SQLPLUS > declare 

result number; 

begin 

result := fn_simpledimloader ('SimpleDIIM_ 

BATCH1','20121212','730','N','Y'); 

end; 

/ 

• BATCH_RUN_ID is any string to identify the executed batch. 

• AS_OF_DATE is in the format YYYYMMDD. 

• pDIMENSIONID is the dimension ID. 

• pSynchFlag this parameter is used to identify if a complete synchronization of 
data between staging and dimension table is required. The default value is 'Y'. 

• pMisDateReqFlag : Filter will be placed on the input stage table to select only 
the records which falls on the given as_of_date. Default value is Y. If complete 
stage table data needs to be considered, then it should be passed 'N'. 



Simple Dimension Loader 

4-24 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

 
 

Note: With Synch flag N, data is moved from Stage to Dimension 
tables. Here, an appending process happens. You can provide a 
combination of new Dimension records plus the data that has 
undergone change. New records are inserted and the changed data is 
updated into the Dimension table. With Synch flag Y, the Stage table 
data will completely replace the Dimension table data. 

 

• Simple Dimension Load Procedure Using OFSAAI ICC Framework 

To execute Simple Dimension Loader from OFSAAI ICC framework, a seeded 
Batch is provided. 

The batch parameters are: 

• Datastore Type:- Select the appropriate datastore from list 

• Datastore Name:- Select the appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- fn_simpledimloader 

• Parameter : 'Pass the dimension id for which DT needs to be executed, 
psynchflag' 

For example, '730,N,Y' 
 

Note: In case of FSI_ACCOUNT_OFFICER_CD query: 

SELECT dimension_id FROM rev_dimensions_b where member_b_ 
table_name = 'FSI_ACCOUNT_OFFICER_CD' 

pass the dimension_id. 

 

• Psynchflag:- By default it is N, data is moved from Stage to Dimension tables. 
Here, an appending process happens. You can provide a combination of new 
Dimension records plus the data that has undergone change. New records are 
inserted and the changed data is updated into the Dimension table. With 
Synch flag 'Y', the Stage table data will completely replace the Dimension table 
data. 

 

Exception Messages 

Below are the list of error messages which can be viewed in view log from UI or fsi_ 

messge_log table from back end filtering for the given batch id. On successful 

completion of each task, messages gets into log table. 

In the event of failure, following are the list of errors that may occur during the 

execution: 

Exception 1: When REV_DIMENSIONS_B is not having proper setup details. 

Meaning: For Simple Dimension write_flag, simple_dimension_flag, dimension_ 

editable_flag should be Y in rev_dimensions_b for the given Dimension id. 

Exception 2: When FSI_DIM_LOADER_SETUP_DETAILS table is not having proper 

set up details. 



Historical Rates Data Loader 

Data Loaders 4-25 

 

 

 
Meaning: Setup details are not found for the dimension id. 

Exception 3: When Display code Column is non numeric and trying to use as a 

surrogate key. 

Meaning: Display code Column should be numeric as v_gen_skey_flag N 
 

Historical Rates Data Loader 
Historical data for currency exchange rates, interest rates and economic indicators can 

be loaded into the OFSAA historical rates tables through the common staging area. 

The T2T component within OFSAAI framework is used to move data from the Stage 

historical rate tables into the relevant OFSAA processing tables. After loading the 

rates, users can view the historical rate data through the OFSAA Rate Management 

UI's. 

The following topics are covered in this section: 

• Tables Related to Historical Rates 

• Populating Stage Tables 

• Executing the Historical Rates Data Loader T2T 

• Re-Load Of Historical Rates 

 
Tables Related to Historical Rates 

Historical rates are stored in the following staging area tables: 

• STG_EXCHANGE_RATE_HIST — This staging table contains the historical 

exchange rates for Currencies used in the system. 

• STG_IRC_RATE_HIST - This staging table contains the historical interest rates for 

the Interest Rate codes used in the system. 

• STG_IRC_TS_PARAM_HIST — This staging table contains the historical interest 

rate term structure parameters, used by the Monte Carlo engine. 

• STG_ECO_IND_HIST_RATES - This staging table stores the historical values for 

the Economic Indicators used in the system. 

Historical rates in OFSAA Rate Management are stored in the following processing 

tables: 

• FSI_EXCHANGE_RATE_HIST — This table contains the historical exchange rates 

for the Currencies used in the system. 

• FSI_IRC_RATE_HIST — This table contains the historical interest rates for the 

Interest Rate codes used in the system. 

• FSI_IRC_TS_PARAM_HIST — This table stores the historical interest rate term 

structure parameters, used by the Monte Carlo engine. 



Historical Rates Data Loader 

4-26 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• FSI_ECO_IND_HIST_RATES — This table contains the historical values for the 

Economic Indicators used in the system. 

 
Populating Stage Tables 

Data for historical rates commonly comes from external systems. Such data must be 

converted into the format of the staging area tables. This data can be loaded into the 

staging area using the F2T component of the OFSAAI framework. Users can view the 

loaded data by querying the staging tables and various log files associated with the 

F2T component. 

 

Executing the Historical Rates Data Loader T2T 

You can launch the Historical Rates Data Loader from the following: 

• Interest Rates Summary page 

• PL/SQL block 

• Operations Batch 

To launch from the Interest Rates Summary page: 

1. Click the Data Loader icon on the Interest Rates Summary grid toolbar. 

2. A warning message will appear: "Upload all available Interest Rates and 
Parameters?" 

3. Click “Yes”. The process will load all valid data included in the staging table. 

There are four pre-defined T2T mappings configured and seeded in OFSAA for the 

purpose of loading historical rates. These can be executed from the ICC framework 

within OFSAAI. 

To execute the Historical Exchange Rates Data Loader, create a new Batch and specify 

the following parameters: 

• Datastore Type:- Select appropriate datastore from the drop down list 

• Datastore Name:- Select appropriate name from the list. Generally it is the 

Infodom name. 

• IP address:- Select the IP address from the list 

• Rule Name:- T2T_EXCHANGE_RATE_HIST 

• Parameter List:- No Parameter is passed. The only parameter is the As of Date 

selection which is made when the process is executed. 

To execute the Historical Interest Rates Data Loader, create a new Batch and specify 

the following parameters: 

• Datastore Type:- Select appropriate datastore from the drop down list 

• Datastore Name:- Select appropriate name from the drop down list 

• IP address:- Select the IP address from the list 



Historical Rates Data Loader 

Data Loaders 4-27 

 

 

 

• Rule Name:- T2T_IRC_RATE_HIST 

• Parameter List: No Parameter is passed. The only parameter is the As of Date 

selection which is made when the process is executed. 

To execute the Historical Term Structure Parameter Data Loader, create a new Batch 

and specify the following parameters: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- T2T_IRC_TS_PARAM_HIST 

• Parameter List: No Parameter is passed. The only parameter is the As of Date 

selection which is made when the process is executed. 

To execute the Historical Economic Indicator Data Loader, create a new Batch and 

specify the following parameters: 

• Datastore Type:- Select appropriate datastore from the drop down list 

• Datastore Name: - Select appropriate name from the drop down list 

• IP address:- Select the IP address from the list 

• Rule Name:- T2T_ECO_IND_HIST_RATES 

• Parameter List: No Parameter is passed. The only parameter is the As of Date 

selection which is made when the process is executed. 

After executing any of the above batch processes, check the T2T component logs and 

batch messages to confirm the status of the data load. 

The T2T component can fail under the following scenario: 

• Unique constraint error — Target table may already contain data with the primary 

keys that the user is trying to load from the staging area. 

 
Re-Load Of Historical Rates 

The T2T component can only perform “Insert” operations. In case the user needs to 

perform updates, previously loaded records should be deleted before loading the 

current records. Function fn_deleteFusionTables is used for deleting the records in the 

target that are present in the source. This function removes rows in the table if there 

are matching rows in the Stage table. This function requires entries in the FSI_ 

DELETE_TABLES_SETUP table to be configured. Configure the below table for all 

columns that need to be part of the join between the Stage table and Equivalent table. 

Users can create new or use existing Data Transformations for deleting a Table. The 

parameters for the Data Transformation are: 

• 'Table to be deleted' 

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=492307060843963&id=1586342.1&_afrWindowMode=0&_adf.ctrl-state=11btsvindb_79
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=492307060843963&id=1586342.1&_afrWindowMode=0&_adf.ctrl-state=11btsvindb_79


Forecast Rate Data Loader 

4-28 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Batch run ID 

• As of Date 
 

Column Name Column Description Sample Value 

STAGE_TABLE_NAME Stores the source table name 

for forming the join statement 

STG_LOAN_CONTRACTS 

STAGE_COLUMN_NAME Stores the source column 

name for forming the join 

statement 

V_ACCOUNT_NUMBER 

FUSION_TABLE_NAME Stores the target table name 

for forming the join statement 

FSI_D_LOAN_CONTRACTS 

FUSION_COLUMN_NAME Stores the target column name 

for forming the join statement 

ACCOUNT_NUMBER 

 
 

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns 
that can be used to join the stage with the equivalent table. In case if 
the join requires other dimension or code tables, a view can be created 
joining the source table with the respective code tables and this view 
can be part of the above setup table. 

 

 

Forecast Rate Data Loader 
The Forecast Rate Data Loader procedure loads forecast rates into the OFSAA ALM 

Forecast rates processing area tables from staging tables. In ALM, Forecast Rate 

assumptions are defined within the Forecast Rate Assumptions UI. The Forecast Rates 

Data Loader supports the Direct Input and Structured Change methods only for 

exchange rates, interest rates and economic indicators. Data for all other forecast rate 

methods should be input through the User Interface. After executing the forecast rates 

data loader, users can view the information in the ALM - Forecast Rates Assumptions 

UI. 

The following topics are covered in this section: 

• Forecast Rate Data Loader Tables 

• Populating Forecast Rate Stage Tables 

• Forecast Rate Loader Program 

• Executing the Forecast Rate Data Load Procedure 

• Exception Messages 

 
Forecast Rate Data Loader Tables 

Forecast rate assumption data is stored in the following staging area tables: 

• STG_FCAST_XRATES — This table holds the forecasted exchange rate data for the 

current ALM modeling period. 



Forecast Rate Data Loader 

Data Loaders 4-29 

 

 

 

 
 

Note: For Direct Input Method, both N_FROM_BUCKET and N_ 
TO_BUCKET column contain the same bucket number for the record 
in "STG_FCAST_XRATES" table. 

 

• STG_FCAST_IRCS - This table holds the forecasted interest rate data for the 

current ALM modeling period. 

• STG_FCAST_EI - This table holds the forecasted economic indicator data for the 

current ALM modeling period. 

Rates present in the above staging tables are copied into the following ALM metadata 

tables. 

• FSI_FCAST_IRC_DIRECT_INPUT, FSI_FCAST_IRC_STRCT_CHG_VAL. 

• FSI_FCAST_XRATE_DIRECT_INPUT, FSI_FCAST_XRATE_STRCT_CHG. 

• FSI_FCAST_EI_DIRECT_INPUT, FSI_FCAST_EI_STRCT_CHG_VAL 

 
Populating Forecast Rate Stage Tables 

STG_FCAST_EI 
 

v_forecast_name The Name of the Forecast Rate 

assumption rule as defined. 

 The Forecast name indicates the Short 

Description for the Forecast Rate Sys ID as 

stored in the FSI_M_OBJECT_DEFINITION_ 

TL table. In case the forecast sys id is 

provided, then populate this field with -1. 

v_scenario_name This field indicates the Scenario Name for 

which the Forecast Rate data is applicable. 

v_economic_indicator_name This field indicates the Economic Indicator 

Name for which the Forecast data is 

applicable. 

n_from_bucket This field indicates the Start Bucket Number 

for the given scenario. 

fic_mis_date This field indicates the current period As of 

Date applicable to the data being loaded. 

n_fcast_rates_sys_id The System Identifier of the forecast rate 

assumption rule to which this data will be 

loaded. In case forecast name and folder are 

provided, then populate this field with -1. 

v_folder_name Name of the folder that holds the Forecast 

Rate assumption rule definition. In case the 

forecast sys id is provided, then populate this 

field with -1. 

v_ei_method_cd The Forecast method of economic indicator 

values include: Direct Input or Structured 

change. 



Forecast Rate Data Loader 

4-30 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 Use DI - For Direct Input or SC - For 

Structured Change 

n_economic_indicator_value This field indicates the value for the Economic 

Indicator for the given scenario and time 

bucket. 

n_to_bucket This field indicates the End Bucket Number 

for the assumption. 

 

STG_FCAST_XRATES 
 

v_forecast_name The Name of the Forecast Rate 

assumption rule as defined. 

 The Forecast name indicates the Short 

Description for the Forecast Rate Sys ID as 

stored in the FSI_M_OBJECT_DEFINITION_ 

TL table. In case the forecast sys id is 

provided, then populate this field with -1. 

v_scenario_name This field indicates the Scenario Name for 

which the Forecast Rate data is applicable. 

v_iso_currency_cd From ISO Currency Code (like USD, EUR, 

JPY, GBP) of the forecast rate. 

n_from_bucket This field indicates the Start Bucket Number 

for the given scenario. 

fic_mis_date This field indicates the As of Date for which 

the data being loaded is applicable. 

n_fcast_rates_sys_id The System Identifier of the assumption rule 

to which this data will be loaded. In case 

forecast name and folder are provided, then 

populate this field with -1. 

v_folder_name Name of the folder that holds the Forecast 

Rate assumption rule definition. In case the 

forecast sys id is provided, then populate this 

field with -1. 

n_to_bucket This field indicates the End Bucket Number 

for the given scenario. 

v_xrate_method_cd The Forecast method for exchange rate values 

include: Direct Input or Structured change. 

 Use DI - For Direct Input or SC - For 

Structured Change 

n_exchange_rate This field indicates the Exchange rate for the 

Currency and given bucket Range.The value 

in N_EXCHANGE_RATE should be the rate 

used to convert 1 unit of the V_TO_ 

CURRENCY_CD currency to the currency 

stored in V_FROM_CURRENCY_CD. For 

example, if V_TO_CURRENCY_CD = 'USD', 

then enter the exchange rate to convert 1 unit 

USD to another currency. 



Forecast Rate Data Loader 

Data Loaders 4-31 

 

 

 

STG_FCAST_IRCS 
 

v_forecast_name The Name of the Forecast Rate assumption 

rule as defined. 

 The Forecast name indicates the Short 

Description for the Forecast Rate Sys ID as 

stored in the FSI_M_OBJECT_DEFINITION_ 

TL table. In case the forecast sys id is 

provided, then populate this field with -1. 

v_scenario_name This field indicates the Scenario Name for 

which the Forecast Rate data is applicable. 

v_irc_name The IRC Name indicates the Name of Interest 

Rate Code . 

n_interest_rate_term This field indicates the Interest Rate Term 

applicable for the row of data. 

v_interest_rate_term_mult This field indicates the Interest Rate Term 

Multiplier for the row of data being loaded. 

n_from_bucket This field indicates the Start Bucket Number 

for the given scenario. 

fic_mis_date This field indicates the As of Date for which 

the data being loaded is applicable. 

n_fcast_rates_sys_id The System Identifier of the interest rate code 

forecast rate definition. In case the forecast 

name and folder are provided, then populate 

this field with -1. 

v_folder_name Name of the folder that holds the Forecast 

Rate assumption rule definition. In case the 

forecast sys id is provided, then populate this 

field with -1. 

n_interest_rate This field indicates the Interest Rate Change 

for the specified Term and for the given 

scenario. 

n_to_bucket This field indicates the End Bucket Number 

for the given scenario. 

v_irc_method_cd The Forecast method of interest rate code 

values include: Direct Input or Structured 

change. 

 Use DI - For Direct Input or SC - For 

Structured Change 

 
Forecast Rate Loader Program 

The Forecast Rate Loader program updates the existing forecast rates to new forecast 

rates in the ALM Forecast Rate tables for Direct Input and Structured Change 

forecasting methods. 



Forecast Rate Data Loader 

4-32 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

 
 

Note:  The Forecast Rate Loader can only update existing forecast 
rate assumption rule definitions. The initial Forecast Rate assumption 
rule definition and initial methods must be created through the 
Forecast Rates user interface within Oracle ALM. 

 

The Forecast Rates Data Loader performs the following functions: 

1. The User can load forecast rate assumptions for either a specific Forecast Rate 
assumption rule or multiple forecast rates assumption rules. 

2. To Load a specific Forecast Rate assumption rule, the user should provide either 
the Forecast Rate name and a folder name as defined in Oracle ALM or the 
Forecast Rate System Identifier. 

3. When the load parameter is to load a specific Forecast Rate assumption rule for a 
given As of Date, the loader checks for Forecast Name/Forecast Rate System 
Identifier's presence in the Object Definition Registration Table. If it's present, then 
the combination of Forecast Name/Forecast Rate system Identifier and As of Date 
is checked in each of the Forecast Rate Staging Tables one by one. 

4. The data loading is done from each of the staging tables for the Direct Input and 
Structured change methods where the Forecast Name and As of Date combination 
is present. 

5. When the load parameter is the Load All Option (Y), the Distinct Forecast Name 
from the 3 staging tables is verified for its presence in Object Definition 
Registration table and the loading is done for each of the Forecast Names. 

6. Messages for each of the steps is written into the FSI_MESSAGE_LOG table. 

After the Forecast rate loader processing is completed, the user should query the ALM 

Forecast Rate tables to look for the new forecast rates. Also, the user can verify the 

data just loaded using the Forecast Rate Assumption UI. 

 
Executing the Forecast Rate Data Load Procedure 

You can launch the Forecast Data Loader from the following: 

• Forecast Rates Summary page 

• PL/SQL block 

• Operations Batch 

To launch from the Forecast Rates Summary page: 

1. Click the Data Loader icon on the Forecast Rates Summary grid toolbar. 

2. A warning message will appear: ”Upload all available Forecast Rates?” 

3. Click “Yes”. The process will load all valid data included in the staging table. 

 
Forecast Rate Loader – Method 1 

To run the Forecast Rate Loader from SQL*Plus, login to SQL*Plus as the 

Schema Owner. The procedure requires six parameters 

1. Batch Execution Identifier (batch_run_id) 



Forecast Rate Data Loader 

Data Loaders 4-33 

 

 

 
2. As of Date (mis_date) 

3. Forecast Rate System Identifier (pObject_Definition_ID) 

4. Option for Loading All or any Specific Forecast Rate assumption rule. If the Load 
All option is 'N' then either the Forecast Rate Assumption rule Name Parameter 
with the Folder Name or Forecast Rate Sys ID should be provided else it raises an 
error (pLoad_all) 

5. Forecast Rate assumption rule Name (pForecast_name) 

6. Folder name (pFolder_Name) 

7. The syntax for calling the procedure is: 

fn_stg_forecast_rate_loader(batch_run_id varchar2, 

mis_date   varchar2, 

pObject_Definition_ID  number, 

pLoad_all char default 

'N', 

 

 

 
p_user_idvarchar2 

p_appid varchar2 

) 

where 

 
pForecast_name varchar2, 

pFolder_Name varchar2 

• BATCH_RUN_ID is any string to identify the executed batch. 

• mis_date in the format YYYYMMDD. 

• pObject_Definition_ID -The Forecast Rate System Identifier in ALM 

• pLoad_all indicates option for loading all forecast rates. 

• pForecast_Name. This can be null i.e '' when the pLoad_all is 'Y' else provide a 
valid Forecast Rate assumption rule Name. 

• pFolder_Name indicates the name of the Folder where the forecast rate 
assumption rule was defined. 

• p_user_id indicates the user mapped with the application in rev_app_user_ 
preferences. This will be used to fetch as of date from rev_app_user_ 
preferences.This is a mandatory parameter. 

• p_appid is the application name. This is a mandatory parameter. 

For Example: 

If the user wants to Load all forecast rates assumption rules defined within a folder, 

say “RTSEG” then 

Declare  

num number; 

Begin 



Forecast Rate Data Loader 

4-34 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Num:= fn_stg_forecast_rate_loader('INFODOM_FORECAST_RATE_ 

LOADER', 

'20100419', 

null, 

'Y', 

Null, 

'RTSEG', 

'ALMUSER1', 

'ALM'); 

End; 

The loading is done for all forecast rates under folder 'RTSEG' for as of Date 20100419. 

Sample Data for STG_FCAST_IRCS to Load all forecast rates defined within a folder 

 

 

Sample Data for STG_FCAST_XRATES to Load all forecast rates defined within a 

folder 

 

 

Sample Data for STG_FCAST_EI to Load all forecast rates defined within a folder 
 
 

 

If the user wants to Load a specific forecast rate assumption rule, they should provide 

the unique Forecast Rate System Identifier 

Declare  

num number; 

Begin 

Num:= fn_stg_forecast_rate_loader('INFODOM_FORECAST_RATE_ 

LOADER', 

 
 

 
 

 
 



Forecast Rate Data Loader 

Data Loaders 4-35 

 

 

 

'20100419', 

10005, 

'N', 

Null,  

Null, 

'ALMUSER1', 

'ALM'); 

End; 

Sample Data for STG_FCAST_IRCS to load data for specific Forecast Rate providing 

the Forecast Rate System Identifier 

 

 

Sample Data for STG_FCAST_XRATES to load data for specific Forecast Rate 

providing the Forecast Rate System Identifier 

 

 

Sample Data for STG_FCAST_EI to load data for specific Forecast Rate providing the 

Forecast Rate System Identifier 

 

 
 

 
 

 
 



Forecast Rate Data Loader 

4-36 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

 
 

Note: To Load data for specific Forecast Rate providing the Forecast 
Rate System Identifier, the value of Forecast rate Name and Folder 
Name in the staging tables should be “-1”. 

 

If the user wants to Load a specific forecast rate assumption rule within the Folder 

providing the name of Forecast Rate as defined in ALM 

Declare  

num number; 

Begin 

Num:= fn_stg_forecast_rate_loader('INFODOM_FORECAST_RATE_ 

LOADER', 

'20100419', 

Null, 

'N', 

'LOADER_TEST', 

'RTSEG', 

'ALMUSER1', 

'ALM'); 

End; 

Sample Data for STG_FCAST_IRCS to Load a specific forecast rate within the Folder 

providing the name of Forecast Rate as defined in ALM 

 
 

Sample Data for STG_FCAST_XRATES to Load a specific forecast rate within the 

Folder providing the name of Forecast Rate as defined in ALM 

 

 

Sample Data for STG_FCAST_EI to Load a specific forecast rate within the Folder 

providing the name of Forecast Rate as defined in ALM 

 

If the NUM value is 1, it indicates the load completed successfully, check the FSI_ 

MESSAGE_LOG for more details. 

 
 

 
 



Forecast Rate Data Loader 

Data Loaders 4-37 

 

 

 

Forecast Rate Loader – Method 2 

To execute Forecast Rate Loader from OFSAAI ICC framework, a seeded Batch is 

provided. 

Steps 

1. "<INFODOM>_FORECAST_RATE_LOADER” is the Batch ID and “Forecast Rate 
Loader” is the description of the batch. 

 

 

2. The batch has a single task. Edit the task. 

 

 

3. If the user intends to load data for all Forecast Rates under a Folder, then provide 
the batch parameters as shown. 

 
 

 
 



Forecast Rate Data Loader 

4-38 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 
 

 
 

Datastore Type:- Select the appropriate datastore from list 

Datastore Name:- Select the appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- Forecast_Rate_loader 

Datastore Type:- Select the appropriate datastore from list 

Datastore Name:- Select the appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- Forecast_Rate_loader 

4. Sample Data for STG_FCAST_IRCS to Load all forecast rates defined within a 
folder 

 

 
Sample Data for STG_FCAST_XRATES to Load all forecast rates defined within a 
folder 

 

 
 

 
 



Forecast Rate Data Loader 

Data Loaders 4-39 

 

 

 
Sample Data for STG_FCAST_EI to Load all forecast rates defined within a folder 

 

 

5. If the user wants to load data for a specific Forecast Rate assumption rule, provide 
the Forecast Rate System Identifier, then define the batch parameters. 

Datastore Type:- Select the appropriate datastore from list 

Datastore Name:- Select the appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- Forecast_Rate_loader 

Sample Data for STG_FCAST_IRCS to load data for a specific Forecast Rate 
assumption rule, with the Forecast Rate System Identifier already provided 

 

 
Sample Data for STG_FCAST_XRATES to load data for a specific Forecast Rate 
assumption rule with the Forecast Rate System Identifier already provided 

 

 

Sample Data for STG_FCAST_EI to load data for a specific Forecast Rate 
assumption rule with the Forecast Rate System Identifier already provided 

 

 

Note: To Load data for specific Forecast Rate assumption rules, 
provide the Forecast Rate System Identifier and the value of Forecast 
rate Name and Folder Name in the staging tables should be “-1”. 

 

 
 

 
 

 
 

 
 



Forecast Rate Data Loader 

4-40 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
6. If the user wants to load data for specific Forecast Rate assumption rules, provide 

the Forecast Rate Name as defined in ALM, then define the batch parameters as 
shown. 

Datastore Type:- Select an appropriate datastore from list 

Datastore Name:- Select an appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- Forecast_Rate_loader 

Sample Data for STG_FCAST_IRCS to Load a specific forecast rate assumption 
rule, within the Folder, provide the name of Forecast Rate rule as defined in ALM 

 

Sample Data for STG_FCAST_XRATES to Load a specific forecast rate assumption 
rule, within the Folder, provide the name of Forecast Rate rule as defined in ALM 

 

 

Sample Data for STG_FCAST_EI to Load a specific forecast rate assumption rule, 
within the Folder, provide the name of Forecast Rate rule as defined in ALM 

 

 

7. Save the Batch. 

8. Execute the Batch for the required As of Date. 

 

Exception Messages 

The Forecast Rate Data Loader can have the following exceptions: 

Exception 1: Error. While fetching the Object Definition ID from Object Registration 

Table 

This exception occurs if the forecast rate assumption rule name is not present in the 

FSI_M_OBJECT_DEFINTION_TL table short_desc column. 

Exception 2: Error. More than one Forecast Sys ID is present. 

 
 

 
 

 
 



Prepayment Rate Data Loader 

Data Loaders 4-41 

 

 

 
This exception occurs when there is more than one Forecast Sys ID present for the 

given forecast rate assumption rule name. 

Exception 3: Error. Forecast Rate assumption rule Name and As of Date combination 

do not exist in the Staging Table. 

This exception occurs when the Forecast Rate assumption rule Name and as of date 

combination do not exist in the Staging Table. 

 

Prepayment Rate Data Loader 
Prepayment Model assumptions are defined within the Prepayment Model rule User 

Interfaces in OFSAA ALM, HM and FTP applications. You can input prepayment rates 

directly through the UI, or import the rates from Excel into the UI. You can also use 

the Prepayment Rate Data Loader procedure to populate Prepayment Model rates into 

the OFSAA metadata table from the corresponding staging table. This data loader 

program can be used to update the Prepayment Model rates on a periodic basis. After 

loading the prepayment rates, you can view the latest data in the Prepayment Model 

assumptions UI. 

The following topics are covered in this section: 

• Prepayment Rate Loader Tables 

• Prepayment Rate Data Loader 

• Executing the Prepayment Model Data Loader 

• Exception Messages 

 
Prepayment Rate Loader Tables 

The Loader uses the following staging and target tables: 

• STG_PPMT_MODEL_HYPERCUBE — This staging table contains prepayment 

rates for the selected prepayment dimensions. 

• FSI_PPMT_MODEL_HYPERCUBE — The loader copies rates into this target table 

for the associated Prepayment Dimension combinations present in the FSI_M_ 

PPMT_MODEL table. 

 

Prepayment Rate Data Loader 

The Prepayment Rate Data Loader program populates the target OFSAA Prepayment 

Model table with the values from the staging table. The procedure will load 

prepayment rate data for a specified Prepayment Model rule or all Prepayment 

models that are present in the staging table. The program assumes that the 

Prepayment Model assumptions have already been defined using OFSAA Prepayment 

Model rule UIs before loading Prepayment Model rates. 

The program performs the following functions: 



Prepayment Rate Data Loader 

4-42 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

1. The program performs certain checks to determine if: 

The Prepayment Model dimensions present in staging are the same as those 
present in the OFSAA Prepayment Model metadata tables. 

The bucket members of each of the dimensions present in staging are same as 
those present in the metadata tables. 

The number of records present in the STG_PPMT_MODEL_HYPERCUBE table for 
a Prepayment Model is less than or equal to the maximum number of records that 
are allowed, which is determined by multiplying the number of buckets per 
dimension of the Prepayment Model. 

 

PPMT_MDL_SYS_ID DIMENSION_ID NUMBER_OF_BUCKETS 

20100405 8 2 

20100405 4 3 

 
Then the maximum number of records = number of buckets of dimension 8 * 
number of buckets of dimension 4 

That is, maximum number of records = 2 * 3 

Therefore, maximum number of records = 6 records 

Check is made by Prepayment Rate Data Loader whether the number of records 
present in STG_PPMT_MODEL_HYPERCUBE table for a Prepayment model 
20100405 is less than or equal to 6 or not. 

2. If the above quality checks are satisfied, then the rates present in the Staging table 
are updated to the OFSAA prepayment model metadata table. 

3. Any error messages are logged in the FSI_MESSAGE_LOG table and can be 
viewed in OFSAAI Log Viewer UI. 

After the Prepayment Rate loader is completed, you should query the FSI_PPMT_ 

MODEL_HYPERCUBE table to look for the new rates. Also, you can verify the data 

using the Prepayment Model Assumption UI. 

Populating the data into STG_PPMT_MODEL_HYPERCUBE 

• V_PPMT_MDL: The Name of the Prepayment Model as stored in FSI_M_OBJECT_ 

DEFINITION_TL table. If Prepayment Model name is given, also provide the 

Folder name. If the Prepayment Model System ID is provided, then populate this 

field with -1. 

• N_ORIG_TERM: Original term of the contract 

• N_REPRICING_FREQ: The number of months between instrument repricing 

• N_REM_TENOR: Remaining term of the contract (in Months) 

• N_EXPIRED_TERM: Expired term of the contract (in Months) 

• N_TERM_TO_REPRICE: Repricing term of the contract (in Months) 

• N_COUPON_RATE: The current gross rate on the instrument 



Prepayment Rate Data Loader 

Data Loaders 4-43 

 

 

 

• N_MARKET_RATE: Forecast rate representing alternate funding 

• N_RATE_DIFFERENCE: Spread between the current gross rate and the market 

rate 

• N_RATE_RATIO: Ratio of the current gross rate to the market rate 

• N_PPMT_RATE: User defined prepayment rate for the associated dimension 

value combination 

• FIC_MIS_DATE: The As of Date for which the data being loaded is applicable 

• V_FOLDER_NAME: Name of the Folder which holds the Prepayment Model. If 

the Prepayment Model System ID is provided, then populate this field with -1. If 

Folder name is provided, then provide Prepayment Model name as well. 

• N_PPMT_MDL_SYS_ID: The System Identifier (Object Definition ID) of the 

Prepayment Model to which this data will be loaded. If Prepayment Model name 

and Folder are provided, then populate this field with -1. 

Column mapping from source to target 

Source STG_PPMT_MODEL_HYPERCUBE to Target FSI_PPMT_MODEL_ 

HYPERCUBE mapping: 

N_ORIG_TERM -> ORIGINAL_TERM 

N_REPRICING_FREQ ->REPRICING_FREQ 

N_REM_TENOR -> REMAINING_TERM 

N_EXPIRED_TERM -> EXPIRED_TERM 

N_TERM_TO_REPRICE -> TERM_TO_REPRICE 

N_COUPON_RATE -> COUPON_RATE 

N_MARKET_RATE -> MARKET_RATE 

N_RATE_DIFFERENCE -> RATE_DIFFERENCE 

N_RATE_RATIO -> RATE_RATIO 

N_PPMT_RATE -> PPMT_RATE 

N_PPMT_MDL_SYS_ID -> PPMT_MDL_SYS_ID when N_PPMT_MDL_SYS_ID <> -1, 

otherwise it performs a lookup in FSI_M_OBJECT_DEFINITION_TL based on the 

Name and Folder provided in the staging tabl 

Example 

Based on the FSI_M_PPMT_MODEL table, for data in the staging table with 

Prepayment Model System ID 20100405: 

PPMT_MDL_SYS_ID DIMENSION_ID NUMBER_OF_BUCKETS 

20100405 8 2 



Prepayment Rate Data Loader 

4-44 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
20100405 4 3 

The maximum number of records = (number of buckets of dimension 8) * (number of 

buckets of dimension 4). 

That is, maximum number of records = 2 * 3 

Therefore, maximum number of records = 6 records. 

The Prepayment Rate Data Loader checks whether the number of records present in 

STG_PPMT_MODEL_HYPERCUBE table for Prepayment Model 20100405 is less than 

or equal to 6. 

If the above quality checks are satisfied, then the rates present in the Staging table are 

updated to the OFSAA Prepayment Model metadata table. 

Any error messages are logged in the FSI_MESSAGE_LOG table. 
 

Executing the Prepayment Model Data Loader 

You can launch the Data Loader from the following: 

• Prepayment Models summary page 

• PL/SQL block 

• Operations Batch 

• Prepayment Models summary page: To launch from the Prepayment Models 

summary page: 

Click the Data Loader icon on the Prepayment Models summary grid toolbar. 

A warning message will appear: ”Upload all available Prepayment Rates?” 

Click “Yes”. The process will load all valid data included in the staging table. 

• PL/SQL block: To execute theLoader within a PL/SQL block: 

To run the function from SQL*Plus, log in to SQL*Plus as the Schema Owner. The 
loader requires two parameters 

Batch Execution Name 

As Of Date 

Syntax: 

fn_PPMT_RATE_LOADER(batch_run_id IN VARCHAR2, as_of_date IN 

VARCHAR2) 

Where: 

BATCH_RUN_ID is any string to identify the executed batch. 

As_of_Date is the execution date in the format YYYYMMDD. 

For Example: 

Declare 

num number; 

Begin 



Prepayment Rate Data Loader 

Data Loaders 4-45 

 

 

 

Num:= fn_PPMT_RATE_LOADER('INFODOM_ 

20100405','20100405'); 

End; 

The loader is executed for the given as of date. If the return value (NUM) is 1, this 
indicates the load completed successfully. Check the FSI_MESSAGE_LOG for 
more details. 

• Operations Batch: To run from Operations Batch framework: 

You can create a new Batch with the Component = 'TRANSFORM DATA' and 
specify the following parameters for the task: 

Datastore Type: Select appropriate datastore from list 

Datastore Name: Select appropriate name from the list 

IP address: Select the IP address from the list 

Rule Name: ppmt_rate_loader 

Parameter List: None 

To view results: 

Any error messages are logged in the FSI_MESSAGE_LOG table. If you launch the 

Loader from the Prepayment Models summary page or Operations Batch, you can 

view processing messages in OFSAAI in the Operations -> View Log UI, where the 

Component Type = Data Transformation and the Batch Run ID = the ID for your run. 

You can also spot check results of the load as follows: 

• Query the FSI_PPMT_MODEL_HYPERCUBE table to confirm existence of the 

new rates. 

• Use the Prepayment Model rule UI to select your rule and View your rates. 

 
Exception Messages 

The Prepayment Model Rate Loader can have the following exceptions: 

Exception 1: Error while fetching the Object Definition ID from Object Definition Table. 

This exception occurs if the prepayment model name is not present in the FSI_M_ 

OBJECT_DEFINTION_TL table. 

Exception 2: Error. More than one prepayment model sys ID is present for the given definition. 

This exception occurs when there is more than one Prepayment Model System ID 

present for the Prepayment Model name in staging. 

Exception 3: Error. Data is present in additional dimension ID column than those defined in FSI_ 

M_PPMT_MODEL. 

This exception occurs if rates are specified in staging for the dimensions that are not 

part of the Prepayment Model definition. 

Exception 4: The value in the Dimension ID column is not matching with the value present in the 

corresponding column in metadata table. 



Stage Instrument Table Loader 

4-46 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

This exception occurs if rates are specified in staging for the dimension members that 

are not part of the Prepayment Model definition. 

Exception 5: The number of records for the staging table for a given Prepayment Model Name is 

more than those calculated by multiplying the number of buckets in FSI_M_PPMT_MODEL table 

for the given model name. 

This exception occurs if there are excess records in staging compared to OFSAA 

metadata tables for the given Prepayment Model. 

 

Stage Instrument Table Loader 
Data in staging instrument tables are moved into respective OFSAA processing 

instrument tables using OFSAAI T2T component. After loading the data, users can 

view the loaded data by querying the processing instrument tables. 

The following topics are covered in this section: 

• Stage Tables 

• Populating Stage Tables 

• Mapping To OFSAA Processing Tables 

• Populating Accounts Dimension 

• Executing T2T Data Movement Tasks 

 
Stage Tables 

Following are examples of some of the various application staging instrument tables: 

• STG_LOAN_CONTRACTS — holds contract information related to various loan 

products including mortgages. 

• STG_TD_CONTRACTS — holds contract information related to term deposit 

products. 

• STG_CASA — holds information related to Checking and Savings Accounts. 

• STG_OD_ACCOUNTS — holds information related to over-draft accounts. 

• STG_CARDS — holds information related to credit card accounts. 

• STG_LEASES — holds contract information related to leasing products. 

• STG_ANNUITY_CONTRACTS — holds contract information related to annuity 

contracts. 

• STG_INVESTMENTS — holds information related to investment products like 

bond, equities etc. 

• STG_MM_CONTRACTS — holds contract information related to short term 

investments in money market securities. 



Stage Instrument Table Loader 

Data Loaders 4-47 

 

 

 

• STG_BORROWINGS — holds contract information related to various inter-bank 

borrowings. 

• STG_FX_CONTRACTS — holds contract information related to FX products like FX 

Spot, FX Forward etc. Leg level details, if any, are stored in various leg-specific 

columns within the table. 

• STG_SWAPS_CONTRACTS — holds contract information related to various types 

of swaps. Leg level details, if any, are stored in various leg-specific columns within 

the table. 

• STG_OPTION_CONTRACTS — holds contract information related to various types 

of options. Leg level details, if any, are stored in various leg-specific columns 

within the table. 

• STG_FUTURES — holds contract information related to interest rate forwards and 

all types of futures. Leg level details, if any, are stored in various leg-specific 

columns within the table. 

• STG_LOAN_COMMITMENTS - contains all existing columns from STG_LOAN_ 

CONTRACTS 

 

Note: You can modify any existing instrument table to include the 
columns by adding the "COMMITMENT_CONTRACTS super type". 
If you want to execute the Forward Rate transfer pricing pricing 
against tables in addition to FSI_D_LOAN_COMMITMENTS, then 
add the required columns and do so by adding the COMMITMENT_ 
CONTRACTS super type via ERWIN. 

 

 

Populating Stage Tables 

Data can be loaded into staging tables through F2T component of OFSAAI. After data 

is loaded, check for data quality within the staging tables, before moving into OFSAA 

processing tables. Data quality checks can include: 

• Number of records between external system and staging instrument tables. 

• Valid list of values in code columns of staging. 

• Valid list of values in dimension columns like product, organization unit, general 

ledger etc. These members should be present in the respective dimension tables. 

• Valid values for other significant columns of staging tables. 

 
Mapping To OFSAA Processing Tables 

Following are examples of some of the pre-defined application T2T mappings between 

the above staging tables and processing tables: 

• T2T_LOAN_CONTRACTS — for loading data from STG_LOAN_CONTRACTS to 

FSI_D_LOAN_CONTRACTS. 



Stage Instrument Table Loader 

4-48 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• T2T_MORTGAGES — for loading data from STG_LOAN_CONTRACTS to FSI_D_ 

MORTGAGES. 

• T2T_CASA — for loading data from STG_CASA to FSI_D_CASA. 

• T2T_CARDS — for loading data from STG_CARDS to FSI_D_CREDIT_CARDS. 

• T2T_TD_CONTRACTS — for loading data from STG_TD_CONTRACTS to FSI_D_ 

TERM_DEPOSITS. 

• T2T_ANNUITY_CONTRACTS — for loading data from STG_ANNUITY_ 

CONTRACTS to FSI_D_ANNUITY_CONTRACTS. 

• T2T_BORROWINGS — for loading data from STG_BORROWINGS to FSI_D_ 

BORROWINGS. 

• T2T_FORWARD_CONTRACTS — for loading data from STG_FUTURES to FSI_D_ 

FORWARD_RATE_AGMTS. 

• T2T_FUTURE_CONTRACTS — for loading data from STG_FUTURES to FSI_D_ 

FUTURES. 

• T2T_FX_CONTRACTS — for loading data from STG_FX_CONTRACTS to FSI_D_ 

FX_CONTRACTS. 

• T2T_INVESTMENTS — for loading data from STG_INVESTMENTS to FSI_D_ 

INVESTMENTS. 

• T2T_LEASES_CONTRACTS — for loading data from STG_LEASES_CONTRACTS 

to FSI_D_LEASES. 

• T2T_MM_CONTRACTS — for loading data from STG_MM_CONTRACTS table to 

FSI_D_MM_CONTRACTS. 

• T2T_OPTION_CONTRACTS — for loading data from STG_OPTION_ 

CONTRACTS to FSI_D_OPTION_CONTRACTS. 

• T2T_SWAP_CONTRACTS — for loading data from STG_SWAPS_CONTRACTS to 

FSI_D_SWAPS. 

• T2T_OD_ACCOUNTS — for loading data from STG_OD_ACCOUNTS to FSI_D_ 

CREDIT_LINES. 

• T2T_LOAN_COMMITMENTS - for loading data from STG_LOAN_ 

COMMITMENTS to FSI_D_LOAN_COMMITMENTS 

COLUMN SOURCE/OUTPUT COLUMN DESCRIPTION 

COMMIT_START_DATE From source — Mandatory for 

Rate 

The date on which the Rate 

Lock period starts 

COMMIT_MAT_DATE From source — Mandatory for 

Rate 

The date on which the Rate 

Lock period expires. 

Corresponds to the Loan 

Origination Date 



Stage Instrument Table Loader 

Data Loaders 4-49 

 

 

 
 

COLUMN SOURCE/OUTPUT COLUMN DESCRIPTION 

COMMIT_TERM From source — Mandatory for 

Rate 

The Rate Lock term period. 

Equal to COMMIT_MAT_ 

DATE — COMMIT_START_ 

DATE 

COMMIT_TERM_MULT From source — Mandatory for 

Rate 

The Rate Lock term multiplier 

COMMIT_FEE_TO_CUST From source — Optional The fee that is charged to the 

customer for the Rate Lock 

agreement. 

COMMIT_OPTION_COST_ 

PCT 

Calculated — Output column The Rate Lock cost expressed 

as a percentage 

COMMIT_OPTION_COST Calculated — Output column The calculated Rate Lock cost 

charged by treasury to the 

banker — Rate Lock % * 

Balance 

COMMIT_OPTION_TYPE_ 

CD 

From source - Mandatory Refers to Option Type (default 

= 1). At present, we support 

only European. If Option 

Type is European, then 

compute Rate Lock option 

cost using the Black Swaption 

formula. Otherwise do 

nothing. 

 

Note: FSI_D_LOAN_COMMITMENTS - Contains all existing 
columns from FSI_D_LOAN_CONTRACTS, plus the following 
columns which support the calculations 

 

 

You can view the Database Extract definitions by performing the following steps: 

 

Note: The Data Management Tools and Data Ingestion were 
previously known as Data Integrator Framework and Warehouse 
Designer respectively. These new terminologies are applicable only 
for OFSAAI versions 7.3.2.3.0 and above. 

 

 

• Navigate to Unified Metadata Manager > Data Management Tools > Data 

Ingestion > Database Extracts section. 

• In the left pane, expand the application as defined during application installation 

and click the Data Source defined during application installation. 

• Expand the required T2T definition to view the Database Extract definitions. 

You can view the Source - Target mapping definitions by performing the 
following steps: 



Stage Instrument Table Loader 

4-50 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

 
 

Note: The Data Management Tools and Data Ingestion were 
previously known as Data Integrator Framework and Warehouse 
Designer respectively. These new terminologies are applicable only 
for OFSAAI versions 7.3.2.3.0 and above. 

 

• Navigate to Unified Metadata Manager > Data Management Tools > Data 

Ingestion > Database Extracts section. 

• In the left pane, expand the application as defined during application installation 

and click the Data Source defined during application installation. 

• Expand the required T2T definition to view the extract definition. 

• Click the required Database Extract definition. 

The selected Database Extract definition details are displayed with the available 

Source - Target mappings under the Source - Target Mappings grid. 

 

Note: Staging instrument tables contain alphanumeric display codes 
for various IDENTIFIER and CODE columns. T2T mapping looks up 
in respective dimension tables for fetching an equivalent numeric ID 
and CODE corresponding to the alphanumeric display code. Hence, 
these dimension tables should be populated with the alphanumeric 
display code before executing any data movement tasks. 

 

 

Populating Accounts Dimension 

Account Number is an alphanumeric unique identifier within each staging instrument 

tables. ID_NUMBER is a numeric unique identifier within processing instrument 

tables. Hence, there is a need to generate a numeric surrogate key for each of the 

account number. This information is stored in DIM_ACCOUNT table. 

Function fn_popDimAccount is a function to populate numeric surrogate key for each 
account number. The function performs the following: 

 In case surrogate key generation is required, then it uses a sequence to populate 
DIM_ACCOUNT table. 

 In case surrogate key generation is not required, then it expects that the account number to 
be numeric and populates DIM_ACCOUNT with that information. For more information 
on Slowly Changing Dimension (SCD) to populate into DIM ACCOUNT, see Document 
ID 1273210.1 (How to Populate the DIM_ACCOUNT Table in OFSAA). 

 

Executing T2T Data Movement Tasks 

Before executing T2T data movement tasks, user should ensure that all the dimension 

tables that are required for instruments data are loaded. The following are some of the 

mandatory dimensions: 

• DIM_ACCOUNTS 

• DIM_PRODUCTS_B 

• DIM_GENERAL_LEDGER_B 

• DIM_COMMON_COA_B 



Stage Instrument Table Loader 

Data Loaders 4-51 

 

 

• DIM_ORG_UNIT_B 

Create a new Batch with the Task and specify the following parameters for the task for 

loading Historical Exchange Rates: 

• Datastore Type:- Select appropriate datastore from the drop down list. 

• Datastore Name: - Select appropriate name from the list. Generally it is the 

Infodom name. 

• IP address:- Select the IP address from the list. 

• Rule Name:- Select the appropriate T2T name from the above list. 

• Parameter List: No Parameter is passed. The only parameter is the As of Date 

Selection while execution. 

Check T2T component logs and batch messages for checking the status of load. 

T2T component can fail because of following cases: 

• Unique constraint error — Target table may already contain the primary keys that 

are part of the staging tables. 

• NOT NULL constraint error — do not have values for NOT NULL columns in the 

target table. 

 
Re-Load Of Instrument Data 

T2T component can only perform “Insert” operations. In case user needs to perform 

updates, previously loaded records should be deleted before loading the current 

records. 

Function fn_deleteFusionTables is used for deleting the records in the target that are 

present in the source. This function removes rows in the table if there are matching 

rows in the Stage table. This function needs FSI_DELETE_TABLES_SETUP to be 



Customer T2T Loading 

4-52 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
configured. Configure the below table for all columns that need to be part of the join 

between Stage table and Equivalent table. 

Create a new Batch with the Task and specify the following parameters for the task to 

delete existing records: 

• Datastore Type: - Select appropriate datastore from the drop down list. 

• Datastore Name: - Select appropriate name from the list. Generally it is the 

Infodom name. 

• IP address:- Select the IP address from the list. 

• Rule Name:- fn_deleteFusionTables 

• Parameter List: 

’Table to be deleted' 

Batch run ID and As Of Date are passed internally by the batch to the Data 

Transformation task. 

Sample record for FSI_DELETE_TABLES_SETUP table is given below: 
 

Column Name Column Description Sample Value 

STAGE_TABLE_NAME Stores the source table name 

for forming the join statement 

STG_LOAN_CONTRACTS 

STAGE_COLUMN_NAME Stores the source column 

name for forming the join 

statement 

V_ACCOUNT_NUMBER 

FUSION_TABLE_NAME Stores the target table name 

for forming the join statement 

FSI_D_LOAN_CONTRACTS 

FUSION_COLUMN_NAME Stores the target column name 

for forming the join statement 

ACCOUNT_NUMBER 

 
 

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns 
that can be used to join the stage with the equivalent table. In case if 
the join requires other dimension or code tables, a view can be created 
joining the source table with the respective code tables and that view 
can be part of the above setup table. 

 

 

Customer T2T Loading 
Data in transaction summary table is moved into customer table using OFSAAI T2T 

component. After loading the data, users can view the loaded data by querying the 

customer table. 

This section covers the following items: 

• Dependencies 

• Flow Diagram for Customer T2T 



Customer T2T Loading 

Data Loaders 4-53 

 

 

 

• Executing T2T Data Movement Task 

 
Dependencies 

• DIM_Account: DIM account will be populated using the SCDs./ FN_ 

POPDIMACCOUNT. These 30 tasks represent to the 30 SCD processes where 

different product processors would be the source, and DIM_ACCOUNT would be 

the target. Run MAP_REF_NUMs 188 to 217. For more information refer to 

Populating Accounts Dimension section in Oracle Financial Services Analytical 

Applications Data Model Utilities User Guide. 

• DIM_<XXXX>_B/TL/HIER/ATTR population: Run DT FN_ 

DRMDATALOADER/FN_STGDIMDATALOADER to populate 

B/TL/HIER/ATTR tables of the key dimensions such as Product/Common_ 

COA/GL/Org Unit/Customer and so on. For more information, refer to 

Executing the Dimension Load section in Oracle Financial Services Analytical 

Applications Data Model Utilities User Guide. 

• DIM_Party Population: Run the SCD MAP_REF_NUM 168. Dim_PARTY loads 

party_skey and other customer information. STG_PARTY_MASTER is the source 

table for Dim_party. Dim_party join to FSI_D_<xxx> table through DIM_ 

CUSTOMER_B The data flow as DIM_CUSTOMER_B.customer_code = dim_ 

party.v_party_id and dim_party.f_latest_record_indicator ='Y' and dim_ 

customer_b.customer_id = fsi_d_mortgages.customer_id. 

• Run all the Stage to Processing layer T2Ts. This will populate all the processing 

area tables such as, FI_D_<xxxx>. 

Example: Run T2T_ANNUITY_CONTRACTS, T2T_MORTGAGES, T2T_MM_ 
CONTRACTS and so on. For more information, refer to Stage Instrument Table 
Loader section in Oracle Financial Services Analytical Applications Data Model 
Utilities User Guide. 

• Run the Processing to FSI_D_INST_SUMMARY T2Ts. 

Example: T2T_INS_SUMM_ANNUITY, T2T_INS_SUMM_BORROWINGS, T2T_ 
INS_SUMM_CASA and so on. For more information, refer to Stage Instrument 
Table Loader section. 

If LRM is integrated with FTP, then perform following steps prior to run actual T2T to 

populate FSI_D_CUSTOMER T2T 

• Dim_Run: Dim_Run table that holds RUN_SKEY and Run_id. Finalize the run to 

pick the right RUN_SKEY mapped to FSI_LRM_ACCT_CUST_DETAILS table. 

• FSI_LRM_ACCT_CUST_DETAILS: Populate this table using the T2T 

• SETUP_PARAMETERS_MASTER: Manually update this table with finalized 

RUN_ID in the column Param_value column. Below table shows the default 

values. PARAM_VALUE should be manually updated. Finalize RUN_ID as in 

DIM_RUN.T2T expect PARAM_APP_ID to 'FTP' and PARAM_NAME to 'RUN_ 

ID_FOR_CUSTOMER_T2T_FROM_LRM_TO_FTP'. To pick the records from 



Customer T2T Loading 

4-54 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
LRM, below row needs to be updated with finalized run_id in PARAM_VALUE. 

Without this step completion, no rows will be picked from LRM. 

PARAM_SEQ PARAM_APP_ID PARAM_NAME PARAM_VALUE 

1 FTP RUN_ID_FOR_ 

CUSTOMER_T2T_ 

FROM_LRM_TO_FTP 

-1 

 

Query to find the finalized run id from DIM_RUN: 
 

select * from dim_run r where r.f_reporting_flag ='Y' 

 

Flow Diagram for Customer T2T 

Instrument summary list of T2Ts available as on 8.0 

FSI_D_INST_SUMMARY gets loaded with the following T2Ts 

T2T_INS_SUMM_ANNUITY 

T2T_INS_SUMM_BORROWINGS 

T2T_INS_SUMM_BREAK_FUND_CHG 

T2T_INS_SUMM_CASA 

T2T_INS_SUMM_CREDIT_CARDS 

T2T_INS_SUMM_CREDIT_LINES 

T2T_INS_SUMM_GUARANTEES 

T2T_INS_SUMM_INVESTMENTS 

T2T_INS_SUMM_LDGR_STAT_INST 

T2T_INS_SUMM_LEASES 

T2T_INS_SUMM_LOANS 

T2T_INS_SUMM_MERCHANT_CARDS 

T2T_INS_SUMM_MM_CONTRACTS 

T2T_INS_SUMM_MORTGAGES 

T2T_INS_SUMM_MUTUAL_FUNDS 

T2T_INS_SUMM_OTHER_SERVICES 

T2T_INS_SUMM_RETIREMENT_ACC 

T2T_INS_SUMM_TERM_DEPOSITS 

T2T_INS_SUMM_TRUSTS 

 

Executing T2T Data Movement Task 

Create a new Batch with the Task and specify the following parameters 



DIM_Party Population 

Data Loaders 4-55 

 

 

 

• Datastore Type: Select appropriate datastore from the drop down list. 

• Datastore Name: Select appropriate name from the list. Generally it is the Infodom 

name. 

• IP address: Select the IP address from the list. 

• Rule Name: T2T_FSI_D_CUSTOMER 

• Parameter List: No Parameter is passed. The only parameter is the As of Date 

Selection while execution. 

Take care of following points if LRM is installed: 

• To pick data from FSI_LRM_ACCT_CUST_DETAILS, RUN_ID needs to be 

finalized. That is in DIM_RUN f_reporting_flag ='Y' B. 

• Manually update the finalized RUN_ID into setup_parameters_master table (for 

example -1 is the RUN_ID which needs to be manually overwritten. C. 

• Incase RUN_ID is not finalized that is f_reporting_flag not = 'Y' then no data will 

be picked from FSI_LRM_ACCT_CUST_DETAILS for the given as_of_date. 

 

DIM_Party Population 
DIM_party holds customer level details. STG_PARTY_MASTER is the source table for 

Dim_party. Party_skey uniquely identifies the customer records. 

 
Execution from ICC Batch 

Create a new Batch with the Task and specify the following parameters for the task for 

loading DIM_Party: 

Component: Run Executable 

Datastore Type: Select appropriate datastore from list 

Datastore Name: Select appropriate name from the list 

IP address: Select the IP address from the list 

Executable: scd,168 

Wait: N 

Batch Parameter: Y 
 

 

Note: Instrument tables to instrument Summary T2T pulls the 
customer related information from Dim party. So, populating Dim 
party should be done prior to T2T run from Instrument to Instrument 
Summary T2T execution. 

 



Instrument Summary Table 

4-56 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Instrument Summary Table 
The following topics are included in this section: 

• Mapping To OFSAA Summary Table 

• Dependencies 

• Executing T2T Data Movement Tasks 

• Re-Load Of Instrument Summary Data 

 
Mapping To OFSAA Summary Table 

The following are the pre-defined T2T mappings between FSI_D_< XXX > tables to 

FSI_D_INST_SUMMARY tables: 

• T2T_INS_SUMM_ANNUITY 

• T2T_INS_SUMM_BORROWINGS 

• T2T_INS_SUMM_BREAK_FUND_CHG 

• T2T_INS_SUMM_CASA 

• T2T_INS_SUMM_CREDIT_CARDS 

• T2T_INS_SUMM_CREDIT_LINES 

• T2T_INS_SUMM_GUARANTEES 

• T2T_INS_SUMM_INVESTMENTS 

• T2T_INS_SUMM_LDGR_STAT_INST 

• T2T_INS_SUMM_LEASES 

• T2T_INS_SUMM_LOANS 

• T2T_INS_SUMM_MERCHANT_CARDS 

• T2T_INS_SUMM_MM_CONTRACTS 

• T2T_INS_SUMM_MORTGAGES 

• T2T_INS_SUMM_MRTGAGE_BCK_SC 

• T2T_INS_SUMM_MUTUAL_FUNDS 

• T2T_INS_SUMM_OTHER_SERVICES 

• T2T_INS_SUMM_RETIREMENT_ACC 

• T2T_INS_SUMM_TERM_DEPOSITS 

• T2T_INS_SUMM_TRUSTS 

User can view the extract definitions by going through the following steps: 

Go to Data Integrator -> Source Designer -> Define Extracts 

Under FUSION_APPS application, click on Data Source name 



Instrument Summary Table 

Data Loaders 4-57 

 

 

 
Click on any of the T2T definition to view the extract definition. User can view the 

mapping definitions by going through the following steps: 

Go to Data Integrator -> Warehouse Designer -> Define Mapping. 

Under FUSION_APPS application, click on Data Source Name. 

Click on any of the T2T definition to view the mapping definition. 
 

Dependencies 

• Instrument tables should be loaded before loading the Instrument summary 

Information related to those instruments. 

• Account Number is an alphanumeric unique identifier within each staging tables. 

ID_NUMBER is a numeric unique identifier within processing Instrument tables. 

Hence, there is a need to look up into a DIM_ACCOUNT dimension table for a 

numeric surrogate key for each of the alphanumeric account number. This 

dimension table DIM_ACCOUNT will be populated as part of the process that 

loads instrument tables. For more information on loading instrument tables, see 

Loading Instrument Table Data 

• Before executing T2T data movement tasks, user should ensure that all the 

dimension tables that are required for instruments data are loaded. The following 

are some of the mandatory dimensions: 

• DIM_ACCOUNTS 

• DIM_PRODUCTS_B 

• DIM_GENERAL_LEDGER_B 

• DIM_COMMON_COA_B 

• DIM_ORG_UNIT_B 

 

Executing T2T Data Movement Tasks 

Create a new Batch with the Task and specify the following parameters for the task for 

Loading Instrument Summary table: 

• Datastore Type: Select appropriate datastore from the drop down list. 

• Datastore Name: Select appropriate name from the list. Generally it is the Infodom 

name. 

• IP address: Select the IP address from the list. 

• Rule Name: Select the appropriate T2T name from the above list. 

• Parameter List: No Parameter is passed. The only parameter is the As of Date 

Selection while execution. Check T2T component logs and batch messages for 

checking the status of load. T2T component can fail because of following cases: 

• Unique constraint error: Target table may already contain the primary keys that 

are part of the staging tables. 



Transaction Summary Table Loader 

4-58 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• NOT NULL constraint error: Staging table do not have values for mandatory 

columns of the target table. 

 
Re-Load Of Instrument Summary Data 

T2T component can only perform "Insert" operations. In case user needs to perform 

updates, previously loaded records should be deleted before loading the current 

records. 

Function fn_deleteFusionTables is used for deleting the records in the target that are 

present in the source. This function removes rows in the table if there are matching 

rows in the Stage table. This function needs FSI_DELETE_TABLES_SETUP to be 

configured. Configure the below table for all columns that need to be part of the join 

between Stage table and Equivalent table. 

Create a new Batch with the Task and specify the following parameters for the task to 

delete existing records: 

• Datastore Type: Select appropriate datastore from the drop down list. 

• Datastore Name: Select appropriate name from the list. Generally it is the Infodom 

name. 

• IP address: Select the IP address from the list. 

• Rule Name: fn_deleteFusionTables 

• Parameter List: 

Table to be deleted 

Batch run ID and As Of Date are passed internally by the batch to the Data 

Transformation task. 
 

Transaction Summary Table Loader 
Data in staging transaction summary tables are moved into respective OFSAA 

processing transaction summary tables using OFSAAI T2T component. After loading 

the data, users can view the loaded data by querying the processing transaction tables. 

The following topics are covered in this section: 

• Stage Tables 

• Populating Stage Tables 

• Mapping To OFSAA Processing Tables 

• Dependencies 

• Executing T2T Data Movement Tasks 

• Re-Load Of Transaction Summary Data 



Transaction Summary Table Loader 

Data Loaders 4-59 

 

 

 

Stage Tables 

Following are examples of various application staging transaction summary tables: 

• STG_LOAN_CONTRACT_TXNS_SUMMARY — holds transaction summary 

information related to the loan contracts that are present in staging instrument 

table for loan contracts, that is STG_LOAN_CONTRACTS. 

• STG_CARDS_TXNS_SUMMARY — holds transaction summary information 

related to the credit cards present that are present in staging instrument table for 

credit cards, that is STG_CARDS. 

• STG_CASA_TXNS_SUMMARY — holds transaction summary information related 

to the checking and saving accounts that are present in staging instrument table 

for CASA, that is STG_CASA. 

• STG_MERCHANT_CARD_TXNS_SUMMARY — holds transaction summary 

information related to the merchant cards that are present in staging instrument 

table for merchant cards, that is STG_MERCHANT_CARDS. 

• STG_OTHER_SERVICE_TXNS_SUMMARY — holds transaction summary 

information related to other services that are present in staging instrument table 

for other services, that is STG_OTHER_SERVICES. 

• STG_TERMDEPOSITS_TXNS_SUMMARY — holds transaction summary 

information related to the term deposits that are present in staging instrument 

table for term deposits, that is STG_TD_CONTRACTS. 

• STG_TRUSTS_TXNS_SUMMARY — holds transaction summary information 

related to the trust accounts that are present in staging instrument table for trusts, 

that is STG_TRUSTS. 

 

Note: These tables are required for PFT application and used in the 
Allocation definitions. 

 

 

Populating Stage Tables 

Data can be loaded into staging tables through F2T component of OFSAAI. After data 

is loaded, check for data quality within the staging tables, before moving into OFSAA 

processing tables. Data quality checks can include: 

• Number of records between external system and staging transaction summary 

tables. 

• Valid list of values in code columns of staging. 

• Valid list of values in dimension columns like product, organization unit, general 

ledger etc. These members should be present in the respective dimension tables. 

• Valid list of values in dimension columns like product, organization unit, general 

ledger etc. These members should be present in the respective dimension tables. 

• Valid values for other significant columns of staging tables. 



Transaction Summary Table Loader 

4-60 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Mapping To OFSAA Processing Tables 

Following are examples of the pre-defined T2T mappings between the above 

application staging tables and processing tables: 

• T2T_STG_CARDS_TXNS_SUMMARY — for loading data from STG_CARDS_ 

TXNS_SUMMARY to FSI_D_CREDIT_CARDS_TXNS. 

• T2T_STG_CASA_TXNS_SUMMARY — for loading data from STG_CASA_TXNS_ 

SUMMARY to FSI_D_CASA_TXNS. 

• T2T_LOAN_CONTRACT_TXNS_SUMMARY — for loading data from STG_ 

LOAN_CONTRACT_TXNS_SUMMARY to FSI_D_LOAN_CONTRACTS_TXNS. 

• T2T_STG_MERCHANT_CARD_TXNS_SUMMARY — for loading data from STG_ 

MERCHANT_CARD_TXNS_SUMMARY to FSI_D_MERCHANT_CARDS_TXNS. 

• T2T_STG_OTHER_SERVICE_TXNS_SUMMARY — for loading data from STG_ 

OTHER_SERVICE_TXNS_SUMMARY to FSI_D_OTHER_SERVICES_TXNS. 

• T2T_STG_TERMDEPOSITS_TXNS_SUMMARY — for loading data from STG_ 

TERMDEPOSITS_TXNS_SUMMARY to FSI_D_TERM_DEPOSITS_TXNS. 

• T2T_STG_TRUSTS_TXNS_SUMMARY — for loading data from STG_TRUSTS_ 

TXNS_SUMMARY to FSI_D_TRUSTS_TXNS. 

You can view the Database Extract definitions by performing the following steps: 

 

Note: The Data Management Tools and Data Ingestion were 
previously known as Data Integrator Framework and Warehouse 
Designer respectively. These new terminologies are applicable only 
for OFSAAI versions 7.3.2.3.0 and above. 

 

 

1. Navigate to Unified Metadata Manager > Data Management Tools > Data 
Ingestion > Database Extracts section. 

2. In the left pane, expand the application as defined during application installation 
and click the Data Source defined during application installation. 

3. Expand the required T2T definition to view the Database Extract definitions. 

You can view the Source - Target mapping definitions by performing the following 

steps: 

 

Note: The Data Management Tools and Data Ingestion were 
previously known as Data Integrator Framework and Warehouse 
Designer respectively. These new terminologies are applicable only 
for OFSAAI versions 7.3.2.3.0 and above. 

 

 

1. Navigate to Unified Metadata Manager > Data Management Tools > Data 
Ingestion > Database Extracts section. 

2. In the left pane, expand the application as defined during application installation 
and click the Data Source defined during application installation. 



Transaction Summary Table Loader 

Data Loaders 4-61 

 

 

 
3. Expand the required T2T definition to view the extract definition. 

4. Click the required Database Extract definition. 

5. The selected Database Extract definition details are displayed with the available 
Source - Target mappings under the Source - Target Mappings grid. 

 

Note: Staging transaction summary tables contain alphanumeric 
display codes for various IDENTIFIER and CODE columns. T2T 
mapping looks up in respective dimension tables for fetching an 
equivalent numeric ID and CODE corresponding to the alphanumeric 
display code. Hence, these dimension tables should be populated with 
the alphanumeric display code before executing any data movement 
tasks. 

 

 

Dependencies 

• Instrument tables should be loaded before loading the transaction summary 

information related to those instruments. 

• Account Number is an alphanumeric unique identifier within each staging 

transaction summary tables. ID_NUMBER is a numeric unique identifier within 

processing transaction summary tables. Hence, there is a need to look up into a 

DIM_ACCOUNT dimension table for a numeric surrogate key for each of the 

alphanumeric account number. This dimension table DIM_ACCOUNT will be 

populated as part of the process that loads instrument tables. For more 

information on loading instrument tables, see Loading Instrument Table Data. 

• Before executing T2T data movement tasks, user should ensure that all the 

dimension tables that are required for instruments data are loaded. The following 

are some of the mandatory dimensions: 

DIM_ACCOUNTS 

DIM_PRODUCTS_B 

DIM_GENERAL_LEDGER_B 

DIM_COMMON_COA_B 

DIM_ORG_UNIT_B 

 

Executing T2T Data Movement Tasks 

Create a new Batch with the Task and specify the following parameters for the task for 

loading Historical Exchange Rates: 

• Datastore Type: - Select appropriate datastore from the drop down list. 

• Datastore Name: - Select appropriate name from the list. Generally it is the 

Infodom name. 

• IP address:- Select the IP address from the list. 

• Rule Name: - Select the appropriate T2T name from the above list. 



Transaction Summary Table Loader 

4-62 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Parameter List: - No Parameter is passed. The only parameter is the As of Date 

Selection while execution. 

Check T2T component logs and batch messages for checking the status of load. 

T2T component can fail because of following cases: 

• Unique constraint error — Target table may already contain the primary keys that 

are part of the staging tables. 

• NOT NULL constraint error — Staging table do not have values for mandatory 

columns of the target table. 

 
Re-Load Of Transaction Summary Data 

T2T component can only perform “Insert” operations. In case user needs to perform 

updates, previously loaded records should be deleted before loading the current 

records. 

Function fn_deleteFusionTables is used for deleting the records in the target that are 

present in the source. This function removes rows in the table if there are matching 

rows in the Stage table. This function needs FSI_DELETE_TABLES_SETUP to be 

configured. Configure the below table for all columns that need to be part of the join 

between Stage table and Equivalent table. 

Create a new Batch with the Task and specify the following parameters for the task to 

delete existing records: 

• Datastore Type: - Select appropriate datastore from the drop down list. 

• Datastore Name: - Select appropriate name from the list. Generally it is the 

Infodom name. 

• IP address: - Select the IP address from the list. 

• Rule Name:- fn_deleteFusionTables 

• Parameter List: 

'Table to be deleted' 

Batch run ID and As Of Date are passed internally by the batch to the Data 

Transformation task. 

Sample record for FSI_DELETE_TABLES_SETUP table is given below: 
 

Column Name Column Description Sample Value 

STAGE_TABLE_NAME Stores the source table name 

for forming the join statement 

STG_LOAN_CONTRACTS 

STAGE_COLUMN_NAME Stores the source column 

name for forming the join 

statement 

V_ACCOUNT_NUMBER 

FUSION_TABLE_NAME Stores the target table name 

for forming the join statement 

FSI_D_LOAN_CONTRACTS 



Ledger Data Loader 

Data Loaders 4-63 

 

 

 
 

Column Name Column Description Sample Value 

FUSION_COLUMN_NAME Stores the target column name 

for forming the join statement 

ACCOUNT_NUMBER 

 

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns 
that can be used to join the stage with the equivalent table. In case if 
the join requires other dimension or code tables, a view can be created 
joining the source table with the respective code tables and that view 
can be part of the above setup table. 

 

 
 

 

Ledger Data Loader 
The LEDGER_STAT load utility is an Oracle stored procedure used to load your 

ledger data into the Oracle Financial Services Analytical Applications (OFSAA) 

LEDGER_STAT table. The following topics are included in this section: 

• Features of the load procedure 

• Overview of the Load Process 

• Setup for the LEDGER_STAT load utility 

• Setup for the LEDGER_STAT load utility 

 
Features of the load procedure 

The LEDGER_STAT load utility is the only supported method for loading your ledger 

data into the LEDGER_STAT table. The LEDGER_STAT load utility offers the 

following features: 

• You can load ledger data for one month or for a range of months. 

• You can also load ledger data based on calendar as-of-dates. 

• A month can be undone individually, using the Ledger Load Undo process. You 

can do this even though the month to be undone is included in a multiple-month 

load. 

• You can update columns in existing LEDGER_STAT rows using either the 

additive or replacement functionality. 

• You can bypass the upsert logic and insert all the rows from the load table using 

the INSERT_ONLY mode. This functionality can be used either for first-time loads 

or to reload for all months with each load. 

 
Overview of the Load Process 

There are three types of load tables that can be used for loading ledger data. 



Ledger Data Loader 

4-64 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Type I (FISCAL_ONE_MONTH) — Load table contains ONE_MONTH column for 

storing data corresponding to one of the twelve fiscal months. 

• Type II (FISCAL_RANGE) — Load table contains M1 to M12 columns for storing 

data corresponding to twelve fiscal months. 

• Type III (CALENDAR_MONTHS) — Load table contains AS_OF_DATE for storing 

data corresponding to an as-of-date. While Type II table contains ledger data 

across fiscal months in a single row, Type III contains the same information in 

multiple rows. Type III supports calendar dates and data can be for one or 

multiple dates. 

ASCII Ledger data is loaded into any of the above staging or load tables using F2T 

component of OFSAAI framework. This component can be used for loading any flat 

file data into tables. For more information on how to load data using F2T, see OFSAAI 

User Guide. 

LEDGER_STAT load utility is a PL/SQL procedure and loads data from the above 

staging tables into LEDGER_STAT table, based on the configuration. Runtime 

parameters, such as the name of the load table, which all columns to load, ADD or 

REPLACE update functionality, and whether or not to create offset records are passed 

as parameters to the procedure and these are inserted into the Load Batch table (FSI_ 

LS_LOAD_BATCH). 

The procedure is implemented as an Oracle PL/SQL stored procedure so it can be 

invoked from SQL*Plus or Batch execution screen within OFSAAI ICC framework 

component. Input parameters are read from the batch/parameter table and validated 

for correctness, completeness and consistency before the load begins. Parameter errors 

are written to a Message column in the batch/parameter table and FSI_MESSAGE_ 

LOG table. Runtime statistics are written to the batch/parameter record following 

completion of the load for that record. 

 

Note: For supporting loading LEDGER_STAT from Type III staging 
table, a global temporary table (GTT) is created within database. Data 
is moved from global temporary table into LEDGER_STAT table. 

 

 

Limitations 

The following are the limitations. 

• Load Table Rows Must Be Unique 

• A restriction imposed by the use of bulk SQL (as opposed to row-by-row) 

processing is that all the rows in the load table(s) must be unique. This means that 

there is one row in the load table for one row in LEDGER_STAT. A unique index 

is created on each load table to enforce this uniqueness and provide acceptable 

performance. 

• Defining Financial Elements in AMHM 



Ledger Data Loader 

Data Loaders 4-65 

 

 

 

• Occasionally, your load table may contain dimension member values for one or 

more dimensions that are not defined in AMHM. The LEDGER_STAT load 

procedure loads these rows anyway, except for the rows containing undefined or 

incompletely defined FINANCIAL_ELEM_ID values. 

• Any new values for FINANCIAL_ELEM_ID must first be defined in AMHM 

before running the load. Specifically, the load procedure needs the AGGREGATE_ 

METHOD value for each FINANCIAL_ELEM_ID value so that the YTD columns 

in LEDGER_STAT can be computed using the appropriate method. 

 

Setup for the LEDGER_STAT load utility 

Setting up and Executing a Type III (or Type 3) Ledger Stat Load Using STG_GL_ 

DATA 

The Type 3 load takes data from STG_GL_DATA and transfers it into the LEDGER_ 

STAT table. 

Steps to follow to setup and run a Type III Ledger Stat Load: 

Step 1: Populate STG_GL_DATA 

The following columns in STG_GL_DATA must be populated with valid values: 
 

V_GL_CODE General Ledger "Code" value. 

FIC_MIS_DATE This field indicates the current period As of 

Date applicable to the data being loaded. 

V_ORG_UNIT_CODE Org Unit "Code" value. 

V_SCENARIO_CODE Populate with a value from the 

CONSOLIDATION_DISPLAY_CODE column 

from the FSI_CONSOLIDATION_CD table 

(ex. ACTUAL, BUDGET). 

V_CCY_CODE ISO Currency Code from FSI_CURRENCIES 

(ex. USD) 

V_PROD_CODE Product "Code" value. 

V_FINANCIAL_ELEMENT_CODE Populate with a value from the FINANCIAL_ 

ELEM_CODE column from the DIM_ 

FINANCIAL_ELEMENTS_B table (ex. 

ENDBAL, AVGBAL). 

V_COMMON_COA_CODE Common COA "Code" value. 

N_AMOUNT_LCY Balance 

 

The following columns in STG_GL_DATA must be populated because they are 

defined as NOT NULL but can be defaulted to the value of your choice because they 

are not used: V_LV_CODE 

V_BRANCH_CODE 

F_CONSOLIDATION_FLAG 



Ledger Data Loader 

4-66 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
V_GAAP_CODE 

Step 2: Verify data exists in the view STG_GL_DATA_V 

The following SQL statement is used to populate this view: 

SELECT v_data_origin DS, 

f_consolidation_flag ACCUM_TYPE, 

fcc.consolidation_cd CONSOLIDAT, 

v_ccy_code ISOCRNCYCD, 

dfeb.financial_elem_id FINANC_ID, 

doub.org_unit_id ORG_ID, 

dglb.gl_account_id GL_ACCT_ID, 

dccb.common_coa_id CMN_COA_ID, 

dpb.product_id PRDCT_ID, 

fic_mis_date AS_OF_DATE, 

n_amount_lcy VALUE, 

0 baltypecd 

FROM STG_GL_DATA SGD, 

DIM_GENERAL_LEDGER_B DGLB, 

DIM_ORG_UNIT_B DOUB, 

DIM_PRODUCTS_B DPB, 

DIM_FINANCIAL_ELEMENTS_B DFEB, 

DIM_COMMON_COA_B DCCB, 

FSI_CURRENCIES FC, 

FSI_CONSOLIDATION_CD FCC 

WHERE NVL(n_amount_lcy, 0) <> 0 

AND SGD.V_GL_CODE = DGLB.GL_ACCOUNT_CODE 

AND SGD.V_ORG_UNIT_CODE = DOUB.ORG_UNIT_CODE 

AND SGD.V_PROD_CODE = DPB.PRODUCT_CODE 

AND SGD.V_FINANCIAL_ELEMENT_CODE = DFEB.FINANCIAL_ELEM_CODE 

AND SGD.V_COMMON_COA_CODE = DCCB.COMMON_COA_CODE 

AND SGD.V_CCY_CODE = FC.ISO_CURRENCY_CD 

AND SGD.V_SCENARIO_CODE = FCC.CONSOLIDATION_DISPLAY_CODE; 



Ledger Data Loader 

Data Loaders 4-67 

 

 

 
 

Important: As seen in the code above, the view references the "_CODE" columns on 

the dimension tables. For example, COMMON_COA_CODE on DIM_COMMON_ 

COA_B and ORG_UNIT_CODE on DIM_ORG_UNIT_B. These code columns must be 

populated for data to exist in STG_GL_DATA_V. 

The "Update_Dimension_Code" (fn_updatedimensioncode) program populates these 

Code columns using data from values in the "Code" dimension Attribute (ex. 

COMMON COA CODE, ORG UNIT CODE, etc.) 

The BALTYPECD column has a default value of 0 in the View, as this column is not 

null in LEDGER_STAT. Baltypecd is not a Dimension. It indicates the credit or debit of 

the same account details. Since same account can hold both credit and debit, this 

column should be populated in the source with a value. It is the part of the unique 

Index and Not Null column in LEDGER_STAT. 

Step 3: If using the Type 3 Ledger Stat Load for the first time, run the GTT table 

creation procedure. 

The GTT table creation procedure creates the Global Temporary Table LS_LOAD_ 

TABLE_GTT_V. 

The fn_ledger_load_create_gtt function creates the table LS_LOAD_TABLE_GTT_V 

and the index UK_GTT for use in the Type 3 Ledger Stat Load. 

 

Note: If the GTT table has not been created and you try to execute 
the Ledger Stat Load, you will get the following error in FSI_ 
MESSAGE_LOG: 

WRAPPER_LEDGER_STAT_LOAD- Error: -942: ORA-00942: table or 
view does not exist 

 

Step 4: Populate FSI_LS_LOAD_BATCH 

You need to populate the following columns: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Step 5: Run the Ledger Stat Load 

RUN_FLAG Y 

SEQUENCE Sequence value (ex. 1) 

LOAD_TABLE_NAME STG_GL_DATA 

ONE_MONTH_ONLY N 

UPDATE_MODE ADD or REPLACE 

INSERT_ONLY Y or N 

CREATE_OFFSETS N 

IS_CALENDAR_MONTH Y 

START_CALENDAR_MONTH Starting date to load in format YYYYMMDD. 

END_CALENDAR_MONTH Ending date to load in format YYYYMMDD. 

 



Ledger Data Loader 

4-68 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
Use the following command to run the Type 3 Ledger Stat Load in SQL*Plus as the 

atomic user: 

DECLARE 

x NUMBER :=0; 

BEGIN 

x := 

ofsa_util.wrapper_ledger_stat_load('BATCH_ID ','MIS_ 

DATE','TABLE_NAME', 

TABLE_TYPE', 'UPDATE_MODE', 'INSERT_ONLY', 'START_DATE', 'END_ 

DATE') 

dbms_output.put_line ('The return variable is ' || x); 

END; 

DECLARE x NUMBER :=0; BEGIN x := ofsa_util.wrapper_ledger_stat_ 

load('ARALSLOADTYPE3_4','20110111','STG_GL_DATA', 'CALENDAR_ 

MONTHS', 'ADD', 'Y', '20101231', '20101231'); dbms_output.put_ 

line ('The return variable is ' || x); END; 

After the Ledger Load completes, check the tables FSI_MESSAGE_LOG and FSI_LS_ 

LOAD_BATCH for errors. 

 

Note: For ledger load table name is ledger_load and data source 
value is the V_DATA_ORIGIN from STG_GL_DATA. For Ledger_stat 
with the same data source will have same identity code. 

 

 

FSI_DATA_IDENTITY insert/update during Ledger_load 

Insert happens into FSI_DATA_IDENTITY with new identity code if the new Data 

origin used in the STG_GL_DATA. 

Update happens in case same set of Data source used STG_GL_DATA. 

Updates set happens 

start_time = SYSDATE, 

end_time = SYSDATE, 

number_of_entries = no.of entries for the current load 

Here, STG_GL_DATA is considered as a source of input for LEDGER_LOAD. In case 

of other source table, the rule is same in populating data into FSI_DATA_IDENTITY. 

Creating View on LEDGER_STAT table 

A view is created on the LEDGER_STAT table called LSL. The purpose of this view is 

to provide shorter column names for the load procedure. The LSL view must contain 

the same columns as LEDGER_STAT. Column alias for each columns within the view 



Ledger Data Loader 

Data Loaders 4-69 

 

 

 
should match the COLUMN_ALIAS user-defined property that is set for each column 

of LEDGER_STAT table in the ERwin model. 

For any user-defined dimensions in your LEDGER_STAT you must complete the 

following steps. 

• In ERwin model, look up the COLUMN_ALIAS User Defined Property (UDP) for 

added dimension columns within LEDGER_STAT table. 

• Specify the value of the property COLUMN_ALIAS. 

• Modify the view to include new dimension columns. Use the same COLUMN_ 

ALIAS that was mentioned in the ERwin model in the load table view. 

Creating Load Table 

This step is applicable for loading ledger data from Type I or Type II load table. 

Staging table STG_GL_DATA (used for Type III load) is packaged with the 

application. Multiple load tables (Type I or Type II) can be created as required by the 

System Administrator. Table structure for the Type I and Type II load tables is given in 

the following sections: 

 

 

-- Uncomment the m1..m12 columns if you plan to load a range of months (Type II 

Load Table). 

-- Add lines for all of the LEDGER_STAT user-defined leaf columns in the place 

-- indicated below. Don't forget to add commas if you need to. 

 
 

CREATE TABLE &load_table_name( 

ds VARCHAR2(12) NOT NULL, -- data_source 

year_s NUMBER(5) NOT NULL, 

accum_type char(1) NOT NULL, 

consolidat NUMBER(5) NOT NULL, 

isocrncycd VARCHAR2(3) DEFAULT '002' NOT NULL, 

financ_id NUMBER(14) NOT NULL, 

org_id NUMBER(14) NOT NULL, 

gl_acct_id NUMBER(14) NOT NULL, 

cmn_coa_id NUMBER(14) NOT NULL, 

prdct_id NUMBER(14) NOT NULL, 

baltypecd NUMBER(5) DEFAULT 0 NOT NULL, 

-- 
  



Ledger Data Loader 

4-70 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

 

-- m1 NUMBER(15,4), 

-- m2 NUMBER(15,4), 

-- m3 NUMBER(15,4), 

-- m4 NUMBER(15,4), 

-- m5 NUMBER(15,4), 

-- m6 NUMBER(15,4), 

-- m7 NUMBER(15,4), 

-- m8 NUMBER(15,4), 

-- m9 NUMBER(15,4), 

-- m10 NUMBER(15,4), 

-- m11 NUMBER(15,4), 

-- m12 NUMBER(15,4), 
 

-- one_month_amt NUMBER(15,4) 

 

 
-- 

-- 
 

 

 

-- Other leaf columns (PROPERTY_COLUMN from REV_COLUMN_PROPERTIES 

for LEDGER_STAT): 

-- 
 

 

-- . . . 

-- 

) 

 

 
Creating Unique Index on Load Table 

This step is applicable for loading ledger data from Type I or Type II load table. A 

unique index has to be created on each load table specifying the column alias for each 

column within the load table. Column alias should match the column alias specified 

for columns within LEDGER_STAT table. LEDGER_STAT load procedure identifies 

the source columns that need to be loaded using the column aliases and not by the 

physical column names. Column alias for LEDGER_STAT columns are specified in the 

user-defined property (UDP) COLUMN_ALIAS within ERwin model. Refer to ERwin 



Ledger Data Loader 

Data Loaders 4-71 

 

 

 
model for getting the column alias for each of the LEDGER_STAT columns. Definition 

of the unique index is given below: 

CREATE UNIQUE INDEX &load_table_name 
 

ON &load_table_name ( ds, 

year_s, 

accum_type, 

consolidat, 

isocrncycd, 

financ_id, 

org_id, 

gl_acct_id, 

cmn_coa_id, 

prdct_id 

baltypecd, 

 

 

-- Include all additional LEDGER_STAT primary key 
 

-- leaf columns here (use PROPERTY_COLUMN from REV_ 

COLUMN_PROPERTIES): 

-- 
 

 

-- . . . 

-- 

) 
 

The unique key of the load table must be identical to the unique key of LEDGER_ 

STAT, with the exception that instead of IDENTITY_CODE, which is in LEDGER_ 

STAT, the load table has a column called DS (Data Source). 

Creating Views on Load Table 

This step is applicable for loading ledger data from Type I or Type II load table. In 

addition to load tables, views have to be created on the staging tables similar to the 

view LSL that was created on LEDGER_STAT. A view has to be created on each load 

table specifying the columns alias for each column within the load table. Column alias 

should match the column alias specified for columns within LEDGER_STAT table. 

LEDGER_STAT load procedure identifies the source columns that need to be loaded 

using the column alias. Column alias for LEDGER_STAT columns are specified in the 

user-defined property (UDP) COLUMN_ALIAS within ERwin model. Refer to ERwin 



Ledger Data Loader 

4-72 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
model for getting the column alias for each of the LEDGER_STAT columns. View 

definition is given below: 

 

 

-- Uncomment the m1..m12 columns if you plan to load a range of months (Type II 

Load table). 

-- Add lines for all of the LEDGER_STAT user-defined leaf columns in the place 

-- indicated below. Don't forget to add commas if you need to. 

 
 

CREATE OR REPLACE VIEW &load_table_name._v AS 

SELECT ds, 

year_s, 

accum_type, 

consolidat, 

isocrncycd, 

financ_id, 

org_id, 

gl_acct_id, 

cmn_coa_id, 

prdct_id, 

baltypecd, 

-- 

-- NVL(m1,0) AS m1, 

-- NVL(m2,0) AS m2, 

-- NVL(m3,0) AS m3, 

-- NVL(m4,0) AS m4, 

-- NVL(m5,0) AS m5, 

-- NVL(m6,0) AS m6, 

-- NVL(m7,0) AS m7, 

-- NVL(m8,0) AS m8, 

-- NVL(m9,0) AS m9, 

-- NVL(m10,0) AS m10, 

-- NVL(m11,0) AS m11, 

-- NVL(m12,0) AS m12, 

-- 

NVL(one_month_amt,0) AS one 



Ledger Data Loader 

Data Loaders 4-73 

 

 

 

-- 

-- 
 

 

 

-- Other leaf columns (PROPERTY_COLUMN from REV_COLUMN_ 

PROPERTIES for LEDGER_STAT): 

-- 
 

 

 

-- . . . 

-- 

FROM &load_table_name 

WHERE NVL(one_month_amt,0) <> 0; 

-- 
 

-- OR NVL(m1,0) <> 0 

-- OR NVL(m2,0) <> 0 

-- OR NVL(m3,0) <> 0 

-- OR NVL(m4,0) <> 0 

-- OR NVL(m5,0) <> 0 

-- OR NVL(m6,0) <> 0 

-- OR NVL(m7,0) <> 0 

-- OR NVL(m8,0) <> 0 

-- OR NVL(m9,0) <> 0 

-- OR NVL(m10,0) <> 0 

-- OR NVL(m11,0) <> 0 

-- OR NVL(m12,0) <> 0; 

 

 

In case, the custom dimensions are added to the load table, views need to be modified 

to reflect the same. 

 
Setting up Global Temporary Table 

This step is applicable for loading ledger data from Type III. Calendar dates present in 

the data of Load table are converted to the corresponding Fiscal Year/Month. 

Conversion from calendar date to fiscal year & month is done based on the START_ 

MONTH column present in FSI_FISCAL_YEAR_INFO table. These derived fiscal year 

& fiscal month are then inserted in an intermediate Global Temporary Table (GTT) 

after aggregating the rows of same months/years. Therefore, if 12 rows are present for 

the same fiscal year each corresponding to a different month, then global temporary 



Ledger Data Loader 

4-74 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
table may have maximum of one row corresponding to the fiscal months, these 12 

rows represent. 

GTT needs to contain valid dimension member identifiers and numeric codes. Since 

staging table contains alphanumeric identifiers and codes, a view is created on STG_ 

GL_DATA table joining with other relevant dimension and CD/MLS tables before 

being used in the GTT creation. 

Global temporary table can be created in 2 ways as described below: 

Using PL/SQL 

Declare  

output number; 

Begin 

Output:= fn_ledger_load_create_gtt('BATCH_ID', 'AS_OF_DATE', 

'TABLE_NAME'); 

End; 

AS_OF_DATE is the date for which GTT is created, in YYYYMMDD format. 

TABLE_NAME is the staging table name STG_GL_DATA. 

An example of running the function from SQL*Plus is as follows: 
 

SQL> var output number; 

SQL> execute :output:= fn_ledger_load_create_gtt('BATCH_ID', 

'20100519', 'STG_GL_DATA'); 

Using OFSAAI ICC Framework 

To execute the procedure from OFSAAI ICC framework, run the batch mentioned 

below and specify the following parameters: 

• Datastore Type:- Select appropriate datastore from list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- fn_ledgerLoadGTTCreation 

• Parameter List:- AS_OF_DATE and TABLE_NAME 

TABLE_NAME is the staging table name STG_GL_DATA. 

AS_OF_DATE should be passed as 'YYYYMMDD' format. 

 

Note: BATCHID will be passed explicitly in ICC framework. The 
appropriate table parameters are enclosed in single quotes. 

 



Ledger Data Loader 

Data Loaders 4-75 

 

 

 

Tables Related to LEDGER_STAT Load Procedure 

LEDGER_STAT Loader utility uses the following tables: 

• FSI_FISCAL_YEAR_INFO — The table contains the fiscal year information. This is 

a setup table. 

• FSI_LS_LOAD_BATCH — The table contains the parameters for the load batch that 

needs to be executed for loading ledger data from staging or load table into 

LEDGER_STAT. This is a setup table. 

• STG_GL_DATA — The staging table contains the ledger data for various 

as-of-dates. 

• LEDGER_STAT — The processing table contains the ledger data for various fiscal 

months. This is loaded from staging table. 

 
Populating Stage Tables 

Data for ledger can come from external systems. Such data has to be in the format of 

the staging table. This data can be loaded into staging through F2T component of 

OFSAAI framework. Users can view the loaded data by querying the staging tables 

and various log files associated with F2T component. 

 
Executing LEDGER_STAT Load Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The 

procedure/batch requires the following 8 parameters: 

1. BATCH_ID- Any unique number to identify the execution run. 

2. MIS_DATE- Date on which the loading is done expressed in YYYYMMDD format. 

3. TABLE_NAME- STG_GL_DATA(Type III) or any other load table (TYPE I or 
TYPE II) 

4. TABLE_TYPE- FISCAL_ONE_MONTH or FISCAL_RANGE (TYPE I or TYPE II) 

5. CALENDAR_MONTHS (TYPE III) 

6. UPDATE_MODE-ADD/REPLACE 

7. INSERT_ONLY- Y/N 

8. START_DATE- Calendar start date in YYYYMMDD 

9. END_DATE- Calendar end date in YYYYMMDD 

The input parameter logic for the Type III, Type II and Type I tables. 

 
CALENDAR_MONTHS 

• If Start_Date and End_Date are null then month part of MIS_Date is taken for 

processing a particular month. (Ex: if MIS_DATE is 20101231 then the December 

calendar month data is processed). 

• In this case the Start_Date and End_Date becomes optional. 



Ledger Data Loader 

4-76 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

FISCAL_ONE_MONTH 

• The Start_Date and End_Date parameters will hold numeric values identifying the 

fiscal month. The value of these parameters will be between 1 and 12 (i.e. M1 till 

M12). 

• The Start_Date and End_Date should be same. 

• In this case the Start_Date and End_Date are mandatory. 

 
FISCAL_RANGE 

• The Start_Date and End_Date parameters will hold numeric values identifying the 

fiscal month. The value of these parameters will be between 1 and 12 (i.e. M1 till 

M12). 

• The Start_Date and End_Date parameters will specify the range of fiscal months 

which are to be processed. Ex: M1 till M6 in case the Start_Date and End_Date 

values are 1 and 6. 

• In this case the Start_Date and End_Date are mandatory. 

Ledger Load can be executed in 2 different ways: 

1. Using PL/SQL: 

By using the function 

ofsa_util.wrapper_ledger_stat_load('BATCH_ID','MIS_DATE', TABLE_NAME', 
TABLE_TYPE', 'UPDATE_MODE', 'INSERT_ONLY','START_DATE','END_ 
DATE'); 

Example: 

DECLARE 

x NUMBER :=0; 

BEGIN 

x := ofsa_util.wrapper_ledger_stat_load('batch_id_ 

1','20090202','STG_GL_DATA','CALENDAR_ 

MONTHS','ADD','Y','20070430','20080331'); 

dbms_output.put_line ('The return variable is ' || x); 

END; 

2. Using ICC Framework 

To execute the procedure from OFSAAI ICC framework, create a new Batch with 
the Task as TRANSFORM DATA and specify the following parameters for the 
task: 

Datastore Type:- Select appropriate datastore from list 

Datastore Name:- Select appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- fn_ledgerDataLoader 

Parameter List:- <Same as mentioned above in the parameter list> 



Ledger Data Loader 

Data Loaders 4-77 

 

 

 

Executing LEDGER_STAT Load Procedure for MULTI CURRENCIES 

The data for the Ledger can have more than one currency at a time that is multi 

currencies input. 

To execute multi currencies, one needs to enable the below flag using the below 

statement: 

update fsi_db_info f1 set f1.multi_currency_enabled_flg =1; 

commit; 

Note: FTP supports the following two scenarios for Ledger 
Migration: 

 

 

If multi-currency is not used: 

FSI_DB_INFO 

Multi_currency_enabled_flg = 0 

Currency_type_enabled_flg = 0 

Functional_currency_cd = same as iso_currency_cd in ledger and instrument data 

Ledger Data (FE 100 and FE 140) must exist in LS and must only be in Functional 

currency (iso_currency_cd = functional currency and currency_type_cd = 2) 

If multi-currency is used: 

FSI_DB_INFO 

Multi_currency_enabled_flg = 1 

Currency_type_enabled_flg = 1 

Functional_currency_cd = same as iso_currency_cd in ledger and instrument data 

Instrument Data can be in multiple currencies Ledger Data (FE 100 and FE 140) must 

exist in LS and must only be in Functional currency (iso_currency_cd = functional 

currency and currency_type_cd = 2). Exchange rate data should be present in 

Exchange Rate Direct Access table for converting entered currency to functional 

currency. 

 
Exception Messages 

The ledger load program throws both user defined exceptions and Oracle database 

related exceptions. These exception messages could be seen in FSI_MESSAGES_LOG 

table with the help of the batch_id which was used during execution. The exception 

list includes all possible validations on the parameters that were passed and database 

related exceptions. 



Cash Flow Loader 

4-78 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Tables Cleanup After Truncation Of Ledger_Stat 

The LEDGER_STAT procedure makes entries into certain audit tables. Whenever the 

user truncates/deletes the Data from LEDGER_STAT, he needs to additionally remove 

the auditing entries from the tables FSI_DATA_IDENTITY, FSI_M_SRC_DRIVER_ 

QUERY and FSI_LS_MIGRATION_RESULTS. This procedure enables the user to clean 

up these audit tables. 

Executing the clean up of Ledger_Stat Load Procedure 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner: 
 

Fn_ledger_stat_cleanup(batch_run_id VARCHAR2, 

as_of_date VARCHAR2) 

SQLPLUS > declare 

result number; 

begin 

result:=Fn_ledger_stat_cleanup ('LEDGER_CLEANUP_ 

BATCH1','20121212'); 

end; 

/ 

BATCH_RUN_ID is any string to identify the executed batch. 

AS_OF_DATE in the format YYYYMMDD. 

Ledger Stat Clean up Procedure 

To execute Ledger Stat Clean up from OFSAAI ICC framework, a seeded Batch is 

provided. 

The batch parameters as mentioned below: 

• Datastore Type: Select the appropriate datastore from list 

• Datastore Name: Select the appropriate name from the list 

• IP address: Select the IP address from the list 

• Rule Name: Fn_ledger_stat_cleanup 

 
 
 

Cash Flow Loader 
At times customers source some of their processed cash flow result data (not payment 

schedule) from 3rd party information providers or from internal systems. The cash 

flow data loader provides a way to load externally sourced cashflows into an ALM 

process and have these aggregate into the ALM result output tables. These external 

cash flows can be loaded into the Stg_Account_Cash_Flows table and merged with 

OFSAA generated results by executing Cash Flow Loader. 



Cash Flow Loader 

Data Loaders 4-79 

 

 

 

• Data can be aggregated at Product / Organisation Unit / Currency level or given 

at account level. Behaviour of Cash Flow Loader is controlled by setup entries in 

tables SETUP_MASTER and FSI_CASH_FLOW_LOADER_SETUP. 

• ALM generates results in both base and consolidated currency. Same capability is 

available via Cash Flow Loader. Cash flows in both base currency and 

consolidated currency can be loaded. The loader does not do currency conversion 

and consolidation. It is expected to be done at source or during data load to 

staging. This is controlled by currency type column. If only base currency data is 

given then only RES_DTL and FSI_O_RESULT_MASTER are populated. If 

consolidated is given then CONS_DTL and FSI_O_CONSOLIDATED_MASTER 

are also populated. 

• The cash flows in stage are mapped to process and scenario which must be 

configured in ALM. Currently the loader supports only deterministic processes. 

Stochastic processes are not supported. 

• There is no filter for instrument type cd cash flow loader package. However, it 

validates stage supplied instrument type codes with OOB provided instrument 

type codes, so that only valid records get processed. 

• If irregular cashflows is used in STG_PAYMENT_SCHEDULE table (AMRT Type 

as 801) , then cash flows are required to be loaded from last payment date till 

maturity date to populate the first interest payment accurate. This same logic is 

followed while loading to STG_ACCOUNT_CASH_FLOW as well. STG_ACCT_ 

CASH can have only one instrument type cd to distinguish between the CASH 

FLOWS loaded from different type of accounts. 

 

Tables related to Cash Flow Loader 

• STG_ACCOUNT_CASH_FLOW: This table is used to store the cash flow 

generated by the different sources for loading purpose. This is a staging table 

where ALM expected cashflows data to be loaded from back office/bank. There is 

no dependency of FSI_D tables to load this table. 

Data is expected as per below details: 
 

Column name Data expectation 

Extraction Date (fic_mis_date) MIS date for which the given data is valid, also 

called As of Date 

Cash Flow Date (d_cash_flow_date) Calendar date on which cash flow or other 

event occurs 

Id Number (n_account_id) This is equivalent of ID_NUMBER in EPM 

processing tables (ex: FSI_D_LOAN_ 

CONTRACTS) and is used to map cash flows 

with their corresponding Instrument record. If 

aggregated cash flows are loaded then this 

column can be defaulted to -1 



Cash Flow Loader 

4-80 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

Column name Data expectation 

Identity Code (n_acct_data_identity_cd) This is equivalent of IDENTITY_CODE in 

EPM processing tables (ex: FSI_D_LOAN_ 

CONTRACTS) and stores as of date in number 

(YYYYMMDD) format 

Cash Flow Amount (n_cash_flow_amount) This column stores the cash flow or other 

amount, depending on financial element, on 

event date 

Cash Flow Sequence (n_cash_flow_sequence) Sequence in which event occurs is mentioned 

here. It can be a running number and is used 

to identify order in which an event occurs if 

there are multiple events on same date. 

Currency Type Code (n_currency_type_cd) This column decides whether the given cash 

flows are for Base (Natural) currency or 

consolidated (Reporting) currency. Based on it 

loader will move to either RES_DTL_XXX or 

CONS_DTL_XXX table. Expected values are: 

‘1’ for base/natural (also called entered) 

currency and ‘2’ for consolidated/reporting 

(also called functional) currency. 

Corresponding reference tables are FSI_ 

CURRENCY_TYPE_CD and FSI_ 

CURRENCY_TYPE_MLS 



Cash Flow Loader 

Data Loaders 4-81 

 

 

 
 

 

Column name Data expectation 

If you have selected Consolidate to Reporting 

Currency in ALM Process, then following 

cases are possible with respect to 

Consolidation Flag, n_currency_type_cd =1, 

and n_currency_type_cd = 2. 

• Case 1: If Consolidation Flag is OFF 

and N_Currency_Type_Cd = 1, then 

process will execute successfully and 

only RES_DTL_XX will get populated. 

• Case 2: If Consolidation Flag is OFF, N_ 

Currency_Type_Cd = 1, and N_ 

Currency_Type_Cd = 2, then process 

will execute successfully and only RES_ 

DTL_XX will populate for records N_ 

Currency_Type_Cd=1 and ignore 

records of type N_Currency_Type_ 

Cd=2. 

• Case 3: If Consolidation Flag is ON 

and N_Currency_Type_Cd = 1, then 

Loader would fail as it expects reocrds 

for N_Currency_Type_Cd=2 when 

CONSOLIDATED_OUTPUT_FLG is 

ON. 

• Case 4: If Consolidation Flag is ON, N_ 

Currency_Type_Cd 1, and N_Currency_ 

Type_Cd = 2, then it logs as No Data in 

the instrument table for the given FIC 

MIS DATE.Loading data to fsi_o_ 

consolidated_master Failed error in FSI_ 

MESSAGE_LOG. You need to load data 

if Consolidation Flag is ON and N_ 

Currency_Type_Cd = 2. Here, N_ 

Currency_Type_Cd = 2 signifies that the 

records are of consolidation type and 

meant for CONT_DTL once processing 

them. Similarly, N_Currency_Type_Cd 

= 1 indicates that non-consolidated 

records in stage and meant for RES_DLT 

processing. 

Note: If there are records for n_currency_type_ 
cd = 1 and n_currency_type_cd =2 does not 
records, then Cash Flow Loader  cannot use 
the same set of records loaded for n_currency_ 
type_cd = 1 and convert it for consolidation. 



Cash Flow Loader 

4-82 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

Column name Data expectation 

Instrument Type Code (n_instrument_type_ 

cd) 

This identifies the type of instrument i.e. loan, 

deposit etc. for which data is being loaded. 

Corresponding reference tables are FSI_ 

INSTRUMENT_TYPE_CD and FSI_ 

INSTRUMENT_TYPE_MLS 

Scenario Number (n_scenario_no) An ALM process can have multiple forecast 

rate scenario. This column indicates the 

scenario for which data has been loaded. It is 

used by loader to map data to corresponding 

scenario of ALM process. Reference tables are 

FSI_CASH_FLOW_LOADER_SETUP 

(scenario_num) and DIM_FCST_RATES_ 

SCENARIO (n_scenario_num). Loader takes 

ALM Process Id as input and then checks 

corresponding scenario numbers in ALM 

metadata tables for validation 

Account / Contract Code (v_account_number) This column stores the alpha-numeric unique 

account or contract number for which data is 

being loaded. This is generally the unique 

identifier from operational source systems. 

Corresponding reference table in DIM_ 

ACCOUNT (v_account_number). If 

aggregated cash flows are loaded then this 

column can be defaulted to -1 

Cash Flow Type (v_cash_flow_type) Indicates whether the cash flow is Inflow or 

Outflow. Values expected are 'I' for inflow and 

'O' for outflow. Note that, this column is not 

used by cash flow loader, hence does not 

impact any result in ALM. It is used by 

Liquidity Risk Management (LRM) 

application and is a mandatory column in 

table. 

Currency Code (v_ccy_code) Three letter ISO currency code in which the 

cash flow amount is denominated must be 

given in this column. 

Common Coa Code (v_common_coa_code) Common Chart of Account code of the account 

number for which data is loaded must be 

given here. Corresponding reference table is 

DIM_COMMON_COA_B (common_coa_code) 

Data Origin (v_data_origin) Code of the source system from where data is 

obtained is expected here. Corresponding 

reference table is DIM_DATA_ORIGIN (v_ 

data_source_code) 

Financial Element Code (v_financial_element_ 

code) 

This indicates the financial element i.e. nature 

of amount loaded. Corresponding reference 

table is DIM_FINANCIAL_ELEMENTS_B 

(financial_elem_code) 



Cash Flow Loader 

Data Loaders 4-83 

 

 

 
 

Column name Data expectation 

Gl Account Code (v_gl_account_code) General Ledger Account code of the account 

number for which data is loaded must be 

given here. Corresponding reference table is 

DIM_GENERAL_LEDGER_B (gl_account_ 

code) 

Lv Code (v_lv_code) Legal Entity code of the account number for 

which data is loaded must be given here. 

Corresponding reference table is DIM_ 

LEGAL_ENTITY_B (legal_entity_code) 

Organization Unit Code (v_org_unit_code) Organisation or Business Unit code of the 

account number for which data is loaded must 

be given here. Corresponding reference table 

is DIM_ORG_UNIT_B (org_unit_code) 

Product Code (v_prod_code) Product code of the account number for which 

data is loaded must be given here. 

Corresponding reference table is DIM_ 

PRODUCTS_B (product_code) 

 

• Output tables: Aggregated Cash Flows will be populated in the below output 

tables 

RES_DTL_XX 

CONS_DTL_XX 

FSI_O_RESULT_MASTER 

FSI_O_CONSOLIDATED_MASTER 

XX denotes the process id. 

• SETUP_MASTER: This table will be used in the case of instrument cash flows. For 

Instrument cash flows, an entry against V_COMPONENT_VALUE of the SETUP_ 

MASTER table should have values either 0 or 1 which indicate if id numbers or 

account numbers are provided, respectively. 

• FSI_ALM_DETERMINISTIC_PROCESS: This table will be used for loading cash 

flows in CONSOLIDATED tables. To populate consolidated tables, the 

CONSOLIDATED_OUTPUT_FLG should be 1 in the fsi_alm_deterministic_ 

process table against the cash flow process ids. 

• FSI_CASH_FLOW_LOADER_SETUP: This table will have all the process ids for 

cash flow loader. Only those processes will be executed which have status 'N' in 

FSI_CASH_FLOW_LOADER_SETUP table. In such case, those processes will be 

already existing into the system. 

• FSI_M_USER_ACTIVE_TIME_BUCKETS: For cash flow loader, user should be 

mapped to an active time bucket in the FSI_M_USER_ACTIVE_TIME_BUCKETS 

table. 

• TIME BUCKETS: The following tables will store the time bucket details: 

FSI_TIME_BUCKET_MASTER 



Cash Flow Loader 

4-84 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
FSI_M_LR_IRR_BUCKETS 

FSI_LR_IRR_BUCKETS_AUX 

FSI_TIME_BKT_ISB 

FSI_TIME_BKT_LR_LRR_DATES 

 

Data Validation Steps 

• Check if Batch run id or mis date or User name is null. If Yes, then write message 

in fsi_message log and exit. 

• Check if the given user name exists in fsi_m_user_active_time_buckets table. If 

user does not exist, then write error message in Fsi_Message table and exit. 

• The time bucket mapped to user in fsi_m_user_active_time_buckets table should 

be present in fsi_income_simulation_buckets table. If time bucket is not present in 

fsi_income_simulation_buckets table, then write error message in fsi_message 

table and exit. 

• Only financial elements corresponding to Income Simulation Buckets (ISB), 

Liquidity risk (LR) and Interest Rate Risk (IRR) will be processed. 

• If process id is given as parameter, then run the loader program for the given 

process id. If process id is not given, then the loader program will be run for all the 

process ids mapped in the set up table with status 'N'. 

• Verify that the given process is present in fsi_alm_deterministic_process table and 

fsi_m_alm_process table. If not present, then write error message in fsi_message 

table and exit. 

• Check if the given process id mapped in fsi_cash_flow_loader_setup table is of 

status 'N'. 

• Cash-flow date of each record must correspond correctly to valid time bucket 

dates in FSI_TIME_BKT_ISB and/or FSI_TIME_BKT_LR_IRR_DATES tables. 

However if this check fails, the user will be informed of the improper records 

through an error message (see Exception 9). 

• Check if the set up table is mapped correctly or not. 

Check if the given process id mapped to a scenario is present in the stg_account_ 
cash_flow table. 

Check if the entire scenario mapped in the set up table with a functional currency 
value has its base currency present. 

• Check if 'consolidated_output_flag' in the fsi_alm_deterministic_process table is 1. 

If yes, write to consolidated tables. 

• Verify that all the dimension ids given in the stg_account_cash_flow table is valid 

and present in the respective dimension tables. 

• In the case of instrument level cash flows, the following conditions should be 

satisfied to proceed: 



Cash Flow Loader 

Data Loaders 4-85 

 

 

 
In the setup_master table for the v_component_code =123, the v_component_ 
value should be either 0 or 1 which indicates account number or identity number 
is given in the stg_account_cash_flow table, respectively. 

Identity code and id_number/account number should be present in the stg_ 
account_cash_flow table. 

 

Executing Cash Flow Loader 

The user can execute this Cashflow Loader from either SQL*Plus or from within a 

PL/SQL block or from the ICC Batch screen within OFSAAI framework. 

Method 1 

Cash Flow Loader can be executed directly from SQL Plus. User must login to the 

database using schema user id and password. The procedure requires 4 parameters: 

• As of Date (mis_date) 

• User Name — Should be present in fsi_m_user_active_time_buckets table 

• Process id 

• Batch Execution Identifier (batch_run_id) 

declare 

result number :=0; 

begin 

result := fn_cash_flow_loader(batch_run_id => :batch_run_ 

id, 

 

 

 

 
process_sys_id); 

if result = 0 then 

mis_date => :mis_date, 

p_user_name => :p_user_name, 

p_process_sys_id => :p_ 

dbms_output.put_line('Cash Flow Loader Failed'); 

else 

dbms_output.put_line('Cash Flow Loader Succesfully 

completed'); 

end; 

where 

• BATCH_RUN_ID is any string to identify the executed batch. 

• mis_date in the format YYYYMMDD. 

• P_USER_NAME — The user name present in FSI_M_USER_ACTIVE_TIME_ 

BUCKETS table. 

• P_PROCESS_SYS_ID can be null or can have value to process specific process id. 

Case 1. When Process id is null: 



Cash Flow Loader 

4-86 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

declare 

result number :=0; 

begin 

result := fn_cash_flow_loader('INFODOM_ CASH_FLOW_LOADER', 

 

'20100419', ’ALMUSER’, NULL); 

if result = 0 then 

dbms_output.put_line('Cash Flow Loader Failed'); 

else 

dbms_output.put_line('Cash Flow Loader Succesfully completed'); 

end; 

Case 2. When Process id is not null: 

declare 

result number :=0; 

begin 

result := fn_cash_flow_loader('INFODOM_ CASH_FLOW_LOADER', 

 

'20100419', ’ALMUSER', 120003); 

if result = 0 then 

dbms_output.put_line('Cash Flow Loader Failed'); 

else 

dbms_output.put_line('Cash Flow Loader Succesfully completed'); 

end; 

SETUP_MASTER Sample Data 
 
 

 

For instrument cash flows, the V_COMPONENT_VALUE should be either 1 or 0. If 

the value is '1' then Identity code and Account number should be populated in the stg_ 

account_cash_flows table . If the Value is '0' then Identity code and ID Number should 

be populated in the stg_account_cash_flows table. 

FSI_CASH_FLOW_LOADER_SETUP Sample Data 
 
 

 
 

 
 



Cash Flow Loader 

Data Loaders 4-87 

 

 

 

 
 

Note: Only the process id with Status 'N' will process while 
executing the loader program. After the successful execution of the 
loader program the value in the STATUS columns will be changed to 
'Y' in FSI_CASH_FLOW_LOADER_SETUP for the process id. 

 

FSI_M_ALM_PROCESS Sample Data 
 
 

 

Continuation... 
 
 

 

STG_ACCOUNT_CASH_FLOWS Sample Data 

Instrument Cashflow Data 

 

 

Continuation... 
 
 

Aggregate Data Sample 
 
 

 

Continuation... 

 
 

 
 

 
 

 
 

 
 



Cash Flow Loader 

4-88 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 
 

 
 

Method 2 
 

 
 

Execution Steps 

To execute the Cash Flow Loader from OFSAAI ICC framework, a seeded Batch is 

provided. 

 

 
1. Select "<INFODOM>_CASH_FLOW_LOADER” as the Batch ID and “Cash Flow 

Loader” is the description of the batch. 

 

 
 

2. The batch has a single task. Edit the task. 

 

 

3. If the user wants to load all the process ids given in the FSI_CASH_FLOW_ 
LOADER_SETUP table for the given as of date, then Process_id parameter should 
be null. 

4. Specify the following parameters: 



Cash Flow Loader 

Data Loaders 4-89 

 

 

 
Data store Type:- Select appropriate data store from list 

Data store Name:- Select appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- CashFlowLoader 

5. If the user wants to process the specific process id mentioned in the FSI_CASH_ 
FLOW_LOADER_SETUP table for the given as of date, then the process_id 
parameter should be given. 

6. Specify the following parameters: 

Data store Type:- Select appropriate data store from list 

Data store Name:- Select appropriate name from the list 

IP address:- Select the IP address from the list 

Rule Name:- CashFlowLoader 

 

 

7. Save the batch 

8. Execute the Batch defined for the required As of Date. 

 

Exception Messages 

All the exceptions will be logged in FSI_MESSAGE_LOG table. Cash Flow Loader 

program can raise the following exceptions:- 

• Exception 1 

Load fails:Cannot pass null for the parameter As of Date, User name, Batch run 
id 



Cash Flow Loader 

4-90 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
As of date, User Name and Batch run id cannot be passed as null. 

• Exception 2 

Load Fails: User name does not exist in the Table fsi_m_user_active_time_ 
buckets. 

User name in the Parameter should be mapped with an active time bucket in the 
fsi_m_user_active_time_buckets table. 

• Exception 3 

Load Fails: Data for the selected As of date does not exist in stg_account_cash_ 
flows Table 

Stage Account Cash Flow does not have data for the given As Of Date. 

• Exception 4 

Load Fails: Time bucket sys id is not present in fsi_income_simulation_buckets 

Active time bucket mapped to the user name should be present in the Fsi_Income_ 
Simulation_Bucket table. 

• Exception 5 

Load Fails: dates calculation failed 

Date Calculation for Fsi_Time_Bkt_Isb and Fsi_Time_Bkt_Lr_Irr_Dates failed for 
the given time bucket sys id. 

• Exception 6 

Load Fails: The process id process_sys_id does not exist in the Table fsi_m_alm_ 
process 

Process id which is either passed as parameter or picked up from the Fsi_Cash_ 
Flow_loader_Setup table should be present in the fsi_m_alm_process table. 

• Exception 7 

Load Fails. The process id process_sys_id does not exist in the Table Fsi_alm_ 
deterministic_process 

Process id which is either passed as parameter or picked up from the Fsi_Cash_ 
Flow_loader_Setup should be present in the Fsi_alm_deterministic_process table. 

• Exception 8 

Load Fails. The process id process_sys_id does not exists in the table fsi_cash_ 
flow_loader_setup or the status is not set to "N" for the process 

Process id which is either passed as parameter, either does not exist in the Fsi_ 
Cash_Flow_loader_Setup table or the status is not 'N'. 

• Exception 9 

Date-check failed: Certain cash-flow dates in ''STG_ACCOUNT_CASH_ 
FLOWS'' for current process are out of range of buckets defined in FSI_TIME_ 
BKT_ISB_DATES/FSI_TIME_BKT_LR_IRR_DATES table(s). For details, run 
query: <<QUERY>> 

This error is generated when the cash-flow dates in 'STG_ACCOUNT_CASH_ 
FLOWS' are out of the time-bucket date ranges defined in either "FSI_TIME_BKT_ 
ISB_DATES" or "FSI_TIME_BKT_LR_IRR_DATES". 



Cash Flow Loader 

Data Loaders 4-91 

 

 

 
In the actual error message (logged in FSI_MESSAGE_LOG), <<QUERY>> is 
replaced by a SQL query that the user can copy and execute on the schema in 
which the batch was run. This will provide the user with an output of the 
problematic records from staging area. 

• Exception 10 

Load Fail: The Data for the N_SCENARIO_NO mapped to the process process_ 
sys_id does not exist in the STG_ACCOUNT_CASH_FLOWS table 

Scenario Number mismatch for the Fsi_Cash_Flow_Loader and Stg_Account_ 
Cash_Flow 

• Exception 11 

Load Fail: Does not have base currency 

Base currency should be present in Stg_Account_Cash_Flow. 

• Exception 12 

CONSOLIDATED_OUTPUT_FLG in fsi_alm_deterministic_process table is "1" 
but no data for n_currency_type_cd in STG_ACCOUNT_CASH_FLOWS table 

Consolidated Flag for the process id is set to 1 but n_currency_type_cd in Stg_ 
Account_Cash_Flow is not set. 

• Exception 13 

Load Fail: For the N_SCENARIO_NO mapped in the set up table, the 
dimension code given is incorrect 

Dimensions present in Stg_Account_Cash_Flow are not present in the 
corresponding dimension tables. 

• Exception 14 

All the account numbers are not present in the STG_ACCOUNT_CASH_ 
FLOWS table 

Records in Stg_Account_Cash_Flow do not have account number populated. 

• Exception 15 

All the Identity codes are not present in the STG_ACCOUNT_CASH_FLOWS 
table 

Records in Stg_Account_Cash_Flow do not have identity code populated. 

• Exception 16 

All the Id Numbers are not present in the STG_ACCOUNT_CASH_FLOWS 
table 

Records in Stg_Account_Cash_Flow do not have identity number populated. 

• Exception 17 

Instrument type code given for the process l_process_sys_id is wrong 

Instrument code present in the Stage table is not mapped in FSI_INSTRUMENT_ 
TYPE_MLS 

• Exception 18 



Pricing Management Transfer Rate Population Procedure 

4-92 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

No Data in the instrument table for the given FIC MIS DATE. Loading data to 
FSI_O_RESULT_MASTER failed 

Instrument table corresponding to instrument code in Stg_Account_Cash_Flow 
does not have data for the given As of date. 

 
 

 

Pricing Management Transfer Rate Population Procedure 
This function populates FSI_M_PROD_TRANSFER_RATE table from FSI_PM_ 

GENERATED_INSTRMTS table for particular Effective date. 

After executing this procedure, you should query FSI_M_PROD_TRANSFER_RATE 

table. 

Executing the POPULATE_PM_TRANS_RATE_TABLE ( earlier known as 

POPULATE_TPOL_TRANS_RATE ) Procedure 

You can execute this procedure either from SQL*Plus or from within a PL/SQL block 

or from ICC Batch screen within OFSAAI framework. 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. 

The procedure requires the following 6 parameters: 

• Batch Id (Batch_Id) — can be used to see the log of the procedure executed. 

• Misdate (Mis_date) - the date for which batch is run. 

• Run Id (p_v_run_id) - Unique Run ID for the run. 

• Process Id (p_v_process_id) - Unique Process ID for the batch. 

• Run Execution Id (p_v_run_execution_id) - Unique Run Execution Id for the Run. 

• Run skey (p_n_run_skey) — Unique run skey generated by the run. 

The syntax for calling the procedure is: 

Declare  

output number; 

Begin 

Output:= POPULATE_PM_TRANS_RATE_TABLE (Batch_Id varchar2, 

Mis_date varchar2, 

p_v_run_id varchar2, 
 

p_v_process_id varchar2, 

p_v_run_execution_id varchar2, 

p_n_run_skey varchar2); 

End; 



ALMBI Transformation 

Data Loaders 4-93 

 

 

 
 

Mis_date should be passed as 'YYYYMMDD' format. 

An example of running the function from SQL*Plus is as follows: 

SQL> var output number; 

SQL> execute: output:= POPULATE_PM_TRANS_RATE_TABLE('Batch_Id', 

'20100131,' $RUNID=1306182237482', '$PHID=1228363751510', 

'$EXEID=RQEXE016','$RUNSK=99'); 

To execute the stored procedure from within a PL/SQL block or procedure, see the 

example that follows. 

SQL> declare 

output number; 

begin 

Output:= POPULATE_PM_TRANS_RATE_TABLE ('Batch_Id','Mis_date', 

'p_v_run_id','p_v_process_id','p_v_run_execution_id',' p_n_run_ 

skey'); 

End; 

/ 

To execute the procedure from OFSAAI ICC framework, create a new Batch with the 

Task as TRANSFORM DATA and specify the following parameters for the task: 

• Datastore Type :- Select appropriate datastore from the list 

• Datastore Name :- Select appropriate name from the list 

• IP address :- Select the IP address from the list 

• Rule Name :- POPULATE_PM_TRANS_RATE_TABLE 
 
 

Note: BATCHID and MISDATE will be passed explicitly in ICC framework 
 

 

ALMBI Transformation 
ALM_BI_TRANSFORMATION data definition transforms the Asset Liability 

Management (ALM) processing results of an executed ALM process to ALMBI fact 

tables. 

This internally calls PL/SQL function FN_ALM_BI_TRANSFORMATION. 
 

function FN_ALM_BI_TRANSFORMATION(p_batch_run_id varchar2, 

p_as_of_date varchar2, 

PID number, 

p_re_run_flag char) 



Hierarchy Transformation 

4-94 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

Where the parameters are, 

1. p_batch_run_id - It is the batch run id. Batch Run ID value is passed from the 
Batch execution UI. Therefore, it is not required to define it as a parameter value in 
Batch Maintenance. 

2. p_as_of_date - This parameter value is passed from the Batch execution UI. 
Therefore, it is not required to define it as a parameter value in Batch 
Maintenance. 

3. PID - Pass the ALM Process Sys ID for which the transformation has to be done. 

4. p_re_run_flag - This parameter value determines whether the transformation for 
the ALM process is for the first time or not. 

Possible values are 'Y' or 'N' 

Where 

'Y' - Yes (This means that the transformation was already done and the user is 
trying to redo the transformation once again for the ALM process). 

'N' - No (This means that the user is executing the transformation for the first time 
for the ALM process). 

 

Note: The values for parameters PID and p_re_run_flag has to be 
entered in the Parameter List during the batch definition. 

 

 

5. If the user is trying to do transformation of ALM process 200009 for the first time, 
then the values that must be entered in the Parameter List are 200009, 'N'. 

6. If the user is trying to do transformation of ALM process 200011, for which he had 
already done the transformation, then the values that must be entered in the 
Parameter List are 200011, 'Y'. 

 

Hierarchy Transformation 
Hierarchy Flattening Transformation is used to move the hierarchy data from the 

parent child storage structure in EPM AMHM (Attribute, Member and Hierarchy 

Management) model to a level based storage structure in OFSAA BI applications. In 

EPM AMHM model, hierarchy data for any hierarchy created on seeded or user 

defined dimensions using the AMHM is stored within hierarchy tables of respective 

dimensions. This is moved to the REV_HIER_FLATTENED table in OFSAA BI 

applications after flattening by the Hierarchy flattening process. 

batch_hierTransformation is a seeded Data Transformation program installed as part 

of the OFSAA BI applications installers. 

 

Note: Refer to Support Note 1586342.1, if Hierarchy Filter is not 
reflecting correctly after making the changes to underlying Hierarchy. 

 

 

Executing the Hierarchy Flattening Transformation 

You can execute this procedure from SQL Plus/PLSQL/ICC Batch screen within 

OFSAAI framework. 



Hierarchy Transformation 

Data Loaders 4-95 

 

 

 
Using SQL Plus/PLSQL 

Function Name: rev_batchHierFlatten 

Parameters: batch_run_id, mis_date, pDimensionId, pHierarchyId 
 

function rev_batchHierFlatten(batch_run_id varchar2, 

mis_date varchar2, 

pDimensionId varchar2, 

pHierarchyId varchar2, 

) 

Where the parameters are, 

• batch_run_id - It is the batch run id. Batch Run ID value is passed from the Batch 

execution UI. Therefore, it is not required to define it as a parameter value in Batch 

Maintenance. 

• mis_date - This parameter value is passed from the Batch execution UI. Therefore, 

it is not required to define it as a parameter value in Batch Maintenance. Follow 

the date format, YYYYMMDD 

• pDimensionId- Enter the Dimension id . To find dimension id, execute the 

following query in database to find the value and use the value in dimension id 

column for the dimension name / description to be processed: 

Select b.dimension_id,t.dimension_name,t.description from rev_dimensions_b b 
inner join rev_dimensions_tl t on b.dimension_id = t.dimension_id and 
t.dimension_name like '<dimension name>' Replace <dimension name> in the 
preceding query with the Dimension Name you find in the UI (Financial Service 
Application >Master Maintenance > Dimension Management) for the dimension 
on which the Hierarchy you want to flatten is configured. 

• pHierarchyId — Enter Hierarchy id. If all the hierarchies belonging to a dimension 

are to be processed then, provide NULL as the parameter value. Else, provide the 

System Identifier of the hierarchy that needs to be transformed. 

• Execute the following query in database if only a single hierarchy is to be 

processed and use the value in hierarchy_id column as parameter for the 

hierarchy to be processed: 

• select b.object_definition_id , short_desc,long_desc from fsi_m_object_definition_b 

b inner join fsi_m_object_definition_tl t on b.object_definition_id = t.object_ 

definition_id and b.id_type = 5 

• If all the hierarchies for GL Account dimension must be processed, the parameter 

list should be given as follows (where '2' is the dimension id for the seeded 

dimension GL Account): 

'2',null 



Hierarchy Transformation 

4-96 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• If a particular hierarchy with code 1000018112 must be processed (you can obtain 

this code by executing the preceding query in the database), the parameter list 

should be given as follows: 

• '2', '1000018112' 

SQL Example 

SQL> var fn_return_val number; 

SQL> execute :fn_return_val:= rev_batchHierFlatten ('Batch1 ', 

'20091231 ', '2 ', '1000018112'); 

SQL> print fn_return_val 

 

 
PLSQL Example: 

DECLARE 

fn_return_val number := null; 

BEGIN 

fn_return_val := rev_batchHierFlatten('Batch1', 

'20091231', 

'2', 

1000018112'); 

IF fn_return_val = 1 THEN 

 

 

Dbms_output.put_line('Execution status of batchHierFlatten is' 

||fn_return_val || ' --Successful'); 

ELSIF fn_return_val = 0 THEN 

 
Dbms_output.put_line('Execution status of batchHierFlatten is' 

||fn_return_val || ' --FAILURE'); 

END IF; 

EXCEPTION 

 

 

WHEN OTHERS THEN 

Dbms_output.put_line('Execution status of batchHierFlatten is' 

|| SQLCODE || '-' || SQLERRM); 



Financial Element Dimension Population 

Data Loaders 4-97 

 

 

 

END; 

On successful execution of rev_batchHierFlatten function in Database, value returned 

will be 1 or 0. 1 indicates successful execution and 0 indicates failure in execution. This 

function will be present in Atomic Schema. 

Using OFSAAI ICC Framework 

To execute the procedure from OFSAAI ICC framework, run the batch mentioned 

below and specify the following parameters: 

• Datastore Type:- Select appropriate datastore from the list 

• Datastore Name:- Select appropriate name from the list 

• IP address:- Select the IP address from the list 

• Rule Name:- batch_hierTransformation 

• Parameter List:- Dimension ID, Hierarchy ID 

 
Dim Dates Population 

DIM_DATES_POPULATION is a seeded Data Transformation which is installed as 

part of the OFSAA BI applications installers. Time dimension population 

transformation is used to populate the dim_dates table with values between two dates 

specified by the user. 

 

Note: During data transformation, the data will be loaded into 
FISCAL columns by reading the start date/end date information from 
DIM_FINANCIAL_YEAR table. Users can enter data manually into 
DIM_FINANCIAL_YEAR table. 

 

 

Fact Ledger Stat Transformation 
FSI_LEDGER_STAT_TRM is a seeded Data Transformation which is installed as part 

of the OFSAA BI applications installers. Fact Ledger Population transformation is used 

to populate the FCT_LEDGER_STAT table from the Profitability LEDGER_STAT table. 

Database function LEDGER_STAT_TRM is called by the function FSI_LEDGER_ 

STAT_TRM. 

 

Financial Element Dimension Population 
Financial Element Dimension Population involves populating custom Financial 

Elements created into DIM_FINANCIAL_ELEMENT table from DIM_FINANCIAL 

ELMENT_B table. 

This section covers the following topics: 

• Prerequisites 

• Tables Used by the Financial_Elem_Update Transformation 



Financial Element Dimension Population 

4-98 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Executing the Financial_Elem_Update Transformation 

• Checking the Execution Status 

 
Prerequisites 

1. All the post install steps mentioned in the Oracle Financial Services Analytical 
Applications Infrastructure (OFSAAI) Installation and Configuration guide and 
any solution installation manual - for exampleProfitability Management and 
Profitability Analytics have to be completed successfully. 

2. Application User must be mapped to a role that has seeded batch execution 
function (BATPRO). 

3. Seeded and Custom Financial Elements are required to be available in DIM_ 
FINANCIAL_ELEMENTS_B, DIM_FINANCIAL_ELEMENTS_TL tables. 

4. Before executing a batch check if the following servers are running on the 
application server (For more information on how to check if the services are up 
and on and how to start the services if you find them not running, refer to any 
OFSAA BI User Guide- for exampleOracle Financial Services Analytical 
Applications Infrastructure User Guide). 

Iccserver 

Router 

AM Server 

Messageserver 

Olapdataserver 

5. Batches will have to be created for executing the function. 

 

Tables Used by the Financial_Elem_Update Transformation 

DIM_FINANCIAL_ELEMENT — This table stores the seeded and custom Financial 

Elements. 

For more details on viewing the structure of the tables, see OFSAA EPM Erwin Data 

Model. 

 
Executing the Financial_Elem_Update Transformation 

To execute the function from OFSAAI Information Command Center (ICC) frame 

work, create a batch by performing the following steps: 

 

Note: For a more comprehensive coverage of configuration and 
execution of a batch, see Oracle Financial Services Analytical 
Applications Infrastructure User Guide. 

 

 

1. From the Home menu, select Operations, then select Batch Maintenance. 

2. Click New Batch ('+' symbol in Batch Name container) and enter the Batch Name 
and description. 

3. Click Save. 



Financial Element Dimension Population 

Data Loaders 4-99 

 

 

 
4. Select the Batch you have created in the earlier step by clicking on the checkbox in 

the Batch Name container. 

5. Click New Task ('+' symbol in Task Details container). 

6. Enter the Task ID and Description. 

7. Select Transform Data, from the components list. 

8. Select the following from the Dynamic Parameters List and then click Save: 

Datastore Type - Select appropriate datastore from the list 

Datastore Name - Select appropriate name from the list 

IP address - Select the IP address from the list 

Rule Name - Select Financial_Elem_Update from the list of all available 
transformations. (This is a seeded Data Transformation which is installed as part 
of the OFSAA BI applications installers. If you don't see this in the list, contact 
Oracle support) 

Parameter List — OFSAAI Application User Name (Refer the following for details 
on Parameter list). 

Explanation for the parameter list is: 

Application User Name — This is the OFSAAI application user name which the 
transformation uses for inserting in DIM_FINANCIAL_ELEMENT table. 

Sample parameter for this task is 'APPUSER'. 

9. Execute the batch. 

The function can also be executed directly on the database through SQLPLUS. 
Details are: 

Function Name : fn_dim_financial_elem_update 

Parameters : pBatch_Id, pas_of_date, appuser_name 

Sample parameter values : 'Batch1','20091231', 'APPUSER' 

 

Checking the Execution Status 

The status of execution can be monitored using the batch monitor screen. 

 

Note: For a more comprehensive coverage of configuration & 
execution of a batch, see Oracle Financial Services Analytical 
Applications Infrastructure User Guide. 

 

 

The status messages in batch monitor are : 

N - Not Started 

O - On  Going 

F - Failure 

S — Success 

The Event Log window in Batch Monitor provides logs for execution with the top row 

being the most recent. If there is any error during execution, it will get listed here. 



Payment Pattern Loader 

4-100 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
Even if you see Successful as the status in Batch Monitor it is advisable to go through 

the Event Log and re-check if there are any errors. The execution log can be accessed 

on the application server by going to the following directory $FIC_DB_ 

HOME/log/date. The file name will have the batch execution id. 

The database level operations log can be accessed by querying the FSI_MESSAGE_ 

LOG table. The batch run id column can be filtered for identifying the relevant log. 

Check the .profile file in the installation home if you are not able to find the paths 

mentioned earlier. 

Following messages will be available in the FSI_MESSAGE_LOG table after executing 

the batch. 

1. Starting to update DIM_FINANCIAL_ELEMENT 

2. Please provide application user name (In case OFSAAI application user name is 
not passed as a parameter). 

3. Successfully Completed. 

After successful execution of the batch, user can verify custom financial element 

present in DIM_FINANCIAL_ELEMENT table. 

 

Payment Pattern Loader 
The Payment Pattern Loader provides the ability to load bulk payment pattern 

definitions through a back end procedure. This Loader reads the stage table data, does 

data quality checks on the same, and load them into FSI_PAYMENT_PATTERN and 

FSI_PAYMENT_PATTERN_EVENT tables, if the stage table data is valid. 

Following is the stage table to input the payment pattern: 

Table Name: STG_PAYMENT_PATTERN 

 
Column Name 

Column 

Datatype 

Column Null 

Option 

 
Column Is PK 

Column 

Comment 

V_AMRT_TYPE VARCHAR2(5) NOT NULL Yes Amortization 

code between 

1000 to 69999. 

Patterns between 

this range will be 

consider for 

payment 

processing 

N_EVENT_ID NUMBER(5,0) NOT NULL Yes Event Identity 

Number 

N_SPLIT_ID NUMBER(5,0) NOT NULL Yes Holds number of 

patterns with in 

split pattern 

V_PATTERN_ 

TYPE 

VARCHAR2(40) NOT NULL Yes List of values 

could be 

Absolute, 

Relative, Split 

 



Payment Pattern Loader 

Data Loaders 4-101 

 

 

 
 

 

 
Column Name 

Column 

Datatype 

Column Null 

Option Column Is PK 

Column 

Comment 
 

V_TERM_TYPE VARCHAR2(40) NOT NULL Yes List of values 

could be 

Principal and 

Interest, Principal 

Only, Interest 

Only, Level 

Principal, Final 

Principal & 

Interest, Other 

V_AMRT_TYPE_ 

DESC 

VARCHAR2(255) NOT NULL No Alpha numeric 

value 

N_PCT_VALUE NUMBER(8,4) NULL No Percentage 

applied to each 

pattern in case of 

split pattern type 

V_PAYMENT_ 

EVENT_ 

MONTH 

VARCHAR2(20) NULL No Month in which 

payment event 

should occur 

N_PAYMENT_ 

EVENT_DAY 

NUMBER(2) NULL No Number of Days 

Payment type 

N_PAYMENT_ 

EVENT_FREQ 

NUMBER(5,0) NULL No Number of times 

payment event 

should occur 

V_PAYMENT_ 

EVENT_FREQ_ 

MULT 

VARCHAR2(40) NULL No List of values 

could be 

Days,Months,Yea 

rs 

N_PAYMENT_ 

EVENT_ 

REPEAT_ 

VALUE 

NUMBER(5,0) NULL No Holds number of 

times payment 

frequency should 

repeat 

N_AMOUNT NUMBER(14,2) NULL No Amount 

V_AMOUNT_ 

TYPE 

VARCHAR2(40) NULL No List of values 

could be % of 

original 

Payment,% of 

current 

payment,absolut 

e value 

V_PAYMENT_ 

TYPE 

VARCHAR2(30) NULL No List of values 

could be 

Conventional, 

Level principal, 

Non-amortizing 

 

The loader program performs the following data quality checks: 



Payment Pattern Loader 

4-102 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
1. The below fields, list of values will be checked against the relevant look tables as 

mentioned 

Pattern Type ---> FSI_PATTERN_TYPE_MLS 

CashFlowType ---> FSI_PAYMENT_TYPE_MLS (Should accept only 
“100-Principal and Interest” and “300-Interest Only”) 

Month ---> FSI_MONTHS_MLS 

Multiplier ---> FSI_MULTIPLIER_MLS 

Payment Method ---> FSI_AMOUNT_TYPE_MLS (For Conventional accept only 
“% of Original Payment”, “% of Current Payment” and “Absolute value”) 

Payment Type ---> FSI_PMT_PATTERN_TYPE_MLS 

2. While defining any pattern type like relative or absolute, MONTH and DAY 
combination should be unique 

3. MONTH and DAY pair should have valid month and day combination, such as 
January 31 days and February 28 days (Leap year was not considered) and so on. 

4. If cash flow value is “Principal and Interest” then N_AMOUNT cannot be blank. If 
it is “Interest only” then V_PAYMENT_TYPE and N_AMOUNT should be blank. 

5. When payment type is a Non-amortizing and Payment pattern is Relative then N_ 
PAYMENT_EVENT_FREQ and N_PAYMENT_EVENT_REPEAT_VALUE should 
have values which could range between 1 to 9999. 

6. One Split pattern can have any number of definition, however the sum of N_PCT_ 
VALUE of all the definition should be 100% and all the payment patterns in the 
split should be defined. 

7. All the following fields should have this validation on place: 

Day ---> Positive Integer Number Range from 1 to 31 depends on the month for 
which day. 

Percentage ---> Positive Integer or Decimal Number 

Frequency ---> Positive Integer range from 1 to 9999 

Repeat ---> Positive Integer range from 1 to 9999 

Value ---> Integer numbers from 0 to 9999999999 

8. For each payment pattern and payment type combinations fields relevant to that 
would be populated by the user remaining columns should be populated with 
default values: 

Payment Pattern - Absolute 

Payment Type: Conventional / Level Principal 

Columns gets populated with user values: Code , Description, Pattern Type, 
Payment Type, Month, Day, Cash Flow Type, Payment Method,Value, Percentage 
(in case of Split pattern type 

Payment Type: Non amortizing Payment type. 

Columns gets populated with user values: Code , Description , Pattern Type, 
Payment Type, Month, Day, Percentage (in case of Split pattern type) 

Payment Pattern - Relative 

Payment Type: Conventional / Level Principal 



Payment Pattern Loader 

Data Loaders 4-103 

 

 

 
Columns gets populated with user values: Code, Description, Pattern Type, 
Payment Type, Frequency, Multiplier, Repeat, Cash Flow Type, Payment Method, 
Value, Percentage (in case of Split pattern type) 

Payment Type: Non amortizing Payment type. 

Columns gets populated with user values: Code, Description, Pattern Type, 
Payment Type, Frequency, Multiplier, Repeat, Percentage (in case of Split pattern 
type) 

 

Note: The loader program defaults values for each column in case 
values provided by user are not relevant for the pattern and payment 
patterns they defined. 

 
 

    

Table Name Column Name Default Value  

FSI_PAYMENT_PATTERN_ 

EVENT 

EVENT_ID 0  

FSI_PAYMENT_PATTERN_ 

EVENT 

TERM_TYPE_CD 0  

FSI_PAYMENT_PATTERN PERCENTAGE 0  

FSI_PAYMENT_PATTERN_ 

EVENT 

PAYMENT_EVENT_MONTH 0  

FSI_PAYMENT_PATTERN_ 

EVENT 

PAYMENT_EVENT_DAY 0  

FSI_PAYMENT_PATTERN_ 

EVENT 

PAYMENT_EVENT_ 

FREQUENCY 

0  

FSI_PAYMENT_PATTERN_ 

EVENT 

PAYMENT_EVENT_ 

FREQUENCY_MULT 

M  

FSI_PAYMENT_PATTERN_ 

EVENT 

PAYMENT_EVENT_REPEAT 0  

FSI_PAYMENT_PATTERN_ 

EVENT 

AMOUNT 0  

FSI_PAYMENT_PATTERN_ 

EVENT 

AMOUNT_TYPE_CD 0  

FSI_PAYMENT_PATTERN SPLIT_ID 0  

FSI_PAYMENT_PATTERN_ 

EVENT 

N_SPLIT_ID 0  

 

Executing the Payment Pattern Loader Procedure 

There are two ways to execute the Payment Pattern Loader procedure: 

• Running Procedure Using SQL*Plus 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner: 

SQLPLUS > declare 

result number; 

begin 



Payment Pattern Loader 

4-104 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

result := fn_paymentpattern ('Payment_Pattern_20121212_ 

1','20121212'); 

end; 

/ 

• BATCH_RUN_ID is any string to identify the executed batch. 

• AS_OF_DATE is in the format YYYYMMDD 

• Payment Pattern Loader Procedure Using OFSAAI ICC Framework 

To execute Payment Pattern Loader from OFSAAI ICC framework, a seeded Batch 
is provided. 

The batch parameters are: 

• Datastore Type:- Select the appropriate datastore from list. 

• Datastore Name:- Select the appropriate name from the list. 

• IP address:- Select the IP address from the list. 

• Rule Name:- fn_paymentpattern 

 

Exception Messages 

Below are the list of error messages which can be viewed in view log from UI or fsi_ 

message_log table from back end filtering for the given batch id. On successful 

completion of each task messages gets into log table. 

In the event of failure, following are the list of errors that may occur during the 

execution: 

• Exception 1: PATTERN TYPE IS NOT MATCHING THE LIST OF VALUES 

• Exception 2: TERM TYPE IS NOT MATCHING THE LIST OF VALUES 

• Exception 3: PAYMENT MULTIPLIER FREQ IS NOT MATCHING THE LIST OF 

VALUES 

• Exception 4: EVENT MONTH IS NOT MATCHING THE LIST OF VALUES 

• Exception 5: PMT PATTERN IS NOT MATCHING THE LIST OF VALUES 

• Exception 6: AMOUNT TYPE IS NOT MATCHING THE LIST OF VALUES 

• Exception 7: v_amrt_type_cd range between 1000 to 69999 

• Exception 8: n_payment_event_freq_cd and n_payment_event_repeat_value 

should have values range between 1 to 9999 

• Exception 9: N_PCT_VALUE POSITIVE INTEGER OR DECIMAL NUMBER 

• Exception 10: N_SPLIT_ID POSITIVE NUMBER 

• Exception 11: If Term Type is PRINCIPAL AND INTEREST, then it should range 

from 1 to 999999999 

• Exception 12: f Term Type is INTEREST ONLY AMOUNT and AMOUNT TYPE 

CD should be blank 



GAP Limits Loader 

Data Loaders 4-105 

 

 

 

• Exception 13: ERR while deleting stg_payment_pattern unwanted records 

• Exception 14: Month and Day pair should have valid combination. Like January 

31 days 

• Exception 15: Pct value should be 100 in case of split pattern for other patterns it 

should be =0 

• Exception 16: Error during percentage check 

• Exception 17: Error during inserting 

 
GAP Limits Loader 

This loader will provide the ability to load user defined GAP Limits through a back 

end procedure. 

For more information, see the ALM User guide on OHC. 
 

GAP Limits Loader Tables 

The Loader uses the following staging and target tables: 

• STG_ALM_GAP_LIMIT_DTL – This staging table contains preliminary 

user-provided data that will subsequently undergo data quality checks. 

• FSI_ALM_GAP_LIMIT_DTL – The loader copies limit bucket-sets into this table 

after quality checks; only bucket-sets that pass quality checks are populated in this 

table 

 
Executing the Gap Limit loader Procedure 

There are two ways to execute the Gap Limit Loader procedure: 

• Running Procedure Using SQL*PlusTo run the function from SQL*Plus, log in to 

SQL*Plus as the Schema Owner. The loader requires two parameters 

Batch Execution Name 

As Of Date 

Syntax: 

fn_load_fsi_alm_gap_limits (batch_run_id IN VARCHAR2, as_of_ 

date IN VARCHAR2) 

For example: 

SQLPLUS > declare 

result number; 

begin 

result := fn_load_fsi_alm_gap_limits (‘INFODOM_ 

20100405','20100405’); 

end; 

/ 



GAP Limits Loader 

4-106 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• Gap Limit Loader Procedure Using OFSAAI ICC Framework 

To execute Material Currency Loader from OFSAAI ICC framework, a seeded 
Batch <INFODOM>_GAP_LIMITS_LOADER is provided. 

The batch parameters are: 

• Datastore Type:- Select the appropriate datastore from list. 

• Datastore Name:- Select the appropriate name from the list. 

• IP address:- Select the IP address from the list. 

• Rule Name:- fn_load_fsi_alm_gap_limits 

• Parameter List:- None 

 

Exception Messages 

Below are the list of error messages which can be viewed in view log from UI or fsi_ 

message_log table from back end filtering for the given batch id. On successful 

completion of each task messages gets into log table. 

In the event of failure, following are the list of errors that may occur during the 

execution: 

Exception 1: ALM GAP Limit Loader exited but no records were inserted into FSI 

table. 

All GAP limit bucket-sets in the STG table failed data quality checks and/or there was 

some internal error 

Exception 2: Errors recorded in internal memory but could not be logged in FSI_ 

MESSAGE_LOG. Exiting. 

Error messages could not be logged 

Exception 3: Could not insert records into internal memory. It may be a count 

mismatch b/w consolidated_records and pk_iter. 

Internal processing of limit bucket-sets failed during execution, please contact support 

Exception 4: No Records found in STG Table for As_Of_Date: <DATE> 

STG table had no records for the selected date of execution of utility 

Exception 5: Error in prc_load_fsi_alm_gap_limits: <ERROR MESSAGE> 

Unexpected error in execution 

Exception 6: Invalid Legal_Entity_Code: <CODE> 

Check if the legal entity code matches with valid legal entities in DIM_LEGAL_ 

ENTITY_B (leaf nodes only and should be enabled) 

Exception 7: Invalid Org_Unit_Code: <CODE> 

Check if the organisation unit code matches with valid codes in DIM_ORG_UNIT_ 

B(leaf nodes only and should be enabled) 



GAP Limits Loader 

Data Loaders 4-107 

 

 

 

Exception 8: Invalid Currency: <CCY> 

Please ensure that the currency code for a bucket set is a valid ISO code 

Exception 9: Invalid Currency_Type_Code: <CCY_Type> 

Check if the currency type is valid and present in FSI_CURRENCY_TYPE_MLS 

Exception 10: Invalid Time_Bucket_Name: <BKT_NAME> 

Check if the bucket name provided matches valid entries in FSI_TIME_BUCKET_ 

MASTER 

Exception 11: Invalid Bucket_Number: <NUM> for Time_Bucket_Name: <BKT_ 

NAME> 

Ensure bucket number in DIM_RESULT_BUCKET corrseponds to the bucket name of 

in the row; Names are case insensitive 

Exception 12: Invalid Start_Date_Index<INDEX> for Time_Bucket_Name: <BKT_ 

NAME> 

The start date index in FSI_LR_IRR_BUCKETS_AUX matches for the given bucket 

name 

Exception 13: Invalid Forecast_Rate_Rule_Name: <FCST_RULE_NAME> 

Ensure the forecast rate rule applied corresponds to those present in FSI_M_OBJECT_ 

DEFINITION_TL; Names are case insensitive 

Exception 14: Invalid Scenario_Name: <SCEN_NAME> for Forecast_rate_rule_ 

name: <FCST_RULE_NAME> 

The scenario applied should correspond to the forecast rate rule being applied 

Exception 15: Invalid Repricing_GAP_Measure: <MEASURE> 

Repricing gap measure should be one of 'NET REPRICE GAP', 'CUMULATIVE 

REPRICE GAP'; case insensitive 

Exception 16: Eff_End_Date[<DATE>] must be later than or same as AS_OF_ 

DATE[<EXECUTION_DATE>] 

Execution date must always be less than the effective end date of a limit bucket-set 

Exception 17: Eff_End_Date[<DATE>] must be later than Eff_Start_Date[<DATE>] 

The effective end date of a limit-bucket set must be later than its start date 

Exception 18: Invalid Limit_Method: <LIMIT_METHOD> 

Bucket limit method must be one of 'ABSOLUTE' or 'RELATIVE'; case insensitive 

Exception 19: GAP_Limits cannot be negative 

Self-explanatory 

Exception 20: GAP lwr_limit must be lesser than upr_limit 



GAP Limits Loader 

4-108 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
Self-explanatory 

Exception 21: Bucket Continuity Constraint: Current bucket''s lower_limit must be 

previous bucket''s upper_limit+1 

Self-explanatory 

Exception 22: Bucket Limit_Method Mismatch: All buckets in a set must follow the 

first bucket''s limit method 

Self-explanatory 

Exception 23: For Limit Method: RELATIVE, first bucket''s lower_limit must be 0 

Self-explanatory 

Exception 24: For Limit Method: RELATIVE, last bucket''s upper_limit must be 100 

Self-explanatory 

Exception 25: For Limit Method: RELATIVE, lower_limit must be b/w [0,upper_ 

limit) 

The lower limit of a bucket in a bucket-set must start from previous bucket's lower 

limit+1 or 0 if it is the first bucket in a bucket-set; the upper limit must be greater than 

lower limit or be exactly 100 if it is the last bucket in the set. 

Exception 26: For Limit Method: RELATIVE, upper_limit must be b/w (lower_ 

limit,100] 

The lower limit of a bucket in a bucket-set must start from previous bucket's lower 

limit+1 or 0 if it is the first bucket in a bucket-set; the upper limit must be greater than 

lower limit or be exactly 100 if it is the last bucket in the set. 

Exception 27: Record will be rejected due to error(s) in row(s) indicated by Bkt_ 

num(s): <BAD_BKT_NUMS> 

The row itself passes DQ data quality checks but will still be rejected due to errors 

elsewhere in its limit bucket-set 

Exception 28: Error in Data Quality Validator : dq_validator. 

DQ validation function failed 

Exception 29: Error in bulk_logging, erroroneous rows could not be recorded. 

Bulk logging of error messages to FSI_MESSAGE_LOG failed; transactions to FSI_* 

table will be rolled-back 

Exception 30: No good records were found in the STG Table. 

All GAP limit bucket-sets in the STG table failed data quality checks 

Exception 31: Error in target_insert_update: <ENGINE GENERATED ERROR 

MESSAGE>. 



Material Currency Identifier 

Data Loaders 4-109 

 

 

 
Possible reason: Two or more exact same bucket sets with typographical differences 

are present(e.g. one bucket has v_scenario_name = "A_Lim_Bucket" and another has 

v_scenario_name = "a_lim_bucket").It is advisable to avoid stray spaces in strings and 

keep everything in all-caps 

Exception 32: Error in target_insert_update 

Function for inserting good records to FSI_* table failed 

Exception 33: Could not cleanup old records for batch run id: <BATCH_RUN_ID> 

Previous error messages in FSI_MESSAGE_LOG for the same BATCH_RUN_ID as run 

could not be deleted; The execution may have still gone through 

 

Material Currency Identifier 
As per the standardized approach of IRRBB, the loss in economic value of an equity is 

calculated for each currency with material exposures. Material exposure is defined as 

“those accounting for more than 5% of either banking book assets or liabilities." Utility 

moves data from FSI_D_<INSTRUMENT TABLE> to FCT_ALM_SIGNIFICANT_ 

CURRENCY. 

For more information, see the ALM User guide on OHC. 
 

Material Currency Identifier Tables 

• FSI_D_CREDIT_CARDS 

• FSI_D_MUTUAL_FUNDS 

• FSI_D_RETIREMENT_ACCOUNTS 

• FSI_D_TERM_DEPOSITS 

• FSI_D_ASSET_BACK_SEC 

• FSI_D_BORROWINGS 

• FSI_D_INVESTMENTS 

• FSI_D_ANNUITY_CONTRACTS 

• FSI_D_CASA 

• FSI_D_LOAN_CONTRACTS 

• FSI_D_CREDIT_LINES 

• FSI_D_GUARANTEES 

• FSI_D_MERCHANT_CARDS 

• FSI_D_MORTGAGES 

• FSI_D_TRUSTS 

• FSI_D_CAPFLOORS 

https://docs.oracle.com/cd/E60202_01/homepage.htm


Material Currency Identifier 

4-110 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• FSI_D_MM_CONTRACTS 

• FSI_D_LEASES 

• FSI_D_OTHER_SERVICES 

• FSI_D_LEDGER_STAT_INSTRUMENT 

• FSI_D_LOAN_COMMITMENTS 

• FSI_D_FUTURES 

• FSI_D_CAPFLOORS 

• FSI_D_SWAPS 

 
Executing the Material Currency loader Procedure 

There are two ways to execute the Material Currency Loader procedure: 

• Running Procedure Using SQL*Plus 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner: 

For example: 

SQLPLUS > declare 

result number; 

begin 

result := fn_signf_currency_loader 

(‘ALMUSER’,’Y’,05,>,’USD’); 

end; 

/ 

Here, 

• ALMUSER is the user Name for which the task is to be executed 

• Set the Off-balance sheet flag as ‘Y’ to enable off-balance sheet instruments, 
‘N’ to disable them. 

• .05 is Material Currency Threshold. .05 is the threshold defined by BASEL 
norms but the parameter is configurable between [0,1], limits inclusive 

• Is Comparison Operator; valid choices include [>,>=,<,<=] 

• USD is reporting currency ISO code 

• Material Currency Loader Procedure Using OFSAAI ICC Framework 

To execute Material Currency Loader from OFSAAI ICC framework, a seeded 
Batch <INFODOM>_MATERIAL_CURR_IDENTIFICATION is provided. 

The batch parameters are: 

• Datastore Type:- Select the appropriate datastore from list. 

• Datastore Name:- Select the appropriate name from the list. 

• IP address:- Select the IP address from the list. 

• Rule Name:- fn_signf_currency_loader 



Material Currency Identifier 

Data Loaders 4-111 

 

 

 

• Parameter List:- User Name, off-Balance Sheet Flag, Material Currency 
Threshold, Comparison Operator, and Reporting Currency Code (for 
description of the configurable paramters, see above) 

 

Exception Messages 

During the course of execution, certain exception messages are logged in FSI_ 

MESSAGE_LOG. These can be viewed from the UI or from the back-end by filtering 

FSI_MESSAGE_LOG for the current ‘batch_run_id’. On successful completion of the 

task, a message indicating success is logged. In the event of execution failure or 

intermediate errors, messages from the following list can be logged: 

Exception 1: Table '<INSTRUMENT_TABLE_NAME>' not found in current schema. 

This table will be ignored. 

The table may have been removed or currently does not exist in the schema 

Exception 2: Error during inserting asset records from '<INSTRUMENT_TABLE_ 

NAME>': <ENGINE_GENERATED_MESSAGE>. Table will be ignored. 

The columns types of the table may have changed or columns may have been removed 

Exception 3: Error in utility/task ''ALM Material Currency Identification''. Please 

check if username is valid. In rare cases, it may be an internal DB error. 

The username provided either doesnot exist or the user's product dimension 

preference is not one of (PRODUCT, GENERAL_LEDGER or COMMON COA). Very 

rarely it could be an internal mapping error 

Exception 4: Error in utility/task ''ALM Material Currency Identification''; 

off-balance-sheet flag must be 'Y' or 'N'. 

Illegal user-input parameter 

Exception 5: Error in utility/task ''ALM Material Currency Identification'' during 

insert/merge operation on '<ISNTRUMENT_TABLE_NAME>'. OPERATION 

ABORTED. 

Internal error during merging of liability records with asset records in the TMP_* table 

(TMP table stores intermediate records before final consolidation into the FCT_* table) 

Exception 6: Error in utility/task ''ALM Material Currency Identification''; Please 

ensure that 1. material threshold is between [0,1]; 2. a valid comparison operator has 

been provided; 3. Reporting currency is a valid ISO code. 

Illegal user-input parameter(s) 

Exception 7: Error in utility/task ''ALM Material Currency Identification''; Insert 

operation on FCT_ALM_SIGNIFICANT_CURRENCY failed, OPERATION 

ABORTED. Probable reason: foreign key violation in FCT_* table on column 'N_ 

ENTITY_SKEY'. 

Internal error during insertion of final records in to the result table due to a Foreign 

Key Violation 



Behaviour Pattern Loader 

4-112 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Exception 8: Error in utility/task ''ALM Material Currency Identification''; 

Insert/Update operation on DIM_DATES failed; OPERATION ABORTED. 

Internal error because the chosen date of execution does not exist in an internal table of 

indexed dates and associated information (DIM_DATES) 

Exception 9: Unhandled exception in utility ''ALM Material Currency 

Identification''; FCT_ALM_SIGNIFICANT_CURRENCY will be returned to its 

initial state. Error: <ENGINE_GENERATED_ERROR> 

Unexpected internal error during execution; it may be a primary key violation during 

insertion of records into the FCT_* table. 

Exception 10: Could not cleanup old records for batch run id: <BATCH_RUN_ID> 

Previous error messages in FSI_MESSAGE_LOG for the same BATCH_RUN_ID as run 

could not be deleted; utility’s execution may have still gone through 

 

Behaviour Pattern Loader 
The Behaviour Pattern Loader provides the ability to load bulk Behaviour pattern 

definitions through a back end procedure. This Loader reads input data from STG_ 

BEHAVIOUR_PATTERN_NRP table — performs data quality checks on the same — and 

loads the definitions into FSI_BEHAVIOUR_PATTERN_MASTER and FSI_ 

BEHAVIOUR_PATTERN_DETAIL tables based on following conditions: 

• New BP: If pattern code in stage table is not already present in FSI table, then 

insert data after quality check and necessary transformations 

• Existing BP: If pattern code in stage is already present in FSI table, then compare 

‘created date’. If date in stage table is higher (i.e. more recent) than that in FSI 

table, then overwrite the definition otherwise skip and log appropriate message. 

The utility is usually called from a Batch called “Behaviour Pattern Loader”. The 

utility is designed to be executed for a single AS OF DATE only, i.e. it would fetch the 

data from STAGE table for the given MIS date and push the records to DTL/MASTER 

table accordingly. 

The structure of the Stage table is as follows: 

Table Name: STG_BEHAVIOUR_PATTERN_NRP: 
 

 
Column Name 

Logical 

Name 

Data 

Type 

Null 

Allowed ? 

 
PK 

 
Column Comments 

FIC_MIS_DATE Extraction 

Date 

DATE No Yes Date on which the 

behaviour pattern 

definition was created. 

Normally indicates the 

calendar date from which it 

is valid. 



Behaviour Pattern Loader 

Data Loaders 4-113 

 

 

 
 

 

 
Column Name 

Logical 

Name 

Data 

Type 

Null 

Allowed ? PK Column Comments 
 

F_ 

REPLICATING_ 

PORTFOLIO_ 

FLG 

Replicating 

Portfolio Flag 

CHAR(1) Yes No This indicates whether the 

behaviour pattern 

definition is for replicating 

portfolio (FTP use case) or 

not. List of Values are Y for 

Replicating Portfolio and N 

for Non-replicating 

portfolio. 

N_PATTERN_ 

CD 

Pattern Code NUMBER 

(5) 

No Yes Code assigned to behaviour 

pattern definition. This 

must be a number between 

70000 to and 99999 

N_PATTERN_ 

PERCENTAGE 

Pattern 

Percentage 

NUMBER 

(22,6) 

Yes No This stores the percentage 

of current balance that is 

used as cash flow on the 

event date. Within one 

pattern code sum of 

percentages must not 

exceed 100. 

N_SEQUENCE_ 

NUMBER 

Sequence 

Number 

NUMBER 

(3) 

No Yes Within one pattern multiple 

tenors can be defined. 

Sequence denotes the order 

of each tenor. 

N_PATTERN_ 

TENOR 

Pattern Tenor NUMBER 

(5) 

Yes No This is the tenor specified 

in behaviour pattern 

definition and is used to 

decide cash flow event. It 

must be read in conjunction 

with Tenor Unit. 



Behaviour Pattern Loader 

4-114 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

 

 
Column Name 

Logical 

Name 

Data 

Type 

Null 

Allowed ? PK Column Comments 
 

V_PATTERN_ 

SUBTYPE_CD 

Behaviour 

Sub Type 

Display Code 

VARCH 

AR2(5) 

Yes No This indicates the sub-type 

of behaviour for which 

pattern is defined. Expected 

values are: If Behaviour 

Type Display Code is Non 

Maturing (NM) then 

expected values are CR for 

Core and VL for Volatile; If 

Behaviour Type Display 

Code is Non Performing 

(NP) then expected values 

are SS for Substandard, DF 

for Doubtful and L for Loss; 

If Behaviour Type Display 

Code is Devolvement and 

Recovery (DR) then 

expected values are SD for 

Sight Devolvement, SR for 

Sight Recovery, UD for 

Usance Devolvement, UR 

for Usance Recovery, U for 

Usance and S for Sight. 

V_CREATED_BY Created By VARCH 

AR2(20) 

Yes No Identifier for the user or 

model that created the 

behaviour pattern 

definition. It can also 

denote the system from 

which definition is sourced. 

V_PATTERN_ 

DESCRIPTION 

Pattern 

Description 

VARCH 

AR2(255) 

Yes No Description for the 

behaviour pattern 

definition given by user. 

V_PATTERN_ 

NAME 

Pattern Name VARCH 

AR2(30) 

Yes No Name of the behaviour 

pattern definition given by 

user. 

V_PATTERN_ 

TYPE_CD 

Behaviour 

Type Display 

Code 

VARCH 

AR2(40) 

Yes No This indicates the type of 

behaviour for which 

pattern is defined. Expected 

values are NM for Non 

Maturing, NP for Non 

Performing and DR for 

Devolvement and 

Recovery. 

V_PATTERN_ 

TENOR_UNIT 

Pattern Tenor 

Unit 

VARCH 

AR2(1) 

Yes No This indicates the unit in 

which Tenor is specified. 

List of values are D for 

Days, M for Months and Y 

for Years. 



Behaviour Pattern Loader 

Data Loaders 4-115 

 

 

 

Following checks will be performed on the intermediate data populated by the user in 

STAGE table; list of values will be checked against the relevant look-up tables as 

mentioned below: 

• Pattern Code should be between 70000 and 99999. 

• BP Pattern Name: 

• If it is a new pattern code, then name should not be already used by another 
BP. 

• If it is an existing pattern code, then name should be same as BP existing in FSI 
table. If names are different, then that from FSI table will be retained. 

• Behaviour Type Display Code should be present in table FSI_BEHAVIOUR_ 

TYPE_CD column BEHAVIOUR_TYPE_DISPLAY_CD 

• Behaviour Sub Type Display Code should be present in table FSI_ 
BEHAVIOUR_SUB_TYPE_CD column BEHAVIOUR_SUB_TYPE_DISPLAY_ 
CD 

• Tenor should be a valid number. 

• Tenor unit should be present in table FSI_MULTIPLIER_CD column 

MULTIPLIER_CD. 

• Percentage for one pattern code sum of percentage across all Behaviour Type 

Display Code must not exceed 100. Sequence for one pattern code sequence 

number must not repeat. 

 

Executing the Behaviour Pattern Loader Procedure 

• Executing the Procedure Using SQL*Plus 

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner: 

SQLPLUS > declare 

result number; 

begin 

result := fn_Behaviour_pattern_loader ('Behaviour_Pattern_ 

20121212_1','20121212'); 

end; 

/ 

• BATCH_RUN_ID is any string to identify the executed batch. 

• AS_OF_DATE is in the format YYYYMMDD 

• Behaviour Pattern Loader Procedure Using OFSAAI ICC Framework 

To execute Behaviour Pattern Loader from OFSAAI ICC framework, a seeded 
Batch is provided. 

The batch parameters are: 

• Datastore Type:- Select the appropriate datastore from list. 

• Datastore Name:- Select the appropriate name from the list. 



Behaviour Pattern Loader 

4-116 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

• IP address:- Select the IP address from the list. 

• Rule Name:- fn_behaviourpattern 

 

Exception Messages 

Below is a list of error messages generated during execution. They can be viewed in 

the ‘view log’ from UI or in FSI_MESSAGE_LOG table after filtering for the given 

batch_run_id. Appropriate messages are also logged on successful completion of 

railure of the utility, as the case may be. 

Following error messages may be logged during execution: 

Exception 1: No records found in STG_BEHAVIOUR_PATTERN_NRP for <DATE> 

STG_* table has no records for the chosen execution date 

Exception 2: Error in Wrapper_bp_loader: <ENGINE_GENERATED_ERROR_ 

MESSAGE> 

Execution of the utility failed due to some unexpected internal error 

Exception 3: Issue in look_up_tbl procedure: <ENGINE_GENERATED_ERROR_ 

MESSAGE> 

Procedure to look-up values against matching tables failed; this is an internal error 

Exception 4: Issue in procedure: key_val_look_up: <ENGINE_GENERATED_ 

ERROR_MESSAGE> 

Procedure to look-up key-value pairs against matching tables failed; this is an internal 

error 

Exception 5: ROW # <ROWNUM>: N_PATTERN_CD out of range. 

N_PATTERN_CD exceeded 99999 

Exception 6: ROW # <ROWNUM>: N_TENOR is not a valid number (must be >0). 

Self-explanatory 

Exception 7: ROW # <ROWNUM>: BEHAVIOUR TYPE DOES NOT MATCH 

VALID BEHAVIOUR TYPES 

Behaviour Pattern Type for a definition must be one of NM, NP or DR 

Exception 8: ROW # <ROWNUM>: TENOR UNIT DOES NOT MATCH VALID 

TENOR UNITS. 

Tenor Units must be one of D, M or Y 

Exception 9: ROW # <ROWNUM>: BEHAVIOUR SUB-TYPE EITHER DOES NOT 

EXIST OR IS INCORRECT FOR GIVEN BEHAVIOUR TYPE. 

Behaviour Sub-Type in a given pattern set must be as follows: <BEHAVIOUR 

TYPE>::[VALID SUB-TYPES] ::: NM[CR,VL], NP[SS,DF,L] & DR[SD,SR,UD,UR,U,S] 



Behaviour Pattern Loader 

Data Loaders 4-117 

 

 

 

Exception 10: ROW # <ROWNUM>: Warning: Replicating_Portfolio_Flag was NOT 

NULL but neither "Y" nor "N"; Will be replaced with "N" 

Self-explanatory 

Exception 11: ROW # <ROWNUM>: New pattern code but name is already in use 

for PATTERN_CD: <PATTERN_CD_NAME>. Please note names are NOT case 

sensitive. 

The pattern will be rejected as two pattern code definitions cannot have the same 

name 

Exception 12: ROW # <ROWNUM>: Warning: PATTERN_CODE already exists in 

FSI_BEHAVIOUR_PATTERN_MASTER with name: <NAME>. This name will be 

retained. Only the newer(date) of these two records will be kept. 

If a pattern code present in STG_* table already exists in the FSI_*_MASTER table, 

then the FSI_* table will be updated with the new definition but the name from FSI_*_ 

MASTER will be retained if the date of execution for the batch is older than that for 

which the record already exists in the MASTER table. 

Exception 13: Error in Dq_validator: <ENGINE_GENERATED_MESSAGE> 

Function for validating STG_* table records failed; this is an internal error 

Exception 14: Definitions with negative N_PATTERN_PERCENTAGE. This 

PATTERN_CD will be ignored. 

Some pattern definitions the STG_* table had negative percentage values 

Exception 15: Pattern codes with N_PATTERN_PERCENTAGE violation found 

(>100). These will be ignored. 

Account percentage allocation across behaviour pattern types in a Pattern definitions 

in STG_* table must add to 100 

Exception 16: No violations of N_PATTERN_PERCENTAGE found for any pattern 

code & behaviour type combination. 

The definitions that remained after data quality checks had no anomalies in their 

pattern percentages 

Exception 17: Error in procedure "percentage_chk": <ENGINE_GENERATED_ 

MESSAGE> 

The percentage checker failed; this is an internal error 

Exception 18: Duplicate older Behaviour Pattern Definition in STG_TABLE. It will 

be ignored. 

The pattern definitions in STG_* table will be ignored if they are older than those in 

MASTER table 



Behaviour Pattern Loader 

4-118 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 

Exception 19: Date comparison check passed; either no clashes found between 

STG_BEHAVIOUR_PATTERN_NRP records and FSI_BEHAVIOUR_PATTERN_ 

MASTER records or all definitions in Stage Table were older. 

Self-explanatory 

Exception 20: Error in flg_older: <ENGINE_GENERATED_MESSAGE> 

Procedure for verification of date-clashes between new records in STG_* and those 

already present in FSI_* MASTER failed; this is an internal error 

Exception 21: Error During Merge Operation in FSI_BEHAVIOUR_PATTERN_ 

MASTER: <ENGINE_GENERATED_MESSGE> 

Records could not be inserted into FSI_BEHAVIOUR_PATTERN_MASTER; this is 

either an internal error or a Primary Key violation 

Exception 22: Error During Merge Operation in FSI_BEHAVIOUR_PATTERN_ 

DETAIL: <ENGINE_GENERATED_MESSGE> 

Records could not be inserted into FSI_BEHAVIOUR_PATTERN_DETAIL; this is 

either an internal error or a Foreign Key violation 

Exception 23: Could not clean-up old records for batch run id: <BATCH_RUN_ID> 

Previous error messages in FSI_MESSAGE_LOG for the same BATCH_RUN_ID as run 

could not be deleted; The execution may have still gone through 



SCD Configuration 5-1 

 

 

 

 

SCD Configuration 
 
 

Overview of SCD Process 
SCDs are dimensions that have data that changes slowly, rather than changing on a 

time-based, regular schedule. 

For more information on SCDs, refer to: 

• Oracle Data Integrator Best Practices for a Data Warehouse at 

<http://www.oracle.com/technetwork/middleware/data-integrator/overview/ 

odi-bestpractices-datawarehouse-whi-129686.pdf > 

• Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide at 

<http://download.oracle.com/docs/cd/E16338_01/owb.112/e10935/dim_ 

objects.htm> 

Additional online sources include: 

• <http://en.wikipedia.org/wiki/Slowly_changing_dimension> 

• <http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/10g/r2/owb 

/owb10gr2_gs/owb/lesson3/slowlychangingdimensions.htm> 

• <http://www.oraclebidwh.com/2008/11/slowly-changing-dimension-scd/> 

• <http://www.informationweek.com/news/software/bi/showArticle.jhtml?articleI 

D=204800027&pgno=1> 

• <http://www.informationweek.com/news/software/bi/showArticle.jhtml?articleI 

D=59301280> 

You can also refer to The Data Warehouse Toolkit: The Complete Guide to 

Dimensional Modeling by Ralph Kimball and Margy Ross. 

The SCD component of the platform is delivered via a C++ executable. The types of 

SCD handled by the OFSAAI SCD component for OFSAA BI applications installers are 

Type 1 and Type 2. 

Type 1 

http://www.oracle.com/technetwork/middleware/data-integrator/overview/
http://www.oracle.com/technetwork/middleware/data-integrator/overview/
http://download.oracle.com/docs/cd/E16338_01/owb.112/e10935/dim_
http://en.wikipedia.org/wiki/Slowly_changing_dimension
http://en.wikipedia.org/wiki/Slowly_changing_dimension
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/10g/r2/owb
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/10g/r2/owb
http://www.oraclebidwh.com/2008/11/slowly-changing-dimension-scd/
http://www.informationweek.com/news/software/bi/showArticle.jhtml?articleI
http://www.informationweek.com/news/software/bi/showArticle.jhtml?articleI
file:///D:/Workspace/DMU/dcommon/html/cpyr.htm
file:///D:/Workspace/DMU/dcommon/html/cpyr.htm


5-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

Overview of SCD Process 
 

 

 
The Type 1 methodology overwrites old data with new data, and therefore does not 

track historical data. This is useful for making changes to dimension data. 

 
N_PRODUCT_ 

SKEY 

 
V_PRODUCT_ 

NAME 

 

 
D_START_DATE 

 

 
D_END_DATE 

F_LATEST_ 

RECORD_ 

INDICATOR 

1 PL 5/31/2010 12/31/9999 Y 

 

In this example, 

N_PRODUCT_SKEY is the surrogate key column which is a unique key for each 

record in the dimension table. 

V_PRODUCT_NAME is the product name. 

D_START_DATE indicates the date from which this product record is valid. 

D_END_DATE indicates the date till which this product record is valid. 

F_LATEST_RECORD_INDICATOR with value 'Y', which indicates this is the latest 

record in the dimension table for this product and 'N' indicates it is not. 

If the V_PRODUCT_NAME column is set as a Type 1 SCD column and if there is a 

change in the product name to 'Personal Loan' from 'PL' in the above example, in the 

next processing period, then when SCD is executed for the new processing period the 

record in the above example changes to: 

 
N_PRODUCT_ 

SKEY 

 
V_PRODUCT_ 

NAME 

 

 
D_START_DATE 

 

 
D_END_DATE 

F_LATEST_ 

RECORD_ 

INDICATOR 

1 Personal Loan 6/30/2010 12/31/9999 Y 

 

Type 2 

The Type 2 method tracks historical data by creating multiple records for a given 

natural key in the dimensional tables with separate surrogate keys. With Type 2, the 

historical changes in dimensional data are preserved. In the above example for the 

change in product name from 'PL' to 'Personal Loan' if history has to be preserved, 

then the V_PRODUCT_NAME column has to be set as Type 2 when SCD is processed 

for the processing period and the changeflinserts a new record as shown in the 

following example: 
 

 
N_PRODUCT_ 

SKEY 

 
V_PRODUCT_ 

NAME 

 

 
D_START_DATE 

 

 
D_END_DATE 

F_LATEST_ 

RECORD_ 

INDICATOR 

1 PL 5/31/2010 12/31/9999 N 

1 Personal Loan 6/30/2010 12/31/9999 Y 



Tables Used by the SCD Component 

SCD Configuration 5-3 

 

 

 
A new record is inserted to the product dimension table with the new product name. 

The latest record indicator for this is set as 'Y', indicating this is the latest record for the 

personal loan product. The same flag for the earlier record was set to 'N'. 

 

Prerequisites 
1. The Hierarchy Flattening Transformation should have been executed successfully. 

2. The SCD executable should be present under <installation home>ficdb/bin. The 
file name is scd and the user executing the SCD component should have execute 
rights on this file. 

3. The setup tables accessed by SCD component (SETUP_MASTER, SYS_TBL_ 
MASTER, and SYS_STG_JOIN_MASTER) should have the required entries. The 
SETUP_MASTER table does not come seeded with the installation; the required 
entries must be added manually. The required columns are mentioned in the 
Tables Used by the SCD Component. The tables SYS_TBL_MASTER and SYS_ 
STG_JOIN_MASTER are seeded for the Org unit, GL Account, Product, Common 
COA (Chart of Accounts) dimensions along with solution installation and you 
must only add entries in these tables, if you add new dimensions. 

4. Database Views with name DIM_<Dimension Name>_V come seeded, for the 
seeded dimensions which come as part of installation. These views source data 
from the Profitability dimension tables as well as the flattened hierarchy data. 

DIM_PRODUCT_V is the view available for the product dimension. 

New views will have to be added for any new dimension, added in addition to the 
seeded dimensions. 

 

Tables Used by the SCD Component 
The following are the database tables and columns used by the SCD component: 

• SETUP_MASTER 

• V_COMPONENT_CODE - This column is not used by the OFSEFPA solution. 
This column acts as a primary key for ALMBI. 

• V_COMPONENT_DESC - This column value is hard coded in the database 
view definitions for DIM_PRODUCT_V, DIM_GL_ACCOUNT_V, DIM_ 
COMMON_COA_V, and DIM_ORG_UNIT_V to obtain the Hierarchy ID from 
the REV_HIER_FLATTENED table. For this reason, the value for this column 
should be unique. 

 

Note: The value in V_COMPONENT_DESC must exactly match 
with the value used in the SQL to create the DIM_<dimension>_V 
view. The View SQL contains a section referencing the SETUP_ 
MASTER table. You must use the same upper and/or lower case 
letters in V_COMPONENT_DESC as used in this section of the View 
SQL. 

 

 
• V_COMPONENT_VALUE - This is the hierarchy ID to be processed and this 

can be obtained by executing the following query: 

select b.object_definition_id,short_desc,long_desc from 

fsi_m_object_definition_b b inner join fsi_m_object_ 



5-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

Tables Used by the SCD Component 
 

 

 

definition_tl t on b.object_definition_id = t.object_ 

definition_id and b.id_type = 5 

Examples: 
 

V_COMPONENT_CODE V_COMPONENT_VALUE V_COMPONENT_DESC 

COMMON_COA_HIER 1000063952 COMMON_COA_HIER1 

GL_ACCOUNT_HIER 200000808 GL_ACCOUNT_HIER1 

ORG_HIER 200282 ORG_UNIT_HIER1 

PRODUCT_HIER 1000004330 PRODUCT_HIER1 

 
 

Note: For any newly defined Hierarchy, a row will have to be 
inserted to this table manually for SCD to process that Hierarchy. You 
can only specify one Hierarchy for each dimension. 

 

 

• SYS_TBL_MASTER 

The solution installer populates one row per dimension for the seeded dimensions 
in this table. 

 

Column Name Data Type Column Description 

MAP_REF_NUM NUMBER(3) 

NOT NULL 

The Mapping Reference 

Number for this unique 

mapping of a Source to a 

Dimension Table. 

TBL_NM VARCHAR2(30) 

NOT NULL 

Dimension Table Name. 

STG_TBL_NM VARCHAR2(30) 

NOT NULL 

Staging Table Name. 

SRC_PRTY NUMBER(2) 

NULL 

Priority of the Source when 

multiple sources are mapped 

to the same target. 

SRC_PROC_SEQ NUMBER(2) 

NOT NULL 

The sequence in which the 

various sources for the 

DIMENSION will be taken up 

for processing. 

SRC_TYP VARCHAR2(30) 

NULL 

The type of the Source for a 

Dimension, that is, 

Transaction Or Master Source. 

DT_OFFSET NUMBER(2) 

NULL 

The offset for calculating the 

Start Date based on the 

Functional Requirements 

Document (FRD). 

SRC_KEY NUMBER(3) 

NULL 

 

 
Example: 



SCD Configuration 5-5 

Tables Used by the SCD Component 
 

 

 
This is the row inserted by the solution installer for the product dimension. 

 

MAP_REF_NUM 128 

TBL_NM DIM_PRODUCT 

STG_TBL_NM DIM_PRODUCT_V 

SRC_PRTY fl 

SRC_PROC_SEQ 1 

SRC_TYP MASTER 

DT_OFFSET 0 

 
Note: For any newly defined dimension, a row will have to be inserted to this 
table manually. 

• SYS_STG_JOIN_MASTER 

The solution installer populates this table for the seeded dimensions. 
 

Column Name Data Type Column Description 

MAP_REF_NUM NUMBER(3) 

NOT NULL 

The Mapping Reference 

Number for this unique 

mapping of a Source to a 

Dimension Table. 

COL_NM VARCHAR2(30) 

NOT NULL 

Name of the column in the 

Dimension Table. 

COL_TYP VARCHAR2(30) 

NOT NULL 

Type of column. The possible 

values are given in the 

following section. 

STG_COL_NM VARCHAR2(60) 

NULL 

Name of the column in the 

Staging Table. 

SCD_TYP_ID NUMBER(3) 

NULL 

SCD type for the column. 

PRTY_LOOKUP_REQD_FLG CHAR(1) 

NULL 

Column to determine whether 

Lookup is required for 

Priority of Source against the 

Source Key Column or not. 

COL_DATATYPE VARCHAR2(15) 

NULL 

The list of possible values are 

VARCHAR, DATE, and 

NUMBER, based on the 

underlying column datatype. 

COL_FORMAT VARCHAR2(15) 

NULL 

 

 
The possible values for column type (the COL_TYPE column) in SYS_STG_JOIN_ 
MASTER table are: 

PK - Primary Dimension Value (can be the multiple of the given Mapping 
Reference Number) 

SK - Surrogate Key 



Executing the SCD Component 

5-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
DA - Dimensional Attribute (may be multiple for a given “Mapping Reference 
Number”) 

SD - Start Date 

ED - End Date 

LRI - Latest Record Indicator (Current Flag) 

CSK - Current Surrogate Key 

PSK - Previous Surrogate Key 

SS - Source Key 

LUD - Last Updated Date/Time 

LUB - Last Updated By 

Example: 

This is the row inserted by the solution installer for the product dimension. 
 

MAP_REF_NUM 128 

COL_NM V_PRODUCT_NAME 

COL_TYP DA 

STG_COL_NM V_PRODUCT_NAME 

SCD_TYP_ID 2 

PRTY_LOOKUP_REQD_FLG N 

COL_DATATYPE VARCHAR 

COL_FORMAT fl 

 
Note: For any newly defined dimension, the column details will have to be 
inserted to this table manually. 

• DIM_< dimension name >_V - The database view which SCD uses as the source. 

DIM_PRODUCTS_V 

These views come as part of install for the dimensions seeded with the application. 

Note: For any newly defined dimension, a view will have to be created, which is 
similar to that of DIM_PRODUCTS_V. 

A sequence should be created for every user-defined dimension, using the below 
query: 

create sequence SEQ_< DIMENSION > minvalue 1 

maxvalue 999999999999999999999999999 

increment by 1 

 

Executing the SCD Component 
You can execute the SCD component from the Operations (formerly Information 

Command Center (ICC) framework) module of OFSAAI. 



Executing the SCD Component 

SCD Configuration 5-7 

 

 

 
The SCD component for OFSAA BI applications installers has been seeded with the 

Batch ID <INFODOM>_SCD, which can be executed from Batch Execution section of 

OFSAAI. 

You can also define a new Batch and an underlying Task definition from the Batch 

Maintenance window of OFSAAI. For more information on defining a new Batch, refer 

to section How to Define a Batch. 

To define a new task for a Batch definition: 

• Select the check box adjacent to the newly created Batch Name in the Batch 

Maintenance window. 

• Click Add (+) button from the Task Details grid. 

• The Task Definition window is displayed. 

• Enter the Task ID and Description. 

• Select Run Executable component from the drop down list. 

• Select the following from the Dynamic Parameters list: 

Datastore Type - Select the appropriate datastore type from the list 

Datastore Name - Select the appropriate datastore name from the list 

Executable - Enter scd,<map ref num> For example, scd,2 

Wait - Click Yes if you want to wait till the execution is complete or click No to 
proceed with the next task. 

Batch Parameter - Click Yes in Batch Parameter field if you want to pass the batch 
parameters to the executable and click NO otherwise. 

• Click Save. 

• The Task definition is saved for the selected Batch. 

• Click Parameters. Select the following from the Dynamic Parameters List and then 

click Save: 

The map ref number values available for the Executable parameter are: 

• -1, if you want to process all the dimensions. The Executable parameter mentioned 

earlier is: scd,-1. 

• If you want to process for a single dimension, query the database table SYS_TBL_ 

MASTER and give the number in the MAP_REF_NUM column for the dimension 

you want to process. These are the ones which come seeded with the install. If you 

want to process for Product dimension, the Executable parameter mentioned 

earlier is: scd,6. 

MAP_REF_NUM TBL_NM 

126 DIM_ORG_UNIT 

127 DIM_GL_ACCOUNT 

128 DIM_PRODUCT 



Checking the Execution Status 

5-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 

MAP_REF_NUM TBL_NM 

129 DIM_COMMON_COA 

 

• You can execute a Batch definition from the Batch Execution section of OFSAAI 

Operations module. 

 

Checking the Execution Status 
The Batch execution status can be monitored through Batch Monitor section of 

OFSAAI Operations module. 

The status messages in batch monitor are: 

N - Not Started 

O - On  Going 

F - Failure 

S — Success 

The execution log can also be accessed on the application server in the directory $FIC_ 

DB_HOME/log/ficgen, where file name will have the Batch Execution ID. 

The detailed SCD component log can be accessed on the application server in the 

directory $FIC_HOME by accessing the following path /ftpshare/<infodom 

name>/logs. 

Note: Check the .profile file in the installation home if you are unable to find this path. 

The Event Log window in Batch Monitor section provides execution logs, in which the 

top row is the most recent. Any errors during the Batch execution are listed in the logs. 



  6 

Mapping Export in Metadata Browser 6-9 

 

 

 
 

Mapping Export in Metadata Browser 

 
Procedure 

1. Login to OFSAAI Screen. 

2. Click Metadata Browser. 
 
 

 

3. Metadata Browser window will open. 

 

 

4. Click the Object tab. 

 
 



Procedure 

6-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide 

 

 

 
 
 

 
 

5. Select the Data mapping option as shown in the below screenshot. 

6. In the Top, select the PDF Report button. 

7. Click Excel Report option to export the definition in Excel format. 



  7 

Limit Management A-3 

 

 

 
 

Limit Management 
 
 

 

 
 
 

 
Overview 

This section covers the following topics: 

• Overview 

• Functional Flow 

• Preparing and Uploading Limit Definitions 

 
 

Limit functionality is useful if you want to compare the reprice gap measures 
calculated by ALM application with a limit set as per the risk policy of bank. This is 
done to assess current level of risk and take corrective actions when required. 

Using this, you can define following: 

1. Set and monitor net repricing gap limit 

2. Set and monitor cumulative repricing gap limit 

Limit can be defined in Amount or Percent terms and in base currency or in 
consolidated currency or both. 

Limits are defined at granularity of below dimensions: 

• Legal Entity 

• Organization Unit 

• Currency 

• Time Bucket 

• Rate Scenario 

Following ALMBI reports are impacted: 

• Repricing Gap Summary in Base Currency 

• Repricing Gap Summary in Consolidated Currency 

• Repricing Gap Across Dates in Base Currency 

• Repricing Gap Across Dates in Consolidated Currency 



Functional Flow 

A-4 Oracle Financial Services Asset Liability Management Analytics User Guide 

 

 

 

Functional Flow 
 
 

 

Preparing and Uploading Limit Definitions 
Step 1: Create limit definition with the following attributes and upload data to table 
STG_ALM_GAP_LIMIT_DTL: 

 

 
Column Name 

 
Name 

Data 
Type 

 
Nullable 

Primary 
Key 

 
Description 

D_EFFECTIVE_ 
END_DATE 

Effective End Date DATE Yes No Date till which the 
limit definition is 
effective. 

D_EFFECTIVE_ 
START_DATE 

Effective Start Date DATE Yes No Date from which the 
limit definition is 
effective. 

FIC_MIS_DATE Extraction Date DATE No Yes Date till which the 
limit definition is 
effective. 

N_BUCKET_ 
NUMBER 

Bucket Number NUMBER 
(5) 

No Yes This is to identify 
dynamic bucket 
number. 

N_LWR_LIMIT_ 
AMOUNT 

Lower Limit 
Amount 

NUMBER 
(22,3) 

Yes No Normally the limit 
will be specified as a 
range. Lower value 
of the range must be 
given here. 

 
 



Preparing and Uploading Limit Definitions 

Limit Management A-5 

 

 

 
 

 

 
Column Name Name 

Data 
Type Nullable 

Primary 
Key Description 

 

N_START_ 
DATE_INDEX 

Start Date Index NUMBER 
(5) 

No Yes This is to identify 
dynamic bucket start 
dates. 

N_UPR_LIMIT_ 
AMOUNT 

Upper Limit 
Amount 

NUMBER 
(22,3) 

Yes No Normally the limit 
will be specified as a 
range. Upper value 
of the range must be 
given here. 

V_ALM_GAP_ 
MEASURE 

ALM Gap Measure 
Name 

VARCH 
AR2(100) 

No Yes Name of the measure 
for which limit is 
specified. Indicative 
Values are 'Net 
Reprice Gap' and 
'Cumulative Reprice 
Gap'. 

V_CURRENCY_ 
TYPE_CD 

Currency Type 
Code 

VARCH 
AR2(40) 

No Yes This column decides 
whether the given 
limits are for Base 
(Natural) currency or 
consolidated 
(Reporting) currency. 
Indicative Values are 
‘Entered’ for 
base/natural 
currency and 
‘Functional’ for 
consolidated/reporti 
ng currency. 

V_FCAST_ 
RULE_NAME 

Forecast Rate Rule 
Name 

VARCH 
AR2(60) 

No Yes Name of the forecast 
rate rule for which 
limit is specified. 

V_ISO_ 
CURRENCY_ 
CD 

ISO Currency 
Code 

VARCH 
AR2(3) 

No Yes Code of the currency 
for which limit is 
specified. In case 
currency type is 
reporting then this 
column will store 
reporting currency 
code. 

V_LIMIT_ 
METHOD 

Limit Method VARCH 
AR2(60) 

Yes No Manner in which 
limit is specified. 
Indicative Values are 
'Absolute' when limit 
is defined as amount 
or 'Relative' when 
limit is defined in 
terms percentage. 

V_LV_CODE Legal Entity Code VARCH 
AR2(20) 

No Yes Stores the code for 
the legal entity to 
which the branch 
belongs. 



Preparing and Uploading Limit Definitions 

A-6 Oracle Financial Services Asset Liability Management Analytics User Guide 

 

 

 
 

 

 
Column Name Name 

Data 
Type Nullable 

Primary 
Key Description 

 

V_ORG_UNIT_ 
CODE 

Organization Unit 
Code 

VARCH 
AR2(40) 

No Yes This column stores 
the cost center to 
which the account 
belongs to. Dim_ 
Org_Unit is the 
equivalent dimension 
table for this column. 

V_SCENARIO_ 
NAME 

Scenario Name VARCH 
AR2(40) 

No Yes Name of the forecast 
rate scenario for 
which limit is 
specified. 

V_TIME_ 
BUCKET_ 
NAME 

Time Bucket Name VARCH 
AR2(30) 

No Yes Name of the time 
bucket which has 
been created from UI 
and for which limit is 
being specified. 

 

Step 2: Maintain limit in processing / metadata tables 

To maintain the limit in processing/metadata table, you can execute the batch 
<INFODOM>_ALM_GAP_LIMIT_LOADER (GAP Limits Loader) from the ICC Batch 
screen within OFSAAI framework. There is a seeded batch <INFODOM>_ALM_GAP_ 
LIMIT_LOADER with the following parameters for the task: 

• Execution date: Date of batch execution 

• Batch_run_id: ID of batch 

Here, no parameters are required from user. 

During this batch execution, data is uploaded and copied to processing area where 
master definitions with changes over time will be maintained. Quality check and limit 
definition updating are also performed here. 

Following quality checks will be performed here: 

1. Dimension data: All values like legal entity, currency etc. should be checked to 
confirm that they are present in respective dimension tables and are active. This 
includes the following: 

1. Check if the legal entity code for a given record conforms to values in DIM_ 
LEGAL_ENTITY_B; only those values which are ‘leaf-only’ and ‘enabled’ are 
considered 

2. Check if the currency type code for a given record conforms to values in FSI_ 
CURRENCY_TYPE_MLS 

3. Check if the currency code for a given record conforms to ISO codes in FSI_ 
CURRENCIES 

2. Metadata: Time bucket, start date index, forecast rule, scenario should be checked 
with relevant metadata tables to confirm that there correct and active. This 
includes the following: 

1. Check if the bucket-name for a given record conforms to values in FSI_TIME_ 
BUCKET_MASTER; follow this up and check if the bucket number for that 
particular record exists in DIM_RESULT_BUCKET 



Preparing and Uploading Limit Definitions 

Limit Management A-7 

 

 

 
2. Check if the start-date index for a given record conforms to the bucket-name : 

start-date index mapping in FSI_LR_BUCKETS_AUX and TIME_BUCKET_ 
SYS_ID 

3. Check if the forecast-rule name for a given record conforms to values in FSI_ 
M_OBJECT_DEFINITION_TL; follow it up and check if the scenario-name for 
that record conforms to forecast-rule name : scenario name mapping in FSI_ 
FCAST_RATES_SCENARIOS 

3. Values given for limit method and reprice measures must be from prescribed list. 

4. Check if the repricing gap measure is one of 'NET REPRICE GAP' or 
'CUMULATIVE REPRICE GAP' 

5. Effective start date should be LESSER THAN effective end date. However, the 
date of execution (As of Date) can be LESS THAN, GREATER THAN AND 
EQUAL TO effective start date. The date of execution is allowed to be LESS THAN 
AND EQUAL TO effective end date but never greater than the effective end date. 

6. The limit type should be one of ‘ABSOLUTE’ or ‘RELATIVE’ 
 

Limit amount – lower value Limit amount – upper value 

0 100 

110 200 

 
Here, lower value starts from 110 whereas upper value of previous band was 100. 
Thus there is break i.e. 101-109 is lost 

1. When limit method is ‘Absolute‘, then upper value of limit should be greater 
than lower value and there should be no breakage of gap between given 
ranges. Example: If limit is defined in way then there is a break. 

2. When limit method is ‘Relative’, then lower limit value should not be less 
than 0 and upper value should not be more than 100 

7. ‘Valid till’ date is in future (higher than as of date) and greater that ‘valid from’ 
date. 

8. Conditional upper and lower limits include followings: 

1. Succeeding lower limit should be continuous with previous upper limit 
whether the method is Absolute or Relative. (bucket continuity constraint) 

2. Limits should be non-negative irrespective of method or lower/upper 

3. Upper limit should be greater than lower limit 

4. All buckets in a set (as differentiated by bucket name after filtering through 
other Primary Key columns) must follow the same limit method. 

5. For limit method RELATIVE, first lower limit must be 0 and last upper limit 
should be 100 to cover the entire percentage spectrum; of course neither limit 
should cross 100 at any stage 

If any record within a limit definition fails the quality test, entire limit definition will 
be rejected and a message will be logged in FSI_ MESSAGE_LOG table. 

Step3: Prepare limit definition for reports 

In this step, limit definitions from master will be prepared for use in BI by reports. You 
can execute this from the ICC Batch screen within OFSAAI framework. A seeded batch 



Preparing and Uploading Limit Definitions 

A-8 Oracle Financial Services Asset Liability Management Analytics User Guide 

 

 

 
INFODOMNAME_TRANSFORMALMRESULT is provided with the Task component 
as ALMBI TRANSFORMATION and following parameters for the task: 

• Execution date: Date of batch execution 

• Batch_run_id: ID of batch 

• Process ID (PID) : The process for which the task is to be executed, either from UI 
or from back-end 

• Limit flag(b_limit_flag): Possible values are 'Y' or 'N'; the limits should be 
prepared only if flag is 'Y' 

• Re-Run flag(p_re_run_flag): Possible values are 'Y' or 'N'; if flag is 'Y', previously 
present limit definitions will be removed 

Here, Process ID, Limit Flag and Re-Run parameters are required user input. 


	Documentation Accessibility
	Access to Oracle Support
	Structure
	Related Information Sources
	Introduction
	List of Acronyms Used in the Document
	Boundaries and Limitations
	Instrument Table - ID Numbers
	Dimension Leaf Member Set Up
	Balances
	Rates
	Hierarchy Level Limitation

	Adding Dimension Tables and Key Dimension (Leaf) Registration
	Adding Dimension Tables
	Adding Key Dimension Tables
	DIM_ORG_UNIT_B
	DIM_ORG_UNIT_TL
	DIM_ORG_UNIT_ATTR
	DIM_ORG_UNIT_HIER

	Adding Simple Dimension Tables
	FSI_<DIM>_CD
	FSI_<DIM>_MLS


	Adding Dimension Column To Required Objects
	Assigning Processing Key Property
	Uploading ERwin Model
	Leaf Registration
	Leaf Registration Procedure
	Executing Leaf Registration Procedure
	Example
	Example


	Modify Unique Indexes
	Executing Object Registration Validation

	Adding Custom Instrument Tables
	Super-class Entities
	Steps in Creating Custom Instrument Table
	Setting Table Classifications
	Unique Index
	Portfolio Selection
	Adding a new user defined column as a Portfolio column for use in all Instrument tables

	Object Registration Validation

	Adding Custom Transaction Tables
	Super-class Entities
	Steps In Creating Custom Transaction Table
	Setting Table Classifications
	Setting Processing Key Property

	Unique Index
	Object Registration Validation

	Adding Custom Lookup Tables
	Steps In Creating Lookup Table
	Setting Column Properties
	Setting Table Classifications
	Registering Lookup Tables and Validation
	Lookup Table Driver Definition
	Mapping of Column to Processing Key
	Mapping of Column for Range Property
	Mapping of Column for Look up Return Value

	Super-class Entities
	Steps to create Custom Ledger Class Table
	Setting Table Classifications
	Setting Processing Key Property
	Unique Index
	Removing the Dimensions
	Object Registration Validation

	Object Registration and Validation
	User-Assignable Table Classification
	Requirement For Table Classification
	Validation Procedure
	Executing the Validation Procedure
	Exception Messages
	Exception 1: FAILED: Table Property 1030 - Validate Correction Key
	Exception 2: FAILED: Table Property 1030 - Validate Correction Key
	Exception 3: FAILED: Table Property 1030 - Validate Transaction Key
	Exception 4: FAILED: Table Property 1000 - Validate Instrument Leaves


	Defining Alternate Rate Output Columns
	User-Defined Properties
	Uploading the Model

	User Defined Properties
	Table Level User Defined Properties
	Column Level User Defined Properties

	Modifying the Precision of Balance Columns In Ledger Stat

	Utilities
	Reverse Population
	Tables As Part Of Reverse Population
	Reverse Population Procedure
	Executing the Reverse Population Function
	Exception Messages
	Exception 1: Error. While getting dimension details
	Exception 2: Error. While generating hierarchy Query
	Exception 3: Error. While populating Nodes


	Product Instrument Mapping
	Tables Requiring Synchronization
	Product Instrument Table Map Procedure
	Executing the PRODUCT_INSTRUMENT_TABLE_MAP Procedure
	Exception Messages
	Exception 1: Table does not exist
	Exception 2: Column does not exist


	Instrument Synchronization
	Tables Requiring Synchronization
	Dimension Member Synchronization
	Codes Synchronization
	Executing the SYNCHRONIZE_INSTRUMENT Procedure
	Exception Messages
	Exception 1: Table is not an Instrument or LEDGER_STAT table
	Exception 2: Table has invalid seeded FINANCIAL_ELEM_ID values
	Exception 3: Description table does not exist


	Stage Synchronization
	Tables Requiring Synchronization
	Dimension Member Synchronization
	Code Synchronization
	Executing the Synchronize Stage Procedure
	Exception Messages
	Exception 1: Description table does not exist
	Exception 2: Values have been found for Reserved Code Description objects


	Ledger Load Undo
	Parameters
	Undo Mechanism
	Executing Undo Engine
	./LEDGER_LOAD_UNDO.sh<parameters>

	Exception Messages

	Data Slicing
	Overview
	Process flow
	Executing the Data Slicing Function
	1. Navigate to Common Object Maintenance>Operations>Batch Maintenance



	Data Loaders
	Dimension Loaders
	Dimension Loader Overview
	Enhancements to Support Alphanumeric Code in Dimensions
	Tables that are Part Of Staging
	Populating STG_<DIMENSION>_HIER_INTF Table
	Column REV_DIMENSIONS_B.MEMBER_CODE_COLUMN

	Dimension Load Procedure
	Dimension Leaf Member Set Up
	Deletion of Dimension Members used in a Hierarchy

	Setting up Dimension Loader
	Executing the Dimension Load Procedure
	Exception Messages
	Exception 1: Error. errMandatoryAttributes
	Exception 2: Error. errAttributeValidation
	Exception 3: Error. errAttributeMemberMissing

	Executing the Dimension Load Procedure using Master Table approach
	Approach 1
	Approach 2

	Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from DIM_<DIMENSION>_ATTR table
	For Example

	Truncate Stage Tables Procedure
	Executing the Truncate Stage Tables Procedure


	Simple Dimension Loader
	Creating Simple Dimension Stage Table
	Configuration of Setup Tables
	Executing the Simple Dimension Load Procedure
	Exception Messages

	Historical Rates Data Loader
	Tables Related to Historical Rates
	Populating Stage Tables
	Executing the Historical Rates Data Loader T2T
	Re-Load Of Historical Rates

	Forecast Rate Data Loader
	Forecast Rate Data Loader Tables
	Populating Forecast Rate Stage Tables
	STG_FCAST_EI

	Executing the Forecast Rate Data Load Procedure
	Forecast Rate Loader – Method 1
	Forecast Rate Loader – Method 2

	Exception Messages

	Prepayment Rate Data Loader
	Prepayment Rate Loader Tables
	Prepayment Rate Data Loader
	Column mapping from source to target

	Executing the Prepayment Model Data Loader
	To view results:

	Exception Messages
	Exception 1: Error while fetching the Object Definition ID from Object Definition Table.
	Exception 2: Error. More than one prepayment model sys ID is present for the given definition.
	Exception 3: Error. Data is present in additional dimension ID column than those defined in FSI_ M_PPMT_MODEL.
	Exception 4: The value in the Dimension ID column is not matching with the value present in the corresponding column in metadata table.
	Exception 5: The number of records for the staging table for a given Prepayment Model Name is more than those calculated by multiplying the number of buckets in FSI_M_PPMT_MODEL table for the given model name.


	Stage Instrument Table Loader
	Stage Tables
	Populating Stage Tables
	Mapping To OFSAA Processing Tables
	Populating Accounts Dimension
	Executing T2T Data Movement Tasks
	Re-Load Of Instrument Data

	Customer T2T Loading
	Dependencies
	Flow Diagram for Customer T2T
	Executing T2T Data Movement Task

	DIM_Party Population
	Execution from ICC Batch

	Instrument Summary Table
	Mapping To OFSAA Summary Table
	Dependencies
	Executing T2T Data Movement Tasks
	Re-Load Of Instrument Summary Data

	Transaction Summary Table Loader
	Stage Tables
	Populating Stage Tables
	Mapping To OFSAA Processing Tables
	Dependencies
	Executing T2T Data Movement Tasks
	Re-Load Of Transaction Summary Data

	Ledger Data Loader
	Features of the load procedure
	Overview of the Load Process
	Setup for the LEDGER_STAT load utility
	Step 1: Populate STG_GL_DATA
	Creating Load Table
	Tables Related to LEDGER_STAT Load Procedure
	Populating Stage Tables
	Executing LEDGER_STAT Load Procedure
	CALENDAR_MONTHS
	FISCAL_ONE_MONTH
	FISCAL_RANGE
	Executing LEDGER_STAT Load Procedure for MULTI CURRENCIES
	Exception Messages
	Tables Cleanup After Truncation Of Ledger_Stat


	Cash Flow Loader
	Tables related to Cash Flow Loader
	Data Validation Steps
	Executing Cash Flow Loader
	Method 1
	Case 1. When Process id is null:
	Case 2. When Process id is not null:
	SETUP_MASTER Sample Data
	FSI_CASH_FLOW_LOADER_SETUP Sample Data
	FSI_M_ALM_PROCESS Sample Data
	STG_ACCOUNT_CASH_FLOWS Sample Data Instrument Cashflow Data
	Aggregate Data Sample
	Method 2

	Exception Messages
	• Exception 1
	• Exception 2
	• Exception 3
	• Exception 4
	• Exception 5
	• Exception 6
	• Exception 7
	• Exception 8
	• Exception 9
	• Exception 10
	• Exception 11
	• Exception 12
	• Exception 13
	• Exception 14
	• Exception 15
	• Exception 16
	• Exception 17
	• Exception 18


	Pricing Management Transfer Rate Population Procedure
	ALMBI Transformation
	Hierarchy Transformation
	Executing the Hierarchy Flattening Transformation
	SQL Example
	PLSQL Example:
	Using OFSAAI ICC Framework


	Dim Dates Population
	Fact Ledger Stat Transformation
	Financial Element Dimension Population
	Prerequisites
	Tables Used by the Financial_Elem_Update Transformation
	Executing the Financial_Elem_Update Transformation
	Checking the Execution Status

	Payment Pattern Loader
	Executing the Payment Pattern Loader Procedure
	Exception Messages

	GAP Limits Loader
	GAP Limits Loader Tables
	Executing the Gap Limit loader Procedure
	Exception Messages
	Exception 1: ALM GAP Limit Loader exited but no records were inserted into FSI table.
	Exception 2: Errors recorded in internal memory but could not be logged in FSI_ MESSAGE_LOG. Exiting.
	Exception 3: Could not insert records into internal memory. It may be a count mismatch b/w consolidated_records and pk_iter.
	Exception 6: Invalid Legal_Entity_Code: <CODE>
	Exception 7: Invalid Org_Unit_Code: <CODE>
	Exception 8: Invalid Currency: <CCY>
	Exception 9: Invalid Currency_Type_Code: <CCY_Type>
	Exception 10: Invalid Time_Bucket_Name: <BKT_NAME>
	Exception 11: Invalid Bucket_Number: <NUM> for Time_Bucket_Name: <BKT_ NAME>
	Exception 12: Invalid Start_Date_Index<INDEX> for Time_Bucket_Name: <BKT_ NAME>
	Exception 13: Invalid Forecast_Rate_Rule_Name: <FCST_RULE_NAME>
	Exception 14: Invalid Scenario_Name: <SCEN_NAME> for Forecast_rate_rule_ name: <FCST_RULE_NAME>
	Exception 15: Invalid Repricing_GAP_Measure: <MEASURE>
	Exception 16: Eff_End_Date[<DATE>] must be later than or same as AS_OF_ DATE[<EXECUTION_DATE>]
	Exception 18: Invalid Limit_Method: <LIMIT_METHOD>
	Exception 19: GAP_Limits cannot be negative
	Exception 20: GAP lwr_limit must be lesser than upr_limit
	Exception 21: Bucket Continuity Constraint: Current bucket''s lower_limit must be previous bucket''s upper_limit+1
	Exception 22: Bucket Limit_Method Mismatch: All buckets in a set must follow the first bucket''s limit method
	Exception 23: For Limit Method: RELATIVE, first bucket''s lower_limit must be 0
	Exception 24: For Limit Method: RELATIVE, last bucket''s upper_limit must be 100
	Exception 25: For Limit Method: RELATIVE, lower_limit must be b/w [0,upper_ limit)
	Exception 26: For Limit Method: RELATIVE, upper_limit must be b/w (lower_ limit,100]
	Exception 27: Record will be rejected due to error(s) in row(s) indicated by Bkt_ num(s): <BAD_BKT_NUMS>
	Exception 28: Error in Data Quality Validator : dq_validator.
	Exception 29: Error in bulk_logging, erroroneous rows could not be recorded.
	Exception 30: No good records were found in the STG Table.
	Exception 31: Error in target_insert_update: <ENGINE GENERATED ERROR MESSAGE>.
	Exception 32: Error in target_insert_update
	Exception 33: Could not cleanup old records for batch run id: <BATCH_RUN_ID>


	Material Currency Identifier
	Material Currency Identifier Tables
	Executing the Material Currency loader Procedure
	Exception Messages
	Exception 1: Table '<INSTRUMENT_TABLE_NAME>' not found in current schema. This table will be ignored.
	Exception 2: Error during inserting asset records from '<INSTRUMENT_TABLE_ NAME>': <ENGINE_GENERATED_MESSAGE>. Table will be ignored.
	Exception 3: Error in utility/task ''ALM Material Currency Identification''. Please check if username is valid. In rare cases, it may be an internal DB error.
	Exception 4: Error in utility/task ''ALM Material Currency Identification''; off-balance-sheet flag must be 'Y' or 'N'.
	Exception 5: Error in utility/task ''ALM Material Currency Identification'' during insert/merge operation on '<ISNTRUMENT_TABLE_NAME>'. OPERATION ABORTED.
	Exception 6: Error in utility/task ''ALM Material Currency Identification''; Please ensure that 1. material threshold is between [0,1]; 2. a valid comparison operator has been provided; 3. Reporting currency is a valid ISO code.
	Exception 7: Error in utility/task ''ALM Material Currency Identification''; Insert operation on FCT_ALM_SIGNIFICANT_CURRENCY failed, OPERATION ABORTED. Probable reason: foreign key violation in FCT_* table on column 'N_ ENTITY_SKEY'.
	Exception 8: Error in utility/task ''ALM Material Currency Identification''; Insert/Update operation on DIM_DATES failed; OPERATION ABORTED.
	Exception 9: Unhandled exception in utility ''ALM Material Currency Identification''; FCT_ALM_SIGNIFICANT_CURRENCY will be returned to its initial state. Error: <ENGINE_GENERATED_ERROR>
	Exception 10: Could not cleanup old records for batch run id: <BATCH_RUN_ID>


	Behaviour Pattern Loader
	Executing the Behaviour Pattern Loader Procedure
	Exception Messages
	Exception 1: No records found in STG_BEHAVIOUR_PATTERN_NRP for <DATE>
	Exception 2: Error in Wrapper_bp_loader: <ENGINE_GENERATED_ERROR_ MESSAGE>
	Exception 3: Issue in look_up_tbl procedure: <ENGINE_GENERATED_ERROR_ MESSAGE>
	Exception 4: Issue in procedure: key_val_look_up: <ENGINE_GENERATED_ ERROR_MESSAGE>
	Exception 5: ROW # <ROWNUM>: N_PATTERN_CD out of range.
	Exception 6: ROW # <ROWNUM>: N_TENOR is not a valid number (must be >0).
	Exception 7: ROW # <ROWNUM>: BEHAVIOUR TYPE DOES NOT MATCH VALID BEHAVIOUR TYPES
	Exception 8: ROW # <ROWNUM>: TENOR UNIT DOES NOT MATCH VALID TENOR UNITS.
	Exception 9: ROW # <ROWNUM>: BEHAVIOUR SUB-TYPE EITHER DOES NOT EXIST OR IS INCORRECT FOR GIVEN BEHAVIOUR TYPE.
	Exception 10: ROW # <ROWNUM>: Warning: Replicating_Portfolio_Flag was NOT NULL but neither "Y" nor "N"; Will be replaced with "N"
	Exception 11: ROW # <ROWNUM>: New pattern code but name is already in use for PATTERN_CD: <PATTERN_CD_NAME>. Please note names are NOT case sensitive.
	Exception 12: ROW # <ROWNUM>: Warning: PATTERN_CODE already exists in FSI_BEHAVIOUR_PATTERN_MASTER with name: <NAME>. This name will be retained. Only the newer(date) of these two records will be kept.
	Exception 13: Error in Dq_validator: <ENGINE_GENERATED_MESSAGE>
	Exception 14: Definitions with negative N_PATTERN_PERCENTAGE. This PATTERN_CD will be ignored.
	Exception 15: Pattern codes with N_PATTERN_PERCENTAGE violation found (>100). These will be ignored.
	Exception 16: No violations of N_PATTERN_PERCENTAGE found for any pattern code & behaviour type combination.
	Exception 17: Error in procedure "percentage_chk": <ENGINE_GENERATED_ MESSAGE>
	Exception 18: Duplicate older Behaviour Pattern Definition in STG_TABLE. It will be ignored.
	Exception 19: Date comparison check passed; either no clashes found between STG_BEHAVIOUR_PATTERN_NRP records and FSI_BEHAVIOUR_PATTERN_
	Exception 20: Error in flg_older: <ENGINE_GENERATED_MESSAGE>
	Exception 21: Error During Merge Operation in FSI_BEHAVIOUR_PATTERN_ MASTER: <ENGINE_GENERATED_MESSGE>
	Exception 22: Error During Merge Operation in FSI_BEHAVIOUR_PATTERN_ DETAIL: <ENGINE_GENERATED_MESSGE>
	Exception 23: Could not clean-up old records for batch run id: <BATCH_RUN_ID>



	SCD Configuration
	Overview of SCD Process
	Prerequisites
	Tables Used by the SCD Component
	Executing the SCD Component
	Checking the Execution Status
	Mapping Export in Metadata Browser
	Procedure

	Limit Management
	Overview
	Functional Flow
	Step 1: Create limit definition with the following attributes and upload data to table STG_ALM_GAP_LIMIT_DTL:
	Step 2: Maintain limit in processing / metadata tables
	Step3: Prepare limit definition for reports




