Oracle Financial Services Data Model
Utilities

User Guide

Release 8.1.1.0.0

May 2024

ORACLE

Financial Services

ORACLE

OFS DMU User Guide
Copyright © 2024 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are commercial computer software pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim
any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

For information on third party licenses, click here.

OFS DATA MODEL UTILITIES USER GUIDE | 2

http://www.google.com/
http://www.google.com/
https://docs.oracle.com/cd/E61555_01/licensing.htm

Document Control

Revision Date Change Log

Version Number
1.0 February 2021 First version of the DMU User guide version 8.1.1.0.0
2.0 June 2021 Updated User guide version 8.1.1.1.0

OFS DATA MODEL UTILITIES USER GUIDE | 3

Table of Contents

0 T o 1= - T 1"
1.1 Ty C=TqTo [=Te I ANE o 1T g ol PPV gl
1.2 Pl 1 (o O T Tl [T U0 0T o 1l
1.3 B8 Lo (T @ A =T T ST gl
1.4 R =1 C=To o Yol 8T =T o | £V 12
1.5 (@0 0 1Y) o o PP 12
1.6 15302 0o)3T 13

7 4140 T ¥ T e ' o N 14
2.1 List of Acronyms Used iN the DOCUMENT ... ce e e s ssseseeasse s sasss e seas st s sasne st asansnesessassneeen 14

3 Object Managementoiccciiissnmmmmnnnnnrsssssssssmmsss s s s s s s ssssssmmmsss s s s e s sssssssnmmmnnss s nensnsssssnnnnnnnnns 16
3.1 = ToT0 aTo T T=T Yot I IR Ty oY1 - 14 o] o =3P 16

311 INStrUMENT TADIE = ID INUIMIDEIS ...ttt sbs s eesseessneas 16
312 D)o a L=t (oY g A =Te A =T = G Y=1 U o B 16
313 21] o o Lol =2 16
314 ROTES ...ttt bR R £ R £ £ £ £ £ AR R £ £ R E A E AR R R AR R AR R R R EaEE e raEr et rarartt st s r s 17
315 L 1= d ol VA M =A =) IR T) o 14 o o 17
32 Adding Dimension Tables and Key Dimension (Leaf) REGIStration.......ooorreeeererenceesrererceese e 17
321 Yo o) aTe J D) (00 1=Ta 13 o) o I e 1o L=2=3 18
322 Adding Dimension Column TO ReQUII@d ODJECEScowwoeeeeeeeeeeeeeeeeeeeesesesesesesssesssesssssssssssessssssssssssssssssssssssssssen 32
323 ASSIGNING ProCeSSING K@Y PIOPE@ITY ...ttt sttt eeen 32
324 (/0] [oTe Lo TaTe I =1 3 T Lo = 33
07 T =T | (=T | 1 o[4o o O T 33
326 =Tl =Te Ly Ao L4 [0 g I o Yol =T LU = 33
I/ A\ [oTe | 4 VAU o] Lo TN =N [o (=5 = 37
3.2.8 Executing Object RegiStration VAlIAGEIONccoeoeoeeeeeeeeeeeeeeeeeees s e e e s sss s s s s s s s s s ans s s s s s s s s s s s s nananas 37
33 Adding CuStomM INSEIUMENT TADIES ...t se e se s ne s s s se e s e e snsne st s s sneeeeanans 37
331 Y0 oLl ol (6 Rl =11 1 [37
332 Steps in Creating Custom INStrUMENT TADIE............oeeeoeeeeeeeeeeeeeee ettt nsesasean s sasessas e annssaseeananaen 39
333 Setting TADIE CIASSIfICALIONScceeeeeerereesereetsesessesstseassssssssasasesesssasssesessssssessssssssssasssnsesssasansessssassssssasasans 40
334 (O Lo LU= [o =5 41

OFS DATA MODEL UTILITIES USER GUIDE | 4

335 Loy 0]) 0T (=Tt 1o o IO 41

336 Object ReGiStrAtioN VAIIAGUION.ceeeeeeeeeeeeeeeeeeeveeav v avar v s avassaen 42
34 Adding Custom TranSaACtioN TADIES ...ttt ettt ettt ee ettt ee et se et ee st ee et st se e ettt st ee st es e st st ssss st ssnas 42
341 SUPDCICIASS ENUILIES ...ttt ete et et et et et et et et et et et et eseses et es et esesesesasasesssasssssesasasasssesesssssasasssssasesasasasasasasasasesssnsass 43
3.4.2 Steps In Creating Custom TranSACLION TADIE..........c.eeeeeeeeeeeeeeeee ettt s st ses s annsen 43
07 NG S Y=1 v [Te B Kol o] (=R @ (e 3y [ale 11 (o) g X 43
N N U o1 1o [L= [Te L= 45
3.4.5 Object ReGiStrAtiON VAIAGION. ...ttt ee st as s as s s e e s s sseee s nseesesassssseeanansnen 46
35 Adding CUSTOM LOOKUP TADIES ...ttt ettt ettt ee et ettt ee st et ee e e e s e et es st se e st se e se st se et st ee st eeseseseseeessssneas 46
3.5.1 RY =T [M @=Tata aTe [oY) (] o3 e o] L= 46
352 RY=1auTaTe [@) [0 g pT g I 0] o =T 1 L= 47
CSCTC S Y=1 sy aTe I e o) (= @1 o X [L [0 o 47
354 Registering LOOKUD TAbleS GNA VAIAGIONeeeeerreeeeeereeeeseersstsesseetseseassssessasssssssssssnssessasassssssasssssssssasansen 47
RN N RoTo) (Vo XN e o] =0 B g AV =Tal D] i [0 i1 (o) s NS 47
3.6 Adding Management Ledger Class tabIES ... s se e se e ses e ss e s esne e s s s e seeanans 50
3.6.1 SUPCI-CIASS ENTILIES ...ttt e et s e ee s e s s e e s s s eesee s ssesee s asasesesassssseesanssesessanareassas 51
3.6.2 Steps to create Custom Ledger CIASS TADIEweeeeeeeeeeeeseeriestseseessteeseasstsesesssssssessas st sessanassssssasssssssnsasansen 52
8 WG S Y=1 4 TaTe I e o] =B @ [o X i [ale L1 Lo o U 52
3.6.4 Setting ProCeSSING K@Y PLOPEITY ...ttt ettt st s s 53
3.6.5 (8 o LU L= [T L= GO 53
9o Mo S 2 =T 0 To V2 TaTo I d g T=30 D) g T=1 013 [0 o 1 54
3.6.7 Object ReGiStrAtiON VAIIAGUION ...ttt e e ee e as s as s s e s s ns e e s nssesesansnsseeanananen 55
3.7 (0] o) =lordl 2=T =415 {g= 1 a T aTr=TaTe VA= 1o F=1 o o [N 55
371 User-Assignable Table ClASSIfICAtION.........c.cvvuevereeeereeeerseseseasisssesesssssstsessassssessasssssssssassssssssassssesssasassesssssassssesssas 56
372 Requirement FOr TAbIE CIASSIfICALIONcueeeeeeeeeeeeeeeeeeeeeeeeeeee e e e se e se s e s s e s s s s s s s s s s s s s s s s s s nanas 58
373 (a1 Lo o[g I o o= L1 = 64
3.7.4 Executing the ValidQtion PrOCEUUIE ...t s anas 64
375 L Cal=] o140 Y L=XX Y o (=2 65
3.8 Defining Alternate Rate QUtPUL COIUMNS ... se e se s e s e s e s e s s s e e s s e s 66
3.8.1 (O =TT D T =T I o) =T gy 1= 66
382 (§/0 0T o) TaTe I g L=\ [0 [=1 O 67
3.9 (U =T gl DI QY=o I oo oY =T g A= 67
3.9.1 Table Level USer DEfiN@d PrOPEITIEScccccveeeeeeeeeeeeeseseeeeseisiesesssasssssssassssssssssassssssssasssssssasassssesssasassssesssssnsees 67

OFS DATA MODEL UTILITIES USER GUIDE | 5

392 Column Level USer DefiNed PrOPEITIES ..o eeeoeeeereeeeerereeasesereae s eeseaeasassseseasasssesessssesesasasssesessssssesasasssescas 69

310 Modifying the Precision of Balance Columns IN LedZEr Statcocveceeerrerercesseseresssesesessssesesesssssesessssssesesens 72
O U 1] 1 =3 74
4.1 TN = Y= =0T o U] = T 74
4.1.1 Tables As Part Of REVEISe POPUIGTIONccvueereeeeeeeeeeeeeereeee e eeees s et asssse s s s e ses s s e seassssssesasansnen 75
4.1.2 REVEIrSe POPUIALION PIOCEUUI ...t sr s e se s s s s s s s ss e 76
413 Executing the Reverse POPUIGION FUNCEHIONcocuvereeeeeeeeeeee et eese s seses s s s e s s s sesesassseseeasanses 77
4.1.4 EXCEPTION MESSAGES......eeeeeee ettt et s et s s 79
4.2 Product INStrUMENT MapPiNg ...cceececeeererecsererecseseseesssseesesasssssesssssssessasssssssessassnssessassssssssssssnsssssassnssssssssnsessssassnsen 79
4.2.1 Tables ReqUIIING SYNCAIONIZAIONcuveeeeerereeerstreseeseststsesssssstsessas st essassssassasssssssassssssessasasssssssnsasssssassnseseas 80
422 Product Instrument TADIe MQP PrOCEAUIE. ...ttt seeres s seseasnseeseananseaseeanans e 80
4.2.3 Executing the PRODUCT_INSTRUMENT_TABLE_MAP ProCedure...........uuueeeeeeeesesesesesesrsesessssssssssssssssssssses 80
424 EXCEDLION MESSAGES......ceeeeeeereririreririeisisisiststststststststststststsastsesasasasasasssasesasassssssssss st st sssssassssssssssssssssssssssnsnsnsssnsesnsesnsns 81
43 LTS (U g T=T O A Y7 Vol T o g Y= [o T 82
4.3.1 Tables ReqUIIING SYNCRIONIZATION ...ttt ee e s s e anasa e s s s sseses s nseesessanaseeanansnen 82
4.3.2 Dimension Member SYNCRIONIZATION ..o eerees e e s s s s s e ses s seseeasssseseasanssaseasassnsseneasans 82
G 9 SR o Ya (=230 Vi Tat 10 o 7.d | 4 o) o S0P 83
434 Executing the SYNCHRONIZE_INSTRUMENT PrOCEAUIE ... eereeasneeeseasanseasesensnsnanenans 83
G T =5 (al=] o 40 g I\ (=2t o L= 84
4.4 StABE SYNCNIONIZATION . e e e s 85
4.4.1 Tables ReqUIIING SYNCAIONIZATIONceeeeeeeeee e sr s an s s s s s s anananas 86
4.4.2 Dimension Member SYNCRIONIZATIONv et e s s eas s s e ses s se e e s assseseasansnaresansnsseneasas 86
I S o Ya (=30 Vg Tl o T ¥ L Lo o U 86
4.4.4 Executing the SYynchronize Stage PrOCEAUIE. ...t sse e s s s s s s ss s s s s s s s s s s s s nananas 88
R =5 (al=] o140 g I\ (=21 Lo L= 89
45 (=T =Tl o T=To [N T o o 3 89
4.5.1 L0 =1 =T o 89
YN U s To [0\ =Tl s Te T) LY DO 90
NG S = C=TolV [1a To I U o Te [N = s Te) o L= 90
X =3 al=] o140 g I\ (=2t Te To L= 91
4.6 D 1 T ot = 9
4.6.1 (@Y= V7 =T 91

OFS DATA MODEL UTILITIES USER GUIDE | 6

o A (0T ol X3 [T 91
4.6.3 Executing the DAta SHICING FUNCHION.........cceeveeeeeeeceeeseeeeessesessssssssse s s sss s s s ssss s s s s s s s s s s s s anananas 92
LT 0 T 1= T e - T (= 95
5.1 D] g T=T o 3 T I I =T =T ST 95
511 DiImMENSION LOGAEI OVEIVIGWcueeeeeeeeeeeeeireeeesaeeseessssesesasssesee s asssesesasssesensassssseseasasssssessanssesesasssssesasasses 96
512 Enhancements to Support Alphanumeric Code in DIME@NSIONScceoeeeeeeeeeieieieeeieieieseieieieiesessssssssssssssnsssnanns 97
513 Tables that Are PArt Of STAGING ...ttt es s s se e e s ass st se s s sseseae s sseeseassssasesasansnen 98
514 Populating STG_<DIMENSION>_HIER_INTF TGADI@ ... ees s ssesssesseessseasnessseesanenes 99
515 1) (00 1=T0 X3 (oY g T Mo Ye To o o Yol =T L1 102
516 KY=1auTale WU ol D)o T=Ta K (o) g I Koo Lo L= O 104
517 Executing the Dimension LOAA PrOCEAUIE. ... eeereeassaeesean s asaseass e seseasssseneasassseseseasanseen 108
5.18 L (al=T 0y 0T L L=XT e [L= 110
519 Executing the Dimension Load Procedure using Master Table GpproQach............oveeeeeovvereeeeeeeereeereenen. 110
5.110 Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from
DIM_SDIMENSIONZ_ATTR EADIE ...ttt sttt s s nes e 112
511 Truncate Stage TADIES PrOCEAUIE. ...ttt s s s s sse s s nasen s s s sesesansnaseneasansseeas 115
5.2 Y [aaYo) (I BT g at=T gt o] g T Mo Lo [T G 16
521 Creating Simple Dimension StAGE TADIE ...t n s s s s s s s s s s s s s s n s nnas 116
522 (@oTa] e [0 deraloTgRe) AY=100] o3 Ko o] L=1 ST 118
523 Executing the Simple Dimension LOGA PrOCEAUIEoeeeoeereeeeeeeeeeeeeeeeeeeeeseesnareseasnasasean s e seeasanasenens 19
524 L (el =] o140 Y (=X o (=SS 121
53 HIStOrICal RAtES Data LOBUENeeeececerereceeere sttt st ettt e 121
531 Tables Related t0 HISTOIICAI RATES ...ttt sttt sa s as st 121
532 LYo T0] [a 1 aTe BRY e o [=a0 e o] =3 122
533 Executing the Historical Rates DAtQ LOAUEI T2Teeeeeeeeeeeieeeirieieisisieisisisisiststsasasessssssssssssssssssssssssssssssssnsns 122
534 Re-LOAA Of HIiStOICAI RALESe.eeeeeeeeeeeeeeeeeeeeeeeeteeteteteteteteteteeeeeeeaeteaeesssassssssssssssssesssssssnsssssssnsssssssssssssnsnsnsnansnsns 123
54 o) LT S R Ll B = 1= o T Yo [T 124
54.1 [20Tg=Tale Sl a (e 1 X=0 D a1 Lo [Mo Ye o L= gl o o) = 3T 124
5.4.2 Populating Forecast RAte StAGE TADIES...........eeeeeeeeeeeeieieieieieieieietetstsisisie sttt tsasasasssasasssasssssssassssssnsssssnsnsns 125
54.3 FOrecast RAte LOGAEI PrOGIGIM.......eeeeeeeeeeeeieieieieieietetsistsistsisasasastsasasssassnsssnss 127
54.4 Executing the Forecast Rate Data LOAA PrOCEAUIE.eeeveeeeeeereeeeeeeeeeeesesesessasarene s nsseseasanssasensananses 128
Lo BN =3 (ol 11 () o I\ =XYoo =X 136

OFS DATA MODEL UTILITIES USER GUIDE | 7

55 Prepayment Rat@ Data LOBET ... ettt se e es st st sttt 136

551 Prepayment RAte LOAUEE TADIES ...ttt as e s ee s es st s s s e as s e seeananseen 136
552 L C=ToTe) aa =g L a Lo a=l D e [o I Ko Te Lo L= 136
553 Executing the Prepayment MOAel DAtA LOGUENccvveeeererveresearirisisessassisissassssassssasssssessassssssssssasssssensasssseen 139
554 EXCEDTION MESSAGES......coeeeereeririeeeeses ittt ettt se et se e e e et ee et e e £ e e b b E et eb e b b e b b eb et et et esesea et esesnsnsnses 141
5.6 Stage INStrUMENT TADIE LOAEN ... e e e e e e e e e 142
5.6.1 SEAGE TADIES.......oeeeeeeeeeeeeeeeee ettt et ettt ettt et et et st et et st st et st et ss st ssssss et et et et st et st et et et et et et st as st et et asssasesasasasasasasssasasasanas 142
XA = oYo 0 o[4] g Lo IS de Lo L= e | 2] [=X3 S 143
5.6.3 Mapping To OFSAA ProCeSSIiNG TADIES ...ttt ee st as s se s s s an s e ananseen 143
5.6.4 Populating ACCOUNES DIME@NSIONceuveeeeerrereresrssisessasssstseasasssssessassssssssasassssssssassssssssasasssssessassssssssasssssssssassesees 146
5.6.5 Executing T2T DAta MOVEMENT TASKScccvevereererreresearsssesessasssssissasssssssasassssssssassssssssasasssssessassssssssasassssssssssesees 146
56.6 Re-LoAd Of INSErUMENT DAUQ........oeeeeeereeeeeeeeeee ettt e asees s s e s s asee s ssseseas s ssaseseasansseseasanssaressanssen 146
5.7 (@I g 1T 720 N I - T | =P 147
5.7.1 [z o T=Tg Lo L=] oot 1=2 148
5.7.2 Flow DiGgram fOr CUSEOMEI T2T . oeeeeeereesesesesesesessassssssessassssssssassssssssssssssssssassssssssasassssssssassssssssasassssssssssesees 149
573 Executing T2T DAt MOVEMENT TASKeeeereeeeeeeeeeeee ettt easesee s sases s s seses s e esassseneasananaseeanansnen 149
5.8 DAY = T YA 2o o 1U] - 14 o T P 150
5.8.1 eV aToT gl oY g g I (GG = e Lol o B 150
5.9 INSErUMENT SUMMIAIY TaDIE. e 150
5.9.1 Mapping TO OFSAA SUMIMIAIY TADIE ...ttt sss s s eassen 151
o D =T oY= o Lo (=7 oL =3O 151
593 Executing T2T DAta MOVEMENT TASKScoueueeeeeeriririririeieieieteisisisisiststsasasasasssasassesess 152
5.9.4 Re-Load Of InStrument SUMMQAIY DOtQ.........c.coeveveeeereerereserstseseasisetsessssssssessasssssssasssssssssassssssssasssesssssssssesseas 152
510 Transaction SUMMArY Table LOGUEN ... et ese e e e s ne s s s e e s st eas s e eesanane 153
XN (O B e o T= 0 e 2 =3 153
3 (O =0T 0] o1 4o [B e Je T2 e | 2] =3 154
5.10.3 Mapping TO OFSAA ProCeSSING TADIESeeeeeeeeeeeeeeeeeeeses e esesssss s s s nas s sasnss s s s s s s s s s s s ananas 154
X (0 A D T oY= g Lo (=7 oL =X 155
5.10.5 Executing T2T DAtG MOVEMENT TASKScevevereeeeererrrereessessissesassssssssssssssssasssasssssssssasssssssasasssasssassassssasasasas 156
5.10.6 Re-Load Of Transaction SUMMQAIY DOtQ............ccceeeeeereeeeeeeeieereeseisissesesasisesesssassssssssasassssssssassssesssasssssesssssssees 156
51 I=Ta =T D - = N o - T [157
X Y B =T (=X o) R g = (oo Lo [oY ool =Te L1 = 158
5712 OVEIVIEW Of the LOGA PrOCESS......cccceeveeeeeeeeeesesesstseseasssssssasasssesssasassssssasssssssasassssssssasassssesssassssssssasssesssssassesess 158

OFS DATA MODEL UTILITIES USER GUIDE | 8

5113 [[e 11 [0 g K 159

511.4 Setup for the LEDGER_STAT IOAU ULITIEY w..c.eeveeerrereresersesieeessiseseassssissassssssessasssssassasasssssensassssssssassssssensassssees 159
5.T1.5 EXCEPUION MESSUGES.......ceeeeeeeeeeeresrseeisesissestssssassssssssasassssssasssssssssassssssssasassssssassssssssasssssssasssssssssssssssnssssssssssssssesans 171
511.6 Tables Cleanup After Truncation Of Ledger_StQt.......... oot en s easese s s 171
511.7 Ledger Stat ClEAN UP PIrOCEUUIC...........eeeeeeeeeeeeeeeeeeetetetetetetetet et eteteteteaeteassssesssesesesesesesesesssssssssasasasesssssesssssssssssssnsnss 172
ST VA @ T o (01T o - T [T TV 172
5.12.1 Tables related t0 CASH FIOW LOGUEL ...ttt 173
3 2 0o [(o IV] o o[4 0 g I =7 o X3 177
512.3 EXECULING CASN FIOW LOGUEeeeeeeeeeeeeeeeeeeeeeeeee e ee e e s s s s s s s s n s s s s s s sn s s s s s s s s s s s s s s s s s s 178
5124 EXCEDLION MESSAGES......ceeerererererererereriririsisisesssssisasssasssasassssassnas 183
513 Pricing Management Transfer Rate Population ProCeAUIE. ... rceeorrerccere e se e ses e 185
ST S I\ | I T g1y o g Y= o T 187
ST ST o 1T 1ol YA I = T 1=] o] g T=1 0 o o O 188
5.15.1 Executing the Hierarchy Flattening TranSfOIMQUION ... eeecoeoreeereeeeeeeeeeeeeeesessaserese s nseeseasanssaseseasanses 189
516 Dim DateSs POPUIGLION ...ttt ss st s s s s s s s s s sttt s s s sne 191
517 Fact Ledger Stat TranSfOrMation ...t sss s ssse s sss s st e s s s s s s s ansnsenasansns 191
5.18 Financial Element DiImMeNnsion POPUIALION ...t e 191
L (o R = 4= o [0 1) =3 192
5.18.2 Tables Used by the Financial_Elem_Update TransformMationcweeeeeeeeeeeeerersereseesissseseasssssesessasesens 192
5.18.3 Executing the Financial_Elem_Update TransSfOrmatioNn ... oeoeoeeeeeeeeeeeeeeeeeseseasseseseaeanaseseneasanaes 192
5184 Checking the EXECULION STATUSccveveeeeeeeeereeereeeeeeeeieeeessaeasaeasassassssss s s ssssasssssasssssssssssasasassnasansasasasasasasasasasasasas 193
519 PAyMENT PAttEIN LOGUE ...ttt ettt sttt sttt ettt st st se et sttt st st sttt sttt et sttt sttt et et st st ne et st ne et 194
5.19.1 Executing the Payment Pattern LOAder PrOCEAUIE.weeeeeeeceeee e snn s s ss s s s s nnnn s s s annas 197
I L =5 al=T o140 g I\ (=2t T o L= 198
520 GAP LIMIES LOGUEN ...t sse et ss st s e e nE s E e e ne s ne st s et s 199
520.1 GAP LImitS LOAAEE TADIES.......oeeeeeeeee ettt st sttt as st nes s s 199
5.20.2 Executing the Gap Limit 10GAEr PrOCEAUI@eeeeeeeeeeeeeeeseee e essns s nassasasss s s s s s s nas s s s ananas 199
5.20.3 EXCEPLION MESSAGES......c.eeeereereeieieieeeirie ettt et et et st et sesesese e et se e sese et ee et et st et st eese st ee st sese st et st st esesnsssnsnsesnsns 200
521 Material CUIMTENCY IAENTIIEN c..ceeceeeececeee ettt ee s s et es s st ne et st ee s s s e 202
5211 Material CUrtenCY IA@NEIfIEr TADIEScoceeeeeeeeeeesereteeseseseseteesessissetesasasesesssasssssssasssssesssassnsesssasansesesasassnsens 202
5.21.2 Executing the Material Currency 10ader PrOCEAUIEc.oeeeeeeeeceeeeeee e ss s s s nsn s s s s s ann s s s annas 203
5.21.3 EXCEPLION MESSAGES......ceeeeeeeeeeieieieirie ettt ettt et et e et sesesese e et se st sese st ee e e et et et et et et st st st se et st ns st st ssesnsnsnsnsnsnsns 204
522 Behaviour Pattern LOBUEN ...ttt st s s sttt sttt e 205

OFS DATA MODEL UTILITIES USER GUIDE | 9

5.22.1 Executing the Behaviour Pattern LOGder PrOCEAUIE ...t saeeseenan e asnaneeas 207
5.22.2 EXCEPUION MESSUGES......ceeevereeeeresesestsssissestsssssasssssssssssssssssasassassssssnsssssssssssessnsasssnsens 208

6 SCD CoNfigUIrationcciccceiiciiceirris s r s m s s mn s s 21
6.1 OVEIVIEW Of SCD PrOCESS ...ucucurererecueurerereeusasesecaesseseaesasssestsassse st sasss st seasasssesest s ass st et s assneseasassns st eeasassnteeasassss st eeasassnenen 21
6.1.1 = 2n
6.1.2 LY L= 212

6.2 o= (=T |81 (TR 212
6.3 Tables Used by the SCD COMPONENT ...t se e et seeass et s e s sas st seas st e s st eas s st et s st een 213
6.4 EXECULING the SCD COMPONENT ...t rece et ce s sesee st e e s s s e seas s s ne e e s nsse e s s s st sensasanese e s ananeeeasanans 217
6.5 Checking the EXECULION SEATUS ...t se e e s st st s s st s s s e 218

OFS DATA MODEL UTILITIES USER GUIDE | 10

PREFACE

INTENDED AUDIENCE

1

11

1.2

1.3

Preface

This Preface provides supporting information for the OFS Data Model Utilities User Guide and
includes the following topics:

e Intended Audience

e Access to Oracle Support

e Structure Overview

e Related Documents

e Conventions

e Symbols

Intended Audience

The Oracle Financial Services OFS Data Model Utilities User Guide provides useful guidance and
assistance to:

e Technical end users

e Functional end users

e Data Administrators

e Consultants

e Systems Analysts

e System Administrators

e Other MIS professionals

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Structure Overview

Introduction
Object Management
Utilities

Data Loaders

L

SCD Configuration

OFS DATA MODEL UTILITIES USER GUIDE | 11

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs%20

PREFACE

RELATED DOCUMENTS

1.4 Related Documents

For more information about using OFS Data Model Utilities User Guide, see the following related
documents:

e Oracle Financial Services Asset Liability Management (OFSALM) User Guide

e Oracle Financial Services Funds Transfer Pricing User Guide

1.5 What is New in This Release for Data Model Utilities

This preface lists new features and changes in Oracle Financial Services Data Model Utilities release
v8.1.1.0.0.

e New Features
This section lists new features described in this manual.

¢ Prepayment Model Analysis: A new module, Prepayment Model Analysis has been introduced
under prepayment rules. This allows you to develop a model for prepayment rate calculations as
per the selected product and currency combination. You can have different models for different
product, currency combinations. For more information, see the Prepayment Model Analysis
section in OFS ALM User Guide.
¢ Prepayment Model; This is an existing module containing prepayment matrix, which has been
enhanced to support Manual, Integrated, and External model for prepayment rate calculations.
» If you select manual, you can continue with existing flow and manually enter prepayment
rates.
» If you select external/integrated model, selected model will auto-calculate the prepayment

rates and populate the prepayment matrix.

For more information, see the Prepayment Model section in OFS ALM User Guide.

¢ Prepayment Rate Calculation: This is a pre-requisite to run prepayment model analysis. It will
help to set up the historical prepayments data on which prepayment model will be developed. It
will capture all the prepayment events for following products:

= Loan Contracts
= Mortgages
= Term Deposit

For more information, see the Data Preparation for Prepayment Model Analysis section in OFS
ALM User Guide.

1.6 Conventions

The OFS Data Model Utilities User Guide uses the following text and font characteristics:

OFS DATA MODEL UTILITIES USER GUIDE | 12

https://docs.oracle.com/cd/F30048_01/homepage.htm
https://docs.oracle.com/cd/F30048_01/homepage.htm
https://docs.oracle.com/cd/F29933_01/get_started.htm
https://docs.oracle.com/cd/F29933_01/get_started.htm
https://docs.oracle.com/cd/F29933_01/get_started.htm
https://docs.oracle.com/cd/F29933_01/get_started.htm

PREFACE

SYMBOLS
Convention Meaning
boldface Boldface type indicates graphical user interface

elements associated with an action or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Upper case text connected by underscores Used to denote table names. For example,
FSI_O_RESULT_MASTER table or
FSI_O_PROCESS_ERRORS table.

Lower case text connected by underscores This convention is used to designate the column
name within a table. Examples of this convention
include market_value and transfer_rate.

1.7 Symbols

Bullets indicate a list of items or topics.

Numbered lists are used for sequential steps in completing a procedure.

OFS DATA MODEL UTILITIES USER GUIDE | 13

INTRODUCTION

LIST OF ACRONYMS USED IN THE DOCUMENT

Introduction

This document contains various chapters related to Data Model utilities and Data Loaders available
within the OFSAA Applications. The four chapters present in this document are: Object Management,
Utilities, and Data Loaders.

List of Acronyms Used in the Document

AcOracleronym Description

AAIl Analytical Applications Infrastructure

ALM Asset Liability Management

AMHM Attributes, Members and Hierarchy
Management

COA Chart Of Accounts

F2T File to Table

FDM Financial Data Manager

GL General Ledger

GTT Global Temporary Table

HM Hedge Management

ICC Information Command Center

INFODOM Information Domain

IP Internet Protocol

OFS Oracle Financial Services

OFSA Oracle Financial Services Applications

OFS DATA MODEL UTILITIES USER GUIDE | 14

INTRODUCTION

LIST OF ACRONYMS USED IN THE DOCUMENT

AcOracleronym

Description

OFSAA Oracle Financial Services Analytical
Applications

OFSAAI Oracle Financial Services Analytical
Applications Infrastructure

PFT Profitability

PL/SQL Procedural Language /Structured Query
Language

T2T Table to Table

TP Transfer Pricing

UDP User-Defined Property

ul User Interface

OFS DATA MODEL UTILITIES USER GUIDE | 15

OBJECT MANAGEMENT

BOUNDARIES AND LIMITATIONS

3

3.1

3.1.1

3.1.2

3.1.3

Object Management
This chapter details the steps involved in adding various client data objects into the model.
Topics:

e Boundaries and Limitations

e Adding Dimension Tables and Key Dimension (Leaf) Registration

e Adding Custom Instrument Tables

e Adding Custom Transaction Tables

e Adding Custom Lookup Tables

e Adding Management Ledger Class tables

e Object Registration and Validation

e Defining Alternate Rate Output Columns

e User Defined Properties

e Modifying the Precision of Balance Columns In Ledger Stat

Boundaries and Limitations

Instrument Table - ID Numbers

ID numbers can have a maximum length of 25 digits.

Dimension Leaf Member Set Up

Dimension Leaf values can have a maximum of 14 digits.

Only 26 key (processing) dimensions are allowed in the database. Examples of seeded key leaf types
are Common COA ID, Organizational Unit ID, GL Account ID, Product ID, and Legal Entity ID.

The maximum number of columns that the Oracle database allows in a unique index is 32. This is the
overriding constraint. After subtracting IDENTITY CODE, YEAR S, ACCUM TYPE CD,
CONSOLIDATION CD, and ISO CURRENCY CD, thisleaves 27 columns available for Key Processing
Dimensions (leaf dimensions). BALANCE TYPE CD is now part of the unique index so this brings the
maximum number of leaf columns down to 26.

Balances

Balances stored in Instrument tables are limited to 999,999,999,999.99. Balances stored in the
LEDGER STAT table are limited to 99,999,999,999.9999. The maximum precision for a balance used
in a calculation process is 15 digits, with the range of 1.7e-308 to 1.7e+308. Calculation precision on
larger numbers is compromised.

OFS DATA MODEL UTILITIES USER GUIDE | 16

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

3.1.4

3.1.5

3.2

Rates

By default, rates stored in instrument tables are limited to 999.9999 and -999.9999. More precision
can be achieved by increasing the number of decimals in the column. Internally, rates are stored with
the same precision as balances.

Hierarchy Level Limitation

Hierarchies with 15+ level is NOT supported within any Enterprise Performance Management (EPM) -
ALM/FTP/PFT/HM processes.

Adding Dimension Tables and Key Dimension (Leaf)
Registration

The following section details the process in which users can add custom key dimensions to the OFSAA
application. Users can view the registered dimension within the AMHM screens. Also, users can add
members and hierarchies for the dimension through AMHM screens.

For Simple dimensions, entries should also be made in REV_DESCRIPTION TABLES for each
Instrument and Transaction Table in which that new dimension will occur.

Registering a new Key Dimension (called as Leaf in OFSA 4.5) requires the following steps:
e Add a set of dimension tables to store leaf values in ERwin model.
e Add the key dimension column to required Entities in ERwin model.
e Assign the Processing Key Column Property (Key Dimension Columns only).
¢ Upload the model.
o Register the Key Dimension.
e Modify Unique indexes (Key Leaf Dimension only).
e Validate tables.
Each of these steps is discussed in detail in the following sections.

Additionally, perform the following steps to avoid the errors running due to Allocations that use a
Portfolio table.

6. Insertarowinto REV_COLUMN REQUIREMENTS for the custom dimension column.

7. Add the custom dimension to the Portfolio classification by following the instructions in the
section Adding a new user defined column as a Portfolio column for use in all Instrument tables.

NOTE For more information on limitation for number of key
(processing) dimensions, see the Doc ID 1478920.1.

If an allocation using a Portfolio with expression fails, then you
should do manual entries for standard columns in
REV_COLUMN REQUIREMENTS through sql script which comes
as part of installer.

OFS DATA MODEL UTILITIES USER GUIDE | 17

file:///D:/Workspace/DMU/8.0/FM%20Files/toc.htm
file:///D:/Workspace/DMU/8.0/FM%20Files/toc.htm
file:///D:/Workspace/DMU/8.0/FM%20Files/T559520T560063.htm
file:///D:/Workspace/DMU/8.0/FM%20Files/T559520T560063.htm

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

3.2.1

3.2.11

3.21.11

Adding Dimension Tables

Adding Key Dimension Tables
Each key dimension contains a set of the following tables:
e DIM <DIMENSION> B:Stores leaf and node member codes within the dimension.
e DIM <DIMENSION> TL: Stores names of leaf and node and their translations.
e DIM <DIMENSION> ATTR: Stores attribute values for the attributes of the dimension.

e DIM <DIMENSION> HIER: Stores parent-child relationship of members and nodes that are part
of hierarchies.

NOTE Replace <DIMENSION> with the keyword representing the key
dimension.

Seeded key dimension tables are present in 'ALM-FTP-PFT-HM-BSP - Dimensions' subject area within
the ERwin model. The above tables need to be created for the new dimension. For more information
on creating dimension tables in ERwin, see leaflet (Adding And Customizing Leaf.pdf).

NOTE For ease of use, user can copy an existing set of dimension
tables such as for ORG_UNIT dimension and rename the tables
(in both physical and logical view) to represent the new
dimension.

Table structure of one of the seeded key dimension is given following with remarks on how this can be
used as the basis for modeling new key dimensions.

DIM_ORG_UNIT_B

Stores the ID of the members (leaf and nodes) of the dimension.

OFS DATA MODEL UTILITIES USER GUIDE | 18

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

Column
Name

Logical

Column
Name

Datatype

Column
Description

Remarks

ORG_UNIT_I | Organizatio NUMBER(14 | NOT NULL Leaf column | Column name and description
D n Unit ID) which stores | should reflect the new
the id for dimension. Datatype and other
the constraints should be retained.
organization
unit
dimension
ORG_UNIT_ | Organizatio NUMBER(14 | NULL Leaf column | Column name and description
DISPLAY_C n Unit) which stores | should reflect the new
ODE Display the display dimension. Datatype and other
Code code for the | constraints should be retained.
organization
unit
dimension
ENABLED_F | Enabled VARCHAR2(| NOT NULL Store if the Internally used and hence
LAG Flag 1) item is should be retained in the same
enabled or form within the new dimension
not table.
LEAF_ONLY | Leaf or VARCHAR2(| NOT NULL Indicates if Internally used and hence
_FLAG Node Flag 1) the member | should be retained in the same
is leaf only form within the new dimension
or not table.
DEFINITION | Definition VARCHAR2(| NOT NULL Language Internally used and hence
_LANGUAG Language 4) that is used should be retained in the same
E to define form within the new dimension
table.
CREATED_B | Created By VARCHAR2(| NOT NULL Indicates Internally used and hence
Y 30) who created | should be retained in the same
this item form within the new dimension
table.
CREATION_ | Creation TIMESTAMP | NOT NULL Indicates Internally used and hence
DATE Date when was should be retained in the same
this item form within the new dimension
created table.
LAST_MODI | Last VARCHAR2(| NOT NULL Indicates Internally used and hence
FIED_BY Modified By | 30) who should be retained in the same
modified form within the new dimension
this item table.
LAST_MODI | Last TIMESTAMP | NOT NULL Indicates Internally used and hence
FIED_DATE Modified when was should be retained in the same
Date this item form within the new dimension
modified table.

OFS DATA MODEL UTILITIES USER GUIDE | 19

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

32112

CODE

ORG_UNIT_

ORG_UNIT_
CODE

VARCHAR2(
20)

NULL

This column
is used by
staging and
contains the
alpha-
numeric
codes for
each
dimension
member.
Staging
dimension
table
contains
unique
alpha-
numeric
codes and a
unique
numeric
identifier is
generated
while
loading into
ALM-FTP-
PFT-HM-
BSP
dimension
table.

Column name and description
should reflect the new
dimension. Datatype and other
constraints should be retained.

DIM_ORG_UNIT_TL

Stores the names and descriptions of the members (leaf and nodes) of the dimension in various

languages.

OFS DATA MODEL UTILITIES USER GUIDE | 20

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

OBJECT MANAGEMENT

Column
Name

Logical

Column
Name

Datatype

Column
Description

Remarks

LANGUAGE | Language VARCHAR2(| NOT NULL Language Internally used
4) and hence should
be retained in the
same form within
the new
dimension table.
ORG_UNIT_I | Organizatio NUMBER(14 | NOT NULL Leaf column Column name
D n Unit ID) which stores the and description
id for the should reflect the
organization unit new dimension.
dimension Datatype and
other constraints
should be
retained.
ORG_UNIT_ Organizatio VARCHAR2(| NOT NULL Leaf column Column name
NAME n Unit Name | 150) which stores the and description
name for the should reflect the
organization unit new dimension.
dimension Datatype and
other constraints
should be
retained.
DESCRIPTIO | Description VARCHAR2(| NULL Description of an Internally used
N 255) Item and hence should
be retained in the
same form within
the new
dimension table.
CREATED_B | Created By VARCHAR2(| NOT NULL Indicates who Internally used
Y 30) created this item and hence should
be retained in the
same form within
the new
dimension table.
CREATION_ | Creation TIMESTAMP | NOT NULL Indicates when Internally used
DATE Date was this item and hence should
created be retained in the

same form within
the new
dimension table.

OFS DATA MODEL UTILITIES USER GUIDE | 21

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

LAST_MODI | Last VARCHAR2(| NOT NULL Indicates who Internally used
FIED_BY Modified By | 30) modified this item | and hence should
be retained in the
same form within
the new
dimension table.

LAST_MODI | Last TIMESTAMP | NOT NULL Indicates when Internally used
FIED_DATE Modified was this item and hence should
Date modified be retained in the
same form within
the new

dimension table.

3.211.3 DIM_ORG_UNIT_ATTR

Stores the values of the attributes of the members (leaf and nodes) of the dimension.

OFS DATA MODEL UTILITIES USER GUIDE | 22

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

OBJECT MANAGEMENT

Column Name

Logical
Column Name

Column

Description

Remarks

ORG_UNIT_ID Organization NUMBER(14) NOT NULL Leaf column Column name
Unit ID which stores and description
the id for the should reflect
organization the new
unit dimension | dimension.
Datatype and
other
constraints
should be
retained.
ATTRIBUTE_ID | Attribute ID NUMBER(22) NOT NULL Stores attribute | Internally used
id number fora | and hence
member of a should be
dimension retained in the
same form
within the new
dimension table.
DIM_ATTRIBU Numeric NUMBER(22) NULL This field Internally used
TE_NUMERIC_ | Dimension stores the and hence
MEMBER Value number values | should be
for the retained in the
attribute of a same form
member within the new
dimension table.
DIM_ATTRIBU | Varchar VARCHAR2(30) | NULL This field Internally used
TE_VARCHAR_ | Dimension stores the and hence
MEMBER Value varchar values | should be
for the retained in the
attribute of a same form
member within the new
dimension table.
NUMBER_ASSI | Numeric Value | NUMBER(22) NULL This field Internally used
GN_VALUE Of A Member stores the and hence
number values | should be
for the retained in the
attribute of a same form
member within the new
dimension table.
VARCHAR_ASS | Varchar VARCHAR2(10 NULL This field Internally used
IGN_VALUE Member Value 00) stores the and hence
varchar values should be
for the retained in the
attribute of a same form
member within the new

dimension table.

OFS DATA MODEL UTILITIES USER GUIDE | 23

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

DATE_ASSIGN
_VALUE

Date Value

DATE

NULL

Date value that
is assigned

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

DIM_ORG_UNIT_HIER

Stores the parent-child relationship of various nodes and leaf within hierarchies of the dimension.

Column Name Logical Datatype Column Remarks
Column Name Description
HIERARCHY_ID | Hierarchy ID NUMBER(10) NOT NULL Unique Id that Internally used
is generated for | and hence
every hierarchy | should be
that is created retained in the
same form
within the new
dimension
table.
PARENT_ID Parent ID NUMBER(14) NOT NULL Column that Internally used
store the id of and hence
the child should be
member retained in the
same form
within the new
dimension
table.
CHILD_ID Child Member NUMBER(14) NOT NULL Store child id Internally used
ID number for a and hence
dimension should be
retained in the
same form
within the new
dimension
table.

OFS DATA MODEL UTILITIES USER GUIDE | 24

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

Column Name

Logical

Column Name

Datatype

Column
Description

Remarks

PARENT_DEPT
H_NUM

Parent Depth
Number

NUMBER(14)

NOT NULL

Stores parent
depth number

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

CHILD_DEPTH_
NUM

Child Depth
Number

NUMBER(14)

NOT NULL

Stores child
depth number

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

DISPLAY_ORD
ER_NUM

Display Order
Number

NUMBER(14)

NOT NULL

Stores the
display order
number for the
member

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

SINGLE_DEPT
H_FLAG

Single Depth
Flag

VARCHAR2(1)

NOT NULL

Indicates if the
hierarchy is of
single depth or
not

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

CREATED_BY

Created By

VARCHAR2(30)

NOT NULL

Indicates who
created this
item

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

OFS DATA MODEL UTILITIES USER GUIDE | 25

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

3.21.2

Column Name Logical Datatype Column Remarks
Column Name Description
CREATION_DA | Creation Date TIMESTAMP NOT NULL Indicates when Internally used
TE was this item and hence
created should be
retained in the
same form
within the new
dimension
table.
LAST_MODIFIE | Last Modified VARCHAR2(30) | NOT NULL Indicates who Internally used
D_BY By modified this and hence
item should be
retained in the
same form
within the new
dimension
table.
LAST_MODIFIE | Last Modified TIMESTAMP NOT NULL Indicates when Internally used
D_DATE Date was this item and hence
modified should be
retained in the
same form
within the new
dimension
table.

Adding Simple Dimension Tables

Simple dimensions are created to store CODE and Descriptions. These tables are used by the User
Interfaces to list values in drop downs / radio buttons, and so on. For Simple dimensions, entries
should also be made in REV_DESCRIPTION_TABLES for each Instrument and Transaction Table in
which that new dimension will occur. The entries in REV_DESCRIPTION_TABLES are used by Data
Element Filters as well as the procedures for Synchronize Instruments and Synchronize Stage.

Each simple dimension contains a set of the following tables:
e (D table: Stores the members for a simple dimension.
e MLStable: Storesthe members' multi lingual description.

If you use simple dimensions where _CD column is VARCHAR?2, you will need to classify the tables as
follows:.

FSI ACCUMULATION TYPE CD, FSI BILLING METHOD CD

The CD table should be classified as

OFS DATA MODEL UTILITIES USER GUIDE | 26

OBJECT MANAGEMENT
ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

Codes User Defined (base tbl)

198 Codes Reserved (base tbl)

The MLS table should be classified as

MLS Descriptions User Defined

197 MLS Descriptions Reserved

Table structure of one of these seeded simple dimensions is given in the following section with
remarks on how this can be used as the basis for modeling new simple dimensions.

3.2.1.21 FSI_<DIM>_CD

Stores the ID of the members (leaf and nodes) of the dimension.

OFS DATA MODEL UTILITIES USER GUIDE | 27

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

OBJECT MANAGEMENT

Column Name Logical Datatype Column Remarks
Column Name Description
DIM_CD Dimension NUMBER(5) NOT NULL Leaf column Stores the
Code which stores Dimension
the code for Code.
the dimension.
LEAF_ONLY_F Leaf or Node VARCHAR2(1) NOT NULL Indicates if the Internally used
LAG Flag member isleaf | and hence
only or not should be
retained in the
same form
within the new
dimension
table.
ENABLED_FLA | Enabled Flag VARCHAR2(1) NOT NULL Store if the Internally used
G itemis enabled | and hence
or not should be
retained in the
same form
within the new
dimension
table.
DEFINITION_L Definition VARCHAR2(4) NOT NULL Language that Internally used
ANGUAGE Language is used to and hence
define should be
retained in the
same form
within the new
dimension
table.
CREATED_BY Created By VARCHAR2(30) | NOT NULL Indicates who Internally used
created this and hence
item should be
retained in the
same form
within the new
dimension
table.
CREATION_DA | Creation Date TIMESTAMP NOT NULL Indicates when | Internally used
TE was this item and hence
created should be
retained in the
same form
within the new
dimension
table.

OFS DATA MODEL UTILITIES USER GUIDE | 28

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

LAST_MODIFIE
D_BY

Last Modified
By

VARCHAR2(30)

NOT NULL

Indicates who
modified this
item

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

LAST_MODIFIE
D_DATE

Last Modified
Date

TIMESTAMP

NOT NULL

Indicates when
was this item
modified

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

<DIM>_DISPLA
Y_CD

Dimension
Display Code

VARCHAR2()

NULL

Leaf column
which stores
the display
code for the
dimension

Column name
and description
should reflect
the new
dimension.
Datatype and
other
constraints
should be
retained. The
length of this
column is
customizable.

FSI_<DIM>_MLS

Stores the members' multi lingual description.

OFS DATA MODEL UTILITIES USER GUIDE | 29

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

Column Name Logical Column Remarks
Column Name Description
DIM_CD Dimension NUMBER(5) NOT NULL Leaf column Stores the
Code which stores Dimension
the code for the | Code.
dimension.

LANGUAGE Language VARCHAR2(3) NOT NULL Language Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

<DIM> Dimension VARCHAR2(40) | NOT NULL Name of the Stores the

Dimension name of the
Dimension.
DESCRIPTION Description VARCHAR2(255 | NULL Description of Internally used
) an ltem and hence
should be
retained in the
same form
within the new
dimension
table.

CREATED_BY Created By VARCHAR2(30) | NOT NULL Indicates who Internally used

created this and hence

item should be
retained in the
same form
within the new
dimension
table.

CREATION_DA Creation Date TIMESTAMP NOT NULL Indicates when Internally used

TE was this item and hence

created should be
retained in the
same form
within the new
dimension
table.

OFS DATA MODEL UTILITIES USER GUIDE | 30

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

LAST_MODIFIE

Last Modified

VARCHAR2(30)

NOT NULL

Indicates who

D_BY By

modified this
item

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

LAST_MODIFIE

D_DATE Date

Last Modified

TIMESTAMP NOT NULL Indicates when
was this item

modified

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

Example for FSI <DIM> CD table:

CREATE TABLE <XXXXX> FSI <DIM> CD

(<DIM> CD

, LEAF ONLY FLAG
,ENABLED FLAG

, DEFINITION LANGUAGE
s CREATED_ BY
,CREATION DATE

, LAST MODIFIED BY
,LAST MODIFIED DATE
<dim> display CD

) i

-- ACME_FSI_ACCT_STATUS_CD
NUMBER (5) -- ACCT_STATUS_CD
VARCHAR?2 (1)

VARCHAR?2 (1)

VARCHAR?2 (4)

VARCHAR?2 (30)

DATE

VARCHAR?2 (30)

DATE

VARCHAR? ()

Example for FST <DIM> MLS table:

CREATE TABLE <XXXXX> FSI <DIM> MLS

(<DIM> CD

, LANGUAGE

, <DIM>

, DESCRIPTION

, CREATED BY

, CREATION DATE
,LAST MODIFIED BY

, LAST MODIFIED DATE
) ;

-- ACME _FSI ACCT STATUS CD
NUMBER (5) -- ACCT_STATUS CD
VARCHAR2 (3)
VARCHAR2 (40) -- ACCT_ STATUS
VARCHAR2 (255)

VARCHAR?2 (30)

DATE

VARCHAR?2 (30)

DATE

OFS DATA MODEL UTILITIES USER GUIDE | 31

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

3.2.2

3.2.3

Adding Dimension Column To Required Objects

Dimension column can be added to the following set of Client Data Objects:
e Tables classified as Instruments and Instrument Profitability
e Tables classified as Transaction Profitability
e Management Ledger table
e Result tables of Asset Liability Management

Dimension can be of the types — Ledger Only, Instruments Only, or Both. If the dimension is classified
as 'Ledger Only', the dimension column needs to be added only to Ledger Stat table.

If the dimension is classified Instruments only, the dimension column needs to be added to
instruments and Transactions tables. If the dimension is classified as 'Both’, the dimension column
needs to be added to Ledger Stat table and other tables classified as Instruments and Transactions.

e For adding key dimension column to tables that are classified as 'Instruments' and 'Instrument
Profitability', add the column to LEAF COLUMNS super-class table.

e For adding key dimension column to tables that are classified as 'Transaction Profitability’, add
the column to TRANS LEAF COLUMNS super-class table.

e For adding key dimension column to Ledger Stat table, add the column to
LEDGER LEAF COLUMNS super-class table.

NOTE Columns of super-class tables that are linked to sub-class table are
rolled down to the sub-class table during '"Model Upload' operation.

If both super-class and sub-class tables have some common columns, then the sub-class table column
is retained and the column from the super-class table will be ignored.

If both sub and super entities have common columns with same properties (such as datatype, size,
and so on), then there is no issue with model upload process. If sub and super entities have the
common columns with different properties, then there will issue with model upload process.

If you use Asset Liability Management, add the Dimension column directly to the following tables. Use
the same column properties as the other dimension columns on the table when adding them. Add the
column to the same indexes as the existing dimension columns.

e FSI_O_RESULT_DETAIL_TEMPLATE
e FSI_O_CONS_DETAIL_TEMPLATE

e FSI_O_RESULT_MASTER

e FSI_O_CONSOLIDATED_MASTER

Assigning Processing Key Property

'Processing Key' is a column level User Defined Property (UDP) in ERwin model. This property can
have two values - Yes or No. Only those objects where the column was added to the unique index are
affected.

OFS DATA MODEL UTILITIES USER GUIDE | 32

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

3.2.4

3.2.5

3.2.6

3.2.6.1

For tables classified as "Transaction Profitability, this property needs to be set as 'Yes' for one or more
of the key dimension columns.

For Ledger Stat table, this property needs to be set as 'Yes' for all key dimension columns.

Assigning Processing Key Property is not required for Simple Dimension.

Uploading ERwin Model

ERwin model with the above changes needs to be uploaded in OFSAAI environment. Uploading the
model creates these additional tables and sets these properties within the atomic schema.

After upload, user can verify the changes in the schema as well as query OFSAAI metadata tables like
REV_COLUMN PROPERTIES for viewing properties assigned to each column.

For more information on data model upload process, see OFSAAI User Guide.

Leaf Registration

Oracle Financial Services Analytical Applications Infrastructure (OFSAAI) provides an Leaf Registration
procedure to add the new Key Dimension Column to the Dimensions metadata registry
(REV_DIMENSIONS B, REV_DIMENSIONS TL).

Leaf Registration Procedure

This procedure performs the following:
e Registers key and simple dimension.

¢ Invalidates all Client Data Objects when key dimension is registered.

Executing Leaf Registration Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from Batch
Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The function requires
19 parameters. The syntax for calling the procedure is:

function rev leaf registration(batch run id varchar2,
mis date varchar2,

memDataType varchar?2,

dimName varchar?,

description varchar?2,

memberBTableName varchar2,

memberTLTableName varchar?2,

hierarchyTableName varchar2z,

attributeTableName varchar2,

memberCol varchar2,

memberDispCodeCol varcharz,

OFS DATA MODEL UTILITIES USER GUIDE | 33

https://docs.oracle.com/cd/F29631_01/get_started.htm

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

memberNameCol varchar2,

memberDescCol varchar2,

dimTypeCode varchar?2,

simpleDimFlag varchar2z,

keyDimFlag char,

writeFlag varchar2,

catalogTableType char,

flattenedTableName in varchar?2,

membercodecol in varchar?2

)

batch_run_id : any string to identify the executed batch.

mis_date : in the format YYYYMMDD.

memDataType : member data type of Dimension as in NUMBER, VARCHAR2, CHAR.
dimName : name of the dimension to be added (less than 21 chars).

description : description of the dimension (less than 255 chars).

memberBTableName : Member Base Table Name input as either null or a value with suffix '_CD'
or'_B.

memberTLTableName : Member TL Table Name input as either null or name of the table.
hierarchyTableName : Hierarchy Table Name input as either null or name of the table.
attributeTableName : Attribute Table Name input as either null or name of the table.
memberCol : Member Column Name input as either null or name of the column.

memberDispCodeCol : Member Display Code Column Name input as either null or name of the
column. For simple dimensions, enter the same field as the memberCol. Do not user display
column for simple dimensions.

memberNameCol : Member Name Column input as either null or name of the column.
memberDescCol : Member Description Column input as either null or name of the column.

dimTypeCode : Code for the dimension Type as in 'PROD for product type', 'ORGN for
Organizational Unit', 'CCOA for Common Chart of Accounts', 'FINELE for Financial Element’, 'GL
for General Ledger Account’, 'OTHER for any other type'.

All user defined dimensions will have DIMENSION TYPE CODE as'OTHER'. User defined
dimensions which are product related will have DIMENSION TYPE CODE as 'PROD'.

simpleDimFlag: "Y' or 'N' to determine Simple Dimension.

Simple dimensions are created to store CODE and Descriptions. These tables are used by the
User Interfaces to list values in drop downs / radio buttons, and so on. Simple dimensions are
not reverse populated.

Example: Country, Currencies, Customer Type.

keyDimFlag: "Y' or 'N' to determine Key Dimension.

OFS DATA MODEL UTILITIES USER GUIDE | 34

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

Key dimensions are dimensions which get reverse populated to the legacy tables.
Example: Product, Org Unit, General Ledger.

e writeFlag:'Y' or 'N' to determine whether Dimension should appear in drop down list in
Dimension Management > Members.

e catalogTableType:'L','B', or 'I' to determine table type for key dimensions.
e For a Simple Dimension, this value should be set to Null.
o flattenedTableName : Flattened Table Name input as either null or name of the table.

¢ membercodecol: Alphanumeric Code column. Populates the MEMBER CODE_COLUMN column in
REV_DIMENSIONS B.The value provided should be a valid code column from the relevant
DIM <DIMENSION> B (keydimension)or FSI <DIM> CD (simple dimension)table. For simple
dimensions use the display code column.

Example for Key Dimension:
Declare
num number;

Begin

num := rev_leaf registration('BATCH NO 01',
'20101216"',
"NUMBER',
'SIMPLE DIMENSION',
'SIMPLE DIMENSION DESC',
'"FSI_DIM SIMPLE CD',
'"FSI DIM SIMPLE MLS',
'null',
'null',
'"SIMPLE CD',
'"SIMPLE CD',
'"SIMPLE NAME Dim',
'SIMPLE DESCRIPTION',
"OTHER',
Y,
N,
Y,
"B,
'"FLATTEN_ PROD_TABLE',
'SIMPLE DISPLAY CODE');
End;

Example for Simple Dimension:

OFS DATA MODEL UTILITIES USER GUIDE | 35

OBJECT MANAGEMENT

ADDING DIMENSION TABLES AND KEY DIMENSION (LEAF) REGISTRATION

Declare
num number;
Begin
num := rev_leaf registration('BATCH NO 01',

'20101216",
'"NUMBER',
'SIMPLE DIMENSION',
'SIMPLE DIMENSION DESC',
'"FSI_DIM SIMPLE CD',
'"FSI _DIM SIMPLE MLS',
'null’,
'null’,
'SIMPLE CD',
'SIMPLE DISPLAY CODE',
'SIMPLE NAME Dim',
'SIMPLE DESCRIPTION',
"OTHER',

Y,

N,

Y,

"B,

'FLATTEN PROD TABLE') ;

End;

To execute the procedure from OFSAAI Batch Management, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select appropriate datastore from list
e Datastore Name: Select appropriate name from the list
e IPaddress: Select the IP address from the list

e Rule Name: batch_leaf_registration

e Parameter List: Member Data type , Dimension Name, Dimension Description, Member Base
Table Name, Member Translation Table Name, Hierarchy Table Name, Attribute Table Name,
Member Column , Member Display Code Column, Member Name Column, Member Description
Column, Dimension Type Code, Simple Dimension Flag , Key Dimension Flag , writeFlag,
Catalog Table Type, Flatten Table Name

OFS DATA MODEL UTILITIES USER GUIDE | 36

OBJECT MANAGEMENT

ADDING CUSTOM INSTRUMENT TABLES

3.2.7

3.2.8

3-3

3.3.1

Modify Unique Indexes

For tables of 'Transaction Profitability' classification, key dimension column can be part of the unique
index. If this column is intended to be part of the unique index, alter the unique index in the schema.

For Ledger Stat table, all key dimension columns should form part of the unique index. Hence, alter
the unique index in the schema to include this column.

Executing Object Registration Validation

Since leaf registration invalidates all Client Data Objects, Object Registration Validation procedure
needs to be executed to validate the required tables. For more information on Executing Object
Registration Validation, see Object Registration and Validation.

Adding Custom Instrument Tables

Instrument and Account objects are tables storing financial services information about customers and
accounts. These are most commonly used objects for OFSAA processing and reporting operations.
There are seeded instrument tables that are packaged as part of each OFSAA. You can customize or
remove any of them during implementation. In some cases, you might also require to add a custom
instrument table.

For Simple dimensions, entries should also be made in REV_DESCRIPTION TABLES for each
Instrument Table in which that new dimension will occur. The entries in REV_ DESCRIPTION TABLES
are used by Data Element Filters as well as the procedures for Synchronize Instruments and
Synchronize Stage.

Topics:

e Super-class Entities

e Steps in Creating Custom Instrument Table

e Setting Table Classifications

e Unique Index

e Portfolio Selection

e Object Registration Validation

Super-class Entities

Most instrument tables are used for OFSAA processing. OFSAA processing mandates the instrument
table to have a certain set of columns. These columns have been put together in super-class entities.
The following are the seeded super-class entities:

e LEAF COLUMNS: contains the key dimension columns that are part of the Instrument tables.

e BASIC INSTRUMENT REQ: contains the basic instrument columns like ID NUMBER,
IDENTITY CODE, and soon.

e MULTI CUR REQ: contains the columns required for multi-currency processing.

e CASH FLOW EDIT REQ:contains the columns required for Cash flow Edit processing.

OFS DATA MODEL UTILITIES USER GUIDE | 37

OBJECT MANAGEMENT

ADDING CUSTOM INSTRUMENT TABLES

CASH FLOW PROC REQ: contains the columns required for Cash flow processing.
TP _BASIC REQ: contains the columns required for Transfer Pricing processing.

TP _OPTION COSTING REQ: contains the columns required for Transfer Pricing Option Cost
processing.

PORTFOLIO_REQ: contains the columns required for Portfolio table classification.

TRANS LEAF COLUMNS: contains the key dimension columns that are part of the transaction
tables.

LEDGER LEAF COLUMNS: contains the key dimension columns that are part of the Ledger Stat
table.

BASIC LEDGER CLASS REQ:contains the columns required for Ledger Class tables example
_Ledger.

NOTE Column Precision for Instrument Table:

You can increase the size of the columns to make them hold a
value of larger precision, but the new size will impact FTP and
ALM engines as follow:

Values/fields read by the engine are restricted to the size that
the c++ variables can hold within the engine memory. In fact,
having a value larger than the allowed precision can cause the
engine to read the value incorrectly.

Changing the size of the fields that these engines write into
does not affect the precision of the results

An upgrade could rollback such changes unless you remember
to do a model merge.

Instrument table can link to any of the above super-class entities based on its purpose. For example, if
the instrument table is used for Cash Flow Processing, then this table should be linked to the following
super-class entities:

BASIC INSTRUMENT REQ
MULTI CUR_REQ

LEAF COLUMNS

CASH FLOW EDIT REQ

CASH FLOW_ PROC REQ

NOTE CASH FLOW PROC_REQ is required for all instrument tables
where conditional assumptions will be applied.

Refer to the following mapping table that specifies the list of super-class entities required for each
table classification:

OFS DATA MODEL UTILITIES USER GUIDE | 38

OBJECT MANAGEMENT

ADDING CUSTOM INSTRUMENT TABLES

Type of Client Data Object Table Classification List of Super-class entities

Instrument Instrument BASIC INSTRUMENT REQ
LEAF COLUMNS

Instrument ALM Standard BASIC INSTRUMENT REQ
LEAF_COLUMNS

MULTI CUR_REQ

CASH FLOW _EDIT REQ
CASH FLOW_PROC_REQ

Instrument TP Cash Flow BASIC INSTRUMENT REQ
LEAF COLUMNS

MULTI CUR_REQ
CASH_FLOW EDIT REQ
CASH_FLOW_PROC_REQ
TP BASIC REQ

Instrument TP Non-Cash Flow BASIC INSTRUMENT REQ
LEAF_COLUMNS
MULTI_ CUR REQ
CASH_FLOW EDIT REQ
TP_BASIC REQ

Instrument TP Option Costing BASIC INSTRUMENT REQ
LEAF_COLUMNS
MULTI CUR REQ

CASH FLOW EDIT REQ

TP BASIC REQ

TP _OPTION COSTING REQ

Instrument Instrument Profitability BASIC_ INSTRUMENT REQ
MULTI CUR REQ PORTFOLIO

Instrument Portfolio BASIC INSTRUMENT REQ
LEAF_COLUMNS
MULTI_CUR_REQ PORTFOLIO

Transaction Transaction Profitability TRANS LEAF COLUMNS

Ledger Stat Ledger Stat LEDGER_LEAF COLUMNS

3.3.2 Steps in Creating Custom Instrument Table

The following are the steps involved in creating a custom instrument table:
e Create a new subject area within the ERwin model.
e Move the required super-class tables as part of the subject area.

e Create the custom instrument table in ERwin. Specify logical name, physical name and
description for the table. Define any columns that do not come from any of the standard super-
class tables as part of the custom instrument table. Specify logical, physical names, domain and
other column properties for each column.

OFS DATA MODEL UTILITIES USER GUIDE | 39

OBJECT MANAGEMENT

ADDING CUSTOM INSTRUMENT TABLES

3-3-3

e Create subtype relationship between the custom instrument table and various super-class
entities.

NOTE User defined tables (custom) tables should not have
"PORTFOLIO" keyword in the name of the table.

Setting Table Classifications

Table Classifications can be set for any Client Data Object. Table classification set against each Client
Data Object is validated through Object Registration Validation process.

The following are the steps involved in setting table classification properties for the custom
instrument table:

e Choose Physical View within the ERwin model.
e Go to UDP tab within Table Properties window.
e Specify 'Yes' against required Table Classifications properties.

Once the model is prepared using the above steps, user should upload the ERwin model. After
uploading the model, user can check if the custom instrument table has been created in the schema
with columns from super-class entities that have been linked to the custom instrument table as well as
the columns present in the custom instrument table. Model upload also creates metadata entries
within the following Object Registration tables:

e REV _TABLES B:Contains the list of table names.

e REV TABLES TL:contains the list of table display names and descriptions in various
languages.

e REV TAB COLUMNS: contains the list of column names.

e REV TAB COLUMNS MLS: contains the list of column display names and descriptions in various
languages.

e REV_COLUMN_ PROPERTIES: stores the column properties associated with each column.

e REV TABLE CLASS ASSIGNMENT: stores the table classification associated with each table.

OFS DATA MODEL UTILITIES USER GUIDE | 40

OBJECT MANAGEMENT

ADDING CUSTOM INSTRUMENT TABLES

3-3-4

3:3:5

NOTE In case custom instrument table contains the column in the
same name as that of the super-class table, then column
present in the custom instrument table will take precedence
over the equivalent column of the super-class table. In case
multiple super-class tables contain the same column, user
should ensure that all the columns have same datatype, as any
column can be selected and it is not resolved in any specific
order.

Physical order of the columns within the custom instrument
table is determined in the following way:

Columns present in the custom instrument table.

Columns present in each of the linked super-class table. In
case multiple super-class tables are linked to the custom
instrument table, columns are rolled down from all super-class
tables without any specific order.

Within any table, ERwin maintains three different column
orders:

1. Logical Order: Order of the columns as seen
in Logical view of the model

2. Physical Order: Order of the columns as seen
in Physical view of the model.

3. Database Order: Order of the columns as seen
in the Database schema.

Unique Index

Instrument tables require unique index on ID NUMBER and IDENTITY CODE column. This unique
index needs to be created on the custom instrument table, post-model upload operation.

Transaction tables require unique index on ID NUMBER, IDENTITY CODE and one of the key
dimension columns. This unique index needs to be created on the custom transaction table, post-
model upload operation.

NOTE The unique index may not contain any non-Key Dimension
columns other than ID_NUMBER and IDENTITY_CODE.

Portfolio Selection

It enables users to define rules with a cross-instrument definition, since the Portfolio table
classification contains columns (potentially including user-defined columns) that are common to all
instruments. Any other specific instrument table selection (such as Mortgages, and so on) would limit
the rule definition to the specific instrument table. During processing of a Portfolio selection from an

OFS DATA MODEL UTILITIES USER GUIDE | 41

OBJECT MANAGEMENT

ADDING CUSTOM TRANSACTION TABLES

3.3.5.1

3.3.6

3-4

assumption rule, the engine will substitute the name of a specific table (that is, instruments selected in
the parent process rule).

Adding a new user defined column as a Portfolio column for use in all
Instrument tables

Portfolio is available as a table selection in various modules including Infrastructure objects such as
Filters and Expression rules. It is also available in application objects such as Profitability Management
Allocation rules, and so on. To add a new user-defined column as a Portfolio column, use the following
steps:

1. Include the column in the PORTFOLIO super-type table in the Erwin Data Model to ensure that
the column rolls down to all subtype tables.

2. Complete incremental model upload to add the column to all subtype Portfolio tables.

3. Manually insert a row into the Atomic schema REV PROPERTY COLUMNS table with
TABLE PROPERTY CD =40:

For example, if your new column is APPLE_BRANCH CD

Insert into REV_PROPERTY COLUMNS
(TABLE_PROPERTY CD, COLUMN NAME, PROTECTED FLG) values
(40, "APPLE BRANCH CD',1);

COMMIT;

Data Element Filters created with custom columns will appear in Conditional Assumptions (within
Funds Transfer Pricing) when properly registered. When creating a custom column in Instrument
table(s)/Cash Flow related table(s), that is, those containing

BASIC INSTRUMENT REQ/CASH FLOW PROC REQ inthe data model, the custom column must have
one of the Domains listed as follows: BALANCE, CHAR,CODE, CODE NUM, DATE, DESCRIPTION,
FLAG, NUMBER, NUMERIC, RATE, SWITCH, VARCHAR2, CHAR RANGE, PCT.

Object Registration Validation

Since leaf registration invalidates all Client Data Objects, Object Registration Validation procedure
needs to be executed to validate the required tables. For more information on Object Registration
Validation procedure, see Object Registration and Validation €.

Adding Custom Transaction Tables

Transaction tables are used within Profitability Management processing. There are seeded transaction
tables that are packaged as part of Profitability Management application. You can customize or
remove any of them during implementation. In some cases, you might also require to add a custom
transaction table.

For Simple dimensions, entries should also be made in REV_DESCRIPTION TABLES for each
Transaction Table in which that new dimension will occur. The entries in REV_DESCRIPTION TABLES
are used by Data Element Filters as well as the procedures for Synchronize Instruments and
Synchronize Stage.

Topics:

OFS DATA MODEL UTILITIES USER GUIDE | 42

OBJECT MANAGEMENT

ADDING CUSTOM TRANSACTION TABLES

3.4.1

3.4.2

3-4-3

e Super-class Entities

e Steps In Creating Custom Transaction Table

e Setting Table Classifications

e Unique Index
e Object Registration Validation

Super-class Entities

Profitability Management processing mandates the transaction table to have a certain set of columns.
These columns have been put together in super-class entities. The following are the seeded super-
class entities:

TRANS LEAF COLUMNS - contains the key dimension columns that are part of the Transaction tables.

Steps In Creating Custom Transaction Table

The following are the steps involved in creating a custom transaction table:
e Create a new subject area within the ERwin model.
e Move TRANS LEAF COLUMNS into the new subject area.

e Create the custom transaction table in ERwin. Specify logical name, physical name and
description for the table. Define any columns that do not come from any of the standard super-
class tables as part of the custom transaction table. Specify logical, physical names, domain and
other column properties for each column.

¢ Create subtype relationship between the custom transaction table and TRANS LEAF COLUMNS
super-class entity.

Setting Table Classifications

Table Classifications can be set for any Client Data Object. Table classification set against each Client
Data Object is validated through Object Registration Validation process.

The following are the steps involved in setting table classification properties for the custom
transaction table:

e Choose Physical View within the ERwin model.
e Go to UDP tab within Table Properties window.
e Specify 'Yes' for 'Transaction Profitability’ user defined property.

Once the model is prepared using the above steps, user should upload the ERwin model. After
uploading the model, user can check if the custom transaction table has been created in the schema
with columns from super-class entities that have been linked to the custom transaction table as well as
the columns present in the custom transaction table. Model upload also creates metadata entries
within the following Object Registration tables:

e REV TABLES B: Contains the list of table names.

OFS DATA MODEL UTILITIES USER GUIDE | 43

OBJECT MANAGEMENT

ADDING CUSTOM TRANSACTION TABLES

REV_TABLES TL: contains the list of table display names and descriptions in various
languages.

REV_TAB COLUMNS: contains the list of column names.

REV_TAB COLUMNS MLS: contains the list of column display names and descriptions in various
languages.

REV_COLUMN PROPERTIES: stores the column properties associated with each column.
REV_TABLE CLASS ASSIGNMENT: stores the table classification associated with each table.

REV_TABLE CLASSIFICATION TL:contains the list of table classification, language name and
description associated with each table.

REV_TABLE CLASSIFICATION B:contains the list of table classification.

NOTE For Mortgages, TABLE CLASSIFICATION CD =618 and
TABLE CLASSIFICATION ='Mortgages'in
REV_TABLE CLASSIFICATION TLand
REV_TABLE CLASSIFICATION B tables.

For Embedded Options, TABLE CLASSIFICATION CD =617
and TABLE CLASSIFICATION ='Embedded Options'in
REV_TABLE CLASSIFICATION TLand

REV_TABLE CLASSIFICATION B tables.

REV_COLUMN PROPERTY CD: contains the column property Ids and currency basis associated
with each column.

REV_COLUMN PROPERTY MLS: contains the column properties, language name and description
associated with each column.

NOTE For Economic Value, COLUMN PROPERTY CD =86 and
COLUMN_PROPERTY = 'Economic Value'in
REV_COLUMN PROPERTY MLS and
REV_COLUMN PROPERTY CD tables.

OFS DATA MODEL UTILITIES USER GUIDE | 44

OBJECT MANAGEMENT

ADDING CUSTOM TRANSACTION TABLES

NOTE In case custom transaction table contains the column in the
same name as that of the super-class table, then column
present in the custom transaction table will take precedence
over the equivalent column of the super-class table.

Physical order of the columns within the custom transaction
table is determined in the following way:

Columns present in the custom transaction table.
Columns present in each of the linked super-class table.

Within any table, ERwin maintains three different column
orders:

1. Logical Order: Order of the columns as seen
in Logical view of the model.

2. Physical Order: Order of the columns as seen
in Physical view of the model.

3. Database Order: Order of the columns as seen
in the Database schema.

3.4.31 Setting Processing Key Property

'Processing Key' user defined property needs to be set for the following columns within the
transaction table:

e ID NUMBER
e IDENTITY CODE
e Leaf columns that are part of the unique index
The following are the steps to set this property in ERwin:
e Choose Physical View within the ERwin model.
e Choose TRANS LEAF COLUMNS super-class table.
e Choose the leaf column that needs to be set 'Processing Key' property.
e Goto UDP tab in Column Properties window for this column.
e Specify 'Yes' against 'Processing Key' user-defined property.
e Choose the custom transaction table.
e Goto UDP tab in Column Properties window for ID NUMBER and IDENTITY CODE columns.

e Specify Yes for Processing Key user-defined property.

3.4.4 Unique Index

Transaction tables require unique index on the following columns:

OFS DATA MODEL UTILITIES USER GUIDE | 45

OBJECT MANAGEMENT

ADDING CUSTOM LOOKUP TABLES

3:4:5

3:5

3.5.1

e ID NUMBER
e IDENTITY CODE
e At-least one of the key dimension columns.

This unigue index needs to be created on the custom transaction table, post-model upload operation.

Object Registration Validation

Since leaf registration in-validates all Client Data Objects, Object Registration Validation procedure
needs to be executed to validate the required tables. For more information on Object Registration
Validation procedure, see Object Registration and Validation.

Adding Custom Lookup Tables

Lookup tables are used within OFSAA Profitability Management application. Lookup tables have to be
created and registered within OFSAAI, in order to display them in Lookup Table Driver definition of
OFSAA Profitability Management application.

Topics:

e Steps to Create Lookup Table

e Setting Column Properties

e Setting Table Classifications

e Registering Lookup Tables and Validation

e Lookup Table Driver Definition

Steps to Create Lookup Table

Lookup table has to be created in the ERwin model. The following are the steps:
e Open the ERwin model in ERwin Data Modeler tool.
e Create a new subject area.
e Create a table and add columns to the table.
e Lookup table needs to at-least have one primary key column.

e Lookup table needs to at-least have one numeric non-key column. Such numeric columns will
be the return value of the lookup.

e Specify logical names, comments and primary key for the table.
e Specify logical names, domains and comments for the column.
e Domains for the columns can be LEAF, BALANCE, RATE and so on.

e Save the model.

OFS DATA MODEL UTILITIES USER GUIDE | 46

OBJECT MANAGEMENT

ADDING CUSTOM LOOKUP TABLES

3.5.2

3:5-3

3:5:4

3:5:5

Setting Column Properties

'Processing Key' is a column level User Defined Property (UDP) in ERwin model. This property can
have two values - Yes or No. 'Processing Key' property needs to be set for all the primary key columns
of the lookup table.

'Balance Range' is a column level User Defined Property (UDP) in ERwin model. This property can have
two values - Yes or No. Balance Range property needs to be set for the columns that can have range
values in the lookup.

The following are the steps for setting the above properties:
e Open the ERwin model in ERwin Data Modeler tool.
e Gotothe Subject Area where lookup table was created.
e Choose the table and open the columns of the table.
e Go to UDP tab within the column properties for each column.
e Specify the value for the required user defined properties.

e Save the model.

'UDP_LOOKUP_RANGE_MINIMUM' is a column level User Defined Property (UDP) in ERwin model.
This property can have two values — Yes or No. UDP_LOOKUP_RANGE_MINIMUM property needs to
be set for the columns that can have minimum values for a range in the lookup.

'UDP_LOOKUP_RANGE_MAXIMUM' is a column level User Defined Property (UDP) in ERwinModel.
This property can have two values — Yes or No. UDP_LOOKUP_RANGE_MINIMUM property needs to
be set for the columns that can have maximum values for a range in the lookup.

Setting Table Classifications

Table Classifications can be set for any Client Data Object. Table classification set against each Client
Data Object is validated through Object Registration Validation process.

The following are the steps involved in setting table classification properties for the custom lookup
table:

e Choose Physical View within the ERwin model.
e Go to UDP tab within Table Properties window.
e Specify Yes for PA Lookup Tables user-defined property.

Registering Lookup Tables and Validation

Upload the model and execute the object registration validation.

Lookup Table Driver Definition

Post registration and validation, the lookup table is available within Lookup Table Driver definition of
OFSAA Profitability Management application.

Following is the criteria for columns to be displayed in the Source - Lookup Mapping grid:

OFS DATA MODEL UTILITIES USER GUIDE | 47

OBJECT MANAGEMENT

ADDING CUSTOM LOOKUP TABLES

e Column needs to be Primary Key or be part of composite primary key.
e Processing Key user defined property should be set for the column under UDP tab as shown
following.

3.5.51 Mapping of Column to Processing Key

. AllFusion Efwin Data Modeler - [OFSART_Dat smodelerwin 2 Fusion - FFT Lookup (Read- Only)]
o Fe Edt e mat Hodd Datebasa Tools Services Wik

DE & oW TES <« | Q& 40| ¢ |[rPrysical = yBo 855 |[000CN2ET
([r S0 =B o u o et 2 Fr|eafnf0Be2aEeBEs |68 a|ow|E

(2998 %
x -

CE X e
W Fuion FTP -
W Fusion - Inksinuchas
W Fusion - Inatrument - Arruity Contiscts
W Fusion - Insturent - Bonowngs
@ Fusion - Insisumaent - Brask Furding
W Fusiion - Inabrurment - CASA
W Fuicn « Inatrurrent « Crodk Cands mm*
W Fusion - Inabrment - Credd Lines
W Fusion - Insbument - Despestives
W Fution - Inatrument - Forwaed Alste Agresments
W Fustion - Insbumant - Fuhses
W Fusiion - Insteumant - P Contracts Tt
W Fusion - Insbrument - Guaraniess
W Fusion - Inatrument - Imvestments

SRR

DEALER_HRR s
A R RR s

[LOOKUP_TEMFLATE_TABLE = =

CRORCE

W Fusion - Inabument - Lesses

W Funion - Inatrument - Loan Contiacts

W Fusison - Inatsmant - Mirchant Cand

W Fusion - Insinensnt - MM Coniracts

W Fusion - Inabrument - Morigags Back Sec
W Funion - Inabument - Marigages

W Furion - Instrument - Muhal Funds

W Funion - Instrument - Dpfions

W Fusion - Inatrumant - Other Sanvicss

W

o EE e

@ Fusion . Inaburmend - Swaps
W Funion - Inatrumeent - Tem Deposits
W Fusion - Inatrument - Trusts
W Fusion - Instrument_jcoets

W Fuion - Instrument - Ledger Stat natrument

W Fustion - Instnsmant - Fotserent e counts

D, AVERAGE_BALANCE hani
D, AVERAGE_BALANCE_Max
€, DEALER_NER_MBi

€, DEALER_NER_MA

[, 15508 _DATE M

6, 1S5UE_DATE_Max

L, CREDIT_STATUS CO
RETURRN_vAL1
FETURN_VALZ

Hew | Fensme |

- IS comen v [[rr] 2L
ENorc et]

st Dislruid Prispbitoss:

=l

TablaType =)
Mhipher Fiokdod Fiekl 0
CRR-Carporate 7]
Procaasine Hey =
Froquancy Mulgher 0
CRR-Retad M

IV check |
Morigage H
Balancn Weighind Ot 0

Propesty Value =

=
z

Deiete |

W Fustion - Ladge: Stat

W Fuion - Lockup

W Fusen LR8I

@ Fusion - LA Shess Testing

W Funion - Payment Schedue

W Funion - FFT

W Fusion - FFT Lockup

W Funion - Flate Marger T abie:

W Fution TPOL

W Fusion . Tasnasehzns . Anwasty Costrscty
5 @ Fusion - Transachions - Bomowngs

i W Fusion - Teanaactions - CASA

W Funion - Transactions - Coedit Caeds
%W Fution - Tesnsactions - Coedit Lines
«

Rese. | 0ic, [

o W e

SRR

W Fusion - Teansachons « Gussnine:
W Fusion: Teanaaetions « Irvmitranty
& Fiuinn. Tasnsartinns .| saras

il | 5 i ¥
Mﬂiﬂ[iO-splnyi /
= | T e
Wistat] o @ © o QB | L AFuson B DataMo... ||, Alrusion tRwin Data f
(]

Vig zwm
2 Tussday

Following is the criteria for columns to be part of the Range:

e Balance Range user defined property should be set for the column under UDP tab as displayed.

OFS DATA MODEL UTILITIES USER GUIDE | 48

OBJECT MANAGEMENT

ADDING CUSTOM LOOKUP TABLES

3.5.5.2

Mapping of Column for Range Property

= ABFusion ERwin Data Modeler - [FSART_Datamodelerwin : Fusion - PFT Lookup (Read-Only)]

].I\nal i

%He Edt Wiew Format Model Dstsbace Took Services Window Help
jo2a & on?PED |- - aaaLad| s s |[Pysa -
B T Ji

W Fusicn Irntrusent - CASA
W Fusson - Iratrumet - Ciodt Conde
% W Fusion - Irainesent - Ciodt Lines
% @ Fution - Iratrusert - Derrvalies
= W Fuasion - Iratrument - Fornwaed Flatn Agoparents
= W Fusion - Iratrument - Fubues
W Fution :Iratrument « X Conbracts
5 W Fusin . lratneseed - Gusisitest
w W Fuison Irctiusserd Iernstmeris
= @ Fusion . Iratrumert . Leases
= W Fusion . Iratrument - Ledger Skat Insmament
=1 @ Fusion - Irairumert - Loan Cortracts
- W Fusion Iratrument - Metchant Casdy
= W Fusion - Iratrumert - MM Contescts
= @ Fusion - Iratrument - Monigage Back Sec
= W Fusion Iratrumert - Motigage:
| @ Fusion - Iratrument - Mutual Funds
i @ Fusion - Iratrument - Dptiona
- @ Fusion Iratrument - Dt Senices
i @ Fusion - Iratrument - Retirement Accourts
i @ Fusion - Iratrument - Swaps
i @ Fusion - Iratrument - Tesn Deposis
i W Fusion - Iratrument - Trusts
i @ Fuasion - Iratrument_fissets

W@ Fusion - Rats Manager Tables

i W@ Fusion - TROL

® W Fuson - Tiaraactont - Srculy Contacts
= W Fusion - Tursacton: - Bonoengt

o W Fusion Tiracton: - CASA

W Fusion : Tiarcton: < Credt Cods

= W Fution Trarcschons - Copdl Lne:

@ W Fusion Tiarnmcton: - Gusnine:

= W Fusion « Tiaruachons « Imesstments

S B Fiian , Tramsnrbinns | asas

Gasa|loooNzar
IB4% @SB 60 a|s v g

¢ |||oo & & &

=1®i x|

]_maiﬂ I

Columns
Toble: LODKLP_TEMPLATE_TABLE =l -
Cohunn [<)(=] o | conms | conmere woe | Vale]

RETURN_VALT
RETURN_VALZ

How. | Fename |

Freaal I D Syme-..

Deiete |

Wahue: | =A
[een0
FIC FE
3]
o
= I |
H
."
CL-NO

oK Cancel

]

D) o [@ St ivma]

a
é{ Dispisy! f

iﬂn—«l|;ce\w = w.. [T

I [Oracke
(VEd z0pm
BT Tussdsy

Following is the criteria for columns to be part Lookup Return Value:

e Column should not be primary key/processing key or be part of composite primary key.

e Column domain should be defined as NUMBER under General Tab as displayed.

OFS DATA MODEL UTILITIES USER GUIDE | 49

OBJECT MANAGEMENT

ADDING MANAGEMENT LEDGER CLASS TABLES

3.5.5.3

Mapping of Column for Look up Return Value

ERwin Data Modeler - [OFSAAT_DatamodeLerwin : Fusion - PFT Lookup (Read-Goly)]

Dem & oM FER -~ Q& s &d|e * [Prysica - [Y=N= Lhh|ID0C0N2S AT
|[Anar I | R " Y (3 Do ARKE DB I 2 aE@ILF (|0 a v
2298 %
] =
o e

% @ Fumon-FTP
%W Fumon - Inhsstruchae
%W Fumon - Instrument - Anouty Contracts
%@ Fusion - Instrumert - Bosowings
% @ Fuson - Instumert - Brek Funding
@ Fuson - Instment - CASA
@ @ Fusson - lnsinsert - Coedt Cards e)
@ @ Fumon - Instnusert - Crodt Lines RERAGE_BALANC

EALER_RBR_MIN

IEal ER AR
4 @ Fuson - Instnument - FX Contiacts Table: [LooKur_TEMFLATE_TaBLE ==
W Fusion - Instumert - Gussnlees
% @ Fusion - Instument - Invesbmerts General | Orscle | Constraint | Comment [1 | »
@ W Fuson - Insiumert - Leates () EIE' | | | It

- Invstrumer - Lodger Stet bnatnament [, 0RG_UNIT_ID Doenain

5 Y " €, AVERAGE_BALANCE MM Soit
W Fusion - Instument - Meichan Cads €, AVERAGE_BALANCE MK € Aphsbeticaly & Himarchicaly | []
5 @ Fuson - Instument - MM Coriracts €, DEALER_NBR_MIN
% @ Fusion - Instrumert - Mostgsge Back Sec €, DEALER_NBR_Max
4 W Fusion - Instnmert - Modgages &, 1SSUE_DATE_MIN
W Fusion - Instument - Mutsal Funds €4, ISSUE_DATE Max
5 @ Fuaon - Insinment - Opbons & c Us_C0

W Fusmon - Instrument - Otber Service:
W Futon - Instsact - Reteement Accours
5 @ Fuasson - Instnamect - Svaps

%@ Fuon - instrumerk - Tesm Deposts

% @ Fuson - Instnment - Trusts

@ Fuson - Instumert_Assets Mow. | Renams. | Do | 1 Primeker [Prysical Ok
% W Fuson - Ledger Stat
@ @ Fusmon - Lookup Reset. | oK Cancel
%@ Fume-LUAEI

5 @ Fuson - LA Stress Testng

% @ Fuasion - Paymend Schadide

%@ Fuson - FFT

@ Fusion - FFT Lookup

%W Fuson - Rate Manager Tables

% @ Fuson - TPOL

% @ Fusoe - Transactions - Anauty Contracts
%@ Fusmon - Transactons < Bonoveng:
ot - CASA,

- Tranwactions - Credk Cands
4@ Funon - Transactions - Diedk Lives

4 @ Fusion - Transactions - Guasantees

@ Fusion - Transactions - Investments

- S Cisinn . Tonnenebinms . | anras | .IL - »

k] un.u| # Subject fues | ;Ulsp]ay] '

W] | S DO (D || 5 asion s b e || wirosson i oot T 2
€ . Lo B

Adding Management Ledger Class tables

Beginning with release 8, OFSAA Profitability Management supports a Management Ledger table
class. Management Ledger tables provide substantially identical functionality to the traditional
Ledger/Stat table. Like Ledger/Stat, you may also customize the dimensionality of Management
Ledger tables. Additionally, in addition to the seeded Management Ledger table (FSI-D-
MANAGEMENT-LEDGER), you may also construct and customize additional ledger tables of the
Management Ledger table class.

The seeded FSI-D-MANAGEMENT-LEDGER table is loaded from STG GL DATA via a standard T2T rule
(T2T MANAGEMENT LEDGER). If you choose to build additional Management Ledger tables, you will
need to clone T2T MANAGEMENT LEDGER to target your new ledger table.

NOTE All Custom Dimensions should be added to the PK for
STG_GL_DATA.

And all Custom Dimensions should be added to Unique Index
of FSI_D_MANAGEMENT_LEDGER.

The following topics are covered in this section:

e Super-class Entities

OFS DATA MODEL UTILITIES USER GUIDE | 50

OBJECT MANAGEMENT

ADDING MANAGEMENT LEDGER CLASS TABLES

3.6.1

Steps to create Custom Ledger Class Table

Setting Table Classifications

Setting Processing Key Property

Unique Index
Object Registration Validation

Super-class Entities

Profitability processing mandates the Ledger class table to have a certain set of columns. These
columns have been put together in super-class entities.

The following are the seeded super-class entities:

BASIC LEDGER CLASS REQ: Contains the columns required for Ledger Class tables.

The FSI D MANAGEMENT LEDGER.ENTERED BALANCE column stores entered or transacted
balances that correspond to the local currency in which the transactions were booked in your
General Ledger.

The FSI D MANAGEMENT LEDGER.FUNCTIONAL BALANCE column stores balances in the
Functional currency of your General Ledger

NOTE When Initially loading data from Staging fo Management
Ledger, Entered and Functional currency balances should
correspond to the values originally booked into your General
Ledger.

For a mono-currency implementation:

The Entered balance should equal the Functional balance on each Management Ledger row

The IS0 _CURRENCY CD for each Management Ledger row should match your Functional
Currency (from FSI DB INFO).

For multi-currency implementations:

When a Management Ledger row's ISO_CURRENCY CD is the same as your Functional
Currency, the Entered balance will equal the Functional balance

The Entered balance will equal the Functional balance for all statistical rows
(ISO_CURRENCY CD =002)

Generally, the Entered balance will NOT equal the Functional balance for Management Ledger
rows where ISO CURRENCY CD is different than your Functional Currency

The ratio of Entered balance to Functional balance - the observed exchange rate for the row --
is determined within your source General Ledger. Typically, ending balances will match end-of-
month exchange rates while P&L balances may reflect weighted monthly average exchange
rates.

OFS DATA MODEL UTILITIES USER GUIDE | 51

OBJECT MANAGEMENT

ADDING MANAGEMENT LEDGER CLASS TABLES

3.6.3

NOTE For more information on how Entered & Functional balances
are used with applications, see the Multicurrency in the OFS
Profitability Management User Guide.

Steps to create Custom Ledger Class Table

The following are the steps involved in creating a custom Ledger Class table: Create subtype
relationship between the custom Ledger Class table and BASIC LEDGER CLASS REQ super-class
entity.

NOTE FINANCIAL ELEM ID, ORG UNIT ID, GL ACCOUNT ID,
COMMON COA ID,and LEGAL ENTITY must be presentin any
Management Ledger table.

1. Create a new subject area within the ERwin model.

2. Create the custom Ledger Class table in ERwin. Specify logical name, physical name and
description for the table. Define any columns that do not come from any of the standard super-
class tables as part of the custom Ledger Class table. Specify logical, physical names, domain
and other column properties for each column.

3. Move BASIC LEDGER CLASS REQ intothe new subject area.

Setting Table Classifications

Table Classifications can be set for any Client Data Object. Table classification set against each Client
Data Object is validated through Object Registration Validation process.

The following are the steps involved in setting table classification properties for the custom Ledger
Class table:

e Choose Physical View within the ERwin model.
e Go to UDP tab within Table Properties window.

e Specify 'Yes' for 'Ledger Class ' user defined property. Once the model is prepared using the
above steps, user should upload the ERwin model. After uploading the model, user can check if
the custom Ledger Class has been created in the schema with columns from super-class
entities that have been linked to the custom Ledger Class table as well as the columns present
in the custom Ledger Class table. Model upload also creates metadata entries within the
following Object Registration tables:

= REV _TABLES B:Contains thelist of table names.

= REV_TABLES_ TL:contains the list of table display names and descriptions in various
languages.

= REV_TAB COLUMNS: contains the list of column names

OFS DATA MODEL UTILITIES USER GUIDE | 52

https://docs.oracle.com/cd/F30048_01/homepage.htm
https://docs.oracle.com/cd/F30048_01/homepage.htm

OBJECT MANAGEMENT

ADDING MANAGEMENT LEDGER CLASS TABLES

* REV_TAB COLUMNS MLS: contains the list of column display names and descriptions in
various languages.

= REV_COLUMN PROPERTIES: stores the column properties associated with each column.
» REV TABLE CLASS ASSIGNMENT: stores the table classification associated with each table.

— In case custom Ledger Class table contains the column in the same name as that of
the super-class table, then column present in the custom Ledger Class table will take
precedence over the equivalent column of the super-class table.

— Physical order of the columns within the custom Ledger Class table is determined in
the following way:

— Columns present in the custom Ledger Class table.

— Columns present in each of the linked super-class table.

Within any table, ERwin maintains three different column orders:

— Logical Order: Order of the columns as seen in Logical view of the model.
— Physical Order: Order of the columns as seen in Physical view of the model.

— Database Order: Order of the columns as seen in the Database schema.

3.6.4 Setting Processing Key Property

'Processing Key' user defined property needs to be set for the following columns within the Ledger
Class table:

e Leaf columns that are part of the unique index
The following are the steps to set this property in ERwin:
e Choose Physical View within the ERwin model.
e Choose BASIC LEDGER CLASS REQ super-class table.
e Choose the leaf column that needs to be set 'Processing Key' property.
e Goto UDP tab in Column Properties window for this column.
e Specify 'Yes' against 'Processing Key' user-defined property
e Choose the custom Ledger Class table.
e Goto UDP tab in Column Properties window for the columns.

e Specify 'Yes' against 'Processing Key' user-defined property.

3.6.5 Unique Index

Ledger Class tables require unique index on the following columns:
e IDENTITY CODE
e FISCAL YEAR
e CONSOLIDATION CD

e ISO CURRENCY CD

OFS DATA MODEL UTILITIES USER GUIDE | 53

OBJECT MANAGEMENT

ADDING MANAGEMENT LEDGER CLASS TABLES

e LEGAL ENTITY ID

e BALANCE TYPE CD

e [FISCAL MONTH

¢ Key dimension columns

This unique index needs to be created on the custom Ledger Class table, post-model upload
operation.
Removing the Dimensions

Select the subject area within the ERwin model.

et
ELEE Y

AANENRE
z

4 fre R

4. Delete the table. Before deleting the table, check the dependent tables.

= W=

| Autorpoputate -
L &)

gooooooag

Type | Physical only.
Table

=
=
=
=
r

lonooooooooog

1

[cioze | [canc

OFS DATA MODEL UTILITIES USER GUIDE | 54

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

3.7

Object Registration Validation

Since, leaf registration in-validates all Client Data Objects, the Object Registration Validation
procedure needs to be executed to validate the required tables.

Object Registration and Validation

Table Classifications provide a means to designate how tables are used within the OFSAA suite of
applications. Each table classification identifies a specific purpose for which an assigned table is
allowed to be used.

Some Table Classifications have requirements that must be satisfied in order for an object to be
assigned to the classification. These requirements are designated by Table Properties associated to
the Table Classifications. These Table Properties are either specific column name requirements or
logic validations.

Table Classification assignments are stored in REV_TABLE CLASS ASSIGNMENT.

NOTE FSI D CUSTOMER table should be registered against Other
table Class and Profitability-Other Class in
REV_TABLE CLASS ASSIGNMENT table.

Below SQL statements shouldbe executed explicitly to make
the required entries in REV. TABLE CLASS ASSIGNMENT :

Insert into REV_TABLE CLASS ASSIGNMENT
(TABLE NAME, OWNER, TABLE CLASSIFICATION CD, PROTE
CTED_FLG,VALIDATED FLAG)

values ('FSI_D CUSTOMER', '<DB
OWNER>"',30,0,'Y");

Insert into REV_TABLE CLASS ASSIGNMENT
(TABLE NAME, OWNER, TABLE CLASSIFICATION CD, PROTE
CTED_FLG,VALIDATED FLAG)

values ('FSI_D CUSTOMER', '<DB
OWNER>"', 350,0,'Y") ;

where <DB OWNER> is atomic schema user name.

Object Registration is a process of classifying a table with one or more table classifications depending
on the purpose of the table. This step is performed within the ERwin model by setting various User
Defined Properties for a client data object. Validation procedure validates table class assignment for a
client data object and needs to be executed after model upload operation.

Topics:

e User-Assignable Table Classification

e Requirement For Table Classification

e Validation Procedure

OFS DATA MODEL UTILITIES USER GUIDE | 55

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

e Executing the Validation Procedure

e Exception Messages

3.7.1 User-Assignable Table Classification

User-Assignable Table Classifications are those that can be assigned by the administrator to user-
defined and client data objects, including the OFSAAI Instrument tables. These Table Classifications
identify processing and reporting functions for the OFSAA. Some of these Table Classifications have
requirements that must be met in order for the classification to be assigned to a table or view.

All User-Assignable Table Classifications are available for assignment within the ERwin model. The
following table lists the User-Assignable Table Classifications:

OFS DATA MODEL UTILITIES USER GUIDE | 56

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

Code Table Classification Name

20 Instrument

50 Ledger Stat

100 Portfolio

200 TP Cash Flow

210 TP Non-Cash Flow

295 Codes User Defined (base tbl)

296 MLS Descriptions User Defined
300 Transaction Profitability

310 Instrument Profitability

320 User Defined

330 Data Correction Processing

360 RM Standard

370 TP Option Costing

500 PA Lookup Tables

600 Derivative Instruments

530 Break Funding

197 MLS Descriptions Reserved

198 Codes Reserved (base tbl)

21 Insurance Policy UDP

40 Portfolio Supertype UDP

301 Insurance Transaction Profitability UDP
3M Insurance Policy Profitability UDP
351 Insurance Profitability - Other Class UDP
702 Processing - EPM Prepayment UDP

OFS DATA MODEL UTILITIES USER GUIDE | 57

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

3.7.2

Requirement For Table Classification

OFSAAI requires specific table structures, column names and column characteristics for OFSAA
operations. These structures and requirements are embodied by the User-Assignable Table
Classifications.

Each Table Classification comprises individual Table Properties that define the requirements for that
classification. Table Properties are two distinct types: those encompassing specific column
requirements and those encompassing logic requirements via stored procedures.

The following table provides the validation checks that are being done for each of the table
classification:

OFS DATA MODEL UTILITIES USER GUIDE | 58

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

TABLE_CLASSIFICA

TION_CD

TABLE_CLASSI
FICATION

TABLE_PROPE

DESCRIPTION

Comments

50 Ledger Stat Ledger Leaf Fields that are Checks if columns of super-
Column Class part of core type Ledger Leaf Column
modeling Class is present
dimensions for
Fusion PFT
100 Portfolio Portfolio Dynamic list of | Checks if columns of super-
Requirements Portfolio fields | type Portfolio Requirements
is present
200 TP Cash Flow Basic Instrument Checks if columns of super-
Instrument Required fields | type Basic Instrument
Requirements Requirements is present
200 TP Cash Flow Cash Flow Proc. | Fields required | Checks if columns of super-
Requirements by TP and ALM | type Cash Flow Proc.
Cash Flow Requirements is present
processing
Note, this is required if
Conditional Assumptions are
being defined against the
table.
200 TP Cash Flow Cash Flow Edit Fields required | Checks if columns of super-
Requirements by Cash Flow type Cash Flow Edit
Edits in Requirements is present
addition to
Cash Flow
fields
200 TP Cash Flow Multi-Currency | Fields required | Checks if columns of super-
Requirements for Multi- type Multi-Currency
Currency Requirements is present
200 TP Cash Flow TP Basic Non-cash flow Checks if columns of super-
Requirements Transfer type TP Basic Requirements
Pricing fields is present
200 TP Cash Flow Validate Validates that a | Validation . Check if the table
Instrument table has all 'B' has all the key dimension
Leaves leaves leaf columns. The leaf
columns should be of data
type NUMBER
200 TP Cash Flow Validate Validate the Validation . Instrument table

Instrument Key

unique key for
Instrument (PA,
TP, ALM) tables

should have index present
on ID_NUMBER and
IDENTITY_CODE column

OFS DATA MODEL UTILITIES USER GUIDE | 59

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

210 TP Non-Cash Basic Instrument Checks if columns of super-
Flow Instrument Required fields | type Basic Instrument
Requirements Requirements is present
210 TP Non-Cash Multi-Currency | Fields required | Checks if columns of super-
Flow Requirements for Multi- type Multi-Currency
Currency Requirements is present
210 TP Non-Cash TP Basic Non-cash flow Checks if columns of super-
Flow Requirements Transfer type TP Basic Requirements
Pricing fields is present
210 TP Non-Cash Validate Validates thata | Validation . Check if the table
Flow Instrument table has all 'B' has all the key dimension
Leaves leaves leaf columns. The leaf
columns should be of data
type NUMBER
210 TP Non-Cash Validate Validate the Validation . Instrument table
Flow Instrument Key | unique key for should have index present
Instrument (PA, | on ID_NUMBER and
TP, ALM) tables | IDENTITY_CODE column
300 Transaction Basic Instrument Checks if columns of super-
Profitability Instrument Required fields | type Basic Instrument
Requirements Requirements is present
300 Transaction Multi-Currency | Fields required | Checks if columns of super-
Profitability Requirements for Multi- type Multi-Currency
Currency Requirements is present
300 Transaction Validate Validates that a | Validation . Check if the table
Profitability Instrument table has all 'B' has all the key dimension
Leaves leaves leaf columns. The leaf
columns should be of data
type NUMBER
300 Transaction Validate Validate the Transaction table should
Profitability Transaction unique key for have composite index
Key Transaction present on ID_NUMBER and
Profitability IDENTITY_CODE and all the
tables processing key columns.
310 Instrument Basic Instrument Checks if columns of super-
Profitability Instrument Required fields | type Basic Instrument
Requirements Requirements is present
310 Instrument Multi-Currency | Fields required | Checks if columns of super-
Profitability Requirements for Multi- type Multi-Currency
Currency Requirements is present

OFS DATA MODEL UTILITIES USER GUIDE | 60

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

310 Instrument Validate Validates that a | Validation . Check if the table
Profitability Instrument table has all'B' | has all the key dimension
Leaves leaves leaf columns. The leaf
columns should be of data
type NUMBER
310 Instrument Validate Validate the Validation . Instrument table
Profitability Instrument Key | unique key for should have index present
Instrument (PA, | on ID_NUMBER and
TP, ALM) tables | IDENTITY_CODE column
330 Data Correction | Validate Validate the Processing Key Column for a
Processing Processing Key | unique key for table have a matching
Processing unique index
tables
360 ALM Standard Basic Instrument Checks if columns of super-
Instrument Required fields | type Basic Instrument
Requirements Requirements is present
360 ALM Standard Cash Flow Proc. | Fields required | Checks if columns of super-
Requirements by TP and ALM | type Cash Flow Proc.
Cash Flow Requirements is present
processing
360 ALM Standard Cash Flow Edit Fields required | Checks if columns of super-
Requirements by Cash Flow type Cash Flow Edit
Edits in Requirements is present
addition to
Cash Flow
fields
360 ALM Standard Multi-Currency | Fields required | Checks if columns of super-
Requirements for Multi- type Multi-Currency
Currency Requirements is present
360 ALM Standard Validate Validates that a | Validation . Check if the table
Instrument table has all'B' | has all the key dimension
Leaves leaves leaf columns. The leaf
columns should be of data
type NUMBER
360 ALM Standard Validate Validate the Validation . Instrument table
Instrument Key | unique key for should have index present
Instrument (PA, | on ID_NUMBER and
TP, ALM) tables | IDENTITY_CODE column
370 TP Option Basic Instrument Checks if columns of super-
Costing Instrument Required fields | type Basic Instrument

Requirements

Requirements is present

OFS DATA MODEL UTILITIES USER GUIDE | 61

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

370 TP Option Cash Flow Edit Fields required | Checks if columns of super-
Costing Requirements by Cash Flow type Cash Flow Edit
Edits in Requirements is present
addition to
Cash Flow
fields
370 TP Option Multi-Currency | Fields required | Checks if columns of super-
Costing Requirements for Multi- type Multi-Currency
Currency Requirements is present
370 TP Option TP Option Fields required | Checks if columns of super-
Costing Costing for Transfer type TP Option Costing
Requirements Pricing Option Requirements is present
Costing
processing
370 TP Option TP Basic Non-cash flow Checks if columns of super-
Costing Requirements Transfer type TP Basic Requirements
Pricing fields is present
370 TP Option Validate Validates thata | Validation . Check if the table
Costing Instrument table has all 'B' has all the key dimension
Leaves leaves leaf columns. The leaf
columns should be of data
type NUMBER
370 TP Option Validate Validate the Validation. Instrument table
Costing Instrument Key | unique key for should have index present
Instrument (PA, | on ID_NUMBER and
TP, ALM) tables | IDENTITY_CODE column
500 PA Lookup Validate PA Procedure to Validation. All Lookup table
Tables Lookup check if thereis | should have a primary key
a primary key present
for the lookup
tables.
530 Break Funding Break Funding Fields required | Checks if columns of super-
Requirements as part of TP type Break Funding
break funding Requirements is present
Validation. Check if the table
Insurance has all the key dimension
Transaction Validates thata | leaf columns. The leaf
Profitability Validate Policy policy table has | columns should be of data
301 UDP Table Leaves all 'B' leaves type NUMBER

OFS DATA MODEL UTILITIES USER GUIDE | 62

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

Insurance

Transaction

Validate the
unique key for
Policy

Transaction table should
have composite index
present on ID_NUMBER and

Profitability Validate Policy Transaction IDENTITY_CODE and all the
301 UDP Trans Key tables processing key columns.

Insurance

Transaction Basic Checks if columns of

Profitability Instrument Instrument supertype Basic Instrument
301 UDP Requirements Required fields | Requirements are present

Insurance

Transaction Fields required | Checks if columns of

Profitability Multi-Currency | for Multi- supertype Multi-Currency
301 UDP Requirements Currency Requirements are present

Insurance

Policy Fields required | Checks if columns of

Profitability Multi-Currency | for Multi- supertype Multi-Currency
M UDP Requirements Currency Requirements are present

Insurance

Policy Basic Checks if columns of

Profitability Instrument Instrument supertype Basic Instrument
M UDP Requirements Required fields | Requirements are present

Transaction table should

Insurance Validate the have composite index

Policy unique key for present on ID_NUMBER and

Profitability Validate Instrument (PA, | IDENTITY_CODE and all the
3M UDP Instrument Key | TP, RM) tables processing key columns.

Validation . Check if the

Insurance table has all the key

Policy Validates thata | dimension leaf columns. The

Profitability Validate Policy | policy table has | leaf columns must be of data
3M ubP Table Leaves all 'B' leaves type NUMBER

OFS DATA MODEL UTILITIES USER GUIDE | 63

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

3:7-3

3-7-4

Validate the
Insurance unique key for
Profitability - Profitability - Validate the unique key for
Other Class Profitability - Other Class Profitability - Other Class
351 UDP Other Class tables tables

Specific column requirements for each table property can be obtained by querying
REV_COLUMN_REQUIREMENTS table.

Validation Procedure

The OFSA TAB CLASS REQ package contains all of the procedures and supporting functions that
validates if a table meets the requirements for a particular Table Classification.

The package performs the following validations:
e VALIDATE INST KEY

This procedure validates if a table has ID NUMBER and IDENTITY CODE,or ID NUMBER,
IDENTITY CODEandAS OF DATE as its unique index and if the Processing key designated in
Column Propertiesis ID NUMBER, IDENTITY CODE.

e UPDATABLE INST REQ FIELDS

This procedure checks that all of the Instrument Required Fields are also listed as updatable in
USER_UPDATABLE COLUMNS for the specified table or view.

e VALIDATE INST LEAVES
This procedure will validate a table has all the required leaf columns
e VALIDATE TRANS KEY

This procedure validates if a table has ID NUMBER and IDENTITY CODE and one or more 'B'
Leaf Columns in its unique index and that these columns match the Processing key designated
in Column Properties.

e VALIDATE CORR KEY
This procedure will validate a table has a unique index with updatable columns.

All the above procedures return a success or failure status. The REV_TAB CLASS ASSIGNMENT table
is updated as 'Y' if a table is successfully validated and 'N' in case of failure.

Executing the Validation Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from Batch
Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Atomic Schema Owner. The syntax for
calling the procedure is:

set serveroutput off

OFS DATA MODEL UTILITIES USER GUIDE | 64

OBJECT MANAGEMENT

OBJECT REGISTRATION AND VALIDATION

Declare

Output number;

Begin
Output := fsi batchtableclassreq(pbatchid, pmis date);
End;

NOTE Since the package contains huge number of dbms_output
statements, user should either increase the output buffer size
or disable the server output.

For Example:

set serveroutput off

Declare

Output number;

Begin

Output :=

fsi batchtableclassreqg('INFODOM INSTRUMENT TABLE VALIDATION 20131205 1°',
'20131205") ;

End;

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select appropriate datastore from list
¢ Datastore Name: Select appropriate name from the list
e |IP address: Select the IP address from the list

e Rule Name: Batch_Table_Class_Req

e Parameter List: Batch Identifier and MISDATE

3.7.5 Exception Messages
The oFsa TAB CLASS REQ packages throws the following exceptions.

e Exception 1: FAILED: Table Property 1030 - Validate Correction Key
This exception occurs when no valid unique index found.

e Exception 2: FAILED: Table Property 1030 - Validate Correction Key
This exception occurs when Processing Key Column Properties do not match unique index

o Exception 3: FAILED: Table Property 1030 - Validate Transaction Key
This exception occurs when no valid unique index found.

o Exception 4: FAILED: Table Property 1000 - Validate Instrument Leaves

OFS DATA MODEL UTILITIES USER GUIDE | 65

OBJECT MANAGEMENT

DEFINING ALTERNATE RATE OUTPUT COLUMNS

3.8

3.8.1

This exception occurs when one or more Leaf Columns are missing or incorrectly registered.
Check if the datatype of the LEAF columns is NUMBER and domain of these columns is LEAF.

Defining Alternate Rate Output Columns

This section details the steps required for defining Alternate Rate Output columns within the OFSAA
Fund Transfer Pricing Application.

The following topics are covered in this section:

Setting User Defined Properties in ERwin

Uploading the model and object registration

User-Defined Properties

The following are the user-defined properties that are available for identifying columns required for
alternate rate output:

Transfer Pricing Output (Column Property — 80)
Option Cost Output (Column Property — 81)

Other Adj Spread Output (Column Property — 82)
Other Adj Amount Output (Column Property — 83)
Economic Value Output (Column Property — 86)
Liquidity_rate_column (Column Property — 95)
Liquidity_amount_column (Column Property — 96)
Basis_rate_column (olumn Property — 97)
Basis_amount_column (Column Property - 98)
Pricing_rate_column (Column Property — 99)

Pricing_amount_column (Column Property - 100)

User needs to assign one of the above properties to the columns that need to be used as Alternate
Rate Output columns within the Fund Transfer Pricing application.

The following are the steps to set the user-defined property to the column:

1.

P wow®

© N o u

Open the ERwin file in ERwin Data Modeler tool.
Go to Main Subject Area.
Go to Physical View.

Choose the entity that contains the alternate rate output column. This entity can also be a
super-type (like TP BASIC REQ).

Select the column and open the column properties for the column.
Go to UDP tab within column properties.
Select YES for one of the above user-defined properties.

Save the model.

OFS DATA MODEL UTILITIES USER GUIDE | 66

OBJECT MANAGEMENT

USER DEFINED PROPERTIES

3-9

3.9.1

NOTE Setting the user-defined property of the columns within a
super-type entity will apply to all the entities that are related to
the super-type.

Uploading the Model

Upload the model in OFSAAI and perform object registration. After u
execute the following query to check if the user-defined properties a

ploading the model, you can
re set for the columns.

select * from rev_column properties where column property cd in

(80,81,82,83)
where TABLE_NAME = <<table_name>>

Replace <<table_name>> with the relevant table name and column name in the above query and

execute the same. Above query returns the columns that are used fo

User Defined Properties

User Defined Properties are set for tables and columns within ERwin.

r alternate rate outputs.

IO Disenn fi 3
PR O CE T R —
N | BASIC INSTRUMENT REQ v
LD |
2 AR DK Pusthiors | LOB Sorage | Supghemaetal Logging | Vabdation | Symcetn | Materieioed Vaw b | Object Cremtion e | UOP Hteey £
1| s ot propetes &
RO B"Q Property e &
O e o | [kl 0 i
%;3 BASC_STRUNENT_EQ ey o
) P Cah Pow w
AT TP Nen s Fiow w
W_FROC_REQ
4ok ;::::mﬂdlﬂv ’;w
NCE BUCKETS e
ST b
e CLACS ourEpTTT "
Loy St w
i 0
0 Opten ot w
Used n Reparts. N
Srategx Rk 0
S W
Tolype! 900
Product L
MSDesrgtns e efred 0
CURCFERET2T or
Produt! L3
QP FEFE or
DAl
redatit "
PALookup Tables n
et oftablky)
CFERT "
S Desrgtins Restrved w
Ot Corecn rocss "
Oeratve et 0
Codes User Defined (base th) (]
OFICFEFEL o
Ly N
M| rcrREN or
Mode B Sibisct aees CUFETL o
oureTfan o
® Oatoge!
Q AN andwrd wn
ook Frdey w
oo Resrved (s) 0 v
Diomts yseaoly [oesme..) [Come) (oo
(G0 Ootals | A Sy
W [owsts..]

Table Level User Defined Properties

The following user defined properties can be set for the table:

OFS DATA MODEL UTILITIES USER GUIDE | 67

OBJECT MANAGEMENT

USER DEFINED PROPERTIES

UDP Name

Instrument

Description

Property to identify if the table is classified as a
basic instrument table. (that is, Instrument
table classification code 20)

List of values

YES / NO

TP Cash Flow

Property to identify if the table is classified as
'TP Cash Flow' for the purpose of generating

Transfer Pricing rates using cash flow methods.

YES / NO

TP Non Cash Flow

Property to identify if the table is classified as
TP Non-Cash Flow' for the purpose of
generating Transfer Pricing rates using non
cash flow methods.

YES / NO

Transaction Profitability

Property to identify if the table is classified as
'"Transaction' for the purpose of executing
allocation rules.

YES / NO

Portfolio

Property to identify if the table is classified as
'Portfolio’.

YES / NO

User Defined

Property to identify if the table is classified as
'User Defined' table for storing multi-lingual
descriptions for codes.

YES / NO

Ledger Stat

Property to identify if the table is classified as
'Ledger Stat' for the purpose of executing
allocation rules.

YES / NO

ALM Standard

Property to identify if the table is classified as
'ALM Standard' for the purpose of executing
ALM cash flow engine to generate cash flows.

YES / NO

TP Option Costing

Property to identify if the table is classified as
'TP Option Costing' for the purpose of
generating Transfer Pricing rates with option
costing.

YES / NO

Break Funding

Property to identify if the table is classified as
'‘Break Funding' for the purpose of generating
Break funding charges using Transfer Pricing
engine.

YES / NO

MLS Descriptions Reserved

Property to identify if the table is classified as
'Reserved' table for storing multi-lingual
descriptions for codes.

YES /NO

Codes Reserved (base tbl)

Property to identify if the table is classified as
'Reserved' table for storing codes of simple
dimensions.

YES / NO

Codes User Defined (base
tbl)

Property to identify if the table is classified as
'User-defined' table for storing codes of simple
dimensions.

YES /NO

OFS DATA MODEL UTILITIES USER GUIDE | 68

OBJECT MANAGEMENT

USER DEFINED PROPERTIES

PA Lookup Tables

Property to identify if the table is classified as
'‘Lookup Table' for the purpose of defining
lookup table allocation rules.

YES / NO

Instrument Profitability

Property to identify if the table is classified as
'Instrument’ for the purpose of executing
allocation rules.

YES / NO

Derivative Instruments

Property to identify if the table is classified as
'Derivatives' for the purpose of executing ALM
cash flow engine to generate cash flows for
derivative instruments.

YES / NO

Data Correction Processing

Property to identify if the table is classified as
'Data Correction Processing' for the purpose of
executing Cash Flow Edits engine.

YES / NO

3.9.2 Column Level User Defined Properties

The following user defined properties can be set for the column:

OFS DATA MODEL UTILITIES USER GUIDE | 69

OBJECT MANAGEMENT

USER DEFINED PROPERTIES

UDP Name Description List of values

Balance Range Property to identify if the column within a YES / NO
table classified as 'PA Lookup Table' must be
displayed under 'Range' within Lookup table

definition.

Balance Property to identify if the column is of type YES / NO
'‘Balance'.

Standard Rate Property to identify if the column is of type YES / NO

'Standard Rate'.

Balance Weighted Object Property to identify if the column is of type YES / NO
'‘Balance Weighted Object'.

Processing Key Property to identify if this columnisusedasa | YES /NO
'Processing Key' within the instrument,
transaction and ledger_stat table.

Frequency Multiplier Property to identify if the column is used to YES / NO
store 'Frequency'. This property is used in
Filters Ul within OFSAAI.

Multiplier Related Field Property to specify the name of the column Text
that is used to store the multiplier for the
corresponding 'Frequency' column. This
property is used in Filters Ul within OFSAAI.

Related Field Property to specify the name of the column Text
that is used to store the multiplier for the
corresponding 'Term' column. This property is
used in Filters Ul within OFSAAL.

Term Multiplier Property to identify if the column is used to YES / NO
store 'Term'. This property is used in Filters Ul
within OFSAAI.

Column Alias Property to specify an alias for the column. Text

This is used within the staging loader
program for loading LEDGER_STAT table.

Statistic Property to identify if the column is of type YES / NO
'Statistic'.
Transfer Pricing Output Property to identify if the column must be set | YES / NO

as an alternate output column for writing
transfer rates by transfer pricing engine.

Option Cost Output Property to identify if the column must beset | YES / NO
as an alternate output column for writing
option costing output by transfer pricing
engine.

OFS DATA MODEL UTILITIES USER GUIDE | 70

OBJECT MANAGEMENT

USER DEFINED PROPERTIES

Other Adj Spread Output Property to identify if the column must beset | YES / NO
as an alternate output column for writing
other adjustment spread by transfer pricing
engine.
Other Adj Amount Output Property to identify if the column must beset | YES / NO
as an alternate output column for writing
other adjustment amount by transfer pricing
engine.
Property to identify minimum range
column within a table classified as 'PA
Lookup Table'.
For eg:
UDP_LOOKUP_RANGE_MI | LOOKUP_TEMPLATE_TABLE.AVERAGE_
NIMUM BALANCE_MIN column. YES / NO
Property to identify maximum range
column within a table classified as 'PA
Lookup Table'.
For eg:
UDP_LOOKUP_RANGE_M | LOOKUP_TEMPLATE_TABLE.AVERAGE_
AXIMUM BALANCE_MAX column. YES / NO
Property to identify PFT Output Columns
in instrument tables and
FSI_D_INST_SUMMARY table.
UDP_EXPORT_PFT_OUTP | For eg: CALL_CENTER_EXP,
uT COMPLAINCE_EXP etc. YES /NO
Property to identify FTP Output Columns
in instrument tables and
FSI_D_INST_SUMMARY table
UDP_EXPORT_FTP_OUTP | For eg: OTHER_ADJUSTMENTS_AMT,
uT OTHER_ADJUSTMENTS_RATE etc. YES / NO
Property to identify columns used by FTP
in instrument tables and
FSI_D_INST_SUMMARY table
UDP_EXPORT_FTP_OTHE | For eg: AVG_BOOK_BAL,
RS CUR_BOOK_BAL etc. YES / NO

OFS DATA MODEL UTILITIES USER GUIDE | 71

OBJECT MANAGEMENT

MODIFYING THE PRECISION OF BALANCE COLUMNS IN LEDGER STAT

Property to identify EPM Key Processing
dimension columns in instrument tables
and FSI_D_INST_SUMMARY table.

UDP_EXPORT_EPM_KEY_ | For eg: COMMON_COA_ID, PRODUCT_ID
DIMS etc. YES / NO

Property to identify mandatory key
columns for EPM in instrument tables and
FSI_D_INST_SUMMARY table.

For eg: AS_OF_DATE,
UDP_EXPORT_EPM_KEY_ | ISO_CURRENCY_CD, IDENTITY_CODE,
COLUMNS INSTRUMENT_TYPE_CD etc. YES / NO

Property to identify other columns for
EPM in instrument tables and
FSI_D_INST_SUMMARY table.

UDP_EXPORT_EPM_OTHE | For eg: ACCOUNT_OFFICER_CD,
RS INTEREST_INC_EXP etc. YES / NO

3.10 Modifying the Precision of Balance Columns In Ledger
Stat

Steps to modify the Precision
1. Openthe ALM, FTP, or PFT model using All Fusion ERwin Data Modeler.
2. Switch to ALM-FTP-PFT-HM-BSP - Ledger Stat subject area.
3. Select Logical view.
4. Edit the Ledger Stat table by double clicking the table in the Logical Layer.
5

Change the data type in Datatype tab to the revised precision and scale (example, NUMBER (22,
3)) for the following columns:

= Month 01 Amount, Month 02 Amount, Month 03 Amount and so on
= YTD 01 Amount, YTD 02 Amount, YTD 03 Amount and so on.

OFS DATA MODEL UTILITIES USER GUIDE | 72

OBJECT MANAGEMENT
MODIFYING THE PRECISION OF BALANCE COLUMNS IN LEDGER STAT

~

Attributes @
Entity: | Ledger Stat | J
Attribute [El General Datatype | Constraint | Definit... LJ_"

Identity Code A
Year Summary]
Accumulation Type Code

Consolidation Code

150 Currency Code !
NIIMFRIFT) b
Month 02 Amount

Month 03 Amount I™ Not Null

Month 04 Amount

Month 05 Amount

Month 06 Amount

Month 07 Amount v

Datatype:

[NUMBER(22.3)

New... | Rename... Delete

Reset... 0K I Cancel

Save the changes.
Select the Physical view.

Click LEDGER_STAT table and view the datatype of columns — MONTH_O1till MONTH_12 and
YTD_01till YTD_12. The data type of these columns should display the new precision and scale.

Save the model as xml in All Fusion Repository Format.

. Perform incremental model upload.

NOTE In case, users decrease the precision and scale for the
columns, such columns should not have any values during
model upload.

OFS DATA MODEL UTILITIES USER GUIDE | 73

UTILITIES

REVERSE POPULATION

Utilities
This chapter details the steps involved in executing various data model utilities that are available
within OFSAA.

Topics:

Reverse Population

Product Instrument Mapping

Instrument Synchronization

Stage Synchronization

Ledger Load Undo

Data Slicing

Reverse Population

Reverse population procedure populates dimension members, attributes and hierarchies from new
dimension tables to OFSA legacy set of dimension tables. ALM, TP and PFT engines refer to OFSA
legacy tables for retrieving dimension member information.

Topics:

Tables As Part Of Reverse Population

Reverse Population Procedure

Executing the Reverse Population Function

Exception Messages

OFS DATA MODEL UTILITIES USER GUIDE | 74

UTILITIES

REVERSE POPULATION

NOTE From PFT 8.0.4.0.14 release, the following entry will be
seeded into SETUP_PARAMETERS_MATER table:

PARAM_SEQ PARAM_APP_ID PARAM_NAME PARAM_VALUE
<SEQ NO> ALL FAIL_ON_HIERARCHY_MAX_DEPTH_ALL NO
Allowed values are YES or NO.

Default value for PARAM_VALUE is NO.

Reverse population hierarchy loader looks for a record in
SETUP_PARAMETERS_MASTER table with PARAM_NAME =
FAIL_ON_HIERARCHY_MAX_DEPTH_ALL

1. fFAIL ON HIERARCHY MAX DEPTH ALL
parameter value is found in the
SETUP PARAMETERS MASTER table and
PARAM VALUE is setto NO, then continue
with current behavior.

2. If FAIL ON HIERARCHY MAX DEPTH ALL
parameter value is found in the
SETUP PARAMETERS MASTER table and
PARAM VALUE is setto YES, abort the loader
and batch execution fails.

3. IfFAIL ON HIERARCHY MAX DEPTH ALL
parameter is not found in
SETUP PARAMETERS MASTER table then
continue with existing behavior.

While saving a hierarchy from AMHM screen with more than 15
levels, even if the parameter

FAIL ON HIERARCHY MAX DEPTH ALL issetto YES,
hierarchy gets saved and reverse population does not perform
(which is the existing behavior).

On running the reverse population batch

(DIMENSION HIERARCHY LOAD) for a hierarchy with more
than 15 levels, the batch and task execution fails when the
parameter FAIL ON HIERARCHY MAX DEPTH ALLIs setto
YES. Also, an error is logged in FSI MESSAGE_LOG table.

If the parameter is set to NO (or if the parameter is not
available at all), then the reverse population batch will be
successful, and only a warning message will be logged in
FSI_MESSAGE LOG which indicates the hierarchy has more
than 15 levels.

4.1.1 Tables As Part Of Reverse Population

Dimension data is stored in the following set of tables:

OFS DATA MODEL UTILITIES USER GUIDE | 75

UTILITIES

REVERSE POPULATION

4.1.2

e DIM <DIMENSION> B: Storesleaf and node member codes within the dimension.
e DIM <DIMENSION> TL: Stores names of leaf and node and their translations.
e DIM <DIMENSION> ATTR: Stores attribute values for the attributes of the dimension.

e DIM <DIMENSION> HIER: Stores parent-child relationship of members and nodes that are part
of hierarchies.

Data present in the above set of dimension tables are transformed into the following set of OFSA
Legacy tables.

The reverse population routine synchronizes the dimension data between the new dimension tables
and the OFSA Legacy tables. Reverse population occurs automatically if enabled in the
AMHMConfig.properties file. In the AMHMConfig.properties file, set the Parameter valueto Y
for a specific Dimension Id. The setting in the AMHMConfig.properties only impacts dimension
values entered through the interface. Reverse population must be executed as a batch for bulk
loading.

Reverse population will automatically occur with object migration for key dimension members on the
Target instance if AMHMConfig.properties has a property with Key=HIERARCHY REVERSE POP-
<Infodom in Upper Case>-<Dimension ID> Value=Y.

For more information on how to define the reverse populate parameters in the
AMHMConfig.properties file, see Oracle Financial Services Analytical Applications Infrastructure
(OFSAAI) User Guide.

e OFSA LEAF DESC: Stores the description of leaf members that are part of the dimension.

e OFSA NODE DESC: Stores the description of nodes that are used within the hierarchy.

e OFSA DETAIL LEAVES: Stores the attributes of Common COA dimension.

e OFSA DETAIL OTHER COA: Stores the attributes of GL or Product or any other key dimension.

e OFSA DETAIL ELEM B/OFSA DETAIL ELEM MLS: Storesthe attributes of Financial
Elements dimension.

e OFSA_IDT ROLLUP: Stores the hierarchy as level-based.
e OFSA LEVEL DESC: Stores the hierarchy levels.

Reverse population is done for all key dimensions that are configured within the OFSAAI framework.

Reverse Population Procedure

The REVERSE POPULATION package populates the OFSA legacy dimension tables from new
dimension tables.

The procedure performs the following functions:

e Gets thelist of source and target tables. The source tables for given dimension is stored in
REV_DIMENSION B table. The OFSA target table for a given dimension is stored in
OFSA CATALOG OF LEAVES.

e The REVERSE POPULATION transposes the seeded attributes, leaf members and hierarchy data
stored in the form of rows (new dimension table structure) to columns (OFSA).

e All exception messages are logged in the FSI MESSAGE LOG table.

OFS DATA MODEL UTILITIES USER GUIDE | 76

https://docs.oracle.com/cd/F29631_01/get_started.htm
https://docs.oracle.com/cd/F29631_01/get_started.htm

UTILITIES

REVERSE POPULATION

4.1.3

After the Reverse Population procedure is completed, you should query the OFSA legacy tables to look
for dimension members.

Executing the Reverse Population Function

You can execute this function from either within a PL/SQL block or from Batch Maintenance window
within OFSAAI framework.

To run the function with a PL/SQL block, follow these steps:

Members Reverse Population

Function fsi batchMemberLoad(batch run id varchar?,

mis date varchar?2,
pDimensionId varcharz,
pMemberId varchar?2,
pMode varchar?)

where

= BATCH RUN ID isany string to identify the executed batch.

» MIS DATE inthe format YYYYMMDD.

* pDIMENSIONID isthe dimension id.

* pMEMBERID can be null. If value is provided, only that member id gets reverse populated.

» |f pMode value is 1, it means fresh insert, if value is 2 means update, and if value is 3 means
delete. In batch mode, you can prefer to use 2.

For Example:
Declare

num number;
Begin

num := fsi batchmemberload
('INFODOM 20100405','20100405',1,null,2);

End;

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

= Datastore Type: Select appropriate datastore from list
= Datastore Name: Select appropriate name from the list
» [P address: Select the IP address from the list

* RuleName: Batch Member Load

= Parameter List: Dimension ID, Member id, pMode

Hierarchy Reverse Population
Function fsi batchhierarchyload(batch run id varchar?2,

mis date varchar?2,

OFS DATA MODEL UTILITIES USER GUIDE | 77

UTILITIES

REVERSE POPULATION

pDimensionId varchar2,
pHierarchyId varchar?2,
pMode varchar?)

where

= BATCH RUN_IDisany string to identify the executed batch.

» MIS DATE inthe format YYYYMMDD.

* pDIMENSIONID isthe dimension id.

* pHIERARCHYID can be null If value is provided, only that Hierarchy gets reverse populated.

» |f pMode valueis 1, it means fresh insert, if value is 2 means update, and if value is 3 means
delete. In batch mode, you can prefer to use 2.

For Example:
Declare

num number;
Begin

num := fsi batchhierarchyload ('INFODOM 20100405','20100405"
,1,null,2);

End;

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

= Datastore Type: Select appropriate datastore from list
» Datastore Name: Select appropriate name from the list
= [P address: Select the IP address from the list

* RuleName:Batch Hier Load

= Parameter List: Dimension ID, Hierarchy id, pMode

NOTE The reverse population fsi_batchMemberLoad and
fsi batchHierarchyLoad should be executed after
fn_drmdataloader. The fsi_batchMemberLoad reverse
populates the members and the fsi_batchHierarchyLoad
reverse populates the hierarchies to the legacy structures.

fn_drmDataloader supports 15 + level and any hierarchy with
greater than 15 level cannot be used in ALM/PFT/FTP process.
fsi_batchHierarchylLoad does not support 15 + level, however,
this method will work in case of 15+ level hierarchies; it will only
skip such hierarchies, with a suitable message in the log
table(s).

The Hierarchy greater than 15 level are not supported within
ALM/FTP/PFT/HM processes, OFSA_IDT_ROLLUP will not be
populated, however nothing prevents the EPM application Uls
from rendering 15+ level hierarchies .

OFS DATA MODEL UTILITIES USER GUIDE | 78

UTILITIES

PRODUCT INSTRUMENT MAPPING

rev_batchHierFlatten supports a maximum of 20 levels
including leaf.

4.1.4 Exception Messages

The Reverse Population procedure may cause some exceptions to appear. The text and explanation
for each of these exceptions follows. If you call the procedure from a PL/SQL block you may want to
handle them so that your program can proceed.

e Exception 1: Error. While getting dimension details

This exception occurs when the reverse population procedure cannot find any data configured
in the driver table (REV_DIMENSIONS B).

e Exception 2: Error. While generating hierarchy Query
This exception occurs when there is a problem generating hierarchy query dynamically.
e Exception 3: Error. While populating Nodes

This exception occurs when there is an error populating the OFSA NODE_DESC table.

4.2 Product Instrument Mapping

ALM and TP processes can be based on a set of data tables or a set of products. In case products are
selected, ALM and TP engine internally gets the list of data tables mapped to these products and
processes those data tables. During the period-ending load cycle, data is loaded into your Data
Objects such as Instrument tables. During this load process, all the distinct members of 'Product’ type
dimension that are present within each data table will be stored in a separate table

(FsI_M PROD INST TABLE_ MAP) by executing Product Instrument mapping procedure.

Topics:

e Tables Requiring Synchronization

e Product Instrument Table Map Procedure

e Executing the PRODUCT INSTRUMENT TABLE MAP Procedure

e Exception Messages

OFS DATA MODEL UTILITIES USER GUIDE | 79

UTILITIES

PRODUCT INSTRUMENT MAPPING

4.2.1

4.2.2

4.2.3

Tables Requiring Synchronization

Product-instrument table mapping is required only for Instrument tables. Instrument tables are
defined as all tables with the Instrument Table Classification (table_classification_cd in
(20,600,200,210)) on which all of the defined Leaf Columns exist.

Product Instrument Table Map Procedure

This function gives exact mapping of a particular 'Product’ stored in multiple Instrument table, and
mappingis stored in FSI_ M PROD INST TABLE MAP for given AS OF DATE. The function outputs
the mapping information only if the corresponding 'Product’ definition exits in the corresponding
dimension table.

The procedure performs the following functions:
e Gets the list of 'Product’ type dimensions from dimension registry table (REV_DIMENSIONS_ B).
e Gets thelist of Instrument tables from REV_TABLE CLASS ASSIGNMENT.

e Fetches the distinct set of members for each 'Product’ type dimension from all instrument
tables for a given AS OF DATE.

e Stores the above set into a mapping table (FSI M PROD INST TABLE MAP).

e The function outputs message in the message log if the member definition which exists in the
Instrument table is not found in the respective dimension table.

After the Product-Instrument table mapping utility run is completed, you should query the mapping
table to look for dimension members that are present as part of each instrument table.

Executing the PRODUCT_INSTRUMENT_TABLE_MAP
Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from Batch
Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The procedure
requires 3 parameters — Batch Id — which can be used to see the log of the procedure executed,
MISDATE and the AS_OF_DATE. Identify the table name parameter by enclosing it in single quotes
and uppercase, as shown in the following two examples. The syntax for calling the procedure is:

Declare
output number;
Begin
Output:= fn Product Instrument Map ('Batch Id', 'MISDATE','AS OF DATE');
End;
AS_OF_DATE is the date for which mapping is required.
MISDATE is the date for which batch is run.
Both MISDATE and AS_OF_DATE should be passed as 'YYYYMMDD' format.
An example of running the function from SQL*Plus for the FSI_D_TERM_DEPOSITS table follows:

OFS DATA MODEL UTILITIES USER GUIDE | 80

UTILITIES

PRODUCT INSTRUMENT MAPPING

4.2.4

SQL> wvar output number;

SQL> execute :output:= fn Product Instrument Map ('Batch Id',
'20100131,'19991231");

To execute the stored procedure from within a PL/SQL block or procedure, see the example that
follows. Call the procedure as often as required to synchronize all of your instrument tables. The
appropriate table parameters are enclosed in single quotes.

SQL> declare

output number;

begin

output:= fn Product Instrument Map ('Batch Id',
'"MISDATE', 'AS OF DATE')

end;

/

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type : Select appropriate datastore from list
e Datastore Name : Select appropriate name from the list
e IPaddress: Select the IP address from the list

e Rule Name: Product_Inst_Mapping

e Parameter List : AS_OF_DATE

NOTE BATCHID and MISDATE will be passed explicitly in Batch
Maintenance.

Exception Messages

The Product to Instrument Mapping function may cause two exceptions to appear. The text and
explanation for each of these exceptions follows. If you call the function from a PL/SQL block you may
want to handle them so that your program can proceed.

e Exception 1: Table does not exist

The exception message reads:

Table 'TABLE_NAME' does not exist.

This exception occurs when the function does not find the Instrument table.
e Exception 2: Column does not exist

The exception message reads:

Column 'Column_Name' does not exists in the instrument table 'Table_Name' while processing
dimension 'Dimension ID".

This error occurs when leaf column does not exist in the Instrument table.

OFS DATA MODEL UTILITIES USER GUIDE | 81

UTILITIES

INSTRUMENT SYNCHRONIZATION

4.3

4.3.1

4.3.2

Instrument Synchronization

During the period-ending load cycle, data is loaded into Client Data Objects such as Instrument tables
and the LEDGER STAT table. During this load process, it is possible for new, unidentified Dimension
and Code values to be loaded into these tables.

The Instrument Synchronization procedure identifies these new Dimension and Code values and
inserts default description entries for them into the appropriate tables. The procedure performs both
of these synchronizations simultaneously. OFSAAI requires that all Dimension and Code values have a
corresponding description. This is required for any OFSAA reporting operation to return the correct
results. It also ensures that Hierarchies work properly within the OFS analytical applications.

Topics:

e Tables Requiring Synchronization

e Dimension Member Synchronization

e Code Synchronization

e Executing the Synchronize Stage Procedure

e Exception Messages

Tables Requiring Synchronization

Dimension member and Code value synchronization is required only for Instrument and
LEDGER_STAT tables. Instrument tables are defined as all tables with the Instrument Table
Classification (table_classification_cd = 20) on which all of the defined Key Dimension Columns exist.

Dimension Member Synchronization

The SYNCHRONIZE INSTRUMENT procedure synchronizes the dimension member tables and the
hierarchy tables with LEDGER STAT and instrument tables, using default values for member
descriptions and other information columns. You can then add the correct data to the new dimension
members in AMHM member maintenance.

The procedure performs the following functions:

e Checks the specified table (LEDGER STAT or instrument) for new dimension members in each
of that table's key dimension columns and adds the new dimension value as leaf members to
the respective dimension member tables.

e Adds the new dimension member to the corresponding attribute tables with default values for
mandatory attributes.

¢ When new dimension members are added to the dimension tables these members include 'No
Description' in the DESCRIPTION column and contain default values for mandatory attributes.

e Reverse populates the newly added dimension members into legacy OFSA tables. During
reverse population, new members are created as orphan members, under corresponding
hierarchies.

After the SYNCHRONIZE INSTRUMENT utility runis completed you should look for any new dimension
members using the AMHM member maintenance Ul and enter the correct descriptions and other

OFS DATA MODEL UTILITIES USER GUIDE | 82

UTILITIES

INSTRUMENT SYNCHRONIZATION

4.3-3

4.3.4

member information. You should also look at the orphan node of each Hierarchy for new dimension
members and move these members to the appropriate branch in the rollup.

Codes Synchronization

The SYNCHRONIZE INSTRUMENT procedure identifies code values in Instrument and LEDGER STAT
tables for which a corresponding description does not exist and inserts a default description into the
appropriate Code Description object. This applies only to CODE columns categorized as User-Editable
or User-Defined (see the table classification). CODE columns for which OFSAA reserves all of the
values are not updated by this procedure. The procedure displays a warning message for any
unidentified values in CODE columns where OFSAA reserves the entire range.

For each CODE column (REV_DATA TYPE CD equals 3) on the specified object, the
SYNCHRONIZE_INSTRUMENT procedure queries from REV_DESCRIPTION TABLES to identify the
object storing the corresponding descriptions. If the resulting object is a User-Editable or User-Defined
Code Description object (checks from REV_TABLE CLASS ASSIGNMENT table), then the procedure
inserts a default description for any code values for which a description record does not already exist.
If the resulting object is an OFSAA Reserved Code Description object, then the procedure outputs a
warning message indicating how many invalid code values exist in the specified Instrument or

LEDGER STAT table in the messagelog (FSI MESSAGE LOG).

For example, if you are synchronizing the FSI_D TERM DEPOSITS table, the procedure queries all of
the CODE columns on this table. An example of a Reserved CODE columnis ACCRUAL BASIS CD.lIf
the procedure finds any code values in this column that are not present in the corresponding Code
Description object (FSI ACCRUAL BASIS CD), it outputs an error message indicating the number of
invalid values present. OFSAA Reserved Code Description objects are identified by the following SQL
statement:

select table name from rev table class_assignment
where table_classification_cd = 197;

An example of a User-Editable CODE column is SIC_CD. If the procedure finds any code values in
SIC cDintheFSI_D TERM DEPOSITS table that do not have a descriptionin FSI_SIC MLS, it
creates a default description 'No Description' for each value. It is then up to the users to update these
descriptions as appropriate. User-Editable Code Description objects are identified by the following
SQL statement:

select * from rev description tables
where table name = 'FSI D TERM DEPOSITS'
and description table name not in
(select table name from rev table class assignment

where table classification cd = 197)

Executing the SYNCHRONIZE_INSTRUMENT Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from Batch
Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The procedure
requires 2 parameters - table name to be synchronized and the As of Date. Identify the table name

OFS DATA MODEL UTILITIES USER GUIDE | 83

UTILITIES

INSTRUMENT SYNCHRONIZATION

4.3-5

parameter by enclosing it in single quotes and uppercase, as shown in the following two examples.
The syntax for calling the procedure is:

Declare
output number;
Begin
synchronize instrument ('Batch Id', 'TABLE NAME', output)
End;
where table_name is either:
The name of an Instrument table

LEDGER STAT

An example of running the stored procedure from SQL*Plus for the FSI D TERM DEPOSITS table
follows:

SQL> wvar output number;

SQL>
synchronize instrument ('INFODOM 20101231', 'FSI D TERM DEPOSITS', :output):;

To execute the stored procedure from within a PL/SQL block or procedure, see the example that
follows. Call the procedure as often as required to synchronize all of your instrument tables. The
appropriate table name and AS_OF_DATE is enclosed in single quotes.

SQL> declare
output number;
begin
synchronize instrument ('INFODOM 20101231"', 'LEDGER STAT',output);
end;

/

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select appropriate datastore from list
e Datastore Name: Select appropriate name from the list
e IP address: Select the IP address from the list

e Rule Name: fn_Synchronize_Instrmts

e Parameter List: Instrument Table Name or LEDGER_STAT

Exception Messages

The SYNCHRONIZE INSTRUMENT procedure may cause some exceptions to appear. The text and
explanation for each of these exceptions follows. If you call the procedure from a PL/SQL block you
may want to handle them so that your program can proceed.

e Exception 1: Table is not an Instrument or LEDGER_STAT table

The exception message reads:

OFS DATA MODEL UTILITIES USER GUIDE | 84

UTILITIES

STAGE SYNCHRONIZATION

ORA-20002 Cannot process: table_name is not an OFSA Instrument or Ledger type table having
all leaf columns.

This exception occurs when the table_name parameter is not designated as an Instrument table
or LEDGER STAT table in the OFSAA Metadata. The procedure identified such tables based
upon the Table Classification (Instrument or LEDGER STAT).

Exception 2: Table has invalid seeded FINANCIAL ELEM ID values
The exception message reads:

ORA-20004 Cannot process: table_name has new FINANCIAL_ELEM_ID values that are within
seeded range (less than 10000).

This error occurs when user-defined leaf values are found in the

DIM FINANCIAL ELEMENTS B table within the FDM Reserved seeded data range. The FDM
seeded data range for OFSA LEAF DESCis WHERE LEAF NUM ID=0 and LEAF NODE<10000.
If more records are found in this range than the seeded count for FDM version, the Synchronize
Instrument procedure displays the error message and terminates. Delete any user-defined
Financial Element leaf values within the FDM seeded data range in order to resolve this
problem.

Exception 3: Description table does not exist
The exception message reads:

WARNING: 'Description Table Name' code table could not be synchronized due to :ORA-00942:
table or view does not exist. These tables must be synchronized manually. Failure to do so may
result in inaccurate reports.

This error occurs while inserting into the description table when user defined values are found
in the Code column in dimension member and description table does not exist.

Stage Synchronization

The Stage Synchronization procedure identifies the new Code values from given stage table which will
be treated as source and inserts default description entries for them into the appropriate Dimension
and CD/MLS tables. The procedure performs both of these synchronizations simultaneously.

OFSAAI requires that all Dimension and Code values have a corresponding description. This is
required for any OFSAA reporting operation to return the correct results.

Topics:

Tables Requiring Synchronization

Dimension Member Synchronization

Codes Synchronization

Executing the SYNCHRONIZE INSTRUMENT Procedure

Exception Messages

OFS DATA MODEL UTILITIES USER GUIDE | 85

UTILITIES

STAGE SYNCHRONIZATION

4.4.1

4.4.2

4.4.3

Tables Requiring Synchronization

Dimension member Code value synchronization is required only for Stage tables. Required data will be
seeded in tables, such as rev_dimensions_b, rev_dimensions_stage_map, and rev_description_tables
during installation and before execution of this procedure.

In case, new stage instrument table is being added then insert new set of data (or update the existing
data in case of upgrade) in rev_description_tables for non key dimension table and in
REV_DIMENSIONS STAGE MAP for key dimension tables.

Dimension Member Synchronization

The SYNCHRONIZE STAGE procedure synchronizes the dimension member tables and Stage tables
using default values for member descriptions and other information columns.

This procedure performs the following functions:

e Checks the specified table (Stage Table) for new dimension members in each of that table's key
dimension columns and adds the new dimension value as leaf members to the respective
dimension member tables.

e Adds the new dimension member to the corresponding attribute tables with default values for
mandatory attributes.

¢ When new dimension members are added to the dimension tables these members include 'No
Description_<ID column Value>'in the DESCRIPTION column and contain default values for
mandatory attributes.

Code Synchronization

The SYNCHRONIZE STAGE procedure identifies code values in stage tables for which a corresponding
description does not exist in key dimension or CD/MLS tables and inserts a default description into
the appropriate Code Description object. This applies only to CODE columns categorized as User-
Editable or User-Defined (see the table classification).

CODE columns for which OFSAA reserves all of the values are not updated by this procedure. This
procedure displays a warning message for any unidentified values in the CODE columns where OFSAA
reserves the entire range.

If the resulting objects is a User-Editable or User-Defined Code Description object (checks from
REV_TABLE CLASS ASSIGNMENT table), then the procedure inserts a default description for any
code values for which a description record does not already exist.

If the resulting object is an OFSAA Reserved Code Description object, then the procedure outputs a
warning message indicating how many invalid code values exist in the specified Stage table in the
message log file FSI MESSAGE LOG.

For example, if you are synchronizing the STG INVESTMENTS table, the procedure queries all of the
CODE columns on this table. An example of a Reserved CODE columnis ACCRUAL BASIS CD.If the
procedure finds any code values in this column that are not present in the corresponding Code
Description object (FSI ACCRUAL BASIS CD), it gives output as an error message indicating the
number of invalid values present.

OFSAA Reserved Code Description objects are identified by the following SQL statement:

OFS DATA MODEL UTILITIES USER GUIDE | 86

UTILITIES

STAGE SYNCHRONIZATION

SELECT distinct member base table name, description table name
FROM rev description tables,REV_DIMENSIONS B

WHERE
rev_description tables.member base table name=REV DIMENSIONS B.Member b Tabl
e Name

and
rev_description tables.description join column name=REV_DIMENSIONS B.MEMBER
DISPLAY CODE COL

AND stg table name = 'STG INVESTMENTS'
AND rev_dimensions b.member code column is not null
AND description table name IN
(SELECT table name
FROM rev_ table class_assignment
WHERE table classification cd = 197)
AND STG CD COLUMN NAME IN
(SELECT column_name
FROM user tab columns

WHERE table name = 'STG INVESTMENTS') ;

An example of a User-Editable CODE column is BRANCH_CD. If the procedure finds any code values in
BRANCH_CD in the FSI_BRANCH_CD table that do not have a description in FSI_BRANCH_MLS, it
creates a default description 'No Description_<CD Column Value>' for each value. It is now, up to the
users to update these descriptions as appropriate.

User-Editable Code Description objects are identified by the following SQL statement:
SELECT distinct member base table name, description table name
FROM rev description tables,REV_DIMENSIONS B,user tables

WHERE
rev_description tables.member base table name=REV _DIMENSIONS B.Member b Tabl
e Name

and
rev_description tables.description join column name=REV DIMENSIONS B.MEMBER
DISPLAY CODE COL

and rev_description tables.member base table name=user tables.Table Name
AND stg table name = 'STG INVESTMENTS'
AND rev_dimensions b.member code column is not null
AND description table name NOT IN
(SELECT table name
FROM rev table class assignment

WHERE table classification cd = 197);

OFS DATA MODEL UTILITIES USER GUIDE | 87

UTILITIES

STAGE SYNCHRONIZATION

4.4.4

Executing the Synchronize Stage Procedure

You can execute the SYNCHRONIZE STAGE procedure either from SQL*Plus or from within a PL/SQL
block or from Batch Maintenance window within OFSAAI framework. To run the procedure from
SQL*Plus, logon to SQL*Plus as the Schema Owner.

The procedure requires 2 parameters: The table name to be synchronized and As of Date. Identify the
table name parameter by enclosing it in single quotes and uppercase, as shown in the following two
examples.

The syntax for calling the procedure is:

Declare

output number;

Begin

fsi sync_stage('Batch Id', 'TABLE NAME', output)
End;

where table_name is the name of an Stage table.

An example of running the stored procedure from SQL*Plus for the
STG_INVESTMENTS table follows:

SQL>var output number;

SQL>fsi sync_stage ('INFODOM 20101231"', 'STG INVESTMENTS', :output);

To execute the stored procedure from within a PL/SQL block or procedure, see the example that
follows.

To call the procedure as often as required to synchronize all of your stage tables, the appropriate table
name and AS_OF_DATE is enclosed in single quotes.

SQL> declare

output number;

begin

fsi sync _stage ('INFODOM 20101231','STG INVESTMENTS', output);
end;

/

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select the appropriate datastore type from the list.

e Datastore Name: Select the appropriate datastore name from the list.
e IP address: Select the IP address from the list.

¢ Rule Name: synchronize_stage

e Parameter List: Stage Table Name

OFS DATA MODEL UTILITIES USER GUIDE | 88

UTILITIES

LEDGER LOAD UNDO
4.4.5 Exception Messages
The SYNCHRONIZE STAGE procedure may cause some exceptions to appear.
The text messages and explanation for each of these exceptions are as follows:
NOTE If you call the procedure from a PL/SQL block, you may want
to handle them so that your program can proceed
e Exception 1: Description table does not exist
The exception message reads:
WARNING: 'Description Table Name' code table could not be synchronized due to :ORA-00942:
table or view does not exist. These tables must be synchronized manually. Failure to do so may
result in inaccurate reports.
This error occurs while inserting into the description table when user defined values are found
in the Code column in dimension member and description table does not exist.
e Exception 2: Values have been found for Reserved Code Description objects
The exception message reads:
WARNING: Following <count of values> values have been found in <stage table name>.<stage
column name> <New found values> for Non Editable Dimension <CD table name>.
4.5 Ledger Load Undo
Data loaded into Ledger_Stat table can be undone using the UNDO engine.
Topics:
e Parameters
e Undo Mechanism
e Executing Undo Engine
o Exception Messages
4.5.1 Parameters

The following are the parameters to the UNDO engine:
e Batch Run ID (Typical formatis INFODOM BATCHNAME MISDATE EXECUTIONSEQUENCE)
e |dentityCode-As Of Date
e Mode Of Execution

Mode of execution for undoing the ledger load is 'L". Identity Code and As Of Date are passed in the
second parameters with a Hyphen (-) in between.

OFSAAI Batch execution framework is used to invoke the Undo engine.

OFS DATA MODEL UTILITIES USER GUIDE | 89

UTILITIES

LEDGER LOAD UNDO

4.5.2

4.5-3

Undo Mechanism

Undo Engine will set the STATUS FLAG columnin FSI DATA IDENTITY tableto'U'to
indicate the start of operation.

The engine code reads all the records from FSI DATA IDENTITY table. For each record that is
read, it checks whether

SOURCE_TYPE =0

TABLE_NAME = 'ledger_stat’
IDENTITY_CODE = <as entered by user>, and
AS_OF_DATE = <as entered by user>

After reading all the records from FSI DATA IDENTITY table, if a matching record is not found
then an error message is logged in the FSI MESSAGE LOG table. However, if a matching record
is found, then the Undo engine starts the undo process as detailed following.

Based on the IDENTITY CODE and Year specified inthe AS OF DATE, engine prepares and
executes an update query to set the amount for the month specified in the AS_OF_DATE to zero
and attaches a decode statement to calculate the Year To Date amount values from the Period
Start month to Period End month. It also attaches any data filter if present to this query.

Engine also prepares and executes a delete query on LEDGER_STAT table, to delete all the
records for which all the month values are O and IDENTITY CODE equals to the value input by
user. All entries relevant for the IDENTITY CODE are also deleted from FSI DATA IDENTITY
table.

If the undo fails for any reason, status would be set as 'C". If Undo is completed successfully, the
entry will be removed from FSI_DATA_IDENTITY table.

Executing Undo Engine

To execute the engine from OFSAAI Batch Maintenance, create a new Batch with the Task as RUN
EXECUTABLE and specify the following parameters for the task:

Datastore Type: Select appropriate datastore from list
Datastore Name: Select appropriate name from the list
IP address: Select the IP address from the list

Parameter List: . /LEDGER LOAD UNDO. sh, <ldentity Code>-<As_Of_Date>,'L'

To execute the engine from command line, the following is the syntax:

./LEDGER_LOAD UNDO.sh<parameters>

Parameters: <Batch_Run_ld> <IdentityCode>-<As_of_date> 'L’

NOTE AS_OF_DATE should be passed in mm/dd/yyyy format.
Ledger Load Undo can be executed with both Wait =Y
(Synchronous) or N (Asynchronous).

OFS DATA MODEL UTILITIES USER GUIDE | 90

UTILITIES

DATA SLICING

4.5.4

4.6

4.6.1

Exception Messages

The ledger undo program throws both user defined exceptions and Oracle database related
exceptions. These exception messages could be seen in FSI MESSAGES_LOG table with the help of
the Batch_Run_ld which was used during execution. The exception list includes all possible validations
on the parameters that were passed and database related exceptions.

Data Slicing

Overview

Data Slicing is a utility that will segment instrument data into equal parts by populating a numeric
value into the DATA SLICE 1D column. Data slicing should be used together with Multi-processing
which is described in detail under Appendix F — Process Tuning in the FTP User Guide and Appendix B
- Performance Tuning in the ALM User Guide.

The purpose of segmenting data into equal parts is to balance the data volumes which are handled by
each sub-process that is launched when multi-processing is enabled. The goal of multi-processing is
to efficiently utilize the maximum amount of processing power of the application server during peak
processing which leads to significantly shorter overall processing time. Through benchmark testing,
we have found that breaking instrument data down into equal segments via the Data Slice ID column,
is the most efficient way to use multi-processing. The alternative is to use one or more key dimension
columns such as Organization Unit and Product ID. The shortcoming of using these other dimensions
for segmenting data is that data is not evenly distributed across these dimensions so you end up with
a few large segments and a large number of small segments which is not optimal for processing.
Because each data segment is handled by the engine via a dedicated sub process, evenly distributing
the data into equal segments provides the best results.

Data Slices are utilized by the FTP, ALM and BSP engines only when multi-processing is enabled. The
default multi-process setting is 1 Process. This means a single sub process is launched when an FTP,
ALM or BSP process is started and this one sub process will iterate through all of the data until
processing is complete. Using a single process is fine for implementation and testing, but in
production, users should identify the number of sub processes that will lead to the best performance.
During Process Tuning, users can increase the number of sub processes to 2, 4, 8 or greater numbers
depending on the number of CPU’s available on the server. In multi-processing, a value of 8
processes means that 8 sub processes are automatically launched and each sub process is responsible
for processing all of the data for an entire data segment (Data Slice Cd). When a sub process finishes
processing the data for a segment, a new sub process is launched and handles the next available data
segment. This process repeats until all data segments have been processed. In terms relative
improvements in performance, we have observed that a multi process value of 2 is approximately 2x
faster than one, 4 is approximately 4x faster and 8 is approximately 8x faster. We have noticed
diminishing returns as the number of processes increases, so users will need to iterate on the number
of processes setting to find the optimal value.

Process flow

To utilize this functionality the following steps must be performed before executing an ALM, BSP or
FTP process with multi-processing enabled:

OFS DATA MODEL UTILITIES USER GUIDE | 91

file:///D:/Workspace/DMU/8.0/FM%20Files/toc.htm
file:///D:/Workspace/DMU/8.0/FM%20Files/toc.htm
https://docs.oracle.com/cd/E88857_01/PDF/8.0.6.0.0/Oracle%20Financial%20Services%20Funds%20Transfer%20Pricing%20User%20Guide%208.0.pdf
https://docs.oracle.com/cd/E88917_01/PDF/8.0.7.0.0/ALM807.pdf

UTILITIES

DATA SLICING

4.6.3

1. Create members for the Data slicing dimension through the dimension management screen
(Dimension Management -> Members). Members should be numeric values like 1, 2, 3, and so
on. It is advised that the maximum number of members be limited to the number of processors
(CPU’s) available on the Application Server for executing ALM, BSP and FTP processes in the
environment.

2. Execute the database procedure ‘Upd_DataSlice_Dim_Code’ (via a seeded Batch
DATA SLICE POPULATE: This procedure updates the Data Slice Id column in every instrument
table with the values defined in step 1. Instrument records are equally distributed among all
members. For more information, refer to Executing the Data Slicing Function section.

NOTE Numeric values are assigned individually within each
instrument table. For example, if you have 4000 records in
table 1and 4000 in table 2 and 4 unique data slice values, each
table will get updated with 1through 4 data slices.

3. Setup multi-processing (Navigate to Common Object Maintenance and select Process
Tuning) Select the Data Slice dimension under the Data Slicing Columns section. See the ALM
and FTP user guides for more detailed steps.

Executing the Data Slicing Function

You can execute this procedure from the Batch processing screen (Common Object Maintenance
and select Operations). A seeded batch INFODOMNAME DATA SLICE POPULATE is provided with
the Task component of TRANSFORM DATA. The following are parameters for the task:

e Datastore Type: Select appropriate datastore from list
e Datastore Name: Select appropriate name from the list
e IP address: Select the IP address from the list

e Rule Name: Upd_DataSlice_Dim_Code

e Parameter List: Number Of Processes, List of Table names, Column Name. The last two
parameter values must be enclosed in single quote

Example: 8, 'FSI D MORTGAGES, FSI D BORROWINGS', 'DATA SLICE ID'

If you want to execute this procedure directly from the database, for example using SQL Developer or
a similar tool, the function fn POPULATE DATA SLICE CODE can be used. This function requires
five parameters — BATCH RUN ID, AS OF DATE, IN NPROC, IN SOURCETABLELIST,

IN_ COLUMN. The syntax for calling the procedure is:

function fn POPULATE DATA SLICE CODE (BATCH RUN_ ID varchar2 ,AS OF DATE IN
Varchar2,IN NPROC IN Number, IN SOURCETABLELIST IN

Varchar2, IN COLUMN IN Varchar2)
Where,

e BATCH_RUN_ID is any string to identify the executed batch. When executed from Batch this
parameter is automatically generated. When it is executed directly in database then an
appropriate value must be passed. Example: 'OFSALMINFO DATA SLICE T

OFS DATA MODEL UTILITIES USER GUIDE | 92

https://docs.oracle.com/cd/E60202_01/homepage.htm
https://docs.oracle.com/cd/E60202_01/homepage.htm

UTILITIES

DATA SLICING

e AS OF DATEin YYYYMMDD format enclosed in single quote. Example 20190107

e IN NPROC this numeric value is used to identify the number of processes and will be same as
number of members created for Data Slicing dimension. Example: 8

e 1IN SOURCETABLELIST List of the tables with comma separated source values. Here, table
name should be in single quote. If more than one table names are given then single quote
should be at the beginning of list and another at the end of the list, for example :

'"FSI_D MORTGAGES, FSI D BORROWINGS'

e IN COLUMN is the name of the column where Data Slide Id gets updated. 'DATA SLICE ID'is

the seeded column. You can choose another column if applicable as long as it is present in the
instrument tables.

Example:

1. Navigate to Common Object Maintenance and select Operations, and then select Batch
Maintenance window.

2. Search for the data slicing batch (INFODOMNAME DATA SLICE POPULATE) as displayed:

3. Edit the corresponding task as displayed.

Task Definilicn (%]

Example of Parameter List: 8, 'FSI D MORTGAGES, FSI D BORROWINGS',
'"DATA SLICE ID'

OFS DATA MODEL UTILITIES USER GUIDE | 93

UTILITIES

DATA SLICING

4. Navigate to Batch Execution. Search for the batch as mentioned following and execute it using
Batch Execution.

NOTE When you are executing the batch, the batch execution date
should be the same as the As of Date when the processes are
getting executed.

+ \Wiarming - Interna Cxploser

TENI0] Do yous want oo g weenie the hacek for LA Dace
0502000

(424 il

NOTE e All the messages (including warning and error) are logged in the
FSI_MESSAGE_LOG table.

¢ Itis a mandatory step to execute the above procedure with relevant
parameters prior to executing ALM, BSP or FTP processes if you
want to make use of this feature.

e This feature is only relevant when multi-processing is enabled and
will not result in any performance improvement when number of
processes = 1.

All parameters are mandatory in expected order and format.

OFS DATA MODEL UTILITIES USER GUIDE | 94

DATA LOADERS

DIMENSION LOADERS

Data Loaders

This chapter details the steps involved in executing various data loaders that are available within
OFSAA. Data loaders move data from staging layer to processing layer.

Topics:

Dimension Loaders

Simple Dimension Loader

Historical Rates Data Loader

Forecast Rate Data Loader

Prepayment Rate Data Loader

Stage Instrument Table Loader

Customer T2T Loading

DIM_Party Population

Instrument Summary Table

Transaction Summary Table Loader

Ledger Data Loader

Cash Flow Loader

Pricing Management Transfer Rate Population Procedure

ALMBI Transformation

Hierarchy Transformation

Dim Dates Population

Fact Ledger Stat Transformation

Financial Element Dimension Population

Payment Pattern L oader

GAP Limits Loader

Material Currency ldentifier

Behaviour Pattern Loader

Dimension Loaders

The Dimension Loader procedure populates dimension members, attributes and hierarchies from
Staging dimension tables into dimension tables registered within OFSAAI AMHM framework. Users
can view the members and hierarchies loaded by the dimension loader through AMHM screens.

OFS DATA MODEL UTILITIES USER GUIDE | 95

DATA LOADERS

DIMENSION LOADERS

5.1.1

NOTE The dimension loaders (drmDatalLoader, STGDimDatalLoader,
and simpledimloader) load the strings into one target
language only, the target language is derived from the
database-login-session using USERENV.

Refer to Support Note 1586342.1, if Hierarchy Filter is not
reflecting correctly after making the changes to underlying
Hierarchy.

Topics:

Dimension Loader Overview

Enhancements to Support Alphanumeric Code in Dimensions

Tables that are Part Of Staging

Populating STG _<DIMENSION> HIER INTF Table

Dimension Load Procedure

Setting up Dimension Loader

Executing the Dimension Load Procedure

Exception Messages

Executing the Dimension Load Procedure using Master Table approach

Updating DIM_<DIMENSION> B <Dimension>_Code column with values from

DIM <DIMENSION> ATTR table

Truncate Stage Tables Procedure

Dimension Loader Overview

OFS DATA MODEL UTILITIES USER GUIDE | 96

https://support.oracle.com/portal/

DATA LOADERS

DIMENSION LOADERS

Flat File
Dimension
Members

Flat File
Dimension
Members

Translation

Flat File FlatFile
Dimension Dimension
Members Hierarchy

Attributes

OFSAAIF2T component

Staging Dimension Tables

; '

| Validations andLoading
I Procedure

% I
‘ =

Dimension Tables

The dimension loader is used to:

¢ Load dimension members and their attributes from the staging area into Dimension tables that
are registered with the OFSAAI AMHM framework.

e Create hierarchies in AMHM.

e Load hierarchical relationships between members within hierarchies from the staging area into
AMHM.

Some of the features of the dimension loader are:
e Multiple hierarchies can be loaded from staging tables.

e Validations of members and hierarchies are similar to that of being performed within AMHM
screens.

e Members can be loaded incrementally or fully synchronized with the staging tables.

5.1.2 Enhancements to Support Alphanumeric Code in Dimensions

NOTE Dimension Loaders and Uls support capturing an
alphanumeric code in addition to the numeric code.

The following Data Model components are required to support dimension member code storage;
changes in {6.0/7.3.0/7.3.1} are as follows:

OFS DATA MODEL UTILITIES USER GUIDE | 97

DATA LOADERS

DIMENSION LOADERS

Release 7.3.1: Dimension Configuration via manual updates to REV_DIMENSIONS_B columns:
MEMBER_DATA_TYPE_CODE and MEMBER_CODE_COLUMN. (Also See: OFSAAI Installation &
Configuration Guide 7.3 and Al Administration Guide)

Release 6.0 (7.3): Stage Dimension Interface Table alphanumeric member code column (v_<
DIM >_code).

Release 6.0 (7.3): Stage Dimension Loader Program can directly load alphanumeric member
codes

Release 6.1.1: Some new columns are added to Staging & Processor tables as a part of FSDF.
These are not required by EPM applications and not part of the T2T or FSI_D tables.

For further details on display of member codes in the user interfaces, see the OFSAAI User Guide.

5.1.3 Tables that are Part Of Staging

Dimension data is stored in the following set of tables:

STG <DIMENSION> B INTF: Storesleaf and node member codes within the dimension.
STG <DIMENSION> TL INTF: Stores names of leaf and node and their translations.
STG <DIMENSION> ATTR INTE: Stores attribute values for the attributes of the dimension.

STG <DIMENSION> HIER INTF: Stores parent-child relationship of members and nodes
that are part of hierarchies.

STG_ORG_UNIT B INTE: Stores leaf and node member codes within the organization unit
dimension.

STG_ORG UNIT TL INTF: Stores names of leaf and node and their translations for the
organization unit dimension.

STG_ORG UNIT ATTR INTF: Stores attribute values for the attributes of the organization unit
dimension.

STG _ORG UNIIT HIER INTEF:Stores parent-child relationship of members and nodes that are
part of hierarchies for the organization unit dimension.

STG_HIERARCHIES INTEF: Stores master information related to hierarchies.

Data present in the above set of staging dimension tables are loaded into the following set of
dimension tables.

DIM <DIMENSION> B: Stores leaf and node member codes within the dimension.
DIM <DIMENSION> TL:Stores names of leaf and node and their translations.
DIM <DIMENSION> ATTR: Stores attribute values for the attributes of the dimension.

DIM <DIMENSION> HIER: Stores parent-child relationship of members and nodes that are part
of hierarchies.

REV_HIERARCHIES: Stores hierarchy related information.
REV_HIERARCHY LEVELS: Stores levels of the hierarchy.

REV_HIER DEFINITIONS: Stores definitions of the hierarchies.

OFS DATA MODEL UTILITIES USER GUIDE | 98

https://docs.oracle.com/cd/F29631_01/get_started.htm

DATA LOADERS

DIMENSION LOADERS

5.1.4

Staging tables are present for all key dimensions that are configured within the OFSAAI framework.
For any custom key dimension that is added by the Client, respective staging dimension tables like
STG_<DIMENSION> B INTF, STG < DIMENSION> TL INTF, STG <DIMENSION> ATTR INTF,
and STG_<DIMENSION> HIER INTF have to be created in the ERwin model.

Populating STG_ <DIMENSION>_HIER_INTF Table

The STG_<DIMENSION> HIER INTF tableis designed to hold hierarchy structure. The hierarchy
structure is maintained by storing the parent child relationship in the table. In the following hierarchy
there are 4 levels. The first level node is 100, which is the Total Rollup. The Total Rollup node will have
theN PARENT DISPLAY CODEandN CHILD DISPLAY CODE asthe same.

Column Name Column Description

V_HIERARCHY_OBJECT_NAME Stores the name of the hierarchy

N_PARENT_DISPLAY_CODE Stores the parent Display Code

N_CHILD_DISPLAY_CODE Stores the child Display Code

N_DISPLAY_ORDER_NUM Determines the order in which the structure (nodes, leaves) of

the hierarchy should be displayed. This is used by the Ul while
displaying the hierarchy. There is no validation to check if the
values in the column are in proper sequence.

V_CREATED_BY Stores the created by user. Hard coded as -1

V_LAST_MODIFIED_BY Stores the last modified by user. Hard coded as -1

Hierarchy Structure

OFS DATA MODEL UTILITIES USER GUIDE | 99

DATA LOADERS

DIMENSION LOADERS

a

.. TotalRollup(100)
s . 12345678901247 (Node)
a . 12345678901255(Ncde)
.. 10001 (Leaf)
.. 10002 (Leaf)
a . 12345678901257(Node)
.. 10006 (Leaf)
.. 10007 (Leaf)
4 . 12345678901250 (Node)
a . 12345678901262(Node)
.. 10006 (Leaf)
.. 10007 (Leaf)
a . 12345678901264(Node)
.. 30006 (Leaf)
.. 30007 (Leaf)
.. 30008 (Leaf)
.. 30009 (Leaf)
4 . 12345678901268 (Node)
a . 3912228(Node)
. 20020 (Leaf)
.. 20021 (Leaf)
L. 20022 (Leaf)

Simple Data

OFS DATA MODEL UTILITIES USER GUIDE | 100

DATA LOADERS

DIMENSION LOADERS

V_HIERARCHY @ N_PARENT_DI N_CHILD_DISP N_DISPLAY_O V_CREATED_B V_LAST_MODI
_OBJECT_NAM SPLAY_CODE LAY_CODE RDER_NUM Y FIED_BY
E
INCOME STMT | 100 100 1 -1 -1
INCOME STMT 100 1234567890124 | 2 -1 -1
7
INCOME STMT 1234567890124 | 1234567890125 | 1 -1 -1
7 5
INCOME STMT | 1234567890125 | 10001 1 -1 -1
5
INCOME STMT 1234567890125 | 10002 2 -1 -1
5
INCOME STMT | 1234567890124 | 1234567890125 | 2 -1 -1
7 7
INCOME STMT 1234567890125 | 10006 1 -1 -1
7
INCOME STMT | 1234567890125 | 10007 2 -1 -1
7
INCOME STMT 100 1234567890125 | 3 -1 -1
0
INCOME STMT | 1234567890125 | 1234567890126 | 2 -1 -1
0 2
INCOME STMT 1234567890126 | 30005 1 -1 -1
2
INCOME STMT | 1234567890125 | 1234567890126 | 1 -1 -1
0 4
INCOME STMT 1234567890126 | 30006 1 -1 -1
4
INCOME STMT | 1234567890126 | 30007 2 -1 -1
4
INCOME STMT | 1234567890126 | 30008 3 -1 -1
4
INCOME STMT | 1234567890126 | 30009 4 -1 -1
4
INCOME STMT | 100 1234567890126 | 4 -1 -1
8
INCOME STMT | 1234567890126 | 3912228 1 -1 -1
8

OFS DATA MODEL UTILITIES USER GUIDE | 101

DATA LOADERS

DIMENSION LOADERS

5.1.5

INCOME STMT | 3912228 20020 1 -1 -1
INCOME STMT | 3912228 20021 2 -1 -1
INCOME STMT | 3912228 20022 3 -1 -1

Column REV_DIMENSIONS B.MEMBER CODE_COLUMN

In release 7.3.1: With the introduction of alphanumeric support,

REV_DIMENSIONS B.MEMBER CODE COLUMN column becomes important for successful execution of
the dimension loader program and subsequent T2Ts. The value in this column should be a valid code
column from the relevant DIM <DIMENSION> B (key dimension)or FSI <DIM> CD (simple
dimension) table. The Leaf_registration procedure populates this column. The value provided to the
Leaf registration procedure should be the correct DIM <DIM> B.<DIM> CODE Of

FSI <DIM> CD.<DIM> DISPLAY CD column. Setting this will ensure that the values in this column
are displayed for both numeric and alphanumeric dimensions as Alphanumeric Code in the UI.
Configuration of an alphanumeric dimension also requires manual update of the
REV_DIMENSIONS B. MEMBER DATA TYPE CODE column.

For more information, see OFSAAI Installation and Configuration Guide.

Dimension Load Procedure

This procedure performs the following functions:

e Gets the list of source and target dimension tables. The dimension tables for a given dimension
are stored in REV_DIMENSIONS B table. The stage tables for a given dimension are stored in
FSI DIM LOADER SETUP DETAILS.

e The parameter Synchronize Flag can be used to completely synchronize data between the stage
and the dimension tables. If the flag = 'Y' members from the dimension table which are not
present in the staging table will be deleted. If the flag is 'N' the program merges the data
between the staging and dimension table.

e The Loader program validates the members/attributes before loading them.

The program validates the number of records in the base members table -
STG_<DIMENSION> B INTF and translation members table - STG <DIMENSION> TL INTF.The
program exits if the number of records does not match

In case values for mandatory attributes are not provided in the staging tables, the loader program
populates the default value (as specified in the attribute maintenance screens within AMHM of
OFSAAI) in the dimension table.

The program validates for data types of attribute value. For example an attribute that is configured as
'NUMERIC' cannot have non-numeric values.

Dimension Loader validates the attribute against their corresponding dimension table. If any of the
attributes is not present, then an error message will belogged in FSI MESSAGE LOG table.

Dimension Loader will check the number of records in Dim_<Dim_Name>_B and
Dim_<Dim_Name>_TL for the language. In case any mismatch is found, then an error will be logged
and loading will be aborted.

OFS DATA MODEL UTILITIES USER GUIDE | 102

https://docs.oracle.com/cd/F29631_01/get_started.htm

DATA LOADERS

DIMENSION LOADERS

5.1.5.1

5.1.5.2

o If all the member level validations are successful the loader program inserts the data from the
staging tables to the dimension tables

Note: In release 6.0 (7.3) The stage dimension loader program is modified to move
alphanumeric code values from STG_< DIMENSION > B INTF.V_< DIM > CODE to

DIM < DIM > B.< DIM > CODE column. Previously, DIM < DIM> B.< DIM > CODE
column was populated using the fn_updateDimensionCode procedure from the code attributes.
With this enhancement users can directly load alphanumeric values.

The fn_updateDimensionCode procedure is still available for users who do not want make any
changes to their ETL procedures for populating the dimension staging tables (for example,
STG < DIMENSION > B INTF,, STG < DIMENSION> ATTR INTF).

e After this, the loader program loads hierarchy data from staging into hierarchy tables.

¢ In case of hierarchy data the loader program validates if the members used in the hierarchy are
present in the STG_<DIMENSION>_B_INTF table.

e The program validates if the hierarchy contains multiple root nodes and logs error messages
accordingly, as multiple root nodes are not supported.

¢ Dimension Loader will check special characters in Hierarchy. Hierarchy name with special
characters will not be loaded.

¢ Following are the list of special characters which are not allowed in Hierarchy Name:
A&\'

After execution of the dimension loader, the user must execute the reverse population procedure to
populate OFSA legacy dimension and hierarchy tables.

Dimension Leaf Member Set Up

Dimension Leaf values can have a maximum of 14 digits.

Only 26 key (processing) dimensions are allowed in the database. Examples of seeded key leaf types
are Common COA ID, Organizational Unit ID, GL Account ID, Product ID, Legal Entity ID.

The maximum number of columns that the Oracle database allows in a unique index is 32. This is the
overriding constraint. After subtracting IDENTITY CODE, YEAR S, ACCUM TYPE CD,
CONSOLIDATION CD, and ISO CURRENCY CD, thisleaves 27 columns available for Key Processing
Dimensions (leaf dimensions). BALANCE TYPE CD is now part of the unique index so this brings the
maximum number of leaf columns down to 26.

Deletion of Dimension Members used in a Hierarchy

There is an integrity check performed during dimension data loading to confirm if dimension
members are included in a hierarchy definition. If they are included, these members should not be
deleted from the dimension member pool. If dimension members are deleted or made inactive as part
of the data load, the validation will return an error message, cannot delete a member that is used as
part of a hierarchy.

If you wish to override this validation, an additional parameter can be passed to the Dimension Data
Loader program(fn_drmDatalLoader), for example: force_member_delete. The parameter can be set
to Y or N. Inputting Y allows you to override the used in hierarchy dependency validation. Inputting N

OFS DATA MODEL UTILITIES USER GUIDE | 103

DATA LOADERS

DIMENSION LOADERS

5.1.6

is the default behavior, which performs the validation check to confirm if members are used in a
hierarchy or not.

Below is the function:

function fn drmDatalLoader (batch run id varchar2,
as_of date varchar2z,
pDimensionId wvarchar?2,
pSynchFlag char default 'Y',

force member delete char default 'N')

Setting up Dimension Loader

FSI DIM LOADER SETUP DETAILS table should have record for each dimension that has to be
loaded using the dimension loader. The table contains seeded entries for key dimensions that are
seeded with the application.

The following are sample entries in the setup table:

OFS DATA MODEL UTILITIES USER GUIDE | 104

DATA LOADERS

DIMENSION LOADERS

Column Name

n_dimension_id

‘ Description

This stores the Dimension ID

‘ Sample Value

1

v_intf_b_table_name

Stores the name of the Staging Base table

Stg_org_unit_b_intf

v_intf_member_column

Stores the name of the Staging Member
Column Name

V_org_unit_id

v_intf_tl_table_name

Stores the name of the Staging Translation
table

Stg_org_unit_tl_intf

v_intf_attr_table_name

Stores the name of the Staging Member
Attribute table

Stg_org_unit_attr_intf

v_intf_hier_table_name

Stores the name of the Staging Hierarchy table

Stg_org_unit_hier_int
f

d_start_time Start time of loader - updated by the loader
program.
d_end_time End time of loader - updated by the loader

program.

v_comments

Stores Comments.

Dimension loader for
organization unit.

v_status

Status updated by the Loader program.

v_intf_member_name_col

Stores the name of the Member

V_org_unit_name

OFS DATA MODEL UTILITIES USER GUIDE | 105

DATA LOADERS

DIMENSION LOADERS

v_gen_skey_flag

Flag to indicate if surrogate key needs to be
generated for alphanumeric codes in the
staging. Applicable only for loading dimension
data from master tables. Not applicable for
loading dimension data from interface tables.
Note: Although the application Ul may display
an alphanumeric dimension member ID, the
numeric member ID is the value stored in
member-based assumption rules, processing
results, and audit tables.

Implications for Object Migration:

Numeric dimension member IDs should be the
same in both the Source and Target
environments, to ensure the integrity of any
member-based assumptions you wish to
migrate. If you use the Master Table approach
for loading dimension data and have set it up to
generate surrogate keys for members, this can
result in differing IDs between the Source and
Target and therefore would be a concern if you
intend to migrate objects which depend on
these IDs.

v_stg_member_column

Name of the column that holds member code in
the staging table. Applicable for loading
dimension data from the master tables. (sample
value v_org_unit_code) -this appears to be the
alphanumeric code

v_org_unit_code
v_gl_code
v_common_coa_code
v_prod_code
v_entity_code
v_party_id

v_stg_member_name_col

Name of the column that holds member name
in the staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

v_stg_member_desc_col

Name of the column that holds description in
the staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

v_stg_intf_member_column

Name of the column that holds member code in
the staging table. Applicable for loading
dimension data only from the interface tables.

v_org_unit_code
v_gl_code
v_common_coa_code
v_prod_code
v_lv_code
v_cust_ref_code

OFS DATA MODEL UTILITIES USER GUIDE | 106

DATA LOADERS

DIMENSION LOADERS

NOTE

Ensure

FSI_DIM LOADER SETUP DETAILS.V_ STG MEMBER COLUM
N is updated as mentioned following for Legal Entity and

Customer dimensions.

Dimension Loader
Approach

V_STG_MEMBE
R_COLUMN for
Legal Entity

V_STG_MEMBER_C
OLUMN for
Customer

Using Interface Table
(fn_drmDataLoader)

V_LV_CODE

V_CUST_REF_CODE

Using Master Table
(fn_STGDimDataLoad
er)

V_ENTITY CODE

V_PARTY ID

OFS DATA MODEL UTILITIES USER GUIDE | 107

DATA LOADERS

DIMENSION LOADERS

5.1.7

Executing the Dimension Load Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from the
Batch Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The function requires
four parameters — Batch Run Identifier, As of Date, Dimension Identifier, Synchronize flag (Optional).
The syntax for calling the procedure is:

function fn drmDatalLoader (batch run id varchar2z,
as_of date varchar2,
pDimensionId wvarchar2,
pSynchFlag char default 'Y',

force member delete char
default 'N')

where
e BATCH_RUN_ID is any string to identify the executed batch.
e AS_OF_DATE in the format YYYYMMDD.
¢ pDIMENSIONID dimension id.

¢ pSynchFlag this parameter is used to identify if a complete synchronization of data between
staging and dimension table is required. The default value is 'Y".

NOTE With Synch flag N, data is moved from Stage to Dimension
tables. Here, an appending process happens. You can provide
a combination of new Dimension records plus the data that
has undergone change. New records are inserted and the
changed data is updated into the Dimension table.

With Synch flag Y, the Stage table data will completely replace
the Dimension table data.

There are a couple of checks in place to ensure that
stage_dimension_loader is equipped with similar validations
that the Ul provides.

The Data Loader does a Dependencies Check before a
member is deleted. The validation checks, if there are
members used in the Hierarchy that are not present in the
DIM_< DIM >_B table. This is similar to the process of trying to
delete a member from the Ul, which is being used in the
Hierarchy definition. You are expected to remove or delete
such Hierarchies from the Ul before deleting a member.

For Example:

Declare

OFS DATA MODEL UTILITIES USER GUIDE | 108

DATA LOADERS

DIMENSION LOADERS

num number;
Begin

num := fn drmDataLoader ('INFODOM 20100405','20100405"'" ,1,'Y','N");
End;

To execute the procedure from the OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select appropriate datastore from list
o Datastore Name: Select appropriate name from the list
e IP address: Select the IP address from the list

e Rule Name: fn_drmDataloader

e Parameter List: Dimension ID, Synchronize Flag

The fn_drmdataloader function calls STG_DIMENSION_LOADER package which loads data from the
stg_<dimension>_hier_intf to the dim_<dimension>_hier table.

From Release 8.0, RUNIT.sh utility is available to resave the UMM Hierarchy Objects. The data for
AMHM hierarchies which is stored in dim_<dimension>_hier table is changed due to the
fn_drmdataloader function, so the RUNIT.sh utility is executed to refresh the UMM hierarchies which
have been implicitly created due to the AMHM hierarchies. This file resides under ficdb/bin area.

To run the utility directly from the console:
1. Navigateto $FIC DB HOME/bin of OFSAAIFIC DB tier to execute RUNIT. sh file
The following parameter needs to be provided:

*» INFODOM- Specify the information domain name whose hierarchies are to be refreshed.
This is the first parameter and mandatory parameter

= USERID- specify the AAl user id who is performing this activity. This is second parameter
and mandatory as well

= HIERARCHY- specify the hierarchy code to be refreshed. In case multiple hierarchies need
to be refreshed the same can be provided and tilde (~) separated values. This is third
parameter and non-mandatory parameter

For example: ./RUNIT.sh,<INFODOM>,<USERID>,<CODE1~CODE2~CODE3>

NOTE In case the third parameter is not specified, then all the
hierarchies present in the infodom will be refreshed.

To run the utility through the Operations module:
2. Navigate to the Operations module and define a batch.
3. Add a task by selecting the component as RUN EXECUTABLE.

4. Under Dynamic Parameter List panel, specify
./RUNIT.sh, <INFODOM>, <USERID>, <CODE1~CODE2~CODE3> in the Executable field.

After saving the Batch Definition, execute the batch to resave the UMM Hierarchy Objects.

OFS DATA MODEL UTILITIES USER GUIDE | 109

DATA LOADERS

DIMENSION LOADERS

5.1.9

Exception Messages

The text and explanation for each of these exceptions follows. If you call the procedure from a PL/SQL
block you may want to handle these exceptions appropriately so that your program can proceed
without interruption.

e Exception 1: Error. errMandatoryAttributes

This exception occurs when the stage Loader program cannot find any data default value for
mandatory attributes.

o Exception 2: Error. errAttributeValidation

This exception occurs when there is a data type mis-match between the attribute value and
configured data-type for the attribute.

e Exception 3: Error. errAttributeMemberMissing

If there is a mismatch in the count between the member's base and translation table.

Executing the Dimension Load Procedure using Master Table
approach

FSI DIM LOADER SETUP DETAILS table should have a record for each dimension that has to be
loaded. The table contains entries for key dimensions that are seeded with the application.

The following columns must be populated for user-defined Dimensions.
v_stg member column

v_stg member name col

v_stg member desc col

V_STG INTF MEMBER COLUMN column is availableinthe FSI DIM LOADER SETUP DETAILS table
to avoid manual configuration for Legal Entity and Customer dimensions issues. fn drmDataloader
refers to this column (V_STG INTF MEMBER COLUMN)and fn STGDimDataLoader refersto

V_STG MEMBER_COLUMN.

NOTE This program only loads leaf level values.
fn_STGDimDataLoader cannot load node level
values.

Following values must be seeded in these columns for Legal entity and Customer dimensions. For
other seeded dimensions the values in both columns will be the same.

V_S TG_MEMBER_COLUMN V_S TG_INT F_MEMBER_COLUMN
(fn_STGDimDataLoader) (fn_drmDataLoader)
V_ENTITY CODE V_LV_CODE

V_PARTY ID V_CUST REF CODE

OFS DATA MODEL UTILITIES USER GUIDE | 110

DATA LOADERS

DIMENSION LOADERS

Additionally, the FSI_DIM_ATTRIBUTE_MAP table should be configured with column attribute
mapping data. This table maps the columns from a given master table to attributes.

N_DIMENSION_ID

This stores the Dimension ID

V_STG_TABLE_NAME

This holds the source Stage Master table

V_STG_COLUMN_NAME

This holds the column from the master table

V_ATTRIBUTE_NAME

This holds the name of the attribute the column
maps to

V_UPDATE_B_CODE_FLAG

This column indicates if the attribute value can be
used to update the code column in the
DIM_<Dimension>_B table.

Note: fn_STGDimDatalLoader does not use
FSI_DIM_ATTRIBUTE_MAP.V_UPDATE_B_CODE_FL
AG

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from the
Batch Maintenance window within OFSAAI framework. To run the procedure from SQL*Plus, login to
SQL*Plus as the Schema Owner. The function requires 5 parameters: — Batch Run Identifier , As of
Date, Dimension Identifier , MIS-Date Required Flag, Synchronize flag (Optional). The syntax for

calling the procedure is:

function fn STGDimDataLoader (batch run id varchar2,

where

as_of date varchar2,

pDimensionId varchar2,
pMisDateRegFlag char default 'Y',
pSynchFlag char default 'N')

e BATCH_RUN_ID is any string to identify the executed batch.
e AS_OF_DATE in the format YYYYMMDD.

e pDIMENSIONID dimension id.

¢ pMisDateRegFlag is used to identify if AS-OF_DATE should be used in the where clause to filter

the data.

e pSynchFlagis used to identify if a complete synchronization of data between staging and fusion
table is required. The default value is 'Y'.

For Example
Declare

num number;

OFS DATA MODEL UTILITIES USER GUIDE | 111

DATA LOADERS

DIMENSION LOADERS

5.1.91

5.1.9.2

5.1.10

Begin
num := fn STGDimDataLoader ('INFODOM 20100405','20100405" ,1,'Y','Y');
End;

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select appropriate datastore from list

e Datastore Name: Select appropriate name from the list

e |P address: Select the IP address from the list

e Rule Name: fn_STGDimDatalLoader

e Parameter List: Dimension ID, Mis Date Required Flag , Synchronize Flag

Clients could face a problem while loading customer dimension into AMHM using the Master table
approach.

Configuring the setup table for CUSTOMER dimension is pretty confusing while dealing with attributes
like FIRST NAME , MIDDLE NAME and LAST NAME.

Most clients would like to see FIRST NAME , MIDDLE NAME and LAST NAME forming the name of
the member within the customer dimension.

Currently the STG_DIMENSION_LOADER disallows concatenation of columns.
Moreover the concatenation might not ensure unique values.

As a solution to this problem we can work on the following options:

Approach 1

1. Createaviewon STG _CUSTOMER MASTER table with FIRST NAME, MIDDLE NAME and
LAST NAME concatenated and identify this column as NAME.

2. Configure the name column from the view in FSI DIM LOADER SETUP DETAILS
3. Increase the size of DIM CUSTOMER TL.NAME column.

4. Disable the unique index on DIM CUSTOMER TL.NAME or append Customer_code to the NAME
column.

5. The NAME column will be populated into the DIM CUSTOMER TL.NAME column.

Approach 2

Populate customer code into the DIM CUSTOMER_TL.NAME column.

Updating DIM_ <DIMENSION>_ B <Dimension>_ Code column
with values from DIM_ <DIMENSION> ATTR table

The stage dimension loader procedure does not insert or update the <Dimension>_code column in
the Dim_<Dimension>_B table. This is an alternate method for updating the < Dimension>_Code
column in the Dim_< Dimension>_B table, retained to accommodate implementations prior to the
enhancement where we enable loading the code directly to the dimension table instead of from the

OFS DATA MODEL UTILITIES USER GUIDE | 112

DATA LOADERS

DIMENSION LOADERS

attribute table. It is not recommended for new installations. This section explains how the
<Dimension>_code can be updated.

Steps to be followed
6. A new attribute should be created in the REV_DIM_ATTRIBUTES_B / TL table.

NOTE You should use the existing CODE attribute for the seeded
dimensions. PRODUCT CODE, COMMON COA CODE, andso
on.

7. The fsi_dim_attribute_map table should be populated with values.
The following columns must be populated:
= N DIMENSION ID (Dimension id)
* V _ATTRIBUTE NAME (The attribute name)

= V_UPDATE B CODE FLAG (This flag should be 'Y"). Any given dimension can have only one
attribute with v_UPDATE B CODE_FLAG as 'Y'. This should only be specified for the CODE
attribute for that dimension.

Example:
N_DIMENSION_ID 4
V_ATTRIBUTE_NAME 'PRODUCT_CODE'
V_UPDATE_B_CODE_FLAG Y
V_STG_TABLE_NAME 'stg_product_master'
V_STG_COLUMN_NAME 'v_prod_code'
NOTE Thevaluesinv_STG TABLE NAME and

V_STG COLUMN NAME are not used by the
fn_updateDimensionCode procedure, however these fields are
set to NOT NULL and should be populated.

8. Load STG <DIMENSION> ATTR INTF table with data for the new ATTRIBUTE created.

NOTE The attribute values must first be loaded using the stage
dimension loader procedure, fn_drmDatalLoader, before

OFS DATA MODEL UTILITIES USER GUIDE | 113

DATA LOADERS

DIMENSION LOADERS

running this procedure. This procedure will pull values from
the DIM_<DIMENSION>_ATTR table. If these rows do not exist
for these members prior to running this procedure, the
DIM_<DIMENSION>_B.<DIMENSION>_CODE field will not be
updated.

9. Execute the fn_updateDimensionCode function. The function updates the code column with
values from the DIM <DIMENSION> ATTR table.

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from the
Batch Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Atomic Schema Owner. The function
requires 3 parameters — Batch Run Identifier , As of Date, Dimension Identifier. The syntax for calling
the procedure is:

function fn updateDimensionCode (batch run id varchar2,
as_of date varchar2,
pDimensionId varchar?)
where
e BATCH_RUN_ID is any string to identify the executed batch.
e AS_OF_DATE in the format YYYYMMDD.
e pDIMENSIONID dimension id
For Example
Declare
num number;
Begin
num := fn updateDimensionCode ('INFODOM 20100405','20100405',1);
End;

You need to populate a row in FST DIM LOADER SETUP DETAILS.

For example, for FINANCIAL ELEM CODE,toinsertarowinto FSI DIM LOADER SETUP DETAILS,
following is the syntax:

INSERT INTO FSI DIM LOADER SETUP DETAILS (N _DIMENSION ID) VALUES ('0'");
COMMIT;

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select appropriate datastore from list
e Datastore Name: Select appropriate name from the list
e IPaddress: Select the IP address from the list

e Rule Name: Update_Dimension_Code

e Parameter List: Dimension ID

OFS DATA MODEL UTILITIES USER GUIDE | 114

DATA LOADERS

DIMENSION LOADERS

5.1.11

Truncate Stage Tables Procedure

This procedure performs the following functions:

e The procedure queries the FST DIM LOADER SETUP DETAILS table to get the names of the
staging table used by the Dimension Loader program.

e The MIS Date option only works to the Master Table approach (fn_STGDimDatalLoader)
dimension loader. It is not applicable to dimension data loaded using the standard Dimension
Load Procedure (fn_drmDatalLoader).

Executing the Truncate Stage Tables Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from the
Batch Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The function requires
4 parameters — Batch Run Identifier, As of Date, Dimension Identifier, Mis Date Required Flag. The
syntax for calling the procedure is:

function fn truncateStageTable(batch run id varchar2z,
as_of date varchar2,
pDimensionId varchar2z,

pMisDateRegFlag char default 'Y')

where
e BATCH_RUN_ID is any string to identify the executed batch.
e AS_OF_DATE in the format YYYYMMDD.
e pDIMENSIONID dimension id.

¢ pMisDateRegFlag is used to identify the data needs to be deleted for a given MIS Date. The
default value is 'Y".

For Example
Declare
num number;
Begin

num := fn truncateStageTable ('INFODOM 20100405','20100405' ,1,'Y’
) ;

End;

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type: Select appropriate datastore from list
e Datastore Name: Select appropriate name from the list
e IPaddress: Select the IP address from the list

e RuleName: fn truncateStageTable

OFS DATA MODEL UTILITIES USER GUIDE | 115

DATA LOADERS

SIMPLE DIMENSION LOADER

5.2

5.2.1

e Parameter List: Dimension ID, MIS-Date required Flag

Simple Dimension Loader

Currently the dimension loader program works only for key dimensions.

Simple Dimension Loader provides the ability to load data from stage tables to Simple dimension
tables.

For example, the user can load data into FSI ACCOUNT OFFICER CDand
FSI_ACCOUNT OFFICER_MLS using the Simple Dimension Loader program.

Simple dimension of type 'writable and editable' can use this loading approach. This can be identified
by querying rev_dimensions_b.write_flag ='Y", rev_dimensions_b.dimension_editable_flag ='Y' and
rev_dimensions_b.simple_dimension_flag ="Y".

Topics:

e Creating Simple Dimension Stage Table

e Configuration of Setup Tables

e Executing the Simple Dimension Load Procedure

e Exception Messages

Creating Simple Dimension Stage Table

You can create stage tables for the required simple dimensions by using the following template:

STG_<DIM>_MASTER

COLUMN_NAME DATA TYPE PRIMARY KEY NULLABLE
v_< Varchar2(10) Y N
DIM>_display_code

d_Mis_date Date Y N
v_Language Varchar2(10) Y N

v_< DIM>_NAME Varchar2(40) N
v_Description Varchar2(255) N
v_Created_by Varchar2(30) Y
v_Modified_by Varchar2(30) Y

OFS DATA MODEL UTILITIES USER GUIDE | 116

DATA LOADERS

SIMPLE DIMENSION LOADER

Here is a sample structure:

STG_ACCOUNT_OFFICER_MASTER

COLUMN_NAME DATA TYPE PRIMARY KEY NULLABLE
v_acct_officer_displ Varchar2(10) Y N
ay_code
d_Mis_date Date Y N
v_Language Varchar2(10) Y N
v_Name Varchar2(40) N
v_Description Varchar2(255) N
v_Created_by Varchar2(30) Y
v_Modified_by Varchar2(30) Y
Here are some examples:
e Example For FSI CD/MLS tables:
CREATE TABLE <XXXXX> FSI <DIM> CD -- ACME FSI ACCT STATUS CD
(<DIM> CD NUMBER(5) -- ACCT STATUS CD

, LEAF ONLY FLAG VARCHAR2 (1)
,ENABLED FLAG VARCHAR2 (1)
,DEFINITION LANGUAGE VARCHAR2 (10)
,CREATED BY VARCHAR2 (30)
,CREATION DATE DATE
, LAST MODIFIED BY VARCHAR2 (30)
, LAST MODIFIED DATE DATE
<dim> display CD VARCHAR2 (10)
);
e Example for FSI_<DIM>_MLS table:
CREATE TABLE <XXXXX> FSI <DIM> MLS -- ACME FSI ACCT STATUS CD
(<DIM> CD NUMBER(5) -- ACCT STATUS CD
, LANGUAGE VARCHAR2 (10)
,<DIM> VARCHAR2 (40) -- ACCT_ STATUS

OFS DATA MODEL UTILITIES USER GUIDE | 117

DATA LOADERS

SIMPLE DIMENSION LOADER

, DESCRIPTION VARCHAR2 (255)

, CREATED BY VARCHAR2 (30)
,CREATION DATE DATE

,LAST MODIFIED BY VARCHAR2 (30)
,LAST MODIFIED DATE DATE

)

NOTE FSI_<DIM>_CD and FSI_<DIM>_MLS should follow the same
standards as mentioned above, else Loader will not work as
expected.

5.2.2 Configuration of Setup Tables

5.2.21 REV_DIMENSIONS_B Table

The REV_DIMENSIONS_B table holds the following target table information:
The target FSI_<DIM>_CD/MLS table can be retrieved from REV_DIMENSIONS_B table as follows:

dimension_id: Holds the id of the simple dimension that needs to be loaded.

member_b_table_name: Holds the name of the FSI_<DIM>_CD target table. For example,
FSI_ACCOUNT_OFFICER_CD

member_tl_table_name: Holds the name of the FSI_<DIM>_MLS table name. For example,
FSI_ACCOUNT_OFFICER_MLS

member_col: Holds the Column Name for which Surrogate needs to be generated. For example,
ACCOUNT_OFFICER_CD

member_code_column: Holds the Name of the joining column name from FSI_<DIM>_CD
Display code column. For example, ACCOUNT_OFFICER_DISPLAY_CD

key_dimension_flag: N
dimension_editable_flag: Y
write_flag: Y

simple_dimension_flag: Y

5.22.2 Setup Table Configuration Mapping

The FSI DIM LOADER SETUP DETAILS storesthe STG <DIM> MASTER table details as follows:

OFS DATA MODEL UTILITIES USER GUIDE | 118

DATA LOADERS

SIMPLE DIMENSION LOADER

FSI_DIM_LOADER_SETUP_DETAILS STG_<DIM>_MASTER
N_DIMENSION_ID <dimension_id> For example, 617
V_INTF_B_TABLE_NAME Stage table name

For example, STG_ACCOUNT_OFFICER_MASTER

V_GEN_SKEY_FLAG Default will be 'Y', it generates Surrogate Key.
When 'N' then stage display code column will be used as a
surrogate key.

For example,
FSI_ACCOUNT_OFFICER_CD.ACCOUNT_OFFICER_DISPLAY_CD
should be numeric.

V_STG_MEMBER_COLUMN Stores the stage display code column.

For example,
STG_ACCOUNT_OFFICER_MASTER.v_acct_officer_display_code

V_STG_MEMBER_NAME_COL Stores the stage column name.
For example, STG_ACCOUNT_OFFICER_MASTER. v_Name

V_STG_MEMBER_DESC_COL Stores the stage description column name.
For example, STG_ACCOUNT_OFFICER_MASTER. v_description

5.2.3 Executing the Simple Dimension Load Procedure

There are two ways to execute the simple dimension load procedure:
e Running Procedure Using SQL*Plus

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner:

function fn simpledimloader (batch run id VARCHAR2, as of date VARCHARZ,
pdimensionid VARCHARZ,

pMisDateRegFlag char default 'Y', psynchflag CHAR DEFAULT 'N')

SQLPLUS > declare
result number;
begin

result := fn simpledimloader
('"SimpleDIIM BATCH1','20121212','730','N','Y");

end;

/

OFS DATA MODEL UTILITIES USER GUIDE | 119

DATA LOADERS

SIMPLE DIMENSION LOADER

= BATCH_RUN_ID is any string to identify the executed batch.
» AS_OF_DATE s in the format YYYYMMDD.
= pDIMENSIONID is the dimension ID.

» pSynchFlag this parameter is used to identify if a complete synchronization of data between
staging and dimension table is required. The default value is 'Y".

= pMisDateReqgFlag : Filter will be placed on the input stage table to select only the records
which falls on the given as_of_date. Default value is Y. If complete stage table data needs to
be considered, then it should be passed 'N'.

NOTE

With Synch flag N, data is moved from Stage to Dimension
tables. Here, an appending process happens. You can provide
a combination of new Dimension records plus the data that
has undergone change. New records are inserted and the
changed data is updated into the Dimension table. With Synch
flag Y, the Stage table data will completely replace the
Dimension table data.

Simple Dimension Load Procedure Using OFSAAI Batch Maintenance.

To execute Simple Dimension Loader from OFSAAI Batch Maintenance, a seeded Batch is

provided.

The batch parameters are:

= Datastore Type: Select the appropriate datastore from list

»= Datastore Name: Select the appropriate name from the list

= |Paddress: Select the IP address from the list

* Rule Name: fn_simpledimloader

= Parameter : 'Pass the dimension id for which DT needs to be executed, psynchflag'
For example, '730,N,Y"

NOTE

In case of FSI_ACCOUNT_OFFICER_CD query:

SELECT dimension_ id FROM rev dimensions b where
member b table name = 'FSI ACCOUNT OFFICER CD'

Pass the dimension_id.

= Psynchflag: By default it is N, data is moved from Stage to Dimension tables. Here, an
appending process happens. You can provide a combination of new Dimension records
plus the data that has undergone change. New records are inserted and the changed data is
updated into the Dimension table. With Synch flag 'Y, the Stage table data will completely
replace the Dimension table data.

OFS DATA MODEL UTILITIES USER GUIDE | 120

DATA LOADERS

HISTORICAL RATES DATA LOADER

5.2.4

33

5.3.1

Exception Messages

Below are the list of error messages which can be viewed in view log from Ul or fsi_messge_log table
from back end filtering for the given batch id. On successful completion of each task, messages gets
into log table.

In the event of failure, following are the list of errors that may occur during the execution:
o Exception 1: When REV_DIMENSIONS_B is not having proper setup details.

Meaning: For Simple Dimension write_flag, simple_dimension_flag, dimension_editable_flag
should be Y in rev_dimensions_b for the given Dimension id.

o Exception 2: When FSI_DIM_LOADER_SETUP_DETAILS table is not having proper set up details.
Meaning: Setup details are not found for the dimension id.
e Exception 3: When Display code Column is non numeric and trying to use as a surrogate key.

Meaning: Display code Column should be numeric as v_gen_skey_flag N

Historical Rates Data Loader

Historical data for currency exchange rates, interest rates and economic indicators can be loaded into
the OFSAA historical rates tables through the common staging area. The T2T component within
OFSAAI framework is used to move data from the Stage historical rate tables into the relevant OFSAA
processing tables. After loading the rates, users can view the historical rate data through the OFSAA
Rate Management Ul's.

Topics:

e Tables Related to Historical Rates

e Populating Stage Tables

e Executing the Historical Rates Data Loader T2T

e Re-Load Of Historical Rates

Tables Related to Historical Rates

Historical rates are stored in the following staging area tables:

e STG EXCHANGE RATE HIST: This staging table contains the historical exchange rates for
Currencies used in the system.

e STG IRC RATE HIST: This staging table contains the historical interest rates for the Interest
Rate codes used in the system.

e STG IRC TS PARAM HIST: This staging table contains the historical interest rate term
structure parameters, used by the Monte Carlo engine.

e STG ECO IND HIST RATES: This staging table stores the historical values for the Economic
Indicators used in the system.

Historical rates in OFSAA Rate Management are stored in the following processing tables:

OFS DATA MODEL UTILITIES USER GUIDE | 121

DATA LOADERS

HISTORICAL RATES DATA LOADER

5.3.2

5:3-3

e FSI_EXCHANGE RATE HIST: This table contains the historical exchange rates for the
Currencies used in the system.

e [FSI IRC RATE HIST: This table contains the historical interest rates for the Interest Rate
codes used in the system.

e [FSI IRC TS PARAM HIST: This table stores the historical interest rate term structure
parameters, used by the Monte Carlo engine.

e FSI ECO IND HIST RATES: This table contains the historical values for the Economic
Indicators used in the system.

Populating Stage Tables

Data for historical rates commonly comes from external systems. Such data must be converted into
the format of the staging area tables. This data can be loaded into the staging area using the F2T
component of the OFSAAI framework. Users can view the loaded data by querying the staging tables
and various log files associated with the F2T component.

Executing the Historical Rates Data Loader T2T

You can launch the Historical Rates Data Loader from the following:
e Interest Rates Summary page
e PL/SQL block
e Operations Batch
To launch from the Interest Rates Summary page:
1. Click the Data Loader icon on the Interest Rates Summary grid toolbar.
2. A warning message will appear: Upload all available Interest Rates and Parameters?
3. (Click Yes. The process will load all valid data included in the staging table.

There are four pre-defined T2T mappings configured and seeded in OFSAA for the purpose of
loading historical rates. These can be executed from the Batch Maintenance within OFSAAI.

To execute the Historical Exchange Rates Data Loader, create a new Batch and specify the following
parameters:

e Datastore Type: Select appropriate datastore from the drop down list

e Datastore Name: Select appropriate name from the list. Generally it is the Infodom name.
e IP address: Select the IP address from the list

e Rule Name: T2T_EXCHANGE_RATE_HIST

e Parameter List: No Parameter is passed. The only parameter is the As of Date selection which is
made when the process is executed.

To execute the Historical Interest Rates Data Loader, create a new Batch and specify the following
parameters:

e Datastore Type: Select appropriate datastore from the drop down list

e Datastore Name: Select appropriate name from the drop down list

OFS DATA MODEL UTILITIES USER GUIDE | 122

DATA LOADERS

HISTORICAL RATES DATA LOADER

5-3-4

e |Paddress: Select the IP address from the list
e RuleName: T2T IRC RATE HIST

e Parameter List: No Parameter is passed. The only parameter is the As of Date selection which is
made when the process is executed.

To execute the Historical Term Structure Parameter Data Loader, create a new Batch and specify the
following parameters:

e Datastore Type: Select appropriate datastore from list
e Datastore Name: Select appropriate name from the list
e |P address: Select the IP address from the list

e RuleName: T2T IRC TS PARAM HIST

e Parameter List: No Parameter is passed. The only parameter is the As of Date selection which is
made when the process is executed.

To execute the Historical Economic Indicator Data Loader, create a new Batch and specify the
following parameters:

e Datastore Type: Select appropriate datastore from the drop down list
¢ Datastore Name:: Select appropriate name from the drop down list

e IPaddress: Select the IP address from the list

e RuleName: T2T ECO IND HIST RATES

e Parameter List: No Parameter is passed. The only parameter is the As of Date selection which is
made when the process is executed.

After executing any of the above batch processes, check the T2T component logs and batch messages
to confirm the status of the data load.

The T2T component can fail under the following scenario:

¢ Unique constraint error: Target table may already contain data with the primary keys that the
user is trying to load from the staging area.

Re-Load Of Historical Rates

The T2T component can only perform Insert operations. In case the user needs to perform updates,
previously loaded records should be deleted before loading the current records. Function
fn_deleteFusionTables is used for deleting the records in the target that are present in the source. This
function removes rows in the table if there are matching rows in the Stage table. This function
requires entries in the FSI_DELETE_TABLES_SETUP table to be configured. Configure the following
table for all columns that need to be part of the join between the Stage table and Equivalent table.

Users can create new or use existing Data Transformations for deleting a Table. The parameters for
the Data Transformation are:

e 'Table to be deleted'
e BatchrunID
e Asof Date

OFS DATA MODEL UTILITIES USER GUIDE | 123

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=492307060843963&id=1586342.1&_afrWindowMode=0&_adf.ctrl-state=11btsvindb_79
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=492307060843963&id=1586342.1&_afrWindowMode=0&_adf.ctrl-state=11btsvindb_79

DATA LOADERS

FORECAST RATE DATA LOADER

Column Name

STAGE_TABLE_NAME

Column Description

Stores the source table name for forming the
join statement

Sample Value

STG_LOAN_CONTRACTS

STAGE_COLUMN_NAME

Stores the source column name for forming
the join statement

V_ACCOUNT_NUMBER

FUSION_TABLE_NAME

Stores the target table name for forming the
join statement

FSI_D_LOAN_CONTRACTS

FUSION_COLUMN_NAME

Stores the target column name for forming
the join statement

ACCOUNT_NUMBER

NOTE

Insert rows in FSI DELETE TABLES SETUP for all columns
that can be used to join the stage with the equivalent table. In
case if the join requires other dimension or code tables, a view
can be created joining the source table with the respective
code tables and this view can be part of the above setup table.

5.4 Forecast Rate Data Loader

The Forecast Rate Data Loader procedure loads forecast rates into the OFSAA ALM Forecast rates
processing area tables from staging tables. In ALM, Forecast Rate assumptions are defined within the
Forecast Rate Assumptions Ul. The Forecast Rates Data Loader supports the Direct Input and
Structured Change methods only for exchange rates, interest rates and economic indicators. Data for
all other forecast rate methods should be input through the User Interface. After executing the
forecast rates data loader, users can view the information in the ALM - Forecast Rates Assumptions

ul.

Topics:

e Forecast Rate Data Loader Tables

e Populating Forecast Rate Stage Tables

e Forecast Rate Loader Program

e Executing the Forecast Rate Data Load Procedure

e Exception Messages

5.4.1 Forecast Rate Data Loader Tables

Forecast rate assumption data is stored in the following staging area tables:

e STG FCAST XRATES: This table holds the forecasted exchange rate data for the current ALM

modeling period.

OFS DATA MODEL UTILITIES USER GUIDE | 124

DATA LOADERS

FORECAST RATE DATA LOADER

NOTE For Direct Input Method, both N_ FROM BUCKET and
N_TO BUCKET column contain the same bucket number for
therecordin STG FCAST XRATES table.

e STG_FCAST IRCS: This table holds the forecasted interest rate data for the current ALM
modeling period.

e STG _FCAST EI: Thistable holds the forecasted economic indicator data for the current ALM
modeling period.

Rates present in the above staging tables are copied into the following ALM metadata tables.
e FSI FCAST IRC DIRECT INPUT, FSI FCAST IRC_STRCT CHG VAL.
e FSI FCAST XRATE DIRECT INPUT, FSI FCAST XRATE STRCT CHG.

e FSI_FCAST EI DIRECT INPUT, FSI FCAST EI STRCT CHG VAL

5.4.2 Populating Forecast Rate Stage Tables
o STG_FCAST_EI

v_forecast_name The Name of the Forecast Rate assumption rule as defined.
The Forecast name indicates the Short Description for the
Forecast Rate Sys ID as stored in the
FSI_M_OBJECT_DEFINITION_TL table. In case the forecast sys
id is provided, then populate this field with -1.

v_scenario_name This field indicates the Scenario Name for which the Forecast
Rate data is applicable.

v_economic_indicator_name This field indicates the Economic Indicator Name for which the
Forecast data is applicable.

n_from_bucket This field indicates the Start Bucket Number for the given
scenario.
fic_mis_date This field indicates the current period As of Date applicable to

the data being loaded.

n_fcast_rates_sys_id The System Identifier of the forecast rate assumption rule to
which this data will be loaded. In case forecast name and folder
are provided, then populate this field with -1.

v_folder_name Name of the folder that holds the Forecast Rate assumption
rule definition. In case the forecast sys id is provided, then
populate this field with -1.

v_ei_method_cd The Forecast method of economic indicator values include:
Direct Input or Structured change.

Use DI - For Direct Input or SC - For Structured Change

OFS DATA MODEL UTILITIES USER GUIDE | 125

DATA LOADERS

FORECAST RATE DATA LOADER

n_economic_indicator_value

This field indicates the value for the Economic Indicator for the
given scenario and time bucket.

n_to_bucket

This field indicates the End Bucket Number for the assumption.

o STG_FCAST_XRATES

v_forecast_name

The Name of the Forecast Rate assumption rule as defined.
The Forecast name indicates the Short Description for the
Forecast Rate Sys ID as stored in the
FSI_M_OBJECT_DEFINITION_TL table. In case the forecast sys
id is provided, then populate this field with -1.

v_scenario_name

This field indicates the Scenario Name for which the Forecast
Rate data is applicable.

v_iso_currency_cd

From ISO Currency Code (like USD, EUR, JPY, GBP) of the
forecast rate.

n_from_bucket

This field indicates the Start Bucket Number for the given
scenario.

fic_mis_date

This field indicates the As of Date for which the data being
loaded is applicable.

n_fcast_rates_sys_id

The System Identifier of the assumption rule to which this data
will be loaded. In case forecast name and folder are provided,
then populate this field with -1.

v_folder_name

Name of the folder that holds the Forecast Rate assumption
rule definition. In case the forecast sys id is provided, then
populate this field with -1.

n_to_bucket

This field indicates the End Bucket Number for the given
scenario.

v_xrate_method_cd

The Forecast method for exchange rate values include: Direct
Input or Structured change.
Use DI - For Direct Input or SC - For Structured Change

n_exchange_rate

This field indicates the Exchange rate for the Currency and
given bucket Range.The value in N_EXCHANGE_RATE should
be the rate used to convert 1 unit of the V_TO_CURRENCY_CD
currency to the currency stored in V_FROM_CURRENCY_CD.
For example, if V_TO_CURRENCY_CD ='USD', then enter the
exchange rate to convert 1 unit USD to another currency.

e STG_FCAST_IRCS

v_forecast_name

The Name of the Forecast Rate assumption rule as defined.

OFS DATA MODEL UTILITIES USER GUIDE | 126

DATA LOADERS

FORECAST RATE DATA LOADER

5:4-3

The Forecast name indicates the Short Description for the
Forecast Rate Sys ID as stored in the
FSI_M_OBJECT_DEFINITION_TL table. In case the forecast sys
id is provided, then populate this field with -1.

v_scenario_name

This field indicates the Scenario Name for which the Forecast
Rate data is applicable.

v_irc_name

The IRC Name indicates the Name of Interest Rate Code .

n_interest_rate_term

This field indicates the Interest Rate Term applicable for the
row of data.

v_interest_rate_term_mult

This field indicates the Interest Rate Term Multiplier for the row
of data being loaded.

n_from_bucket

This field indicates the Start Bucket Number for the given
scenario.

fic_mis_date

This field indicates the As of Date for which the data being
loaded is applicable.

n_fcast_rates_sys_id

The System Identifier of the interest rate code forecast rate
definition. In case the forecast name and folder are provided,
then populate this field with -1.

v_folder_name

Name of the folder that holds the Forecast Rate assumption
rule definition. In case the forecast sys id is provided, then
populate this field with -1.

n_interest_rate

This field indicates the Interest Rate Change for the specified
Term and for the given scenario.

n_to_bucket

This field indicates the End Bucket Number for the given
scenario.

v_irc_method_cd

The Forecast method of interest rate code values include:
Direct Input or Structured change.

Use DI - For Direct Input or SC - For Structured Change

Forecast Rate Loader Program

The Forecast Rate Loader program updates the existing forecast rates to new forecast rates in the
ALM Forecast Rate tables for Direct Input and Structured Change forecasting methods.

NOTE

The Forecast Rate Loader can only update existing forecast
rate assumption rule definitions. The initial Forecast Rate
assumption rule definition and initial methods must be created
through the Forecast Rates user interface within Oracle ALM.

OFS DATA MODEL UTILITIES USER GUIDE | 127

DATA LOADERS

FORECAST RATE DATA LOADER

5.4.4

5.4.41

The Forecast Rates Data Loader performs the following functions:

The User can load forecast rate assumptions for either a specific Forecast Rate assumption rule or
multiple forecast rates assumption rules.

1. To Load a specific Forecast Rate assumption rule, the user should provide either the Forecast
Rate name and a folder name as defined in Oracle ALM or the Forecast Rate System Identifier.

2. When the load parameter is to load a specific Forecast Rate assumption rule for a given As of
Date, the loader checks for Forecast Name/Forecast Rate System Identifier's presence in the
Object Definition Registration Table. If it's present, then the combination of Forecast
Name/Forecast Rate system Identifier and As of Date is checked in each of the Forecast Rate
Staging Tables one by one.

3. The dataloading is done from each of the staging tables for the Direct Input and Structured
change methods where the Forecast Name and As of Date combination is present.

4. When the load parameter is the Load All Option (Y), the Distinct Forecast Name from the 3
staging tables is verified for its presence in Object Definition Registration table and the loading
is done for each of the Forecast Names.

5. Messages for each of the steps is written into the FSI _MESSAGE LOG table.

After the Forecast rate loader processing is completed, the user should query the ALM Forecast Rate
tables to look for the new forecast rates. Also, the user can verify the data just loaded using the
Forecast Rate Assumption UL.

Executing the Forecast Rate Data Load Procedure

You can launch the Forecast Data Loader from the following:
e Forecast Rates Summary page
e PL/SQL block
e Operations Batch

To launch from the Forecast Rates Summary page:

1. Click the Data Loader icon on the Forecast Rates Summary page. A warning message will
appear: Upload all available Forecast Rates?

2. Click Yes. The process will load all valid data included in the staging table.

Forecast Rate Loader - Method 1

To run the Forecast Rate Loader from SQL*Plus, login to SQL*Plus as the Schema Owner. The
procedure requires six parameters

1. Batch Execution Identifier (batch run id)

2. Asof Date (mis date)

3. Forecast Rate System Identifier (pObject Definition ID)
4

Option for Loading All or any Specific Forecast Rate assumption rule. If the Load All option is 'N'
then either the Forecast Rate Assumption rule Name Parameter with the Folder Name or
Forecast Rate Sys ID should be provided else it raises an error (pLoad_all)

OFS DATA MODEL UTILITIES USER GUIDE | 128

DATA LOADERS

FORECAST RATE DATA LOADER

Forecast Rate assumption rule Name (pForecast name)

Folder name (pFolder Name)

The syntax for calling the procedure is:

fn stg forecast rate loader (batch run id varchar2,
mis date varchar?2,

pObject Definition ID number,

pLoad all char default 'N',
pForecast name varchar?2,
pFolder Name varchar?

p_user id
varchar?2

p_appid
varchar?2

)

where

= BATCH RUN IDisany string to identify the executed batch.

= mis_date in the format YYYYMMDD.

» pObject_Definition_ID -The Forecast Rate System Identifier in ALM
» pload_all indicates option for loading all forecast rates.

» pForecast_Name. This can be nulli.e " when the pLoad_all is 'Y' else provide a valid Forecast
Rate assumption rule Name.

» pFolder_Name indicates the name of the Folder where the forecast rate assumption rule
was defined.

» p_user_id indicates the user mapped with the application in rev_app_user_preferences. This
will be used to fetch as of date from rev_app_user_preferences.This is a mandatory
parameter.

» p_appid is the application name. This is a mandatory parameter.
For Example:

If the user wants to Load all forecast rates assumption rules defined within a folder, say RTSEG
then

Declare

num number;

Begin

Num:= fn stg forecast rate loader ('INFODOM FORECAST RATE LOADER',
'20100419",

null,

Y,

Null,

OFS DATA MODEL UTILITIES USER GUIDE | 129

DATA LOADERS

FORECAST RATE DATA LOADER

"RTSEG',

"ATMUSER1',

"AIM') ;

End;

The loading is done for all forecast rates under folder 'RTSEG' for as of Date 20100419.

Sample Data for STG_FCAST IRCS to Load all forecast rates defined within a folder

o svrvmger sary wens |y jement mare vemae aevar lu rmone pucury lu wrimins sats ln 1o pucar |y mc samen o2 [ng ves paw ly nosoem sanss I scarr sas vy <

1 C) v %0000t (3 I om o I i

)) v B 3

3) v o 0

=) T x 3

n - 1 - 1)

==]) o 1

)) T = I 3

@ - Y 3 i i 3

v - 3 o T T 3

] » 2 = 1)

s - = @ 0

) » 2 oo T T 1

3 C) 2 @ 1 0

= C] 3 @ 1

)] 3 ox 0

W - 2 @ i

T30, Dot COFT - wiasby S 3760 | 02 - 0 e 3]

164 Morie Coo Tem s) m e 3

€ oot Tmamey 0 - T @ D

13 Moot Tomas 3)) Ce 0
— —

Sample Data for STG_FCAST XRATES to Load all forecast rates defined within a folder

V_ICHITAST Manat v_scanamo_reanat [v 150 _commiay ©o [n rsos socxrt Ia exomance sate [n 20 suor |v_skart meneoo co [s oart [seast sares ses o |v_roaoes saat
FORECAST RATE Y Seenano] UsO 3 0 36| SC 32| 1|RTSEG
FORECAST RATE 3 Sconanc! uso 2 025 SC 4N2010) -1|RTSEG
TEST 2 Scenyol Py 3 52 [HES Tnwzno| 1|RTSEG
LORDER_TEST Scenarel USD 1 25] enaaono| A|RTSEG

Sample Data for STG_FCAST EI to Load all forecast rates defined within a folder

oA ma | kg_-_pﬂ-:om*v_&m SaATR janat [pras sucer |n somomnss eecason vain [in 10 mutarrlv 6 Anmeos €0 [ne wes past |v ouonm sams |n pease pams v o
FORECAST RATE 1] Sconaol o 1 F¥7) 1]5C ANVANO|RTSEG 1
FORECAST RATE 1} Scensol }_:: 1 2 125 3sC UNVOIRTSEG -1
sy 2 Sconmol Ees 2 1 145)08 ANVANOIRTSEG -4
LDADER_TEST _|Scenanol |Ece3 1 528 BES ANVANOIRTSEG 3

If the user wants to Load a specific forecast rate assumption rule, they should provide the
unique Forecast Rate System Identifier.

Declare
num number;
Begin
Num:= fn stg forecast rate loader ('INFODOM FORECAST RATE LOADER',
'20100419",
10005,

',

Null,

Null,
'"ALMUSER1',
'ALM'") ;
End;

Sample Data for STG FCAST IRCS to load data for specific Forecast Rate providing the
Forecast Rate System Identifier

OFS DATA MODEL UTILITIES USER GUIDE | 130

DATA LOADERS

FORECAST RATE DATA LOADER

sare e [e vems sowns)

nla il

slabuiuls

gane

Sample Data for STG_FCAST XRATES to load data for specific Forecast Rate providing the
Forecast Rate System Identifier

Y IORICAST NAMIL |V SCENAIDO WAME [V B0 CURRDNCY (O [1SOM BUCKTY nmwun[-mum\mnmm IIWMHIHMTIME}HI) V 1000 have
4 Scanwio) (50 [03 1]s¢ anaanl 10006 4
1 Scenan) 1JSD 2 0.25 3|SC vl 10008 g
3 Seanynl FY 1 § 1]5¢ anaas0) 006 X
1 Sosnwi] UsD 1 25 11Dl ansvamo| st A

Sample Data for STG_FCAST EI toload data for specific Forecast Rate providing the Forecast
Rate System Identifier

!mﬂ& :M‘Evﬂu I~ BATE THRAL [V ONTERENT BATE TREAS A hmgm’lﬂ"lu w A DAn UMM N AT BT W &
TORCCAST AP 1 {Scanaml Mo Tt B 1 1 ™ | Lo e UL (e) 1
FORECAST RAYE 1 [Soorwnt Fowe Tow 9 1) “ 1 (¥ v ANYIURTSED)
FURECAST RATE | [Soarawnl [Wew Tow B 1 % L) 1 0 e ANVINORTSEG 1
FORECAST WATL 1 [Scanmal o T B 1)] 1 3 e STt 1
FIRECAST AATE Y [Starwn! e Tow 9L ¢ 1) [1 7 proont 0 VAIUATSL D
FORICAST RATT 1 Fowwal [ww Tom B ¢ x] 1 o VIvanaRTs i
FORLCAST MATL 1 [Scanmnt Noow fon 9 1 “ [1 o)
FORECAST AATE | Searvpnt Foowe Tog 0 § W - 1 > 1
FORECAST AATE | [Sommal Mo Tas P | L] 3 3 i
e L R oo [t B ¢]) ")
FORECAST AT |l] [hoea Ton 9 1 [™ 2 0 i
FORLCAST AATE 1 [Somael N 198 B | 2 ™ 2 e i
FURECAST AT {Scarwnt o Lo B 1 i) 2 © 1
¥ TRATE | v ow Tow B, | » ™ 3 @ i
FOMLCAST WAL 1 Homanc] Now Tost U 1 o] 2 () 1
;mmumumm": Foom Ton B 1 W [2 I]
L0AER_TEST E' 190 Dt COF) - Wieshy e 7161 | 12] » e 1
LOAOLN, TLst 0 164 Mare Coio T e) w e 1
ADAER TEST 1Scarawt € Mt Timamny (] L] 1o 2)
1687 2 = 3 Marvh, Tomans)] [2 uwmewn 1
NOTE To Load data for specific Forecast Rate providing the Forecast

Rate System Identifier, the value of Forecast rate Name and
Folder Name in the staging tables should be -1.

If the user wants to Load a specific forecast rate assumption rule within the Folder providing the
name of Forecast Rate as defined in ALM.

Declare

num number;

Begin

Num:= fn stg forecast rate loader ('INFODOM FORECAST RATE LOADER',
'20100419"',

Null,

',

'LOADER TEST',

'"RTSEG',

OFS DATA MODEL UTILITIES USER GUIDE | 131

DATA LOADERS

FORECAST RATE DATA LOADER

5.4.4.2

'"ALMUSER1',
'ALM") ;
End;

Sample Data for STG_FCAST IRCS to Load a specific forecast rate within the Folder providing
the name of Forecast Rate as defined in ALM

Sample Data for STG_FCAST XRATES to Load a specific forecast rate within the Folder
providing the name of Forecast Rate as defined in ALM

Vv IomIcAsT mant [v_scmnamo_ramt [v_ 150 oomainy <0 [N 1eon Sucert i Ecmanse aaTe [n 20 sucarr v xmatt MEnw00 €0 |1 s DATE |1 SCAST RARES Svs 10 |V roanes namt
FORECAST RATE Y | Seenano Usd 1 038 1SC 4AN20N0 1|RTSEG
FORECAST RATE § {Sconarc! UsO 2 025 3|SC 419720101 -1|RTSEG
TEsT 2 |Scenarol JPY i 52 1|sc nvnn -1|RTSEG
LORDER TEST [Seenarel uso 1 25 i (] 4NY200 1|RTSEG

Sample Data for STG_FCAST EI to Load a specific forecast rate within the Folder providing the
name of Forecast Rate as defined in ALM

L HORCASY JAE |, S0 AN |V BCOMOMNC e AYOR e I e T ORI wecATOR AL [1o muarrlu b et ¢ [me s past Ly I peas sams v o
FORECAST RATE 1| Seenariol feo) | 1 222 WNYMO[RTS !
FORECAST RATE 1fScenan] ¢o! | 2 125
L T 7 N ! i Ld5) A
LDADER TEST _ [Scenarol Ecod | 1 £28

If the NUM value is 1, it indicates the load completed successfully, check the FSI_MESSAGE_LOG
for more details.
Forecast Rate Loader - Method 2

To execute Forecast Rate Loader from OFSAAI Batch Maintenance, a seeded Batch is provided.

<INFODOM> FORECAST RATE LOADERIsthe Batch ID and Forecast Rate Loaderisthe
description of the batch.

]

Batch Maintenance

Q search O Reset

Batch ID Like OFSALMINFO_forecast

Module v Last Modification Date Between And
Batch Name ¥ Add
[BatchiD & Batch Description Batch Edit/Non Edit
[OFSALMINFO_FORECAST_RATE_LOADER Forecast Rate Loader E
Page 1 of1(1-10f 1items) Records Per Page 15
Task Details
[TaskID Task Description Metadata Value Component ID Precedence
Page 0 of 0(0-00f 0items) K Records Per Page 0

10. The batch has a single task. Edit the task.

OFS DATA MODEL UTILITIES USER GUIDE | 132

DATA LOADERS

FORECAST RATE DATA LOADER

Batch Maintenance

Module

Batch Name ¥ Add [View® Edit] Delete
M Batch D&
W OFSALMINFO_FORECAST RATE_LOADER

Page 1 of 1(1-10f1items)

Task Details ¥ AddI View(#' Edit & Delete
W TaskiD 4

M Taski null

Page 1 of 1(1-10f1items)

Batch ID Like OFSALMINFQ_forecast

Task Description

<

ate Bebween

Batch Edit/Non Edit
Forecast Rate Loader E

Batch Description

Metadata Value Component ID

Forecast Rate_Loader TRANSFORM DATA

0

Q search D Reset

= And

Records PerPage 15

Precedence

Records Per Page 15

parameters as shown.

Task Definition

Task Definition

Task ID Task1

Components TRANSFORM DATA

Dynamic Parameters List
Property

Datastore Type

Datastore Name

Primary IP For Runtime Processes
Rule Name

Parameter List

Audit Panel
Created By: ALMUSER

Last modified by: ALMUSER

0

Save Close

null

Description
Value
EDW j
OFSALMINFO ﬂ
10.184.156.158 ﬂ
Forecast_Rate_Loader j

NULL

Creation Date 17 may 2018 13:36:21

Last Modification Date 17 may 2018 13:36:21

= Datastore Type: Select the appropriate datastore from list

= Datastore Name: Select the appropriate name from the list

= |Paddress: Select the IP address from the list

= Rule Name: Forecast_Rate_loader

= Datastore Type: Select the appropriate datastore from list

» Datastore Name: Select the appropriate name from the list

= |Paddress: Select the IP address from the list

= Rule Name: Forecast_Rate_loader

11. If the user intends to load data for all Forecast Rates under a Folder, then provide the batch

Sample Data for STG_FCAST IRCS to Load all forecast rates defined within a folder

OFS DATA MODEL UTILITIES USER GUIDE | 133

DATA LOADERS

FORECAST RATE DATA LOADER

12.

v roecarr v bu oo sass by s e o mervmane wary s [y swriment mare v e Ja mmons poony Ju s sary [n vo socar v mc simeon oo [ne s o fy ros e s [w scarr sam o o
1 [Soeranl Moo Tow NC 1 1 - 1 Lo 0 ANVIDONTSLG 4]

1 | Eemmn? N T B 1 1 ™ 1 uv% & 1

1 [Sewraa! Noow Tow BL 1 & - 1 & asooo0y I3 0

1 [Sconmat Fome T e P 7] ~ 1 l% Joe 1

1 [Srarern? Pomw Tow B + T} [1 7 gt . 1

1 foomraal Foww Tat B ¢ =) 1 7 1100000 o i

1 [Sowwnt Mo Tom C 1 - L. 1 L] - 1)

1 | Sarnt Poow Top 6 ¢ W] 1 nv% » 1

TE 1 [Somweal Fowws T o B [~ 2 & coooook o 1
FORECAST RATE 1 [Scanmn? Poww Tom 0 ¢ b) ~] 43 }(—' J
FORECASTRAATE ! IS oemae) LT (]] 3 Q‘:% [0 J
FORECAST PATE 1 [Somnast oo T B 1) ™ 3 (3 oo 1
FORECAST RATE 1 [Soammnt N [. 1 3] 2 s }(—- AV WITURTSED 1
FORECAST RATE | (Sparaput oo Tow B ¢ 3] 3 AT, oo ANIGRTSER [
FORECAST MATE 1 {Scmnanc! N Tu 9O 1)] 2 T3 o6 ANSINTSLG 0
FORECAST RATE | JScanarat P [o 80 ¢ w ~ 2 LS I’(—' ANSWIURTSES !
LDACER TEST tacarwal 130, Dt COF1 - Wauby Lot 2061 | 02 ~ » s joe WINNARTSEG D
LOAKR TEST [ocananc? 164 Marke Coto Tem .] o ? @ ANV IORTSLG 1
ADACER_TEST__ [Soaraut € Ty) ~ 0 ;% }'z'- 19T SEG 1
1681 2 Soarawn ! 3 Nhcrvh, Timans s) AET :E I CUE O) 1

Sample Data for STG_FCAST XRATES to Load all forecast rates defined within a folder

V_IORICAST Mt lvmmmvmtmvm N_TROM_BUCKLT |0 EXOMANGE RATE | 20 BUCKET |V _ERATL METHOO €O [N WS DATE (15 FCAST BATES Sv3 10 |V IOLDE8 Namt
FORECAST RATE 1] =) 1 0 3s| 1|SC 20 A[RTSEG
FORECAST RATE § Seanarc! uso 2 025 3[5C 132010(-1|RTSEG
TEST 2 Scenaol LPY 1 52 11|SC anvano| -1|RTSEG
LOADER TEST Seenarel uso 1 25| 1let anaano| A[RTSEG

Sample Data for STG_FCAST

_EI to Load all forecast rates defined within a folder

V_FORICALT maMM rumﬁomlvum IONCATOR IAM Th FROAE BUCKTY [FCOROA DeCASOR VALLE |1 10 BUCKITIV B AMTHOO €O mmunlv'aulm W PCALY RAFES vd 1D
FORECAST RATE 1] Seenarol Eeo d 1 222 1]5C ANVMO[RTSEG 5]
FORECAST RATE 1]Sconyio) Fco 1 2 ¥ RES uw%!seo 5
[0 Scorol Ees2 1 145 108 ANVIOIRTSEG -1
LDADER TEST _ [Scenanol |Ece3 1 528 BES NVMORTSEG]

If the user wants to load data for a specific Forecast Rate assumption rule, provide the Forecast
Rate System Identifier, then define the batch parameters.

= Datastore Type: Select the appropriate datastore from list

= Datastore Name: Select the appropriate name from the list

= |Paddress: Select the IP address from the list

= Rule Name: Forecast_Rate_loader

Sample Data for STG_FCAST IRCS to load data for a specific Forecast Rate assumption rule,
with the Forecast Rate System Identifier already provided

V_FORICAST MAME Fy ACENARO WAMKE |V BCOMOAME Ol ATOR AN 0 PROAE BUCKTY [FCOROMS MDelASOR VALLE (I 10 BUCRITIV B AMTHOD €O anﬂllvnuluﬂ N PCALY RAFES 44 1D
FORECAST RATE 1} Seenanol Eco 1 22 1]5C ANVAORTSEG 5
FORECAST RATE [fScenswl Eco 1 2 125 BES VIVanolRTSEG A
(41 2 $conmol Ees 2 1 145 11D ANVANORTSEG -1
LDADER TEST _ [Scenanol |Ece3 1 528 BES ANVMORTSEG B

Sample Data for STG FCAST XRATES to load data for a specific Forecast Rate assumption rule
with the Forecast Rate System Identifier already provided

V IORICAST NAMIL |V SCENARO RAMIE [V 50 CURRDACY (O [N FROM BUCKET [N EXCHANGE SARL [N 10 BUCKTT [V XRATE MMTHOO (O mmmn]mw1nmmmlvmmmm
1 Seanwio) (50 [03 1]5¢ | 10006 1
‘ Soenam) USD 2 0.2 JSC vl 1000k 4
1 Scanyo! FY | 52 11|5¢ 0] 006!]
1 S cansn) USD] 25 1D sl A% K

Sample Data for STG_FCAST EI to load data for a specific Forecast Rate assumption rule with
the Forecast Rate System Identifier already provided

OFS DATA MODEL UTILITIES USER GUIDE | 134

DATA LOADERS

FORECAST RATE DATA LOADER

V_IORCAST MM [V SCENMARID MAME [V ICONOMIC INSOCATOR IAME Th FROM BUCKEY |Iv ECONOMIC O 1O BUCKET [V 0 MITHOD (O [NC WIS DATE IV FOLOER MANSE [FCATE RATES Svy '0]

K] Scensnl E¢o 1 22 1|SC N VX0; -1 10008

1 Scenan! Eco 2 125 3[sC V0 1 10008

1 Seenano! Eco 2 1 135 1{D1 0] 1 3000¢|

Y Scenanl Eco) 1 528 5[sC 432000 1 i |
NOTE To Load data for specific Forecast Rate assumption rules,

provide the Forecast Rate System Identifier and the value of
Forecast rate Name and Folder Name in the staging tables

should be -1.

13. If the user wants to load data for specific Forecast Rate assumption rules, provide the Forecast

Rate Name as defined in ALM, then define the batch parameters as shown.
= Datastore Type: Select an appropriate datastore from list

= Datastore Name: Select an appropriate name from the list

= [P address: Select the IP address from the list

= Rule Name: Forecast_Rate_loader

Sample Data for STG_FCAST IRCS to Load a specific forecast rate assumption rule, within the

Folder, provide the name of Forecast Rate rule as defined in ALM

Y roecar vy s mvma nams wwa fy swrvmer sty mne aesa Ju smns poct o sriman sas [1o ecer v e smen o3 [nc v pan |y nosoe s e scarr sams g s
FORLCAST MAFL 1 ™ 2 R . 010000] (3] T i
FORECAST Rar[] - 1 & 210000 o 1
FURECAST RATE 3) 1 |
FORECAST WATL 1 [Scanmal [T 9 1 Q ™ 1 | ahsmanrsts 1
FIRECASY A 7] ™ 1 I) D
FORICAST AA *) 1 ANVNORTG i
FORLCAST matt 0! (e om0 o L 1 | 1
FORECAST AATE 1 [Soaramu! [RemTos ¥t W) 1 1 1 1
FURECAST AATE | [Sommal [N Tam 5§ ~ Fl i
PORECAST WARE T 1o o 1wt B b) ™ MORTG)
FORECAST PATE Foow T 6 § 3 1 NERTSEG 1)
FURLCAST PATL [N Toa B 1 ™ G AL () i
FURECAST Ral L N Tt . 1 0) | 0
FORECAST RAST | Noaw Tow BF, » ™ |
FORLCAST Mar(N Toe O 1 L L J
FORECAST PRATE Foww T ot S [- 2 1 i
LOACER_TEST 199 Dot COF1 - ey i 2161] 0)
LOACER TTsT 164 Marte oo Tesr [) o) 1
ADOER_TEST L€ M Tomamny) ™ 180)
JE8T 2 13 Msrvh, Tomamins s - Yo I anaosolansin |
o ~ - e

Sample Data for STG_FCAST XRATES to Load a specific forecast rate assumption rule, within

the Folder, provide the name of Forecast Rate rule as defined in ALM

V_IORICAST Maat V_SCENARO AN [V 150 CURMRINCGY €O [N FROM BUCKLT (M CXOMANGE RATE [N 50 BUCKET |V ERATL MITWOO €O [AS DATE [SCAST BATES S8 10 |V FOLDER Nant
FORECAST RATEY Seenano] usd 1 0 36! 1{SC 41920004 A|RTSEG
FORECAST RATE § | Seonavc! usD 2 0.25 3|SC S12010) -1|RTSEG
TEs1 2 Scenarol JPY 0 52 11/SC VN0 1|RTSEG
LOADER TEST Scenaol usD 1 25 1] 12010 A[RTSEG

Sample Data for STG_FCAST EI to Load a specific forecast rate assumption rule, within the

Folder, provide the name of Forecast Rate rule as defined in ALM

L FOCAST RAME [y, SCINAIO NANA |V SCOMOAISC SSRCATOR NAME [t PRt BUCHTY |1 SCORDM MEOWCATR VAL |1 YO BUCHITIV 0 AMTWEO €0 (1 It DATE |v e Ok SRt |1 peate pars ses o |
FORECAST RATE 1 Scenarol Eco ! 1 222 115C ANVMORTSEG)
FORECAST RATE 1Scenam] Ecol 2 125 3sC NVAORTSEG A
T Scanwol Ees 2 3 145)08 N YIORTSEG)
LDADER_TEST _ [Scenano) Eco3d 1 528 s|sC ANYMORTSEG 4

14. Save the Batch.
15. Execute the Batch for the required As of Date.

OFS DATA MODEL UTILITIES USER GUIDE | 135

DATA LOADERS

PREPAYMENT RATE DATA LOADER

5.4.5

5.5.1

Exception Messages

The Forecast Rate Data Loader can have the following exceptions:
o Exception 1: Error. While fetching the Object Definition ID from Object Registration Table

This exception occurs if the forecast rate assumption rule name is not present in the
FSI_M_OBJECT_DEFINTION_TL table short_desc column.

e Exception 2: Error. More than one Forecast Sys ID is present.

This exception occurs when there is more than one Forecast Sys ID present for the given
forecast rate assumption rule name.

e Exception 3: Error. Forecast Rate assumption rule Name and As of Date combination do not
exist in the Staging Table.

This exception occurs when the Forecast Rate assumption rule Name and as of date
combination do not exist in the Staging Table.

Prepayment Rate Data Loader

Prepayment Model assumptions are defined within the Prepayment Model rule User Interfaces in
OFSAA ALM, HM and FTP applications. You can input prepayment rates directly through the Ul, or
import the rates from Excel into the Ul. You can also use the Prepayment Rate Data Loader procedure
to populate Prepayment Model rates into the OFSAA metadata table from the corresponding staging
table. This data loader program can be used to update the Prepayment Model rates on a periodic
basis. After loading the prepayment rates, you can view the latest data in the Prepayment Model
assumptions UL.

Topics:

e Prepayment Rate Loader Tables

e Prepayment Rate Data Loader

e Executing the Prepayment Model Data Loader

e Exception Messages

Prepayment Rate Loader Tables

The Loader uses the following staging and target tables:

e STG PPMT MODEL HYPERCUBE: This staging table contains prepayment rates for the selected
prepayment dimensions.

e FSI PPMT MODEL HYPERCUBE: Theloader copies rates into this target table for the associated
Prepayment Dimension combinations present in the FSI M PPMT MODEL table.

Prepayment Rate Data Loader

The Prepayment Rate Data Loader program populates the target OFSAA Prepayment Model table with
the values from the staging table. The procedure will load prepayment rate data for a specified
Prepayment Model rule or all Prepayment models that are present in the staging table. The program

OFS DATA MODEL UTILITIES USER GUIDE | 136

DATA LOADERS

PREPAYMENT RATE DATA LOADER

assumes that the Prepayment Model assumptions have already been defined using OFSAA
Prepayment Model rule Uls before loading Prepayment Model rates.

The program performs the following functions:

1. The program performs certain checks to determine if:

The Prepayment Model dimensions present in staging are the same as those present in the
OFSAA Prepayment Model metadata tables.

The bucket members of each of the dimensions present in staging are same as those present in
the metadata tables.

The number of records present in the STG_PPMT MODEL HYPERCUBE table for a Prepayment
Model is less than or equal to the maximum number of records that are allowed, which is
determined by multiplying the number of buckets per dimension of the Prepayment Model.

PPMT_MDL_SYS_ID DIMENSION_ID NUMBER_OF_BUCKETS
20100405 8 2
20100405 4 3

Then the maximum number of records = number of buckets of dimension 8 * number of
buckets of dimension 4

That is, maximum number of records =2 * 3
Therefore, maximum number of records = 6 records

Check is made by Prepayment Rate Data Loader whether the number of records present in
STG_PPMT MODEL HYPERCUBE table for a Prepayment model 20100405 is less than or equal to
6 or not.

If the above quality checks are satisfied, then the rates present in the Staging table are updated
to the OFSAA prepayment model metadata table.

Any error messages are logged in the FSI MESSAGE_LOG table and can be viewed in OFSAAI
Log Viewer UL.

After the Prepayment Rate loader is completed, you should query the FSI PPMT MODEL HYPERCUBE
table to look for the new rates. Also, you can verify the data using the Prepayment Model Assumption

ul.

Populating the data into STG_PPMT MODEL HYPERCUBE

v_PPMT MDL: The Name of the Prepayment Model as stored in FSI_M_OBJECT_DEFINITION_TL
table. If Prepayment Model name is given, also provide the Folder name. If the Prepayment
Model System ID is provided, then populate this field with -1.

N_ORIG TERM: Original term of the contract

N _REPRICING FREQ: The number of months between instrument repricing
N REM TENOR: Remaining term of the contract (in Months)

N EXPIRED TERM: Expired term of the contract (in Months)

N TERM TO REPRICE: Repricing term of the contract (in Months)

OFS DATA MODEL UTILITIES USER GUIDE | 137

DATA LOADERS

PREPAYMENT RATE DATA LOADER

e N COUPON_RATE: The current gross rate on the instrument

e N MARKET RATE: Forecast rate representing alternate funding

e N RATE DIFFERENCE: Spread between the current gross rate and the market rate

e N RATE RATIO: Ratio of the current gross rate to the market rate

e N PPMT RATE: User defined prepayment rate for the associated dimension value combination
e FIC MIS DATE: The As of Date for which the data being loaded is applicable

e V FOLDER NAME: Name of the Folder which holds the Prepayment Model. If the Prepayment
Model System ID is provided, then populate this field with -1. If Folder name is provided, then
provide Prepayment Model name as well.

e N PPMT MDL SYS ID: The System Identifier (Object Definition ID) of the Prepayment Model
to which this data will be loaded. If Prepayment Model name and Folder are provided, then
populate this field with -1.

Column mapping from source to target

Source STG PPMT MODEL HYPERCUBE to Target FSI PPMT MODEL HYPERCUBE mapping:
N _ORIG _TERM -> ORIGINAL TERM

N _REPRICING FREQ ->REPRICING FREQ

N REM TENOR -> REMAINING TERM

N _EXPIRED TERM -> EXPIRED TERM

N _TERM TO REPRICE -> TERM TO REPRICE

N_COUPON_RATE -> COUPON_RATE

N _MARKET RATE -> MARKET RATE

N _RATE DIFFERENCE -> RATE DIFFERENCE

N RATE RATIO -> RATE RATIO

N _PPMT RATE -> PPMT RATE

N PPMT MDL SYS ID -> PPMT MDL SYS IDwhenN PPMT MDL SYS ID <>-1, otherwiseit
performs alookupin FSI M OBJECT DEFINITION TL based onthe Name and Folder provided in
the staging tabl

Example

Based onthe FSI M PPMT MODEL table, for data in the staging table with Prepayment Model System
ID 20100405:

PPMT MDL SYS ID DIMENSION ID NUMBER OF BUCKETS
20100405 8 2
20100405 4 3

The maximum number of records = (number of buckets of dimension 8) * (number of buckets of
dimension 4).

That is, maximum number of records =2 * 3

Therefore, maximum number of records = 6 records.

OFS DATA MODEL UTILITIES USER GUIDE | 138

DATA LOADERS

PREPAYMENT RATE DATA LOADER

5:5:3

The Prepayment Rate Data Loader checks whether the number of records present in
STG PPMT MODEL HYPERCUBE table for Prepayment Model 20100405 is less than or equal to 6.

If the above quality checks are satisfied, then the rates present in the Staging table are updated to the
OFSAA Prepayment Model metadata table.

Any error messages are logged in the FSI MESSAGE LOG table.

Executing the Prepayment Model Data Loader

You can launch the Data Loader from the following:

Prepayment Models summary page

PL/SQL block

Operations Batch

Prepayment Models summary page: To launch from the Prepayment Models summary page:

a. C(lick the Data Loader icon on the Prepayment Models summary grid toolbar. A warning
message will appear: Upload all available Prepayment Rates?

b. Click Yes. The process will load all valid data included in the staging table.
PL/SQL block: To execute theLoader within a PL/SQL block:

To run the function from SQL*Plus, log in to SQL*Plus as the Schema Owner. The loader
requires following parameters:

= Batch Execution Name

= As Of Date
* Object Definition ID
= LoadAll

= Model Name
= Folder Name

Syntax:

fn ppmt rate loader(batch run id VARCHAR2, mis_ date VARCHAR2Z,
pObject Definition ID NUMBER, pLoad all CHAR default 'N', pModel name
VARCHARZ2, pFolder name VARCHAR2)

Where:
= BATCH_RUNL_ID is any string to identify the executed batch.
= As_of_Date is the execution date in the format YYYYMMDD.

» Object Definition ID is the System Identifier of the Prepayment Model to which this data will
be loaded.

= Select Load All if you want to load all the prepayment Models.

» Folder Name is the name of the Folder which holds the Prepayment Model. If the
Prepayment Model System ID is provided, then populate this field with -1. If Folder name is
provided, then provide Prepayment Model name as well.

OFS DATA MODEL UTILITIES USER GUIDE | 139

DATA LOADERS

PREPAYMENT RATE DATA LOADER

For Example:

IF (P_OBJECT DEFINITION ID = -1) THEN

PRC_STG_PPMT MODEL SYSID(P_OBJECT DEFINITION ID, P _AS OF DATE);
ELSE IF P LOAD ALL = 'Y' THEN

BEGIN

SELECT DISTINCT V_PPMT MDL, V FOLDER NAME BULK COLLECT INTO
V_MODEL FOLDER NAME FROM STG PPMT MODEL HYPERCUBE WHERE
TO CHAR(FIC MIS DATE, 'YYYYMMDD') = P _AS OF DATE AND N PPMT MDL SYS ID
= -1;

SELECT DISTINCT N _PPMT MDL SYS ID BULK COLLECT INTO
V_OBJECT DEFINITION ID FROM STG PPMT MODEL HYPERCUBE WHERE

TO CHAR(FIC_MIS DATE, 'YYYYMMDD') = P_AS OF DATE AND V_PPMT MDL = '-1'
AND V_FOLDER NAME = '-1';
IF (V_MODEL FOLDER NAME.COUNT != 0) THEN

FOR L INDEX IN V_MODEL FOLDER NAME.FIRST
V_MODEL FOLDER NAME.LAST LOOP
PRC_STG_PPMT MODEL_NAME (V_MODEL FOLDER NAME (L_INDEX) .PPMT MODEL
_NAME, V_MODEL_ FOLDER NAME (L_INDEX) .OBJECT DEFN FOLDER NAME,
P _AS_OF DATE);
END LOOP;

END IF;

IF (V_OBJECT DEFINITION ID.COUNT != 0) THEN
FOR L INDEX IN V_OBJECT DEFINITION ID.FIRST
V_OBJECT DEFINITION ID.LAST LOOP
PRC_STG_PPMT MODEL_SYSID(V_OBJECT DEFINITION ID(L_ INDEX),
P AS OF DATE);
END LOOP;
END IF;
ELSE
SELECT COUNT (*) INTO V_COUNT CHECK FROM STG PPMT MODEL HYPERCUBE WHERE
V_PPMT MDL = P MODEL NAME AND V_FOLDER NAME = P FOLDER NAME AND
TO CHAR (FIC_MIS DATE, 'YYYYMMDD') = P_AS OF DATE;
IF V_COUNT CHECK != 0 THEN

PRC_STG_PPMT MODEL NAME (P_MODEL NAME, P _FOLDER NAME, P AS OF DATE);

OFS DATA MODEL UTILITIES USER GUIDE | 140

DATA LOADERS

PREPAYMENT RATE DATA LOADER

5:5-4

The loader is executed for the given as of date. If the return value (NUM) is 1, this indicates the
load completed successfully. Check the FSI MESSAGE LOG for more details.

e Operations Batch: To run from Operations Batch framework:

You can create a new Batch with the Component = ' TRANSFORM DATA' and specify the
following parameters for the task:

= Datastore Type: Select appropriate datastore from list
» Datastore Name: Select appropriate name from the list
» |P address: Select the IP address from the list
*= Rule Name: ppmt_rate_loader
= Parameter List: None

Viewing the results:

Any error messages are logged in the FSI MESSAGE LOG table. If you launch the Loader from the
Prepayment Models Summary page or Operations Batch, you can view processing messages in
OFSAAI in the Operations and select View Log Ul, where the Component Type = Data Transformation
and the Batch Run ID = the ID for your run.

You can also spot check results of the load as follows:
e QuerytheFSI PPMT MODEL HYPERCUBE table to confirm existence of the new rates.

e Use the Prepayment Model rule Ul to select your rule and View your rates.

Exception Messages

The Prepayment Model Rate Loader can have the following exceptions:
e Exception 1: Error while fetching the Object Definition ID from Object Definition Table.

This exception occurs if the prepayment model name is not present in the
FSI_M_OBJECT_DEFINTION_TL table.

e Exception 2: Error. More than one prepayment model sys ID is present for the given definition.

This exception occurs when there is more than one Prepayment Model System ID present for
the Prepayment Model name in staging.

e Exception 3: Error. Data is present in additional dimension ID column than those defined in
FSI_M_PPMT_MODEL.

This exception occurs if rates are specified in staging for the dimensions that are not part of the
Prepayment Model definition.

o Exception 4: The value in the Dimension ID column is not matching with the value present in
the corresponding column in metadata table.

This exception occurs if rates are specified in staging for the dimension members that are not
part of the Prepayment Model definition.

e Exception 5: The number of records for the staging table for a given Prepayment Model Name
is more than those calculated by multiplying the number of buckets in FSI_M_PPMT_MODEL
table for the given model name.

OFS DATA MODEL UTILITIES USER GUIDE | 141

DATA LOADERS

STAGE INSTRUMENT TABLE LOADER

5.6

5.6.1

This exception occurs if there are excess records in staging compared to OFSAA metadata
tables for the given Prepayment Model.

Stage Instrument Table Loader

Data in staging instrument tables are moved into respective OFSAA processing instrument tables
using OFSAAI T2T component. After loading the data, users can view the loaded data by querying the
processing instrument tables.

Topics:

Stage Tables
Populating Stage Tables

Mapping To OFSAA Processing Tables

Populating Accounts Dimension

Executing T2T Data Movement Tasks

Stage Tables

Following are examples of some of the various application staging instrument tables:

STG_LOAN CONTRACTS: holds contract information related to various loan products including
mortgages.

STG_TD CONTRACTS: holds contract information related to term deposit products.
STG_CASA: holds information related to Checking and Savings Accounts.

STG_OD_ ACCOUNTS: holds information related to over-draft accounts.

STG_CARDS: holds information related to credit card accounts.

STG_ LEASES: holds contract information related to leasing products.

STG_ANNUITY CONTRACTS: holds contract information related to annuity contracts.

STG INVESTMENTS: holds information related to investment products like bond, equities, and
so on.

STG_MM CONTRACTS: holds contract information related to short term investments in money
market securities.

STG_BORROWINGS: holds contract information related to various inter-bank borrowings.

STG_FX CONTRACTS: holds contract information related to FX products like FX Spot, FX
Forward, and so on. Leg level details, if any, are stored in various leg-specific columns within
the table.

STG_SWAPS_ CONTRACTS: holds contract information related to various types of swaps. Leg
level details, if any, are stored in various leg-specific columns within the table.

STG_OPTION CONTRACTS: holds contract information related to various types of options. Leg
level details, if any, are stored in various leg-specific columns within the table.

OFS DATA MODEL UTILITIES USER GUIDE | 142

DATA LOADERS

STAGE INSTRUMENT TABLE LOADER

STG FUTURES: holds contract information related to interest rate forwards and all types of
futures. Leg level details, if any, are stored in various leg-specific columns within the table.

STG_LOAN COMMITMENTS: contains all existing columns from STG_LOAN CONTRACTS

NOTE You can modify any existing instrument table to include the
columns by adding the COMMITMENT_CONTRACTS super
type. If you want to execute the Forward Rate transfer pricing
pricing against tables in addition to
FSI_D LOAN COMMITMENTS, then add the required columns
and do so by adding the COMMITMENT_CONTRACTS super
type via ERWIN.

Populating Stage Tables

Data can be loaded into staging tables through F2T component of OFSAAI. After data is loaded, check
for data quality within the staging tables, before moving into OFSAA processing tables. Data quality
checks can include:

Number of records between external system and staging instrument tables.
Valid list of values in code columns of staging.

Valid list of values in dimension columns like product, organization unit, general ledger, and so
on. These members should be present in the respective dimension tables.

Valid values for other significant columns of staging tables.

Mapping To OFSAA Processing Tables

Following are examples of some of the pre-defined application T2T mappings between the above
staging tables and processing tables:

T2T LOAN CONTRACTS: for loading data from STG LOAN CONTRACTS to
FSI D LOAN CONTRACTS.

T2T MORTGAGES: for loading data from STG_LOAN CONTRACTSto FSI D MORTGAGES.

T2T CASA:forloading data from STG_CASAto FSI D CASA.

T2T CARDS: for loading data from STG_CARDSto FSI D CREDIT CARDS.

T2T TD CONTRACTS: for loading data from STG TD CONTRACTSto FSI D TERM DEPOSITS.

T2T ANNUITY CONTRACTS: for loading data from STG ANNUITY CONTRACTS to
FSI D ANNUITY CONTRACTS.

T2T BORROWINGS: forloading data from STG BORROWINGS to FSI D BORROWINGS.

T2T FORWARD CONTRACTS: for loading data from STG FUTURES to
FSI D FORWARD RATE AGMTS.

T2T FUTURE CONTRACTS: for loading data from STG_FUTURES to FSI D FUTURES.

T2T FX_CONTRACTS: for loading data from STG_FX CONTRACTSto FSI D FX CONTRACTS.

OFS DATA MODEL UTILITIES USER GUIDE | 143

DATA LOADERS

STAGE INSTRUMENT TABLE LOADER

T2T INVESTMENTS: for loading data from STG_INVESTMENTS to FSI D INVESTMENTS.

T2T LEASES CONTRACTS: forloading datafrom STG LEASES CONTRACTS to
FSI_D LEASES.

T2T MM CONTRACTS: for loading data from STG_ MM CONTRACTS table to
FSI_D MM CONTRACTS.

T2T OPTION CONTRACTS: for loading data from STG_OPTION CONTRACTS to
FSI D OPTION CONTRACTS.

T2T SWAP_ CONTRACTS: for loading data from STG_SWAPS CONTRACTS to FSI D SWAPS.
T2T OD_ACCOUNTS: for loading data from STG OD ACCOUNTS to FSI D CREDIT LINES.

T2T LOAN COMMITMENTS: for loading data from STG LOAN COMMITMENTS to
FSI D LOAN COMMITMENTS

COLUMN

COMMIT_START_DATE

SOURCE/OUTPUT COLUMN

From source - Mandatory for Rate

DESCRIPTION

The date on which the Rate Lock
period starts

COMMIT_MAT_DATE

From source — Mandatory for Rate

The date on which the Rate Lock
period expires. Corresponds to the
Loan Origination Date

COMMIT_TERM

From source - Mandatory for Rate

The Rate Lock term period. Equal
to COMMIT_MAT_DATE -
COMMIT_START_DATE

COMMIT_TERM_MULT

From source — Mandatory for Rate

The Rate Lock term multiplier

COMMIT_FEE_TO_CUST

From source — Optional

The fee that is charged to the
customer for the Rate Lock
agreement.

COMMIT_OPTION_COST_PCT

Calculated — Output column

The Rate Lock cost expressed as a
percentage

COMMIT_OPTION_COST

Calculated - Output column

The calculated Rate Lock cost
charged by treasury to the banker
— Rate Lock % * Balance

COMMIT_OPTION_TYPE_CD

From source - Mandatory

Refers to Option Type (default =
1). At present, we support only
European. If Option Type is
European, then compute Rate
Lock option cost using the Black
Swaption formula. Otherwise do
nothing.

OFS DATA MODEL UTILITIES USER GUIDE | 144

DATA LOADERS

STAGE INSTRUMENT TABLE LOADER

NOTE FSI D LOAN COMMITMENTS - Contains all existing columns
from FSI D LOAN CONTRACTS, plus the following columns
which support the calculations

You can view the Database Extract definitions by performing the following steps:

3.

NOTE The Data Management Tools and Data Ingestion were
previously known as Data Integrator Framework and
Warehouse Designer respectively. These new terminologies
are applicable only for OFSAAI versions 7.3.2.3.0 and above.

Navigate to Unified Metadata Manager and select Data Management Tools, and then select
Data Ingestion, and then select Database Extracts section.

In the left pane, expand the application as defined during application installation and click the
Data Source defined during application installation.

Expand the required T2T definition to view the Database Extract definitions.

You can view the Source - Target mapping definitions by performing the following steps:

NOTE The Data Management Tools and Data Ingestion were
previously known as Data Integrator Framework and
Warehouse Designer respectively. These new terminologies
are applicable only for OFSAAI versions 7.3.2.3.0 and above.

Navigate to Unified Metadata Manager and select Data Management, and then select Data
Ingestion, and then select Database Extracts.

In the left pane, expand the application as defined during application installation and click the
Data Source defined during application installation.

Expand the required T2T definition to view the extract definition.
Click the required Database Extract definition.

The selected Database Extract definition details are displayed with the available Source - Target
mappings under the Source - Target Mappings grid.

NOTE Staging instrument tables contain alphanumeric display codes
for various IDENTIFIER and CODE columns. T2T mapping
looks up in respective dimension tables for fetching an
equivalent numeric ID and CODE corresponding to the
alphanumeric display code. Hence, these dimension tables
should be populated with the alphanumeric display code
before executing any data movement tasks.

OFS DATA MODEL UTILITIES USER GUIDE | 145

DATA LOADERS

STAGE INSTRUMENT TABLE LOADER

Populating Accounts Dimension

Account Number is an alphanumeric unique identifier within each staging instrument tables.

ID NUMBER is a numeric unique identifier within processing instrument tables. Hence, there is a need
to generate a numeric surrogate key for each of the account number. This information is stored in
DIM ACCOUNT table.

You can populate DIM ACCOUNT table using SCD. For more information on Slowly Changing
Dimension (SCD) to populate into DIM ACCOUNT, see Document ID 1273210.1 (How to Populate the
DIM_ACCOUNT Table in OFSAA).

Executing T2T Data Movement Tasks

Before executing T2T data movement tasks, user should ensure that all the dimension tables that are
required for instruments data are loaded. The following are some of the mandatory dimensions:

e DIM ACCOUNTS

e DIM PRODUCTS B

e DIM GENERAL LEDGER B
e DIM COMMON COA B

e DIM ORG UNIT B

Create a new Batch with the Task and specify the following parameters for the task for loading
Historical Exchange Rates:

e Datastore Type: Select appropriate datastore from the drop down list.

e Datastore Name:: Select appropriate name from the list. Generally it is the Infodom name.
e IP address: Select the IP address from the list.

e Rule Name: Select the appropriate T2T name from the above list.

e Parameter List: No Parameter is passed. The only parameter is the As of Date Selection while
execution.

Check T2T component logs and batch messages for checking the status of load.
T2T component can fail because of following cases:

e Unique constraint error: Target table may already contain the primary keys that are part of the
staging tables.

e NOT NULL constraint error: do not have values for NOT NULL columns in the target table.

Re-Load Of Instrument Data

T2T component can only perform Insert operations. In case user needs to perform updates, previously
loaded records should be deleted before loading the current records.

Function fn_deleteFusionTables is used for deleting the records in the target that are present in the
source. This function removes rows in the table if there are matching rows in the Stage table. This

OFS DATA MODEL UTILITIES USER GUIDE | 146

https://support.oracle.com/epmos/faces/DocumentDisplay?parent=DOCUMENT&sourceId=2345786.1&id=1273210.1

DATA LOADERS

CUSTOMER T2T LOADING

function needs FSI DELETE TABLES SETUP to be configured. Configure the following table for all
columns that need to be part of the join between Stage table and Equivalent table.

Create a new Batch with the Task and specify the following parameters for the task to delete existing
records:

e Datastore Type:: Select appropriate datastore from the drop down list.
e Datastore Name:: Select appropriate name from the list. Generally it is the InNfodom name.
e IP address: Select the IP address from the list.
e Rule Name: fn_deleteFusionTables
e Parameter List: 'Table to be deleted’
Batch run ID and As Of Date are passed internally by the batch to the Data Transformation task.

Sample record for FSI DELETE TABLES SETUP tableis given following:

Column Name Column Description Sample Value

STAGE_TABLE_NAME Stores the source table name for STG_LOAN_CONTRACTS
forming the join statement

STAGE_COLUMN_NAME Stores the source column name V_ACCOUNT_NUMBER
for forming the join statement

FUSION_TABLE_NAME Stores the target table name for FSI_D_LOAN_CONTRACTS
forming the join statement

FUSION_COLUMN_NAME Stores the target column name for | ACCOUNT_NUMBER
forming the join statement

NOTE Insertrows in FSI_ DELETE TABLES SETUP for all columns
that can be used to join the stage with the equivalent table. In
case if the join requires other dimension or code tables, a view
can be created joining the source table with the respective
code tables and that view can be part of the above setup table.

5.7 Customer T2T Loading

Data in Transaction Summary table is moved into customer table using OFSAAI T2T component. After
loading the data, users can view the loaded data by querying the customer table.

Topics:

OFS DATA MODEL UTILITIES USER GUIDE | 147

DATA LOADERS

CUSTOMER T2T LOADING

Dependencies

Flow Diagram for Customer T2T

Executing T2T Data Movement Task

5.7.1 Dependencies

DIM Account: DIM account will be populated using the SCDs/ FN_POPDIMACCOUNT. These 30
tasks represent to the 30 SCD processes where different product processors would be the
source, and DIM_ACCOUNT would be the target. Run MAP_REF_NUMs 188 to 217. For more
information, see the Populating Accounts Dimension section.

DIM <XXXX> B/TL/HIER/ATTR population: Run DT
FN_DRMDATALOADER/FN STGDIMDATALOADER to populate B/TL/HIER/ATTR tables of the key
dimensions such as Product, Common_COA, GL, Org Unit, Customer, and so on.

DIM_Party Population: Run the scD MAP REF NUM 168. Dim_PARTY loads party_skey and
other customer information. STG_PARTY MASTER is the source table for Dim party.

Dim party join to FSI_D_<xxx> table through DIM CUSTOMER B The data flow as

DIM CUSTOMER B.customer code = dim party.v_party id and

dim party.f latest record indicator ='Y' and dim customer b.customer id
= fsi d mortgages.customer id.

Run all the Stage to Processing layer T2Ts. This will populate all the processing area tables such
as, FI_D_<xxxx>.

Example:Run T2T ANNUITY CONTRACTS, T2T MORTGAGES, T2T MM CONTRACTS and so
on. For more information, see the Stage Instrument Table Loader section.

Run the Processingto FSI D INST SUMMARY T2Ts.

Example: T2T INS SUMM ANNUITY, T2T INS SUMM BORROWINGS, T2T INS SUMM CASA
and so on. For more information, sStage Instrument Table Loader section.

If LRM is integrated with FTP, then perform following steps prior to run actual T2T to populate
FSI D CUSTOMER T2T

Dim_Run: Dim_Run table that holds RUN SKEY and RUN_ID. Finalize the run to pick the right
RUN_SKEY mapped to FSI LRM ACCT CUST DETAILS table.

FSI_LRM ACCT CUST DETAILS: Populate this table using the T2T

SETUP PARAMETERS MASTER: Manually update this table with finalized RUN 1D in the column
Param_value column. Below table shows the default values. PARAM VALUE should be manually
updated. Finalize RUN_IDasin DIM RUN.T2T expect PARAM APP IDto 'FTP'and

PARAM NAME to RUN ID FOR CUSTOMER T2T FROM LRM TO FTP. To pick the records from
LRM, following row needs to be updated with finalized run_id in PARAM_VALUE. Without this
step completion, no rows will be picked from LRM.

PARAM_SEQ PARAM_APP_ID PARAM_NAME PARAM_VALUE
FTP RUN_ID_FOR_CUSTOME | -1
R_T2T_FROM_LRM_TO_
FTP

OFS DATA MODEL UTILITIES USER GUIDE | 148

DATA LOADERS

CUSTOMER T2T LOADING

Query to find the finalized run id from DIM_RUN:

select * from dim run r where r.f reporting flag ='Y'

5.7.2 Flow Diagram for Customer T2T

Instrument summary list of T2Ts

FSI D INST SUMMARY getsloaded with the following T2Ts:

T2T INS SUMM ANNUITY

T2T INS SUMM BORROWINGS

T2T INS SUMM BREAK FUND CHG
T2T INS SUMM CASA

T2T INS SUMM CREDIT CARDS
T2T INS SUMM CREDIT LINES
T2T INS SUMM GUARANTEES

T2T INS SUMM INVESTMENTS
T2T INS SUMM LDGR_STAT INST
T2T INS SUMM LEASES

T2T INS_SUMM LOANS

T2T INS SUMM MERCHANT CARDS
T2T INS SUMM MM CONTRACTS
T2T INS SUMM MORTGAGES

T2T INS SUMM MUTUAL FUNDS
T2T INS SUMM OTHER SERVICES
T2T INS SUMM RETIREMENT ACC
T2T INS SUMM TERM DEPOSITS

T2T INS_ SUMM TRUSTS

5.7.3 Executing T2T Data Movement Task

Create a new Batch with the Task and specify the following parameters

Datastore Type: Select appropriate datastore from the drop down list.

Datastore Name: Select appropriate name from the list. Generally it is the Infodom name.
IP address: Select the IP address from the list.

Rule Name: T2T FSI D CUSTOMER

Parameter List: No Parameter is passed. The only parameter is the As of Date Selection while
execution.

Take care of following points if LRM is installed:

OFS DATA MODEL UTILITIES USER GUIDE | 149

DATA LOADERS

DIM_PARTY POPULATION

59

To pick data from FSI_LRM ACCT CUST DETAILS, RUN_ID needs to be finalized. Thatisin
DIM RUN f reporting flag ='Y' B.

Manually update the finalized RUN_ID into setup_parameters_master table (for example -1is
the RUN_ 1D which needs to be manually overwritten. C.

Incase RUN_ID is not finalized thatis £ reporting flag not = 'Y' then no data will be
picked from FSI LRM ACCT CUST DETAILS for the given as_of_date.

DIM_ Party Population

DIM_party holds customer level details. STG_PARTY_MASTER is the source table for Dim_party.
Party_skey uniquely identifies the customer records.

Execution from ICC Batch

Create a new Batch with the Task and specify the following parameters for the task for loading
DIM_Party:

Component: Run Executable

Datastore Type: Select appropriate datastore from list
Datastore Name: Select appropriate name from the list
IP address: Select the IP address from the list
Executable: scd,168

Wait: N

Batch Parameter: Y

NOTE Instrument tables to instrument Summary T2T pulls the
customer related information from Dim party. So, populating
Dim party should be done prior to T2T run from Instrument to
Instrument Summary T2T execution.

Instrument Summary Table

The following topics are included in this section:

Mapping To OFSAA Summary Table

Dependencies
Executing T2T Data Movement Tasks

Re-Load Of Instrument Summary Data

OFS DATA MODEL UTILITIES USER GUIDE | 150

DATA LOADERS

INSTRUMENT SUMMARY TABLE

5.9.1 Mapping To OFSAA Summary Table

The following are the pre-defined T2T mappings between FSI D < XXX > tablesto
FSI D INST SUMMARY tables:

e T2T INS SUMM ANNUITY
e T2T INS SUMM BORROWINGS
e T2T INS SUMM BREAK FUND CHG
e T2T INS SUMM CASA
e T2T INS SUMM CREDIT CARDS
e T2T INS SUMM CREDIT LINES
e T2T INS SUMM GUARANTEES
e T2T INS SUMM INVESTMENTS
e T2T INS SUMM LDGR _STAT INST
e T2T INS SUMM LEASES
e T2T INS SUMM LOANS
e T2T INS SUMM MERCHANT CARDS
e T2T INS SUMM MM CONTRACTS
e T2T INS SUMM MORTGAGES
e T2T INS SUMM MRTGAGE BCK SC
e T2T INS SUMM MUTUAL FUNDS
e T2T INS SUMM OTHER SERVICES
e T2T INS SUMM RETIREMENT ACC
e T2T INS SUMM TERM DEPOSITS
e T2T INS SUMM TRUSTS
User can view the extract definitions by going through the following steps:
1. Go to Data Integrator and select Source Designer, and then select Define Extracts.
2. Under FUSION_APPS application, click Data Source name.

3. Click on any of the T2T definition to view the extract definition. User can view the mapping
definitions by going through the following steps:

4. Go to Data Integrator and select Warehouse Designer, and then select Define Mapping.
5. Under FUSION_APPS application, click Data Source Name.
6. Click on any of the T2T definition to view the mapping definition.

5.9.2 Dependencies

¢ Instrument tables should be loaded before loading the Instrument summary Information related
to those instruments.

OFS DATA MODEL UTILITIES USER GUIDE | 151

DATA LOADERS

INSTRUMENT SUMMARY TABLE

5:9.3

5-9-4

Account Number is an alphanumeric unique identifier within each staging tables. ID NUMBER
is @ numeric unique identifier within processing Instrument tables. Hence, there is a need to
look up into a DIM_ACCOUNT dimension table for a numeric surrogate key for each of the
alphanumeric account number. This dimension table DIM ACCOUNT will be populated as part of
the process that loads instrument tables. For more information on loading instrument tables,
see Loading Instrument Table Data

Before executing T2T data movement tasks, user should ensure that all the dimension tables
that are required for instruments data are loaded. The following are some of the mandatory
dimensions:

= DIM ACCOUNTS

= DIM PRODUCTS B

* DIM GENERAL LEDGER B
= DIM COMMON COA B

= DIM ORG UNIT B

Executing T2T Data Movement Tasks

Create a new Batch with the Task and specify the following parameters for the task for Loading
Instrument Summary table:

Datastore Type: Select appropriate datastore from the drop down list.

Datastore Name: Select appropriate name from the list. Generally it is the Infodom name.
IP address: Select the IP address from the list.

Rule Name: Select the appropriate T2T name from the above list.

Parameter List: No Parameter is passed. The only parameter is the As of Date Selection while
execution. Check T2T component logs and batch messages for checking the status of load. T2T
component can fail because of following cases:

Unique constraint error: Target table may already contain the primary keys that are part of the
staging tables.

NOT NULL constraint error: Staging table do not have values for mandatory columns of the
target table.

Re-Load Of Instrument Summary Data

T2T component can only perform Insert operations. In case user needs to perform updates, previously
loaded records should be deleted before loading the current records.

Function fn deleteFusionTables is used for deleting the records in the target that are present in
the source. This function removes rows in the table if there are matching rows in the Stage table. This
function needs FSI DELETE TABLES SETUP to be configured. Configure the following table for all
columns that need to be part of the join between Stage table and Equivalent table.

Create a new Batch with the Task and specify the following parameters for the task to delete existing
records:

Datastore Type: Select appropriate datastore from the drop down list.

OFS DATA MODEL UTILITIES USER GUIDE | 152

DATA LOADERS

TRANSACTION SUMMARY TABLE LOADER

Datastore Name: Select appropriate name from the list. Generally it is the Infodom name.
IP address: Select the IP address from the list.
Rule Name: fn_deleteFusionTables

Parameter List: Table to be deleted

Batch run ID and As Of Date are passed internally by the batch to the Data Transformation task.

5.10 Transaction Summary Table Loader

Data in staging Transaction Summary tables are moved into respective OFSAA processing transaction
summary tables using OFSAAI T2T component. After loading the data, users can view the loaded data
by querying the processing transaction tables.

Topics:

Stage Tables
Populating Stage Tables

Mapping To OFSAA Processing Tables

Dependencies
Executing T2T Data Movement Tasks

Re-Load Of Transaction Summary Data

5.10.1 Stage Tables

Following are examples of various application staging transaction summary tables:

STG_LOAN CONTRACT TXNS SUMMARY: holds transaction summary information related to the
loan contracts that are present in staging instrument table for loan contracts, that is
STG LOAN CONTRACTS.

STG CARDS TXNS SUMMARY: holds transaction summary information related to the credit
cards present that are present in staging instrument table for credit cards, that is STG CARDS.

STG CASA TXNS SUMMARY: holds transaction summary information related to the checking
and saving accounts that are present in staging instrument table for CASA, that is STG CASA.

STG MERCHANT CARD TXNS SUMMARY: holds transaction summary information related to the
merchant cards that are present in staging instrument table for merchant cards, that is
STG_MERCHANT CARDS.

STG_OTHER SERVICE TXNS SUMMARY: holds transaction summary information related to
other services that are present in staging instrument table for other services, that is
STG_OTHER SERVICES.

STG_TERMDEPOSITS TXNS SUMMARY: holds transaction summary information related to the
term deposits that are present in staging instrument table for term deposits, that is
STG TD CONTRACTS.

STG _TRUSTS TXNS SUMMARY: holds transaction summary information related to the trust
accounts that are present in staging instrument table for trusts, thatis STG TRUSTS.

OFS DATA MODEL UTILITIES USER GUIDE | 153

DATA LOADERS

TRANSACTION SUMMARY TABLE LOADER

NOTE These tables are required for PFT application and used in the
Allocation definitions.

5.10.2 Populating Stage Tables

Data can be loaded into staging tables through F2T component of OFSAAI. After data is loaded, check
for data quality within the staging tables, before moving into OFSAA processing tables. Data quality
checks can include:

Number of records between external system and staging transaction summary tables.
Valid list of values in code columns of staging.

Valid list of values in dimension columns like product, organization unit, general ledger, and so
on. These members should be present in the respective dimension tables.

Valid list of values in dimension columns like product, organization unit, general ledger, and so
on. These members should be present in the respective dimension tables.

Valid values for other significant columns of staging tables.

5.10.3 Mapping To OFSAA Processing Tables

Following are examples of the pre-defined T2T mappings between the above application staging
tables and processing tables:

T2T STG CARDS TXNS SUMMARY: for loading data from STG CARDS TXNS SUMMARY to
FSI_D CREDIT CARDS TXNS.

T2T STG CASA TXNS SUMMARY:forloading data from STG CASA TXNS SUMMARY to
FSI D CASA TXNS.

T2T LOAN CONTRACT TXNS SUMMARY: for loading data from
STG_LOAN CONTRACT_ TXNS_ SUMMARY to FSI D LOAN CONTRACTS TXNS.

T2T STG MERCHANT CARD TXNS SUMMARY:forloading data from
STG_MERCHANT CARD TXNS SUMMARY to FSI D MERCHANT CARDS TXNS.

T2T STG OTHER SERVICE TXNS SUMMARY:forloading data from
STG_OTHER_SERVICE TXNS SUMMARY to FSI D OTHER SERVICES TXNS.

T2T STG TERMDEPOSITS TXNS SUMMARY: for loading data from
STG_TERMDEPOSITS TXNS SUMMARY to FSI D TERM DEPOSITS TXNS.

T2T STG TRUSTS TXNS SUMMARY: forloading datafrom STG TRUSTS TXNS SUMMARY to
FSI D TRUSTS_ TXNS.

You can view the Database Extract definitions by performing the following steps:

OFS DATA MODEL UTILITIES USER GUIDE | 154

DATA LOADERS

TRANSACTION SUMMARY TABLE LOADER

NOTE The Data Management Tools and Data Ingestion were
previously known as Data Integrator Framework and
Warehouse Designer respectively. These new terminologies
are applicable only for OFSAAI versions 7.3.2.3.0 and above.

User can view the extract definitions by going through the following steps:

1.

3.

Navigate to Unified Metadata Manager and select Data Management Tools, and then select,
Data Ingestion, and then select Database Extracts section.

In the left pane, expand the application as defined during application installation and click the
Data Source defined during application installation.

Expand the required T2T definition to view the Database Extract definitions.

You can view the Source - Target mapping definitions by performing the following steps:

NOTE The Data Management Tools and Data Ingestion were
previously known as Data Integrator Framework and
Warehouse Designer respectively. These new terminologies
are applicable only for OFSAAI versions 7.3.2.3.0 and above.

Navigate to Unified Metadata Manager and select Data Management Tools, and then select,
Data Ingestion, and then select Database Extracts section.

In the left pane, expand the application as defined during application installation and click the
Data Source defined during application installation.

Expand the required T2T definition to view the extract definition.
Click the required Database Extract definition.

The selected Database Extract definition details are displayed with the available Source - Target
mappings under the Source - Target Mappings grid.

NOTE Staging transaction summary tables contain alphanumeric
display codes for various IDENTIFIER and CODE columns. T2T
mapping looks up in respective dimension tables for fetching
an equivalent numeric ID and CODE corresponding to the
alphanumeric display code. Hence, these dimension tables
should be populated with the alphanumeric display code
before executing any data movement tasks.

5.10.4 Dependencies

Instrument tables should be loaded before loading the transaction summary information
related to those instruments.

OFS DATA MODEL UTILITIES USER GUIDE | 155

DATA LOADERS

TRANSACTION SUMMARY TABLE LOADER

5.10.5

5.10.6

e Account Number is an alphanumeric unique identifier within each staging transaction summary
tables. ID_NUMBER is a numeric unique identifier within processing transaction summary
tables. Hence, there is a need to look up into a DIM_ACCOUNT dimension table for a numeric
surrogate key for each of the alphanumeric account number. This dimension table
DIM_ACCOUNT will be populated as part of the process that loads instrument tables. For more
information on loading instrument tables, see Loading Instrument Table Data.

e Before executing T2T data movement tasks, user should ensure that all the dimension tables
that are required for instruments data are loaded. The following are some of the mandatory
dimensions:

= DIM ACCOUNTS

= DIM PRODUCTS B

* DIM GENERAL LEDGER B
= DIM COMMON COA B

= DIM ORG_UNIT B

Executing T2T Data Movement Tasks

Create a new Batch with the Task and specify the following parameters for the task for loading
Historical Exchange Rates:

o Datastore Type: Select appropriate datastore from the drop down list.

e Datastore Name: Select appropriate name from the list. Generally it is the Infodom name.
e |IP address: Select the IP address from the list.

e Rule Name: Select the appropriate T2T name from the above list.

e Parameter List: No Parameter is passed. The only parameter is the As of Date Selection while
execution.

Check T2T component logs and batch messages for checking the status of load.
T2T component can fail because of following cases:

¢ Unique constraint error: Target table may already contain the primary keys that are part of the
staging tables.

e NOT NULL constraint error: Staging table do not have values for mandatory columns of the
target table.

Re-Load Of Transaction Summary Data

T2T component can only perform Insert operations. In case user needs to perform updates, previously
loaded records should be deleted before loading the current records.

Function fn deleteFusionTablesis used for deleting the records in the target that are present in
the source. This function removes rows in the table if there are matching rows in the Stage table. This
function needs FSI DELETE TABLES SETUP to be configured. Configure the following table for all
columns that need to be part of the join between Stage table and Equivalent table.

Create a new Batch with the Task and specify the following parameters for the task to delete existing
records:

OFS DATA MODEL UTILITIES USER GUIDE | 156

DATA LOADERS

LEDGER DATA LOADER

5.11

e Datastore Type: Select appropriate datastore from the drop down list.

e Datastore Name: Select appropriate name from the list. Generally it is the Infodom name.

e |P address: Select the IP address from the list.

e Rule Name: fn_deleteFusionTables

e Parameter List: 'Table to be deleted'

Batch Run ID and As Of Date are passed internally by the batch to the Data Transformation task.

Sample record for FSI DELETE TABLES SETUP table is given following:

Column Name

STAGE_TABLE_NAME

Column Description

Stores the source table name for forming the
join statement

Sample Value

STG_LOAN_CONTRACTS

STAGE_COLUMN_NAME

Stores the source column name for forming
the join statement

V_ACCOUNT_NUMBER

FUSION_TABLE_NAME

Stores the target table name for forming the
join statement

FSI_D_LOAN_CONTRACTS

FUSION_COLUMN_NAME

Stores the target column name for forming
the join statement

ACCOUNT_NUMBER

NOTE

Insert rows in FSI DELETE TABLES SETUP for all columns
that can be used to join the stage with the equivalent table. In
case if the join requires other dimension or code tables, a view
can be created joining the source table with the respective
code tables and that view can be part of the above setup table.

Ledger Data Loader

The LEDGER STAT load utility is an Oracle stored procedure used to load your ledger data into the
Oracle Financial Services Analytical Applications (OFSAA) LEDGER STAT table.

Topics:

e Qverview of the Load Process

e Features of the Load procedure

e Setup for the LEDGER STAT Load utility

e Exception Messages

e Tables Cleanup After Truncation Of Ledger Stat

OFS DATA MODEL UTILITIES USER GUIDE | 157

DATA LOADERS

OVERVIEW OF THE LOAD PROCESS

5.12

513

Overview of the Load Process

There are three types of load tables that can be used for loading ledger data.

e Typel(FISCAL ONE MONTH): Load table contains ONE MONTH column for storing data
corresponding to one of the twelve fiscal months.

e Typell (FISCAL RANGE): Load table contains M1to M12 columns for storing data
corresponding to twelve fiscal months.

e Typelll (CALENDAR MONTHS): Load table contains AS_OF DATE for storing data corresponding
to an as-of-date. While Type Il table contains ledger data across fiscal months in a single row,
Type lll contains the same information in multiple rows. Type Ill supports calendar dates and
data can be for one or multiple dates.

ASCII Ledger data is loaded into any of the above staging or load tables using F2T component of
OFSAAI framework. This component can be used for loading any flat file data into tables. For more
information on how to load data using F2T, see OFSAAI User Guide.

LEDGER STAT load utility is a PL/SQL procedure and loads data from the above staging tables into
LEDGER STAT table, based on the configuration. Runtime parameters, such as the name of the load
table, which all columns to load, ADD or REPLACE update functionality, and whether or not to create
offset records are passed as parameters to the procedure and these are inserted into the Load Batch
table (FSI LS LOAD BATCH).

The procedure is implemented as an Oracle PL/SQL stored procedure so it can be invoked from
SQL*Plus or Batch execution screen within OFSAAI Batch Maintenance component. Input parameters
are read from the batch/parameter table and validated for correctness, completeness and consistency
before the load begins. Parameter errors are written to a Message column in the batch/parameter
tableand FSI MESSAGE LOG table. Runtime statistics are written to the batch/parameter record
following completion of the load for that record.

NOTE For supporting loading LEDGER_STAT from Type Il staging
table, a global temporary table (GTT) is created within
database. Data is moved from global temporary table into
LEDGER_STAT table.

Features of the load procedure

The LEDGER STAT load utility is the only supported method for loading your ledger data into the
LEDGER_STAT table. The LEDGER STAT load utility offers the following features:

e You can load ledger data for one month or for a range of months.
e You can also load ledger data based on calendar as-of-dates.

¢ A month can be undone individually, using the Ledger Load Undo process. You can do this
even though the month to be undone is included in a multiple-month load.

¢ You can update columns in existing LEDGER _STAT rows using either the additive or
replacement functionality.

OFS DATA MODEL UTILITIES USER GUIDE | 158

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

5.13.1

5.13.2

You can bypass the upsert logic and insert all the rows from the load table using the
INSERT_ONLY mode. This functionality can be used either for first-time loads or to reload for all
months with each load.

Limitations

The following are the limitations.

Load Table Rows Must Be Unique

A restriction imposed by the use of bulk SQL (as opposed to row-by-row) processing is that all
the rows in the load table(s) must be unique. This means that there is one row in the load table
for onerowin LEDGER STAT. A unique index is created on each load table to enforce this
uniqueness and provide acceptable performance.

Defining Financial Elements in AMHM

Occasionally, your load table may contain dimension member values for one or more
dimensions that are not defined in AMHM. The LEDGER _STAT load procedure loads these rows
anyway, except for the rows containing undefined or incompletely defined

FINANCIAL ELEM ID values.

Any new values for FINANCIAL ELEM ID must first be defined in AMHM before running the
load. Specifically, the load procedure needs the AGGREGATE METHOD value for each
FINANCIAL ELEM ID value so thatthe YTD columnsin LEDGER STAT can be computed using
the appropriate method.

Setup for the LEDGER_STAT load utility

Setting up and Executing a Type lll (or Type 3) Ledger Stat Load Using STG_GL_DATA

The Type 3 load takes data from STG GL DATA and transfers it into the LEDGER STAT table.

Steps to follow to setup and run a Type Ill Ledger Stat Load:

1. Step 1: Populate STG_GL DATA

The following columns in STG GL DATA must be populated with valid values:

OFS DATA MODEL UTILITIES USER GUIDE | 159

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

Column Description

V_GL_CODE General Ledger Code value.

FIC_MIS_DATE This field indicates the current period As of Date
applicable to the data being loaded.

V_ORG_UNIT_CODE Org Unit Code value.

V_SCENARIO_CODE Populate with a value from the
CONSOLIDATION_DISPLAY_CODE column from the
FSI_CONSOLIDATION_CD table (ex. ACTUAL,

BUDGET).
V_CCY_CODE ISO Currency Code from FSI_CURRENCIES (ex. USD)
V_PROD_CODE Product Code value.
V_FINANCIAL_ELEMENT_CODE Populate with a value from the

FINANCIAL_ELEM_CODE column from the
DIM_FINANCIAL_ELEMENTS_B table (ex. ENDBAL,

AVGBAL).
V_COMMON_COA_CODE Common COA Code value.
N_AMOUNT_LCY Balance

The following columns in STG_GL_ DATA must be populated because they are defined as NOT
NULL but can be defaulted to the value of your choice because they are not used: V.1V CODE

V_BRANCH CODE

F CONSOLIDATION FLAG

V_GAAP_CODE

2. Step 2: Verify data exists in the view STG_GL DATA V

The following SQL statement is used to populate this view:

SELECT v_data origin DS,
f consolidation flag ACCUM TYPE,
fcc.consolidation cd CONSOLIDAT,
v_ccy code ISOCRNCYCD,
dfeb.financial elem id FINANC ID,

doub.org unit id ORG 1ID,

dglb.gl account id GL_ACCT_ID,
dccb.common coa id CMN_COA ID,
dpb.product id PRDCT ID,

fic_mis_date AS_OF DATE,

OFS DATA MODEL UTILITIES USER GUIDE | 160

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

n_amount lcy VALUE,
0 baltypecd
FROM STG_GL DATA SGD,
DIM GENERAL LEDGER B DGLB,
DIM ORG UNIT B DOUB,
DIM PRODUCTS B DPB,
DIM FINANCIAL ELEMENTS B DFEB,
DIM COMMON COA B DCCB,
FSI CURRENCIES FC,
FSI CONSOLIDATION CD FCC
WHERE NVL(n_amount lcy, 0) <> 0
AND SGD.V_GL CODE = DGLB.GL ACCOUNT CODE
AND SGD.V_ORG UNIT CODE = DOUB.ORG_UNIT CODE
AND SGD.V_PROD CODE = DPB.PRODUCT CODE
AND SGD.V_FINANCIAL ELEMENT CODE = DFEB.FINANCIAL ELEM CODE
AND SGD.V_COMMON COA CODE = DCCB.COMMON COA CODE
AND SGD.V_CCY CODE = FC.ISO CURRENCY CD
AND SGD.V_SCENARIO CODE = FCC.CONSOLIDATION DISPLAY CODE;

Important: As seen in the code above, the view references the CODE columns on the dimension
tables. For example, COMMON COA CODE on DIM COMMON COA Band ORG UNIT CODE on
DIM ORG UNIT B. These code columns must be populated for data to exist in
STG_GL_DATA V.

The Update_Dimension_Code (fn_updatedimensioncode) program populates these Code
columns using data from values in the Code dimension Attribute (for example, COMMON COA
CODE, ORG UNIT CODE, andsoon.)

The BALTYPECD column has a default value of O in the View, as this column is not null in
LEDGER_STAT. Baltypecd is not a Dimension. It indicates the credit or debit of the same account
details. Since same account can hold both credit and debit, this column should be populated in
the source with a value. It is the part of the unique Index and Not Null column in

LEDGER STAT.

Step 3: If using the Type 3 Ledger Stat Load for the first time, run the GTT table creation
procedure.

The GTT table creation procedure creates the Global Temporary Table
LS LOAD TABLE GTT V.

The fn ledger load create gtt function createsthe table LS LOAD TABLE GTT Vand
the index UK_GTT for use in the Type 3 Ledger Stat Load.

OFS DATA MODEL UTILITIES USER GUIDE | 161

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

NOTE If the GTT table has not been created and you try to execute
the Ledger Stat Load, you will get the following error in
FSI_MESSAGE LOG:

WRAPPER_LEDGER_STAT_LOAD- Error: -942: ORA-00942:
table or view does not exist

4. Step 4:Populate FSI LS LOAD BATCH

You need to populate the following columns:

RUN_FLAG Y

SEQUENCE Sequence value (ex. 1)
LOAD_TABLE_NAME STG_GL_DATA

ONE_MONTH_ONLY N

UPDATE_MODE ADD or REPLACE

INSERT_ONLY YorN

CREATE_OFFSETS N

IS_CALENDAR_MONTH Y

START_CALENDAR_MONTH Starting date to load in format YYYYMMDD.
END_CALENDAR_MONTH Ending date to load in format YYYYMMDD.

5. Step 5: Run the Ledger Stat Load
Use the following command to run the Type 3 Ledger Stat Load in SQL*Plus as the atomic user:
DECLARE
x NUMBER :=0;
BEGIN
X =
ofsa util.wrapper ledger stat load('BATCH ID ', 'MIS DATE', 'TABLE NAME',
TABLE TYPE', 'UPDATE MODE', 'INSERT ONLY', 'START DATE', 'END DATE')
dbms output.put line ('The return variable is ' || x);

END;

OFS DATA MODEL UTILITIES USER GUIDE | 162

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

5.13.2.1

5.13.2.2

5.13.2.3

DECLARE x NUMBER :=0; BEGIN x :=

ofsa util.wrapper ledger stat load('ARALSLOADTYPE3 4','20110111','STG G
L DATA', 'CALENDAR MONTHS', 'ADD', 'Y', '20101231', '20101231');

dbms output.put line ('The return variable is ' || x); END;

After the Ledger Load completes, check the tables FSI MESSAGE LOG and
FSI LS LOAD BATCH for errors.

NOTE For ledger load table name is ledger_load and data source
valueisthe v._DATA ORIGIN from STG GL DATA.For
Ledger_stat with the same data source will have same identity
code.

FSI_DATA_IDENTITY insert/update during Ledger_load

Insert happens into FSI DATA IDENTITY with new identity code if the new Data origin used in the
STG_GL_DATA.

Update happens in case same set of Data source used STG_GL_DATA.
Updates set happens

start_time = SYSDATE,

end_time = SYSDATE,

number_of_entries = no.of entries for the current load

Here, STG GL DATA is considered as a source of input for LEDGER_LOAD. In case of other source
table, the rule is same in populating data into FST DATA IDENTITY.

Creating View on LEDGER_STAT table

A view is created on the LEDGER_STAT table called LSL. The purpose of this view is to provide shorter
column names for the load procedure. The LSL view must contain the same columns as
LEDGER_STAT. Column alias for each columns within the view should match the COLUMN_ALIAS
user-defined property that is set for each column of LEDGER_STAT table in the ERwin model.

For any user-defined dimensions in your LEDGER_STAT you must complete the following steps.

e In ERwin model, look up the COLUMN_ALIAS User Defined Property (UDP) for added dimension
columns within LEDGER_STAT table.

e Specify the value of the property COLUMN_ALIAS.

¢ Modify the view to include new dimension columns. Use the same COLUMN_ALIAS that was
mentioned in the ERwin model in the load table view.

Creating Load Table

This step is applicable for loading ledger data from Type | or Type Il load table. Staging table
STG_GL_DATA (used for Type lll load) is packaged with the application. Multiple load tables (Type | or
Type ll) can be created as required by the System Administrator. Table structure for the Type | and
Type Il load tables is given in the following sections:

OFS DATA MODEL UTILITIES USER GUIDE | 163

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

-— Uncomment the ml..ml2 columns if you
IT Load Table).

-- Add lines for all of the LEDGER_ STAT
place

-- indicated below. Don't forget to add

CREATE TABLE &load table name (

plan to load a range of months (Type

user-defined leaf columns in the

commas if you need to.

ds VARCHAR2 (12) NOT NULL, -— data_ source
year_ s NUMBER (5) NOT NULL,
accum_type char (1) NOT NULL,
consolidat NUMBER (5) NOT NULL,
isocrncycd VARCHAR2Z (3) DEFAULT '002' NOT NULL,
financ id NUMBER (14) NOT NULL,
org_id NUMBER (14) NOT NULL,
gl acct id NUMBER (14) NOT NULL,
cmn_coa_id NUMBER (14) NOT NULL,
prdct id NUMBER (14) NOT NULL,
baltypecd NUMBER (5) DEFAULT 0 NOT NULL,

-- ml NUMBER (15, 4),

-- m2 NUMBER (15, 4),

-- m3 NUMBER (15, 4),

-- m4 NUMBER (15, 4),

-- m5 NUMBER (15, 4),

-- mé NUMBER (15, 4),

-- m7 NUMBER (15, 4),

-- m8 NUMBER (15, 4),

-- m9 NUMBER (15, 4),

-- ml0 NUMBER (15, 4),

-- mll NUMBER (15, 4),

-- ml2 NUMBER (15, 4),

—-— one_month amt NUMBER (15, 4)

-— Other leaf columns
LEDGER_STAT):

(PROPERTY COLUMN from REV_COLUMN PROPERTIES for

OFS DATA MODEL UTILITIES USER GUIDE | 164

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

5.13.2.4

Creating Unique Index on Load Table

This step is applicable for loading ledger data from Type | or Type Il load table. A unique index has to
be created on each load table specifying the column alias for each column within the load table.
Column alias should match the column alias specified for columns within LEDGER_STAT table.
LEDGER_STAT load procedure identifies the source columns that need to be loaded using the column
aliases and not by the physical column names. Column alias for LEDGER_STAT columns are specified
in the user-defined property (UDP) COLUMN_ALIAS within ERwin model. Refer to ERwin model for
getting the column alias for each of the LEDGER_STAT columns. Definition of the unique index is
given following:

CREATE UNIQUE INDEX &load table name
ON &load table name (ds,

year_ s,
accum_type,
consolidat,
isocrncycd,
financ_id,
org id,
gl acct id,
cmn_coa_ id,
prdct id
baltypecd,

-- Include all additional LEDGER STAT primary key

-— leaf columns here (use PROPERTY COLUMN from
REV_COLUMN_ PROPERTIES) :

The unique key of the load table must be identical to the unique key of LEDGER_STAT, with the
exception that instead of IDENTITY_CODE, which is in LEDGER_STAT, the load table has a column
called DS (Data Source).

OFS DATA MODEL UTILITIES USER GUIDE | 165

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

5.13.2.5

Creating Views on Load Table

This step is applicable for loading ledger data from Type | or Type Il load table. In addition to load
tables, views have to be created on the staging tables similar to the view LSL that was created on
LEDGER_STAT. A view has to be created on each load table specifying the columns alias for each
column within the load table. Column alias should match the column alias specified for columns within
LEDGER_STAT table. LEDGER_STAT load procedure identifies the source columns that need to be
loaded using the column alias. Column alias for LEDGER_STAT columns are specified in the user-
defined property (UDP) COLUMN_ALIAS within ERwin model. See the ERwin model for getting the
column alias for each of the LEDGER_STAT columns. View definition is given following:

-— Uncomment the ml..ml2 columns if you

II Load table).

-- Add lines for all of the LEDGER_STAT

place

-— indicated below.

Don't forget to add

plan to load a range of months (Type

user-defined leaf columns in the

commas if you need to.

CREATE OR REPLACE VIEW &load table name.

SELECT ds,
year_s,
accum_type
consolidat
isocrncycd
financ_ id,
org_id,
gl acct id
cmn_coa_ id
prdct id,
baltypecd,

-— NVL (m1,0)
-— NVL (m2,0)
-— NVL (m3,0)
-— NVL (m4, 0)
-— NVL (m5, 0)
-— NVL (m6, 0)
-— NVL (m7,0)
-— NVL (m8,0)
-— NVL (m9, 0)

-— NVL (ml10,0)

4
4

4

4

4

AS
AS
AS
AS
AS
AS
AS
AS
AS

AS mlo0,

ml,
m2,
m3,
mé,
mb5,
mé,
m7,
m8,

m9,

OFS DATA MODEL UTILITIES USER GUIDE | 166

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

5.13.2.6

-- NVL(ml1l,0)
-- NVL (ml2,0)

NVL (one_month amt,0) AS one

AS ml1l,
AS ml2,

--— Other leaf columns

LEDGER_ STAT) :

(PROPERTY COLUMN from REV_COLUMN PROPERTIES for

FROM &load table name

WHERE NVL (one month amt,0) <> 0;

-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR

-- OR

NVL (ml1, 0)
NVL (m2, 0)
NVL (m3, 0)
NVL (m4, 0)
NVL (m5, 0)
NVL (m6, 0)
NVL (m7,0)
NVL (m8, 0)
NVL (m9, 0)
NVL (m10, 0)
NVL (m11,0)

NVL (m12,0)

A
\Y%

<>

<>

<>

<>

<>

<>

<> 0
<> 0

<> 0;

o O O O o o o o o

In case, the custom dimensions are added to the load table, views need to be modified to reflect the

same.

Setting up Global Temporary Table

This step is applicable for loading ledger data from Type Ill. Calendar dates present in the data of Load
table are converted to the corresponding Fiscal Year/Month. Conversion from calendar date to fiscal
year & month is done based on the START_MONTH column present in FSI_FISCAL_YEAR_INFO table.
These derived fiscal year & fiscal month are then inserted in an intermediate Global Temporary Table
(GTT) after aggregating the rows of same months/years. Therefore, if 12 rows are present for the

OFS DATA MODEL UTILITIES USER GUIDE | 167

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

same fiscal year each corresponding to a different month, then global temporary table may have
maximum of one row corresponding to the fiscal months, these 12 rows represent.

GTT needs to contain valid dimension member identifiers and numeric codes. Since staging table
contains alphanumeric identifiers and codes, a view is created on STG_GL_DATA table joining with
other relevant dimension and CD/MLS tables before being used in the GTT creation.

Global temporary table can be created in 2 ways:
1. Using PL/SQL
Declare
output number;
Begin

Output:= fn ledger load create gtt ('BATCH ID', 'AS OF DATE',
'TABLE NAME') ;

End;
AS_OF_DATE is the date for which GTT is created, in YYYYMMDD format.
TABLE_NAME is the staging table name STG_GL_DATA.

An example of running the function from SQL*Plus is as follows:
SQL> var output number;

SQL> execute :output:= fn ledger load create gtt ('BATCH ID',
'20100519', 'STG GL DATA');

2. Using OFSAAI Batch Maintenance

To execute the procedure from OFSAAI Batch Maintenance, run the batch mentioned following
and specify the following parameters:

»= Datastore Type: Select appropriate datastore from list
= Datastore Name: Select appropriate name from the list
» |Paddress: Select the IP address from the list

*= RuleName: fn ledgerLoadGTTCreation

= Parameter List: AS_OF_DATE and TABLE_NAME
TABLE_NAME is the staging table name STG_GL_DATA.
AS_OF_DATE should be passed as 'YYYYMMDD' format.

NOTE BATCHID will be passed explicitly in Batch Maintenance. The
appropriate table parameters are enclosed in single quotes.

5.13.2.7 Tables Related to LEDGER_STAT Load Procedure

LEDGER STAT Loader utility uses the following tables:

e FSI FISCAL YEAR INFO: Thetable contains the fiscal year information. This is a setup table.

OFS DATA MODEL UTILITIES USER GUIDE | 168

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

FSI LS LOAD BATCH: The table contains the parameters for the load batch that needs to be
executed for loading ledger data from staging or load table into LEDGER STAT. This is a setup
table.

STG_GL_DATA: The staging table contains the ledger data for various as-of-dates.

LEDGER _STAT: The processing table contains the ledger data for various fiscal months. This is
loaded from staging table.

5.13.2.8 Populating Stage Tables

Data for ledger can come from external systems. Such data has to be in the format of the staging
table. This data can be loaded into staging through F2T component of OFSAAI framework. Users can
view the loaded data by querying the staging tables and various log files associated with F2T
component.

5.13.2.9 Executing LEDGER_STAT Load Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from Batch
Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The procedure/batch
requires the following 9 parameters:

1.

9.

2
3
4
5.
6
7
8

BATCH_ID- Any unique number to identify the execution run.

MIS DATE- Date on which the loading is done expressed in YYYYMMDD format.
TABLE NAME- STG GL DATA(Type Ill) or any other load table (TYPE | or TYPE II)
TABLE TYPE- FISCAL_ONE_MONTH or FISCAL_RANGE (TYPE | or TYPE II)
CALENDAR MONTHS (TYPE Ill)

UPDATE MODE- ADD/REPLACE

INSERT ONLY-Y/N

START DATE- Calendar start date in YYYYMMDD

END DATE- Calendar end date in YYYYMMDD

The input parameter logic for the Type lll, Type Il and Type | tables.

5.13.2.10 CALENDAR_MONTHS

If Start_Date and End_Date are null then month part of MIS_Date is taken for processing a
particular month. (Ex: if MIS_DATE is 20101231 then the December calendar month data is
processed).

In this case the Start_Date and End_Date becomes optional.

5.13.2.11 FISCAL_ONE_MONTH

The Start_Date and End_Date parameters will hold numeric values identifying the fiscal month.
The value of these parameters will be between 1and 12 (that is, M1 till M12).

The Start_Date and End_Date should be same.

OFS DATA MODEL UTILITIES USER GUIDE | 169

DATA LOADERS

FEATURES OF THE LOAD PROCEDURE

In this case the Start_Date and End_Date are mandatory.

5.13.2.12 FISCAL_RANGE

5.13.2.13

The Start_Date and End_Date parameters will hold numeric values identifying the fiscal month.
The value of these parameters will be between 1and 12 (that is, M1till M12).

The Start_Date and End_Date parameters will specify the range of fiscal months which are to be
processed. Ex: M1till M6 in case the Start_Date and End_Date values are 1and 6.

In this case the Start_Date and End_Date are mandatory.

Ledger Load can be executed in 2 different ways:

1.

Using PL/SQL:
By using the function

ofsa util.wrapper ledger stat load('BATCH ID', 'MIS DATE', TABLE NAME',
TABLE TYPE', 'UPDATE MODE', 'INSERT ONLY','START DATE', 'END DATE');

Example:
DECLARE

x NUMBER :=0;
BEGIN

X =
ofsa util.wrapper ledger stat load('batch id 1','20090202','STG_GL DATA
', '"CALENDAR MONTHS', 'ADD','Y','20070430','20080331");

dbms output.put line ('The return variable is ' || x);

END;
Using Batch Maintenance

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

= Datastore Type: Select appropriate datastore from list
» Datastore Name: Select appropriate name from the list
= [P address: Select the IP address from the list

* Rule Name: fn_ledgerDataloader

» Parameter List: <Same as mentioned above in the parameter list>

Executing LEDGER_STAT Load Procedure for MULTI CURRENCIES

The data for the Ledger can have more than one currency at a time that is multi currencies input.
To execute multi currencies, you need to enable the flag using the following statement:
update fsi db _info fl set fl.multi currency enabled flg =1;

commit;

OFS DATA MODEL UTILITIES USER GUIDE | 170

DATA LOADERS

EXCEPTION MESSAGES

5.14

5-15

NOTE FTP supports the following two scenarios for Ledger Migration:

e |f multi-currency is not used:
FSI_DB_INFO
Multi_currency_enabled_flg =0
Currency_type_enabled_flg=0
Functional_currency_cd = same as iso_currency_cd in ledger and instrument data

Ledger Data (FE 100 and FE 140) must exist in LS and must only be in Functional currency
(iso_currency_cd = functional currency and currency_type_cd = 2)

e If multi-currency is used:
FSI_DB_INFO
Multi_currency_enabled_flg =1
Currency_type_enabled_flg =1
Functional_currency_cd = same as iso_currency_cd in ledger and instrument data

Instrument Data can be in multiple currencies Ledger Data (FE 100 and FE 140) must exist in LS
and must only be in Functional currency (iso_currency_cd = functional currency and
currency_type_cd = 2). Exchange rate data should be present in Exchange Rate Direct Access
table for converting entered currency to functional currency.

Exception Messages

The ledger load program throws both user defined exceptions and Oracle database related exceptions.
These exception messages could be seen in FSI_MESSAGES_LOG table with the help of the batch_id
which was used during execution. The exception list includes all possible validations on the
parameters that were passed and database related exceptions.

Tables Cleanup After Truncation Of Ledger_ Stat

The LEDGER STAT procedure makes entries into certain audit tables. Whenever the user
truncates/deletes the Data from LEDGER STAT, he needs to additionally remove the auditing entries
from the tables FST DATA IDENTITY, FSI M SRC DRIVER QUERY and

FSI_LS MIGRATION RESULTS. This procedure enables the user to clean up these audit tables.

Executing the clean up of Ledger_Stat Load Procedure

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner:
Fn ledger stat cleanup(batch run id VARCHARZ,

as_of date VARCHAR?2)

SQLPLUS > declare

result number;

OFS DATA MODEL UTILITIES USER GUIDE | 171

DATA LOADERS

CASH FLOW LOADER

5.15.1

begin
result:=Fn ledger stat cleanup ('LEDGER CLEANUP BATCH1', '20121212");
end;
/
e BATCH_RUN_ID is any string to identify the executed batch.
e AS_OF_DATE in the format YYYYMMDD.

Ledger Stat Clean up Procedure

To execute Ledger Stat Clean up from OFSAAI Batch Maintenance, a seeded Batch is provided.
The following batch parameters are mentioned:

e Datastore Type: Select the appropriate datastore from list

e Datastore Name: Select the appropriate name from the list

e |IP address: Select the IP address from the list

e Rule Name: Fn_ledger_stat_cleanup

Cash Flow Loader

At times customers source some of their processed cash flow result data (not payment schedule) from
3rd party information providers or from internal systems. The cash flow data loader provides a way
to load externally sourced cashflows into an ALM process and have these aggregate into the ALM
result output tables. These external cash flows can be loaded into the Stg_Account_Cash_Flows table
and merged with OFSAA generated results by executing Cash Flow Loader.

o Data can be aggregated at Product / Organisation Unit / Currency level or given at account
level. Behaviour of Cash Flow Loader is controlled by setup entries in tables SETUP MASTER
and FSI CASH FLOW LOADER SETUP.

e ALM generates results in both base and consolidated currency. Same capability is available via
Cash Flow Loader. Cash flows in both base currency and consolidated currency can be loaded.
The loader does not do currency conversion and consolidation. It is expected to be done at
source or during data load to staging. This is controlled by currency type column. If only base
currency data is given then only RES DTL and FSI O RESULT MASTER are populated. If
consolidated is given then CONS DTLand FSI O CONSOLIDATED MASTER are also populated.

e The cash flows in stage are mapped to process and scenario which must be configured in ALM.
Currently the loader supports only deterministic processes. Stochastic processes are not
supported.

e There s no filter for instrument type cd cash flow loader package. However, it validates stage
supplied instrument type codes with OOB provided instrument type codes, so that only valid
records get processed.

e Ifirregular cashflows is used in STG PAYMENT SCHEDULE table (AMRT Type as 801), then cash
flows are required to be loaded from last payment date till maturity date to populate the first
interest payment accurate. This same logic is followed while loading to

OFS DATA MODEL UTILITIES USER GUIDE | 172

DATA LOADERS

CASH FLOW LOADER

STG_ACCOUNT CASH_ FLOW as well. STG_ACCT_CASH can have only one instrument type cd to
distinguish between the CASH FLOWS loaded from different type of accounts.

5.16.1 Tables related to Cash Flow Loader

e STG_ACCOUNT CASH_ FLOW: This table is used to store the cash flow generated by the different
sources for loading purpose. This is a staging table where ALM expected cashflows data to be
loaded from back office/bank. There is no dependency of FSI_D tables to load this table.

Data is expected as per following details:

OFS DATA MODEL UTILITIES USER GUIDE | 173

DATA LOADERS

CASH FLOW LOADER

Column name Data expectation

Extraction Date (fic_mis_date) MIS date for which the given data is valid, also called
As of Date

Cash Flow Date (d_cash_flow_date) Calendar date on which cash flow or other event
occurs

Id Number (n_account_id) This is equivalent of ID_NUMBER in EPM processing

tables (ex: FSI_D_LOAN_CONTRACTS) and is used to
map cash flows with their corresponding Instrument
record. If aggregated cash flows are loaded then this
column can be defaulted to -1

Identity Code (n_acct_data_identity_cd) This is equivalent of IDENTITY_CODE in EPM
processing tables (ex: FSI_D_LOAN_CONTRACTS)
and stores as of date in number (YYYYMMDD)
format

Cash Flow Amount (n_cash_flow_amount) This column stores the cash flow or other amount,
depending on financial element, on event date

Cash Flow Sequence (n_cash_flow_sequence) Sequence in which event occurs is mentioned here. It
can be a running number and is used to identify
order in which an event occurs if there are multiple
events on same date.

Currency Type Code (n_currency_type_cd) This column decides whether the given cash flows
are for Base (Natural) currency or consolidated
(Reporting) currency. Based on it loader will move to
either RES_DTL_XXX or CONS_DTL_XXX table.
Expected values are: ‘" for base/natural (also called
entered) currency and ‘2’ for consolidated/reporting
(also called functional) currency. Corresponding
reference tables are FSI_CURRENCY_TYPE_CD and
FSI_CURRENCY_TYPE_MLS

OFS DATA MODEL UTILITIES USER GUIDE | 174

DATA LOADERS

CASH FLOW LOADER

If you have selected Consolidate to Reporting
Currency in ALM Process, then following cases
are possible with respect to Consolidation Flag,
n_currency_type_cd =1, and n_currency_type_cd
=2.

Case 1: If Consolidation Flagis OFF and
N_Currency_Type_Cd =1, then process will
execute successfully and only RES_DTL_XX will
get populated.

Case 2: If Consolidation Flagis OFF,
N_Currency_Type_Cd =1, and
N_Currency_Type_Cd = 2, then process will
execute successfully and only RES_DTL_XX will
populate for records N_Currency_Type_Cd=1
and ignore records of type
N_Currency_Type_Cd=2.

Case 3: If Consolidation Flag is ON and
N_Currency_Type_Cd =1, then Loader would fail
as it expects reocrds for N_Currency_Type_Cd=2
when CONSOLIDATED_OUTPUT_FLG is ON.

Case 4: If Consolidation Flag is ON,
N_Currency_Type_Cd 1, and
N_Currency_Type_Cd = 2, then it logs as No Data
in the instrument table for the given FIC MIS
DATE.Loading data to
fsi_o_consolidated_master Failed error in
FSI_MESSAGE_LOG. You need to load data if
Consolidation Flag is ON and
N_Currency_Type_Cd = 2. Here,
N_Currency_Type_Cd = 2 signifies that the
records are of consolidation type and meant for
CONT_DTL once processing them. Similarly,
N_Currency_Type_Cd = 1indicates that non-
consolidated records in stage and meant for
RES_DLT processing.

Note: If there are records for n_currency_type_cd
=1and n_currency_type_cd =2 does not records,
then Cash Flow Loader cannot use the same set
of records loaded for n_currency_type_cd =1
and convert it for consolidation.

Instrument Type Code (n_instrument_type_cd)

This identifies the type of instrument that is, loan,
deposit and so on. for which data is being loaded.
Corresponding reference tables are

FSI INSTRUMENT TYPE CDand
FSI_INSTRUMENT TYPE MLS

OFS DATA MODEL UTILITIES USER GUIDE | 175

DATA LOADERS

CASH FLOW LOADER

Scenario Number (n_scenario_no)

An ALM process can have multiple forecast rate
scenario. This column indicates the scenario for
which data has been loaded. It is used by loader to
map data to corresponding scenario of ALM process.
Reference tables are

FSI CASH FLOW LOADER SETUP
(scenario_num) and

DIM FCST RATES SCENARIO
(n_scenario_num). Loader takes ALM Process Id as
input and then checks corresponding scenario
numbers in ALM metadata tables for validation

Account / Contract Code (v_account_number)

This column stores the alpha-numeric unique
account or contract number for which data is being
loaded. This is generally the unique identifier from
operational source systems. Corresponding reference
table in DIM_ACCOUNT (v_account_number). If
aggregated cash flows are loaded then this column
can be defaulted to -1

Cash Flow Type (v_cash_flow_type)

Indicates whether the cash flow is Inflow or Outflow.
Values expected are 'l' for inflow and 'O’ for outflow.
Note that, this column is not used by cash flow
loader, hence does not impact any result in ALM. It is
used by Liquidity Risk Management (LRM)
application and is a mandatory column in table.

Currency Code (v_ccy_code)

Three letter ISO currency code in which the cash flow
amount is denominated must be given in this
column.

Common Coa Code (v_common_coa_code)

Common Chart of Account code of the account
number for which data is loaded must be given here.
Corresponding reference table is

DIM COMMON COA B (common_coa_code)

Data Origin (v_data_origin)

Code of the source system from where data is
obtained is expected here. Corresponding reference
tableis DIM DATA ORIGIN (v_data_source_code)

Financial Element Code (v_financial_element_code)

This indicates the financial element that is, nature of
amount loaded. Corresponding reference table is
DIM FINANCIAL ELEMENTS B
(financial_elem_code)

Gl Account Code (v_gl_account_code)

General Ledger Account code of the account number
for which data is loaded must be given here.
Corresponding reference table is

DIM GENERAL LEDGER B (gl_account_code)

Lv Code (v_lv_code)

Legal Entity code of the account number for which
data is loaded must be given here. Corresponding
reference table is DIM_ LEGAL ENTITY B
(legal_entity_code)

OFS DATA MODEL UTILITIES USER GUIDE | 176

DATA LOADERS

CASH FLOW LOADER

Organization Unit Code (v_org_unit_code) Organisation or Business Unit code of the account

number for which data is loaded must be given here.
Corresponding reference table is DIM_ORG_UNIT_B
(org_unit_code)

Product Code (v_prod_code) Product code of the account number for which data

is loaded must be given here. Corresponding
reference table is DIM_PRODUCTS_B (product_code)

Output tables: Aggregated Cash Flows will be populated in the following output tables
* RES DTL XX

= CONS_DTL XX

* FSI O RESULT MASTER

* FSI O CONSOLIDATED MASTER

XX denotes the Process ID.

SETUP_MASTER: This table will be used in the case of instrument cash flows. For Instrument
cash flows, an entry against v_COMPONENT VALUE of the SETUP MASTER table should have
values either O or 1 which indicate if id numbers or account numbers are provided, respectively.

FSI ALM DETERMINISTIC PROCESS: This table will be used for loading cash flows in
CONSOLIDATED tables. To populate consolidated tables, the CONSOLIDATED OUTPUT FLG
should be 1in the fsi_alm_deterministic_process table against the cash flow process ids.

FSI CASH FLOW LOADER_SETUP: This table will have all the process ids for cash flow loader.
Only those processes will be executed which have status 'N'in

FSI_CASH FLOW LOADER_SETUP table. In such case, those processes will be already existing
into the system.

FSI M USER ACTIVE TIME BUCKETS: For cash flow loader, user should be mapped to an
active time bucketinthe FST M USER ACTIVE TIME BUCKETS table.

TIME BUCKETS: The following tables will store the time bucket details:
* FSI TIME BUCKET MASTER

* FSI M LR IRR BUCKETS

* FSI LR IRR BUCKETS AUX

» FSI TIME BKT ISB

= FSI TIME BKT LR LRR DATES

5.16.2 Data Validation Steps

Check if Batch run id or mis date or User name is null. If Yes, then write message in
FSI MESSAGE log and exit

Check if the given user name existsin FSI M USER ACTIVE TIME BUCKETS table. If user
does not exist, then write error message in FSI MESSAGE table and exit.

OFS DATA MODEL UTILITIES USER GUIDE | 177

DATA LOADERS

CASH FLOW LOADER

5.16.3

5.16.3.1

The time bucket mapped to userin FSI M USER _ACTIVE TIME BUCKETS table should be
presentin FSI INCOME SIMULATION BUCKETS table. If time bucketis not presentin
fsi_income_simulation_buckets table, then write error message in fsi_message table and exit.

Only financial elements corresponding to Income Simulation Buckets (ISB), Liquidity risk (LR)
and Interest Rate Risk (IRR) will be processed.

If process id is given as parameter, then run the loader program for the given process id. If
process id is not given, then the loader program will be run for all the process ids mapped in the
set up table with status 'N'.

Verify that the given process is present in FSI ALM DETERMINISTIC PROCESS table and
FSI M ALM PROCESS table. If not present, then write error message in fsi_message table and
exit.

Check if the given process id mapped in fsi_cash_flow_loader_setup table is of status 'N'.

Cash-flow date of each record must correspond correctly to valid time bucket dates in

FSI _TIME BKT ISBand/orFSI TIME BKT LR IRR DATES tables. However if this check
fails, the user will be informed of the improper records through an error message (see
Exception 9).

Check if the set up table is mapped correctly or not.

Check if the given process id mapped to a scenario is present in the stg_account_cash_flow
table.

Check if the entire scenario mapped in the set up table with a functional currency value has its
base currency present.

Check if 'consolidated_output_flag'in the FSI ALM DETERMINISTIC PROCESS tableis1.If
yes, write to consolidated tables.

Verify that all the dimension ids given in the stg_account_cash_flow table is valid and present in
the respective dimension tables.

In the case of instrument level cash flows, the following conditions should be satisfied to
proceed:

In the setup_master table for the v.COMPONENT CODE =123, the v_component_value should be
either O or 1 which indicates account number or identity number is given in the
STG _ACCOUNT CASH FLOW table, respectively.

Identity code and id_number/account number should be present in the stg_account_cash_flow
table.

Executing Cash Flow Loader

The user can execute this Cashflow Loader from either SQL*Plus or from within a PL/SQL block or
from the Batch Maintenance window within OFSAAI framework.

Method 1

Cash Flow Loader can be executed directly from SQL Plus. User must login to the database using
schema user id and password. The procedure requires 4 parameters:

As of Date (mis_date)

OFS DATA MODEL UTILITIES USER GUIDE | 178

DATA LOADERS

CASH FLOW LOADER

User Name: Should be present in fsi_m_user_active_time_buckets table
Process id

Batch Execution Identifier (batch_run_id)

declare
result number :=0;
begin
result := fn cash flow loader (batch run id => :batch run id,

mis date => :mis date,
p_user name => :p user name,

p_process_sys id =>
:p_process_sys _id);

if result = 0 then
doms output.put line('Cash Flow Loader Failed');
else
dbms_output.put line('Cash Flow Loader Succesfully completed');
end;
where
BATCH_RUNL_ID is any string to identify the executed batch.
mis_date in the format YYYYMMDD.
P_USER_NAME: The user name present in FSI_M_USER_ACTIVE_TIME_BUCKETS table.
P_PROCESS_SYS_ID can be null or can have value to process specific process id.

Case 1. When Process id is null:

declare
result number :=0;
begin
result := fn cash flow loader ('INFODOM CASH FLOW LOADER',

'20100419",
"ALMUSER’, NULL) ;

if result 0 then

dbms output.put line('Cash Flow Loader Failed');

else

dbms output.put line('Cash Flow Loader Succesfully completed');
end;

Case 2. When Process id is not null:

declare

result number :=0;

begin

OFS DATA MODEL UTILITIES USER GUIDE | 179

DATA LOADERS

CASH FLOW LOADER

result fn cash flow loader ('INFODOM CASH FLOW LOADER',

'20100419",
"ALMUSER', 120003
) i
if result = 0 then
dbms output.put line('Cash Flow Loader Failed');
else
dbms output.put line('Cash Flow Loader Succesfully completed');
end;
SETUP_MASTER Sample Data

V_COMPONENT_CODE _ |V_COMPONENT_DESC _ |V_COMPONENT_VALUE _]
123 Cash Flow Loader e

For instrument cash flows, the V_COMPONENT_VALUE should be either 1 or O. If the value is "I’
then Identity code and Account number should be populated in the stg_account_cash_flows
table . If the Value is '0' then Identity code and ID Number should be populated in the
stg_account_cash_flows table.

FSI_CASH_FLOW_LOADER_SETUP Sample Data

RUN_DATE | PROCESS_| [SCENARIO_NUM __ |STATUS
12/10/2001 ~ 1 20003 1 N
12/10/2001 ~ 120123 10

NOTE Only the process id with Status 'N' will process while executing

the loader program. After the successful execution of the
loader program the value in the STATUS columns will be
changed to 'Y'in FSI_CASH_FLOW_LOADER_SETUP for the

process id.

FSI_M_ALM_PROCESS Sample Data

TM_PROCESS_SYS_ID __[ALM_PROCESS_TYPE_CD _[FILTER_SYS_ID _|FILTER_TYPE _|PREPAY_SYS_ID _[PROD_CHAR ID _|REPORTING_CURRENCY
120003 1 0 0 0 0 USD
120123 1 0 0 0 0 USD

Continuation...

REPORTING_CURPENCY_CD _|STATUS | TRANSACTION_SYS_ID _[ALT_SOURCE_FLG _[BLTPANGFORM_GTATUS
)SD 0 0 0
JsD 0 0 0

STG_ACCOUNT_CASH_FLOWS Sample Data

Instrument Cashflow Data

OFS DATA MODEL UTILITIES USER GUIDE | 180

DATA LOADERS

CASH FLOW LOADER

5.16.3.2

V_ACCOUNT NOMBER,_[FIC M5, DATE JNAEET _{NAU:UU TN SCENARIO 0 _JN CURRENCY, [V, FINANGALELE _V.CCY [N CAGR,FLOW SEQL_]0.CAGH,FLOW_0F [V, ORI OFTG _1v TR0V TP
AT - T3NS 0 1 GPRUNOFF - USD WIUEND v SRC
ACCTI2 N 11 0 1 1 GAPRUNDFF - USD. BB v SRC
ACCTI2 SN 1 0 i 1 GPRUNOFF ~ USD ¥ UBENS v SRC
AT BN 1 0 1 1 GPRUNOFF -~ USD TS v SRC
ACCTI2 e - 0 1 1 GAPRUNOFF - USD RUI® v SRC
ACCTT2 B 1 TR | 0 1 1 GAPRUNOFF - USD) VYR v 5RO
ACCT12 NS v 1 0 1 1 GAPRUNOFF - LSD 4 45138 v |SRC
ACCTI2 1 S | 0 1 1 GAPRUNOFF - USD 0EENSS v SRC
AECTT2 SRR v 1 0 1 1 GAPRUNOFF - USD QEEI® v SRC
ACLTI2 1 | 0 1 1 GAPRUNOFF -~ USD BUEISE v SRC
Continuation...

) | V" o

11000.350 onm - PRODI 120

11000.350 ORG1 - PROD1 120

11000.350 ORG1 . PROD1 120

11000.350 ORG1 . PROD1 120

11000.350 ORG1 . PROD1 120

11000.350 ORG1 - PROD1 120

11000350 ORG1 . PROD1 120

11000.350 ORG1 - PROD1 120

11000.350 ORG! - PROD1 120

11000.350 ORG! . PROD1 120

Aggregate Data Sample

VCACCOUNT_NUNBER _[FIC IS DATE [N ACCT__[NACCOU_[N SCENARIO_NO JN CURRENCY, _D/FINANMJ_CMN CASH_FLOW_SEQL__[D_CASHFLOW_DF_|V_OATA_ORIG_|V_CASH_FLOW_TYFE__[N_CASH]
0 = 12802000 - 0 1 GAPRUNOFF 117312001 v SR2
0 - 20 v 0 0 3 1 GAPRUNOFF - USD 2 430000 v SRC2
0 - 13008 v 0 0 3 1 GAPRUNOFF - USD 373172001 v SRC2
0 A0 - 0 0 3 1 GAPRUNOFF - USD 4103172001 v SRC2
il - U006 v 0 0 3 1 GAPRUNOFF - USD 51317200 v SRC2
0 U006~ 0 0 3 1 GAPRUNOFF - USD 6 4730200 v SRC2
0 - U000 - 0 0 3 2 GAPRUNOFF - USD 7731200 v SR
Continuation...
FH_FLOW_AMOUNT _|V_ORG_UNIT_CODE JV PROD_CODE JN INSTRUMENT_TYPE_CD _|V_GL_ACCOUNT_CODE Jv COMMON_COA_CO)
1008343483 ORG2 - PROD2
120833421.3 ORG2 - PROD2
91038411.3 ORG2 - PROD2
851284735 ORG2 - PROD2
13048274.34 ORG2 - PROD2
13700698.06 ORG2 - PROD2
13974701.82 ORG2 - PROD2

Method 2

To execute the Cash Flow Loader from OFSAAI Batch Maintenance, a seeded Batch is provided.
Execution Steps

1. Select <INFODOM>_CASH_FLOW_LOADER as the Batch ID and Cash Flow Loader is the
description of the batch.

OFS DATA MODEL UTILITIES USER GUIDE | 181

DATA LOADERS

CASH FLOW LOADER

2.

Batch Maintenance

Batch ID Like OFSALMINFO_cash

0

Q Search O Reset

Page 1 of 1(1-10f 1items)

Module v Last ication Date Between And
Batch Name ¥ Add

[BatchiDA Batch Description Batch Edit/Non Edit

] OFSALMINFO_CASH_FLOW_LOADER Cash Flow Loader E

Page 1 of1(1-10f 1items) Records Per Page 15

Task Details

[TaskID Task Description Metadata Value Component ID Precedence

No data found

Page 0 of0(0-00f 0items) Records Per Page 0

The batch has a single task. Edit the task.
Batch Maintenance 7]
Q search 2 Reset
Batch ID Like OFSALMINFO_cash
Module j Last Modification Date Between £ And 5=

Batch Name ¥ Add K View® Edit [Delete
M BatchiD & Batch Description Batch Edit/Non Edit
¥ OFSALMINFO_CASH_FLOW_LOADER Cash Flow Loader E

Page 1 of 1(1-10f 1items) Records Per Page 15

Task Details + Add ¥ view(® Edit & Delete
M TaskiD & Task Description Metadata Value Component ID Precedence
M Task1 Cash Flow Loader CashFlowLoader TRANSFORM DATA

Records PerPage 15

If the user wants to load all the process ids given in the FSI_CASH_FLOW_LOADER_SETUP table
for the given as of date, then Process_id parameter should be null.

Specify the following parameters:

= Data store Type: Select appropriate data store from list

» Data store Name: Select appropriate name from the list

= |Paddress: Select the IP address from the list

= Rule Name: CashFlowLoader

If the user wants to process the specific process id mentioned in the
FSI CASH FLOW LOADER SETUP table for the given as of date, then the process_id parameter

should be given.

Specify the following parameters:

= Data store Type: Select appropriate data store from list

» Data store Name: Select appropriate name from the list

= |Paddress: Select the IP address from the list

= Rule Name: CashFlowLoader

OFS DATA MODEL UTILITIES USER GUIDE | 182

DATA LOADERS

CASH FLOW LOADER

Task Definition 0
Save Close
Task Definition

Cash Flow Loader
TaskID Task1 Description

Components TRANSFORM DATA ﬂ

Dynamic Parameters List

Property Value
Datastore Type EDW v‘
L
Datastore Name OFSALMINFO v
Primary IP For Runtime Processes 10.184.156.158 j
Rule Name CashFlowLoader j
Parameter List NULL
Audit Panel
Created By: ALMUSER Creation Date 17 may 2018 13:36:21
Last modified by: ALMUSER Last Modification Date 17 may 2018 13:36:21

7. Save the batch
8. Execute the Batch defined for the required As of Date.

5.16.4 Exception Messages

All the exceptions will be logged in FSI_MESSAGE_LOG table. Cash Flow Loader program can raise the
following exceptions:

o Exception1
Load fails:Cannot pass null for the parameter As of Date, User name, Batch runid
As of date, User Name and Batch run id cannot be passed as null.

o Exception 2
Load Fails: User name does not exist in the Table fsi_m_user_active_time_buckets

User name in the Parameter should be mapped with an active time bucket in the
fsi_m_user_active_time_buckets table.

e Exception3
Load Fails: Data for the selected As of date does not exist in stg_account_cash_flows Table
Stage Account Cash Flow does not have data for the given As Of Date.

e Exception4
Load Fails: Time bucket sys id is not present in fsi_income_simulation_buckets

Active time bucket mapped to the user name should be present in the
Fsi_Income_Simulation_Bucket table.

OFS DATA MODEL UTILITIES USER GUIDE | 183

DATA LOADERS

CASH FLOW LOADER

Exception 5
Load Fails: dates calculation failed

Date Calculation for Fsi_Time_Bkt_Isb and Fsi_Time_Bkt_Lr_Irr_Dates failed for the given time
bucket sys id.

Exception 6
Load Fails: The process id process_sys_id does not exist in the Table fsi_m_alm_process

Process id which is either passed as parameter or picked up from the
Fsi_Cash_Flow_loader_Setup table should be present in the fsi_m_alm_process table.

Exception 7

Load Fails. The process id process_sys_id does not exist in the Table
Fsi_alm_deterministic_process

Process id which is either passed as parameter or picked up from the
Fsi_Cash_Flow_loader_Setup should be present in the Fsi_alm_deterministic_process table.

Exception 8

Load Fails. The process id process_sys_id does not exists in the table
fsi_cash_flow_loader_setup or the status is not set to N for the process

Process id which is either passed as parameter, either does not exist in the
Fsi_Cash_Flow_loader_Setup table or the status is not 'N'.

Exception 9

Date-check failed: Certain cash-flow dates in "STG_ACCOUNT_CASH_FLOWS" for current
process are out of range of buckets defined in
FSI_TIME_BKT_ISB_DATES/FSI_TIME_BKT_LR_IRR_DATES table(s). For details, run query:
<<QUERY>>

This error is generated when the cash-flow dates in 'STG_ACCOUNT_CASH_FLOWS' are out of
the time-bucket date ranges defined in either FSI_TIME_BKT_ISB_DATES or
FSI_TIME_BKT_LR_IRR_DATES.

In the actual error message (logged in FSI_MESSAGE_LOG), <<QUERY>> is replaced by a SQL
query that the user can copy and execute on the schema in which the batch was run. This will
provide the user with an output of the problematic records from staging area.

Exception 10

Load Fail: The Data for the N_SCENARIO_NO mapped to the process process_sys_id does not
exist in the STG_ACCOUNT_CASH_FLOWS table

Scenario Number mismatch for the Fsi_Cash_Flow_Loader and Stg_Account_Cash_Flow
Exception 11

Load Fail: Does not have base currency

Base currency should be present in Stg_Account_Cash_Flow.

Exception 12

CONSOLIDATED_OUTPUT_FLG in fsi_alm_deterministic_process table is 1 but no data for
n_currency_type_cd in STG_ACCOUNT_CASH_FLOWS table

OFS DATA MODEL UTILITIES USER GUIDE | 184

DATA LOADERS

PRICING MANAGEMENT TRANSFER RATE POPULATION PROCEDURE

5.17

Consolidated Flag for the process id is set to 1 but n_currency_type_cd in
Stg_Account_Cash_Flow is not set.

Exception 13

Load Fail: For the N_SCENARIO_NO mapped in the set up table, the dimension code given is
incorrect

Dimensions present in Stg_Account_Cash_Flow are not present in the corresponding dimension
tables.

Exception 14

All the account numbers are not present in the STG_ACCOUNT_CASH_FLOWS table
Records in Stg_Account_Cash_Flow do not have account number populated.
Exception 15

All the Identity codes are not present in the STG_ACCOUNT_CASH_FLOWS table
Records in Stg_Account_Cash_Flow do not have identity code populated.

Exception 16

All the Id Numbers are not present in the STG_ACCOUNT_CASH_FLOWS table
Records in Stg_Account_Cash_Flow do not have identity number populated.
Exception 17

Instrument type code given for the process |_process_sys_id is wrong

Instrument code present in the Stage table is not mapped in FSI_INSTRUMENT_TYPE_MLS
Exception 18

No Data in the instrument table for the given FIC MIS DATE. Loading data to
FSI_O_RESULT_MASTER failed

Instrument table corresponding to instrument code in Stg_Account_Cash_Flow does not have
data for the given As of date.

Pricing Management Transfer Rate Population
Procedure

This function populates FST M PROD TRANSFER RATE table from FSI PM GENERATED INSTRMTS
table for particular Effective date.

After executing this procedure, you should query FSI M PROD TRANSFER RATE table.

Executing the POPULATE PM TRANS RATE TABLE (earlier known as
POPULATE TPOL TRANS RATE) Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from Batch
Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner.

OFS DATA MODEL UTILITIES USER GUIDE | 185

DATA LOADERS

PRICING MANAGEMENT TRANSFER RATE POPULATION PROCEDURE

The procedure requires the following 6 parameters:
e Batch Id (Batch_Id): can be used to see the log of the procedure executed.
¢ Misdate (Mis_date): the date for which batch is run.
e Runld (p_v_run_id): Unique Run ID for the run.
e Process Id (p_v_process_id): Unique Process ID for the batch.
e Run Execution Id (p_v_run_execution_id): Unique Run Execution Id for the Run.
e Run skey (p_n_run_skey): Unique run skey generated by the run.

The syntax for calling the procedure is:

Declare

output number;

Begin

Output:= POPULATE PM TRANS RATE TABLE (Batch Id varcharZ2,

Mis date varchar2,
p_v _run id varcharZ2,
p_v process_id varcharZ2,
p_v _run execution id varchar2,
p_n run_ skey varchar?2);

End;
Mis_date should be passed as 'YYYYMMDD' format.

An example of running the function from SQL*Plus is as follows:
SQL> var output number;
SQL> execute: output:= POPULATE PM TRANS RATE TABLE ('Batch Id',

'20100131, ' SRUNID=1306182237482"', 'S$PHID=1228363751510",
'SEXEID=RQEXE016"', 'SRUNSK=99") ;

To execute the stored procedure from within a PL/SQL block or procedure, see the example that
follows.

SQL> declare

output number;

begin

Output:= POPULATE PM TRANS RATE TABLE ('Batch Id',6 'Mis date',

'p_v_run id','p v process_id','p v run execution id',' p n run skey');
End;

/

To execute the procedure from OFSAAI Batch Maintenance, create a new Batch with the Task as
TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type : Select appropriate datastore from the list

OFS DATA MODEL UTILITIES USER GUIDE | 186

DATA LOADERS

ALMBI TRANSFORMATION

e Datastore Name : Select appropriate name from the list
e IPaddress: Select the IP address from the list
e Rule Name: POPULATE_PM_TRANS_RATE_TABLE
BATCHID and MISDATE will be passed explicitly in Batch Maintenance

ALMBI Transformation

ALM_BI_TRANSFORMATION data definition transforms the Asset Liability Management (ALM)
processing results of an executed ALM process to ALMBI fact tables.

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or from Batch
Maintenance window within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Atomic Schema Owner. The syntax
for calling the procedure is

set serveroutput on
DECLARE num number;
Begin num :=

FN_ALM BI TRANSFORMATION ('<P_BATCH RUN_ID>','<P_AS OF DATE>', '<PID>','<P R
E RUN FLAG>','<B LIMIT FLAG>'); END;

FN ALM BI TRANSFORMATION function requires below parameters:

P BATCH RUN_ID is the Batch Run ID typically in the format
<INFODOM> TRANSFORMALMRESULT <ASOFDATE AS YYYYMMDD> X.

p_As OF DATE is the As of Date in the format YYYYMMDD. PID Pass the ALM Process
Sys ID for which the transformation has to be done.

P RE RUN FLAG IS a re-run flag.

'Y': Yes (This means that the transformation was already done and the user is trying to redo
the transformation once again for the ALM process).

'N': No (This means that the user is executing the transformation for the first time for the
ALM process).

Run below query to check if Transformation has been run before.

BI TRANSFORM STATUS = 1 means it was run before, null means new run.

select * from fsi process run history where PROCESS SYS ID = <PID>;

OFS DATA MODEL UTILITIES USER GUIDE | 187

DATA LOADERS

HIERARCHY TRANSFORMATION

5-19

B LIMIT FLG IS limit flag. Specify "Y' or 'N'. The limit should be prepared only if the flag is
Y

For example:
set serveroutput on DECLARE num number;
Begin num :=

FN_ALM BI TRANSFORMATION ('OFSALMINFO TRANSFORMALMRESULT 20230430 3','20230
430','712902','Y"','N'); END;

The values for parameters PID and p_re_run_flag has

NOTE to be entered in the Parameter List during the batch
definition.
ITRANSFORM DATA v
Datastore Type EDW
Datastore Name OFSALMINFO
Primary IP For Runtime Processes [] y
Rule Name ALM Bl TRANSFORMATION

Parameter List 02 8 'Y

Table: Example

= If the user is trying to do transformation of ALM process 200009 for the first time, then the
values that must be entered in the Parameter List are 200009, 'N'.

» If the user is trying to do transformation of ALM process 200011, for which he had already
done the transformation, then the values that must be entered in the Parameter List are
2000M, 'Y".

Hierarchy Transformation

Hierarchy Flattening Transformation is used to move the hierarchy data from the parent child storage
structure in EPM AMHM (Attribute, Member and Hierarchy Management) model to a level based
storage structure in OFSAA Bl applications. In EPM AMHM model, hierarchy data for any hierarchy
created on seeded or user defined dimensions using the AMHM is stored within hierarchy tables of
respective dimensions. This is moved to the REV_HIER_FLATTENED table in OFSAA BI applications
after flattening by the Hierarchy flattening process.

OFS DATA MODEL UTILITIES USER GUIDE | 188

DATA LOADERS

HIERARCHY TRANSFORMATION

5.19.1

batch_hierTransformation is a seeded Data Transformation program installed as part of the OFSAA Bl
applications installers.

NOTE Refer to Support Note 1586342.1, if Hierarchy Filter is not
reflecting correctly after making the changes to underlying
Hierarchy.

Executing the Hierarchy Flattening Transformation

You can execute this procedure from SQL Plus/PLSQL/Batch Maintenance window within OFSAAI
framework.

1.

Using SQL Plus/PLSQL

function rev_batchHierFlatten (batch run id varchar2,
mis date varchar2,
pDimensionId varchar2z,
pHierarchyId varchar2z,
)

= Function Name: rev_batchHierFlatten

» Parameters: batch_run_id, mis_date, pDimensionld, pHierarchyld

Where the parameters are,

— batch_run_id: It is the batch run id. Batch Run ID value is passed from the Batch
execution Ul. Therefore, it is not required to define it as a parameter value in Batch
Maintenance.

— mis_date: This parameter value is passed from the Batch execution Ul. Therefore, it is
not required to define it as a parameter value in Batch Maintenance. Follow the date
format, YYYYMMDD

— pDimensionld- Enter the Dimension id . To find dimension id, execute the following
query in database to find the value and use the value in dimension id column for the
dimension name / description to be processed:

Select b.dimension id, t.dimension name, t.description from
rev_dimensions b b inner join rev dimensions tl t on

b.dimension id = t.dimension id and t.dimension name like
'<dimension name>'

Replace <dimension name> in the preceding query with the Dimension Name you
find in the Ul (Financial Service Application >Master Maintenance > Dimension
Management) for the dimension on which the Hierarchy you want to flatten is
configured.

— pHierarchyld: Enter Hierarchy id. If all the hierarchies belonging to a dimension are to
be processed then, provide NULL as the parameter value. Else, provide the System
Identifier of the hierarchy that needs to be transformed.

OFS DATA MODEL UTILITIES USER GUIDE | 189

DATA LOADERS

HIERARCHY TRANSFORMATION

Execute the following query in database if only a single hierarchy is to be processed
and use the value in hierarchy_id column as parameter for the hierarchy to be
processed:

select b.object definition id , short desc,long desc from
fsi m object definition b b inner join

fsi m object definition tl t on b.object definition id =
t.object definition id and b.id type = 5

— If all the hierarchies for GL Account dimension must be processed, the parameter list
should be given as follows (where '2' is the dimension id for the seeded dimension GL
Account):

2',)null

— If a particular hierarchy with code 1000018112 must be processed (you can obtain this
code by executing the preceding query in the database), the parameter list should be
given as follows:

'2','1000018112'
SQL Example

SQL> var fn return val number;

SQL> execute :fn return val:= rev batchHierFlatten ('Batchl ',
'20091231 ', '2 ', '1000018112");

SQL> print fn return val

PLSQL Example
DECLARE
fn return val number := null;
BEGIN
fn return val := rev batchHierFlatten('Batchl',
'20091231",
2,
1000018112");

IF fn return val = 1 THEN
Dbms output.put line('Execution status of batchHierFlatten is'
| |fn_return val || ' --Successful');
ELSIF fn return val = 0 THEN
Dbms output.put line('Execution status of batchHierFlatten is'
| | fn_return val || ' --FAILURE');
END TIF;

EXCEPTION

WHEN OTHERS THEN

Dbms output.put line('Execution status of batchHierFlatten is'

OFS DATA MODEL UTILITIES USER GUIDE | 190

DATA LOADERS

DiM DATES POPULATION

5.20

5.21

5.22

|| SQLCODE || '=' || SQLERRM) ;

END;

On successful execution of rev_batchHierFlatten function in Database, value returned will be 1
or 0. Tindicates successful execution and O indicates failure in execution. This function will be
present in Atomic Schema.

2. Using OFSAAI Batch Maintenance

To execute the procedure from OFSAAI Batch Maintenance, run the following batch and specify
the following parameters:

= Datastore Type: Select appropriate datastore from the list
= Datastore Name: Select appropriate name from the list

» [P address: Select the IP address from the list

* Rule Name: batch_hierTransformation

= Parameter List: Dimension ID, Hierarchy ID

Dim Dates Population

DIM DATES POPULATION is a seeded Data Transformation which is installed as part of the OFSAA Bl
applications installers. Time dimension population transformation is used to populate the dim_dates
table with values between two dates specified by the user.

NOTE During data transformation, the data will be loaded into
FISCAL columns by reading the start date/end date
information from DIM FINANCIAL YEAR table.Users can
enter data manually into DIM FINANCIAL YEAR table.

Fact Ledger Stat Transformation

FSI LEDGER STAT TRMis aseeded Data Transformation which is installed as part of the OFSAA BI
applications installers. Fact Ledger Population transformation is used to populate the

FCT LEDGER_STAT table from the Profitability LEDGER STAT table. Database function
LEDGER_STAT TRMIis called by the function FSI LEDGER STAT TRM.

Financial Element Dimension Population

Financial Element Dimension Population involves populating custom Financial Elements created into
DIM FINANCIAL ELEMENT table from DIM FINANCIAL ELMENT B table.

Topics:
e Prerequisites

e Tables Used by the Financial Elem Update Transformation

OFS DATA MODEL UTILITIES USER GUIDE | 191

DATA LOADERS

FINANCIAL ELEMENT DIMENSION POPULATION

5.22.1

5.22.2

5.22.3

Executing the Financial Elem Update Transformation

Checking the Execution Status

Prerequisites

All the post install steps mentioned in the Oracle Financial Services Analytical Applications
Infrastructure (OFSAAI) Installation and Configuration guide and_Oracle Financial Services Profitability

Management User Guide.

1.
2.

Application User must be mapped to a role that has seeded batch execution function (BATPRO).

Seeded and Custom Financial Elements are required to be available in
DIM FINANCIAL ELEMENTS B, DIM FINANCIAL ELEMENTS TL tables.

Before executing a batch check if the following servers are running on the application server
(For more information on how to check if the services are up and on and how to start the
services if you find them not running, refer to any OFSAA BI User Guide- for example, Oracle
Financial Services Analytical Applications Infrastructure User Guide).

= |ccserver

*» Router

= AM Server

= Messageserver
» QOlapdataserver

Batches will have to be created for executing the function.

Tables Used by the Financial_Elem_ Update Transformation

DIM FINANCIAL ELEMENT: This table stores the seeded and custom Financial Elements.

For more details on viewing the structure of the tables, see OFSAA EPM Erwin Data Model.

Executing the Financial_Elem_ Update Transformation

To execute the function from OFSAAI Information Command Center (ICC) frame work, create a batch
by performing the following steps:

A w0 D P

NOTE For a more comprehensive coverage of configuration and
execution of a batch, see Oracle Financial Services Analytical
Applications Infrastructure User Guide.

From the Home menu, select Operations, then select Batch Maintenance.
Click New Batch (+) and enter the Batch Name and description.
Click Save.

Select the Batch you have created in the earlier step by clicking on the checkbox in the Batch
Name container.

OFS DATA MODEL UTILITIES USER GUIDE | 192

https://docs.oracle.com/cd/F29631_01/get_started.htm
https://docs.oracle.com/cd/F29631_01/get_started.htm
https://docs.oracle.com/cd/F30049_01/get_started.htm
https://docs.oracle.com/cd/F30049_01/get_started.htm
https://docs.oracle.com/cd/F29631_01/get_started.htm
https://docs.oracle.com/cd/F29631_01/get_started.htm
https://docs.oracle.com/cd/F29631_01/get_started.htm
https://docs.oracle.com/cd/F29631_01/get_started.htm

DATA LOADERS

FINANCIAL ELEMENT DIMENSION POPULATION

5.22.4

Click New Task (+).
Enter the Task ID and Description.

Select Transform Data, from the components list.

© N o u

Select the following from the Dynamic Parameters List and then click Save:
= Datastore Type: Select appropriate datastore from the list

= Datastore Name: Select appropriate name from the list

» [P address: Select the IP address from the list

* Rule Name: Select Financial_Elem_Update from the list of all available transformations.
(This is a seeded Data Transformation which is installed as part of the OFSAA BI
applications installers. If you don't see this in the list, contact Oracle support)

»= Parameter List: OFSAAI Application User Name (See the following for details on Parameter
list).

Application User Name: This is the OFSAAI application user name which the transformation
uses for inserting in DIM_FINANCIAL_ELEMENT table.

Sample parameter for this task is '"APPUSER'.
9. Execute the batch.
The function can also be executed directly on the database through SQLPLUS. Details are:
= FunctionName: fn dim financial elem update
= Parameters : pBatch_Id, pas_of_date, appuser_name

= Sample parameter values : 'Batch1','200912371, 'APPUSER'

Checking the Execution Status

The status of execution can be monitored using the Batch Monitor screen.

NOTE For a more comprehensive coverage of configuration &
execution of a batch, see Oracle Financial Services Analvtical
Applications Infrastructure User Guide.

The status messages in batch monitor are :
¢ N:Not Started
e 0O:0n Going
e F:Failure
e S:Success

The Event Log window in Batch Monitor provides logs for execution with the top row being the most
recent. If there is any error during execution, it will get listed here. Even if you see Successful as the
status in Batch Monitor it is advisable to go through the Event Log and re-check if there are any errors.

OFS DATA MODEL UTILITIES USER GUIDE | 193

https://support.oracle.com/portal/
https://docs.oracle.com/cd/F29631_01/get_started.htm
https://docs.oracle.com/cd/F29631_01/get_started.htm

DATA LOADERS

PAYMENT PATTERN LOADER

5-23

The execution log can be accessed on the application server by going to the following directory
SFIC DB HOME/log/date. The file name will have the batch execution id.

The database level operations log can be accessed by querying the FSI MESSAGE LOG table. The
batch run id column can be filtered for identifying the relevant log.

Check the .profile file in the installation home if you are not able to find the paths mentioned
earlier.

Following messages will be available in the FSI MESSAGE LOG table after executing the batch.
Starting to update DIM FINANCIAL ELEMENT

Please provide application user name (In case OFSAAI application user name
is not passed as a parameter).

Successfully Completed.

After successful execution of the batch, user can verify custom financial element present in
DIM FINANCIAL ELEMENT table.

Payment Pattern Loader

The Payment Pattern Loader provides the ability to load bulk payment pattern definitions through a
back end procedure. This Loader reads the stage table data, does data quality checks on the same,
and load theminto FSI PAYMENT PATTERN and FSI PAYMENT PATTERN EVENT tables, if the stage
table data is valid.

Following is the stage table to input the payment pattern:

Table Name: STG_PAYMENT PATTERN

OFS DATA MODEL UTILITIES USER GUIDE | 194

DATA LOADERS

PAYMENT PATTERN LOADER

Column Name Column Datatype = Column Null Column Is PK Column Comment

V_AMRT_TYPE VARCHAR2(5) NOT NULL Yes Amortization code
between 1000 to
69999. Patterns
between this range
will be consider for
payment processing

N_EVENT_ID NUMBER(5,0) NOT NULL Yes Event Identity
Number

N_SPLIT_ID NUMBER(5,0) NOT NULL Yes Holds number of
patterns with in split
pattern

V_PATTERN_TYPE | VARCHAR2(40) NOT NULL Yes List of values could
be Absolute,
Relative, Split

V_TERM_TYPE VARCHAR2(40) NOT NULL Yes List of values could
be Principal and
Interest, Principal
Only, Interest Only,
Level Principal, Final
Principal & Interest,

Other
V_AMRT_TYPE_DE | VARCHAR2(255) NOT NULL No Alpha numeric value
SC
N_PCT_VALUE NUMBER(8,4) NULL No Percentage applied
to each patternin
case of split pattern
type
V_PAYMENT_EVE VARCHAR2(20) NULL No Month in which
NT_MONTH payment event
should occur
N_PAYMENT_EVE NUMBER(2) NULL No Number of Days
NT_DAY Payment type
N_PAYMENT_EVE NUMBER(5,0) NULL No Number of times
NT_FREQ payment event
should occur
V_PAYMENT_EVE VARCHAR2(40) NULL No List of values could
NT_FREQ_MULT be

Days,Months,Years

OFS DATA MODEL UTILITIES USER GUIDE | 195

DATA LOADERS

PAYMENT PATTERN LOADER

N_PAYMENT_EVE NUMBER(5,0) NULL No Holds number of

NT_REPEAT_VALU times payment

E frequency should
repeat

N_AMOUNT NUMBER(14,2) NULL No Amount

V_AMOUNT_TYPE | VARCHAR2(40) NULL No List of values could

be % of original
Payment,% of
current
payment,absolute
value

V_PAYMENT_TYP VARCHAR2(30) NULL No List of values could

E

be Conventional,
Level principal, Non-
amortizing

The loader program performs the following data quality checks:

1.

The following values will be checked against the relevant look tables as mentioned
* Pattern Type: FSI PATTERN TYPE MLS

» CashFlowType: FSI_PAYMENT_TYPE_MLS (Should accept only 100-Principal and Interest
and 300-Interest Only)

= Month: FST MONTHS MLS
= Multiplier: FSI MULTIPLIER MLS

» Payment Method: FSI AMOUNT TYPE MLS (For Conventional accept only % of Original
Payment, % of Current Payment and Absolute value)

* Payment Type: FSI_PMT PATTERN TYPE MLS

While defining any pattern type like relative or absolute, MONTH and DAY combination should be
unique

MONTH and DAY pair should have valid month and day combination, such as January 31 days
and February 28 days (Leap year was not considered) and so on.

If cash flow value is Principal and Interest then N_AMOUNT cannot be blank. If it is Interest only
thenv_PAYMENT TYPE and N_AMOUNT should be blank.

When payment type is a Non-amortizing and Payment pattern is Relative then
N_PAYMENT EVENT FREQ and N PAYMENT EVENT REPEAT VALUE should have values which
could range between 1to 9999.

One Split pattern can have any number of definition, however the sum of N_PCT VALUE of all
the definition should be 100% and all the payment patterns in the split should be defined.

All the following fields should have this validation on place:

= Day: Positive Integer Number Range from 1to 31 depends on the month for which day.

OFS DATA MODEL UTILITIES USER GUIDE | 196

DATA LOADERS

PAYMENT PATTERN LOADER

» Percentage: Positive Integer or Decimal Number
* Frequency: Positive Integer range from 1to 9999
* Repeat: Positive Integer range from 1to 9999

» Value: Integer numbers from 0 to 9999999999

For each payment pattern and payment type combinations fields relevant to that would be
populated by the user remaining columns should be populated with default values:

= Payment Pattern: Absolute
= Payment Type: Conventional / Level Principal

= Columns gets populated with user values: Code , Description, Pattern Type, Payment Type,
Month, Day, Cash Flow Type, Payment Method,Value, Percentage (in case of Split pattern

type
= Payment Type: Non amortizing Payment type.

= Columns gets populated with user values: Code , Description, Pattern Type, Payment Type,
Month, Day, Percentage (in case of Split pattern type)

= Payment Pattern: Relative
= Payment Type: Conventional / Level Principal

= Columns gets populated with user values: Code, Description, Pattern Type, Payment Type,
Frequency, Multiplier, Repeat, Cash Flow Type, Payment Method, Value, Percentage (in case
of Split pattern type)

= Payment Type: Non amortizing Payment type.

» Columns gets populated with user values: Code, Description, Pattern Type, Payment Type,
Frequency, Multiplier, Repeat, Percentage (in case of Split pattern type).

The loader program defaults values for each column in case values provided by user are not
relevant for the pattern and payment patterns they defined.

5.23.1 Executing the Payment Pattern Loader Procedure

There are two ways to execute the Payment Pattern Loader procedure:

Running Procedure Using SQL*Plus

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner:

SQLPLUS > declare

result number;

begin

result := fn paymentpattern ('Payment Pattern 20121212 1','20121212");
end;

/

= BATCH RUN_IDisany string to identify the executed batch.

OFS DATA MODEL UTILITIES USER GUIDE | 197

DATA LOADERS

PAYMENT PATTERN LOADER

5.23.2

* AS OF DATE isinthe format YYYYMMDD
Payment Pattern Loader Procedure Using OFSAAI Batch Maintenance

To execute Payment Pattern Loader from OFSAAI Batch Maintenance, a seeded Batch is
provided.

The batch parameters are:

= Datastore Type: Select the appropriate datastore from list.
» Datastore Name: Select the appropriate name from the list.
» |Paddress: Select the IP address from the list.

* RuleName: fn paymentpattern

Exception Messages

Below are the list of error messages which can be viewed in view log from Ul or FSI MESSAGE LOG
table from back end filtering for the given batch id. On successful completion of each task messages
gets into log table.

In the event of failure, following are the list of errors that may occur during the execution:

Exception 1: PATTERN TYPE IS NOT MATCHING THE LIST OF VALUES

Exception 2: TERM TYPE IS NOT MATCHING THE LIST OF VALUES

Exception 3: PAYMENT MULTIPLIER FREQ IS NOT MATCHING THE LIST OF VALUES
Exception 4: EVENT MONTH IS NOT MATCHING THE LIST OF VALUES

Exception 5: PMT PATTERN IS NOT MATCHING THE LIST OF VALUES

Exception 6: AMOUNT TYPE IS NOT MATCHING THE LIST OF VALUES

Exception 7: v_amrt_type_cd range between 1000 to 69999

Exception 8: n_payment_event_freq_cd and n_payment_event_repeat_value should have
values range between 1to 9999

Exception 9: N_PCT_VALUE POSITIVE INTEGER OR DECIMAL NUMBER
Exception 10: N_SPLIT_ID POSITIVE NUMBER

Exception 11: If Term Type is PRINCIPAL AND INTEREST, then it should range from 1to
999999999

Exception 12: f Term Type is INTEREST ONLY AMOUNT and AMOUNT TYPE CD should be blank
Exception 13: ERR while deleting stg_payment_pattern unwanted records

Exception 14: Month and Day pair should have valid combination. Like January 31 days
Exception 15: Pct value should be 100 in case of split pattern for other patterns it should be =0
Exception 16: Error during percentage check

Exception 17: Error during inserting

OFS DATA MODEL UTILITIES USER GUIDE | 198

DATA LOADERS

GAP LIMITS LOADER

5.24

5.24.1

5.24.2

GAP Limits Loader

This loader will provide the ability to load user defined GAP Limits through a back end procedure.

For more information, see the ALM User guide on OHC.

GAP Limits Loader Tables

The Loader uses the following staging and target tables:

STG ALM GAP LIMIT DTL — This staging table contains preliminary user-provided data that
will subsequently undergo data quality checks.

FSI_ALM GAP LIMIT DTL — Theloader copies limit bucket-sets into this table after quality
checks; only bucket-sets that pass quality checks are populated in this table

Executing the Gap Limit loader Procedure

There are two ways to execute the Gap Limit Loader procedure:

Running Procedure Using SQL*PlusTo run the function from SQL*Plus, log in to SQL*Plus as
the Schema Owner. The loader requires two parameters

» Batch Execution Name

= As Of Date

Syntax:

fn_load_fsi_alm_gap_limits (batch_run_id IN VARCHAR?2, as_of_date IN VARCHAR?2)
For example:

SQLPLUS > declare

result number;

begin

result := fn load fsi alm gap limits (‘INFODOM 20100405','20100405");
end;

/

Gap Limit Loader Procedure Using OFSAAI Batch Maintenance

To execute Material Currency Loader from OFSAAI Batch Maintenance, a seeded Batch
<INFODOM> GAP_ LIMITS LOADER is provided.

The batch parameters are:

= Datastore Type: Select the appropriate datastore from list.
= Datastore Name: Select the appropriate name from the list.
» [P address: Select the IP address from the list.

* RuleName: fn load fsi alm gap limits

= Parameter List: None

OFS DATA MODEL UTILITIES USER GUIDE | 199

https://docs.oracle.com/cd/E60202_01/homepage.htm

DATA LOADERS

GAP LIMITS LOADER

5-24.3

Exception Messages

Below are the list of error messages which can be viewed in view log from Ulor FSI MESSAGE LOG
table from back end filtering for the given batch id. On successful completion of each task messages
gets into log table.

In the event of failure, following are the list of errors that may occur during the execution:

Exception 1: ALM GAP Limit Loader exited but no records were inserted into FSI table.

All GAP limit bucket-sets in the STG table failed data quality checks and/or there was some
internal error

Exception 2: Errors recorded in internal memory but could not be logged in FSI MESSAGE LOG.
Exiting.

Error messages could not be logged

Exception 3: Could not insert records into internal memory. It may be a count mismatch b/w
consolidated_records and pk_iter.

Internal processing of limit bucket-sets failed during execution, please contact support
Exception 4: No Records found in STG Table for As_Of_Date: <DATE>

STG table had no records for the selected date of execution of utility

Exception 5: Error in prc_load_fsi_alm_gap_limits: <ERROR MESSAGE>

Unexpected error in execution

Exception 6: Invalid Legal_Entity_Code: <CODE>

Check if the legal entity code matches with valid legal entities in DIM_LEGAL_ENTITY_B (leaf
nodes only and should be enabled)

Exception 7: Invalid Org_Unit_Code: <CODE>

Check if the organisation unit code matches with valid codes in DIM_ORG_UNIT_B(leaf nodes
only and should be enabled)

Exception 8: Invalid Currency: <CCY>

Please ensure that the currency code for a bucket set is a valid ISO code

Exception 9: Invalid Currency_Type_Code: <CCY_Type>

Check if the currency type is valid and present in FSI_CURRENCY_TYPE_MLS

Exception 10: Invalid Time_Bucket_Name: <BKT_NAME>

Check if the bucket name provided matches valid entries in FSI_TIME_BUCKET_MASTER
Exception 11: Invalid Bucket_Number: <NUM> for Time_Bucket_Name: <BKT_NAME>

Ensure bucket number in DIM RESULT BUCKET corrseponds to the bucket name of in the row;
Names are case insensitive

Exception 12: Invalid Start_Date_Index<INDEX> for Time_Bucket_Name: <BKT_NAME>
The start date index in FSI_LR_IRR_BUCKETS_AUX matches for the given bucket name
Exception 13: Invalid Forecast_Rate_Rule_Name: <FCST_RULE_NAME>

OFS DATA MODEL UTILITIES USER GUIDE | 200

DATA LOADERS

GAP LIMITS LOADER

Ensure the forecast rate rule applied corresponds to those present in
FSI_M_OBJECT_DEFINITION_TL; Names are case insensitive

Exception 14: Invalid Scenario_Name: <SCEN_NAME> for Forecast_rate_rule_name:
<FCST_RULE_NAME>

The scenario applied should correspond to the forecast rate rule being applied
Exception 15: Invalid Repricing_GAP_Measure: <MEASURE>

Repricing gap measure should be one of 'NET REPRICE GAP', 'CUMULATIVE REPRICE GAP";
case insensitive

Exception 16: Eff_End_Date[<DATE>] must be later than or same as
AS_OF_DATE[<EXECUTION_DATE>]

Execution date must always be less than the effective end date of a limit bucket-set
Exception 17: Eff_End_Date[<DATE>] must be later than Eff_Start_Date[<DATE>]
The effective end date of a limit-bucket set must be later than its start date
Exception 18: Invalid Limit_Method: <LIMIT_METHOD>

Bucket limit method must be one of '"ABSOLUTE' or 'RELATIVE'; case insensitive
Exception 19: GAP_Limits cannot be negative

Self-explanatory

Exception 20: GAP Iwr_limit must be lesser than upr_limit

Self-explanatory

Exception 21: Bucket Continuity Constraint: Current bucket"s lower_limit must be previous
bucket"s upper_limit+1

Self-explanatory

Exception 22: Bucket Limit_Method Mismatch: All buckets in a set must follow the first bucket'"s
limit method

Self-explanatory

Exception 23: For Limit Method: RELATIVE, first bucket"s lower_limit must be O
Self-explanatory

Exception 24: For Limit Method: RELATIVE, last bucket"s upper_limit must be 100
Self-explanatory

Exception 25: For Limit Method: RELATIVE, lower_limit must be b/w [O,upper_limit)

The lower limit of a bucket in a bucket-set must start from previous bucket's lower limit+1 or O if
it is the first bucket in a bucket-set; the upper limit must be greater than lower limit or be exactly
100 if it is the last bucket in the set.

Exception 26: For Limit Method: RELATIVE, upper_limit must be b/w (lower_limit,100]

The lower limit of a bucket in a bucket-set must start from previous bucket's lower limit+1 or O if
it is the first bucket in a bucket-set; the upper limit must be greater than lower limit or be exactly
100 if it is the last bucket in the set.

OFS DATA MODEL UTILITIES USER GUIDE | 201

DATA LOADERS

MATERIAL CURRENCY IDENTIFIER

325

5.25.1

Exception 27: Record will be rejected due to error(s) in row(s) indicated by Bkt_num(s):
<BAD_BKT_NUMS>

The row itself passes DQ data quality checks but will still be rejected due to errors elsewhere in
its limit bucket-set

Exception 28: Error in Data Quality Validator : dg_validator.
DQ validation function failed
Exception 29: Error in bulk_logging, erroroneous rows could not be recorded.

Bulk logging of error messages to FSI_MESSAGE_LOG failed; transactions to FSI_* table will be
rolled-back

Exception 30: No good records were found in the STG Table.
All GAP limit bucket-sets in the STG table failed data quality checks
Exception 31: Error in target_insert_update: <ENGINE GENERATED ERROR MESSAGE>.

Possible reason: Two or more exact same bucket sets with typographical differences are
present(that is, one bucket has v_scenario_name = A_Lim_Bucket and another has
v_scenario_name = a_lim_bucket). It is advisable to avoid stray spaces in strings and keep
everything in all-caps

Exception 32: Error in target_insert_update
Function for inserting good records to FSI_* table failed
Exception 33: Could not cleanup old records for batch run id: <BATCH_RUN_ID>

Previous error messagesin FSI MESSAGE LOG for the same BATCH RUN_ID as run could not
be deleted; The execution may have still gone through

Material Currency Identifier

As per the standardized approach of IRRBB, the loss in economic value of an equity is calculated for
each currency with material exposures. Material exposure is defined as those accounting for more
than 5% of either banking book assets or liabilities. Utility moves data from FSI D <INSTRUMENT
TABLE>t0 FCT ALM SIGNIFICANT CURRENCY.

For more information, see the ALM User Guide.

Material Currency Identifier Tables

FSI D CREDIT CARDS

FSI_D MUTUAL_ FUNDS

FSI D RETIREMENT ACCOUNTS
FSI D TERM DEPOSITS

FSI_D ASSET BACK_ SEC

FSI D BORROWINGS

FSI_D INVESTMENTS

OFS DATA MODEL UTILITIES USER GUIDE | 202

https://docs.oracle.com/cd/E60202_01/homepage.htm

DATA LOADERS

MATERIAL CURRENCY IDENTIFIER

e FSI D ANNUITY CONTRACTS
e FSI D CASA

e FSI D LOAN CONTRACTS

e FSI D CREDIT LINES

e FSI D GUARANTEES

e FSI D MERCHANT CARDS

e FSI D MORTGAGES

e FSI D TRUSTS

e FSI D CAPFLOORS

e FSI D MM CONTRACTS

e FSI D LEASES

e FSI D OTHER SERVICES

e FSI D LEDGER STAT INSTRUMENT
e FSI D LOAN COMMITMENTS

e FSI D FUTURES

e FSI_D CAPFLOORS

e FSI D SWAPS

5.25.2 Executing the Material Currency loader Procedure

There are two ways to execute the Material Currency Loader procedure:
¢ Running Procedure Using SQL*Plus

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner:
For example:
SQLPLUS > declare
result number;
begin
result := fn signf currency loader (‘ALMUSER’,’Y’,05,>,’USD’);
end;
/
Here,
» ALMUSER is the user Name for which the task is to be executed

= Set the Off-balance sheet flag as ‘Y’ to enable off-balance sheet instruments, ‘N’ to disable
them.

» .05is Material Currency Threshold. .05 is the threshold defined by BASEL norms but the
parameter is configurable between [0,1], limits inclusive

OFS DATA MODEL UTILITIES USER GUIDE | 203

DATA LOADERS

MATERIAL CURRENCY IDENTIFIER

5-25.3

= |s Comparison Operator; valid choices include [>,>=,<,<=]
= USDis reporting currency ISO code
e Material Currency Loader Procedure Using OFSAAI Batch Maintenance

To execute Material Currency Loader from OFSAAI Batch Maintenance, a seeded Batch
<INFODOM> MATERIAL CURR_IDENTIFICATION is provided.

The batch parameters are:

» Datastore Type: Select the appropriate datastore from list.
= Datastore Name: Select the appropriate name from the list.
» |Paddress: Select the IP address from the list.

» RuleName: fn signf currency loader

» Parameter List: User Name, off-Balance Sheet Flag, Material Currency Threshold,
Comparison Operator, and Reporting Currency Code (for description of the configurable
paramters, see above)

Exception Messages

During the course of execution, certain exception messages are logged in FSI MESSAGE LOG. These
can be viewed from the Ul or from the back-end by filtering FST MESSAGE LOG for the current
‘batch_run_id’. On successful completion of the task, a message indicating success is logged. In the
event of execution failure or intermediate errors, messages from the following list can be logged:

e Exception 1: Table '<INSTRUMENT_TABLE_NAME>' not found in current schema. This table will
be ignored.

The table may have been removed or currently does not exist in the schema

e Exception 2: Error during inserting asset records from '<INSTRUMENT_TABLE_NAME>"
<ENGINE_GENERATED_MESSAGE>. Table will be ignored.

The columns types of the table may have changed or columns may have been removed

e Exception 3: Error in utility/task "ALM Material Currency Identification". Please check if
username is valid. In rare cases, it may be an internal DB error.

The username provided either doesnot exist or the user's product dimension preference is not
one of (PRODUCT, GENERAL LEDGER, or COMMON COA). Very rarely it could be an internal
mapping error

e Exception 4: Error in utility/task "ALM Material Currency Identification"; off-balance-sheet flag
must be "Y' or 'N'.

Illegal user-input parameter

e Exception 5: Error in utility/task "ALM Material Currency Identification" during insert/merge
operation on '<ISNTRUMENT_TABLE_NAME>". OPERATION ABORTED.

Internal error during merging of liability records with asset records in the TMP_* table (TMP
table stores intermediate records before final consolidation into the FCT_* table)

OFS DATA MODEL UTILITIES USER GUIDE | 204

DATA LOADERS

BEHAVIOUR PATTERN LOADER

e Exception 6: Error in utility/task "ALM Material Currency Identification"; Please ensure that 1.
material threshold is between [0,1]; 2. a valid comparison operator has been provided; 3.
Reporting currency is a valid ISO code.

Ilegal user-input parameter(s)

e Exception 7: Error in utility/task "ALM Material Currency Identification"; Insert operation on
FCT ALM SIGNIFICANT CURRENCY failed, OPERATION ABORTED. Probable reason: foreign
key violation in FCT_* table on column 'N_ENTITY_SKEY".

Internal error during insertion of final records in to the result table due to a Foreign Key
Violation

e Exception 8: Error in utility/task "ALM Material Currency Identification"; Insert/Update
operation on DIM_DATES failed; OPERATION ABORTED.

Internal error because the chosen date of execution does not exist in an internal table of
indexed dates and associated information (DIM_DATES)

e Exception 9: Unhandled exception in utility "ALM Material Currency Identification";
FCT_ALM_SIGNIFICANT_CURRENCY will be returned to its initial state. Error:
<ENGINE_GENERATED_ERROR>

Unexpected internal error during execution; it may be a primary key violation during insertion
of records into the FCT_* table.

e Exception 10: Could not cleanup old records for batch run id: <BATCH_RUN_ID>

Previous error messages in FSI_MESSAGE LOG for the same BATCH RUN ID asrun could not
be deleted; utility’s execution may have still gone through

Behaviour Pattern Loader

The Behaviour Pattern Loader provides the ability to load bulk Behaviour pattern definitions through a
back end procedure. This Loader reads input data from STG_BEHAVIOUR_PATTERN_NRP table -
performs data quality checks on the same — and loads the definitions into
FSI_BEHAVIOUR_PATTERN_MASTER and FSI_BEHAVIOUR_PATTERN_DETAIL tables based on
following conditions:

¢ New BP: If pattern code in stage table is not already present in FSI table, then insert data after
quality check and necessary transformations

e Existing BP: If pattern code in stage is already present in FSI table, then compare ‘created date’.
If date in stage table is higher (that is, more recent) than that in FSI table, then overwrite the
definition otherwise skip and log appropriate message.

The utility is called from a Batch called Behaviour Pattern Loader. The utility is designed to be
executed for a single AS OF DATE only, that is, it would fetch the data from STAGE table for the given
MIS date and push the records to DTL/MASTER table accordingly.

The structure of the Stage table is as follows:

Table Name: STG_BEHAVIOUR PATTERN NRP:

OFS DATA MODEL UTILITIES USER GUIDE | 205

DATA LOADERS

BEHAVIOUR PATTERN LOADER

Column Name

Logical

Name

Null
Allowed ?

Column Comments

FIC_MIS_DATE Extraction DATE No Ye Date on which the behaviour pattern
Date s definition was created. Normally indicates
the calendar date from which it is valid.
F_REPLICATIN Replicating CHAR(1) | Yes No | Thisindicates whether the behaviour
G_PORTFOLIO | Portfolio pattern definition is for replicating portfolio
_FLG Flag (FTP use case) or not. List of Values are Y
for Replicating Portfolio and N for Non-
replicating portfolio.
N_PATTERN_C | Pattern NUMBE | No Ye | Code assigned to behaviour pattern
D Code R(5) s definition. This must be a number between
70000 to and 99999
N_PATTERN_P | Pattern NUMBE | Yes No | This stores the percentage of current
ERCENTAGE Percentage | R(22,6) balance that is used as cash flow on the
event date. Within one pattern code sum of
percentages must not exceed 100.
N_SEQUENCE_ | Sequence NUMBE | No Ye | Within one pattern multiple tenors can be
NUMBER Number R(3) s defined. Sequence denotes the order of
each tenor.
N_PATTERN_T | Pattern NUMBE | Yes No | Thisis the tenor specified in behaviour
ENOR Tenor R(5) pattern definition and is used to decide cash
flow event. It must be read in conjunction
with Tenor Unit.
V_PATTERN_S | Behaviour VARCH | Yes No | Thisindicates the sub-type of behaviour for
UBTYPE_CD Sub Type AR2(5) which pattern is defined. Expected values
Display are: If Behaviour Type Display Code is Non
Code Maturing (NM) then expected values are CR
for Core and VL for Volatile; If Behaviour
Type Display Code is Non Performing (NP)
then expected values are SS for
Substandard, DF for Doubtful and L for
Loss; If Behaviour Type Display Code is
Devolvement and Recovery (DR) then
expected values are SD for Sight
Devolvement, SR for Sight Recovery, UD for
Usance Devolvement, UR for Usance
Recovery, U for Usance and S for Sight.
V_CREATED_B Created By VARCH Yes No | Identifier for the user or model that created
Y AR2(20) the behaviour pattern definition. It can also
denote the system from which definition is
sourced.
V_PATTERN_D | Pattern VARCH | Yes No | Description for the behaviour pattern
ESCRIPTION Description | AR2(255 definition given by user.
)

OFS DATA MODEL UTILITIES USER GUIDE | 206

DATA LOADERS

BEHAVIOUR PATTERN LOADER

V_PATTERN_N | Pattern VARCH Yes No | Name of the behaviour pattern definition
AME Name AR2(30) given by user.
V_PATTERN_T | Behaviour VARCH | Yes No | Thisindicates the type of behaviour for
YPE_CD Type AR2(40) which pattern is defined. Expected values
Display are NM for Non Maturing, NP for Non
Code Performing and DR for Devolvement and
Recovery.
V_PATTERN_T Pattern VARCH Yes No | This indicates the unit in which Tenor is
ENOR_UNIT Tenor Unit AR2(1) specified. List of values are D for Days, M for
Months and Y for Years.

Following checks will be performed on the intermediate data populated by the user in STAGE table.
The following list of values will be checked against the relevant look-up tables:

Pattern Code should be between 70000 and 99999.
BP Pattern Name:
= Ifitis a new pattern code, then name should not be already used by another BP.

= Ifitis an existing pattern code, then name should be same as BP existing in FSI table. If
names are different, then that from FSI table will be retained.

Behaviour Type Display Code should be present in table FSI BEHAVIOUR TYPE CD column
BEHAVIOUR TYPE DISPLAY CD

= Behaviour Sub Type Display Code should be present in table
FSI BEHAVIOUR SUB TYPE CDcolumn BEHAVIOUR SUB TYPE DISPLAY CD

Tenor should be a valid number.
Tenor unit should be present in table FSI MULTIPLIER CDcolumnMULTIPLIER CD.

Percentage for one pattern code sum of percentage across all Behaviour Type Display Code
must not exceed 100. Sequence for one pattern code sequence number must not repeat.

5.26.1 Executing the Behaviour Pattern Loader Procedure

Executing the Procedure Using SQL*Plus

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner:
SQLPLUS > declare

result number;

begin

result := fn Behaviour pattern loader
("Behaviour Pattern 20121212 1','20121212");

end;

/

= BATCH_RUNL_ID is any string to identify the executed batch.
= AS_OF_DATE s in the format YYYYMMDD

OFS DATA MODEL UTILITIES USER GUIDE | 207

DATA LOADERS

BEHAVIOUR PATTERN LOADER

5.26.2

Behaviour Pattern Loader Procedure Using OFSAAI Batch Maintenance

To execute Behaviour Pattern Loader from OFSAAI Batch Maintenance, a seeded Batch is
provided.

The batch parameters are:

» Datastore Type: Select the appropriate datastore from list.
= Datastore Name: Select the appropriate name from the list.
» |P address: Select the IP address from the list.

= Rule Name: fn_behaviourpattern

Exception Messages

Below is alist of error messages generated during execution. They can be viewed in the ‘view log’
fromUlorin FSI MESSAGE LOG table after filtering for the given batch_run_id. Appropriate
messages are also logged on successful completion of railure of the utility, as the case may be.

Following error messages may be logged during execution:

Exception 1: No records found in STG BEHAVIOUR PATTERN NRP for <DATE>

STG_* table has no records for the chosen execution date

Exception 2: Error in Wrapper_bp_loader: <ENGINE GENERATED ERROR MESSAGE>
Execution of the utility failed due to some unexpected internal error

Exception 3: Issue in look_up_tbl procedure: <ENGINE GENERATED ERROR MESSAGE>
Procedure to look-up values against matching tables failed; this is an internal error
Exception 4: Issue in procedure: key_val_look_up: <ENGINE GENERATED ERROR MESSAGE>
Procedure to look-up key-value pairs against matching tables failed; this is an internal error
Exception 5: ROW # <ROWNUM>: N_PATTERN_CD out of range.

N_PATTERN_CD exceeded 99999

Exception 6: ROW # <ROWNUM>: N_TENOR is not a valid number (must be >0).
Self-explanatory

Exception 7: ROW # <ROWNUM>: BEHAVIOUR TYPE DOES NOT MATCH VALID BEHAVIOUR
TYPES

Behaviour Pattern Type for a definition must be one of NM, NP or DR
Exception 8: ROW # <ROWNUM=>: TENOR UNIT DOES NOT MATCH VALID TENOR UNITS.
Tenor Units must be one of D, Mor Y

Exception 9: ROW # <ROWNUM>: BEHAVIOUR SUB-TYPE EITHER DOES NOT EXIST OR IS
INCORRECT FOR GIVEN BEHAVIOUR TYPE.

Behaviour Sub-Type in a given pattern set must be as follows: <BEHAVIOUR TYPE>::[VALID
SUB-TYPES] ::: NM[CR,VL], NP[SS,DF,L] & DR[SD,SR,UD,UR,U,S]

OFS DATA MODEL UTILITIES USER GUIDE | 208

DATA LOADERS

BEHAVIOUR PATTERN LOADER

Exception 10: ROW # <ROWNUM>: Warning: Replicating_Portfolio_Flag was NOT NULL but
neither Y nor N; Will be replaced with N

Self-explanatory

Exception 11: ROW # <ROWNUM>: New pattern code but name is already in use for
PATTERN_CD: <PATTERN_CD_NAME>. Please note names are NOT case sensitive.

The pattern will be rejected as two pattern code definitions cannot have the same name

Exception 12: ROW # <ROWNUM>: Warning: PATTERN_CODE already exists in
FSI_BEHAVIOUR_PATTERN_MASTER with name: <NAME>. This name will be retained. Only the
newer(date) of these two records will be kept.

If a pattern code present in STG_* table already exists in the FSI_*_MASTER table, then the
FSI_* table will be updated with the new definition but the name from FSI_*_MASTER will be
retained if the date of execution for the batch is older than that for which the record already
exists in the MASTER table.

Exception 13: Error in Dg_validator: <ENGINE_GENERATED_MESSAGE>
Function for validating STG_* table records failed; this is an internal error

Exception 14: Definitions with negative N PATTERN PERCENTAGE. This PATTERN CD will be
ignored.

Some pattern definitions the STG_* table had negative percentage values

Exception 15: Pattern codes with N PATTERN PERCENTAGE violation found (>100). These will
be ignored.

Account percentage allocation across behaviour pattern types in a Pattern definitions in STG_*
table must add to 100

Exception 16: No violations of N PATTERN PERCENTAGE found for any pattern code &
behaviour type combination.

The definitions that remained after data quality checks had no anomalies in their pattern
percentages

Exception 17: Error in procedure percentage_chk: <ENGINE GENERATED MESSAGE>
The percentage checker failed; this is an internal error
Exception 18: Duplicate older Behaviour Pattern Definition in STG_TABLE. It will be ignored.

The pattern definitions in STG_* table will be ignored if they are older than those in MASTER
table

Exception 19: Date comparison check passed; either no clashes found between
STG BEHAVIOUR PATTERN NRPrecordsand FSI BEHAVIOUR PATTERN MASTER records or
all definitions in Stage Table were older.

Self-explanatory
Exception 20: Error in flg_older: <ENGINE GENERATED MESSAGE>

Procedure for verification of date-clashes between new records in STG_* and those already
present in FSI_* MASTER failed; this is an internal error

OFS DATA MODEL UTILITIES USER GUIDE | 209

DATA LOADERS

BEHAVIOUR PATTERN LOADER

Exception 21: Error During Merge Operation in FSI_BEHAVIOUR PATTERN MASTER:
<ENGINE GENERATED MESSGE>

Records could not be inserted into FSI BEHAVIOUR PATTERN MASTER; thisis either an
internal error or a Primary Key violation

Exception 22: Error During Merge Operation in FSI BEHAVIOUR PATTERN DETAIL:
<ENGINE GENERATED MESSGE>

Records could not be inserted into FSI BEHAVIOUR PATTERN DETAIL; thisis either an internal
error or a Foreign Key violation

Exception 23: Could not clean-up old records for batch runid: <BATCH_RUN ID>

Previous error messagesin FSI MESSAGE LOG for the same BATCH RUN ID asrun could not
be deleted; The execution may have still gone through

OFS DATA MODEL UTILITIES USER GUIDE | 210

SCD CONFIGURATION

OVERVIEW OF SCD PROCESS

6 SCD Configuration

6.1 Overview of SCD Process

SCDs are dimensions that have data that changes slowly, rather than changing on a time-based,
regular schedule.

For more information on SCDs, see:
e Oracle Data Integrator Best Practices for a Data Warehouse at

<http://www.oracle.com/technetwork/middleware/data-integrator/overview/odi-
bestpractices-datawarehouse-whi-129686.pdf >

e Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide at
<http://download.oracle.com/docs/cd/E16338 01/owb.112/e10935/dim objects.htm>

Additional online sources include:

<http://en.wikipedia.org/wiki/Slowly changing dimension>

<http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/10g/r2 /owb /owb10gr2 gs
/owb /lesson3/slowlychangingdimensions.htm>

<http://www.oraclebidwh.com/2008/11/slowly-changing-dimension-scd />

<http://www.informationweek.com/news/software/bi/showArticle.jhtml?articlelD=204800027
&pgno=1>

<http://www.informationweek.com/news/software/bi/showArticle.jhtml?articlelD=59301280>

You can also refer to The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling by Ralph Kimball and Margy Ross.

The SCD component of the platform is delivered via a C++ executable. The types of SCD handled by
the OFSAAI SCD component for OFSAA Bl applications installers are Type 1and Type 2.

6.1.1 Type 1

The Type 1 methodology overwrites old data with new data, and therefore does not track historical
data. This is useful for making changes to dimension data.

N_PRODUCT_. V_PRODUCT_NAM D_START_DATE D_END_DATE F_LATEST_RECOR

SKEY E D_INDICATOR

1 PL 5/31/2010 12/31/9999 Y

In this example,

e N PRODUCT_ SKEY is the surrogate key column which is a unique key for each record in the
dimension table.

e V_PRODUCT NAME is the product name.

e D START DATE indicates the date from which this product record is valid.

OFS DATA MODEL UTILITIES USER GUIDE | 211

http://www.oracle.com/technetwork/middleware/data-integrator/overview/odi-bestpractices-datawarehouse-whi-129686.pdf
http://www.oracle.com/technetwork/middleware/data-integrator/overview/odi-bestpractices-datawarehouse-whi-129686.pdf
http://download.oracle.com/docs/cd/E16338_01/owb.112/e10935/dim_objects.htm
http://en.wikipedia.org/wiki/Slowly_changing_dimension
%3chttp:/www.oracle.com/webfolder/technetwork/tutorials/obe/db/10g/r2/owb/owb10gr2_gs/owb/lesson3/slowlychangingdimensions.htm
%3chttp:/www.oracle.com/webfolder/technetwork/tutorials/obe/db/10g/r2/owb/owb10gr2_gs/owb/lesson3/slowlychangingdimensions.htm
http://www.oraclebidwh.com/2008/11/slowly-changing-dimension-scd/
file:///D:/Workspace/DMU/8.0/FM%20Files/toc.htm
http://www.informationweek.com/news/software/bi/showArticle.jhtml?articleID=204800027&pgno=1
http://www.informationweek.com/news/software/bi/showArticle.jhtml?articleID=204800027&pgno=1
http://www.oraclebidwh.com/2008/11/slowly-changing-dimension-scd/
http://www.oraclebidwh.com/2008/11/slowly-changing-dimension-scd/

SCD CONFIGURATION

PREREQUISITES

6.1.2

6.2

e D END DATE indicates the date till which this product record is valid.

e F LATEST RECORD INDICATOR with value'Y', which indicates this is the latest record in the
dimension table for this product and 'N' indicates it is not.

e Ifthev PRODUCT NAME columnis set asa Type 1SCD column and if there is a change in the
product name to 'Personal Loan' from 'PL' in the above example, in the next processing period,
then when SCD is executed for the new processing period the record in the above example

changes to:
N_PRODUCT_SKE V_PRODUCT_NA D_START_DATE D_END_DATE F_LATEST_RECOR
D_INDICATOR
1 Personal Loan 6/30/2010 12/31/9999 Y
Type 2

The Type 2 method tracks historical data by creating multiple records for a given natural key in the
dimensional tables with separate surrogate keys. With Type 2, the historical changes in dimensional
data are preserved. In the above example for the change in product name from 'PL' to 'Personal Loan'
if history has to be preserved, then the v_PRODUCT NAME column has to be set as Type 2 when SCD is

processed for the processing period and the change inserts a new record as shown in the following
example:

N_PRODUCT_SKE V_PRODUCT_NAM D_START_DATE D_END_DATE F_LATEST_RECOR
E D_INDICATOR

1 PL 5/31/2010 12/31/9999 N

1 Personal Loan 6,/30/2010 12/31/9999 Y

A new record is inserted to the product dimension table with the new product name. The latest record
indicator for this is set as 'Y’, indicating this is the latest record for the personal loan product. The
same flag for the earlier record was set to 'N'.

Prerequisites

The Hierarchy Flattening Transformation should have been executed successfully.

1. The SCD executable should be present under <installation home>ficdb/bin. The file
name is scd and the user executing the SCD component should have execute rights on this file.

2. The setup tables accessed by SCD component (SETUP MASTER, SYS TBL MASTER, and
SYS STG JOIN MASTER)should have the required entries. The SETUP_MASTER table does
not come seeded with the installation; the required entries must be added manually. The
required columns are mentioned in the Tables Used by the SCD Component. The tables
SYS TBL MASTERand SYS STG JOIN MASTER are seeded for the Org unit, GL Account,

OFS DATA MODEL UTILITIES USER GUIDE | 212

SCD CONFIGURATION
TABLES USED BY THE SCD COMPONENT

Product, and Common COA (Chart of Accounts) dimensions along with solution installation and
you must only add entries in these tables, if you add new dimensions.

3. Database Views with name DIM <Dimension Name> V come seeded, for the seeded
dimensions which come as part of installation. These views source data from the Profitability
dimension tables as well as the flattened hierarchy data.

DIM PRODUCT V isthe view available for the product dimension.

New views will have to be added for any new dimension, added in addition to the seeded
dimensions.

6.3 Tables Used by the SCD Component

The following are the database tables and columns used by the SCD component:

e SETUP MASTER

= V_COMPONENT CODE: This column is not used by the OFSEFPA solution. This column acts
as a primary key for ALMBI.

= V _COMPONENT DESC: This column valueis hard coded in the database view definitions for
DIM PRODUCT V, DIM GL ACCOUNT V, DIM COMMON COA V, and DIM ORG UNIT V
to obtain the Hierarchy ID from the REV_HIER FLATTENED table. For this reason, the value
for this column should be unique.

NOTE The value in v_COMPONENT DESC must exactly match with the
value used in the SQL to create the DIM <dimension> Vv
view. The View SQL contains a section referencing the
SETUP MASTER table. You must use the same upper and/or
lower case letters in v_. COMPONENT DESC as used in this
section of the View SQL.

= V_COMPONENT VALUE: Thisis the hierarchy ID to be processed and this can be obtained by
executing the following query:

select b.object definition id, short desc,long desc from
fsi m object definition b b inner join fsi m object definition tl t
on b.object definition id = t.object definition id and b.id type = 5

NOTE For any newly defined Hierarchy, a row will have to be inserted
to this table manually for SCD to process that Hierarchy. You
can only specify one Hierarchy for each dimension.

Examples:

V_COMPONENT_CODE V_COMPONENT_VALUE V_COMPONENT_DESC

OFS DATA MODEL UTILITIES USER GUIDE | 213

SCD CONFIGURATION

TABLES USED BY THE SCD COMPONENT

COMMON_COA_HIER 1000063952 COMMON_COA_HIER1
GL_ACCOUNT_HIER 200000808 GL_ACCOUNT_HIER1
ORG_HIER 200282 ORG_UNIT_HIER1
PRODUCT_HIER 1000004330 PRODUCT_HIERT1

e SYS TBL MASTER

The solution installer populates one row per dimension for the seeded dimensions in this table.

Column Name Data Type Column Description

MAP_REF_NUM NUMBER(3) The Mapping Reference Number for this unique
NOT NULL mapping of a Source to a Dimension Table.

TBL_NM VARCHAR2(30) Dimension Table Name.
NOT NULL

STG_TBL_NM VARCHAR2(30) Staging Table Name.
NOT NULL

SRC_PRTY NUMBER(2) Priority of the Source when multiple sources are
NULL mapped to the same target.

SRC_PROC_SEQ NUMBER(2) The sequence in which the various sources for
NOT NULL the DIMENSION will be taken up for processing.

SRC_TYP VARCHAR2(30) The type of the Source for a Dimension, that is,
NULL Transaction Or Master Source.

DT_OFFSET NUMBER(2) The offset for calculating the Start Date based
NULL on the Functional Requirements Document

(FRD).

SRC_KEY NUMBER(3)

NULL
Example:

This is the row inserted by the solution installer for the product dimension.

OFS DATA MODEL UTILITIES USER GUIDE | 214

SCD CONFIGURATION

TABLES USED BY THE SCD COMPONENT

MAP_REF_NUM 128

TBL_NM DIM_PRODUCT
STG_TBL_NM DIM_PRODUCT_V
SRC_PRTY

SRC_PROC_SEQ

1

SRC_TYP

MASTER

DT_OFFSET

0

Note: For any newly defined dimension, a row will have to be inserted to this table manually.

e SYS STG_JOIN MASTER

The solution installer populates this table for the seeded dimensions.

Column Name

Data Type

Column Description

MAP_REF_NUM NUMBER(3) The Mapping Reference Number for this
NOT NULL unique mapping of a Source to a Dimension
Table.
COL_NM VARCHAR2(30) Name of the column in the Dimension Table.
NOT NULL
COL_TYP VARCHAR2(30) Type of column. The possible values are given
NOT NULL in the following section.
STG_COL_NM VARCHAR2(60) Name of the column in the Staging Table.
NULL
SCD_TYP_ID NUMBER(3) SCD type for the column.
NULL
PRTY_LOOKUP_REQD_FLG CHAR(1) Column to determine whether Lookup is
NULL required for Priority of Source against the
Source Key Column or not.
COL_DATATYPE VARCHAR2(15) The list of possible values are VARCHAR, DATE,
NULL and NUMBER, based on the underlying column
datatype.
COL_FORMAT VARCHAR2(15)
NULL

The possible values for column type (the COL_TYPE column)in SYS STG JOIN MASTER table

are:

PK: Primary Dimension Value (can be the multiple of the given Mapping Reference Number)

OFS DATA MODEL UTILITIES USER GUIDE | 215

SCD CONFIGURATION

TABLES USED BY THE SCD COMPONENT

SK: Surrogate Key

DA: Dimensional Attribute (may be multiple for a given Mapping Reference Number)
SD: Start Date

ED: End Date

LRI: Latest Record Indicator (Current Flag)
CSK: Current Surrogate Key

PSK: Previous Surrogate Key

SS: Source Key

LUD: Last Updated Date/Time

LUB: Last Updated By

Example:

This is the row inserted by the solution installer for the product dimension.

MAP_REF_NUM 128

COL_NM V_PRODUCT_NAME
COL_TYP DA

STG_COL_NM V_PRODUCT_NAME
SCD_TYP_ID 2
PRTY_LOOKUP_REQD_FLG N

COL_DATATYPE VARCHAR

COL_FORMAT

Note: For any newly defined dimension, the column details will have to be inserted to this table

manually.

DIM PRODUCTS V

DIM < dimension name > V:The database view which SCD uses as the source.

These views come as part of install for the dimensions seeded with the application.

Note: For any newly defined dimension, a view will have to be created, which is similar to that of

DIM PRODUCTS V.

A sequence should be created for every user-defined dimension, using the following query:

create sequence SEQ_< DIMENSION > minvalue 1

maxvalue 999999999999999999999999999

increment by 1

OFS DATA MODEL UTILITIES USER GUIDE | 216

SCD CONFIGURATION

EXECUTING THE SCD COMPONENT

Executing the SCD Component

You can execute the SCD component from the Operations (formerly Information Command Center
(ICC) framework) module of OFSAAI.

The SCD component for OFSAA Bl applications installers has been seeded with the Batch ID
<INFODOM>_SCD, which can be executed from Batch Execution section of OFSAAI.

You can also define a new Batch and an underlying Task definition from the Batch Maintenance
window of OFSAAI. For more information on defining a new Batch, see the How to Define a Batch.

To define a new task for a Batch definition:

1.

o M w0 DN

Select the check box adjacent to the newly created Batch Name in the Batch Maintenance
window.

Click Add (+) from the Task Details window. The Task Definition window is displayed.
Enter the Task ID and Description.

Select Run Executable component from the drop down list.

Select the following from the Dynamic Parameters list:

a. Datastore Type: Select the appropriate datastore type from the list

b. Datastore Name: Select the appropriate datastore name from the list

c. Executable: Enter scd,<map ref num>

For example, scd,2

Wait: Click Yes if you want to wait till the execution is complete or click No to proceed with the
next task.

Batch Parameter: Click Yes in Batch Parameter field if you want to pass the batch parameters to
the executable and click NO otherwise.

Click Save. The Task definition is saved for the selected Batch.

Click Parameters. Select the following from the Dynamic Parameters List and then click Save:
The map ref number values available for the Executable parameter are:

-1, if you want to process all the dimensions. The Executable parameter mentioned earlier is:
scd,-1.

If you want to process for a single dimension, query the database table SYS_TBL_MASTER and
give the number in the MAP_REF_NUM column for the dimension you want to process. These
are the ones which come seeded with the install. If you want to process for Product dimension,
the Executable parameter mentioned earlier is:

scd,6.

OFS DATA MODEL UTILITIES USER GUIDE | 217

https://docs.oracle.com/cd/F29631_01/get_started.htm

SCD CONFIGURATION

CHECKING THE EXECUTION STATUS

MAP_REF_NUM TBL_NM

126 DIM_ORG_UNIT

127 DIM_GL_ACCOUNT
128 DIM_PRODUCT

129 DIM_COMMON_COA

8. You can execute a Batch definition from the Batch Execution section of OFSAAI Operations
module.

Checking the Execution Status

The Batch execution status can be monitored through Batch Monitor section of OFSAAI Operations
module.

The status messages in batch monitor are:
e N:Not Started
¢ 0:0n Going
e F:Failure
e S:Success

The execution log can also be accessed on the application server in the directory
SFIC DB _HOME/log/ficgen, where file name will have the Batch Execution ID.

The detailed SCD component log can be accessed on the application server in the directory
$FIC HOME by accessing the following path /ftpshare/<infodom name>/logs.

Check the .profile file in the installation home if you are unable to find this path.

The Event Log window in Batch Monitor section provides execution logs, in which the top row is the
most recent. Any errors during the Batch execution are listed in the logs.

OFS DATA MODEL UTILITIES USER GUIDE | 218

SCD CONFIGURATION

CHECKING THE EXECUTION STATUS

OFS DATA MODEL UTILITIES USER GUIDE | 219

OFSAA SUPPORT

OFSAA Support

Raise a Service Request (SR) in My Oracle Support (MOS) for queries related to OFSAA applications.

OFS DATA MODEL UTILITIES USER GUIDE | 220

https://support.oracle.com/

SEND US YOUR COMMENTS

Send Us Your Comments

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication.
Your input is an important part of the information used for revision.

e Did you find any errors?

e Istheinformation clearly presented?

¢ Do you need more information? If so, where?

e Arethe examples correct? Do you need more examples?
¢ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, indicate the title and part
number of the documentation along with the chapter/section/page number (if available) and contact
the Oracle Support.

Before sending us your comments, you might like to ensure that you have the latest version of the
document wherein any of your concerns have already been addressed. You can access My Oracle
Support site that has all the revised/recently released documents.

OFS DATA MODEL UTILITIES USER GUIDE | 221

ORACLE

	1 Preface
	1.1 Intended Audience
	1.2 Access to Oracle Support
	1.3 Structure Overview
	1.4 Related Documents
	1.5 What is New in This Release for Data Model Utilities
	1.6 Conventions
	1.7 Symbols

	2 Introduction
	2.1 List of Acronyms Used in the Document

	3 Object Management
	3.1 Boundaries and Limitations
	3.1.1 Instrument Table - ID Numbers
	3.1.2 Dimension Leaf Member Set Up
	3.1.3 Balances
	3.1.4 Rates
	3.1.5 Hierarchy Level Limitation

	3.2 Adding Dimension Tables and Key Dimension (Leaf) Registration
	3.2.1 Adding Dimension Tables
	3.2.1.1 Adding Key Dimension Tables
	3.2.1.1.1 DIM_ORG_UNIT_B
	3.2.1.1.2 DIM_ORG_UNIT_TL
	3.2.1.1.3 DIM_ORG_UNIT_ATTR
	3.2.1.1.4 DIM_ORG_UNIT_HIER

	3.2.1.2 Adding Simple Dimension Tables
	3.2.1.2.1 FSI_<DIM>_CD
	3.2.1.2.2 FSI_<DIM>_MLS

	3.2.2 Adding Dimension Column To Required Objects
	3.2.3 Assigning Processing Key Property
	3.2.4 Uploading ERwin Model
	3.2.5 Leaf Registration
	3.2.6 Leaf Registration Procedure
	3.2.6.1 Executing Leaf Registration Procedure

	3.2.7 Modify Unique Indexes
	3.2.8 Executing Object Registration Validation

	3.3 Adding Custom Instrument Tables
	3.3.1 Super-class Entities
	3.3.2 Steps in Creating Custom Instrument Table
	3.3.3 Setting Table Classifications
	3.3.4 Unique Index
	3.3.5 Portfolio Selection
	3.3.5.1 Adding a new user defined column as a Portfolio column for use in all Instrument tables

	3.3.6 Object Registration Validation

	3.4 Adding Custom Transaction Tables
	3.4.1 Super-class Entities
	3.4.2 Steps In Creating Custom Transaction Table
	3.4.3 Setting Table Classifications
	3.4.3.1 Setting Processing Key Property

	3.4.4 Unique Index
	3.4.5 Object Registration Validation

	3.5 Adding Custom Lookup Tables
	3.5.1 Steps to Create Lookup Table
	3.5.2 Setting Column Properties
	3.5.3 Setting Table Classifications
	3.5.4 Registering Lookup Tables and Validation
	3.5.5 Lookup Table Driver Definition
	3.5.5.1 Mapping of Column to Processing Key
	3.5.5.2 Mapping of Column for Range Property
	3.5.5.3 Mapping of Column for Look up Return Value

	3.6 Adding Management Ledger Class tables
	3.6.1 Super-class Entities
	3.6.2 Steps to create Custom Ledger Class Table
	3.6.3 Setting Table Classifications
	3.6.4 Setting Processing Key Property
	3.6.5 Unique Index
	3.6.6 Removing the Dimensions
	3.6.7 Object Registration Validation

	3.7 Object Registration and Validation
	3.7.1 User-Assignable Table Classification
	3.7.2 Requirement For Table Classification
	3.7.3 Validation Procedure
	3.7.4 Executing the Validation Procedure
	3.7.5 Exception Messages

	3.8 Defining Alternate Rate Output Columns
	3.8.1 User-Defined Properties
	3.8.2 Uploading the Model

	3.9 User Defined Properties
	3.9.1 Table Level User Defined Properties
	3.9.2 Column Level User Defined Properties

	3.10 Modifying the Precision of Balance Columns In Ledger Stat

	4 Utilities
	4.1 Reverse Population
	4.1.1 Tables As Part Of Reverse Population
	4.1.2 Reverse Population Procedure
	4.1.3 Executing the Reverse Population Function
	4.1.4 Exception Messages

	4.2 Product Instrument Mapping
	4.2.1 Tables Requiring Synchronization
	4.2.2 Product Instrument Table Map Procedure
	4.2.3 Executing the PRODUCT_INSTRUMENT_TABLE_MAP Procedure
	4.2.4 Exception Messages

	4.3 Instrument Synchronization
	4.3.1 Tables Requiring Synchronization
	4.3.2 Dimension Member Synchronization
	4.3.3 Codes Synchronization
	4.3.4 Executing the SYNCHRONIZE_INSTRUMENT Procedure
	4.3.5 Exception Messages

	4.4 Stage Synchronization
	4.4.1 Tables Requiring Synchronization
	4.4.2 Dimension Member Synchronization
	4.4.3 Code Synchronization
	4.4.4 Executing the Synchronize Stage Procedure
	4.4.5 Exception Messages

	4.5 Ledger Load Undo
	4.5.1 Parameters
	4.5.2 Undo Mechanism
	4.5.3 Executing Undo Engine
	4.5.4 Exception Messages

	4.6 Data Slicing
	4.6.1 Overview
	4.6.2 Process flow
	4.6.3 Executing the Data Slicing Function

	5 Data Loaders
	5.1 Dimension Loaders
	5.1.1 Dimension Loader Overview
	5.1.2 Enhancements to Support Alphanumeric Code in Dimensions
	5.1.3 Tables that are Part Of Staging
	5.1.4 Populating STG_<DIMENSION>_HIER_INTF Table
	5.1.5 Dimension Load Procedure
	5.1.5.1 Dimension Leaf Member Set Up
	5.1.5.2 Deletion of Dimension Members used in a Hierarchy

	5.1.6 Setting up Dimension Loader
	5.1.7 Executing the Dimension Load Procedure
	5.1.8 Exception Messages
	5.1.9 Executing the Dimension Load Procedure using Master Table approach
	5.1.9.1 Approach 1
	5.1.9.2 Approach 2

	5.1.10 Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from DIM_<DIMENSION>_ATTR table
	5.1.11 Truncate Stage Tables Procedure

	5.2 Simple Dimension Loader
	5.2.1 Creating Simple Dimension Stage Table
	5.2.2 Configuration of Setup Tables
	5.2.2.1 REV_DIMENSIONS_B Table
	5.2.2.2 Setup Table Configuration Mapping

	5.2.3 Executing the Simple Dimension Load Procedure
	5.2.4 Exception Messages

	5.3 Historical Rates Data Loader
	5.3.1 Tables Related to Historical Rates
	5.3.2 Populating Stage Tables
	5.3.3 Executing the Historical Rates Data Loader T2T
	5.3.4 Re-Load Of Historical Rates

	5.4 Forecast Rate Data Loader
	5.4.1 Forecast Rate Data Loader Tables
	5.4.2 Populating Forecast Rate Stage Tables
	5.4.3 Forecast Rate Loader Program
	5.4.4 Executing the Forecast Rate Data Load Procedure
	5.4.4.1 Forecast Rate Loader – Method 1
	5.4.4.2 Forecast Rate Loader – Method 2

	5.4.5 Exception Messages

	5.5 Prepayment Rate Data Loader
	5.5.1 Prepayment Rate Loader Tables
	5.5.2 Prepayment Rate Data Loader
	5.5.3 Executing the Prepayment Model Data Loader
	5.5.4 Exception Messages

	5.6 Stage Instrument Table Loader
	5.6.1 Stage Tables
	5.6.2 Populating Stage Tables
	5.6.3 Mapping To OFSAA Processing Tables
	5.6.4 Populating Accounts Dimension
	5.6.5 Executing T2T Data Movement Tasks
	5.6.6 Re-Load Of Instrument Data

	5.7 Customer T2T Loading
	5.7.1 Dependencies
	5.7.2 Flow Diagram for Customer T2T
	5.7.3 Executing T2T Data Movement Task

	5.8 DIM_Party Population
	5.8.1 Execution from ICC Batch

	5.9 Instrument Summary Table
	5.9.1 Mapping To OFSAA Summary Table
	5.9.2 Dependencies
	5.9.3 Executing T2T Data Movement Tasks
	5.9.4 Re-Load Of Instrument Summary Data

	5.10 Transaction Summary Table Loader
	5.10.1 Stage Tables
	5.10.2 Populating Stage Tables
	5.10.3 Mapping To OFSAA Processing Tables
	5.10.4 Dependencies
	5.10.5 Executing T2T Data Movement Tasks
	5.10.6 Re-Load Of Transaction Summary Data

	5.11 Ledger Data Loader
	5.12 Overview of the Load Process
	5.13 Features of the load procedure
	5.13.1 Limitations
	5.13.2 Setup for the LEDGER_STAT load utility
	5.13.2.1 FSI_DATA_IDENTITY insert/update during Ledger_load
	5.13.2.2 Creating View on LEDGER_STAT table
	5.13.2.3 Creating Load Table
	5.13.2.4 Creating Unique Index on Load Table
	5.13.2.5 Creating Views on Load Table
	5.13.2.6 Setting up Global Temporary Table
	5.13.2.7 Tables Related to LEDGER_STAT Load Procedure
	5.13.2.8 Populating Stage Tables
	5.13.2.9 Executing LEDGER_STAT Load Procedure
	5.13.2.10 CALENDAR_MONTHS
	5.13.2.11 FISCAL_ONE_MONTH
	5.13.2.12 FISCAL_RANGE
	5.13.2.13 Executing LEDGER_STAT Load Procedure for MULTI CURRENCIES

	5.14 Exception Messages
	5.15 Tables Cleanup After Truncation Of Ledger_Stat
	5.15.1 Ledger Stat Clean up Procedure

	5.16 Cash Flow Loader
	5.16.1 Tables related to Cash Flow Loader
	5.16.2 Data Validation Steps
	5.16.3 Executing Cash Flow Loader
	5.16.3.1 Method 1
	5.16.3.2 Method 2

	5.16.4 Exception Messages

	5.17 Pricing Management Transfer Rate Population Procedure
	5.18 ALMBI Transformation
	5.19 Hierarchy Transformation
	5.19.1 Executing the Hierarchy Flattening Transformation

	5.20 Dim Dates Population
	5.21 Fact Ledger Stat Transformation
	5.22 Financial Element Dimension Population
	5.22.1 Prerequisites
	5.22.2 Tables Used by the Financial_Elem_Update Transformation
	5.22.3 Executing the Financial_Elem_Update Transformation
	5.22.4 Checking the Execution Status

	5.23 Payment Pattern Loader
	5.23.1 Executing the Payment Pattern Loader Procedure
	5.23.2 Exception Messages

	5.24 GAP Limits Loader
	5.24.1 GAP Limits Loader Tables
	5.24.2 Executing the Gap Limit loader Procedure
	5.24.3 Exception Messages

	5.25 Material Currency Identifier
	5.25.1 Material Currency Identifier Tables
	5.25.2 Executing the Material Currency loader Procedure
	5.25.3 Exception Messages

	5.26 Behaviour Pattern Loader
	5.26.1 Executing the Behaviour Pattern Loader Procedure
	5.26.2 Exception Messages

	6 SCD Configuration
	6.1 Overview of SCD Process
	6.1.1 Type 1
	6.1.2 Type 2

	6.2 Prerequisites
	6.3 Tables Used by the SCD Component
	6.4 Executing the SCD Component
	6.5 Checking the Execution Status

