
Oracle® Database
Transactional Event Queues and Advanced
Queuing User's Guide

20c
F17353-03
April 2020

Oracle Database Transactional Event Queues and Advanced Queuing User's Guide, 20c

F17353-03

Copyright © 1996, 2020, Oracle and/or its affiliates.

Primary Author: Maitreyee Chaliha

Contributing Authors: Denis Raphaely, Neerja Bhatt, Charles Hall

Contributors: Alan Downing, Padmanabha Bhat, Longxing Deng , John Leinaweaver , Stella Kister, Qiang
Liu, Anil Madan, Abhishek Saxena, James Wilson

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxi

Documentation Accessibility xxxi

Related Documents xxxi

Conventions xxxii

 Changes in This Release for Oracle Database Advanced Queuing
User's Guide

Changes in Oracle Database Advanced Queuing Release 20c xxxiii

Changes in Oracle Database Advanced Queuing Release 19c, Version 19.2 xxxvi

Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2.) xxxvii

Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2) xxxviii

Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1) xxxviii

1 Introduction to Transactional Event Queues and Advanced Queuing

What Is Queuing? 1-1

Transactional Event Queues Leverage Oracle Database 1-2

Transactional Event Queues and Advanced Queuing in Integrated Application
Environments 1-6

Transactional Event Queues and Advanced Queuing Client/Server
Communication 1-8

Multiconsumer Dequeuing of the Same Message 1-8

Transactional Event Queues and Advanced Queuing Implementation of
Workflows 1-11

Transactional Event Queues and Advanced Queuing Implementation of Publish/
Subscribe 1-12

Buffered Messaging 1-15

Asynchronous Notifications 1-19

Views on Registration 1-21

Event-Based Notification 1-22

Notification Grouping by Time 1-22

Enqueue Features 1-22

iii

Dequeue Features 1-24

Propagation Features 1-31

Message Format Transformation 1-38

Other Oracle Database Advanced Queuing Features 1-39

Interfaces to Transactional Event Queues and Advanced Queuing 1-43

2 Basic Components of Oracle Transactional Event Queues and
Advanced Queuing

Object Name 2-1

Type Name 2-2

AQ Agent Type 2-2

AQ Recipient List Type 2-3

AQ Agent List Type 2-3

AQ Subscriber List Type 2-3

AQ Registration Information List Type 2-3

AQ Post Information List Type 2-3

AQ Registration Information Type 2-3

AQ Notification Descriptor Type 2-5

AQ Message Properties Type 2-5

AQ Post Information Type 2-6

AQ$_NTFN_MSGID_ARRAY Type 2-6

Enumerated Constants for AQ Administrative Interface 2-7

Enumerated Constants for AQ Operational Interface 2-7

AQ Background Processes 2-8

Queue Monitor Processes 2-8

Job Queue Processes 2-9

AQ Background Architecture 2-9

3 Oracle Transactional Event Queues and Advanced Queuing:
Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Database Advanced Queuing 3-1

Using PL/SQL to Access Oracle Database Advanced Queuing 3-2

Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced
Queuing 3-3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces 3-3

Oracle Transactional Event Queues and Advanced Queuing Administrative
Interfaces 3-4

Oracle Database Advanced Queuing Operational Interfaces 3-7

Using OCCI to Access Oracle Database Advanced Queuing 3-15

iv

Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database
Advanced Queuing 3-16

Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database
Advanced Queuing 3-18

4 Managing Oracle Transactional Event Queues and Advanced
Queuing

Oracle Database Advanced Queuing Compatibility Parameters 4-1

Queue Security and Access Control 4-1

Oracle Database Advanced Queuing Security 4-2

Administrator Role 4-2

User Role 4-3

Access to Oracle Database Advanced Queuing Object Types 4-3

Queue Security 4-3

Queue Privileges and Access Control 4-4

OCI Applications and Queue Access 4-4

Security Required for Propagation 4-4

Security Required for AQ Buffered Messages on Oracle RAC 4-5

Queue Table Export/Import 4-5

Exporting Queue Table Data 4-5

Importing Queue Table Data 4-7

Data Pump Export and Import 4-7

Oracle Enterprise Manager Support for AQ Queues 4-8

Using Oracle Database Advanced Queuing with XA 4-8

Restrictions on Queue Management 4-9

Subscribers 4-9

DML Not Supported on Queue Tables or Associated IOTs 4-9

Propagation from Object Queues with REF Payload Attributes 4-10

Collection Types in Message Payloads 4-10

Synonyms on Queue Tables and Queues 4-10

Synonyms on Object Types 4-10

Tablespace Point-in-Time Recovery 4-10

Virtual Private Database 4-10

Managing Propagation 4-11

EXECUTE Privileges Required for Propagation 4-11

Propagation from Object Queues 4-11

Optimizing Propagation 4-12

Handling Failures in Propagation 4-13

v

5 Interoperability of Transactional Event Queue with Apache Kafka

Setup and Prerequisites 5-1

Connecting from Apache Kafka to Oracle TEQ (Confluent Platform and CLI
Example) 5-1

Connecting from Oracle TEQ to Apache Kafka (Confluent Platform and CLI
Example) 5-3

Monitoring Message Transfer 5-5

6 Kafka Java Client Interface for Oracle Transactional Event Queues

Apache Kafka Overview 6-1

Kafka Java Client for Transactional Event Queues 6-1

Configuring Kafka Java Client for Transactional Event Queues 6-2

Kafka Client Interfaces 6-5

Overview of Kafka Producer Implementation for TEQ 6-5

Overview of Kafka Consumer implementation for TEQ 6-7

Overview of Kafka Admin Implementation for TEQ 6-8

Examples: How to Use 6-9

7 Java Message Service for Transactional Event Queues and
Advanced Queuing

Java Messaging Service Interface for Oracle Transactional Event Queues and
Advanced Queuing 7-1

General Features of JMS and Oracle JMS 7-1

JMS Connection and Session 7-2

JMS Destination 7-7

System-Level Access Control in JMS 7-8

Destination-Level Access Control in JMS 7-8

Retention and Message History in JMS 7-9

Supporting Oracle Real Application Clusters in JMS 7-9

Supporting Statistics Views in JMS 7-10

Structured Payload/Message Types in JMS 7-10

JMS Message Headers 7-10

JMS Message Properties 7-12

JMS Message Bodies 7-13

Using Message Properties with Different Message Types 7-15

Buffered Messaging with Oracle JMS 7-16

Buffered Messaging in JMS 7-18

JMS Point-to-Point Model Features 7-20

JMS Publish/Subscribe Model Features 7-22

vi

JMS Publish/Subscribe Overview 7-22

DurableSubscriber 7-23

RemoteSubscriber 7-23

TopicPublisher 7-24

Recipient Lists 7-24

TopicReceiver 7-24

TopicBrowser 7-24

Setting Up JMS Publish/Subscribe Operations 7-25

JMS Message Producer Features 7-26

Priority and Ordering of Messages 7-26

Specifying a Message Delay 7-27

Specifying a Message Expiration 7-27

Message Grouping 7-27

JMS Message Consumer Features 7-28

Receiving Messages 7-28

Message Navigation in Receive 7-28

Browsing Messages 7-29

Remove No Data 7-30

Retry with Delay Interval 7-30

Asynchronously Receiving Messages Using MessageListener 7-30

Exception Queues 7-31

JMS Propagation 7-32

RemoteSubscriber 7-32

Scheduling Propagation 7-33

Enhanced Propagation Scheduling Capabilities 7-33

Exception Handling During Propagation 7-35

Message Transformation with JMS AQ 7-35

JMS Streaming 7-36

JMS Streaming with Enqueue 7-36

JMS Streaming with Dequeue 7-37

Java EE Compliance 7-40

Oracle Java Message Service Basic Operations 7-40

EXECUTE Privilege on DBMS_AQIN 7-41

Registering a ConnectionFactory 7-41

Registering Through the Database Using JDBC Connection Parameters 7-41

Registering Through the Database Using a JDBC URL 7-42

Registering Through LDAP Using JDBC Connection Parameters 7-42

Registering Through LDAP Using a JDBC URL 7-43

Unregistering a Queue/Topic ConnectionFactory 7-44

Unregistering Through the Database 7-44

Unregistering Through LDAP 7-45

vii

Getting a QueueConnectionFactory or TopicConnectionFactory 7-46

Getting a QueueConnectionFactory with JDBC URL 7-46

Getting a QueueConnectionFactory with JDBC Connection Parameters 7-46

Getting a TopicConnectionFactory with JDBC URL 7-47

Getting a TopicConnectionFactory with JDBC Connection Parameters 7-47

Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP 7-48

Getting a Queue or Topic in LDAP 7-48

Creating an AQ Queue Table 7-49

Creating a Queue 7-50

Creating a Point-to-Point Queue 7-50

Creating a Publish/Subscribe Topic 7-50

Creating a TEQ Queue for Point-to-Point Queue and Publish/Subscribe
Topic 7-52

Getting an AQ Queue Table 7-53

Granting and Revoking Privileges 7-53

Granting Oracle Database Advanced Queuing System Privileges 7-53

Revoking Oracle Database Advanced Queuing System Privileges 7-54

Granting Publish/Subscribe Topic Privileges 7-54

Revoking Publish/Subscribe Topic Privileges 7-55

Granting Point-to-Point Queue Privileges 7-55

Revoking Point-to-Point Queue Privileges 7-56

Managing Destinations 7-56

Starting a Destination 7-57

Stopping a Destination 7-57

Altering a Destination 7-58

Dropping a Destination 7-58

Propagation Schedules 7-58

Scheduling a Propagation 7-59

Enabling a Propagation Schedule 7-59

Altering a Propagation Schedule 7-60

Disabling a Propagation Schedule 7-60

Unscheduling a Propagation 7-61

Oracle Java Message Service Point-to-Point 7-61

Creating a Connection with User Name/Password 7-62

Creating a Connection with Default ConnectionFactory Parameters 7-62

Creating a QueueConnection with User Name/Password 7-62

Creating a QueueConnection with an Open JDBC Connection 7-63

Creating a QueueConnection with Default ConnectionFactory Parameters 7-63

Creating a QueueConnection with an Open OracleOCIConnectionPool 7-63

Creating a Session 7-64

Creating a QueueSession 7-64

viii

Creating a QueueSender 7-65

Sending Messages Using a QueueSender with Default Send Options 7-65

Sending Messages Using a QueueSender by Specifying Send Options 7-66

Creating a QueueBrowser for Standard JMS Type Messages 7-67

Creating a QueueBrowser for Standard JMS Type Messages, Locking
Messages 7-67

Creating a QueueBrowser for Oracle Object Type Messages 7-68

Creating a QueueBrowser for Oracle Object Type Messages, Locking
Messages 7-69

Creating a QueueReceiver for Standard JMS Type Messages 7-70

Creating a QueueReceiver for Oracle Object Type Messages 7-71

Oracle Java Message Service Publish/Subscribe 7-72

Creating a Connection with User Name/Password 7-73

Creating a Connection with Default ConnectionFactory Parameters 7-73

Creating a TopicConnection with User Name/Password 7-73

Creating a TopicConnection with Open JDBC Connection 7-74

Creating a TopicConnection with an Open OracleOCIConnectionPool 7-74

Creating a Session 7-74

Creating a TopicSession 7-75

Creating a TopicPublisher 7-75

Publishing Messages with Minimal Specification 7-75

Publishing Messages Specifying Topic 7-77

Publishing Messages Specifying Delivery Mode, Priority, and TimeToLive 7-77

Publishing Messages Specifying a Recipient List 7-78

Creating a DurableSubscriber for a JMS Topic Without Selector 7-79

Creating a DurableSubscriber for a JMS Topic with Selector 7-80

Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector 7-81

Creating a DurableSubscriber for an Oracle Object Type Topic with Selector 7-82

Specifying Transformations for Topic Subscribers 7-83

Creating a Remote Subscriber for JMS Messages 7-85

Creating a Remote Subscriber for Oracle Object Type Messages 7-86

Specifying Transformations for Remote Subscribers 7-87

Unsubscribing a Durable Subscription for a Local Subscriber 7-88

Unsubscribing a Durable Subscription for a Remote Subscriber 7-89

Creating a TopicReceiver for a Topic of Standard JMS Type Messages 7-90

Creating a TopicReceiver for a Topic of Oracle Object Type Messages 7-91

Creating a TopicBrowser for Standard JMS Messages 7-92

Creating a TopicBrowser for Standard JMS Messages, Locking Messages 7-93

Creating a TopicBrowser for Oracle Object Type Messages 7-94

Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages 7-95

Browsing Messages Using a TopicBrowser 7-96

Oracle Java Message Service Shared Interfaces 7-96

ix

Oracle Database Advanced Queuing JMS Operational Interface: Shared
Interfaces 7-97

Starting a JMS Connection 7-97

Getting a JMS Connection 7-97

Committing All Operations in a Session 7-97

Rolling Back All Operations in a Session 7-97

Getting the JDBC Connection from a Session 7-98

Getting the OracleOCIConnectionPool from a JMS Connection 7-98

Creating a BytesMessage 7-98

Creating a MapMessage 7-98

Creating a StreamMessage 7-99

Creating an ObjectMessage 7-99

Creating a TextMessage 7-99

Creating a JMS Message 7-99

Creating an AdtMessage 7-99

Setting a JMS Correlation Identifier 7-100

Specifying JMS Message Properties 7-100

Setting a Boolean Message Property 7-101

Setting a String Message Property 7-101

Setting an Integer Message Property 7-101

Setting a Double Message Property 7-101

Setting a Float Message Property 7-102

Setting a Byte Message Property 7-102

Setting a Long Message Property 7-102

Setting a Short Message Property 7-102

Setting an Object Message Property 7-103

Setting Default TimeToLive for All Messages Sent by a MessageProducer 7-103

Setting Default Priority for All Messages Sent by a MessageProducer 7-103

Creating an AQjms Agent 7-104

Receiving a Message Synchronously 7-104

Using a Message Consumer by Specifying Timeout 7-104

Using a Message Consumer Without Waiting 7-105

Receiving Messages from a Destination Using a Transformation 7-106

Specifying the Navigation Mode for Receiving Messages 7-107

Receiving a Message Asynchronously 7-107

Specifying a Message Listener at the Message Consumer 7-108

Specifying a Message Listener at the Session 7-109

Getting Message ID 7-109

Getting the Correlation Identifier 7-109

Getting the Message Identifier 7-109

Getting JMS Message Properties 7-109

x

Getting a Boolean Message Property 7-110

Getting a String Message Property 7-110

Getting an Integer Message Property 7-110

Getting a Double Message Property 7-110

Getting a Float Message Property 7-111

Getting a Byte Message Property 7-111

Getting a Long Message Property 7-111

Getting a Short Message Property 7-111

Getting an Object Message Property 7-111

Closing and Shutting Down 7-112

Closing a MessageProducer 7-112

Closing a Message Consumer 7-112

Stopping a JMS Connection 7-112

Closing a JMS Session 7-112

Closing a JMS Connection 7-113

Troubleshooting 7-113

Getting a JMS Error Code 7-113

Getting a JMS Error Number 7-113

Getting an Exception Linked to a JMS Exception 7-113

Printing the Stack Trace for a JMS Exception 7-114

Setting an Exception Listener 7-114

Getting an Exception Listener 7-114

Oracle Java Message Service Types Examples 7-118

How to Set Up the Oracle Database Advanced Queuing JMS Type Examples 7-118

JMS BytesMessage Examples 7-122

JMS StreamMessage Examples 7-126

JMS MapMessage Examples 7-131

More Oracle Database Advanced Queuing JMS Examples 7-137

8 Oracle Database Advanced Queuing Operations Using PL/SQL

Using Secure Queues 8-1

Enqueuing Messages 8-2

Enqueuing an Array of Messages 8-11

Listening to One or More Queues 8-12

Dequeuing Messages 8-13

Dequeuing an Array of Messages 8-21

Registering for Notification 8-23

Unregistering for Notification 8-24

Posting for Subscriber Notification 8-24

Adding an Agent to the LDAP Server 8-25

xi

Removing an Agent from the LDAP Server 8-26

9 Oracle Transactional Event Queues and Advanced Queuing
Performance and Scalability

Transactional Event Queues 9-1

Transactional Event Queues and the Message Cache 9-2

Transactional Event Queues and Enqueuing / Dequeuing Messages 9-2

Transactional Event Queues and Native JMS Support 9-2

Transactional Event Queues and Partitioning 9-3

Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC)
9-3

Transactional Event Queues and Message Retention 9-4

Transactional Event Queues and Seekable Subscribers 9-4

Transactional Event Queues Restrictions 9-5

Transactional Event Queues Tuning 9-5

User Event Streaming 9-6

AQ Queues 9-8

Persistent Messaging Basic Tuning Tips 9-8

Memory Requirements 9-8

Using Storage Parameters 9-9

I/O Configuration 9-9

Running Enqueue and Dequeue Processes Concurrently in a Single Queue
Table 9-9

Running Enqueue and Dequeue Processes Serially in a Single Queue
Table 9-10

Creating Indexes on a Queue Table 9-10

Other Tips for Queues 9-10

Propagation Tuning Tips 9-11

Buffered Messaging Tuning 9-11

Persistent Messaging Performance Overview for Queues 9-11

Queues and Oracle Real Application Clusters 9-12

Oracle Database Advanced Queuing in a Shared Server Environment 9-12

Performance Views 9-13

10

Oracle Transactional Event Queue and Advanced Queuing Views

DBA_QUEUE_TABLES: All Queue Tables in Database 10-3

USER_QUEUE_TABLES: Queue Tables in User Schema 10-3

ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User 10-4

DBA_QUEUES: All Queues in Database 10-4

USER_QUEUES: Queues In User Schema 10-4

xii

ALL_QUEUES: Queues for Which User Has Any Privilege 10-4

DBA_QUEUE_SCHEDULES: All Propagation Schedules 10-5

USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema 10-5

QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege 10-5

AQ$<Queue_Table_Name>: Messages in Queue Table 10-6

AQ$<Queue_Table_Name_S>: Queue Subscribers 10-10

AQ$<Queue_Table_Name_R>: Queue Subscribers and Their Rules 10-10

AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer
Queue 10-11

AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer
Queue 10-11

DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database 10-12

USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema 10-12

ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue
Privileges 10-13

DBA_TRANSFORMATIONS: All Transformations 10-13

DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions 10-13

USER_TRANSFORMATIONS: User Transformations 10-13

USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions 10-14

DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations 10-14

USER_SUBSCR_REGISTRATIONS: User Subscription Registrations 10-14

AQ$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered
for Internet Access 10-15

V$AQ: Number of Messages in Different States in Database 10-15

V$BUFFERED_QUEUES: All Buffered Queues in the Instance 10-16

V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance 10-16

V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance 10-16

V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance 10-17

V$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for
Persistent Queues 10-17

V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues
in the Instance 10-17

V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in
the Instance 10-18

V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the
Sending (Source) Side 10-18

V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the
Receiving (Destination) Side 10-18

V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications 10-19

V$METRICGROUP: Information About the Metric Group 10-19

V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues 10-19

V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics 10-21

V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics 10-21

xiii

V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List 10-23

V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master
Background Coordinator Process (AQPC) 10-23

V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator 10-24

V$AQ_SERVER_POOL: Performance Statistics for all Servers 10-24

V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description 10-24

V$AQ_IPC_ACTIVE_MSGS 10-25

V$AQ_IPC_MSG_STATS 10-25

V$AQ_IPC_PENDING_MSGS 10-25

V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations 10-26

V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections 10-26

V$AQ_SUBSCRIBER_LOAD: Durable Subscribers 10-26

V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers 10-27

V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber 10-27

V$AQ_MESSAGE_CACHE: Performance Statistics 10-27

11

Monitoring Oracle Transactional Event Queues and Advanced
Queuing

Importance of Performance Monitoring 11-1

Monitoring Data Flow and UI Framework Setup 11-2

Key Metrics Measured 11-6

Scripts for Setting up Monitoring 11-7

Measuring Kafka Java Client and Kafka Interoperability with TEQ 11-8

Troubleshooting 11-8

12

Troubleshooting Oracle Database Advanced Queuing

Debugging Oracle Database Advanced Queuing Propagation Problems 12-1

Oracle Database Advanced Queuing Error Messages 12-3

13

Internet Access to Oracle Database Advanced Queuing

Overview of Oracle Database Advanced Queuing Operations Over the Internet 13-1

Oracle Database Advanced Queuing Internet Operations Architecture 13-1

Internet Message Payloads 13-2

Configuring the Web Server to Authenticate Users Sending POST Requests 13-3

Client Requests Using HTTP 13-3

Oracle Database Advanced Queuing Servlet Responses Using HTTP 13-4

Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS 13-4

Deploying the Oracle Database Advanced Queuing XML Servlet 13-5

Internet Data Access Presentation (IDAP) 13-6

xiv

SOAP Message Structure 13-6

SOAP Envelope 13-7

SOAP Header 13-7

SOAP Body 13-7

SOAP Method Invocation 13-7

HTTP Headers 13-7

Method Invocation Body 13-8

Results from a Method Request 13-8

Request and Response IDAP Documents 13-9

IDAP Client Requests for Enqueue 13-9

IDAP Client Requests for Dequeue 13-11

IDAP Client Requests for Registration 13-13

IDAP Client Requests to Commit a Transaction 13-14

IDAP Client Requests to Roll Back a Transaction 13-14

IDAP Server Response to an Enqueue Request 13-14

IDAP Server Response to a Dequeue Request 13-15

IDAP Server Response to a Register Request 13-15

IDAP Commit Response 13-15

IDAP Rollback Response 13-15

IDAP Notification 13-16

IDAP Response in Case of Error 13-16

Notification of Messages by E-Mail 13-16

14

Oracle Database Advanced Queuing Administrative Interface

Managing AQ Queue Tables 14-1

Creating an AQ Queue Table 14-2

Altering an AQ Queue Table 14-9

Dropping an AQ Queue Table 14-10

Purging an AQ Queue Table 14-11

Migrating an AQ Queue Table 14-13

Managing AQ Queues 14-14

Creating an AQ Queue 14-14

Altering an AQ Queue 14-17

Starting an AQ Queue 14-17

Stopping an AQ Queue 14-18

Dropping an AQ Queue 14-18

Managing Transformations 14-18

Creating a Transformation 14-19

Modifying a Transformation 14-20

Dropping a Transformation 14-20

xv

Granting and Revoking Privileges 14-20

Granting Oracle Database Advanced Queuing System Privileges 14-21

Revoking Oracle Database Advanced Queuing System Privileges 14-21

Granting Queue Privileges 14-22

Revoking Queue Privileges 14-23

Managing Subscribers 14-23

Adding a Subscriber 14-23

Altering a Subscriber 14-25

Removing a Subscriber 14-26

Managing Propagations 14-27

Scheduling a Queue Propagation 14-27

Verifying Propagation Queue Type 14-29

Altering a Propagation Schedule 14-30

Enabling a Propagation Schedule 14-31

Disabling a Propagation Schedule 14-31

Unscheduling a Queue Propagation 14-32

Managing Oracle Database Advanced Queuing Agents 14-32

Creating an Oracle Database Advanced Queuing Agent 14-33

Altering an Oracle Database Advanced Queuing Agent 14-33

Dropping an Oracle Database Advanced Queuing Agent 14-33

Enabling Database Access 14-34

Disabling Database Access 14-34

Adding an Alias to the LDAP Server 14-34

Deleting an Alias from the LDAP Server 14-34

A Nonpersistent Queues

Creating Nonpersistent Queues A-1

Managing Nonpersistent Queues A-2

Compatibility of Nonpersistent Queues A-2

Nonpersistent Queue Notification A-2

Restrictions on Nonpersistent Queues A-3

B Oracle JMS and Oracle AQ XML Servlet Error Messages

Oracle JMS Error Messages B-1

Oracle AQ XML Servlet Error Messages B-14

C Oracle Messaging Gateway

Introduction to Oracle Messaging Gateway C-1

Oracle Messaging Gateway Overview C-1

xvi

Oracle Messaging Gateway Features C-2

Oracle Messaging Gateway Architecture C-3

Administration Package DBMS_MGWADM C-4

Oracle Messaging Gateway Agent C-4

Oracle Database C-5

Non-Oracle Messaging Systems C-5

Propagation Processing Overview C-5

Oracle Database AQ Buffered Messages and Messaging Gateway C-6

Getting Started with Oracle Messaging Gateway C-6

Oracle Messaging Gateway Prerequisites C-7

Loading and Setting Up Oracle Messaging Gateway C-7

Loading Database Objects into the Database C-7

Modifying listener.ora for the External Procedure C-8

Modifying tnsnames.ora for the External Procedure C-9

Setting Up an mgw.ora Initialization File C-9

Creating an Oracle Messaging Gateway Administrator User C-10

Creating an Oracle Messaging Gateway Agent User C-11

Configuring Oracle Messaging Gateway Connection Information C-11

Configuring Oracle Messaging Gateway in an Oracle RAC Environment C-11

Setting Up Non-Oracle Messaging Systems C-13

Setting Up for TIB/Rendezvous C-13

Setting Up for WebSphere MQ Base Java or JMS C-14

Verifying the Oracle Messaging Gateway Setup C-14

Unloading Oracle Messaging Gateway C-15

Understanding the mgw.ora Initialization File C-15

mgw.ora Initialization Parameters C-16

mgw.ora Environment Variables C-16

mgw.ora Java Properties C-18

mgw.ora Comment Lines C-20

Working with Oracle Messaging Gateway C-20

Configuring the Oracle Messaging Gateway Agent C-21

Creating a Messaging Gateway Agent C-21

Removing a Messaging Gateway Agent C-21

Setting Database Connection C-22

Setting the Resource Limits C-22

Starting and Shutting Down the Oracle Messaging Gateway Agent C-22

Starting the Oracle Messaging Gateway Agent C-23

Shutting Down the Oracle Messaging Gateway Agent C-23

Oracle Messaging Gateway Agent Scheduler Job C-23

Running the Oracle Messaging Gateway Agent on Oracle RAC C-24

Configuring Messaging System Links C-25

xvii

Creating a WebSphere MQ Base Java Link C-26

Creating a WebSphere MQ JMS Link C-27

Creating a WebSphere MQ Link to Use SSL C-29

Creating a TIB/Rendezvous Link C-31

Altering a Messaging System Link C-31

Removing a Messaging System Link C-32

Views for Messaging System Links C-32

Configuring Non-Oracle Messaging System Queues C-32

Registering a Non-Oracle Queue C-33

Unregistering a Non-Oracle Queue C-34

View for Registered Non-Oracle Queues C-34

Configuring Oracle Messaging Gateway Propagation Jobs C-35

Propagation Job Overview C-35

Creating an Oracle Messaging Gateway Propagation Job C-36

Enabling and Disabling a Propagation Job C-37

Resetting a Propagation Job C-37

Altering a Propagation Job C-37

Removing a Propagation Job C-38

Propagation Jobs, Subscribers, and Schedules C-39

Propagation Job, Subscriber, Schedule Interface Interoperability C-39

Propagation Job, Subscriber, Schedule Views C-40

Single Consumer Queue as Propagation Source C-40

Configuration Properties C-41

WebSphere MQ System Properties C-41

TIB/Rendezvous System Properties C-43

Optional Link Configuration Properties C-44

Optional Foreign Queue Configuration Properties C-46

Optional Job Configuration Properties C-47

Oracle Messaging Gateway Message Conversion C-48

Converting Oracle Messaging Gateway Non-JMS Messages C-49

Overview of the Non-JMS Message Conversion Process C-49

Oracle Messaging Gateway Canonical Types C-50

Message Header Conversion C-50

Handling Arbitrary Payload Types Using Message Transformations C-50

Handling Logical Change Records C-52

Message Conversion for WebSphere MQ C-54

WebSphere MQ Message Header Mappings C-55

WebSphere MQ Outbound Propagation C-58

WebSphere MQ Inbound Propagation C-59

Message Conversion for TIB/Rendezvous C-59

AQ Message Property Mapping for TIB/Rendezvous C-61

xviii

TIB/Rendezvous Outbound Propagation C-62

TIB/Rendezvous Inbound Propagation C-63

JMS Messages C-64

JMS Outbound Propagation C-65

JMS Inbound Propagation C-65

Monitoring Oracle Messaging Gateway C-65

Oracle Messaging Gateway Log Files C-65

Sample Oracle Messaging Gateway Log File C-66

Interpreting Exception Messages in an Oracle Messaging Gateway Log File C-67

Monitoring the Oracle Messaging Gateway Agent Status C-67

MGW_GATEWAY View C-67

Oracle Messaging Gateway Irrecoverable Error Messages C-69

Other Oracle Messaging Gateway Error Conditions C-71

Monitoring Oracle Messaging Gateway Propagation C-73

Oracle Messaging Gateway Agent Error Messages C-74

Oracle Messaging Gateway Views C-80

MGW_GATEWAY: Configuration and Status Information C-80

MGW_AGENT_OPTIONS: Supplemental Options and Properties C-82

MGW_LINKS: Names and Types of Messaging System Links C-82

MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links C-82

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links C-83

MGW_FOREIGN_QUEUES: Foreign Queues C-84

MGW_JOBS: Messaging Gateway Propagation Jobs C-84

MGW_SUBSCRIBERS: Information for Subscribers C-85

MGW_SCHEDULES: Information About Schedules C-86

D Advanced Queuing Sharded Queues

Managing Sharded Queues D-1

Creating a Sharded Queue D-1

Dropping a Sharded Queue D-2

Altering a Sharded Queue D-3

Setting a Queue Parameter D-3

Unsetting a Queue Parameter D-4

Getting a Queue Parameter D-4

Creating an Exception Queue D-5

Glossary

xix

Index

xx

List of Examples

4-1 Creating Objects Containing VARRAYs 4-10

6-1 Producer.java 6-9

6-2 Consumer.java 6-10

7-1 Registering Through the Database Using JDBC Connection Parameters 7-42

7-2 Registering Through the Database Using a JDBC URL 7-42

7-3 Registering Through LDAP Using JDBC Connection Parameters 7-43

7-4 Registering Through LDAP Using a JDBC URL 7-44

7-5 Unregistering Through the Database 7-45

7-6 Unregistering Through LDAP 7-45

7-7 Getting a QueueConnectionFactory with JDBC URL 7-46

7-8 Getting a QueueConnectionFactory with JDBC Connection Parameters 7-47

7-9 Getting a TopicConnectionFactory with JDBC URL 7-47

7-10 Getting a TopicConnectionFactory with JDBC Connection Parameters 7-48

7-11 Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP 7-48

7-12 Getting a Queue or Topic in LDAP 7-48

7-13 Creating a Queue Table 7-49

7-14 Creating a Point-to-Point Queue 7-50

7-15 Creating a Publish/Subscribe Topic 7-51

7-16 Specifying Max Retries and Max Delays in Messages 7-51

7-17 Getting a Queue Table 7-53

7-18 Granting Oracle Database Advanced Queuing System Privileges 7-54

7-19 Revoking Oracle Database Advanced Queuing System Privileges 7-54

7-20 Granting Publish/Subscribe Topic Privileges 7-55

7-21 Revoking Publish/Subscribe Topic Privileges 7-55

7-22 Granting Point-to-Point Queue Privileges 7-56

7-23 Revoking Point-to-Point Queue Privileges 7-56

7-24 Starting a Destination 7-57

7-25 Stopping a Destination 7-57

7-26 Altering a Destination 7-58

7-27 Dropping a Destination 7-58

7-28 Scheduling a Propagation 7-59

7-29 Enabling a Propagation Schedule 7-60

7-30 Altering a Propagation Schedule 7-60

7-31 Disabling a Propagation Schedule 7-61

7-32 Unscheduling a Propagation 7-61

xxi

7-33 Creating a QueueConnection with User Name/Password 7-63

7-34 Creating a QueueConnection with an Open JDBC Connection 7-63

7-35 Creating a QueueConnection from a Java Procedure Inside Database 7-63

7-36 Creating a QueueConnection with an Open OracleOCIConnectionPool 7-64

7-37 Creating a Transactional QueueSession 7-65

7-38 Creating a Sender to Send Messages to Any Queue 7-65

7-39 Creating a Sender to Send Messages to a Specific Queue 7-65

7-40 Sending Messages Using a QueueSender by Specifying Send Options 1 7-66

7-41 Sending Messages Using a QueueSender by Specifying Send Options 2 7-66

7-42 Creating a QueueBrowser Without a Selector 7-67

7-43 Creating a QueueBrowser With a Specified Selector 7-67

7-44 Creating a QueueBrowser Without a Selector, Locking Messages 7-68

7-45 Creating a QueueBrowser With a Specified Selector, Locking Messages 7-68

7-46 Creating a QueueBrowser for ADTMessages 7-69

7-47 Creating a QueueBrowser for AdtMessages, Locking Messages 7-70

7-48 Creating a QueueReceiver Without a Selector 7-70

7-49 Creating a QueueReceiver With a Specified Selector 7-71

7-50 Creating a QueueReceiver for AdtMessage Messages 7-72

7-51 Creating a TopicConnection with User Name/Password 7-73

7-52 Creating a TopicConnection with Open JDBC Connection 7-74

7-53 Creating a TopicConnection with New JDBC Connection 7-74

7-54 Creating a TopicConnection with Open OracleOCIConnectionPool 7-74

7-55 Creating a TopicSession 7-75

7-56 Publishing Without Specifying Topic 7-76

7-57 Publishing Specifying Correlation and Delay 7-76

7-58 Publishing Specifying Topic 7-77

7-59 Publishing Specifying Priority and TimeToLive 7-78

7-60 Publishing Specifying a Recipient List Overriding Topic Subscribers 7-78

7-61 Creating a Durable Subscriber for a JMS Topic Without Selector 7-79

7-62 Creating a Durable Subscriber for a JMS Topic With Selector 7-81

7-63 Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector 7-82

7-64 Creating a Durable Subscriber for an Oracle Object Type Topic With Selector 7-83

7-65 Sending Messages to a Destination Using a Transformation 7-84

7-66 Specifying Transformations for Topic Subscribers 7-84

7-67 Creating a Remote Subscriber for Topics of JMS Messages 7-85

7-68 Creating a Remote Subscriber for Topics of Oracle Object Type Messages 7-87

7-69 Specifying Transformations for Remote Subscribers 7-88

xxii

7-70 Unsubscribing a Durable Subscription for a Local Subscriber 7-89

7-71 Unsubscribing a Durable Subscription for a Remote Subscriber 7-90

7-72 Creating a TopicReceiver for Standard JMS Type Messages 7-90

7-73 Creating a TopicReceiver for Oracle Object Type Messages 7-92

7-74 Creating a TopicBrowser Without a Selector 7-93

7-75 Creating a TopicBrowser With a Specified Selector 7-93

7-76 Creating a TopicBrowser Without a Selector, Locking Messages While Browsing 7-93

7-77 Creating a TopicBrowser With a Specified Selector, Locking Messages 7-93

7-78 Creating a TopicBrowser for AdtMessage Messages 7-94

7-79 Creating a TopicBrowser for AdtMessage Messages, Locking Messages 7-95

7-80 Creating a TopicBrowser with a Specified Selector 7-96

7-81 Getting Underlying JDBC Connection from JMS Session 7-98

7-82 Getting Underlying OracleOCIConnectionPool from JMS Connection 7-98

7-83 Setting Default TimeToLive for All Messages Sent by a MessageProducer 7-103

7-84 Setting Default Priority Value for All Messages Sent by QueueSender 7-104

7-85 Setting Default Priority Value for All Messages Sent by TopicPublisher 7-104

7-86 Using a Message Consumer by Specifying Timeout 7-105

7-87 JMS: Blocking Until a Message Arrives 7-105

7-88 JMS: Nonblocking Messages 7-106

7-89 JMS: Receiving Messages from a Destination Using a Transformation 7-106

7-90 Specifying Navigation Mode for Receiving Messages 7-107

7-91 Specifying Message Listener at Message Consumer 7-108

7-92 Getting Message Property as an Object 7-112

7-93 Specifying Exception Listener for Connection 7-114

7-94 Using ExceptionListener with MessageListener 7-115

7-95 Getting the Exception Listener for the Connection 7-118

7-96 Setting Up Environment for Running JMS Types Examples 7-118

7-97 Setting Up the Examples 7-122

7-98 Populating and Enqueuing a BytesMessage 7-122

7-99 Dequeuing and Retrieving JMS BytesMessage Data 7-124

7-100 Populating and Enqueuing a JMS StreamMessage 7-126

7-101 Dequeuing and Retrieving Data From a JMS StreamMessage 7-128

7-102 Populating and Enqueuing a JMS MapMessage 7-132

7-103 Dequeuing and Retrieving Data From a JMS MapMessage 7-134

7-104 Enqueuing a Large TextMessage 7-137

7-105 Enqueuing a Large BytesMessage 7-138

8-1 Enqueuing a Message, Specifying Queue Name and Payload 8-7

xxiii

8-2 Enqueuing a Message, Specifying Priority 8-7

8-3 Creating an Enqueue Procedure for LOB Type Messages 8-7

8-4 Enqueuing a LOB Type Message 8-8

8-5 Enqueuing Multiple Messages 8-8

8-6 Adding Subscribers RED and GREEN 8-9

8-7 Enqueuing Multiple Messages to a Multiconsumer Queue 8-9

8-8 Enqueuing Grouped Messages 8-9

8-9 Enqueuing a Message, Specifying Delay and Expiration 8-10

8-10 Enqueuing a Message, Specifying a Transformation 8-10

8-11 Enqueuing an Array of Messages 8-11

8-12 Listening to a Single-Consumer Queue with Zero Timeout 8-13

8-13 Dequeuing Object Type Messages 8-18

8-14 Creating a Dequeue Procedure for LOB Type Messages 8-18

8-15 Dequeuing LOB Type Messages 8-19

8-16 Dequeuing Grouped Messages 8-19

8-17 Dequeuing Messages for RED from a Multiconsumer Queue 8-19

8-18 Dequeue in Browse Mode and Remove Specified Message 8-20

8-19 Dequeue in Locked Mode and Remove Specified Message 8-20

8-20 Dequeuing an Array of Messages 8-22

8-21 Registering for Notifications 8-24

8-22 Posting Object-Type Messages 8-25

14-1 Setting Up AQ Administrative Users 14-7

14-2 Setting Up AQ Administrative Example Types 14-7

14-3 Creating a Queue Table for Messages of Object Type 14-7

14-4 Creating a Queue Table for Messages of RAW Type 14-7

14-5 Creating a Queue Table for Messages of LOB Type 14-7

14-6 Creating a Queue Table for Messages of XMLType 14-8

14-7 Creating a Queue Table for Grouped Messages 14-8

14-8 Creating Queue Tables for Prioritized Messages and Multiple Consumers 14-8

14-9 Creating a Queue Table with Commit-Time Ordering 14-8

14-10 Creating an 8.1-Compatible Queue Table for Multiple Consumers 14-8

14-11 Creating a Queue Table in a Specified Tablespace 14-9

14-12 Creating a Queue Table with Freelists or Freelist Groups 14-9

14-13 Altering a Queue Table by Changing the Primary and Secondary Instances 14-10

14-14 Altering a Queue Table by Changing the Comment 14-10

14-15 Dropping a Queue Table 14-10

14-16 Dropping a Queue Table with force Option 14-11

xxiv

14-17 Purging All Messages in a Queue Table 14-12

14-18 Purging All Messages in a Named Queue 14-12

14-19 Purging All PROCESSED Messages in a Named Queue 14-12

14-20 Purging All Messages in a Named Queue and for a Named Consumer 14-12

14-21 Purging All Messages from a Named Sender 14-13

14-22 Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatible 14-14

14-23 Creating a Queue for Messages of Object Type 14-15

14-24 Creating a Queue for Messages of RAW Type 14-16

14-25 Creating a Queue for Messages of LOB Type 14-16

14-26 Creating a Queue for Grouped Messages 14-16

14-27 Creating a Queue for Prioritized Messages 14-16

14-28 Creating a Queue for Prioritized Messages and Multiple Consumers 14-16

14-29 Creating a Queue to Demonstrate Propagation 14-16

14-30 Creating an 8.1-Style Queue for Multiple Consumers 14-17

14-31 Altering a Queue by Changing Retention Time 14-17

14-32 Starting a Queue with Both Enqueue and Dequeue Enabled 14-17

14-33 Starting a Queue for Dequeue Only 14-18

14-34 Stopping a Queue 14-18

14-35 Dropping a Standard Queue 14-18

14-36 Creating a Transformation 14-19

14-37 Granting AQ System Privileges 14-21

14-38 Revoking AQ System Privileges 14-22

14-39 Granting Queue Privilege 14-22

14-40 Revoking Dequeue Privilege 14-23

14-41 Adding a Subscriber at a Designated Queue at a Database Link 14-24

14-42 Adding a Single Consumer Queue at a Dababase Link as a Subscriber 14-25

14-43 Adding a Subscriber with a Rule 14-25

14-44 Adding a Subscriber and Specifying a Transformation 14-25

14-45 Propagating from a Multiple-Consumer Queue to a Single Consumer Queue 14-25

14-46 Altering a Subscriber Rule 14-26

14-47 Removing a Subscriber 14-26

14-48 Scheduling a Propagation to Queues in the Same Database 14-29

14-49 Scheduling a Propagation to Queues in Another Database 14-29

14-50 Scheduling Queue-to-Queue Propagation 14-29

14-51 Verifying a Queue Type 14-30

14-52 Altering a Propagation Schedule to Queues in the Same Database 14-30

14-53 Altering a Propagation Schedule to Queues in Another Database 14-31

xxv

14-54 Enabling a Propagation to Queues in the Same Database 14-31

14-55 Enabling a Propagation to Queues in Another Database 14-31

14-56 Disabling a Propagation to Queues in the Same Database 14-32

14-57 Disabling a Propagation to Queues in Another Database 14-32

14-58 Unscheduling a Propagation to Queues in the Same Database 14-32

14-59 Unscheduling a Propagation to Queues in Another Database 14-32

C-1 Adding Static Service Information for a Listener C-8

C-2 Configuring MGW_AGENT C-9

C-3 Creating a Messaging Gateway Administrator User C-10

C-4 Creating a Messaging Gateway Agent User C-11

C-5 Configuring Messaging Gateway Connection Information C-11

C-6 Setting Java Properties C-14

C-7 Creating a Messaging Gateway Agent C-21

C-8 Removing a Messaging Gateway Agent C-21

C-9 Setting Database Connection Information C-22

C-10 Setting the Resource Limits C-22

C-11 Starting the Messaging Gateway Agent C-23

C-12 Shutting Down the Messaging Gateway Agent C-23

C-13 Configuring a WebSphere MQ Base Java Link C-26

C-14 Configuring a WebSphere MQ JMS Link C-28

C-15 Configuring a WebSphere MQ Base Java Link for SSL C-30

C-16 Configuring a TIB/Rendezvous Link C-31

C-17 Altering a WebSphere MQ Link C-31

C-18 Removing a Messaging Gateway Link C-32

C-19 Listing All Messaging Gateway Links C-32

C-20 Checking Messaging System Link Configuration Information C-32

C-21 Registering a WebSphere MQ Base Java Queue C-33

C-22 Unregistering a Non-Oracle Queue C-34

C-23 Checking Which Queues Are Registered C-34

C-24 Creating a Messaging Gateway Propagation Job C-37

C-25 Enabling a Messaging Gateway Propagation Job C-37

C-26 Disabling a Messaging Gateway Propagation Job C-37

C-27 Resetting a Propagation Job C-37

C-28 Altering Propagation Job by Adding an Exception Queue C-38

C-29 Altering Propagation Job by Changing the Polling Interval C-38

C-30 Removing a Propagation Job C-39

C-31 Transformation Function Signature C-51

xxvi

C-32 Creating a Transformation C-51

C-33 Registering a Transformation C-52

C-34 Outbound LCR Transformation C-53

C-35 Inbound LCR Transformation C-53

C-36 Sample Messaging Gateway Log File C-66

C-37 Sample Exception Message C-67

xxvii

List of Figures

1-1 Integrated Application Environment Using TEQ and AQ 1-7

1-2 Client/Server Communication Using TEQ and AQ 1-8

1-3 Communication Using a Multiconsumer Queue 1-9

1-4 Explicit and Implicit Recipients of Messages 1-11

1-5 Implementing a Workflow using TEQ and AQ 1-12

1-6 Point-to-Point Messaging 1-13

1-7 Publish/Subscribe Mode 1-13

1-8 Implementing Publish/Subscribe using TEQ and AQ 1-14

1-9 Message Propagation in Oracle Database Advanced Queuing 1-34

1-10 Transformations in Application Integration 1-39

1-11 Architecture for Performing Oracle Database Advanced Queuing Operations Using HTTP 1-43

6-1 Kafka Application Integration with Transactional Event Queue 6-2

7-1 Structure of Oracle Database Advanced Queuing Entries in LDAP Server 7-3

11-1 Monitoring Transaction Event Queue 11-2

11-2 Welcome Page 11-3

11-3 Database Summary 11-4

11-4 Database Wait Class Latency 11-5

11-5 System Summary 11-5

13-1 Architecture for Performing Oracle Database Advanced Queuing Operations Using HTTP 13-2

13-2 HTTP Oracle Database Advanced Queuing Propagation 13-4

C-1 Messaging Gateway Architecture C-4

C-2 Non-JMS Message Conversion C-49

C-3 Oracle Database Advanced Queuing Message Conversion C-51

C-4 Message Conversion for WebSphere MQ Using MGW_BASIC_MSG_T C-54

C-5 Message Conversion for TIB/Rendezvous C-60

C-6 JMS Message Propagation C-64

xxviii

List of Tables

2-1 AQ$_REG_INFO Type Attributes 2-4

2-2 AQ$_DESCRIPTOR Attributes 2-5

2-3 Enumerated Constants in the Oracle Database Advanced Queuing Administrative

Interface 2-7

2-4 Enumerated Constants in the Oracle Database Advanced Queuing Operational Interface 2-7

3-1 Oracle Database Advanced Queuing Programmatic Interfaces 3-2

3-2 Comparison of Oracle Transactional Event Queues and Advanced Queuing

Programmatic Interfaces: Administrative Interface 3-4

3-3 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Create Connection, Session, Message Use Cases 3-7

3-4 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-

Point Model Use Cases 3-8

3-5 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/

Subscribe Model Use Cases 3-10

3-6 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Subscribing for Messages in a Multiconsumer Queue/Topic,

Publish/Subscribe Model Use Cases 3-11

3-7 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Browse Messages in a Queue Use Cases 3-12

3-8 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Receive Messages from a Queue/Topic Use Cases 3-12

3-9 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Register to Receive Messages Asynchronously from a

Queue/Topic Use Cases 3-14

4-1 Operations and Required Privileges 4-4

7-1 StreamMessage Conversion 7-13

7-2 MapMessage Conversion 7-14

7-3 Oracle Database AQ and Oracle JMS Buffered Messaging Constants 7-18

10-1 AQ$<Queue_Table_Name> View 10-7

10-2 AQ$<Queue_Table_Name_S> View 10-10

10-3 AQ$<Queue_Table_Name_R> View 10-11

10-4 AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue 10-11

10-5 AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue 10-11

xxix

10-6 AQ$INTERNET_USERS View 10-15

10-7 V$AQ_MESSAGE_CACHE_STAT View 10-19

10-8 V$AQ_SHARDED_SUBSCRIBER_STAT View 10-21

10-9 V$AQ_MESSAGE_CACHE_ADVICE View 10-21

10-10 V$AQ_REMOTE_DEQUEUE_AFFINITY View 10-23

A-1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified A-2

A-2 Actions Performed for Nonpersistent Queues When XML Presentation Specified A-3

C-1 SID_DESC Parameters C-8

C-2 Messaging Gateway Propagation Job Subprograms C-39

C-3 WebSphere MQ Link Properties C-41

C-4 Optional Configuration Properties for WebSphere MQ Base Java C-42

C-5 Optional Configuration Properties for WebSphere MQ JMS C-42

C-6 TIB/Rendezvous Link Properties C-43

C-7 Optional Properties for TIB/Rendezvous C-44

C-8 MGW Names for WebSphere MQ Header Values C-55

C-9 Default Priority Mappings for Propagation C-57

C-10 TIB/Rendezvous Datatype Mapping C-60

C-11 TIB/Rendezvous and MGW Names for Oracle Database Advanced Queuing

Message Properties C-61

C-12 Oracle JMS Message Conversion C-64

C-13 MGW_GATEWAY View Properties C-80

C-14 MGW_AGENT_OPTIONS View C-82

C-15 MGW_LINKS View Properties C-82

C-16 MGW_MQSERIES_LINKS View Properties C-83

C-17 MGW_TIBRV_LINKS View Properties C-83

C-18 MGW_FOREIGN_QUEUES View Properties C-84

C-19 MGW_JOBS View C-84

C-20 MGW_SUBSCRIBERS View Properties C-86

C-21 MGW_SCHEDULES View Properties C-86

D-1 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces for

Sharded Queues: Administrative Interface D-1

D-2 CREATE_SHARDED_QUEUE Procedure Parameters D-3

D-3 ALTER_SHARDED_QUEUE Procedure Parameters D-3

D-4 SET_QUEUE_PARAMETER Procedure Parameters D-4

D-5 UNSET_QUEUE_PARAMETER Procedure Parameters D-4

D-6 GET_QUEUE_PARAMETER Procedure Parameters D-5

D-7 CREATE_EXCEPTION_QUEUE Procedure Parameters D-5

xxx

Preface

This guide describes features of application development and integration using Oracle
Database Advanced Queuing (AQ). This information applies to versions of the Oracle
Database server that run on all platforms, unless otherwise specified.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for developers of applications that use Oracle Database
Advanced Queuing.

To use this guide, you need knowledge of an application development language and
object-relational database management concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database Development Guide

• Oracle Database PL/SQL Language Reference

• Oracle Database Advanced Queuing Java API Reference

• Oracle Database Transactional Event Queues Java API Reference

• Oracle Database PL/SQL Packages and Types Reference

xxxi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle XML DB Developer's Guide

Many of the examples in this guide use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. See Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them.

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxxii

Changes in This Release for Oracle
Database Advanced Queuing User's Guide

This preface contains:

• Changes in Oracle Database Advanced Queuing Release 20c

• Changes in Oracle Database Advanced Queuing Release 19c, Version 19.2

• Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2)

• Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2)

• Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1)

Changes in Oracle Database Advanced Queuing Release
20c

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database Release 20c.

• New Features

• Deprecated Features

New Features
The following features are new in this release:

• Advanced Queuing: Kafka Java Client for Transactional Event Queues

Kafka Java Client for Transactional Event Queues (TEQ) enables Kafka
application compatibility with Oracle Database. This provides easy migration of
Kafka applications to TEQ.

Starting from Oracle Database 20c, Kafka Java APIs can connect to Oracle
Database server and use Transactional Event Queues (TEQ) as a messaging
platform. Developers can migrate an existing Java application that uses Kafka to
the Oracle Database. A client side library allows Kafka applications to connect to
Oracle Database instead of Kafka cluster and use TEQ messaging platform
transparently. Kafka interoperability is supported by configuring Kafka JMS
Connectors to move messages between the two messaging systems.

For more information, see

– Kafka Java Client Interface for Oracle Transactional Event Queues and

– Interoperability of Transactional Event Queue with Apache Kafka .

• Advanced Queuing: PL/SQL Enqueue and Dequeue Support for JMS Payload in
Transactional Event Queues

xxxiii

PL/SQL APIs perform enqueue and dequeue operations for Java Message
Service (JMS) payload in Transactional Event Queues. Similarly, the PL/SQL
Array APIs are exposed to Transactional Event Queues JMS users. Since JMS
support of heterogeneous messages, dequeue gets one of the five JMS message
types back, but cannot predict what is the type of the next message received.
Therefore, it can run into application errors with PL/SQL complaining about type
mismatch. Oracle suggests that the application always dequeue from
Transactional Event Queues using the generic type AQ$_JMS_MESSAGE.
PL/SQL administration is also supported.

See Transactional Event Queues and Enqueuing / Dequeuing Messages for more
information

• Advanced Queuing: PL/SQL Enqueue and Dequeue Support for non-JMS Payload
in Transactional Event Queues

To improve throughput and reduce overhead and latency, enqueues and
dequeues are optimized to use the message cache, the rules engine, and
background processing when possible.

See Transactional Event Queues and Enqueuing / Dequeuing Messages for more
information

• Advanced Queuing: Transactional Event Queues for Performance and Scalability

Oracle Database 20c introduces Transactional Event Queues (TEQ), which are
partitioned message queues that combine the best of messaging, streaming, direct
messages, and publish/subscribe. TEQs have their Queue tables partitioned into
multiple Event Streams, which are distributed across multiple RAC nodes for high
throughput messaging and streaming of events.

See Oracle Transactional Event Queues and Advanced Queuing Performance and
Scalability for more information

• Advanced Queuing: Simplified Metadata and Schema in Transactional Event
Queues

Oracle Database 20c introduces Transactional Event Queues (TEQ), which are
partitioned message queues that combine the best of messaging, streaming, direct
messages, and publish/subscribe. TEQ operates at scale on the Oracle Database.
TEQ provides transactional event streaming, and runs in the database in a scale
of 10s to 100s of billions of messages per day on 2-node to 8-node Oracle RAC
databases, both on-premise and on the cloud. TEQ has Kafka client compatibility,
which means, Kafka producer and consumer can use TEQ in the Oracle Database
instead of a Kafka broker.

• Support for Message Retention and Seekable Subscribers

Starting from Oracle Database 20c, AQ has added support for message retention
for Sharded Queues. A user can specify a time for which the message can be
retained, even after the subscribers have consumed the message. The retention
time is specified in seconds by user. It can vary from 0 to INIFINITE. Without
retention, when a message is dequeued by all subscribers in sharded queues, the
message is permanently removed from the queuing system. The typical way a
subscriber can consume from the queue is through a dequeue operation, which
now supports seeking an offset into the message queue.

Many queueing applications require subscriber to consume messages that were
enqueued prior to its creation. Using this seek capability for subscribers,
applications can reposition dequeue point to messages that were enqueued prior
to the subscriber creation. This offers flexibility for applications to make the

Changes in This Release for Oracle Database Advanced Queuing User's Guide

xxxiv

communication truly asynchronous between the producer and the consumer of the
message.

See Transactional Event Queues and Message Retention and Transactional Event
Queues and Seekable Subscribers for more information.

• Advanced Queuing Support for JSON Data Type

Starting from Oracle Database 20c, Advanced Queuing also supports JSON
datatype. Along with RAW/ADT payload type we can also specify JSON payload
type during queue table creation of classic queue and during queue creation of
sharded queue. Users can also specify embedded element JSON with simple adt.
DBMS_AQ, DBMS_AQADM procedures like create_queue_table/
create_sharded_queue/enqueue/dequeue and procedures for OGG/DG replication
also accepts JSON datatype.

Deprecated Features
The following features are deprecated in this release:

• Sharded Queue APIs

– CREATE_SHARDED_QUEUE

– DROP_SHARDED_QUEUE

– ALTER_SHARDED_QUEUE

– ISSHARDEDQUEUE

– VERIFY_SHARDED_QUEUE

• Sharded Queue Views

– ALL_QUEUE_SHARDS

– DBA_QUEUE_SHARDS

– USER_QUEUE_SHARDS

– GV$AQ_CACHED_SUBSHARDS

– GV$AQ_CROSS_INSTANCE_JOBS

– GV$AQ_DEQUEUE_SESSIONS

– GV$AQ_INACTIVE_SUBSHARDS

– GV$AQ_MESSAGE_CACHE

– GV$AQ_MESSAGE_CACHE_ADVICE

– GV$AQ_MESSAGE_CACHE_STAT

– GV$AQ_NONDUR_SUBSCRIBER_LWM

– GV$AQ_REMOTE_DEQUEUE_AFFINITY

– GV$AQ_SHARDED_SUBSCRIBER_STAT

– GV$AQ_SUBSCRIBER_LOAD

– GV$AQ_UNCACHED_SUBSHARDS

– GV$AQ_NONDUR_SUBSCRIBER

– GV$AQ_PARTITION_STATS

Changes in This Release for Oracle Database Advanced Queuing User's Guide

xxxv

– GV$AQ_MESSAGE_CACHE_STAT

See Deprecation of Sharded Queues for more information.

Changes in Oracle Database Advanced Queuing Release
19c, Version 19.2

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database Release 19c, Version 19.2

New Features
The following feature is new in this release:

• Enhanced Key-based Messaging

AQ sharded queues perform substantially better when compared to AQ classic
(non-sharded) queues. This is achieved by sharding the queue, where each shard
is owned by a specific instance of the database. By default, sharding is completely
transparent to the user when it comes to enqueue and dequeue operations. AQ
internally puts the message in the appropriate shard to get maximum performance
and session level ordering as required by the JMS specification. Session level
ordering ensures that no two messages will be dequeued in the reverse order of
their enqueue order if both the messages are enqueued by the same session and
have the same priority and delivery mode.

In some cases, user applications want to control the sharding. The user
application can choose the shard where a message is enqueued. The users can
decide the way they plan to shard their messages in the sharded queue to support
the application logic as needed. The performance and ordering benefits of AQ
sharded queues are still maintained even if the sharding is under control of the
user. Applications can control the following:

– The number of shards of the queue

– Key based enqueues: The enqueue session can choose the shard of the
queue where the message will be enqueued by providing a key with the
message at the time of enqueue. AQ server ensures that all the messages of
a key are enqueued in the same shard. A shard can have messages of
different keys.

– Sticky dequeues: A shard can have only one active dequeue session for a
single-consumer queue or JMS Queue. Similarly, a shard can have only one
dequeue session per subscriber for a multi-consumer queue or JMS Topic.
That dequeue session will stick to that shard of the queue for the session’s
lifetime. Such functionality is also available for JMS listeners.

See Also:

User Event Streaming

Changes in This Release for Oracle Database Advanced Queuing User's Guide

xxxvi

Desupported Features
The following feature is desupported in this release:

• Desupport of Oracle Streams

Starting in Oracle Database 19c, the Oracle Streams feature is desupported. Use
Oracle GoldenGate to replace all replication features of Oracle Streams.

Changes in Oracle Database Advanced Queuing 12c
Release 2 (12.2.)

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database 12c Release 2 (12.2).

New Features
The following features are new in this release:

• PL/SQL enqueue and dequeue support for JMS and non-JMS (ADT or RAW)
payload in Sharded Queues

Oracle Database 12c Release 2 (12.2) extends and supports PL/SQL APIs to
perform enqueue and dequeue operations for JMS, ADT, and RAW payload in
sharded queues. The PL/SQL Array APIs also support sharded queues. Many
existing non-JMS applications can now use sharded queues with little or no
change.

Starting from Oracle Database 12c Release 2 (12.2), JMS customers using
sharded queues can make use of PL/SQL notification to register a PL/SQL
procedure that gets automatically invoked by AQ Server on successful enqueue.
PL/SQL notification can eliminate the need for clients to poll the queue for
messages because messages can be automatically dequeued and processed at
the server.

See Managing Sharded Queues for more information.

• Sharded Queue Diagnosability and Manageability

Starting from 12c Release 2 (12.2), AQ sharded queues provides an advisor,
views, and automated management for its message cache to optimize
STREAMS_POOL memory allocation and throughput.

See Transactional Event Queues Tuning for more information.

• Longer Identifiers for Oracle Database Advanced Queuing

Starting from 12c Release 2 (12.2), the maximum length of AQ queue names has
been increased to 122 bytes. The maximum length of subscriber and recipient
names is increased to 128 characters. For the AQ Rules Engine, the maximum
length of rule names and rule set names is now 128 bytes.

Changes in This Release for Oracle Database Advanced Queuing User's Guide

xxxvii

Changes in Oracle Database Advanced Queuing 12c
Release 1 (12.1.0.2)

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database 12c Release 1 (12.1.0.2).

New Features
The following feature is new in this release:

• JMS Streaming

In Oracle Database 12c Release 1 (12.1.0.2), Advanced Queuing introduces JMS
Streaming with enqueue and dequeue for sharded queues through
AQjmsBytesMessage and AQjmsStreamMessage, for the applications interested in
sending and receiving large message data or payload.

See "JMS Streaming" for more information.

Changes in Oracle Database Advanced Queuing 12c
Release 1 (12.1)

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database 12c Release 1 (12.1).

New Features
The following features are new in this release:

• JMS Sharded Queues

In Oracle Database 12c Release 1 (12.1), Advanced Queuing introduces high
performing and scalable sharded JMS Queues. A sharded queue is a single
logical queue that is divided into multiple, independent, physical queues through
system-maintained partitioning. A sharded queue increases enqueue-dequeue
throughput, especially across Oracle RAC instances, because ordering between
two messages on different queue shards is best effort. Each shard is ordered
based on enqueue time within a session. Sharded queues automatically manage
table partitions so that enqueuers and dequeuers do not contend among
themselves. In addition, sharded queues use an in-memory message cache to
optimize performance and reduce the disk and CPU overhead of AQ-JMS
enqueues and dequeues. Sharded queues are the preferred JMS queues for
queues used across Oracle RAC instances, for queues with high enqueue or
dequeue rates, or for queues with many subscribers.

In 12.2, Sharded Queues have been enhanced to support more than JMS. See
Sharded Queues for more information.

• Result Cache Enhancement

In Oracle Database 12c Release 1 (12.1), the Rules Engine introduces a result
cache to improve the performance of many commonly used rules. The result
cache will bypass the evaluation phase if an expression with the same attributes

Changes in This Release for Oracle Database Advanced Queuing User's Guide

xxxviii

has already been evaluated earlier. Not all rule results are cached, such as when
rule results are potentially non-deterministic or when not all rules are evaluated or
when attributes include non-scalar data types. For Advanced Queues, the cache is
most useful when subscriptions and their dequeue sessions are long-lived.

• LONG VARCHAR Support

The LONG VARCHAR data type is supported by Oracle Database Advanced Queuing
in Oracle Database 12c Release 1 (12.1).

• 3-Tier Background Architecture

Oracle Database 12c Release 1 (12.1) introduces the AQ background process
architecture with a new a 3-tier design.

See "AQ Background Architecture" for more information.

• Support for Data Guard Database Rolling Upgrade

Databases that use Oracle Database Advanced Queuing can now be upgraded to
new Oracle database releases and patch sets in rolling fashion using Data Guard
database rolling upgrades (transient logical standby database only). Rolling
upgrades are supported beginning in Oracle Database 12c Release 1 (12.1).

Data Guard database rolling upgrades reduce planned downtime by enabling the
upgrade to new database releases or patch sets in rolling fashion. Total database
downtime for such an upgrade is limited to the small amount of time required to
execute a Data Guard switchover.

The following packages will have support for rolling upgrade using logical standby:

– DBMS_AQ

– DBMS_AQJMS

– DBMS_AQADM, except for the following procedures:

* SCHECULE_PROPAGATION

* UNSCHEDULE_PROPAGATION

* ALTER_PROPAGATION_SCHEDULE

* ENABLE_PROPAGATION_SCHEDULE

* DISABLE_PROPAGATION_SCHEDULE

See Also:

– Oracle Database PL/SQL Packages and Types Reference for more
information on the Oracle Database AQ packages

Changes in This Release for Oracle Database Advanced Queuing User's Guide

xxxix

1
Introduction to Transactional Event Queues
and Advanced Queuing

Transactional Event Queues (TEQ) and Advanced Queuing (AQ) are robust and
feature-rich message queuing systems integrated with Oracle database. When web,
mobile, IoT, and other data-driven and event-driven applications stream events, or
communicate with each other as part of a workflow, producer applications enqueue
messages and consumer applications dequeue messages.

These topics discuss the newly introduced Transactional Event Queues (TEQ) that are
highly optimized implementation of AQ previously called AQ Sharded Queues. Both
TEQ and AQ in the Oracle database address the requirements from data-driven and
event-driven architectures in modern enterprise applications.

• What Is Queuing?

• Oracle Database Advanced Queuing Leverages Oracle Database

• Oracle Database Advanced Queuing in Integrated Application Environments

• Buffered Messaging

• Asynchronous Notifications

• Enqueue Features

• Dequeue Features

• Propagation Features

• Message Format Transformation

• Other Oracle Database Advanced Queuing Features

• Interfaces to Oracle Database Advanced Queuing

What Is Queuing?
Transactional Event Queue (TEQ) and Advanced Queuing (AQ) stores user messages
in abstract storage units called queues. When web, mobile, IoT, and other data-driven
and event-driven applications stream events or communicate with each other as part
of a workflow, producer applications enqueue messages and consumer applications
dequeue messages.

At the most basic level of queuing, one producer enqueues one or more messages
into one queue. Each message is dequeued and processed once by one of the
consumers. A message stays in the queue until a consumer dequeues it or the
message expires. A producer can stipulate a delay before the message is available to
be consumed, and a time after which the message expires. Likewise, a consumer can
wait when trying to dequeue a message if no message were available. An agent
program or application could act as both a producer and a consumer.

1-1

Producers can enqueue messages in any sequence. Messages are not necessarily
dequeued in the order in which they are enqueued. Messages can be enqueued
without being dequeued.

At a slightly higher level of complexity, many producers enqueue messages into a
queue, all of which are processed by one consumer. Or many producers enqueue
messages, each message being processed by a different consumer depending on
type and correlation identifier.

Enqueued messages are said to be propagated when they are reproduced on another
queue, which can be in the same database or in a remote database.

Applications often use data in different formats. A transformation defines a mapping
from one data type to another. The transformation is represented by a SQL function
that takes the source data type as input and returns an object of the target data type.
You can arrange transformations to occur when a message is enqueued, when it is
dequeued, or when it is propagated to a remote subscriber.

Transactional Event Queues Leverage Oracle Database
Oracle Transactional Event Queues (TEQ) provide database-integrated message
queuing functionality. This highly optimized and partitioned implementation leverages
the functions of Oracle database so that producers and consumers can exchange
messages with high throughput, by storing messages persistently, and propagate
messages between queues on different databases. Oracle Transactional Event
Queues (TEQ) are a high performance partitioned implementation with multiple event
streams per queue, while Advanced Queuing (AQ) is a disk-based implementation for
simpler workflow use cases.

Naming nomenclature for TEQ and AQ in Oracle Database Release 20c are as
follows:

Message type Old Name New Name

Persistent messages AQ classic queues AQ queues

Persistent messages Sharded queues TEQ queues

Buffered messages AQ classic queues AQ buffered queues

You can decide about which queue to use as follows:

• For buffered messages use AQ buffered queues.

• For persistent messages, use the high performance Transactional Event Queues.

• If you are currently using AQ classic queues, then consider moving to
Transactional Event Queues with one event stream (to preserve total ordering in
the queue) or consider taking advantage of multiple event streams where
messages are ordered within each event stream. This is similar to Apache Kafka's
approach of Topics consisting of multiple partitions to which producers and
consumers can publish to or subscribe from.

AQ sharded queues are being deprecated in this release.

Because TEQs are implemented in database tables, all operational benefits of high
availability, scalability, and reliability are also applicable to queue data. Standard
database features such as recovery, restart, and security are supported by TEQ. You
can use standard database development and management tools to monitor queues.

Chapter 1
Transactional Event Queues Leverage Oracle Database

1-2

Like other database tables, queue tables can be imported and exported. Similarly,
TEQ queues are supported by Oracle Data Guard for high availability, which can be
critical to preserve messages when using a stateless middle tier. By being in the
database, enqueues and dequeues can be incorporated in database transactions
without requiring distributed transactions

Messages can be queried using standard SQL. This means that you can use SQL to
access the message properties, the message history, and the payload. With SQL
access you can also audit and track messages. All available SQL technology, such as
in-memory latches, table indices, are used to optimize access to messages in TEQ
and AQ.

Note:

TEQ and AQ do not support data manipulation language (DML) operations
on a queue table, or associated index-organized table (IOT) for AQ, or
associated system-partitioned tables used by TEQs, if any. The only
supported means of modifying queue tables is through the supplied APIs.
Queue tables and IOTs can become inconsistent and therefore effectively
ruined, if DML operations are performed on them.

System-Level Access Control

TEQ and AQ support system-level access control for all queuing operations, allowing
an application developer or DBA to designate users as queue administrators. A queue
administrator can invoke TEQ or AQ administrative and operational interfaces on any
queue in the database. This simplifies administrative work because all administrative
scripts for the queues in a database can be managed under one schema.

Queue-Level Access Control

TEQ and AQ support queue-level access control for enqueue and dequeue
operations. This feature allows the application developer to protect queues created in
one schema from applications running in other schemas. The application developer
can grant only minimal access privileges to applications that run outside the queue
schema.

Performance

Requests for service must be separated from the supply of services to increase
efficiency and enable complex scheduling. TEQ and AQ deliver high performance as
measured by:

• Number of messages and bytes enqueued and dequeued each second
(messages/second and MB/second)

• Time to evaluate a complex query on a message warehouse

• Time to recover and restart the messaging process after a failure

Scalability

Queuing systems must be scalable. TEQ and AQ deliver high performance when the
number of programs using the application increases, when the number of messages
increases, and when the size of the message warehouse increases.

Chapter 1
Transactional Event Queues Leverage Oracle Database

1-3

Persistence for Security

Messages that constitute requests for service must be stored persistently and
processed exactly once for deferred execution to work correctly in the presence of
network, computer, and application failures. TEQ and AQ can meet requirements in
the following situations:

• Applications do not have the resources to handle multiple unprocessed messages
arriving simultaneously from external clients or from programs internal to the
application.

• Communication links between databases are not available all the time or are
reserved for other purposes. If the system falls short in its capacity to deal with
these messages immediately, then the application must be able to store the
messages until they can be processed.

• External clients or internal programs are not ready to receive messages that have
been processed.

Persistence for Scheduling

Queuing systems must deal with priorities, and those priorities can change:

• Messages arriving later can be of higher priority than messages arriving earlier.

• Messages may wait for later messages before actions are taken.

• The same message may be accessed by different processes.

• Messages in a specific queue can become more important, and so must be
processed with less delay or interference from messages in other queues.

• Messages sent to some destinations can have a higher priority than others.

Persistence for Accessing and Analyzing Metadata

Queuing systems must preserve message metadata, which can be as important as the
payload data. For example, the time that a message is received or dispatched can be
crucial for business and legal reasons. With the persistence features of TEQ and AQ,
you can analyze periods of greatest demand or evaluate the lag between receiving
and completing an order.

Object Type Support

TEQ and AQ support enqueue, dequeue, and propagation operations where the
queue type is an abstract datatype, ADT. It also supports enqueue and dequeue
operations if the types are inherited types of a base ADT. Propagation between two
queues where the types are inherited from a base ADT is not supported.

TEQ and AQ also support ANYDATA queues, which enable applications to enqueue
different message types in a single queue. TEQ and AQ support the LONG VARCHAR
data type.

If you plan to enqueue, propagate, or dequeue user-defined type messages, then each
type used in these messages must exist at every database where the message can be
enqueued in a queue. Some environments use directed networks to route messages
through intermediate databases before they reach their destination. In such
environments, the type must exist at each intermediate database, even if the
messages of this type are never enqueued or dequeued at a particular intermediate
database.

Chapter 1
Transactional Event Queues Leverage Oracle Database

1-4

In addition, the following requirements must be met for such types:

• Type name must be the same at each database.

• Type must be in the same schema at each database.

• Shape of the type must match exactly at each database.

• Type cannot use inheritance or type evolution at any database.

• Type cannot contain varrays, nested tables, LOBs, rowids, or urowids.

The object identifier need not match at each database.

Structured and XMLType Payloads

You can use object types to structure and manage message payloads. Relational
database systems in general have a richer typing system than messaging systems.
Because Oracle Database is an object-relational database system, it supports
traditional relational and user-defined types. Many powerful features are enabled
because of having strongly typed content, such as content whose format is defined by
an external type system. These include:

• Content-based routing

TEQ and AQ can examine the content and automatically route the message to
another queue based on the content.

• Content-based subscription

A publish and subscribe system is built on top of a messaging system so that you
can create subscriptions based on content.

• Querying

The ability to run queries on the content of the message enables message
warehousing.

You can create queues that use the new opaque type, XMLType. These queues can be
used to transmit and store messages that are XML documents. Using XMLType, you
can do the following:

• Store any type of message in a queue

• Store more than one type of payload in a queue

• Query XMLType columns using the operator ExistsNode()

• Specify the operators in subscriber rules or dequeue conditions

Integration with Oracle Internet Directory

You can register system events, user events, and notifications on queues with Oracle
Internet Directory. System events are database startup, database shutdown, and
system error events. User events include user log on and user log off, DDL statements
(create, drop, alter), and DML statement triggers. Notifications on queues include OCI
notifications, PL/SQL notifications, and e-mail notifications.

You can also create aliases for TEQ and AQ agents in Oracle Internet Directory.
These aliases can be specified while performing TEQ and AQ enqueue, dequeue, and
notification operations. This is useful when you do not want to expose an internal
agent name.

Chapter 1
Transactional Event Queues Leverage Oracle Database

1-5

Note:

Transactional Event Queues (TEQ) does not support OCI and thick drivers.

Support for Oracle Real Application Clusters(Oracle RAC)

Oracle Real Application Clusters can be used to improve TEQ and AQ performance by
allowing different queues (and event streams in the case of TEQ) to be managed by
different instances. You do this by specifying different instance affinities (preferences)
for the queue tables that store the queues. This allows queue operations (enqueue
and dequeue) on different queues to occur in parallel. TEQs are recommended for
applications with enqueuers or dequeuers on multiple Oracle RAC instances. Refer to
Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC) for
more information.

If compatibility is set to Oracle8i release 8.1.5 or higher, then an application can
specify the instance affinity for a queue table. When TEQ and AQ is used with Oracle
RAC and multiple instances, this information is used to partition the queue tables
between instances for queue-monitor scheduling and, also for propagation. The queue
table is monitored by the queue monitors of the instance specified by the user. If the
owner of the queue table is terminated, then the secondary instance or some available
instance takes over the ownership for the queue table.

If an instance affinity is not specified, then the queue tables are arbitrarily partitioned
among the available instances. This can result in pinging between the application
accessing the queue table and the queue monitor monitoring it. Specifying the
instance affinity prevents this, but does not prevent the application from accessing the
queue table and its queues from other instances.

Transactional Event Queues and Advanced Queuing in
Integrated Application Environments

TEQ and AQ provides the message management and communication needed for
application integration. In an integrated environment, messages travel between the
Oracle Database server, applications, and users.This is shown in Figure 1-1.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-6

Figure 1-1 Integrated Application Environment Using TEQ and AQ

Internet Users

Advanced
queues

Internet Access

XML-Based Internet
Transport
(HTTP(s))

Internet
Propagation

Internet
Propagation

(Oracle
Net)

OCI, PL/SQL,
Java clients

Global Agents,
Global Subscriptions,

Global Events

MQ Series

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Oracle

Messages are exchanged between a client and the Oracle Database server or
between two Oracle Database servers using Oracle Net Services. Oracle Net Services
also propagates messages from one Oracle Database queue to another. Or, as shown
in Figure 1-1, you can perform TEQ and AQ operations over the Internet using
HTTP(S). In this case, the client, a user or Internet application, produces structured
XML messages. During propagation over the Internet, Oracle Database servers
communicate using structured XML also.

Application integration also involves the integration of heterogeneous messaging
systems. Oracle Database Advanced Queuing seamlessly integrates with existing
non-Oracle Database messaging systems like IBM WebSphere MQ through
Messaging Gateway, thus allowing existing WebSphere MQ-based applications to be
integrated into an Oracle Database Advanced Queuing environment. Oracle
Transactional Event Queues can interoperate with Apache Kafka using a Kafka JMS
connector. TEQ can also work with a Kafka Java client. Both capabilities are described
in Kafka Java Client Interface for Oracle Transactional Event Queues.

Topics:

• Oracle Database Advanced Queuing Client/Server Communication

• Multiconsumer Dequeuing of the Same Message

• Oracle Database Advanced Queuing Implementation of Workflows

• Oracle Database Advanced Queuing Implementation of Publish/Subscribe

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-7

Transactional Event Queues and Advanced Queuing Client/Server
Communication

TEQ and AQ provide an asynchronous alternative to the synchronous manner in which
Client/Server applications usually run. This figure exemplifies Client/Server
Communication Using TEQ and AQ.
In this example Application B (a server) provides service to Application A (a client)
using a request/response queue.

Figure 1-2 Client/Server Communication Using TEQ and AQ

Application B
consumer & producer

Enqueue

Dequeue

Application A
producer & consumer

Server

Client

Response
Queue

Dequeue

Enqueue

Request
Queue

Application A enqueues a request into the request queue. In a different transaction,
Application B dequeues and processes the request. Application B enqueues the result
in the response queue, and in yet another transaction, Application A dequeues it.

The client need not wait to establish a connection with the server, and the server
dequeues the message at its own pace. When the server is finished processing the
message, there is no need for the client to be waiting to receive the result. A process
of double-deferral frees both client and server.

Multiconsumer Dequeuing of the Same Message
A message can only be enqueued into one queue at a time. If a producer had to insert
the same message into several queues in order to reach different consumers, then this
would require management of a very large number of queues. TEQ and AQ provides
for queue subscribers and message recipients to allow multiple consumers to dequeue
the same message.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-8

To allow for subscriber and recipient lists, the queue must reside in a queue table that
is created with the multiple consumer option. Each message remains in the queue until
it is consumed by all its intended consumers.

Queue Subscribers

Multiple consumers, which can be either applications or other queues, can be
associated with a queue as subscribers. This causes all messages enqueued in the
queue to be made available to be consumed by each of the queue subscribers. The
subscribers to the queue can be changed dynamically without any change to the
messages or message producers.

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue is only able to dequeue messages
that are enqueued after the subscriber is added. No two subscribers can have the
same values for name, address, and protocol. At least one of these attributes must be
different for two subscribers.

It cannot be known which subscriber will dequeue which message first, second, and so
on, because there is no priority among subscribers. More formally, the order of
dequeuing by subscribers is indeterminate.

Subscribers can also be rule-based. Similar in syntax to the WHERE clause of a SQL
query, rules are expressed in terms of attributes that represent message properties or
message content. These subscriber rules are evaluated against incoming messages,
and those rules that match are used to determine message recipients.

In Figure 1-3, Application B and Application C each need messages produced by
Application A, so a multiconsumer queue is specially configured with Application B and
Application C as queue subscribers. Each receives every message placed in the
queue.

Figure 1-3 Communication Using a Multiconsumer Queue

Application B

Dequeue

Application C

Dequeue

Application A

Enqueue

Multiple
Consumer

Queue

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-9

Message Recipients

A message producer can submit a list of recipients at the time a message is enqueued
into a TEQ or AQ queue. This allows for a unique set of recipients for each message in
the queue. The recipient list associated with the message overrides the subscriber list
associated with the queue, if there is one. The recipients need not be in the subscriber
list. However, recipients can be selected from among the subscribers.

A recipient can be specified only by its name, in which case the recipient must
dequeue the message from the queue in which the message was enqueued. It can be
specified by its name and an address with a protocol value of 0. The address should
be the name of another queue in the same database or another installation of Oracle
Database (identified by the database link), in which case the message is propagated
to the specified queue and can be dequeued by a consumer with the specified name.
If the recipient's name is NULL, then the message is propagated to the specified
queue in the address and can be dequeued by the subscribers of the queue specified
in the address. If the protocol field is nonzero, then the name and address are not
interpreted by the system and the message can be dequeued by a special consumer.

Subscribing to a queue is like subscribing to a magazine: each subscriber can
dequeue all the messages placed into a specific queue, just as each magazine
subscriber has access to all its articles. Being a recipient, however, is like getting a
letter: each recipient is a designated target of a particular message.

Figure 1-4 shows how TEQ and AQ can accommodate both kinds of consumers.
Application A enqueues messages. Application B and Application C are subscribers.
But messages can also be explicitly directed toward recipients like Application D,
which may or may not be subscribers to the queue. The list of such recipients for a
given message is specified in the enqueue call for that message. It overrides the list of
subscribers for that queue.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-10

Figure 1-4 Explicit and Implicit Recipients of Messages

Application B
consumer (subscriber)

Dequeue

Application C
consumer (subscriber)

Dequeue

Application A
producer

Enqueue

Application D
consumer (recipient)

Implicit RecipientImplicit Recipient

Explicit Recipient

Note:

Multiple producers can simultaneously enqueue messages aimed at different
targeted recipients.

Transactional Event Queues and Advanced Queuing Implementation
of Workflows

TEQ and AQ allows us to implement a workflow, also known as a chained application
transaction.The figure exemplifies how a workflow is implemented using TEQ and AQ.

1. Application A begins a workflow by enqueuing Message 1.

2. Application B dequeues it, performs whatever activity is required, and enqueues
Message 2.

3. Application C dequeues Message 2 and generates Message 3.

4. Application D, the final step in the workflow, dequeues it.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-11

Figure 1-5 Implementing a Workflow using TEQ and AQ

Application A
producer

Enqueue
(Message 1)

Enqueue
(Message 3)

Application B
consumer & producer

Enqueue
(Message 2)

Dequeue
(Message 1)

Application C
consumer & producer

Dequeue
(Message 2)

Application D
consumer

Dequeue
(Message 3)

Note:

The contents of the messages 1, 2 and 3 can be the same or different. Even
when they are different, messages can contain parts of the contents of
previous messages.

The queues are used to buffer the flow of information between different processing
stages of the business process. By specifying delay interval and expiration time for a
message, a window of execution can be provided for each of the applications.

From a workflow perspective, knowledge of the volume and timing of message flows is
a business asset quite apart from the value of the payload data. TEQ and AQ helps
you gain this knowledge by supporting the optional retention of messages for analysis
of historical patterns and prediction of future trends.

Transactional Event Queues and Advanced Queuing Implementation
of Publish/Subscribe

A point-to-point message is aimed at a specific target. Senders and receivers decide
on a common queue in which to exchange messages. Each message is consumed by
only one receiver.

Figure 1-6 shows that each application has its own message queue, known as a
single-consumer queue.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-12

Figure 1-6 Point-to-Point Messaging

Oracle

Advanced
queues

Application Application
Dequeue

Enqueue

Dequeue

Enqueue

A publish/subscribe message can be consumed by multiple receivers, as shown in
Figure 1-7. Publish/subscribe messaging has a wide dissemination mode called
broadcast and a more narrowly aimed mode called multicast.

Broadcasting is like a radio station not knowing exactly who the audience is for a given
program. The dequeuers are subscribers to multiconsumer queues. In contrast,
multicast is like a magazine publisher who knows who the subscribers are. Multicast is
also referred to as point-to-multipoint, because a single publisher sends messages to
multiple receivers, called recipients, who may or may not be subscribers to the queues
that serve as exchange mechanisms.

Figure 1-7 Publish/Subscribe Mode

Oracle

Advanced
queues

Application

Application

Application

Application

Publish

Publish

Subscribe

Subscribe

Publish

Publish/subscribe describes a situation in which a publisher application enqueues
messages to a queue anonymously (no recipients specified). The messages are then
delivered to subscriber applications based on rules specified by each application. The
rules can be defined on message properties, message data content, or both.

You can implement a publish/subscribe model of communication using TEQ and AQ
as follows:

1. Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

2. Set up a set of rule-based subscribers. Each subscriber can specify a rule which
represents a specification for the messages that the subscriber wishes to receive.
A null rule indicates that the subscriber wishes to receive all messages.

3. Publisher applications publish messages to the queue by invoking an enqueue
call.

4. Subscriber applications can receive messages with a dequeue call. This retrieves
messages that match the subscription criteria.

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-13

5. Subscriber applications can also use a listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution in cases where
a subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

6. Subscriber applications can also use the Oracle Call Interface (OCI) notification
mechanism. This allows a push mode of message delivery. The subscriber
application registers the queues (and subscriptions specified as subscribing agent)
from which to receive messages. This registers a callback to be invoked when
messages matching the subscriptions arrive.

Figure 1-8 illustrates the use of TEQ and AQ for implementing a publish/subscribe
relationship between publisher Application A and subscriber Applications B, C, and D:

• Application B subscribes with rule "priority = 1".

• Application C subscribes with rule "priority > 1".

• Application D subscribes with rule "priority = 3".

Figure 1-8 Implementing Publish/Subscribe using TEQ and AQ

Application B
consumer

(rule-based subscriber)

Dequeue

Application C
consumer

(rule-based subscriber)

Dequeue

Register

Application A
producer

Enqueue

Application D
consumer

(rule-based subscriber)

"priority > 1""priority = 1"

"priority = 3"

priority 3

priority 1
priority 2

If Application A enqueues three messages with priorities 1, 2, and 3 respectively, then
the messages will be delivered as follows:

Chapter 1
Transactional Event Queues and Advanced Queuing in Integrated Application Environments

1-14

• Application B receives a single message (priority 1).

• Application C receives two messages (priority 2, 3).

• Application D receives a single message (priority 3).

Buffered Messaging
Buffered messaging combines the rich functionality that this product has always
offered with a much faster queuing implementation. Buffered messaging is ideal for
applications that do not require the reliability and transaction support of Oracle
Database Advanced Queuing persistent messaging.

Buffered messaging is faster than persistent messaging, because its messages reside
in shared memory. They are usually written to disk only when the total memory
consumption of buffered messages approaches the available shared memory limit.

Note:

The portion of a queue that stores buffered messages in memory is
sometimes referred to as a buffered queue.

Message retention is not supported for buffered messaging.

When using buffered messaging, Oracle recommends that you do one of the following:

• Set parameter streams_pool_size

This parameter controls the size of shared memory available to Oracle Database
Advanced Queuing. If unspecified, up to 10% of the shared pool size may be
allocated for the Oracle Database Advanced Queuing pool from the database
cache.

Refer to manually tuning sharded queues for more information about setting the
message cache for buffered messaging with TEQs.

• Turn on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the SGA
for Oracle Database Advanced Queuing, based on Oracle Database Advanced
Queuing usage and, also usage of other components that use the SGA. Examples
of such other components are buffer cache and library cache. If
streams_pool_size is specified, it is used as the lower bound.

Topics:

• Enqueuing Buffered Messages

• Dequeuing Buffered Messages

• Propagating Buffered Messages

• Flow Control

• Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)

• Buffered Messaging Restrictions

• Error Handling

Chapter 1
Buffered Messaging

1-15

Enqueuing Buffered Messages

Buffered and persistent messages use the same single-consumer or multiconsumer
queues and the same administrative and operational interfaces. They are
distinguished from each other by a delivery mode parameter, set by the application
when enqueuing the message to an Oracle Database Advanced Queuing queue.

Recipient lists are supported for buffered messaging enqueue.

Buffered messaging is supported in all queue tables created with compatibility 8.1 or
higher. Transaction grouping queues and array enqueues are not supported for
buffered messages in this release. You can still use the array enqueue procedure to
enqueue buffered messages, but the array size must be set to one.

Buffered messages can be queried using the AQ$Queue_Table_Name view. They appear
with states IN-MEMORY or SPILLED.

The queue type for buffered messaging can be ADT, XML, ANYDATA, or RAW. For ADT
types with LOB attributes, only buffered messages with null LOB attributes can be
enqueued.

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and
buffered messages enqueued in the same session is not currently supported.

Both enqueue and dequeue buffered messaging operations must be with IMMEDIATE
visibility mode. Thus they cannot be part of another transaction. You cannot specify
delay when enqueuing buffered messages.

See Also:

• "Enqueuing Messages"

• "AQ$<Queue_Table_Name>: Messages in Queue Table"

• "Priority and Ordering of Messages in Enqueuing"

Dequeuing Buffered Messages

Rule-based subscriptions are supported with buffered messaging. The procedure for
adding subscribers is enhanced to allow an application to express interest in persistent
messages only, buffered messages only, or both.

For AQ queues, array dequeue is not supported for buffered messaging, but you can
still use the array dequeue procedure by setting array size to one message.

Dequeuing applications can choose to dequeue persistent messages only, buffered
messages only, or both types. Visibility must be set to IMMEDIATE for dequeuing
buffered messages. All of the following dequeue options are supported:

• Dequeue modes BROWSE, LOCK, REMOVE, and REMOVE_NO_DATA

• Navigation modes FIRST_MESSAGE and NEXT_MESSAGE

• Correlation identifier

• Dequeue condition

Chapter 1
Buffered Messaging

1-16

• Message identifier

See Also:

• "Adding a Subscriber"

• "Dequeue Options"

Propagating Buffered Messages

Propagation of buffered messages is supported. A single propagation schedule serves
both persistent and buffered messages. The DBA_QUEUE_SCHEDULES view displays
statistics and error information.

Oracle Database AQ deletes buffered messages once they are propagated to the
remote sites. If the receiving site fails before these messages are consumed, then
these messages will be lost. The source site will not be able to re-send them.
Duplicate delivery of messages is also possible.

See Also:

• "DBA_QUEUE_SCHEDULES: All Propagation Schedules"

• "Buffered Messaging with Oracle Real Application Clusters (Oracle
RAC)"

Flow Control

Oracle Database Advanced Queuing implements a flow control system that prevents
applications from flooding the shared memory with messages. If the number of
outstanding messages per sender exceeds a system-defined threshold, the enqueue
call will block and timeout with an error message. A message sender is identified by
sender_id.name in the enqueue options. A sender blocked due to flow control on a
queue does not affect other message senders. The resolution is to dequeue
messages, thereby resolving flow control, after which new messages can be
enqueued.

Flow control threshold varies with memory pressure and could come down to the
system-defined limit if streams pool usage becomes significant. Message senders will
block on event Streams AQ: enqueue blocked due to flow control and time out
with error ORA-25307 if flow control is not resolved. Applications are expected to handle
this error, and re-enqueue the failed message.

Even with flow control, slow consumers of a multiconsumer queue can cause the
number of messages stored in memory to grow without limit. Provided there is at least
one subscriber who is keeping pace, older messages are spilled to disk and removed
from the pool to free up memory. This ensures that the cost of disk access is paid by
the slower consumers, and faster subscribers can proceed unhindered.

Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)

TEQ and AQ queues handle buffered messaging with Oracle RAC differently.

Chapter 1
Buffered Messaging

1-17

TEQs perform cross-instance communication but avoid simultaneous writes to the
same block across Oracle RAC instances. Typically, dequeues occur on an event
stream that is local to a message’s enqueuing instance, but in certain situations,
Oracle will efficiently forward messages across instances for dequeuing on another
instance. For example, if a TEQ has a single enqueuing session on one Oracle RAC
instance and a single dequeuing session on another instance, then TEQs will forward
messages between the Oracle RAC instances. The forwarding of messages is done
asynchronously to the enqueuing transaction to improve performance. Dequeuers may
get an ORA-25228 if they are connected to an instance whose event streams have no
messages.

For AQ queues, an application can enqueue and dequeue buffered messages from
any Oracle RAC instance as long as it uses password-based authentication to connect
to the database. The structures required for buffered messaging are implemented on
one Oracle RAC instance. The instance where the buffered messaging structures are
implemented is the OWNER_INSTANCE of the queue table containing the queue. Enqueue
and dequeue requests received at other instances are forwarded to the
OWNER_INSTANCE over the interconnect. The REMOTE_LISTENER parameter in
listener.ora must also be set to enable forwarding of buffered messaging requests
to correct instance. Internally, buffered queues on Oracle RAC may use dblinks
between instances. Definer's rights packages that enqueue or dequeue into buffered
queues on Oracle RAC must grant INHERIT REMOTE PRIVILEGES to users of the
package.

A service name is associated with each queue in Oracle RAC and displayed in the
DBA_QUEUES and USER_QUEUES views. This service name always points to the instance
with the most efficient access for buffered messaging, minimizing pinging between
instances. OCI clients can use the service name for buffered messaging operations.

Oracle recommends that you specify instance affinity when using buffered messaging
with queue-to-queue propagation. This results in transparent failover when
propagating messages to a destination Oracle RAC system. You do not need to re-
point your database links if the primary AQ Oracle RAC instance fails.

See Also:

• "ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User"
for more information on OWNER_INSTANCE

• "REMOTE_LISTENER" in Oracle Database Reference for more
information on setting the REMOTE_LISTENER parameter

• "DBA_QUEUES: All Queues in Database" or "USER_QUEUES: Queues
In User Schema"

• "Support for Oracle Real Application Clusters(Oracle RAC)"

Buffered Messaging Restrictions

The following Oracle Database Advanced Queuing features are only supported for
buffered messaging on TEQs:

• Message delay

• Array enqueue

Chapter 1
Buffered Messaging

1-18

• Array dequeue

• PL/SQL Notification

The following Oracle Database Advanced Queuing features are not currently
supported for buffered messaging:

• Message retention

• Transaction grouping

• Message export and import

• Messaging Gateway

• OCI notification

Error Handling

Retry count and retry delay are not supported for buffered messages. Message
expiration is supported. When a buffered message has been in the queue beyond its
expiration period, it is moved into the exception queue as a persistent message.

Asynchronous Notifications
Asynchronous notification allows clients to receive notifications of messages of
interest.

The client can use these notifications to monitor multiple subscriptions. The client need
not be connected to the database to receive notifications regarding its subscriptions.
Asynchronous notification is supported for buffered messages. The delivery mode of
the message is available in the message descriptor of the notification descriptor.

The client specifies a callback function which is run for each message. Asynchronous
notification cannot be used to invoke an executable, but it is possible for the callback
function to invoke a stored procedure.

Clients can receive notifications procedurally using PL/SQL, Java Message Service
(JMS), or OCI callback functions, or clients can receive notifications through e-mail or
HTTP post. Clients can also specify the presentation for notifications as either RAW or
XML.

Note:

TEQs only support PL/SQL notification.

For JMS queues, the dequeue is accomplished as part of the notification; explicit
dequeue is not required. For RAW queues, clients can specify payload delivery; but
they still must dequeue the message in REMOVE_NO_DATA mode. For all other persistent
queues, the notification contains only the message properties; clients explicitly
dequeue to receive the message.

Payload Delivery for RAW Queues

For RAW queues, Oracle Database Advanced Queuing clients can now specify that
the message payload be delivered along with its notification.

Chapter 1
Asynchronous Notifications

1-19

See Also:

"AQ Registration Information Type"

Reliable Notification

Clients can specify persistent message notification. If an Oracle RAC instance fails, its
notifications are delivered by another Oracle RAC node. If a standalone instance fails,
its notifications are delivered when the instance restarts.

Note:

Notification reliability refers only to server failures. If Oracle Database
Advanced Queuing cannot deliver client notifications for any other reason,
then the notifications are purged along with the client registration.

Designated Port Notification

For AQ queues, Oracle Database Advanced Queuing clients can use the OCI
subscription handle attribute OCI_ATTR_SUBSCR_PORTNO to designate the port at which
notifications are delivered. This is especially useful for clients on a computer behind a
firewall. The port for the listener thread can be designated before the first registration,
using an attribute in the environment handle. The thread is started the first time an
OCISubscriptionRegister is called. If the client attempts to start another thread on a
different port using a different environment handle, then Oracle Database Advanced
Queuing returns an error.

Note:

Designated port notification and IP address notification apply only to OCI
clients.

See Also:

"Publish-Subscribe Registration Functions in OCI" in Oracle Call Interface
Programmer's Guide

IPv6 Compliance and Designated IP Support

For AQ queues, Oracle Database AQ supports IPv6 and Oracle Database AQ clients
can use the OCI subscription handle attribute OCI_ATTR_SUBSCR_IPADDR to designate
the IP address at which notifications are delivered. This is especially useful for clients
on a computer that has multiple network interface cards or IP addresses. The IP
address for the listener thread can be designated before the first registration using an
attribute in the environment handle. The thread is started the first time an
OCISubscriptionRegister is called. If the client attempts to start another thread on a

Chapter 1
Asynchronous Notifications

1-20

different IP address using a different environment handle, Oracle Database AQ returns
an error. If no IP address is specified, Oracle Database AQ will deliver notifications on
all IP addresses of the computer the client is on.

Registration Timeout

In earlier releases of Oracle Database Advanced Queuing, registrations for notification
persisted until explicitly removed by the client or purged in case of extended client
failure. From Oracle Database Advanced Queuing 10g Release 2 (10.2) onwards,
clients can register for a specified time, after which the registration is automatically
purged.

When the registration is purged, Oracle Database Advanced Queuing sends a
notification to the client, so the client can invoke its callback and take any necessary
action.

See Also:

"AQ Registration Information Type" for information on the timeout parameter

Purge on Notification

Clients can also register to receive only the first notification, after which the registration
is automatically purged.

An example where purge on notification is useful is a client waiting for enqueues to
start. In this case, only the first notification is useful; subsequent notifications provide
no additional information. Previously, this client would be required to unregister once
enqueuing started; now the registration can be configured to go away automatically.

Buffered Message Notification

Clients can register for notification of buffered messages. The registration requests
apply to both buffered and persistent messages. The message properties delivered
with the PL/SQL or OCI notification specify whether the message is buffered or
persistent.

See Also:

• "Registering for Notification" for more information on PL/SQL notification

• Appendix C, "OCI Examples", which appears only in the HTML version of
this guide, for an example of OCI notification

Reliable notification is not supported.

Views on Registration
The dictionary views DBA_SUBSCR_REGISTRATIONS and USER_SUBSCR_REGISTRATIONS
display the various registrations in the system.

Chapter 1
Asynchronous Notifications

1-21

The diagnostic view GV$SUBSCR_REGISTRATION_STATS may be used to monitor
notification statistics and performance.

Event-Based Notification
Event-based notifications are processed by a set of coordinator (EMNC) and
subordinate processes.

The event notification load is distributed among these processes. These processes
work on the system notifications in parallel, offering a capability to process a larger
volume of notifications, a faster response time and lower shared memory use for
staging notifications.

Notification Grouping by Time
Notification applications may register to receive a single notification for all events that
occur within a specified time interval. Notification Clients may specify a start time for
the notifications. Additionally, they must specify a time as the grouping class and the
time interval as the grouping value.

A repeat count may be used to limit the number of notifications delivered. Clients can
receive two types of grouping events, Summary or Last. A summary notification is a
list of Message Identifiers of all the messages for the subscription. If last was specified
as a grouping type, notification would have information about the last message in the
notification interval. A count of the number of messages in the interval is also sent.
The registration interfaces in PLSQL and OCI allow for specification of the START_TIME,
REPEAT_COUNT, GROUPING CLASS, GROUPING VALUE, GROUPING TYPE in the
AQ$_REGISTRATION_INFO and the OCI subscription Handle.

The notification descriptor received by the client initiated AQ notification provides
information about the group of message identifiers and the number of notifications in
the group.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Call Interface Programmer's Guide

Enqueue Features
This topic describes the enqueue features Enqueuing an Array of Messages,
Correlation Identifiers, Priority and Ordering of Messages in Enqueuing, Message
Grouping, Sender Identification, and Time Specification and Scheduling.

The following features apply to enqueuing messages:

• Enqueue an Array of Messages

• Correlation Identifiers

• Priority and Ordering of Messages in Enqueuing

• Message Grouping

Chapter 1
Enqueue Features

1-22

• Sender Identification

• Time Specification and Scheduling

Enqueue an Array of Messages

When enqueuing messages into a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance
of enqueue operations. When enqueuing an array of messages into a queue, each
message shares the same enqueue options, but each message can have different
message properties. You can perform array enqueue operations using PL/SQL or OCI.

Array enqueuing is not supported for buffered messages in this release.

Correlation Identifiers

You can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Priority and Ordering of Messages in Enqueuing

You can specify the priority of an enqueued message and its exact position in the
queue. This means that users can specify the order in which messages are consumed
in three ways:

• A priority can be assigned to each message.

• A sort order specifies which properties are used to order all messages in a queue.
This is set when the queue table is created and cannot be changed. You can
choose to sort messages by priority, enqueue time, or commit time.

See Also:

– "Creating a Queue Table" for more information on sort order

• A sequence deviation positions a message in relation to other messages.

If several consumers act on the same queue, then each consumer gets the first
message that is available for immediate consumption. A message that is in the
process of being consumed by another consumer is skipped.

Priority ordering of messages is achieved by specifying priority, enqueue time as the
sort order. If priority ordering is chosen, then each message is assigned a priority at
enqueue time by the enqueuing agent. At dequeue time, the messages are dequeued
in the order of the priorities assigned. If two messages have the same priority, then the
order in which they are dequeued is determined by the enqueue time. A first-in, first-
out (FIFO) priority queue can also be created by specifying enqueue time, priority as
the sort order of the messages.

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group must
be created in the same transaction, and all messages created in one transaction
belong to the same group.

Chapter 1
Enqueue Features

1-23

This feature allows users to segment complex messages into simple messages. For
example, messages directed to a queue containing invoices can be constructed as a
group of messages starting with a header message, followed by messages
representing details, followed by a trailer message.

Message grouping is also useful if the message payload contains complex large
objects such as images and video that can be segmented into smaller objects.

Group message properties priority, delay, and expiration are determined solely by the
message properties specified for the first message in a group, irrespective of which
properties are specified for subsequent messages in the group.

The message grouping property is preserved across propagation. However, the
destination queue where messages are propagated must also be enabled for
transactional grouping. There are also some restrictions you must keep in mind if the
message grouping property is to be preserved while dequeuing messages from a
queue enabled for transactional grouping.

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle
Database Advanced Queuing also automatically identifies the queue from which a
message was dequeued. This allows applications to track the pathway of a
propagated message or a string message within the same database.

Time Specification and Scheduling

Messages can be enqueued with an expiration that specifies the interval of time the
message is available for dequeuing. The default for expiration is never. When a
message expires, it is moved to an exception queue. Expiration processing requires
that the queue monitor be running.

Dequeue Features
This topic discusses the dequeue features Concurrent Dequeues, Dequeue Methods,
Dequeue Modes, Dequeue an Array of Messages, Message States, Navigation of
Messages in Dequeuing, Waiting for Messages, Retries with Delays, Optional
Transaction Protection, and Exception Queues.

The following features apply to dequeuing messages:

• Concurrent Dequeues

• Dequeue Methods

• Dequeue Modes

• Dequeue an Array of Messages

• Message States

• Navigation of Messages in Dequeuing

• Waiting for Messages

• Retries with Delays

• Optional Transaction Protection

• Exception Queues

Chapter 1
Dequeue Features

1-24

Concurrent Dequeues

When there are multiple processes dequeuing from a single-consumer queue or
dequeuing for a single consumer on the multiconsumer queue, different processes
skip the messages that are being worked on by a concurrent process. This allows
multiple processes to work concurrently on different messages for the same
consumer.

Dequeue Methods

A message can be dequeued using one of the following dequeue methods:

• Specifying a correlation identifier

A correlation identifier is a user-defined message property. Multiple messages with
the same correlation identifier can be present in a queue, which means that the
ordering (enqueue order) between messages might not be preserved on dequeue
calls.

• Specifying a message identifier

A message identifier is a system-assigned value (of RAW datatype). Only one
message with a given message identifier can be present in the queue.

• Specifying a dequeue condition

A dequeue condition is expressed in terms of message properties or message
content and is similar in syntax to the WHERE clause of a SQL query. Messages in
the queue are evaluated against the condition, and messages that satisfy the
given condition are returned. When a dequeue condition is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is not
honored.

• Default dequeue

A default dequeue retrieves the first available message.

Note:

Dequeuing with correlation identifier, message identifier, or dequeue
condition does not preserve the message grouping property.

Dequeue Modes

A dequeue request can browse a message, remove it, or remove it with no data. If a
message is browsed, then it remains available for further processing. If a message is
removed or removed with no data, then it is no longer available for dequeue requests.
Depending on the queue properties, a removed message can be retained in the queue
table. A message is retained in the queue table after it has been consumed only if a
retention time is specified for its queue.

The browse mode has three risks. First, there is no guarantee that the message can
be dequeued again after it is browsed, because a dequeue call from a concurrent user
might have removed the message. To prevent a viewed message from being
dequeued by a concurrent user, you should view the message in the locked mode.

Chapter 1
Dequeue Features

1-25

Second, your dequeue position in browse mode is automatically changed to the
beginning of the queue if a nonzero wait time is specified and the navigating position
reaches the end of the queue. If you repeat a dequeue call in the browse mode with
the NEXT_MESSAGE navigation option and a nonzero wait time, then you can end up
dequeuing the same message over and over again. Oracle recommends that you use
a nonzero wait time for the first dequeue call on a queue in a session, and then use a
zero wait time with the NEXT_MESSAGE navigation option for subsequent dequeue calls.
If a dequeue call gets an "end of queue" error message, then the dequeue position
can be explicitly set by the dequeue call to the beginning of the queue using the
FIRST_MESSAGE navigation option, following which the messages in the queue can be
browsed again.

Third, if the sort order of the queue is ENQ_TIME, PRIORITY, or a combination of these
two, then results may not be repeatable from one browse to the next. If you must have
consistent browse results, then you should use a commit-time queue.

See Also:

• "Creating a Queue Table"

When a message is dequeued using REMOVE_NODATA mode, the payload of the
message is not retrieved. This mode can be useful when the user has already
examined the message payload, possibly by means of a previous BROWSE dequeue.

Dequeue an Array of Messages

When dequeuing messages from a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance
of dequeue operations. If you are dequeuing from a transactional queue, you can
dequeue all the messages for a transaction with a single call, which makes application
programming easier.

When dequeuing an array of messages from a queue, each message shares the same
dequeue options, but each message can have different message properties. You can
perform array enqueue and array dequeue operations using PL/SQL or OCI.

Array dequeuing is not supported for buffered messages in this release.

Message States

Multiple processes or operating system threads can use the same consumer name to
dequeue concurrently from a queue. In that case Oracle Database Advanced Queuing
provides the first unlocked message that is at the head of the queue and is intended
for the consumer. Unless the message identifier of a specific message is specified
during dequeue, consumers can dequeue messages that are in the READY state.

A message is considered PROCESSED only when all intended consumers have
successfully dequeued the message. A message is considered EXPIRED if one or more
consumers did not dequeue the message before the EXPIRATION time. When a
message has expired, it is moved to an exception queue.

Expired messages from multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
exactly once by specifying a NULL consumer name in the dequeue options.

Chapter 1
Dequeue Features

1-26

Note:

If the multiconsumer exception queue was created in a queue table with the
compatible parameter set to 8.0, then expired messages can be dequeued
only by specifying a message identifier.

Queues created in a queue table with compatible set to 8.0 (referred to in
this guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues
you create be 8.1-style or newer and that you migrate existing 8.0-style
queues at your earliest convenience.

Beginning with Oracle Database Advanced Queuing release 8.1.6, only the queue
monitor removes messages from multiconsumer queues. This allows dequeuers to
complete the dequeue operation by not locking the message in the queue table.
Because the queue monitor removes messages that have been processed by all
consumers from multiconsumer queues approximately once every minute, users can
see a delay between when the messages have been completely processed and when
they are physically removed from the queue.

Navigation of Messages in Dequeuing

You have several options for selecting a message from a queue. You can select the
first message with the FIRST_MESSAGE navigation option. Alternatively, once you have
selected a message and established its position in the queue, you can then retrieve
the next message with the NEXT_MESSAGE navigation option.

The FIRST_MESSAGE navigation option performs a SELECT on the queue. The
NEXT_MESSAGE navigation option fetches from the results of the SELECT run in the
FIRST_MESSAGE navigation. Thus performance is optimized because subsequent
dequeues need not run the entire SELECT again.

If the queue is enabled for transactional grouping, then the navigation options work in
a slightly different way. If FIRST_MESSAGE is requested, then the dequeue position is
still reset to the beginning of the queue. But if NEXT_MESSAGE is requested, then the
position is set to the next message in the same transaction. Transactional grouping
also offers a NEXT_TRANSACTION option. It sets the dequeue position to the first
message of the next transaction.

Transaction grouping has no effect if you dequeue by specifying a correlation identifier
or message identifier, or if you dequeue some of the messages of a transaction and
then commit.

If you reach the end of the queue while using the NEXT_MESSAGE or NEXT_TRANSACTION
option, and you have specified a nonzero wait time, then the navigating position is
automatically changed to the beginning of the queue. If a zero wait time is specified,
then you can get an exception when the end of the queue is reached.

Waiting for Messages

Oracle Database Advanced Queuing allows applications to block on one or more
queues waiting for the arrival of either a newly enqueued message or a message that
becomes ready. You can use the DEQUEUE operation to wait for the arrival of a

Chapter 1
Dequeue Features

1-27

message in a single queue or the LISTEN operation to wait for the arrival of a message
in more than one queue.

Note:

Applications can also perform a blocking dequeue on exception queues to
wait for arrival of EXPIRED messages.

When the blocking DEQUEUE call returns, it returns the message properties and the
message payload. When the blocking LISTEN call returns, it discloses only the name of
the queue where a message has arrived. A subsequent DEQUEUE operation is needed
to dequeue the message.

When there are messages for multiple agents in the agent list, LISTEN returns with the
first agent for whom there is a message. To prevent one agent from starving other
agents for messages, the application can change the order of the agents in the agent
list.

Applications can optionally specify a timeout of zero or more seconds to indicate the
time that Oracle Database Advanced Queuing must wait for the arrival of a message.
The default is to wait forever until a message arrives in the queue. This removes the
burden of continually polling for messages from the application, and it saves CPU and
network resources because the application remains blocked until a new message is
enqueued or becomes READY after its DELAY time.

An application that is blocked on a dequeue is either awakened directly by the
enqueuer if the new message has no DELAY or is awakened by the queue monitor
process when the DELAY or EXPIRATION time has passed. If an application is waiting for
the arrival of a message in a remote queue, then the Oracle Database Advanced
Queuing propagator wakes up the blocked dequeuer after a message has been
propagated.

Retries with Delays

If the transaction dequeuing a message from a queue fails, then it is regarded as an
unsuccessful attempt to consume the message. Oracle Database Advanced Queuing
records the number of failed attempts to consume the message in the message
history. Applications can query the RETRY_COUNT column of the queue table view to find
out the number of unsuccessful attempts on a message. In addition, Oracle Database
Advanced Queuing allows the application to specify, at the queue level, the maximum
number of retries for messages in the queue. The default value for maximum retries is
5. If the number of failed attempts to remove a message exceeds this number, then
the message is moved to the exception queue and is no longer available to
applications.

Note:

If a dequeue transaction fails because the server process dies (including
ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then
RETRY_COUNT is not incremented.

Chapter 1
Dequeue Features

1-28

A bad condition can cause the transaction receiving a message to end. Oracle
Database Advanced Queuing allows users to hide the bad message for a specified
retry delay interval, during which it is in the WAITING state. After the retry delay, the
failed message is again available for dequeue. The Oracle Database Advanced
Queuing time manager enforces the retry delay property. The default value for retry
delay is 0.

If multiple sessions are dequeuing messages from a queue simultaneously, then
RETRY_COUNT information might not always be updated correctly. If session one
dequeues a message and rolls back the transaction, then Oracle Database AQ notes
that the RETRY_COUNT information for this message must be updated. However
RETRY_COUNT cannot be incremented until session one completes the rollback. If
session two attempts to dequeue the same message after session one has completed
the rollback but before it has incremented RETRY_COUNT, then the dequeue by session
two succeeds. When session one attempts to increment RETRY_COUNT, it finds that the
message is locked by session two and RETRY_COUNT is not incremented. A trace file is
then generated in the USER_DUMP_DESTINATION for the instance with the following
message:

Error on rollback: ORA-25263: no message in queue schema.qname with message ID ...

Note:

Maximum retries and retry delay are not available with 8.0-style
multiconsumer queues.

Queues created in a queue table with compatible set to 8.0 (referred to in
this guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues
you create be 8.1-style or newer and that you migrate existing 8.0-style
queues at your earliest convenience.

Optional Transaction Protection

Enqueue and dequeue requests are usually part of a transaction that contains the
requests, thereby providing the wanted transactional action. You can, however, specify
that a specific request is a transaction by itself, making the result of that request
immediately visible to other transactions. This means that messages can be made
visible to the external world when the enqueue or dequeue statement is applied or
after the transaction is committed.

Note:

Transaction protection is not supported for buffered messaging.

Exception Queues

An exception queue is a repository for expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a multiconsumer
exception queue cannot have subscribers associated with it. However, an application
that intends to handle these expired or unserviceable messages can dequeue them

Chapter 1
Dequeue Features

1-29

exactly once from the exception queue using remove mode. The consumer name
specified while dequeuing should be null. Messages can also be dequeued from the
exception queue by specifying the message identifier.

Note:

Expired or unserviceable buffered messages are moved to an exception
queue as persistent messages.

Messages intended for single-consumer queues, or for 8.0-style
multiconsumer queues, can only be dequeued by their message identifiers
once the messages have been moved to an exception queue.

Queues created in a queue table with compatible set to 8.0 (referred to in
this guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues
you create be 8.1-style or newer and that you migrate existing 8.0-style
queues at your earliest convenience.

After a message has been moved to an exception queue, there is no way to identify
which queue the message resided in before moving to the exception queue. If this
information is important, then the application must save this information in the
message itself.

The exception queue is a message property that can be specified during enqueue
time. If an exception queue is not specified, then a default exception queue is used.
The default exception queue is automatically created when the queue table is created.

A message is moved to an exception queue under the following conditions:

• It was not dequeued within the specified expiration interval.

For a message intended for multiple recipients, the message is moved to the
exception queue if one or more of the intended recipients was not able to dequeue
the message within the specified expiration interval. The default expiration interval
is never, meaning the messages does not expire.

• The message was dequeued successfully, but the application that dequeued it
rolled back the transaction because of an error that arose while processing the
message. If the message has been dequeued but rolled back more than the
number of times specified by the retry limit, then the message is moved to the
exception queue.

For a message intended for multiple recipients, a separate retry count is kept for
each recipient. The message is moved to the exception queue only when retry
counts for all recipients of the message have exceeded the specified retry limit.

The default retry limit is five for single-consumer queues and 8.1-style
multiconsumer queues. No retry limit is supported for 8.0-style multiconsumer
queues, which are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2).

Chapter 1
Dequeue Features

1-30

Note:

If a dequeue transaction fails because the server process dies (including
ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then
RETRY_COUNT is not incremented.

• The statement processed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception.

If the dequeue procedure succeeds but the PL/SQL procedure raises an
exception, then Oracle Database Advanced Queuing increments the retry count of
the message returned by the dequeue procedure.

• The client program successfully dequeued a message but terminated before
committing the transaction.

Propagation Features
Messages can be propagated from one queue to another, allowing applications to
communicate with each other without being connected to the same database or to the
same queue. The destination queue can be located in the same database or in a
remote database.

Propagation enables you to fan out messages to a large number of recipients without
requiring them all to dequeue messages from a single queue. You can also use
propagation to combine messages from different queues into a single queue. This is
known as compositing or funneling messages.

Note:

• You can propagate messages from a multi-consumer queue to a single-
consumer queue. Propagation from a single-consumer queue to a multi-
consumer queue is not possible.

• For AQ queues, you can propagate messages from a multi-consumer
queue to a single-consumer queue. Propagation from a single-consumer
queue to a multi-consumer queue is not possible.

• For TEQs, you can propagate between single-consumuer and multi-
consumer queues.

• You cannot propagate between TEQ and AQ queues.

A message is marked as processed in the source queue immediately after the
message has been propagated, even if the consumer has not dequeued the message
at the remote queue. Similarly, when a propagated message expires at the remote
queue, the message is moved to the exception queue of the remote queue, and not to
the exception queue of the local queue. Oracle Database Advanced Queuing does not
currently propagate the exceptions to the source queue.

To enable propagation, one or more subscribers are defined for the queue from which
messages are to be propagated and a schedule is defined for each destination where
messages are to be propagated from the queue.

Chapter 1
Propagation Features

1-31

Oracle Database Advanced Queuing automatically checks if the type of the remote
queue is structurally equivalent to the type of the local queue within the context of the
character sets in which they are created. Messages enqueued in the source queue are
then propagated and automatically available for dequeuing at the destination queue or
queues.

When messages arrive at the destination queues, sessions based on the source
queue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you must grant schemas of the source queues
enqueue privileges to the destination queues.

Propagation runs as an Oracle Scheduler job. A background process, the
JOB_QUEUE_PROCESS will run the job. Propagation scheduling may be a dedicated
process, running continuously and without end, or it may be event driven, in which
case it runs only if there is a message to be propagated.

Oracle Database Advanced Queuing offers two kinds of propagation:

• Queue-to-dblink propagation

• Queue-to-queue propagation

Queue-to-dblink propagation delivers messages or events from the source queue to all
subscribing queues at the destination database identified by the dblink.

A single propagation schedule is used to propagate messages to all subscribing
queues. Hence any changes made to this schedule will affect message delivery to all
the subscribing queues.

Queue-to-queue propagation delivers messages or events from the source queue to a
specific destination queue identified on the dblink. This allows the user to have fine-
grained control on the propagation schedule for message delivery.

This new propagation mode also supports transparent failover when propagating to a
destination Oracle RAC system. With queue-to-queue propagation, you are no longer
required to re-point a database link if the owner instance of the queue fails on Oracle
RAC.

Oracle Database Advanced Queuing provides detailed statistics about the messages
propagated and the schedule itself. This information can be used to tune propagation
schedules for best performance.

Remote Consumers

Consumers of a message in multiconsumer queues can be local or remote. Local
consumers dequeue messages from the same queues into which the producer
enqueued the messages. Local consumers have a name but no address or protocol in
their agent descriptions.

Remote consumers dequeue from queues that are different from the queues where
the messages were enqueued. Remote consumers fall into three categories:

• The address refers to a queue in the same database.

In this case the consumer dequeues the message from a different queue in the
same database. These addresses are of the form [schema].queue_name. If the
schema is not specified, then the schema of the current user is used.

• The address refers to a queue in a different database.

Chapter 1
Propagation Features

1-32

In this case the database must be reachable using database links and the protocol
must be either NULL or 0. These addresses are of the form
[schema].queue_name@dblink. If the schema is not specified, then the schema of
the current user is used. If the database link does not have a domain name
specified, then the default domain as specified by the DB_DOMAIN init.ora
parameter is used.

• The address refers to a destination that can be reached by a third party protocol.

You must refer to the documentation of the third party software to determine how
to specify the address and the protocol database link and schedule propagation.

Propagation to Remote Subscribers

Oracle Database Advanced Queuing validates the database link specified in a
propagation schedule when the schedule runs, but not when the schedule is created. It
is possible, therefore, to create a queue-to-dblink or queue-to-queue propagation
before creating its associated database link. Also, the propagation schedule is not
disabled if you remove the database link.

Oracle Database AQ offers two kinds of propagation:

A) Queue-to-dblink propagation - specified by providing a (source) queue and
(destination) databaselink. Messages from the source queue for any queues at the
destination specified by the dblink will be handled by this propagation.

In this scenario, we cannot have multiple propagations from a source queue, with
dblinks connecting to the same database. Thus(q1, dblink1) and (q1, dblink2) cannot
coexist if both dblinks connect to the same database. However (q1, dblink1) and (q2,
dblink1) OR (q1, dblink1) and (q2, dblink2) can coexist as source queues are different.

B) Queue-to-queue propagation - specified by providing a (source) queue,
(destination) dblink and (destination) queue. Messages from the source queue for the
indicated queue at the destination dblink will be handled by this propagation. Here,
either (q1, dblink1, dq1), (q1, dblink1, dq2) OR (q1, dblink1, dq1), (q1, dblink2, dq2)
succeeds. This strategy works because the destination queues are different even
though source queue is the same and dblink connects to the same database.

In this scenario, we cannot have multiple propagations between a source queue,
destination queue, even if using different dblinks: (q1, dblink1, q2) and (q1, dblink2,
q2) cannot coexist, if dblink1 and dblink2 are pointing to the same database.

Priority and Ordering of Messages in Propagation

The delay, expiration, and priority parameters apply identically to both local and
remote consumers in both queue-to-dblink and queue-to-queue propagation. Oracle
Database Advanced Queuing accounts for any delay in propagation by adjusting the
delay and expiration parameters accordingly. For example, if expiration is set to one
hour, and the message is propagated after 15 minutes, then the expiration at the
remote queue is set to 45 minutes.

Inboxes and Outboxes

Figure 1-9 illustrates applications on different databases communicating using Oracle
Database Advanced Queuing. Each application has an inbox for handling incoming
messages and an outbox for handling outgoing messages. Whenever an application
enqueues a message, it goes into its outbox regardless of the message destination.
Similarly, an application dequeues messages from its inbox no matter where the
message originates.

Chapter 1
Propagation Features

1-33

Figure 1-9 Message Propagation in Oracle Database Advanced Queuing

Application B
consumer & producer

Inbox

Enqueue

Dequeue

Application A
producer & consumer

Dequeue

Enqueue

Database 1

Outbox

Application C
consumer & producer

Inbox

Enqueue

Dequeue

Outbox

Database 2

AQ's
Message

Propagation
Infrastructure

Outbox Inbox

Propagation Scheduling

A queue-to-dblink propagation schedule is defined for a pair of source and destination
database links. A queue-to-queue propagation schedule is defined for a pair of source
and destination queues. If a queue has messages to be propagated to several queues,
then a schedule must be defined for each of the destination queues. With queue-to-
dblink propagation, all schedules for a particular remote database have the same
frequency. With queue-to-queue propagation, the frequency of each schedule can be
adjusted independently of the others

A schedule indicates the time frame during which messages can be propagated from
the source queue. This time frame can depend on several factors such as network
traffic, load at the source database, and load at the destination database. If the
duration is unspecified, then the time frame is an infinite single window. If a window

Chapter 1
Propagation Features

1-34

must be repeated periodically, then a finite duration is specified along with a
NEXT_TIME function that defines the periodic interval between successive windows.

When a schedule is created, a job is automatically submitted to the job queue facility
to handle propagation.

The propagation schedules defined for a queue can be changed or dropped at any
time during the life of the queue. You can also temporarily disable a schedule instead
of dropping it. All administrative calls can be made irrespective of whether the
schedule is active or not. If a schedule is active, then it takes a few seconds for the
calls to be processed.

Propagation of Messages with LOBs

Large Objects can be propagated using Oracle Database Advanced Queuing using
two methods:

• Propagation from RAW queues

In RAW queues the message payload is stored as a BLOB. This allows users to
store up to 32KB of data when using the PL/SQL interface and as much data as
can be contiguously allocated by the client when using OCI. This method is
supported by all releases after 8.0.4 inclusive.

• Propagation from object queues with LOB attributes

The user can populate the LOB and read from the LOB using Oracle Database LOB
handling routines. The LOB attributes can be BLOBs or CLOBs (not NCLOBs). If the
attribute is a CLOB, then Oracle Database Advanced Queuing automatically
performs any necessary character set conversion between the source queue and
the destination queue. This method is supported by all releases from 8.1.3
inclusive.

Note:

Payloads containing LOBs require users to grant explicit Select, Insert
and Update privileges on the queue table for doing enqueues and
dequeues.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Propagation Statistics

Detailed runtime information about propagation is gathered and stored in the
DBA_QUEUE_SCHEDULES view for each propagation schedule. This information can be
used by queue designers and administrators to fix problems or tune performance.
Similarly, errors reported by the view can be used to diagnose and fix problems. The
view also describes additional information such as the session ID of the session
handling the propagation and the process name of the job queue process handling the
propagation.

For each schedule, detailed propagation statistics are maintained:

Chapter 1
Propagation Features

1-35

• Total number of messages propagated in a schedule

• Total number of bytes propagated in a schedule

• Maximum number of messages propagated in a window

• Maximum number of bytes propagated in a window

• Average number of messages propagated in a window

• Average size of propagated messages

• Average time to propagated a message

Propagation Error Handling

Propagation has built-in support for handling failures and reporting errors. For
example, if the specified database link is invalid, if the remote database is unavailable,
or if the remote queue is not enabled for enqueuing, then the appropriate error
message is reported. Propagation uses a linear backoff scheme for retrying
propagation from a schedule that encountered a failure.

If a schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts is
made, after which the schedule is automatically disabled.

Note:

Once a retry attempt slips to the next propagation window, it will always do
so; the exponential backoff scheme no longer governs retry scheduling. If the
date function specified in the next_time parameter of
DBMS_AQADM.SCHEDULE_PROPAGATION results in a short interval between
windows, then the number of unsuccessful retry attempts can quickly reach
16, disabling the schedule.

When a schedule is disabled automatically due to failures, the relevant information is
written into the alert log. A check for scheduling failures indicates:

• How many successive failures were encountered

• The error message indicating the cause for the failure

• The time at which the last failure was encountered

By examining this information, a queue administrator can fix the failure and enable the
schedule. If propagation is successful during a retry, then the number of failures is
reset to 0.

In some situations that indicate application errors in queue-to-dblink propagations,
Oracle Database Advanced Queuing marks messages as UNDELIVERABLE and logs a
message in alert.log. Examples of such errors are when the remote queue does not
exist or when there is a type mismatch between the source queue and the remote
queue. The trace files in the background_dump_dest directory can provide additional
information about the error.

Chapter 1
Propagation Features

1-36

When a new job queue process starts, it clears the mismatched type errors so the
types can be reverified. If you have capped the number of job queue processes and
propagation remains busy, then you might not want to wait for the job queue process
to terminate and restart. Queue types can be reverified at any time using
DBMS_AQADM.VERIFY_QUEUE_TYPES.

Note:

When a type mismatch is detected in queue-to-queue propagation,
propagation stops and throws an error. In such situations you must query the
DBA_SCHEDULES view to determine the last error that occurred during
propagation to a particular destination. The message is not marked as
UNDELIVERABLE.

Propagation with Oracle Real Application Clusters

Propagation has support built-in for Oracle Real Application Clusters. It is transparent
to the user and the queue administrator. The job that handles propagation is submitted
to the same instance as the owner of the queue table where the queue resides.

If there is a failure at an instance and the queue table that stores the source queue is
migrated to a different instance, then the propagation job is also migrated to the new
instance. This minimizes pinging between instances and thus offers better
performance.

The destination can be identified by a database link or by destination queue name.
Specifying the destination database results in queue-to-dblink propagation. If you
propagate messages to several queues in another database, then all queue-to-dblink
propagations to that database have the same frequency. Specifying the destination
queue name results in queue-to-queue propagation. If you propagate messages to
several queues in another database, then queue-to-queue propagation enables you to
adjust the frequency of each schedule independently of the others. You can even
enable or disable individual propagations.

This new queue-to-queue propagation mode also supports transparent failover when
propagating to a destination Oracle RAC system. With queue-to-queue propagation,
you are no longer required to re-point a database link if the owner instance of the
queue fails on Oracle RAC.

See Also:

"Scheduling a Queue Propagation" for more information on queue-to-queue
propagation

Propagation has been designed to handle any number of concurrent schedules. The
number of job queue processes is limited to a maximum of 1000, and some of these
can be used to handle jobs unrelated to propagation. Hence, propagation has built-in
support for multitasking and load balancing.

Chapter 1
Propagation Features

1-37

The propagation algorithms are designed such that multiple schedules can be handled
by a single job queue process. The propagation load on a job queue process can be
skewed based on the arrival rate of messages in the different source queues.

If one process is overburdened with several active schedules while another is less
loaded with many passive schedules, then propagation automatically redistributes the
schedules so they are loaded uniformly.

Third-Party Support

If the protocol number for a recipient is in the range 128 - 255, then the address of the
recipient is not interpreted by Oracle Database Advanced Queuing and the message is
not propagated by the Oracle Database Advanced Queuing system. Instead, a third-
party propagator can dequeue the message by specifying a reserved consumer name
in the dequeue operation. The reserved consumer names are of the form
AQ$_Pprotocol_number. For example, the consumer name AQ$_P128 can be used to
dequeue messages for recipients with protocol number 128. The list of recipients for a
message with the specific protocol number is returned in the recipient_list
message property on dequeue.

Another way for Oracle Database Advanced Queuing to propagate messages to and
from third-party messaging systems is through Messaging Gateway. Messaging
Gateway dequeues messages from an Oracle Database Advanced Queuing queue
and guarantees delivery to supported third-party messaging systems. Messaging
Gateway can also dequeue messages from these systems and enqueue them to an
Oracle Database Advanced Queuing queue.

Propagation Using HTTP

In Oracle Database 10g you can set up Oracle Database Advanced Queuing
propagation over HTTP and HTTPS (HTTP over SSL). HTTP propagation uses the
Internet access infrastructure and requires that the Oracle Database Advanced
Queuing servlet that connects to the destination database be deployed. The database
link must be created with the connect string indicating the Web server address and
port and indicating HTTP as the protocol. The source database must be created for
running Java and XML. Otherwise, the setup for HTTP propagation is more or less the
same as Oracle Net Services propagation.

Message Format Transformation
Applications often use data in different formats. A transformation defines a mapping
from one Oracle data type to another.

The transformation is represented by a SQL function that takes the source data type
as input and returns an object of the target data type. Only one-to-one message
transformations are supported.

To transform a message during enqueue, specify a mapping in the enqueue options.
To transform a message during dequeue, specify a mapping either in the dequeue
options or when you add a subscriber. A dequeue mapping overrides a subscriber
mapping. To transform a message during propagation, specify a mapping when you
add a subscriber.

You can create transformations by creating a single PL/SQL function or by creating an
expression for each target type attribute. The PL/SQL function returns an object of the
target type or the constructor of the target type. This representation is preferable for

Chapter 1
Message Format Transformation

1-38

simple transformations or those not easily broken down into independent
transformations for each attribute.

Creating a separate expression specified for each attribute of the target type simplifies
transformation mapping creation and management for individual attributes of the
destination type. It is useful when the destination type has many attributes.

As Figure 1-10 shows, queuing, routing, and transformation are essential building
blocks to an integrated application architecture. The figure shows how data from the
Out queue of a CRM application is routed and transformed in the integration hub and
then propagated to the In queue of the Web application. The transformation engine
maps the message from the format of the Out queue to the format of the In queue.

Figure 1-10 Transformations in Application Integration

Out Queue In QueueRouting and
Transformation

CRM
Application

Web
Application

Spoke Spoke

Propagation

Integration Hub

XML Data Transformation

You can transform XML data using the extract() method supported on XMLType to
return an object of XMLType after applying the supplied XPath expression. You can also
create a PL/SQL function that transforms the XMLType object by applying an XSLT
transformation to it, using the package XSLPROCESSOR.

Other Oracle Database Advanced Queuing Features
This topic describes the AQ features Queue Monitor Coordinator, Integration with
Oracle Internet Directory, Integration with Oracle Enterprise Manager, Retention and
Message History, Cleaning Up Message Queues, Tracking and Event Journals, Non-
repudiation, and Internet Integration.

• Queue Monitor Coordinator

• Integration with Oracle Internet Directory

• Integration with Oracle Enterprise Manager

• Retention and Message History

• Cleaning Up Message Queues

• Tracking and Event Journals

• Non-repudiation

• Internet Integration

Queue Monitor Coordinator

Before 10g Release 1 (10.1), the Oracle Database Advanced Queuing time manager
process was called queue monitor (QMNn), a background process controlled by setting
the dynamic init.ora parameter AQ_TM_PROCESSES. Beginning with 10g Release 1
(10.1), time management and many other background processes are automatically

Chapter 1
Other Oracle Database Advanced Queuing Features

1-39

controlled by a coordinator-slave architecture called Queue Monitor Coordinator
(QMNC). QMNC dynamically spawns slaves named qXXX depending on the system load.
The slaves provide mechanisms for:

• Message delay

• Message expiration

• Retry delay

• Garbage collection for the queue table

• Memory management tasks for buffered messages

Because the number of processes is determined automatically and tuned constantly,
you are saved the trouble of setting it with AQ_TM_PROCESSES.

Although it is no longer necessary to set init.ora parameter AQ_TM_PROCESSES, it is
still supported. If you do set it (up to a maximum of 40), then QMNC still autotunes the
number of processes. But you are guaranteed at least the set number of processes for
persistent queues. Processes for a buffered queue however, are not affected by this
parameter.

Note:

If you want to disable the Queue Monitor Coordinator, then you must set
AQ_TM_PROCESSES = 0 in your pfile or spfile. Oracle strongly recommends
that you do NOT set AQ_TM_PROCESSES = 0.

Integration with Oracle Internet Directory

Oracle Internet Directory is a native LDAPv3 directory service built on Oracle
Database that centralizes a wide variety of information, including e-mail addresses,
telephone numbers, passwords, security certificates, and configuration data for many
types of networked devices. You can look up enterprise-wide queuing information—
queues, subscriptions, and events—from one location, the Oracle Internet Directory.
Refer to the Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory for more information.

Integration with Oracle Enterprise Manager

You can use Oracle Enterprise Manager to:

• Create and manage queues, queue tables, propagation schedules, and
transformations

• Monitor your Oracle Database Advanced Queuing environment using its topology
at the database and queue levels, and by viewing queue errors and queue and
session statistics

Retention and Message History

The systems administrator specifies the retention duration to retain messages after
consumption. Oracle Database Advanced Queuing stores information about the
history of each message, preserving the queue and message properties of delay,
expiration, and retention for messages destined for local or remote receivers. The
information contains the enqueue and dequeue times and the identification of the

Chapter 1
Other Oracle Database Advanced Queuing Features

1-40

transaction that executed each request. This allows users to keep a history of relevant
messages. The history can be used for tracking, data warehouse, data mining
operations, and, also specific auditing functions.

Message retention is not supported for buffered messaging.

Cleaning Up Message Queues

The Oracle Database Advanced Queuing retention feature can be used to
automatically clean up messages after the user-specified duration after consumption.

If messages are accidentally inserted into a queue for the wrong subscriber, you can
dequeue them with the subscriber name or by message identifier. This consumes the
messages, which are cleaned up after their retention time expires.

To clean up messages for a particular subscriber, you can remove the subscriber and
add the subscriber again. Removing the subscriber removes all the messages for that
subscriber.

Tracking and Event Journals

Retained messages can be related to each other to form sequences. These
sequences represent event journals, which are often constructed by applications.
Oracle Database Advanced Queuing is designed to let applications create event
journals automatically.

Non-repudiation

Oracle Database Advanced Queuing maintains the entire history of information about
a message along with the message itself. This information serves as proof of sending
and receiving of messages and can be used for non-repudiation of the sender and
non-repudiation of the receiver.

The following information is kept at enqueue for non-repudiation of the enqueuer:

• Oracle Database Advanced Queuing agent doing the enqueue

• Database user doing the enqueue

• Enqueue time

• Transaction ID of the transaction doing enqueue

The following information is kept at dequeue for non-repudiation of the dequeuer:

• Oracle Database Advanced Queuing agent doing dequeue

• Database user doing dequeue

• Dequeue time

• Transaction ID of the transaction doing dequeue

After propagation, the ORIGINAL_MSGID field in the destination queue of the
propagation corresponds to the message ID of the source message. This field can be
used to correlate the propagated messages. This is useful for non-repudiation of the
dequeuer of propagated messages.

Stronger non-repudiation can be achieved by enqueuing the digital signature of the
sender at the time of enqueue with the message and by storing the digital signature of
the dequeuer at the time of dequeue.

Chapter 1
Other Oracle Database Advanced Queuing Features

1-41

Internet Integration

You can access Oracle Database Advanced Queuing over the Internet by using
Simple Object Access Protocol (SOAP). Internet Data Access Presentation (IDAP) is
the SOAP specification for Oracle Database Advanced Queuing operations. IDAP
defines the XML message structure for the body of the SOAP request.

An IDAP message encapsulates the Oracle Database Advanced Queuing request and
response in XML. IDAP is used to perform Oracle Database Advanced Queuing
operations such as enqueue, dequeue, send notifications, register for notifications,
and propagation over the Internet standard transports—HTTP(s) and e-mail. In
addition, IDAP encapsulates transactions, security, transformation, and the character
set ID for requests.

You can create an alias to an Oracle Database Advanced Queuing agent in Oracle
Internet Directory and then use the alias in IDAP documents sent over the Internet to
perform Oracle Database Advanced Queuing operations. Using aliases prevents
exposing the internal name of the Oracle Database Advanced Queuing agent.

Figure 1-11 shows the architecture for performing Oracle Database Advanced
Queuing operations over HTTP. The major components are:

• Oracle Database Advanced Queuing client program

• Web server/servlet runner hosting the Oracle Database Advanced Queuing servlet

• Oracle Database server

The Oracle Database Advanced Queuing client program sends XML messages
(conforming to IDAP) to the Oracle Database Advanced Queuing servlet, which
understands the XML message and performs Oracle Database Advanced Queuing
operations. Any HTTP client, a Web browser for example, can be used. The Web
server/servlet runner hosting the Oracle Database Advanced Queuing servlet, Apache/
Jserv or Tomcat for example, interprets the incoming XML messages. The Oracle
Database Advanced Queuing servlet connects to the Oracle Database server and
performs operations on user queues.

Note:

This feature is certified to work with Apache, along with the Tomcat or Jserv
servlet execution engines. However, the code does not prevent the servlet
from working with other Web server and servlet execution engines that
support Java Servlet 2.0 or higher interfaces.

Chapter 1
Other Oracle Database Advanced Queuing Features

1-42

Figure 1-11 Architecture for Performing Oracle Database Advanced Queuing
Operations Using HTTP

AQ

Queue

Web

Server

AQ Client

Oracle �

Database�

Server

AQ Servlet

XML Message
over HTTP

Interfaces to Transactional Event Queues and Advanced
Queuing

You can access TEQ and AQ functionality through the interfaces listed in this topic.

• PL/SQL using DBMS_AQ, DBMS_AQADM, and DBMS_AQELM

• Java Message Service (JMS) using the oracle.jms Java package

• Internet access using HTTP(S)

• Kafka Java Client APIs using the oracle.kafka Java package

See Also:

• Oracle Database PL/SQL Packages and Types Reference

Chapter 1
Interfaces to Transactional Event Queues and Advanced Queuing

1-43

2
Basic Components of Oracle Transactional
Event Queues and Advanced Queuing

This topic lists the basic components of Oracle Database Advanced Queuing.

• Object Name

• Type Name

• AQ Agent Type

• AQ Recipient List Type

• AQ Agent List Type

• AQ Subscriber List Type

• AQ Registration Information List Type

• AQ Post Information List Type

• AQ Registration Information Type

• AQ Notification Descriptor Type

• AQ Message Properties Type

• AQ Post Information Type

• AQ$_NTFN_MSGID_ARRAY Type

• Enumerated Constants for AQ Administrative Interface

• Enumerated Constants for AQ Operational Interface

• AQ Background Processes

See Also:

– Oracle Database Advanced Queuing Administrative Interface

– Oracle Database Advanced Queuing Operations Using PL/SQL

Object Name
This component names database objects.

object_name := VARCHAR2
object_name := [schema_name.]name

This naming convention applies to queues, queue tables, and object types.

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, then the current schema is assumed. The name must

2-1

follow the reserved character guidelines in Oracle Database SQL Language
ReferenceOracle Database SQL Language Reference. The schema name, agent
name, and the object type name can each be up to 128 bytes long. However starting
from 12c Release 2 (12.2.), queue names and queue table names can be a maximum
of 122 bytes.

Type Name
This component defines queue types.

type_name := VARCHAR2
type_name := object_type | "RAW"

The maximum number of attributes in the object type is limited to 900.

To store payloads of type RAW, Oracle Database Advanced Queuing creates a queue
table with a LOB column as the payload repository. The size of the payload is limited
to 32K bytes of data. Because LOB columns are used for storing RAW payload, the
Oracle Database Advanced Queuing administrator can choose the LOB tablespace and
configure the LOB storage by constructing a LOB storage string in the storage_clause
parameter during queue table creation time.

Note:

Payloads containing LOBs require users to grant explicit Select, Insert and
Update privileges on the queue table for doing enqueues and dequeues.

AQ Agent Type
This component identifies a producer or consumer of a message.

TYPE AQ$_AGENT IS OBJECT (
 name VARCHAR2(30),
 address VARCHAR2(1024),
 protocol NUMBER);

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$_AGENT parameters. Two subscribers cannot have the same
values for the NAME, ADDRESS, and PROTOCOL attributes for the AQ$_AGENT type. At least
one of the three attributes must be different for two subscribers.

You can add subscribers by repeatedly using the DBMS_AQADM.ADD_SUBSCRIBER
procedure up to a maximum of 1024 subscribers for a multiconsumer queue.

This type has three attributes:

• name

This attribute specifies the name of a producer or a consumer of a message. It can
be the name of an application or a name assigned by an application. A queue can
itself be an agent, enqueuing or dequeuing from another queue. The name must
follow the reserved character guidelines in Oracle Database SQL Language
Reference.

Chapter 2
Type Name

2-2

• address

This attribute is interpreted in the context of protocol. If protocol is 0 (default),
then address is of the form [schema.]queue[@dblink].

• protocol

This attribute specifies the protocol to interpret the address and propagate the
message. The default value is 0.

AQ Recipient List Type
This component identifies the list of agents that receive a message.

TYPE AQ$_RECIPIENT_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY_INTEGER;

AQ Agent List Type
This component identifies the list of agents for DBMS_AQ.LISTEN to listen for.

TYPE AQ$_AGENT_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY INTEGER;

AQ Subscriber List Type
This component identifies the list of subscribers that subscribe to this queue.

TYPE AQ$_SUBSCRIBER_LIST_T IS TABLE OF aq$_agent
 INDEX BY BINARY INTEGER;

AQ Registration Information List Type
This component identifies the list of registrations to a queue.

TYPE AQ$_REG_INFO_LIST AS VARRAY(1024) OF sys.aq$_reg_info;

AQ Post Information List Type
This component identifies the list of anonymous subscriptions to which messages are
posted.

TYPE AQ$_POST_INFO_LIST AS VARRAY(1024) OF sys.aq$_post_info;

AQ Registration Information Type
This component identifies a producer or a consumer of a message.

TYPE SYS.AQ$_REG_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 callback VARCHAR2(4000),
 context RAW(2000) DEFAULT NULL,
 qosflags NUMBER,

Chapter 2
AQ Recipient List Type

2-3

 timeout NUMBER
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER DEFAULT 600,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

Its attributes are described in the following list.

Table 2-1 AQ$_REG_INFO Type Attributes

Attribute Description

name Specifies the name of the subscription. The subscription name is
of the form schema.queue if the registration is for a single
consumer queue or schema.queue:consumer_name if the
registration is for a multiconsumer queues.

namespace Specifies the namespace of the subscription. To receive
notification from Oracle Database AQ queues, the namespace
must be DBMS_AQ.NAMESPACE_AQ. To receive notifications from
other applications through DBMS_AQ.POST or
OCISubscriptionPost(), the namespace must be
DBMS_AQ.NAMESPACE_ANONYMOUS.

callback Specifies the action to be performed on message notification. For
HTTP notifications, use http://www.company.com:8080. For
e-mail notifications, use mailto://xyz@company.com. For raw
message payload for the PLSQLCALLBACK procedure, use
plsql://schema.procedure?PR=0. For user-defined type
message payload converted to XML for the PLSQLCALLBACK
procedure, use plsql://schema.procedure?PR=1

context Specifies the context that is to be passed to the callback function

qosflags Can be set to one or more of the following values to specify the
notification quality of service:

• NTFN_QOS_RELIABLE- This value specifies that reliable
notification is required. Reliable notifications persist across
instance and database restarts.

• NTFN_QOS_PAYLOAD - This value specifies that payload
delivery is required. It is supported only for client notification
and only for RAW queues.

• NTFN_QOS_PURGE_ON_NTFN - This value specifies that the
registration is to be purged automatically when the first
notification is delivered to this registration location.

ntfn_grouping_class Currently, only the following flag can be set to specify criterion for
grouping. The default value will be 0. If ntfn_grouping_class
is 0, all other notification grouping attributes must be 0.

• NTFN_GROUPING_CLASS_TIME - Notifications grouped by
time, that is, the user specifies a time value and a single
notification gets published at the end of that time.

ntfn_grouping_value Time-period of grouping notifications specified in seconds,
meaning the time after which grouping notification would be sent
periodically until ntfn_grouping_repeat_count is exhausted.

ntfn_grouping_type • NTFN_GROUPING_TYPE_SUMMARY - Summary of all
notifications that occurred in the time interval. (Default)

• NTFN_GROUPING_TYPE_LAST - Last notification that
occurred in the interval.

Chapter 2
AQ Registration Information Type

2-4

Table 2-1 (Cont.) AQ$_REG_INFO Type Attributes

Attribute Description

ntfn_grouping_start_t
ime

Notification grouping start time. Notification grouping can start
from a user-specified time that should a valid timestamp with time
zone. If ntfn_grouping_start_time is not specified when
using grouping, the default is to current timestamp with time zone

ntfn_grouping_repeat_
count

Grouping notifications will be sent as many times as specified by
the notification grouping repeat count and after that revert to
regular notifications. The ntfn_grouping_repeat_count, if not
specified, will default to

• NTFN_GROUPING_FOREVER - Keep sending grouping
notifications forever.

AQ Notification Descriptor Type
This component specifies the Oracle Database Advanced Queuing descriptor received
by AQ PL/SQL callbacks upon notification.

TYPE SYS.AQ$_DESCRIPTOR IS OBJECT (
 queue_name VARCHAR2(61),
 consumer_name VARCHAR2(30),
 msg_id RAW(16),
 msg_prop MSG_PROP_T,
 gen_desc AQ$_NTFN_DESCRIPTOR,
 msgid_array SYS.AQ$_NTFN_MSGID_ARRAY,
 ntfnsRecdInGrp NUMBER);

It has the following attributes:

Table 2-2 AQ$_DESCRIPTOR Attributes

Attribute Description

queue_name Name of the queue in which the message was enqueued which resulted
in the notification

consumer_name Name of the consumer for the multiconsumer queue

msg_id Identification number of the message

msg_prop Message properties specified by the MSG_PROP_T type

gen_desc Indicates the timeout specifications

msgid_array Group notification message ID list

ntfnsRecdInGrp Notifications received in group

AQ Message Properties Type
The message properties type msg_prop_t has these components.

TYPE AQ$_MSG_PROP_T IS OBJECT(
 priority number,
 delay number,
 expiration number,

Chapter 2
AQ Notification Descriptor Type

2-5

 correlation varchar2(128),
 attempts number,
 recipent_list aq$_recipient_list_t,
 exception_queue varchar2(51),
 enqueue_time date,
 state number,
 sender_id aq$_agent,
 original_misgid raw(16),
 delivery_mode number);

The timeout specifications type AQ$_NTFN_DESCRIPTOR has a single component:

TYPE AQ$_NTFN_DESCRIPTOR IS OBJECT(
 NTFN_FLAGS number);

NTFN_FLAGS is set to 1 if the notifications are already removed after a stipulated
timeout; otherwise the value is 0.

See Also:

"MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages
and Types Reference

AQ Post Information Type
This component specifies anonymous subscriptions to which you want to post
messages.

TYPE SYS.AQ$_POST_INFO IS OBJECT (
 name VARCHAR2(128),
 namespace NUMBER,
 payload RAW(2000));

It has three attributes:

• name

This attribute specifies the name of the anonymous subscription to which you want
to post.

• namespace

This attribute specifies the namespace of the anonymous subscription. To receive
notifications from other applications using DBMS_AQ.POST or
OCISubscriptionPost(), the namespace must be DBMS_AQ.NAMESPACE_ANONYMOUS.

• payload

This attribute specifies the payload to be posted to the anonymous subscription.
The default is NULL.

AQ$_NTFN_MSGID_ARRAY Type
This component is for storing grouping notification data for AQ namespace, value 230

which is the max varray size.

Chapter 2
AQ Post Information Type

2-6

TYPE SYS.AQ$_NTFN_MSGID_ARRAY AS VARRAY(1073741824)OF RAW(16);

Enumerated Constants for AQ Administrative Interface
When enumerated constants such as INFINITE, TRANSACTIONAL, and NORMAL_QUEUE
are selected as values, the symbol must be specified with the scope of the packages
defining it.

All types associated with the administrative interfaces must be prepended with
DBMS_AQADM. For example:

DBMS_AQADM.NORMAL_QUEUE

Table 2-3 lists the enumerated constants in the Oracle Database Advanced Queuing
administrative interface.

Table 2-3 Enumerated Constants in the Oracle Database Advanced Queuing
Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL, NONE

queue_type NORMAL_QUEUE, EXCEPTION_QUEUE,NON_PERSISTENT_QUEUE

delivery_mode BUFFERED, PERSISTENT, PERSISTENT_OR_BUFFERED

Note:

Nonpersistent queues are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that you use buffered
messaging instead.

Enumerated Constants for AQ Operational Interface
When using enumerated constants such as BROWSE, LOCKED, and REMOVE, the PL/SQL
constants must be specified with the scope of the packages defining them.

All types associated with the operational interfaces must be prepended with DBMS_AQ.
For example:

DBMS_AQ.BROWSE

Table 2-4 lists the enumerated constants in the Oracle Database Advanced Queuing
operational interface.

Table 2-4 Enumerated Constants in the Oracle Database Advanced Queuing
Operational Interface

Parameter Options

visibility IMMEDIATE, ON_COMMIT

Chapter 2
Enumerated Constants for AQ Administrative Interface

2-7

Table 2-4 (Cont.) Enumerated Constants in the Oracle Database Advanced
Queuing Operational Interface

Parameter Options

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA

navigation FIRST_MESSAGE, NEXT_MESSAGE, NEXT_TRANSACTION

state WAITING, READY, PROCESSED, EXPIRED

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

delivery_mode BUFFERED, PERSISTENT, PERSISTENT_OR_BUFFERED

quosflags NTFN_QOS_RELIABLE, NTFN_QOS_PAYLOAD,
NTFN_QOS_PURGE_ON_NTFN

ntfn_grouping_class NFTN_GROUPING_CLASS_TIME

ntfn_grouping_type NTFN_GROUPING_TYPE_SUMMARY, NTFN_GROUPING_TYPE_LAST

ntfn_grouping_repeat_
count

NTFN_GROUPING_FOREVER

AQ Background Processes
These topics describe the background processes of Oracle Database Advanced
Queuing.

• Queue Monitor Processes

• Job Queue Processes

• AQ Background Architecture

Queue Monitor Processes
Oracle recommends leaving the AQ_TM_PROCESSES parameter unspecified and let the
system autotune.

Many Oracle Database Advanced Queuing tasks are executed in the background.
These include converting messages with DELAY specified into the READY state, expiring
messages, moving messages to exception queues, spilling and recovering of buffered
messages, and similar operations.

It is no longer necessary to set AQ_TM_PROCESSES when Oracle Database AQ is used. If
a value is specified, that value is taken into account when starting the Qxx processes.
However, the number of Qxx processes can be different from what was specified by
AQ_TM_PROCESSES.

No separate API is needed to disable or enable the background processes. This is
controlled by setting AQ_TM_PROCESSES to zero or nonzero. Oracle recommends,
however, that you leave the AQ_TM_PROCESSES parameter unspecified and let the
system autotune.

Chapter 2
AQ Background Processes

2-8

Note:

If you want to disable the Queue Monitor Coordinator, then you must set
AQ_TM_PROCESSES = 0 in your pfile or spfile. Oracle strongly recommends
that you do NOT set AQ_TM_PROCESSES = 0.

Job Queue Processes
Propagation and PL/SQL notifications are handled by job queue (Jnnn) processes.

The parameter JOB_QUEUE_PROCESSES no longer needs to be specified. The database
scheduler automatically starts the job queue processes that are needed for the
propagation and notification jobs.

AQ Background Architecture
Oracle Database Advanced Queuing 12c Release 1 (12.1) introduces a new AQ
background architecture with a 3-tier design.

• Tier1 (AQPC): Asingle background process called the Advanced Queuing Process
Coordinator is created at instance startup. It will be responsible for creating and
managing various master processes. The coordinator statistics can be viewed
using GV$AQ_BACKGROUND_COORDINATOR.

• Tier2 (QM**): There will be many master processes named Queue Monitors. Each
will be responsible for handling a distinct type of job. Jobs could be of type
notification(Emon pool), queue monitors (handling TEQ time manager etc) , cross
process etc.

Note:

The old processes like QMNC and EMNC will be subsumed within one of
new master processes.

A job can be defined as a type of work which needs own scheduling mechanism
across multiple server processes (Q***) to perform its task . The master process
statistics and their jobs can be viewed using GV$AQ_JOB_COORDINATOR.

• Tier3(Q***): There will be a single pool of server processes for all above
mentioned master processes. Each process will be associated to a single master
process at a time. But can be rescheduled to another once original master
relinquishes its need to use it.These servers will perform jobs for respective
masters providing performance and scalability. The server process statistics and
its current master association can be viewed using GV$AQ_SERVER_POOL.

Chapter 2
AQ Background Processes

2-9

3
Oracle Transactional Event Queues and
Advanced Queuing: Programmatic
Interfaces

These topics describe the various language options and elements you must work with
and issues to consider in preparing your Oracle Database Advanced Queuing (AQ)
application environment.

Note:

Java package oracle.AQ was deprecated in 10g Release 1 (10.1). Oracle
recommends that you migrate existing Java AQ applications to Oracle JMS
(or other Java APIs) and use Oracle JMS (or other Java APIs) to design your
future Java AQ applications.

Topics:

• Programmatic Interfaces for Accessing Oracle Database Advanced Queuing

• Using PL/SQL to Access Oracle Database Advanced Queuing

• Using OCI to Access Oracle Database Advanced Queuing

• Using OCCI to Access Oracle Database Advanced Queuing

• Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database
Advanced Queuing

• Using Oracle Database Advanced Queuing XML Servlet to Access Oracle
Database Advanced Queuing

• Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Programmatic Interfaces for Accessing Oracle Database
Advanced Queuing

The table lists Oracle Database Advanced Queuing programmatic interfaces, functions
supported in each interface, and syntax references.

3-1

Table 3-1 Oracle Database Advanced Queuing Programmatic Interfaces

Language Precompiler or Interface Program Functions
Supported

Syntax References

PL/SQL DBMS_AQADM and DBMS_AQ Packages Administrative and
operational

Oracle Database PL/SQL
Packages and Types Reference

C Oracle Call Interface (OCI) Operational only Oracle Call Interface
Programmer's Guide

Java (JMS) oracle.JMS package using JDBC API Administrative and
operational

Oracle Database Advanced
Queuing Java API Reference

AQ XML servlet Internet Data Access Presentation (IDAP) Operational only Oracle XML DB Developer's
Guide

Using PL/SQL to Access Oracle Database Advanced
Queuing

The PL/SQL packages DBMS_AQADM and DBMS_AQ support access to Oracle Database
Advanced Queuing administrative and operational functions using the native Oracle
Database Advanced Queuing interface.

These functions include:

• Create queue, transactional event queue, queue table, nonpersistent queue,
multiconsumer queue/topic, RAW message, or message with structured data

• Get queue table, queue, or multiconsumer queue/topic

• Alter queue table or queue/topic

• Drop queue/topic

• Start or stop queue/topic

• Grant and revoke privileges

• Add, remove, or alter subscriber

• Add, remove, or alter an Oracle Database Advanced Queuing Internet agent

• Grant or revoke privileges of database users to Oracle Database Advanced
Queuing Internet agents

• Enable, disable, or alter propagation schedule

• Enqueue messages to single consumer queue (point-to-point model)

• Publish messages to multiconsumer queue/topic (publish/subscribe model)

• Subscribe for messages in multiconsumer queue

• Browse messages in a queue

• Receive messages from queue/topic

• Register to receive messages asynchronously

• Listen for messages on multiple queues/topics

• Post messages to anonymous subscriptions

Chapter 3
Using PL/SQL to Access Oracle Database Advanced Queuing

3-2

• Bind or unbind agents in a Lightweight Directory Access Protocol (LDAP) server

• Add or remove aliases to Oracle Database Advanced Queuing objects in a LDAP
server

Available PL/SQL DBMS_AQADM and DBMS_AQ functions are listed in detail in Table 3–2
through Table 3–9.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
documentation of DBMS_AQADM and DBMS_AQ, including syntax, parameters,
parameter types, return values, and examples

Using OCI and the Thin JDBC Driver to Access Oracle
Database Advanced Queuing

An Oracle Call Interface (OCI) provides an interface to Oracle Database Advanced
Queuing functions using the native Oracle Database Advanced Queuing interface.

An OCI client can perform the following actions:

• Enqueue messages

• Dequeue messages

• Listen for messages on sets of queues

• Register to receive message notifications

In addition, OCI clients can receive asynchronous notifications for new messages in a
queue using OCISubscriptionRegister. Transactional event queues (TEQ) do not
support OCI clients.

Oracle Type Translator

For queues with user-defined payload types, the Oracle type translator must be used
to generate the OCI/OCCI mapping for the Oracle type. The OCI client is responsible
for freeing the memory of the Oracle Database Advanced Queuing descriptors and the
message payload.

See Also:

"OCI and Advanced Queuing" and "Publish-Subscribe Notification" in Oracle
Call Interface Programmer's Guide for syntax details

Comparing Oracle Database Advanced Queuing Programmatic
Interfaces

These topics list and compare the Oracle Database Advanced Queuing Administrative
Interfaces and the Oracle Database Advanced Queuing Operational Interfaces.

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-3

Available functions for the Oracle Database Advanced Queuing programmatic
interfaces are listed by use case in Table 3-2 through Table 3-9. Use cases are
described in Oracle Database Advanced Queuing Administrative Interface through
Oracle Database Advanced Queuing Operations Using PL/SQL and Oracle Java
Message Service Basic Operations through Oracle Java Message Service Shared
Interfaces.

Oracle Transactional Event Queues and Advanced Queuing Administrative
Interfaces

The table lists the equivalent Oracle Transactional Event Queues(TEQ) and Advanced
Queuing(AQ) administrative functions for the PL/SQL and Java (JMS) programmatic
interfaces.

Table 3-2 Comparison of Oracle Transactional Event Queues and Advanced Queuing
Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a transactional
event queue

DBMS_AQADM.CREATE_T
RANSACTIONAL_EVENT_
QUEUE

Drop a transactional
event queue

DBMS_AQADM.DROP_TRA
NSACTIONAL_EVENT_QU
EUE

Alter a transactional
event queue

DBMS_AQADM.ALTER_TR
ANSACTIONAL_EVENT_Q
UEUE

Create a connection
factory

N/A
AQjmsFactory.getQueue
ConnectionFactory

AQjmsFactory.getTopic
ConnectionFactory

Register a
ConnectionFactory in an
LDAP server

N/A
AQjmsFactory.register
ConnectionFactory

Create a queue table
DBMS_AQADM.CREATE_QUEU
E_TABLE

AQjmsSession.createQueueTable

Get a queue table Use
schema.queue_table_n
ame

AQjmsSession.getQueueTable

Alter a queue table
DBMS_AQADM.ALTER_QUEUE
_TABLE

AQQueueTable.alter

Drop a queue table
DBMS_AQADM.DROP_QUEUE_
TABLE

AQQueueTable.drop

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-4

Table 3-2 (Cont.) Comparison of Oracle Transactional Event Queues and Advanced Queuing
Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a queue
DBMS_AQADM.CREATE_QUEU
E

AQjmsSession.createQueue

Get a queue Use
schema.queue_name

AQjmsSession.getQueue

Create a multiconsumer
queue/topic in a queue
table with multiple
consumers enabled

DBMS_AQADM.CREATE_QUEU
E

AQjmsSession.createTopic

Get a multiconsumer
queue/topic

Use
schema.queue_name

AQjmsSession.getTopic

Alter a queue/topic
DBMS_AQADM.ALTER_QUEUE AQjmsDestination.alter

Start a queue/topic
DBMS_AQADM.START_QUEUE AQjmsDestination.start

Stop a queue/topic
DBMS_AQADM.STOP_QUEUE AQjmsDestination.stop

Drop a queue/topic
DBMS_AQADM.DROP_QUEUE AQjmsDestination.drop

Grant system privileges
DBMS_AQADM.GRANT_SYSTE
M_
PRIVILEGE

AQjmsSession.grantSystem
Privilege

Revoke system privileges
DBMS_AQADM.REVOKE_SYST
EM_
PRIVILEGE

AQjmsSession.revokeSystem
Privilege

Grant a queue/topic
privilege

DBMS_AQADM.GRANT_QUEUE
_
PRIVILEGE

AQjmsDestination.grantQueue
Privilege

AQjmsDestination.grantTopic
Privilege

Revoke a queue/topic
privilege

DBMS_AQADM.REVOKE_QUEU
E_
PRIVILEGE

AQjmsDestination.revokeQueue
Privilege

AQjmsDestination.revokeTopic
Privilege

Verify a queue type
DBMS_AQADM.VERIFY_QUEU
E_TYPES

Not supported

Add a subscriber
DBMS_AQADM.ADD_SUBSCRI
BER

See Table 3-6

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-5

Table 3-2 (Cont.) Comparison of Oracle Transactional Event Queues and Advanced Queuing
Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Alter a subscriber
DBMS_AQADM.ALTER_SUBSC
RIBER

See Table 3-6

Remove a subscriber
DBMS_AQADM.REMOVE_SUBS
CRIBER

See Table 3-6

Schedule propagation
DBMS_AQADM.SCHEDULE_PR
OPAGATION

AQjmsDestination.schedule
Propagation

Enable a propagation
schedule

DBMS_AQADM.ENABLE_PROP
AGATION_
SCHEDULE

AQjmsDestination.enable
PropagationSchedule

Alter a propagation
schedule

DBMS_AQADM.ALTER_PROPA
GATION_
SCHEDULE

AQjmsDestination.alter
PropagationSchedule

Disable a propagation
schedule

DBMS_AQADM.DISABLE_PRO
PAGATION_
SCHEDULE

AQjmsDestination.disable
PropagationSchedule

Unschedule a
propagation

DBMS_AQADM.UNSCHEDULE_
PROPAGATION

AQjmsDestination.unschedule
Propagation

Create an Oracle
Database Advanced
Queuing Internet Agent

DBMS_AQADM.CREATE_AQ_A
GENT

Not supported

Alter an Oracle Database
Advanced Queuing
Internet Agent

DBMS_AQADM.ALTER_AQ_AG
ENT

Not supported

Drop an Oracle Database
Advanced Queuing
Internet Agent

DBMS_AQADM.DROP_AQ_AGE
NT

Not supported

Grant database user
privileges to an Oracle
Database Advanced
Queuing Internet Agent

DBMS_AQADM.ENABLE_AQ_A
GENT

Not supported

Revoke database user
privileges from an Oracle
Database Advanced
Queuing Internet Agent

DBMS_AQADM.DISABLE_AQ_
AGENT

Not supported

Add alias for queue,
agent,
ConnectionFactory in a
LDAP server

DBMS_AQADM.ADD_ALIAS_T
O_LDAP

Not supported

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-6

Table 3-2 (Cont.) Comparison of Oracle Transactional Event Queues and Advanced Queuing
Programmatic Interfaces: Administrative Interface

Use Case PL/SQL Java (JMS)

Delete alias for queue,
agent,
ConnectionFactory in a
LDAP server

DBMS_AQADM.DEL_ALIAS_F
ROM_LDAP

Not supported

Oracle Database Advanced Queuing Operational Interfaces
These tables list equivalent Oracle Database Advanced Queuing operational functions
for the programmatic interfaces PL/SQL, OCI, Oracle Database Advanced Queuing
XML Servlet, and JMS, for various use cases.

Table 3-3 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Create Connection, Session, Message Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Create a
connection

N/A
OCIServer
Attach

Open an HTTP connection
after authenticating with the
Web server

AQjmsQueueConnectionFactory
.createQueueConnection

AQjmsTopicConnectionFactory
.createTopicConnection

Create a
session

N/A
OCISession
Begin

An HTTP servlet session is
automatically started with the
first SOAP request

QueueConnection.createQueue
Session

TopicConnection.createTopic
Session

Create a
RAW
message

Use SQL
RAW type for
message

Use OCIRaw for
Message

Supply the hex
representation of the
message payload in the XML
message. For example,
<raw>023f4523</raw>

Not supported

Create a
message with
structured
data

Use SQL
Oracle object
type for
message

Use SQL Oracle
object type for
message

For Oracle object type
queues that are not JMS
queues (that is, they are not
type AQ$_JMS_*), the XML
specified in <message
payload> must map to the
SQL type of the payload for
the queue table.

For JMS queues, the XML
specified in the
<message_payload> must
be one of the following:
<jms_text_message>,
<jms_map_message>,
<jms_bytes_message>,
<jms_object_message>

Session.createTextMessage
Session.createObjectMessage
Session.createMapMessage
Session.createBytesMessage
Session.createStreamMessage
AQjmsSession.createAdtMessage

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-7

Table 3-3 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Create Connection, Session, Message Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Create a
message
producer

N/A N/A N/A
QueueSession.createSender
TopicSession.createPublisher

Table 3-4 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model
Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Enqueue a
message to a
single-consumer
queue

DBMS_AQ.enqueue OCIAQEnq <AQXmlSend> QueueSender.send

Enqueue a
message to a queue
and specify visibility
options

DBMS_AQ.enqueue

Specify visibility in

ENQUEUE_OPTIONS

OCIAQEnq

Specify
OCI_ATTR_VISIBIL
ITY in
OCIAQEnqOptions

OCIAQEnqOptions

<AQXmlSend>

Specify
<visibility> in

<producer_options>

Not supported

Enqueue a
message to a
single-consumer
queue and specify
message properties
priority and
expiration

DBMS_AQ.enqueue

Specify priority,
expiration in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_PRIORIT
Y,
OCI_ATTR_EXPIRAT
ION in

OCIAQMsgProperties

<AQXmlSend>

Specify <priority>,
<expiration> in

<message_header>

Specify priority
and TimeToLive
during

QueueSender.send

or

.setTimeToLive

and

MessageProducer.
setPriority

followed by

QueueSender.send

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-8

Table 3-4 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model
Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Enqueue a
message to a
single-consumer
queue and specify
message properties
correlationID, delay,
and exception
queue

DBMS_AQ.enqueue

Specify correlation,
delay,
exception_queue in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_CORRELA
TION,
OCI_ATTR_DELAY,
OCI_ATTR_EXCEPTI
ON_QUEUE in

OCIAQMsgProperties

<AQXmlSend>

Specify
<correlation_id>,
<delay>,
<exception_queue>
in

<message_header>

Message.setJMS
CorrelationI

Delay and exception
queue specified as
provider specific
message properties

JMS_OracleDelay
JMS_OracleExcpQ

followed by

QueueSender.send

Enqueue a
message to a
single-consumer
queue and specify
user-defined
message properties

Not supported

Properties should be
part of payload

Not supported

Properties should be
part of payload

<AQXmlSend>

Specify <name> and
<int_value>,
<string_value>,
<long_value>, and
so on in

<user_properties>

Message.setInt
Property

Message.setString
Property

Message.setBoolean
Property

and so forth, followed
by

QueueSender.send

Enqueue a
message to a
single-consumer
queue and specify
message
transformation

DBMS_AQ.enqueue

Specify
transformation in

ENQUEUE_OPTIONS

OCIAQEnq

Specify
OCI_ATTR_TRANSFO
RMATION in

OCIAQEnqOptions

<AQXmlSend>

Specify
<transformation> in

<producer_options>

AQjmsQueueSender.
setTransformation

followed by

QueueSender.send

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-9

Table 3-5 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe
Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Publish a message
to a multiconsumer
queue/topic using
default subscription
list

DBMS_AQ.enqueue

Set
recipient_list to
NULL in

MESSAGE_PROPERTIES

OCIAQEnq

Set
OCI_ATTR_RECIPIE
NT_LIST to NULL in

OCIAQMsgProperties

<AQXmlPublish> TopicPublisher.
publish

Publish a message
to a multiconsumer
queue/topic using
specific recipient list

See footnote-1

DBMS_AQ.enqueue

Specify recipient list
in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_RECIPIE
NT_LIST in

OCIAQMsgProperties

<AQXmlPublish>

Specify
<recipient_list> in

<message_header>

AQjmsTopic
Publisher.publish

Specify recipients as
an array of
AQjmsAgent

Publish a message
to a multiconsumer
queue/topic and
specify message
properties priority
and expiration

DBMS_AQ.enqueue

Specify priority,
expiration in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_PRIORIT
Y,
OCI_ATTR_EXPIRAT
ION in

OCIAQMsgProperties

<AQXmlPublish>

Specify <priority>,
<expiration> in

<message_header>

Specify priority
and TimeToLive
during

TopicPublisher.
publish

or

MessageProducer.
setTimeToLive

and

MessageProducer.
setPriority

followed by

TopicPublisher.
publish

Publish a message
to a multiconsumer
queue/topic and
specify send options
correlationID, delay,
and exception
queue

DBMS_AQ.enqueue

Specify correlation,
delay,
exception_queue in

MESSAGE_PROPERTIES

OCIAQEnq

Specify
OCI_ATTR_CORRELA
TION,
OCI_ATTR_DELAY,
OCI_ATTR_EXCEPTI
ON_QUEUE in

OCIAQMsgProperties

<AQXmlPublish>

Specify
<correlation_id>,
<delay>,
<exception_queue>
in

<message_header>

Message.setJMS
CorrelationID

Delay and exception
queue specified as
provider-specific
message properties

JMS_OracleDelay
JMS_OracleExcpQ

followed by

TopicPublisher.
publish

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-10

Table 3-5 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe
Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Publish a message
to a topic and
specify user-defined
message properties

Not supported

Properties should be
part of payload

Not supported

Properties should be
part of payload

<AQXmlPublish>

Specify <name> and
<int_value>,
<string_value>,
<long_value>, and
so on in

<user_properties>

Message.setInt
Property

Message.setString
Property

Message.setBoolean
Property

and so forth, followed
by

TopicPublisher.
publish

Publish a message
to a topic and
specify message
transformation

DBMS_AQ.enqueue

Specify
transformation in

ENQUEUE_OPTIONS

OCIAQEnq

Specify
OCI_ATTR_TRANSFO
RMATION in

OCIAQEnqOptions

<AQXmlPublish>

Specify
<transformation> in

<producer_options>

AQjmsTopic
Publisher.set
Transformation

followed by

TopicPublisher.
publish

Table 3-6 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/
Subscribe Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Add a subscriber See administrative
interfaces

Not supported Not supported
TopicSession.
createDurable
Subscriber

AQjmsSession.
createDurable
Subscriber

Alter a subscriber See administrative
interfaces

Not supported Not supported
TopicSession.
createDurable
Subscriber

AQjmsSession.
createDurable
Subscriber

using the new
selector

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-11

Table 3-6 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/
Subscribe Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Remove a subscriber See administrative
interfaces

Not supported Not supported
AQjmsSession.
unsubscribe

Table 3-7 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Browse Messages in a Queue Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Browse
messages in a
queue/topic

DBMS_AQ.
dequeue

Set dequeue_mode
to BROWSE in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_M
ODE to BROWSE in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<dequeue_mode>
BROWSE in

<consumer_options>

QueueSession.createBrowser

QueueBrowser.getEnumeration

Not supported on topics

oracle.jms.AQjmsSession.
createBrowser

oracle.jms.TopicBrowser.
getEnumeration

Browse
messages in a
queue/topic
and lock
messages
while browsing

DBMS_AQ.dequeue

Set dequeue_mode
to LOCKED in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_M
ODE to LOCKED in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<dequeue_mode>
LOCKED in

<consumer_options>

AQjmsSession.createBrowser

set locked to TRUE.

QueueBrowser.getEnumeration

Not supported on topics

oracle.jms.AQjmsSession.
createBrowser

oracle.jms.TopicBrowser.
getEnumeration

Table 3-8 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Start a
connection for
receiving
messages

N/A N/A N/A
Connection.start

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-12

Table 3-8 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Create a
message
consumer

N/A N/A N/A
QueueSession.
createQueueReceiver

TopicSession.create
DurableSubscriber

AQjmsSession.create
TopicReceiver

Dequeue a
message from a
queue/topic and
specify visibility

DBMS_AQ.dequeue

Specify visibility in

DEQUEUE_OPTIONS

OCIAQDeq

Specify
OCI_ATTR_VISIBIL
ITY in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<visibility> in

<consumer_options>

Not supported

Dequeue a
message from a
queue/topic and
specify
transformation

DBMS_AQ.dequeue

Specify
transformation in

DEQUEUE_OPTIONS

OCIAQDeq

Specify
OCI_ATTR_TRANSFO
RMATION in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<transformation>
in

<consumer_options>

AQjmsQueueReceiver.
setTransformation

AQjmsTopicSubscriber.
setTransformation

AQjmsTopicReceiver.
setTransformation

Dequeue a
message from a
queue/topic and
specify
navigation
mode

DBMS_AQ.dequeue

Specify navigation in

DEQUEUE_OPTIONS

OCIAQDeq

Specify
OCI_ATTR_NAVIGAT
ION in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<navigation> in

<consumer_options>

AQjmsQueueReceiver.
setNavigationMode

AQjmsTopicSubscriber.
setNavigationMode

AQjmsTopicReceiver.
setNavigationMode

Dequeue a
message from a
single-
consumer
queue

DBMS_AQ.dequeue

Set dequeue_mode
to REMOVE in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MOD
E to REMOVE in

OCIAQDeqOptions

<AQXmlReceive> QueueReceiver.receive

or

QueueReceiver.receive
NoWait

or

AQjmsQueueReceiver.
receiveNoData

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-13

Table 3-8 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Receive Messages from a Queue/Topic Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Dequeue a
message from a
multiconsumer
queue/topic
using
subscription
name

DBMS_AQ.dequeue

Set dequeue_mode
to REMOVE and set
consumer_name to
subscription name in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MOD
E to REMOVE and set
OCI_ATTR_CONSUME
R_NAME to
subscription name in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<consumer_name>
in

<consumer_options>

Create a durable
TopicSubscriber on the
topic using the
subscription name, then

TopicSubscriber.
receive

or

TopicSubscriber.
receiveNoWait

or

AQjmsTopicSubscriber.
receiveNoData

Dequeue a
message from a
multiconsumer
queue/topic
using recipient
name

DBMS_AQ.dequeue

Set dequeue_mode
to REMOVE and set
consumer_name to
recipient name in

DEQUEUE_OPTIONS

OCIAQDeq

Set
OCI_ATTR_DEQ_MOD
E to REMOVE and set
OCI_ATTR_CONSUME
R_NAME to recipient
name in

OCIAQDeqOptions

<AQXmlReceive>

Specify
<consumer_name> in

<consumer_options>

Create a TopicReceiver
on the topic using the
recipient name, then

AQjmsSession.create
TopicReceiver

AQjmsTopicReceiver.
receive

or

AQjmsTopicReceiver.
receiveNoWait

or

AQjmsTopicReceiver.
receiveNoData

Table 3-9 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use
Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Receive messages
asynchronously from
a single-consumer
queue

Define a PL/SQL
callback procedure

Register it using

DBMS_AQ.REGISTER

OCISubscription
Register

Specify queue_name
as subscription name

OCISubscription
Enable

<AQXmlRegister>

Specify queue name
in <destination>
and notification
mechanism in

<notify_url>

Create a
QueueReceiver on
the queue, then

QueueReceiver.set
MessageListener

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

3-14

Table 3-9 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use
Cases

Use Case PL/SQL OCI AQ XML Servlet JMS

Receive messages
asynchronously from
a multiconsumer
queue/topic

Define a PL/SQL
callback procedure

Register it using

DBMS_AQ.REGISTER

OCISubscription
Register

Specify
queue:OCI_ATTR_C
ONSUMER_NAME as
subscription name

OCISubscription
Enable

<AQXmlRegister>

Specify queue name
in <destination>,
consumer in
<consumer_name>
and notification
mechanism in
<notify_url>

Create a
TopicSubscriber
or TopicReceiver
on the topic, then

TopicSubscriber.
setMessageListener

Listen for messages
on multiple queues/
topics

- - - -

Listen for messages
on one (many) single-
consumer queues

DBMS_AQ.LISTEN

Use agent_name as
NULL for all agents in
agent_list

OCIAQListen

Use agent_name as
NULL for all agents in
agent_list

Not supported Create multiple
QueueReceivers on
a QueueSession,
then

QueueSession.set
MessageListener

Listen for messages
on one (many)
multiconsumer
queues/Topics

DBMS_AQ.LISTEN

Specify agent_name
for all agents in
agent_list

OCIAQListen

Specify agent_name
for all agents in
agent_list

Not supported Create multiple
TopicSubscribers
or TopicReceivers
on a TopicSession,
then

TopicSession.set
MessageListener

Using OCCI to Access Oracle Database Advanced Queuing
C++ applications can use OCCI, which has a set of Oracle Database Advanced
Queuing interfaces that enable messaging clients to access Oracle Database
Advanced Queuing.

OCCI AQ supports all the operational functions required to send/receive and publish/
subscribe messages in a message-enabled database. Synchronous and
asynchronous message consumption is available, based on a message selection rule.
Transactional event queues (TEQ) do not support OCCI clients.

See Also:

"Oracle Database Advanced Queuing" in Oracle C++ Call Interface
Programmer's Guide

Chapter 3
Using OCCI to Access Oracle Database Advanced Queuing

3-15

Using Oracle Java Message Service (Oracle JMS) to
Access Oracle Database Advanced Queuing

Java Message Service (JMS) is a messaging standard defined by Sun Microsystems,
Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics
that define how a JMS client accesses the facilities of an enterprise messaging
product. Oracle Java Message Service (Oracle JMS) provides a Java API for Oracle
Database Advanced Queuing based on the JMS standard.

Oracle Java Message Service (Oracle JMS) supports the standard JMS interfaces and
has extensions to support administrative operations and other features that are not a
part of the standard.

Standard Java Message Service(JMS) features include:

• Point-to-point model of communication using queues

• Publish/subscribe model of communication using topics

• ObjectMessage, StreamMessage, TextMessage, BytesMessage, and MapMessage
message types

• Asynchronous and synchronous delivery of messages

• Message selection based on message header fields or properties

Oracle JMS extensions include:

• Administrative API to create queue tables, queues and topics

• Point-to-multipoint communication using recipient lists for topics

• Message propagation between destinations, which allows the application to define
remote subscribers

• Support for transactional sessions, enabling JMS and SQL operations in one
transaction

• Message retention after messages have been dequeued

• Message delay, allowing messages to be made visible after a certain delay

• Exception handling, allowing messages to be moved to exception queues if they
cannot be processed successfully

• Support for AdtMessage

These are stored in the database as Oracle objects, so the payload of the
message can be queried after it is enqueued. Subscriptions can be defined on the
contents of these messages as opposed to just the message properties.

• Topic browsing

This allows durable subscribers to browse through the messages in a publish/
subscribe (topic) destination. It optionally allows these subscribers to purge the
browsed messages, so they are no longer retained by Oracle Database Advanced
Queuing for that subscriber.

Chapter 3
Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced Queuing

3-16

See Also:

– Java Message Service Specification, version 1.1, March 18, 2002,
Sun Microsystems, Inc.

– Oracle Database Advanced Queuing Java API Reference

Accessing Standard and Oracle JMS Applications

Standard JMS interfaces are in the javax.jms package. Oracle JMS interfaces are in
the oracle.jms package. You must have EXECUTE privilege on the DBMS_AQIN and
DBMS_AQJMS packages to use the Oracle JMS interfaces. You can also acquire these
rights through the AQ_USER_ROLE or the AQ_ADMINSTRATOR_ROLE. You also need the
appropriate system and queue or topic privileges to send or receive messages.

Because Oracle JMS uses Java Database Connectivity (JDBC) to connect to the
database, its applications can run outside the database using the JDBC OCI driver or
JDBC thin driver.

Using JDBC OCI Driver or JDBC Thin Driver

To use JMS with clients running outside the database, you must include the
appropriate JDBC driver, Java Naming and Directory Interface (JNDI) jar files, and
Oracle Database Advanced Queuing jar files in your CLASSPATH.

Note that the Oracle Database does not support JDK 1.2, JDK 1.3, JDK 1.4, JDK5.n
and all classes12*.* files. You need to use the ojdbc6.jar and ojbc7.jar files with
JDK 6.n and JDK 7.n, respectively. The following jar and zip files should be in the
CLASSPATH based on the release of JDK you are using.

For JDK 1.5.x, the CLASSPATH must contain:

ORACLE_HOME/jdbc/lib/ojdbc6.jar

For JDK 1.6.x, the CLASSPATH must contain:

ORACLE_HOME/jdbc/lib/ojdbc7.jar

The following files are used for either JDK version:

ORACLE_HOME/lib/jta.jar
ORACLE_HOME/xdk/lib/xmlparserv2.jar
ORACLE_HOME/rdbms/jlib/xdb.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar

Using Oracle Server Driver in JServer

If your application is running inside the JServer, then you should be able to access the
Oracle JMS classes that have been automatically loaded when the JServer was
installed. If these classes are not available, then you must load jmscommon.jar
followed by aqapi.jar using the $ORACLE_HOME/rdbms/admin/initjms SQL script.

Chapter 3
Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced Queuing

3-17

Using Oracle Database Advanced Queuing XML Servlet to
Access Oracle Database Advanced Queuing

You can use Oracle Database Advanced Queuing XML servlet to access Oracle
Database Advanced Queuing over HTTP using Simple Object Access Protocol
(SOAP) and an Oracle Database Advanced Queuing XML message format called
Internet Data Access Presentation (IDAP).

Using the Oracle Database Advanced Queuing servlet, a client can perform the
following actions:

• Send messages to single-consumer queues

• Publish messages to multiconsumer queues/topics

• Receive messages from queues

• Register to receive message notifications

Chapter 3
Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database Advanced Queuing

3-18

4
Managing Oracle Transactional Event
Queues and Advanced Queuing

These topics discuss how to manage Oracle Transactional Event Queues and
Advanced Queuing.

• Oracle Database Advanced Queuing Compatibility Parameters

• Queue Security and Access Control

• Queue Table Export/Import

• Oracle Enterprise Manager Support

• Using Oracle Database Advanced Queuing with XA

• Restrictions on Queue Management

• Managing Propagation

Oracle Database Advanced Queuing Compatibility
Parameters

The queues in which buffered messages are stored must be created with compatibility
set to 8.1 or higher.

The compatible parameter of init.ora and the compatible parameter of the queue
table should be set to 8.1 or higher to use the following features:

• Queue-level access control

• Support for Oracle Real Application Clusters environments

• Rule-based subscribers for publish/subscribe

• Asynchronous notification

• Sender identification

• Separate storage of history management information

• Secure queues

Mixed case (upper and lower case together) queue names, queue table names, and
subscriber names are supported if database compatibility is 10.0, but the names must
be enclosed in double quote marks. So abc.efg means the schema is ABC and the
name is EFG, but "abc"."efg" means the schema is abc and the name is efg.

Queue Security and Access Control
These topics discuss Oracle Database Advanced Queuing queue security and access
control.

4-1

• Oracle Database Advanced Queuing Security

• Queue Security

• Queue Privileges and Access Control

• OCI Applications and Queue Access

• Security Required for Propagation

Oracle Database Advanced Queuing Security
Configuration information can be managed through procedures in the DBMS_AQADM
package.

Initially, only SYS and SYSTEM have execution privilege for the procedures in
DBMS_AQADM and DBMS_AQ. Users who have been granted EXECUTE rights to these two
packages are able to create, manage, and use queues in their own schemas. The
MANAGE_ANY AQ system privilege is used to create and manage queues in other
schemas.

Users of the Java Message Service (JMS) API need EXECUTE privileges on DBMS_AQJMS
and DBMS_AQIN.

Topics:

• Administrator Role

• User Role

• Access to Oracle Database Advanced Queuing Object Types

See Also:

"Granting Oracle Database Advanced Queuing System Privileges" for more
information on AQ system privileges

Administrator Role
The AQ_ADMINISTRATOR_ROLE has all the required privileges to administer queues.

The privileges granted to the role let the grantee:

• Perform any queue administrative operation, including create queues and queue
tables on any schema in the database

• Perform enqueue and dequeue operations on any queues in the database

• Access statistics views used for monitoring the queue workload

• Create transformations using DBMS_TRANSFORM

• Run all procedures in DBMS_AQELM

• Run all procedures in DBMS_AQJMS

Chapter 4
Queue Security and Access Control

4-2

Note:

• A user does not need AQ_ADMINISTRATOR_ROLE to be able to create
queues or do any other AQ DDL in his schema. User only needs execute
privilege on DBMS_AQADM package for the same.

• AQ_ADMINISTRATOR_ROLE still will not be able to create AQ objects in SYS
or SYSTEM schema. So the above description that it can create queue
tables/queue on any schema excludes SYS and SYSTEM schema.

• AQ_ADMINISTRATOR_ROLE still will not be able to enqueue/dequeue on
queues in SYS or SYSTEM schema.

User Role
You should avoid granting AQ_USER_ROLE, because this role does not provide sufficient
privileges for enqueuing or dequeuing.

Your database administrator has the option of granting the system privileges
ENQUEUE_ANY and DEQUEUE_ANY, exercising DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE and
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE directly to a database user, if you want the
user to have this level of control.

You as the application developer give rights to a queue by granting and revoking
privileges at the object level by exercising DBMS_AQADM.GRANT_QUEUE_PRIVILEGE and
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE.

As a database user, you do not need any explicit object-level or system-level
privileges to enqueue or dequeue to queues in your own schema other than the
EXECUTE right on DBMS_AQ.

Note:

• A user only needs EXECUTE privilege on DBMS_AQ package to be able to
enqueue or dequeue in his schema, if client is OCI or PL/SQL.

If the client is JDBC or JMS, then added to this you need execute
privilege on DBMS_AQIN package as well.

• A user does not need AQ_USER_ROLE for enqueue or dequeue queues in
his schema.

Access to Oracle Database Advanced Queuing Object Types
All internal Oracle Database Advanced Queuing objects are accessible to PUBLIC.

Queue Security
Oracle Database Advanced Queuing administrators of Oracle Database can create
queues. When you create queues, the default value of the compatible parameter in
DBMS_AQADM.CREATE_QUEUE_TABLE is that of the compatible parameter.

Chapter 4
Queue Security and Access Control

4-3

To enqueue or dequeue, users need EXECUTE rights on DBMS_AQ and either enqueue or
dequeue privileges on target queues, or ENQUEUE_ANY/DEQUEUE_ANY system privileges.

Queue Privileges and Access Control
You can grant or revoke privileges at the object level on queues. You can also grant or
revoke various system-level privileges.

Table 4-1 lists all common Oracle Database Advanced Queuing operations and the
privileges needed to perform these operations.

Table 4-1 Operations and Required Privileges

Operation(s) Privileges Required

CREATE/DROP/MONITOR own
queues

Must be granted EXECUTE rights on DBMS_AQADM. No other
privileges needed.

CREATE/DROP/MONITOR any
queues

Must be granted EXECUTE rights on DBMS_AQADM and be
granted AQ_ADMINISTRATOR_ROLE by another user who has
been granted this role (SYS and SYSTEM are the first granters
of AQ_ADMINISTRATOR_ROLE)

ENQUEUE/ DEQUEUE to own
queues

Must be granted EXECUTE rights on DBMS_AQ. No other
privileges needed.

ENQUEUE/ DEQUEUE to
another's queues

Must be granted EXECUTE rights on DBMS_AQ and be granted
privileges by the owner using
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE.

ENQUEUE/ DEQUEUE to any
queues

Must be granted EXECUTE rights on DBMS_AQ and be granted
ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system privileges
by an Oracle Database Advanced Queuing administrator using
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE.

OCI Applications and Queue Access
For an Oracle Call Interface (OCI) application to access a queue, the session user
must be granted either the object privilege of the queue he intends to access or the
ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system privileges.

The EXECUTE right of DBMS_AQ is not checked against the session user's rights.

Security Required for Propagation
Oracle Database Advanced Queuing propagates messages through database links.

The propagation driver dequeues from the source queue as owner of the source
queue; hence, no explicit access rights need be granted on the source queue. At the
destination, the login user in the database link should either be granted ENQUEUE ANY
QUEUE privilege or be granted the right to enqueue to the destination queue. However,
if the login user in the database link also owns the queue tables at the destination,
then no explicit Oracle Database Advanced Queuing privileges must be granted.

Chapter 4
Queue Security and Access Control

4-4

See Also:

"Propagation from Object Queues"

Security Required for AQ Buffered Messages on Oracle RAC

Internally, buffered queues on Oracle RAC may use dblinks between instances.
Definer's rights packages that enqueue or dequeue into buffered queues on Oracle
RAC must grant INHERIT REMOTE PRIVILEGES to users of the package.

Queue Table Export/Import
When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported, the
import utility executes these PL/SQL anonymous blocks to write the metadata to the
data dictionary.

Oracle AQ does not export registrations with a user export. All applications that make
use of client registrations should take this into account as the client may not be
present in the imported database.

Note:

You cannot export or import buffered messages.

If there exists a queue table with the same name in the same schema in the
database as in the export dump, then ensure that the database queue table
is empty before importing a queue table with queues. Failing to do so has a
possibility of ruining the metadata for the imported queue.

Topics:

• Exporting Queue Table Data

• Importing Queue Table Data

• Data Pump Export and Import

Exporting Queue Table Data
The export of queues entails the export of the underlying queue tables and related
dictionary tables. Export of queues can also be accomplished at queue-table
granularity.

Exporting Queue Tables with Multiple Recipients

For AQ queues, a queue table that supports multiple recipients is associated with the
following tables:

• Dequeue index-organized table (IOT)

Chapter 4
Queue Table Export/Import

4-5

• Time-management index-organized table

• Subscriber table

• A history IOT

Transactional event queues are associated with the following objects:

• A queue table

• A dequeue table

• A time management table

• An optional exception queue map table

• Indexes for the above tables

• Sequences

• Rules sets and evaluation contexts

These tables are exported automatically during full database mode, user mode and
table mode exports. See Export Modes .

Because the metadata tables contain ROWIDs of some rows in the queue table, the
import process generates a note about the ROWIDs being made obsolete when
importing the metadata tables. This message can be ignored, because the queuing
system automatically corrects the obsolete ROWIDs as a part of the import operation.
However, if another problem is encountered while doing the import (such as running
out of rollback segment space), then you should correct the problem and repeat the
import.

Export Modes

Exporting operates in full database mode, user mode, and table mode. Incremental
exports on queue tables are not supported.

In full database mode, queue tables, all related tables, system-level grants, and
primary and secondary object grants are exported automatically.

In user mode, queue tables, all related tables, and primary object grants are exported
automatically. However, doing a user-level export from one schema to another using
the FROMUSER TOUSER clause is not supported.

In table mode, queue tables, all related tables, and primary object grants are exported
automatically. For example, when exporting an AQ multiconsumer queue table, the
following tables are automatically exported:

• AQ$_queue_table_I (the dequeue IOT)

• AQ$_queue_table_T (the time-management IOT)

• AQ$_queue_table_S (the subscriber table)

• AQ$_queue_table_H (the history IOT)

For transactional event queues, the following tables are automatically exported:

• queue_table

• AQ$_queue_name_L (dequeue table)

• AQ$_queue_name_T (time-management table)

• AQ$_queue_name (exception map table)

Chapter 4
Queue Table Export/Import

4-6

• AQ$_queue_name_V (evaluation context)

• queue_name_R (rule set)

Importing Queue Table Data
Similar to exporting queues, importing queues entails importing the underlying queue
tables and related dictionary data. After the queue table data is imported, the import
utility executes the PL/SQL anonymous blocks in the dump file to write the metadata to
the data dictionary.

Importing Queue Tables with Multiple Recipients

An AQ queue table that supports multiple recipients is associated with the following
tables:

• A dequeue IOT

• A time-management IOT

• A subscriber table

• A history IOT

Transactional event queues are associated with the following objects:

• A queue table

• A dequeue log table

• A time management table

• An optional exception queue map table

• Indexes for the above tables

• Sequences

• Rules sets and evaluation contexts

These objects must be imported along with the queue table itself.

Import IGNORE Parameter

You must not import queue data into a queue table that already contains data. The
IGNORE parameter of the import utility must always be set to NO when importing queue
tables. If the IGNORE parameter is set to YES, and the queue table that already exists is
compatible with the table definition in the dump file, then the rows are loaded from the
dump file into the existing table. At the same time, the old queue table definition is lost
and re-created. Queue table definition prior to the import is lost and duplicate rows
appear in the queue table.

Data Pump Export and Import
The Data Pump replace and skip modes are supported for queue tables.

In the replace mode an existing queue table is dropped and replaced by the new
queue table from the export dump file. In the skip mode, a queue table that already
exists is not imported.

The truncate and append modes are not supported for queue tables. The behavior in
this case is the same as the replace mode.

Chapter 4
Queue Table Export/Import

4-7

See Also:

Oracle Database Utilities for more information on Data Pump Export and
Data Pump Import

Oracle Enterprise Manager Support for AQ Queues
Oracle Enterprise Manager supports most of the administrative functions of Oracle
Database Advanced Queuing. Oracle Database Advanced Queuing functions are
found under the Distributed node in the navigation tree of the Enterprise Manager
console.

Functions available through Oracle Enterprise Manager include:

• Using queues as part of the schema manager to view properties

• Creating, starting, stopping, and dropping queues

• Scheduling and unscheduling propagation

• Adding and removing subscribers

• Viewing propagation schedules for all queues in the database

• Viewing errors for all queues in the database

• Viewing the message queue

• Granting and revoking privileges

• Creating, modifying, or removing transformations

Using Oracle Database Advanced Queuing with XA
You must specify "Objects=T" in the xa_open string if you want to use the Oracle
Database Advanced Queuing OCI interface. This forces XA to initialize the client-side
cache in Objects mode. You are not required to do this if you plan to use Oracle
Database Advanced Queuing through PL/SQL wrappers from OCI or Pro*C.

The large object (LOB) memory management concepts from the Pro* documentation
are not relevant for Oracle Database Advanced Queuing raw messages because
Oracle Database Advanced Queuing provides a simple RAW buffer abstraction
(although they are stored as LOBs).

When using the Oracle Database Advanced Queuing navigation option, you must
reset the dequeue position by using the FIRST_MESSAGE option if you want to continue
dequeuing between services (such as xa_start and xa_end boundaries). This is
because XA cancels the cursor fetch state after an xa_end. If you do not reset, then
you get an error message stating that the navigation is used out of sequence
(ORA-25237).

Chapter 4
Oracle Enterprise Manager Support for AQ Queues

4-8

See Also:

• "Working with Transaction Monitors with Oracle XA" in Oracle Database
Development Guide for more information on XA

• "Large Objects (LOBs)" in Pro*C/C++ Programmer's Guide

Restrictions on Queue Management
These topics discuss restrictions on queue management.

• Subscribers

• DML Not Supported on Queue Tables or Associated IOTs

• Propagation from Object Queues with REF Payload Attributes

• Collection Types in Message Payloads

• Synonyms on Queue Tables and Queues

• Synonyms on Object Types

• Tablespace Point-in-Time Recovery

• Virtual Private Database

Note:

Mixed case (upper and lower case together) queue names, queue table
names, and subscriber names are supported if database compatibility is
10.0, but the names must be enclosed in double quote marks. So abc.efg
means the schema is ABC and the name is EFG, but "abc"."efg" means the
schema is abc and the name is efg.

Subscribers
You cannot have more than 1,000 local subscribers for each queue.

Also, only 32 remote subscribers are allowed for each remote destination database.

DML Not Supported on Queue Tables or Associated IOTs
Oracle Database Advanced Queuing does not support data manipulation language
(DML) operations on queue tables or associated index-organized tables (IOTs), if any.

The only supported means of modifying queue tables is through the supplied APIs.
Queue tables and IOTs can become inconsistent and therefore effectively ruined, if
data manipulation language (DML) operations are performed on them.

Chapter 4
Restrictions on Queue Management

4-9

Propagation from Object Queues with REF Payload Attributes
Oracle Database Advanced Queuing does not support propagation from object queues
that have REF attributes in the payload.

Collection Types in Message Payloads
You cannot construct a message payload using a VARRAY that is not itself contained
within an object.

You also cannot currently use a NESTED Table even as an embedded object within a
message payload. However, you can create an object type that contains one or more
VARRAYs, and create a queue table that is founded on this object type, as shown in
Example 4-1.

Example 4-1 Creating Objects Containing VARRAYs

CREATE TYPE number_varray AS VARRAY(32) OF NUMBER;
CREATE TYPE embedded_varray AS OBJECT (col1 number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'QT',
 queue_payload_type => 'embedded_varray');

Synonyms on Queue Tables and Queues
No Oracle Database Advanced Queuing PL/SQL calls resolve synonyms on queues
and queue tables.

Although you can create synonyms, you should not apply them to the Oracle Database
Advanced Queuing interface.

Synonyms on Object Types
If you have created synonyms on object types, you cannot use them in
DBMS_AQADM.CREATE_QUEUE_TABLE. Error ORA-24015 results.

Tablespace Point-in-Time Recovery
Oracle Database Advanced Queuing currently does not support tablespace point-in-
time recovery.

Creating a queue table in a tablespace disables that particular tablespace for point-in-
time recovery. Oracle Database Advanced Queuing does support regular point-in-time
recovery.

Virtual Private Database
You can use Oracle Database Advanced Queuing with Virtual Private Database by
specifying a security policy with Oracle Database Advanced Queuing queue tables.

While dequeuing, use the dequeue condition (deq_cond) or the correlation identifier for
the policy to be applied. You can use "1=1" as the dequeue condition. If you do not
use a dequeue condition or correlation ID, then the dequeue results in an error.

Chapter 4
Restrictions on Queue Management

4-10

Note:

When a dequeue condition or correlation identifier is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is not
honored.

Managing Propagation
These topics discuss managing Oracle Database Advanced Queuing propagation.

• EXECUTE Privileges Required for Propagation

• Propagation from Object Queues

• Optimizing Propagation

• Handling Failures in Propagation

Note:

For propagation to work correctly, the queue aq$_prop_notify_X should
never be stopped or dropped and the table aq$_prop_table_X should never
be dropped.

EXECUTE Privileges Required for Propagation
Propagation jobs are owned by SYS, but the propagation occurs in the security context
of the queue table owner.

Previously propagation jobs were owned by the user scheduling propagation, and
propagation occurred in the security context of the user setting up the propagation
schedule. The queue table owner must be granted EXECUTE privileges on the
DBMS_AQADM package. Otherwise, the Oracle Database snapshot processes do not
propagate and generate trace files with the error identifier SYS.DBMS_AQADM not
defined. Private database links owned by the queue table owner can be used for
propagation. The user name specified in the connection string must have EXECUTE
access on the DBMS_AQ and DBMS_AQADM packages on the remote database.

Propagation from Object Queues
Propagation from object queues with BFILE objects is supported.

To be able to propagate object queues with BFILE objects, the source queue owner
must have read privileges on the directory object corresponding to the directory in
which the BFILE is stored. The database link user must have write privileges on the
directory object corresponding to the directory of the BFILE at the destination
database.

AQ propagation does not support non-final types. Propagation of BFILE objects from
object queues without specifying a database link is not supported.

Chapter 4
Managing Propagation

4-11

See Also:

"CREATE DIRECTORY" in Oracle Database SQL Language Reference for
more information on directory objects

Optimizing Propagation
AQ propagation jobs are run by the Oracle Scheduler. Propagation may be scheduled
in these ways.

• A dedicated schedule in which the propagation runs forever or for a specified
duration. This mode provides the lowest propagation latencies.

• A periodic schedule in which the propagation runs periodically for a specified
interval. This may be used when propagation can be run in a batched mode.

• An event based system in which propagation is started when there are messages
to be propagated. This mode makes more efficient use of available resources,
while still providing a fast response time.

The administrator may choose a schedule that best meets the application performance
requirements.

Oracle Scheduler will start the required number of job queue processes for the
propagation schedules. Since the scheduler optimizes for throughput, if the system is
heavily loaded, it may not run some propagation jobs. The resource manager may be
used to have better control over the scheduling decisions. In particular, associating
propagation jobs with different resource groups can allow for fairness in scheduling
which may be important in heavy load situations.

In setting the number of JOB_QUEUE_PROCESSES, DBAs should be aware that this
number is determined by the number of queues from which the messages must be
propagated and the number of destinations (rather than queues) to which messages
must be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job
queue processes and minimizes the time it takes for a message to show up at a
destination after it has been enqueued into the source queue, thereby providing near-
OLTP action. The algorithm can handle an unlimited number of schedules and various
types of failures. While propagation tries to make the optimal use of the available job
queue processes, the number of job queue processes to be started also depends on
the existence of jobs unrelated to propagation, such as replication jobs. Hence, it is
important to use the following guidelines to get the best results from the scheduling
algorithm.

The scheduling algorithm uses the job queue processes as follows (for this discussion,
an active schedule is one that has a valid current window):

• If the number of active schedules is fewer than half the number of job queue
processes, then the number of job queue processes acquired corresponds to the
number of active schedules.

• If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes, then multiple
active schedules are assigned to an acquired job queue process.

Chapter 4
Managing Propagation

4-12

• If the system is overloaded (all schedules are busy propagating), depending on
availability, then additional job queue processes are acquired up to one fewer than
the total number of job queue processes.

• If none of the active schedules handled by a process has messages to be
propagated, then that job queue process is released.

• The algorithm performs automatic load balancing by transferring schedules from a
heavily loaded process to a lightly load process such that no process is
excessively loaded.

Handling Failures in Propagation
The scheduling algorithm has robust support for handling failures. These are the
common failures that prevent message propagation.

• Database link failed

• Remote database is not available

• Remote queue does not exist

• Remote queue was not started

• Security violation while trying to enqueue messages into remote queue

Under all these circumstances the appropriate error messages are reported in the
DBA_QUEUE_SCHEDULES view.

When an error occurs in a schedule, propagation of messages in that schedule is
attempted again after a retry period that is a function of the number of failures. After
the retries have exceeded a system defined maximum, the schedule is disabled.

If the problem causing the error is fixed and the schedule is enabled, then the error
fields that indicate the last error date, time, and message continue to show the error
information. These fields are reset only when messages are successfully propagated
in that schedule.

See Also:

Troubleshooting Oracle Database Advanced Queuing

Chapter 4
Managing Propagation

4-13

5
Interoperability of Transactional Event
Queue with Apache Kafka

Oracle Transactional Event Queue (TEQ) makes it easy to implement event-based
applications. It is also highly integrated with Apache Kafka, an open-source stream-
processing software platform developed by LinkedIn and donated to the Apache
Software Foundation, written in Scala and Java. Apart from enabling apps that use
Kafka APIs to transparently operate on Oracle TEQ, Oracle TEQ also supports bi-
directional information flow between TEQ and Kafka, so that changes are available in
TEQ or Kafka as soon as possible in near-real-time.

Apache Kafka Connect is a framework included in Apache Kafka that integrates Kafka
with other systems. Oracle TEQ will provide standard JMS package and related JDBC,
Transaction packages to establish the connection and complete the transactional data
flow. Oracle TEQ configures standard Kafka JMS connectors to establish
interoperability and complete the data flow between the two mesaging systems.

This chapter contains the following topics.

• Setup and Prerequisites

• Connecting from Apache Kafka to Oracle TEQ (Confluent Platform and CLI
Example)

• Connecting from Oracle TEQ to Apache Kafka (Confluent Platform and CLI
Example)

• Monitoring Message Transfer

Setup and Prerequisites
The Kafka Connect uses Java Naming and Directory Interface (JNDI) and JMS
standard interface to create an JMS ConnectionFactory instance for the Oracle TEQ
and then enqueue or dequeue messages to/from TEQ correspondingly.

The prerequisites are as follows:

• Kafka Broker: Confluent Platform 3.3.0 or above, or Kafka 0.11.0 or above

• Connect: Confluent Platform 4.1.0 or above, or Kafka 1.1.0 or above

• Java 1.8

• Oracle TEQ JMS 1.1+ Client Jars

Connecting from Apache Kafka to Oracle TEQ (Confluent
Platform and CLI Example)

Steps for message transfer from Apache Kafka to TEQ are as follows.

5-1

1. Start Oracle Database

2. Setup TEQ

a. Create TEQ user and Grant User Corresponding Privileges.

CREATE USER <username> IDENTIFIED BY <password>;
GRANT CONNECT, RESOURCE, AQ_ADMINISTRATOR_ROLE TO <username>;
GRANT EXECUTE ON DBMS_AQ TO <username>;
GRANT EXECUTE ON DBMS_AQADM TO <username>;
-- alter table space privileges if needed

b. Create TEQ and start

BEGIN
 DBMS_AQADM.CREATE_SHARDED_QUEUE(
 queue_name => '<username>.<queuename>',
 multiple_consumers => FALSE, -- False: Queue True: Topic
 queue_payload_type => DBMS_AQADM.JMS_TYPE);

 DBMS_AQADM.START_QUEUE(queue_name => '<username>.<queuename>');
END;
/

Note:

multiple_consumers: False means Queue, True means Topic in
JMS.

3. Install Kafka Connect Sink Component

run from your Confluent Platform installation directory
confluent-hub install confluentinc/kafka-connect-jms-sink:latest

4. Import TEQ Jars into Kafka JMS Sink Connector

Copy the following jars into the JMS Sink Connector's plugin folder (share/
confluent-hub-components/confluentinc-kafka-connect-jms-sink/lib). This
needs to be done on every Connect worker node and the workers must be
restarted to pick up the TEQ jars.

• aqapi.jar : TEQ JMS library jar

• ojdbc8.jar : Oracle JDBC Connection library jar

• jta-1.1.jar : JTA: standard Java interfaces between a transaction manager
and the parties involved in a distributed transaction system

5. Start Confluent Platform

confluent local start

6. Configure JMS Sink Connector: d jms-source.json

{
 "name": "JmsSinkConnector",
 "config": {
 "connector.class": "io.confluent.connect.jms.JmsSinkConnector",
 "tasks.max": "1",

Chapter 5
Connecting from Apache Kafka to Oracle TEQ (Confluent Platform and CLI Example)

5-2

 "topics": "jms-messages",
 "java.naming.factory.initial": "oracle.jms.AQjmsInitialContextFactory",
 "java.naming.provider.url": <connection string>,
 "db_url": <connection string>,
 "java.naming.security.principal": <username>,
 "java.naming.security.credentials": <password>,
 "jndi.connection.factory": "javax.jms.XAQueueConnectionFactory",
 "jms.destination.type": "queue",
 "jms.destination.name": <queuename>,
 "key.converter":"org.apache.kafka.connect.storage.StringConverter",
 "value.converter":"org.apache.kafka.connect.storage.StringConverter",
 "confluent.topic.bootstrap.servers":"localhost:9092",
 "confluent.topic.replication.factor": "1"
 }
}

7. Load the JMS Sink Connector

confluent local load jms -- -d jms-sink.json

8. Post-Check Connector Status

a. Using Confluent Platform Admin: Direct to http://localhost:9021, confluent
platform admin, see connector status.

b. Using Confluent CLI

confluent local status jms

9. Test Message Transfer

Produce random messages into Kafka topic.

seq 10 | confluent local produce jms-messages

Check TEQ enqueued messages.

SELECT * FROM GV$PERSISTENT_QUEUES;
SELECT * FROM GV$AQ_SHARDED_SUBSCRIBER_STAT;

Connecting from Oracle TEQ to Apache Kafka (Confluent
Platform and CLI Example)

Steps for message transfer from TEQ to Apache Kafka are as follows.

1. Start Oracle Database

2. Setup TEQ

a. Create TEQ user and Grant User Corresponding Privileges.

CREATE USER <username> IDENTIFIED BY <password>;
GRANT CONNECT, RESOURCE, AQ_ADMINISTRATOR_ROLE TO <username>;
GRANT EXECUTE ON DBMS_AQ TO <username>;
GRANT EXECUTE ON DBMS_AQADM TO <username>;
-- alter table space privileges if needed

b. Create TEQ and start

BEGIN

Chapter 5
Connecting from Oracle TEQ to Apache Kafka (Confluent Platform and CLI Example)

5-3

 DBMS_AQADM.CREATE_SHARDED_QUEUE(
 queue_name => '<username>.<queuename>',
 multiple_consumers => FALSE, -- False: Queue True: Topic
 queue_payload_type => DBMS_AQADM.JMS_TYPE);

 DBMS_AQADM.START_QUEUE(queue_name => '<username>.<queuename>');
END;
/

Note:

multiple_consumers: False means Queue, True means Topic in
JMS.

3. Install Kafka Connect Source Component

confluent-hub install confluentinc/kafka-connect-jms:latest

4. Import TEQ Jars into Kafka JMS Source Connector

Copy the following jars into the JMS Source Connector's plugin folder (share/
confluent-hub-components/confluentinc-kafka-connect-jms/lib).

• aqapi.jar : TEQ JMS library jar

• ojdbc8.jar : Oracle JDBC Connection library jar

• jta-1.1.jar : JTA: standard Java interfaces between a transaction manager
and the parties involved in a distributed transaction system

5. Start Confluent Platform

confluent local start

6. Configure JMS Source Connector jms-source.json

{
 "name": " JmsSourceConnector",
 "config": {
 "connector.class": "io.confluent.connect.jms.JmsSourceConnector",
 "kafka.topic": "jms-messages",
 "jms.destination.name": <queuename>,
 "jms.destination.type": "queue",
 "java.naming.factory.initial": "oracle.jms.AQjmsInitialContextFactory",
 "java.naming.provider.url": <connection string>,
 "db_url": <connection string>,
 "java.naming.security.principal": <username>,
 "java.naming.security.credentials": <password>,
 "confluent.license": "",
 "confluent.topic.bootstrap.servers": "localhost:9092"
 }
}

7. Load the JMS Source Connector

confluent local load jms -- -d jms-source.json

8. Post-Check Connector Status

a. Using Confluent Platform Admin: Direct to http://localhost:9021, confluent
platform admin, see connector status.

Chapter 5
Connecting from Oracle TEQ to Apache Kafka (Confluent Platform and CLI Example)

5-4

b. Using Confluent CLI

confluent local status jms

9. Test Message Transfer

Use sink connector above to enqueue messages in the TEQ, then pause the sink
connector and start the source connector. The messages would be dequeued from
the TEQ and produce into Kafka topic.

Monitoring Message Transfer
The Sink/Source connector messages transfer can be monitored from both two sides:

• Apache Kafka: direct to http://localhost:9021 Confluent Platform Admin, check
produce/consume console for statistics.

• Oracle TEQ: See Monitoring Oracle Transactional Event Queues and Advanced
Queuing to startup TEQ Monitor System to check enqueue/dequeue rate, TEQ
depth, and more DB/System Level statistics.

Chapter 5
Monitoring Message Transfer

5-5

6
Kafka Java Client Interface for Oracle
Transactional Event Queues

This chapter includes the following topics:

• Apache Kafka Overview

• Kafka Java Client for Transactional Event Queues

• Configuring Kafka Java Client for Transactional Event Queues

• Overview of Kafka Producer Implementation for TEQ

• Overview of Kafka Consumer implementation for TEQ

• Overview of Kafka Admin Implementation for TEQ

• Examples: How to Use

Apache Kafka Overview
Apache Kafka is a community distributed event streaming platform that is horizontally-
scalable and fault-tolerant.

Kafka is run as a cluster run on one or more servers. Each Kafka cluster stores
streams of records in categories called topics. Each record consists of a key, a value,
and a timestamp. Kafka APIs allow application to connect to Kafka cluster and use
Kafka messaging platform.

Kafka Java Client for Transactional Event Queues
Oracle Database 20c introduces Kafka application compatibility with Oracle database.
This provides easy migration for Kafka Java applications to Transaction Event Queues
(TEQ). The Kafka Java APIs can now connect to Oracle database server and use TEQ
as a messaging platform.

6-1

Figure 6-1 Kafka Application Integration with Transactional Event Queue

The figure shows OKafka library, which contains Oracle specific implementation of
Kafka's Java APIs. This implmentation internally invokes AQ-JMS APIs which in turn
uses JDBC driver to communicate with Oracle Database.

Developers can now migrate an existing Java application that uses Kafka to the Oracle
database. Oracle Database 20c provides client side library which allows Kafka
applications to connect to Oracle Database instead of Kafka cluster and use TEQ's
messaging platform transparently.

Configuring Kafka Java Client for Transactional Event
Queues

Two levels of configuration are required to migrate Kafka application to TEQ
messaging platform:

• Database level configuration

• Application level configuration.

Kafka application needs to set certain properties which will allow OKafka library to
locate the Oracle Database. This is analogous to how Kafka application provides zoo
keeper information. These connection properties can be set in the following two ways:

• using database user and pasword provided in plain text

• using JDBC wallet.

Prerequisites

The following are the prerequisites for configuring and running Kafka Java client for
TEQ in an Oracle Database.

1. Create a database user.

2. Grant the following user privileges.

• grant connect, resource to user.

Chapter 6
Configuring Kafka Java Client for Transactional Event Queues

6-2

• grant execute on dbms_aq to user.

• grant execute on dbms_aqadm to user.

• grant execute on dbms_aqin to user.

• grant execute on dbms_aqjms to user.

• grant select_catalog_role to user.

3. Set the correct database configuration parameter to use TEQ.

set streams_pool_size=400M

4. Set LOCAL_LISTENER database parameter

set LOCAL_LISTENER= (ADDRESS=(PROTOCOL=TCP)(HOST=<HOST NAME/ IP>)(PORT=<PORT
NUMBER>))

Connection Configuration

The OKafka library connects to Oracle Database using JDBC Thin Driver. To setup
this connection, Kafka application can provide username password in plain text or
applications can configure SSL. To run Kafka application against Oracle Autonomous
Transaction Processing (ATP) Database on Cloud, only SSL configuration is
supported. You can connect to the Oracle Database using PLAINTEXT or SSL.

• PLAINTEXT: In this protocol JDBC connection uses username and password to
connect to Oracle instance.

To use plaintext protocol the user has to provide following properties through
application

– oracle.service.name = <name of the service running on the instance>

– oracle.instance.name = <name of the Oracle Database instance>

– bootstrap.servers = <host:port>

The following properties in ojdbc.properties file and ojdbc.properties file
should be in location oracle.net.tns_admin.

– user = <nameofdatabaseuser>

– password = <userpassword>

• SSL: To use ssl secured connections to connect to and ATP Database, perform
the following steps.

1. JDBC Thin Driver Connection prerequisites for ssl security:

– JDK8u162 or higher.

– oraclepki.jar, osdt_cert.jar, and osdt_core.jar

– 18.3 JDBC Thin driver or higher(recommended)

2. To leverage JDBC ssl security to connect to Oracle Database instance, user
has to provide following properties. JDBC supports ssl secured connections to
Oracle Database in two ways.

– Using wallets. To use wallets:

a. Add the required dependant jars for using Oracle Wallets in classpath.

Download oraclepki.jar, osdt_cert.jar, and osdt_core.jar files
alomg with JDBC thin driver add these jars to classpath.

Chapter 6
Configuring Kafka Java Client for Transactional Event Queues

6-3

b. Enable Oracle PKI provider

Add OraclePKIProvider at the end of file java.security (located
at $JRE_HOME/jre/lib/security/java.security) if SSO wallet, that
is, cwallet.sso is used for providing ssl security. For example,
java.security:

 security.provider.1=sun.security.provider.Sun
 security.provider.2=sun.security.rsa.SunRsaSign
 security.provider.
3=com.sun.net.ssl.internal.ssl.Provider
 security.provider.4=com.sun.crypto.provider.SunJCE
 security.provider.5=sun.security.jgss.SunProvider
 security.provider.6=com.sun.security.sasl.Provider
 security.provider.
7=oracle.security.pki.OraclePKIProvider

To use ewallet.p12 for ssl security then place OraclePKIProvider
before sun provider in file java.security. For example,
java.security:

 security.provider.1=sun.security.provider.Sun
 security.provider.2=sun.security.rsa.SunRsaSign
 security.provider.
3=oracle.security.pki.OraclePKIProvider
 security.provider.
4=com.sun.net.ssl.internal.ssl.Provider
 security.provider.5=com.sun.crypto.provider.SunJCE
 security.provider.6=sun.security.jgss.SunProvider
 security.provider.7=com.sun.security.sasl.Provider

c. Provide following properties through application.

 security.protocol = “”SSL”
 oracle.net.tns_admin = “location of tnsnames.ora file”
(for parsing jdbc connection string)
 tns.alias = “alias of connection string in
tnsnames.ora”

And following properties in ojdbc.properties file and
ojdbc.properties file should be in location oracle.net.tns_admin.

 user(in smallletters)=nameofdatabaseuser
 password(in smallletters)=userpassword
 oracle.net.ssl_server_dn_match=true
 oracle.net.wallet_location=“(SOURCE=(METHOD=FILE)
 (METHOD_DATA=(DIRECTORY=/
location../wallet_dbname)))”

– Using Java key store. To Provide JDBC SSL security with Java key store,
provide following properties through the application:

 security.protocol = "SSL"
 oracle.net.tns_admin = "location of tnsnames.ora
file"
 tns.alias = "alias of connection string in tnsnames.ora"

Chapter 6
Configuring Kafka Java Client for Transactional Event Queues

6-4

And following properties in ojdbc.properties file and ojdbc.properties
file should be in location oracle.net.tns_admin.

 user(in smallletters)=nameofdatabaseuser
 password(in smallletters)=userpassword
 oracle.net.ssl_server_dn_match=true
 javax.net.ssl.trustStore==${TNS_ADMIN}/truststore.jks
 javax.net.ssl.trustStorePassword = password
 javax.net.ssl.keyStore= ${TNS_ADMIN}/keystore.jks
 javax.net.ssl.keyStorePassword="password"

Note:

tnsnames.ora file in wallet downloaded from ATP contains jdbc
connection string which is used for establishing jdbc .

Kafka Client Interfaces
Kafka applications mainly use Producer, Consumer, and Admin APIs to communicate
with Kafka cluster. This version of Kafka client for TEQ supports only subset of Kafka
2.0's Producer, Consumer, and Admin APIs and properties.

• Overview of Kafka Producer Implementation for TEQ

• Overview of Kafka Consumer implementation for TEQ

• Overview of Kafka Admin Implementation for TEQ

Overview of Kafka Producer Implementation for TEQ

Producer APIs, allow Kafka application to publish messages into Oracle Transaction
Event Queues. Kafka application needs to provide Oracle specific properties which are
oracle.host, oracle.port, oracle.servicename, and oracle.instancename. More
details about this properties are mentioned in configuration section. These properties
are used to setup the database connection and produce the message into TEQ. In the
current release, Oracle's implementation of KafkaProducer supports only a subset of
the APIs.

Internally, Oracle Kafka Producer object encapsulates AQJMS producer object which
is used to publish messages into Oracle TEQ. Similar to Kafka Producer, Producer
also stores messages in batches. Each send() call will append a Kafka Record into a
particular batch based on its Topic and Partition. A background thread will publish the
entire batch, one at a time into Oracle TEQ. Each batch publish is committed by
Producer. In current release, a topic can have only one partition and hence all
KafkaRecords will be published into a single partition of TEQ.

The following KafkaProducer APIs are supported in Oracle Database 20c.

• Constructor:

KafkaProducer: Creates a producer object and internal AQ JMS objects.
KafkaProducer class has four types of constructors defined, which all takes
configuration parameters as input.

Chapter 6
Kafka Client Interfaces

6-5

• Methods:

– send(ProducerRecord) , send(ProducerRecord, Callback):

The send method asynchronously publishes a message into TEQ. This
method returns immediately once a Kafka Record has been stored in the
buffer of records waiting to be sent. If buffer memory is full, then send call
blocks for a maximum of time max.block.ms. This allows sending many
records in parallel without blocking to wait for the response after each one.
Records will be published into the topic using AQ JMS.

The result of the send is a Future<RecordMetadata> specifying the partition
the record was sent to, the offset it was assigned and the timestamp of the
record. Both the version send(ProducerRecord) and send(ProducerRecord,
Callback) will be supported.

– close: Closes the producer, its sender thread and frees the accumulator. It
also closes internal AQ JMS objects like connection, session JMS producer
and so on.

• Classes

– ProducerRecord: A class that represents a message in Kafka platform. It is
translated into a message for TEQ platform, namely, AQ JMS message.
Relevant fields like Payload and Key can be directly translated into TEQ
payload and message key for TEQ.

– RecordMetadata: This contains metadata of the record like topic, partition,
offset, timestamp etc of the Record in KafkaPlatform. This is assigned value
relevant for TEQs. A message id of TEQ is converted into an offset of
RecordMetadata.

– Callback Interface: A callback function which is executed once a Record is
successfully published into Kafka topic.

– Partitioner Interface: Defines methods which maps a Key of the message to a
partition number of the topic. A partition number is analogous to a stream id of
TEQs.

• Properties

– Key Serializer and Value Serializer: Converts Key and payload into byte array
respectively. The Accumulator module will store the payloads in the form of
byte array. Sender thread will then form an AQjmsBytes message and publish
the message using AQ JMS Array Enqueue API.

– acks: For okafka, only value relevant for acks property is all. Any other field
set by the user is ignored.

– linger.ms: Time in miliseconds for which sender thread waits before
publishing the records in TEQ.

– batch.size: Total size of records to be batched in bytes for which sender
thread waits before publishing records in TEQ.

– buffer.memory: Total memory in bytes the accumulator can hold.

– max.block.ms: If buffer.memory size is full in accumulator, then wait for
max.block.ms amount of time before send() method can receive out of
memory error.

– retries: This property enables producer to resend the record in case of
transient errors. This value is an upper limit on how many resends.

Chapter 6
Kafka Client Interfaces

6-6

– retry.backoff.ms : The amount of time to wait before attempting to retry a
failed request to a given topic partition. This avoids repeatedly sending
requests in a tight loop under some failure scenarios

– bootstrap.servers: IP address and port of a machine where database
instance running.

Overview of Kafka Consumer implementation for TEQ

Consumer API allows applications to read streams of data from Transactional Event
Queue. Kafka consumer for TEQ uses AQ JMS APIs and use JDBC driver to consume
messages from Oracle TEQ. For Oracle Kafka, consuming message from a topic
implies dequeuing messages from Transactional Event Queue.

Similar to Kafka, in TEQ's implementation , a consumer group contains many
consumer instances. Each consumer group has a unique group-id. Each consumer
internally maintains a single connection/session to Oracle Database instance provided
by bootstrap.servers property. For this release, since a topic can have only one
partition, only one of the consumer instances will be assigned this single partition. A
partition once assigned to a consumer of a consumer group then remains with that
consumer till the session is closed. No two consumers from same group are assigned
same partition of a topic.

The following KafkaConsumer APIs are supported in Oracle Database 20c.

• Constructor: KafkaConsumer: Creates a consumer that allows the application to
consume message from key based TEQ. Internal client side TEQ objects created
are not visible to client application. All variation of the KafkaConsumer constructor
are supported in Oracle Database 20c.

• Methods:

– Subscribe: This method takes a list of topics to subscribe to. In Oracle
Database 20c, only the first topic of the list will be subscribed to. An exception
is thrown if size of list is > 1. This method creates a durable subscriber on
TEQ server side with Group-Id as subscriber name.

– Poll: poll method returns a batch of messages from the assigned partition
from TEQ. It attempts to dequeue a message from the key based TEQ for the
subscriber. TEQ uses array dequeue API of AQ JMS to receive a batch of
messages dequeued from the queue. The size of the batch depends on the
parameter max.poll.records set by the kafka client application. Poll takes
time in milliseconds as an argument. AQ JMS API of array dequeue can pass
this timeout time as a dequeue option to the TEQ Server and make dequeue
call wait for messages till the timeout time, if the full array batch is not
complete.

When poll is invoked for the first time, Oracle TEQ assigns a single available
partition to this Kafka consumer. This assignment stays for the entire lifetime
of the Kafka consumer. Messages returned belongs to the partition assigned
to the consumer. One queue partition is assigned to each Kafka consumer. It
is the responsibility of the application developer to start as many consumers
as number of partitions of the queue. If the number of Kafka consumers are
less than the number of partitions, then messages from unassigned partitions
are never consumed. If the number of Kafka consumers are more than the
number of partitions, then extra consumers will not be assigned any partition

Chapter 6
Kafka Client Interfaces

6-7

and hence, will not be able to consume any messages. No two consumer
application will consume from same partition at the same time.

– commitSync: Commits all consumed messages. Commit to an offset is not
supported in Oracle Database 20c. This call directly calls commit on the
database which commits all consumed messages from TEQ.

– commitAsync: This call is translated into commitSync. A callback function
passed as argument gets executed once the commit is successful.

– Unsubscribe: Unsubscribes the topic that it has subscribed to. A consumer
can no longer consume messages from unsubscribed topics. This call does
not remove a subscriber group from the TEQ metadata. Other consumer
application can still continue to consume.

– close: Closes the consumer and unsubscribes the topic it has subscribed to.

• Class: ConsumerRecord: A class that represents a consumed record in Kafka
platform. In Oracle Dataase 20c, AQ JMS message is converted into
ConsumerRecord.

• Properties:

– key.deserializer and value.deserialzer: In Oracle TEQ's Key based
partitioned queue key, value are stored as byte array in user property, payload
of JMS message respectively. On consuming these byte arrays are
deserialized into key, value having user provided format internally by the
consumer using key.deserialize and value.deserializer respectively.

– group.id: This is a consumer group name for which messages are consumed
from the Kafka topic. This property is used as a durable subscriber name for
key based TEQs.

– max.poll.records: Maximum number of records to fetch in single array
dequeue call from an Oracle TEQ server.

– fetch.max.wait.ms: Maximum amount of time in milliseconds to wait for
fetching messages if not available.

– enable.auto.commit: Enables auto commit of consumed messages for every
specified interval.

– auto.commit.interval.ms: Interval in milliseconds for auto commit of
messages.

– bootstrap.servers: IP address and port of a machine where database
instance running.

Overview of Kafka Admin Implementation for TEQ

Kafka admin API allows applications to perform administrative tasks like creating a
topic, deeting a topic, add partition to a topic and so on. Oracle Database 20c supports
the following admin APIs:

• Methods

– create(props) and create(config): Creates an object of KafkaAdmin class
that uses passed parameters. The user creates a database session which is
used for further operations. Client application has to provide oracle.host,
oracle.port, oracle.servicename, oracle.instancename, oracle.user, and

Chapter 6
Kafka Client Interfaces

6-8

oracle.password. These Oracle Database properties are used to setup the
database connection.

– close(): Closes a database session and Admin client.

– deleteTopic: Stops and drops a TEQ.

• Classes: NewTopic: Class used for creating a new topic. This class contains
parameters with which a transactional event queue is created.

• Properties

– bootstrap.servers: IP address and port of a machine where database
instance running.

– retention.ms: Amount of time in milliseconds a message is retained in queue
after all consumer groups or subscribers dequed a message.

– partitions: A parameter in class NewTopic. The number of partitions with
which a new transactional event queue is created.

Examples: How to Use
Example 6-1 Producer.java

import java.util.Collections;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
import org.oracle.okafka.clients.admin.AdminClient;
import org.oracle.okafka.clients.admin.CreateTopicsOptions;
import org.oracle.okafka.clients.admin.NewTopic;
import org.oracle.okafka.clients.producer.KafkaProducer;
import org.oracle.okafka.clients.producer.ProducerRecord;
import org.oracle.okafka.common.KafkaFuture;

public class Producer {

public static void main(String[] args) {

 if(args.length != 1) {
 System.out.println("Please provide topic name to produce messages.");
 return ;
 }
 String topic = args[0].trim();
 KafkaProducer<String,String> prod = null;
 Properties props = new Properties();

 props.put("oracle.instance.name", "kafka");
 props.put("oracle.service.name",
"kafka.regress.rdbms.dev.us.oracle.com");
 props.put("oracle.user.name", "aq");
 props.put("oracle.password", "aq");
 props.put("bootstrap.servers", "localhost:1521");
 props.put("batch.size", 200);
 props.put("linger.ms", 100);
 props.put("buffer.memory", 335544);
 props.put("key.serializer",
"org.oracle.okafka.common.serialization.StringSerializer");
 props.put("value.serializer",
"org.oracle.okafka.common.serialization.StringSerializer");

Chapter 6
Examples: How to Use

6-9

 System.out.println("Creating producer now");
 prod=new KafkaProducer<String, String>(props);
 System.out.println("Producer created.");

 try {
 int i;
 for(i = 0; i < 10; i++)
 prod.send(new ProducerRecord<String, String>(topic ,0, i
+"000","This is new message"+i));
 System.out.println("Sent "+ i + "messages");
 } catch(Exception ex) {
 System.out.println("Failed to send messages:");
 ex.printStackTrace();
 }
 finally {
 prod.close();
 }
 }
}

Example 6-2 Consumer.java

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;
import org.oracle.okafka.clients.consumer.ConsumerRecord;
import org.oracle.okafka.clients.consumer.ConsumerRecords;
import org.oracle.okafka.clients.consumer.KafkaConsumer;
public class Consumer {
 public static void main(String[] args) {
 Properties props = new Properties();
 if(args.length != 1) {
 System.out.println("Please provide topic name to consume messages.");
 return ;
 }
 String topic = args[0].trim();
 props.put("oracle.service.name",
"kafka.regress.rdbms.dev.us.oracle.com");
 props.put("oracle.instance.name", "kafka");
 props.put("oracle.user.name", "aq");
 props.put("oracle.password", "aq");
 props.put("bootstrap.servers", "localhost:1521");
 props.put("group.id", "kafka");
 props.put("enable.auto.commit", "true");
 props.put("auto.commit.interval.ms", "10000");
 props.put("key.deserializer",
"org.oracle.okafka.common.serialization.StringDeserializer");
 props.put("value.deserializer",
"org.oracle.okafka.common.serialization.StringDeserializer");
 props.put("max.poll.records", 100);
 KafkaConsumer<String, String> consumer = null;
 consumer = new KafkaConsumer<String, String>(props);
 consumer.subscribe(Arrays.asList(topic));
 ConsumerRecords<String, String> records = null;
 try {
 records = consumer.poll(Duration.ofMillis(1000));
 for (ConsumerRecord<String, String> record : records)
{
 System.out.println("topic = , partition= ,key= , value =

Chapter 6
Examples: How to Use

6-10

\n"+
 record.topic()+ " "+record.partition()+
" "+record.key()+" "+ record.value());
 System.out.println(".......");
 }
 consumer.commitSync();
 }catch(Exception ex) {
 ex.printStackTrace();
 } finally {
 consumer.close();
 }
 }
}

Chapter 6
Examples: How to Use

6-11

7
Java Message Service for Transactional
Event Queues and Advanced Queuing

This chapter contains the following topics:

• Java Messaging Service Interface for Oracle Transactional Event Queues and
Advanced Queuing

• Oracle Java Message Service Basic Operations

• Oracle Java Message Service Point-to-Point

• Oracle Java Message Service Publish/Subscribe

• Oracle Java Message Service Shared Interfaces

• Oracle Java Message Service Types Examples

Java Messaging Service Interface for Oracle Transactional
Event Queues and Advanced Queuing

The following topics describe the Oracle Java Message Service (JMS) interface to
Oracle Database Advanced Queuing (AQ).

• General Features of JMS and Oracle JMS

• Structured Payload/Message Types in JMS

• Buffered Messaging in JMS

• JMS Point-to-Point Model Features

• JMS Publish/Subscribe Model Features

• JMS Message Producer Features

• JMS Message Consumer Features

• JMS Propagation

• Message Transformation with JMS AQ

• JMS Streaming

• Java EE Compliance

General Features of JMS and Oracle JMS
This section contains these topics:

• JMS Connection and Session

• JMS Destination

• System-Level Access Control in JMS

7-1

• Destination-Level Access Control in JMS

• Retention and Message History in JMS

• Supporting Oracle Real Application Clusters in JMS

• Supporting Statistics Views in JMS

JMS Connection and Session
This section contains these topics:

• ConnectionFactory Objects

• Using AQjmsFactory to Obtain ConnectionFactory Objects

• Using JNDI to Look Up ConnectionFactory Objects

• JMS Connection

• JMS Session

ConnectionFactory Objects
A ConnectionFactory encapsulates a set of connection configuration parameters that
has been defined by an administrator. A client uses it to create a connection with a
JMS provider. In this case Oracle JMS, part of Oracle Database, is the JMS provider.

The three types of ConnectionFactory objects are:

• ConnectionFactory

• QueueConnectionFactory

• TopicConnectionFactory

Using AQjmsFactory to Obtain ConnectionFactory Objects
You can use the AQjmsFactory class to obtain a handle to a ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory object.

To obtain a ConnectionFactory, which supports both point-to-point and publish/
subscribe operations, use AQjmsFactory.getConnectionFactory(). To obtain a
QueueConnectionFactory, use AQjmsFactory.getQueueConnectionFactory(). To
obtain a TopicConnectionFactory, use
AQjmsFactory.getTopicConnectionFactory().

The ConnectionFactory, QueueConnectionFactory, or TopicConnectionFactory can
be created using hostname, port number, and SID driver or by using JDBC URL and
properties.

Using JNDI to Look Up ConnectionFactory Objects
A JMS administrator can register ConnectionFactory objects in a Lightweight
Directory Access Protocol (LDAP) server. The following setup is required to enable
Java Naming and Directory Interface (JNDI) lookup in JMS:

1. Register Database

When the Oracle Database server is installed, the database must be registered
with the LDAP server. This can be accomplished using the Database

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-2

Configuration Assistant (DBCA). Figure 7-1 shows the structure of Oracle
Database Advanced Queuing entries in the LDAP server. ConnectionFactory
information is stored under <cn=OracleDBConnections>, while topics and queues
are stored under <cn=OracleDBQueues>.

Figure 7-1 Structure of Oracle Database Advanced Queuing Entries in
LDAP Server

<cn=acme, cn=com>

<cn=OracleContext>

<cn=db1>

(administrative context)

(root of oracle RDBMS schema)

(database)

<cn=OracleDBConnections> <cn=OracleDBQueue> <cn= . . .>

(Other db objects)(Queues / Topics)(Connection Factories)

2. Set Parameter GLOBAL_TOPIC_ENABLED.

The GLOBAL_TOPIC_ENABLED system parameter for the database must be set to
TRUE. This ensures that all queues and topics created in Oracle Database
Advanced Queuing are automatically registered with the LDAP server. This
parameter can be set by using ALTER SYSTEM SET GLOBAL_TOPIC_ENABLED =
TRUE.

3. Register ConnectionFactory Objects

After the database has been set up to use an LDAP server, the JMS administrator
can register ConnectionFactory, QueueConnectionFactory, and
TopicConnectionFactory objects in LDAP by using
AQjmsFactory.registerConnectionFactory().

The registration can be accomplished in one of the following ways:

• Connect directly to the LDAP server

The user must have the GLOBAL_AQ_USER_ROLE to register connection factories
in LDAP.

To connect directly to LDAP, the parameters for the
registerConnectionFactory method include the LDAP context, the name of
the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory, hostname, database SID, port number, JDBC
driver (thin or oci8) and factory type (queue or topic).

• Connect to LDAP through the database server

The user can log on to Oracle Database first and then have the database
update the LDAP entry. The user that logs on to the database must have the
AQ_ADMINISTRATOR_ROLE to perform this operation.

To connect to LDAP through the database server, the parameters for the
registerConnectionFactory method include a JDBC connection (to a user
having AQ_ADMINISTRATOR_ROLE), the name of the ConnectionFactory,

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-3

QueueConnectionFactory, or TopicConnectionFactory, hostname, database
SID, port number, JDBC driver (thin or oci8) and factory type (queue or topic).

JMS Connection
A JMS Connection is an active connection between a client and its JMS provider. A
JMS Connection performs several critical services:

• Encapsulates either an open connection or a pool of connections with a JMS
provider

• Typically represents an open TCP/IP socket (or a set of open sockets) between a
client and a provider's service daemon

• Provides a structure for authenticating clients at the time of its creation

• Creates Sessions

• Provides connection metadata

• Supports an optional ExceptionListener

A JMS Connection to the database can be created by invoking createConnection(),
createQueueConnection(), or createTopicConnection() and passing the parameters
username and password on the ConnectionFactory, QueueConnectionFactory, or
TopicConnectionFactory object respectively.

Some of the methods that are supported on the Connection object are

• start()

This method starts or restart delivery of incoming messages.

• stop()

This method temporarily stops delivery of incoming messages. When a
Connection object is stopped, delivery to all of its message consumers is inhibited.
Also, synchronous receive's block and messages are not delivered to message
listener.

• close()

This method closes the JMS session and releases all associated resources.

• createSession(true, 0)

This method creates a JMS Session using a JMS Connection instance.

• createQueueSession(true, 0)

This method creates a QueueSession.

• createTopicSession(true, 0)

This method creates a TopicSession.

• setExceptionListener(ExceptionListener)

This method sets an exception listener for the Connection. This allows a client to
be notified of a problem asynchronously. If a Connection only consumes
messages, then it has no other way to learn it has failed.

• getExceptionListener()

This method gets the ExceptionListener for this Connection.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-4

A JMS client typically creates a Connection, a Session and several MessageProducer
and MessageConsumer objects. In the current version only one open Session for each
Connection is allowed, except in the following cases:

• If the JDBC oci8 driver is used to create the JMS connection

• If the user provides an OracleOCIConnectionPool instance during JMS connection
creation

When a Connection is created it is in stopped mode. In this state no messages can be
delivered to it. It is typical to leave the Connection in stopped mode until setup is
complete. At that point the Connection start() method is called and messages begin
arriving at the Connection consumers. This setup convention minimizes any client
confusion that can result from asynchronous message delivery while the client is still in
the process of setup.

It is possible to start a Connection and to perform setup subsequently. Clients that do
this must be prepared to handle asynchronous message delivery while they are still in
the process of setting up. A MessageProducer can send messages while a Connection
is stopped.

JMS Session
A JMS Session is a single threaded context for producing and consuming messages.
Although it can allocate provider resources outside the Java Virtual Machine (JVM), it
is considered a lightweight JMS object.

A Session serves several purposes:

• Constitutes a factory for MessageProducer and MessageConsumer objects

• Provides a way to get a handle to destination objects (queues/topics)

• Supplies provider-optimized message factories

• Supports a single series of transactions that combines work spanning session
MessageProducer and MessageConsumer objects, organizing these into units

• Defines a serial order for the messages it consumes and the messages it
produces

• Serializes execution of MessageListener objects registered with it

In Oracle Database 20c, you can create as many JMS Sessions as resources allow
using a single JMS Connection, when using either JDBC thin or JDBC thick (OCI)
drivers.

Because a provider can allocate some resources on behalf of a Session outside the
JVM, clients should close them when they are not needed. Relying on garbage
collection to eventually reclaim these resources may not be timely enough. The same
is true for MessageProducer and MessageConsumer objects created by a Session.

Methods on the Session object include:

• commit()

This method commits all messages performed in the transaction and releases
locks currently held.

• rollback()

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-5

This method rolls back any messages accomplished in the transaction and release
locks currently held.

• close()

This method closes the Session.

• getDBConnection()

This method gets a handle to the underlying JDBC connection. This handle can be
used to perform other SQL DML operations as part of the same Session. The
method is specific to Oracle JMS.

• acknowledge()

This method acknowledges message receipt in a nontransactional session.

• recover()

This method restarts message delivery in a nontransactional session. In effect, the
series of delivered messages in the session is reset to the point after the last
acknowledged message.

The following are some Oracle JMS extensions:

• createQueueTable()

This method creates a queue table.

• getQueueTable()

This method gets a handle to an existing queue table.

• createQueue()

This method creates a queue.

• getQueue()

This method gets a handle to an existing queue.

• createTopic()

This method creates a topic.

• getTopic()

This method gets a handle to an existing topic.

The Session object must be cast to AQjmsSession to use any of the extensions.

Note:

The JMS specification expects providers to return null messages when
receives are accomplished on a JMS Connection instance that has not been
started.

After you create a javax.jms.Connection instance, you must call the
start() method on it before you can receive messages. If you add a line like
t_conn.start(); any time after the connection has been created, but before
the actual receive, then you can receive your messages.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-6

JMS Destination
A Destination is an object a client uses to specify the destination where it sends
messages, and the source from which it receives messages. A Destination object
can be a Queue or a Topic. In Oracle Database Advanced Queuing, these map to a
schema.queue at a specific database. Queue maps to a single-consumer queue, and
Topic maps to a multiconsumer queue.

Using a JMS Session to Obtain Destination Objects
Destination objects are created from a Session object using the following domain-
specific Session methods:

• AQjmsSession.getQueue(queue_owner, queue_name)

This method gets a handle to a JMS queue.

• AQjmsSession.getTopic(topic_owner, topic_name)

This method gets a handle to a JMS topic.

Using JNDI to Look Up Destination Objects
The database can be configured to register schema objects with an LDAP server. If a
database has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED
parameter has been set to TRUE, then all JMS queues and topics are automatically
registered with the LDAP server when they are created. The administrator can also
create aliases to the queues and topics registered in LDAP. Queues and topics that
are registered in LDAP can be looked up through JNDI using the name or alias of the
queue or topic.

See Also:

"Adding an Alias to the LDAP Server"

JMS Destination Methods
Methods on the Destination object include:

• alter()

This method alters a Queue or a Topic.

• schedulePropagation()

This method schedules propagation from a source to a destination.

• unschedulePropagation()

This method unschedules a previously scheduled propagation.

• enablePropagationSchedule()

This method enables a propagation schedule.

• disablePropagationSchedule()

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-7

This method disables a propagation schedule.

• start()

This method starts a Queue or a Topic. The queue can be started for enqueue or
dequeue. The topic can be started for publish or subscribe.

• stop()

This method stops a Queue or a Topic. The queue is stopped for enqueue or
dequeue. The topic is stopped for publish or subscribe.

• drop()

This method drops a Queue or a Topic.

System-Level Access Control in JMS
Oracle8i or higher supports system-level access control for all queuing operations.
This feature allows an application designer or DBA to create users as queue
administrators. A queue administrator can invoke administrative and operational JMS
interfaces on any queue in the database. This simplifies administrative work, because
all administrative scripts for the queues in a database can be managed under one
schema.

When messages arrive at the destination queues, sessions based on the source
queue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you must grant enqueue privileges for the
destination queues to schemas of the source queues.

To propagate to a remote destination queue, the login user (specified in the database
link in the address field of the agent structure) should either be granted the
ENQUEUE_ANY privilege, or be granted the rights to enqueue to the destination queue.
However, you are not required to grant any explicit privileges if the login user in the
database link also owns the queue tables at the destination.

See Also:

"Oracle Enterprise Manager Support"

Destination-Level Access Control in JMS
Oracle8i or higher supports access control for enqueue and dequeue operations at the
queue or topic level. This feature allows the application designer to protect queues and
topics created in one schema from applications running in other schemas. You can
grant only minimal access privileges to the applications that run outside the schema of
the queue or topic. The supported access privileges on a queue or topic are ENQUEUE,
DEQUEUE and ALL.

See Also:

"Oracle Enterprise Manager Support"

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-8

Retention and Message History in JMS
Messages are often related to each other. For example, if a message is produced as a
result of the consumption of another message, then the two are related. As the
application designer, you may want to keep track of such relationships. Oracle
Database Advanced Queuing allows users to retain messages in the queue table,
which can then be queried in SQL for analysis.

Along with retention and message identifiers, Oracle Database Advanced Queuing lets
you automatically create message journals, also called tracking journals or event
journals. Taken together, retention, message identifiers and SQL queries make it
possible to build powerful message warehouses.

Supporting Oracle Real Application Clusters in JMS
A transactional event queue (TEQ) is a single logical queue that is divided into
multiple, independent, physical queues through system-maintained partitioning. TEQs
are the preferred JMS queues for queues used across Oracle RAC instances, for
queues with high enqueue or dequeue rates, or for queues with many subscribers.
See "Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC)"
for more information.

For AQ queues, Oracle Real Application Clusters (Oracle RAC) can be used to
improve Oracle Database Advanced Queuing performance by allowing different
queues to be managed by different instances. You do this by specifying different
instance affinities (preferences) for the queue tables that store the queues. This allows
queue operations (enqueue/dequeue) or topic operations (publish/subscribe) on
different queues or topics to occur in parallel.

The Oracle Database Advanced Queuing queue monitor process continuously
monitors the instance affinities of the queue tables. The queue monitor assigns
ownership of a queue table to the specified primary instance if it is available, failing
which it assigns it to the specified secondary instance.

If the owner instance of a queue table terminates, then the queue monitor changes
ownership to a suitable instance such as the secondary instance.

Oracle Database Advanced Queuing propagation can make use of Oracle Real
Application Clusters, although it is transparent to the user. The affinities for jobs
submitted on behalf of the propagation schedules are set to the same values as that of
the affinities of the respective queue tables. Thus, a job_queue_process associated
with the owner instance of a queue table is handling the propagation from queues
stored in that queue table, thereby minimizing pinging.

See Also:

• "Transactional Event Queues"

• "Scheduling a Queue Propagation"

• Oracle Real Application Clusters Administration and Deployment Guide

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-9

Supporting Statistics Views in JMS
Each instance keeps its own Oracle Database Advanced Queuing statistics
information in its own System Global Area (SGA), and does not have knowledge of the
statistics gathered by other instances. Then, when a GV$AQ view is queried by an
instance, all other instances funnel their statistics information to the instance issuing
the query.

The GV$AQ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed.

See Also:

"V$AQ: Number of Messages in Different States in Database"

Structured Payload/Message Types in JMS
JMS messages are composed of a header, properties, and a body.

The header consists of header fields, which contain values used by both clients and
providers to identify and route messages. All messages support the same set of
header fields.

Properties are optional header fields. In addition to standard properties defined by
JMS, there can be provider-specific and application-specific properties.

The body is the message payload. JMS defines various types of message payloads,
and a type that can store JMS messages of any or all JMS-specified message types.

This section contains these topics:

• JMS Message Headers

• JMS Message Properties

• JMS Message Bodies

• Using Message Properties with Different Message Types

• Buffered Messaging with Oracle JMS

JMS Message Headers
A JMS message header contains the following fields:

• JMSDestination

This field contains the destination to which the message is sent. In Oracle
Database Advanced Queuing this corresponds to the destination queue/topic. It is
a Destination type set by JMS after the Send method has completed.

• JMSDeliveryMode

This field determines whether the message is logged or not. JMS supports
PERSISTENT delivery (where messages are logged to stable storage) and

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-10

NONPERSISTENT delivery (messages not logged). It is a INTEGER set by JMS after
the Send method has completed. JMS permits an administrator to configure JMS to
override the client-specified value for JMSDeliveryMode.

• JMSMessageID

This field uniquely identifies a message in a provider. All message IDs must begin
with the string ID:. It is a String type set by JMS after the Send method has
completed.

• JMSTimeStamp

This field contains the time the message was handed over to the provider to be
sent. This maps to Oracle Database Advanced Queuing message enqueue time. It
is a Long type set by JMS after the Send method has completed.

• JMSCorrelationID

This field can be used by a client to link one message with another. It is a String
type set by the JMS client.

• JMSReplyTo

This field contains a Destination type supplied by a client when a message is
sent. Clients can use oracle.jms.AQjmsAgent; javax.jms.Queue; or
javax.jms.Topic.

• JMSType

This field contains a message type identifier supplied by a client at send time. It is
a String type. For portability Oracle recommends that the JMSType be symbolic
values.

• JMSExpiration

This field is the sum of the enqueue time and the TimeToLive in non-Java EE
compliance mode. In compliant mode, the JMSExpiration header value in a
dequeued message is the sum of JMSTimeStamp when the message was
enqueued (Greenwich Mean Time, in milliseconds) and the TimeToLive (in
milliseconds). It is a Long type set by JMS after the Send method has completed.
JMS permits an administrator to configure JMS to override the client-specified
value for JMSExpiration.

• JMSPriority

This field contains the priority of the message. It is a INTEGER set by JMS after the
Send method has completed. In Java EE-compliance mode, the permitted values
for priority are 0–9, with 9 the highest priority and 4 the default, in conformance
with the Sun Microsystem JMS 1.1 standard. Noncompliant mode is the default.
JMS permits an administrator to configure JMS to override the client-specified
value for JMSPriority.

• JMSRedelivered

This field is a Boolean set by the JMS provider.

See Also:

"Java EE Compliance"

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-11

JMS Message Properties
JMS properties are set either explicitly by the client or automatically by the JMS
provider (these are generally read-only). Some JMS properties are set using the
parameters specified in Send and Receive operations.

Properties add optional header fields to a message. Properties allow a client, using a
messageSelector, to have a JMS provider select messages on its behalf using
application-specific criteria. Property names are strings and values can be: Boolean,
byte, short, int, long, float, double, and string.

JMS-defined properties, which all begin with "JMSX", include the following:

• JMSXUserID

This field is the identity of the user sending the message. It is a String type set by
JMS after the Send method has completed.

• JMSXAppID

This field is the identity of the application sending the message. It is a String type
set by JMS after the Send method has completed.

• JMSXDeliveryCount

This field is the number of message delivery attempts. It is an Integer set by JMS
after the Send method has completed.

• JMSXGroupid

This field is the identity of the message group that this message belongs to. It is a
String type set by the JMS client.

• JMSXGroupSeq

This field is the sequence number of a message within a group. It is an Integer
set by the JMS client.

• JMSXRcvTimeStamp

This field is the time the message was delivered to the consumer (dequeue time).
It is a String type set by JMS after the Receive method has completed.

• JMSXState

This field is the message state, set by the provider. The message state can be
WAITING, READY, EXPIRED, or RETAINED.

Oracle-specific JMS properties, which all begin with JMS_Oracle, include the following:

• JMS_OracleExcpQ

This field is the queue name to send the message to if it cannot be delivered to the
original destination. It is a String type set by the JMS client. Only destinations of
type EXCEPTION can be specified in the JMS_OracleExcpQ property.

• JMS_OracleDelay

This field is the time in seconds to delay the delivery of the message. It is an
Integer set by the JMS client. This can affect the order of message delivery.

• JMS_OracleOriginalMessageId

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-12

This field is set to the message identifier of the message in the source if the
message is propagated from one destination to another. It is a String type set by
the JMS provider. If the message is not propagated, then this property has the
same value as JMSMessageId.

A client can add additional header fields to a message by defining properties. These
properties can then be used in a messageSelector to select specific messages.

JMS Message Bodies
JMS provides five forms of message body:

• StreamMessage

• BytesMessage

• MapMessage

• TextMessage

• ObjectMessage

• AdtMessage

StreamMessage
A StreamMessage object is used to send a stream of Java primitives. It is filled and
read sequentially. It inherits from Message and adds a StreamMessage body. Its
methods are based largely on those found in java.io.DataInputStream and
java.io.DataOutputStream.

The primitive types can be read or written explicitly using methods for each type. They
can also be read or written generically as objects. To use StreamMessage objects,
create the queue table with the SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_MESSAGE
payload types.

StreamMessage objects support the conversions shown in Table 7-1. A value written as
the row type can be read as the column type.

Table 7-1 StreamMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

string X X X X X X X X X -

byte[] - - - - - - - - - X

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-13

BytesMessage
A BytesMessage object is used to send a message containing a stream of
uninterpreted bytes. It inherits Message and adds a BytesMessage body. The receiver
of the message interprets the bytes. Its methods are based largely on those found in
java.io.DataInputStream and java.io.DataOutputStream.

This message type is for client encoding of existing message formats. If possible, one
of the other self-defining message types should be used instead.

The primitive types can be written explicitly using methods for each type. They can
also be written generically as objects. To use BytesMessage objects, create the queue
table with SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

MapMessage
A MapMessage object is used to send a set of name-value pairs where the names are
String types, and the values are Java primitive types. The entries can be accessed
sequentially or randomly by name. The order of the entries is undefined. It inherits
from Message and adds a MapMessage body. The primitive types can be read or written
explicitly using methods for each type. They can also be read or written generically as
objects.

To use MapMessage objects, create the queue table with the SYS.AQ$_JMS_MAP_MESSAGE
or AQ$_JMS_MESSAGE payload types. MapMessage objects support the conversions
shown in Table 7-2. An "X" in the table means that a value written as the row type can
be read as the column type.

Table 7-2 MapMessage Conversion

Input Boolean byte short char int long float double String byte[]

Boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

string X X X X X X X X X -

byte[] - - - - - - - - - X

TextMessage
A TextMessage object is used to send a message containing a
java.lang.StringBuffer. It inherits from Message and adds a TextMessage body. The
text information can be read or written using methods getText() and setText(...). To
use TextMessage objects, create the queue table with the SYS.AQ$_JMS_TEXT_MESSAGE
or AQ$_JMS_MESSAGE payload types.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-14

ObjectMessage
An ObjectMessage object is used to send a message that contains a serializable Java
object. It inherits from Message and adds a body containing a single Java reference.
Only serializable Java objects can be used. If a collection of Java objects must be
sent, then one of the collection classes provided in JDK 1.4 can be used. The objects
can be read or written using the methods getObject() and setObject(...).To use
ObjectMessage objects, create the queue table with the SYS.AQ$_JMS_OBJECT_MESSAGE
or AQ$_JMS_MESSAGE payload types.

AdtMessage
An AdtMessage object is used to send a message that contains a Java object that
maps to an Oracle object type. These objects inherit from Message and add a body
containing a Java object that implements the CustomDatum or ORAData interface.

To use AdtMessage objects, create the queue table with payload type as the Oracle
object type. The AdtMessage payload can be read and written using the getAdtPayload
and setAdtPayload methods.

You can also use an AdtMessage object to send messages to queues of type
SYS.XMLType. You must use the oracle.xdb.XMLType class to create the message.

For AdtMessage objects, the client can get:

• JMSXDeliveryCount

• JMSXRecvTimeStamp

• JMSXState

• JMS_OracleExcpQ

• JMS_OracleDelay

See Also:

Oracle Database Java Developer's Guide for information about the
CustomDatum and ORAData interfaces

Using Message Properties with Different Message Types
The following message properties can be set by the client using the setProperty call.
For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and MapMessage
objects, the client can set:

• JMSXAppID

• JMSXGroupID

• JMSXGroupSeq

• JMS_OracleExcpQ

• JMS_OracleDelay

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-15

For AdtMessage objects, the client can set:

• JMS_OracleExcpQ

• JMS_OracleDelay

The following message properties can be obtained by the client using the getProperty
call. For StreamMessage, BytesMessage, ObjectMessage, TextMessage, and
MapMessage objects, the client can get:

• JMSXuserID

• JMSXAppID

• JMSXDeliveryCount

• JMSXGroupID

• JMSXGroupSeq

• JMSXRecvTimeStamp

• JMSXState

• JMS_OracleExcpQ

• JMS_OracleDelay

• JMS_OracleOriginalMessageID

Buffered Messaging with Oracle JMS
Users can send a nonpersistent JMS message by specifying the deliveryMode to be
NON_PERSISTENT when sending a message. JMS nonpersistent messages are not
required to be logged to stable storage, so they can be lost after a JMS system failure.
JMS nonpersistent messages are similar to the buffered messages available in Oracle
Database Advanced Queuing, but there are also important differences between the
two.

Note:

Do not confuse Oracle JMS nonpersistent messages with Oracle Database
Advanced Queuing nonpersistent queues, which are deprecated in Oracle
Database 10g Release 2 (10.2).

See Also:

• "Buffered Messaging"

• Nonpersistent Queues

Transaction Commits and Client Acknowledgments

The JMS deliveryMode is orthogonal to the transaction attribute of a message. JMS
nonpersistent messages can be sent and received by either a transacted session or a
nontransacted session. If a JMS nonpersistent message is sent and received by a

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-16

transacted session, then the effect of the JMS operation is only visible after the
transacted session commits. If it is received by a nontransacted session with
CLIENT_ACKNOWLEDGE acknowledgment mode, then the effect of receiving this message
is only visible after the client acknowledges the message. Without the
acknowledgment, the message is not removed and will be redelivered if the client calls
Session.recover.

Oracle Database Advanced Queuing buffered messages, however, do not support
these transaction or acknowledgment concepts. Both sending and receiving a buffered
message must be in the IMMEDIATE visibility mode. The effects of the sending and
receiving operations are therefore visible to the user immediately, no matter whether
the session is committed or the messages are acknowledged.

Different APIs

Messages sent with the regular JMS send and publish methods are treated by Oracle
Database Advanced Queuing as persistent messages. The regular JMS receive
methods receive only AQ persistent messages. To send and receive buffered
messages, you must use the Oracle extension APIs bufferSend, bufferPublish, and
bufferReceive.

See Also:

Oracle Database Advanced Queuing Java API Reference for more
information on bufferSend, bufferPublish, and bufferReceive

Payload Limits

The Oracle Database Advanced Queuing implementation of buffered messages does
not support LOB attributes. This places limits on the payloads for the five types of
standard JMS messages:

• JMS TextMessage payloads cannot exceed 4000 bytes.

This limit might be even lower with some database character sets, because during
the Oracle JMS character set conversion, Oracle JMS sometimes must make a
conservative choice of using CLOB instead of VARCHAR to store the text payload in
the database.

• JMS BytesMessage payloads cannot exceed 2000 bytes.

• JMS ObjectMessage, StreamMessage, and MapMessage data serialized by JAVA
cannot exceed 2000 bytes.

• For all other Oracle JMS ADT messages, the corresponding Oracle database ADT
cannot contain LOB attributes.

Different Constants

The Oracle Database Advanced Queuing and Oracle JMS APIs use different
numerical values to designate buffered and persistent messages, as shown in
Table 7-3.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-17

Table 7-3 Oracle Database AQ and Oracle JMS Buffered Messaging Constants

API Persistent Message Buffered Message

Oracle Database
Advanced Queuing

PERSISTENT := 1 BUFFERED :=2

Oracle JMS PERSISTENT := 2 NON_PERSISTENT := 1

Buffered Messaging in JMS
Buffered messaging fully supports JMS messaging standards. Oracle JMS extends
those standards in several ways.

See Also:

"Buffered Messaging"

Enqueuing JMS Buffered Messages

Oracle JMS allows applications to send buffered messages by setting
JMSDeliveryMode for individual messages, so persistent and buffered messages can
be enqueued to the same JMS queue/topic.

Oracle JMS buffered messages can be ordered by enqueue time, priority, or both. The
ordering does not extend across message types. So a persistent message sent later,
for example, can be delivered before an buffered message sent earlier. Expiration is
also supported for buffered messages in Oracle JMS.

See Also:

"JMS Message Headers"

Dequeuing JMS Buffered Messages

JMS does not require subscribers to declare interest in just persistent messages or
just buffered messages, so JMS subscribers can be interested in both message types.

Oracle JMS supports fast and efficient dequeue of messages by JMSMessageID,
selectors on message headers, and selectors on message properties. The Oracle JMS
dequeue call checks for both persistent and buffered messages.

Note:

Oracle JMS persistent messages have unique message identifiers. Oracle
JMS buffered message identifiers are unique only within a queue/topic.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-18

If concurrent dequeue processes are dequeuing from the same queue as the same
subscriber, then they will skip messages that are locked by the other process.

See Also:

• "MessageSelector"

• "Receiving Messages "

Transactions Support

If buffered messages are enqueued in a transacted session, then JMS requires
transaction support for them. Oracle JMS guarantees that transacted sessions
involving buffered messages meet the following standards:

• Atomicity

Both persistent and buffered messages within an Oracle JMS transaction are
committed or rolled back atomically. Even if buffered messages were written to
disk, as in the case of messages involving LOBs, rollback nevertheless removes
them.

• Consistency

If persistent and buffered messaging operations interleave in a transaction, then all
Oracle JMS users share a consistent view of the affected queues/topics. All
persistent and buffered messages enqueued by a transaction become visible at
commit time. If a process ends in the middle of a transaction, then both persistent
and buffered messages are undone. Oracle JMS users see either all persistent
and buffered messages in a transaction or none of them.

• Isolation

An buffered enqueue operation in a transaction is visible only to the owner
transaction before the transaction is committed. It is visible to all consumers after
the transaction is committed.

Messages locked by dequeue transaction may be browsed.

Acknowledging Message Receipt

Three values are defined for the ack_mode parameter for acknowledging message
receipt in nontransacted sessions:

• DUPS_OK_ACKNOWLEDGE

In this mode, duplicate messages are allowed.

• AUTO_ACKNOWLEDGE

In this mode, the session automatically acknowledges messages.

• CLIENT_ACKNOWLEDGE

In this mode, the client explicitly acknowledges messages by calling the message
producer acknowledge method. Acknowledging a message acknowledges all
previously consumed messages.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-19

See Also:

"Creating a Session"

Buffered Messaging Quality of Service

JMS requires providers to support at-most-once delivery of unpropagated buffered
messages. If recovery of buffered messages is disabled, then Oracle JMS meets this
standard.

Duplicate delivery of messages is possible with the current implementation of
message propagation. But this does not violate the JMS standard, because message
propagation is an extension offered by Oracle JMS.

See Also:

"Propagating Buffered Messages" for the causes of duplicate delivery of
buffered messages

JMS Types Support for Buffered Messages

Oracle JMS maps the JMS-defined types to Oracle user-defined types and creates
queues of these user-defined types for storing JMS messages. Some of these types
have LOB attributes, which Oracle JMS writes to disk whether the message is
persistent or buffered.

The user-defined type SYS.AQ$_JMS_TEXT_MESSAGE for JMS type JMSTextMessage, for
example, stores text strings smaller than 4k in a VARCHAR2 column. But it has a CLOB
attribute for storing text strings larger than 4k.

Because JMS messages are often larger than 4k, Oracle JMS offers a new ADT that
allows larger messages to be stored in memory. The disk representation of the ADT
remains unchanged, but several VARCHAR2/RAW attributes allow for JMS messages of
sizes up to 100k to be stored in memory. Messages larger than 100k can still be
published as buffered messages, but they are written to disk.

See Also:

"Enqueuing Buffered Messages"

JMS Point-to-Point Model Features
In the point-to-point model, clients exchange messages from one point to another.
Message producers and consumers send and receive messages using single-
consumer queues. An administrator creates the single-consumer queues with the
createQueue method in AQjmsSession. Before they can be used, the queues must be
enabled for enqueue/dequeue using the start call in AQjmsDestination. Clients

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-20

obtain a handle to a previously created queue using the getQueue method on
AQjmsSession.

In a single-consumer queue, a message can be consumed exactly once by a single
consumer. If there are multiple processes or operating system threads concurrently
dequeuing from the same queue, then each process dequeues the first unlocked
message at the head of the queue. A locked message cannot be dequeued by a
process other than the one that has created the lock.

After processing, the message is removed if the retention time of the queue is 0, or it is
retained for a specified retention time. As long as the message is retained, it can be
either queried using SQL on the queue table view or dequeued by specifying the
message identifier of the processed message in a QueueBrowser.

QueueSender

A client uses a QueueSender to send messages to a queue. It is created by passing a
queue to the createSender method in a client Session. A client also has the option of
creating a QueueSender without supplying a queue. In that case a queue must be
specified on every send operation.

A client can specify a default delivery mode, priority and TimeToLive for all messages
sent by the QueueSender. Alternatively, the client can define these options for each
message.

QueueReceiver

A client uses a QueueReceiver to receive messages from a queue. It is created using
the createQueueReceiver method in a client Session. It can be created with or without
a messageSelector.

QueueBrowser

A client uses a QueueBrowser to view messages on a queue without removing them.
The browser method returns a java.util.Enumeration that is used to scan messages
in the queue. The first call to nextElement gets a snapshot of the queue. A
QueueBrowser can be created with or without a messageSelector.

A QueueBrowser can also optionally lock messages as it is scanning them. This is
similar to a "SELECT... for UPDATE" command on the message. This prevents other
consumers from removing the message while they are being scanned.

MessageSelector

A messageSelector allows the client to restrict messages delivered to the consumer to
those that match the messageSelector expression. A messageSelector for queues
containing payloads of type TextMessage, StreamMessage, BytesMessage,
ObjectMessage, or MapMessage can contain any expression that has one or more of the
following:

• JMS message identifier prefixed with "ID:"

JMSMessageID ='ID:23452345'

• JMS message header fields or properties

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

JMSCorrelationID LIKE 'RE%'

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-21

• User-defined message properties

color IN ('RED', BLUE', 'GREEN') AND price < 30000

The messageSelector for queues containing payloads of type AdtMessage can contain
any expression that has one or more of the following:

• Message identifier without the "ID:" prefix

msgid = '23434556566767676'

• Priority, correlation identifier, or both

priority < 3 AND corrid = 'Fiction'

• Message payload

tab.user_data.color = 'GREEN' AND tab.user_data.price < 30000

JMS Publish/Subscribe Model Features
This section contains these topics:

• JMS Publish/Subscribe Overview

• DurableSubscriber

• RemoteSubscriber

• TopicPublisher

• Recipient Lists

• TopicReceiver

• TopicBrowser

• Setting Up JMS Publish/Subscribe Operations

JMS Publish/Subscribe Overview
JMS enables flexible and dynamic communication between applications functioning as
publishers and applications playing the role of subscribers. The applications are not
coupled together; they interact based on messages and message content.

In distributing messages, publisher applications are not required to handle or manage
message recipients explicitly. This allows new subscriber applications to be added
dynamically without changing any publisher application logic.

Similarly, subscriber applications receive messages based on message content
without regard to which publisher applications are sending messages. This allows new
publisher applications to be added dynamically without changing any subscriber
application logic.

Subscriber applications specify interest by defining a rule-based subscription on
message properties or the message content of a topic. The system automatically
routes messages by computing recipients for published messages using the rule-
based subscriptions.

In the publish/subscribe model, messages are published to and received from topics.
A topic is created using the CreateTopic() method in an AQjmsSession. A client can
obtain a handle to a previously-created topic using the getTopic() method in
AQjmsSession.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-22

DurableSubscriber
A client creates a DurableSubscriber with the createDurableSubscriber() method in
a client Session. It can be created with or without a messageSelector.

A messageSelector allows the client to restrict messages delivered to the subscriber to
those that match the selector. The syntax for the selector is described in detail in
createDurableSubscriber in Oracle Database Advanced Queuing Java API
Reference.

When subscribers use the same name, durable subscriber action depends on the Java
EE compliance mode set for an Oracle Java Message Service (Oracle JMS) client at
runtime.

In noncompliant mode, two durable TopicSubscriber objects with the same name can
be active against two different topics. In compliant mode, durable subscribers with the
same name are not allowed. If two subscribers use the same name and are created
against the same topic, but the selector used for each subscriber is different, then the
underlying Oracle Database Advanced Queuing subscription is altered using the
internal DBMS_AQJMS.ALTER_SUBSCRIBER() call.

If two subscribers use the same name and are created against two different topics,
and if the client that uses the same subscription name also originally created the
subscription name, then the existing subscription is dropped and the new subscription
is created.

If two subscribers use the same name and are created against two different topics,
and if a different client (a client that did not originate the subscription name) uses an
existing subscription name, then the subscription is not dropped and an error is
thrown. Because it is not known if the subscription was created by JMS or PL/SQL, the
subscription on the other topic should not be dropped.

See Also:

• "MessageSelector"

• "Java EE Compliance"

RemoteSubscriber
Remote subscribers are defined using the createRemoteSubscriber call. The remote
subscriber can be a specific consumer at the remote topic or all subscribers at the
remote topic

A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent
consists of a name and address. The name refers to the consumer_name at the remote
topic. The address refers to the remote topic:

schema.topic_name[@dblink]

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the name

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-23

field of AQjmsAgent. The remote topic must be specified in the address field of
AQjmsAgent.

To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the address field
of AQjmsAgent.

TopicPublisher
Messages are published using TopicPublisher, which is created by passing a Topic
to a createPublisher method. A client also has the option of creating a
TopicPublisher without supplying a Topic. In this case, a Topic must be specified on
every publish operation. A client can specify a default delivery mode, priority and
TimeToLive for all messages sent by the TopicPublisher. It can also specify these
options for each message.

Recipient Lists
In the JMS publish/subscribe model, clients can specify explicit recipient lists instead
of having messages sent to all the subscribers of the topic. These recipients may or
may not be existing subscribers of the topic. The recipient list overrides the
subscription list on the topic for this message. Recipient lists functionality is an Oracle
extension to JMS.

TopicReceiver
If the recipient name is explicitly specified in the recipient list, but that recipient is not a
subscriber to the queue, then messages sent to it can be received by creating a
TopicReceiver. If the subscriber name is not specified, then clients must use durable
subscribers at the remote site to receive messages. TopicReceiver is an Oracle
extension to JMS.

A TopicReceiver can be created with a messageSelector. This allows the client to
restrict messages delivered to the recipient to those that match the selector.

See Also:

"MessageSelector"

TopicBrowser
A client uses a TopicBrowser to view messages on a topic without removing them.
The browser method returns a java.util.Enumeration that is used to scan topic
messages. Only durable subscribers are allowed to create a TopicBrowser. The first
call to nextElement gets a snapshot of the topic.

A TopicBrowser can optionally lock messages as it is scanning them. This is similar to
a SELECT... for UPDATE command on the message. This prevents other consumers
from removing the message while it is being scanned.

A TopicBrowser can be created with a messageSelector. This allows the client to
restrict messages delivered to the browser to those that match the selector.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-24

TopicBrowser supports a purge feature. This allows a client using a TopicBrowser to
discard all messages that have been seen during the current browse operation on the
topic. A purge is equivalent to a destructive receive of all of the seen messages (as if
performed using a TopicSubscriber).

For a purge, a message is considered seen if it has been returned to the client using a
call to the nextElement() operation on the java.lang.Enumeration for the
TopicBrowser. Messages that have not yet been seen by the client are not discarded
during a purge. A purge operation can be performed multiple times on the same
TopicBrowser.

The effect of a purge becomes stable when the JMS Session used to create the
TopicBrowser is committed. If the operations on the session are rolled back, then the
effects of the purge operation are also undone.

See Also:

• "Creating a TopicBrowser for Standard JMS Messages"

• "Creating a TopicBrowser for Standard JMS Messages_ Locking
Messages"

• "MessageSelector"

• "Browsing Messages Using a TopicBrowser"

Setting Up JMS Publish/Subscribe Operations
Follow these steps to use the publish/subscribe model of communication in JMS:

1. Set up one or more topics to hold messages. These topics represent an area or
subject of interest. For example, a topic can represent billed orders.

2. Enable enqueue/dequeue on the topic using the start call in AQjmsDestination.

3. Create a set of durable subscribers. Each subscriber can specify a
messageSelector that selects the messages that the subscriber wishes to receive.
A null messageSelector indicates that the subscriber wishes to receive all
messages published on the topic.

Subscribers can be local or remote. Local subscribers are durable subscribers
defined on the same topic on which the message is published. Remote
subscribers are other topics, or recipients on other topics that are defined as
subscribers to a particular queue. In order to use remote subscribers, you must set
up propagation between the source and destination topics. Remote subscribers
and propagation are Oracle extensions to JMS.

See Also:

"Managing Propagations"

4. Create TopicPublisher objects using the createPublisher() method in the
publisher Session. Messages are published using the publish call. Messages can

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-25

be published to all subscribers to the topic or to a specified subset of recipients on
the topic.

5. Subscribers receive messages on the topic by using the receive method.

6. Subscribers can also receive messages asynchronously by using message
listeners.

See Also:

"Listening to One or More Queues"

JMS Message Producer Features
• Priority and Ordering of Messages

• Specifying a Message Delay

• Specifying a Message Expiration

• Message Grouping

Priority and Ordering of Messages
Message ordering dictates the order in which messages are received from a queue or
topic. The ordering method is specified when the queue table for the queue or topic is
created. Currently, Oracle Database Advanced Queuing supports ordering on
message priority and enqueue time, producing four possible ways of ordering:

• First-In, First-Out (FIFO)

If enqueue time was chosen as the ordering criteria, then messages are received
in the order of the enqueue time. The enqueue time is assigned to the message by
Oracle Database Advanced Queuing at message publish/send time. This is also
the default ordering.

• Priority Ordering

If priority ordering was chosen, then each message is assigned a priority. Priority
can be specified as a message property at publish/send time by the
MessageProducer. The messages are received in the order of the priorities
assigned.

• FIFO Priority

If FIFO priority ordering was chosen, then the topic/queue acts like a priority
queue. If two messages are assigned the same priority, then they are received in
the order of their enqueue time.

• Enqueue Time Followed by Priority

Messages with the same enqueue time are received according to their priorities. If
the ordering criteria of two message is the same, then the order they are received
is indeterminate. However, Oracle Database Advanced Queuing does ensure that
messages produced in one session with a particular ordering criteria are received
in the order they were sent.

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-26

buffered messages enqueued/published in the same session is not currently
supported.

Specifying a Message Delay
Messages can be sent/published to a queue/topic with delay. The delay represents a
time interval after which the message becomes available to the message consumer. A
message specified with a delay is in a waiting state until the delay expires. Receiving
by message identifier overrides the delay specification.

Delay is an Oracle Database Advanced Queuing extension to JMS message
properties. It requires the Oracle Database Advanced Queuing background process
queue monitor to be started.

Specifying a Message Expiration
Producers of messages can specify expiration limits, or TimeToLive for messages.
This defines the period of time the message is available for a Message Consumer.

TimeToLive can be specified at send/publish time or using the set TimeToLive method
of a MessageProducer, with the former overriding the latter. The Oracle Database
Advanced Queuing background process queue monitor must be running to implement
TimeToLive.

Message Grouping
Messages belonging to a queue/topic can be grouped to form a set that can be
consumed by only one consumer at a time. This requires the queue/topic be created in
a queue table that is enabled for transactional message grouping. All messages
belonging to a group must be created in the same transaction, and all messages
created in one transaction belong to the same group.

Message grouping is an Oracle Database Advanced Queuing extension to the JMS
specification.

You can use this feature to divide a complex message into a linked series of simple
messages. For example, an invoice directed to an invoices queue could be divided
into a header message, followed by several messages representing details, followed
by the trailer message.

Message grouping is also very useful if the message payload contains complex large
objects such as images and video that can be segmented into smaller objects.

The priority, delay, and expiration properties for the messages in a group are
determined solely by the message properties specified for the first message (head) of
the group. Properties specified for subsequent messages in the group are ignored.

Message grouping is preserved during propagation. The destination topic must be
enabled for transactional grouping.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-27

See Also:

"Dequeue Features" for a discussion of restrictions you must keep in mind if
message grouping is to be preserved while dequeuing messages from a
queue enabled for transactional grouping

JMS Message Consumer Features
This section contains these topics:

• Receiving Messages

• Message Navigation in Receive

• Browsing Messages

• Remove No Data

• Retry with Delay Interval

• Asynchronously Receiving Messages Using MessageListener

• Exception Queues

Receiving Messages
A JMS application can receive messages by creating a message consumer. Messages
can be received synchronously using the receive call or asynchronously using a
message listener.

There are three modes of receive:

• Block until a message arrives for a consumer

• Block for a maximum of the specified time

• Nonblocking

Message Navigation in Receive
If a consumer does not specify a navigation mode, then its first receive in a session
retrieves the first message in the queue or topic, its second receive gets the next
message, and so on. If a high priority message arrives for the consumer, then the
consumer does not receive the message until it has cleared the messages that were
already there before it.

To provide the consumer better control in navigating the queue for its messages,
Oracle Database Advanced Queuing offers several navigation modes as JMS
extensions. These modes can be set at the TopicSubscriber, QueueReceiver or the
TopicReceiver.

Two modes are available for ungrouped messages:

• FIRST_MESSAGE

This mode resets the position to the beginning of the queue. It is useful for priority
ordered queues, because it allows the consumer to remove the message on the
top of the queue.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-28

• NEXT_MESSAGE

This mode gets whatever message follows the established position of the
consumer. For example, a NEXT_MESSAGE applied when the position is at the fourth
message will get the fifth message in the queue. This is the default action.

Three modes are available for grouped messages:

• FIRST_MESSAGE

This mode resets the position to the beginning of the queue.

• NEXT_MESSAGE

This mode sets the position to the next message in the same transaction.

• NEXT_TRANSACTION

This mode sets the position to the first message in the next transaction.

Note:

Transactional event queues do not support the three preceding modes.

The transaction grouping property can be negated if messages are received in the
following ways:

• Receive by specifying a correlation identifier in the selector

• Receive by specifying a message identifier in the selector

• Committing before all the messages of a transaction group have been received

If the consumer reaches the end of the queue while using the NEXT_MESSAGE or
NEXT_TRANSACTION option, and you have specified a blocking receive(), then the
navigating position is automatically changed to the beginning of the queue.

By default, a QueueReceiver, TopicReceiver, or TopicSubscriber uses
FIRST_MESSAGE for the first receive call, and NEXT_MESSAGE for subsequent receive()
calls.

Browsing Messages
Aside from the usual receive, which allows the dequeuing client to delete the
message from the queue, JMS provides an interface that allows the JMS client to
browse its messages in the queue. A QueueBrowser can be created using the
createBrowser method from QueueSession.

If a message is browsed, then it remains available for further processing. That does
not necessarily mean that the message will remain available to the JMS session after
it is browsed, because a receive call from a concurrent session might remove it.

To prevent a viewed message from being removed by a concurrent JMS client, you
can view the message in the locked mode. To do this, you must create a
QueueBrowser with the locked mode using the Oracle Database Advanced Queuing
extension to the JMS interface. The lock on the message is released when the session
performs a commit or a rollback.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-29

To remove a message viewed by a QueueBrowser, the session must create a
QueueReceiver and use the JMSmesssageID as the selector.

Remove No Data
The consumer can remove a message from a queue or topic without retrieving it using
the receiveNoData call. This is useful when the application has already examined the
message, perhaps using a QueueBrowser. This mode allows the JMS client to avoid
the overhead of retrieving a payload from the database, which can be substantial for a
large message.

Retry with Delay Interval
If a transaction receiving a message from a queue/topic fails, then it is regarded as an
unsuccessful attempt to remove the message. Oracle Database Advanced Queuing
records the number of failed attempts to remove the message in the message history.

An application can specify the maximum number of retries supported on messages at
the queue/topic level. If the number of failed attempts to remove a message exceeds
this maximum, then the message is moved to an exception queue.

Oracle Database Advanced Queuing allows users to specify a retry_delay along with
max_retries. This means that a message that has undergone a failed attempt at
retrieving remains visible in the queue for dequeue after retry_delay interval. Until
then it is in the WAITING state. The Oracle Database Advanced Queuing background
process time manager enforces the retry delay property.

The maximum retries and retry delay are properties of the queue/topic. They can be
set when the queue/topic is created or by using the alter method on the queue/topic.
The default value for MAX_RETRIES is 5.

Note:

Transactional event queues do not support retry delay.

Asynchronously Receiving Messages Using MessageListener
The JMS client can receive messages asynchronously by setting the MessageListener
using the setMessageListener method.

When a message arrives for the consumer, the onMessage method of the message
listener is invoked with the message. The message listener can commit or terminate
the receipt of the message. The message listener does not receive messages if the
JMS Connection has been stopped. The receive call must not be used to receive
messages once the message listener has been set for the consumer.

The JMS client can receive messages asynchronously for all consumers in the session
by setting the MessageListener at the session. No other mode for receiving messages
must be used in the session once the message listener has been set.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-30

Exception Queues
An exception queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. However, an application
that intends to handle these expired or unserviceable messages can receive/remove
them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the point-to-
point interface. The exception queue for messages intended for a topic must be
created in a queue table with multiple consumers enabled. Like any other queue, the
exception queue must be enabled for receiving messages using the start method in
the AQOracleQueue class. You get an exception if you try to enable it for enqueue.

Transactional event queues (TEQ) support exception queues through the
DBMS_AQADM.CREATE_EQ_EXCEPTION_QUEUE API.

 PROCEDURE CREATE_EQ_EXCEPTION_QUEUE(
 queue_name IN VARCHAR2,
 exception_queue_name IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 sort_list IN VARCHAR DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL
);

The exception queue is an Oracle-specific message property called
"JMS_OracleExcpQ" that can be set with the message before sending/publishing it. If
an exception queue is not specified, then the default exception queue is used. For AQ
queues, the default exception queue is automatically created when the queue table is
created and is named AQ$_queue_table_name_E. By default, no exception queue is
created for TEQs.

Messages are moved to the exception queue under the following conditions:

• The message was not dequeued within the specified timeToLive.

For messages intended for more than one subscriber, the message is moved to
the exception queue if one or more of the intended recipients is not able to
dequeue the message within the specified timeToLive.

• The message was received successfully, but the application terminated the
transaction that performed the receive because of an error while processing the
message. The message is returned to the queue/topic and is available for any
applications that are waiting to receive messages.

A receive is considered rolled back or undone if the application terminates the
entire transaction, or if it rolls back to a savepoint that was taken before the
receive.

Because this was a failed attempt to receive the message, its retry count is
updated. If the retry count of the message exceeds the maximum value specified
for the queue/topic where it resides, then it is moved to the exception queue.

If a message has multiple subscribers, then the message is moved to the
exception queue only when all the recipients of the message have exceeded the
retry limit.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-31

Note:

If a dequeue transaction failed because the server process died (including
ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then
RETRY_COUNT is not incremented.

JMS Propagation
This section contains these topics:

• RemoteSubscriber

• Scheduling Propagation

• Enhanced Propagation Scheduling Capabilities

• Exception Handling During Propagation

Note:

TEQ queues do not support RemoteSubscriber, Scheduling Propagation,
Enhanced Propagation Scheduling Capabilities, and Exception Handling
During Propagation.

RemoteSubscriber
Oracle Database Advanced Queuing allows a subscriber at another database to
subscribe to a topic. If a message published to the topic meets the criterion of the
remote subscriber, then it is automatically propagated to the queue/topic at the remote
database specified for the remote subscriber. Propagation is performed using
database links and Oracle Net Services. This enables applications to communicate
with each other without having to be connected to the same database.

There are two ways to implement remote subscribers:

• The createRemoteSubscriber method can be used to create a remote subscriber
to/on the topic. The remote subscriber is specified as an instance of the class
AQjmsAgent.

• The AQjmsAgent has a name and an address. The address consists of a queue/
topic and the database link to the database of the subscriber.

There are two kinds of remote subscribers:

• The remote subscriber is a topic.

This occurs when no name is specified for the remote subscriber in the
AQjmsAgent object and the address is a topic. The message satisfying the
subscriber's subscription is propagated to the remote topic. The propagated
message is now available to all the subscriptions of the remote topic that it
satisfies.

• A specific remote recipient is specified for the message.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-32

The remote subscription can be for a particular consumer at the remote database.
If the name of the remote recipient is specified (in the AQjmsAgent object), then the
message satisfying the subscription is propagated to the remote database for that
recipient only. The recipient at the remote database uses the TopicReceiver
interface to retrieve its messages. The remote subscription can also be for a point-
to-point queue.

Scheduling Propagation
Propagation must be scheduled using the schedule_propagation method for every
topic from which messages are propagated to target destination databases.

A schedule indicates the time frame during which messages can be propagated from
the source topic. This time frame can depend on several factors such as network
traffic, the load at the source database, the load at the destination database, and so
on. The schedule therefore must be tailored for the specific source and destination.
When a schedule is created, a job is automatically submitted to the job_queue facility
to handle propagation.

The administrative calls for propagation scheduling provide great flexibility for
managing the schedules. The duration or propagation window parameter of a
schedule specifies the time frame during which propagation must take place. If the
duration is unspecified, then the time frame is an infinite single window. If a window
must be repeated periodically, then a finite duration is specified along with a
next_time function that defines the periodic interval between successive windows.

The propagation schedules defined for a queue can be changed or dropped at any
time during the life of the queue. In addition there are calls for temporarily disabling a
schedule (instead of dropping the schedule) and enabling a disabled schedule. A
schedule is active when messages are being propagated in that schedule. All the
administrative calls can be made irrespective of whether the schedule is active or not.
If a schedule is active, then it takes a few seconds for the calls to be executed.

Job queue processes must be started for propagation to take place. At least 2 job
queue processes must be started. The database links to the destination database
must also be valid. The source and destination topics of the propagation must be of
the same message type. The remote topic must be enabled for enqueue. The user of
the database link must also have enqueue privileges to the remote topic.

See Also:

"Scheduling a Propagation"

Enhanced Propagation Scheduling Capabilities
Catalog views defined for propagation provide the following information about active
schedules:

• Name of the background process handling the schedule

• SID (session and serial number) for the session handling the propagation

• Instance handling a schedule (if using Oracle RAC)

• Previous successful execution of a schedule

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-33

• Next planned execution of a schedule

The following propagation statistics are maintained for each schedule, providing useful
information to queue administrators for tuning:

• The total number of messages propagated in a schedule

• Total number of bytes propagated in a schedule

• Maximum number of messages propagated in a window

• Maximum number of bytes propagated in a window

• Average number of messages propagated in a window

• Average size of propagated messages

• Average time to propagated a message

Propagation has built-in support for handling failures and reporting errors. For
example, if the database link specified is invalid, or if the remote database is
unavailable, or if the remote topic/queue is not enabled for enqueuing, then the
appropriate error message is reported. Propagation uses an exponential backoff
scheme for retrying propagation from a schedule that encountered a failure. If a
schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts are
made after which the schedule is automatically disabled.

Note:

Once a retry attempt slips to the next propagation window, it will always do
so; the exponential backoff scheme no longer governs retry scheduling. If the
date function specified in the next_time parameter of
DBMS_AQADM.SCHEDULE_PROPAGATION() results in a short interval between
windows, then the number of unsuccessful retry attempts can quickly reach
16, disabling the schedule.

When a schedule is disabled automatically due to failures, the relevant information is
written into the alert log. It is possible to check at any time if there were failures
encountered by a schedule and if so how many successive failures were encountered,
the error message indicating the cause for the failure and the time at which the last
failure was encountered. By examining this information, an administrator can fix the
failure and enable the schedule.

If propagation is successful during a retry, then the number of failures is reset to 0.

Propagation has built-in support for Oracle Real Application Clusters and is
transparent to the user and the administrator. The job that handles propagation is
submitted to the same instance as the owner of the queue table where the source
topic resides. If at any time there is a failure at an instance and the queue table that
stores the topic is migrated to a different instance, then the propagation job is also
automatically migrated to the new instance. This minimizes the pinging between
instances and thus offers better performance. Propagation has been designed to
handle any number of concurrent schedules.

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-34

The number of job_queue_processes is limited to a maximum of 1000 and some of
these can be used to handle jobs unrelated to propagation. Hence, propagation has
built in support for multitasking and load balancing. The propagation algorithms are
designed such that multiple schedules can be handled by a single snapshot
(job_queue) process. The propagation load on a job_queue processes can be skewed
based on the arrival rate of messages in the different source topics. If one process is
overburdened with several active schedules while another is less loaded with many
passive schedules, then propagation automatically redistributes the schedules among
the processes such that they are loaded uniformly.

Exception Handling During Propagation
When a system error such as a network failure occurs, Oracle Database Advanced
Queuing continues to attempt to propagate messages using an exponential back-off
algorithm. In some situations that indicate application errors in queue-to-dblink
propagations, Oracle Database Advanced Queuing marks messages as
UNDELIVERABLE and logs a message in alert.log. Examples of such errors are when
the remote queue does not exist or when there is a type mismatch between the source
queue and the remote queue. The trace files in the background_dump_dest directory
can provide additional information about the error.

When a new job queue process starts, it clears the mismatched type errors so the
types can be reverified. If you have capped the number of job queue processes and
propagation remains busy, then you might not want to wait for the job queue process
to terminate and restart. Queue types can be reverified at any time using
DBMS_AQADM.VERIFY_QUEUE_TYPES.

Note:

When a type mismatch is detected in queue-to-queue propagation,
propagation stops and throws an error. In such situations you must query the
DBA_SCHEDULES view to determine the last error that occurred during
propagation to a particular destination. The message is not marked as
UNDELIVERABLE.

Message Transformation with JMS AQ
A transformation can be defined to map messages of one format to another.
Transformations are useful when applications that use different formats to represent
the same information must be integrated. Transformations can be SQL expressions
and PL/SQL functions. Message transformation is an Oracle Database Advanced
Queuing extension to the standard JMS interface.

The transformations can be created using the
DBMS_TRANSFORM.create_transformation procedure. Transformation can be specified
for the following operations:

• Sending a message to a queue or topic

• Receiving a message from a queue or topic

• Creating a TopicSubscriber

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-35

• Creating a RemoteSubscriber. This enables propagation of messages between
topics of different formats.

Note:

TEQ does not support message transformation.

JMS Streaming
AQ JMS supports streaming with enqueue and dequeue for TEQ through
AQjmsBytesMessage and AQjmsStreamMessage for applications to send and receive
large message data or payload.

JMS streaming reduces the memory requirement when dealing with large messages,
by dividing the message payload into small chunks rather than sending or receiving a
large contiguous array of bytes. As JMS standard does not have any streaming
mechanism, AQ JMS will provide proprietary interfaces to expose AQ streaming
enqueue and dequeue features. This allows users to easily use an existing java input
output stream to send and receive message data or payload.

In order to allow the existing applications to work without any changes on upgrading
database to RDBMS 12.2, the streaming APIs will be disabled by default.

The client application can enable JMS Streaming by using the system property
oracle.jms.useJmsStreaming set to true.

Note:

JMS Streaming is supported only for thin drivers.

JMS Streaming with Enqueue
AQ JMS provides the new API setInputStream(java.io.InputStream) in
AQjmsBytesMessage and AQjmsStreamMessage, to set an input stream for message
data.

 /**
 * @param inputStream - InputStream to read the message payload
 * @throws JMSException - if the JMS provided fails to read the payload due to
 * some internal error
 */
 public void setInputStream(InputStream inputStream) throws JMSException

The following code snippet creates a message of type AQjmsBytesMessage and sets a
FileInputStream for the message data.

 Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);
 Destination destination = session.createQueue("queueName");
 MessageProducer producer = session.createProducer(destination);

 AQjmsBytesMessage bytesMessage =
(AQjmsBytesMessage)session.createBytesMessage();

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-36

 InputStream input = new FileInputStream("somefile.data");
 bytesMessage.setInputStream(input);
 producer.send(bytesMessage);

Note:

• The methods in BytesMessage and StreamMessage are based on the
methods found in java.io.DataInputStream and
java.io.DataOutputStream, and hence, meaningful conversion of
various read*() and write*() methods is not possible with streaming.
The following scenarios will result in an exception:

– bytesMessage.setInputStream(input);

bytesMessage.writeInt(99);

– bytesMessage.writeInt(99);

bytesMessage.setInputStream(input);

• As with normal enqueue operation, the enqueue with streaming is going
to be a synchronous one and we will return the control to the client only
after the enqueue is complete.

• Streaming will be used with enqueue only when these APIs are explicitly
used by the client. AQ JMS will not use streaming with enqueue with the
normal enqueue, irrespective of the size of the message data.

JMS Streaming with Dequeue
The dequeue operation with streaming is achieved in two steps. The server decides
whether to stream the message body or not based on the size of the message body.
The default threshold limit is 10 MB. So when the message body is greater than 10MB
and streaming is enabled by the client using the system property
oracle.jms.useJmsStreaming, server will use streaming with dequeue.

• This is the normal dequeue process where a client calls the receive() method.

Destination destination = session.createQueue ("queueName");
AQjmsConsumer consumer = (AQjmsConsumer)
session.createConsumer(destination);
Message message = consumer.receive(10000);

• When the client receives the message without the payload, client can figure out
whether the streaming is used for dequeue by calling isLargeBody() on the
received message.

 /**
 * This method can be used by the client applications to check whether the
message
 * contains large messaege body and hence requires streaming with dequeue.
 *
 * @return true when the message body is large and server decides to stream
 * the payload with dequeue
 */
 public boolean isLargeBody()

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-37

A value of true returned by isLargeBody() indicates streaming with dequeue.
When the dequeue uses streaming, AQ JMS will populate the length of the
message body properly for AQjmsStreamMessage along with AQjmsBytesMessage.
So the client application can call the getBodyLength() on the message to
determine the size of the payload.

 public long getBodyLength()

Once client has the understanding about the streaming with dequeue, the message
data can be fetched by using one of the following APIs on the received message.

The client application can use on the following APIs available in AQjmsBytesMessage
and AQjmsStreamMessage to receive the message data.

 /**
 * Writes the message body to the OutputStream specified.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream) throws JMSException

 /**
 * Writes the message body to the OutputStream specified, with chunkSize bytes
 * written at a time.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @param chunkSize - the number of bytes to be written at a time, default value
 * 8192 (ie. 8KB)
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream, int chunkSize)throws
JMSException

 /**
 * Writes the message body to the OutputStream specified. This method waits
until
 * the message body is written completely to the OutputStream or the timeout
expires.
 *
 * A timeout of zero never expires, and a timeout of negative value is ignored.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @param timeout - the timeout value (in milliseconds)
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream, long timeout) throws
JMSException

 /**
 * Writes the message body to the OutputStream specified, chunkSize bytes at a
time.
 * This method waits until the message body is written completely to the

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-38

OutputStream
 * or the timeout expires.
 *
 * A timeout of zero never expires, and a timeout of negative value is ignored.
 *
 * @param outputStream - the OutputStream to which message body can be written
 * @param chunkSize - the number of bytes to be written at a time,
 * default value 8192 (ie. 8KB)
 * @param timeout - the timeout value (in milliseconds)
 * @return the OutputStream containing the message body.
 * @throws JMSException - if the JMS provided fails to receive the message body
 * due to some internal error
 */
 public OutputStream getBody(OutputStream outputStream, int chunkSize, long
timeout) throws JMSException

The following code snippet checks whether streaming is used with dequeue and the
payload received will be written to a FileOutputStream.

 if (message instanceof BytesMessage && (AQjmsBytesMessage)message.isLargeBody())
{
 // optional : check the size of the payload and take appropriate action
before
 // receiving the payload.
 (AQjmsBytesMessage) message.getBody(new FileOutputStream(new File("…")));
 } else {
 // normal dequeue
 }

In general, when both the steps are complete, the message is considered as
consumed completely. The AQ server keeps a lock on the message after Step 1 which
will be released only after Step 2.

Considering the possible issues with partially consumed messages by the message
consumers, we have restricted the Streaming APIs for the session with
acknowledgement modes CLIENT_ACKNOWLEDGE and SESSION_TRANSACTED.

So all the messages including partially consumed messages are considered fully
consumed when:

• message.acknowledge() is called with CLIENT_ACKNOWLEDGE session.

• Session's commit() is called in a transacted session.

As in normal case, session rollback(), rolls back the messages received in that
session.

The JMS Streaming is available with the following restrictions:

• Streaming is disabled by default, and can be enabled by the client application
using the system property oracle.jms.useJmsStreaming

• Dequeue uses streaming when the size of the message data is more than the
threshold value. The default threshold value is 10 MB.

• Streaming support is available with AQjmsBytesMessage and AQjmsStreamMessage

• Streaming support is available only for TEQ queues

• Streaming support is available only with thin drivers

• Streaming support is not available when the message producer uses the message
delivery mode as NON_PERSISTENT

Chapter 7
Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing

7-39

• Streaming is not supported with message listener. So when a MessageConsumer
has a message listener set and if the message data crosses threshold limit,
internally we will use the normal dequeue.

• Streaming support is available with Sessions using acknowledgement modes
CLIENT_ACKNOWLEDGE and SESSION_TRANSACTED.

Java EE Compliance
Oracle JMS conforms to the Oracle Sun Microsystems JMS 1.1 standard. You can
define the Java EE compliance mode for an Oracle Java Message Service (Oracle
JMS) client at runtime. For compliance, set the Java property
oracle.jms.j2eeCompliant to TRUE as a command line option. For noncompliance, do
nothing. FALSE is the default value.

Features in Oracle Database Advanced Queuing that support Java EE compliance
(and are also available in the noncompliant mode) include:

• Nontransactional sessions

• Durable subscribers

• Temporary queues and topics

• Nonpersistent delivery mode

• Multiple JMS messages types on a single JMS queue or topic (using Oracle
Database Advanced Queuing queues of the AQ$_JMS_MESSAGE type)

• The noLocal option for durable subscribers

• TEQ has native JMS support and conform to Java EE compliance

See Also:

• Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

• "JMS Message Headers" for information on how the Java property
oracle.jms.j2eeCompliant affects JMSPriority and JMSExpiration

• "DurableSubscriber" for information on how the Java property
oracle.jms.j2eeCompliant affects durable subscribers

Oracle Java Message Service Basic Operations
The following topics describe the basic operational Java Message Service (JMS)
administrative interface to Oracle Database Advanced Queuing (AQ).

• EXECUTE Privilege on DBMS_AQIN

• Registering a ConnectionFactory

• Unregistering a Queue/Topic ConnectionFactory

• Getting a QueueConnectionFactory or TopicConnectionFactory

• Getting a Queue or Topic in LDAP

Chapter 7
Oracle Java Message Service Basic Operations

7-40

• Creating an AQ Queue Table

• Creating a Queue

• Getting an AQ Queue Table

• Granting and Revoking Privileges

• Managing Destinations

• Propagation Schedules

EXECUTE Privilege on DBMS_AQIN
Users should never directly call methods in the DBMS_AQIN package, but they do need
the EXECUTE privilege on DBMS_AQIN. Use the following syntax to accomplish this:

GRANT EXECUTE ON DBMS_AQIN to user;

Registering a ConnectionFactory
You can register a ConnectionFactory four ways:

• Registering Through the Database Using JDBC Connection Parameters

• Registering Through the Database Using a JDBC URL

• Registering Through LDAP Using JDBC Connection Parameters

• Registering Through LDAP Using a JDBC URL

Registering Through the Database Using JDBC Connection Parameters
public static int registerConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name,
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through
the database to a Lightweight Directory Access Protocol (LDAP) server with JDBC
connection parameters. This method is static and has the following parameters:

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

hostname Name of the host running Oracle Database Advanced Queuing

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

Chapter 7
Oracle Java Message Service Basic Operations

7-41

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection factory
using Java Naming and Directory Interface (JNDI).

Example 7-1 Registering Through the Database Using JDBC Connection
Parameters

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(
 db_conn, "queue_conn1", "sun-123", "db1", 1521, "thin", "queue");

Registering Through the Database Using a JDBC URL
public static int registerConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name,
 java.lang.String jdbc_url,
 java.util.Properties info,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through
the database with a JDBC URL to LDAP. It is static and has the following parameters:

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

jdbc_url URL to connect to

info Properties information

portno Port number

type Connection factory type (QUEUE or TOPIC)

The database connection passed to registerConnectionFactory must be granted
AQ_ADMINISTRATOR_ROLE. After registration, you can look up the connection factory
using JNDI.

Example 7-2 Registering Through the Database Using a JDBC URL

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(
 db_conn, "topic_conn1", url, null, "topic");

Registering Through LDAP Using JDBC Connection Parameters
public static int registerConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name,
 java.lang.String hostname,
 java.lang.String oracle_sid,

Chapter 7
Oracle Java Message Service Basic Operations

7-42

 int portno,
 java.lang.String driver,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through
LDAP with JDBC connection parameters to LDAP. It is static and has the following
parameters:

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

hostname Name of the host running Oracle Database Advanced Queuing

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

type Connection factory type (QUEUE or TOPIC)

The hash table passed to registerConnectionFactory() must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP
server (which requires the LDAP user to be either the database itself or be granted
GLOBAL_AQ_USER_ROLE). After registration, look up the connection factory using JNDI.

Example 7-3 Registering Through LDAP Using JDBC Connection Parameters

Hashtable env = new Hashtable(5, 0.75f);
/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

AQjmsFactory.registerConnectionFactory(env,
 "queue_conn1",
 "sun-123",
 "db1",
 1521,
 "thin",
 "queue");

Registering Through LDAP Using a JDBC URL
public static int registerConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name,
 java.lang.String jdbc_url,

Chapter 7
Oracle Java Message Service Basic Operations

7-43

 java.util.Properties info,
 java.lang.String type)
 throws JMSException

This method registers a QueueConnectionFactory or TopicConnectionFactory through
LDAP with JDBC connection parameters to LDAP. It is static and has the following
parameters:

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

jdbc_url URL to connect to

info Properties information

type Connection factory type (QUEUE or TOPIC)

The hash table passed to registerConnectionFactory() must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP
server (which requires the LDAP user to be either the database itself or be granted
GLOBAL_AQ_USER_ROLE). After registration, look up the connection factory using JNDI.

Example 7-4 Registering Through LDAP Using a JDBC URL

String url;
Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.registerConnectionFactory(env, "topic_conn1", url, null, "topic");

Unregistering a Queue/Topic ConnectionFactory
You can unregister a queue/topic ConnectionFactory in LDAP two ways:

• Unregistering Through the Database

• Unregistering Through LDAP

Unregistering Through the Database
public static int unregisterConnectionFactory(java.sql.Connection connection,
 java.lang.String conn_name)
 throws JMSException

Chapter 7
Oracle Java Message Service Basic Operations

7-44

This method unregisters a QueueConnectionFactory or TopicConnectionFactory in
LDAP. It is static and has the following parameters:

Parameter Description

connection JDBC connection used in registration

conn_name Name of the connection to be registered

The database connection passed to unregisterConnectionFactory() must be
granted AQ_ADMINISTRATOR_ROLE.

Example 7-5 Unregistering Through the Database

String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.unregisterConnectionFactory(db_conn, "topic_conn1");

Unregistering Through LDAP
public static int unregisterConnectionFactory(java.util.Hashtable env,
 java.lang.String conn_name)
 throws JMSException

This method unregisters a QueueConnectionFactory or TopicConnectionFactory in
LDAP. It is static and has the following parameters:

Parameter Description

env Environment of LDAP connection

conn_name Name of the connection to be registered

The hash table passed to unregisterConnectionFactory() must contain all the
information to establish a valid connection to the LDAP server. Furthermore, the
connection must have write access to the connection factory entries in the LDAP
server (which requires the LDAP user to be either the database itself or be granted
GLOBAL_AQ_USER_ROLE).

Example 7-6 Unregistering Through LDAP

Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
 * service provider package
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

Chapter 7
Oracle Java Message Service Basic Operations

7-45

url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.unregisterConnectionFactory(env, "queue_conn1");

Getting a QueueConnectionFactory or TopicConnectionFactory
This section contains these topics:

• Getting a QueueConnectionFactory with JDBC URL

• Getting a QueueConnectionFactory with JDBC Connection Parameters

• Getting a TopicConnectionFactory with JDBC URL

• Getting a TopicConnectionFactory with JDBC Connection Parameters

• Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

Getting a QueueConnectionFactory with JDBC URL
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String jdbc_url,
 java.util.Properties info)
 throws JMSException

This method gets a QueueConnectionFactory with JDBC URL. It is static and has the
following parameters:

Parameter Description

jdbc_url URL to connect to

info Properties information

Example 7-7 Getting a QueueConnectionFactory with JDBC URL

 String url = "jdbc:oracle:oci10:internal/oracle"
 Properties info = new Properties();
 QueueConnectionFactory qc_fact;

 info.put("internal_logon", "sysdba");
 qc_fact = AQjmsFactory.getQueueConnectionFactory(url, info);

Getting a QueueConnectionFactory with JDBC Connection Parameters
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver)
 throws JMSException

This method gets a QueueConnectionFactory with JDBC connection parameters. It is
static and has the following parameters:

Parameter Description

hostname Name of the host running Oracle Database Advanced Queuing

oracle_sid Oracle system identifier

Chapter 7
Oracle Java Message Service Basic Operations

7-46

Parameter Description

portno Port number

driver JDBC driver type

Example 7-8 Getting a QueueConnectionFactory with JDBC Connection
Parameters

 String host = "dlsun";
 String ora_sid = "rdbms10i"
 String driver = "thin";
 int port = 5521;
 QueueConnectionFactory qc_fact;

 qc_fact = AQjmsFactory.getQueueConnectionFactory(host, ora_sid, port, driver);

Getting a TopicConnectionFactory with JDBC URL
public static javax.jms.QueueConnectionFactory getQueueConnectionFactory(
 java.lang.String jdbc_url,
 java.util.Properties info)
 throws JMSException

This method gets a TopicConnectionFactory with a JDBC URL. It is static and has
the following parameters:

Parameter Description

jdbc_url URL to connect to

info Properties information

Example 7-9 Getting a TopicConnectionFactory with JDBC URL

 String url = "jdbc:oracle:oci10:internal/oracle"
 Properties info = new Properties();
 TopicConnectionFactory tc_fact;

 info.put("internal_logon", "sysdba");
 tc_fact = AQjmsFactory.getTopicConnectionFactory(url, info);

Getting a TopicConnectionFactory with JDBC Connection Parameters
public static javax.jms.TopicConnectionFactory getTopicConnectionFactory(
 java.lang.String hostname,
 java.lang.String oracle_sid,
 int portno,
 java.lang.String driver)
 throws JMSException

This method gets a TopicConnectionFactory with JDBC connection parameters. It is
static and has the following parameters:

Parameter Description

hostname Name of the host running Oracle Database Advanced Queuing

Chapter 7
Oracle Java Message Service Basic Operations

7-47

Parameter Description

oracle_sid Oracle system identifier

portno Port number

driver JDBC driver type

Example 7-10 Getting a TopicConnectionFactory with JDBC Connection
Parameters

String host = "dlsun";
String ora_sid = "rdbms10i"
String driver = "thin";
int port = 5521;
TopicConnectionFactory tc_fact;

tc_fact = AQjmsFactory.getTopicConnectionFactory(host, ora_sid, port, driver);

Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP
This method gets a QueueConnectionFactory or TopicConnectionFactory from LDAP.

Example 7-11 Getting a QueueConnectionFactory or TopicConnectionFactory
in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
queueConnectionFactory qc_fact;

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx =
(DirContext)ctx.lookup("cn=OracleDBConnections,cn=db1,cn=Oraclecontext,cn=acme,cn=com
");
qc_fact = (queueConnectionFactory)ctx.lookup("cn=queue_conn1");

Getting a Queue or Topic in LDAP
This method gets a queue or topic from LDAP.

Example 7-12 Getting a Queue or Topic in LDAP

Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
topic topic_1;

Chapter 7
Oracle Java Message Service Basic Operations

7-48

/* the following statements set in hashtable env:
 * service provider package
 * the URL of the ldap server
 * the distinguished name of the database server
 * the authentication method (simple)
 * the LDAP username
 * the LDAP user password
*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx =
(DirContext)ctx.lookup("cn=OracleDBQueues,cn=db1,cn=Oraclecontext,cn=acme,cn=com");
topic_1 = (topic)ctx.lookup("cn=topic_1");

Creating an AQ Queue Table
public oracle.AQ.AQQueueTable createQueueTable(
 java.lang.String owner,
 java.lang.String name,
 oracle.AQ.AQQueueTableProperty property)
 throws JMSException

This method creates a queue table. It has the following parameters:

Parameter Description

owner Queue table owner (schema)

name Queue table name

property Queue table properties

If the queue table is used to hold queues, then the queue table must not be
multiconsumer enabled (default). If the queue table is used to hold topics, then the
queue table must be multiconsumer enabled.

CLOB, BLOB, and BFILE objects are valid attributes for an Oracle Database
Advanced Queuing object type load. However, only CLOB and BLOB can be
propagated using Oracle Database Advanced Queuing propagation in Oracle8i and
after.

Note:

Currently TEQ queues can be created and dropped only through the
DBMS_AQADM PL/SQL APIs.

Example 7-13 Creating a Queue Table

QueueSession q_sess = null;
AQQueueTable q_table = null;
AQQueueTableProperty qt_prop = null;

Chapter 7
Oracle Java Message Service Basic Operations

7-49

qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_BYTES_MESSAGE");
q_table = ((AQjmsSession)q_sess).createQueueTable(
 "boluser", "bol_ship_queue_table", qt_prop);

Creating a Queue
This section contains these topics:

• Creating a Point-to-Point Queue

• Creating a Publish/Subscribe Topic

• Creating a TEQ Queue for Point-to-Point Queue and Publish/Subscribe Topic

Creating a Point-to-Point Queue
public javax.jms.Queue createQueue(
 oracle.AQ.AQQueueTable q_table,
 java.lang.String queue_name,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method creates a queue in a specified queue table. It has the following
parameters:

Parameter Description

q_table Queue table in which the queue is to be created. The queue table must
be single-consumer.

queue_name Name of the queue to be created

dest_property Queue properties

This method is specific to Oracle JMS. You cannot use standard Java
javax.jms.Session objects with it. Instead, you must cast the standard type to the
Oracle JMS concrete class oracle.jms.AQjmsSession.

Example 7-14 Creating a Point-to-Point Queue

QueueSession q_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Queue queue;

queue = ((AQjmsSession)q_sess).createQueue(q_table, "jms_q1", dest_prop);

Creating a Publish/Subscribe Topic
public javax.jms.Topic createTopic(
 oracle.AQ.AQQueueTable q_table,
 java.lang.String topic_name,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method creates a topic in the publish/subscribe model. It has the following
parameters:

Chapter 7
Oracle Java Message Service Basic Operations

7-50

Parameter Description

q_table Queue table in which the queue is to be created. The queue table must
be multiconsumer.

queue_name Name of the queue to be created

dest_property Queue properties

This method is specific to Oracle JMS. You cannot use standard Java
javax.jms.Session objects with it. Instead, you must cast the standard type to the
Oracle JMS concrete class oracle.jms.AQjmsSession.

In Example 7-16, if an order cannot be filled because of insufficient inventory, then the
transaction processing the order is terminated. The bookedorders topic is set up with
max_retries = 4 and retry_delay = 12 hours.Thus, if an order is not filled up in two
days, then it is moved to an exception queue.

Example 7-15 Creating a Publish/Subscribe Topic

TopicSession t_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Topic topic;

topic = ((AQjmsSessa)t_sess).createTopic(q_table, "jms_t1", dest_prop);

Example 7-16 Specifying Max Retries and Max Delays in Messages

public BolOrder process_booked_order(TopicSession jms_session)
 {
 Topic topic;
 TopicSubscriber tsubs;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder booked_order = null;
 String country;
 int i = 0;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("WS",
 "WS_bookedorders_topic");

 /* Create local subscriber - to track messages for Western Region */
 tsubs = jms_session.createDurableSubscriber(topic, "SUBS1",
 "Region = 'Western' ",
 false);

 /* wait for a message to show up in the topic */
 obj_message = (ObjectMessage)tsubs.receive(10);

 booked_order = (BolOrder)obj_message.getObject();

 customer = booked_order.getCustomer();
 country = customer.getCountry();

 if (country == "US")
 {

Chapter 7
Oracle Java Message Service Basic Operations

7-51

 jms_session.commit();
 }
 else
 {
 jms_session.rollback();
 booked_order = null;
 }
 }catch (JMSException ex)
 { System.out.println("Exception " + ex) ;}

 return booked_order;
 }

Creating a TEQ Queue for Point-to-Point Queue and Publish/Subscribe Topic
AQ JMS has defined a new APIs to create and drop TEQ queues. There is no alter
queue API in JMS. The signatures are as follows:

 /**
 * Create a TEQ queue. It also internally creates the related queue
 * objects (table, indexes) based on this name.
 *
 * @param queueName name of the queue to be created, format is schema.queueName
 * (where the schema. is optional
 * @param isMultipleConsumer flag to indicate whether the queue is a
 * multi-consumer or single-consumer queue
 * @return javax.jms.Destination
 * @throws JMSException if the queue could not be created
 */
 public synchronized javax.jms.Destination
createJMSTransactionalEventQueue(String queueName,
 boolean isMultipleConsumer) throws JMSException {
 return createJMSTransactionalEventQueue(queueName, isMultipleConsumer, null,
0, null);
 }

 /**
 * Create a TEQ queue. It also internally creates the related queue
 * objects (table, indexes) based on this name.
 *
 * @param queueName name of the queue to be created, format is schema.queueName
 * (where the schema. is optional
 * @param isMultipleConsumer flag to indicate whether the queue is a
 * multi-consumer or single-consumer queue
 * @param storageClause additional storage clause
 * @param maxRetries retry count before skip the message while dequeue
 * @param comment comment for the queue
 * @return javax.jms.Destination
 * @throws JMSException if the queue could not be created
*/
public Destination createJMSTransactionalEventQueue(java.lang.String queueName,
 boolean isMultipleConsumer,
 java.lang.String storageClause,
 int maxRetries,
 java.lang.String comment)
 throws JMSException

Chapter 7
Oracle Java Message Service Basic Operations

7-52

Getting an AQ Queue Table
public oracle.AQ.AQQueueTable getQueueTable(java.lang.String owner,
 java.lang.String name)
 throws JMSException

This method gets a queue table for an AQ queue. It has the following parameters:

Parameter Description

owner Queue table owner (schema)

name Queue table name

If the caller that opened the connection is not the owner of the queue table, then the
caller must have Oracle Database Advanced Queuing enqueue/dequeue privileges on
queues/topics in the queue table. Otherwise the queue table is not returned.

Example 7-17 Getting a Queue Table

QueueSession q_sess;
AQQueueTable q_table;

q_table = ((AQjmsSession)q_sess).getQueueTable(
 "boluser", "bol_ship_queue_table");

Granting and Revoking Privileges
This section contains these topics:

• Granting Oracle Database Advanced Queuing System Privileges

• Revoking Oracle Database Advanced Queuing System Privileges

• Granting Publish/Subscribe Topic Privileges

• Revoking Publish/Subscribe Topic Privileges

• Granting Point-to-Point Queue Privileges

• Revoking Point-to-Point Queue Privileges

Granting Oracle Database Advanced Queuing System Privileges
public void grantSystemPrivilege(java.lang.String privilege,
 java.lang.String grantee,
 boolean admin_option)
 throws JMSException

This method grants Oracle Database Advanced Queuing system privileges to a user
or role.

Parameter Description

privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY

grantee Grantee (user, role, or PUBLIC)

admin_option If this is set to true, then the grantee is allowed to use this procedure to
grant the system privilege to other users or roles

Chapter 7
Oracle Java Message Service Basic Operations

7-53

Initially only SYS and SYSTEM can use this procedure successfully. Users granted the
ENQUEUE_ANY privilege are allowed to enqueue messages to any queues in the
database. Users granted the DEQUEUE_ANY privilege are allowed to dequeue messages
from any queues in the database. Users granted the MANAGE_ANY privilege are allowed
to run DBMS_AQADM calls on any schemas in the database.

Example 7-18 Granting Oracle Database Advanced Queuing System Privileges

TopicSession t_sess;

((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "scott", false);

Revoking Oracle Database Advanced Queuing System Privileges
public void revokeSystemPrivilege(java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes Oracle Database Advanced Queuing system privileges from a
user or role. It has the following parameters:

Parameter Description

privilege ENQUEUE_ANY, DEQUEUE_ANY or MANAGE_ANY

grantee Grantee (user, role, or PUBLIC)

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Example 7-19 Revoking Oracle Database Advanced Queuing System Privileges

TopicSession t_sess;

((AQjmsSession)t_sess).revokeSystemPrivilege("ENQUEUE_ANY", "scott");

Granting Publish/Subscribe Topic Privileges
public void grantTopicPrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee,
 boolean grant_option)
 throws JMSException

This method grants a topic privilege in the publish/subscribe model. Initially only the
queue table owner can use this procedure to grant privileges on the topic. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

Chapter 7
Oracle Java Message Service Basic Operations

7-54

Parameter Description

grant_option If this is set to true, then the grantee is allowed to use this procedure to
grant the system privilege to other users or roles

Example 7-20 Granting Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).grantTopicPrivilege(
 t_sess, "ENQUEUE", "scott", false);

Revoking Publish/Subscribe Topic Privileges
public void revokeTopicPrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes a topic privilege in the publish/subscribe model. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Revoked grantee (user, role, or PUBLIC)

Example 7-21 Revoking Publish/Subscribe Topic Privileges

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).revokeTopicPrivilege(t_sess, "ENQUEUE", "scott");

Granting Point-to-Point Queue Privileges
public void grantQueuePrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee,
 boolean grant_option)
 throws JMSException

This method grants a queue privilege in the point-to-point model. Initially only the
queue table owner can use this procedure to grant privileges on the queue. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Grantee (user, role, or PUBLIC)

Chapter 7
Oracle Java Message Service Basic Operations

7-55

Parameter Description

grant_option If this is set to true, then the grantee is allowed to use this procedure to
grant the system privilege to other users or roles

Example 7-22 Granting Point-to-Point Queue Privileges

QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).grantQueuePrivilege(
 q_sess, "ENQUEUE", "scott", false);

Revoking Point-to-Point Queue Privileges
public void revokeQueuePrivilege(javax.jms.Session session,
 java.lang.String privilege,
 java.lang.String grantee)
 throws JMSException

This method revokes queue privileges in the point-to-point model. Initially only the
queue table owner can use this procedure to grant privileges on the queue. It has the
following parameters:

Parameter Description

session JMS session

privilege ENQUEUE, DEQUEUE, or ALL (ALL means both.)

grantee Revoked grantee (user, role, or PUBLIC)

To revoke a privilege, the revoker must be the original grantor of the privilege.
Privileges propagated through the GRANT option are revoked if the grantor privilege is
also revoked.

Example 7-23 Revoking Point-to-Point Queue Privileges

QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).revokeQueuePrivilege(q_sess, "ENQUEUE", "scott");

Managing Destinations
This section contains these topics:

• Starting a Destination

• Stopping a Destination

• Altering a Destination

• Dropping a Destination

Chapter 7
Oracle Java Message Service Basic Operations

7-56

Note:

Currently TEQs can be managed only through the DBMS_AQADM PL/SQL APIs.

Starting a Destination
public void start(javax.jms.Session session,
 boolean enqueue,
 boolean dequeue)
 throws JMSException

This method starts a destination. It has the following parameters:

Parameter Description

session JMS session

enqueue If set to TRUE, then enqueue is enabled

dequeue If set to TRUE, then dequeue is enabled

Example 7-24 Starting a Destination

TopicSession t_sess;
QueueSession q_sess;
Topic topic;
Queue queue;

(AQjmsDestination)topic.start(t_sess, true, true);
(AQjmsDestination)queue.start(q_sess, true, true);

Stopping a Destination
public void stop(javax.jms.Session session,
 boolean enqueue,
 boolean dequeue,
 boolean wait)
 throws JMSException

This method stops a destination. It has the following parameters:

Parameter Description

session JMS session

enqueue If set to TRUE, then enqueue is disabled

dequeue If set to TRUE, then dequeue is disabled

wait If set to true, then pending transactions on the queue/topic are allowed
to complete before the destination is stopped

Example 7-25 Stopping a Destination

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).stop(t_sess, true, false);

Chapter 7
Oracle Java Message Service Basic Operations

7-57

Altering a Destination
public void alter(javax.jms.Session session,
 oracle.jms.AQjmsDestinationProperty dest_property)
 throws JMSException

This method alters a destination. It has the following properties:

Parameter Description

session JMS session

dest_property New properties of the queue or topic

Example 7-26 Altering a Destination

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;
AQjmsDestionationProperty dest_prop1, dest_prop2;

((AQjmsDestination)queue).alter(dest_prop1);
((AQjmsDestination)topic).alter(dest_prop2);

Dropping a Destination
public void drop(javax.jms.Session session)
 throws JMSException

This method drops a destination. It has the following parameter:

Parameter Description

session JMS session

Example 7-27 Dropping a Destination

QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;

((AQjmsDestionation)queue).drop(q_sess);
((AQjmsDestionation)topic).drop(t_sess);

Propagation Schedules
This section contains these topics:

• Scheduling a Propagation

• Enabling a Propagation Schedule

• Altering a Propagation Schedule

• Disabling a Propagation Schedule

• Unscheduling a Propagation

Chapter 7
Oracle Java Message Service Basic Operations

7-58

Note:

TEQs are currently managed only through the DBMS_AQADM PL/SQL APIs and
do not support propagation.

Scheduling a Propagation
public void schedulePropagation(javax.jms.Session session,
 java.lang.String destination,
 java.util.Date start_time,
 java.lang.Double duration,
 java.lang.String next_time,
 java.lang.Double latency)
 throws JMSException

This method schedules a propagation. It has the following parameters:

Parameter Description

session JMS session

destination Database link of the remote database for which propagation is being
scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

start_time Time propagation starts

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference
between the time a message was enqueued and the time it was
propagated.

If a message has multiple recipients at the same destination in either the same or
different queues, then it is propagated to all of them at the same time.

Example 7-28 Scheduling a Propagation

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).schedulePropagation(
 t_sess, null, null, null, null, new Double(0));

Enabling a Propagation Schedule
public void enablePropagationSchedule(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method enables a propagation schedule. It has the following parameters:

Parameter Description

session JMS session

Chapter 7
Oracle Java Message Service Basic Operations

7-59

Parameter Description

destination Database link of the destination database. A null string means that
propagation is to the local database.

Example 7-29 Enabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).enablePropagationSchedule(t_sess, "dbs1");

Altering a Propagation Schedule
public void alterPropagationSchedule(javax.jms.Session session,
 java.lang.String destination,
 java.lang.Double duration,
 java.lang.String next_time,
 java.lang.Double latency)
 throws JMSException

This method alters a propagation schedule. It has the following parameters:

Parameter Description

session JMS session

destination Database link of the remote database for which propagation is being
scheduled. A null string means that propagation is scheduled for all
subscribers in the database of the topic.

duration Duration of propagation

next_time Next time propagation starts

latency Latency in seconds that can be tolerated. Latency is the difference
between the time a message was enqueued and the time it was
propagated.

Example 7-30 Altering a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).alterPropagationSchedule(
 t_sess, null, 30, null, new Double(30));

Disabling a Propagation Schedule
public void disablePropagationSchedule(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method disables a propagation schedule. It has the following parameters:

Parameter Description

session JMS session

Chapter 7
Oracle Java Message Service Basic Operations

7-60

Parameter Description

destination Database link of the destination database. A null string means that
propagation is to the local database.

Example 7-31 Disabling a Propagation Schedule

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).disablePropagationSchedule(t_sess, "dbs1");

Unscheduling a Propagation
public void unschedulePropagation(javax.jms.Session session,
 java.lang.String destination)
 throws JMSException

This method unschedules a previously scheduled propagation. It has the following
parameters:

Parameter Description

session JMS session

destination Database link of the destination database. A null string means that
propagation is to the local database.

Example 7-32 Unscheduling a Propagation

TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).unschedulePropagation(t_sess, "dbs1");

Oracle Java Message Service Point-to-Point
The following topics describe the components of the Oracle Database Advanced
Queuing (AQ) Java Message Service (JMS) operational interface that are specific to
point-to-point operations. Components that are shared by point-to-point and publish/
subscribe are described in Oracle Java Message Service Shared Interfaces.

• Creating a Connection with User Name/Password

• Creating a Connection with Default ConnectionFactory Parameters

• Creating a QueueConnection with User Name/Password

• Creating a QueueConnection with an Open JDBC Connection

• Creating a QueueConnection with Default ConnectionFactory Parameters

• Creating a QueueConnection with an Open OracleOCIConnectionPool

• Creating a Session

• Creating a QueueSession

• Creating a QueueSender

Chapter 7
Oracle Java Message Service Point-to-Point

7-61

• Sending Messages Using a QueueSender with Default Send Options

• Sending Messages Using a QueueSender by Specifying Send Options

• Creating a QueueBrowser for Standard JMS Type Messages

• Creating a QueueBrowser for Standard JMS Type Messages_ Locking Messages

• Creating a QueueBrowser for Oracle Object Type Messages

• Creating a QueueBrowser for Oracle Object Type Messages_ Locking Messages

• Creating a QueueReceiver for Standard JMS Type Messages

• Creating a QueueReceiver for Oracle Object Type Messages

Creating a Connection with User Name/Password
public javax.jms.Connection createConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with the specified user name and password. This method is new and
supports JMS version 1.1 specifications. It has the following parameters:

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Creating a Connection with Default ConnectionFactory Parameters
public javax.jms.Connection createConnection()
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with default ConnectionFactory parameters. This method is new and
supports JMS version 1.1 specifications. If the ConnectionFactory properties do not
contain a default user name and password, then it throws a JMSException.

Creating a QueueConnection with User Name/Password
public javax.jms.QueueConnection createQueueConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a queue connection with the specified user name and password.
It has the following parameters:

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Chapter 7
Oracle Java Message Service Point-to-Point

7-62

Example 7-33 Creating a QueueConnection with User Name/Password

QueueConnectionFactory qc_fact = AQjmsFactory.getQueueConnectionFactory(
 "sun123", "oratest", 5521, "thin");
QueueConnection qc_conn = qc_fact.createQueueConnection("jmsuser", "jmsuser");

Creating a QueueConnection with an Open JDBC Connection
public static javax.jms.QueueConnection createQueueConnection(
 java.sql.Connection jdbc_connection)
 throws JMSException

This method creates a queue connection with an open JDBC connection. It is static
and has the following parameter:

Parameter Description

jdbc_connection Valid open connection to the database

The method in Example 7-34 can be used if the user wants to use an existing JDBC
connection (say from a connection pool) for JMS operations. In this case JMS does
not open a new connection, but instead uses the supplied JDBC connection to create
the JMS QueueConnection object.

The method in Example 7-35 is the only way to create a JMS QueueConnection when
using JMS from a Java stored procedures inside the database (JDBC Server driver)

Example 7-34 Creating a QueueConnection with an Open JDBC Connection

Connection db_conn; /* previously opened JDBC connection */
QueueConnection qc_conn = AQjmsQueueConnectionFactory.createQueueConnection(
 db_conn);

Example 7-35 Creating a QueueConnection from a Java Procedure Inside
Database

OracleDriver ora = new OracleDriver();
QueueConnection qc_conn =
AQjmsQueueConnectionFactory.createQueueConnection(ora.defaultConnection());

Creating a QueueConnection with Default ConnectionFactory
Parameters

public javax.jms.QueueConnection createQueueConnection()
 throws JMSException

This method creates a queue connection with default ConnectionFactory parameters.
If the queue connection factory properties do not contain a default user name and
password, then it throws a JMSException.

Creating a QueueConnection with an Open OracleOCIConnectionPool
public static javax.jms.QueueConnection createQueueConnection(
 oracle.jdbc.pool.OracleOCIConnectionPool cpool)
 throws JMSException

Chapter 7
Oracle Java Message Service Point-to-Point

7-63

This method creates a queue connection with an open OracleOCIConnectionPool. It is
static and has the following parameter:

Parameter Description

cpool Valid open OCI connection pool to the database

The method in Example 7-36 can be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS does not
open an new OracleOCIConnectionPool instance, but instead uses the supplied
OracleOCIConnectionPool instance to create the JMS QueueConnection object.

Example 7-36 Creating a QueueConnection with an Open
OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
QueueConnection qc_conn = AQjmsQueueConnectionFactory.createQueueConnection(cpool);

Creating a Session
public javax.jms.Session createSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a Session, which supports both point-to-point and publish/
subscribe operations. This method is new and supports JMS version 1.1
specifications. Transactional and nontransactional sessions are supported. It has the
following parameters:

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Creating a QueueSession
public javax.jms.QueueSession createQueueSession(
 boolean transacted, int ack_mode)
 throws JMSException

This method creates a QueueSession. Transactional and nontransactional sessions are
supported. It has the following parameters:

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Chapter 7
Oracle Java Message Service Point-to-Point

7-64

Example 7-37 Creating a Transactional QueueSession

QueueConnection qc_conn;
QueueSession q_sess = qc_conn.createQueueSession(true, 0);

Creating a QueueSender
public javax.jms.QueueSender createSender(javax.jms.Queue queue)
 throws JMSException

This method creates a QueueSender. If a sender is created without a default queue,
then the destination queue must be specified on every send operation. It has the
following parameter:

Parameter Description

queue Name of destination queue

Sending Messages Using a QueueSender with Default Send Options
public void send(javax.jms.Queue queue,
 javax.jms.Message message)
 throws JMSException

This method sends a message using a QueueSender with default send options. This
operation uses default values for message priority (1) and timeToLive (infinite). It
has the following parameters:

Parameter Description

queue Queue to send this message to

message Message to send

If the QueueSender has been created with a default queue, then the queue parameter
may not necessarily be supplied in the send() call. If a queue is specified in the
send() operation, then this value overrides the default queue of the QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send() call.

Example 7-38 Creating a Sender to Send Messages to Any Queue

/* Create a sender to send messages to any queue */
QueueSession jms_sess;
QueueSender sender1;
TextMessage message;
sender1 = jms_sess.createSender(null);
sender1.send(queue, message);

Example 7-39 Creating a Sender to Send Messages to a Specific Queue

/* Create a sender to send messages to a specific queue */
QueueSession jms_sess;
QueueSender sender2;
Queue billed_orders_que;
TextMessage message;

Chapter 7
Oracle Java Message Service Point-to-Point

7-65

sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(queue, message);

Sending Messages Using a QueueSender by Specifying Send Options
public void send(javax.jms.Queue queue,
 javax.jms.Message message,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException

This method sends messages using a QueueSender by specifying send options. It has
the following parameters:

Parameter Description

queue Queue to send this message to

message Message to send

deliveryMode Delivery mode to use

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

If the QueueSender has been created with a default queue, then the queue parameter
may not necessarily be supplied in the send() call. If a queue is specified in the
send() operation, then this value overrides the default queue of the QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send() call.

Example 7-40 Sending Messages Using a QueueSender by Specifying Send
Options 1

/* Create a sender to send messages to any queue */
/* Send a message to new_orders_que with priority 2 and timetoLive 100000
 milliseconds */
QueueSession jms_sess;
QueueSender sender1;
TextMessage mesg;
Queue new_orders_que
sender1 = jms_sess.createSender(null);
sender1.send(new_orders_que, mesg, DeliveryMode.PERSISTENT, 2, 100000);

Example 7-41 Sending Messages Using a QueueSender by Specifying Send
Options 2

/* Create a sender to send messages to a specific queue */
/* Send a message with priority 1 and timetoLive 400000 milliseconds */
QueueSession jms_sess;
QueueSender sender2;
Queue billed_orders_que;
TextMessage mesg;
sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(mesg, DeliveryMode.PERSISTENT, 1, 400000);

Chapter 7
Oracle Java Message Service Point-to-Point

7-66

Creating a QueueBrowser for Standard JMS Type Messages
public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector)
 throws JMSException

This method creates a QueueBrowser for queues with text, stream, objects, bytes or
MapMessage message bodies. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

Use methods in java.util.Enumeration to go through list of messages.

See Also:

"MessageSelector"

Example 7-42 Creating a QueueBrowser Without a Selector

/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
browser = jms_session.createBrowser(queue);

Example 7-43 Creating a QueueBrowser With a Specified Selector

/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
/* create a Browser to look at messages with correlationID = RUSH */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = 'RUSH'");

Creating a QueueBrowser for Standard JMS Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 boolean locked)
 throws JMSException

This method creates a QueueBrowser for queues with TextMessage, StreamMessage,
ObjectMessage, BytesMessage, or MapMessage message bodies, locking messages
while browsing. Locked messages cannot be removed by other consumers until the
browsing session ends the transaction. It has the following parameters:

Chapter 7
Oracle Java Message Service Point-to-Point

7-67

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

locked If set to true, then messages are locked as they are browsed (similar to
a SELECT for UPDATE)

Example 7-44 Creating a QueueBrowser Without a Selector, Locking Messages

/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
browser = jms_session.createBrowser(queue, null, true);

Example 7-45 Creating a QueueBrowser With a Specified Selector, Locking
Messages

/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
/* create a Browser to look at messages with
correlationID = RUSH in lock mode */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = 'RUSH'", true);

Creating a QueueBrowser for Oracle Object Type Messages
public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a QueueBrowser for queues of Oracle object type messages. It
has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

The CustomDatumFactory for a particular java class that maps to the SQL object
payload can be obtained using the getFactory static method.

Note:

CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

Chapter 7
Oracle Java Message Service Point-to-Point

7-68

Assume the queue test_queue has payload of type SCOTT.EMPLOYEE and the java
class that is generated by Jpublisher for this Oracle object type is called Employee.
The Employee class implements the CustomDatum interface. The CustomDatumFactory
for this class can be obtained by using the Employee.getFactory() method.

Note:

TEQs do not support Object Type messages

See Also:

"MessageSelector"

Example 7-46 Creating a QueueBrowser for ADTMessages

/* Create a browser for a Queue with AdtMessage messages of type EMPLOYEE*/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createBrowser(test_queue,
 "corrid='EXPRESS'",
 Employee.getFactory());

Creating a QueueBrowser for Oracle Object Type Messages, Locking
Messages

public javax.jms.QueueBrowser createBrowser(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory,
 boolean locked)
 throws JMSException

This method creates a QueueBrowser for queues of Oracle object type messages,
locking messages while browsing. It has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar to
a SELECT for UPDATE)

Chapter 7
Oracle Java Message Service Point-to-Point

7-69

Note:

CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

Note:

TEQ queues do not support Object Type messages

Example 7-47 Creating a QueueBrowser for AdtMessages, Locking Messages

/* Create a browser for a Queue with AdtMessage messagess of type EMPLOYEE* in lock
mode/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createBrowser(test_queue,
 null,
 Employee.getFactory(),
 true);

Creating a QueueReceiver for Standard JMS Type Messages
public javax.jms.QueueReceiver createReceiver(javax.jms.Queue queue,
 java.lang.String messageSelector)
 throws JMSException

This method creates a QueueReceiver for queues of standard JMS type messages. It
has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

See Also:

"MessageSelector"

Example 7-48 Creating a QueueReceiver Without a Selector

/* Create a receiver without a selector */
QueueSession jms_session
QueueReceiver receiver;
Queue queue;
receiver = jms_session.createReceiver(queue);

Chapter 7
Oracle Java Message Service Point-to-Point

7-70

Example 7-49 Creating a QueueReceiver With a Specified Selector

/* Create a receiver for queues with a specified selector */
QueueSession jms_session;
QueueReceiver receiver;
Queue queue;
/* create Receiver to receive messages with correlationID starting with EXP */
browser = jms_session.createReceiver(queue, "JMSCorrelationID LIKE 'EXP%'");

Creating a QueueReceiver for Oracle Object Type Messages
public javax.jms.QueueReceiver createReceiver(javax.jms.Queue queue,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a QueueReceiver for queues of Oracle object type messages. It
has the following parameters:

Parameter Description

queue Queue to access

messageSelector Only messages with properties matching the messageSelector
expression are delivered

payload_factory CustomDatumFactory or ORADataFactory for the java class that
maps to the Oracle ADT

The CustomDatumFactory for a particular java class that maps to the SQL object type
payload can be obtained using the getFactory static method.

Note:

CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

Assume the queue test_queue has payload of type SCOTT.EMPLOYEE and the java
class that is generated by Jpublisher for this Oracle object type is called Employee.
The Employee class implements the CustomDatum interface. The ORADataFactory for
this class can be obtained by using the Employee.getFactory() method.

Note:

TEQ queues do not support Object Type messages

See Also:

"MessageSelector"

Chapter 7
Oracle Java Message Service Point-to-Point

7-71

Example 7-50 Creating a QueueReceiver for AdtMessage Messages

/* Create a receiver for a Queue with AdtMessage messages of type EMPLOYEE*/
QueueSession jms_session
QueueReceiver receiver;
Queue test_queue;
browser = ((AQjmsSession)jms_session).createReceiver(
 test_queue,
 "JMSCorrelationID = 'MANAGER',
 Employee.getFactory());

Oracle Java Message Service Publish/Subscribe
The following topics describe the components of the Oracle Database Advanced
Queuing (AQ) Java Message Service (JMS) operational interface that are specific to
publish/subscribe operations. Components that are shared by point-to-point and
publish/subscribe are described in Oracle Java Message Service Shared Interfaces.

• Creating a Connection with User Name/Password

• Creating a Connection with Default ConnectionFactory Parameters

• Creating a TopicConnection with User Name/Password

• Creating a TopicConnection with Open JDBC Connection

• Creating a TopicConnection with an Open OracleOCIConnectionPool

• Creating a Session

• Creating a TopicSession

• Creating a TopicPublisher

• Publishing Messages with Minimal Specification

• Publishing Messages Specifying Topic

• Publishing Messages Specifying Delivery Mode_ Priority_ and TimeToLive

• Publishing Messages Specifying a Recipient List

• Creating a DurableSubscriber for a JMS Topic Without Selector

• Creating a DurableSubscriber for a JMS Topic with Selector

• Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector

• Creating a DurableSubscriber for an Oracle Object Type Topic with Selector

• Specifying Transformations for Topic Subscribers

• Creating a Remote Subscriber for JMS Messages

• Creating a Remote Subscriber for Oracle Object Type Messages

• Specifying Transformations for Remote Subscribers

• Unsubscribing a Durable Subscription for a Local Subscriber

• Unsubscribing a Durable Subscription for a Remote Subscriber

• Creating a TopicReceiver for a Topic of Standard JMS Type Messages

• Creating a TopicReceiver for a Topic of Oracle Object Type Messages

• Creating a TopicBrowser for Standard JMS Messages

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-72

• Creating a TopicBrowser for Standard JMS Messages_ Locking Messages

• Creating a TopicBrowser for Oracle Object Type Messages

• Creating a TopicBrowser for Oracle Object Type Messages_ Locking Messages

• Browsing Messages Using a TopicBrowser

Creating a Connection with User Name/Password
public javax.jms.Connection createConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with the specified user name and password. This method is new and
supports JMS version 1.1 specifications. It has the following parameters:

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Creating a Connection with Default ConnectionFactory Parameters
public javax.jms.Connection createConnection()
 throws JMSException

This method creates a connection supporting both point-to-point and publish/subscribe
operations with default ConnectionFactory parameters. This method is new and
supports JMS version 1.1 specifications. If the ConnectionFactory properties do not
contain a default user name and password, then it throws a JMSException.

Creating a TopicConnection with User Name/Password
public javax.jms.TopicConnection createTopicConnection(
 java.lang.String username,
 java.lang.String password)
 throws JMSException

This method creates a TopicConnection with the specified user name and password.
It has the following parameters:

Parameter Description

username Name of the user connecting to the database for queuing

password Password for creating the connection to the server

Example 7-51 Creating a TopicConnection with User Name/Password

TopicConnectionFactory tc_fact = AQjmsFactory.getTopicConnectionFactory("sun123",
"oratest", 5521, "thin");
/* Create a TopicConnection using a username/password */
TopicConnection tc_conn = tc_fact.createTopicConnection("jmsuser", "jmsuser");

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-73

Creating a TopicConnection with Open JDBC Connection
public static javax.jms.TopicConnection createTopicConnection(
 java.sql.Connection jdbc_connection)
 throws JMSException

This method creates a TopicConnection with open JDBC connection. It has the
following parameter:

Parameter Description

jdbc_connection Valid open connection to database

Example 7-52 Creating a TopicConnection with Open JDBC Connection

Connection db_conn; /*previously opened JDBC connection */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory createTopicConnection(db_conn);

Example 7-53 Creating a TopicConnection with New JDBC Connection

OracleDriver ora = new OracleDriver();
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(ora.defaultConnection());

Creating a TopicConnection with an Open OracleOCIConnectionPool
public static javax.jms.TopicConnection createTopicConnection(
 oracle.jdbc.pool.OracleOCIConnectionPool cpool)
 throws JMSException

This method creates a TopicConnection with an open OracleOCIConnectionPool. It is
static and has the following parameter:

Parameter Description

cpool Valid open OCI connection pool to the database

Example 7-54 Creating a TopicConnection with Open
OracleOCIConnectionPool

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(cpool);

Creating a Session
public javax.jms.Session createSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a Session supporting both point-to-point and publish/subscribe
operations. It is new and supports JMS version 1.1 specifications. It has the following
parameters:

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-74

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Creating a TopicSession
public javax.jms.TopicSession createTopicSession(boolean transacted,
 int ack_mode)
 throws JMSException

This method creates a TopicSession. It has the following parameters:

Parameter Description

transacted If set to true, then the session is transactional

ack_mode Indicates whether the consumer or the client will acknowledge any
messages it receives. It is ignored if the session is transactional. Legal
values are Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE.

Example 7-55 Creating a TopicSession

TopicConnection tc_conn;
TopicSession t_sess = tc_conn.createTopicSession(true,0);

Creating a TopicPublisher
public javax.jms.TopicPublisher createPublisher(javax.jms.Topic topic)
 throws JMSException

This method creates a TopicPublisher. It has the following parameter:

Parameter Description

topic Topic to publish to, or null if this is an unidentified producer

Publishing Messages with Minimal Specification
public void publish(javax.jms.Message message)
 throws JMSException

This method publishes a message with minimal specification. It has the following
parameter:

Parameter Description

message Message to send

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-75

The TopicPublisher uses the default values for message priority (1) and
timeToLive (infinite).

Example 7-56 Publishing Without Specifying Topic

/* Publish without specifying topic */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* get shipped orders topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* create TextMessage */
TextMessage jms_sess.createTextMessage();
/* publish without specifying the topic */
publisher1.publish(text_message);

Example 7-57 Publishing Specifying Correlation and Delay

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* Create TextMessage */
TextMessage jms_sess.createTextMessage();
/* Set correlation and delay */
/* Set correlation */
jms_sess.setJMSCorrelationID("FOO");
/* Set delay of 30 seconds */
jms_sess.setLongProperty("JMS_OracleDelay", 30);
/* Publish */
publisher1.publish(text_message);

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-76

Publishing Messages Specifying Topic
public void publish(javax.jms.Topic topic, javax.jms.Message message)
 throws JMSException

This method publishes a message specifying the topic. It has the following
parameters:

Parameter Description

topic Topic to publish to

message Message to send

If the TopicPublisher has been created with a default topic, then the topic parameter
may not be specified in the publish() call. If a topic is specified, then that value
overrides the default in the TopicPublisher. If the TopicPublisher has been created
without a default topic, then the topic must be specified with the publish() call.

Example 7-58 Publishing Specifying Topic

/* Publish specifying topic */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 'MYHOSTNAME', 'MYSID', myport, 'oci8');
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* create TopicPublisher */
publisher1 = jms_sess.createPublisher(null);
/* get topic object */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 'WS', 'Shipped_Orders_Topic');
/* create text message */
TextMessage jms_sess.createTextMessage();
/* publish specifying the topic */
publisher1.publish(shipped_orders, text_message);

Publishing Messages Specifying Delivery Mode, Priority, and
TimeToLive

public void publish(javax.jms.Topic topic,
 javax.jms.Message message,
 oracle.jms.AQjmsAgent[] recipient_list,
 int deliveryMode,
 int priority,
 long timeToLive)
 throws JMSException

This method publishes a message specifying delivery mode, priority and TimeToLive.
It has the following parameters:

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-77

Parameter Description

topic Topic to which to publish the message (overrides the default topic of
the MessageProducer)

message Message to publish

recipient_list List of recipients to which the message is published. Recipients are of
type AQjmsAgent.

deliveryMode PERSISTENT or NON_PERSISTENT (only PERSISTENT is supported in
this release)

priority Priority for this message

timeToLive Message lifetime in milliseconds (zero is unlimited)

Example 7-59 Publishing Specifying Priority and TimeToLive

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* Create TextMessage */
TextMessage jms_sess.createTextMessage();
/* Publish message with priority 1 and time to live 200 seconds */
publisher1.publish(text_message, DeliveryMode.PERSISTENT, 1, 200000);

Publishing Messages Specifying a Recipient List
public void publish(javax.jms.Message message,
 oracle.jms.AQjmsAgent[] recipient_list)
 throws JMSException

This method publishes a message specifying a recipient list overriding topic
subscribers. It has the following parameters:

Parameter Description

message Message to publish

recipient_list List of recipients to which the message is published. Recipients are of
type AQjmsAgent.

Example 7-60 Publishing Specifying a Recipient List Overriding Topic
Subscribers

/* Publish specifying priority and timeToLive */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-78

TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);
/* create TextMessage */
TextMessage jms_sess.createTextMessage();
/* create two receivers */
recipList = new AQjmsAgent[2];
recipList[0] = new AQjmsAgent(
 "ES", "ES.shipped_orders_topic", AQAgent.DEFAULT_AGENT_PROTOCOL);
recipList[1] = new AQjmsAgent(
 "WS", "WS.shipped_orders_topic", AQAgent.DEFAULT_AGENT_PROTOCOL);
/* publish message specifying a recipient list */
publisher1.publish(text_message, recipList);

Creating a DurableSubscriber for a JMS Topic Without Selector
public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name)
 throws JMSException

This method creates a DurableSubscriber for a JMS topic without selector. It has the
following parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

Exclusive Access to Topics

CreateDurableSubscriber() and Unsubscribe() both require exclusive access to
their target topics. If there are pending JMS send(), publish(), or receive()
operations on the same topic when these calls are applied, then exception ORA - 4020
is raised. There are two solutions to the problem:

• Limit calls to createDurableSubscriber() and Unsubscribe() to the setup or
cleanup phase when there are no other JMS operations pending on the topic. That
makes sure that the required resources are not held by other JMS operational
calls.

• Call TopicSession.commit before calling createDurableSubscriber() or
Unsubscribe().

Example 7-61 Creating a Durable Subscriber for a JMS Topic Without Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-79

Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME",
 "MYSID",
 myport,
 "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE",
 "Shipped_Orders_Topic");
/* create a durable subscriber on the shipped_orders topic*/
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders,
 'WesternShipping');

Creating a DurableSubscriber for a JMS Topic with Selector
public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.String messageSelector,
 boolean noLocal)
 throws JMSException

This method creates a durable subscriber for a JMS topic with selector. It has the
following parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its
own connection

A client can change an existing durable subscription by creating a durable
TopicSubscriber with the same name and a different messageSelector. An
unsubscribe call is needed to end the subscription to the topic.

See Also:

• "Exclusive Access to Topics"

• "MessageSelector"

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-80

Example 7-62 Creating a Durable Subscriber for a JMS Topic With Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber */
/* with condition on JMSPriority and user property 'Region' */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "JMSPriority > 2 and Region like 'Western%'", false);

Creating a DurableSubscriber for an Oracle Object Type Topic Without
Selector

public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a durable subscriber for an Oracle object type topic without
selector. It has the following parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note:

• CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

• TEQ queues do not support object type messages.

See Also:

"Exclusive Access to Topics"

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-81

Example 7-63 Creating a Durable Subscriber for an Oracle Object Type Topic
Without Selector

/* Subscribe to an ADT queue */
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber, specifying the correct CustomDatumFactory */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping', AQjmsAgent.getFactory());

Creating a DurableSubscriber for an Oracle Object Type Topic with
Selector

public javax.jms.TopicSubscriber createDurableSubscriber(
 javax.jms.Topic topic,
 java.lang.String subs_name,
 java.lang.String messageSelector,
 boolean noLocal,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a durable subscriber for an Oracle object type topic with selector.
It has the following parameters:

Parameter Description

topic Non-temporary topic to subscribe to

subs_name Name used to identify this subscription

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

noLocal If set to true, then it inhibits the delivery of messages published by its
own connection

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-82

Note:

• CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

• TEQ queues do not support object yype messages.

See Also:

"Exclusive Access to Topics"

Example 7-64 Creating a Durable Subscriber for an Oracle Object Type Topic
With Selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a subscriber, specifying correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, "WesternShipping",
 "priority > 1 and tab.user_data.region like 'WESTERN %'", false,
 ADTMessage.getFactory());

Specifying Transformations for Topic Subscribers
A transformation can be supplied when sending/publishing a message to a queue/
topic. The transformation is applied before putting the message into the queue/topic.

The application can specify a transformation using the setTransformation interface in
the AQjmsQueueSender and AQjmsTopicPublisher interfaces.

A transformation can also be specified when creating topic subscribers using the
CreateDurableSubscriber() call. The transformation is applied to the retrieved
message before returning it to the subscriber. If the subscriber specified in the
CreateDurableSubscriber() call already exists, then its transformation is set to the
specified transformation.

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-83

Example 7-65 Sending Messages to a Destination Using a Transformation

Suppose that the orders that are processed by the order entry application should be
published to WS_bookedorders_topic. The transformation OE2WS (defined in the
previous section) is supplied so that the messages are inserted into the topic in the
correct format.

public void ship_bookedorders(
 TopicSession jms_session,
 AQjmsADTMessage adt_message)
{
 TopicPublisher publisher;
 Topic topic;

 try
 {
 /* get a handle to the WS_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("WS",
"WS_bookedorders_topic");
 publisher = jms_session.createPublisher(topic);

 /* set the transformation in the publisher */
 ((AQjmsTopicPublisher)publisher).setTransformation("OE2WS");
 publisher.publish(topic, adt_message);
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
}

Example 7-66 Specifying Transformations for Topic Subscribers

The Western Shipping application subscribes to the OE_bookedorders_topic with the
transformation OE2WS. This transformation is applied to the messages and the returned
message is of Oracle object type WS.WS_orders.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the
Oracle object WS.WS_order:

public AQjmsAdtMessage retrieve_bookedorders(TopicSession jms_session)
{
 TopicSubscriber subscriber;
 Topic topic;
 AQjmsAdtMessage msg = null;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

 /* create a subscriber with the transformation OE2WS */
 subs = ((AQjmsSession)jms_session).createDurableSubscriber(
 topic, 'WShip', null, false, WSOrder.getFactory(), "OE2WS");
 msg = subscriber.receive(10);
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-84

 return (AQjmsAdtMessage)msg;
}

Creating a Remote Subscriber for JMS Messages
public void createRemoteSubscriber(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber,
 java.lang.String messageSelector)
 throws JMSException

This method creates a remote subscriber for topics of JMS messages. It has the
following parameters:

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

Oracle Database Advanced Queuing allows topics to have remote subscribers, for
example, subscribers at other topics in the same or different database. In order to use
remote subscribers, you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers
at the remote topic. A remote subscriber is defined using the AQjmsAgent structure. An
AQjmsAgent consists of a name and address. The name refers to the consumer_name at
the remote topic. The address refers to the remote topic. Its syntax is
schema.topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the name
field of AQjmsAgent, and the remote topic must be specified in the address field. To
publish messages to all subscribers of the remote topic, the name field of AQjmsAgent
must be set to null.

Note:

TEQ queues do not support remote subscribers.

See Also:

"MessageSelector"

Example 7-67 Creating a Remote Subscriber for Topics of JMS Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-85

TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent remoteAgent;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber (selector is null)*/
subscriber1 = ((AQjmsSession)jms_sess).createRemoteSubscriber(
 shipped_orders, remoteAgent, null);

Creating a Remote Subscriber for Oracle Object Type Messages
public void createRemoteSubscriber(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a remote subscriber for topics of Oracle object type messages. It
has the following parameters:

Parameter Description

topic Topic to subscribe to

remote_subscriber AQjmsAgent that refers to the remote subscriber

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note:

• CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

• TEQ queues do not support remote subscribers or object type
messages.

Oracle Database Advanced Queuing allows topics to have remote subscribers, for
example, subscribers at other topics in the same or different database. In order to use
remote subscribers, you must set up propagation between the local and remote topic.

Remote subscribers can be a specific consumer at the remote topic or all subscribers
at the remote topic. A remote subscriber is defined using the AQjmsAgent structure. An
AQjmsAgent consists of a name and address. The name refers to the consumer_name at

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-86

the remote topic. The address refers to the remote topic. Its syntax is
schema.topic_name[@dblink].

To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the name
field of AQjmsAgent, and the remote topic must be specified in the address field. To
publish messages to all subscribers of the remote topic, the name field of AQjmsAgent
must be set to null.

Note:

AQ does not support the use of multiple dblink to the same destination. As a
workaround, use a single database link for each destination.

See Also:

"MessageSelector"

Example 7-68 Creating a Remote Subscriber for Topics of Oracle Object Type
Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent remoteAgent;
ADTMessage message;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
/* create TopicSession */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
/* get the Shipped order topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* create a remote agent */
remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);
/* create a remote subscriber with null selector*/
subscriber1 = ((AQjmsSession)jms_sess).createRemoteSubscriber(
 shipped_orders, remoteAgent, null, message.getFactory);

Specifying Transformations for Remote Subscribers
Oracle Database Advanced Queuing allows a remote subscriber, that is a subscriber
at another database, to subscribe to a topic.

Transformations can be specified when creating remote subscribers using the
createRemoteSubscriber() call. This enables propagation of messages between
topics of different formats. When a message published at a topic meets the criterion of

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-87

a remote subscriber, Oracle Database Advanced Queuing automatically propagates
the message to the queue/topic at the remote database specified for the remote
subscriber. If a transformation is also specified, then Oracle Database Advanced
Queuing applies the transformation to the message before propagating it to the queue/
topic at the remote database.

Note:

TEQ queues do not support remote subscribers.

Example 7-69 Specifying Transformations for Remote Subscribers

A remote subscriber is created at the OE.OE_bookedorders_topic so that messages
are automatically propagated to the WS.WS_bookedorders_topic. The transformation
OE2WS is specified when creating the remote subscriber so that the messages
reaching the WS_bookedorders_topic have the correct format.

Suppose that the WSOrder java class has been generated by Jpublisher to map to the
Oracle object WS.WS_order

public void create_remote_sub(TopicSession jms_session)
{
 AQjmsAgent subscriber;
 Topic topic;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");
 subscriber = new AQjmsAgent("WShip", "WS.WS_bookedorders_topic");

 ((AQjmsSession)jms_session).createRemoteSubscriber(
 topic, subscriber, null, WSOrder.getFactory(),"OE2WS");
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :" ex);
 }
}

Unsubscribing a Durable Subscription for a Local Subscriber
public void unsubscribe(javax.jms.Topic topic,
 java.lang.String subs_name)
 throws JMSException

This method unsubscribes a durable subscription for a local subscriber. It has the
following parameters:

Parameter Description

topic Non-temporary topic to unsubscribe

subs_name Name used to identify this subscription

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-88

See Also:

"Exclusive Access to Topics"

Example 7-70 Unsubscribing a Durable Subscription for a Local Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
/* unsusbcribe "WesternShipping" from shipped_orders */
jms_sess.unsubscribe(shipped_orders, "WesternShipping");

Unsubscribing a Durable Subscription for a Remote Subscriber
public void unsubscribe(javax.jms.Topic topic,
 oracle.jms.AQjmsAgent remote_subscriber)
 throws JMSException

This method unsubscribes a durable subscription for a remote subscriber. It has the
following parameters:

Parameter Description

topic Non-temporary topic to unsubscribe

remote_subscriber AQjmsAgent that refers to the remote subscriber. The address field of
the AQjmsAgent cannot be null.

Note:

TEQ queues do not support remote subscribers.

See Also:

"Exclusive Access to Topics"

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-89

Example 7-71 Unsubscribing a Durable Subscription for a Remote Subscriber

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent remoteAgent;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "OE", "Shipped_Orders_Topic");
remoteAgent = new AQjmsAgent("WS", "WS.Shipped_Orders_Topic", null);
/* unsubscribe the remote agent from shipped_orders */
((AQjmsSession)jms_sess).unsubscribe(shipped_orders, remoteAgent);

Creating a TopicReceiver for a Topic of Standard JMS Type
Messages

public oracle.jms.AQjmsTopicReceiver createTopicReceiver(
 javax.jms.Topic topic,
 java.lang.String receiver_name,
 java.lang.String messageSelector)
 throws JMSException

This method creates a TopicReceiver for a topic of standard JMS type messages. It
has the following parameters:

Parameter Description

topic Topic to access

receiver_name Name of message receiver

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

Oracle Database Advanced Queuing allows messages to be sent to specified
recipients. These receivers may or may not be subscribers of the topic. If the receiver
is not a subscriber to the topic, then it receives only those messages that are explicitly
addressed to it. This method must be used order to create a TopicReceiver object for
consumers that are not durable subscribers.

See Also:

"MessageSelector"

Example 7-72 Creating a TopicReceiver for Standard JMS Type Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-90

TopicSession t_sess = ull;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");
receiver = ((AQjmsSession)jms_sess).createTopicReceiver(
 shipped_orders, "WesternRegion", null);

Creating a TopicReceiver for a Topic of Oracle Object Type Messages
public oracle.jms.AQjmsTopicReceiver createTopicReceiver(
 javax.jms.Topic topic,
 java.lang.String receiver_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a TopicReceiver for a topic of Oracle object type messages with
selector. It has the following parameters:

Parameter Description

topic Topic to access

receiver_name Name of message receiver

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note:

• CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

• TEQ queues do not support object type messages.

Oracle Database Advanced Queuing allows messages to be sent to all subscribers of
a topic or to specified recipients. These receivers may or may not be subscribers of
the topic. If the receiver is not a subscriber to the topic, then it receives only those
messages that are explicitly addressed to it. This method must be used order to create
a TopicReceiver object for consumers that are not durable subscribers.

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-91

See Also:

"MessageSelector"

Example 7-73 Creating a TopicReceiver for Oracle Object Type Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");
receiver = ((AQjmsSession)jms_sess).createTopicReceiver(
 shipped_orders, "WesternRegion", null);

Creating a TopicBrowser for Standard JMS Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector)
 throws JMSException

This method creates a TopicBrowser for topics with TextMessage, StreamMessage,
ObjectMessage, BytesMessage, or MapMessage message bodies. It has the following
parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

See Also:

"MessageSelector"

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-92

Example 7-74 Creating a TopicBrowser Without a Selector

/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
browser = ((AQjmsSession) jms_session).createBrowser(topic, "SUBS1");

Example 7-75 Creating a TopicBrowser With a Specified Selector

/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
/* create a Browser to look at messages with correlationID = RUSH */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'");

Creating a TopicBrowser for Standard JMS Messages, Locking
Messages

public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 boolean locked)
 throws JMSException

This method creates a TopicBrowser for topics with text, stream, objects, bytes or map
messages, locking messages while browsing. It has the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

locked If set to true, then messages are locked as they are browsed (similar
to a SELECT for UPDATE)

Example 7-76 Creating a TopicBrowser Without a Selector, Locking Messages
While Browsing

/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", true);

Example 7-77 Creating a TopicBrowser With a Specified Selector, Locking
Messages

/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-93

/* create a Browser to look at messages with correlationID = RUSH in
lock mode */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'", true);

Creating a TopicBrowser for Oracle Object Type Messages
public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory)
 throws JMSException

This method creates a TopicBrowser for topics of Oracle object type messages. It has
the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

Note:

• CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

• TEQ queues do not support object type messages.

The CustomDatumFactory for a particular Java class that maps to the SQL object type
payload can be obtained using the getFactory static method. Assume the topic
test_topic has payload of type SCOTT.EMPLOYEE and the Java class that is generated
by Jpublisher for this Oracle object type is called Employee. The Employee class
implements the CustomDatum interface. The CustomDatumFactory for this class can be
obtained by using the Employee.getFactory() method.

See Also:

"MessageSelector"

Example 7-78 Creating a TopicBrowser for AdtMessage Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE*/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-94

browser = ((AQjmsSession) jms_session).createBrowser(
 test_topic, "SUBS1", Employee.getFactory());

Creating a TopicBrowser for Oracle Object Type Messages, Locking
Messages

public oracle.jms.TopicBrowser createBrowser(javax.jms.Topic topic,
 java.lang.String cons_name,
 java.lang.String messageSelector,
 java.lang.Object payload_factory,
 boolean locked)
 throws JMSException

This method creates a TopicBrowser for topics of Oracle object type messages,
locking messages while browsing. It has the following parameters:

Parameter Description

topic Topic to access

cons_name Name of the durable subscriber or consumer

messageSelector Only messages with properties matching the messageSelector
expression are delivered. A value of null or an empty string indicates
that there is no messageSelector for the message consumer.

payload_factory CustomDatumFactory or ORADataFactory for the Java class that
maps to the Oracle ADT

locked If set to true, then messages are locked as they are browsed (similar
to a SELECT for UPDATE)

Note:

• CustomDatum support will be deprecated in a future release. Use
ORADataFactory payload factories instead.

• TEQ queues do not support object type messages.

See Also:

"MessageSelector"

Example 7-79 Creating a TopicBrowser for AdtMessage Messages, Locking
Messages

/* Create a browser for a Topic with AdtMessage messages of type EMPLOYEE* in
lock mode/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;
browser = ((AQjmsSession) jms_session).createBrowser(
 test_topic, "SUBS1", Employee.getFactory(), true);

Chapter 7
Oracle Java Message Service Publish/Subscribe

7-95

Browsing Messages Using a TopicBrowser
public void purgeSeen()
 throws JMSException

This method browses messages using a TopicBrowser. Use methods in
java.util.Enumeration to go through the list of messages. Use the method
purgeSeen in TopicBrowser to purge messages that have been seen during the
current browse.

Example 7-80 Creating a TopicBrowser with a Specified Selector

/* Create a browser for topics with a specified selector */
public void browse_rush_orders(TopicSession jms_session)
TopicBrowser browser;
Topic topic;
ObjectMessage obj_message
BolOrder new_order;
Enumeration messages;
/* get a handle to the new_orders topic */
topic = ((AQjmsSession) jms_session).getTopic("OE", "OE_bookedorders_topic");
/* create a Browser to look at RUSH orders */
browser = ((AQjmsSession) jms_session).createBrowser(
 topic, "SUBS1", "JMSCorrelationID = 'RUSH'");
/* Browse through the messages */
for (messages = browser.elements() ; message.hasMoreElements() ;)
{obj_message = (ObjectMessage)message.nextElement();}
/* Purge messages seen during this browse */
browser.purgeSeen()

Oracle Java Message Service Shared Interfaces
The following topics describe the Java Message Service (JMS) operational interface
(shared interfaces) to Oracle Database Advanced Queuing (AQ).

• Oracle Database Advanced Queuing JMS Operational Interface: Shared
Interfaces

• Specifying JMS Message Properties

• Setting Default TimeToLive for All Messages Sent by a MessageProducer

• Setting Default Priority for All Messages Sent by a MessageProducer

• Creating an AQjms Agent

• Receiving a Message Synchronously

• Specifying the Navigation Mode for Receiving Messages

• Receiving a Message Asynchronously

• Getting Message ID

• Getting JMS Message Properties

• Closing and Shutting Down

• Troubleshooting

Chapter 7
Oracle Java Message Service Shared Interfaces

7-96

Oracle Database Advanced Queuing JMS Operational Interface:
Shared Interfaces

The following topics discuss Oracle Database Advanced Queuing shared interfaces for
JMS operations.

• Starting a JMS Connection

• Getting a JMS Connection

• Committing All Operations in a Session

• Rolling Back All Operations in a Session

• Getting the JDBC Connection from a Session

• Getting the OracleOCIConnectionPool from a JMS Connection

• Creating a BytesMessage

• Creating a MapMessage

• Creating a StreamMessage

• Creating an ObjectMessage

• Creating a TextMessage

• Creating a JMS Message

• Creating an AdtMessage

• Setting a JMS Correlation Identifier

Starting a JMS Connection
public void start()
 throws JMSException

AQjmsConnection.start() starts a JMS connection for receiving messages.

Getting a JMS Connection
public oracle.jms.AQjmsConnection getJmsConnection()
 throws JMSException

AQjmsSession.getJmsConnection() gets a JMS connection from a session.

Committing All Operations in a Session
public void commit()
 throws JMSException

AQjmsSession.commit() commits all JMS and SQL operations performed in a session.

Rolling Back All Operations in a Session
public void rollback()
 throws JMSException

Chapter 7
Oracle Java Message Service Shared Interfaces

7-97

AQjmsSession.rollback() terminates all JMS and SQL operations performed in a
session.

Getting the JDBC Connection from a Session
public java.sql.Connection getDBConnection()
 throws JMSException

AQjmsSession.getDBConnection() gets the underlying JDBC connection from a JMS
session. The JDBC connection can be used to perform SQL operations as part of the
same transaction in which the JMS operations are accomplished.

Example 7-81 Getting Underlying JDBC Connection from JMS Session

java.sql.Connection db_conn;
QueueSession jms_sess;
db_conn = ((AQjmsSession)jms_sess).getDBConnection();

Getting the OracleOCIConnectionPool from a JMS Connection
public oracle.jdbc.pool.OracleOCIConnectionPool getOCIConnectionPool()

AQjmsConnection.getOCIConnectionPool() gets the underlying
OracleOCIConnectionPool from a JMS connection. The settings of the
OracleOCIConnectionPool instance can be tuned by the user depending on the
connection usage, for example, the number of sessions the user wants to create using
the given connection. The user should not, however, close the
OracleOCIConnectionPool instance being used by the JMS connection.

Example 7-82 Getting Underlying OracleOCIConnectionPool from JMS
Connection

oracle.jdbc.pool.OracleOCIConnectionPool cpool;
QueueConnection jms_conn;
cpool = ((AQjmsConnection)jms_conn).getOCIConnectionPool();

Creating a BytesMessage
public javax.jms.BytesMessage createBytesMessage()
 throws JMSException

AQjmsSession.createBytesMessage() creates a bytes message. It can be used only if
the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a MapMessage
public javax.jms.MapMessage createMapMessage()
 throws JMSException

AQjmsSession.createMapMessage() creates a map message. It can be used only if the
queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_MAP_MESSAGE or AQ$_JMS_MESSAGE payload types.

Chapter 7
Oracle Java Message Service Shared Interfaces

7-98

Creating a StreamMessage
public javax.jms.StreamMessage createStreamMessage()
 throws JMSException

AQjmsSession.createStreamMessage() creates a stream message. It can be used
only if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating an ObjectMessage
public javax.jms.ObjectMessage createObjectMessage(java.io.Serializable object)
 throws JMSException

AQjmsSession.createObjectMessage() creates an object message. It can be used
only if the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_OBJECT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a TextMessage
public javax.jms.TextMessage createTextMessage()
 throws JMSException

AQjmsSession.createTextMessage() creates a text message. It can be used only if
the queue table that contains the destination queue/topic was created with the
SYS.AQ$_JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Creating a JMS Message
public javax.jms.Message createMessage()
 throws JMSException

AQjmsSession.createMessage() creates a JMS message. You can use the
AQ$_JMS_MESSAGE construct message to construct messages of different types. The
message type must be one of the following:

• DBMS_AQ.JMS_TEXT_MESSAGE

• DBMS_AQ.JMS_OBJECT_MESSAGE

• DBMS_AQ.JMS_MAP_MESSAGE

• DBMS_AQ.JMS_BYTES_MESSAGE

• DBMS_AQ.JMS_STREAM_MESSAGE

You can also use this ADT to create a header-only JMS message.

Creating an AdtMessage
public oracle.jms.AdtMessage createAdtMessage()
 throws JMSException

AQjmsSession.createAdtMessage() creates an AdtMessage. It can be used only if the
queue table that contains the queue/topic was created with an Oracle ADT payload
type. An AdtMessage must be populated with an object that implements the
CustomDatum interface. This object must be the Java mapping of the SQL ADT defined

Chapter 7
Oracle Java Message Service Shared Interfaces

7-99

as the payload for the queue/topic. Java classes corresponding to SQL ADT types can
be generated using the Jpublisher tool.

Setting a JMS Correlation Identifier
public void setJMSCorrelationID(java.lang.String correlationID)
 throws JMSException

AQjmsMessage.setJMSCorrelationID() specifies the message correlation identifier.

Specifying JMS Message Properties
Property names starting with JMS are provider-specific. User-defined properties
cannot start with JMS.

The following provider properties can be set by clients using text, stream, object, bytes
or map messages:

• JMSXAppID (string)

• JMSXGroupID (string)

• JMSXGroupSeq (int)

• JMS_OracleExcpQ (string)

This message property specifies the exception queue.

• JMS_OracleDelay (int)

This message property specifies the message delay in seconds.

The following properties can be set on AdtMessage

• JMS_OracleExcpQ (String)

This message property specifies the exception queue as "schema.queue_name"

• JMS_OracleDelay (int)

This message property specifies the message delay in seconds.

This section contains these topics:

• Setting a Boolean Message Property

• Setting a String Message Property

• Setting an Integer Message Property

• Setting a Double Message Property

• Setting a Float Message Property

• Setting a Byte Message Property

• Setting a Long Message Property

• Setting a Short Message Property

• Getting an Object Message Property

Chapter 7
Oracle Java Message Service Shared Interfaces

7-100

Setting a Boolean Message Property
public void setBooleanProperty(java.lang.String name,
 boolean value)
 throws JMSException

AQjmsMessage.setBooleanProperty() specifies a message property as Boolean. It
has the following parameters:

Parameter Description

name Name of the Boolean property

value Boolean property value to set in the message

Setting a String Message Property
public void setStringProperty(java.lang.String name,
 java.lang.String value)
 throws JMSException

AQjmsMessage.setStringProperty() specifies a message property as string. It has
the following parameters:

Parameter Description

name Name of the string property

value String property value to set in the message

Setting an Integer Message Property
public void setIntProperty(java.lang.String name,
 int value)
 throws JMSException

AQjmsMessage.setIntProperty() specifies a message property as integer. It has the
following parameters:

Parameter Description

name Name of the integer property

value Integer property value to set in the message

Setting a Double Message Property
public void setDoubleProperty(java.lang.String name,
 double value)
 throws JMSException

AQjmsMessage.setDoubleProperty() specifies a message property as double. It has
the following parameters:

Chapter 7
Oracle Java Message Service Shared Interfaces

7-101

Parameter Description

name Name of the double property

value Double property value to set in the message

Setting a Float Message Property
public void setFloatProperty(java.lang.String name,
 float value)
 throws JMSException

AQjmsMessage.setFloatProperty() specifies a message property as float. It has the
following parameters:

Parameter Description

name Name of the float property

value Float property value to set in the message

Setting a Byte Message Property
public void setByteProperty(java.lang.String name,
 byte value)
 throws JMSException

AQjmsMessage.setByteProperty() specifies a message property as byte. It has the
following parameters:

Parameter Description

name Name of the byte property

value Byte property value to set in the message

Setting a Long Message Property
public void setLongProperty(java.lang.String name,
 long value)
 throws JMSException

AQjmsMessage.setLongProperty() specifies a message property as long. It has the
following parameters:

Parameter Description

name Name of the long property

value Long property value to set in the message

Setting a Short Message Property
public void setShortProperty(java.lang.String name,
 short value)
 throws JMSException

Chapter 7
Oracle Java Message Service Shared Interfaces

7-102

AQjmsMessage.setShortProperty() specifies a message property as short. It has the
following parameters:

Parameter Description

name Name of the short property

value Short property value to set in the message

Setting an Object Message Property
public void setObjectProperty(java.lang.String name,
 java.lang.Object value)
 throws JMSException

AQjmsMessage.setObjectProperty() specifies a message property as object. Only
objectified primitive values are supported: Boolean, byte, short, integer, long, float,
double and string. It has the following parameters:

Parameter Description

name Name of the Java object property

value Java object property value to set in the message

Setting Default TimeToLive for All Messages Sent by a
MessageProducer

public void setTimeToLive(long timeToLive)
 throws JMSException

This method sets the default TimeToLive for all messages sent by a MessageProducer.
It is calculated after message delay has taken effect. This method has the following
parameter:

Parameter Description

timeToLive Message time to live in milliseconds (zero is unlimited)

Example 7-83 Setting Default TimeToLive for All Messages Sent by a
MessageProducer

/* Set default timeToLive value to 100000 milliseconds for all messages sent by the
QueueSender*/
QueueSender sender;
sender.setTimeToLive(100000);

Setting Default Priority for All Messages Sent by a MessageProducer
public void setPriority(int priority)
 throws JMSException

This method sets the default Priority for all messages sent by a MessageProducer. It
has the following parameter:

Chapter 7
Oracle Java Message Service Shared Interfaces

7-103

Parameter Description

priority Message priority for this message producer. The default is 4.

Priority values can be any integer. A smaller number indicates higher priority. If a
priority value is explicitly specified during a send() operation, then it overrides the
default value set by this method.

Example 7-84 Setting Default Priority Value for All Messages Sent by
QueueSender

/* Set default priority value to 2 for all messages sent by the QueueSender*/
QueueSender sender;
sender.setPriority(2);

Example 7-85 Setting Default Priority Value for All Messages Sent by
TopicPublisher

/* Set default priority value to 2 for all messages sent by the TopicPublisher*/
TopicPublisher publisher;
publisher.setPriority(1);

Creating an AQjms Agent
public void createAQAgent(java.lang.String agent_name,
 boolean enable_http,
 throws JMSException

This method creates an AQjmsAgent. It has the following parameters:

Parameter Description

agent_name Name of the AQ agent

enable_http If set to true, then this agent is allowed to access AQ through HTTP

Receiving a Message Synchronously
You can receive a message synchronously by specifying Timeout or without waiting.
You can also receive a message using a transformation:

• Using a Message Consumer by Specifying Timeout

• Using a Message Consumer Without Waiting

• Receiving Messages from a Destination Using a Transformation

Using a Message Consumer by Specifying Timeout
public javax.jms.Message receive(long timeout)
 throws JMSException

This method receives a message using a message consumer by specifying timeout.

Parameter Description

timeout Timeout value in milliseconds

Chapter 7
Oracle Java Message Service Shared Interfaces

7-104

Example 7-86 Using a Message Consumer by Specifying Timeout

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and
selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 " priority > 1 and tab.user_data.region like 'WESTERN %'",
 false, AQjmsAgent.getFactory());
/* receive, blocking for 30 seconds if there were no messages */
Message = subscriber.receive(30000);

Example 7-87 JMS: Blocking Until a Message Arrives

public BolOrder get_new_order1(QueueSession jms_session)
 {
 Queue queue;
 QueueReceiver qrec;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder new_order = null;
 String state;

 try
 {
 /* get a handle to the new_orders queue */
 queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
 qrec = jms_session.createReceiver(queue);

 /* wait for a message to show up in the queue */
 obj_message = (ObjectMessage)qrec.receive();
 new_order = (BolOrder)obj_message.getObject();
 customer = new_order.getCustomer();
 state = customer.getState();
 System.out.println("Order: for customer " + customer.getName());
 }
 catch (JMSException ex)
 {
 System.out.println("Exception: " + ex);
 }
 return new_order;
 }

Using a Message Consumer Without Waiting
public javax.jms.Message receiveNoWait()
 throws JMSException

Chapter 7
Oracle Java Message Service Shared Interfaces

7-105

This method receives a message using a message consumer without waiting.

Example 7-88 JMS: Nonblocking Messages

public BolOrder poll_new_order3(QueueSession jms_session)
 {
 Queue queue;
 QueueReceiver qrec;
 ObjectMessage obj_message;
 BolCustomer customer;
 BolOrder new_order = null;
 String state;

 try
 {
 /* get a handle to the new_orders queue */
 queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
 qrec = jms_session.createReceiver(queue);

 /* check for a message to show in the queue */
 obj_message = (ObjectMessage)qrec.receiveNoWait();
 new_order = (BolOrder)obj_message.getObject();
 customer = new_order.getCustomer();
 state = customer.getState();

 System.out.println("Order: for customer " + customer.getName());
 }
 catch (JMSException ex)
 {
 System.out.println("Exception: " + ex);
 }
 return new_order;
 }

Receiving Messages from a Destination Using a Transformation
A transformation can be applied when receiving a message from a queue or topic. The
transformation is applied to the message before returning it to JMS application.

The transformation can be specified using the setTransformation() interface of the
AQjmsQueueReceiver, AQjmsTopicSubscriber or AQjmsTopicReceiver.

Example 7-89 JMS: Receiving Messages from a Destination Using a
Transformation

Assume that the Western Shipping application retrieves messages from the
OE_bookedorders_topic. It specifies the transformation OE2WS to retrieve the message
as the Oracle object type WS_order. Assume that the WSOrder Java class has been
generated by Jpublisher to map to the Oracle object WS.WS_order:

public AQjmsAdtMessage retrieve_bookedorders(TopicSession jms_session)
 AQjmsTopicReceiver receiver;
 Topic topic;
 Message msg = null;

 try
 {
 /* get a handle to the OE_bookedorders_topic */
 topic = ((AQjmsSession)jms_session).getTopic("OE", "OE_bookedorders_topic");

 /* Create a receiver for WShip */

Chapter 7
Oracle Java Message Service Shared Interfaces

7-106

 receiver = ((AQjmsSession)jms_session).createTopicReceiver(
 topic, "WShip, null, WSOrder.getFactory());

 /* set the transformation in the publisher */
 receiver.setTransformation("OE2WS");
 msg = receiver.receive(10);
 }
 catch (JMSException ex)
 {
 System.out.println("Exception :", ex);
 }
 return (AQjmsAdtMessage)msg;
}

Specifying the Navigation Mode for Receiving Messages
public void setNavigationMode(int mode)
 throws JMSException

This method specifies the navigation mode for receiving messages. It has the following
parameter:

Parameter Description

mode New value of the navigation mode

Example 7-90 Specifying Navigation Mode for Receiving Messages

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "priority > 1 and tab.user_data.region like 'WESTERN %'", false,
 AQjmsAgent.getFactory());
subscriber1.setNavigationMode(AQjmsConstants.NAVIGATION_FIRST_MESSAGE);

/* get message for the subscriber, returning immediately if there was nomessage */
Message = subscriber.receive();

Receiving a Message Asynchronously
You can receive a message asynchronously two ways:

• Specifying a Message Listener at the Message Consumer

• Specifying a Message Listener at the Session

Chapter 7
Oracle Java Message Service Shared Interfaces

7-107

Specifying a Message Listener at the Message Consumer
public void setMessageListener(javax.jms.MessageListener myListener)
 throws JMSException

This method specifies a message listener at the message consumer. It has the
following parameter:

Parameter Description

myListener Sets the consumer message listener

Example 7-91 Specifying Message Listener at Message Consumer

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
MessageListener mLis = null;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory(
 "MYHOSTNAME", "MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);
shipped_orders = ((AQjmsSession)jms_sess).getTopic(
 "WS", "Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector */
subscriber1 = jms_sess.createDurableSubscriber(
 shipped_orders, 'WesternShipping',
 "priority > 1 and tab.user_data.region like 'WESTERN %'",
 false, AQjmsAgent.getFactory());
mLis = new myListener(jms_sess, "foo");

/* get message for the subscriber, returning immediately if there was nomessage */
subscriber.setMessageListener(mLis);
The definition of the myListener class
import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import java.util.*;
public class myListener implements MessageListener
{
 TopicSession mySess;
 String myName;
 /* constructor */
 myListener(TopicSession t_sess, String t_name)
 {
 mySess = t_sess;
 myName = t_name;
 }
 public onMessage(Message m)
 {
 System.out.println("Retrieved message with correlation: " ||
m.getJMSCorrelationID());

Chapter 7
Oracle Java Message Service Shared Interfaces

7-108

 try{
 /* commit the dequeue */
 mySession.commit();
 } catch (java.sql.SQLException e)
 {System.out.println("SQL Exception on commit"); }
 }
}

Specifying a Message Listener at the Session
public void setMessageListener(javax.jms.MessageListener listener)
 throws JMSException

This method specifies a message listener at the session.

Parameter Description

listener Message listener to associate with this session

Getting Message ID
This section contains these topics:

• Getting the Correlation Identifier

• Getting the Message Identifier

Getting the Correlation Identifier
public java.lang.String getJMSCorrelationID()
 throws JMSException

AQjmsMessage.getJMSCorrelationID() gets the correlation identifier of a message.

Getting the Message Identifier
public byte[] getJMSCorrelationIDAsBytes()
 throws JMSException

AQjmsMessage.getJMSMessageID() gets the message identifier of a message as bytes
or a string.

Getting JMS Message Properties
This section contains these topics:

• Getting a Boolean Message Property

• Getting a String Message Property

• Getting an Integer Message Property

• Getting a Double Message Property

• Getting a Float Message Property

• Getting a Byte Message Property

• Getting a Long Message Property

Chapter 7
Oracle Java Message Service Shared Interfaces

7-109

• Getting a Short Message Property

• Getting an Object Message Property

Getting a Boolean Message Property
public boolean getBooleanProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getBooleanProperty() gets a message property as Boolean. It has the
following parameter:

Parameter Description

name Name of the Boolean property

Getting a String Message Property
public java.lang.String getStringProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getStringProperty() gets a message property as string. It has the
following parameter:

Parameter Description

name Name of the string property

Getting an Integer Message Property
public int getIntProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getIntProperty() gets a message property as integer. It has the
following parameter:

Parameter Description

name Name of the integer property

Getting a Double Message Property
public double getDoubleProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getDoubleProperty() gets a message property as double. It has the
following parameter:

Parameter Description

name Name of the double property

Chapter 7
Oracle Java Message Service Shared Interfaces

7-110

Getting a Float Message Property
public float getFloatProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getFloatProperty() gets a message property as float. It has the
following parameter:

Parameter Description

name Name of the float property

Getting a Byte Message Property
public byte getByteProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getByteProperty() gets a message property as byte. It has the
following parameter:

Parameter Description

name Name of the byte property

Getting a Long Message Property
public long getLongProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getLongProperty() gets a message property as long. It has the
following parameter:

Parameter Description

name Name of the long property

Getting a Short Message Property
public short getShortProperty(java.lang.String name)
 throws JMSException

AQjmsMessage.getShortProperty() gets a message property as short. It has the
following parameter:

Parameter Description

name Name of the short property

Getting an Object Message Property
public java.lang.Object getObjectProperty(java.lang.String name)
 throws JMSException

Chapter 7
Oracle Java Message Service Shared Interfaces

7-111

AQjmsMessage.getObjectProperty() gets a message property as object. It has the
following parameter:

Parameter Description

name Name of the object property

Example 7-92 Getting Message Property as an Object

TextMessage message;
message.getObjectProperty("empid", new Integer(1000);

Closing and Shutting Down
This section contains these topics:

• Closing a MessageProducer

• Closing a Message Consumer

• Stopping a JMS Connection

• Closing a JMS Session

• Closing a JMS Connection

Closing a MessageProducer
public void close()
 throws JMSException

AQjmsProducer.close() closes a MessageProducer.

Closing a Message Consumer
public void close()
 throws JMSException

AQjmsConsumer.close() closes a message consumer.

Stopping a JMS Connection
public void stop()
 throws JMSException

AQjmsConnection.stop() stops a JMS connection.

Closing a JMS Session
public void close()
 throws JMSException

AQjmsSession.close() closes a JMS session.

Chapter 7
Oracle Java Message Service Shared Interfaces

7-112

Closing a JMS Connection
public void close()
 throws JMSException

AQjmsConnection.close() closes a JMS connection and releases all resources
allocated on behalf of the connection. Because the JMS provider typically allocates
significant resources outside the JVM on behalf of a connection, clients should close
them when they are not needed. Relying on garbage collection to eventually reclaim
these resources may not be timely enough.

Troubleshooting
This section contains these topics:

• Getting a JMS Error Code

• Getting a JMS Error Number

• Getting an Exception Linked to a JMS Exception

• Printing the Stack Trace for a JMS Exception

• Setting an Exception Listener

• Getting an Exception Listener

Getting a JMS Error Code
public java.lang.String getErrorCode()

AQjmsException.getErrorCode() gets the error code for a JMS exception.

Getting a JMS Error Number
public int getErrorNumber()

AQjmsException.getErrorNumber() gets the error number for a JMS exception.

Note:

This method will be deprecated in a future release. Use getErrorCode()
instead.

Getting an Exception Linked to a JMS Exception
public java.lang.String getLinkString()

AQjmsException.getLinkString() gets the exception linked to a JMS exception. In
general, this contains the SQL exception raised by the database.

Chapter 7
Oracle Java Message Service Shared Interfaces

7-113

Printing the Stack Trace for a JMS Exception
public void printStackTrace(java.io.PrintStream s)

AQjmsException.printStackTrace() prints the stack trace for a JMS exception.

Setting an Exception Listener
public void setExceptionListener(javax.jms.ExceptionListener listener)
 throws JMSException

AQjmsConnection.setExceptionListener() specifies an exception listener for a
connection. It has the following parameter:

Parameter Description

listener Exception listener

If an exception listener has been registered, then it is informed of any serious problem
detected for a connection. This is accomplished by calling the listener onException()
method, passing it a JMS exception describing the problem. This allows a JMS client
to be notified of a problem asynchronously. Some connections only consume
messages, so they have no other way to learn the connection has failed.

Example 7-93 Specifying Exception Listener for Connection

//register an exception listener
Connection jms_connection;
jms_connection.setExceptionListener(
 new ExceptionListener() {
 public void onException (JMSException jmsException) {
 System.out.println("JMS-EXCEPTION: " + jmsException.toString());
 }
 };
);

Getting an Exception Listener
public javax.jms.ExceptionListener getExceptionListener()
 throws JMSException

AQjmsConnection.getExceptionListener() gets the exception listener for the
connection.

Example 7-94 demonstrates how to use ExceptionListener with MessageListener.
Ensure that the following conditions are met:

• The user jmsuser with password jmsuser is created in the database, with
appropriate privileges.

• The queue demoQueue is created and started.

This example demonstrates how to make the MessageListener asynchronously
receive the messages, where the exception listener recreates the JMS objects in case
there is a connection restart.

Chapter 7
Oracle Java Message Service Shared Interfaces

7-114

Example 7-94 Using ExceptionListener with MessageListener

import java.util.Enumeration;
import java.util.Properties;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Queue;
import javax.jms.QueueBrowser;
import javax.jms.Session;
import javax.jms.TextMessage;

import oracle.jms.AQjmsConnectionFactory;
import oracle.jms.AQjmsFactory;
import oracle.jms.AQjmsSession;

public class JMSDemo {

 static String queueName = "demoQueue";

 static String queueOwner = "jmsuser";

 static String queueOwnerPassword = "jmsuser";

 static Connection connection = null;

 static int numberOfMessages = 25000;

 static int messageCount = 0;

 static String jdbcURL = "";

 public static void main(String args[]) {
 try {
 jdbcURL = System.getProperty("JDBC_URL");

 if (jdbcURL == null)
 System.out
 .println("The system property JDBC_URL has not been set, " +
 "usage:java -DJDBC_URL=xxx filename ");
 else {
 JMSDemo demo = new JMSDemo();
 demo.performJmsOperations();
 }
 } catch (Exception exception) {
 System.out.println("Exception : " + exception);
 exception.printStackTrace();
 } finally {
 try {
 if (connection != null)
 connection.close();
 } catch (Exception exc) {
 exc.printStackTrace();
 }
 }
 System.out.println("\nEnd of Demo aqjmsdemo11.");
 }

Chapter 7
Oracle Java Message Service Shared Interfaces

7-115

 public void performJmsOperations() {
 try {
 connection = getConnection(jdbcURL);
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 Queue queue = session.createQueue(queueName);

 // remove the messages from the Queue
 drainQueue(queueName, queueOwner, jdbcURL, true);

 // set the exception listener on the Connection
 connection.setExceptionListener(new DemoExceptionListener());

 MessageProducer producer = session.createProducer(queue);
 TextMessage textMessage = null;

 System.out.println("Sending " + numberOfMessages + " messages to queue "
 + queueName);
 for (int i = 0; i < numberOfMessages; i++) {
 textMessage = session.createTextMessage();
 textMessage.setText("Sample message text");
 producer.send(textMessage);
 }

 MessageConsumer consumer = session.createConsumer(queue);
 System.out.println("Setting the message listener ...");
 consumer.setMessageListener(new DemoMessageListener());
 connection.start();

 // Introduce a long wait to allow the listener to receive all the messages
 while (messageCount < numberOfMessages) {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException interruptedException) {
 }
 }
 } catch (JMSException jmsException) {
 jmsException.printStackTrace();
 }
 }

 // Sample message listener
 static class DemoMessageListener implements javax.jms.MessageListener {

 public void onMessage(Message message) {
 try {
 System.out.println("Message listener received message with JMSMessageID "
 + message.getJMSMessageID());
 messageCount++;
 } catch (JMSException jmsException) {
 System.out.println("JMSException " + jmsException.getMessage());
 }
 }
 }

 // sample exception listener
 static class DemoExceptionListener implements javax.jms.ExceptionListener {

 public void onException(JMSException jmsException) {
 try {
 // As a first step close the connection

Chapter 7
Oracle Java Message Service Shared Interfaces

7-116

 if (connection != null)
 connection.close();
 } catch (JMSException exception) {}

 try {
 System.out.println("Re-create the necessary JMS objects ...");
 connection = getConnection(jdbcURL);
 connection.start();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 Queue queue = session.createQueue(queueName);
 MessageConsumer consumer = session.createConsumer(queue);
 consumer.setMessageListener(new DemoMessageListener());
 } catch (JMSException newJmsException) {
 newJmsException.printStackTrace();
 }
 }
 }

 // Utility method to get a connection
 static Connection getConnection(String jdbcUrl) throws JMSException {
 Properties prop = new Properties();
 prop.put("user", queueOwner);
 prop.put("password", queueOwnerPassword);

 AQjmsConnectionFactory fact = (AQjmsConnectionFactory) AQjmsFactory
 .getConnectionFactory(jdbcUrl, prop);
 Connection conn = fact.createConnection();
 return conn;
 }

 // Utility method to remove the messages from the queue
 static void drainQueue(String queueName, String queueOwner, String jdbcUrl,
 boolean debugInfo) {
 Connection connection = null;
 Session session = null;
 long timeout = 10000;
 int count = 0;
 Message message = null;
 try {
 connection = getConnection(jdbcUrl);
 connection.start();
 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Queue queue = ((AQjmsSession) session).getQueue(queueOwner, queueName);

 MessageConsumer messageConsumer = session.createConsumer(queue);
 QueueBrowser browser = session.createBrowser(queue);
 Enumeration enumeration = browser.getEnumeration();

 if (enumeration.hasMoreElements()) {
 while ((message = messageConsumer.receive(timeout)) != null) {
 if (debugInfo) {
 count++;
 }
 }
 }
 messageConsumer.close();
 if (debugInfo) {
 System.out.println("Removed " + count + " messages from the queue : "
 + queueName);
 }

Chapter 7
Oracle Java Message Service Shared Interfaces

7-117

 } catch (JMSException jmsException) {
 jmsException.printStackTrace();
 } finally {
 try {
 if (session != null)
 session.close();

 if (connection != null)
 connection.close();
 } catch (Exception exception) {

 }
 }
 }

}

Example 7-95 Getting the Exception Listener for the Connection

//Get the exception listener
Connection jms_connection;
ExceptionListener el = jms_connection.getExceptionListener();

Oracle Java Message Service Types Examples
The following examples illustrate how to use Oracle JMS Types to dequeue and
enqueue Oracle Database Advanced Queuing (AQ) messages.

• How to Setup the Oracle Database Advanced Queuing JMS Type Examples

• JMS BytesMessage Examples

• JMS StreamMessage Examples

• JMS MapMessage Examples

• More Oracle Database Advanced Queuing JMS Examples

How to Set Up the Oracle Database Advanced Queuing JMS Type
Examples

To run Example 7-98 through Example 7-103 follow these steps:

1. Copy and save Example 7-96 as setup.sql.

2. Run setup.sql as follows:

sqlplus /NOLOG @setup.sql

3. Log in to SQL*Plus as jmsuser/jmsuser.

4. Run the corresponding pair of SQL scripts for each type of message.

For JMS BytesMessage, for example, run Example 7-98 and Example 7-99.

5. Ensure that your database parameter java_pool-size is large enough. For
example, you can use java_pool_size=20M.

Example 7-96 Setting Up Environment for Running JMS Types Examples

connect sys;
enter password: password

Chapter 7
Oracle Java Message Service Types Examples

7-118

Rem
Rem Create the JMS user: jmsuser
Rem

DROP USER jmsuser CASCADE;
CREATE USER jmsuser IDENTIFIED BY jmsuser;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;

set echo offset verify offconnect sysDROP USER jmsuser CASCADE;ACCEPT password CHAR
PROMPT 'Enter the password for JMSUSER: ' HIDECREATE USER jmsuser IDENTIFIED BY
&password;GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;GRANT EXECUTE ON
DBMS_AQADM TO jmsuser;GRANT EXECUTE ON DBMS_AQ TO jmsuser;GRANT EXECUTE ON DBMS_LOB
TO jmsuser;GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;connect jmsuser/&password

Rem
Rem Creating five AQ queue tables and five queues for five payloads:
Rem SYS.AQ$_JMS_TEXT_MESSAGE
Rem SYS.AQ$_JMS_BYTES_MESSAGE
Rem SYS.AQ$_JMS_STREAM_MESSAG
Rem SYS.AQ$_JMS_MAP_MESSAGE
Rem SYS.AQ$_JMS_MESSAGE
Rem

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_text',
 Queue_payload_type => 'SYS.AQ$_JMS_TEXT_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_bytes',
 Queue_payload_type => 'SYS.AQ$_JMS_BYTES_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_stream',
 Queue_payload_type => 'SYS.AQ$_JMS_STREAM_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_map',
 Queue_payload_type => 'SYS.AQ$_JMS_MAP_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (Queue_table => 'jmsuser.jms_qtt_general',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE', compatible => '8.1.0');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_text_que',
 Queue_table => 'jmsuser.jms_qtt_text');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_bytes_que',
 Queue_table => 'jmsuser.jms_qtt_bytes');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_stream_que',
 Queue_table => 'jmsuser.jms_qtt_stream');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_map_que',
 Queue_table => 'jmsuser.jms_qtt_map');
EXECUTE DBMS_AQADM.CREATE_QUEUE (Queue_name => 'jmsuser.jms_general_que',
 Queue_table => 'jmsuser.jms_qtt_general');

Rem
Rem Starting the queues and enable both enqueue and dequeue
Rem
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_text_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_bytes_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_stream_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_map_que');
EXECUTE DBMS_AQADM.START_QUEUE (Queue_name => 'jmsuser.jms_general_que');

Rem The supporting utility used in the example to help display results in SQLPLUS
enviroment

Chapter 7
Oracle Java Message Service Types Examples

7-119

Rem
Rem Display a RAW data in SQLPLUS
Rem
create or replace procedure display_raw(rdata raw)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 pos := 1;
 length := UTL_RAW.LENGTH(rdata);

 WHILE pos <= length LOOP
 IF pos+20 > length+1 THEN
 dbms_output.put_line(UTL_RAW.SUBSTR(rdata, pos, length-pos+1));
 ELSE
 dbms_output.put_line(UTL_RAW.SUBSTR(rdata, pos, 20));
 END IF;
 pos := pos+20;
 END LOOP;

END display_raw;
/

show errors;

Rem
Rem Display a BLOB data in SQLPLUS
Rem
create or replace procedure display_blob(bdata blob)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 length := dbms_lob.getlength(bdata);
 pos := 1;
 WHILE pos <= length LOOP
 display_raw(DBMS_LOB.SUBSTR(bdata, 2000, pos));
 pos := pos+2000;
 END LOOP;
END display_blob;
/

show errors;

Rem
Rem Display a VARCHAR data in SQLPLUS
Rem
create or replace procedure display_varchar(vdata varchar)
IS
 pos pls_integer;
 text_len pls_integer;
BEGIN
 text_len := length(vdata);
 pos := 1;

 WHILE pos <= text_len LOOP
 IF pos+20 > text_len+1 THEN
 dbms_output.put_line(SUBSTR(vdata, pos, text_len-pos+1));
 ELSE
 dbms_output.put_line(SUBSTR(vdata, pos, 20));
 END IF;

Chapter 7
Oracle Java Message Service Types Examples

7-120

 pos := pos+20;
 END LOOP;

END display_varchar;
/

show errors;

Rem
Rem Display a CLOB data in SQLPLUS
Rem
create or replace procedure display_clob(cdata clob)
IS
 pos pls_integer;
 length pls_integer;
BEGIN
 length := dbms_lob.getlength(cdata);
 pos := 1;
 WHILE pos <= length LOOP
 display_varchar(DBMS_LOB.SUBSTR(cdata, 2000, pos));
 pos := pos+2000;
 END LOOP;
END display_clob;
/

show errors;

Rem
Rem Display a SYS.AQ$_JMS_EXCEPTION data in SQLPLUS
Rem
Rem When application receives an ORA-24197 error, It means the JAVA stored
Rem procedures has thrown some exceptions that could not be catergorized. The
Rem user can use GET_EXCEPTION procedure of SYS.AQ$_JMS_BYTES_MESSAGE,
Rem SYS.AQ$_JMS_STREAM_MESSAG or SYS.AQ$_JMS_MAP_MESSAGE
Rem to retrieve a SYS.AQ$_JMS_EXCEPTION object which contains more detailed
Rem information on this JAVA exception including the exception name, JAVA error
Rem message and stack trace.
Rem
Rem This utility function is to help display the SYS.AQ$_JMS_EXCEPTION object in
Rem SQLPLUS
Rem
create or replace procedure display_exp(exp SYS.AQ$_JMS_EXCEPTION)
IS
 pos1 pls_integer;
 pos2 pls_integer;
 text_data varchar(2000);
BEGIN
 dbms_output.put_line('exception:'||exp.exp_name);
 dbms_output.put_line('err_msg:'||exp.err_msg);
 dbms_output.put_line('stack:'||length(exp.stack));
 pos1 := 1;
 LOOP
 pos2 := INSTR(exp.stack, chr(10), pos1);
 IF pos2 = 0 THEN
 pos2 := length(exp.stack)+1;
 END IF;

 dbms_output.put_line(SUBSTR(exp.stack, pos1, pos2-pos1));

 IF pos2 > length(exp.stack) THEN
 EXIT;

Chapter 7
Oracle Java Message Service Types Examples

7-121

 END IF;

 pos1 := pos2+1;
 END LOOP;

END display_exp;
/

show errors;

EXIT;

Example 7-97 Setting Up the Examples

Example 7-96 performs the necessary setup for the JMS types examples. Copy and
save it as setup.sql.

JMS BytesMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
BytesMessage.

Example 7-98 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS BytesMessage represented as
sys.aq$_jms_bytes_message type in the database. This message later can be
dequeued by a JAVA Oracle Java Message Service (Oracle JMS) client.

Example 7-99 illustrates how to use JMS type member functions with DBMS_AQ
functions to dequeue and retrieve data from a JMS BytesMessage represented as
sys.aq$_jms_bytes_message type in the database. This message might be enqueued
by an Oracle JMS client.

Example 7-98 Populating and Enqueuing a BytesMessage

set echo offset verify offconnect sysDROP USER jmsuser CASCADE;ACCEPT password CHAR
PROMPT 'Enter the password for JMSUSER: ' HIDECREATE USER jmsuser IDENTIFIED BY
&password;GRANT DBA, AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE to jmsuser;GRANT EXECUTE ON
DBMS_AQADM TO jmsuser;GRANT EXECUTE ON DBMS_AQ TO jmsuser;GRANT EXECUTE ON DBMS_LOB
TO jmsuser;GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;connect jmsuser/&password

SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_bytes_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty BytesMessage object
 message := sys.aq$_jms_bytes_message.construct;

 -- Shows how to set the JMS header

Chapter 7
Oracle Java Message Service Types Examples

7-122

 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_bytes_message

 -- Passing -1 reserve a new slot within the message store of
sys.aq$_jms_bytes_message.
 -- The maximum number of sys.aq$_jms_bytes_message type of messges to be
operated at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is already
20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.clear_body(-1);

 -- Write data into the BytesMessage paylaod. These functions are analogy of JMS
JAVA api's.
 -- See the document for detail.

 -- Write a byte to the BytesMessage payload
 message.write_byte(id, 10);

 -- Write a RAW data as byte array to the BytesMessage payload
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Write a portion of the RAW data as byte array to BytesMessage payload
 -- Note the offset follows JAVA convention, starting from 0
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')), 0, 16);

 -- Write a char to the BytesMessage payload
 message.write_char(id, 'A');

 -- Write a double to the BytesMessage payload
 message.write_double(id, 9999.99);

 -- Write a float to the BytesMessage payload
 message.write_float(id, 99.99);

 -- Write a int to the BytesMessage payload
 message.write_int(id, 12345);

 -- Write a long to the BytesMessage payload
 message.write_long(id, 1234567);

 -- Write a short to the BytesMessage payload
 message.write_short(id, 123);

Chapter 7
Oracle Java Message Service Types Examples

7-123

 -- Write a String to the BytesMessage payload,
 -- the String is encoded in UTF8 in the message payload
 message.write_utf(id, 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_bytes_message.clean_all();
 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_bytes_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

Example 7-99 Dequeuing and Retrieving JMS BytesMessage Data

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
set echo on
set serveroutput on size 20000

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 blob_len pls_integer;
 message sys.aq$_jms_bytes_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 gdata sys.aq$_jms_value;

Chapter 7
Oracle Java Message Service Types Examples

7-124

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_bytes_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

-- Shows how to retrieve the message payload of aq$_jms_bytes_message

-- Prepare call, send the content in the PL/SQL aq$_jms_bytes_message object to
 -- Java stored procedure(Jserv) in the form of a byte array.
 -- Passing -1 reserves a new slot in msg store of sys.aq$_jms_bytes_message.
 -- Max number of sys.aq$_jms_bytes_message type of messges to be operated at
 -- the same time in a session is 20. Call clean_body fn. with parameter -1
 -- might result in ORA-24199 error if messages operated on are already 20.
 -- You must call clean or clean_all function to clean up message store.
 id := message.prepare(-1);

-- Read data from BytesMessage paylaod. These fns. are analogy of JMS Java
-- API's. See the JMS Types chapter for detail.
 dbms_output.put_line('Payload:');

 -- read a byte from the BytesMessage payload
 dbms_output.put_line('read_byte:' || message.read_byte(id));

 -- read a byte array into a blob object from the BytesMessage payload
 dbms_output.put_line('read_bytes:');
 blob_len := message.read_bytes(id, blob_data, 272);
 display_blob(blob_data);

 -- read a char from the BytesMessage payload
 dbms_output.put_line('read_char:'|| message.read_char(id));

 -- read a double from the BytesMessage payload

Chapter 7
Oracle Java Message Service Types Examples

7-125

 dbms_output.put_line('read_double:'|| message.read_double(id));

 -- read a float from the BytesMessage payload
 dbms_output.put_line('read_float:'|| message.read_float(id));

 -- read a int from the BytesMessage payload
 dbms_output.put_line('read_int:'|| message.read_int(id));

 -- read a long from the BytesMessage payload
 dbms_output.put_line('read_long:'|| message.read_long(id));

 -- read a short from the BytesMessage payload
 dbms_output.put_line('read_short:'|| message.read_short(id));

 -- read a String from the BytesMessage payload.
 -- the String is in UTF8 encoding in the message payload
 dbms_output.put_line('read_utf:');
 message.read_utf(id, clob_data);
 display_clob(clob_data);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod retrieving on this message anymore
 message.clean(id);
 -- sys.aq$_jms_bytes_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_bytes_message.get_exception());

END;
/

commit;

JMS StreamMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
StreamMessage.

Example 7-100 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS StreamMessage represented as
sys.aq$_jms_stream_message type in the database. This message later can be
dequeued by an Oracle JMS client.

Example 7-101 shows how to use JMS type member functions with DBMS_AQ functions
to dequeue and retrieve data from a JMS StreamMessage represented as
sys.aq$_jms_stream_message type in the database. This message might be enqueued
by an Oracle JMS client.

Example 7-100 Populating and Enqueuing a JMS StreamMessage

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

Chapter 7
Oracle Java Message Service Types Examples

7-126

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_stream_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty StreamMessage object
 message := sys.aq$_jms_stream_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

 -- Shows how to populate the message payload of aq$_jms_stream_message

 -- Passing -1 reserve a new slot within the message store of
sys.aq$_jms_stream_message.
 -- The maximum number of sys.aq$_jms_stream_message type of messges to be
operated at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is already
20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.clear_body(-1);

 -- Write data into the message paylaod. These functions are analogy of JMS JAVA
api's.
 -- See the document for detail.

 -- Write a byte to the StreamMessage payload
 message.write_byte(id, 10);

Chapter 7
Oracle Java Message Service Types Examples

7-127

 -- Write a RAW data as byte array to the StreamMessage payload
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Write a portion of the RAW data as byte array to the StreamMessage payload
 -- Note the offset follows JAVA convention, starting from 0
 message.write_bytes(id, UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')), 0, 16);

 -- Write a char to the StreamMessage payload
 message.write_char(id, 'A');

 -- Write a double to the StreamMessage payload
 message.write_double(id, 9999.99);

 -- Write a float to the StreamMessage payload
 message.write_float(id, 99.99);

 -- Write a int to the StreamMessage payload
 message.write_int(id, 12345);

 -- Write a long to the StreamMessage payload
 message.write_long(id, 1234567);

 -- Write a short to the StreamMessage payload
 message.write_short(id, 123);

 -- Write a String to the StreamMessage payload
 message.write_string(id, 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_stream_message.clean_all();
 --message.clean(id);

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_stream_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

Example 7-101 Dequeuing and Retrieving Data From a JMS StreamMessage

set echo off
set verify off

Chapter 7
Oracle Java Message Service Types Examples

7-128

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password
set echo on
set serveroutput on

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 message sys.aq$_jms_stream_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_stream_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||
 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

 -- Shows how to retrieve the message payload of aq$_jms_stream_message

Chapter 7
Oracle Java Message Service Types Examples

7-129

 -- The prepare call send the content in the PL/SQL aq$_jms_stream_message object
to
 -- JAVA stored procedure(Jserv) in the form of byte array.
 -- Passing -1 reserve a new slot within the message store of
sys.aq$_jms_stream_message.
 -- The maximum number of sys.aq$_jms_stream_message type of messges to be
operated at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is already
20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.prepare(-1);

 -- Assume the users know the types of data in the StreamMessage payload.
 -- The user can use the specific read function corresponding with the data type.
 -- These functions are analogy of JMS JAVA api's. See the document for detail.
 dbms_output.put_line('Retrieve payload by Type:');

 -- Read a byte from the StreamMessage payload
 dbms_output.put_line('read_byte:' || message.read_byte(id));

 -- Read a byte array into a blob object from the StreamMessage payload
 dbms_output.put_line('read_bytes:');
 message.read_bytes(id, blob_data);
 display_blob(blob_data);

 -- Read another byte array into a blob object from the StreamMessage payload
 dbms_output.put_line('read_bytes:');
 message.read_bytes(id, blob_data);
 display_blob(blob_data);

 -- Read a char from the StreamMessage payload
 dbms_output.put_line('read_char:'|| message.read_char(id));

 -- Read a double from the StreamMessage payload
 dbms_output.put_line('read_double:'|| message.read_double(id));

 -- Read a float from the StreamMessage payload
 dbms_output.put_line('read_float:'|| message.read_float(id));

 -- Read a int from the StreamMessage payload
 dbms_output.put_line('read_int:'|| message.read_int(id));

 -- Read a long from the StreamMessage payload
 dbms_output.put_line('read_long:'|| message.read_long(id));

 -- Read a short from the StreamMessage payload
 dbms_output.put_line('read_short:'|| message.read_short(id));

 -- Read a String into a clob data from the StreamMessage payload
 dbms_output.put_line('read_string:');
 message.read_string(id, clob_data);
 display_clob(clob_data);

 -- Assume the users do not know the types of data in the StreamMessage payload.
 -- The user can use read_object method to read the data into a sys.aq$_jms_value
object

Chapter 7
Oracle Java Message Service Types Examples

7-130

 -- These functions are analogy of JMS JAVA api's. See the document for detail.

 -- Reset the stream pointer to the begining of the message so that we can read
throught
 -- the message payload again.
 message.reset(id);

 LOOP
 message.read_object(id, gdata);
 IF gdata IS NULL THEN
 EXIT;
 END IF;

 CASE gdata.type
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTE THEN
 dbms_output.put_line('read_object/byte:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_SHORT THEN
 dbms_output.put_line('read_object/short:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_INTEGER THEN
 dbms_output.put_line('read_object/int:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_LONG THEN
 dbms_output.put_line('read_object/long:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_FLOAT THEN
 dbms_output.put_line('read_object/float:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_DOUBLE THEN
 dbms_output.put_line('read_object/double:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BOOLEAN THEN
 dbms_output.put_line('read_object/boolean:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_CHARACTER THEN
 dbms_output.put_line('read_object/char:' || gdata.char_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_STRING THEN
 dbms_output.put_line('read_object/string:');
 display_clob(gdata.text_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTES THEN
 dbms_output.put_line('read_object/bytes:');
 display_blob(gdata.bytes_val);
 ELSE dbms_output.put_line('No such data type');
 END CASE;

 END LOOP;

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod retrieving on this message anymore
 message.clean(id);
 -- sys.aq$_jms_stream_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

JMS MapMessage Examples
This section includes examples that illustrate enqueuing and dequeuing of a JMS
MapMessage.

Chapter 7
Oracle Java Message Service Types Examples

7-131

Example 7-102 shows how to use JMS type member functions with DBMS_AQ functions
to populate and enqueue a JMS MapMessage represented as
sys.aq$_jms_map_message type in the database. This message later can be dequeued
by an Oracle JMS client.

Example 7-103 illustrates how to use JMS type member functions with DBMS_AQ
functions to dequeue and retrieve data from a JMS MapMessage represented as
sys.aq$_jms_map_message type in the database. This message can be enqueued by
an Oracle JMS client.

Example 7-102 Populating and Enqueuing a JMS MapMessage

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

SET ECHO ON
set serveroutput on

DECLARE

 id pls_integer;
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_map_message;
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN

 -- Consturct a empty map message object
 message := sys.aq$_jms_map_message.construct;

 -- Shows how to set the JMS header
 message.set_replyto(agent);
 message.set_type('tkaqpet1');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 -- Shows how to set JMS user properties
 message.set_string_property('color', 'RED');
 message.set_int_property('year', 1999);
 message.set_float_property('price', 16999.99);
 message.set_long_property('mileage', 300000);
 message.set_boolean_property('import', True);
 message.set_byte_property('password', -127);

Chapter 7
Oracle Java Message Service Types Examples

7-132

 -- Shows how to populate the message payload of aq$_jms_map_message

 -- Passing -1 reserve a new slot within the message store of
sys.aq$_jms_map_message.
 -- The maximum number of sys.aq$_jms_map_message type of messges to be operated
at
 -- the same time within a session is 20. Calling clean_body function with
parameter -1
 -- might result a ORA-24199 error if the messages currently operated is already
20.
 -- The user is responsible to call clean or clean_all function to clean up
message store.
 id := message.clear_body(-1);

 -- Write data into the message paylaod. These functions are analogy of JMS JAVA
api's.
 -- See the document for detail.

 -- Set a byte entry in map message payload
 message.set_byte(id, 'BYTE', 10);

 -- Set a byte array entry using RAW data in map message payload
 message.set_bytes(id, 'BYTES', UTL_RAW.XRANGE(HEXTORAW('00'), HEXTORAW('FF')));

 -- Set a byte array entry using only a portion of the RAW data in map message
payload
 -- Note the offset follows JAVA convention, starting from 0
 message.set_bytes(id, 'BYTES_PART', UTL_RAW.XRANGE(HEXTORAW('00'),
HEXTORAW('FF')), 0, 16);

 -- Set a char entry in map message payload
 message.set_char(id, 'CHAR', 'A');

 -- Set a double entry in map message payload
 message.set_double(id, 'DOUBLE', 9999.99);

 -- Set a float entry in map message payload
 message.set_float(id, 'FLOAT', 99.99);

 -- Set a int entry in map message payload
 message.set_int(id, 'INT', 12345);

 -- Set a long entry in map message payload
 message.set_long(id, 'LONG', 1234567);

 -- Set a short entry in map message payload
 message.set_short(id, 'SHORT', 123);

 -- Set a String entry in map message payload
 message.set_string(id, 'STRING', 'Hello World!');

 -- Flush the data from JAVA stored procedure (JServ) to PL/SQL side
 -- Without doing this, the PL/SQL message is still empty.
 message.flush(id);

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 sys.aq$_jms_map_message.clean_all();
 --message.clean(id);

Chapter 7
Oracle Java Message Service Types Examples

7-133

 -- Enqueue this message into AQ queue using DBMS_AQ package
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_map_que',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

END;
/

commit;

Example 7-103 Dequeuing and Retrieving Data From a JMS MapMessage

set echo off
set verify off

DROP USER jmsuser CASCADE;

ACCEPT password CHAR PROMPT 'Enter the password for JMSUSER: ' HIDE

CREATE USER jmsuser IDENTIFIED BY &password;
GRANT EXECUTE ON DBMS_AQADM TO jmsuser;
GRANT EXECUTE ON DBMS_AQ TO jmsuser;
GRANT EXECUTE ON DBMS_LOB TO jmsuser;
GRANT EXECUTE ON DBMS_JMS_PLSQL TO jmsuser;
connect jmsuser/&password

set echo on
set serveroutput on

DECLARE

 id pls_integer;
 blob_data blob;
 clob_data clob;
 message sys.aq$_jms_map_message;
 agent sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);
 name_arr sys.aq$_jms_namearray;
 gdata sys.aq$_jms_value;

 java_exp exception;
 pragma EXCEPTION_INIT(java_exp, -24197);
BEGIN
 DBMS_OUTPUT.ENABLE (20000);

 -- Dequeue this message from AQ queue using DBMS_AQ package
 dbms_aq.dequeue(queue_name => 'jmsuser.jms_map_que',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 -- Retrieve the header
 agent := message.get_replyto;

 dbms_output.put_line('Type: ' || message.get_type ||

Chapter 7
Oracle Java Message Service Types Examples

7-134

 ' UserId: ' || message.get_userid ||
 ' AppId: ' || message.get_appid ||
 ' GroupId: ' || message.get_groupid ||
 ' GroupSeq: ' || message.get_groupseq);

 -- Retrieve the user properties
 dbms_output.put_line('price: ' || message.get_float_property('price'));
 dbms_output.put_line('color: ' || message.get_string_property('color'));
 IF message.get_boolean_property('import') = TRUE THEN
 dbms_output.put_line('import: Yes');
 ELSIF message.get_boolean_property('import') = FALSE THEN
 dbms_output.put_line('import: No');
 END IF;
 dbms_output.put_line('year: ' || message.get_int_property('year'));
 dbms_output.put_line('mileage: ' || message.get_long_property('mileage'));
 dbms_output.put_line('password: ' || message.get_byte_property('password'));

 -- Shows how to retrieve the message payload of aq$_jms_map_message

 -- 'Prepare' sends the content in the PL/SQL aq$_jms_map_message object to
 -- Java stored procedure(Jserv) in the form of byte array.
 -- Passing -1 reserve a new slot within the message store of
 -- sys.aq$_jms_map_message. The maximum number of sys.aq$_jms_map_message
 -- type of messges to be operated at the same time within a session is 20.
 -- Calling clean_body function with parameter -1
 -- might result a ORA-24199 error if the messages currently operated is
 -- already 20. The user is responsible to call clean or clean_all function
 -- to clean up message store.
 id := message.prepare(-1);

 -- Assume the users know the names and types in the map message payload.
 -- The user can use names to get the corresponsing values.
 -- These functions are analogous to JMS Java API's. See JMS Types chapter
 -- for detail.
 dbms_output.put_line('Retrieve payload by Name:');

 -- Get a byte entry from the map message payload
 dbms_output.put_line('get_byte:' || message.get_byte(id, 'BYTE'));

 -- Get a byte array entry from the map message payload
 dbms_output.put_line('get_bytes:');
 message.get_bytes(id, 'BYTES', blob_data);
 display_blob(blob_data);

 -- Get another byte array entry from the map message payload
 dbms_output.put_line('get_bytes:');
 message.get_bytes(id, 'BYTES_PART', blob_data);
 display_blob(blob_data);

 -- Get a char entry from the map message payload
 dbms_output.put_line('get_char:'|| message.get_char(id, 'CHAR'));

 -- get a double entry from the map message payload
 dbms_output.put_line('get_double:'|| message.get_double(id, 'DOUBLE'));

 -- Get a float entry from the map message payload
 dbms_output.put_line('get_float:'|| message.get_float(id, 'FLOAT'));

 -- Get a int entry from the map message payload
 dbms_output.put_line('get_int:'|| message.get_int(id, 'INT'));

Chapter 7
Oracle Java Message Service Types Examples

7-135

 -- Get a long entry from the map message payload
 dbms_output.put_line('get_long:'|| message.get_long(id, 'LONG'));

 -- Get a short entry from the map message payload
 dbms_output.put_line('get_short:'|| message.get_short(id, 'SHORT'));

 -- Get a String entry from the map message payload
 dbms_output.put_line('get_string:');
 message.get_string(id, 'STRING', clob_data);
 display_clob(clob_data);

 -- Assume users do not know names and types in map message payload.
 -- User can first retrieve the name array containing all names in the
 -- payload and iterate through the name list and get the corresponding
 -- value. These functions are analogous to JMS Java API's.
 -- See JMS Type chapter for detail.
 dbms_output.put_line('Retrieve payload by iteration:');

 -- Get the name array from the map message payload
 name_arr := message.get_names(id);

 -- Iterate through the name array to retrieve the value for each of the name.
 FOR i IN name_arr.FIRST..name_arr.LAST LOOP

 -- Test if a name exist in the map message payload
 -- (It is not necessary in this case, just a demostration on how to use it)
 IF message.item_exists(id, name_arr(i)) THEN
 dbms_output.put_line('item exists:'||name_arr(i));

 -- Because we do not know the type of entry, we must use sys.aq$_jms_value
 -- type object for the data returned
 message.get_object(id, name_arr(i), gdata);
 IF gdata IS NOT NULL THEN
 CASE gdata.type
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTE
 THEN dbms_output.put_line('get_object/byte:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_SHORT
 THEN dbms_output.put_line('get_object/short:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_INTEGER
 THEN dbms_output.put_line('get_object/int:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_LONG
 THEN dbms_output.put_line('get_object/long:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_FLOAT
 THEN dbms_output.put_line('get_object/float:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_DOUBLE
 THEN dbms_output.put_line('get_object/double:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BOOLEAN
 THEN dbms_output.put_line('get_object/boolean:' || gdata.num_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_CHARACTER
 THEN dbms_output.put_line('get_object/char:' || gdata.char_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_STRING
 THEN dbms_output.put_line('get_object/string:');
 display_clob(gdata.text_val);
 WHEN sys.dbms_jms_plsql.DATA_TYPE_BYTES
 THEN
 dbms_output.put_line('get_object/bytes:');
 display_blob(gdata.bytes_val);
 ELSE dbms_output.put_line('No such data type');
 END CASE;
 END IF;

Chapter 7
Oracle Java Message Service Types Examples

7-136

 ELSE
 dbms_output.put_line('item not exists:'||name_arr(i));
 END IF;

 END LOOP;

 -- Use either clean_all or clean to clean up the message store when the user
 -- do not plan to do paylaod population on this message anymore
 message.clean(id);
 -- sys.aq$_jms_map_message.clean_all();

 EXCEPTION
 WHEN java_exp THEN
 dbms_output.put_line('exception information:');
 display_exp(sys.aq$_jms_stream_message.get_exception());

END;
/

commit;

More Oracle Database Advanced Queuing JMS Examples
The sample program in Example 7-104 enqueues a large TextMessage (along with
JMS user properties) in an Oracle Database Advanced Queuing queue created
through the Oracle JMS administrative interfaces to hold JMS TEXT messages. Both
the TextMessage and BytesMessage enqueued in this example can be dequeued using
Oracle JMS clients.

The sample program in Example 7-105 enqueues a large BytesMessage.

Example 7-104 Enqueuing a Large TextMessage

DECLARE

 text varchar2(32767);
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_text_message;

 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

BEGIN

 message := sys.aq$_jms_text_message.construct;

 message.set_replyto(agent);
 message.set_type('tkaqpet2');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq');
 message.set_groupid('st');
 message.set_groupseq(1);

 message.set_boolean_property('import', True);
 message.set_string_property('color', 'RED');
 message.set_short_property('year', 1999);
 message.set_long_property('mileage', 300000);
 message.set_double_property('price', 16999.99);

Chapter 7
Oracle Java Message Service Types Examples

7-137

 message.set_byte_property('password', 127);

 FOR i IN 1..500 LOOP
 text := CONCAT (text, '1234567890');
 END LOOP;

 message.set_text(text);

 dbms_aq.enqueue(queue_name => 'jmsuser.jms_text_t1',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

END;

Example 7-105 Enqueuing a Large BytesMessage

DECLARE

 text VARCHAR2(32767);
 bytes RAW(32767);
 agent sys.aq$_agent := sys.aq$_agent(' ', null, 0);
 message sys.aq$_jms_bytes_message;
 body BLOB;
 position INT;

 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 msgid raw(16);

BEGIN

 message := sys.aq$_jms_bytes_message.construct;

 message.set_replyto(agent);
 message.set_type('tkaqper4');
 message.set_userid('jmsuser');
 message.set_appid('plsql_enq_raw');
 message.set_groupid('st');
 message.set_groupseq(1);

 message.set_boolean_property('import', True);
 message.set_string_property('color', 'RED');
 message.set_short_property('year', 1999);
 message.set_long_property('mileage', 300000);
 message.set_double_property('price', 16999.99);

-- prepare a huge payload into a blob

 FOR i IN 1..1000 LOOP
 text := CONCAT (text, '0123456789ABCDEF');
 END LOOP;

 bytes := HEXTORAW(text);

 dbms_lob.createtemporary(lob_loc => body, cache => TRUE);
 dbms_lob.open (body, DBMS_LOB.LOB_READWRITE);
 position := 1 ;
 FOR i IN 1..10 LOOP
 dbms_lob.write (lob_loc => body,

Chapter 7
Oracle Java Message Service Types Examples

7-138

 amount => FLOOR((LENGTH(bytes)+1)/2),
 offset => position,
 buffer => bytes);
 position := position + FLOOR((LENGTH(bytes)+1)/2) ;
 END LOOP;

-- end of the preparation

 message.set_bytes(body);
 dbms_aq.enqueue(queue_name => 'jmsuser.jms_bytes_t1',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => msgid);

 dbms_lob.freetemporary(lob_loc => body);
END;

Chapter 7
Oracle Java Message Service Types Examples

7-139

8
Oracle Database Advanced Queuing
Operations Using PL/SQL

These topics describes the Oracle Database Advanced Queuing (AQ) PL/SQL
operational interface.

• Using Secure Queues

• Enqueuing Messages

• Enqueuing an Array of Messages

• Listening to One or More Queues

• Dequeuing Messages

• Dequeuing an Array of Messages

• Registering for Notification

• Posting for Subscriber Notification

• Adding an Agent to the LDAP Server

• Removing an Agent from the LDAP Server

See Also:

• Oracle Database Advanced Queuing: Programmatic Interfaces for a list
of available functions in each programmatic interface

• "DBMS_AQ" in Oracle Database PL/SQL Packages and Types
Reference for more information on the PL/SQL interface

• Oracle Database Advanced Queuing Java API Reference for more
information on the Java interface

• "More OCI Relational Functions" in Oracle Call Interface Programmer's
Guide

• "OCI Programming Advanced Topics" in Oracle Call Interface
Programmer's Guide for more information on the Oracle Call Interface
(OCI)

Using Secure Queues
For secure queues, you must specify the sender_id in the messages_properties
parameter.

See "MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages and
Types Reference for more information about sender_id.

8-1

When you use secure queues, the following are required:

• You must have created a valid Oracle Database Advanced Queuing agent using
DBMS_AQADM.CREATE_AQ_AGENT.

• You must map sender_id to a database user with enqueue privileges on the
secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this.

See Also:

– "Creating an Oracle Database Advanced Queuing Agent"

– "Enabling Database Access"

Enqueuing Messages
This procedure adds a message to the specified queue.

DBMS_AQ.ENQUEUE(
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 message_properties IN message_properties_t,
 payload IN "type_name",
 msgid OUT RAW);

It is not possible to update the message payload after a message has been enqueued.
If you want to change the message payload, then you must dequeue the message and
enqueue a new message.

To store a payload of type RAW, Oracle Database Advanced Queuing creates a queue
table with LOB column as the payload repository. The maximum size of the payload is
determined by which programmatic interface you use to access Oracle Database
Advanced Queuing. For PL/SQL, Java and precompilers the limit is 32K; for the OCI
the limit is 4G.

If a message is enqueued to a multiconsumer queue with no recipient and the queue
has no subscribers (or rule-based subscribers that match this message), then Oracle
error ORA 24033 is raised. This is a warning that the message will be discarded
because there are no recipients or subscribers to whom it can be delivered.

If several messages are enqueued in the same second, then they all have the same
enq_time. In this case the order in which messages are dequeued depends on
step_no, a variable that is monotonically increasing for each message that has the
same enq_time. There is no situation when both enq_time and step_no are the same
for two messages enqueued in the same session.

Enqueue Options

The enqueue_options parameter specifies the options available for the enqueue
operation. It has the following attributes:

• visibility

The visibility attribute specifies the transactional behavior of the enqueue
request. ON_COMMIT (the default) makes the enqueue is part of the current

Chapter 8
Enqueuing Messages

8-2

transaction. IMMEDIATE makes the enqueue operation an autonomous transaction
which commits at the end of the operation.

Do not use the IMMEDIATE option when you want to use LOB locators. LOB
locators are valid only for the duration of the transaction. Your locator will not be
valid, because the immediate option automatically commits the transaction.

You must set the visibility attribute to IMMEDIATE to use buffered messaging.

• relative_msgid

The relative_msgid attribute specifies the message identifier of the message
referenced in the sequence deviation operation. This parameter is ignored unless
sequence_deviation is specified with the BEFORE attribute.

• sequence_deviation

The sequence_deviation attribute specifies when the message should be
dequeued, relative to other messages already in the queue. BEFORE puts the
message ahead of the message specified by relative_msgid. TOP puts the
message ahead of any other messages.

Specifying sequence_deviation for a message introduces some restrictions for
the delay and priority values that can be specified for this message. The delay of
this message must be less than or equal to the delay of the message before which
this message is to be enqueued. The priority of this message must be greater than
or equal to the priority of the message before which this message is to be
enqueued.

Note:

The sequence_deviation attribute has no effect in releases prior to
Oracle Database Advanced Queuing 10g Release 1 (10.1) if
message_grouping is set to TRANSACTIONAL.

The sequence deviation feature is deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2).

• transformation

The transformation attribute specifies a transformation that will be applied before
enqueuing the message. The return type of the transformation function must
match the type of the queue.

• delivery_mode

If the delivery_mode attribute is the default PERSISTENT, then the message is
enqueued as a persistent message. If it is set to BUFFERED, then the message is
enqueued as an buffered message. Null values are not allowed.

Message Properties

The message_properties parameter contains the information that Oracle Database
Advanced Queuing uses to manage individual messages. It has the following
attributes:

• priority

Chapter 8
Enqueuing Messages

8-3

The priority attribute specifies the priority of the message. It can be any number,
including negative numbers. A smaller number indicates higher priority.

• delay

The delay attribute specifies the number of seconds during which a message is in
the WAITING state. After this number of seconds, the message is in the READY state
and available for dequeuing. If you specify NO_DELAY, then the message is
available for immediate dequeuing. Dequeuing by msgid overrides the delay
specification.

Note:

Delay is not supported with buffered messaging.

• expiration

The expiration attribute specifies the number of seconds during which the
message is available for dequeuing, starting from when the message reaches the
READY state. If the message is not dequeued before it expires, then it is moved to
the exception queue in the EXPIRED state. If you specify NEVER, then the message
does not expire.

Note:

Message delay and expiration are enforced by the queue monitor (QMN)
background processes. You must start the QMN processes for the
database if you intend to use the delay and expiration features of Oracle
Database Advanced Queuing.

• correlation

The correlation attribute is an identifier supplied by the producer of the message
at enqueue time.

• attempts

The attemps attribute specifies the number of attempts that have been made to
dequeue the message. This parameter cannot be set at enqueue time.

• recipient_list

The recipient_list parameter is valid only for queues that allow multiple
consumers. The default recipients are the queue subscribers.

• exception_queue

The exception_queue attribute specifies the name of the queue into which the
message is moved if it cannot be processed successfully. If the exception queue
specified does not exist at the time of the move, then the message is moved to the
default exception queue associated with the queue table, and a warning is logged
in the alert log.

• delivery_mode

Any value for delivery_mode specified in message properties at enqueue time is
ignored. The value specified in enqueue options is used to set the delivery mode

Chapter 8
Enqueuing Messages

8-4

of the message. If the delivery mode in enqueue options is left unspecified, then it
defaults to persistent.

• enqueue_time

The enqueue_time attribute specifies the time the message was enqueued. This
value is always in Universal Coordinated Time (UTC), and is determined by the
system and cannot be set by the user at enqueue time.

Note:

Because information about seasonal changes in the system clock
(switching between standard time and daylight-saving time, for example)
is stored with each queue table, seasonal changes are automatically
reflected in enqueue_time. If the system clock is changed for some other
reason, then you must restart the database for Oracle Database
Advanced Queuing to pick up the changed time.

• state

The state attribute specifies the state of the message at the time of the dequeue.
This parameter cannot be set at enqueue time.

• sender_id

The sender_id attribute is an identifier of type aq$_agent specified at enqueue
time by the message producer.

• original_msgid

The original_msgid attribute is used by Oracle Database AQ for propagating
messages.

• transaction_group

The transaction_group attribute specifies the transaction group for the message.
This attribute is set only by DBMS_AQ.DEQUEUE_ARRAY. This attribute cannot be used
to set the transaction group of a message through DBMS_AQ.ENQUEUE or
DBMS_AQ.ENQUEUE_ARRAY.

• user_property

The user_property attribute is optional. It is used to store additional information
about the payload.

The examples in the following topics use the same users, message types, queue
tables, and queues as do the examples in Oracle Database Advanced Queuing
Administrative Interface. If you have not already created these structures in your test
environment, then you must run the following examples:

• Example 14-1

• Example 14-2

• Example 14-3

• Example 14-5

• Example 14-7

• Example 14-8

Chapter 8
Enqueuing Messages

8-5

• Example 14-23

• Example 14-25

• Example 14-26

• Example 14-27

• Example 14-28

• Example 14-36

For Example 14-1, you must connect as a user with administrative privileges. For the
other examples in the preceding list, you can connect as user test_adm. After you
have created the queues, you must start them as shown in "Starting a Queue". Except
as noted otherwise, you can connect as ordinary queue user 'test' to run all
examples.

Enqueuing a LOB Type Message

Example 8-3 creates procedure blobenqueue() using the test.lob_type message
payload object type created in Example 14-1. On enqueue, the LOB attribute is set to
EMPTY_BLOB. After the enqueue completes, but before the transaction is committed, the
LOB attribute is selected from the user_data column of the test.lob_qtab queue
table. The LOB data is written to the queue using the LOB interfaces (which are
available through both OCI and PL/SQL). The actual enqueue operation is shown in

On dequeue, the message payload will contain the LOB locator. You can use this LOB
locator after the dequeue, but before the transaction is committed, to read the LOB
data. This is shown in Example 8-14.

Enqueuing Multiple Messages to a Single-Consumer Queue

Example 8-5 enqueues six messages to test.obj_queue. These messages are
dequeued in Example 8-17.

Enqueuing Multiple Messages to a Multiconsumer Queue

Example 8-6 requires that you connect as user 'test_adm' to add subscribers RED and
GREEN to queue test.multiconsumer_queue. The subscribers are required for
Example 8-7.

Example 8-7 enqueues multiple messages from sender 001. MESSAGE 1 is intended
for all queue subscribers. MESSAGE 2 is intended for RED and BLUE. These
messages are dequeued in Example 8-17.

Enqueuing Grouped Messages

Example 8-8 enqueues three groups of messages, with three messages in each
group. These messages are dequeued in Example 8-16.

Enqueuing a Message with Delay and Expiration

In Example 8-9, an application wants a message to be dequeued no earlier than a
week from now, but no later than three weeks from now. Because expiration is
calculated from the earliest dequeue time, this requires setting the expiration time for
two weeks.

Chapter 8
Enqueuing Messages

8-6

Example 8-1 Enqueuing a Message, Specifying Queue Name and Payload

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'TEST MESSAGE', 'First message to obj_queue');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 8-2 Enqueuing a Message, Specifying Priority

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.order_typ;
BEGIN
 message := test.order_typ(002, 'PRIORITY MESSAGE', 'priority 30');
 message_properties.priority := 30;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.priority_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 8-3 Creating an Enqueue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE blobenqueue(msgno IN NUMBER) AS
 enq_userdata test.lob_typ;
 enq_msgid RAW(16);
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 lob_loc BLOB;
 buffer RAW(4096);
BEGIN
 buffer := HEXTORAW(RPAD('FF', 4096, 'FF'));
 enq_userdata := test.lob_typ(msgno, 'Large Lob data', EMPTY_BLOB(), msgno);
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.lob_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => enq_userdata,
 msgid => enq_msgid);
 SELECT t.user_data.data INTO lob_loc
 FROM lob_qtab t
 WHERE t.msgid = enq_msgid;
 DBMS_LOB.WRITE(lob_loc, 2000, 1, buffer);

Chapter 8
Enqueuing Messages

8-7

 COMMIT;
END;
/

Example 8-4 Enqueuing a LOB Type Message

BEGIN
 FOR i IN 1..5 LOOP
 blobenqueue(i);
 END LOOP;
END;
/

Example 8-5 Enqueuing Multiple Messages

SET SERVEROUTPUT ON
DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'ORANGE', 'ORANGE enqueued first.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'ORANGE', 'ORANGE also enqueued second.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'YELLOW', 'YELLOW enqueued third.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'VIOLET', 'VIOLET enqueued fourth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'PURPLE', 'PURPLE enqueued fifth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 message := test.message_typ(001, 'PINK', 'PINK enqueued sixth.');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,

Chapter 8
Enqueuing Messages

8-8

 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 8-6 Adding Subscribers RED and GREEN

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('RED', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_queue',
 subscriber => subscriber);

 subscriber := sys.aq$_agent('GREEN', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_queue',
 subscriber => subscriber);
END;
/

Example 8-7 Enqueuing Multiple Messages to a Multiconsumer Queue

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 recipients DBMS_AQ.aq$_recipient_list_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'MESSAGE 1','For queue subscribers');
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.multiconsumer_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

 message := test.message_typ(001, 'MESSAGE 2', 'For two recipients');
 recipients(1) := sys.aq$_agent('RED', NULL, NULL);
 recipients(2) := sys.aq$_agent('BLUE', NULL, NULL);
 message_properties.recipient_list := recipients;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.multiconsumer_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 8-8 Enqueuing Grouped Messages

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;

Chapter 8
Enqueuing Messages

8-9

BEGIN
 FOR groupno in 1..3 LOOP
 FOR msgno in 1..3 LOOP
 message := test.message_typ(
 001,
 'GROUP ' || groupno,
 'Message ' || msgno || ' in group ' || groupno);
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.group_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 END LOOP;
 COMMIT;
 END LOOP;
END;
/

Example 8-9 Enqueuing a Message, Specifying Delay and Expiration

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'DELAYED', 'Message is delayed one week.');
 message_properties.delay := 7*24*60*60;
 message_properties.expiration := 2*7*24*60*60;
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.obj_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Example 8-10 Enqueuing a Message, Specifying a Transformation

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 message := test.message_typ(001, 'NORMAL MESSAGE', 'enqueued to obj_queue');
 enqueue_options.transformation := 'message_order_transform';
 DBMS_AQ.ENQUEUE(
 queue_name => 'test.priority_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 COMMIT;
END;
/

Chapter 8
Enqueuing Messages

8-10

Enqueuing an Array of Messages
Use the ENQUEUE_ARRAY function to enqueue an array of payloads using a
corresponding array of message properties.

DBMS_AQ.ENQUEUE_ARRAY(
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 array_size IN PLS_INTEGER,
 message_properties_array IN message_properties_array_t,
 payload_array IN VARRAY,
 msid_array OUT msgid_array_t)
RETURN PLS_INTEGER;

The output is an array of message identifiers of the enqueued messages. The function
returns the number of messages successfully enqueued.

Array enqueuing is not supported for buffered messages, but you can still use
DBMS_AQ.ENQUEUE_ARRAY() to enqueue buffered messages by setting array_size to 1.

The message_properties_array parameter is an array of message properties. Each
element in the payload array must have a corresponding element in this record. All
messages in an array have the same delivery mode.

The payload structure can be a VARRAY or nested table. The message IDs are
returned into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

See Also:

• "Enqueue Options"

• "Message Properties"

Example 8-11 Enqueuing an Array of Messages

DECLARE
 enqueue_options DBMS_AQ.enqueue_options_t;
 msg_prop_array DBMS_AQ.message_properties_array_t;
 msg_prop DBMS_AQ.message_properties_t;
 payload_array test.msg_table;
 msgid_array DBMS_AQ.msgid_array_t;
 retval PLS_INTEGER;
BEGIN
 payload_array := msg_table(
 message_typ(001, 'MESSAGE 1', 'array enqueued to obj_queue'),
 message_typ(001, 'MESSAGE 2', 'array enqueued to obj_queue'));
 msg_prop_array := DBMS_AQ.message_properties_array_t(msg_prop, msg_prop);

 retval := DBMS_AQ.ENQUEUE_ARRAY(
 queue_name => 'test.obj_queue',

Chapter 8
Enqueuing an Array of Messages

8-11

 enqueue_options => enqueue_options,
 array_size => 2,
 message_properties_array => msg_prop_array,
 payload_array => payload_array,
 msgid_array => msgid_array);
 COMMIT;
END;/

Listening to One or More Queues
This procedure specifies which queue or queues to monitor.

DBMS_AQ.LISTEN(
 agent_list IN aq$_agent_list_t,
 wait IN BINARY_INTEGER DEFAULT FOREVER,
 listen_delivery_mode IN PLS_INTEGER DEFAULT PERSISTENT,
 agent OUT sys.aq$_agent
 message_delivery_mode OUT PLS_INTEGER);

TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;

This call takes a list of agents as an argument. Each agent is identified by a unique
combination of name, address, and protocol.

You specify the queue to be monitored in the address field of each agent listed.
Agents must have dequeue privileges on each monitored queue. You must specify the
name of the agent when monitoring multiconsumer queues; but you must not specify
an agent name for single-consumer queues. Only local queues are supported as
addresses. Protocol is reserved for future use.

Note:

Listening to multiconsumer queues is not supported in the Java API.

The listen_delivery_mode parameter specifies what types of message interest the
agent. If it is the default PERSISTENT, then the agent is informed about persistent
messages only. If it is set to BUFFERED, then the agent is informed about buffered
messages only. If it is set to PERSISTENT_OR_BUFFERED, then the agent is informed
about both types.

This is a blocking call that returns the agent and message type when there is a
message ready for consumption for an agent in the list. If there are messages for more
than one agent, then only the first agent listed is returned. If there are no messages
found when the wait time expires, then an error is raised.

A successful return from the listen call is only an indication that there is a message
for one of the listed agents in one of the specified queues. The interested agent must
still dequeue the relevant message.

Note:

You cannot call LISTEN on nonpersistent queues.

Chapter 8
Listening to One or More Queues

8-12

Even though both test.obj_queue and test.priority_queue contain messages
(enqueued in Example 8-1 and Example 8-2 respectively) Example 8-12 returns only:

Message in Queue: "TEST"."OBJ_QUEUE"

If the order of agents in test_agent_list is reversed, so test.priority_queue
appears before test.obj_queue, then the example returns:

Message in Queue: "TEST"."PRIORITY_QUEUE"

See Also:

"AQ Agent Type"

Example 8-12 Listening to a Single-Consumer Queue with Zero Timeout

SET SERVEROUTPUT ON
DECLARE
 agent sys.aq$_agent;
 test_agent_list DBMS_AQ.aq$_agent_list_t;
BEGIN
 test_agent_list(1) := sys.aq$_agent(NULL, 'test.obj_queue', NULL);
 test_agent_list(2) := sys.aq$_agent(NULL, 'test.priority_queue', NULL);
 DBMS_AQ.LISTEN(
 agent_list => test_agent_list,
 wait => 0,
 agent => agent);
 DBMS_OUTPUT.PUT_LINE('Message in Queue: ' || agent.address);
END;
/

Dequeuing Messages
This procedure dequeues a message from the specified queue.

DBMS_AQ.DEQUEUE(
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 message_properties OUT message_properties_t,
 payload OUT "type_name",
 msgid OUT RAW);

You can choose to dequeue only persistent messages, only buffered messages, or
both. See delivery_mode in the following list of dequeue options.

See Also:

"Message Properties"

Dequeue Options

The dequeue_options parameter specifies the options available for the dequeue
operation. It has the following attributes:

Chapter 8
Dequeuing Messages

8-13

• consumer_name

A consumer can dequeue a message from a queue by supplying the name that
was used in the AQ$_AGENT type of the DBMS_AQADM.ADD_SUBSCRIBER procedure or
the recipient list of the message properties. If a value is specified, then only those
messages matching consumer_name are accessed. If a queue is not set up for
multiple consumers, then this field must be set to NULL (the default).

• dequeue_mode

The dequeue_mode attribute specifies the locking behavior associated with the
dequeue. If BROWSE is specified, then the message is dequeued without acquiring
any lock. If LOCKED is specified, then the message is dequeued with a write lock
that lasts for the duration of the transaction. If REMOVE is specified, then the
message is dequeued and deleted (the default). The message can be retained in
the queue table based on the retention properties. If REMOVE_NO_DATA is specified,
then the message is marked as updated or deleted.

• navigation

The navigation attribute specifies the position of the dequeued message. If
FIRST_MESSAGE is specified, then the first available message matching the search
criteria is dequeued. If NEXT_MESSAGE is specified, then the next available message
matching the search criteria is dequeued (the default). If the previous message
belongs to a message group, then the next available message matching the
search criteria in the message group is dequeued.

If NEXT_TRANSACTION is specified, then any messages in the current transaction
group are skipped and the first message of the next transaction group is
dequeued. This setting can only be used if message grouping is enabled for the
queue.

• visibility

The visibility attribute specifies when the new message is dequeued. If
ON_COMMIT is specified, then the dequeue is part of the current transaction (the
default). If IMMEDIATE is specified, then the dequeue operation is an autonomous
transaction that commits at the end of the operation. The visibility attribute is
ignored in BROWSE dequeue mode.

Visibility must always be IMMEDIATE when dequeuing messages with delivery
mode DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT_OR_BUFFERED.

• wait

The wait attribute specifies the wait time if there is currently no message available
matching the search criteria. If a number is specified, then the operation waits that
number of seconds. If FOREVER is specified, then the operation waits forever (the
default). If NO_WAIT is specified, then the operation does not wait.

• msgid

The msgid attribute specifies the message identifier of the dequeued message.
Only messages in the READY state are dequeued unless msgid is specified.

• correlation

The correlation attribute specifies the correlation identifier of the dequeued
message. The correlation identifier cannot be changed between successive
dequeue calls without specifying the FIRST_MESSAGE navigation option.

Chapter 8
Dequeuing Messages

8-14

Correlation identifiers are application-defined identifiers that are not interpreted by
Oracle Database Advanced Queuing. You can use special pattern matching
characters, such as the percent sign and the underscore. If more than one
message satisfies the pattern, then the order of dequeuing is indeterminate, and
the sort order of the queue is not honored.

Note:

Although dequeue options correlation and deq_condition are both
supported for buffered messages, it is not possible to create indexes to
optimize these queries.

• deq_condition

The deq_condition attribute is a Boolean expression similar to the WHERE
clause of a SQL query. This Boolean expression can include conditions on
message properties, user data properties (object payloads only), and PL/SQL or
SQL functions.

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab.user_data as a qualifier to indicate the specific column of the queue table that
stores the payload.

The deq_condition attribute cannot exceed 4000 characters. If more than one
message satisfies the dequeue condition, then the order of dequeuing is
indeterminate, and the sort order of the queue is not honored.

• transformation

The transformation attribute specifies a transformation that will be applied after
the message is dequeued but before returning the message to the caller.

• delivery_mode

The delivery_mode attribute specifies what types of messages to dequeue. If it is
set to DBMS_AQ.PERSISTENT, then only persistent messages are dequeued. If it is
set to DBMS_AQ.BUFFERED, then only buffered messages are dequeued.

If it is the default DBMS_AQ.PERSISTENT_OR_BUFFERED, then both persistent and
buffered messages are dequeued. The delivery_mode attribute in the message
properties of the dequeued message indicates whether the dequeued message
was buffered or persistent.

The dequeue order is determined by the values specified at the time the queue table is
created unless overridden by the message identifier and correlation identifier in
dequeue options.

The database consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the beginning of
the browsing transaction.

In a commit-time queue, messages are not visible to BROWSE or DEQUEUE calls until a
deterministic order can be established among them based on an approximate CSCN.

If the navigation attribute of the dequeue_conditions parameter is NEXT_MESSAGE (the
default), then subsequent dequeues retrieve messages from the queue based on the
snapshot obtained in the first dequeue. A message enqueued after the first dequeue

Chapter 8
Dequeuing Messages

8-15

command, therefore, will be processed only after processing all remaining messages
in the queue. This is not a problem if all the messages have already been enqueued or
if the queue does not have priority-based ordering. But if an application must process
the highest-priority message in the queue, then it must use the FIRST_MESSAGE
navigation option.

Note:

It can also be more efficient to use the FIRST_MESSAGE navigation option
when there are messages being concurrently enqueued. If the
FIRST_MESSAGE option is not specified, then Oracle Database Advanced
Queuing continually generates the snapshot as of the first dequeue
command, leading to poor performance. If the FIRST_MESSAGE option is
specified, then Oracle Database Advanced Queuing uses a new snapshot for
every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping form a group. If only one message is enqueued in the transaction,
then this effectively forms a group of one message. There is no upper limit to the
number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED or
REMOVE mode locks only a single message. By contrast, a dequeue operation that
seeks to dequeue a message that is part of a group locks the entire group. This is
useful when all the messages in a group must be processed as a unit.

When all the messages in a group have been dequeued, the dequeue returns an error
indicating that all messages in the group have been processed. The application can
then use NEXT_TRANSACTION to start dequeuing messages from the next available
group. In the event that no groups are available, the dequeue times out after the
period specified in the wait attribute of dequeue_options.

Typically, you expect the consumer of messages to access messages using the
dequeue interface. You can view processed messages or messages still to be
processed by browsing by message ID or by using SELECT commands.

Example 8-13 returns the message enqueued in Example 8-1. It returns:

From Sender No.1
Subject: TEST MESSAGE
Text: First message to obj_queue

See Also:

• "Dequeue Modes"

Dequeuing LOB Type Messages

Example 8-14 creates procedure blobdequeue() to dequeue the LOB type messages
enqueued in Example 8-4. The actual dequeue is shown in Example 8-15. It returns:

Chapter 8
Dequeuing Messages

8-16

Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000

Dequeuing Grouped Messages

You can dequeue the grouped messages enqueued in Example 8-8 by running
Example 8-16. It returns:

GROUP 1: Message 1 in group 1
GROUP 1: Message 2 in group 1
GROUP 1: Message 3 in group 1
Finished GROUP 1
GROUP 2: Message 1 in group 2
GROUP 2: Message 2 in group 2
GROUP 2: Message 3 in group 2
Finished GROUP 2
GROUP 3: Message 1 in group 3
GROUP 3: Message 2 in group 3
GROUP 3: Message 3 in group 3
Finished GROUP 3
No more messages

Dequeuing from a Multiconsumer Queue

You can dequeue the messages enqueued for RED in Example 8-7 by running
Example 8-17. If you change RED to GREEN and then to BLUE, you can use it to dequeue
their messages as well. The output of the example will be different in each case.

RED is a subscriber to the multiconsumer queue and is also a specified recipient of
MESSAGE 2, so it gets both messages:

Message: MESSAGE 1 .. For queue subscribers
Message: MESSAGE 2 .. For two recipients
No more messages for RED

GREEN is only a subscriber, so it gets only those messages in the queue for which no
recipients have been specified (in this case, MESSAGE 1):

Message: MESSAGE 1 .. For queue subscribers
No more messages for GREEN

BLUE, while not a subscriber to the queue, is nevertheless specified to receive
MESSAGE 2.

Message: MESSAGE 2 .. For two recipients
No more messages for BLUE

Example 8-18 browses messages enqueued in Example 8-5 until it finds PINK, which
it removes. The example returns:

Browsed Message Text: ORANGE enqueued first.
Browsed Message Text: ORANGE also enqueued second.
Browsed Message Text: YELLOW enqueued third.
Browsed Message Text: VIOLET enqueued fourth.
Browsed Message Text: PURPLE enqueued fifth.
Browsed Message Text: PINK enqueued sixth.
Removed Message Text: PINK enqueued sixth.

Chapter 8
Dequeuing Messages

8-17

Dequeue Modes

Example 8-19 previews in locked mode the messages enqueued in Example 8-5 until
it finds PURPLE, which it removes. The example returns:

Locked Message Text: ORANGE enqueued first.
Locked Message Text: ORANGE also enqueued second.
Locked Message Text: YELLOW enqueued third.
Locked Message Text: VIOLET enqueued fourth.
Locked Message Text: PURPLE enqueued fifth.
Removed Message Text: PURPLE enqueued fifth.

Example 8-13 Dequeuing Object Type Messages

SET SERVEROUTPUT ON
DECLARE
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message test.message_typ;
BEGIN
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('From Sender No.'|| message.sender_id);
 DBMS_OUTPUT.PUT_LINE('Subject: '||message.subject);
 DBMS_OUTPUT.PUT_LINE('Text: '||message.text);
 COMMIT;
END;
/

Example 8-14 Creating a Dequeue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE blobdequeue(msgno IN NUMBER) AS
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 msgid RAW(16);
 payload test.lob_typ;
 lob_loc BLOB;
 amount BINARY_INTEGER;
 buffer RAW(4096);
BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.lob_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => msgid);
 lob_loc := payload.data;
 amount := 2000;
 DBMS_LOB.READ(lob_loc, amount, 1, buffer);
 DBMS_OUTPUT.PUT_LINE('Amount of data read: '|| amount);
 COMMIT;
END;
/

Chapter 8
Dequeuing Messages

8-18

Example 8-15 Dequeuing LOB Type Messages

BEGIN
 FOR i IN 1..5 LOOP
 blobdequeue(i);
 END LOOP;
END;
/

Example 8-16 Dequeuing Grouped Messages

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
 no_messages exception;
 end_of_group exception;
 PRAGMA EXCEPTION_INIT (no_messages, -25228);
 PRAGMA EXCEPTION_INIT (end_of_group, -25235);
BEGIN
 dequeue_options.wait := DBMS_AQ.NO_WAIT;
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 LOOP
 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.group_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE(message.subject || ': ' || message.text);
 dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;
 EXCEPTION
 WHEN end_of_group THEN
 DBMS_OUTPUT.PUT_LINE ('Finished ' || message.subject);
 COMMIT;
 dequeue_options.navigation := DBMS_AQ.NEXT_TRANSACTION;
 END;
 END LOOP;
 EXCEPTION
 WHEN no_messages THEN
 DBMS_OUTPUT.PUT_LINE ('No more messages');
END;
/

Example 8-17 Dequeuing Messages for RED from a Multiconsumer Queue

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
 no_messages exception;
 PRAGMA EXCEPTION_INIT (no_messages, -25228);
BEGIN
 dequeue_options.wait := DBMS_AQ.NO_WAIT;
 dequeue_options.consumer_name := 'RED';
 dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;
 LOOP

Chapter 8
Dequeuing Messages

8-19

 BEGIN
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.multiconsumer_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Message: '|| message.subject ||' .. '|| message.text);
 dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;
 END;
 END LOOP;
 EXCEPTION
 WHEN no_messages THEN
 DBMS_OUTPUT.PUT_LINE ('No more messages for RED');
 COMMIT;
END;
/

Example 8-18 Dequeue in Browse Mode and Remove Specified Message

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;
 LOOP
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE ('Browsed Message Text: ' || message.text);
 EXIT WHEN message.subject = 'PINK';
 END LOOP;
 dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
 dequeue_options.msgid := message_handle;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Removed Message Text: ' || message.text);
 COMMIT;
END;
/

Example 8-19 Dequeue in Locked Mode and Remove Specified Message

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 message_properties DBMS_AQ.message_properties_t;
 message_handle RAW(16);
 message test.message_typ;
BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.LOCKED;

Chapter 8
Dequeuing Messages

8-20

 LOOP
 DBMS_AQ.dequeue(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Locked Message Text: ' || message.text);
 EXIT WHEN message.subject = 'PURPLE';
 END LOOP;
 dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
 dequeue_options.msgid := message_handle;
 DBMS_AQ.DEQUEUE(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 DBMS_OUTPUT.PUT_LINE('Removed Message Text: ' || message.text);
 COMMIT;
END;
/

Dequeuing an Array of Messages
Use the DEQUEUE_ARRAY function to dequeue an array of payloads and a corresponding
array of message properties.

DBMS_AQ.DEQUEUE_ARRAY(
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 array_size IN PLS_INTEGER,
 message_properties_array OUT message_properties_array_t,
 payload_array OUT VARRAY,
 msgid_array OUT msgid_array_t)
RETURN PLS_INTEGER;

The output is an array of payloads, message IDs, and message properties of the
dequeued messages. The function returns the number of messages successfully
dequeued.

Array dequeuing is not supported for buffered messages, but you can still use
DBMS_AQ.DEQUEUE_ARRAY() to dequeue buffered messages by setting array_size to 1.

The payload structure can be a VARRAY or nested table. The message identifiers are
returned into an array of RAW(16) entries of type DBMS_AQ.msgid_array_t. The
message properties are returned into an array of type
DBMS_AQ.message_properties_array_t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

All dequeue options available with DBMS_AQ.DEQUEUE are also available with
DBMS_AQ.DEQUEUE_ARRAY. You can choose to dequeue only persistent messages, only
buffered messages, or both. In addition, the navigation attribute of dequeue_options
offers two options specific to DBMS_AQ.DEQUEUE_ARRAY.

Chapter 8
Dequeuing an Array of Messages

8-21

When dequeuing messages, you might want to dequeue all the messages for a
transaction group with a single call. You might also want to dequeue messages that
span multiple transaction groups. You can specify either of these methods by using
one of the following navigation methods:

• NEXT_MESSAGE_ONE_GROUP

• FIRST_MESSAGE_ONE_GROUP

• NEXT_MESSAGE_MULTI_GROUP

• FIRST_MESSAGE_MULTI_GROUP

Navigation method NEXT_MESSAGE_ONE_GROUP dequeues messages that match the
search criteria from the next available transaction group into an array. Navigation
method FIRST_MESSAGE_ONE_GROUP resets the position to the beginning of the queue
and dequeues all the messages in a single transaction group that are available and
match the search criteria.

The number of messages dequeued is determined by an array size limit. If the number
of messages in the transaction group exceeds array_size, then multiple calls to
DEQUEUE_ARRAY must be made to dequeue all the messages for the transaction group.

Navigation methods NEXT_MESSAGE_MULTI_GROUP and FIRST_MESSAGE_MULTI_GROUP
work like their ONE_GROUP counterparts, but they are not limited to a single transaction
group. Each message that is dequeued into the array has an associated set of
message properties. Message property transaction_group determines which
messages belong to the same transaction group.

Example 8-20 dequeues the messages enqueued in Example 8-11. It returns:

Number of messages dequeued: 2

See Also:

"Dequeuing Messages"

Example 8-20 Dequeuing an Array of Messages

SET SERVEROUTPUT ON
DECLARE
 dequeue_options DBMS_AQ.dequeue_options_t;
 msg_prop_array DBMS_AQ.message_properties_array_t :=
 DBMS_AQ.message_properties_array_t();
 payload_array test.msg_table;
 msgid_array DBMS_AQ.msgid_array_t;
 retval PLS_INTEGER;
BEGIN
 retval := DBMS_AQ.DEQUEUE_ARRAY(
 queue_name => 'test.obj_queue',
 dequeue_options => dequeue_options,
 array_size => 2,
 message_properties_array => msg_prop_array,
 payload_array => payload_array,
 msgid_array => msgid_array);
 DBMS_OUTPUT.PUT_LINE('Number of messages dequeued: ' || retval);
END;/

Chapter 8
Dequeuing an Array of Messages

8-22

Registering for Notification
This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP
URL for message notification.

DBMS_AQ.REGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

Note:

Starting from 12c Release 2 (12.2.), the maximum length of user-generated
queue names is 122 bytes. See "Creating a Queue".

The reg_list parameter is a list of SYS.AQ$_REG_INFO objects. You can specify
notification quality of service with the qosflags attribute of SYS.AQ$_REG_INFO.

The reg_count parameter specifies the number of entries in the reg_list. Each
subscription requires its own reg_list entry. Interest in several subscriptions can be
registered at one time.

When PL/SQL notification is received, the Oracle Database Advanced Queuing
message properties descriptor that the callback is invoked with specifies the
delivery_mode of the message notified as DBMS_AQ.PERSISTENT or DBMS_AQ.BUFFERED.

If you register for e-mail notifications, then you must set the host name and port name
for the SMTP server that will be used by the database to send e-mail notifications. If
required, you should set the send-from e-mail address, which is set by the database
as the sent from field. You need a Java-enabled database to use this feature.

If you register for HTTP notifications, then you might want to set the host name and
port number for the proxy server and a list of no-proxy domains that will be used by the
database to post HTTP notifications.

An internal queue called SYS.AQ_SRVNTFN_TABLE_Q stores the notifications to be
processed by the job queue processes. If notification fails, then Oracle Database
Advanced Queuing retries the failed notification up to MAX_RETRIES attempts.

Note:

You can change the MAX_RETRIES and RETRY_DELAY properties of
SYS.AQ_SRVNTFN_TABLE_Q. The new settings are applied across all
notifications.

Chapter 8
Registering for Notification

8-23

See Also:

• "AQ Registration Information Type" for more information on
SYS.AQ$_REG_INFO objects

• "AQ Notification Descriptor Type" for more information on the message
properties descriptor

Example 8-21 Registering for Notifications

DECLARE
 reginfo sys.aq$_reg_info;
 reg_list sys.aq$_reg_info_list;
BEGIN
 reginfo := sys.aq$_reg_info(
 'test.obj_queue',
 DBMS_AQ.NAMESPACE_ANONYMOUS,
 'http://www.company.com:8080',
 HEXTORAW('FF'));
 reg_list := sys.aq$_reg_info_list(reginfo);
 DBMS_AQ.REGISTER(
 reg_list => reg_list,
 reg_count => 1);
 COMMIT;
END;
/

Unregistering for Notification
This procedure unregisters an e-mail address, user-defined PL/SQL procedure, or
HTTP URL for message notification.

DBMS_AQ.UNREGISTER(
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

Posting for Subscriber Notification
This procedure posts to a list of anonymous subscriptions, allowing all clients who are
registered for the subscriptions to get notifications of persistent messages.

DBMS_AQ.POST(
 post_list IN SYS.AQ$_POST_INFO_LIST,
 post_count IN NUMBER);

This feature is not supported with buffered messages.

The count parameter specifies the number of entries in the post_list. Each posted
subscription must have its own entry in the post_list. Several subscriptions can be
posted to at one time.

The post_list parameter specifies the list of anonymous subscriptions to which you
want to post. It has three attributes:

• name

Chapter 8
Unregistering for Notification

8-24

The name attribute specifies the name of the anonymous subscription to which you
want to post.

• namespace

The namespace attribute specifies the namespace of the subscription. To receive
notifications from other applications through DBMS_AQ.POST the namespace must
be DBMS_AQ.NAMESPACE_ANONYMOUS.

• payload

The payload attribute specifies the payload to be posted to the anonymous
subscription. It is possible for no payload to be associated with this call.

This call provides a best-effort guarantee. A notification goes to registered clients at
most once. This call is primarily used for lightweight notification. If an application
needs more rigid guarantees, then it can enqueue to a queue.

Example 8-22 Posting Object-Type Messages

DECLARE
 postinfo sys.aq$_post_info;
 post_list sys.aq$_post_info_list;
BEGIN
 postinfo := sys.aq$_post_info('test.obj_queue',0,HEXTORAW('FF'));
 post_list := sys.aq$_post_info_list(postinfo);
 DBMS_AQ.POST(
 post_list => post_list,
 post_count => 1);
 COMMIT;
END;
/

Adding an Agent to the LDAP Server
This procedure creates an entry for an Oracle Database Advanced Queuing agent in
the LDAP server.

DBMS_AQ.BIND_AGENT(
 agent IN SYS.AQ$_AGENT,
 certificate IN VARCHAR2 default NULL);

The agent parameter specifies the Oracle Database Advanced Queuing Agent that is
to be registered in Lightweight Directory Access Protocol (LDAP) server.

The certificate parameter specifies the location (LDAP distinguished name) of the
OrganizationalPerson entry in LDAP whose digital certificate (attribute
usercertificate) is to be used for this agent. For example, "cn=OE, cn=ACME,
cn=com" is a distinguished name for a OrganizationalPerson OE whose certificate will
be used with the specified agent. If the agent does not have a digital certificate, then
this parameter is defaulted to null.

See Also:

"AQ Agent Type"

Chapter 8
Adding an Agent to the LDAP Server

8-25

Removing an Agent from the LDAP Server
This procedure removes the entry for an Oracle Database Advanced Queuing agent
from the LDAP server.

DBMS_AQ.UNBIND_AGENT(
 agent IN SYS.AQ$_AGENT);

Chapter 8
Removing an Agent from the LDAP Server

8-26

9
Oracle Transactional Event Queues and
Advanced Queuing Performance and
Scalability

These topics discuss performance and scalability issues relating to Transactional
Event Queues (TEQ) and Advanced Queuing (AQ).

• Transactional Event Queues

• AQ Queues

• Performance Views

Transactional Event Queues
A transactional event queue (TEQ) increases enqueue-dequeue throughput, especially
across Oracle Real Application Clusters (Oracle RAC) instances, because messages
from different enqueue sessions are allowed to be dequeued in parallel. Each event
stream of the queue is ordered based on enqueue time within a session and ordering
across event streams is best-effort. TEQs automatically manage table partitions so
that enqueuers and dequeuers do not contend among themselves. In addition, TEQs
use an in-memory message cache to optimize performance and reduce the disk and
CPU overhead of enqueues and dequeues.

The advantages and tradeoffs of TEQs include the following:

• TEQs provide scalability of a single queue on Oracle RAC, especially in the case
where each subscriber has multiple dequeuers on each instance.

• Oracle Real Application Clusters (Oracle RAC)s trades off increased memory
usage to obtain performance.

This section contains the following topics:

• Transactional Event Queues and the Message Cache

• Transactional Event Queues and Enqueuing / Dequeuing Messages

• Transactional Event Queues and Native JMS Support

• Transactional Event Queues and Partitioning

• Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC)

• Transactional Event Queues and Message Retention

• Transactional Event Queues and Seekable Subscribers

• Transactional Event Queues Restrictions

• Transactional Event Queues Tuning

9-1

Transactional Event Queues and the Message Cache
TEQs introduce a special purpose message cache which lets you trade off SGA usage
for increased throughput, reduced latency, and increased concurrency. When
combined with partitioning, the message cache reduces the need for some queries,
DML operations, and indexes. The message cache is most effective when all
dequeuers keep up with enqueuers and when the message cache is big enough to
store messages (including payloads) for each TEQ's enqueuers and dequeuers. The
message cache uses the Streams pool. If TEQs share the Streams pool on the same
instance as Streams replication functionality, you can use DBMS_AQADM procedures
such as SET_MIN_STREAMS_POOL and SET_MAX_STREAMS_POOL to fine tune the allocation
of Streams Pool memory.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information

Transactional Event Queues and Enqueuing / Dequeuing Messages
To improve throughput and reduce overhead and latency, enqueues and dequeues
are optimized to use the message cache, the rules engine, and background
processing when possible. For example,

• TEQs take advantage of new rules engine improvements

• a message that has its payload in the message cache does not have to be re-read
from disk during a dequeue

• dequeue by correlation id or other JMS properties can often be evaluated without
accessing the disk

• partition operations on TEQs implements efficient bulk processing.

Transactional Event Queues and Native JMS Support
TEQs have native support for:

• Non-Durable Subscribers

• JMS payloads

• Priorities

TEQs support both persistent and nonpersistent messages. Nonpersistent messages
are stored in memory inside the message cache and are not stored on disk. As a
result, nonpersistent messages are lost upon instance crash or shutdown.

TEQs natively support two kinds of subscribers to meet the JMS requirements:

• Non-durable subscribers: These subscribers receive messages on their chosen
topic, only if the messages are published while the subscriber is active. This
subscription is not sharable among different sessions.

Chapter 9
Transactional Event Queues

9-2

• Durable subscribers: These subscribers receive all the messages published on a
topic, including those that are published while the subscriber is inactive. Multiple
database sessions can share the same subscription.

TEQs do not use ADTs to store the JMS payload. The JMS message is stored in
scalar columns of the database. JMS message types such as TEXT, BYTES, MAP, STREAM
and OBJECT store the JMS payload in scalar TEXT/RAW or CLOB/BLOB columns in the
queue table depending on payload size and type. The JMS message properties are
stored in a CLOB (SecureFile) column in the queue table with attribute access functions
defined for the user defined properties. The payload and user properties are pickled
into RAW, VARCHAR2 or Secure File columns instead of being stored as an ADT. JMS
Header properties and JMS provider information are stored in their own scalar
columns.

TEQs support integer priority values ranging between 0 (lowest priority) and 9 (highest
priority), with the default being priority 4, as defined by the JMS standard.

Transactional Event Queues and Partitioning
TEQs automatically manage the underlying partitioned tables used for the queue table.
Such partition management may occur in the foreground or the background. Each
event stream provides session-level ordering of enqueued messages. Each enqueuing
session is assigned an event stream. Each event stream is composed of a series of
event stream partitions. Each event stream partition maps to a single partition.
Messages are automatically assigned to a table partition upon enqueue.

New partitions are automatically created as needed, as when the queue table needs to
grow when dequeuers do not keep up with enqueuers. Partitions are truncated and
reused when all messages in the partition are dequeued and no longer needed. The
message cache automatically loads messages from partitions into memory as required
by dequeuers. Global indexes should not be created on the partitioned table
underlying a TEQ. Local indexes are not typically recommended on the partitioned
table either. If such indexes are desired and result in performance degradation, then
AQ queues should be considered.

Transactional Event Queues and Oracle Real Application Clusters
(Oracle RAC)

TEQs automatically provides enqueue session ordering while avoiding cross-instance
communication when possible. Sometimes cross instance communication is required.
For example, if a TEQ has a single enqueuing session on one Oracle RAC instance
and a single dequeuing session on another instance, then TEQs will forward
messages between the Oracle RAC instances. The forwarding of messages is non-
atomic to the enqueuing transaction to improve performance. Dequeuers may get an
ORA-25228 if they are connected to an instance that has no messages in its event
streams.

In most cases, consider having multiple dequeuers for each subscriber or single
consumer queue on each Oracle RAC instance to improve throughput and reduce
cross-instance overhead. An exception to this guideline is when you are using
dequeue selectors that specify a single message. If you want to dequeue a message
from a TEQ by its message identifier in an Oracle RAC database, then you have to
connect to the instance that is assigned dequeue ownership for the event stream
containing the message. Otherwise, the message will not be available for dequeue to
the dequeue session. If all dequeues are performed at a single instance, then

Chapter 9
Transactional Event Queues

9-3

messages will be automatically forwarded to this instance. Hence, for a single-
consumer TEQ that extensively dequeues by message ID, consider having all
dequeue sessions for the TEQ connect to a single instance. Similarly, for a
multiconsumer TEQ that extensively dequeues by message ID, consider having all
dequeue sessions for each subscriber connect to a single instance. Services can be
used to simplify connecting dequeue sessions to a particular instance.

Transactional Event Queues and Message Retention
Starting from Oracle Database Release 20c, message retention is supported by TEQ .
AQ queue already has this feature.

Message retention is the time for which a message is retained in the TEQ after being
enqueued or dequeued as desired. The default is 0, which means that the message
will be removed as soon as possible after it is dequeued by all of its subscribers. This
helps users to retain the messages in the queue even after they are processed.

Applications can specify retention time while creating a TEQ. Applications can change
the retention time and its type as needed after creation of the TEQ.

TEQ supports only dequeue time based retention. A event stream partition stores a set
of messages. The event stream partition will be removed from the queue when the
highest dequeue time for any message-subscriber pair in that event stream partition
plus retention time is over. This scheme will ensure consumption of messages before
retention comes in play. This is also the only retention policy available in AQ queues.

Transactional Event Queues and Seekable Subscribers
A seek operation for a subscriber can be for all event streams (queue level seek) or a
set of specific event streams of choice (event stream level seek).

All the dequeue calls after a seek operation would dequeue messages from the seek
point onwards. All the messages below seek point will never be dequeued or browsed
by the subscriber unless the subscriber seeks back again.

Seek Granularity

A subscriber can perform seek in all event streams or a set of event streams of choice
in the queue. The choice of the message to seek to can be explicitly specified in the
seek operation or can be deduced from the inputs of seek operation.

Following are the different types of seek option inputs.

• Seek to end – With this seek option, the subscriber is not interested in existing
messages. The subscriber will be able to dequeue only newly enqueued
messages after the seek operation. This is the default behavior when a new
subscriber is created.

• Seek to start - With this seek option, the subscriber is interested in existing
messages including "retained". The subscriber will also be able to dequeue newly
enqueued messages after the seek operation.

• Seek to a specific time - With this seek option, the subscriber is interested in
existing messages including "retained" with enqueue time higher than input time.
Seek stops if start or end is reached.

• Seek to a specific message – With this seek option, the subscriber is interested in
existing messages including "retained" from the input message onwards. The input

Chapter 9
Transactional Event Queues

9-4

in this case is a specific message id so this seek always a event stream level
seek. A separate unique message id per event stream is specified in the input for
all the event streams on which seek needs to be performed.

Message Ordering

A seek action can break message ordering as it results in out of order dequeues. If the
new seek point is a message which is not the first message of an enqueue transaction
or an enqueue session and messages from new seek point onwards are dequeued,
then the application can get only some messages of the enqueue session or enqueue
transaction as remaining messages were enqueued before the new seek point.

It is application's responsibility to either choose correct seek point or be tolerant to
such behavior.

Transactional Event Queues Restrictions
The following Oracle Database features are not currently supported for TEQs:

• Transaction grouping

• Anonymous posting for subscriber notification and OCI callback notification are not
supported. PL/SQL callback notification is supported.

• Messaging Gateway

• Oracle extensions for JMS such as JMS propagation and remote subscribers

• Multiple queues per queue table. TEQs are created via the
CREATE_TRANSACTIONAL_EVENT_QUEUE interface.

• Ordering other than message priority followed by enqueue time (as specified in the
JMS standard)

• The JDBC thick (OCI) driver.

• Propagation between TEQ and AQ queues

• Message transformations

Transactional Event Queues Tuning
TEQs perform best under the following conditions:

• Dequeuers for each subscriber are located on each instance

• Subscribers keep up with the enqueuers. Consider having multiple dequeuers for
each subscriber on each Oracle RAC instance

The message cache is most effective when dequeuers keep up with enqueuers and
where the cache is big enough to store messages (including payloads) for each TEQ's
enqueuers and dequeuers. When using TEQs, Oracle requires that you do one of the
following:

• Setting parameter STREAMS_POOL_SIZE

This parameter controls the size of shared memory available to the Oracle
Database for the TEQ message cache. If unspecified, up to 10% of the shared
pool size may be allocated for the Streams pool.

Oracle's Automatic Shared Memory Management feature manages the size of the
Streams pool when the SGA_TARGET initialization parameter is set to a nonzero

Chapter 9
Transactional Event Queues

9-5

value. If the STREAMS_POOL_SIZE initialization parameter also is set to a nonzero
value, then Automatic Shared Memory Management uses this value as a minimum
for the Streams pool.

If the STREAMS_POOL_SIZE initialization parameter is set to a nonzero value, and the
SGA_TARGET parameter is set to 0 (zero), then the Streams pool size is the value
specified by the STREAMS_POOL_SIZE parameter, in bytes.

If both the STREAMS_POOL_SIZE and the SGA_TARGET initialization parameters are
set to 0 (zero), then, by default, the first use of the Streams pool in a database
transfers an amount of memory equal to 10% of the shared pool from the buffer
cache to the Streams pool.

See Also:

– DBMS_AQADM.set_min_streams_pool() and
DBMS_AQADM.set_max_streams_pool() in Oracle Database PL/SQL
Packages and Types Reference for a finer grained control over
STREAMS_POOL sharing with Streams processing.

• Turning on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the SGA
for the Streams pool, based on Streams pool usage as well as usage of other
components that use the SGA. Examples of such other components are buffer
cache and library cache. If STREAMS_POOL_SIZE is specified, it is used as the lower
bound.

• Manually tuning TEQ queues

TEQs can be tuned by allocating STREAMS_POOL memory for the message cache.
The view GV$AQ_MESSAGE_CACHE_ADVICE provides advice on how much
STREAMS_POOL should be allocated for TEQs based on a snapshot of the current
messaging load. During periods of high load, select the columns INST_ID,
SIZE_FOR_ESTIMATE, and ESTD_SIZE_TYPE. ESTD_SIZE_TYPE is one of three values:
MINIMUM, PREFERRED, or MAXIMUM. Find the maximum value of SIZE_FOR_ESTIMATE
across Oracle RAC instances for each of the ESTD_SIZE_TYPE values. It is highly
recommended that STREAMS_POOL be set at least to the MINIMUM recommendation
to provide any message cache performance gains. There is little additional
performance gains to setting STREAMS_POOL greater than the MAXIMUM
recommendation value. Setting STREAMS_POOL to the PREFERRED recommendation
tries to provide a reasonable space-performance tradeoff. If the MAXIMUM size
recommendation is much greater than the PREFERRED recommendation, then check
that the TEQ has no orphaned subscribers, or whether more dequeuers should be
added to the instance, so that dequeuers can keep up with the enqueue load.
STREAMS_POOL tuning should be done over multiple periods of high load and
whenever messaging load characteristics change.

User Event Streaming
An application can decide the way messages are event streamed in the TEQ. In such
cases, the application explicitly specifies to enqueue a message in a specific event
stream.

Chapter 9
Transactional Event Queues

9-6

For example, assume the application has four types of messages with different keys
named red, green, blue, and pink. Each enqueue session can enqueue any of those
messages in a transaction. Event Stream A is set to store the red and blue messages.
Event Stream B is set to store the green and pink messages. Also, each event stream
is set to have only one active dequeue session for a single-consumer queue or JMS
Queue. Similarly, each event stream is set to have only one dequeue session per
subscriber for a multi-consumer queue or JMS Topic. That dequeue session will stick
to that event stream for the dequeuer session’s lifetime.

In the following examples, enqueue transactions are performing enqueues in parallel.

Applications can add new event streams at run time. Applications can also add new
types of messages at run time by adding new keys. For example, two new types are
introduced with keys orange and purple, and a third Event Stream C is added. Event
Stream B is set to store the orange messages. Event Stream C is set to store the
purple messages.

In an Oracle RAC database, a event stream is always owned by an instance. Initially,
the event stream is owned by the instance where the first message is enqueued in that
event stream. The owner instance of the event stream may change when database
instances are shut down.

With user event streaming, a user can attempt to enqueue messages in an event
stream which is not owned by the instance in which the session is running. In such
cases, a cross instance enqueue is triggered. To support cross instance enqueues,
the enqueue requests received at other instances are forwarded to the OWNER
INSTANCE of the event stream over the RAC interconnect. The REMOTE_LISTENER

Chapter 9
Transactional Event Queues

9-7

parameter in listener.ora must also be set to enable forwarding of cross instance
enqueue requests to the correct instance. Internally, TEQ queues on an Oracle RAC
database may use database links between instances. Definer's rights PL/SQL
packages that perform cross instance enqueues in TEQ queues on an Oracle RAC
database must grant INHERIT REMOTE PRIVILEGES to users of the package.

Limitations of User Event Streaming

User event streaming has the following limitations:

• Cross instance enqueues are not enabled for PL/SQL enqueue calls.

• Cross instance enqueues are not enabled for array enqueues.

Cross instance enqueues can be done through Java and OCI clients.

See Also:

DBMS_AQADM in Oracle Database PL/SQL Packages and Types
Reference for more information.

AQ Queues
This section includes the following topics:

• Persistent Messaging Performance Overview for Queues

• Persistent Messaging Basic Tuning Tips

• Propagation Tuning Tips

• Buffered Messaging Tuning

Persistent Messaging Basic Tuning Tips
Oracle Database Advanced Queuing table layout is similar to a layout with ordinary
database tables and indexes.

See Also:

Oracle Database Performance Tuning Guide for tuning recommendations

Memory Requirements
Streams pool size should be at least 20 MB for optimal multi-consumer dequeue
performance in a non-Oracle RAC database.

Persistent queuing dequeue operations use the streams pool to optimize performance,
especially under concurrency situations. This is, however, not a requirement and the
code automatically switches to a less optimal code path.

Chapter 9
AQ Queues

9-8

TEQs introduces a message cache for optimal performance of high throughput
messaging systems. Ideally the Streams pool size should be large enough to cache
the expected backlog of messages in TEQs.

Using Storage Parameters
Storage parameters can be specified when creating a queue table using the
storage_clause parameter.

Storage parameters are inherited by other IOTs and tables created with the queue
table. The tablespace of the queue table should have sufficient space to accommodate
data from all the objects associated with the queue table. With retention specified, the
history table and, also the queue table can grow to be quite big.

Oracle recommends you use automatic segment-space management (ASSM).
Otherwise initrans, freelists and freelist groups must be tuned for AQ performance
under high concurrency.

Increasing PCTFREE will reduce the number of messages in a queue table/IOT block.
This will reduce block level contention when there is concurrency.

Storage parameters specified at queue table creation are shared by the queue table,
IOTs and indexes. These may be individually altered by an online redefinition using
DBMS_REDEFINITION.

I/O Configuration
Because Oracle Database Advanced Queuing is very I/O intensive, you will usually
need to tune I/O to remove any bottlenecks.

See Also:

"I/O Configuration and Design" in Oracle Database Performance Tuning
Guide

Running Enqueue and Dequeue Processes Concurrently in a Single Queue
Table

Some environments must process messages in a constant flow, requiring that
enqueue and dequeue processes run concurrently. If the message delivery system
has only one queue table and one queue, then all processes must work on the same
segment area at the same time. This precludes reasonable performance levels when
delivering a high number of messages.

The best number for concurrent processes depends on available system resources.
For example, on a four-CPU system, it is reasonable to start with two concurrent
enqueue and two concurrent dequeue processes. If the system cannot deliver the
wanted number of messages, then use several subscribers for load balancing rather
than increasing the number of processes.

Tune the enqueue and dequeue rates on the queue so that in the common case the
queue size remains small and bounded. A queue that grows and shrinks considerably
will have indexes and IOTs that are out of balance, which will affect performance.

Chapter 9
AQ Queues

9-9

With multi-consumer queues, using several subscribers for load balancing rather than
increasing the number of processes will reduce contention. Multiple queue tables may
be used garnering horizontal scalability.

For information about tuning TEQs refer to Transactional Event Queues Tuning.

Running Enqueue and Dequeue Processes Serially in a Single Queue Table
When enqueue and dequeue processes are running serially, contention on the same
data segment is lower than in the case of concurrent processes. The total time taken
to deliver messages by the system, however, is longer than when they run
concurrently.

Increasing the number of processes helps both enqueuing and dequeuing. The
message throughput rate may be higher for enqueuers than for dequeuers when the
number of processes is increased, especially with single consumer queues. Dequeue
processes on multi-consumer queues scale much better.

Creating Indexes on a Queue Table
Creating an index on a queue table is useful if you meet these conditions.

• Dequeue using correlation ID

An index created on the column corr_id of the underlying queue table
AQ$_QueueTableName expedites dequeues.

• Dequeue using a condition

This is like adding the condition to the where-clause for the SELECT on the
underlying queue table. An index on QueueTableName expedites performance on
this SELECT statement.

Other Tips for Queues
These are some other persistent messaging basic tuning tips.

• Ensure that statistics are being gathered so that the optimal query plans for
retrieving messages are being chosen. By default, queue tables are locked out
from automatic gathering of statistics. The recommended use is to gather statistics
with a representative queue message load and lock them.

• The queue table indexes and IOTs are automatically coalesced by AQ background
processes. However, they must continue to be monitored and coalesced if
needed. With automatic space segment management (ASSM), an online shrink
operation may be used for the same purpose. A well balanced index reduces
queue monitor CPU consumption, and ensures optimal enqueue-dequeue
performance.

• Ensure that there are enough queue monitor processes running to perform the
background tasks. The queue monitor must also be running for other crucial
background activity. Multiple qmn processes share the load; make sure that there
are enough of them. These are auto-tuned, but can be forced to a minimum
number, if needed.

• It is recommended that dequeue with a wait time is only used with dedicated
server processes. In a shared server environment, the shared server process is
dedicated to the dequeue operation for the duration of the call, including the wait

Chapter 9
AQ Queues

9-10

time. The presence of many such processes can cause severe performance and
scalability problems and can result in deadlocking the shared server processes.

• Long running dequeue transactions worsen dequeue contention on the queue, and
must be avoided.

• Batching multiple dequeue operations on multi-consumer queues into a single
transaction gives best throughput.

• Use NEXT as navigation mode, if not using message priorities. This offers the same
semantics but improved performance.

• Use the REMOVE_NODATA dequeue mode if dequeuing in BROWSE mode followed by a
REMOVE.

Propagation Tuning Tips
Propagation can be considered a special kind of dequeue operation with an additional
INSERT at the remote (or local) queue table. Propagation from a single schedule is not
parallelized across multiple job queue processes. Rather, they are load
balanced.Propagation can be considered a special kind of dequeue operation with an
additional INSERT at the remote (or local) queue table. Propagation from a single
schedule is not parallelized across multiple job queue processes. Rather, they are load
balanced.

For better scalability, configure the number of propagation schedules according to the
available system resources (CPUs).

Propagation rates from transactional and nontransactional (default) queue tables vary
to some extent because Oracle Database Advanced Queuing determines the batching
size for nontransactional queues, whereas for transactional queues, batch size is
mainly determined by the user application.

Optimized propagation happens in batches. If the remote queue is in a different
database, then Oracle Database Advanced Queuing uses a sequencing algorithm to
avoid the need for a two-phase commit. When a message must be sent to multiple
queues in the same destination, it is sent multiple times. If the message must be sent
to multiple consumers in the same queue at the destination, then it is sent only once.

Buffered Messaging Tuning
Buffered messaging operations in a Oracle Real Application Clusters environment will
be fastest on the OWNER_INSTANCE of the queue.

Persistent Messaging Performance Overview for Queues
When persistent messages are enqueued, they are stored in database tables. The
performance characteristics of queue operations on persistent messages are similar to
underlying database operations.

The code path of an enqueue operation is comparable to SELECT and INSERT into a
multicolumn queue table with three index-organized tables. The code path of a
dequeue operation is comparable to a SELECT operation on the multi-column table and
a DELETE operation on the dequeue index-organized table. In many scenarios, for
example when Oracle RAC is not used and there is adequate streams pool memory,
the dequeue operation is optimized and is comparable to a SELECT operation on a
multi-column table.

Chapter 9
AQ Queues

9-11

Note:

Performance is not affected by the number of queues in a table.

Queues and Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC) can be used to ensure highly available
access to queue data.

The entry and exit points of a queue, commonly called its tail and head respectively,
can be extreme hot spots. Because Oracle RAC may not scale well in the presence of
hot spots, limit usual access to a queue from one instance only. If an instance failure
occurs, then messages managed by the failed instance can be processed immediately
by one of the surviving instances. If AQ queues are experiencing hot spots, then
consider using TEQs instead.

You can associate Oracle RAC instance affinities with 8.1-compatible queue tables. If
you are using q1 and q2 in different instances, then you can use ALTER_QUEUE_TABLE
or CREATE_QUEUE_TABLE on the queue table and set primary_instance to the
appropriate instance_id.

See Also:

• Creating a Queue Table

• Altering a Queue Table

• Transactional Event Queues and Oracle Real Application Clusters
(Oracle RAC)

Oracle Database Advanced Queuing in a Shared Server Environment
Queue operation scalability is similar to the underlying database operation scalability.

If a dequeue operation with wait option is applied, then it does not return until it is
successful or the wait period has expired. In a shared server environment, the shared
server process is dedicated to the dequeue operation for the duration of the call,
including the wait time. The presence of many such processes can cause severe
performance and scalability problems and can result in deadlocking the shared server
processes. For this reason, Oracle recommends that dequeue requests with wait
option be applied using dedicated server processes. This restriction is not enforced.

See Also:

"DEQUEUE_OPTIONS_T Type" in Oracle Database PL/SQL Packages and
Types Reference for more information on the wait option

Chapter 9
AQ Queues

9-12

Performance Views
Oracle provides these views to monitor system performance and troubleshooting.

• V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues

• V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics

• V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

• V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

• V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

• V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

• V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in
the Instance

• V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

• V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

• V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

• V$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for
Persistent Queues

• V$AQ: Number of Messages in Different States in Database

• V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master
Background Coordinator Process (AQPC)

• V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator

• V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

• V$AQ_SERVER_POOL: Performance Statistics for all Servers

• V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description

• V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

• V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections

• V$AQ_SUBSCRIBER_LOAD: Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber

• V$AQ_MESSAGE_CACHE: Performance Statistics

These views are integrated with the Automatic Workload Repository (AWR). Users can
generate a report based on two AWR snapshots to compute enqueue rate, dequeue
rate, and other statistics per queue/subscriber.

Chapter 9
Performance Views

9-13

10
Oracle Transactional Event Queue and
Advanced Queuing Views

These topics describe the Transactional Event Queue (TEQ) and AQ Advanced
Queuing (AQ) administrative interface views.

Note:

All views not detailed in the following sections are described in the Oracle
Database Reference.

Oracle TEQ Views

• V$EQ_CACHED_PARTITIONS

• V$EQ_CROSS_INSTANCE_JOBS

• V$EQ_DEQUEUE_SESSIONS

• V$EQ_INACTIVE_PARTITIONS

• V$EQ_MESSAGE_CACHE

• V$EQ_MESSAGE_CACHE_ADVICE

• V$EQ_MESSAGE_CACHE_STAT

• V$EQ_NONDUR_SUBSCRIBER

• V$EQ_NONDUR_SUBSCRIBER_LWM

• V$EQ_PARTITION_STATS

• V$EQ_REMOTE_DEQUEUE_AFFINITY

• V$EQ_SUBSCRIBER_LOAD

• V$EQ_SUBSCRIBER_STAT

• V$EQ_UNCACHED_PARTITIONS

Oracle AQ Views

• V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues

• V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics

• V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

• V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

• DBA_QUEUE_TABLES: All Queue Tables in Database

• USER_QUEUE_TABLES: Queue Tables in User Schema

• ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User

10-1

• DBA_QUEUES: All Queues in Database

• USER_QUEUES: Queues In User Schema

• ALL_QUEUES: Queues for Which User Has Any Privilege

• DBA_QUEUE_SCHEDULES: All Propagation Schedules

• USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema

• QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

• AQ$<Queue_Table_Name>: Messages in Queue Table

• AQ$<Queue_Table_Name_S>: Queue Subscribers

• AQ$<Queue_Table_Name_R>: Queue Subscribers and Their Rules

• DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

• USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema

• ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue
Privileges

• DBA_TRANSFORMATIONS: All Transformations

• DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions

• USER_TRANSFORMATIONS: User Transformations

• USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

• DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations

• USER_SUBSCR_REGISTRATIONS: User Subscription Registrations

• AQ$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered
for Internet Access

• V$AQ: Number of Messages in Different States in Database

• V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

• V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

• V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

• V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

• V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

• V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in
the Instance

• V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the
Sending (Source) Side

• V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the
Receiving (Destination) Side

• V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications

• V$METRICGROUP: Information About the Metric Group

• V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master
Background Coordinator Process (AQPC)

• V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator

Chapter 10

10-2

• V$AQ_SERVER_POOL: Performance Statistics for all Servers

• V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description

• V$AQ_IPC_ACTIVE_MSGS

• V$AQ_IPC_MSG_STATS

• V$AQ_IPC_PENDING_MSGS

• V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

• V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections

• V$AQ_SUBSCRIBER_LOAD: Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers

• V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber

• V$AQ_MESSAGE_CACHE: Performance Statistics

DBA_QUEUE_TABLES: All Queue Tables in Database
This view contains information about the owner instance for a queue table.

A queue table can contain multiple queues. In this case, each queue in a queue table
has the same owner instance as the queue table. The DBA_QUEUE_TABLES columns are
the same as those in ALL_QUEUE_TABLES.

See Also:

Oracle Database Reference for more information about DBA_QUEUE_TABLES.

USER_QUEUE_TABLES: Queue Tables in User Schema
This view is the same as DBA_QUEUE_TABLES with the exception that it only shows
queue tables in the user's schema.

USER_QUEUE_TABLES does not contain a column for OWNER.

See Also:

Oracle Database Reference for more information about USER_QUEUE_TABLES.

Chapter 10
DBA_QUEUE_TABLES: All Queue Tables in Database

10-3

ALL_QUEUE_TABLES: Queue Tables Accessible to the
Current User

This view describes queue tables accessible to the current user.

See Also:

Oracle Database Reference for more information about ALL_QUEUE_TABLES.

DBA_QUEUES: All Queues in Database
The DBA_QUEUES view specifies operational characteristics for every queue in a
database.

Its columns are the same as those ALL_QUEUES. Oracle Database 12c Release 1 (12.1)
introduces a new column SHARDED with data type VARCHAR2(5). The value for this
column is TRUE for sharded queue, otherwise FALSE.

See Also:

Oracle Database Reference for more information about DBA_QUEUES.

USER_QUEUES: Queues In User Schema
The USER_QUEUES view is the same as DBA_QUEUES with the exception that it only shows
queues in the user's schema.

Oracle Database 12c Release 1 (12.1) introduces a new column SHARDED with data
type VARCHAR2(5). The value for this column is TRUE for sharded queue, otherwise
FALSE.

See Also:

Oracle Database Reference for more information about USER_QUEUES.

ALL_QUEUES: Queues for Which User Has Any Privilege
The ALL_QUEUES view describes all queues on which the current user has enqueue or
dequeue privileges.

If the user has any Advanced Queuing system privileges, like MANAGE ANY QUEUE,
ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE, this view describes all queues in the

Chapter 10
ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User

10-4

database. Oracle Database 12c Release 1 (12.1) introduces a new column SHARDED
with data type VARCHAR2(5). The value for this column is TRUE for sharded queue,
otherwise FALSE.

See Also:

Oracle Database Reference for more information about ALL_QUEUES.

DBA_QUEUE_SCHEDULES: All Propagation Schedules
The DBA_QUEUE_SCHEDULES view describes all the current schedules in the database for
propagating messages.

See Also:

Oracle Database Reference for more information about
DBA_QUEUE_SCHEDULES.

USER_QUEUE_SCHEDULES: Propagation Schedules in
User Schema

The USER_QUEUE_SCHEDULES view is the same as DBA_QUEUE_SCHEDULES with the
exception that it only shows queue schedules in the user's schema.

See Also:

Oracle Database Reference for more information about
USER_QUEUE_SCHEDULES.

QUEUE_PRIVILEGES: Queues for Which User Has Queue
Privilege

The QUEUE_PRIVILEGES view describes queues for which the user is the grantor,
grantee, or owner.

It also shows queues for which an enabled role on the queue is granted to PUBLIC.

See Also:

Oracle Database Reference for more information about QUEUE_PRIVILEGES.

Chapter 10
DBA_QUEUE_SCHEDULES: All Propagation Schedules

10-5

AQ$<Queue_Table_Name>: Messages in Queue Table
The AQ$<Queue_Table_Name> view describes the queue table in which message data is
stored.

This view is automatically created with each queue table and should be used for
querying the queue data. The dequeue history data (time, user identification and
transaction identification) is only valid for single-consumer queues.

In a queue table that is created with the compatible parameter set to '8.1' or higher,
messages that were not dequeued by the consumer are shown as "UNDELIVERABLE".
You can dequeue these messages by msgid. If the Oracle Database Advanced
Queuing queue process monitor is running, then the messages are eventually moved
to an exception queue. You can dequeue these messages from the exception queue
with an ordinary dequeue.

A multiconsumer queue table created without the compatible parameter, or with the
compatible parameter set to '8.0', does not display the state of a message on a
consumer basis, but only displays the global state of the message.

Note:

Queues created in a queue table with compatible set to 8.0 (referred to in
this guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues
you create be 8.1-style or newer and that you migrate existing 8.0-style
queues at your earliest convenience.

When a message is dequeued using the REMOVE mode, DEQ_TIME, DEQ_USER_ID, and
DEQ_TXN_ID are updated for the consumer that dequeued the message.

You can use MSGID and ORIGINAL_MSGID to chain propagated messages. When a
message with message identifier m1 is propagated to a remote queue, m1 is stored in
the ORIGINAL_MSGID column of the remote queue.

Beginning with Oracle Database 10g, AQ$Queue_Table_Name includes buffered
messages. For buffered messages, the value of MSG_STATE is one of the following:

• IN MEMORY

Buffered messages enqueued by a user

• DEFERRED

Buffered messages enqueued by a capture process

• SPILLED

User-enqueued buffered messages that have been spilled to disk

• DEFERRED SPILLED

Capture-enqueued buffered messages that have been spilled to disk

• BUFFERED EXPIRED

Expired buffered messages

Chapter 10
AQ$<Queue_Table_Name>: Messages in Queue Table

10-6

For JMS Sharded Queues, the columns RETRY_COUNT, EXCEPTION_QUEUE_OWNER,
EXCEPTION_QUEUE, PROPAGATED_MSGID, SENDER_NAME, SENDER_ADDRESS,
SENDER_PROTOCOL, ORIGINAL_MSGID, ORIGINAL_QUEUE_NAME, ORIGINAL_QUEUE_OWNER,
EXPIRATION_REASON are always NULL.

For JMS Sharded Queues, this view shows messages only for durable subscribers
because non durable subscribers are session specific. The view returns data from the
in-memory Sharded Queue message cache if available, otherwise from the values on
disk. A user is required to be one of the following in order to query from
AQ$<queue_name> view for Sharded Queues:

• user is the owner

• user has "dequeue" privilege on queue

• user has "dequeue any queue" privilege

The view has the following difference for Sharded Queues for 12c and future releases:

• MSG_PRIORITY is defined as NUMBER(38)

• MSG_STATE in a queue table does not have BUFFERED_EXPIRED hence the max
length of UNDELIVERABLE is taken as length got MSG_STATE.

• EXPIRATION is defined as TIMESTAMP(6) WITH TIME ZONE in a queue table.

• USER_DATA column is defined using a decode on USERDATA_RAW and USERDATA_BLOB
with UTL_RAW.CAST_TO_VARCHAR2.

• CONSUMER_NAME is defined as VARCHAR2(128)

Table 10-1 AQ$<Queue_Table_Name> View

Column Datatype NULL For JMS Sharded
Queues 12c Release
1 (12.1)

Description

QUEUE VARCHAR2(30) - Queue name

SHARD_ID NUMBER - N/A for 11g

SUBSHARD_ID NUMBER - N/A for 11g

MSG_ID RAW(16) NOT NULL Unique identifier of the
message

CORR_ID VARCHAR2(128) - User-provided correlation
identifier

MSG_PRIORITY NUMBER - NUMBER(38) Message priority

MSG_STATE VARCHAR2(16) - Message state. 12c Release 1
(12.1) queue table doesnt have
BUFFERED_EXPIRED. Hence
for 12c Release 1 (12.1) the
max length of UNDELIVERABLE
is taken as length got
MSG_STATE

DELAY DATE - Time in date format at which
the message in waiting state
would become ready. Equals
ENQUEUE_TIME + user
specified DELAY

Chapter 10
AQ$<Queue_Table_Name>: Messages in Queue Table

10-7

Table 10-1 (Cont.) AQ$<Queue_Table_Name> View

Column Datatype NULL For JMS Sharded
Queues 12c Release
1 (12.1)

Description

DELAY_TIMESTAMP TIMESTAMP - Time as a timestamp format at
which the message in waiting
state would become ready.
Equals ENQUEUE_TIMESTAMP
+ user specified DELAY

EXPIRATION NUMBER - TIMESTAMP(6) WITH
TIME ZONE

Number of seconds in which
the message expires after
being READY

RETENTION_TIMESTAM
P

TIMESTAMP(6) - N/A for 11g

ENQ_TIME DATE - Enqueue time

ENQ_TIMESTAMP TIMESTAMP - Enqueue time

ENQ_USER_ID NUMBER - Enqueue user ID

ENQ_USER_ID (10.1
queue tables)

VARCHAR2(30) - Enqueue user name

ENQ_TXN_ID VARCHAR2(30) - Enqueue transaction ID

DEQ_TIME DATE - Dequeue time

DEQ_TIMESTAMP TIMESTAMP - Dequeue time

DEQ_USER_ID NUMBER - Dequeue user ID

DEQ_USER_ID (10.1
queue tables)

VARCHAR2(30) - Dequeue user name

DEQ_TXN_ID VARCHAR2(30) - Dequeue transaction ID

RETRY_COUNT NUMBER - NULL Number of retries

EXCEPTION_QUEUE_OW
NER

VARCHAR2(30) - NULL Exception queue schema

EXCEPTION_QUEUE VARCHAR2(30) - NULL Exception queue name

USER_DATA - - User data. USER_DATA column
is defined using a decode on
USERDATA_RAW and
USERDATA_BLOB with
UTL_RAW.CAST_TO_VARCHAR2
for 12c Release 1 (12.1).

SENDER_NAME VARCHAR2(30) - NULL Name of the agent enqueuing
the message (valid only for
8.1-compatible queue tables)

SENDER_ADDRESS VARCHAR2(1024) - NULL Queue name and database
name of the source (last
propagating) queue (valid only
for 8.1-compatible queue
tables). The database name is
not specified if the source
queue is in the local database.

Chapter 10
AQ$<Queue_Table_Name>: Messages in Queue Table

10-8

Table 10-1 (Cont.) AQ$<Queue_Table_Name> View

Column Datatype NULL For JMS Sharded
Queues 12c Release
1 (12.1)

Description

SENDER_PROTOCOL NUMBER - NULL Protocol for sender address
(reserved for future use and
valid only for 8.1-compatible
queue tables)

ORIGINAL_MSGID RAW(16) - NULL Message ID of the message in
the source queue (valid only
for 8.1-compatible queue
tables)

CONSUMER_NAME VARCHAR2(30) - VARCHAR2(128) Name of the agent receiving
the message (valid only for
8.1-compatible multiconsumer
queue tables)

ADDRESS VARCHAR2(1024) - Queue name and database link
name of the agent receiving
the message.The database link
name is not specified if the
address is in the local
database. The address is NULL
if the receiving agent is local to
the queue (valid only for 8.1-
compatible multiconsumer
queue tables)

PROTOCOL NUMBER - Protocol for address of
receiving agent (valid only for
8.1-compatible queue tables)

PROPAGATED_MSGID RAW(16) - NULL Message ID of the message in
the queue of the receiving
agent (valid only for 8.1-
compatible queue tables)

ORIGINAL_QUEUE_NAM
E

VARCHAR2(30) - NULL Name of the queue the
message came from

ORIGINAL_QUEUE_OWN
ER

VARCHAR2(30) - NULL Owner of the queue the
message came from

EXPIRATION_REASON VARCHAR2(19) - NULL Reason the message came
into exception queue. Possible
values are TIME_EXPIRATION
(message expired after the
specified expired time),
MAX_RETRY_EXCEEDED
(maximum retry count
exceeded), and
PROPAGATION_FAILURE
(message became
undeliverable during
propagation).

Chapter 10
AQ$<Queue_Table_Name>: Messages in Queue Table

10-9

Note:

A message is moved to an exception queue if RETRY_COUNT is greater than
MAX_RETRIES. If a dequeue transaction fails because the server process dies
(including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance,
then RETRY_COUNT is not incremented.

AQ$<Queue_Table_Name_S>: Queue Subscribers
The AQ$<Queue_Table_Name_S> view provides information about subscribers for all the
queues in any given queue table.

It shows subscribers created by users with DBMS_AQADM.ADD_SUBSCRIBER and
subscribers created for the apply process to apply user-created events. It also displays
the transformation for the subscriber, if it was created with one. It is generated when
the queue table is created.

This view provides functionality that is equivalent to the
DBMS_AQADM.QUEUE_SUBSCRIBERS() procedure. For these queues, Oracle recommends
that the view be used instead of this procedure to view queue subscribers. This view is
created only for 8.1-compatible queue tables.

Table 10-2 AQ$<Queue_Table_Name_S> View

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT
NULL

Name of queue for which subscriber is defined

NAME VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

TRANSFORMATION VARCHAR2(61) - Name of the transformation (can be null)

AQ$<Queue_Table_Name_R>: Queue Subscribers and
Their Rules

The AQ$<Queue_Table_Name_R> view displays only the subscribers based on rules for
all queues in a given queue table, including the text of the rule defined by each
subscriber.

It also displays the transformation for the subscriber, if one was specified. It is
generated when the queue table is created.

This view is created only for 8.1-compatible queue tables.

Chapter 10
AQ$<Queue_Table_Name_S>: Queue Subscribers

10-10

Table 10-3 AQ$<Queue_Table_Name_R> View

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT
NULL

Name of queue for which subscriber is defined

NAME VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCOL NUMBER - Protocol of agent

RULE CLOB - Text of defined rule

RULE_SET VARCHAR2(65) - Set of rules

TRANSFORMATION VARCHAR2(61) - Name of the transformation (can be null)

AQ$Queue_Name_R: Queue Subscribers and Their Rules
for Multi-consumer Queue

This table shows queue subscribers and their rules for multi-consumer queue.

Table 10-4 AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue

Column Datatype NULL

QUEUE VARCHAR2(30) NOT NULL

NAME VARCHAR2(30) -

ADDRESS VARCHAR2(1024) -

PROTOCOL NUMBER -

RULE CLOB -

RULE_SET VARCHAR2(65) -

TRANSFORMATION VARCHAR2(65) -

AQ$Queue_Name_S: Queue Subscribers and Their Rules
for Multi-consumer Queue

This table shows queue subscribers and their rules for multi-consumer queue.

Table 10-5 AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue

Column Datatype NULL

QUEUE VARCHAR2(30) NOT NULL

NAME VARCHAR2(30) -

ADDRESS VARCHAR2(1024) -

PROTOCOL NUMBER -

Chapter 10
AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue

10-11

Table 10-5 (Cont.) AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer
Queue

Column Datatype NULL

TRANSFORMATION VARCHAR2(65) -

QUEUE_TO_QUEUE VARCHAR2(5) -

DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in
Database

The DBA_QUEUE_SUBSCRIBERS view returns a list of all subscribers on all queues in the
database.

Its columns are the same as those in ALL_QUEUE_SUBSCRIBERS.

See Also:

Oracle Database Reference for more information about
DBA_QUEUE_SUBSCRIBERS.

USER_QUEUE_SUBSCRIBERS: Queue Subscribers in
User Schema

The USER_QUEUE_SUBSCRIBERS view returns a list of subscribers on queues in the
schema of the current user.

Its columns are the same as those in ALL_QUEUE_SUBSCRIBERS except that it does not
contain the OWNER column.

See Also:

Oracle Database Reference for more information about
USER_QUEUE_SUBSCRIBERS.

Chapter 10
DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

10-12

ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues
Where User Has Queue Privileges

The ALL_QUEUE_SUBSCRIBERS view returns a list of subscribers to queues that the
current user has privileges to dequeue from.

See Also:

Oracle Database Reference for more information about
ALL_QUEUE_SUBSCRIBERS.

DBA_TRANSFORMATIONS: All Transformations
The DBA_TRANSFORMATIONS view displays all the transformations in the database.

These transformations can be specified with Advanced Queue operations like
enqueue, dequeue and subscribe to automatically integrate transformations in
messaging. This view is accessible only to users having DBA privileges.

See Also:

Oracle Database Reference for more information about
DBA_TRANSFORMATIONS.

DBA_ATTRIBUTE_TRANSFORMATIONS: All
Transformation Functions

The DBA_ATTRIBUTE_TRANSFORMATIONS view displays the transformation functions for
all the transformations in the database.

See Also:

Oracle Database Reference for more information about
DBA_ATTRIBUTE_TRANSFORMATIONS.

USER_TRANSFORMATIONS: User Transformations
The USER_TRANSFORMATIONS view displays all the transformations owned by the user.

To view the transformation definition, query USER_ATTRIBUTE_TRANSFORMATIONS.

Chapter 10
ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges

10-13

See Also:

Oracle Database Reference for more information about
USER_TRANSFORMATIONS.

USER_ATTRIBUTE_TRANSFORMATIONS: User
Transformation Functions

The USER_ATTRIBUTE_TRANSFORMATIONS view displays the transformation functions for
all the transformations of the user.

See Also:

Oracle Database Reference for more information about
USER_ATTRIBUTE_TRANSFORMATIONS.

DBA_SUBSCR_REGISTRATIONS: All Subscription
Registrations

The DBA_SUBSCR_REGISTRATIONS view lists all the subscription registrations in the
database.

See Also:

Oracle Database Reference for more information about
DBA_SUBSCR_REGISTRATIONS.

USER_SUBSCR_REGISTRATIONS: User Subscription
Registrations

The USER_SUBSCR_REGISTRATIONS view lists the subscription registrations in the
database for the current user.

Its columns are the same as those in DBA_SUBSCR_REGISTRATIONS.

See Also:

Oracle Database Reference for more information about
USER_SUBSCR_REGISTRATIONS.

Chapter 10
USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

10-14

AQ$INTERNET_USERS: Oracle Database Advanced
Queuing Agents Registered for Internet Access

The AQ$INTERNET_USERS view provides information about the agents registered for
Internet access to Oracle Database Advanced Queuing. It also provides the list of
database users that each Internet agent maps to.

Table 10-6 AQ$INTERNET_USERS View

Column Datatype NULL Description

AGENT_NAME VARCHAR2(30) - Name of the Oracle Database Advanced Queuing Internet
agent

DB_USERNAME VARCHAR2(30) - Name of database user that this Internet agent maps to

HTTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle
Database Advanced Queuing through HTTP (YES or NO)

FTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle
Database Advanced Queuing through FTP (always NO in
current release)

V$AQ: Number of Messages in Different States in Database
The V$AQ view provides information about the number of messages in different states
for the whole database.

In a Oracle Real Application Clusters environment, each instance keeps its own
Oracle Database Advanced Queuing statistics information in its own System Global
Area (SGA), and does not have knowledge of the statistics gathered by other
instances. When a GV$AQ view is queried by an instance, all other instances funnel
their Oracle Database Advanced Queuing statistics information to the instance issuing
the query.

See Also:

Oracle Database Reference for more information about V$AQ.

Chapter 10
AQ$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered for Internet Access

10-15

V$BUFFERED_QUEUES: All Buffered Queues in the
Instance

The V$BUFFERED_QUEUES view displays information about all buffered queues in the
instance. There is one row per queue.

See Also:

Oracle Database Reference for more information about V$BUFFERED_QUEUES.

V$BUFFERED_SUBSCRIBERS: Subscribers for All
Buffered Queues in the Instance

The V$BUFFERED_SUBSCRIBERS view displays information about the subscribers for all
buffered queues in the instance. There is one row per subscriber per queue.

See Also:

Oracle Database Reference for more information about
V$BUFFERED_SUBSCRIBERS.

V$BUFFERED_PUBLISHERS: All Buffered Publishers in
the Instance

The V$BUFFERED_PUBLISHERS view displays information about all buffered publishers in
the instance.

There is one row per queue per sender. The values are reset to zero when the
database (or instance in an Oracle RAC environment) restarts.

See Also:

Oracle Database Reference for more information about
V$BUFFERED_PUBLISHERS.

Chapter 10
V$BUFFERED_QUEUES: All Buffered Queues in the Instance

10-16

V$PERSISTENT_QUEUES: All Active Persistent Queues in
the Instance

The V$PERSISTENT_QUEUES view displays information about all active persistent queues
in the database since the queues' first activity time.

There is one row per queue. The rows are deleted when the database (or instance in
an Oracle RAC environment) restarts.

See Also:

Oracle Database Reference for more information about
V$PERSISTENT_QUEUES.

V$PERSISTENT_QMN_CACHE: Performance Statistics on
Background Tasks for Persistent Queues

The V$PERSISTENT_QMN_CACHE view displays detailed statistics about all background
activities relating to all queue tables in the database.

There is one row per queue table. The values are reset when the database (or
instance in an Oracle RAC environment) restarts.

See Also:

Oracle Database Reference for more information about
V$PERSISTENT_QMN_CACHE.

V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of
the Persistent Queues in the Instance

The V$PERSISTENT_SUBSCRIBERS view displays information about all active subscribers
of the persistent queues in the database.

There is one row per instance per queue per subscriber. The rows are deleted when
the database (or instance in an Oracle RAC environment) restarts.

See Also:

Oracle Database Reference for more information about
V$PERSISTENT_SUBSCRIBERS.

Chapter 10
V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

10-17

V$PERSISTENT_PUBLISHERS: All Active Publishers of the
Persistent Queues in the Instance

The V$PERSISTENT_PUBLISHERS view displays information about all active publishers of
the persistent queues in the database.

There is one row per instance per queue per publisher. The rows are deleted when the
database (or instance in an Oracle RAC environment) restarts.

See Also:

Oracle Database Reference for more information about
V$PERSISTENT_PUBLISHERS.

V$PROPAGATION_SENDER: Buffer Queue Propagation
Schedules on the Sending (Source) Side

The V$PROPAGATION_SENDER view displays information about buffer queue propagation
schedules on the sending (source) side.

The values are reset to zero when the database (or instance in a Oracle Real
Application Clusters (Oracle RAC) environment) restarts, when propagation migrates
to another instance, or when an unscheduled propagation is attempted.

See Also:

Oracle Database Reference for more information about
V$PROPAGATION_SENDER .

V$PROPAGATION_RECEIVER: Buffer Queue Propagation
Schedules on the Receiving (Destination) Side

The V$PROPAGATION_RECEIVER view displays information about buffer queue
propagation schedules on the receiving (destination) side.

The values are reset to zero when the database (or instance in a Oracle Real
Application Clusters (Oracle RAC) environment) restarts, when propagation migrates
to another instance, or when an unscheduled propagation is attempted.

Chapter 10
V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the Instance

10-18

See Also:

Oracle Database Reference for more information about
V$PROPAGATION_RECEIVER.

V$SUBSCR_REGISTRATION_STATS: Diagnosability of
Notifications

The V$SUBSCR_REGISTRATION_STATS view provides information for diagnosability of
notifications.

See Also:

Oracle Database Reference for more information about
V$SUBSCR_REGISTRATION_STATS.

V$METRICGROUP: Information About the Metric Group
This V$METRICGROUP view displays information about the metric group for each of the
four major Streams components: capture, propagation, apply, and queue.

See Also:

Oracle Database Reference for more information about V$METRICGROUP.

V$AQ_MESSAGE_CACHE_STAT: Memory Management
for Sharded Queues

The V$AQ_MESSAGE_CACHE_STAT view displays statistics about memory management for
sharded queues in streams_pool within the System Global Area (SGA). Sharded
queue uses streams_pool in units of subshards. Thus columns of this view shows
statistics at subshard level irrespective of the queue. This view shows statistics across
all sharded queues.

Table 10-7 V$AQ_MESSAGE_CACHE_STAT View

Column Datatype Description

INST_ID NUMBER The instance id of the sharded queue

NUM_EVICTED NUMBER Number of evicted subshards across all sharded
queues

Chapter 10
V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications

10-19

Table 10-7 (Cont.) V$AQ_MESSAGE_CACHE_STAT View

Column Datatype Description

NUM_PREFETCHED NUMBER Number of subshards pre-fetched by AQ background
Process

NUM_UNEVICTION NUMBER Number of subshards un-evicted by foreground
process. (like dequeue process)

NUM_UNCACHED NUMBER Number of subshards stored as uncached.

NUM_TRACKED NUMBER Number of subshards which are actively tracking
dequeue rates

NUM_CACHED NUMBER Number of subshards stored cached in memory

MAX_SUBSH_SIZE NUMBER Maximum subshard size seen till now, in terms of
number of messages per subshard

MIN_SUBSH_SIZE NUMBER Minimum subshard size seen till now, in terms of
number of messages per subshard

MEAN_SUBSH_SIZE NUMBER Mean subshard size seen till now, in terms of number
of messages per subshard

AVG_EVICTION_RATE NUMBER Average number of subshard evicted per second

AVG_LOAD_RATE NUMBER Average number of subshards pre-fetched or un-
evicted per second

AVG_EVICTION_TIME NUMBER Average time taken to evict one subshard (in
milliseconds)

AVG_LOAD_TIME NUMBER Average time taken to un-evict one subshard (in
milliseconds)

AVG_MISS_RATIO NUMBER Average ratio of number of foreground un-evictions
versus background pre-fetch

AVG_THRASH_RATIO NUMBER Average ratio of number of subshard pre-fetched by
background without dequeue attempt versus total
number of subshards prefetched

CON_ID NUMBER The ID of the container to which the data pertains.
Possible values include:

• 0: This value is used for rows containing data
that pertain to the entire CDB. This value is also
used for rows in non-CDBs.

• 1: This value is used for rows containing data
that pertain to only the root

• n: Where n is the applicable container ID for the
rows containing data

Note:

Some of the above mentioned columns will be used by sharded queue
memory advisor during analysis.

Chapter 10
V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues

10-20

V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue
Subscriber Statistics

The V$AQ_SHARDED_SUBSCRIBER_STAT view displays statistical information about the
subscribers of sharded queues. This statistics is used by the memory advisor.

Table 10-8 V$AQ_SHARDED_SUBSCRIBER_STAT View

Column Datatype Description

INST_ID NUMBER Instance Identifier

QUEUE_ID NUMBER Queue Identifier

SUBSCRIBER_ID NUMBER Subscriber Identifier

SHARD_ID NUMBER Shard Identifier

PRIORITY NUMBER Priority value of the shard

DEQUEUE_SUBSHARD NUMBER Last known dequeue position in this shard

ENQUEUED_MSGS NUMBER Number of enqueued messages

DEQUEUED_MSGS NUMBER Number of dequeued messages

ELAPSED_DEQUEUE_TIME NUMBER Amount of time spent performing dequeues (in
seconds)

CPU_DEQUEUE_TIME NUMBER Actual amount of CPU time spent performing
dequeues (in seconds)

DEQUEUE_RATE NUMBER Number of messages dequeued per second

TIME_SINCE_LAST_DEQUEUE NUMBER Time since last dequeue activity (in seconds)

ESTD_TIME_TO_DRAIN NUMBER Estimated amount of time to drain the shard (in
seconds) with current enqueue and dequeue rates.
Null, if enqueue rate is greater than dequeue rate

ESTD_TIME_TO_DRAIN_NO_ENQ NUMBER Estimated amount of time to drain the shard (in
seconds) with no new enqueues

CON_ID NUMBER The ID of the container to which the data pertains.

V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics
The V$AQ_MESSAGE_CACHE_ADVICE view shows simulated metrics for a range of
potential message cache sizes. This view assists in cache sizing by providing
information in form of metrics as described below.

Table 10-9 V$AQ_MESSAGE_CACHE_ADVICE View

Column Datatype Description

INST_ID NUMBER Instance id

SIZE_FOR_ESTIMATE NUMBER Cache size for simulation (in megabytes)

SIZE_FACTOR NUMBER Size factor with respect to the current cache
size (in %)

Chapter 10
V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics

10-21

Table 10-9 (Cont.) V$AQ_MESSAGE_CACHE_ADVICE View

Column Datatype Description

ESTD_SIZE_TYPE VARCHAR2 This column can have one of the following
values:

• MINIMUM - This cache size is required to
have all dequeues in-memory (no
uncached)

• CURRENT - This is current size of message
cache

• MAXIMUM - This cache size is required to
have zero evictions

• Null - otherwise

ESTD_CACHED_SUBSHARDS NUMBER Estimated number of cached subshards for this
size

ESTD_UNCACHED_SUBSHARDS NUMBER Estimated number of uncached subshards for
this size

ESTD_EVICTIONS NUMBER Estimated number of subshards evicted for this
size

ESTD_EVICTION_RATE NUMBER Estimated number of subshards getting evicted
per minute

ESTD_FG_UNEVICTIONS NUMBER Estimated number of subshards unevicted by
foreground processes

ESTD_FG_UNEVICTION_RATE NUMBER Estimated number of subshards getting
unevicted by foreground processes

ESTD_BG_UNEVICTIONS NUMBER Estimated number of subshards unevicted by
background processes

ESTD_BG_UNEVICTION_RATE NUMBER Estimated number of subshards getting
unevicted by background processes

ESTD_BG_PROCESSES NUMBER Estimated number of background processes
required for this size

TOTAL_ENQUEUE_RATE NUMBER Simulated number of messages being
enqueued per second

TOTAL_DEQUEUE_RATE NUMBER Simulated number of messages being
dequeued per second

AVG_SUBSHARD_SIZE NUMBER Simulated average number of messages per
cached subshard

AVG_SUBSHARD_MEMORY NUMBER Simulated average memory per cached
subshard (in megabytes)

AVG_EVICTION_TIME NUMBER Simulated average time to evict a cached
subshard (in milliseconds)

AVG_UNEVICTION_TIME NUMBER Simulated average time to unevict a cached
subshard (in milliseconds)

FLAGS NUMBER Reserved for internal and future use

SIMULATION_TIME NUMBER Amount of time that was simulated for (in
minutes)

CON_ID NUMBER The ID of the container to which the data
pertains.

Chapter 10
V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

10-22

V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity
Instance List

The V$AQ_REMOTE_DEQUEUE_AFFINITY view lists the dequeue affinity instance of the
subscribers not dequeuing locally from the shard's owner instance. Cross instance
message forwarding is used for these subscribers.

Table 10-10 V$AQ_REMOTE_DEQUEUE_AFFINITY View

Column Datatype Description

QUEUE_ID NUMBER Queue Identifier

QUEUE_SCHEMA VARCHAR2 Queue schema name

QUEUE_NAME VARCHAR2 Queue name

SUBSCRIBER_ID NUMBER Subscriber identifier

SHARD_ID NUMBER Shard identifier which is being forwarded from
SOURCE_INSTANCE to INST_ID for the subscriber

SOURCE_INSTANCE NUMBER Owner instance from where the shard is being
forwarded

INST_ID NUMBER Dequeue instance id of the subscriber for the shard.
Destination instance where shard is forwarded for
the subscriber

See Also:

Oracle Database Reference for more information about
V$AQ_REMOTE_DEQUEUE_AFFINITY.

V$AQ_BACKGROUND_COORDINATOR: Performance
Statistics for AQ's Master Background Coordinator Process
(AQPC)

The V$AQ_BACKGROUND_COORDINATOR view is applicable for Oracle Database 12c
Release 1 (12.1) onwards.

This view lists performance statistics for the Oracle Database Advanced Queuing
master background coordinator process (AQPC).

See Also:

Oracle Database Reference for more information about
V$AQ_BACKGROUND_COORDINATOR.

Chapter 10
V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

10-23

V$AQ_JOB_COORDINATOR: Performance Statistics per
Coordinator

The V$AQ_JOB_COORDINATOR view is applicable for Oracle Database 12c Release 1
(12.1) onwards.

This view lists performance statistics per coordinator, for every AQ coordinator
controlled by the AQ's Master coordinator.

See Also::

Oracle Database Reference for more information about
V$AQ_JOB_COORDINATOR.

V$AQ_SERVER_POOL: Performance Statistics for all
Servers

The V$AQ_SERVER_POOL view is applicable for Oracle Database 12c Release 1 (12.1)
onwards. This view lists performance statistics for all the servers in the pool.

See Also::

Oracle Database Reference for more information about V$AQ_SERVER_POOL.

V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs
Description

The V$AQ_CROSS_INSTANCE_JOBS view is applicable for Oracle Database 12c Release 1
(12.1) onwards. This view describes each of the cross process jobs.

Each job serves for forwarding messages for a shard from source instance to
destination instance for a set of subscribers.

See Also::

Oracle Database Reference for more information about
V$AQ_CROSS_INSTANCE_JOBS.

Chapter 10
V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator

10-24

V$AQ_IPC_ACTIVE_MSGS
V$AQ_IPC_ACTIVE_MSGS displays information about long and priority messages being
processed by slaves and the short message being processed by the master.

See Also:

Oracle Database Reference for more information about
V$AQ_IPC_ACTIVE_MSGS.

V$AQ_IPC_MSG_STATS
V$AQ_IPC_MSG_STATS displays cumulative statistics for each message class, for
example., cumulative calls, average pending/processing time, and last failure.

See Also:

Oracle Database Reference for more information about
V$AQ_IPC_MSG_STATS.

V$AQ_IPC_PENDING_MSGS
V$AQ_IPC_PENDING_MSGS displays information about pending messages, present
in the local master context.

See Also:

Oracle Database Reference for more information about
V$AQ_IPC_PENDING_MSGS.

Chapter 10
V$AQ_IPC_ACTIVE_MSGS

10-25

V$AQ_NONDUR_REGISTRATIONS: Non-Durable
Registrations

The V$AQ_NONDUR_REGISTRATIONS view is applicable for Oracle Database 12c Release
1 (12.1) onwards. This view provides information about non-durable subscriptions.

See Also::

Oracle Database Reference for more information about
V$AQ_NONDUR_REGISTRATIONS.

V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client
Connections

The V$AQ_NOTIFICATION_CLIENTS view is applicable for Oracle Database 12c Release
1 (12.1) onwards. This view displays performance statistics for secure OCI client
connections.

See Also::

Oracle Database Reference for more information about
V$AQ_NOTIFICATION_CLIENTS.

V$AQ_SUBSCRIBER_LOAD: Durable Subscribers
The V$AQ_SUBSCRIBER_LOAD view is applicable for Oracle Database 12c Release 1
(12.1) onwards. This view describes the load of all subscribers of sharded queues in
terms of latency at every instance in an Oracle RAC environment.

Latency denotes the predicted amount of time (in seconds) required from the current
time to drain all the messages for that subscriber at each respective instance. The
latency calculation considers past enqueue/dequeue rates and future enqueue/
dequeue rates based on history.

See Also::

Oracle Database Reference for more information about
V$AQ_SUBSCRIBER_LOAD.

Chapter 10
V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

10-26

V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers
The V$AQ_NONDUR_SUBSCRIBER view is applicable for Oracle Database 12c Release 1
(12.1) onwards. V$AQ_NONDUR_SUBSCRIBER provides information about non-durable
subscribers on sharded queues.

See Also::

Oracle Database Reference for more information about
V$AQ_NONDUR_SUBSCRIBER.

V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non
Durable Subscriber

The V$AQ_NONDUR_SUBSCRIBER_LWM view is applicable for Oracle Database 12c
Release 1 (12.1) onwards. The LWM of a non durable subscriber is a combination of
shard, priority and LWM (sub-shard).

See Also::

Oracle Database Reference for more information about
V$AQ_NONDUR_SUBSCRIBER_LWM.

V$AQ_MESSAGE_CACHE: Performance Statistics
The V$AQ_MESSAGE_CACHE view provides performance statistics of the message cache
for sharded queues at the subshard level in the instance.

See Also::

Oracle Database Reference for more information about
V$AQ_MESSAGE_CACHE.

Chapter 10
V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers

10-27

11
Monitoring Oracle Transactional Event
Queues and Advanced Queuing

Transactional Event Queues (TEQ) are built for high throughput messaging and
streaming of events in transactional applications especially those built with the Oracle
Database. TEQ performance monitoring framework uses the GV$ views in the
database, and the plumbing of reporting the key metrics of the queues can be
integrated with a variety of user interfaces.

This chapter shows how the metrics can be exposed using the popular open source
tools – Prometheus and Grafana. These steps can be used to export the metrics to
other UIs as well.

This chapter includes the following topics:

• Importance of Performance Monitoring

• Monitoring Data Flow and UI Framework Setup

• Key Metrics Measured

• Scripts for Setting up Monitoring

• Measuring Kafka Java Client and Kafka Interoperability with TEQ

• Troubleshooting

Importance of Performance Monitoring
Some of the advantages of having a real-time monitoring framework for a high
throughput messaging system are as follows.

• Know overall messaging system health at a glance and be able to adjust
resources up or down with how heavy or light the messaging work load is.

• Monitor high level key performance indicators: enqueue rates, dequeue rates,
queue depth, etc.

• Find the messaging bottlenecks due to the database load or the system load, by
monitoring CPU load, memory utilization, and the database wait class from
messaging activity.

• Check health condition of each queue to quickly identify under-performing ones
easily.

• Access messaging metrics from anywhere, enabling developers to monitor any
overheads from applications and able to debug message related issues.

• Quick response by setting alerts when something goes wrong with the feature in
Grafana.

11-1

Monitoring Data Flow and UI Framework Setup
The TEQ monitor system consists of three independent open-source components. A
docker container is used to help manage all environments, services, and
dependencies on the machine where monitoring framework is installed.

• Oracle DB Exporter: A Prometheus exporter for Oracle Database, which connects
to the database, queries metrics, and formats metrics into Prometheus-like
metrics.

• Prometheus: A monitor system and time-series database, which manages metrics
collecting from Oracle DB Exporter in time-series-fashion.

• Grafana: A analytics and interactive visualization platform, which specifies
Prometheus as data source.

TEQ Monitor System consists of three services including Prometheus Oracle DB
Exporter, Prometheus, and Grafana. The system is designed to run with Docker, which
lets user use the system as a lightweight, portable, self-sufficient container, which can
run virtually anywhere. Exporter is the connector to Oracle DB and format the query
results to Prometheus-like metrics. Prometheus is a time-series database and
periodically controls Exporter to query and collect/store metrics. Grafana uses
Prometheus as data source to show the metrics and make it visualized. Grafana is a
user-interface with charting and computation built-in. The whole services is configured,
managed and handled by Docker-compose.

Figure 11-1 Monitoring Transaction Event Queue

Chapter 11
Monitoring Data Flow and UI Framework Setup

11-2

To monitor the TEQ dashboards using Grafans, perform the following steps.

1. Login to Grafana dashboard using admin user name and password. The Welcome
Page is displayed.

Figure 11-2 Welcome Page

2. Click TEQ Monitor on the Welcome Page. Once Grafana is setup, the metrics are
presented in four selections, and the top level selections are for an instance,
queue, subscriber and disk group.

• Summary across all TEQs

• Database metrics summary

• System metrics summary

• Subscriber summary for each TEQ

3. Click on each to view summary.

The following figures shows the dashboards of TEQ Summary, DB Summary,
Database Wait Class Latency, and System Summary respectively.

Chapter 11
Monitoring Data Flow and UI Framework Setup

11-3

The TEQ Summary dashboard shows overall aggregated TEQ stats including status,
number of queues, number of subscribers, enqueue/dequeue rate and number of
messages

The Database Summary dashboard shows overall DB performance and stats.

Figure 11-3 Database Summary

The screen tiles are as follows.

• Oracle DB Status – Up or Down

• Active User Sessions – number of user sessions active

• Active Background sessions – number of background sessions active

• Inactive user sessions – Number of inactive user sessions

• Number of processes – Number of database processes

• ASM Disk Usage – Percent of disk free for each disk volume

• DB Activity – SQL activity for number of execute counts, parse count total, user
commits, user rollbacks.

The database wait class latencies are shown in the DB Wait Class Latency dashboard.
Wait class latency is the wait class events latency in milliseconds in the database and
can be used to guide overhead analysis through a more detailed AWR report analysis.

Chapter 11
Monitoring Data Flow and UI Framework Setup

11-4

Figure 11-4 Database Wait Class Latency

The System Summary dashboard shows system level metrics and also the queue
level metrics. It reflects the overall performance and status of the system running
Oracle DB from CPU utilization and memory used.

Figure 11-5 System Summary

System Level Statistics

• Number of CPUs – Total number of CPUs on the system

• OS CPU Load - The percentage of CPU capability currently used by all System
and User processes

• CPU Usage: % of CPU busy (for all processes) and % of CPU busy for user
processes

• Total Physical Memory: Total memory on the system, one Instance in case of a
RAC

• Total Free Physical Memory: Total amount of free memory on the instance

• System Physical Memory free: % of free physical memory

TEQ Queue Level Stats

It displays the statistics of one specific queue, which user can select from the drop-
down menu including rate, total messages, queue depth, estimated time to consume
and time since last dequeue.

• Enqueue/Dequeue Messages: Number of messages enqueued; number of
messages dequeued

Chapter 11
Monitoring Data Flow and UI Framework Setup

11-5

• Enqueue/Dequeue rate: Number of messages per second that are enqueued and
dequeued

• TEQ Depth – Remaining messages in the queue

• TEQ Name - Name of the queue

• Subscriber Name – name of the subscriber

• Time to drain if no enq – Estimate of time to drain the queue if there are no new
enqueues

• Time since last dequeue – Time elapsed since the last dequeue on the queue

Key Metrics Measured
This section provides a little more detail on the metrics seen in the previous section
and how to get these from the Grafana screen. The drop-down menu options are at
the level of a: database instance, queue, and a subscriber. AQ/TEQ Summary metrics
and Database metrics are for the database instance the user selects in the drop-down
menu.

• AQ/TEQ Summary Metrics

– TEQ Status: if TEQs are running or not

– Total Number of TEQs: the number of TEQs running

– Total TEQ Subscribers: the total number of subscribers for all TEQs

– Overall Enq/Deq Rates: aggregate enq/deq rates for all TEQs

– Overall Enqueued Messages: total enqueued messages for the entire queue
system

– Overall Dequeued Messages: total dequeued messages for the entire queue
system

• Database Summary Metrics

– Oracle DB Status: if Oracle DB is running or not.

– Active User Sessions: the number of active user sessions

– Active Background Sessions: the number of active background sessions

– Inactive User Sessions: the number of inactive user sessions

– Number of Processes: the number of Oracle processes running

– ASM Disk Usage: Oracle Automatic Storage Management disk group memory
usage (e.g. +DATA, +RECO)

– DB Activity: the number of DB activity occurred including execute count, user
commits, parse count total, user rollbacks.

– DB Wait Class Latency: average latency for DB wait class in ms including
administrative, application, commit, concurrency, configuration, idle, network,
other, system I/O, user I/O

• System Summary Metrics

– Number of CPUs: the number of CPU of the system running Oracle DB

Chapter 11
Key Metrics Measured

11-6

– OS CPU Load: current number of processes that are either running or in the
ready state, waiting to be selected by the operating-system scheduler to run.
On many platforms, this statistic reflects the average load over the past minute

– CPU Usage (Busy + User): the CPU usage in percentage in real time including
CPU in busy state or CPU in executing user code.

– Total Physical Memory: total physical memory of the system.

– Total Free Physical Memory: total free physical memory of the system.

– System Free Physical Memory: the percentage of free memory in the system.

• Queue Level Metrics

– Enq/Deq Messages: total messages enqueued/dequeued to/from the TEQ

– Enq/Deq Rate: enq/deq rate for the TEQ

– TEQ Depth: total messages remained in the queue.

– TEQ Name: the name of TEQ

– Subscriber Name: the name of TEQ subscriber

– Time to Drain if No Enq: total amount of time to consume all messages if there
is no enq

– Time since Last Deq: time difference between current time and the time since
the last deq operation

Scripts for Setting up Monitoring
The steps followed to set up the monitoring framework are provided below.

1. Copy/Clone the Package: get the whole package which consists of following files/
directories:

• Makefile

• docker-compose.yml

• .env

• README.md

• Database metrics exporter

• Prometheus

• Grafana

2. Install Docker: docker will be used here for manage environments/services/
dependencies https://docs.docker.com/install/

3. Provide Oracle DB Connection String: place connection string in .env file.

Note:

Grant monitoring user with sufficient privileges (select system views).

Chapter 11
Scripts for Setting up Monitoring

11-7

4. Start Monitor: at the root folder of the monitor package, type in terminal make run.
Before doing that, make sure Oracle DB and TEQ is running. After monitoring, go
to http://localhost:3000

5. Stop/Remove Monitor: type in terminal make stop

6. More Usages:

• make logs: shows logs of all services

• make pause: pauses query/sampling/monitor

• make unpause: resumes all services

Once these steps are done the basic services are set up. Configuration and
customization are also available from many perspectives (e.g. service port, monitor
interval, extra metrics, change dashboard, see below for more information)

Configuration/Customization of TEQ Monitor

• Configurations

1. Change Service Port: specify your own local ports in docker-compose.yml. If
you modify exporter port, please also modify config.yml under /prometheus
for correct target.

2. Change Monitor Interval: specify Prometheus/Exporter scrape interval/timeout/
evaluation in config.yml under /prometheus to adjust monitoring sampling
parameters.

• Customization

1. Add Metrics: customize your own metrics in default-metrics.toml under
exporter folder. See iamseth/oracledb_exporter github for more guidance
and info.

2. Customize Dashboard: add panel and query metrics from Prometheus. See
instruction of Grafana for more guidance and info.

Measuring Kafka Java Client and Kafka Interoperability with
TEQ

This framework used to measure TEQ will also work when using the Kafka Java client
with TEQ, or when Kafka interoperates with TEQ using the JMS source and sink
connectors. The queue level metrics, the database level metrics, and the system level
metrics are all the same.

See Interoperability of Transactional Event Queue with Apache Kafka for more
information.

Troubleshooting
See docker-compose doc for more guidance and info. https://docs.docker.com/
compose/reference/logs/

Chapter 11
Measuring Kafka Java Client and Kafka Interoperability with TEQ

11-8

https://docs.docker.com/compose/reference/logs/
https://docs.docker.com/compose/reference/logs/

12
Troubleshooting Oracle Database
Advanced Queuing

These topics describe how to troubleshoot Oracle Database Advanced Queuing (AQ).

• Debugging Oracle Database Advanced Queuing Propagation Problems

• Oracle Database Advanced Queuing Error Messages

Debugging Oracle Database Advanced Queuing
Propagation Problems

These tips should help with debugging propagation problems. This discussion
assumes that you have created queue tables and queues in source and target
databases and defined a database link for the destination database.

The notation assumes that you supply the actual name of the entity (without the
brackets).

See Also:

"Optimizing Propagation"

To begin debugging, do the following:

1. Check that the propagation schedule has been created and that a job queue
process has been assigned.

Look for the entry in the DBA_QUEUE_SCHEDULES view and make sure that the status
of the schedule is enabled. SCHEDULE_DISABLED must be set to 'N'. Check that it
has a nonzero entry for JOBNO in table AQ$_SCHEDULES, and that there is an entry in
table JOB$ with that JOBNO.

To check if propagation is occurring, monitor the DBA_QUEUE_SCHEDULES view for
the number of messages propagated (TOTAL_NUMBER).

If propagation is not occurring, check the view for any errors. Also check the
NEXT_RUN_DATE and NEXT_RUN_TIME in DBA_QUEUE_SCHEDULES to see if propagation
is scheduled for a later time, perhaps due to errors or the way it is set up.

2. Check if the database link to the destination database has been set up properly.
Make sure that the queue owner can use the database link. You can do this with:

select count(*) from table_name@dblink_name;

3. Make sure that at least two job queue processes are running.

4. Check for messages in the source queue with:

12-1

select count (*) from AQ$<source_queue_table>
 where q_name = 'source_queue_name';

5. Check for messages in the destination queue with:

select count (*) from AQ$<destination_queue_table>
 where q_name = 'destination_queue_name';

6. Check to see who is using job queue processes.

Check which jobs are being run by querying dba_jobs_running. It is possible that
other jobs are starving the propagation jobs.

7. Check to see that the queue table sys.aq$_prop_table_instno exists in
DBA_QUEUE_TABLES. The queue sys.aq$_prop_notify_queue_instno must also
exist in DBA_QUEUES and must be enabled for enqueue and dequeue.

In case of Oracle Real Application Clusters (Oracle RAC), this queue table and
queue pair must exist for each Oracle RAC node in the system. They are used for
communication between job queue processes and are automatically created.

8. Check that the consumer attempting to dequeue a message from the destination
queue is a recipient of the propagated messages.

For 8.1-style queues, you can do the following:

select consumer_name, deq_txn_id, deq_time, deq_user_id,
 propagated_msgid from aq$<destination_queue_table>
 where queue = 'queue_name';

For 8.0-style queues, you can obtain the same information from the history column
of the queue table:

select h.consumer, h.transaction_id, h.deq_time, h.deq_user,
 h.propagated_msgid from aq$<destination_queue_table> t, table(t.history) h
 where t.q_name = 'queue_name';

Note:

Queues created in a queue table with compatible set to 8.0 (referrred to
in this guide as 8.0-style queues) are deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2). Oracle recommends that any
new queues you create be 8.1-style or newer and that you migrate
existing 8.0-style queues at your earliest convenience.

9. Turn on propagation tracing at the highest level using event 24040, level 10.

Debugging information is logged to job queue trace files as propagation takes
place. You can check the trace file for errors and for statements indicating that
messages have been sent.

Chapter 12
Debugging Oracle Database Advanced Queuing Propagation Problems

12-2

Oracle Database Advanced Queuing Error Messages
The Oracle Database Advanced Queuing Error Messages are listed here.

ORA-1555

You might get this error when using the NEXT_MESSAGE navigation option for dequeue.
NEXT_MESSAGE uses the snapshot created during the first dequeue call. After that, undo
information may not be retained.

The workaround is to use the FIRST_MESSAGE option to dequeue the message. This
reexecutes the cursor and gets a new snapshot. FIRST_MESSAGE does not perform as
well as NEXT_MESSAGE, so Oracle recommends that you dequeue messages in batches:
FIRST_MESSAGE for one, NEXT_MESSAGE for the next 1000 messages, then
FIRST_MESSAGE again, and so on.

ORA-24033

This error is raised if a message is enqueued to a multiconsumer queue with no
recipient and the queue has no subscribers (or rule-based subscribers that match this
message). This is a warning that the message will be discarded because there are no
recipients or subscribers to whom it can be delivered.

ORA-25237

When using the Oracle Database Advanced Queuing navigation option, you must
reset the dequeue position by using the FIRST_MESSAGE option if you want to continue
dequeuing between services (such as xa_start and xa_end boundaries). This is
because XA cancels the cursor fetch state after an xa_end. If you do not reset, then
you get an error message stating that the navigation is used out of sequence.

ORA-25307

Flow control has been enabled for the message sender. This means that the fastest
subscriber of the sender's message is not able to keep pace with the rate at which
messages are enqueued. The buffered messaging application must handle this error
and attempt again to enqueue messages after waiting for some time.

Chapter 12
Oracle Database Advanced Queuing Error Messages

12-3

13
Internet Access to Oracle Database
Advanced Queuing

You can access Oracle Database Advanced Queuing (AQ) over the Internet by using
SOAP with AQ queues. IDAP is the SOAP specification for Oracle Database
Advanced Queuing operations.

IDAP defines XML message structure for the body of the Simple Object Access
Protocol (SOAP) request. An Internet Data Access Presentation (IDAP)-structured
message is transmitted over the Internet using HTTP.

Users can register for notifications using the IDAP interface.

Topics:

• Overview of Oracle Database Advanced Queuing Operations Over the Internet

• Deploying the Oracle Database Advanced Queuing XML Servlet

• Internet Data Access Presentation (IDAP)

• Request and Response IDAP Documents

• Notification of Messages by E-Mail

Overview of Oracle Database Advanced Queuing
Operations Over the Internet

The section discusses these topics.

• Oracle Database Advanced Queuing Internet Operations Architecture

• Internet Message Payloads

• Configuring the Web Server to Authenticate Users Sending POST Requests

• Client Requests Using HTTP

• Oracle Database Advanced Queuing Servlet Responses Using HTTP

• Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS

Oracle Database Advanced Queuing Internet Operations Architecture
The figure shows the architecture for performing Oracle Database Advanced Queuing
operations over HTTP.

The major components are:

• Oracle Database Advanced Queuing client program

• Web server/servlet runner hosting the Oracle Database Advanced Queuing servlet

• Oracle Database server

13-1

A Web browser or any other HTTP client can serve as an Oracle Database Advanced
Queuing client program, sending XML messages conforming to IDAP to the Oracle
Database Advanced Queuing servlet, which interprets the incoming XML messages.
The Oracle Database Advanced Queuing servlet connects to the Oracle Database
server and performs operations on user queues.

Figure 13-1 Architecture for Performing Oracle Database Advanced Queuing
Operations Using HTTP

AQ

Queue

Web

Server

AQ Client

Oracle �

Database�

Server

AQ Servlet

XML Message
over HTTP

Internet Message Payloads
Oracle Database Advanced Queuing supports messages of three types: RAW, Oracle
object, and JMS. All these message types can be accessed using SOAP and Web
services.

If the queue holds messages in RAW, Oracle object, or Java Message Service (JMS)
format, then XML payloads are transformed to the appropriate internal format during
enqueue and stored in the queue. During dequeue, when messages are obtained from
queues containing messages in any of the preceding formats, they are converted to
XML before being sent to the client.

The message payload type depends on the queue type on which the operation is
being performed:

RAW Queues

The contents of RAW queues are raw bytes. You must supply the hex representation
of the message payload in the XML message. For example, <raw>023f4523</raw>.

Oracle Object Type Queues

For Oracle object type queues that are not JMS queues (that is, they are not type
AQ$_JMS_*), the type of the payload depends on the type specified while creating the
queue table that holds the queue. The content of the XML elements must map to the
attributes of the object type of the queue table.

JMS Type Queues/Topics

For queues with JMS types (that is, those with payloads of type AQ$_JMS_*), there are
four XML elements, depending on the JMS type. IDAP supports queues or topics with
the following JMS types:

• TextMessage

• MapMessage

Chapter 13
Overview of Oracle Database Advanced Queuing Operations Over the Internet

13-2

• BytesMessage

• ObjectMessage

JMS queues with payload type StreamMessage are not supported through IDAP.

Configuring the Web Server to Authenticate Users Sending POST
Requests

After the servlet is installed, the Web server must be configured to authenticate all
users that send POST requests to the Oracle Database Advanced Queuing servlet. The
Oracle Database Advanced Queuing servlet allows only authenticated users to access
the servlet. If the user is not authenticated, then an error is returned by the servlet.

The Web server can be configured in multiple ways to restrict access. Some of the
common techniques are basic authentication (user name/password) over SSL and
client certificates. Consult your Web server documentation to see how you can restrict
access to servlets.

In the context of the Oracle Database Advanced Queuing servlet, the user name that
is used to connect to the Web server is known as the Oracle Database Advanced
Queuing HTTP agent or Oracle Database Advanced Queuing Internet user.

Client Requests Using HTTP
An Oracle Database Advanced Queuing client begins a request to the Oracle
Database Advanced Queuing servlet using HTTP by opening a connection to the
server. The client logs in to the server using HTTP basic authentication (with or without
SSL) or SSL certificate-based client authentication. The client constructs an XML
message representing the send, publish, receive or register request.

The client sends an HTTP POST to the servlet at the remote server.

See Also:

"Request and Response IDAP Documents"

User Sessions and Transactions

After a client is authenticated and connects to the Oracle Database Advanced
Queuing servlet, an HTTP session is created on behalf of the user. The first request in
the session also implicitly starts a new database transaction. This transaction remains
open until it is explicitly committed or terminated. The responses from the servlet
includes the session ID in the HTTP headers as cookies.

If the client wishes to continue work in the same transaction, then it must include this
HTTP header containing the session ID cookie in subsequent requests. This is
automatically accomplished by most Web browsers. However, if the client is using a
Java or C client to post requests, then this must be accomplished programmatically.

An explicit commit or rollback must be applied to end the transaction. The commit or
rollback requests can also be included as part of other Oracle Database Advanced
Queuing operations.

Chapter 13
Overview of Oracle Database Advanced Queuing Operations Over the Internet

13-3

Oracle Database Advanced Queuing Servlet Responses Using HTTP
The server accepts the client HTTP(S) connection and authenticates the user (Oracle
Database Advanced Queuing agent) specified by the client. The server receives the
POST request and invokes the Oracle Database Advanced Queuing servlet.

If this is the first request from this client, then a new HTTP session is created. The
XML message is parsed and its contents are validated. If a session ID is passed by
the client in the HTTP headers, then this operation is performed in the context of that
session.

The servlet determines which object (queue/topic) the agent is trying to perform
operations on. The servlet looks through the list of database users that map to this
Oracle Database Advanced Queuing agent. If any one of these users has privileges to
access the queue/topic specified in the request, then the Oracle Database Advanced
Queuing servlet superuser creates a session on behalf of this user.

If no transaction is active in the HTTP session, then a new database transaction is
started. Subsequent requests in the session are part of the same transaction until an
explicit COMMIT or ROLLBACK request is made. The effects of the transaction are visible
only after it is committed. If the transaction remains inactive for 120 seconds, then it is
automatically terminated.

The requested operation is performed. The response is formatted as an XML message
and sent back the client. The response also includes the session ID in the HTTP
headers as a cookie.

See Also:

"User Sessions and Transactions"

Oracle Database Advanced Queuing Propagation Using HTTP and
HTTPS

You can propagate over HTTP and HTTPS (HTTP over SSL) instead of Oracle Net
Services. HTTP, unlike Oracle Net Services, is easy to configure for firewalls. The
background process doing propagation pushes messages to an Oracle Database
Advanced Queuing servlet that enqueues them into the destination database, as
shown in the figure.

Figure 13-2 HTTP Oracle Database Advanced Queuing Propagation

Source
Database

Oracle�
Server

Oracle
Server

AQ Queue

Web
Server

Job queue
process

Destination
Database

AQ QueueAQ
Servlet

Chapter 13
Overview of Oracle Database Advanced Queuing Operations Over the Internet

13-4

You can set up any application to use Oracle Database Advanced Queuing HTTP
propagation without any change to the existing code. An application using Oracle
Database Advanced Queuing HTTP propagation can easily switch back to Net
Services propagation just by re-creating the database link with a Net Services
connection string, without any other changes.

Deploying the Oracle Database Advanced Queuing XML
Servlet

The AQ servlet can be deployed with any Web server, for example, Tomcat. Follow
these steps to deploy the AQ XML servlet using Tomcat:

1. For JDK1.8.x, include the following in your CLASSPATH:

ORACLE_HOME/jdbc/lib/ojdbc8.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/jlib/orai18n.jar
ORACLE_HOME/jlib/orai18n-collation.jar
ORACLE_HOME/jlib/orai18n-mapping.jar
ORACLE_HOME/jlib/orai18n-utility.jar
ORACLE_HOME/lib/http_client.jar
ORACLE_HOME/lib/lclasses12.zip
ORACLE_HOME/lib/servlet.jar
ORACLE_HOME/lib/xmlparserv2.jar
ORACLE_HOME/lib/xschema.jar
ORACLE_HOME/lib/xsu12.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/aqxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar

2. Copy the following jar files into the tomcat/lib directory:

ORACLE_HOME/jdbc/lib/ojdbc8.jar
ORACLE_HOME/jlib/jndi.jar
ORACLE_HOME/jlib/jta.jar
ORACLE_HOME/lib/http_client.jar
ORACLE_HOME/lib/lclasses12.zip
ORACLE_HOME/lib/servlet.jar
ORACLE_HOME/lib/xmlparserv2.jar
ORACLE_HOME/lib/xschema.jar
ORACLE_HOME/lib/xsu12.jar
ORACLE_HOME/rdbms/jlib/aqapi.jar
ORACLE_HOME/rdbms/jlib/aqxml.jar
ORACLE_HOME/rdbms/jlib/jmscommon.jar
ORACLE_HOME/rdbms/jlib/xdb.jar

3. Create or update tomcat-users.xml file appropriately for Web applications users
accessing queues. For example:

User Password

john welcome

4. Set up queues in database and create AQ agents so that Tomcat users created in
step 3 get authenticated before it can access AQ queues. DBA needs to make use
of DBMS_AQADM.CREATE_AQ_AGENT and DBMS_AQADM.ENABLE_DB_ACCESS procedures.
For example, if we assume JOHN is the user created in Tomcat and AQXMLUSER is

Chapter 13
Deploying the Oracle Database Advanced Queuing XML Servlet

13-5

the AQ agent created on the database, then in order to access AQ servlet using
HTTP, run the following queries:

EXECUTE dbms_aqadm.create_aq_agent(agent_name=>'JOHN', enable_http =>true);
EXECUTE dbms_aqadm.enable_db_access('JOHN', 'AQXMLUSER');

Here AQXMLUSER is the AQ user that is created in the database.

DBA can check internet AQ users agents details using the following query :

SELECT agent_name, db_username, http_enabled FROM aq$internet_users ;

5. Deploy the AQ XML servlet, which extends oracle.AQ.xml.AQxmlServlet class.

6. Start or stop the Tomcat instance as follows:

a. Start the Tomcat instance using sh tomcat/bin/startup.sh

b. Shutdown the Tomcat instance using sh tomcat/bin/shutdown.sh

c. For logs in Tomcat check tomcat/logs/catalina.out file

Related Topics

• Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server

Internet Data Access Presentation (IDAP)
Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml to
specify the body of the SOAP request.

XML provides the presentation for IDAP request and response messages as follows:

• All request and response tags are scoped in the SOAP namespace.

• Oracle Database Advanced Queuing operations are scoped in the IDAP
namespace.

• The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

• The receiver processes SOAP messages that have correct namespaces and
returns an invalid request error for requests with incorrect namespaces.

• The SOAP namespace has the value http://schemas.xmlsoap.org/soap/
envelope/

• The IDAP namespace has the value http://ns.oracle.com/AQ/schemas/access

SOAP Message Structure
These topics shows how SOAP structures a message request or response.

• SOAP Envelope

• SOAP Header

• SOAP Body

Chapter 13
Internet Data Access Presentation (IDAP)

13-6

SOAP Envelope
This is the root or top element in an XML tree. Its tag is SOAP:Envelope. SOAP defines
a global attribute SOAP:encodingStyle that indicates serialization rules used instead of
those described by the SOAP specification.

This attribute can appear on any element and is scoped to that element and all child
elements not themselves containing such an attribute. Omitting this attribute means
that type specification has been followed unless overridden by a parent element.

The SOAP envelope also contains namespace declarations and additional attributes,
provided they are namespace-qualified. Additional namespace-qualified subelements
can follow the body.

SOAP Header
This is the first element under the root. Its tag is SOAP:Header. A SOAP header passes
necessary information, such as the transaction identifier.

The header is encoded as a child of the SOAP:Envelope XML element. Headers are
identified by the name element and are namespace-qualified. A header entry is
encoded as an embedded element.

SOAP Body
This is the Oracle Database Advanced Queuing XML document. Its tag is SOAP:Body,
and it contains a first subelement whose name is the method name.

This method request element contains elements for each input and output parameter.
The element names are the parameter names. The body also contains SOAP:Fault,
indicating information about an error. The Oracle Database Advanced Queuing XML
document has the namespace http://ns.oracle.com/AQ/schemas/access

SOAP Method Invocation
A method invocation is performed by creating the request header and body and
processing the returned response header and body. The request and response
headers can consist of standard transport protocol-specific and extended headers.

HTTP Headers
The POST method within the HTTP request header performs the SOAP method
invocation. The request should include the header SOAPMethodName, whose value
indicates the method to be invoked on the target. The value is of the form URI#method
name.

For example:

SOAPMethodName: http://ns.oracle.com/AQ/schemas/access#AQXmlSend

The URI used for the interface must match the implied or specified namespace
qualification of the method name element in the SOAP:Body part of the payload. The
method name must not include the "#" character.

Chapter 13
Internet Data Access Presentation (IDAP)

13-7

Method Invocation Body
SOAP method invocation consists of a method request and optionally a method
response. The SOAP method request and method response are an HTTP request and
response, respectively, whose contents are XML documents consisting of the root and
mandatory body elements.

These XML documents are referred to as SOAP payloads in the rest of the sections.

A SOAP payload is defined as follows:

• The SOAP root element is the top element in the XML tree.

• The SOAP payload headers contain additional information that must travel with the
request.

• The method request is represented as an XML element with additional elements
for parameters. It is the first child of the SOAP:Body element. This request can be
one of the Oracle Database Advanced Queuing XML client requests described in
the next section.

• The response is the return value or an error or exception that is passed back to
the client.

At the receiving site, a request can have one of the following outcomes:

• The HTTP infrastructure on the receiving site can receive and process the request.
In this case, the HTTP infrastructure passes the headers and body to the SOAP
infrastructure.

• The HTTP infrastructure on the receiving site cannot receive and process the
request. In this case, the result is an HTTP response containing an HTTP error in
the status field and no XML body.

• The SOAP infrastructure on the receiving site can decode the input parameters,
dispatch to an appropriate server indicated by the server address, and invoke an
application-level function corresponding semantically to the method indicated in
the method request. In this case, the result of the method request consists of a
response or error.

• The SOAP infrastructure on the receiving site cannot decode the input
parameters, dispatch to an appropriate server indicated by the server address,
and invoke an application-level function corresponding semantically to the
interface or method indicated in the method request. In this case, the result of the
method is an error that prevented the dispatching infrastructure on the receiving
side from successful completion.

In the last two cases, additional message headers can be present in the results of the
request for extensibility.

Results from a Method Request
The results of the request are to be provided in the form of a request response. The
HTTP response must be of Content-Type text/xml.

A SOAP result indicates success and an error indicates failure. The method response
never contains both a result and an error.

Chapter 13
Internet Data Access Presentation (IDAP)

13-8

Request and Response IDAP Documents
The body of a SOAP message is an IDAP message. This XML document has the
namespace http://ns.oracle.com/AQ/schemas/access.

The body represents:

• Client requests for enqueue, dequeue, and registration

• Server responses to client requests for enqueue, dequeue, and registration

• Notifications from the server to the client

Note:

Oracle Database Advanced Queuing Internet access is supported only
for 8.1 or higher style queues.

Transactional Event Queues (TEQ) do not support internet access
through SOAP.

This section contains these topics:

• IDAP Client Requests for Enqueue

• IDAP Client Requests for Dequeue

• IDAP Client Requests for Registration

• IDAP Client Requests to Commit a Transaction

• IDAP Client Requests to Roll Back a Transaction

• IDAP Server Response to an Enqueue Request

• IDAP Server Response to a Dequeue Request

• IDAP Server Response to a Register Request

• IDAP Commit Response

• IDAP Rollback Response

• IDAP Notification

• IDAP Response in Case of Error

IDAP Client Requests for Enqueue
Client send and publish requests use AQXmlSend to enqueue to a single-consumer
queue and AQXmlPublish to enqueue to multiconsumer queues/topics.

AQXmlSend and AQXmlPublish contain the following elements:

• producer_options

• message_set

• message_header

• message_payload

Chapter 13
Request and Response IDAP Documents

13-9

• AQXmlCommit

producer_options

This is a required element. It contains the following child elements:

• destination

This element is required. It specifies the queue/topic to which messages are to be
sent. It has an optional lookup_type attribute, which determines how the
destination value is interpreted. If lookup_type is DATABASE, which is the default,
then the destination is interpreted as schema.queue_name. If lookup_type is LDAP,
then the LDAP server is used to resolve the destination.

• visibility

This element is optional. It determines when an enqueue becomes visible. The
default is ON_COMMIT, which makes the enqueue visible when the current
transaction commits. If IMMEDIATE is specified, then the effects of the enqueue are
visible immediately after the request is completed. The enqueue is not part of the
current transaction. The operation constitutes a transaction on its own.

• transformation

This element is optional. It specifies the PL/SQL transformation to be invoked
before the message is enqueued.

message_set

This is a required element and contains one or more messages. Each message
consists of a message_header and a message_payload.

message_header

This element is optional. It contains the following child elements:

• sender_id

If a message_header element is included, then it must contain a sender_id
element, which specifies an application-specific identifier. The sender_id element
can contain agent_name, address, protocol, and agent_alias elements. The
agent_alias element resolves to a name, address, and protocol using LDAP.

• message_id

This element is optional. It is a unique identifier of the message, supplied during
dequeue.

• correlation

This element is optional. It is the correlation identifier of the message.

• delay

This element is optional. It specifies the duration in seconds after which a
message is available for processing.

• expiration

This element is optional. It specifies the duration in seconds that a message is
available for dequeuing. This parameter is an offset from the delay. By default
messages never expire. If a message is not dequeued before it expires, then it is
moved to an exception queue in the EXPIRED state.

Chapter 13
Request and Response IDAP Documents

13-10

• priority

This element is optional. It specifies the priority of the message. The priority can
be any number, including negative numbers. A smaller number indicates higher
priority.

• recipient_list

This element is optional. It is a list of recipients which overrides the default
subscriber list. Each recipient is represented in recipient_list by a recipient
element, which can contain agent_name, address, protocol, and agent_alias
elements. The agent_alias element resolves to a name, address, and protocol
using LDAP.

• message_state

This element is optional. It specifies the state of the message. It is filled in
automatically during dequeue. If message_state is 0, then the message is ready to
be processed. If it is 1, then the message delay has not yet been reached. If it is 2,
then the message has been processed and is retained. If it is 3, then the message
has been moved to an exception queue.

• exception_queue

This element is optional. It specifies the name of the queue to which the message
is moved if the number of unsuccessful dequeue attempts has exceeded
max_retries or the message has expired. All messages in the exception queue
are in the EXPIRED state.

If the exception queue specified does not exist at the time of the move, then the
message is moved to the default exception queue associated with the queue table,
and a warning is logged in the alert log. If the default exception queue is used,
then the parameter returns a NULL value at dequeue time.

message_payload

This is a required element. It can contain different elements based on the payload type
of the destination queue/topic. The different payload types are described in "IDAP
Client Requests for Dequeue".

AQXmlCommit

This is an optional empty element. If it is included, then the transaction is committed at
the end of the request.

See Also:

"Internet Message Payloads" for an explanation of IDAP message payloads

IDAP Client Requests for Dequeue
Client requests for dequeue use AQXmlReceive, which contains these elements.

• consumer_options

• AQXmlCommit

Chapter 13
Request and Response IDAP Documents

13-11

consumer_options

This is a required element. It contains the following child elements:

• destination

This element is required. It specifies the queue/topic from which messages are to
be received. The destination element has an optional lookup_type attribute,
which determines how the destination value is interpreted. If lookup_type is
DATABASE, which is the default, then the destination is interpreted as
schema.queue_name. If lookup_type is LDAP, then the LDAP server is used to
resolve the destination.

• consumer_name

This element is optional. It specifies the name of the consumer. Only those
messages matching the consumer name are accessed. If a queue is not set up for
multiple consumers, then this field should not be specified.

• wait_time

This element is optional. It specifies the number of seconds to wait if there is no
message currently available which matches the search criteria.

• selector

This element is optional. It specifies criteria used to select the message. It can
contain child elements correlation, message_id, or condition.

A dequeue condition element is a Boolean expression using syntax similar to the
WHERE clause of a SQL query. This Boolean expression can include conditions on
message properties, user object payload data properties, and PL/SQL or SQL
functions. Message properties include priority, corrid and other columns in the
queue table.

To specify dequeue conditions on a message payload, use attributes of the object
type in clauses. You must prefix each attribute with tab.user_data as a qualifier to
indicate the specific column of the queue table that stores the payload.

A dequeue condition element cannot exceed 4000 characters.

Note:

When a dequeue condition or correlation identifier is used, the order of
the messages dequeued is indeterminate, and the sort order of the
queue is not honored.

• visibility

This element is optional. It determines when a dequeue becomes visible. The
default is ON_COMMIT, which makes the dequeue visible when the current
transaction commits. If IMMEDIATE is specified, then the effects of the dequeue are
visible immediately after the request is completed. The dequeue is not part of the
current transaction. The operation constitutes a transaction on its own.

• dequeue_mode

This element is optional. It specifies the locking action associated with the
dequeue. The possible values are REMOVE, BROWSE, and LOCKED.

Chapter 13
Request and Response IDAP Documents

13-12

REMOVE is the default and causes the message to be read and deleted. The
message can be retained in the queue table based on the retention properties.
BROWSE reads the message without acquiring any lock on it. This is equivalent to a
select statement. LOCKED reads the message and obtains a write lock on it. The
lock lasts for the duration of the transaction. This is equivalent to a select for
update statement.

• navigation_mode

This element is optional. It specifies the position of the message that is retrieved.
First, the position is determined. Second, the search criterion is applied. Finally,
the message is retrieved. Possible values are FIRST_MESSAGE, NEXT_MESSAGE, and
NEXT_TRANSACTION.

FIRST_MESSAGE retrieves the first message which is available and which matches
the search criteria. This resets the position to the beginning of the queue.
NEXT_MESSAGE is the default and retrieves the next message which is available and
which matches the search criteria. If the previous message belongs to a message
group, then Oracle Database Advanced Queuing retrieves the next available
message which matches the search criteria and which belongs to the message
group.NEXT_TRANSACTION skips the remainder of the current transaction group and
retrieves the first message of the next transaction group. This option can only be
used if message grouping is enabled for the current queue.

• transformation

This element is optional. It specifies the PL/SQL transformation to be invoked after
the message is dequeued.

AQXmlCommit

This is an optional empty element. If it is included, then the transaction is committed at
the end of the request.

IDAP Client Requests for Registration
Client requests for registration use AQXmlRegister, which must contain a
register_options element. The register_options element contains these child
elements.

• destination

This element is required. It specifies the queue/topic on which notifications are
registered. The destination element has an optional lookup_type attribute, which
determines how the destination value is interpreted. If lookup_type is DATABASE,
which is the default, then the destination is interpreted as schema.queue_name. If
lookup_type is LDAP, then the LDAP server is used to resolve the destination.

• consumer_name

This element is optional. It specifies the consumer name for multiconsumer
queues or topics. This parameter must not be specified for single-consumer
queues.

• notify_url

This element is required. It specifies where notification is sent when a message is
enqueued. The form can be http://url, mailto://email address or
plsql://pl/sql procedure.

Chapter 13
Request and Response IDAP Documents

13-13

IDAP Client Requests to Commit a Transaction
A request to commit all actions performed by the user in a session uses AQXmlCommit.

A commit request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlCommit xmlns="http://ns.oracle.com/AQ/schemas/access"/>
 </Body>
</Envelope>

IDAP Client Requests to Roll Back a Transaction
A request to roll back all actions performed by the user in a session uses
AQXmlRollback. Actions performed with IMMEDIATE visibility are not rolled back.

An IDAP client rollback request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlRollback xmlns="http://ns.oracle.com/AQ/schemas/access"/>
 </Body>
</Envelope>

IDAP Server Response to an Enqueue Request
The response to an enqueue request to a single-consumer queue uses
AQXmlSendResponse.

It contains the following elements:

• status_response

This element contains child elements status_code, error_code, and
error_message. The status_code element takes value 0 for success or -1 for
failure. The error_code element contains an Oracle error code. The
error_message element contains a description of the error.

• send_result

This element contains child elements destination and message_id. The
destination element specifies where the message was sent. The message_id
element uniquely identifies every message sent.

The response to an enqueue request to a multiconsumer queue or topic uses
AQXmlPublishResponse. It contains the following elements:

• status_response

This element contains child elements status_code, error_code, and
error_message. The status_code element takes value 0 for success or -1 for
failure. The error_code element contains an Oracle error code. The
error_message element contains a description of the error.

• publish_result

Chapter 13
Request and Response IDAP Documents

13-14

This element contains child elements destination and message_id. The
destination element specifies where the message was sent. The message_id
element uniquely identifies every message sent.

IDAP Server Response to a Dequeue Request
The response to a dequeue request uses AQXmlReceiveResponse.

It contains the following elements:

• status_response

This element contains child elements status_code, error_code, and
error_message. The status_code element takes value 0 for success or -1 for
failure. The error_code element contains an Oracle error code. The
error_message element contains a description of the error.

• receive_result

This element contains child elements destination and message_set. The
destination element specifies where the message was sent. The message_set
element specifies the set of messages dequeued.

IDAP Server Response to a Register Request
The response to a register request uses AQXmlRegisterResponse.

It contains the status_response element described in "IDAP Server Response to a
Dequeue Request".

IDAP Commit Response
The response to a commit request uses AQXmlCommitResponse.

It contains the status_response element described in "IDAP Server Response to a
Dequeue Request". The response to a commit request has the following format:

<?xml version = '1.0'?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <AQXmlCommitResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
 <status_response>
 <status_code>0</status_code>
 </status_response>
 </AQXmlCommitResponse>
 </Body>
</Envelope>

IDAP Rollback Response
The response to a rollback request uses AQXmlRollbackResponse.

It contains the status_response element described in "IDAP Server Response to a
Dequeue Request".

Chapter 13
Request and Response IDAP Documents

13-15

IDAP Notification
When an event for which a client has registered occurs, a notification is sent to the
client at the URL specified in the REGISTER request using AQXmlNotification.

It contains the following elements:

• notification_options

This element has child elements destination and consumer_name. The
destination element specifies the destination queue/topic on which the event
occurred. The consumer_name element specifies the consumer name for which
the even occurred. It applies only to multiconsumer queues/topics.

• message_set

This element specifies the set of message properties.

IDAP Response in Case of Error
In case of an error in any of the preceding requests, a FAULT is generated.

The FAULT element contains the following elements:

• faultcode

This element specifies the error code for the fault.

• faultstring

This element indicates a client error or a server error. A client error means that the
request is not valid. A server error indicates that the Oracle Database Advanced
Queuing servlet has not been set up correctly.

• detail

This element contains the status_response element, which is described in "IDAP
Server Response to a Dequeue Request".

Notification of Messages by E-Mail
These are the steps for setting up your database for e-mail notifications.

1. Set the SMTP mail host by invoking DBMS_AQELM.SET_MAILHOST as an Oracle
Database Advanced Queuing administrator.

2. Set the SMTP mail port by invoking DBMS_AQELM.SET_MAILPORT as an Oracle
Database Advanced Queuing administrator. If not explicit, set defaults to 25.

3. Set the SendFrom address by invoking DBMS_AQELM.SET_SENDFROM.

4. After setup, you can register for e-mail notifications using the Oracle Call Interface
(OCI) or PL/SQL API.

Chapter 13
Notification of Messages by E-Mail

13-16

14
Oracle Database Advanced Queuing
Administrative Interface

These topics describe the Oracle Database Advanced Queuing (AQ) administrative
interface.

• Managing AQ Queue Tables

• Managing AQ Queues

• Managing Sharded Queues

• Managing Transformations

• Granting and Revoking Privileges

• Managing Subscribers

• Managing Propagations

• Managing Oracle Database Advanced Queuing Agents

• Adding an Alias to the LDAP Server

• Deleting an Alias from the LDAP Server

See Also:

• Oracle Transactional Event Queues and Advanced Queuing:
Programmatic Interfaces for a list of available functions in each
programmatic interface

• Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_AQADM Package

Managing AQ Queue Tables
These topics describe how to manage AQ queue tables.

• Creating a Queue Table

• Altering a Queue Table

• Dropping a Queue Table

• Purging a Queue Table

• Migrating a Queue Table

14-1

Creating an AQ Queue Table
DBMS_AQADM.CREATE_QUEUE_TABLE creates an AQ queue table for messages of a
predefined type.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 queue_payload_type IN VARCHAR2,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 sort_list IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 message_grouping IN BINARY_INTEGER DEFAULT NONE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,
 compatible IN VARCHAR2 DEFAULT NULL,
 secure IN BOOLEAN DEFAULT FALSE
 replication_mode IN BINARY_INTEGER DEFAULT NONE);

It has the following required and optional parameters:

Parameter Description

queue_table This required parameter specifies the queue
table name.

Mixed case (upper and lower case together)
queue table names are supported if database
compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc.efg
means the schema is ABC and the name is
EFG, but "abc"."efg" means the schema is
abc and the name is efg.

Starting from 12c Release 2 (12.2.), the
maximum length of AQ queue table names is
122 bytes. If you attempt to create a queue
table with a longer name, error ORA-24019
results.

queue_payload_type This required parameter specifies the payload
type as RAW or an object type. See "Payload
Type" for more information.

storage_clause This optional parameter specifies a tablespace
for the queue table. See "Storage Clause" for
more information.

sort_list This optional parameter specifies one or two
columns to be used as sort keys in ascending
order. It has the format
sort_column1,sort_column2. See "Sort
Key" for more information.

multiple_consumers This optional parameter specifies the queue
table as single-consumer or multiconsumer.
The default FALSE means queues created in
the table can have only one consumer for
each message. TRUE means queues created
in the table can have multiple consumers for
each message.

Chapter 14
Managing AQ Queue Tables

14-2

Parameter Description

message_grouping This optional parameter specifies whether
messages are grouped or not. The default
NONE means each message is treated
individually. TRANSACTIONAL means all
messages enqueued in one transaction are
considered part of the same group and can be
dequeued as a group of related messages.

comment This optional parameter is a user-specified
description of the queue table. This user
comment is added to the queue catalog.

auto_commit TRUE causes the current transaction, if any, to
commit before the CREATE_QUEUE_TABLE
operation is carried out. The
CREATE_QUEUE_TABLE operation becomes
persistent when the call returns. This is the
default. FALSE means the operation is part of
the current transaction and becomes
persistent only when the caller enters a
commit.

Note: This parameter has been deprecated.

primary_instance This optional parameter specifies the primary
owner of the queue table. Queue monitor
scheduling and propagation for the queues in
the queue table are done in this instance. The
default value 0 means queue monitor
scheduling and propagation is done in any
available instance.

You can specify and modify this parameter
only if compatible is 8.1 or higher.

secondary_instance This optional parameter specifies the owner of
the queue table if the primary instance is not
available. The default value 0 means that the
queue table will fail over to any available
instance.

You can specify and modify this parameter
only if primary_instance is also specified
and compatible is 8.1 or higher.

compatible This optional parameter specifies the lowest
database version with which the queue table is
compatible. The possible values are 8.0, 8.1,
and 10.0. If the database is in 10.1-
compatible mode, then the default value is
10.0. If the database is in 8.1-compatible or
9.2-compatible mode, then the default value is
8.1. If the database is in 8.0-compatible
mode, then the default value is 8.0. The 8.0
value is deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2).

For more information on compatibility, see
"Oracle Database Advanced Queuing
Compatibility Parameters".

Chapter 14
Managing AQ Queue Tables

14-3

Parameter Description

secure This optional parameter must be set to TRUE if
you want to use the queue table for secure
queues. Secure queues are queues for which
AQ agents must be associated explicitly with
one or more database users who can perform
queue operations, such as enqueue and
dequeue. The owner of a secure queue can
perform all queue operations on the queue,
but other users cannot unless they are
configured as secure queue users

replication_mode Reserved for future use.
DBMS_AQADM.REPLICATION_MODE if queue is
being created in the Replication Mode or else
DBMS_AQADM.NONE. Default is
DBMS_AQADM.NONE.

Payload Type

To specify the payload type as an object type, you must define the object type.

Note:

If you have created synonyms on object types, then you cannot use them in
DBMS_AQADM.CREATE_QUEUE_TABLE. Error ORA-24015 results.

CLOB, BLOB, and BFILE objects are valid in an Oracle Database Advanced Queuing
message. You can propagate these object types using Oracle Database Advanced
Queuing propagation with Oracle software since Oracle8i release 8.1.x. To enqueue
an object type that has a LOB, you must first set the LOB_attribute to EMPTY_BLOB()
and perform the enqueue. You can then select the LOB locator that was generated
from the queue table's view and use the standard LOB operations.

Note:

Payloads containing LOBs require users to grant explicit Select, Insert and
Update privileges on the queue table for doing enqueues and dequeues.

Storage Clause

The storage_clause argument can take any text that can be used in a standard
CREATE TABLE storage_clause argument.

Once you pick the tablespace, any index-organized table (IOT) or index created for
that queue table goes to the specified tablespace. You do not currently have a choice
to split them between different tablespaces.

Chapter 14
Managing AQ Queue Tables

14-4

Note:

The qmon processes in the 11g Release 2 (11.2) perform auto-coalesce of
the the dequeue IOT, history IOT, and the time manager IOT. It is not
required to manually coalesce AQ IOTs. However, it can be performed as a
workaround if a performance degradation is observed.

If you choose to create the queue table in a locally managed tablespace or
with freelist groups > 1, then Queue Monitor Coordinator will skip the cleanup
of those blocks. This can cause a decline in performance over time.

Coalesce the dequeue IOT by running

ALTER TABLE AQ$_queue_table_I COALESCE;

You can run this command while there are concurrent dequeuers and
enqueuers of the queue, but these concurrent users might see a slight
decline in performance while the command is running.

Sort Key

The sort_list parameter determines the order in which messages are dequeued. You
cannot change the message sort order after you have created the queue table. Your
choices are:

• ENQ_TIME

• ENQ_TIME,PRIORITY

• PRIORITY

• PRIORITY,ENQ_TIME

• PRIORITY,COMMIT_TIME

• COMMIT_TIME

If COMMIT_TIME is specified, then any queue that uses the queue table is a commit-time
queue, and Oracle Database Advanced Queuing computes an approximate CSCN for
each enqueued message when its transaction commits.

If you specify COMMIT_TIME as the sort key, then you must also specify the following:

• multiple_consumers = TRUE

• message_grouping = TRANSACTIONAL

• compatible = 8.1 or higher

Commit-time ordering is useful when transactions are interdependent or when
browsing the messages in a queue must yield consistent results.

Other Tables and Views

The following objects are created at table creation time:

• AQ$_queue_table_name, a read-only view which is used by Oracle Database
Advanced Queuing applications for querying queue data

Chapter 14
Managing AQ Queue Tables

14-5

• AQ$_queue_table_name_E, the default exception queue associated with the queue
table

• AQ$_queue_table_name_I, an index or an index-organized table (IOT) in the case
of multiple consumer queues for dequeue operations

• AQ$_queue_table_name_T, an index for the queue monitor operations

• AQ$_queue_table_name_L, dequeue log table, used for storing message identifiers
of committed dequeue operations on the queue

The following objects are created only for 8.1-compatible multiconsumer queue tables:

• AQ$_queue_table_name_S, a table for storing information about subscribers

• AQ$_queue_table_name_H, an index organized table (IOT) for storing dequeue
history data

Note:

Oracle Database Advanced Queuing does not support the use of triggers on
these internal AQ queue tables.

If you do not specify a schema, then you default to the user's schema.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is created, then a corresponding
Lightweight Directory Access Protocol (LDAP) entry is also created.

If the queue type is ANYDATA, then a buffered queue and two additional objects are
created. The buffered queue stores logical change records created by a capture
process. The logical change records are staged in a memory buffer associated with
the queue; they are not ordinarily written to disk.

If they have been staged in the buffer for a period of time without being dequeued, or if
there is not enough space in memory to hold all of the captured events, then they are
spilled to:

• AQ$_queue_table_name_P, a table for storing the captured events that spill from
memory

• AQ$_queue_table_name_D, a table for storing information about the propagations
and apply processes that are eligible for processing each event

See Also:

• "Dequeue Modes"

• Oracle Database SecureFiles and Large Objects Developer's Guide

Examples

The following examples assume you are in a SQL*Plus testing environment. In
Example 14-1, you create users in preparation for the other examples in this chapter.
For this example, you must connect as a user with administrative privileges. For most

Chapter 14
Managing AQ Queue Tables

14-6

of the other examples in this chapter, you can connect as user test_adm. A few
examples must be run as test with EXECUTE privileges on DBMS_AQADM.

Example 14-1 Setting Up AQ Administrative Users

CREATE USER test_adm IDENTIFIED BY test_adm DEFAULT TABLESPACE example;
GRANT DBA, CREATE ANY TYPE TO test_adm;
GRANT EXECUTE ON DBMS_AQADM TO test_adm;
GRANT aq_administrator_role TO test_adm;
BEGIN
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'MANAGE_ANY',
 grantee => 'test_adm',
 admin_option => FALSE);
END;
/
CREATE USER test IDENTIFIED BY test;
GRANT EXECUTE ON dbms_aq TO test;

Example 14-2 Setting Up AQ Administrative Example Types

CREATE TYPE test.message_typ AS object(
 sender_id NUMBER,
 subject VARCHAR2(30),
 text VARCHAR2(1000));
/
CREATE TYPE test.msg_table AS TABLE OF test.message_typ;
/
CREATE TYPE test.order_typ AS object(
 custno NUMBER,
 item VARCHAR2(30),
 description VARCHAR2(1000));
/
CREATE TYPE test.lob_typ AS object(
 id NUMBER,
 subject VARCHAR2(100),
 data BLOB,
 trailer NUMBER);
/

Example 14-3 Creating a Queue Table for Messages of Object Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 queue_payload_type => 'test.message_typ');
END;
/

Example 14-4 Creating a Queue Table for Messages of RAW Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.raw_qtab',
 queue_payload_type => 'RAW');
END;
/

Example 14-5 Creating a Queue Table for Messages of LOB Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(

Chapter 14
Managing AQ Queue Tables

14-7

 queue_table => 'test.lob_qtab',
 queue_payload_type => 'test.lob_typ');
END;
/

Example 14-6 Creating a Queue Table for Messages of XMLType

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.xml_qtab',
 queue_payload_type => 'SYS.XMLType',
 multiple_consumers => TRUE,
 compatible => '8.1',
 comment => 'Overseas Shipping multiconsumer orders queue table');
END;
/

Example 14-7 Creating a Queue Table for Grouped Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.group_qtab',
 queue_payload_type => 'test.message_typ',
 message_grouping => DBMS_AQADM.TRANSACTIONAL);
END;
/

Example 14-8 Creating Queue Tables for Prioritized Messages and Multiple
Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.priority_qtab',
 queue_payload_type => 'test.order_typ',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => TRUE);
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_qtab',
 queue_payload_type => 'test.message_typ',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => TRUE);
END;
/

Example 14-9 Creating a Queue Table with Commit-Time Ordering

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.commit_time_qtab',
 queue_payload_type => 'test.message_typ',
 sort_list => 'COMMIT_TIME',
 multiple_consumers => TRUE,
 message_grouping => DBMS_AQADM.TRANSACTIONAL,
 compatible => '10.0');
END;
/

Example 14-10 Creating an 8.1-Compatible Queue Table for Multiple
Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(

Chapter 14
Managing AQ Queue Tables

14-8

 queue_table => 'test.multiconsumer_81_qtab',
 queue_payload_type => 'test.message_typ',
 multiple_consumers => TRUE,
 compatible => '8.1');
END;
/

Example 14-11 Creating a Queue Table in a Specified Tablespace

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.example_qtab',
 queue_payload_type => 'test.message_typ',
 storage_clause => 'tablespace example');
END;
/

Example 14-12 Creating a Queue Table with Freelists or Freelist Groups

BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table => 'test.freelist_qtab',
 queue_payload_type => 'RAW',
 storage_clause => 'STORAGE (FREELISTS 4 FREELIST GROUPS 2)',
 compatible => '8.1');
END;
/

Altering an AQ Queue Table
DBMS_AQADM.ALTER_QUEUE_TABLE alters the existing properties of an AQ queue table.

DBMS_AQADM.ALTER_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT NULL,
 secondary_instance IN BINARY_INTEGER DEFAULT NULL
 replication_mode IN BINARY_INTEGER DEFAULT NULL);

Parameter Description

queue_table This required parameter specifies the queue table name.

comment This optional parameter is a user-specified description of the queue
table. This user comment is added to the queue catalog.

primary_instance This optional parameter specifies the primary owner of the queue
table. Queue monitor scheduling and propagation for the queues in
the queue table are done in this instance.

You can specify and modify this parameter only if compatible is
8.1 or higher.

secondary_instance This optional parameter specifies the owner of the queue table if the
primary instance is not available.

You can specify and modify this parameter only if
primary_instance is also specified and compatible is 8.1 or
higher.

replication_mode Reserved for future use. DBMS_AQADM.REPLICATION_MODE if
Queue is being altered to be in the Replication Mode or else
DBMS_AQADM.NONE. Default value is NULL.

Chapter 14
Managing AQ Queue Tables

14-9

Note:

In general, DDL statements are not supported on queue tables and may
even render them inoperable. For example, issuing an ALTER TABLE ...
SHRINK statement against a queue table results in an internal error, and all
subsequent attempts to use the queue table will also result in errors. Oracle
recommends that you not use DDL statements on queue tables.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is modified, then a
corresponding LDAP entry is also altered.

Example 14-13 Altering a Queue Table by Changing the Primary and
Secondary Instances

BEGIN
 DBMS_AQADM.ALTER_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 primary_instance => 3,
 secondary_instance => 2);
END;
/

Example 14-14 Altering a Queue Table by Changing the Comment

BEGIN
 DBMS_AQADM.ALTER_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 comment => 'revised usage for queue table');
END;
/

Dropping an AQ Queue Table
DBMS_AQADM.DROP_QUEUE_TABLE drops an existing AQ queue table.

DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,

You must stop and drop all the queues in a queue table before the queue table can be
dropped. You must do this explicitly if force is set to FALSE. If force is set to TRUE,
then all queues in the queue table and their associated propagation schedules are
dropped automatically.

If GLOBAL_TOPIC_ENABLED = TRUE when a queue table is dropped, then a
corresponding LDAP entry is also dropped.

Example 14-15 Dropping a Queue Table

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'test.obj_qtab');
END;
/

Chapter 14
Managing AQ Queue Tables

14-10

Example 14-16 Dropping a Queue Table with force Option

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'test.raw_qtab',
 force => TRUE);
END;
/

Purging an AQ Queue Table
DBMS_AQADM.PURGE_QUEUE_TABLE purges messages from an AQ queue table.

DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 purge_condition IN VARCHAR2,
 purge_options IN aq$_purge_options_t);

It has the following parameters:

Parameter Description

queue_table This required parameter specifies the queue table name.

purge_condition The purge condition must be in the format of a SQL WHERE clause,
and it is case-sensitive. The condition is based on the columns of
aq$queue_table_name view. Each column name in the purge
condition must be prefixed with "qtview."

All purge conditions supported for persistent messages are also
supported for buffered messages.

To purge all queues in a queue table, set purge_condition to
either NULL (a bare null word, no quotes) or '' (two single quotes).

purge_options Type aq$_purge_options_t contains a block parameter. If
block is TRUE, then an exclusive lock on all the queues in the
queue table is held while purging the queue table. This will cause
concurrent enqueuers and dequeuers to block while the queue table
is purged. The purge call always succeeds if block is TRUE. The
default for block is FALSE. This will not block enqueuers and
dequeuers, but it can cause the purge to fail with an error during
high concurrency times.

Type aq$_purge_options_t also contains a delivery_mode
parameter. If it is the default PERSISTENT, then only persistent
messages are purged. If it is set to BUFFERED, then only buffered
messages are purged. If it is set to PERSISTENT_OR_BUFFERED,
then both types are purged.

A trace file is generated in the udump destination when you run this procedure. It
details what the procedure is doing. The procedure commits after it has processed all
the messages.

See Also:

"DBMS_AQADM" in Oracle Database PL/SQL Packages and Types
Reference for more information on DBMS_AQADM.PURGE_QUEUE_TABLE

Chapter 14
Managing AQ Queue Tables

14-11

Note:

Some purge conditions, such as consumer_name in Example 14-20 and
sender_name in Example 14-21, are supported only in 8.1-compatible queue
tables. For more information, see Table 10-1.

Example 14-17 Purging All Messages in a Queue Table

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := FALSE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => NULL,
 purge_options => po);
END;
/

Example 14-18 Purging All Messages in a Named Queue

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => 'qtview.queue = ''TEST.OBJ_QUEUE''',
 purge_options => po);
END;
/

Example 14-19 Purging All PROCESSED Messages in a Named Queue

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.obj_qtab',
 purge_condition => 'qtview.queue = ''TEST.OBJ_QUEUE''
 and qtview.msg_state = ''PROCESSED''',
 purge_options => po);
END;
/

Example 14-20 Purging All Messages in a Named Queue and for a Named
Consumer

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 purge_condition => 'qtview.queue = ''TEST.MULTICONSUMER_81_QUEUE''
 and qtview.consumer_name = ''PAYROLL_APP''',
 purge_options => po);

Chapter 14
Managing AQ Queue Tables

14-12

END;
/

Example 14-21 Purging All Messages from a Named Sender

DECLARE
po dbms_aqadm.aq$_purge_options_t;
BEGIN
 po.block := TRUE;
 DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table => 'test.multiconsumer_81_qtab',
 purge_condition => 'qtview.sender_name = ''TEST.OBJ_QUEUE''',
 purge_options => po);
END;
/

Migrating an AQ Queue Table
DBMS_AQADM.MIGRATE_QUEUE_TABLE migrates an AQ queue table from 8.0, 8.1, or 10.0
to 8.0, 8.1, or 10.0. Only the owner of the queue table can migrate it.

DBMS_AQADM.MIGRATE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 compatible IN VARCHAR2);

Note:

This procedure requires that the EXECUTE privilege on DBMS_AQADM be granted
to the queue table owner, who is probably an ordinary queue user. If you do
not want ordinary queue users to be able to create and drop queues and
queue tables, add and delete subscribers, and so forth, then you must
revoke the EXECUTE privilege as soon as the migration is done.

Note:

Queues created in a queue table with compatible set to 8.0 (referred to in
this guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues
you create be 8.1-style or newer and that you migrate existing 8.0-style
queues at your earliest convenience.

If a schema was created by an import of an export dump from a lower release or has
Oracle Database Advanced Queuing queues upgraded from a lower release, then
attempts to drop it with DROP USER CASCADE will fail with ORA-24005. To drop such
schemas:

1. Event 10851 should be set to level 1.

2. Drop all tables of the form AQ$_queue_table_name_NR from the schema.

3. Turn off event 10851.

4. Drop the schema.

Chapter 14
Managing AQ Queue Tables

14-13

Example 14-22 Upgrading a Queue Table from 8.1-Compatible to 10.0-
Compatible

BEGIN
 DBMS_AQADM.MIGRATE_QUEUE_TABLE (
 queue_table => 'test.xml_qtab',
 compatible => '10.0');
END;
/

Managing AQ Queues
These topics describe how to manage AQ queues.

Note:

Starting and stopping a TEQ queue use the same APIs as AQ queues.

• Creating a Queue

• Altering a Queue

• Starting a Queue

• Stopping a Queue

• Dropping a Queue

Creating an AQ Queue
DBMS_AQADM.CREATE_QUEUE creates an AQ queue.

DBMS_AQADM.CREATE_QUEUE(
 queue_name IN VARCHAR2,
 queue_table IN VARCHAR2,
 queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT 0,
 retention_time IN NUMBER DEFAULT 0,
 dependency_tracking IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL,

It has the following parameters:

Chapter 14
Managing AQ Queues

14-14

Parameter Description

queue_name This required parameter specifies the name of the new queue.

Mixed case (upper and lower case together) queue names are
supported if database compatibility is 10.0, but the names must
be enclosed in double quote marks. So abc.efg means the
schema is ABC and the name is EFG, but "abc"."efg" means
the schema is abc and the name is efg.

Starting from 12c Release 2 (12.2.), the maximum length of user-
generated queue names is 122 bytes. If you attempt to create a
queue with a longer name, error ORA-24019 results. Queue
names generated by Oracle Database Advanced Queuing, such
as those listed in "Other Tables and Views", cannot be longer
than 128 characters.

queue_table This required parameter specifies the queue table in which the
queue is created.

queue_type This parameter specifies what type of queue to create. The
default NORMAL_QUEUE produces a normal queue.
EXCEPTION_QUEUE produces an exception queue.

max_retries This parameter limits the number of times a dequeue with the
REMOVE mode can be attempted on a message. The maximum
value of max_retries is 2**31 -1.

retry_delay This parameter specifies the number of seconds after which this
message is scheduled for processing again after an application
rollback. The default is 0, which means the message can be
retried as soon as possible. This parameter has no effect if
max_retries is set to 0.

This parameter is supported for single-consumer queues and 8.1-
style or higher multiconsumer queues but not for 8.0-style
multiconsumer queues, which are deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2).

retention_time This parameter specifies the number of seconds a message is
retained in the queue table after being dequeued from the queue.
When retention_time expires, messages are removed by the
time manager process. INFINITE means the message is retained
forever. The default is 0, no retention.

dependency_tracking This parameter is reserved for future use. FALSE is the default.
TRUE is not permitted in this release.

comment This optional parameter is a user-specified description of the
queue. This user comment is added to the queue catalog.

All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is
created with both enqueue and dequeue disabled. To view retained messages, you
can either dequeue by message ID or use SQL. If GLOBAL_TOPIC_ENABLED = TRUE
when a queue is created, then a corresponding LDAP entry is also created.

The following examples (Example 14-23 through Example 14-30) use data structures
created in Example 14-1 through Example 14-12.

Example 14-23 Creating a Queue for Messages of Object Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.obj_queue',

Chapter 14
Managing AQ Queues

14-15

 queue_table => 'test.obj_qtab');
END;
/

Example 14-24 Creating a Queue for Messages of RAW Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.raw_queue',
 queue_table => 'test.raw_qtab');
END;
/

Example 14-25 Creating a Queue for Messages of LOB Type

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.lob_queue',
 queue_table => 'test.lob_qtab');
END;
/

Example 14-26 Creating a Queue for Grouped Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.group_queue',
 queue_table => 'test.group_qtab');
END;
/

Example 14-27 Creating a Queue for Prioritized Messages

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.priority_queue',
 queue_table => 'test.priority_qtab');
END;
/

Example 14-28 Creating a Queue for Prioritized Messages and Multiple
Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.multiconsumer_queue',
 queue_table => 'test.multiconsumer_qtab');
END;
/

Example 14-29 Creating a Queue to Demonstrate Propagation

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.another_queue',
 queue_table => 'test.multiconsumer_qtab');
END;
/

Chapter 14
Managing AQ Queues

14-16

Example 14-30 Creating an 8.1-Style Queue for Multiple Consumers

BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 queue_name => 'test.multiconsumer_81_queue',
 queue_table => 'test.multiconsumer_81_qtab');
END;
/

Altering an AQ Queue
DBMS_AQADM.ALTER_QUEUE alters existing properties of an AQ queue.

DBMS_AQADM.ALTER_QUEUE(
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT NULL,
 retention_time IN NUMBER DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL);

Only max_retries, comment, retry_delay, and retention_time can be altered. To
view retained messages, you can either dequeue by message ID or use SQL. If
GLOBAL_TOPIC_ENABLED = TRUE when a queue is modified, then a corresponding LDAP
entry is also altered.

The following example changes retention time, saving messages for 1 day after
dequeuing:

Example 14-31 Altering a Queue by Changing Retention Time

BEGIN
 DBMS_AQADM.ALTER_QUEUE(
 queue_name => 'test.another_queue',
 retention_time => 86400);
END;
/

Starting an AQ Queue
DBMS_AQADM.START_QUEUE enables the specified AQ queue for enqueuing or
dequeuing.

DBMS_AQADM.START_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE);

After creating a queue, the administrator must use START_QUEUE to enable the queue.
The default is to enable it for both enqueue and dequeue. Only dequeue operations
are allowed on an exception queue. This operation takes effect when the call
completes and does not have any transactional characteristics.

Example 14-32 Starting a Queue with Both Enqueue and Dequeue Enabled

BEGIN
 DBMS_AQADM.START_QUEUE (
 queue_name => 'test.obj_queue');
END;
/

Chapter 14
Managing AQ Queues

14-17

Example 14-33 Starting a Queue for Dequeue Only

BEGIN
 DBMS_AQADM.START_QUEUE(
 queue_name => 'test.raw_queue',
 dequeue => TRUE,
 enqueue => FALSE);
END;
/

Stopping an AQ Queue
DBMS_AQADM.STOP_QUEUE disables enqueuing, dequeuing, or both on the specified AQ
queue.

DBMS_AQADM.STOP_QUEUE(
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE,
 wait IN BOOLEAN DEFAULT TRUE);

By default, this call disables both enqueue and dequeue. A queue cannot be stopped if
there are outstanding transactions against the queue. This operation takes effect when
the call completes and does not have any transactional characteristics.

Example 14-34 Stopping a Queue

BEGIN
 DBMS_AQADM.STOP_QUEUE(
 queue_name => 'test.obj_queue');
END;
/

Dropping an AQ Queue
This procedure drops an existing AQ queue. DROP_QUEUE is not allowed unless
STOP_QUEUE has been called to disable the queue for both enqueuing and dequeuing.
All the queue data is deleted as part of the drop operation.

DBMS_AQADM.DROP_QUEUE(
 queue_name IN VARCHAR2,

If GLOBAL_TOPIC_ENABLED = TRUE when a queue is dropped, then a corresponding
LDAP entry is also dropped.

Example 14-35 Dropping a Standard Queue

BEGIN
 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'test.obj_queue');
END;
/

Managing Transformations
Transformations change the format of a message, so that a message created by one
application can be understood by another application. You can use transformations on

Chapter 14
Managing Transformations

14-18

both persistent and buffered messages. These topics describe how to manage queue
tables.

• Creating a Transformation

• Modifying a Transformation

• Dropping a Transformation

Note:

TEQ queues do not support transformations.

Creating a Transformation
DBMS_TRANSFORM.CREATE_TRANSFORMATION creates a message format transformation.

DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema VARCHAR2(30),
 name VARCHAR2(30),
 from_schema VARCHAR2(30),
 from_type VARCHAR2(30),
 to_schema VARCHAR2(30),
 to_type VARCHAR2(30),
 transformation VARCHAR2(4000));

The transformation must be a SQL function with input type from_type, returning an
object of type to_type. It can also be a SQL expression of type to_type, referring to
from_type. All references to from_type must be of the form source.user_data.

You must be granted EXECUTE privilege on dbms_transform to use this feature. This
privilege is included in the AQ_ADMINISTRATOR_ROLE.

You must also have EXECUTE privilege on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function. The transformation cannot
write the database state (that is, perform DML operations) or commit or rollback the
current transaction.

Example 14-36 Creating a Transformation

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'test',
 name => 'message_order_transform',
 from_schema => 'test',
 from_type => 'message_typ',
 to_schema => 'test',
 to_type => 'order_typ',
 transformation => 'test.order_typ(
 source.user_data.sender_id,
 source.user_data.subject,
 source.user_data.text)');
END;
/

Chapter 14
Managing Transformations

14-19

See Also:

"Oracle Database Advanced Queuing Security" for more information on
administrator and user roles

Modifying a Transformation
DBMS_TRANSFORM.MODIFY_TRANSFORMATION changes the transformation function and
specifies transformations for each attribute of the target type.

DBMS_TRANSFORM.MODIFY_TRANSFORMATION(
 schema VARCHAR2(30),
 name VARCHAR2(30),
 attribute_number INTEGER,
 transformation VARCHAR2(4000));

If the attribute number 0 is specified, then the transformation expression singularly
defines the transformation from the source to target types.

All references to from_type must be of the form source.user_data. All references to
the attributes of the source type must be prefixed by source.user_data.

You must be granted EXECUTE privileges on dbms_transform to use this feature. You
must also have EXECUTE privileges on the user-defined types that are the source and
destination types of the transformation, and have EXECUTE privileges on any PL/SQL
function being used in the transformation function.

Dropping a Transformation
DBMS_TRANSFORM.DROP_TRANSFORMATION drops a transformation.

DBMS_TRANSFORM.DROP_TRANSFORMATION (
 schema VARCHAR2(30),
 name VARCHAR2(30));

You must be granted EXECUTE privileges on dbms_transform to use this feature. You
must also have EXECUTE privileges on the user-defined types that are the source and
destination types of the transformation, and have EXECUTE privileges on any PL/SQL
function being used in the transformation function.

Granting and Revoking Privileges
These topics describe how to grant and revoke privileges.

• Granting Oracle Database Advanced Queuing System Privileges

• Revoking Oracle Database Advanced Queuing System Privileges

• Granting Queue Privileges

• Revoking Queue Privileges

Chapter 14
Granting and Revoking Privileges

14-20

Granting Oracle Database Advanced Queuing System Privileges
DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE grants Oracle Database Advanced Queuing
system privileges to users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY,
MANAGE_ANY. Initially, only SYS and SYSTEM can use this procedure successfully.

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege IN VARCHAR2,
 grantee IN VARCHAR2,
 admin_option IN BOOLEAN := FALSE);

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Note:

Starting from Oracle Database 12c Release 2, MANAGE_ANY, ENQUEUE_ANY,
and DEQUEUE_ANY privileges will not allow access to SYS owned queues by
users other than SYS.

Example 14-37 Granting AQ System Privileges

BEGIN
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'ENQUEUE_ANY',
 grantee => 'test',
 admin_option => FALSE);
 DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => 'DEQUEUE_ANY',
 grantee => 'test',
 admin_option => FALSE);
END;
/

Revoking Oracle Database Advanced Queuing System Privileges
DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE revokes Oracle Database Advanced Queuing
system privileges from users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY
and MANAGE_ANY.

DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege IN VARCHAR2,
 grantee IN VARCHAR2);

The ADMIN option for a system privilege cannot be selectively revoked.

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
queues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

Chapter 14
Granting and Revoking Privileges

14-21

Note:

Starting from Oracle Database 12c Release 2, MANAGE_ANY, ENQUEUE_ANY,
and DEQUEUE_ANY privileges will not allow access to SYS owned queues by
users other than SYS.

Example 14-38 Revoking AQ System Privileges

BEGIN
 DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege => 'DEQUEUE_ANY',
 grantee => 'test');
END;
/

Granting Queue Privileges
DBMS_AQADM.GRANT_QUEUE_PRIVILEGE grants privileges on a queue to users and roles.
The privileges are ENQUEUE, DEQUEUE, or ALL. Initially, only the queue table owner can
use this procedure to grant privileges on the queues.

DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN := FALSE);

Note:

This procedure requires that EXECUTE privileges on DBMS_AQADM be granted to
the queue table owner, who is probably an ordinary queue user. If you do not
want ordinary queue users to be able to create and drop queues and queue
tables, add and delete subscribers, and so forth, then you must revoke the
EXECUTE privilege as soon as the initial GRANT_QUEUE_PRIVILEGE is done.

Example 14-39 Granting Queue Privilege

BEGIN
 DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
 privilege => 'ALL',
 queue_name => 'test.multiconsumer_81_queue',
 grantee => 'test_adm',
 grant_option => TRUE);
END;
/

Chapter 14
Granting and Revoking Privileges

14-22

Revoking Queue Privileges
DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE revokes privileges on a queue from users and
roles. The privileges are ENQUEUE or DEQUEUE.

DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2);

To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANT option are revoked if the grantor's privileges
are revoked.

You can revoke the dequeue right of a grantee on a specific queue, leaving the
grantee with only the enqueue right as in Example 14-40.

Example 14-40 Revoking Dequeue Privilege

BEGIN
 DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(
 privilege => 'DEQUEUE',
 queue_name => 'test.multiconsumer_81_queue',
 grantee => 'test_adm');
END;

Managing Subscribers
These topics describe how to manage subscribers.

• Adding a Subscriber

• Altering a Subscriber

• Removing a Subscriber

Adding a Subscriber
DBMS_AQADM.ADD_SUBSCRIBER adds a default subscriber to a queue.

DBMS_AQADM.ADD_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL,
 queue_to_queue IN BOOLEAN DEFAULT FALSE,
 delivery_mode IN PLS_INTEGER DEFAULT PERSISTENT);

An application can enqueue messages to a specific list of recipients or to the default
list of subscribers. This operation succeeds only on queues that allow multiple
consumers, and the total number of subscribers must be 1024 or less. This operation
takes effect immediately and the containing transaction is committed. Enqueue
requests that are executed after the completion of this call reflect the new action. Any
string within the rule must be quoted (with single quotation marks) as follows:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN'''

Chapter 14
Managing Subscribers

14-23

User data properties or attributes apply only to object payloads and must be prefixed
with tab.userdata in all cases.

If GLOBAL_TOPIC_ENABLED is set to true when a subscriber is created, then a
corresponding LDAP entry is also created.

Specify the name of the transformation to be applied during dequeue or propagation.
The transformation must be created using the DBMS_TRANSFORM package.

For queues that contain payloads with XMLType attributes, you can specify rules that
contain operators such as XMLType.existsNode() and XMLType.extract().

If parameter queue_to_queue is set to TRUE, then the added subscriber is a queue-to-
queue subscriber. When queue-to-queue propagation is set up between a source
queue and a destination queue, queue-to-queue subscribers receive messages
through that propagation schedule.

If the delivery_mode parameter is the default PERSISTENT, then the subscriber
receives only persistent messages. If it is set to BUFFERED, then the subscriber receives
only buffered messages. If it is set to PERSISTENT_OR_BUFFERED, then the subscriber
receives both types. You cannot alter this parameter with ALTER_SUBSCRIBER.

The agent name should be NULL if the destination queue is a single consumer queue.

Note:

ADD_SUBSCRIBER is an administrative operation on a queue. Although Oracle
Database AQ does not prevent applications from issuing administrative and
operational calls concurrently, they are executed serially. ADD_SUBSCRIBER
blocks until pending calls that are enqueuing or dequeuing messages
complete. It will not wait for the pending transactions to complete.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information on the DBMS_TRANSFORM package

• "Scheduling a Queue Propagation"

Example 14-41 Adding a Subscriber at a Designated Queue at a Database Link

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber1', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

Chapter 14
Managing Subscribers

14-24

Example 14-42 Adding a Single Consumer Queue at a Dababase Link as a
Subscriber

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber1', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;
/

Example 14-43 Adding a Subscriber with a Rule

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 rule => 'priority < 2');
END;
/

Example 14-44 Adding a Subscriber and Specifying a Transformation

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber3', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 transformation => 'test.message_order_transform');
END;
/

Example 14-45 Propagating from a Multiple-Consumer Queue to a Single
Consumer Queue

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT(NULL, 'test2.single_consumer__queue@london',
null);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber);
END;

Altering a Subscriber
DBMS_AQADM.ALTER_SUBSCRIBER alters existing properties of a subscriber to a specified
queue.

DBMS_AQADM.ALTER_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,

Chapter 14
Managing Subscribers

14-25

 rule IN VARCHAR2
 transformation IN VARCHAR2);

The rule, the transformation, or both can be altered. If you alter only one of these
attributes, then specify the existing value of the other attribute to the alter call. If
GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is modified, then a
corresponding LDAP entry is created.

Example 14-46 Altering a Subscriber Rule

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.ALTER_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',
 subscriber => subscriber,
 rule => 'priority = 1');
END;
/

Removing a Subscriber
DBMS_AQADM.REMOVE_SUBSCRIBER removes a default subscriber from a queue.

DBMS_AQADM.REMOVE_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent);

This operation takes effect immediately and the containing transaction is committed.
All references to the subscriber in existing messages are removed as part of the
operation. If GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is dropped, then a
corresponding LDAP entry is also dropped.

It is not an error to run the REMOVE_SUBSCRIBER procedure even when there are
pending messages that are available for dequeue by the consumer. These messages
are automatically made unavailable for dequeue when the REMOVE_SUBSCRIBER
procedure finishes.

Note:

REMOVE_SUBSCRIBER is an administrative operation on a queue. Although
Oracle Database AQ does not prevent applications from issuing
administrative and operational calls concurrently, they are executed serially.
REMOVE_SUBSCRIBER blocks until pending calls that are enqueuing or
dequeuing messages complete. It will not wait for the pending transactions to
complete.

Example 14-47 Removing a Subscriber

DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent ('subscriber2', 'test2.msg_queue2@london', null);
 DBMS_AQADM.REMOVE_SUBSCRIBER(
 queue_name => 'test.multiconsumer_81_queue',

Chapter 14
Managing Subscribers

14-26

 subscriber => subscriber);
END;
/

Managing Propagations
The propagation schedules defined for a queue can be changed or dropped at any
time during the life of the queue.

You can also temporarily disable a schedule instead of dropping it. All administrative
calls can be made irrespective of whether the schedule is active or not. If a schedule is
active, then it takes a few seconds for the calls to be processed.

These topics describe how to manage propagations.

• Scheduling a Queue Propagation

• Verifying Propagation Queue Type

• Altering a Propagation Schedule

• Enabling a Propagation Schedule

• Disabling a Propagation Schedule

• Unscheduling a Queue Propagation

Scheduling a Queue Propagation
DBMS_AQADM.SCHEDULE_PROPAGATION schedules propagation of messages.

DBMS_AQADM.SCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 start_time IN DATE DEFAULT SYSDATE,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

The destination can be identified by a database link in the destination parameter, a
queue name in the destination_queue parameter, or both. Specifying only a database
link results in queue-to-dblink propagation. If you propagate messages to several
queues in another database, then all propagations have the same frequency.

If a private database link in the schema of the queue table owner has the same name
as a public database link, AQ always uses the private database link.

Specifying the destination queue name results in queue-to-queue propagation. If you
propagate messages to several queues in another database, queue-to-queue
propagation enables you to configure each schedule independently of the others. You
can enable or disable individual propagations.

Note:

If you want queue-to-queue propagation to a queue in another database,
then you must specify parameters destination and destination_queue.

Chapter 14
Managing Propagations

14-27

Queue-to-queue propagation mode supports transparent failover when propagating to
a destination Oracle Real Application Clusters (Oracle RAC) system. With queue-to-
queue propagation, it is not required to repoint a database link if the owner instance of
the queue fails on Oracle RAC.

Messages can also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues, then the message is propagated to
all of them at the same time.

The source queue must be in a queue table meant for multiple consumers. If you
specify a single-consumer queue, than error ORA-24039 results. Oracle Database
Advanced Queuing does not support the use of synonyms to refer to queues or
database links.

If you specify a propagation next_time and duration, propagation will run periodically
for the specified duration.If you specify a latency of zero with no next_time or
duration, the resulting propagation will run forever, propagating messages as they
appear in the queue, and idling otherwise. If a non-zero latency is specified, with no
next_time or duration (default), the propagation schedule will be event-based. It will
be scheduled to run when there are messages in the queue to be propagated. When
there are no more messages for a system-defined period of time, the job will stop
running until there are new messages to be propagated.The time at which the job runs
depends on other factors, such as the number of ready jobs and the number of job
queue processes.

Propagation uses a linear backoff scheme for retrying propagation from a schedule
that encountered a failure. If a schedule continuously encounters failures, then the first
retry happens after 30 seconds, the second after 60 seconds, the third after 120
seconds and so forth. If the retry time is beyond the expiration time of the current
window, then the next retry is attempted at the start time of the next window. A
maximum of 16 retry attempts are made after which the schedule is automatically
disabled.

Note:

Once a retry attempt slips to the next propagation window, it will always do
so; the exponential backoff scheme no longer governs retry scheduling. If the
date function specified in the next_time parameter of
DBMS_AQADM.SCHEDULE_PROPAGATION results in a short interval between
windows, then the number of unsuccessful retry attempts can quickly reach
16, disabling the schedule.

If you specify a value for destination that does not exist, then this procedure still runs
without throwing an error. You can query runtime propagation errors in the
LAST_ERROR_MSG column of the USER_QUEUE_SCHEDULES view.

Chapter 14
Managing Propagations

14-28

See Also:

• "Managing Job Queues" in Oracle Database Administrator's Guide for
more information on job queues and Jnnn background processes

• Internet Access to Oracle Database Advanced Queuing

• "USER_QUEUE_SCHEDULES: Propagation Schedules in User
Schema"

Example 14-48 Scheduling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 14-49 Scheduling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Example 14-50 Scheduling Queue-to-Queue Propagation

BEGIN
 DBMS_AQADM.SCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world'
 destination_queue => 'target_queue');
END;
/

Verifying Propagation Queue Type
DBMS_AQADM.VERIFY_QUEUE_TYPES verifies that the source and destination queues have
identical types. The result of the verification is stored in the dictionary table
SYS.AQ$_MESSAGE_TYPES, overwriting all previous output of this command.

DBMS_AQADM.VERIFY_QUEUE_TYPES(
 src_queue_name IN VARCHAR2,
 dest_queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 rc OUT BINARY_INTEGER);

If the source and destination queues do not have identical types and a transformation
was specified, then the transformation must map the source queue type to the
destination queue type.

Chapter 14
Managing Propagations

14-29

Note:

• SYS.AQ$_MESSAGE_TYPES can have multiple entries for the same source
queue, destination queue, and database link, but with different
transformations.

• VERIFY_QUEUE_TYPES check happens once per AQ propagation schedule
and not for every propagated message send

• In case the payload of the queue is modified then the existing
propagation schedule between source and destination queue needs to
be dropped and recreated.

Example 14-51 involves two queues of the same type. It returns:

VQT: new style queue
Compatible: 1

If the same example is run with test.raw_queue (a queue of type RAW) in place of
test.another_queue, then it returns:

VQT: new style queue
Compatible: 0

Example 14-51 Verifying a Queue Type

SET SERVEROUTPUT ON
DECLARE
rc BINARY_INTEGER;
BEGIN
 DBMS_AQADM.VERIFY_QUEUE_TYPES(
 src_queue_name => 'test.multiconsumer_queue',
 dest_queue_name => 'test.another_queue',
 rc => rc);
 DBMS_OUTPUT.PUT_LINE('Compatible: '||rc);
END;
/

Altering a Propagation Schedule
DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE alters parameters for a propagation
schedule. The destination_queue parameter for queue-to-queue propagation cannot
be altered.

DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Example 14-52 Altering a Propagation Schedule to Queues in the Same
Database

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(

Chapter 14
Managing Propagations

14-30

 queue_name => 'test.multiconsumer_queue',
 duration => '2000',
 next_time => 'SYSDATE + 3600/86400',
 latency => '32');
END;
/

Example 14-53 Altering a Propagation Schedule to Queues in Another
Database

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world',
 duration => '2000',
 next_time => 'SYSDATE + 3600/86400',
 latency => '32');
END;
/

Enabling a Propagation Schedule
DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE enables a previously disabled
propagation schedule.

DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Example 14-54 Enabling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 14-55 Enabling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Disabling a Propagation Schedule
DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE disables a previously enabled
propagation schedule.

DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Chapter 14
Managing Propagations

14-31

Example 14-56 Disabling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 14-57 Disabling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Unscheduling a Queue Propagation
DBMS_AQADM.UNSCHEDULE_PROPAGATION unschedules a previously scheduled
propagation of messages from a queue to a destination. The destination is identified
by a specific database link in the destination parameter or by name in the
destination_queue parameter.

DBMS_AQADM.UNSCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Example 14-58 Unscheduling a Propagation to Queues in the Same Database

BEGIN
 DBMS_AQADM.UNSCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue');
END;
/

Example 14-59 Unscheduling a Propagation to Queues in Another Database

BEGIN
 DBMS_AQADM.UNSCHEDULE_PROPAGATION(
 queue_name => 'test.multiconsumer_queue',
 destination => 'another_db.world');
END;
/

Managing Oracle Database Advanced Queuing Agents
These topics describe how to manage Oracle Database Advanced Queuing Agents.

• Creating an Oracle Database Advanced Queuing Agent

• Altering an Oracle Database Advanced Queuing Agent

• Dropping an Oracle Database Advanced Queuing Agent

• Enabling Database Access

• Disabling Database Access

Chapter 14
Managing Oracle Database Advanced Queuing Agents

14-32

Creating an Oracle Database Advanced Queuing Agent
DBMS_AQADM.CREATE_AQ_AGENT registers an agent for Oracle Database Advanced
Queuing Internet access using HTTP protocols.

DBMS_AQADM.CREATE_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE);

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Database Advanced Queuing
Internet agents. When an agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

• GLOBAL_TOPIC_ENABLED = TRUE

• certificate_location is specified

Altering an Oracle Database Advanced Queuing Agent
DBMS_AQADM.ALTER_AQ_AGENT alters an agent registered for Oracle Database
Advanced Queuing Internet access.

DBMS_AQADM.ALTER_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE);

When an Oracle Database Advanced Queuing agent is created, altered, or dropped,
an LDAP entry is created for the agent if the following are true:

• GLOBAL_TOPIC_ENABLED = TRUE

• certificate_location is specified

Dropping an Oracle Database Advanced Queuing Agent
DBMS_AQADM.DROP_AQ_AGENT drops an agent that was previously registered for Oracle
Database Advanced Queuing Internet access.

DBMS_AQADM.DROP_AQ_AGENT (
 agent_name IN VARCHAR2);

When an Oracle Database Advanced Queuing agent is created, altered, or dropped,
an LDAP entry is created for the agent if the following are true:

• GLOBAL_TOPIC_ENABLED = TRUE

• certificate_location is specified

Chapter 14
Managing Oracle Database Advanced Queuing Agents

14-33

Enabling Database Access
DBMS_AQADM.ENABLE_DB_ACCESS grants an Oracle Database Advanced Queuing
Internet agent the privileges of a specific database user. The agent should have been
previously created using the CREATE_AQ_AGENT procedure.

DBMS_AQADM.ENABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Database Advanced Queuing
Internet agents and the names of the database users whose privileges are granted to
them.

Disabling Database Access
DBMS_AQADM.DISABLE_DB_ACCESS revokes the privileges of a specific database user
from an Oracle Database Advanced Queuing Internet agent. The agent should have
been previously granted those privileges using the ENABLE_DB_ACCESS procedure.

DBMS_AQADM.DISABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Adding an Alias to the LDAP Server
DBMS_AQADM.ADD_ALIAS_TO_LDAP adds an alias to the LDAP server.

DBMS_AQADM.ADD_ALIAS_TO_LDAP(
 alias IN VARCHAR2,
 obj_location IN VARCHAR2);

This call takes the name of an alias and the distinguished name of an Oracle
Database Advanced Queuing object in LDAP, and creates the alias that points to the
Oracle Database Advanced Queuing object. The alias is placed immediately under the
distinguished name of the database server. The object to which the alias points can be
a queue, an agent, or a ConnectionFactory.

Deleting an Alias from the LDAP Server
DBMS_AQADM.DEL_ALIAS_FROM_LDAP removes an alias from the LDAP server.

DBMS_AQADM.DEL_ALIAS_FROM_LDAP(
 alias IN VARCHAR2);

This call takes the name of an alias as the argument, and removes the alias entry in
the LDAP server. It is assumed that the alias is placed immediately under the
database server in the LDAP directory.

Chapter 14
Adding an Alias to the LDAP Server

14-34

A
Nonpersistent Queues

Oracle Database Advanced Queuing can deliver nonpersistent messages
asynchronously to subscribers. These messages can be event-driven and do not
persist beyond the failure of the system (or instance). The messages are stored in a
system-created queue table. Oracle Database Advanced Queuing supports persistent
and nonpersistent messages with a common API.

Nonpersistent queues, which can be either single-consumer or multiconsumer, provide
a mechanism for notification to all currently connected users. Subscribers can be
added to multiconsumer nonpersistent queues, and nonpersistent queues can be
destinations for propagation.

You use the enqueue interface to enqueue messages into a nonpersistent queue in
the usual way. You can enqueue RAW and Oracle object type messages into a
nonpersistent queue. OCI notifications are used to deliver such messages to users
that are currently registered for notification.

The following topics describe nonpersistent queues, which are deprecated in Oracle
Database Advanced Queuing 10g Release 2 (10.2). Oracle recommends that you use
buffered messaging instead.

See Also:

"Buffered Messaging"

Topics:

• Creating Nonpersistent Queues

• Managing Nonpersistent Queues

• Compatibility of Nonpersistent Queues

• Nonpersistent Queue Notification

• Restrictions on Nonpersistent Queues

Creating Nonpersistent Queues
DBMS_AQADM.CREATE_NP_QUEUE (
 queue_name IN VARCHAR2,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL);

This procedure creates a nonpersistent queue.

Only local recipients are supported for nonpersistent queues. The queue can be either
single-consumer or multiconsumer. All queue names must be unique within a schema.
The queues are created in an 8.1-compatible system-created queue table (AQ$_MEM_SC

A-1

or AQ$_MEM_MC) in the same schema as that specified by the queue name. If the queue
name does not specify a schema name, then the queue is created in the login user's
schema.

Note:

Names of nonpersistent queues must not be longer than 24 characters. If
you attempt to create a nonpersistent queue with a longer name, error
ORA-24019 results.

Managing Nonpersistent Queues
Once a queue is created with CREATE_NP_QUEUE, it can be enabled by calling
START_QUEUE. By default, the queue is created with both enqueue and dequeue
disabled.

You can enqueue RAW and Oracle object type messages into a nonpersistent queue.
You cannot dequeue from a nonpersistent queue. The only way to retrieve a message
from a nonpersistent queue is by using the Oracle Call Interface (OCI) notification
mechanism. You cannot invoke the listen call on a nonpersistent queue.

A nonpersistent queue can be dropped only by its owner.

Compatibility of Nonpersistent Queues
For 8.1-style or higher queues, the compatible parameter of init.ora and the
compatible parameter of the queue table should be set to 8.1 or higher to use
nonpersistent queues.

Nonpersistent Queue Notification
For nonpersistent queues, the message is delivered as part of the notification.
Table A-1 shows the actions performed for nonpersistent queues for different
notification mechanisms when RAW presentation is specified. Table A-2 shows the
actions performed when XML presentation is specified.

Table A-1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified

Queue Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives
the RAW data in the
payload.

Not supported PL/SQL callback receives the
RAW data in the payload.

Oracle object type Not supported Not supported Not supported

Appendix A
Managing Nonpersistent Queues

A-2

Table A-2 Actions Performed for Nonpersistent Queues When XML Presentation Specified

Queue Payload Type OCI Callback E-mail PL/SQL Callback

RAW OCI callback receives
the XML data in the
payload.

XML data is formatted as a
SOAP message and e-mailed to
the registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

Oracle object type OCI callback receives
the XML data in the
payload.

XML data is formatted as a
SOAP message and e-mailed to
the registered e-mail address.

PL/SQL callback receives the
XML data in the payload.

Restrictions on Nonpersistent Queues
You can create nonpersistent queues of RAW and Oracle object type.You are limited to
sending messages only to subscribers and explicitly specified recipients who are local.
Propagation is not supported from nonpersistent queues. When retrieving messages,
you cannot use the dequeue call, but must instead employ the asynchronous
notification mechanism, registering for the notification by mean of
OCISubscriptionRegister.

The visibility attribute of enqueue_options must be set to IMMEDIATE for
nonpersistent messages.

See Also:

"Enqueue Options"

Appendix A
Restrictions on Nonpersistent Queues

A-3

B
Oracle JMS and Oracle AQ XML Servlet
Error Messages

A list of error messages is provided to aid you in troubleshooting problems.

• Oracle JMS Error Messages

• Oracle AQ XML Servlet Error Messages

Oracle JMS Error Messages
JMS-101 Invalid delivery mode (string)
Cause: The delivery mode is not supported

Action: The valid delivery mode is AQjmsConstants.PERSISTENT

JMS-102 Feature not supported (string)
Cause: This feature is not supported in the current release

Action: Self-explanatory

JMS-104 Message Payload must be specified
Cause: The message payload was null

Action: Specify a non-null payload for the message

JMS-105 Agent must be specified
Cause: AQjmsAgent object was null

Action: Specify a valid AQjmsAgent representing the remote subscriber

JMS-106 Cannot have more than one open Session on a JMSConnection
Cause: There is already one open JMS session on the connection. Cannot have more
than one open session on a connection

Action: Close the open session and then open a new one

JMS-107 Operation not allowed on (string)
Cause: The specified operation is not allowed on this object

Action: Self-explanatory

JMS-108 Messages of type (string) not allowed with Destinations containing
payload of type (string)
Cause: There was a mismatch between the message type being used and the
payload type specified for the destination

Action: Use the message type that maps to the payload specified for the queue table
that contains this destination

B-1

JMS-109 Class not found: (string)
Cause: The specified class was not found

Action: Make sure your CLASSPATH contains the class

JMS-110 Property (string) not writeable
Cause: An attempt was made to update a read-only message header field or property

Action: Self-explanatory

JMS-111 Connection must be specified
Cause: The connection object was null

Action: Specify a non-null JDBC connection

JMS-112 Connection is invalid
Cause: The JDBC connection is invalid

Action: Specify a non-null oracle JDBC connection

JMS-113 Connection is in stopped state
Cause: An attempt was made to receive messages on a connection that is in stopped
state

Action: Start the connection

JMS-114 Connection is closed
Cause: An attempt was made to use a Connection that has been closed

Action: Create a new connection

JMS-115 Consumer is closed
Cause: An attempt was mode to use a Consumer that has been closed

Action: Create a new Message Consumer

JMS-116 Subscriber name must be specified
Cause: Subscriber name was null

Action: Specify a non-null subscription name

JMS-117 Conversion failed - invalid property type
Cause: An error occurred while converting the property to the requested type

Action: Use the method corresponding to the property data type to retrieve it

JMS-119 Invalid Property value
Cause: The property value specified is invalid

Action: Use the appropriate type of value for the property being set

JMS-120 Dequeue failed
Cause: An error occurred while receiving the message

Action: See message inside the JMSException and linked SQLException for more
information

Appendix B
Oracle JMS Error Messages

B-2

JMS-121 DestinationProperty must be specified
Cause: A null AQjmsDestinationProperty was specified while creating a queue/topic

Action: Specify a non-null AQjmsDestinationProperty for the destination

JMS-122 Internal error (string)
Cause: Internal error occurred

Action: Call Support

JMS-123 Interval must be at least (integer) seconds
Cause: An invalid interval was specified

Action: The interval must be greater than 30 seconds

JMS-124 Invalid Dequeue mode
Cause: Invalid dequeue mode was specified

Action: Valid Dequeue modes are AQConstants.DEQUEUE_BROWSE,
AQConstants.DEQUEUE_REMOVE, AQConstants.DEQUEUE_LOCKED,
AQConstants.DEQUEUE_REMOVE_NODATA

JMS-125 Invalid Queue specified
Cause: An invalid Queue object was specified

Action: Specify a valid Queue handle

JMS-126 Invalid Topic specified
Cause: An invalid Topic object was specified

Action: Specify a valid Topic handle

JMS-127 Invalid Destination
Cause: An invalid destination object was specified

Action: Specify a valid destination (Queue/Topic) object

JMS-128 Invalid Navigation mode
Cause: An invalid navigation mode was specified

Action: The valid navigation modes are
AQjmsConstants.NAVIGATION_FIRST_MESSAGE,
AQjmsConstants.NAVIGATION_NEXT_MESSAGE,
AQjmsConstants.NAVIGATION_NEXT_TRANSACTION

JMS-129 Invalid Payload type
Cause: There was a mismatch between the message type being used and the
payload type specified for the destination

Action: Use the message type that maps to the payload specified for the queue table
that contains this destination. For ADT messages, use the appropriate CustomDatum
factory to create the message consumer

JMS-130 JMS queue cannot be multi-consumer enabled
Cause: An attempt was made to get a AQ multi-consumer queue as a JMS queue

Appendix B
Oracle JMS Error Messages

B-3

Action: JMS queues cannot be multi-consumer enabled

JMS-131 Session is closed
Cause: An attempt was made to use a session that has been closed

Action: Open a new session

JMS-132 Maximum number of properties (integer) exceeded
Cause: Maximum number of user defined properties for the message has been
exceeded

Action: Self-explanatory

JMS-133 Message must be specified
Cause: Message specified was null

Action: Specify a non-null message

JMS-134 Name must be specified
Cause: Queue or Queue table Name specified was null

Action: Specify a non-null name

JMS-135 Driver (string) not supported
Cause: The specified driver is not supported

Action: Valid drivers are oci8 and thin. To use the kprb driver get the kprb connection
using getDefaultConnection() and use the static createTopicConnection and
createQueueConnection methods

JMS-136 Payload factory can only be specified for destinations with ADT
payloads
Cause: A CustomDatumFactory was specified for consumers on destinations not
containing ADT payloads

Action: This field must be set to null for destinations containing payloads of type
SYS.AQ$_JMS_TEXT_MESSAGE, SYS.AQ$_JMS_BYTES_MESSAGE,
SYS.AQ$_JMS_MAP_MESSAGE, SYS.AQ$_JMS_OBJECT_MESSAGE,
SYS.AQ$_JMS_STREAM_MESSAGE

JMS-137 Payload factory must be specified for destinations with ADT payloads
Cause: CustomDatumFactory was not specified for destinations containing ADT
payloads

Action: For destinations containing ADT messages, a CustomDatumFactory for a java
class that maps to the SQL ADT type of the destination must be specified

JMS-138 Producer is closed
Cause: An attempt was made to use a producer that has been closed

Action: Create a new Message Producer

JMS-139 Property name must be specified
Cause: Property name was null

Action: Specify a non-null property name

Appendix B
Oracle JMS Error Messages

B-4

JMS-140 Invalid System property
Cause: Invalid system property name specified.

Action: Specify one of the valid JMS system properties

JMS-142 JMS topic must be created in multi-consumer enabled queue tables
Cause: An attempt was made to create a JMS topic in a single-consumer queue table

Action: JMS topics can only be created in queue tables that are multi-consumer
enabled

JMS-143 Queue must be specified
Cause: Null queue was specified

Action: Specify a non-null queue

JMS-144 JMS queue cannot be created in multiconsumer enabled queue tables
Cause: An attempt was made to create a JMS queue in a multi-consumer queue table

Action: JMS queues can only be created in queue tables that are not multi-consumer
enabled

JMS-145 Invalid recipient list
Cause: The recipient list specified was empty

Action: Specify a recipient list with at least one recipient

JMS-146 Registration failed
Cause: An error occurred while registering the type in the type map

Action: Self-explanatory

JMS-147 Invalid ReplyTo destination type
Cause: The ReplyTo destination object type is invalid

Action: The ReplyTo destination must be of type AQjmsAgent

JMS-148 Property name size exceeded
Cause: The property name is greater than the maximum size

Action: Specify a property name that is less than 100 characters

JMS-149 Subscriber must be specified
Cause: Subscriber specified was null

Action: Specify a non-null subscriber

JMS-150 Property not supported
Cause: An attempt was made to use a property that is not supported

Action: Self-explanatory

JMS-151 Topics cannot be of type EXCEPTION
Cause: Topics cannot be of type AQjmsConstants.EXCEPTION

Action: Specify topics to be of type AQjmsConstants.NORMAL

Appendix B
Oracle JMS Error Messages

B-5

JMS-153 Invalid System property type
Cause: The type of the value specified does not match the type defined for the system
property being set

Action: Use the correct type for the setting the system property

JMS-154 Invalid value for sequence deviation
Cause: The sequence deviation is invalid

Action: Valid values are AQEnqueueOption.DEVIATION_BEFORE,
AQEnqueueOption.DEVIATION_TOP

JMS-155 AQ Exception (string)
Cause: An error occurred in the AQ java layer

Action: See the message inside the JMSException and the linked exception for more
information

JMS-156 Invalid Class (string)
Cause: Class specified is invalid

Action: Make sure your CLASSPATH has the specified class

JMS-157 IO Exception (string)
Cause: IO exception

Action: See message is JMSException for details

JMS-158 SQL Exception (string)
Cause: SQL Exception

Action: See message inside linked SQLException for details

JMS-159 Invalid selector (string)
Cause: The selector specified is either invalid or too long

Action: Check the syntax of the selector

JMS-160 EOF Exception (string)
Cause: EOF exception occurred while reading the byte stream

Action: Self-explanatory

JMS-161 MessageFormat Exception: (string)
Cause: An error occurred while converting the stream data to specified type

Action: Check the type of data expected on the stream and use the appropriate read
method

JMS-162 Message not Readable
Cause: Message is in write-only mode

Action: Call the reset method to make the message readable

JMS-163 Message not Writeable
Cause: Message is in read-only mode

Appendix B
Oracle JMS Error Messages

B-6

Action: Use the clearBody method to make the message writeable

JMS-164 No such element
Cause: Element with specified name was not found in the map message

Action: Self-explanatory

JMS-165 Maximum size of property value exceeded
Cause: The property value exceeded the maximum length allowed

Action: Values for JMS defined properties can be a maximum of length of 100, Values
for User defined properties can have a maximum length of 2000

JMS-166 Topic must be specified
Cause: Topic specified was null

Action: Specify a non-null topic

JMS-167 Payload factory or Sql_data_class must be specified
Cause: Payload factory or Sql_data_class not specified for queues containing object
payloads

Action: Specify a CustomDatumFactory or the SQLData class of the java object that
maps to the ADT type defined for the queue.

JMS-168 Cannot specify both payload factory and sql_data_class
Cause: Both CustomDatumFactory and SQLData class were specified during
dequeue

Action: Specify either the CustomDatumFactory or the SQLData class of the java
object that maps to the ADT type defined for the queue.

JMS-169 Sql_data_class cannot be null
Cause: SQLData class specified is null

Action: Specify the SQLData class that maps to the ADT type defined for the queue

JMS-171 Message is not defined to contain (string)
Cause: Invalid payload type in message

Action: Check if the queue is defined to contain RAW or OBJECT payloads and use
the appropriate payload type in the message

JMS-172 More than one queue table matches query (string)
Cause: More than one queue table matches the query

Action: Specify both owner and queue table name

JMS-173 Queue Table (string) not found
Cause: The specified queue table was not found

Action: Specify a valid queue table

JMS-174 Class must be specified for queues with object payloads\n. Use
dequeue(deq_option,payload_fact) or dequeue(deq_option, sql_data_cl)
Cause: This dequeue method cannot be used to dequeue from queues with OBJECT
payloads

Appendix B
Oracle JMS Error Messages

B-7

Action: Use the either dequeue(deq_option, payload_fact) or dequeue(deq_option,
sql_data_cl)

JMS-175 DequeueOption must be specified
Cause: DequeueOption specified is null

Action: Specify a non-null dequeue option

JMS-176 EnqueueOption must be specified
Cause: EnqueueOption specified is null

Action: Specify a non-null enqueue option

JMS-177 Invalid payload type: Use dequeue(deq_option) for raw payload
queues
Cause: This method cannot be used to dequeue from queues with RAW payload

Action: Use the dequeue(deq_option) method

JMS-178 Invalid Queue name - (string)
Cause: The queue name specified is null or invalid

Action: Specify a queue name that is not null. The queue name must not be qualified
with the schema name. The schema name must be specified as the value of the
owner parameter

JMS-179 Invalid Queue Table name - (string)
Cause: The queue table name specified is null or invalid

Action: Specify a queue table name that is not null. The queue table name must not
be qualified with the schema name. The schema name must be specified as the value
of the owner parameter

JMS-180 Invalid Queue Type
Cause: Queue type is invalid

Action: Valid types are AQConstants.NORMAL or AQConstants.EXCEPTION

JMS-181 Invalid value for wait_time
Cause: Invalid value for wait type

Action: Wait time can be AQDequeueOption.WAIT_FOREVER,
AQDequeueOption.WAIT_NONE or any value greater than 0

JMS-182 More than one queue matches query
Cause: More than one queue matches query

Action: Specify both the owner and name of the queue

JMS-183 No AQ driver registered
Cause: No AQDriver registered

Action: Make sure that the AQ java driver is registered. Use
Class.forName("oracle.AQ.AQOracleDriver")

JMS-184 Queue object is invalid
Cause: The queue object is invalid

Appendix B
Oracle JMS Error Messages

B-8

Action: The underlying JDBC connection may have been closed. Get the queue
handle again

JMS-185 QueueProperty must be specified
Cause: AQQueueProperty specified is null

Action: Specify a non-null AQQueueProperty

JMS-186 QueueTableProperty must be specified
Cause: QueueTableProperty specified is null

Action: Specify a non-null AQQueueTableProperty

JMS-187 Queue Table must be specified
Cause: Queue Table specified is null

Action: Specify a non-null queue table

JMS-188 QueueTable object is invalid
Cause: The queue table object is invalid

Action: The underlying JDBC connection may have been closed. Get the queue table
handle again

JMS-189 Byte array too small
Cause: The byte array given is too small to hold the data requested

Action: Specify a byte array that is large enough to hold the data requested or reduce
the length requested

JMS-190 Queue (string) not found
Cause: The specified queue was not found

Action: Specify a valid queue

JMS-191 sql_data_cl must be a class that implements SQLData interface
Cause: The class specified does not support the java.sql.SQLData interface

Action: Self-explanatory

JMS-192 Invalid Visibility value
Cause: Visibility value specified is invalid

Action: Valid values areAQConstants.VISIBILITY_ONCOMMIT,
AQConstants.VISIBILITY_IMMEDIATE

JMS-193 JMS queues cannot contain payload of type RAW
Cause: An attempt was made to create a JMS queue with RAW payload

Action: JMS queues/topics cannot contain RAW payload

JMS-194 Session object is invalid
Cause: Session object is invalid

Action: The underlying JDBC connection may have been closed. Create a new
session

Appendix B
Oracle JMS Error Messages

B-9

JMS-195 Invalid object type: object must implement CustomDatum or SQLData
interface
Cause: Invalid object type specified

Action: Object must implement CustomDatum or SQLData interface

JMS-196 Cannot have more than one open QueueBrowser for the same
destination on a JMS Session
Cause: There is already an open QueueBrowser for this queue on this session

Action: There cannot be more than one queue browser for the same queue in a
particular session. Close the existing QueueBrowser and then open a new one

JMS-197 Agent address must be specified for remote subscriber
Cause: Address field is null for remote subscriber

Action: The address field must contain the fully qualified name of the remote topic

JMS-198 Invalid operation: Privileged message listener set for the Session
Cause: The client tried to use a message consumer to receive messages when the
session message listener was set.

Action: Use the session's message listener to consume messages. The consumer's
methods for receiving messages must not be used.

JMS-199 Registration for notification failed
Cause: Listener Registration failed

Action: See error message in linked Exception for details

JMS-200 Destination must be specified
Cause: Destination is null

Action: Specify a non-null destination

JMS-201 All Recipients in recipient_list must be specified
Cause: One or more elements in the recipient list are null

Action: All AQjmsAgents in the recipient list must be specified

JMS-202 Unregister for asynchronous receipt of messages failed
Cause: An error occurred while removing the registration of the consumer with the
database for asynchronous receipt

Action: Check error message in linked exception for details

JMS-203 Payload Factory must be specified
Cause: Null Payload Factory was specified

Action: Specify a non null payload factory

JMS-204 An error occurred in the AQ JNI layer
Cause: JNI Error

Action: Check error message in linked exception for details

Appendix B
Oracle JMS Error Messages

B-10

JMS-205 Naming Exception
Cause: Naming exception

Action: Check error message in linked exception for details

JMS-207 JMS Exception (string)
Cause: An error occurred in the JMS layer

Action: See the message inside the linked JMSException for more information

JMS-208 XML SQL Exception
Cause: An error occurred in the XML SQL layer

Action: See the message inside the linked AQxmlException for more information

JMS-209 XML SAX Exception
Cause: An error occurred in the XML SAX layer

Action: See the message inside the linked AQxmlException for more information

JMS-210 XML Parse Exception
Cause: An error occurred in the XML Parser layer

Action: See the message inside the linked AQxmlException for more information

JMS-220 Connection no longer available
Cause: Connection to the database no longer available.

Action: Comment: This may happen if the database/network/machine is not
accessible. This may be a transient failure.

JMS-221 Free physical database connection unavailable in connection pool
Cause: A free physical database connection was not available in the OCI connection
pool in order to perform the specified operation.

Action: Try performing the operation later

JMS-222: Invalid Payload factory type
Cause: Payload factory should be of CustomDatumFactory or ORADataFactory type.

Action: Use one of CustomDatumFactory/ORADataFactory types.

JMS-223: Payload factory must be null for destinations with Sys.AnyData
payload - use typemap instead
Cause: A CustomDatumFactory/ORADataFactory was specifed for consumers on
destinations containing SYS.ANYDATA payloads

Action: This field must be set to null for destinations containing payloads of type
SYS.AnyData. The ORADataFactory(s) must be registered in the session's typemap

JMS-224: Typemap is invalid - must be populated with SQLType/
OraDataFactory mappings to receive messages from Sys.AnyData destinations
Cause: The typemap of the session is null or empty. For destinations of tpye
Sys.AnyData, the typemap must contain OraDataFactory objects for all possible types
that may be stored in the queue/topic

Appendix B
Oracle JMS Error Messages

B-11

Action: Use the AQjmsSession.getTypeMap() method get the typemap. Then use the
put() method to register SQLType names and their corresponding OraDataFactory
objects

JMS-225: Invalid JDBC driver - OCI driver must be used for this operation
Cause: Operations on Sys.AnyData queues/topics are not supported using this JDBC
driver

Action: Use the JDBC OCI driver to receive messages from Sys.AnyData queues/
topics

JMS-226: Header-only Message does not have a body
Cause: Header-only message does not have a body; the body cannot be cleared,
changed, or queried.

Action: Do not access or modify the body of a read-only message.

JMS-227: Illegal attempt to commit on a non transacted JMS Session
Cause: Illegal attempt to invoke the commit method on a non transacted JMS Session

Action: Remove invocation of the commit method on the current JMS Session

JMS-228: Illegal attempt to rollback on a non transacted JMS Session
Cause: Illegal attempt to invoke the rollback method on a non transacted JMS
Session

Action: Remove invocation of the rollback method on the current JMS Session

JMS-229: (string) must be specified
Cause: The specified parameter was null

Action: Specify a non-null value for the parameter

JMS-230: Illegal operation on durable subscription with active TopicSubscriber
Cause: Try to unsubscribe, change or create durable subscription while it has an
active TopicSubscriber.

Action: Close the active TopicSubscriber and try again.

JMS-231: Consumers on temporary destination must belong to the same
Cause: The specified parameter was null

Action: Specify a non-null value for the parameter

JMS-232: An invalid user/password was specified for the JMS connection
Cause: Invalid user/password specified for connection

Action: Specify valid user/password for connection

JMS-233: The required subscriber information is not available
Cause: Try to retrieve subscriber information from a subscriber which was obtained
with getDurableSubscriber method and had no corresponding information in the in-
memory map.

Action: Do not retrieve subscriber information from such a subscriber

Appendix B
Oracle JMS Error Messages

B-12

JMS-234: This operation is not allowed in the current messaging domain
Cause: Perform an operation that is not allowed in the current messaging domain

Action: Do not perform the operation in the current messaging domain

JMS-235: Can not link the durable subscriber name with a topic in unsubscribe
method.
Cause: OJMS is unable to link the supplied durable subscriber name with a topic. This
causes unsubscribe method to fail.

Action: Use other unsubscribe methods which the user can provide topic name.

JMS-236: OJMS encountered invalid OCI handles.
Cause: OJMS encountered invalid OCI handles when using JDBC OCI driver .

Action: Make sure the underlying JDBC connection is not closed while OJMS is still
operating.

JMS-237: Can not start thread for message listener.
Cause: OJMS is unable to start a new thread for message listener.

Action: Check the thread proxy code if the thread was started by a user provided
thread proxy.

JMS-238: Illegal attempt to recover on a transacted JMS Session
Cause: Illegal attempt to invoke the recover method on a transacted JMS Session

Action: Use rollback method instead of recover method on transacted JMS session.

JMS-239: Illegal attempt to call (string) method on a XASession.
Cause: Illegal attempt to invoke the commit or rollback method on a XASession

Action: Use JTA to commit or rollback a distributed transaction

JMS-240: Illegal attempt to call setClientID after other actions.
Cause: Illegal attempt to call Connection.setClientID method after other actions has
been taken on this Connection

Action: set client ID before any other action on the Connection

JMS-241: Illegal attempt to delete temporary destination when there are
consumers using it.
Cause: Illegal attempt to delete temporary destination while there are existing
consumers still using it.

Action: close the consumers before deleting the temporary destination

JMS-242: Illegal attempt to enqueue message with both immediate visibility and
three phase enqueue process.
Cause: Illegal attempt to enqueue message with both immediate visibility and three
phase enqueue process.

Action: turn on the system property oracle.jms.useTemplobsForEnqueue

JMS-243: Topic (string) not found}
Cause: The specified topic was not found

Appendix B
Oracle JMS Error Messages

B-13

Action: Specify a valid topic

Oracle AQ XML Servlet Error Messages
JMS-400 Destination name must be specified
Cause: A null Destination name was specified

Action: Specify a non-null destination name

JMS-402 Class not found: {0}
Cause: The specified class was not found

Action: Make sure your CLASSPATH contains the class specified in the error message

JMS-403 IO Exception {0}
Cause: IO exception

Action: See the message inside the linked AQxmlException for more information

JMS-404 XML Parse Exception
Cause: An error occurred in the XML Parser layer

Action: See the message inside the linked AQxmlException for more information

JMS-405 XML SAX Exception
Cause: An error occurred in the XML SAX layer

Action: See the message inside the linked AQxmlException for more information

JMS-406 JMS Exception {0}
Cause: An error occurred in the JMS layer

Action: See the message inside the linked JMSException for more information

JMS-407 Operation not allowed on {0}
Cause: The specified operation is not allowed on this object

Action: Check that the user performing the operation has the required privileges

JMS-408 Conversion failed - invalid property type
Cause: An error occurred while converting the property to the requested type

Action: Use the method corresponding to the property data type to retrieve it

JMS-409 No such element
Cause: Element with specified name was not found in the map message

Action: Specify a valid element name

JMS-410 XML SQL Exception
Cause: An error occurred in the JDBC SQL layer

Action: See the message inside the linked SQLException for more information

JMS-411 Payload body cannot be null
Cause: An invalid body string or document was specified

Appendix B
Oracle AQ XML Servlet Error Messages

B-14

Action: Specify a non-null body string or document for the payload

JMS-412 Byte conversion failed
Cause: An invalid username/password was specified

Action: Specify a non-null username and password

JMS-413 Autocommit not allowed for operation
Cause: The autocommit flag cannot be set for this operation

Action: Do not set the autocommit flag

JMS-414 Destination owner must be specified
Cause: A null Destination owner was specified

Action: Specify a non-null destination name

JMS-415 Invalid Visibility value
Cause: Visibility value specified is invalid

Action: Valid values are AQxmlConstants.VISIBILITY_ONCOMMIT,
AQxmlConstants.VISIBILITY_IMMEDIATE

JMS-416 Invalid Dequeue mode
Cause: Invalid dequeue mode was specified

Action: Valid Dequeue modes are AQxmlConstants.DEQUEUE_BROWSE,
AQxmlConstants.DEQUEUE_REMOVE, AQxmlConstants.DEQUEUE_LOCKED,
AQxmlConstants.DEQUEUE_REMOVE_NODATA

JMS-417 Invalid Navigation mode
Cause: An invalid navigation mode was specified

Action: The valid navigation modes are:

• AQxmlConstants.NAVIGATION_FIRST_MESSAGE

• AQxmlConstants.NAVIGATION_NEXT_MESSAGE

• AQxmlConstants.NAVIGATION_NEXT_TRANSACTION

JMS-418 Invalid value for wait_time
Cause: Invalid value for wait type

Action: Wait time can be AQDequeueOption.WAIT_FOREVER,
AQDequeueOption.WAIT_NONE, or any value greater than 0

JMS-419 Invalid ConnectionPoolDataSource
Cause: A null or invalid ConnectionPoolDataSource was specified

Action: Specify a valid OracleConnectionPoolDataSource object with the correct URL
and user/password

JMS-420 Invalid value for cache_size
Cause: An invalid cache_size was specified

Action: Cache size must be greater than 0

Appendix B
Oracle AQ XML Servlet Error Messages

B-15

JMS-421 Invalid value for cache_scheme
Cause: An invalid cache scheme was specified

Action: The valid cache schemes are:

• OracleConnectionCacheImpl.DYNAMIC_SCHEME

• OracleConnectionCacheImpl.FIXED_WAIT_SCHEME

JMS-422 Invalid tag - {0}
Cause: An invalid tag was encountered in the XML document

Action: Verify that the XML document conforms to the AQ schema

JMS-423 Invalid value
Cause: An invalid value was specified

Action: Verify that the value specified in the XML document conforms to those
specified in the AQ schema

JMS-424 Invalid message header
Cause: The message header specified is null or invalid

Action: Specify a valid message header

JMS-425 Property name must be specified
Cause: Property name was null

Action: Specify a non-null property name

JMS-426 Property does not exist
Cause: Invalid property name specified. The property does not exist

Action: The property does not exist

JMS-427 Subscriber name must be specified
Cause: Subscriber name was null

Action: Specify a non-null subscription name

JMS-428 Valid message must be specified
Cause: Message was null

Action: Specify a non-null message

JMS-429 Register Option must be specified
Cause: Register option is null

Action: Specify a non-null Register Option

JMS-430 Database Link must be specified
Cause: DB Link is null

Action: Specify a non-null Register Option

JMS-431 Sequence Number must be specified
Cause: Register option is null

Appendix B
Oracle AQ XML Servlet Error Messages

B-16

Action: Specify a non-null Register Option

JMS-432 Status must be specified
Cause: Status option is null

Action: Specify a non-null Register Option

JMS-433 User not authenticated
Cause: User is not authenticated

Action: Check that the user was authenticated by the webserver before connecting to
the Servlet

JMS-434 Invalid data source
Cause: Data source is null or invalid

Action: Specify a valid data source for connecting to the database

JMS-435 Invalid schema location
Cause: Schema location is null or invalid

Action: Specify a valid URL for the schema

JMS-436 AQ Exception
Cause: An error occurred in the AQ java layer

Action: See the message inside the AQxmlException and the linked exception for
more information

JMS-437 Invalid Destination
Cause: An invalid destination object was specified

Action: Specify a valid destination (Queue/Topic) object

JMS-438 AQ agent {0} not mapped to a valid database user
Cause: The AQ agent specified does not map to a database user which has privileges
to perform the requested operation

Action: Use dbms_aqadm.enable_db_access to map the agent to a database user
with the required queue privileges

JMS-439 Invalid schema document
Cause: The schema document specified is not valid

Action: Specify a valid URL for the schema document

JMS-440 Invalid operations - agent {0} maps to more than one database user
Cause: The AQ agent mapped to more than one database user in the same session

Action: Map the AQ agent to only one database user. Check the aq$internet_users
view for database users that map to this agent.

JMS-441: {0} cannot be null
Cause: The specified parameter was null

Action: Specify a non-null value

Appendix B
Oracle AQ XML Servlet Error Messages

B-17

JMS-442: Name and Address for Agent cannot be null
Cause: Both the name and address parameters were specified as null

Action: Specify a non-null value for the name or address

JMS-443: IMMEDIATE visibility mode not supported for this queue/topic
Cause: IMMEDIATE visibility mode not supported for JMS type queue/topic

Action: Use ON_COMMIT or the default visibility mode for JMS type queue/topic

JMS-444: This feature is not supported yet
Cause: The requested feature is not yet supported

Action: wait for future releases that support the feature.

JMS-445: Destination alias must be specified
Cause: A null Destination alias was specified

Action: Specify a non-null destination alias

JMS-446: Agent alias must be specified
Cause: A null Agent alias was specified

Action: Specify a non-null agent alias

JMS-447: error in accessing LDAP server
Cause: error in accessing the LDAP server

Action: check the LDAP server is up and the environment parameters provided to the
servlet are correct

JMS-448: Invalid Content-Type
Cause: Invalid Content-Type

Action: Content-Type must be "text/xml" or "application/x-www-form-urlencoded" with
parameter name "aqxmldoc"

Appendix B
Oracle AQ XML Servlet Error Messages

B-18

C
Oracle Messaging Gateway

• Introduction to Oracle Messaging Gateway

• Getting Started with Oracle Messaging Gateway

• Working with Oracle Messaging Gateway

• Oracle Messaging Gateway Message Conversion

• Monitoring Oracle Messaging Gateway

• Oracle Messaging Gateway Views

Introduction to Oracle Messaging Gateway
The Messaging Gateway administration package DBMS_MGWADM provides an
interface for creating Messaging Gateway agents, managing agents, creating
messaging system links, registering non-Oracle queues, and setting up propagation
jobs.

Topics:

• Oracle Messaging Gateway Overview

• Oracle Messaging Gateway Features

• Oracle Messaging Gateway Architecture

• Propagation Processing Overview

• Oracle Database AQ Buffered Messages and Messaging Gateway

Oracle Messaging Gateway Overview
Messaging Gateway enables communication between applications based on non-
Oracle messaging systems and Oracle Database Advanced Queuing.

Oracle Database Advanced Queuing provides propagation between two Oracle
Database Advanced Queuing queues to enable e-business (HTTP through IDAP).
Messaging Gateway extends this to applications based on non-Oracle messaging
systems.

Because Messaging Gateway is integrated with Oracle Database Advanced Queuing
and Oracle Database, it offers reliable message delivery. Messaging Gateway
guarantees that messages are delivered once and only once between Oracle
Database Advanced Queuing and non-Oracle messaging systems that support
persistence. The PL/SQL interface provides an easy-to-learn administrative API,
especially for developers already proficient in using Oracle Database Advanced
Queuing.

This release of Messaging Gateway supports the integration of Oracle Database
Advanced Queuing with applications based on WebSphere MQ 9.0 and TIB/
Rendezvous 8.2.

C-1

Oracle Messaging Gateway Features
Messaging Gateway provides the following features:

• Extends Oracle Database Advanced Queuing message propagation

Messaging Gateway propagates messages between Oracle Database Advanced
Queuing and non-Oracle messaging systems. Messages sent by Oracle Database
Advanced Queuing applications can be received by non-Oracle messaging system
applications. Conversely, messages published by non-Oracle messaging system
applications can be consumed by Oracle Database Advanced Queuing
applications.

• Support for Java Message Service (JMS) messaging systems

Messaging Gateway propagates messages between Oracle Java Message
Service (Oracle JMS) and WebSphere MQ Java Message Service (WebSphere
MQ JMS).

• Native message format support

Messaging Gateway supports the native message formats of messaging systems.
Oracle Database Advanced Queuing messages can have RAW or any Oracle object
type payload. WebSphere MQ messages can be text or byte messages. TIB/
Rendezvous messages can be any TIB/Rendezvous wire format datatype except
the nested datatype MSG and those with unsigned integers.

• Message conversion

Messaging Gateway facilitates message conversion between Oracle Database
Advanced Queuing messages and non-Oracle messaging system messages.
Messages are converted through either automatic routines provided by Messaging
Gateway or customized message transformation functions that you provide.

Note:

– Messaging Gateway does not support message propagation
between JMS and non-JMS messaging systems.

– Oracle Database AQ Sharded Queues are not supported by MGW in
12c Release 2 (12.2)

• Integration with Oracle Database

Messaging Gateway is managed through a PL/SQL interface similar to that of
Oracle Database Advanced Queuing. Configuration information is stored in Oracle
Database tables. Message propagation is carried out by an external process of the
Oracle Database server.

• Guaranteed message delivery

If the messaging systems at the propagation source and propagation destination
both support transactions, then Messaging Gateway guarantees that persistent
messages are propagated exactly once. If messages are not persistent or
transactions are not supported by the messaging systems at the propagation
source or propagation destination, then at-most-once propagation is guaranteed.

Appendix C
Introduction to Oracle Messaging Gateway

C-2

• Security support

Messaging Gateway supports client authentication of Oracle Database and non-
Oracle messaging systems.

Messaging Gateway also allows Secure Socket Layer (SSL) support for IBM
WebSphere MQ and WebSphere MQ JMS connections made by the Messaging
Gateway agent.

• Multiple agent support

Messaging Gateway supports multiple agents for a given database. Users can
partition propagation jobs based on functionality, organizations, or workload and
assign them to different Messaging Gateway agents. This allows Messaging
Gateway to scale in an Oracle RAC environment and enables propagation job
grouping and isolation.

See Also:

• "Propagation Processing Overview"

• Oracle Messaging Gateway Message Conversion

• "Converting Oracle Messaging Gateway Non-JMS Messages"

Oracle Messaging Gateway Architecture
Messaging Gateway has two main components:

• Administration Package DBMS_MGWADM

• Messaging Gateway Agent

Figure C-1 shows how these components work together with Oracle Database and
non-Oracle messaging systems.

Appendix C
Introduction to Oracle Messaging Gateway

C-3

Figure C-1 Messaging Gateway Architecture

Propagation Engine

MQ�
Base�
Java
Driver

MQ�
JMS

Driver

TIB /
Rendezvous�

Driver

MQSeries MQSeries TIB /�
Rendezvous

AQ Messaging
System Link

Messaging
System Link

Messaging
System Link

Messaging Gateway Agent

table

table

Oracle Database

Messaging
Gateway Administration

PL/SQL Interface

JDBC

Administration Package DBMS_MGWADM
The Messaging Gateway administration package DBMS_MGWADM provides an interface
for creating named Messaging Gateway agents, managing agents, creating
messaging system links, registering non-Oracle queues, and setting up propagation
jobs.

Users call the procedures in the package to make configuration changes regardless of
whether the Messaging Gateway agent is running. If the Messaging Gateway agent is
running, then the procedures in the package send notifications for configuration
changes to the agent. The agent dynamically alters its configuration for most
configuration changes, although some changes require that the agent be shut down
and restarted before they take effect. All the procedures in the package are serialized
to guarantee that the Messaging Gateway agent receives and processes notifications
in the same order as they are made.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information on DBMS_MGWADM

Oracle Messaging Gateway Agent
The Messaging Gateway agent runs as an external process of the Oracle Database
server and processes propagation jobs. It is started and shut down by calling the
STARTUP and SHUTDOWN procedures in DBMS_MGWADM package.

The Messaging Gateway agent contains a multithreaded propagation engine and a set
of drivers for messaging systems. The propagation engine fairly schedules

Appendix C
Introduction to Oracle Messaging Gateway

C-4

propagation jobs and processes propagation jobs concurrently. The polling thread in
the agent periodically polls the source queues of enabled propagation jobs and wakes
up worker threads to process propagation jobs if messages are available. The drivers
for non-Oracle messaging systems run as clients of the messaging systems for all
messaging operations.

Oracle Database
As an Oracle Database feature, Messaging Gateway provides a mechanism of
message propagation between Oracle Database Advanced Queuing and non-Oracle
messaging systems. Oracle Database Advanced Queuing is involved in every
propagation job as either propagation source or propagation destination.

Messaging Gateway is managed through the PL/SQL administration package
DBMS_MGWADM. All configuration information and execution state information of
Messaging Gateway are stored in Oracle Database and can be accessed through
database views.

The Messaging Gateway agent runs as an external procedure of the Oracle Database
server. Therefore, it runs only when its associated database server is running.

Non-Oracle Messaging Systems
The Messaging Gateway agent connects to non-Oracle messaging systems through
messaging system links. Messaging system links are communication channels
between the Messaging Gateway agent and non-Oracle messaging systems. Users
can use the administration package DBMS_MGWADM to configure multiple links to the
same or different non-Oracle messaging systems.

Queues in non-Oracle messaging systems, such as WebSphere MQ queues, TIB/
Rendezvous subjects, and WebSphere MQ JMS destinations (queues and topics) can
all serve as propagation sources and destinations for Messaging Gateway. They are
referred to as foreign queues. All foreign queues involved in message propagation as
source queues, destination queues, or exception queues must be registered through
the administration package. The registration of a foreign queue does not create the
physical queue in a non-Oracle messaging system, but merely records information
about the queue, such as the messaging system link to access it, its native name, and
its domain (queue or topic). The physical queue must be created through the
administration interface of the non-Oracle messaging system.

See Also:

"Registering a Non-Oracle Queue"

Propagation Processing Overview
Propagation jobs must be defined in order for messages to be propagated from one
messaging system to another. A propagation job defines the source queue, destination
queue, and various other attributes that affect the processing of the propagation job.

If the propagation source is a queue (point-to-point), then the Messaging Gateway
agent moves all messages in the queue to the destination. If the propagation source is
a topic (publish/subscribe), then the Messaging Gateway agent creates a subscription

Appendix C
Introduction to Oracle Messaging Gateway

C-5

on the propagation source topic. The agent moves all messages that are published to
the topic after the subscription is created.

A propagation job is processed when it is enabled. Disabling a propagation job stops
propagation processing but does not stop message subscription.

When the Messaging Gateway agent processes a propagation job, it dequeues
messages from the source queue and enqueues the messages to the destination
queue. As each message is propagated, it is converted from its native format in the
source messaging system to its native format in the destination messaging system.
Messaging Gateway provides automatic message conversions between simple and
commonly used message formats. You can customize message conversions by
providing your own message transformation functions.

When the Messaging Gateway agent fails to convert a message from the source
format to the destination format, the agent moves the message from the source queue
to an exception queue, if the exception queue exists, and continues to process the
propagation job.

If the Messaging Gateway agent runs into failures when processing a propagation job,
it retries up to sixteen times in an exponential backoff scheme (from two seconds up to
thirty minutes) before it stops retrying.

To guarantee reliable message delivery, Messaging Gateway requires logging queues
in messaging systems that support transactions and persistent messages. The
Messaging Gateway agent uses the logging queues to store the processing states of
propagation jobs so that it can restore propagation processing from failures.

See Also:

"Configuring Oracle Messaging Gateway Propagation Jobs"

Oracle Database AQ Buffered Messages and Messaging Gateway
Messaging Gateway does not support propagation of buffered messages. In outbound
propagation, the Messaging Gateway agent dequeues only persistent messages from
AQ queues. In inbound propagation, the Messaging Gateway agent always enqueues
persistent messages into AQ queues.

Getting Started with Oracle Messaging Gateway
The following topics describe Oracle Messaging Gateway (MGW) prerequisites and
how to load, set up, and unload Messaging Gateway. They also describe how to set
up and modify the mgw.ora initialization file.

• Oracle Messaging Gateway Prerequisites

• Loading and Setting Up Oracle Messaging Gateway

• Setting Up Non-Oracle Messaging Systems

• Verifying the Oracle Messaging Gateway Setup

• Unloading Oracle Messaging Gateway

Appendix C
Getting Started with Oracle Messaging Gateway

C-6

• Understanding the mgw.ora Initialization File

Oracle Messaging Gateway Prerequisites
Messaging Gateway uses one Oracle Scheduler job for each Messaging Gateway
agent. If the value of the JOB_QUEUE_PROCESSES database initialization parameter is
zero, then no Oracle Scheduler jobs will run. If the value is non-zero, it effectively
becomes the maximum number of Scheduler jobs and job queue jobs that can run
concurrently.

Verify that a non-zero value is set, and that it is large enough to accommodate a
Scheduler job for each Messaging Gateway agent to be started.

Loading and Setting Up Oracle Messaging Gateway
Perform the following procedures before running Messaging Gateway:

• Loading Database Objects into the Database

• Modifying listener.ora for the External Procedure

• Modifying tnsnames.ora for the External Procedure

• Setting Up an mgw.ora Initialization File

• Creating an Oracle Messaging Gateway Administrator User

• Creating an Oracle Messaging Gateway Agent User

• Configuring Oracle Messaging Gateway Connection Information

• Configuring Oracle Messaging Gateway in an Oracle RAC Environment

Note:

These setup instructions are specific to 32-bit and 64-bit versions of the
Windows and 64-bit versions of the Unix-based operating systems. The
tasks apply to both Windows and Unix-based operating systems, except
where "Windows Operating System Only" or "Linux Operating System
Only" is indicated. For other operating systems, see operating-system
specific documentation.

Loading Database Objects into the Database
Using SQL*Plus, run ORACLE_HOME/mgw/admin/catmgw.sql as user SYS as SYSDBA.
This script loads the database objects necessary for Messaging Gateway, including
roles, tables, views, object types, and PL/SQL packages. It creates public synonyms
for Messaging Gateway PL/SQL packages. It creates two roles,
MGW_ADMINISTRATOR_ROLE and MGW_AGENT_ROLE, with certain privileges granted. All
objects are owned by SYS.

Appendix C
Getting Started with Oracle Messaging Gateway

C-7

Note:

In a CDB environment, run ORACLE_HOME/mgw/admin/catmgw.sql as PDB
root.

Modifying listener.ora for the External Procedure
This procedure is for Unix-based operating systems only. Static service information for
the listener is not necessary on the Windows operating system.

You must modify listener.ora so that the Messaging Gateway PL/SQL packages
can call the external procedure.

1. Verify that the default Inter-process Communication (IPC) protocol address for the
external procedures is set.

LISTENER = (ADDRESS_LIST=
(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC))

2. Add static service information for the listener in step 1. This involves setting a
SID_DESC for the listener. Within the SID_DESC, the parameters described in
Table C-1 are important to Messaging Gateway and must be specified according
to your own situation.

Example C-1 Adding Static Service Information for a Listener

Add a SID_DESC
SID_LIST_LISTENER= (SID_LIST=
(SID_DESC =
 (SID_NAME= mgwextproc)
 (ENVS=
 "LD_LIBRARY_PATH=JRE_HOME/lib/amd64:JRE_HOME/lib/amd64/server:ORACLE_HOME/lib")
 (ORACLE_HOME=ORACLE_HOME)
 (PROGRAM = extproc))

Table C-1 SID_DESC Parameters

Parameter Description

SID_NAME The SID that is specified in the net service name in tnsnames.ora. In the
following example, the SID_NAME is mgwextproc.

ENVS Set up the LD_LIBRARY_PATH environment needed for the external
procedure to run. The LD_LIBRARY_PATH must contain the following paths:

JRE_HOME/lib/PLATFORM_TYPE
JRE_HOME/lib/PLATFORM_TYPE/server
ORACLE_HOME/lib

It should also contain any additional libraries required by third-party
messaging systems. See "Setting Up Non-Oracle Messaging Systems".

The ENVS value is LD_LIBRARY_PATH_64 for Oracle Solaris on SPARC (64-
Bit) and Oracle Solaris on x86-64 (64-Bit), LIBPATH for IBM AIX on POWER
Systems, and LD_LIBRARY_PATH for the remaining platforms.

ORACLE_HOME Your Oracle home directory. Using $ORACLE_HOME does not work.

PROGRAM The name of the external procedure agent, which is extproc

Appendix C
Getting Started with Oracle Messaging Gateway

C-8

Note:

JRE_HOME represents the root directory of a JRE installation, just as
ORACLE_HOME represents the root directory of an Oracle installation. Oracle
recommends that you use the JRE installed with Oracle Database.

Example C-1 adds SID_NAME mgwextproc to a listener.ora file for Linux x86.

Modifying tnsnames.ora for the External Procedure
For the external procedure, configure a net service name MGW_AGENT in tnsnames.ora
whose connect descriptor matches the information configured in listener.ora, as
shown in Example C-2. The net service name must be MGW_AGENT (this value is fixed).
The KEY value must match the KEY value specified for the IPC protocol in
listener.ora. The SID value must match the value specified for SID_NAME of the
SID_DESC entry in listener.ora.

Note:

If the names.default_domain parameter for sqlnet.ora has been used to set
a default domain, then that domain must be appended to the MGW_AGENT net
service name in tnsnames.ora. For example, if sqlnet.ora contains the
entry names.default_domain=acme.com, then the net service name in
tnsnames.ora must be MGW_AGENT.acme.com.

Example C-2 Configuring MGW_AGENT

MGW_AGENT =
(DESCRIPTION=
 (ADDRESS_LIST= (ADDRESS= (PROTOCOL=IPC)(KEY=EXTPROC)))
 (CONNECT_DATA= (SID=mgwextproc)))

Setting Up an mgw.ora Initialization File
The Messaging Gateway default initialization file ORACLE_HOME/mgw/admin/mgw.ora is
a text file. The Messaging Gateway external procedure uses it to get initialization
parameters to start the Messaging Gateway agent. Copy ORACLE_HOME/mgw/admin/
sample_mgw.ora to mgw.ora and modify it according to your situation.

The following procedure sets environment variables and other parameters required for
all applications of Messaging Gateway:

1. Windows Operating System Only: Set the MGW_PRE_PATH variable. Its value is
the path to the jvm.dll library:

set MGW_PRE_PATH = JRE_HOME\bin\client

This variable is prepended to the path inherited by the Messaging Gateway agent
process.

2. Set CLASSPATH to include at least the following:

Appendix C
Getting Started with Oracle Messaging Gateway

C-9

• JRE runtime classes:

JRE_HOME/lib/rt.jar

• Oracle JDBC classes:

ORACLE_HOME/jdbc/lib/ojdbc6.jar

• Oracle internationalization classes:

ORACLE_HOME/jlib/orai18n.jar

• SQLJ runtime:

ORACLE_HOME/sqlj/lib/runtime12.jar

• Java Message Service (JMS) interface

ORACLE_HOME/rdbms/jlib/jmscommon.jar

• Oracle JMS implementation classes

ORACLE_HOME/rdbms/jlib/aqapi.jar

• Java transaction API

ORACLE_HOME/jlib/jta.jar

• Any additional classes needed for Messaging Gateway to access non-Oracle
messaging systems

Note:

Replace ORACLE_HOME with the appropriate, spelled-out value.
Using $ORACLE_HOME, for example, does not work.

Users of the Windows operating system must set CLASSPATH using
the Windows operating system path syntax.

See Also:

"Setting Up Non-Oracle Messaging Systems"

Creating an Oracle Messaging Gateway Administrator User
To perform Messaging Gateway administration work, a database user must be created
with MGW_ADMINISTRATOR_ROLE privileges, as shown in Example C-3.

Example C-3 Creating a Messaging Gateway Administrator User

CREATE USER admin_user IDENTIFIED BY admin_password;
GRANT CREATE SESSION to admin_user;
GRANT MGW_ADMINISTRATOR_ROLE to admin_user;

Appendix C
Getting Started with Oracle Messaging Gateway

C-10

Creating an Oracle Messaging Gateway Agent User
To establish the Messaging Gateway agent connection back to the database, a
database user with MGW_AGENT_ROLE privileges must be created, as shown in
Example C-4.

Example C-4 Creating a Messaging Gateway Agent User

CREATE USER agent_user IDENTIFIED BY agent_password;
GRANT CREATE SESSION to agent_user;
GRANT MGW_AGENT_ROLE to agent_user;

Configuring Oracle Messaging Gateway Connection Information
After the Messaging Gateway agent user is created, the administration user uses
DBMS_MGWADM.ALTER_AGENT to configure Messaging Gateway with the user name,
password, and database connect string used by the Messaging Gateway agent to
connect back to the database, as shown in Example C-5. Use the Messaging Gateway
user name and password that you created in "Creating an Oracle Messaging Gateway
Agent User". The database connect string parameter can be set to either a net service
name in tnsnames.ora (with IPC protocol for better performance) or NULL. If NULL, then
the oracle_sid parameter must be set in mgw.ora.

For this release, always specify a not NULL value for the database connect string
parameter when calling DBMS_MGWADM.ALTER_AGENT.

Example C-5 Configuring Messaging Gateway Connection Information

set echo off
set verify off
connect admin_user

ACCEPT password CHAR PROMPT 'Enter the password for AGENT_USER: ' HIDE

EXEC DBMS_MGWADM.ALTER_AGENT(
 agent_name => 'default_agent',
 username => 'agent_user',
 password => '&password',
 database => 'agent_database');

Configuring Oracle Messaging Gateway in an Oracle RAC Environment
This section contains these topics:

• Configuring Connection Information for the MGW Agent Connections

• Setting the Oracle RAC Instance for the Messaging Gateway Agent

Configuring Connection Information for the MGW Agent Connections
You must make all database connections made by the Messaging Gateway agent to
the instance on which the Messaging Gateway agent process is running. This ensures
correct failover behavior in an Oracle RAC environment. You can configure
connections this way by having the instances use slightly different tnsnames.ora files.
Each file contains an entry with the same net service name, but the connect data
refers to only the instance associated with that tnsnames.ora file. The common net
service name would then be used for the database parameter when

Appendix C
Getting Started with Oracle Messaging Gateway

C-11

DBMS_MGWADM.ALTER_AGENT is used to configure the Messaging Gateway agent
database connection information.

For example, in a two-instance Oracle RAC environment with instances OraDB1 and
OraDB2, where the net service name AGENT_DB is to be used, the tnsnames.ora for
instance OraDB1 would look like this:

AGENT_DB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost1.mycorp.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraDB10.mycorp.com)
 (INSTANCE_NAME = OraDB1)
)
)

The tnsnames.ora for OraDB2 would look like this:

AGENT_DB =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost2.mycorp.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = OraDB10.mycorp.com)
 (INSTANCE_NAME = OraDB2)
)
)

You would then configure Messaging Gateway agent user connection information by
running the following command:

EXEC DBMS_MGWADM.ALTER_AGENT(
 agent_name => 'default_agent',
 username => 'agent_user',
 password => 'agent_password',
 database => 'agent_db');

Setting the Oracle RAC Instance for the Messaging Gateway Agent
Messaging Gateway provides service affinity for the Messaging Gateway agent
external process by leveraging the database service support of the Oracle Scheduler.
By default, a Messaging Gateway agent will use the default database service that is
mapped to all instances. If you want a Messaging Gateway agent to start on a select
group of database instances, you must create a database service for those instances
and then assign the database service to the Messaging Gateway agent using the
SERVICE parameter of the DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT
procedures. The DBMS_MGWADM.STARTUP procedure submits an Oracle Scheduler job
that starts the Messaging Gateway agent external process when the Scheduler job is
executed. The Scheduler job will use the database service configured for the
Messaging Gateway agent.

The database service specified by the SERVICE parameter is only used for the service
affinity of the Oracle Scheduler job and thus the service affinity for the Messaging
Gateway external process. It is not used for the database connections made by the
Messaging Gateway agent user. Those JDBC client connections are based on the
values specified for the DATABASE and CONNTYPE parameters.

Appendix C
Getting Started with Oracle Messaging Gateway

C-12

See Also:

"Running the Oracle Messaging Gateway Agent on Oracle RAC"

Setting Up Non-Oracle Messaging Systems
This section contains these topics:

• Setting Up for TIB/Rendezvous

• Setting Up for WebSphere MQ Base Java or JMS

Setting Up for TIB/Rendezvous
Running as a TIB/Rendezvous Java client application, the Messaging Gateway agent
requires TIB/Rendezvous software to be installed on the computer where the
Messaging Gateway agent runs. In this section TIBRV_HOME refers to the installed TIB/
Rendezvous software location.

Modifying listener.ora

On the Linux operating system, LD_LIBRARY_PATH in the entry for Messaging Gateway
must include TIBRV_HOME/lib for the agent to access TIB/Rendezvous shared library
files.

See Also:

"Modifying listener.ora for the External Procedure"

On the Windows operating system, you are not required to modify listener.ora. But
the system environment variable PATH must include TIBRV_HOME\bin.

Modifying mgw.ora

MGW_PRE_PATH must include the directory that contains the TIB/Rendezvous license
ticket file (tibrv.tkt), which usually is located in TIBRV_HOME/bin.

CLASSPATH must include the TIB/Rendezvous jar file TIBRV_HOME/lib/tibrvj.jar. If
you use your own customized TIB/Rendezvous advisory message callback, then the
location of the callback class must also be included.

You can set the following Java properties to change the default setting:

• oracle.mgw.tibrv.encoding

• oracle.mgw.tibrv.intraProcAdvSubjects

• oracle.mgw.tibrv.advMsgCallback

Appendix C
Getting Started with Oracle Messaging Gateway

C-13

See Also:

"Understanding the mgw.ora Initialization File"

Example C-6 Setting Java Properties

setJavaProp oracle.mgw.tibrv.encoding=ISO8859_1
setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=_RV.>
setJavaProp oracle.mgw.tibrv.advMsgCallback=MyadvCallback

Setting Up for WebSphere MQ Base Java or JMS
The WebSphere MQ client and WebSphere MQ classes for Java and JMS must be
installed on the computer where the Messaging Gateway agent runs. In this section
MQ_HOME refers to the location of the installed client. On the Linux operating system,
this location is always /opt/mqm. On the Windows operating system, the installed
location can vary.

Modifying listener.ora

No extra modification of listener.ora is necessary for Messaging Gateway to access
WebSphere MQ.

Modifying mgw.ora

When using WebSphere MQ Base Java (non-JMS) interface, set CLASSPATH to include
at least the following (in addition to those in "Setting Up an mgw.ora Initialization File"):

• MQ_HOME/java/lib/com.ibm.mq.jar

• MQ_HOME/java/lib/connector.jar

When using WebSphere MQ JMS interface, set CLASSPATH to include at least the
following (in addition to those in "Setting Up an mgw.ora Initialization File"):

• MQ_HOME/java/lib/com.ibm.mqjms.jar

• MQ_HOME/java/lib/com.ibm.mq.jar

• MQ_HOME/java/lib/connector.jar

Verifying the Oracle Messaging Gateway Setup
The following procedure verifies the setup and includes a simple startup and shutdown
of the Messaging Gateway agent:

1. Start the database listeners.

Start the listener for the external procedure and other listeners for the regular
database connection.

2. Test the database connect string for the Messaging Gateway agent user.

Run sqlplus agent_user/agent_password@agent_database.

If it is successful, then the Messaging Gateway agent can connect to the
database.

Appendix C
Getting Started with Oracle Messaging Gateway

C-14

3. Linux Operating System Only: Test the net service entry used to call the
external procedure.

Run sqlplus agent_user/agent_password@MGW_AGENT.

This should fail with "ORA-28547: connection to server failed, probable Oracle Net
admin error". Any other error indicates that the tnsnames.ora, listener.ora, or
both are not correct.

4. Connect as admin_user and call DBMS_MGWADM.STARTUP to start the Messaging
Gateway agent.

5. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to RUNNING and
AGENT_PING to change to REACHABLE.

6. Connect as admin_user and call DBMS_MGWADM.SHUTDOWN to shut down the
Messaging Gateway agent.

7. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to NOT_STARTED.

Unloading Oracle Messaging Gateway
Use this procedure to unload Messaging Gateway:

1. Shut down Messaging Gateway.

2. Remove any user-created queues whose payload is a Messaging Gateway
canonical type (for example, SYS.MGW_BASIC_MSG_T).

3. Using SQL*Plus, run ORACLE_HOME/mgw/admin/catnomgw.sql as user SYS as
SYSDBA.

This drops the database objects used by Messaging Gateway, including roles,
tables, views, packages, object types, and synonyms.

4. Remove entries for Messaging Gateway created in listener.ora and
tnsnames.ora.

Understanding the mgw.ora Initialization File
Messaging Gateway reads initialization information from a text file when the
Messaging Gateway agent starts. The initialization file contains lines for setting
initialization parameters, environment variables, and Java properties. Each entity must
be specified on one line. Leading whitespace is trimmed in all cases.

A Messaging Gateway administrator can specify the initialization file to be used for a
Messaging Gateway agent via DBMS_MGWADM.CREATE_AGENT and
DBMS_MGWADM.ALTER_AGENT. If an initialization file is not specified then a default
initialization file will be used.

The default initialization file for the default agent is ORACLE_HOME/mgw/admin/mgw.ora.

The default initialization file for a named agent is ORACLE_HOME/mgw/admin/
mgw_AGENTNAME.ora where AGENTNAME is the name in uppercase of the Messaging
Gateway agent. For example, if the agent name is my_agent then the name of the
agent's default initialization file is ORACLE_HOME/mgw/admin/mgw_MY_AGENT.ora. If the
default initialization file for a named agent is not found then ORACLE_HOME/mgw/admin/
mgw.ora will be used.

Appendix C
Getting Started with Oracle Messaging Gateway

C-15

mgw.ora Initialization Parameters
The initialization parameters are typically specified by lines having a "name=value<NL>"
format where name represents the parameter name, value represents its value and
<NL> represents a new line.

log_directory

Usage:

Specifies the directory where the Messaging Gateway log/trace file is created.

Format:

log_directory = value

Default:

ORACLE_HOME/mgw/log

Example:

log_directory = /private/mgwlog

log_level

Usage:

Specifies the level of logging detail recorded by the Messaging Gateway agent. The
logging level can be dynamically changed by calling DBMS_MGWADM.SET_LOG_LEVEL
while the Messaging Gateway agent is running. Oracle recommends that log level 0
(the default value) be used at all times.

Format:

log_level = value

Values:

0 for basic logging; equivalent to DBMS_MGWADM.BASIC_LOGGING

1 for light tracing; equivalent to DBMS_MGWADM.TRACE_LITE_LOGGING

2 for high tracing; equivalent to DBMS_MGWADM.TRACE_HIGH_LOGGING

3 for debug tracing; equivalent to DBMS_MGWADM.TRACE_DEBUG_LOGGING

4 for high debug tracing; equivalent to DBMS_MGWADM.TRACE_DEBUG_HIGH_LOGGING

Example:

log_level = 0

mgw.ora Environment Variables
Because the Messaging Gateway process environment is not under the direct control
of the user, certain environment variables should be set using the initialization file. The

Appendix C
Getting Started with Oracle Messaging Gateway

C-16

environment variables currently used by the Messaging Gateway agent are CLASSPATH,
MGW_PRE_PATH, and ORACLE_SID.

Environment variables such as CLASSPATH and MGW_PRE_PATH are set so the
Messaging Gateway agent can find the required shared objects, Java classes, and so
on. Environment variables are specified by lines having a "set env_var=value<NL>" or
"setenv env_var=value<NL>" format where env_var represents the name of the
environment variable to set, value represents the value of the environment variable,
and <NL> represents a new line.

CLASSPATH

Usage:

Used by the Java Virtual Machine to find Java classes needed by the Messaging
Gateway agent for propagation between Oracle Database Advanced Queuing and
non-Oracle messaging systems.

Format:

set CLASSPATH=value

Example:

set CLASSPATH=ORACLE_HOME/jdbc/lib/ojdbc6.jar:JRE_HOME/lib/rt.jar:
ORACLE_HOME/sqlj/lib/runtime12.jar:ORACLE_HOME/jlib/orai18n.jar:ORACLE_HOME/rdbms/
jlib/jmscommon.jar:ORACLE_HOME/rdbms/jlib/aqapi.jar:ORACLE_HOME/jlib/jta.jar:
/opt/mqm/java/lib/com.ibm.mq.jar:/opt/mqm/java/lib/com.ibm.mqjms.jar:/opt/mqm/java
/lib/connector.jar

MGW_PRE_PATH

Usage:

Appended to the front of the path inherited by the Messaging Gateway process. For
the Windows operating system, this variable must be set to indicate where the library
jvm.dll is found.

Format:

set MGW_PRE_PATH=value

Example:

set MGW_PRE_PATH=JRE_HOME\bin\client

ORACLE_SID

Usage:

Can be used when a service name is not specified when configuring Messaging
Gateway.

Format:

set ORACLE_SID=value

Appendix C
Getting Started with Oracle Messaging Gateway

C-17

Example:

set ORACLE_SID=my_sid

mgw.ora Java Properties
You must specify Java system properties for the Messaging Gateway JVM when
working with TIB/Rendezvous subjects. You can use the setJavaProp parameter of
the Messaging Gateway initialization file for this. Java properties are specified by lines
having a "setJavaProp prop_name=value<NL>" format, where prop_name represents
the name of the Java property to set, value represents the value of the Java property,
and <NL> represents a new line character.

oracle.mgw.batch_size

Usage:

This Java property represents the maximum number of messages propagated in one
transaction. It serves as a default value if the Messaging Gateway job option,
MsgBatchSize, is not specified. If altered from the default, then consideration should be
given to the expected message size and the Messaging Gateway agent memory (see
max_memory parameter of DBMS_MGWADM.ALTER_AGENT). The minimum value of this Java
property is 1, the maximum is 100, and the default is 30.

See Also:

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types
Reference

Syntax:

setJavaProp oracle.mgw.batch_size=value

Example:

setJavaProp oracle.mgw.batch_size=10

oracle.mgw.polling_interval

Usage:

This parameter specifies the time (in milliseconds) that must elapse between polls for
available messages of a propagation source queue. The default polling interval used
by Messaging Gateway is 5000 milliseconds (5 seconds). The minimum value of this
Java property is 100 millisecond, and the maximum value is 60 seconds.

Syntax:

setJavaProp oracle.mgw.polling_interval=value

Example:

setJavaProp oracle.mgw.polling_interval=1000

Appendix C
Getting Started with Oracle Messaging Gateway

C-18

oracle.mgw.tibrv.encoding

Usage:

This parameter specifies the character encoding to be used by the TIB/Rendezvous
messaging system links. Only one character set for all configured TIB/Rendezvous
links is allowed due to TIB/Rendezvous restrictions. The default is ISO 8859-1 or the
character set specified by the Java system property file.encoding.

Syntax:

setJavaProp oracle.mgw.tibrv.encoding=value

Example:

setJavaProp oracle.mgw.tibrv.encoding=ISO8859_1

oracle.mgw.tibrv.intraProcAdvSubjects

Usage

Used for all TIB/Rendezvous messaging system links, this parameter specifies the
names of system advisory subjects that present on the intraprocess transport.

Syntax

setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=
advisorySubjectName[:advisorySubjectName]

Example:

setJavaProp oracle.mgw.tibrv.intraProcAdvSubjects=_RV.>

oracle.mgw.tibrv.advMsgCallback

Usage:

Used for all TIB/Rendezvous messaging system links, this parameter specifies the
name of the Java class that implements the TibrvMsgCallback interface to handle
system advisory messages. If it is not specified, then the default system advisory
message handler provided by Messaging Gateway is used, which writes system
advisory messages into Messaging Gateway log files. If it is specified, then the
directory where the class file is stored must be included in the CLASSPATH in mgw.ora.

Syntax:

setJavaProp oracle.mgw.tibrv.advMsgCallback=className

Example:

setJavaProp oracle.mgw.tibrv.advMsgCallback=MyAdvCallback

oracle.net.tns_admin

Usage:

This parameter specifies the directory of the tnsnames.ora file. It must be set if the
Messaging Gateway agent is configured to use the JDBC Thin driver and the database

Appendix C
Getting Started with Oracle Messaging Gateway

C-19

specifier of the agent connection information is a TNSNames alias. This does not need
to be set if the JDBC OCI driver is used or the database specifier is something other
than a TNSNames alias.

Syntax:

setJavaProp oracle.net.tns_admin=value

Example:

setJavaProp oracle.net.tns_admin=/myoraclehome/network/admin

mgw.ora Comment Lines
Comment lines are designated with a # character as the first character of the line.

Working with Oracle Messaging Gateway
After Oracle Messaging Gateway (MGW) is loaded and set up, it is ready to be
configured and run. You can use DBMS_MGWADM.ALTER_AGENT to set the user name,
password, database specifier, and connection type the Messaging Gateway agent will
use for creating database connections.

Topics:

• Configuring the Oracle Messaging Gateway Agent

• Starting and Shutting Down the Oracle Messaging Gateway Agent

• Configuring Messaging System Links

• Configuring Non-Oracle Messaging System Queues

• Configuring Oracle Messaging Gateway Propagation Jobs

• Propagation Jobs_ Subscribers_ and Schedules

• Configuration Properties

Note:

All commands in the examples must be run as a user granted
MGW_ADMINISTRATOR_ROLE.

See Also:

"DBMS_MGWADM" and "DBMS_MGWMSG" in Oracle Database PL/SQL
Packages and Types Reference

Appendix C
Working with Oracle Messaging Gateway

C-20

Configuring the Oracle Messaging Gateway Agent
Messages are propagated between Oracle Database Advanced Queuing and non-
Oracle messaging systems by the Messaging Gateway agent. The Messaging
Gateway agent runs as an external process of the Oracle Database server.

Messaging Gateway supports multiple agents for a given database. A default agent is
automatically created that has the name of DEFAULT_AGENT. Additional named agents
can be created to provide propagation job isolation and grouping, and scaling in an
Oracle RAC environment. The default agent is usually sufficient for single instance,
non-Oracle RAC, environments.

This section contains these topics:

• Creating a Messaging Gateway Agent

• Removing a Messaging Gateway Agent

• Setting Database Connection

• Setting the Resource Limits

Creating a Messaging Gateway Agent
You can use DBMS_MGWADM.CREATE_AGENT to create additional Messaging Gateway
agents. The Messaging Gateway default agent, DEFAULT_AGENT, is automatically
created when Messaging Gateway is installed and will always exist.

Agents can be configured with an agent user, connection information, database
service, and resource limits when the agent is created, or at a later time using
DBMS_MGWADM.ALTER_AGENT. A Messaging Gateway agent must be configured with a
database user that has been granted the role MGW_AGENT_ROLE before the agent can be
started.

Example C-7 creates the agent named myagent and specifies the database connection
information for the agent user. Default values are used for all other parameters.

Example C-7 Creating a Messaging Gateway Agent

SQL> exec DBMS_MGWADM.CREATE_AGENT(
 agent_name => 'myagent',
 username => 'mgwagent',
 password => 'mgwagent_password',
 database => 'mydatabase');

Removing a Messaging Gateway Agent
A Messaging Gateway agent can be removed by calling DBMS_MGWADM.REMOVE_AGENT.
Before an agent can be removed, all Messaging Gateway links associated with the
agent must be removed and the agent shut down. The default agent, DEFAULT_AGENT,
cannot be removed. Example C-8 removes the agent named myagent.

Example C-8 Removing a Messaging Gateway Agent

SQL> exec DBMS_MGWADM.REMOVE_AGENT(agent_name => 'myagent');

Appendix C
Working with Oracle Messaging Gateway

C-21

Setting Database Connection
The Messaging Gateway agent runs as a process external to the database. To access
Oracle Database Advanced Queuing and the Messaging Gateway packages, the
Messaging Gateway agent needs to establish connections to the database. You can
use DBMS_MGWADM.ALTER_AGENT to set the user name, password and the database
connect string that the Messaging Gateway agent will use for creating database
connections. The user must be granted the role MGW_AGENT_ROLE before the Messaging
Gateway agent can be started.

Example C-9 shows the Messaging Gateway default agent being configured for user
mgwagent with password mgwagent_password using net service name mydatabase.

Example C-9 Setting Database Connection Information

SQL> exec DBMS_MGWADM.ALTER_AGENT (
 agent_name => 'default_agent',
 username => 'mgwagent',
 password => 'mgwagent_password',
 database => 'mydatabase');

Setting the Resource Limits
You can use DBMS_MGWADM.ALTER_AGENT to set resource limits for the Messaging
Gateway agent. For example, you can set the heap size of the Messaging Gateway
agent process and the number of propagation threads used by the agent process. The
default values are 64 MB of memory heap and one propagation thread. For named
agents, these values can also be specified when the agent is created by
DBMS_MGWADM.CREATE_AGENT.

Example C-10 sets the heap size to 96 MB and two propagation threads for the agent
myagent.

The memory heap size and the number of propagation threads cannot be altered
when the Messaging Gateway agent is running.

Example C-10 Setting the Resource Limits

SQL> exec DBMS_MGWADM.ALTER_AGENT(
 agent_name => 'myagent',
 max_memory => 96,
 max_threads => 2);

Starting and Shutting Down the Oracle Messaging Gateway Agent
This section contains these topics:

• Starting the Oracle Messaging Gateway Agent

• Shutting Down the Oracle Messaging Gateway Agent

• Oracle Messaging Gateway Agent Scheduler Job

• Running the Oracle Messaging Gateway Agent on Oracle RAC

Appendix C
Working with Oracle Messaging Gateway

C-22

Starting the Oracle Messaging Gateway Agent
After the Messaging Gateway agent is configured, you can start the agent with
DBMS_MGWADM.STARTUP. Example C-11 shows how to start the default agent and agent
myagent.

You can use the MGW_GATEWAY view to check the status of the Messaging Gateway
agent, as described in Monitoring Oracle Messaging Gateway.

Example C-11 Starting the Messaging Gateway Agent

SQL> exec DBMS_MGWADM.STARTUP;
SQL> exec DBMS_MGWADM.STARTUP ('myagent');

Shutting Down the Oracle Messaging Gateway Agent
You can use DBMS_MGWADM.SHUTDOWN to shut down the Messaging Gateway agent.
Example C-12 shows how to shut down the Messaging Gateway default agent and
agent myagent.

You can use the MGW_GATEWAY view to check if the Messaging Gateway agent has shut
down successfully, as described in Monitoring Oracle Messaging Gateway.

Example C-12 Shutting Down the Messaging Gateway Agent

SQL> exec DBMS_MGWADM.SHUTDOWN;
SQL> exec DBMS_MGWADM.SHUTDOWN ('myagent');

Oracle Messaging Gateway Agent Scheduler Job
Messaging Gateway uses a Scheduler job to start the Messaging Gateway agent. This
job is created when procedure DBMS_MGWADM.STARTUP is called. When the job is run, it
calls an external procedure that creates the Messaging Gateway agent in an external
process. The job is removed after:

• The agent shuts down because DBMS_MGWADM.SHUTDOWN was called

• The agent terminates because a non-restartable error occurs

Messaging Gateway uses DBMS_SCHEDULER to create a repeatable Scheduler job with a
repeat interval of one minute. The job is owned by SYS. A repeatable job enables the
Messaging Gateway agent to restart automatically when a given job instance ends
because of a database shutdown, database malfunction, or a restartable error. Only
one instance of a Messaging Gateway agent job runs at a given time.

Each agent uses a Scheduler job class to specify the service affinity for the agent's
Scheduler job. The job class will be configured with the database service specified by
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. A database administrator is
responsible for setting up the database service. If no database service is specified, the
default database service that maps to every instance is used.

The name of the Scheduler job class used by the Messaging Gateway default agent is
SYS.MGW_JOBCLS_DEFAULT_AGENT. The Scheduler job used by the default agent is
SYS.MGW_JOB_DEFAULT_AGENT.

The name of the Scheduler job class used by a Messaging Gateway named agent is
SYS.MGW_JOBCLS_<agent_name>. The Scheduler job used by a named agent is
SYS.MGW_JOB_<agent_name>.

Appendix C
Working with Oracle Messaging Gateway

C-23

If the agent job encounters an error, then the error is classified as either a restartable
error or non-restartable error. A restartable error indicates a problem that might go
away if the agent job were to be restarted. A non-restartable error indicates a problem
that is likely to persist and be encountered again if the agent job restarts. ORA-01089
(immediate shutdown in progress) and ORA-28576 (lost RPC connection to external
procedure) are examples of restartable errors. ORA-06520 (error loading external
library) is an example of a non-restartable error.

Messaging Gateway uses a database shutdown trigger. If the Messaging Gateway
agent is running on the instance being shut down, then the trigger notifies the agent of
the shutdown, and upon receipt of the notification, the agent will terminate the current
run. The job scheduler will automatically schedule the job to run again at a future time.

If a Messaging Gateway agent job instance ends because of a database malfunction
or a restartable error detected by the agent job, then the job will not be removed and
the job scheduler will automatically schedule the job to run again at a future time.

The MGW_GATEWAY view shows the agent status, database service, and the database
instance on which the Messaging Gateway agent is current running. The Oracle
Scheduler views provide information about Scheduler jobs, job classes, and job run
details.

See Also:

• "DBMS_SCHEDULER" in Oracle Database PL/SQL Packages and
Types Reference

• Monitoring Oracle Messaging Gateway

Running the Oracle Messaging Gateway Agent on Oracle RAC
While the Messaging Gateway job startup and shutdown principles are the same for
Oracle Real Application Clusters (Oracle RAC) and non-Oracle RAC environments,
there are some things to keep in mind for an Oracle RAC environment.

A single process of each configured Messaging Gateway agent can be running, even
in an Oracle RAC environment. For example, if the default agent and two named
agents have been configured with an agent user, then one instance of all three agents
could be running at the same time. The database service associated with each agent
determines the service affinity of the agent's Scheduler job, and thus, the database
instance on which the agent process can run.

When a database instance is shut down in an Oracle RAC environment, the
Messaging Gateway shutdown trigger will notify the agent to shut down only if the
Messaging Gateway agent is running on the instance being shut down. The job
scheduler will automatically schedule the job to be run again at a future time, either on
another instance, or if the job can only run on the instance being shut down, when that
instance is restarted.

Oracle recommends that all database connections made by the Messaging Gateway
agent be made to the instance on which the Messaging Gateway agent process is
running. This ensures correct failover behavior in an Oracle RAC environment.

Appendix C
Working with Oracle Messaging Gateway

C-24

If a Messaging Gateway agent has been associated with a database service, the
agent's Scheduler job will not run unless that service is current enabled on a running
instance. When you shut down a database Oracle stops all services to that database
and you may need to manually restart the services when you start the database.

See Also:

• "Configuring Oracle Messaging Gateway in an Oracle RAC Environment"

• "DBMS_MGWADM" and "DBMS_SCHEDULER" in Oracle Database PL/SQL
Packages and Types Reference

Configuring Messaging System Links
Running as a client of non-Oracle messaging systems, the Messaging Gateway agent
communicates with non-Oracle messaging systems through messaging system links.
A messaging system link is a set of connections between the Messaging Gateway
agent and a non-Oracle messaging system.

To configure a messaging system link of a non-Oracle messaging system, users must
provide information for the agent to make connections to the non-Oracle messaging
system. Users can specify the maximum number of messaging connections.

An agent name will be associated with each messaging system link. This is done when
the link is created and cannot be changed. The agent associated with the link is then
responsible for processing all propagation jobs that use a registered queue associated
with that link. The Messaging Gateway default agent will be used if an agent name is
not specified when the messaging system link is created.

When configuring a messaging system link for a non-Oracle messaging system that
supports transactions and persistent messages, the native name of log queues for
inbound and outbound propagation must be specified in order to guarantee exactly-
once message delivery. The log queues should be used only by the Messaging
Gateway agent. No other programs should enqueue or dequeue messages of the log
queues. The inbound log queue and outbound log queue can refer to the same
physical queue, but better performance can be achieved if they refer to different
physical queues.

One and only one Messaging Gateway agent should access a propagation log queue.
This insures that a given log queue contains log records for only those propagation
jobs processed by that agent and that the agent is free to discard any other log
records it might encounter.

When configuring a messaging system link, users can also specify an options
argument. An options argument is a set of {name, value} pairs of type
SYS.MGW_PROPERTY.

This section contains these topics:

• Creating a WebSphere MQ Base Java Link

• Creating a WebSphere MQ JMS Link

• Creating a WebSphere MQ Link to Use SSL

• Creating a TIB/Rendezvous Link

Appendix C
Working with Oracle Messaging Gateway

C-25

• Altering a Messaging System Link

• Removing a Messaging System Link

• Views for Messaging System Links

Creating a WebSphere MQ Base Java Link
A WebSphere MQ Base Java link is created by calling
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK with the following information provided:

• Interface type: DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE

• WebSphere MQ connection information:

– Host name and port number of the WebSphere MQ server

– Queue manager name

– Channel name

– User name and password

• Maximum number of messaging connections allowed

• Log queue names for inbound and outbound propagation

• Optional information such as:

– Send, receive, and security exits

– Character sets

Example C-13 configures a WebSphere MQ Base Java link mqlink. The link is
configured to use the WebSphere MQ queue manager my.queue.manager on host
myhost.mydomain and port 1414, using WebSphere MQ channel mychannel.

This example also sets the option to register a WebSphere MQ SendExit class. The
class mySendExit must be in the CLASSPATH set in mgw.ora. The Messaging Gateway
default agent (DEFAULT_AGENT) is responsible for the link and all propagation jobs using
the link.

See Also:

• "Understanding the mgw.ora Initialization File" for information on setting
the CLASSPATH of the Messaging Gateway agent

• "WebSphere MQ System Properties"

Example C-13 Configuring a WebSphere MQ Base Java Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();

 v_prop.interface_type := dbms_mgwadm.MQSERIES_BASE_JAVA_INTERFACE;
 v_prop.max_connections := 1;
 v_prop.username := 'mqm';

Appendix C
Working with Oracle Messaging Gateway

C-26

 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mychannel';
 v_prop.queue_manager := 'my.queue.manager';
 v_prop.outbound_log_queue := 'mylogq';

 -- Specify a WebSphere MQ send exit class 'mySendExit' to be associated with
 -- the queue.
 -- Note that this is used as an example of how to use the options parameter,
 -- but is not an option that is usually set.
 v_options := sys.mgw_properties(sys.mgw_property('MQ_SendExit',
 'mySendExit'));
 dbms_mgwadm.create_msgsystem_link(
 linkname => 'mqlink', agent_name=>'default_agent', properties => v_prop,
 options => v_options);
END;

Creating a WebSphere MQ JMS Link
A WebSphere MQ JMS link is created by calling
DBMS_MGWADM.CREATE_MSGSYSTEM_LINK with the following information provided:

• Interface type

Java Message Service (JMS) distinguishes between queue and topic connections.
The Sun Microsystem JMS 1.1 standard supports domain unification that allows
both JMS queues and topics to be accessed by a single JMS connection:

– A WebSphere MQ JMS link created with interface type
DBMS_MGWADM.JMS_CONNECTION can be used to access both JMS queues and
topics. This is the recommended interface for a WebSphere MQ JMS link.

– A WebSphere MQ JMS link created with interface type
DBMS_MGWADM.JMS_QUEUE_CONNECTION can be used to access only JMS
queues.

– A WebSphere MQ JMS link created with interface type
DBMS_MGWADM.JMS_TOPIC_CONNECTION can be used to access only JMS topics.

• WebSphere MQ connection information:

– Host name and port number of the WebSphere MQ server

– Queue manager name

– Channel name

– User name and password

• Maximum number of messaging connections allowed

A messaging connection is mapped to a JMS session.

• Log destination (JMS queue or JMS topic) for inbound and outbound propagation

The log destination type must be valid for the link type. JMS unified links and JMS
queue links must use JMS queues for log destinations, and JMS topic links must
use topics:

– For a WebSphere MQ JMS unified or queue link, the log queue name must be
the name of a physical WebSphere MQ JMS queue created using WebSphere
MQ administration tools.

Appendix C
Working with Oracle Messaging Gateway

C-27

– For a WebSphere MQ JMS topic link, the log topic name must be the name of
a WebSphere MQ JMS topic. The physical WebSphere MQ queue used by
that topic must be created using WebSphere MQ administration tools. By
default, the physical queue used is SYSTEM.JMS.D.SUBSCRIBER.QUEUE. A link
option can be used to specify a different physical queue.

• Optional information such as:

– Send, receive, and security exits

– Character sets

– WebSphere MQ publish/subscribe configuration used for JMS topics

Example C-14 configures a Messaging Gateway link to a WebSphere MQ queue
manager using a JMS topic interface. The link is named mqjmslink and is configured
to use the WebSphere MQ queue manager my.queue.manager on host
myhost.mydomain and port 1414, using WebSphere MQ channel mychannel.

This example also uses the options parameter to specify a nondefault durable
subscriber queue to be used with the log topic. The Messaging Gateway agent
myagent is responsible for the link and all propagation jobs using the link.

See Also:

• "Registering a WebSphere MQ JMS Queue or Topic" for more
information on JMS queues and topics

• "WebSphere MQ System Properties"

Example C-14 Configuring a WebSphere MQ JMS Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();
 v_prop.max_connections := 1;

 v_prop.interface_type := DBMS_MGWADM.JMS_TOPIC_CONNECTION;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mychannel';
 v_prop.queue_manager := 'my.queue.manager';

 v_prop.outbound_log_queue := 'mylogtopic'

 -- Specify a WebSphere MQ durable subscriber queue to be used with the
 -- log topic.
 v_options := sys.mgw_properties(
 sys.mgw_property('MQ_JMSDurSubQueue', 'myDSQueue'));

 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(
 linkname => 'mqjmslink',
 agent_name => 'myagent',
 properties => v_prop,

Appendix C
Working with Oracle Messaging Gateway

C-28

 options => v_options);
END;

Creating a WebSphere MQ Link to Use SSL
Messaging Gateway allows SSL support for IBM WebSphere MQ and WebSphere MQ
JMS connections. This section describes how to configure Messaging Gateway to use
SSL for a WebSphere MQ Base Java link and the same information applies to a
WebSphere MQ JMS link. There are no differences in terms of the Messaging
Gateway configuration.

The following are needed in order to use SSL for WebSphere MQ connections:

• A WebSphere MQ channel configured to use SSL.

• A truststore and optionally a keystore file that are in a location accessible to the
Messaging Gateway agent process. In an Oracle RAC environment, these files
must be accessible to all instances on which the Messaging Gateway agent
process might run, using the same path specification.

• Use DBMS_MGWADM.CREATE_MSGSYSTEM_LINK to create a WebSphere MQ link with
the desired SSL related link options. At minimum, the MQ_SSLCIPHERSUITE property
should be set to specify the SSL ciphersuite used by the channel.

• Use DBMS_MGWADM.SET_OPTION to set certain JSSE Java properties for the
Messaging Gateway agent assigned to the link.

JSEE related properties:

• java.net.ssl.keyStore

This property is used to specify the location of the keystore. A keystore is a
database of key material used for various purposes, including authentication and
data integrity.

• java.net.ssl.keyStorePassword

This property is used to specify the password of the keystore. This password is
used to check the integrity of the data in the keystore before accessing it.

• java.net.ssl.trustStore

This property is used to specify the location of the truststore. A truststore is a
keystore that is used when making decisions about which clients and servers are
trusted.

• java.net.ssl.trustStorePassword

This property is used to specify the password of the truststore. This password is
used to check the integrity of the data in the truststore before accessing it.

The java.net.ssl.keyStore and java.net.ssl.keyStorePassword properties are only
needed if the WebSphere MQ channel is configured to use SSL client authentication.

Example C-15 configures a WebSphere MQ Base Java link mqssllink to use SSL
connections using the SSL_RSA_WITH_RC4_128_MD5 ciphersuite. It assumes the channel
has been configured for SSL client authentication so the Messaging Gateway agent
associated with the link, DEFAULT_AGENT, is configured with Java properties for both a
keystore and a truststore.

This configuration should be done when the Messaging Gateway agent is shut down
since the Java properties set by DBMS_MGWADM.SET_OPTION are set only when the agent

Appendix C
Working with Oracle Messaging Gateway

C-29

first starts. If the agent is running when the configuration is done it will need to be
shutdown and restarted before the SSL connections will be used.

Note:

"WebSphere MQ System Properties"

Example C-15 Configuring a WebSphere MQ Base Java Link for SSL

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_mqseries_properties;
 v_agent varchar2(30) := 'default_agent';
BEGIN
 v_prop := sys.mgw_mqseries_properties.construct();
 v_prop.interface_type := DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE;
 v_prop.max_connections := 1;
 v_prop.username := 'mqm';
 v_prop.password := 'mqm';
 v_prop.hostname := 'myhost.mydomain';
 v_prop.port := 1414;
 v_prop.channel := 'mysslchannel';
 v_prop.queue_manager := 'my.queue.manager';
 v_prop.outbound_log_queue := 'mylogq';

 -- specify the SSL ciphersuite
 v_options := sys.mgw_properties(
 sys.mgw_property('MQ_SSLCIPHERSUITE','SSL_RSA_WITH_RC4_128_MD5'));

 -- create the MQSeries link
 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(linkname => 'mqssllink',
 agent_name => v_agent,
 properties => v_prop,
 options => v_options);

 -- set Java properties for the agent that specify the JSSE security
 -- properties for the keystore and truststore; the paths will be
 -- saved as cleartext and the passwords encrypted

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.keyStore',
 option_value => '/tmp/mq_ssl/key.jks',
 encrypted => false);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.keyStorePassword',
 option_value => 'welcome',
 encrypted => true);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,
 target_name => v_agent,
 option_name => 'javax.net.ssl.trustStore',
 option_value => '/tmp/mq_ssl/trust.jks',
 encrypted => false);

 DBMS_MGWADM.SET_OPTION(target_type => DBMS_MGWADM.AGENT_JAVA_PROP,

Appendix C
Working with Oracle Messaging Gateway

C-30

 target_name => v_agent,
 option_name => 'javax.net.ssl.trustStorePassword',
 option_value => 'welcome',
 encrypted => true);
END;

Creating a TIB/Rendezvous Link
A TIB/Rendezvous link is created by calling DBMS_MGWADM.CREATE_MSGSYSTEM_LINK
with three parameters (service, network and daemon) for the agent to create a
corresponding transport of TibrvRvdTransport type.

A TIB/Rendezvous message system link does not need propagation log queues.
Logging information is stored in memory. Therefore, Messaging Gateway can only
guarantee at-most-once message delivery.

Example C-16 configures a TIB/Rendezvous link named rvlink that connects to the
rvd daemon on the local computer. An agent name is not specified for the link so the
Messaging Gateway default agent (DEFAULT_AGENT) is responsible for the link and all
propagation jobs using the link.

See Also:

"TIB/Rendezvous System Properties"

Example C-16 Configuring a TIB/Rendezvous Link

DECLARE
 v_options sys.mgw_properties;
 v_prop sys.mgw_tibrv_properties;
BEGIN
 v_prop := sys.mgw_tibrv_properties.construct();

 DBMS_MGWADM.CREATE_MSGSYSTEM_LINK(linkname => 'rvlink', properties => v_prop);
END;

Altering a Messaging System Link
Using DBMS_MGWADM.ALTER_MSGSYSTEM_LINK, you can alter some link information after
the link is created. You can alter link information with the Messaging Gateway agent
running or shut down. Example C-17 alters the link mqlink to change the
max_connections property.

See Also:

"Configuration Properties" for restrictions on changes when the Messaging
Gateway agent is running

Example C-17 Altering a WebSphere MQ Link

DECLARE
 v_options sys.mgw_properties;

Appendix C
Working with Oracle Messaging Gateway

C-31

 v_prop sys.mgw_mqseries_properties;
BEGIN
 -- use alter_construct() for initialization
 v_prop := sys.mgw_mqseries_properties.alter_construct();
 v_prop.max_connections := 2;

 DBMS_MGWADM.ALTER_MSGSYSTEM_LINK(
 linkname => 'mqlink', properties => v_prop);
END;

Removing a Messaging System Link
You can remove a Messaging Gateway link to a non-Oracle messaging system with
DBMS_MGWADM.REMOVE_MSGSYSTEM_LINK, but only if all registered queues associated
with this link have already been unregistered. The link can be removed with the
Messaging Gateway agent running or shut down. Example C-18 removes the link
mqlink.

Example C-18 Removing a Messaging Gateway Link

BEGIN
 dbms_mgwadm.remove_msgsystem_link(linkname =>'mqlink');
END;

Views for Messaging System Links
You can use the MGW_LINKS view to check links that have been created. It lists the
name and link type, as shown in Example C-19.

You can use the MGW_MQSERIES_LINKS and MGW_TIBRV_LINKS views to check
messaging system type-specific configuration information, as shown in Example C-20.

Example C-19 Listing All Messaging Gateway Links

SQL> select link_name, link_type from MGW_LINKS;

LINK_NAME LINK_TYPE

MQLINK MQSERIES
RVLINK TIBRV

Example C-20 Checking Messaging System Link Configuration Information

SQL> select link_name, queue_manager, channel, hostname from mgw_mqseries_links;

LINK_NAME QUEUE_MANAGER CHANNEL HOSTNAME
--
MQLINK my.queue.manager mychannel myhost.mydomain

SQL> select link_name, service, network, daemon from mgw_tibrv_links;

LINK_NAME SERVICE NETWORK DAEMON

RVLINK

Configuring Non-Oracle Messaging System Queues
All non-Oracle messaging system queues involved in propagation as a source queue,
destination queue, or exception queue must be registered through the Messaging

Appendix C
Working with Oracle Messaging Gateway

C-32

Gateway administration interface. You do not need to register Oracle Database
Advanced Queuing queues involved in propagation.

This section contains these topics:

• Registering a Non-Oracle Queue

• Unregistering a Non-Oracle Queue

• View for Registered Non-Oracle Queues

Registering a Non-Oracle Queue
You can register a non-Oracle queue using DBMS_MGWADM.REGISTER_FOREIGN_QUEUE.
Registering a non-Oracle queue provides information for the Messaging Gateway
agent to access the queue. However, it does not create the physical queue in the non-
Oracle messaging system. The physical queue must be created using the non-Oracle
messaging system administration interfaces before the Messaging Gateway agent
accesses the queue.

The following information is used to register a non-Oracle queue:

• Name of the messaging system link used to access the queue

• Native name of the queue (its name in the non-Oracle messaging system)

• Domain of the queue

– DBMS_MGWADM.DOMAIN_QUEUE for a point-to-point queue

– DBMS_MGWADM.DOMAIN_TOPIC for a publish/subscribe queue

• Options specific to the non-Oracle messaging system

These options are a set of {name, value} pairs, both of which are strings.

See Also:

"Optional Foreign Queue Configuration Properties"

Example C-21 shows how to register the WebSphere MQ Base Java queue
my_mq_queue as a Messaging Gateway queue destq.

Example C-21 Registering a WebSphere MQ Base Java Queue

BEGIN
 DBMS_MGWADM.REGISTER_FOREIGN_QUEUE(
 name => 'destq',
 linkname => 'mqlink',
 provider_queue => 'my_mq_queue',
 domain => dbms_mgwadm.DOMAIN_QUEUE);
END;

Registering a WebSphere MQ Base Java Queue
The domain must be DBMS_MGWADM.DOMAIN_QUEUE or NULL, because only point-to-point
queues are supported for WebSphere MQ.

Appendix C
Working with Oracle Messaging Gateway

C-33

Registering a WebSphere MQ JMS Queue or Topic
When registering a WebSphere MQ JMS queue, the domain must be
DBMS_MGWADM.DOMAIN_QUEUE, and the linkname parameter must refer to a WebSphere
MQ JMS unified link or queue link.

When registering a WebSphere MQ JMS topic, the domain must be
DBMS_MGWADM.DOMAIN_TOPIC, and the linkname parameter must refer to a WebSphere
MQ JMS unified link or topic link. The provider_queue for a WebSphere MQ JMS
topic used as a propagation source may include wildcards. See WebSphere MQ
documentation for wildcard syntax.

Registering a TIB/Rendezvous Subject
When registering a TIB/Rendezvous subject with Messaging Gateway, the
provider_queue parameter specifies a TIB/Rendezvous subject name. The domain of
a registered TIB/Rendezvous queue must be DBMS_MGWADM.DOMAIN_TOPIC or NULL.

A registered TIB/Rendezvous queue with provider_queue set to a wildcard subject
name can be used as a propagation source queue for inbound propagation. It is not
recommended to use queues with wildcard subject names as propagation destination
queues or exception queues. As documented in TIB/Rendezvous, sending messages
to wildcard subjects can trigger unexpected behavior. However, neither Messaging
Gateway nor TIB/Rendezvous prevents you from doing so.

Unregistering a Non-Oracle Queue
A non-Oracle queue can be unregistered with
DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE, but only if there are no propagation jobs
referencing it.

Example C-22 unregisters the queue destq of the link mqlink.

Example C-22 Unregistering a Non-Oracle Queue

BEGIN
 DBMS_MGWADM.UNREGISTER_FOREIGN_QUEUE(name =>'destq', linkname=>'mqlink');
END;

View for Registered Non-Oracle Queues
You can use the MGW_FOREIGN_QUEUES view to check which non-Oracle queues are
registered and what link each uses, as shown in Example C-23.

Example C-23 Checking Which Queues Are Registered

SELECT name, link_name, provider_queue FROM MGW_FOREIGN_QUEUES;

NAME LINK_NAME PROVIDER_QUEUE

DESTQ MQLINK my_mq_queue

Appendix C
Working with Oracle Messaging Gateway

C-34

Configuring Oracle Messaging Gateway Propagation Jobs
Propagating messages between an Oracle Database AQ queue and a non-Oracle
messaging system queue requires a propagation job. Each propagation job will have a
unique propagation type, source, and destination triplet.

You can create a propagation job to propagate messages between JMS destinations.
You can also create a propagation job to propagate messages between non-JMS
queues. Messaging Gateway does not support message propagation between a JMS
destination and a non-JMS queue.

This section contains these topics:

• Propagation Job Overview

• Creating an Oracle Messaging Gateway Propagation Job

• Enabling and Disabling a Propagation Job

• Resetting a Propagation Job

• Altering a Propagation Job

• Removing a Propagation Job

Propagation Job Overview
A propagation job specifies what messages are propagated and how the messages
are propagated.

Messaging Gateway allows bidirectional message propagation. An outbound
propagation moves messages from Oracle Database Advanced Queuing to non-
Oracle messaging systems. An inbound propagation moves messages from non-
Oracle messaging systems to Oracle Database Advanced Queuing.

If the propagation source is a queue (point-to-point), then the Messaging Gateway
agent moves all messages from the source queue to the destination queue. If the
propagation source is a topic (publish/subscribe), then the Messaging Gateway agent
creates a subscriber of the propagation source queue in the messaging system. The
agent only moves messages that are published to the source queue after the
subscriber is created.

When propagating a message, the Messaging Gateway agent converts the message
from the format in the source messaging system to the format in the destination
messaging system. Users can customize the message conversion by providing a
message transformation. If message conversion fails, then the message will be moved
to an exception queue, if one has been provided, so that the agent can continue to
propagate messages for the subscriber.

A Messaging Gateway exception queue is different from an Oracle Database
Advanced Queuing exception queue. Messaging Gateway moves a message to a
Messaging Gateway exception queue when message conversion fails. Oracle
Database Advanced Queuing moves a message to an Oracle Database Advanced
Queuing exception queue after MAX_RETRIES dequeue attempts on the message.

Messages moved to an Oracle Database Advanced Queuing exception queue may
result in irrecoverable failures on the associated Messaging Gateway propagation job.
To avoid the problem, the MAX_RETRIES parameter of any Oracle Database Advanced

Appendix C
Working with Oracle Messaging Gateway

C-35

Queuing queue that is used as the propagation source of a Messaging Gateway
propagation job should be set to a value much larger than 16.

If the messaging system of the propagation source queue supports message
selection, then a message selection rule can be specified for a propagation subscriber.
Only messages that satisfy the message selector will be propagated.

Users can also specify propagation job options to control how messages are
propagated, such as options for JMS message delivery mode and TIB/Rendezvous
queue policies.

The MGW_JOBS view can be used to check the configuration and status of Messaging
Gateway propagation jobs.

See Also:

Monitoring Oracle Messaging Gateway

Creating an Oracle Messaging Gateway Propagation Job
Messaging Gateway propagation jobs are created by DBMS_MGWADM.CREATE_JOB.

If the propagation source for non-JMS propagation is an Oracle Database AQ queue,
then the queue can be either a single consumer queue or multiple consumer queue. If
it is a multiple consumer queue, Messaging Gateway creates a corresponding Oracle
Database AQ subscriber MGW_job_name for the propagation job job_name when
DBMS_MGWADM.CREATE_JOB is called.

If the propagation source is a JMS topic, such as an Oracle Java Message Service
(Oracle JMS) topic or a WebSphere MQ JMS topic, then a JMS subscriber
MGW_job_name is created on the topic in the source messaging system by the
Messaging Gateway agent. If the agent is not running, then the subscriber will not be
created until the agent is restarted.

If the propagation source is a queue, then only one propagation job can be created
using that queue as the propagation source. If the propagation source is a topic, then
multiple propagation jobs can be set up using that topic as the propagation source with
each propagation job having its own corresponding subscriber on the topic in the
messaging system.

Example C-24 creates Messaging Gateway propagation job job_aq2mq.

Note:

If a WebSphere MQ JMS topic is involved in a propagation job and the
interface type of the link is DBMS_MGWADM.JMS_TOPIC_CONNECTION, then a
durable subscriber MGL_subscriber_id is created on the log topic. The
durable subscriber is removed when the Messaging Gateway propagation
job is successfully removed.

Appendix C
Working with Oracle Messaging Gateway

C-36

Example C-24 Creating a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.CREATE_JOB(
 job_name => 'job_aq2mq',
 propagation_type => DBMS_MGWADM.OUTBOUND_PROPAGATION,
 source => 'mquser.srcq',
 destination => 'deqq@mqlink');
END;

Enabling and Disabling a Propagation Job
A propagation job can be initially enabled or disabled when it is created by
DBMS_MGWADM.CREATE_JOB. By default, a job is enabled when it is created. You can use
DBMS_MGWADM.ENABLE_JOB to enable a propagation job and DBMS_MGWADM.DISABLE_JOB
to disable a job. No propagation processing will occur when the job is disabled.

Example C-25 enables the propagation for propagation job job_aq2mq.

Example C-26 disables the propagation for propagation job job_aq2mq.

Example C-25 Enabling a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.ENABLE_JOB(job_name => 'job_aq2mq');
END;

Example C-26 Disabling a Messaging Gateway Propagation Job

BEGIN
 DBMS_MGWADM.DISABLE_JOB(job_name => 'job_aq2mq');
END;

Resetting a Propagation Job
When a problem occurs with a propagation job, the Messaging Gateway agent retries
the failed operation up to 16 times in an exponential backoff scheme before the
propagation job stops. You can use DBMS_MGWADM.RESET_JOB to reset the failure count
to zero to allow the agent to retry the failed operation immediately.

Example C-27 resets the failure count for propagation job job_aq2mq.

Example C-27 Resetting a Propagation Job

BEGIN
 DBMS_MGWADM.RESET_JOB (job_name => 'job_aq2mq');
END;

Altering a Propagation Job
After a propagation job is created you can alter the selection rule, transformation,
exception queue, job options, and poll interval of the job using
DBMS_MGWADM.ALTER_JOB. The job can be altered with the Messaging Gateway running
or shut down.

Example C-28 adds an exception queue for a propagation job.

Example C-29 changes the polling interval for a propagation job. The polling interval
determines how soon the agent can discover the available messages in the

Appendix C
Working with Oracle Messaging Gateway

C-37

propagation source queue. The default polling interval is 5 seconds or the value set for
oracle.mgw.polling_interval in the Messaging Gateway initialization file.

Example C-28 Altering Propagation Job by Adding an Exception Queue

BEGIN
 DBMS_MGWADM.ALTER_JOB(
 job_name => 'job_aq2mq', exception_queue =>
'mgwuser.my_ex_queue');
END;

Example C-29 Altering Propagation Job by Changing the Polling Interval

BEGIN
 DBMS_MGWADM.ALTER_JOB(
 job_name => 'job_aq2mq', poll_interval => 2);
END;

Removing a Propagation Job
You can remove a Messaging Gateway propagation job by calling
DBMS_MGWADM.REMOVE_JOB.

Before removing the propagation job from the Messaging Gateway configuration,
Messaging Gateway does the following cleanup:

• Removes from the messaging system the associated subscriber that may have
been created by Messaging Gateway

• Removes propagation log records from log queues for the job being removed

Messaging Gateway may fail to do the cleanup because:

• The Messaging Gateway agent is not running

• Non-Oracle messaging system is not running

• The Messaging Gateway agent cannot interact with the source or destination
messaging system

If the Messaging Gateway cleanup fails for any reason, then the propagation job being
removed is placed in a DELETE_PENDING state. The Messaging Gateway agent tries to
clean up propagation jobs in a DELETE_PENDING state when:

• DBMS_MGWADM.REMOVE_JOB is called and the Messaging Gateway agent is running.

• The Messaging Gateway agent is starting and finds a propagation job in a
DELETE_PENDING state.

DBMS_MGWADM.REMOVE_JOB has a force parameter that allows you to force the
propagation job to be removed from the Messaging Gateway configuration without
placing it in DELETE_PENDING state. This is useful in case of cleanup failures or if you
want to remove a propagation job when the Messaging Gateway agent is not running.

Forcing a propagation job to be removed may result in obsolete log records being left
in the log queues, and subscriptions in the messaging systems that may cause
unnecessary message accumulation. Oracle recommends that the force option not be
used for DBMS_MGWADM.REMOVE_JOB if possible.

Example C-30 removes a propagation job in a non-forced manner.

Appendix C
Working with Oracle Messaging Gateway

C-38

Example C-30 Removing a Propagation Job

BEGIN
 DBMS_MGWADM.REMOVE_JOB (job_name => 'job_aq2mq');
END;

Propagation Jobs, Subscribers, and Schedules
Subprograms are provided as part of the DBMS_MGWADM package that simplify the
creation and management of propagation jobs. Those subprograms allow a user to
configure a propagation job rather than a disjoint subscriber and schedule as was
done in prior releases. Oracle recommends that you use the propagation job
procedures but still supports the subscriber and schedule procedures for backward
compatibility.

Table C-2 lists the Messaging Gateway propagation job procedures and shows which
subscriber and/or schedule procedures it replaces. All procedures are from the
DBMS_MGWADM package.

Table C-2 Messaging Gateway Propagation Job Subprograms

Job Procedure Replaces Subscriber, Schedule Procedure

CREATE_JOB ADD_SUBSCRIBER, SCHEDULE_PROPAGATION

ALTER_JOB ALTER_SUBSCRIBER, ALTER_PROPAGATION_SCHEDULE

REMOVE_JOB REMOVE_SUBSCRIBER, UNSCHEDULE_PROPAGATION

ENABLE_JOB ENABLE_PROPAGATION_SCHEDULE

DISABLE_JOB DISABLE_PROPAGATION_SCHEDULE

RESET_JOB RESET_SUBSCRIBER

This section contains the following topics:

• Propagation Job_ Subscriber_ Schedule Interface Interoperability

• Propagation Job_ Subscriber_ Schedule Views

• Single Consumer Queue as Propagation Source

Propagation Job, Subscriber, Schedule Interface Interoperability
The user can create two types of propagation jobs, a new style job or an old style job.
A new style job is created by DBMS_MGWADM.CREATE_JOB. An old style job is created by
calling DBMS_MGWADM.ADD_SUBSCRIBER and DBMS_MGWADM.SCHEDULE_PROPAGATION using
the same {propagation_type, source, destination} triplet. A subscriber that does not
have a matching schedule, or a schedule that does not have a matching subscriber, is
not considered to be a propagation job.

For new style job, the job name will serve as both the subscriber ID and the schedule
ID. For an old style job, the subscriber ID is used as the job name.

Both the propagation job subprograms and the subscriber/schedule subprograms can
be used for old style propagation jobs. Oracle recommends that you use the job
subprograms to create and manage propagation jobs. The job subprograms cannot be
used for an unmatched subscriber or schedule since those do not constitute a
propagation job.

Appendix C
Working with Oracle Messaging Gateway

C-39

Only the new job subprograms can be used for new style propagation jobs. An error
will occur if a user tries to call a subscriber or scheduler procedure on a new style job.

Other than DBMS_MGWADM.REMOVE_JOB, calling the job subprograms for an old style job is
straightforward and the results are effectively the same as calling the corresponding
subscriber/schedule subprograms. There may be certain restrictions in the future but
there are none at this time.

The DBMS_MGWADM.REMOVE_JOB procedure can be used to remove both new style and
old style jobs. A forced and non-forced remove is supported. If the Messaging
Gateway agent is not running when a non-forced remove is done, the job will be
flagged as delete pending and neither the underlying subscriber nor schedule will be
removed at that time. The job (subscriber /schedule pair) will be removed once the
agent is restarted and performs its cleanup work or a forced DBMS_MGWADM.REMOVE_JOB
is performed. In order to insure that the subscriber/schedule pair is removed at the
same time, an error will occur if you first call DBMS_MGWADM.REMOVE_JOB and
subsequently attempt to call DBMS_MGWADM.REMOVE_SUBSCRIBER or
DBMS_MGWADM.UNSCHEDULE_PROPAGATION for an old style job.

Once DBMS_MGWADM.REMOVE_JOB as been called for a job and it has been flagged as
delete pending, all job procedures, other than DBMS_MGWADM.REMOVE_JOB, will fail for
both new style and old style jobs. In addition, all subscriber and schedule subprograms
will fail if the propagation job happens to be an old style
job.DBMS_MGWADM.REMOVE_SUBSCRIBER and DBMS_MGWADM.UNSCHEDULE_PROPAGATION can
be used for an old style job as long as DBMS_MGWADM.REMOVE_JOB has not been called
for that job. If DBMS_MGWADM.UNSCHEDULE_PROPAGATION is called for an old style job, the
schedule is immediately removed and it ceases to be a propagation job and
DBMS_MGWADM.REMOVE_SUSCRIBER must be used to remove the subscriber. If
DBMS_MGWADM.REMOVE_SUBSCRIBER is called for an old style job, the user can
subsequently call DBMS_MGWADM.REMOVE_JOB as long as the subscriber exists.

Propagation Job, Subscriber, Schedule Views
The MGW_JOBS view shows information for the current propagation jobs, both new style
jobs and old style jobs, and includes all the pertinent information shown by the
MGW_SUBSCRIBERS and MGW_SCHEDULES views. The MGW_SUBSCRIBERS and
MGW_SCHEDULES views are still useful for finding an unmatched subscriber or schedule
since they don't constitute a propagation job and will not show up in the MGW_JOBS
view.

Single Consumer Queue as Propagation Source
Messaging Gateway allows an Oracle Database AQ multiple consumer queue or a
single consumer queue to be a propagation source for an outbound new style job
created by DBMS_MGWADM.CREATE_JOB. A multiple consumer queue must be used for the
propagation source for an outbound old style job. An error will occur if an administrator
attempts to call DBMS_MGWADM.ADD_SUBSCRIBER and the source is a single consumer
queue.

An Oracle Database AQ dequeue condition is not supported for native (non-JMS)
outbound propagation when the propagation source is a single consumer queue.

Appendix C
Working with Oracle Messaging Gateway

C-40

Configuration Properties
This section summarizes basic and optional properties related to Messaging Gateway
links, foreign queues, and propagation jobs.

This section contains these topics:

• WebSphere MQ System Properties

• TIB/Rendezvous System Properties

• Optional Link Configuration Properties

• Optional Foreign Queue Configuration Properties

• Optional Job Configuration Properties

WebSphere MQ System Properties
Table C-3 summarizes the basic configuration properties for a WebSphere MQ
messaging link. The table indicates which properties of
SYS.MGW_MQSERIES_PROPERTIES are optional (NULL allowed), which can be altered, and
if alterable, which values can be dynamically changed.

See Also:

"SYS.MGW_MQSERIES_PROPERTIES Type" in Oracle Database PL/SQL
Packages and Types Reference

Table C-3 WebSphere MQ Link Properties

Attribute NULL Allowed? Alter Value? Dynamic?

queue_manager no no no

hostname yes (1) no no

port yes (1) no no

channel yes (1), (6) yes no

interface_type yes (2) no no

max_connections yes (3) yes yes

username yes yes yes

password yes yes yes

inbound_log_queue yes (4) yes(4) yes

outbound_log_queue yes (5) yes(5) yes

Notes on Table C-3

• If hostname is NULL, then the port and channel must be NULL. If the hostname is not
NULL, then the port must be not NULL. If the hostname is NULL, then a WebSphere
MQ bindings connection is used; otherwise a client connection is used.

Appendix C
Working with Oracle Messaging Gateway

C-41

• If interface_type is NULL, then a default value of
DBMS_MGWADM.MQSERIES_BASE_JAVA_INTERFACE is used.

• If max_connections is NULL, then a default value of 1 is used.

• Attribute inbound_log_queue can be NULL if the link is not used for inbound
propagation. The log queue can be altered only when no inbound propagation job
references the link.

• Attribute outbound_log_queue can be NULL if the link is not used for outbound
propagation. The log queue can be altered only when no outbound propagation
job references the link.

• The channel attribute must be NULL if a client channel definition table (CCDT) is
used. The MQ_ccdtURL link option can be used to specify a CCDT.

Table C-4 summarizes the optional configuration properties supported when a
WebSphere MQ Base Java interface is used to access the WebSphere MQ
messaging system. Table C-5 summarizes the optional configuration properties
supported when a WebSphere MQ JMS interface is used. Each table lists the property
name, where that property applies, whether the property can be altered, and if
alterable, whether the value can be dynamically changed. Only the properties listed in
the tables are supported, and any extra properties are ignored.

Table C-4 Optional Configuration Properties for WebSphere MQ Base Java

Property Name Used For Alter Value? Dynamic?

MQ_ccdtUrl link yes no

MQ_ccsid link yes no

MQ_ReceiveExit link yes no

MQ_SecurityExit link yes no

MQ_SendExit link yes no

MQ_SSLCipherSuite link yes no

MQ_SSLFipsRequired link yes no

MQ_SSLPeerName link yes no

MQ_SSLResetCount link yes no

MQ_openOptions foreign queue no no

MsgBatchSize job yes yes

PreserveMessageID job yes yes

Table C-5 Optional Configuration Properties for WebSphere MQ JMS

Property Name Used For Alter Value? Dynamic?

MQ_BrokerControlQueue link yes no

MQ_BrokerPubQueue link yes no

MQ_BrokerQueueManager link yes no

MQ_BrokerVersion link yes no

MQ_ccdtUrl link yes no

MQ_ccsid link yes no

Appendix C
Working with Oracle Messaging Gateway

C-42

Table C-5 (Cont.) Optional Configuration Properties for WebSphere MQ JMS

Property Name Used For Alter Value? Dynamic?

MQ_JmsDurSubQueue link no no

MQ_PubAckInterval link yes no

MQ_ReceiveExit link yes no

MQ_ReceiveExitInit link yes no

MQ_SecurityExit link yes no

MQ_SecurityExitInit link yes no

MQ_SendExit link yes no

MQ_SendExitInit link yes no

MQ_SSLCipherSuite link yes no

MQ_SSLCrl link yes no

MQ_SSLFipsRequired link yes no

MQ_SSLPeerName link yes no

MQ_SSLResetCount link yes no

MQ_CharacterSet foreign queue no no

MQ_JmsDurSubQueue foreign queue no no

MQ_JmsTargetClient foreign queue no no

JMS_DeliveryMode job yes yes

JMS_NoLocal job no no

MsgBatchSize job yes yes

PreserveMessageID job yes yes

TIB/Rendezvous System Properties
Table C-6 summarizes the basic configuration properties for a TIB/Rendezvous
messaging link. It indicates which properties of SYS.MGW_TIBRV_PROPERTIES are
optional (NULL allowed), which can be altered, and if alterable, which values can be
dynamically changed.

See Also:

"SYS.MGW_TIBRV_PROPERTIES Type" in Oracle Database PL/SQL
Packages and Types Reference

Table C-6 TIB/Rendezvous Link Properties

Attribute NULL allowed? Alter value? Dynamic?

service yes(1) no no

daemon yes(1) no no

network yes(1) no no

Appendix C
Working with Oracle Messaging Gateway

C-43

Table C-6 (Cont.) TIB/Rendezvous Link Properties

Attribute NULL allowed? Alter value? Dynamic?

cm_name yes(2) no no

cm_ledger yes(2) no no

Notes on Table C-6:

• System default values will be used if service, daemon, or network are NULL.

• The cm_name and cm_ledger attributes are reserved for future use when TIB/
Rendezvous certified messages are supported. At present, a NULL must be
specified for these parameters when a TIB/Rendezvous link is configured.

Table C-7 summarizes the optional configuration properties supported when a TIB/
Rendezvous messaging system is used. The table lists the property name, where that
property applies, whether the property can be altered, and if alterable, whether the
value can be dynamically changed. Only the properties listed in the table are
supported, and any extra properties will be ignored.

Table C-7 Optional Properties for TIB/Rendezvous

Property Name Used For Alter Value? Dynamic?

AQ_MsgProperties job yes yes

MsgBatchSize job yes yes

PreserveMessageID job yes yes

RV_discardAmount job yes no

RV_limitPolicy job yes no

RV_maxEvents job yes no

Optional Link Configuration Properties
This section describes optional link properties you can specify using the options
parameter of DBMS_MGWADM.CREATE_MSGSYSTEM_LINK and
DBMS_MGWADM.ALTER_MSGSYSTEM_LINK. Each listing also indicates which messaging
system might use that property.

MQ_BrokerControlQueue
This property is used by WebSphere MQ JMS. It specifies the name of the broker
control queue and corresponds to WebSphere MQ JMS administration tool property
BROKERCONQ. The WebSphere MQ default is SYSTEM.BROKER.CONTROL.QUEUE.

MQ_BrokerPubQueue
This property is used by WebSphere MQ JMS. It specifies the name of the broker
publish queue and corresponds to WebSphere MQ JMS administration tool property
BROKERPUBQ. The WebSphere MQ default is SYSTEM.BROKER.DEFAULT.STREAM.

Appendix C
Working with Oracle Messaging Gateway

C-44

MQ_BrokerQueueManager
This property is used by WebSphere MQ JMS. It specifies the name of the broker
queue manager and corresponds to WebSphere MQ administration tool property
BROKERQMGR. If it is not set, then no default is used.

MQ_BrokerVersion
This property is used by WebSphere MQ JMS. It specifies the broker version number
and corresponds to WebSphere MQ JMS administration tool property BROKERVER. The
WebSphere MQ default is 0.

MQ_ccdtUrl
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the URL string of a client channel definition table (CCDT) to be used. If not
set, a CCDT is not used. If a CCDT is used, then the
SYS.MGW_MQSERIES_PROPERTIES.channel link property must be NULL.

MQ_ccsid
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the character set identifier to be used to translate information in the
WebSphere MQ message header. This should be the integer value of the character
set (for example, 819) rather than a descriptive string. If it is not set, then the
WebSphere MQ default character set 819 is used.

MQ_JmsDurSubQueue
This property is used by WebSphere MQ JMS. It applies to WebSphere MQ JMS
topic links only. The SYS.MGW_MQSERIES_PROPERITES attributes, inbound_log_queue
and outbound_log_queue, specify the names of WebSphere MQ JMS topics used for
propagation logging. This property specifies the name of the WebSphere MQ queue
from which durable subscription messages are retrieved by the log topic subscribers.
The WebSphere MQ default queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_PubAckInterval
This property is used by WebSphere MQ JMS. It specifies the interval, in number of
messages, between publish requests that require acknowledgment from the broker
and corresponds to WebSphere MQ JMS administration tool property PUBACKINT. The
WebSphere MQ default is 25.

MQ_ReceiveExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the fully qualified Java classname of a class implementing the
MQReceiveExit interface. This class must be in the CLASSPATH of the Messaging
Gateway agent. There is no default.

MQ_ReceiveExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere
MQ JMS to the constructor of the class specified by MQ_ReceiveExit and corresponds
to WebSphere MQ JMS administration tool property RECEXITINIT. There is no default.

MQ_SecurityExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the fully qualified Java classname of a class implementing the
MQSecurityExit interface. This class must be in the CLASSPATH of the Messaging
Gateway agent. There is no default.

Appendix C
Working with Oracle Messaging Gateway

C-45

MQ_SecurityExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere
MQ JMS to the constructor of the class specified by MQ_SecurityExit and
corresponds to WebSphere MQ JMS administration tool property SECEXITINIT. There
is no default.

MQ_SendExit
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the fully qualified Java classname of a class implementing the MQSendExit
interface. This class must be in the CLASSPATH of the Messaging Gateway agent.
There is no default.

MQ_SendExitInit
This initialization string is used by WebSphere MQ JMS. It is passed by WebSphere
MQ JMS to the constructor of the class specified by MQ_SendExit. It corresponds to
WebSphere MQ JMS administration tool property SENDEXITINIT. There is no default.

MQ_SSLCipherSuite
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the CipherSuite to be used; for example, SSL_RSA_WITH_RC4_128_MD5. This
corresponds to the WebSphere MQ SSLCIPHERSUITE administration property.

MQ_SSLCrl
This property is used by WebSphere MQ JMS. It specifies a space-delimited list of
LDAP servers that can be used for certificate revocation list (CRL) checking. If not set,
no CRL checking is done. This corresponds to the WebSphere MQ SSLCRL
administration property. This option is not supported for WebSphere MQ Base Java,
and instead, a client channel definition table (CCDT) must be used if CRL checking is
needed.

MQ_SSLFipsRequired
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
indicates whether the CipherSuite being used is supported by the IBM Java JSSE
FIPS provider (IBMSJSSEFIPS). The value should be TRUE or FALSE. The default
value is FALSE. This corresponds to the WebSphere MQ SSLFIPSREQUIRED
administration property.

MQ_SSLPeerName
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies a distinguished name (DN) pattern that the queue manager certificate must
match in order for a connection to be established. If not set, no DN check is
performed. This corresponds to the WebSphere MQ SSLPEERNAME administration
property.

MQ_SSLResetCount
This property is used by WebSphere MQ Base Java and WebSphere MQ JMS. It
specifies the total number of bytes sent and received before the secret key is
renegotiated. If not set, the key is not renegotiated. This corresponds to the
WebSphere MQ SSLRESETCOUNT administration property.

Optional Foreign Queue Configuration Properties
This section describes optional foreign queue properties that you can specify using the
options parameter of DBMS_MGWADM.REGISTER_FOREIGN_QUEUE. Each listing also
indicates which messaging system might use that property.

Appendix C
Working with Oracle Messaging Gateway

C-46

MQ_CharacterSet
This property is used by WebSphere MQ JMS. It is used only for outbound
propagation to a JMS queue or topic. It specifies the character set to be used to
encode text strings sent to the destination. It should be the integer value of the
character set (for example, 1208) rather than a descriptive string. The default value
used by Messaging Gateway is 1208 (UTF8).

MQ_JmsDurSubQueue
This property is used by WebSphere MQ JMS. It is a string representing the name of
the WebSphere MQ queue from which durable subscription messages are retrieved
by subscribers on this topic. It applies only to WebSphere MQ JMS topics. The
WebSphere MQ default queue is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

MQ_JmsTargetClient
This property is used by WebSphere MQ JMS. It is used only for outbound
propagation to a JMS queue or topic. Supported values are TRUE and FALSE. TRUE
indicates that WebSphere MQ should store the message as a JMS message. FALSE
indicates that WebSphere MQ should store the message in non-JMS format so that
non-JMS applications can access it. Default is TRUE.

MQ_openOptions
This property is used by WebSphere MQ Base Java. It specifies the value used for
the openOptions argument of the WebSphere MQ Base Java
MQQueueManager.accessQueue method. No value is required. But if one is given, then
the Messaging Gateway agent adds MQOO_OUTPUT to the specified value for an
enqueue (put) operation. MQOO_INPUT_SHARED is added for a dequeue (get) operation.
The default is MQOO_OUTPUT for an enqueue/put operation; MQOO_INPUT_SHARED for a
dequeue/get operation.

Optional Job Configuration Properties
This section describes optional propagation job properties that you can specify using
the options parameter of DBMS_MGWADM.CREATE_JOB and DBMS_MGWADM.ALTER_JOB.

AQ_MsgProperties
This property is used by TIB/Rendezvous. It specifies how Oracle Database AQ
message properties will be used during message propagation. Supported values are
TRUE and FALSE. The default value is FALSE.
For an outbound propagation job, if the value is TRUE (case insensitive), then the
Messaging Gateway agent will add a field for most Oracle Database AQ message
properties to the message propagated to the TIB/Rendezvous subject.
For an inbound propagation job, if the value is TRUE (case insensitive), then the
Messaging Gateway agent will search the source message for a field with a reserved
name, and if it exists, use its value to set the corresponding Oracle Database AQ
message property. A default value will be used if the field does not exist or does not
have an expected datatype.

JMS_DeliveryMode
This property is used by WebSphere MQ JMS and Oracle JMS. You can use this
property when the propagation destination is a JMS messaging system. It sets the
delivery mode of messages enqueued to the propagation destination queue by a JMS
MessageProducer. The default is PRESERVE_MSG. Supported values and their
associated delivery modes are:

Appendix C
Working with Oracle Messaging Gateway

C-47

• PERSISTENT (DeliveryMode.PERSISTENT)

• NON_PERSISTENT (DeliveryMode.NON_PERSISTENT)

• PRESERVE_MSG (delivery mode of the source JMS message is used)

JMS_NoLocal
This property is used by WebSphere MQ JMS and Oracle JMS. You can use it when
the propagation source is a JMS messaging system. It sets the noLocal parameter of
a JMS TopicSubscriber. TRUE indicates that messages that have been published to
this topic through the same Messaging Gateway link will not be propagated. The
default value FALSE indicates that such messages will be propagated from the topic.

MsgBatchSize
This property can be used by any supported messaging system. It specifies the
maximum number of messages, if available, to be propagated in one transaction. The
default is 30.

PreserveMessageID
This property is used by WebSphere MQ Base Java, WebSphere MQ JMS, TIB/
Rendezvous, and Oracle JMS. It specifies whether Messaging Gateway should
preserve the original message identifier when the message is propagated to the
destination messaging system. The exact details depend on the capabilities of the
messaging systems involved. Supported values are TRUE and FALSE. The default
value is FALSE.

RV_discardAmount
This property is used by TIB/Rendezvous. It specifies the discard amount of a queue.
It is meaningful only for an inbound propagation job. The default is 0.

RV_limitPolicy
This property is used by TIB/Rendezvous. It specifies the limit policy for resolving
overflow of a queue limit. It is meaningful only for an inbound propagation job. The
default is DISCARD_NONE. Supported values and their associated limit policies are:
DISCARD_NONE, DISCARD_FIRST, DISCARD_LAST and DISCARD_NEW.

• DISCARD_NONE (TibrvQueue.DISCARD_NONE)

• DISCARD_FIRST (TibrvQueue.DISCARD_FIRST)

• DISCARD_LAST (TibrvQueue.DISCARD_LAST)

• DISCARD_NEW (TibrvQueue.DISCARD_NEW)

RV_maxEvents
This property is used by TIB/Rendezvous. It specifies the maximum event limit of a
queue. It is meaningful only for an inbound propagation job. The default is 0.

Oracle Messaging Gateway Message Conversion
The following topics discuss how Oracle Messaging Gateway (MGW) converts
message formats from one messaging system to another. A conversion is generally
necessary when moving messages between Oracle Database Advanced Queuing and
another system, because different messaging systems have different message
formats. Java Message Service (JMS) messages are a special case. A JMS message
can be propagated only to a JMS destination, making conversion a simple process.

• Converting Oracle Messaging Gateway Non-JMS Messages

Appendix C
Oracle Messaging Gateway Message Conversion

C-48

• Message Conversion for WebSphere MQ

• Message Conversion for TIB/Rendezvous

• JMS Messages

Converting Oracle Messaging Gateway Non-JMS Messages
MGW converts the native message format of the source messaging system to the
native message format of the destination messaging system during propagation. MGW
uses canonical types and a model centering on Oracle Database Advanced Queuing
for the conversion.

Overview of the Non-JMS Message Conversion Process
When a message is propagated by MGW, the message is converted from the native
format of the source queue to the native format of the destination queue.

A native message usually contains a message header and a message body. The
header contains the fixed header fields that all messages in that messaging system
have, such as message properties in Oracle Database Advanced Queuing and the
fixed header in WebSphere MQ. The body contains message contents, such as the
Oracle Database Advanced Queuing payload, the WebSphere MQ message body, or
the entire TIB/Rendezvous message. MGW converts both message header and
message body components.

Figure C-2 shows how non-JMS messages are converted in two stages. A message is
first converted from the native format of the source queue to the MGW internal
message format, and then it is converted from the internal message format to the
native format of the destination queue.

Figure C-2 Non-JMS Message Conversion

AQ Property

AQ Payload

Advanced Queuing
Message

AQ Property

Canonical Type

Messaging Gateway
Message

Message

Non-Oracle
Message

Outbound
Propagation

Inbound
Propagation

The MGW agent uses an internal message format consisting of a header that is similar
to the Oracle Database Advanced Queuing message properties and a body that is a
representation of an MGW canonical type.

Appendix C
Oracle Messaging Gateway Message Conversion

C-49

Oracle Messaging Gateway Canonical Types
MGW defines canonical types to support message conversion between Oracle
Database Advanced Queuing and non-Oracle messaging systems. A canonical type is
a message type representation in the form of a PL/SQL Oracle type in Oracle
Database. The canonical types are RAW, SYS.MGW_BASIC_MSG_T, and
SYS.MGW_TIBRV_MSG_T.

WebSphere MQ propagation supports the canonical types SYS.MGW_BASIC_MSG_T and
RAW. TIB/Rendezvous propagation supports the canonical types SYS.MGW_TIBRV_MSG_T
and RAW.

See Also:

"DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types
Reference for Syntax and attribute information for SYS.MGW_BASIC_MSG_T
and SYS.MGW_TIBRV_MSG_T

Message Header Conversion
MGW provides default mappings between Oracle Database Advanced Queuing
message properties and non-Oracle message header fields that have a counterpart in
Oracle Database Advanced Queuing message properties with the same semantics.
Where MGW does not provide a mapping, the message header fields are set to a
default value, usually the default value defined by the messaging system.

Handling Arbitrary Payload Types Using Message Transformations
When converting to or from Oracle Database Advanced Queuing messages, the MGW
agent uses only its canonical types. Arbitrary payload types are supported, however,
with the assistance of user-defined Oracle Database Advanced Queuing message
transformations to convert between an Oracle Database Advanced Queuing queue
payload and an MGW canonical type.

For MGW to propagate messages from an Oracle Database Advanced Queuing queue
with an arbitrary ADT payload (outbound propagation), you must provide a mapping to
an MGW canonical ADT. The transformation is invoked when the MGW agent
dequeues messages from the Oracle Database Advanced Queuing queue. Similarly,
for MGW to propagate messages to an Oracle Database Advanced Queuing queue
with an arbitrary ADT payload (inbound propagation), you must provide a mapping
from an MGW canonical ADT. The transformation is invoked when the MGW agent
enqueues messages to the Oracle Database Advanced Queuing queue.

Appendix C
Oracle Messaging Gateway Message Conversion

C-50

Figure C-3 Oracle Database Advanced Queuing Message Conversion

Advanced Queuing
Message

Messaging Gateway
Message

Outbound
Propagation

Inbound
Propagation

AQ Property

AQ Payload

Transformation
Function

Transformation
Function

AQ Property

Canonical Type

The transformation is always executed in the context of the MGW agent, which means
that the MGW agent user (the user specified using DBMS_MGWADM.CREATE_AGENT or
DBMS_MGWADM.ALTER_AGENT) must have EXECUTE privileges on the transformation
function and the Oracle Database Advanced Queuing payload type. This can be
accomplished by granting the EXECUTE privilege to PUBLIC or by granting the EXECUTE
privilege directly to the MGW agent user.

To configure a MGW propagation job with a transformation:

1. Create the transformation function.

2. Grant EXECUTE to the MGW agent user or to PUBLIC on the function and the object
types it references.

3. Call DBMS_TRANSFORM.CREATE_TRANSFORMATION to register the transformation.

4. Call DBMS_MGWADM.CREATE_JOB to create a MGW propagation job using the
transformation, or DBMS_MGWADM.ALTER_JOB to alter an existing job.

Example C-31 Transformation Function Signature

FUNCTION trans_sampleadt_to_mgw_basic(in_msg IN mgwuser.sampleADT)
RETURN SYS.MGW_BASIC_MSG_T;

You can create a transformation using DBMS_TRANSFORM.CREATE_TRANSFORMATION, as
shown in Example C-32.

Example C-32 Creating a Transformation

BEGIN
 DBMS_TRANSFORM.CREATE_TRANSFORMATION(
 schema => 'mgwuser',
 name => 'sample_adt_to_mgw_basic',
 from_schema => 'mgwuser',
 from_type => 'sampleadt',
 to_schema => 'sys',
 to_type => 'MGW_BASIC_MSG_T',
 transformation => 'mgwuser.trans_sampleadt_to_mgw_basic(user_data)');
END;

Appendix C
Oracle Messaging Gateway Message Conversion

C-51

Example C-33 Registering a Transformation

BEGIN
 DBMS_MGWADM.CREATE_JOB(
 job_name => 'job_aq2mq',
 propagation_type => DBMS_MGWADM.OUTBOUND_PROPAGATION,
 source => 'mgwuser.srcq',
 destination => 'destq.mqlink',
 transformation => 'mgwuser.sample_adt_to_mgw_basic',
 exception_queue => 'mgwuser.excq');
END;

The value passed in the transformation parameter for these APIs must be the
registered transformation name and not the function name. For example,
trans_sampleadt_to_mgw_basic is a stored procedure representing a transformation
function with the signature shown in Example C-31.

Note:

All commands in the examples must be run as a user granted
MGW_ADMINISTRATOR_ROLE, except for the commands to create
transformations.

Once created, this transformation can be registered with MGW when creating a
propagation job. Example C-33 creates job job_aq2mq, for whom messages are
propagated from Oracle Database Advanced Queuing queue mgwuser.srcq to non-
Oracle messaging system queue destq@mqlink using transformation
mgwuser.sample_adt_to_mgw_basic.

An error that occurs while attempting a user-defined transformation is usually
considered a message conversion exception, and the message is moved to the
exception queue if it exists.

See Also:

"DBMS_MGWADM", "DBMS_MGWMSG", and "DBMS_TRANSFORM" in
Oracle Database PL/SQL Packages and Types Reference

Handling Logical Change Records
MGW provides facilities to propagate Logical Change Records (LCRs). Routines are
provided to help in creating transformations to handle the propagation of both row
LCRs and DDL LCRs stored in queues with payload type ANYDATA. An LCR is
propagated as an XML string stored in the appropriate message type.

Note:

For LCR propagation, you must load the XDB package.

Appendix C
Oracle Messaging Gateway Message Conversion

C-52

Because Oracle Streams uses ANYDATA queues to store LCRs, an ANYDATA queue is
the source for outbound propagation. The transformation must first convert the
ANYDATA object containing an LCR into an XMLType object using the MGW routine
DBMS_MGWMSG.LCR_TO_XML. If the ANYDATA object does not contain an LCR, then this
routine raises an error. The XML document string of the LCR is then extracted from
the XMLType and placed in the appropriate MGW canonical type
(SYS.MGW_BASIC_MSG_T or SYS.MGW_TIBRV_MSG_T).

Example C-34 illustrates a simplified transformation used for LCR outbound
propagation. The transformation converts an ANYDATA payload containing an LCR to a
SYS.MGW_TIBRV_MSG_T object. The string representing the LCR as an XML document is
put in a field named ORACLE_LCR.

For LCR inbound propagation, an MGW canonical type (SYS.MGW_BASIC_MSG_T or
SYS.MGW_TIBRV_MSG_T) is the transformation source type. A string in the format of an
XML document representing an LCR must be contained in the canonical type. The
transformation function must extract the string from the message, create an XMLType
object from it, and convert it to an ANYDATA object containing an LCR with the MGW
routine DBMS_MGWMSG.XML_TO_LCR. If the original XML document does not represent an
LCR, then this routine raises an error.

Example C-35 illustrates a simplified transformation used for LCR inbound
propagation. The transformation converts a SYS.MGW_TIBRV_MSG_T object with a field
containing an XML string representing an LCR to an ANYDATA object. The string
representing the LCR as an XML document is taken from a field named ORACLE_LCR.

See Also:

• "DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types
Reference

• ORACLE_HOME/mgw/samples/lcr for complete examples of LCR
transformations

Example C-34 Outbound LCR Transformation

create or replace function any2tibrv(adata in anydata)
return SYS.MGW_TIBRV_MSG_T is
 v_xml XMLType;
 v_text varchar2(2000);
 v_tibrv sys.mgw_tibrv_msg_t;
BEGIN
 v_xml := dbms_mgwmsg.lcr_to_xml(adata);
 -- assume the lcr is smaller than 2000 characters long.
 v_text := v_xml.getStringVal();
 v_tibrv := SYS.MGW_TIBRV_MSG_T.CONSTRUCT;
 v_tibrv.add_string('ORACLE_LCR', 0, v_text);
 return v_tibrv;
END any2tibrv;

Example C-35 Inbound LCR Transformation

create or replace function tibrv2any(tdata in sys.mgw_tibrv_msg_t)
return anydata is
 v_field sys.mgw_tibrv_field_t;

Appendix C
Oracle Messaging Gateway Message Conversion

C-53

 v_xml XMLType;
 v_text varchar2(2000);
 v_any anydata;
BEGIN
 v_field := tdata.get_field_by_name('ORACLE_LCR');
 -- type checking
 v_text := v_field.text_value;
 -- assume it is not null
 v_xml := XMLType.createXML(v_text);
 v_any := dbms_mgwmsg.xml_to_lcr(v_xml);
 return v_any;
END tibrv2any;

Message Conversion for WebSphere MQ
MGW converts between the MGW canonical types and the WebSphere MQ native
message format. WebSphere MQ native messages consist of a fixed message header
and a message body. The message body is treated as either a TEXT value or RAW
(bytes) value. The canonical types supported for WebSphere MQ propagation are
SYS.MGW_BASIC_MSG_T and RAW.

Figure C-4 Message Conversion for WebSphere MQ Using
MGW_BASIC_MSG_T

Messaging Gateway
Message

MQSeries
Message

Outbound
Propagation

Inbound
Propagation

AQ Property

Canonical Header

Canonical Body

Header

Body

Figure C-4 illustrates the message conversion performed by the MGW WebSphere
MQ driver when using the canonical type SYS.MGW_BASIC_MSG_T. For outbound
propagation, the driver maps the Oracle Database Advanced Queuing message
properties and canonical message to a WebSphere MQ message having a fixed
header and a message body. For inbound propagation, the driver maps a native
message to a set of Oracle Database Advanced Queuing message properties and a
canonical message. When the canonical type is RAW, the mappings are the same,
except no canonical headers exist.

Appendix C
Oracle Messaging Gateway Message Conversion

C-54

WebSphere MQ Message Header Mappings
When the MGW canonical type used in an outbound propagation job is RAW, no
WebSphere MQ header information is set from the RAW message body. Similarly, for
inbound propagation no WebSphere MQ header information is preserved in the RAW
message body. MGW canonical type SYS.MGW_BASIC_MSG_T, however, has a header
that can be used to specify WebSphere MQ header fields for outbound propagation,
and preserve WebSphere MQ header fields for inbound propagation.

This section describes the message properties supported for the WebSphere MQ
messaging system when using SYS.MGW_BASIC_MSG_T as the canonical type. Table C-8
defines the MGW {name, value} pairs used to describe the WebSphere MQ header
properties. The first column refers to valid string values for the
SYS.MGW_NAME_VALUE_T.NAME field in the SYS.MGW_BASIC_MSG_T header. The second
column refers to the SYS.MGW_NAME_VALUE_T.TYPE value corresponding to the name.
(Refer to "Notes on Table C-8" for explanations of the numbers in parentheses.)

For inbound propagation, the WebSphere MQ driver generates {name,value} pairs
based on the source message header and stores them in the header part of the
canonical message of the SYS.MGW_BASIC_MSG_T type. For outbound propagation, the
WebSphere MQ driver sets the message header and enqueue options from
{name,value} pairs for these properties stored in the header part of the
SYS.MGW_BASIC_MSG_T canonical message.

Table C-8 MGW Names for WebSphere MQ Header Values

MGW Name MGW Type WebSphere MQ Property
Name

Used For

MGW_MQ_accountingToken RAW_VALUE (size 32) accountingToken
Outbound (1), Inbound

MGW_MQ_applicationIdData TEXT_VALUE (size 32) applicationIdData
Outbound (1), Inbound

MGW_MQ_applicationOriginData TEXT_VALUE (size 4) applicationOriginData
Outbound (1), Inbound

MGW_MQ_backoutCount INTEGER_VALUE backoutCount
Inbound

MGW_MQ_characterSet INTEGER_VALUE characterSet
Outbound, Inbound

MGW_MQ_correlationId RAW_VALUE (size 24) correlationId
Outbound (1), Inbound

MGW_MQ_encoding INTEGER_VALUE encoding
Outbound, Inbound

MGW_MQ_expiry INTEGER_VALUE expiry
Outbound, Inbound

MGW_MQ_feedback INTEGER_VALUE feedback
Outbound, Inbound

MGW_MQ_format TEXT_VALUE (size 8) format
Outbound (1), Inbound

Appendix C
Oracle Messaging Gateway Message Conversion

C-55

Table C-8 (Cont.) MGW Names for WebSphere MQ Header Values

MGW Name MGW Type WebSphere MQ Property
Name

Used For

MGW_MQ_groupId RAW_VALUE (size 24) groupId
Outbound (1), Inbound

MGW_MQ_messageFlags INTEGER_VALUE messageFlags
Outbound, Inbound

MGW_MQ_messageId RAW_VALUE (size 24) messageId
Outbound, Inbound

MGW_MQ_messageSequenceNumber INTEGER_VALUE messageSequenceNumber
Outbound, Inbound

MGW_MQ_messageType INTEGER_VALUE messageType
Outbound, Inbound

MGW_MQ_offset INTEGER_VALUE offset
Outbound, Inbound

MGW_MQ_originalLength INTEGER_VALUE originalLength
Outbound, Inbound

MGW_MQ_persistence INTEGER_VALUE persistence
Inbound

MGW_MQ_priority INTEGER_VALUE priority
Outbound, Inbound

MGW_MQ_putApplicationName TEXT_VALUE (size 28) putApplicationName
Outbound (1), Inbound

MGW_MQ_putApplicationType INTEGER_VALUE putApplicationType
Outbound (1), Inbound

MGW_MQ_putDateTime DATE_VALUE putDateTime
Inbound

MGW_MQ_putMessageOptions INTEGER_VALUE putMessageOptions
Outbound (1) (2)

MGW_MQ_replyToQueueManagerName TEXT_VALUE (size 48) replyToQueueManagerName
Outbound, Inbound

MGW_MQ_replyToQueueName TEXT_VALUE (size 48) replyToQueueName
Outbound, Inbound

MGW_MQ_report INTEGER_VALUE report
Outbound (1), Inbound

MGW_MQ_userId TEXT_VALUE (size 12) userId
Outbound, Inbound

See Also:

"DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types
Reference

Appendix C
Oracle Messaging Gateway Message Conversion

C-56

Notes on Table C-8

1. This use is subject to WebSphere MQ restrictions. For example, if
MGW_MQ_accountingToken is set for an outgoing message, then WebSphere MQ
overrides its value unless MGW_MQ_putMessageOptions is set to the WebSphere
MQ constant MQPMD_SET_ALL_CONTEXT.

2. MGW_MQ_putMessageOptions is used as the putMessageOptions argument to the
WebSphere MQ Base Java Queue.put() method. It is not part of the WebSphere
MQ header information and is therefore not an actual message property.

The value for the openOptions argument of the WebSphere MQ Base Java
MQQueueManager.accessQueue method is specified when the WebSphere MQ
queue is registered using the DBMS_MGWADM.REGISTER_FOREIGN_QUEUE call.
Dependencies can exist between the two. For instance, for
MGW_MQ_putMessageOptions to include MQPMD_SET_ALL_CONTEXT, the
MQ_openMessageOptions queue option must include MQOO_SET_CONTEXT.

The MGW agent adds the value MQPMO_SYNCPOINT to any value that you can
specify.

MGW sets default values for two WebSphere MQ message header fields:
messageType defaults to MQMT_DATAGRAM and putMessageOptions defaults to
MQPMO_SYNCPOINT.

MGW provides two default mappings between Oracle Database Advanced Queuing
message properties and WebSphere MQ header fields.

One maps the Oracle Database Advanced Queuing message property expiration,
representing the time-to-live of the message at the time the message becomes
available in the queue, to the WebSphere MQ header field expiry, representing the
time-to-live of the message. For outbound propagation, the value used for expiry is
determined by subtracting the time the message was available in the queue from the
expiration, converted to tenths of a second. Oracle Database Advanced Queuing
value NEVER is mapped to MQEI_UNLIMITED. For inbound propagation, the value of
expiration is simply expiry converted to seconds. WebSphere MQ value
MQEI_UNLIMITED is mapped to NEVER.

The other default maps Oracle Database Advanced Queuing message property
priority with the WebSphere MQ header field priority. It is described in Table C-9.

Table C-9 Default Priority Mappings for Propagation

Propagation Type Message System Priority Values

Outbound Oracle Database
Advanced Queuing

0 1 2 3 4 5 6 7 8 9

Outbound WebSphere MQ 9 8 7 6 5 4 3 2 1 0

Inbound Oracle Database
Advanced Queuing

9 8 7 6 5 4 3 2 1 0

Inbound WebSphere MQ 0 1 2 3 4 5 6 7 8 9

Appendix C
Oracle Messaging Gateway Message Conversion

C-57

Note:

For outbound propagation, Oracle Database Advanced Queuing priority
values less than 0 are mapped to WebSphere MQ priority 9, and Oracle
Database Advanced Queuing priority values greater than 9 are mapped to
WebSphere MQ priority 0.

WebSphere MQ Outbound Propagation
If no message transformation is provided for outbound propagation, then the Oracle
Database Advanced Queuing source queue payload type must be either
SYS.MGW_BASIC_MSG_T or RAW. If a message transformation is specified, then the target
ADT of the transformation must be SYS.MGW_BASIC_MSG_T, but the source ADT can be
any ADT supported by Oracle Database Advanced Queuing.

If the Oracle Database Advanced Queuing queue payload is RAW, then the resulting
WebSphere MQ message has the message body set to the value of the RAW bytes
and, by default, the format field set to the value "MGW_Byte".

If the Oracle Database Advanced Queuing queue payload or transformation target
ADT is SYS.MGW_BASIC_MSG_T, then the message is mapped to a WebSphere MQ
native message as follows:

• The WebSphere MQ fixed header fields are based on the internal Oracle
Database Advanced Queuing message properties and the
SYS.MGW_BASIC_MSG_T.header attribute of the canonical message, as described in
"WebSphere MQ Message Header Mappings".

• If the canonical message has a TEXT body, then the WebSphere MQ format
header field is set to MQFMT_STRING unless overridden by the header property
MGW_MQ_format. The message body is treated as text.

• If the canonical message has a RAW body, then the WebSphere MQ format header
field is set to "MGW_Byte" unless overridden by the header property MGW_MQ_format.
The message body is treated as raw bytes.

• If the canonical message has both a TEXT and RAW body, then message conversion
fails.

• If the canonical message has neither a TEXT nor RAW body, then no message body
is set, and the WebSphere MQ format header field is MQFMT_NONE.

• If the canonical message has a TEXT body with both small and large values set
(SYS.MGW_BASIC_MSG_T.TEXT_BODY.small_value and
SYS.MGW_BASIC_MSG_T.TEXT_BODY.large_value not empty), then message
conversion fails.

• If the canonical message has a RAW body with both small and large values set
(SYS.MGW_BASIC_MSG_T.RAW_BODY.small_value and
SYS.MGW_BASIC_MSG_T.RAW_BODY.large_value not empty), then message
conversion fails.

If the job option PreserveMessageID is specified with a value of TRUE, then the
correlationId field of the WebSphere message header will be set to the AQ source
message identifier. The correlationId value will be a 24-byte value of the form

Appendix C
Oracle Messaging Gateway Message Conversion

C-58

"AQMSGID:"+AQ_msgid where AQ_msgid represents the 16-byte Database AQ message
identifier.

WebSphere MQ Inbound Propagation
If no message transformation is provided for inbound propagation, then the Oracle
Database Advanced Queuing destination queue payload type must be either
SYS.MGW_BASIC_MSG_T or RAW. If a message transformation is specified, then the
source ADT of the transformation must be SYS.MGW_BASIC_MSG_T, but the destination
ADT can be any ADT supported by Oracle Database Advanced Queuing.

If the Oracle Database Advanced Queuing queue payload is RAW and the incoming
WebSphere MQ message has a format of MQFMT_STRING, then message conversion
fails. Otherwise the message body is considered as raw bytes and enqueued directly
to the destination queue. If the number of bytes is greater than 32KB, then message
conversion fails. The actual limit is 32512 bytes rather than 32767 bytes.

If the Oracle Database Advanced Queuing queue payload or transformation source
ADT is SYS.MGW_BASIC_MSG_T, then the WebSphere MQ message is mapped to a
SYS.MGW_BASIC_MSG_T message as follows:

• Specific WebSphere MQ header fields are mapped to Oracle Database Advanced
Queuing message properties as previously described.

• The SYS.MGW_BASIC_MSG_T.header attribute of the canonical message is set to
{name, value} pairs based on the WebSphere MQ header fields, as described in
Table C-8. These values preserve the original content of the WebSphere MQ
message header.

• If the WebSphere MQ format header field is MQFMT_STRING, then the WebSphere
MQ message body is treated as text, and its value is mapped to
SYS.MGW_BASIC_MSG_T.text_body. For any other format value, the message body
is treated as raw bytes, and its value is mapped to
SYS.MGW_BASIC_MSG_T.raw_body.

See Also:

"WebSphere MQ Message Header Mappings"

Message Conversion for TIB/Rendezvous
MGW regards a TIB/Rendezvous message as a set of fields and supplementary
information. Figure C-5 shows how messages are converted between MGW and TIB/
Rendezvous.

Appendix C
Oracle Messaging Gateway Message Conversion

C-59

Figure C-5 Message Conversion for TIB/Rendezvous

Message

AQ Property

Messaging Gateway

Message

Fields

Supplementary�
Information

TIB / Rendezvous

Canonical�
Body

Outbound�
Propagation

Inbound�
Propagation

When a message conversion failure occurs, messages are moved to an exception
queue (if one has been provided), so that MGW can continue propagation of the
remaining messages in the source queue. In inbound propagation from TIB/
Rendezvous, an exception queue is a registered subject.

All TIB/Rendezvous wire format datatypes for TIB/Rendezvous fields are supported,
except for the datatypes with unsigned integers and the nested message type. User-
defined custom datatypes are not supported in this release. If a message contains
data of the unsupported datatypes, then a message conversion failure occurs when
the message is processed. A message conversion failure results in moving the failed
message from the source queue to the exception queue, if an exception queue is
provided.

Table C-10 shows the datatype mapping used when MGW converts between a native
TIB/Rendezvous message and the canonical ADT. For each supported TIB/
Rendezvous wire format type, it shows the Oracle type used to store the data and the
DBMS_MGWMSG constant that represents that type.

Table C-10 TIB/Rendezvous Datatype Mapping

TIB/Rendezvous
Wire Format

Oracle Type ADT Field Type

Bool NUMBER TIBRVMSG_BOOL

F32 NUMBER TIBRVMSG_F32

F64 NUMBER TIBRVMSG_F64

I8 NUMBER TIBRVMSG_I8

I16 NUMBER TIBRVMSG_I16

I32 NUMBER TIBRVMSG_I32

I64 NUMBER TIBRVMSG_I64

U8 not supported not supported

U16 not supported not supported

U32 not supported not supported

U64 not supported not supported

IPADDR32 VARCHAR2 TIBRVMSG_IPADDR32

Appendix C
Oracle Messaging Gateway Message Conversion

C-60

Table C-10 (Cont.) TIB/Rendezvous Datatype Mapping

TIB/Rendezvous
Wire Format

Oracle Type ADT Field Type

IPPORT16 NUMBER TIBRVMSG_IPPORT16

DATETIME DATE TIBRVMSG_DATETIME

F32ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_F32ARRAY

F64ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_F64ARRAY

I8ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I8ARRAY

I16ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I16ARRAY

I32ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I32ARRAY

I64ARRAY SYS.MGW_NUMBER_ARRAY_T TIBRVMSG_I64ARRAY

U8ARRAY not supported not supported

U16ARRAY not supported not supported

U32ARRAY not supported not supported

U64ARRAY not supported not supported

MSG not supported not supported

OPAQUE RAW or BLOB TIBRVMSG_OPAQUE

STRING VARCHAR2 or CLOB TIBRVMSG_STRING

XML RAW or BLOB TIBRVMSG_XML

For propagation between Oracle Database Advanced Queuing and TIB/Rendezvous,
MGW provides direct support for the Oracle Database Advanced Queuing payload
types RAW and SYS.MGW_TIBRV_MSG_T. To support any other Oracle Database
Advanced Queuing payload type, you must supply a transformation.

AQ Message Property Mapping for TIB/Rendezvous
This section describes the mapping between Oracle Database AQ message properties
and TIB/Rendezvous fields. This mapping is used to preserve Database AQ message
properties during outbound propagation, and set Database AQ message properties
during inbound propagation.

Table C-11 describes the Database AQ message properties supported using TIB/
Rendezvous fields. The first column indicates the DBMS_AQ.MESSAGE_PROPERTIES_T
field for the Database AQ message property. The second and third columns indicate
the name and datatype used for the TIB/Rendezvous field. The last column indicates if
the message property is supported for inbound and outbound propagation.

Table C-11 TIB/Rendezvous and MGW Names for Oracle Database Advanced Queuing Message
Properties

Oracle Database
Advanced Queuing
Message Property

MGW Name TIB/Rendezvous Wire
Format Datatype

Used For

priority MGW_AQ_priority TibrvMsg.I32 Outbound, Inbound

Appendix C
Oracle Messaging Gateway Message Conversion

C-61

Table C-11 (Cont.) TIB/Rendezvous and MGW Names for Oracle Database Advanced Queuing
Message Properties

Oracle Database
Advanced Queuing
Message Property

MGW Name TIB/Rendezvous Wire
Format Datatype

Used For

expiration MGW_AQ_expiration TibrvMsg.I32 Outbound, Inbound

delay MGW_AQ_delay TibrvMsg.I32 Outbound, Inbound

correlation MGW_AQ_correlation TibrvMsg.STRING Outbound, Inbound

exception_queue MGW_AQ_exception_queue TibrvMsg.STRING Outbound, Inbound

enqueue_time MGW_AQ_enqueue_time TibrvMsg.DATETIME Outbound

original_msgid MGW_AQ_original_msgid TibrvMsg.OPAQUE Outbound

msgid (1) MGW_AQ_messageID TibrvMsg.OPAQUE Outbound

Notes on Table C-11:

1. The msgid Database AQ property represents the Database AQ message identifier,
rather than a particular field of the DBMS_AQ.MESSAGE_PROPERTIES_T record.

TIB/Rendezvous Outbound Propagation
If no propagation transformation is provided for outbound propagation, then the Oracle
Database Advanced Queuing source queue payload type must be either
SYS.MGW_TIBRV_MSG_T or RAW. If a propagation transformation is specified, then the
target ADT of the transformation must be SYS.MGW_TIBRV_MSG_T, but the source ADT
can be any ADT supported by Oracle Database Advanced Queuing.

If the Oracle Database Advanced Queuing queue payload or transformation target
ADT is SYS.MGW_TIBRV_MSG_T, then:

• Every field in the source message is converted to a TIB/Rendezvous message
field of the resulting TIB/Rendezvous message.

• If the reply_subject attribute is not NULL, then the reply subject supplementary
information is set.

• The send_subject field is ignored.

If the Oracle Database Advanced Queuing queue payload is RAW, then:

• The resulting message contains a field named MGW_RAW_MSG with value
TibrvMsg.OPAQUE. The field ID is set to 0.

If the job option AQ_MsgProperties is specified with a value of TRUE, then the MGW
agent generates fields to preserve the Database AQ message properties in the TIB/
Rendezvous message according to Table C-11.

If the PreserveMessageID job option is specified with a value of TRUE, then the
Database AQ message identifier (msgid) is preserved in the TIB/Rendezvous message
according to Table C-11.

Appendix C
Oracle Messaging Gateway Message Conversion

C-62

TIB/Rendezvous Inbound Propagation
If no propagation transformation is provided for inbound propagation, then the Oracle
Database Advanced Queuing destination queue payload type must be either RAW or
SYS.MGW_TIBRV_MSG_T. If a propagation transformation is specified, then the target
ADT of the transformation can be any ADT supported by Oracle Database Advanced
Queuing, but the source ADT of the transformation must be SYS.MGW_TIBRV_MSG_T.

If the Oracle Database Advanced Queuing queue payload or transformation source
ADT is SYS.MGW_TIBRV_MSG_T, then:

• Every field in the source TIB/Rendezvous message is converted to a field of the
resulting message of the SYS.MGW_TIBRV_MSG_T type.

• The MGW agent extracts the send subject name from the source TIB/Rendezvous
message and sets the send_subject attribute in SYS.MGW_TIBRV_MSG_T. The send
subject name is usually the same as the subject name of the registered
propagation source queue, but it might be different when wildcards are used.

• The MGW agent extracts the reply subject name from the source TIB/Rendezvous
message, if it exists, and sets the reply_subject attribute in
SYS.MGW_TIBRV_MSG_T.

• If the source TIB/Rendezvous message contains more than three large text fields
(greater than 4000 bytes of text) or more than three large bytes fields (greater than
2000 bytes), then message conversion fails.

If the Oracle Database Advanced Queuing queue payload is RAW, then:

• The Oracle Database Advanced Queuing message payload is the field data if the
source TIB/Rendezvous message has a field named MGW_RAW_MSG of type
TibrvMsg.OPAQUE or TibrvMsg.XML. The field name and ID are ignored. If no such
field exists or has an unexpected type, then a message conversion failure occurs.

• A message conversion failure occurs if the RAW data size is greater than 32KB.
This is due to a restriction on the data size allowed for a bind variable. Also, the
actual limit is 32512 rather than 32767.

If the job option AQ_MsgProperties is specified with a value of TRUE, then the MGW
agent searches for fields in the original TIB/Rendezvous messages with reserved field
names. Table C-11 shows the field name strings and the corresponding values used in
the TIB/Rendezvous message.

If such fields exist, then the MGW agent uses the field value to set the corresponding
Oracle Database Advanced Queuing message properties, instead of using the default
values. If there is more than one such field with the same name, then only the first one
is used. Such fields are removed from the resulting payload only if the Oracle
Database Advanced Queuing queue payload is RAW. If a field with the reserved name
does not have the expected datatype, then it causes a message conversion failure.

See Also:

"DBMS_MGWMSG" in Oracle Database PL/SQL Packages and Types
Reference for the value datatypes

Appendix C
Oracle Messaging Gateway Message Conversion

C-63

JMS Messages
MGW propagates only JMS messages between Oracle JMS and non-Oracle JMS
systems, without changing the message content. Figure C-6 shows JMS message
propagation.

MGW supports only the standard JMS message types. It does not support:

• JMS provider extensions, because any such extensions would not be recognized
by the destination JMS system. An attempt to propagate any such non-JMS
message results in an error.

• User transformations for JMS propagation.

• Propagation of Logical Change Records (LCRs).

Figure C-6 JMS Message Propagation

Message

Properties

Header

Oracle JMS

Body

Outbound�
Propagation

Inbound�
Propagation

Message

Properties

Header

Messaging Gateway

Body

Message

Properties

Header

Third-Party JMS

Body

For the purposes of this discussion, a JMS message is a Java object of a class that
implements one of the five JMS message interfaces. Table C-12 shows the JMS
message interfaces and the corresponding Oracle JMS ADTs. The table also shows
the interface, javax.jms.Message, which can be any one of the five specific types, and
the corresponding generic Oracle JMS type SYS.AQ$_JMS_MESSAGE.

Table C-12 Oracle JMS Message Conversion

JMS Message ADT

javax.jms.TextMessage SYS.AQ$_JMS_TEXT_MESSAGE

javax.jms.BytesMessage SYS.AQ$_JMS_BYTES_MESSAGE

javax.jms.MapMessage SYS.AQ$_JMS_MAP_MESSAGE

javax.jms.StreamMessage SYS.AQ$_JMS_STREAM_MESSAGE

javax.jms.ObjectMessage SYS.AQ$_JMS_OBJECT_MESSAGE

javax.jms.Message SYS.AQ$_JMS_MESSAGE

When a propagation job is activated, the MGW agent checks the Oracle Database
Advanced Queuing payload type for the propagation source or destination. If the type
is one of those listed in Table C-12 or ANYDATA, then message propagation is
attempted. Otherwise an exception is logged and propagation is not attempted.

Appendix C
Oracle Messaging Gateway Message Conversion

C-64

The MGW agent may add a JMS String property named
OracleMGW_OriginalMessageID to the JMS message sent to the destination queue in
order to preserve the original message identifier of the source message. This property
is added if the PreserveMessageID job option is specified with a value of TRUE. It will
also be added for any message moved to an exception queue upon a message
conversion failure.

JMS Outbound Propagation
When dequeuing a message from an Oracle Database Advanced Queuing queue,
Oracle JMS converts instances of the ADTs shown in Table C-12 into JMS messages.
In addition it can convert instances of ANYDATA into JMS messages, depending on the
content.

A queue with payload type ANYDATA can hold messages that do not map to a JMS
message. MGW fails to dequeue such a message. An error is logged and propagation
of messages from that queue does not continue until the message is removed.

JMS Inbound Propagation
Every message successfully dequeued using WebSphere MQ JMS is a JMS
message. No message conversion is necessary prior to enqueuing using Oracle JMS.
However, if the payload ADT of the propagation destination does not accept the type
of the inbound message, then an exception is logged and an attempt is made to place
the message in an exception queue. An example of such type mismatches is a JMS
TextMessage and a queue payload type SYS.AQ$_JMS_BYTES_MESSAGE.

Monitoring Oracle Messaging Gateway
The following topics discuss means of monitoring the Oracle Messaging Gateway
(MGW) agent, abnormal situations you may experience, several sources of information
about Messaging Gateway errors and exceptions, and suggested remedies.

• Oracle Messaging Gateway Log Files

• Monitoring the Oracle Messaging Gateway Agent Status

• Monitoring Oracle Messaging Gateway Propagation

• Oracle Messaging Gateway Agent Error Messages

Oracle Messaging Gateway Log Files
Messaging Gateway agent status, history, and errors are recorded in Messaging
Gateway log files. A different log file is created each time the Messaging Gateway
agent is started. You should monitor the log file because any errors, configuration
information read at startup time, or dynamic configuration information is written to the
log.

The format of the log file name for the default agent is:

oramgw-hostname-timestamp-processid.log

The format of the log file name for a named agent is:

oramgw-AGENTNAME-hostname-timestamp-processid.log

Appendix C
Monitoring Oracle Messaging Gateway

C-65

By default the Messaging Gateway log file is in ORACLE_HOME/mgw/log. This location
can overridden by the parameter log_directory in the Messaging Gateway
initialization file used by the agent, usually mgw.ora.

This section contains these topics:

• Sample Oracle Messaging Gateway Log File

• Interpreting Exception Messages in an Oracle Messaging Gateway Log File

Sample Oracle Messaging Gateway Log File
The following sample log file shows the Messaging Gateway agent starting. The
sample log file shows that a messaging link, a registered foreign queue, a propagation
job, and a schedule associated with the job have been added. The log file shows that
the propagation job has been activated. The last line indicates that the Messaging
Gateway is up and running and ready to propagate messages.

Example C-36 Sample Messaging Gateway Log File

>>2007-01-16 15:04:49 MGW C-Bootstrap 0 LOG process-id=11080
Bootstrap program starting
>>2007-01-16 15:04:50 MGW C-Bootstrap 0 LOG process-id=11080
JVM created -- heapsize = 64
>>2007-01-16 15:04:53 MGW Engine 0 200 main
MGW Agent version: 11.1.0.0
>>2007-01-16 15:04:53 MGW AdminMgr 0 LOG main
Connecting to database using connect string = jdbc:oracle:oci:@INST1
>>2007-01-16 15:05:00 MGW Engine 0 200 main
MGW Component version: 11.1.0.3.0
>>2007-01-16 15:05:01 MGW Engine 0 200 main
MGW agent name: DEFAULT_AGENT, MGW job instance id:
273006EC6ED255F1E040578C6D021A8C, MGW database instance: 1
>>2007-01-16 15:05:09 MGW Engine 0 1 main
Agent is initializing.
>>2007-01-16 15:05:09 MGW Engine 0 23 main
The number of worker threads is set to 1.
>>2007-01-16 15:05:09 MGW Engine 0 22 main
The default polling interval is set to 5000ms.
>>2007-01-16 15:05:09 MGW MQD 0 LOG main
Creating MQSeries messaging link:
link : MQLINK
link type : Base Java interface
queue manager : my.queue.manager
channel : channel1
host : my.machine
port : 1414
user :
ccdt url :
ssl cipherSuite :
connections : 1
inbound logQ : logq1
outbound logQ : logq2
>>2007-01-16 15:05:09 MGW Engine 0 4 main
Link MQLINK has been added.
>>2007-01-16 15:05:09 MGW Engine 0 7 main
Queue DESTQ@MQLINK has been registered; provider queue: MGWUSER.MYQUEUE.
>>2007-01-16 15:05:09 MGW Engine 0 9 main
Propagation Schedule JOB_AQ2MQ (MGWUSER.MGW_BASIC_SRC --> DESTQ@MQLINK) has been
added.
>>2007-01-16 15:05:09 MGW AQN 0 LOG main

Appendix C
Monitoring Oracle Messaging Gateway

C-66

Creating AQ messaging link:
link : oracleMgwAq
link type : native
database : INST1
user : MGWAGENT
connection type : JDBC OCI
connections : 1
inbound logQ : SYS.MGW_RECV_LOG
outbound logQ : SYS.MGW_SEND_LOG
>>2007-01-16 15:05:10 MGW Engine 0 19 main
MGW propagation job JOB_AQ2MQ has been activated.
>>2007-01-16 15:05:10 MGW Engine 0 14 main
MGW propagation job JOB_AQ2MQ (MGWUSER.MGW_BASIC_SRC --> DESTQ@MQLINK) has been
added.
>>2007-01-16 15:05:11 MGW Engine 0 2 main
Agent is up and running.

Interpreting Exception Messages in an Oracle Messaging Gateway Log File
Exception messages logged to the Messaging Gateway log file may include one or
more linked exceptions, identified by [Linked-exception] in the log file. These are
often the most useful means of determining the cause of a problem. For instance, a
linked exception could be a java.sql.SQLException, possibly including an Oracle
error message, a PL/SQL stack trace, or both.

The following example shows entries from a Messaging Gateway log file when an
invalid value (bad_service_name) was specified for the database parameter of
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. This resulted in the
Messaging Gateway agent being unable to establish database connections.

Example C-37 Sample Exception Message

>>2003-07-22 15:27:26 MGW AdminMgr 0 LOG main
Connecting to database using connect string = jdbc:oracle:oci8:@BAD_SERVICE_NAME
>>2003-07-22 15:27:29 MGW Engine 0 EXCEPTION main
oracle.mgw.admin.MgwAdminException: [241] Failed to connect to database. SQL
error: 12154, connect string: jdbc:oracle:oci8:@BAD_SERVICE_NAME
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: ORA-12154: TNS:could not resolve the connect identifier
specified
[…Java stack trace here…]
>>2003-07-22 15:27:29 MGW Engine 0 25 main
Agent is shutting down.

Monitoring the Oracle Messaging Gateway Agent Status
This section contains these topics:

• MGW_GATEWAY View

• Oracle Messaging Gateway Irrecoverable Error Messages

• Other Oracle Messaging Gateway Error Conditions

MGW_GATEWAY View
The MGW_GATEWAY view monitors the progress of the Messaging Gateway agent.
Among the fields that can be used to monitor the agent are:

Appendix C
Monitoring Oracle Messaging Gateway

C-67

• AGENT_NAME

• AGENT_INSTANCE

• AGENT_PING

• AGENT_STATUS

• LAST_ERROR_MSG

• SERVICE

The AGENT_STATUS field shows the status of the agent. This column has the following
possible values:

NOT_STARTED
Indicates that the agent is neither running nor scheduled to be run.

START_SCHEDULED
Indicates that the agent job is waiting to be run by the job scheduler.

STARTING
Indicates that the agent is in the process of starting.

INITIALIZING
Indicates that the agent has started and is reading configuration data.

RUNNING
Indicates that the agent is ready to propagate any available messages or process
dynamic configuration changes.

SHUTTING_DOWN
Indicates that the agent is in the process of shutting down.

BROKEN
Indicates that, while attempting to start an agent process, Messaging Gateway has
detected another agent already running. This situation should never occur under
normal usage.

Querying the AGENT_PING field pings the Messaging Gateway agent. Its value is either
REACHABLE or UNREACHABLE. An agent with status of RUNNING should almost always be
REACHABLE.

The columns LAST_ERROR_MSG, LAST_ERROR_DATE, and LAST_ERROR_TIME give valuable
information if an error in starting or running the Messaging Gateway agent occurs.
AGENT_INSTANCE indicates the Oracle Database instance on which the Messaging
Gateway instance was started.

See Also:

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types
Reference for more information on the MGW_GATEWAY view

Appendix C
Monitoring Oracle Messaging Gateway

C-68

Oracle Messaging Gateway Irrecoverable Error Messages
A status of NOT_STARTED in the AGENT_STATUS field of the MGW_GATEWAY view indicates
that the Messaging Gateway agent is not running. If the AGENT_STATUS is NOT_STARTED
and the LAST_ERROR_MSG field is not NULL, then the Messaging Gateway agent has
encountered an irrecoverable error while starting or running. Check if a Messaging
Gateway log file has been generated and whether it indicates any errors. If a log file is
not present, then the Messaging Gateway agent process was probably not started.

This section describes the causes and solutions for some error messages that may
appear in the LAST_ERROR_MSG field of the MGW_GATEWAY view. Unless indicated
otherwise, the Messaging Gateway agent will not attempt to restart itself when one of
these errors occurs.

ORA-01089: Immediate shutdown in progress - no operations are permitted

The Messaging Gateway agent has shut down because the SHUTDOWN IMMEDIATE
command was used to shut down a running Oracle Database instance on which the
agent was running. The agent will restart itself on the next available database instance
on which it is set up to run.

ORA-06520: PL/SQL: Error loading external library

The Messaging Gateway agent process was unable to start because the shared library
was not loaded. This may be because the Java shared library was not in the library
path. Verify that the library path in listener.ora has been set correctly.

ORA-28575: Unable to open RPC connection to external procedure agent

The Messaging Gateway agent was unable to start. It will attempt to start again
automatically.

Possible causes include:

• The listener is not running. If you have modified listener.ora, then you must stop
and restart the listener before the changes will take effect.

• Values in tnsnames.ora, listener.ora, or both are not correct.

In particular, tnsnames.ora must have a net service name entry of MGW_AGENT. This
entry is not needed for Messaging Gateway on Windows. The SID value specified
for CONNECT_DATA of the MGW_AGENT net service name in tnsnames.ora must match
the SID_NAME value of the SID_DESC entry in listener.ora. If the MGW_AGENT net
service name is set up for an Inter-process Communication (IPC) connection, then
the KEY values for ADDRESS in tnsnames.ora and listener.ora must match. If the
names.default_domain parameter for sqlnet.ora has been used to set a default
domain, then that domain must be appended to the MGW_AGENT net service name in
tnsnames.ora.

ORA-28576: Lost RPC connection to external procedure agent

The Messaging Gateway agent process ended prematurely. This may be because the
process was stopped by an outside entity or because an internal error caused a
malfunction. The agent will attempt to start again automatically. Check the Messaging
Gateway log file to determine if further information is available. If the problem persists,
then contact Oracle Support Services for assistance.

Appendix C
Monitoring Oracle Messaging Gateway

C-69

ORA-32830: Result code -2 returned by Messaging Gateway agent

An error occurred when the Messaging Gateway agent tried to read its initialization
file, usually mgw.ora. Verify that the file is readable.

ORA-32830: Result code -3 returned by Messaging Gateway agent

An error occurred creating the Messaging Gateway log file. Verify that the log directory
can be written to. The default location is ORACLE_HOME/mgw/log.

ORA-32830: Result code -8 returned by Messaging Gateway agent

An error occurred starting the Java Virtual Machine (JVM). Verify that:

• You are using the correct Java version

• Your operating system version and patch level are sufficient for the JDK version

• You are using a reasonable value for the JVM heap size

The heap size is specified by the max_memory parameter of
DBMS_MGWADM.ALTER_AGENT

• On Windows platforms, verify the MGW_PRE_PATH set in mgw.ora contains the path
to the correct JVM library (jvm.dll).

ORA-32830: Result code -12 returned by Messaging Gateway agent

An error occurred writing to the Messaging Gateway log file. Check the free disk space
or any other issues that might result in file I/O problems.

ORA-32830: Result code -17 returned by Messaging Gateway agent

The JVM was successfully created but an error occurred trying to call the MGW Java
agent program. Verify that the CLASSPATH set in mgw.ora is correct.

ORA-32830: Result code -19 returned by Messaging Gateway agent

The Messaging Gateway agent was configured to use a particular initialization file but
that file does not exist. The INITFILE field of the MGW_GATEWAY view shows the full
pathname of the file specified by the administrator. Either create that initialization file,
or use DBMS_MGWADM.ALTER_AGENT to set INITFILE to another file or NULL to use the
default initialization file.

ORA-32830: Result code -100 returned by Messaging Gateway agent

The Messaging Gateway agent JVM encountered a runtime exception or error on
startup before it could write to the log file.

ORA-32830: Result code -101 returned by Messaging Gateway agent

An irrecoverable error caused the Messaging Gateway agent to shut down. Check the
Messaging Gateway log file for further information. Verify that the values specified in
mgw.ora are correct. Incorrect values can cause the Messaging Gateway agent to
terminate due to unusual error conditions.

Appendix C
Monitoring Oracle Messaging Gateway

C-70

ORA-32830: Result code -102 returned by Messaging Gateway agent

The Messaging Gateway agent shut down because the version of file
ORACLE_HOME/mgw/jlib/mgw.jar does not match the version of the Messaging
Gateway PL/SQL packages. Verify that all Messaging Gateway components are from
the same release.

ORA-32830: Result code -103 returned by Messaging Gateway agent

The Messaging Gateway agent shut down because the database instance on which it
was running was shutting down. The agent should restart automatically, either on
another instance if set up to do so, or when the instance that shut down is restarted.

ORA-32830: Result code -104 returned by Messaging Gateway agent

See previous error.

ORA-32830: Result code -105 returned by Messaging Gateway agent

The Messaging Gateway agent detected that it was running when it should not be.
This should not happen. If it does, AGENT_STATUS will be BROKEN and the agent will shut
down automatically. If you encounter this error:

• Terminate any Messaging Gateway agent process that may still be running. The
process is usually named extprocmgwextproc.

• Run DBMS_MGWADM.CLEANUP_GATEWAY(DBMS_MGWADM.CLEAN_STARTUP_STATE).

• Start the Messaging Gateway agent using DBMS_MGWADM.STARTUP.

ORA-32830: Result code -106 returned by Messaging Gateway agent

See previous error.

See Also:

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types
Reference

Other Oracle Messaging Gateway Error Conditions
This section discusses possible causes for AGENT_STATUS remaining START_SCHEDULED
in MGW_GATEWAY view for an extended period.

Database Service Not Started

Messaging Gateway uses an Oracle Scheduler job to start the Messaging Gateway
agent. Oracle Scheduler allows you to specify a database service under which a job
should be run (service affinity). Messaging Gateway allows an administrator to
configure the Messaging Gateway agent with a database service that will be used to
configure the Scheduler job class associated with that agent.

When you shutdown a database Oracle stops all services to that database. You may
need to manually restart the services when you start the database. If a Scheduler job
is associated with a service then the job will not run until the service is started. If

Appendix C
Monitoring Oracle Messaging Gateway

C-71

AGENT_STATUS for a Messaging Gateway agent remains START_SCHEDULED for an
extended period that might indicate that the database service is disabled or no
database instances associated with the service are running. Use the MGW_GATEWAY
view, Oracle Scheduler views, and service views to determine how the agent was
configured and the current state of the Scheduler job and database service.

Note:

Oracle Messaging Gateway Agent Scheduler Job for information about
Oracle Scheduler objects used by Messaging Gateway.

Too Few Job Queue Processes

Messaging Gateway uses Oracle Scheduler to start the Messaging Gateway external
process. When AGENT_STATUS is START_SCHEDULED, the Messaging Gateway agent
Scheduler job is waiting to be run by the Scheduler. The Messaging Gateway job will
not run until there is an available job process. Messaging Gateway holds its Scheduler
job process for the lifetime of the Messaging Gateway agent session. If multiple
Messaging Gateway agents have been started, each agent uses its own Scheduler job
and require its own job process.

If the value of the database initialization parameter JOB_QUEUE_PROCESSES is zero, then
no Oracle Scheduler jobs will run. If the value is non-zero, it effectively becomes the
maximum number of Scheduler jobs and job queue jobs than can concurrently run.

If Messaging Gateway status remains START_SCHEDULED for an extended period of
time, then it may indicate that the database has been started with a value for
JOB_QUEUE_PROCESSES that is zero or is too low and that all job slaves are busy. Verify
that the value is non-zero and that the database instance has been started with
enough job queue processes so that one is available for each Messaging Gateway
agent.

Scheduler Job Broken or Disabled

The Messaging Gateway agent status will remain START_SCHEDULED if the Oracle
Scheduler job associated with a Messaging Gateway agent has become disabled or
broken for some reason. To determine if this is the case, use the DBA_SCHEDULER_JOBS
view to look at STATE field for the agent's Scheduler job. Normally the Scheduler job
state will be SCHEDULED when the Messaging Gateway agent's Scheduler job is waiting
to be run, or RUNNING when the Messaging Gateway agent is running. The agent's
Scheduler job should not exist if the Messaging Gateway agent status is NOT_STARTED.

Check other Scheduler views, such as DBA_SCHEDULER_JOB_RUN_DETAILS, for
additional information about the Messaging Gateway Scheduler jobs. Also check the
MGW_GATEWAY view and the Messaging Gateway log file for any error messages that
may indicate a problem.

Note:

Oracle Messaging Gateway Agent Scheduler Job for information about
Oracle Scheduler objects used by Messaging Gateway

Appendix C
Monitoring Oracle Messaging Gateway

C-72

Oracle Real Application Clusters (Oracle RAC) Environment

If Messaging Gateway is being used in an Oracle RAC environment and the agent has
been configured with a database service but no database instances are running that
have the service enabled, then the Messaging Gateway AGENT_STATUS will remain
START_SCHEDULED until the service is started on a running database instance.

Monitoring Oracle Messaging Gateway Propagation
Messaging Gateway propagation can be monitored using the MGW_JOBS view and the
Messaging Gateway log file. The view provides information on propagated messages
and errors that may have occurred during propagation attempts. The log file can be
used to determine the cause of the errors.

Besides showing configuration information, the MGW_JOBS view also has dynamic
information that can be used to monitor message propagation. Applicable fields
include STATUS, ENABLED, PROPAGATED_MSGS, EXCEPTIONQ_MSGS, FAILURES,
LAST_ERROR_MSG, LAST_ERROR_DATE, and LAST_ERROR_TIME.

The STATUS field indicates current status of the job. READY means that the job is ready
for propagation (but only if the ENABLED field is TRUE). RETRY means that a propagation
failure occurred but that propagation will be retried. FAILED means that the agent has
stopped propagation for the job due to an unrecoverable error or the maximum
number of consecutive propagation failures has been reached. DELETE_PENDING
means job removal is pending due to DBMS_MGWADM.REMOVE_JOB being called but certain
cleanup tasks pertaining to the job are still outstanding. SUBSCRIBER_DELETE_PENDING
means that DBMS_MGWADM.REMOVE_SUBSCRIBER has been called on an old style
propagation job but certain cleanup tasks pertaining to the job are still outstanding.

The ENABLED field indicates whether the propagation job is currently enabled. TRUE
indicates the job is enabled while FALSE indicates the job is disabled. No propagation
will occur unless the job is enabled.

The PROPAGATED_MSGS field of the MGW_JOBS view indicates how many messages have
been successfully propagated. This field is reset to zero when the Messaging Gateway
agent is started.

If a Messaging Gateway propagation job has been configured with an exception
queue, then the Messaging Gateway agent will move messages to that exception
queue the first time the Messaging Gateway agent encounters a propagation failure
caused by a message conversion failure. A message conversion failure is indicated by
oracle.mgw.common.MessageException in the Messaging Gateway log file. The
EXCEPTIONQ_MSGS field indicates how many messages have been moved to the
exception queue. This field is reset to zero when the Messaging Gateway agent is
started.

If an error occurs during message propagation for a propagation job, a count is
incremented in the FAILURES field. This field indicates the number of failures
encountered since the last successful propagation of messages. Each time a failure
occurs, an error message and the time it occurred will be shown by LAST_ERROR_MSG,
LAST_ERROR_DATE, and LAST_ERROR_TIME. When the number of failures reaches
sixteen, Messaging Gateway halts propagation attempts for this propagation job. To
resume propagation attempts you must call DBMS_MGWADM.RESET_JOB for the
propagation job.

Appendix C
Monitoring Oracle Messaging Gateway

C-73

If an error occurs, then examine the Messaging Gateway log file for further
information.

See Also:

"DBMS_MGWADM" in Oracle Database PL/SQL Packages and Types
Reference

Oracle Messaging Gateway Agent Error Messages
This section lists some of the most commonly occurring errors that are shown in the
LAST_ERROR_MSG column of the MGW_JOBS view and logged to the Messaging Gateway
agent log file. Also shown are some errors that require special action. When you notice
that a failure has occurred, look at the linked exceptions in the log file to determine the
root cause of the problem.

Two primary types of errors are logged to the Messaging Gateway agent log file:

• oracle.mgw.common.MessageException

This error type is logged when a message conversion failure occurs. The
Messaging Gateway agent probably cannot propagate the message causing the
failure, and the propagation job will eventually be stopped.

• oracle.mgw.common.GatewayException

This error type is logged when some failure other than message conversion
occurs. Depending on the cause, the problem may fix itself or require user action.

[221] Failed to access <messaging_system> queue: <queue>

An error occurred while trying to access either an Oracle Database Advanced Queuing
queue or a non-Oracle queue. Check the linked exception error code and message in
the log file.

[241] Failed to connect to database. SQL error: <error>, connect string:
<connect_string>

This is probably caused by incorrect MGW agent connection information specified for
DBMS_MGWADM.CREATE_AGENT or DBMS_MGWADM.ALTER_AGENT. Either the Messaging
Gateway agent user or password is incorrect or the database specifier (database
parameter) is incorrect. Verify that the connection information is correct for the
connection type used by the agent, JDBC OCI or JDBC Thin.

If the database parameter is NULL, then check the Messaging Gateway log file for the
following Oracle linked errors:

ORA-01034: ORACLE not available
ORA-27101: shared memory realm does not exist

These two errors together indicate that the Messaging Gateway agent is attempting to
connect to the database using a local IPC connection, but the ORACLE_SID value is not
correct.

A local connection is used when the database parameter is set to NULL. If a local
connection is desired, the correct ORACLE_SID value must be set in the Messaging

Appendix C
Monitoring Oracle Messaging Gateway

C-74

Gateway agent process. This can be done by adding the following line to the MGW
initialization file, usually mgw.ora:

set ORACLE_SID = sid_value

ORACLE_SID need not be set in the MGW initialization file if the database parameter is
not NULL.

If setting ORACLE_SID in the MGW initialization file does not work, then the database
parameter must be set to a value that is not NULL.

If the JDBC Thin connection is used, then the database parameter must be not NULL. If
the JDBC Thin connection is used and the database parameter is a TNSNames alias,
make sure that the oracle.net.tns_names Java property is set in the MGW initialization
file. The property can be set by adding the following line to the MGW initialization file:

setJavaProp oracle.net.tns_admin=<directory containing tnsnames.ora>

Note:

"oracle.net.tns_admin" for more information

[415] Missing messages from source queue of job <job_name>

Possible causes include:

• The agent partially processed persistent messages that were dequeued by
someone other than the Messaging Gateway agent.

• The propagation source queue was purged or re-created.

• A message was moved to the Oracle Database Advanced Queuing exception
queue.

If this error occurs, then call procedure CLEANUP_GATEWAY in the DBMS_MGWADM package:

DBMS_MGWADM.CLEANUP_GATEWAY (
 action => DBMS_MGWADM.RESET_SUB_MISSING_MESSAGE,
 sarg => <job_name>);

The call takes effect only if the propagation job has encountered the missing message
problem and the agent is running. The agent treats the missing messages as
nonpersistent messages and continues processing the propagation job.

See Also:

"Propagation Job Overview" for more information on Messaging Gateway
exception queues

[416] Missing log records in receiving log queue for job <job_name>

Possible causes include:

• Log records were dequeued from the log queues by someone other than the
Messaging Gateway agent.

Appendix C
Monitoring Oracle Messaging Gateway

C-75

• The log queues were purged or re-created.

If this error occurs, then call procedure CLEANUP_GATEWAY in the DBMS_MGWADM package:

DBMS_MGWADM.CLEANUP_GATEWAY (
 action => DBMS_MGWADM.RESET_SUB_MISSING_LOG_REC,
 sarg => <job_name>);

The call takes effect only if the propagation job has encountered the missing log
records problem and the agent is running.

Note:

Calling procedure DBMS_MGWADM.CLEANUP_GATEWAY may result in duplicated
messages if the missing messages have already been propagated to the
destination queue. Users should check the source and destination queues
for any messages that exist in both places. If such messages exist, then they
should be removed from either the source or destination queue before calling
this procedure.

[417] Missing log records in sending log queue for job <job_name>

See previous error.

[421] WARNING: Unable to get connections to recover job <job_name>

This message is a warning message indicating that the Messaging Gateway agent
failed to get a connection to recover the propagation job, because other propagation
jobs are using them all. The agent will keep trying to get a connection until it succeeds.

If this message is repeated many times for a WebSphere MQ link, then increase the
maximum number of connections used by the Messaging Gateway link associated
with the propagation job.

See Also:

"Altering a Messaging System Link"

[434] Failed to access queue <queue>; provider queue <queue>

This message indicates that a messaging system native queue cannot be accessed.
The queue may have been registered by DBMS_MGWADM.REGISTER_FOREIGN_QUEUE, or it
may be an Oracle Database Advanced Queuing queue. The linked exceptions should
give more information.

Possible causes include:

• The foreign queue was registered incorrectly, or the Messaging Gateway link was
configured incorrectly.

Verify configuration information. If possible, use the same configuration
information to run a sample application of the non-Oracle messaging system.

• The non-Oracle messaging system is not accessible.

Appendix C
Monitoring Oracle Messaging Gateway

C-76

Check that the non-Oracle messaging system is running and can be accessed
using the information supplied in the Messaging Gateway link.

• The Oracle Database Advanced Queuing queue does not exist. Perhaps the
queue was removed after the Messaging Gateway propagation job was created.

Check that the Oracle Database Advanced Queuing queue still exists.

[436] LOW MEMORY WARNING: total memory = < >, free_mem = < >

The Messaging Gateway agent JVM is running low on memory. Java garbage
collection will be invoked, but this may represent a JVM heap size that is too small.
Use the max_memory parameter of DBMS_MGWADM.ALTER_AGENT to increase the JVM
heap size. If the Messaging Gateway agent is running, then it must be restarted for
this change to take effect.

[703] Failed to retrieve information for transformation <transformation_id>

The Messaging Gateway agent could not obtain all the information it needs about the
transformation. The transformation parameter of DBMS_MGWADM.CREATE_JOB must
specify the name of the registered transformation and not the name of the
transformation function.

Possible causes include:

• The transformation does not exist. Verify that the transformation has been created.
You can see this from the following query performed as user SYS:

SELECT TRANSFORMATION_ID, OWNER FROM DBA_TRANSFORMATIONS;

• The wrong transformation is registered with Messaging Gateway. Verify that the
transformation registered is the one intended.

• The Messaging Gateway agent user does not have EXECUTE privilege on the object
type used for the from_type or the to_type of the transformation indicated in the
exception.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant
MGW_AGENT_ROLE to the agent user. You must grant EXECUTE privilege on the object
type directly to the agent user or to PUBLIC.

The following example shows such a case for the from_type. It also shows the
use of linked exceptions for determining the precise cause of the error.

No EXECUTE Privilege on Object Type

Errors occurred during processing of job JOB_AQ2MQ_2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT_TO_MGW_BASIC_MSG
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: "from_type" is null
[…Java stack trace here…]

[720] AQ payload type <type> not supported; queue: <queue>

The payload type of the Oracle Database Advanced Queuing queue used by a
Messaging Gateway propagation job is not directly supported by Messaging Gateway.
For non-JMS propagation, Messaging Gateway directly supports the payload types
RAW, SYS.MGW_BASIC_MSG_T and SYS.MGW_TIBRV_MSG_T.

Possible actions include:

Appendix C
Monitoring Oracle Messaging Gateway

C-77

• Configure the Messaging Gateway propagation job to use a transformation that
converts the queue payload type to a supported type.

• Remove the Messaging Gateway propagation job and create a new job that uses
an Oracle Database Advanced Queuing queue with a supported payload type.

For Java Message Service (JMS) propagation, the Messaging Gateway
propagation job must be removed and a new job created whose Oracle Database
Advanced Queuing payload type is supported by Oracle Java Message Service
(Oracle JMS). Transformations are not supported for JMS propagation.

[721] Transformation type <type> not supported; queue: <queue_name>,
transform: <transformation>

A Messaging Gateway propagation job was configured with a transformation that uses
an object type that is not one of the Messaging Gateway canonical types.

For an outbound job, the transformation from_type must be the Oracle Database
Advanced Queuing payload type, and the to_type must be a Messaging Gateway
canonical type. For an inbound job, the transformation from_type must be a
Messaging Gateway canonical type and the to_type must be the Oracle Database
Advanced Queuing payload type.

[722] Message transformation failed; queue: <queue_name>, transform:
<transformation>

An error occurred while attempting execution of the transformation. ORA-25229 is
typically thrown by Oracle Database Advanced Queuing when the transformation
function raises a PL/SQL exception or some other Oracle error occurs when
attempting to use the transformation.

Possible causes include:

• The Messaging Gateway agent user does not have EXECUTE privilege on the
transformation function. This is illustrated in the following example.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant
MGW_AGENT_ROLE to the Messaging Gateway agent user. You must grant EXECUTE
privilege on the transformation function directly to the Messaging Gateway agent
user or to PUBLIC.

No EXECUTE Privilege on Transformation Function

Errors occurred during processing of job JOB_MQ2AQ_2
oracle.mgw.common.GatewayException: [722] Message transformation failed queue:
MGWUSER.DESTQ_SIMPLEADT, transform: MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
oracle.mgw.common.MessageException: [722] Message transformation failed;
queue: MGWUSER.DESTQ_SIMPLEADT, transform:
MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: ORA-25229: error on transformation of message msgid:
9749DB80C85B0BD4E03408002086745E
ORA-00604: error occurred at recursive SQL level 1
ORA-00904: invalid column name
[…Java stack trace here…]

Appendix C
Monitoring Oracle Messaging Gateway

C-78

• The transformation function does not exist, even though the registered
transformation does. If the transformation function does not exist, it must be re-
created.

• The Messaging Gateway agent user does not have EXECUTE privilege on the
payload object type for the queue indicated in the exception.

It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then grant
MGW_AGENT_ROLE to the Messaging Gateway agent user. You must grant EXECUTE
privilege on the object type directly to the Messaging Gateway agent user or to
PUBLIC.

• The transformation function raised the error. Verify that the transformation function
can handle all messages it receives.

[724] Message conversion not supported; to AQ payload type: <type>, from
type: <type>

A Messaging Gateway propagation job is configured for inbound propagation where
the canonical message type generated by the non-Oracle messaging system link is
not compatible with the Oracle Database Advanced Queuing queue payload type. For
example, propagation from a TIB/Rendezvous messaging system to an Oracle
Database Advanced Queuing queue with a SYS.MGW_BASIC_MSG_T payload type, or
propagation from WebSphere MQ to an Oracle Database Advanced Queuing queue
with a SYS.MGW_TIBRV_MSG_T payload type.

Possible actions include:

• Configure the Messaging Gateway propagation job with a transformation that
maps the canonical message type generated by the non-Oracle messaging link to
the Oracle Database Advanced Queuing payload type.

• Remove the Messaging Gateway propagation job and create a new job whose
Oracle Database Advanced Queuing queue payload type matches the canonical
message type generated by the non-Oracle link.

[725] Text message not supported for RAW payload

A Messaging Gateway propagation job is configured for inbound propagation to an
Oracle Database Advanced Queuing destination having a RAW payload type. A text
message was received from the source (non-Oracle) queue resulting in a message
conversion failure.

If support for text data is required, remove the Messaging Gateway propagation job
and create a new job to an Oracle Database Advanced Queuing destination whose
payload type supports text data.

[726] Message size <size> too large for RAW payload; maximum size is <size>

A Messaging Gateway propagation job is configured for inbound propagation to an
Oracle Database Advanced Queuing destination having a RAW payload type. A
message conversion failure occurred when a message containing a large RAW value
was received from the source (non-Oracle) queue.

If large data support is required, remove the Messaging Gateway propagation job and
create a new job to an Oracle Database Advanced Queuing destination whose
payload type supports large data, usually in the form of an object type with a BLOB
attribute.

Appendix C
Monitoring Oracle Messaging Gateway

C-79

[728] Message contains too many large (BLOB) fields

The source message contains too many fields that must be stored in BLOB types.
SYS.MGW_TIBRV_MSG_T is limited to three BLOB fields. Reduce the number of large fields
in the message, perhaps by breaking them into smaller fields or combining them into
fewer large fields.

[729] Message contains too many large (CLOB) fields

The source message contains too many fields that contain a large text value that must
be stored in a CLOB. SYS.MGW_TIBRV_MSG_T is limited to three CLOB fields. Reduce the
number of large fields in the message, perhaps by breaking them into smaller fields or
combining them into fewer large fields.

[805] MQSeries Message error while enqueuing to queue: <queue>

WebSphere MQ returned an error when an attempt was made to put a message in a
WebSphere MQ queue. Check the linked exception error code and message in the log
file. Consult WebSphere MQ documentation.

Oracle Messaging Gateway Views
• MGW_GATEWAY: Configuration and Status Information

• MGW_AGENT_OPTIONS: Supplemental Options and Properties

• MGW_LINKS: Names and Types of Messaging System Links

• MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links

• MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links

• MGW_FOREIGN_QUEUES: Foreign Queues

• MGW_JOBS: Messaging Gateway Propagation Jobs

• MGW_SUBSCRIBERS: Information for Subscribers

• MGW_SCHEDULES: Information About Schedules

MGW_GATEWAY: Configuration and Status Information
This view lists configuration and status information for Messaging Gateway.

Table C-13 MGW_GATEWAY View Properties

Name Type Description

AGENT_DATABASE VARCHAR2 The database connect string used by the Messaging Gateway agent.
NULL indicates that a local connection is used.

AGENT_INSTANCE NUMBER The database instance on which the Messaging Gateway agent is
currently running. This should be NULL if the agent is not running.

AGENT_JOB NUMBER [Deprecated] Job number of the queued job used to start the
Messaging Gateway agent process. The job number is set when
Messaging Gateway is started and cleared when it shuts down.

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

Appendix C
Oracle Messaging Gateway Views

C-80

Table C-13 (Cont.) MGW_GATEWAY View Properties

Name Type Description

AGENT_PING VARCHAR2 Gateway agent ping status. Values:

• NULL means no ping attempt was made.
• REACHABLE means ping attempt was successful.
• UNREACHABLE means ping attempt failed.
AGENT_PING attempts to contact the Messaging Gateway agent. There
is a short delay (up to 5 seconds) if the ping attempt fails. No ping is
attempted if the AGENT_STATUS is NOT_STARTED or
START_SCHEDULED.

AGENT_START_TIME TIMESTAMP The time when the Messaging Gateway agent job currently running
was started. This should be NULL if the agent is not running.

AGENT_STATUS VARCHAR2 Status of the Messaging Gateway agent. Values:

• NOT_STARTED means the Messaging Gateway agent has not been
started

• START_SCHEDULED means Messaging Gateway agent has been
scheduled to start. That is, Messaging Gateway has been started
using DBMS_MGWADM.STARTUP, but the queued job used to start
the Messaging Gateway agent has not yet run.

• STARTING means Messaging Gateway agent is starting. That is,
Messaging Gateway has been started using
DBMS_MGWADM.STARTUP, the queued job has run, and the
Messaging Gateway agent is starting up.

• INITIALIZING means the Messaging Gateway agent has started
and is initializing

• RUNNING means the Messaging Gateway agent is running
• SHUTTING_DOWN means the Messaging Gateway agent is shutting

down
• BROKEN means an unexpected condition has been encountered

that prevents the Messaging Gateway agent from starting.
DBMS_MGWADM.CLEANUP_GATEWAY must be called before the
agent can be started.

AGENT_USER VARCHAR2 Database user name used by the Messaging Gateway agent to
connect to the database

COMMENTS VARCHAR2 Comments for the agent

CONNTYPE VARCHAR2 Connection type used by the agent:

• JDBC_OCI if the JDBC OCI driver is used
• JDBC_THIN if the JDBC Thin driver is used

INITFILE VARCHAR2 Name of the Messaging Gateway initialization file used by the agent.
NULL indicates that the default initialization file is used.

LAST_ERROR_DATE DATE Date of last Messaging Gateway agent error. The last error information
is cleared when Messaging Gateway is started. It is set if the
Messaging Gateway agent fails to start or terminates due to an
abnormal condition.

LAST_ERROR_MSG VARCHAR2 Message for last Messaging Gateway agent error

LAST_ERROR_TIME VARCHAR2 Time of last Messaging Gateway agent error

MAX_CONNECTIONS NUMBER [Deprecated] Maximum number of messaging connections to Oracle
Database

MAX_MEMORY NUMBER Maximum heap size used by the Messaging Gateway agent (in MB)

Appendix C
Oracle Messaging Gateway Views

C-81

Table C-13 (Cont.) MGW_GATEWAY View Properties

Name Type Description

MAX_THREADS NUMBER Maximum number of messaging threads created by the Messaging
Gateway agent

SERVICE VARCHAR2 Name of the database service that is associated with an Oracle
Scheduler job class used by the agent

MGW_AGENT_OPTIONS: Supplemental Options and Properties
This view lists supplemental options and properties for a Messaging Gateway agent.

Table C-14 MGW_AGENT_OPTIONS View

Column Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

ENCRYPTED VARCHAR2 Indicates whether the value is stored as encrypted:

• TRUE if the value is stored encrypted
• FALSE if the value is stored as cleartext

NAME VARCHAR2 Name of the option

TYPE VARCHAR2 Option type or usage: JAVA_SYSTEM_PROP if the option is used to set
a Java System property

VALUE VARCHAR2 Value for the option. This will be <<ENCRYPTED>> if the value is
stored in an encrypted form.

MGW_LINKS: Names and Types of Messaging System Links
This view lists the names and types of messaging system links currently defined.

Table C-15 MGW_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation
jobs for this link

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

LINK_TYPE VARCHAR2 Type of messaging system link. Values

• MQSERIES is for WebSphere MQ links.
• TIBRV is for TIB/Rendezvous links.

MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
This view lists information for the WebSphere MQ messaging system links. The view
includes most of the messaging system properties specified when the link is created.

Appendix C
Oracle Messaging Gateway Views

C-82

Table C-16 MGW_MQSERIES_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process
propagation jobs for this link

CHANNEL VARCHAR2 Connection channel

HOSTNAME VARCHAR2 Name of the WebSphere MQ host

INBOUND_LOG_QUEUE VARCHAR2 Inbound propagation log queue

INTERFACE_TYPE VARCHAR2 Messaging interface type. Values:

• BASE_JAVA is for WebSphere MQ Base Java interface
• JMS_CONNECTION is for WebSphere MQ JMS unified, domain-

independent connections
• JMS_QUEUE_CONNECTION is for WebSphere MQ JMS queue

connections
• JMS_TOPIC_CONNECTION is for WebSphere MQ JMS topic

connections

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

MAX_CONNECTIONS NUMBER Maximum number of messaging connections

OPTIONS SYS.MGW_PROPE
RTIES

Link options

OUTBOUND_LOG_QUEUE VARCHAR2 Outbound propagation log queue

PORT NUMBER Port number

QUEUE_MANAGER VARCHAR2 Name of the WebSphere MQ queue manager

MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links
This view lists information for TIB/Rendezvous messaging system links. The view
includes most of the messaging system properties specified when the link was
created.

Table C-17 MGW_TIBRV_LINKS View Properties

Property Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation
jobs for this link

CM_LEDGER VARCHAR2 TIB/Rendezvous CM ledger file name

CM_NAME VARCHAR2 TIB/Rendezvous CM correspondent name

DAEMON VARCHAR2 TIB/Rendezvous daemon parameter for RVD transport

LINK_COMMENT VARCHAR2 User comment for the link

LINK_NAME VARCHAR2 Name of the messaging system link

NETWORK VARCHAR2 TIB/Rendezvous network parameter for rvd transport

OPTIONS SYS.MGW_PROPE
RTIES

Link options

Appendix C
Oracle Messaging Gateway Views

C-83

Table C-17 (Cont.) MGW_TIBRV_LINKS View Properties

Property Name Type Description

SERVICE VARCHAR2 TIB/Rendezvous service parameter for rvd transport

MGW_FOREIGN_QUEUES: Foreign Queues
This view lists information for foreign queues. The view includes most of the queue
properties specified when the queue is registered.

Table C-18 MGW_FOREIGN_QUEUES View Properties

Name Type Description

DOMAIN VARCHAR2 Queue domain type. Values:

• NULL means the queue domain type is automatically determined
by the messaging system

• QUEUE is for a queue (point-to-point) model
• TOPIC is for a topic (publish-subscribe) model

LINK_NAME VARCHAR2 Name of the messaging system link

NAME VARCHAR2 Name of the registered queue

OPTIONS SYS.MGW_PROPE
RTIES

Optional queue properties

PROVIDER_QUEUE VARCHAR2 Message provider (native) queue name

QUEUE_COMMENT VARCHAR2 User comment for the foreign queue

MGW_JOBS: Messaging Gateway Propagation Jobs
This view lists information for Messaging Gateway propagation jobs. The view includes
most of the job properties specified when the propagation job was created, as well as
other status and statistical information.

Table C-19 MGW_JOBS View

Column Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that processes this job

COMMENTS VARCHAR2 Comments for the propagation job

DESTINATION VARCHAR2 Destination queue to which messages are propagated

ENABLED VARCHAR2 Indicates whether the job is enabled or not:

• TRUE if the job is enabled
• FALSE if the job is disabled

EXCEPTION_QUEUE VARCHAR2 Exception queue used for propagation logging purposes

EXCEPTIONQ_MSGS NUMBER Option type or usage: JAVA_SYSTEM_PROP if the option is used to set
a Java System property

FAILURES NUMBER Number of messages moved to exception queue since the last time
the agent was started

Appendix C
Oracle Messaging Gateway Views

C-84

Table C-19 (Cont.) MGW_JOBS View

Column Type Description

JOB_NAME VARCHAR2 Name of the propagation job

LAST_ERROR_MSG VARCHAR2 Message for the last propagation error

LAST_ERROR_DATE DATE Date of the last propagation error

LAST_ERROR_TIME VARCHAR2 Time of the last propagation error

LINK_NAME VARCHAR2 Name of the Messaging Gateway link used by this job

OPTIONS SYS.MGW_PROPER
TIES

Job options

POLL_INTERVAL INTEGER Propagation poll interval (in seconds)

PROPAGATED_MSGS NUMBER Number of messages propagated since the last time the agent was
started

PROP_STYLE VARCHAR2 Message propagation style:

• NATIVE for native message propagation
• JMS for JMS message propagation

PROPAGATION_TYPE VARCHAR2 Propagation type:

• OUTBOUND is for Oracle Database AQ to non-Oracle propagation
• INBOUND is for non-Oracle to Oracle Database AQ propagation

RULE VARCHAR2 Subscription rule used for the propagation source

SOURCE VARCHAR2 Source queue from which messages are propagated

STATUS VARCHAR2 Job status:

• READY means the job is ready for propagation. The job must be
enabled and the Messaging Gateway agent running before
messages are actually propagated.

• RETRY means the agent encountered errors when attempting to
propagate messages for the job and will retry the operation

• FAILED means the job has failed and agent has stopped trying
to propagate messages. Usually this is due to an unrecoverable
error or the propagation failure limit being reached. The job must
be reset before the agent will attempt to propagate messages.
The job is automatically reset each time the agent is started and
can be manually reset by DBMS_MGWADM.RESET_JOB.

• DELETE_PENDING means that job removal is pending.
DBMS_MGWADM.REMOVE_JOB has been called but certain cleanup
tasks for this job are still outstanding.

• SUBSCRIBER_DELETE_PENDING means that removal is pending
for the subscriber associated with the job.
DBMS_MGWADM.REMOVE_SUBSCRIBER has been called but
certain cleanup tasks are still outstanding.

TRANSFORMATION VARCHAR2 Transformation used for message conversion

MGW_SUBSCRIBERS: Information for Subscribers
This view lists configuration and status information for Messaging Gateway
subscribers. The view includes most of the subscriber properties specified when the
subscriber is added, as well as other status and statistical information.

Appendix C
Oracle Messaging Gateway Views

C-85

Table C-20 MGW_SUBSCRIBERS View Properties

Name Type Description

DESTINATION VARCHAR2 Destination queue to which messages are propagated

EXCEPTIONQ_MSGS NUMBER Number of messages moved to the propagation exception queue
since the last time the agent was started

EXCEPTION_QUEUE VARCHAR2 Exception queue used for logging purposes

FAILURES NUMBER Number of propagation failures

LAST_ERROR_DATE DATE Date of last propagation error

LAST_ERROR_MSG VARCHAR2 Message for last propagation error

LAST_ERROR_TIME VARCHAR2 Time of last propagation error

OPTIONS SYS.MGW_PROPE
RTIES

Subscriber options

PROP_STYLE VARCHAR2 Message propagation style. Values:

• NATIVE is for native message propagation
• JMS is for JMS message propagation

PROPAGATED_MSGS NUMBER Number of messages propagated to the destination queue since the
last time the agent was started

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

• OUTBOUND is for Oracle Database AQ to non-Oracle propagation
• INBOUND is for non-Oracle to Oracle Database AQ propagation

QUEUE_NAME VARCHAR2 Subscriber source queue

RULE VARCHAR2 Subscription rule

STATUS VARCHAR2 Subscriber status. Values:

• ENABLED means the subscriber is enabled
• DELETE_PENDING means subscriber removal is pending, usually

because DBMS_MGWADM.REMOVE_SUBSCRIBER has been called
but certain cleanup tasks pertaining to this subscriber are still
outstanding

SUBSCRIBER_ID VARCHAR2 Propagation subscriber identifier

TRANSFORMATION VARCHAR2 Transformation used for message conversion

MGW_SCHEDULES: Information About Schedules
This view lists configuration and status information for Messaging Gateway schedules.
The view includes most of the schedule properties specified when the schedule is
created, as well as other status information.

Table C-21 MGW_SCHEDULES View Properties

Name Type Description

DESTINATION VARCHAR2 Propagation destination

LATENCY NUMBER Propagation window latency (in seconds)

NEXT_TIME VARCHAR2 Reserved for future use

Appendix C
Oracle Messaging Gateway Views

C-86

Table C-21 (Cont.) MGW_SCHEDULES View Properties

Name Type Description

PROPAGATION_TYPE VARCHAR2 Propagation type. Values:

• OUTBOUND is for Oracle Database AQ to non-Oracle propagation
• INBOUND is for non-Oracle to Oracle Database AQ propagation

PROPAGATION_WINDOW NUMBER Reserved for future use

SCHEDULE_DISABLED VARCHAR2 Indicates whether the schedule is disabled. Y means the schedule is
disabled. N means the schedule is enabled.

SCHEDULE_ID VARCHAR2 Propagation schedule identifier

SOURCE VARCHAR2 Propagation source

START_DATE DATE Reserved for future use

START_TIME VARCHAR2 Reserved for future use

Appendix C
Oracle Messaging Gateway Views

C-87

D
Advanced Queuing Sharded Queues

Table D-1 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces for
Sharded Queues: Administrative Interface

Use Case PL/SQL Java (JMS)

Create a sharded queue DBMS_AQADM.CREATE_S
HARDED_QUEUE

AQjmsDestination.createJMSShardedQueue

Drop a sharded queue DBMS_AQADM.DROP_SHA
RDED_QUEUE

AQjmsDestination.dropJMSShardedQueue

Alter a sharded queue DBMS_AQADM.ALTER_SH
ARDED_QUEUE

None. Use PL/SQL API.

Managing Sharded Queues
These topics describe how to manage sharded queues.

Note:

Starting and stopping a sharded queue use the same APIs as non-sharded
queues.

• Creating a Sharded Queue

• Dropping a Sharded Queue

• Altering a Sharded Queue

• Setting a Queue Parameter

• Unsetting a Queue Parameter

• Getting a Queue Parameter

• Creating an Exception Queue

Creating a Sharded Queue
The CREATE_SHARDED_QUEUE API creates a sharded queue.

PROCEDURE CREATE_SHARDED_QUEUE (
 queue_name IN VARCHAR2,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 max_retries IN NUMBER DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 queue_payload_type IN VARCHAR2 DEFAULT JMS_TYPE,

D-1

 queue_properties IN QUEUE_PROPS_T DEFAULT NULL,
 replication_mode IN BINARY_INTEGER DEFAULT NONE);

It has the following parameters:

Parameter Description

queue_name This required parameter specifies the name of the new queue.
Maximum of 128 characters allowed.

storage_clause The storage parameter is included in the CREATE TABLE statement
when the queue table is created. The storage_clause argument
can take any text that can be used in a standard CREATE TABLE
storage_clause argument. The storage parameter can be made
up of any combinations of the following parameters: PCTFREE,
PCTUSED, INITRANS, MAXTRANS, TABLESPACE, LOB, and a table
storage clause.

If a tablespace is not specified here, then the queue table and all
its related objects are created in the default user tablespace. If a
tablespace is specified here, then the queue table and all its
related objects are created in the tablespace specified in the
storage clause. See Oracle Database SQL Language Reference
for the usage of these parameters.

multiple_consumers FALSE means queues can only have one consumer for each
message. This is the default. TRUE means queues created in the
table can have multiple consumers for each message.

max_retries This optional parameter limits the number of times that a dequeue
can reattempted on a message after a failure. The maximum value
of max_retries is 2**31 -1. After the retry limit has been
exceeded, the message will be purged from the queue.
RETRY_COUNT is incremented when the application issues a
rollback after executing the dequeue. If a dequeue transaction fails
because the server process dies (including ALTER SYSTEM KILL
SESSION) or SHUTDOWN ABORT on the instance, then
RETRY_COUNT is not incremented.

comment This optional parameter is a user-specified description of the
queue table. This user comment is added to the queue catalog.

queue_payload_type Payload can be RAW, DBMS_AQADM.JMS_TYPE, or an object type.
Default is DBMS_AQADM.JMS_TYPE.

queue_properties Properties such as Normal or Exception Queue, Retry delay,
retention time, sort list and cache hint.

See also Oracle Database PL/SQL Packages and Types
Reference for more information about queue_properties.

replication_mode Reserved for future use. DBMS_AQADM.REPLICATION_MODE if
queue is being created in the Replication Mode or else
DBMS_AQADM.NONE. Default is DBMS_AQADM.NONE.

Dropping a Sharded Queue
This procedure drops an existing sharded queue from the database queuing system.
You must stop the queue before calling DROP_SHARDED_QUEUE. User must stop the
queue explicitly if force is set to FALSE before calling DROP_SHARDED_QUEUE. If force is
set to TRUE then queue will be stopped internally and then dropped.

Appendix D
Managing Sharded Queues

D-2

Syntax

DBMS_AQADM.DROP_SHARDED_QUEUE(
 queue_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE)

Parameters

Table D-2 CREATE_SHARDED_QUEUE Procedure Parameters

Parameter Description

queue_name This required parameter specifies the name of the sharded queue.

force The sharded queue is dropped even if the queue is not stopped.

Altering a Sharded Queue
This procedure provides user the ability to alter queue_properties of a sharded
queue.

Syntax

PROCEDURE ALTER_SHARDED_QUEUE(
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 comment IN VARCHAR2 DEFAULT NULL,
 queue_properties IN QUEUE_PROPS_T DEFAULT NULL,
 replication_mode IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table D-3 ALTER_SHARDED_QUEUE Procedure Parameters

Parameter Description

queue_name This parameter specifies the name of the sharded queue. A
maximum of 128 characters are allowed.

max_retries The maximum number of retries allowed.

comment The parameter comment.

queue_properties Properties such as Normal or Exception Queue, Retry delay,
retention time, sort list and cache hint.

See also Oracle Database PL/SQL Packages and Types
Reference for more information about queue_properties.

replication_mode Reserved for future use. DBMS_AQADM.REPLICATION_MODE if
queue is being altered to be in the Replication Mode or else
DBMS_AQADM.NONE. Default is NULL.

Setting a Queue Parameter
This procedure allows user to set different parameters for sharded queues at queue or
database level. For database level the queue_name should be NULL. Note that queue
overrides database level parameter values.

Appendix D
Managing Sharded Queues

D-3

Syntax

 PROCEDURE SET_QUEUE_PARAMETER(
 queue_name IN VARCHAR2,
 param_name IN VARCHAR2,
 param_value IN NUMBER);

Parameters

Table D-4 SET_QUEUE_PARAMETER Procedure Parameters

Parameter Description

queue_name The name of the sharded queue.

param_name The name of the parameter.

param_value The value of the parameter.

Unsetting a Queue Parameter
This procedure allows user to unset different parameters for sharded queues at queue
or database level. For database level the queue_name should be NULL. Note that queue
overrides database level parameter values.

Syntax

 PROCEDURE UNSET_QUEUE_PARAMETER(
 queue_name IN VARCHAR2,
 param_name IN VARCHAR2);

Parameters

Table D-5 UNSET_QUEUE_PARAMETER Procedure Parameters

Parameter Description

queue_name The name of the sharded queue.

param_name The name of the parameter.

Getting a Queue Parameter
This procedure allows user to get different parameters for sharded queues at queue or
database level. For database level the queue_name should be NULL. Note that queue
overrides database level parameter values.

Syntax

 PROCEDURE GET_QUEUE_PARAMETER(
 queue_name IN VARCHAR2,
 param_name IN VARCHAR2,
 param_value OUT NUMBER);

Appendix D
Managing Sharded Queues

D-4

Parameters

Table D-6 GET_QUEUE_PARAMETER Procedure Parameters

Parameter Description

queue_name The name of the sharded queue.

param_name The name of the parameter.

param_value The value of the parameter.

Creating an Exception Queue
This procedure allows a user to create an exception queue for a sharded queue.

Syntax

 PROCEDURE CREATE_EXCEPTION_QUEUE(
 sharded_queue_name IN VARCHAR2,
 exception_queue_name IN VARCHAR2 DEFAULT NULL
);

Parameters

Table D-7 CREATE_EXCEPTION_QUEUE Procedure Parameters

Parameter Description

sharded_queue_name The name of the sharded queue.

exception_queue_name The name of the exception queue.

Appendix D
Managing Sharded Queues

D-5

Glossary

ADT
Abstract data type.

API
See application programming interface.

application programming interface
The calling conventions by which an application program accesses operating system
and other services.

approximate CSCN
An approximate system change number value, based on the current SCN of the
database when a transaction that has enqueued messages into a commit-time queue
is committed.

asynchronous
A process in a multitasking system is asynchronous if its execution can proceed
independently in the background. Other processes can be started before the
asynchronous process has finished. The opposite of synchronous.

BFILE
An external binary file that exists outside the database tablespaces residing in the
operating system.

binary large object
A large object datatype whose content consists of binary data. This data is considered
raw, because its structure is not recognized by the database.

BLOB
See binary large object.

broadcast
A publish/subscribe mode in which the message producer does not know the identity
of any message consumer. This mode is similar to a radio or television station.

buffered queue
Buffered queues support queuing of messages with buffered attributes (buffered
messages) and materialize them in memory. If the memory devoted to a buffered
message is required for a newer message, or if a buffered message has exceeded a

Glossary-1

stipulated duration in memory, then that buffered message is swapped to the
underlying queue table. The memory for buffered messages comes from a separate
pool called the streams pool. Buffered messages cannot be recovered if the database
is bounced. Messages that have no buffered attributes set are queued as persistent
messages in the underlying persistent queue.

canonical
The usual or standard state or manner of something.

character large object
The large object datatype whose value is composed of character data corresponding
to the database character set. A character large object can be indexed and searched
by the Oracle Text search engine.

CLOB
See character large object.

ConnectionFactory
A ConnectionFactory encapsulates a set of connection configuration parameters that
has been defined by an administrator. A client uses it to create a connection with a
Java Message Service provider.

commit-time queue
A queue in which messages are ordered by their approximate CSCN values.

consumer
A user or application that can dequeue messages.

data manipulation language
Data manipulation language (DML) statements manipulate database data. For
example, querying, inserting, updating, and deleting rows of a table are all DML
operations; locking a table or view and examining the execution plan of an SQL
statement are also DML operations.

Database Configuration Assistant
An Oracle Database tool for creating and deleting databases and for managing
database templates.

DBCA
See Database Configuration Assistant.

dequeue
To retrieve a message from a queue

DML
See data manipulation language.

Glossary

Glossary-2

enqueue
To place a message in a queue. The JMS equivalent of enqueue is send.

exception queue
Messages are transferred to an exception queue if they cannot be retrieved and
processed for some reason.

IDAP
See Internet Data Access Presentation.

index-organized table
Unlike an ordinary table whose data is stored as an unordered collection, data for an
index-organized table is stored in a B-tree index structure sorted on a primary key.
Besides storing the primary key column values of an index-organized table row, each
index entry in the B-tree stores the nonkey column values as well.

Internet Data Access Presentation
The Simple Object Access Protocol (SOAP) specification for Oracle Database
Advanced Queuing operations. IDAP defines the XML message structure for the body
of the SOAP request. An IDAP-structured message is transmitted over the Internet
using HTTP(S).

Inter-process Communication
Exchange of data between one process and another, either within the same computer
or over a network. It implies a protocol that guarantees a response to a request.

IOT
See index-organized table.

IPC
See Inter-process Communication.

Java Database Connectivity
An industry-standard Java interface for connecting to a relational database from a
Java program, defined by Sun Microsystems.

Java Message Service
A messaging standard defined by Sun Microsystems, Oracle, IBM, and other vendors.
JMS is a set of interfaces and associated semantics that define how a JMS client
accesses the facilities of an enterprise messaging product.

Java Naming and Directory Interface
A programming interface from Sun for connecting Java programs to naming and
directory services.

Java Virtual Machine
The Java interpreter that converts the compiled Java bytecode into the machine
language of the platform and runs it. JVMs can run on a client, in a browser, in a

Glossary

Glossary-3

middle tier, on an intranet, on an application server such as Oracle Application Server
10g, or in a database server such as Oracle Database 10g.

JDBC
See Java Database Connectivity.

JDBC driver
The vendor-specific layer of Java Database Connectivity that provides access to a
particular database. Oracle Database provides three JDBC drivers--Thin, OCI, and
KPRB.

JMS
See Java Message Service.

JMS connection
An active connection of a client to its JMS provider, typically an open TCP/IP socket
(or a set of open sockets) between a client and a provider's service daemon.

JMS message
JMS messages consist of a header, one or more optional properties, and a message
payload.

JMS session
A single threaded context for producing and consuming messages.

JMS topic
Equivalent to a multiconsumer queue in the other Oracle Database Advanced Queuing
interfaces.

JNDI
See Java Naming and Directory Interface.

Jnnn
Job queue process

JServer
The Java Virtual Machine that runs within the memory space of Oracle Database.

JVM
See Java Virtual Machine

large object
The class of SQL datatype consisting of BFILE, BLOB, CLOB, and NCLOB objects.

LDAP
See Lightweight Directory Access Protocol

Glossary

Glossary-4

Lightweight Directory Access Protocol
A standard, extensible directory access protocol. It is a common language that LDAP
clients and servers use to communicate. The framework of design conventions
supporting industry-standard directory products, such as the Oracle Internet Directory.

LOB
See large object

local consumer
A local consumer dequeues the message from the same queue into which the
producer enqueued the message.

logical change record
An object with a specific format that describes a database change, captured from the
redo log by a capture process or user application. Capture processes enqueue
messages containing logical change records (LCRs) only into ANYDATA queues. For
improved performance, these LCRs are always stored in a buffered queue.

message
The smallest unit of information inserted into and retrieved from a queue. A message
consists of control information (metadata) and payload (data).

multicast
A publish/subscribe mode in which the message producer knows the identity of each
consumer. This mode is also known as point-to-multipoint.

national character large object
The large object datatype whose value is composed of character data corresponding
to the database national character set.

NCLOB
See national character large object.

nonpersistent
Nonpersistent queues store messages in memory. They are generally used to provide
an asynchronous mechanism to send notifications to all users that are currently
connected. Nonpersistent queues are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that you use buffered messaging
instead.

nontransactional
Allowing enqueuing and dequeuing of only one message at a time.

object type
An object type encapsulates a data structure along with the functions and procedures
needed to manipulate the data. When you define an object type using the CREATE TYPE
statement, you create an abstract template that corresponds to a real-world object.

Glossary

Glossary-5

OCI
See Oracle Call Interface.

Oracle JMS
See Oracle Java Message Service.

OLTP
See Online Transaction Processing.

Online Transaction Processing
Online transaction processing systems are optimized for fast and reliable transaction
handling. Compared to data warehouse systems, most OLTP interactions involve a
relatively small number of rows, but a larger group of tables.

Oracle Call Interface
An application programming interface that enables data and schema manipulation in
Oracle Database.

Oracle Java Message Service
Oracle Java Message Service (Oracle JMS) provides a Java API for Oracle Database
Advanced Queuing based on the Java Message Service (JMS) standard. Oracle JMS
supports the standard JMS interfaces and has extensions to support the Oracle
Database Advanced Queuing administrative operations and other Oracle Database
Advanced Queuing features that are not a part of the standard.

producer
A user or application that can enqueue messages.

propagation
Copying messages from one queue to another (local or remote) queue.

publish/subscribe
A type of messaging in which a producer enqueues a message to one or more
multiconsumer queues, and then the message is dequeued by several subscribers.
The published message can have a wide dissemination mode called broadcast or a
more narrowly aimed mode called multicast.

QMNC
Queue monitor coordinator. It dynamically spawns slaves qXXX depending on the
system load. The slaves do various background tasks.

QMNn
Queue monitor process.

queue
The abstract storage unit used by a messaging system to store messages.

Glossary

Glossary-6

queue table
A database table where queues are stored. Each queue table contains a default
exception queue.

recipient
An agent authorized by the enqueuer or queue administrator to retrieve messages.
The enqueuer can explicitly specify the consumers who can retrieve the message as
recipients of the message. A queue administrator can specify a default list of recipients
who can retrieve messages from a queue. A recipient specified in the default list is
known as a subscriber. If a message is enqueued without specifying the recipients,
then the message is sent to all the subscribers. Specific messages in a queue can be
directed toward specific recipients, who may or may not be subscribers to the queue,
thereby overriding the subscriber list.

If only the name of the recipient is specified, then the recipient must dequeue the
message from the queue in which the message was enqueued. If the name and an
address of the recipient are specified with a protocol value of 0, then the address
should be the name of another queue in the same database or another installation of
Oracle Database. If the recipient's name is NULL, then the message is propagated to
the specified queue in the address and can be dequeued by any subscriber of the
queue specified in the address. If the protocol field is nonzero, then the name and
address are not interpreted by the system, and the message can be dequeued by a
special consumer.

remote consumer
A remote consumer dequeues from a queue that is different from the queue where the
message was enqueued.

result cache
A Result Cache can be defined as a cache of results of an evaluation for a set of
argument values. In case of rules engine a result cache refers to cache of results
pertaining to Rule Set, Rule and Independent Expression evaluations given certain
input arguments

rules
Boolean expressions that define subscriber interest in subscribing to messages. The
expressions use syntax similar to the WHERE clause of a SQL query and can include
conditions on: message properties (currently priority and correlation identifier), user
data properties (object payloads only), and functions. If a rule associated with a
subscriber evaluates to TRUE for a message, then the message is sent to that
subscriber even if the message does not have a specified recipient.

rules engine
Oracle Database software that evaluates rules. Rules are database objects that
enable a client to perform an action when an event occurs and a condition is satisfied.
Rules are similar to conditions in WHERE clauses of SQL queries. Both user-created

Glossary

Glossary-7

applications and Oracle Database features, such as Oracle Database Advanced
Queuing, can be clients of the rules engine.

schema
A collection of database objects, including logical structures such as tables, views,
sequences, stored procedures, synonyms, indexes, clusters, and database links. A
schema has the name of the user who controls it.

send
The JMS equivalent of enqueue.

servlet
A Java program that runs as part of a network service and responds to requests from
clients. It is typically an HTTP server.

SGA
See System Global Area.

sharded queue
A single logical queue that is divided into multiple, independent, physical queues
through system-maintained partitioning.

Simple Object Access Protocol
A minimal set of conventions for invoking code using XML over HTTP defined by
World Wide Web Consortium.

SOAP
See Simple Object Access Protocol.

subscriber
An agent authorized by a queue administrator to retrieve messages from a queue.

System Global Area
A group of shared memory structures that contain data and control information for one
Oracle Database instance. The SGA and Oracle Database processes constitute an
Oracle Database instance. Oracle Database automatically allocates memory for an
SGA whenever you start an instance and the operating system reclaims the memory
when you shut down the instance. Each instance has one and only one SGA.

synchronous
Two or more processes are synchronous if they depend upon the occurrences of
specific events such as common timing signals. The opposite of asynchronous.

transactional
Allowing simultaneous enqueuing or dequeuing of multiple messages as part of a
group.

Glossary

Glossary-8

transformation
A mapping from one Oracle data type to another, represented by a SQL function that
takes the source data type as input and returns an object of the target data type. A
transformation can be specified during enqueue, to transform the message to the
correct type before inserting it into the queue. It can be specified during dequeue to
receive the message in the wanted format. If specified with a remote consumer, then
the message is transformed before propagating it to the destination queue.

user queue
A queue for normal message processing.

VARRAY
An ordered set of data elements. All elements of a given array are of the same
datatype. Each element has an index, which is a number corresponding to the
element's position in the array. The number of elements in an array is the size of the
array. Oracle Database allows arrays to be of variable size.

wildcard
A special character or character sequence which matches any character in a string
comparison.

workflow
The set of relationships between all the activities in a project or business transaction,
from start to finish. Activities are related by different types of trigger relations. Activities
can be triggered by external events or by other activities.

Glossary

Glossary-9

Index

A
access

object types, 4-3
access control

destination level in JMS, 7-8
queue-level, 1-2
system level, 1-2

in JMS, 7-8
adding subscribers, 14-23
administration

Messaging Gateway, C-4
administrative interfaces to Oracle TEQ and AQ

comparison, 3-4
AdtMessage

about, 7-15
creating, 7-99

agent user
creating Messaging Gateway agent, C-11

agents
AQjms agent

creating, 7-104
Messaging Gateway

about, C-4
configuring agent, C-21
monitoring, C-67
running agent on Oracle RAC, C-24
shutting down agent, C-23
starting agent, C-23

alias
adding to LDAP server, 14-34
deleting from LDAP server, 14-34
parameters

alias, 14-34
obj_location, 14-34

ALL_QUEUE_SUBSCRIBERS, 10-13
ALL_QUEUE_TABLES

Queue Tables Queue Accessible to the
Current User, 10-4

ALL_QUEUES, 10-4
altering

AQ agents, 14-33
propagations, 14-30
queue tables, 14-9
queues, 14-17

altering (continued)
subscribers, 14-25
transformations, 14-20

ANYDATA datatype
queue table, 14-6

application development
about, 1-6
client/server communication, 1-8
Internet operations, 1-7
publish/subscribe, 1-12
third-party messaging, 1-7
workflows, 1-11

AQ agents
adding to LDAP server, 8-25
altering, 14-33
creating, 14-33
dropping, 14-33
parameters

agent_name, 14-33
certificate_location, 14-33
enable_anyp, 14-33
enable_http, 14-33

removing from LDAP server, 8-26
AQ background architecture, xxxix, 2-9
AQ Message Properties Type, 2-5
AQ servlet

deploying, 13-5
responses using HTTP, 13-4

AQ system privilege
granting, 14-21

in JMS, 7-53
revoking, 14-21

in JMS, 7-54
AQ_ADMINISTRATOR_ROLE

and LDAP, 7-3
and registerConnectionFactory, 7-42
definition, 4-2
needed for JMS, 3-16

AQ_MsgProperties, C-47
AQ_TM_PROCESSES parameter, 2-8
AQ_USER_ROLE

definition, 4-3
needed for JMS, 3-16

AQ$_AGENT, 2-2
AQ$_AGENT_LIST_T, 2-3

Index-1

AQ$_POST_INFO_LIST, 2-3
AQ$_QUEUE_TABLE_NAME_D, 14-6
AQ$_QUEUE_TABLE_NAME_E, 14-2
AQ$_QUEUE_TABLE_NAME_H, 14-2
AQ$_QUEUE_TABLE_NAME_I, 14-2
AQ$_QUEUE_TABLE_NAME_P, 14-6
AQ$_QUEUE_TABLE_NAME_S, 14-2
AQ$_QUEUE_TABLE_NAME_T, 14-2
AQ$_RECIPIENT_LIST_T, 2-3
AQ$_REG_INFO_LIST, 2-3
AQ$_SUBSCRIBER_LIST_T, 2-3
AQ$INTERNET_USERS, 10-15
AQ$QUEUE_TABLE_NAME, 10-6
AQ$QUEUE_TABLE_NAME_R, 10-10
AQ$QUEUE_TABLE_NAME_S, 10-10
AQjms agent

creating, 7-104
architecture

application development, 1-6
Internet operations, 1-39, 13-1
Messaging Gateway, C-3

arrays
dequeuing

about, 1-24
buffered messages, 8-21
syntax, 8-21

enqueuing
about, 1-22
syntax, 8-11

asynchronous notifications
about, 1-19
buffered messages, 1-19
designated port, 1-19
purge following, 1-19
RAW payload delivery, 1-19
reliability, 1-19
timeout, 1-19

asynchronous receive in JMS, 7-30

B
batch dequeuing, 8-21
batch enqueuing, 8-11
BFILE objects

propagating, 4-11
Boolean message property (JMS)

getting, 7-110
setting, 7-101

broadcasting
definition, 1-13

buffered messages
about, 1-15
dequeuing, 1-15

options, 1-16
enqueuing, 1-15

buffered messages (continued)
exception handling, 1-15
flow control, 1-15
listen_delivery_mode, 8-12
MSG_STATE parameter, 10-6
notification, 1-19
ordering, 1-16
propagation, 1-15
queue-to-queue propagation, 1-18
restrictions, 1-15
tuning, 9-11
types supported, 1-16
views, 1-16
visibility, 1-16
with Messaging Gateway, C-6
with Oracle JMS, 7-16
with Oracle Real Application Clusters, 1-15

buffered queues, 14-6
byte message property (JMS)

getting, 7-111
setting, 7-102

BytesMessage
about, 7-14
creating, 7-98
example, 7-122

C
CLASSPATH

Messaging Gateway, C-16
closing

JMS Connection, 7-113
JMS Session, 7-112
message consumer, 7-112
MessageProducer, 7-112

commit
all operations in JMS Session, 7-97
transaction, 13-14

commit-time ordering
about, 1-22
example, 14-2
requirements, 14-5

compatibility
about, 4-1
and Oracle Real Application Clusters, 1-6
migrating queue tables, 14-13
nonpersistent queues, A-2
security, 4-3

concurrent processes
tuning for Oracle Database AQ, 9-9

Connection (JMS)
creating

with default ConnectionFactory
parameters, 7-62, 7-73

with user name/password, 7-62, 7-73

Index

Index-2

Connection (JMS) (continued)
getting JDBC connection from JMS Session,

7-98
ConnectionFactory

getting
in LDAP, 7-48

objects, 7-2
registering

through database using JDBC
connection parameters, 7-41

through database using JDBC URL, 7-42
through LDAP using JDBC connection

parameters, 7-42
through LDAP using JDBC URL, 7-43

unregistering
in LDAP through LDAP, 7-45
in LDAP through the database, 7-44
through database, 7-44
through LDAP, 7-45

using JNDI to look up, 7-2
conversion

JMS messages, about, C-64
message headers, C-50
non-JMS messages, about, C-49
TIB/Rendezvous messages, C-59
WebSphere MQ messages, C-54

correlation identifier
about, 1-22, 1-25
and transaction grouping, 1-27
and Virtual Private Database, 4-10
as dequeue condition, 8-14
as message property, 8-4
as MessageSelector, 7-20
dequeuing by specifying, 1-24
getting in JMS, 7-109
setting in JMS, 7-100
with queue table indexes, 9-10

creating
AQ agents, 14-33
AQjms agent, 7-104
DurableSubscriber, 7-79–7-82
JMS AdtMessage, 7-99
JMS BytesMessage, 7-98
JMS Connection, 7-62, 7-73
JMS MapMessage, 7-98
JMS Message, 7-99
JMS ObjectMessage, 7-99
JMS Session, 7-64, 7-74
JMS StreamMessage, 7-99
JMS TextMessage, 7-99
Messaging Gateway administration user,

C-10
Messaging Gateway agent user, C-11
Messaging Gateway propagation subscriber,

C-36

creating (continued)
nonpersistent queues, A-1
point-to-point queue in JMS, 7-50
point-to-point TEQ queue in JMS, 7-52
propagations, 14-27
publish/subscribe Topic in JMS, 7-50
queue tables, 14-2

in JMS, 7-49
QueueBrowser, 7-67, 7-68
QueueConnection, 7-62, 7-63
QueueReceiver, 7-70, 7-71
queues, 14-14

in JMS, 7-50
QueueSender, 7-65
QueueSession, 7-64
subscribers, 14-23
TIB/Rendezvous link, C-31
TopicConnection, 7-73, 7-74
TopicPublisher, 7-75
TopicSession, 7-75
transformations, 14-19
WebSphere MQ base Java link, C-26
WebSphere MQ JMS link, C-27

D
data pump, 4-7
data type

LONG VARCHAR, xxxix
database

disabling access, 14-34
enabling access, 14-34

database connection
configuring Messaging Gateway connection

information, C-11
Messaging Gateway, C-22

DBA_ATTRIBUTE_TRANSFORMATIONS, 10-13
DBA_QUEUE_SCHEDULES, 10-5
DBA_QUEUE_SUBSCRIBERS, 10-12
DBA_QUEUE_TABLES

All Queue Tables in Database, 10-3
DBA_QUEUES, 10-4
DBA_SUBSCR_REGISTRATIONS

All Subscription Registrations, 10-14
DBA_TRANSFORMATIONS, 10-13
DBMS_AQ procedures

BIND_AGENT, 8-25
DEQUEUE, 8-13
DEQUEUE_ARRAY, 8-21
ENQUEUE, 8-2
ENQUEUE_ARRAY, 8-11
LISTEN, 8-12
POST, 8-24
REGISTER, 8-23
UNBIND_AGENT, 8-26

Index

3

DBMS_AQ procedures (continued)
UNREGISTER, 8-24

DBMS_AQ.BUFFERED, 8-12
DBMS_AQ.PERSISTENT, 8-12
DBMS_AQ.PERSISTENT_OR_BUFFERED,

8-12
DBMS_AQADM procedures

ADD_ALIAS_TO_LDAP, 14-34
ADD_SUBSCRIBER, 14-23
ALTER_AQ_AGENT, 14-33
ALTER_PROPAGATION_SCHEDULE,

14-30
ALTER_QUEUE, 14-17
ALTER_QUEUE_TABLE, 14-9
ALTER_SUBSCRIBER, 14-25
CREATE_AQ_AGENT, 14-33
CREATE_NP_QUEUE, A-1
CREATE_QUEUE, 14-14
CREATE_QUEUE_TABLE, 14-2
CREATE_TRANSFORMATION, 14-19
DEL_ALIAS_FROM_LDAP, 14-34
DISABLE_DB_ACCESS, 14-34
DISABLE_PROPAGATION_SCHEDULE,

14-31
DROP_AQ_AGENT, 14-33
DROP_QUEUE, 14-18
DROP_QUEUE_TABLE, 14-10
DROP_TRANSFORMATION, 14-20
ENABLE_DB_ACCESS, 14-34
ENABLE_PROPAGATION_SCHEDULE,

14-31
GRANT_QUEUE_PRIVILEGE, 14-22
GRANT_SYSTEM_PRIVILEGE, 14-21
MIGRATE_QUEUE_TABLE, 14-13
MODIFY_TRANSFORMATION, 14-20
PURGE_QUEUE_TABLE, 14-11
REMOVE_SUBSCRIBER, 14-26
REVOKE_QUEUE_PRIVILEGE, 14-23
REVOKE_SYSTEM_PRIVILEGE, 14-21
SCHEDULE_PROPAGATION, 14-27
START_QUEUE, 14-17
STOP_QUEUE, 14-18
UNSCHEDULE_PROPAGATION, 14-32
VERIFY_QUEUE_TYPES, 1-37, 14-29

DBMS_AQIN, 7-41
DBMS_MGWADM package

about, C-4
ADD_SUBSCRIBER, C-36, C-47
ALTER_AGENT, C-22
ALTER_MSGSYSTEM_LINK, C-31, C-44
ALTER_SUBSCRIBER, C-47
CREATE_MSGSYSTEM_LINK, C-26, C-27,

C-31, C-44
DB_CONNECT_INFO, C-11, C-22

DBMS_MGWADM package (continued)
DISABLE_PROPAGATION_SCHEDULE,

C-37
DOMAIN_QUEUE, C-33
DOMAIN_TOPIC, C-33
ENABLE_PROPAGATION_SCHEDULE,

C-37
JMS_CONNECTION, C-27
JMS_QUEUE_CONNECTION, C-27
JMS_TOPIC_CONNECTION, C-27
MQSERIES_BASE_JAVA_INTERFACE,

C-26
REGISTER_FOREIGN_QUEUE, C-33, C-46
REMOVE_MSGSYSTEM_LINK, C-32
RESET_SUBSCRIBER, C-37
SHUTDOWN, C-23
STARTUP, C-23
UNREGISTER_FOREIGN_QUEUE, C-34

DBMS_MGWMSG.LCR_TO_XML, C-52
delays

during dequeuing, 1-24
specifying in JMS, 7-27

dequeue condition
and Virtual Private Database, 4-10
with queue table indexes, 9-10

dequeuing
buffered messages, 1-15
by multiple consumers, 1-8
concurrent processes, 1-24
features, 1-24
IDAP client request, 13-11
IDAP server response to request, 13-15
message arrays, 1-24, 8-21
message states, 1-24
messages, 8-13
methods, 1-24
modes

about, 1-24
navigation of messages, 1-24
options, 8-13

buffered messages, 1-16
parameters

array_size, 8-21
dequeue_options, 8-13, 8-21

retries with delays, 1-24
transaction protection, 1-24
waiting for messages, 1-24

destination (JMS)
altering, 7-58
dropping, 7-58
starting, 7-57
stopping, 7-57

disabling
database access, 14-34
propagations, 14-31

Index

Index-4

double message property (JMS)
getting, 7-110
setting, 7-101

dropping
AQ agents, 14-33
propagations, 14-32
queue tables, 14-10
queues, 14-18
transformations, 14-20

DurableSubscriber
about, 7-23
creating

for JMS Topic, 7-79, 7-80
for Oracle object type Topic, 7-81, 7-82

unsubscribing
for a local subscriber, 7-88
for a remote subscriber, 7-89

E
e-mail notification, 13-16
enabling

database access, 14-34
propagations, 14-31

enqueuing
buffered messages, 1-15
client request for, 13-9
correlation identifier, 1-22
features, 1-22
IDAP client request, 13-9
IDAP server response to request, 13-14
message array, 1-22, 8-11
message expiration, 1-22
message grouping, 1-22
message properties, 8-2
messages, 8-2
options, 8-2
parameters

array_size, 8-11
enqueue_options, 8-2
message_properties, 8-2
message_properties_array, 8-11
payload, 8-2
payload_array, 8-11

priority and ordering of messages, 1-22
sender identification, 1-22

enumerated constants
about, 2-7
delivery_mode, 2-8
operational interface, 2-7

environment variables
CLASSPATH, C-16
Messaging Gateway, C-16
MGW_PRE_PATH, C-16
ORACLE_SID, C-16

error conditions
Messaging Gateway, C-71

error handling
error messages, 12-3
IDAP, 13-16
propagations, 1-31

error messages, 12-3
Messaging Gateway, C-69
Messaging Gateway agent, C-74

errors (JMS)
getting codes, 7-113
getting number, 7-113

event journals, 1-39
exception (JMS)

exception linked to a JMS exception, getting,
7-113

exception listener
getting, 7-114
setting, 7-114

printing stack trace, 7-114
exception handling

buffered messages, 1-15
exception queues, 1-24, 7-31
Messaging Gateway, C-67
propagations in JMS, 7-35

exception queues
about, 1-24
in JMS, 7-31

expiration
setting during enqueuing, 1-22
specifying in JMS, 7-27

exporting
queue tables

about, 4-5
data pump, 4-7
modes, 4-5
multiple recipients, 4-5

F
float message property (JMS)

getting, 7-111
setting, 7-102

flow control
about, 1-15

G
getting (JMS)

AQ queue table, 7-53
ConnectionFactory, 7-46
correlation identifier, 7-109
error codes, 7-113
error numbers, 7-113
exceptions, 7-113

Index

5

getting (JMS) (continued)
JDBC connection, 7-98
JMS Connection, 7-97
message identifier, 7-109
OracleOCIConnectionPool, 7-98
Queue in LDAP, 7-48
QueueConnectionFactory, 7-46

in LDAP, 7-48
with JDBC connection parameters, 7-46
with JDBC URL, 7-46

Topic in LDAP, 7-48
TopicConnectionFactory, 7-46

with JDBC connection parameters, 7-47
with JDBC URL, 7-47

GLOBAL_AQ_USER_ROLE
and registerConnectionFactory, 7-3, 7-43

granting
AQ system privilege, 14-21

in JMS, 7-53
queue privilege, 14-22

in JMS, 7-55
Topic privilege in JMS, 7-54

grouping
messages, 1-22

GV$AQ, 7-10

H
HTTP

AQ operations over, 13-1
AQ servlet responses, 13-4
client requests, 13-3
headers, 13-7
propagation, 13-4
propagation using, 1-31
response, 13-8

I
I/O

configuring for Oracle Database AQ, 9-9
IDAP

client request
commit transaction, 13-14
dequeue, 13-11
enqueue, 13-9
registration, 13-13
roll back transaction, 13-14

error handling, 13-16
message, 13-9
notification, 13-16
request and response documents, 13-9
server response

commit transaction, 13-15
dequeue request, 13-15

IDAP (continued)
server response (continued)
enqueue request, 13-14
register request, 13-15
roll back transaction, 13-15

importing
queue tables

about, 4-7
data pump, 4-7
IGNORE parameter, 4-7
multiple recipients, 4-7

inboxes, 1-31
indexes

tuning for Oracle Database AQ, 9-10
INIT.ORA parameter, 2-8
initialization parameters

Messaging Gateway, C-16
integer message property (JMS)

getting, 7-110
setting, 7-101

interfaces to Oracle Database AQ
about, 1-43
AQ XML servlet, 3-18
comparison, 3-1, 3-3
JMS, 3-16
OCCI, 3-15
OCI, 3-3
OCI security, 4-4
operational, 3-7
PL/SQL, 3-2

interfaces to Oracle TEQ and AQ
administrative, 3-4

Internet Data Access Presentation
about, 13-6

Internet operations
and application development, 1-7
AQ servlet responses, 13-4
architecture, 1-39, 13-1
client requests, 13-3
deploying AQ servlet, 13-5
IDAP client request

commit transaction, 13-14
dequeue, 13-11
enqueue, 13-9
registration, 13-13
roll back transaction, 13-14

IDAP errors, 13-16
IDAP notification, 13-16
IDAP request and response documents, 13-9
IDAP server response

commit transaction, 13-15
dequeue request, 13-15
enqueue request, 13-14
register request, 13-15
roll back transaction, 13-15

Index

Index-6

Internet operations (continued)
Internet Data Access Presentation, 13-6
JMS types, 13-2
notification by e-mail, 13-16
object type queues, 13-2
payloads, 13-2
propagation, 13-4
RAW queues, 13-2
SOAP

body, 13-7
envelope, 13-7
message structure, 13-6
method invocation, 13-7

user authentication, 13-3

J
Java EE compliance, 7-40
Java properties

Messaging Gateway, C-18
oracle.mgw.batch_size, C-18
oracle.mgw.polling_interval, C-18
oracle.mgw.tibrv.advMsgCallback, C-18
oracle.mgw.tibrv.encoding, C-18
oracle.mgw.tibrv.intraProcAdvSubjects, C-18

JDBC connection
getting from JMS Session, 7-98
registering ConnectionFactory using JDBC

parameters through the database,
7-41

using to register ConnectionFactory through
LDAP, 7-42

JDBC OCI driver
needed for JMS, 3-16

JDBC thin driver
needed for JMS, 3-16

JDBC URL
registering ConnectionFactory using JDBC

URL through LDAP, 7-43
registering through the database, 7-42

JMS
about, 7-1
and Oracle Real Application Clusters, 7-9
AQ queue tables

creating, 7-49
asynchronous receive, 7-30
buffered messages, 7-16
Connection, 7-2
exception queues, 7-31
JDBC OCI driver needed, 3-16
JDBC thin driver needed, 3-16
message bodies, 7-13
message consumer features, 7-28
message headers, 7-10
message properties, 7-12

JMS (continued)
message types, 7-10
MessageProducer features, 7-26
point-to-point features, 7-20
propagation schedules, 7-58
publish/subscribe features, 7-22
queue tables

getting, 7-53
queues. creating, 7-50
recipient lists, 7-24
Session, 7-2
statistics views support, 7-10
structured payloads, 7-10
troubleshooting, 7-113

JMS Connection
about, 7-4
closing, 7-113
getting, 7-97
getting OracleOCIConnectionPool from, 7-98
starting, 7-97
stopping, 7-112

JMS correlation identifier
setting, 7-100

JMS Destination
about, 7-7
managing, 7-56
methods, 7-7
using JMS Session to obtain, 7-7
using JNDI to look up, 7-7

JMS examples
BytesMessage, 7-122
MapMessage, 7-131
setting up, 7-118
StreamMessage, 7-126
TextMessage, 7-137

JMS message property
Boolean, 7-101, 7-110
byte, 7-102, 7-111
double, 7-101, 7-110
float, 7-102, 7-111
integer, 7-101, 7-110
long, 7-102, 7-111
object, 7-103, 7-111
short, 7-102, 7-111
string, 7-101, 7-110

JMS messages
browsing, 7-29

with a TopicBrowser, 7-96
correlation identifier, 7-109
creating

AdtMessage, 7-99
BytesMessage, 7-98
JMS Message, 7-99
MapMessage, 7-98
ObjectMessage, 7-99

Index

7

JMS messages (continued)
creating (continued)
StreamMessage, 7-99
TextMessage, 7-99

delay, specifying, 7-27
expiration, specifying, 7-27
grouping, 7-27
message consumer, closing, 7-112
message identifier, 7-109
message listener

specifying at JMS Session, 7-109
specifying at message consumer, 7-108

message property
getting, 7-109
setting, 7-100

MessageProducer, closing, 7-112
navigating in receive, 7-28
navigation mode for receiving, specifying,

7-107
Priority

setting default, 7-103
priority and ordering, 7-26
propagation with Messaging Gateway

inbound, C-65
outbound, C-65

publishing
specifying a recipient list, 7-78
specifying delivery mode, priority, and

time to live, 7-77
specifying Topic, 7-77
with minimal specification, 7-75

QueueBrowser for, creating, 7-67, 7-68
QueueReceiver for, creating, 7-70, 7-71
receiving

about, 7-28
asynchronously, 7-108, 7-109
from a destination using a

transformation, 7-106
synchronously, 7-104–7-106
with a message consumer, 7-104, 7-105

remote subscribers for, creating, 7-85
remove no data, 7-30
retry with delay, 7-30
sending using a QueueSender, 7-65, 7-66
TimeToLive

setting default, 7-103
TopicBrowser for, creating, 7-92, 7-93
TopicReceiver for, creating, 7-90, 7-91
transformation with JMS AQ, 7-35

JMS propagations
about, 7-32
altering, 7-60
disabling, 7-60
enabling, 7-59
exception handling, 7-35

JMS propagations (continued)
RemoteSubscriber, 7-32
scheduling, 7-33, 7-59
unscheduling, 7-61

JMS publish/subscribe
setting up, 7-25

JMS Session
about, 7-5
closing, 7-112
committing all operations, 7-97
creating, 7-64, 7-74
getting JDBC connection from, 7-98
rolling back all operations, 7-97
specifying message listener, 7-109
using to obtain Destination object, 7-7

JMS Sharded Queue, xxxviii
JMS type queues/topics, 13-2
JMS types

Internet operations, 13-2
JMS_DeliveryMode, C-47
JMS_NoLocal, C-47
JNDI

using to look up ConnectionFactory objects,
7-2

using to look up Destination object, 7-7
JOB_QUEUE_PROCESSES, 4-12

L
LDAP

and AQ_ADMINISTRATOR_ROLE, 7-3
queue/topic connection factory, 7-48
registering ConnectionFactory, 7-43
unregistering ConnectionFactory, 7-44

LDAP server
adding alias, 14-34
adding AQ agents, 8-25
deleting alias, 14-34
removing AQ agents, 8-26

links
altering, C-31
configuring Messaging Gateway links, C-25
MGW_LINKS view, C-32
MGW_MQSERIES_LINK view, C-32
MGW_TIBRV_LINKS view, C-32
removing, C-32
TIB/Rendezvous, creating, C-31
WebSphere MQ base Java, creating, C-26
WebSphere MQ JMS, creating, C-27

listener.ora
modifying for Messaging Gateway, C-8, C-9
modifying for TIB/Rendezvous, C-13
modifying for WebSphere MQ, C-14

listening
about, 1-24

Index

Index-8

listening (continued)
application development, 1-14
parameters

agent_list, 8-12
listen_delivery_mode, 8-12
wait, 8-12

syntax, 8-12
LOBs

propagation, 1-31
log file

Messaging Gateway, C-65
log_directory, C-16
log_level, C-16
logical change records

Messaging Gateway, C-52
long message property (JMS)

getting, 7-111
setting, 7-102

LONG VARCHAR data type, xxxix

M
managing

nonpersistent queues, A-2
propagations, 4-11, 14-27
queue tables, 14-1
queues, 14-14, D-1
subscribers, 14-23
transformations, 14-18

MapMessage
about, 7-14
creating, 7-98
example, 7-131

message headers
conversion with Messaging Gateway, C-50
WebSphere MQ mappings, C-55

message identifier
about, 1-25
and transaction grouping, 1-27
getting in JMS, 7-109

message properties
TIB/Rendezvous, C-61
using with message types in JMS, 7-15

message types in JMS
about, 7-10
AdtMessage, 7-15
BytesMessage, 7-14
MapMessage, 7-14
ObjectMessage, 7-15
StreamMessage, 7-13
TextMessage, 7-14

MessageListener, 7-30
MessageProducer

closing, 7-112
features, 7-26, 7-35

MessageProducer (continued)
setting default Priority, 7-103
setting default TimeToLive, 7-103

messages
array dequeuing, 1-24, 8-21
array enqueuing, 1-22, 8-11
bodies in JMS, 7-13
browsing in JMS, 7-29, 7-96
correlation identifier

about, 1-25
correlation identifiers, 1-22

in JMS, 7-109
creating in JMS, 7-98, 7-99
creating remote subscribers in JMS, 7-86
delay, specifying in JMS, 7-27
dequeuing

features, 1-24
methods, 1-24
modes, 1-24
syntax, 8-13
with concurrent processes, 1-24

enqueuing
features, 1-22
options, 8-2
syntax, 8-2

exception queues, 1-24
expiration

about, 1-22
specifying in JMS, 7-27

format transformations, 1-38
grouping, 1-22

in JMS, 7-27
header conversion with Messaging Gateway,

C-50
headers in JMS, 7-10
history and retention in JMS, 7-9
identifier

about, 1-25
JMS message conversion, C-64
JMS message property

getting, 7-109
JMS message property, setting, 7-100
message consumer in JMS, closing, 7-112
message identifier in JMS, 7-109
MessageProducer in JMS, closing, 7-112
navigating in JMS, 7-28
navigation during dequeuing, 1-24
navigation in receive, 7-28
navigation mode, specifying in JMS, 7-107
non-JMS message conversion, C-49
nonrepudiation, 1-39
object type support, 1-2
ordering

buffered messages, 1-16
ordering during propagation, 1-31

Index

9

messages (continued)
payload restrictions, 4-10
persistence

for security, 1-2
metadata analysis, 1-2
scheduling, 1-2

priority and ordering, 1-22
in JMS, 7-26

priority during propagation, 1-31
Priority, setting in JMS, 7-103
propagation

errors, 1-31
features, 1-31
inboxes and outboxes, 1-31
LOBs, 1-31
remote consumers, 1-31
scheduling, 1-31
statistics, 1-31
using HTTP, 1-31
with Oracle RAC, 1-31

properties, 8-2
in JMS, 7-12

publishing in JMS, 7-75, 7-77, 7-78
QueueBrowser for, creating, 7-67, 7-68
QueueReceiver for, creating, 7-70, 7-71
receiving in JMS, 7-28
receiving synchronously in JMS,

7-104–7-106
recipients

about, 1-8
remote subscirbers, creating in JMS, 7-85
remove no data in JMS, 7-30
retention and history, 1-39
retries during dequeuing, 1-24
retry with delay in JMS, 7-30
sender identification, 1-22
sending in JMS, 7-65, 7-66
states during dequeuing, 1-24
third-party propagation support, 1-31
TIB/Rendezvous conversion, C-59
TimeToLive, setting in JMS, 7-103
TopicBrowser for, creating, 7-92–7-95
TopicReceiver for, creating, 7-90, 7-91
tracking, 1-39
transaction protection, 1-24
transformations, 1-38

in JMS, 7-35
using types with properties in JMS, 7-15
waiting during dequeuing, 1-24
WebSphere MQ conversion, C-54
XML transformations, 1-38

MessageSelector
about, 7-20

Messaging Gateway
about, C-1

Messaging Gateway (continued)
administration, C-4
administration user

creating, C-10
agent

about, C-4
configuring, C-21
error messages, C-74
shutting down, C-23
starting, C-23

agent user
creating, C-11

and JMS, C-2
and non-Oracle messaging systems, C-5
architecture, C-3
buffered messages, C-6
canonical types, C-50
database connection, C-22
database connection information,

configuring, C-11
environment variables, C-16
error conditions, C-71
error messages, C-69
exception handling, C-67
features, C-2
in an Oracle RAC environment, C-11
initialization file, C-9

about, C-15
initialization parameters, C-16
integration with Oracle Database, C-5
Java properties, C-18
links

altering, C-31
loading, C-7
log file, C-65
logical change records, C-52
message conversion (JMS), C-64
message conversion (non-JMS), C-49
messaging system links

configuring, C-25
modifying listener.ora, C-8, C-9
monitoring agent status, C-67
non-Oracle messaging

configuration properties, C-41
optional link configuration properties,

C-44
non-Oracle messaging queues

configuring, C-32
non-Oracle queue

unregistering, C-34
optional foreign queue configuration

properties, C-46
optional subscriber configuration properties,

C-47
propagation, C-5

Index

Index-10

Messaging Gateway (continued)
propagation disabling, C-37
propagation enabling, C-37
propagation resetting, C-37
propagation schedule

removing, C-38
propagation subscriber

creating, C-36
removing, C-38

propagation subscribers, C-35
propagations, C-35

monitoring, C-73
registering non-Oracle queue, C-33
removing a link, C-32
resource limits, C-22
running agent on Oracle RAC, C-24
setting up for TIB/Rendezvous, C-13
setting up for WebSphere MQ, C-14
setting up third-party messaging, C-13
setup

procedure, C-7
verifying, C-14

unloading, C-15
view for non-Oracle queues, C-34
views, C-67
views for links, C-32

Messaging Gateway user
and MGW_AGENT_ROLE, C-11

MGW_ADMINISTRATOR_ROLE
and Messaging Gateway administration user,

C-10
creating, C-7

MGW_AGENT_OPTIONS
Supplemental Options and Properties, C-82

MGW_AGENT_ROLE, C-22
and Messaging Gateway user, C-11
creating, C-7

MGW_BASIC_MSG_T, C-50
MGW_FOREIGN_QUEUES, C-34

Foreign Queues, C-84
MGW_GATEWAY, C-23, C-67

Configuration and Status Information, C-80
MGW_JOBS

Messaging Gateway Propagation Jobs, C-84
MGW_LINKS, C-32

Names and Types of Messaging System
Links, C-82

MGW_MQSERIES_LINK, C-32
MGW_MQSERIES_LINKS

WebSphere MQ Messaging System Links,
C-82

MGW_PRE_PATH, C-16
MGW_SCHEDULES

Information about Schedules, C-86

MGW_SUBSCRIBERS
Information for Subscribers, C-85

MGW_TIBRV_LINKS, C-32
TIB/Rendezvous Messaging System Links,

C-83
MGW_TIBRV_MSG_T, C-50
mgw.ora

about, C-15
comment lines, C-20
environment variables, C-16
Java properties, C-18
modifying for TIB/Rendezvous, C-13
modifying for WebSphere MQ, C-14
parameters, C-16
setting up, C-9

migrating
queue tables, 14-13

modifying
listener.ora for Messaging Gateway, C-8, C-9
transformations, 14-20

monitoring
Messaging Gateway, C-65

propagations, C-73
Messaging Gateway agent status, C-67

MQ_BrokerControlQueue, C-44
MQ_BrokerPubQueue, C-44
MQ_BrokerQueueManager, C-44
MQ_BrokerVersion, C-44
MQ_ccsid, C-44
MQ_CharacterSet, C-46
MQ_JmsDurSubQueue, C-44, C-46
MQ_JmsTargetClient, C-46
MQ_openOptions, C-46
MQ_PubAckInterval, C-44
MQ_ReceiveExit, C-44
MQ_ReceiveExitInit, C-44
MQ_SecurityExit, C-44
MQ_SecurityExitInit, C-44
MQ_SendExit, C-44
MQ_SendExitInit, C-44
MsgBatchSize, C-47
multicasting

definition, 1-13
multiconsumer dequeuing, 1-8

N
names

queue tables
length, 14-2
mixed case, 14-2

queues
length, 14-15
mixed case, 14-15

Index

11

navigation
during dequeuing, 1-24
modes

FIRST_MESSAGE, 1-24
NEXT_MESSAGE, 1-24
NEXT_TRANSACTION, 1-24

specifying mode in JMS, 7-107
nonpersistent queues

compatibility, A-2
creating, A-1
managing, A-2
notifications, A-2
restrictions, A-3

nonrepudiation
about, 1-39

notifications
about, 1-19
buffered messages, 1-19
designated port, 1-19
e-mail, 13-16
IDAP, 13-16
nonpersistent queues, A-2
parameters

post_count, 8-24
post_list, 8-24
reg_count, 8-23
reg_list, 8-23

posting, 8-24
purge following, 1-19
RAW payload delivery, 1-19
registering, 8-23
reliability, 1-19
timeout, 1-19
unregistering, 8-24

O
object message property (JMS)

getting, 7-111
setting, 7-103

object types
access, 4-3
support for, 1-2
synonyms, 4-10

object_name, 2-1
ObjectMessage

about, 7-15
creating, 7-99

OCCI
interface to Oracle Database AQ, 3-15
Oracle type translator, 3-3

OCI
interface to Oracle Database AQ, 3-3
Oracle type translator, 3-3

operational interfaces to Oracle Database AQ,
3-7

options
dequeuing, 8-13
enqueuing, 8-2

Oracle AQ Views, 10-1
Oracle Enterprise Manager

and Oracle Database AQ, 1-39
support for, 4-8

Oracle Internet Directory
and Oracle Database AQ, 1-39
Oracle Database AQ integration, 1-2

Oracle JMS
about, 7-1
Java EE compliance, 7-40

Oracle object (ADT) type queues
Internet operations, 13-2

Oracle RAC
buffered messages, 1-15
configuring Messaging Gateway, C-11
performance with Oracle Database AQ, 9-12
queue service name, 1-18
running Messaging Gateway agent, C-24

Oracle Real Application Clusters
and JMS, 7-9
message propagation, 1-31
support for, 1-2

Oracle TEQ Views, 10-1
Oracle type translator, 3-3
ORACLE_SID

Messaging Gateway, C-16
oracle.mgw.batch_size, C-18
oracle.mgw.polling_interval, C-18
oracle.mgw.tibrv.advMsgCallback, C-18
oracle.mgw.tibrv.encoding, C-18
oracle.mgw.tibrv.intraProcAdvSubjects, C-18
OracleOCIConnectionPool

getting from JMS Connection, 7-98
ordering

commit-time, 1-22
during propagation, 1-31
messages in JMS, 7-26
specifying during enqueuing, 1-22

outboxes, 1-31

P
parameters

admin_option, 14-21
agent_list, 8-12
agent_name, 14-33, 14-34
alias, 14-34
AQ_TM_PROCESSES, 2-8
array_size, 8-11, 8-21
attempts, 8-4

Index

Index-12

parameters (continued)
attribute_number, 14-20
certificate, 8-25
certificate_location, 14-33
comment, 14-3, 14-15
compatibility, 4-1
compatible, 14-3
consumer_name, 8-14
correlation, 8-4, 8-14
db_username, 14-34
delay, 8-4
delivery_mode, 8-3, 8-4, 8-15, 14-23
deq_condition, 8-15
dequeue, 14-17, 14-18
dequeue_mode, 8-14
dequeue_options, 8-13, 8-21
dest_queue_name, 14-29
destination, 14-27, 14-29
destination_queue, 14-27
duration, 14-27
enable_anyp, 14-33
enable_http, 14-33
enqueue, 14-17, 14-18
enqueue_options, 8-2
enqueue_time, 8-5
exception_queue, 8-4
expiration, 8-4
from_schema, 14-19
from_type, 14-19
grant_option, 14-22
grantee, 14-21
latency, 14-27
listen_delivery_mode, 8-12
log_directory, C-16
log_level, C-16
max_retries, 14-15
message_grouping, 14-3
message_properties, 8-2
message_properties_array, 8-11
MSG_STATE, 10-6
msgid, 8-14
multiple_consumers, 14-2
name, 8-24
namespace, 8-25
navigation, 8-14
next_time, 14-27
obj_location, 14-34
original_msgid, 8-5
OWNER_INSTANCE, 1-15
payload, 8-2, 8-25
payload_array, 8-11
post_count, 8-24
post_list, 8-24
primary_instance, 14-3
priority, 8-3

parameters (continued)
purge_condition, 14-11
purge_options, 14-11
queue_name, 14-15
queue_payload_type, 14-2
queue_table, 14-2, 14-15
queue_to_queue, 14-23
queue_type, 14-15
recipient_list, 8-4
reg_count, 8-23
reg_list, 8-23
relative_msgid, 8-3
REMOTE_LISTENER, 1-15
retention_time, 14-15
retry_delay, 14-15
rule, 14-23
secondary_instance, 14-3
secure, 14-4
sender_id, 8-5
sequence_deviation, 8-3
sort_list, 14-2
src_queue_name, 14-29
start_time, 14-27
state, 8-5
storage_clause, 14-2
streams_pool_size, 1-15
to_schema, 14-19
to_type, 14-19
transaction_group, 8-5
transformation, 8-15, 14-19, 14-23
user_property, 8-5
visibility, 8-2, 8-14
wait, 8-12, 8-14

payloads
Internet operations, 13-2
restrictions, 4-10
structured, 1-2
transformations with Messaging Gateway,

C-50
XMLType, 1-2

performance
about, 1-2
buffered messages, 9-11
concurrent processes, 9-9
configuring I/O, 9-9
Oracle Database AQ and Oracle RAC, 9-12
persistent messaging, 9-11
propagation tuning, 9-11
queue table indexes, 9-10
serial processes, 9-10
shared servers, 9-12
storage parameters, 9-9

persistent messaging
compared to buffered, 1-15
performance, 9-11

Index

13

persistent messaging (continued)
tuning, 9-8

point-to-point messages
about, 7-20

port
designated for notification, 1-19

posting for notification, 8-24
PreserveMessageID, C-47
priority

during propagation, 1-31
specifying during enqueuing, 1-22

Priority (JMS)
about, 7-26
setting for all messages from a

MessageProducer, 7-103
privileges

AQ system privilege
granting, 14-21
granting in JMS, 7-53
revoking, 14-21
revoking in JMS, 7-54

DBMS_AQIN, 7-41
parameters

admin_option, 14-21
grant_option, 14-22
grantee, 14-21

queue privilege
granting, 14-22
granting in JMS, 7-55
revoking, 14-23
revoking in JMS, 7-56

required for propagation, 4-11
security, 4-4
Topic privileges

granting in JMS, 7-54
revoking in JMS, 7-55

programmatic interfaces
about, 1-43
AQ XML servlet, 3-18
comparison, 3-1, 3-3
JMS, 3-16
OCCI, 3-15
OCI, 3-3
OCI security, 4-4
PL/SQL, 3-2

propagations
about, 1-31

in JMS, 7-32
altering, 14-30

in JMS, 7-60
BFILE objects, 4-11
buffered messages, 1-15
creating, 14-27
debugging, 12-1

propagations (continued)
disabling, 14-31

in JMS, 7-60
with Messaging Gateway, C-37

dropping, 14-32
enabling, 14-31

in JMS, 7-59
with Messaging Gateway, C-37

error handling, 1-31
in JMS, 7-35

features, 1-31
inboxes and outboxes, 1-31
JMS messages with Messaging Gateway

inbound, C-65
outbound, C-65

managing, 4-11, 14-27
messages with LOBs, 1-31
Messaging Gateway

configuring for, C-35
monitoring, C-73
resetting with, C-37
subscribers, about, C-35
subscribers, creating, C-36
subscribers, removing, C-38

optimizing, 4-12
parameters

destination, 14-27
destination_queue, 14-27
duration, 14-27
latency, 14-27
next_time, 14-27
start_time, 14-27

priority and ordering of messages, 1-31
privileges required, 4-11
queue-to-dblink

about, 1-32
scheduling, 1-34
with Oracle RAC, 1-37

queue-to-queue
about, 1-32
buffered messages, 1-18
scheduling, 1-34
with Oracle RAC, 1-37

remote consumers
about, 1-31

schedules
about, 1-31
altering, 1-35
creating syntax, 14-27
in JMS, 7-33, 7-58
removing with Messaging Gateway, C-38

scheduling
in JMS, 7-59

security, 4-4
statistics, 1-31

Index

Index-14

propagations (continued)
third-party support, 1-31
TIB/Rendezvous, C-62, C-63
tuning, 9-11
unscheduling, 14-32

in JMS, 7-61
using HTTP, 1-31, 13-4
using HTTP and HTTPS, 13-4
WebSphere MQ, C-58, C-59
with Messaging Gateway, C-5
with Oracle RAC, 1-31

publish/subscribe, 7-22
about, 1-12
setting up, 1-13, 7-25

publishing JMS messages
specifying a recipient list, 7-78
specifying delivery mode, priority, and time to

live, 7-77
specifying Topic, 7-77
with minimal specification, 7-75

purge
following notification, 1-19

purging
queue tables, 14-11

Q
Queue (JMS)

getting in LDAP, 7-48
queue monitor coordinator, 1-39
Queue Monitor Coordinator, 2-9
queue privilege

granting, 14-22
in JMS, 7-55

revoking, 14-23
in JMS, 7-56

queue tables
altering, 14-9
creating, 14-2

in JMS, 7-49
data pump, 4-7
dropping, 14-10
export

modes, 4-5
exporting

about, 4-5
getting in JMS, 7-53
importing

about, 4-5, 4-7
IGNORE parameter, 4-7
multiple recipients, 4-7

managing, 14-1
migrating, 14-13
multiple recipients

exporting, 4-5

queue tables (continued)
names

length, 14-2
mixed case, 4-1, 14-2

parameters
comment, 14-3
compatible, 14-3
message_grouping, 14-3
multiple_consumers, 14-2
primary_instance, 14-3
queue_payload type, 14-2
queue_table, 14-2
secondary_instance, 14-3
secure, 14-4
sort_list, 14-2
storage_clause, 14-2

payload types, 14-2
purging, 14-11
restrictions, 4-10
security, 14-4
sort key, 14-2
storage clause, 14-2
tuning indexes for performance, 9-10

QUEUE_PRIVILEGES, 10-5
queue/topic connection factory

getting in LDAP, 7-48
QueueBrowser

about, 7-20
creating for Oracle object type messages,

7-68
creating for standard JMS type messages,

7-67
QueueConnection

creating with default ConnectionFactory
parameters, 7-63

creating with open JDBC connection, 7-63
creating with open

OracleOCIConnectionPool, 7-63
creating with user name/password, 7-62

QueueConnectionFactory
getting

in LDAP, 7-48
getting with JDBC connection parameters,

7-46
getting with JDBC URL, 7-46
registering

through database using JDBC
connection parameters, 7-41

through database using JDBC URL, 7-42
through LDAP using JDBC connection

parameters, 7-42
through LDAP using JDBC URL, 7-43

unregistering
through database, 7-44
through LDAP, 7-45

Index

15

QueueReceiver
about, 7-20
creating for Oracle object type messages,

7-71
creating for standard JMS type messages,

7-70
queues

altering, 14-17
cleaning up, 1-39
creating, 14-14

in JMS, 7-50
dropping, 14-18
exception, 1-24

in JMS, 7-31
listening, 8-12
management restrictions, 4-9
managing, 14-14, D-1
monitor coordinator, 1-39
names

length, 14-15
mixed case, 4-1, 14-15

non-Oracle
configuring, C-32
registering, C-33

nonpersistent, A-1
compatibility, A-2
managing, A-2
notifications, A-2
restrictions, A-3

parameters
comment, 14-15
dequeue, 14-17, 14-18
enqueue, 14-17, 14-18
max_retries, 14-15
queue_name, 14-15
queue_table, 14-15
queue_type, 14-15
retention_time, 14-15
retry_delay, 14-15

point-to-point
creating in JMS, 7-50, 7-52

restrictions, 4-10
secure, 8-1
security, 4-4
starting, 14-17
stopping, 14-18
subscribers

about, 1-8
type, verifying, 14-29

QueueSender
about, 7-20
creating, 7-65
sending messages and specifying options,

7-66
sending messages with default options, 7-65

QueueSession
creating, 7-64

queuing
and Oracle Database, 1-2
definition, 1-1

R
RAW

payload delivery with notification, 1-19
using RAW queues for Internet operations,

13-2
recipients

about, 1-8
recipient lists in JMS, 7-24

recovery
restrictions, 4-10

REF payloads
restrictions, 4-10

registerConnectionFactory
and AQ_ADMINISTRATOR_ROLE, 7-42
and GLOBAL_AQ_USER_ROLE, 7-43
using JDBC connection parameters through

LDAP, 7-42
using JDBC connection parameters through

the database, 7-41
using JDBC URL through LDAP, 7-43

registering
for notification, 8-23
through the database, JDBC URL, 7-42

registration
client request for, 13-9
IDAP client request, 13-13
IDAP server response to request, 13-15

reliability
notifications, 1-19

remote consumers
propagation, 1-31

remote subscribers
restrictions, 4-9

RemoteSubscriber, 7-23, 7-32
resource limits

Messaging Gateway, C-22
restrictions

buffered messages, 1-15
message payloads, 4-10
nonpersistent queues, A-3
point-in-time recovery, 4-10
queue management, 4-9
REF payloads, 4-10
remote subscribers, 4-9
subscribers, 4-9
synonyms, 4-10
virtual private database, 4-10

result cache, xxxviii

Index

Index-16

retention
of messages, 1-39

in JMS, 7-9
retries

during dequeuing, 1-24
multiple sessions dequeuing, 1-29

revoking
AQ system privilege, 14-21

in JMS, 7-54
queue privilege, 14-23

in JMS, 7-56
roles

AQ_ADMINISTRATOR_ROLE, 3-16, 4-2,
7-42

AQ_USER_ROLE, 3-16, 4-3
GLOBAL_AQ_USER_ROLE, 7-3, 7-43
MGW_ADMINISTRATOR_ROLE, C-7, C-10
MGW_AGENT_ROLE, C-7, C-11

rollback
all operations in JMS Session, 7-97

RV_discardAmount, C-47
RV_limitPolicy, C-47
RV_maxEvents, C-47

S
scalability

about, 1-2
schedules

enabling and disabling propagation with
Messaging Gateway, C-37

scheduling
about propagation scheduling, 1-31
propagations using

SCHEDULE_PROPAGATION, 14-27
secure queues, 8-1
security, 4-2

at destination level in JMS, 7-8
at system level in JMS, 7-8
compatibility parameter, 4-3
message persistence, 1-2
OCI applications, 4-4
propagations, 4-4
queue privileges, 4-4
queue tables

secure parameter, 14-4
sender identification

during enqueuing, 1-22
serial processes

tuning for Oracle Database AQ, 9-10
Session (JMS)

creating, 7-64, 7-74
sharded queue, xxxviii
shared servers

performance with Oracle Database AQ, 9-12

short message property (JMS)
getting, 7-111
setting, 7-102

SOAP
body, 13-7
envelope, 13-7
header, 13-7
message structure, 13-6
method invocation, 13-7

stack trace
printing in JMS, 7-114

starting
JMS Connection, 7-97
Messaging Gateway agent, C-23
queues, 14-17

statistics
propagation, 1-31

stopping
JMS Connection, 7-112
queues, 14-18

storage parameters
tuning Oracle Database AQ, 9-9

StreamMessage
about, 7-13
creating, 7-99
example, 7-126

string message property (JMS)
getting, 7-110
setting, 7-101

structured payloads, 1-2
about, 1-2
in JMS, 7-10

subscribers
about, 1-8
adding, 14-23
altering, 14-25
creating, 14-23
creating JMS remote subscriber for Oracle

object type messages, 7-86
creating remote subscriber for JMS

messages, 7-85
creating with Messaging Gateway, C-36
in Messaging Gateway propagations, C-35
managing, 14-23
names

mixed case, 4-1
ordering, 1-9
parameters

delivery_mode, 14-23
queue_to_queue, 14-23
rule, 14-23
transformation, 14-23

removing, 14-26
restrictions, 4-9

Index

17

subscribers (continued)
specifying transformations for in JMS, 7-83,

7-87
unsubscribing DurableSubscribers, 7-88,

7-89
synonyms

restrictions, 4-10
SYS.AQ$_DESCRIPTOR, 2-5
SYS.AQ$_POST_INFO, 2-6
SYS.AQ$_REG_INFO, 2-3
SYS.MGW_MQSERIES_PROPERTIES, C-41
SYS.MGW_TIBRV_PROPERTIES, C-43
system privilege

granting, 14-21
in JMS, 7-53

revoking, 14-21
in JMS, 7-54

T
TextMessage

about, 7-14
creating, 7-99
example, 7-137

third-party messaging
and application development, 1-7
and Messaging Gateway, C-5
configuration properties, C-41
optional foreign queue configuration

properties, C-46
optional link configuration properties, C-44
optional subscriber configuration properties,

C-47
queues

configuring, C-32
registering, C-33
unregistering, C-34

setting up, C-13
view for registered queues, C-34

TIB/Rendezvous
AQ_MsgProperties, C-47
links

creating, C-31
listener.ora, modifying, C-13
message conversion, C-59
message property mapping, C-61
Messaging Gateway. setting up for, C-13
mgw.ora, modifying, C-13
MsgBatchSize, C-47
PreserveMessageID, C-47
propagation

inbound, C-63
outbound, C-62

RV_discardAmount, C-47
RV_limitPolicy, C-47

TIB/Rendezvous (continued)
RV_maxEvents, C-47
Subject

registering, C-34
unregistering, C-34

system properties, C-43
time specification

during enqueuing, 1-22
timeout

notifications, 1-19
TimeToLive

setting for all messages from a
MessageProducer, 7-103

Topic
creating DurableSubscriber for, 7-79–7-82
creating in JMS, 7-50
getting in LDAP, 7-48
granting Topic privilege in JMS, 7-54
revoking Topic privilege in JMS, 7-55
specifying transformations for subscribers,

7-83
TopicBrowser, 7-24

browsing messages using, 7-96
creating for Topic of Oracle type messages,

7-94, 7-95
creating for Topic of standard JMS type

messages, 7-92, 7-93
TopicConnection

creating with open JDBC connection, 7-74
creating with open

OracleOCIConnectionPool, 7-74
creating with user name/password, 7-73

TopicConnectionFactory
getting

in LDAP, 7-48
with JDBC connection parameters, 7-47
with JDBC URL, 7-47

registering
through database using JDBC

connection parameters, 7-41
through database using JDBC URL, 7-42
through LDAP using JDBC connection

parameters, 7-42
through LDAP using JDBC URL, 7-43

unregistering
through database, 7-44
through LDAP, 7-45

TopicPublisher
about, 7-24
creating, 7-75

TopicReceiver
about, 7-24
creating for Topic of Oracle object type

messages, 7-91

Index

Index-18

TopicReceiver (continued)
creating for Topic of standard JMS type

messages, 7-90
TopicSession

creating, 7-75
transaction

IDAP client request
commit, 13-14
roll back, 13-14

protection during dequeuing, 1-24
transformations

about, 1-38
altering, 14-20
creating, 14-19
dropping, 14-20
for remote subscribers, specifying in JMS,

7-87
for Topic subscribers, specifying in JMS,

7-83
managing, 14-18
Messaging Gateway, C-50
modifying, 14-20
parameters

attribute_number, 14-20
from_schema, 14-19
from_type, 14-19
to_schema, 14-19
to_type, 14-19
transformation, 14-19

XML, 1-38
troubleshooting

in JMS, 7-113
tuning

buffered messages, 9-11
persistent messaging, 9-8

type_name, 2-2
types

access, 4-3
AQ agent, 2-2
AQ agent list, 2-3
AQ notification descriptor, 2-5
AQ post information, 2-6
AQ post information list, 2-3
AQ recipient list, 2-3
AQ registration information, 2-3
AQ registration information list, 2-3
AQ subscriber list, 2-3
aq$_purge_options_t, 14-11
buffered messaging support, 1-16
Messaging Gateway, C-50
MGW_BASIC_MSG_T, C-50
MGW_TIBRV_MSG_T, C-50
support for, 1-2

U
unregistering

ConnectionFactory in LDAP, 7-44, 7-45
notification, 8-24

unscheduling
propagations, 14-32

in JMS, 7-61
user authentication

Internet operations, 13-3
USER_ATTRIBUTE_TRANSFORMATIONS

User Transformation Functions, 10-14
USER_QUEUE_SCHEDULES, 10-5
USER_QUEUE_SUBSCRIBERS, 10-12
USER_QUEUE_TABLES, 10-3
USER_QUEUES, 10-4
USER_SUBSCR_REGISTRATIONS

User Subscription Registrations, 10-14
USER_TRANSFORMATIONS, 10-13
users

Messaging Gateway agent, C-11

V
V$AQ_BACKGROUND_COORDINATOR, 10-23
V$AQ_CROSS_INSTANCE_JOBS, 10-24
V$AQ_IPC_ACTIVE_MSGS, 10-25
V$AQ_IPC_MSG_STATS, 10-25
V$AQ_IPC_PENDING_MSGS, 10-25
V$AQ_JOB_COORDINATOR, 10-24
V$AQ_MESSAGE_CACHE_ADVICE, 10-21
V$AQ_MESSAGE_CACHE_STAT, 10-19
V$AQ_NONDUR_REGISTRATIONS, 10-26
V$AQ_NONDUR_SUBSCRIBER, 10-27
V$AQ_NONDUR_SUBSCRIBER_LWM, 10-27
V$AQ_NOTIFICATION_CLIENTS, 10-26
V$AQ_REMOTE_DEQUEUE_AFFINITY, 10-23
V$AQ_SERVER_POOL, 10-24
V$AQ_SHARDED_SUBSCRIBER_STAT, 10-21
V$AQ_SUBSCRIBER_LOAD, 10-26
V$BUFFERED_PUBLISHERS

All Buffered Publishers in the Instance, 10-16
V$BUFFERED_SUBSCRIBERS

Subscribers for All Buffered Queues in the
Instance, 10-16

V$METRICGROUP
Information about the Metric Group, 10-19

V$PERSISTENT_PUBLISHERS
All Active Publishers of the Persistent

Queues in the Database, 10-18
V$PERSISTENT_QMN_CACHE

Performance Statistics on Background Tasks
for Persistent Queues, 10-17

Index

19

V$PERSISTENT_QUEUES
All Active Persistent Queues in the

Database, 10-17
V$PERSISTENT_SUBSCRIBERS

All Active Subscribers of the Persistent
Queues in the Database, 10-17

V$PROPAGATION_RECEIVER
Buffer Queue Propagation Schedules on the

Receiving (Destination) Side, 10-18
V$PROPAGATION_SENDER

Buffer Queue Propagation Schedules on the
Sending (Source) Side, 10-18

V$SUBSCR_REGISTRATION_STATS
Diagnosability of Notifications, 10-19

verifying
Messaging Gateway setup, C-14
queue type, 14-29

views
all propagation schedules, 10-5
all queue subscribers in database, 10-12
all queues in database, 10-4
all transformation functions, 10-13
all transformations, 10-13
AQ agents registered for Internet access,

10-15
dequeue affinity instance list, 10-23
memory management for sharded queues,

10-19
messages in queue table, 10-6
Messaging Gateway, C-23
Messaging Gateway agent, C-67
Messaging Gateway links, C-32
propagation schedules in user schema, 10-5
queue subscribers, 10-10
queue subscribers and their rules, 10-10
queue subscribers for queues where user

has queue privileges, 10-13
queue subscribers in user schema, 10-12
queue tables in user schema, 10-3
queues for which user has any privilege, 10-4
queues for which user has queue privilege,

10-5
queues in user schema, 10-4
registered non-Oracle queues, C-34
sharded queue subscriber statistics, 10-21
simulated metrics, 10-21
user transformations, 10-13

virtual private database
restrictions, 4-10

visibility
about, 13-10, 13-12
buffered messages, 1-16
dequeue options, 8-14
enqueue options, 8-2

visibility (continued)
rollback opertations, 13-14

W
waiting

during dequeuing, 1-24
WebSphere MQ

base Java link, creating, C-26
base Java queue

registering, C-33
unregistering, C-34

JMS link, creating, C-27
JMS Queue or Topic

registering, C-34
unregistering, C-34

JMS_DeliveryMode, C-47
JMS_NoLocal, C-47
listener .ora, modifying, C-14
message conversion, C-54
message header mappings, C-55
Messaging Gateway, setting up for, C-14
mgw.ora, modifying, C-14
MQ_BrokerControlQueue, C-44
MQ_BrokerPubQueue, C-44
MQ_BrokerQueueManager, C-44
MQ_BrokerVersion, C-44
MQ_ccsid, C-44
MQ_CharacterSet, C-46
MQ_JmsDurSubQueue, C-44, C-46
MQ_JmsTargetClient, C-46
MQ_openOptions, C-46
MQ_PubAckInterval, C-44
MQ_ReceiveExit, C-44
MQ_ReceiveExitInit, C-44
MQ_SecurityExit, C-44
MQ_SecurityExitInit, C-44
MQ_SendExit, C-44
MQ_SendExitInit, C-44
MsgBatchSize, C-47
optional link configuration properties, C-44
PreserveMessageID, C-47
propagation

inbound, C-59
outbound, C-58

system properties, C-41

X
XA

using with Oracle Database AQ, 4-8
XML, 13-1

deploying AQ servlet, 13-5
message format transformations, 1-38

Index

Index-20

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Advanced Queuing User's Guide
	Changes in Oracle Database Advanced Queuing Release 20c
	New Features
	Deprecated Features

	Changes in Oracle Database Advanced Queuing Release 19c, Version 19.2
	New Features
	Desupported Features

	Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2.)
	New Features

	Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2)
	New Features

	Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1)
	New Features

	1 Introduction to Transactional Event Queues and Advanced Queuing
	What Is Queuing?
	Transactional Event Queues Leverage Oracle Database
	Transactional Event Queues and Advanced Queuing in Integrated Application Environments
	Transactional Event Queues and Advanced Queuing Client/Server Communication
	Multiconsumer Dequeuing of the Same Message
	Transactional Event Queues and Advanced Queuing Implementation of Workflows
	Transactional Event Queues and Advanced Queuing Implementation of Publish/Subscribe

	Buffered Messaging
	Asynchronous Notifications
	Views on Registration
	Event-Based Notification
	Notification Grouping by Time

	Enqueue Features
	Dequeue Features
	Propagation Features
	Message Format Transformation
	Other Oracle Database Advanced Queuing Features
	Interfaces to Transactional Event Queues and Advanced Queuing

	2 Basic Components of Oracle Transactional Event Queues and Advanced Queuing
	Object Name
	Type Name
	AQ Agent Type
	AQ Recipient List Type
	AQ Agent List Type
	AQ Subscriber List Type
	AQ Registration Information List Type
	AQ Post Information List Type
	AQ Registration Information Type
	AQ Notification Descriptor Type
	AQ Message Properties Type
	AQ Post Information Type
	AQ$_NTFN_MSGID_ARRAY Type
	Enumerated Constants for AQ Administrative Interface
	Enumerated Constants for AQ Operational Interface
	AQ Background Processes
	Queue Monitor Processes
	Job Queue Processes
	AQ Background Architecture

	3 Oracle Transactional Event Queues and Advanced Queuing: Programmatic Interfaces
	Programmatic Interfaces for Accessing Oracle Database Advanced Queuing
	Using PL/SQL to Access Oracle Database Advanced Queuing
	Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing
	Comparing Oracle Database Advanced Queuing Programmatic Interfaces
	Oracle Transactional Event Queues and Advanced Queuing Administrative Interfaces
	Oracle Database Advanced Queuing Operational Interfaces

	Using OCCI to Access Oracle Database Advanced Queuing
	Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced Queuing
	Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database Advanced Queuing

	4 Managing Oracle Transactional Event Queues and Advanced Queuing
	Oracle Database Advanced Queuing Compatibility Parameters
	Queue Security and Access Control
	Oracle Database Advanced Queuing Security
	Administrator Role
	User Role
	Access to Oracle Database Advanced Queuing Object Types

	Queue Security
	Queue Privileges and Access Control
	OCI Applications and Queue Access
	Security Required for Propagation
	Security Required for AQ Buffered Messages on Oracle RAC

	Queue Table Export/Import
	Exporting Queue Table Data
	Importing Queue Table Data
	Data Pump Export and Import

	Oracle Enterprise Manager Support for AQ Queues
	Using Oracle Database Advanced Queuing with XA
	Restrictions on Queue Management
	Subscribers
	DML Not Supported on Queue Tables or Associated IOTs
	Propagation from Object Queues with REF Payload Attributes
	Collection Types in Message Payloads
	Synonyms on Queue Tables and Queues
	Synonyms on Object Types
	Tablespace Point-in-Time Recovery
	Virtual Private Database

	Managing Propagation
	EXECUTE Privileges Required for Propagation
	Propagation from Object Queues
	Optimizing Propagation
	Handling Failures in Propagation

	5 Interoperability of Transactional Event Queue with Apache Kafka
	Setup and Prerequisites
	Connecting from Apache Kafka to Oracle TEQ (Confluent Platform and CLI Example)
	Connecting from Oracle TEQ to Apache Kafka (Confluent Platform and CLI Example)
	Monitoring Message Transfer

	6 Kafka Java Client Interface for Oracle Transactional Event Queues
	Apache Kafka Overview
	Kafka Java Client for Transactional Event Queues
	Configuring Kafka Java Client for Transactional Event Queues
	Kafka Client Interfaces
	Overview of Kafka Producer Implementation for TEQ
	Overview of Kafka Consumer implementation for TEQ
	Overview of Kafka Admin Implementation for TEQ

	Examples: How to Use

	7 Java Message Service for Transactional Event Queues and Advanced Queuing
	Java Messaging Service Interface for Oracle Transactional Event Queues and Advanced Queuing
	General Features of JMS and Oracle JMS
	JMS Connection and Session
	ConnectionFactory Objects
	Using AQjmsFactory to Obtain ConnectionFactory Objects
	Using JNDI to Look Up ConnectionFactory Objects
	JMS Connection
	JMS Session

	JMS Destination
	Using a JMS Session to Obtain Destination Objects
	Using JNDI to Look Up Destination Objects
	JMS Destination Methods

	System-Level Access Control in JMS
	Destination-Level Access Control in JMS
	Retention and Message History in JMS
	Supporting Oracle Real Application Clusters in JMS
	Supporting Statistics Views in JMS

	Structured Payload/Message Types in JMS
	JMS Message Headers
	JMS Message Properties
	JMS Message Bodies
	StreamMessage
	BytesMessage
	MapMessage
	TextMessage
	ObjectMessage
	AdtMessage

	Using Message Properties with Different Message Types
	Buffered Messaging with Oracle JMS

	Buffered Messaging in JMS
	JMS Point-to-Point Model Features
	JMS Publish/Subscribe Model Features
	JMS Publish/Subscribe Overview
	DurableSubscriber
	RemoteSubscriber
	TopicPublisher
	Recipient Lists
	TopicReceiver
	TopicBrowser
	Setting Up JMS Publish/Subscribe Operations

	JMS Message Producer Features
	Priority and Ordering of Messages
	Specifying a Message Delay
	Specifying a Message Expiration
	Message Grouping

	JMS Message Consumer Features
	Receiving Messages
	Message Navigation in Receive
	Browsing Messages
	Remove No Data
	Retry with Delay Interval
	Asynchronously Receiving Messages Using MessageListener
	Exception Queues

	JMS Propagation
	RemoteSubscriber
	Scheduling Propagation
	Enhanced Propagation Scheduling Capabilities
	Exception Handling During Propagation

	Message Transformation with JMS AQ
	JMS Streaming
	JMS Streaming with Enqueue
	JMS Streaming with Dequeue

	Java EE Compliance

	Oracle Java Message Service Basic Operations
	EXECUTE Privilege on DBMS_AQIN
	Registering a ConnectionFactory
	Registering Through the Database Using JDBC Connection Parameters
	Registering Through the Database Using a JDBC URL
	Registering Through LDAP Using JDBC Connection Parameters
	Registering Through LDAP Using a JDBC URL

	Unregistering a Queue/Topic ConnectionFactory
	Unregistering Through the Database
	Unregistering Through LDAP

	Getting a QueueConnectionFactory or TopicConnectionFactory
	Getting a QueueConnectionFactory with JDBC URL
	Getting a QueueConnectionFactory with JDBC Connection Parameters
	Getting a TopicConnectionFactory with JDBC URL
	Getting a TopicConnectionFactory with JDBC Connection Parameters
	Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP

	Getting a Queue or Topic in LDAP
	Creating an AQ Queue Table
	Creating a Queue
	Creating a Point-to-Point Queue
	Creating a Publish/Subscribe Topic
	Creating a TEQ Queue for Point-to-Point Queue and Publish/Subscribe Topic

	Getting an AQ Queue Table
	Granting and Revoking Privileges
	Granting Oracle Database Advanced Queuing System Privileges
	Revoking Oracle Database Advanced Queuing System Privileges
	Granting Publish/Subscribe Topic Privileges
	Revoking Publish/Subscribe Topic Privileges
	Granting Point-to-Point Queue Privileges
	Revoking Point-to-Point Queue Privileges

	Managing Destinations
	Starting a Destination
	Stopping a Destination
	Altering a Destination
	Dropping a Destination

	Propagation Schedules
	Scheduling a Propagation
	Enabling a Propagation Schedule
	Altering a Propagation Schedule
	Disabling a Propagation Schedule
	Unscheduling a Propagation

	Oracle Java Message Service Point-to-Point
	Creating a Connection with User Name/Password
	Creating a Connection with Default ConnectionFactory Parameters
	Creating a QueueConnection with User Name/Password
	Creating a QueueConnection with an Open JDBC Connection
	Creating a QueueConnection with Default ConnectionFactory Parameters
	Creating a QueueConnection with an Open OracleOCIConnectionPool
	Creating a Session
	Creating a QueueSession
	Creating a QueueSender
	Sending Messages Using a QueueSender with Default Send Options
	Sending Messages Using a QueueSender by Specifying Send Options
	Creating a QueueBrowser for Standard JMS Type Messages
	Creating a QueueBrowser for Standard JMS Type Messages, Locking Messages
	Creating a QueueBrowser for Oracle Object Type Messages
	Creating a QueueBrowser for Oracle Object Type Messages, Locking Messages
	Creating a QueueReceiver for Standard JMS Type Messages
	Creating a QueueReceiver for Oracle Object Type Messages

	Oracle Java Message Service Publish/Subscribe
	Creating a Connection with User Name/Password
	Creating a Connection with Default ConnectionFactory Parameters
	Creating a TopicConnection with User Name/Password
	Creating a TopicConnection with Open JDBC Connection
	Creating a TopicConnection with an Open OracleOCIConnectionPool
	Creating a Session
	Creating a TopicSession
	Creating a TopicPublisher
	Publishing Messages with Minimal Specification
	Publishing Messages Specifying Topic
	Publishing Messages Specifying Delivery Mode, Priority, and TimeToLive
	Publishing Messages Specifying a Recipient List
	Creating a DurableSubscriber for a JMS Topic Without Selector
	Creating a DurableSubscriber for a JMS Topic with Selector
	Creating a DurableSubscriber for an Oracle Object Type Topic Without Selector
	Creating a DurableSubscriber for an Oracle Object Type Topic with Selector
	Specifying Transformations for Topic Subscribers
	Creating a Remote Subscriber for JMS Messages
	Creating a Remote Subscriber for Oracle Object Type Messages
	Specifying Transformations for Remote Subscribers
	Unsubscribing a Durable Subscription for a Local Subscriber
	Unsubscribing a Durable Subscription for a Remote Subscriber
	Creating a TopicReceiver for a Topic of Standard JMS Type Messages
	Creating a TopicReceiver for a Topic of Oracle Object Type Messages
	Creating a TopicBrowser for Standard JMS Messages
	Creating a TopicBrowser for Standard JMS Messages, Locking Messages
	Creating a TopicBrowser for Oracle Object Type Messages
	Creating a TopicBrowser for Oracle Object Type Messages, Locking Messages
	Browsing Messages Using a TopicBrowser

	Oracle Java Message Service Shared Interfaces
	Oracle Database Advanced Queuing JMS Operational Interface: Shared Interfaces
	Starting a JMS Connection
	Getting a JMS Connection
	Committing All Operations in a Session
	Rolling Back All Operations in a Session
	Getting the JDBC Connection from a Session
	Getting the OracleOCIConnectionPool from a JMS Connection
	Creating a BytesMessage
	Creating a MapMessage
	Creating a StreamMessage
	Creating an ObjectMessage
	Creating a TextMessage
	Creating a JMS Message
	Creating an AdtMessage
	Setting a JMS Correlation Identifier

	Specifying JMS Message Properties
	Setting a Boolean Message Property
	Setting a String Message Property
	Setting an Integer Message Property
	Setting a Double Message Property
	Setting a Float Message Property
	Setting a Byte Message Property
	Setting a Long Message Property
	Setting a Short Message Property
	Setting an Object Message Property

	Setting Default TimeToLive for All Messages Sent by a MessageProducer
	Setting Default Priority for All Messages Sent by a MessageProducer
	Creating an AQjms Agent
	Receiving a Message Synchronously
	Using a Message Consumer by Specifying Timeout
	Using a Message Consumer Without Waiting
	Receiving Messages from a Destination Using a Transformation

	Specifying the Navigation Mode for Receiving Messages
	Receiving a Message Asynchronously
	Specifying a Message Listener at the Message Consumer
	Specifying a Message Listener at the Session

	Getting Message ID
	Getting the Correlation Identifier
	Getting the Message Identifier

	Getting JMS Message Properties
	Getting a Boolean Message Property
	Getting a String Message Property
	Getting an Integer Message Property
	Getting a Double Message Property
	Getting a Float Message Property
	Getting a Byte Message Property
	Getting a Long Message Property
	Getting a Short Message Property
	Getting an Object Message Property

	Closing and Shutting Down
	Closing a MessageProducer
	Closing a Message Consumer
	Stopping a JMS Connection
	Closing a JMS Session
	Closing a JMS Connection

	Troubleshooting
	Getting a JMS Error Code
	Getting a JMS Error Number
	Getting an Exception Linked to a JMS Exception
	Printing the Stack Trace for a JMS Exception
	Setting an Exception Listener
	Getting an Exception Listener

	Oracle Java Message Service Types Examples
	How to Set Up the Oracle Database Advanced Queuing JMS Type Examples
	JMS BytesMessage Examples
	JMS StreamMessage Examples
	JMS MapMessage Examples
	More Oracle Database Advanced Queuing JMS Examples

	8 Oracle Database Advanced Queuing Operations Using PL/SQL
	Using Secure Queues
	Enqueuing Messages
	Enqueuing an Array of Messages
	Listening to One or More Queues
	Dequeuing Messages
	Dequeuing an Array of Messages
	Registering for Notification
	Unregistering for Notification
	Posting for Subscriber Notification
	Adding an Agent to the LDAP Server
	Removing an Agent from the LDAP Server

	9 Oracle Transactional Event Queues and Advanced Queuing Performance and Scalability
	Transactional Event Queues
	Transactional Event Queues and the Message Cache
	Transactional Event Queues and Enqueuing / Dequeuing Messages
	Transactional Event Queues and Native JMS Support
	Transactional Event Queues and Partitioning
	Transactional Event Queues and Oracle Real Application Clusters (Oracle RAC)
	Transactional Event Queues and Message Retention
	Transactional Event Queues and Seekable Subscribers
	Transactional Event Queues Restrictions
	Transactional Event Queues Tuning
	User Event Streaming

	AQ Queues
	Persistent Messaging Basic Tuning Tips
	Memory Requirements
	Using Storage Parameters
	I/O Configuration
	Running Enqueue and Dequeue Processes Concurrently in a Single Queue Table
	Running Enqueue and Dequeue Processes Serially in a Single Queue Table
	Creating Indexes on a Queue Table
	Other Tips for Queues

	Propagation Tuning Tips
	Buffered Messaging Tuning
	Persistent Messaging Performance Overview for Queues
	Queues and Oracle Real Application Clusters
	Oracle Database Advanced Queuing in a Shared Server Environment

	Performance Views

	10 Oracle Transactional Event Queue and Advanced Queuing Views
	DBA_QUEUE_TABLES: All Queue Tables in Database
	USER_QUEUE_TABLES: Queue Tables in User Schema
	ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User
	DBA_QUEUES: All Queues in Database
	USER_QUEUES: Queues In User Schema
	ALL_QUEUES: Queues for Which User Has Any Privilege
	DBA_QUEUE_SCHEDULES: All Propagation Schedules
	USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema
	QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege
	AQ$<Queue_Table_Name>: Messages in Queue Table
	AQ$<Queue_Table_Name_S>: Queue Subscribers
	AQ$<Queue_Table_Name_R>: Queue Subscribers and Their Rules
	AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue
	AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue
	DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database
	USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema
	ALL_QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue Privileges
	DBA_TRANSFORMATIONS: All Transformations
	DBA_ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions
	USER_TRANSFORMATIONS: User Transformations
	USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions
	DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations
	USER_SUBSCR_REGISTRATIONS: User Subscription Registrations
	AQ$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered for Internet Access
	V$AQ: Number of Messages in Different States in Database
	V$BUFFERED_QUEUES: All Buffered Queues in the Instance
	V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the Instance
	V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance
	V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance
	V$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for Persistent Queues
	V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent Queues in the Instance
	V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the Instance
	V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the Sending (Source) Side
	V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the Receiving (Destination) Side
	V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications
	V$METRICGROUP: Information About the Metric Group
	V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues
	V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics
	V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics
	V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List
	V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master Background Coordinator Process (AQPC)
	V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator
	V$AQ_SERVER_POOL: Performance Statistics for all Servers
	V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description
	V$AQ_IPC_ACTIVE_MSGS
	V$AQ_IPC_MSG_STATS
	V$AQ_IPC_PENDING_MSGS
	V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations
	V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections
	V$AQ_SUBSCRIBER_LOAD: Durable Subscribers
	V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers
	V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber
	V$AQ_MESSAGE_CACHE: Performance Statistics

	11 Monitoring Oracle Transactional Event Queues and Advanced Queuing
	Importance of Performance Monitoring
	Monitoring Data Flow and UI Framework Setup
	Key Metrics Measured
	Scripts for Setting up Monitoring
	Measuring Kafka Java Client and Kafka Interoperability with TEQ
	Troubleshooting

	12 Troubleshooting Oracle Database Advanced Queuing
	Debugging Oracle Database Advanced Queuing Propagation Problems
	Oracle Database Advanced Queuing Error Messages

	13 Internet Access to Oracle Database Advanced Queuing
	Overview of Oracle Database Advanced Queuing Operations Over the Internet
	Oracle Database Advanced Queuing Internet Operations Architecture
	Internet Message Payloads
	Configuring the Web Server to Authenticate Users Sending POST Requests
	Client Requests Using HTTP
	Oracle Database Advanced Queuing Servlet Responses Using HTTP
	Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS

	Deploying the Oracle Database Advanced Queuing XML Servlet
	Internet Data Access Presentation (IDAP)
	SOAP Message Structure
	SOAP Envelope
	SOAP Header
	SOAP Body

	SOAP Method Invocation
	HTTP Headers
	Method Invocation Body
	Results from a Method Request

	Request and Response IDAP Documents
	IDAP Client Requests for Enqueue
	IDAP Client Requests for Dequeue
	IDAP Client Requests for Registration
	IDAP Client Requests to Commit a Transaction
	IDAP Client Requests to Roll Back a Transaction
	IDAP Server Response to an Enqueue Request
	IDAP Server Response to a Dequeue Request
	IDAP Server Response to a Register Request
	IDAP Commit Response
	IDAP Rollback Response
	IDAP Notification
	IDAP Response in Case of Error

	Notification of Messages by E-Mail

	14 Oracle Database Advanced Queuing Administrative Interface
	Managing AQ Queue Tables
	Creating an AQ Queue Table
	Altering an AQ Queue Table
	Dropping an AQ Queue Table
	Purging an AQ Queue Table
	Migrating an AQ Queue Table

	Managing AQ Queues
	Creating an AQ Queue
	Altering an AQ Queue
	Starting an AQ Queue
	Stopping an AQ Queue
	Dropping an AQ Queue

	Managing Transformations
	Creating a Transformation
	Modifying a Transformation
	Dropping a Transformation

	Granting and Revoking Privileges
	Granting Oracle Database Advanced Queuing System Privileges
	Revoking Oracle Database Advanced Queuing System Privileges
	Granting Queue Privileges
	Revoking Queue Privileges

	Managing Subscribers
	Adding a Subscriber
	Altering a Subscriber
	Removing a Subscriber

	Managing Propagations
	Scheduling a Queue Propagation
	Verifying Propagation Queue Type
	Altering a Propagation Schedule
	Enabling a Propagation Schedule
	Disabling a Propagation Schedule
	Unscheduling a Queue Propagation

	Managing Oracle Database Advanced Queuing Agents
	Creating an Oracle Database Advanced Queuing Agent
	Altering an Oracle Database Advanced Queuing Agent
	Dropping an Oracle Database Advanced Queuing Agent
	Enabling Database Access
	Disabling Database Access

	Adding an Alias to the LDAP Server
	Deleting an Alias from the LDAP Server

	A Nonpersistent Queues
	Creating Nonpersistent Queues
	Managing Nonpersistent Queues
	Compatibility of Nonpersistent Queues
	Nonpersistent Queue Notification
	Restrictions on Nonpersistent Queues

	B Oracle JMS and Oracle AQ XML Servlet Error Messages
	Oracle JMS Error Messages
	Oracle AQ XML Servlet Error Messages

	C Oracle Messaging Gateway
	Introduction to Oracle Messaging Gateway
	Oracle Messaging Gateway Overview
	Oracle Messaging Gateway Features
	Oracle Messaging Gateway Architecture
	Administration Package DBMS_MGWADM
	Oracle Messaging Gateway Agent
	Oracle Database
	Non-Oracle Messaging Systems

	Propagation Processing Overview
	Oracle Database AQ Buffered Messages and Messaging Gateway

	Getting Started with Oracle Messaging Gateway
	Oracle Messaging Gateway Prerequisites
	Loading and Setting Up Oracle Messaging Gateway
	Loading Database Objects into the Database
	Modifying listener.ora for the External Procedure
	Modifying tnsnames.ora for the External Procedure
	Setting Up an mgw.ora Initialization File
	Creating an Oracle Messaging Gateway Administrator User
	Creating an Oracle Messaging Gateway Agent User
	Configuring Oracle Messaging Gateway Connection Information
	Configuring Oracle Messaging Gateway in an Oracle RAC Environment
	Configuring Connection Information for the MGW Agent Connections
	Setting the Oracle RAC Instance for the Messaging Gateway Agent

	Setting Up Non-Oracle Messaging Systems
	Setting Up for TIB/Rendezvous
	Setting Up for WebSphere MQ Base Java or JMS

	Verifying the Oracle Messaging Gateway Setup
	Unloading Oracle Messaging Gateway
	Understanding the mgw.ora Initialization File
	mgw.ora Initialization Parameters
	mgw.ora Environment Variables
	mgw.ora Java Properties
	mgw.ora Comment Lines

	Working with Oracle Messaging Gateway
	Configuring the Oracle Messaging Gateway Agent
	Creating a Messaging Gateway Agent
	Removing a Messaging Gateway Agent
	Setting Database Connection
	Setting the Resource Limits

	Starting and Shutting Down the Oracle Messaging Gateway Agent
	Starting the Oracle Messaging Gateway Agent
	Shutting Down the Oracle Messaging Gateway Agent
	Oracle Messaging Gateway Agent Scheduler Job
	Running the Oracle Messaging Gateway Agent on Oracle RAC

	Configuring Messaging System Links
	Creating a WebSphere MQ Base Java Link
	Creating a WebSphere MQ JMS Link
	Creating a WebSphere MQ Link to Use SSL
	Creating a TIB/Rendezvous Link
	Altering a Messaging System Link
	Removing a Messaging System Link
	Views for Messaging System Links

	Configuring Non-Oracle Messaging System Queues
	Registering a Non-Oracle Queue
	Registering a WebSphere MQ Base Java Queue
	Registering a WebSphere MQ JMS Queue or Topic
	Registering a TIB/Rendezvous Subject

	Unregistering a Non-Oracle Queue
	View for Registered Non-Oracle Queues

	Configuring Oracle Messaging Gateway Propagation Jobs
	Propagation Job Overview
	Creating an Oracle Messaging Gateway Propagation Job
	Enabling and Disabling a Propagation Job
	Resetting a Propagation Job
	Altering a Propagation Job
	Removing a Propagation Job

	Propagation Jobs, Subscribers, and Schedules
	Propagation Job, Subscriber, Schedule Interface Interoperability
	Propagation Job, Subscriber, Schedule Views
	Single Consumer Queue as Propagation Source

	Configuration Properties
	WebSphere MQ System Properties
	TIB/Rendezvous System Properties
	Optional Link Configuration Properties
	Optional Foreign Queue Configuration Properties
	Optional Job Configuration Properties

	Oracle Messaging Gateway Message Conversion
	Converting Oracle Messaging Gateway Non-JMS Messages
	Overview of the Non-JMS Message Conversion Process
	Oracle Messaging Gateway Canonical Types
	Message Header Conversion
	Handling Arbitrary Payload Types Using Message Transformations
	Handling Logical Change Records

	Message Conversion for WebSphere MQ
	WebSphere MQ Message Header Mappings
	WebSphere MQ Outbound Propagation
	WebSphere MQ Inbound Propagation

	Message Conversion for TIB/Rendezvous
	AQ Message Property Mapping for TIB/Rendezvous
	TIB/Rendezvous Outbound Propagation
	TIB/Rendezvous Inbound Propagation

	JMS Messages
	JMS Outbound Propagation
	JMS Inbound Propagation

	Monitoring Oracle Messaging Gateway
	Oracle Messaging Gateway Log Files
	Sample Oracle Messaging Gateway Log File
	Interpreting Exception Messages in an Oracle Messaging Gateway Log File

	Monitoring the Oracle Messaging Gateway Agent Status
	MGW_GATEWAY View
	Oracle Messaging Gateway Irrecoverable Error Messages
	Other Oracle Messaging Gateway Error Conditions

	Monitoring Oracle Messaging Gateway Propagation
	Oracle Messaging Gateway Agent Error Messages

	Oracle Messaging Gateway Views
	MGW_GATEWAY: Configuration and Status Information
	MGW_AGENT_OPTIONS: Supplemental Options and Properties
	MGW_LINKS: Names and Types of Messaging System Links
	MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
	MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links
	MGW_FOREIGN_QUEUES: Foreign Queues
	MGW_JOBS: Messaging Gateway Propagation Jobs
	MGW_SUBSCRIBERS: Information for Subscribers
	MGW_SCHEDULES: Information About Schedules

	D Advanced Queuing Sharded Queues
	Managing Sharded Queues
	Creating a Sharded Queue
	Dropping a Sharded Queue
	Altering a Sharded Queue
	Setting a Queue Parameter
	Unsetting a Queue Parameter
	Getting a Queue Parameter
	Creating an Exception Queue

	Glossary
	ADT
	API
	application programming interface
	approximate CSCN
	asynchronous
	BFILE
	binary large object
	BLOB
	broadcast
	buffered queue
	canonical
	character large object
	CLOB
	ConnectionFactory
	commit-time queue
	consumer
	data manipulation language
	Database Configuration Assistant
	DBCA
	dequeue
	DML
	enqueue
	exception queue
	IDAP
	index-organized table
	Internet Data Access Presentation
	Inter-process Communication
	IOT
	IPC
	Java Database Connectivity
	Java Message Service
	Java Naming and Directory Interface
	Java Virtual Machine
	JDBC
	JDBC driver
	JMS
	JMS connection
	JMS message
	JMS session
	JMS topic
	JNDI
	Jnnn
	JServer
	JVM
	large object
	LDAP
	Lightweight Directory Access Protocol
	LOB
	local consumer
	logical change record
	message
	multicast
	national character large object
	NCLOB
	nonpersistent
	nontransactional
	object type
	OCI
	Oracle JMS
	OLTP
	Online Transaction Processing
	Oracle Call Interface
	Oracle Java Message Service
	producer
	propagation
	publish/subscribe
	QMNC
	QMNn
	queue
	queue table
	recipient
	remote consumer
	result cache
	rules
	rules engine
	schema
	send
	servlet
	SGA
	sharded queue
	Simple Object Access Protocol
	SOAP
	subscriber
	System Global Area
	synchronous
	transactional
	transformation
	user queue
	VARRAY
	wildcard
	workflow

	Index

