
Oracle® Spatial and Graph
GeoRaster Developer's Guide

20c
F15877-03
July 2020

Oracle Spatial and Graph GeoRaster Developer's Guide, 20c

F15877-03

Copyright © 1999, 2020, Oracle and/or its affiliates.

Primary Author: Chuck Murray

Contributors: Fengting Chen, Qingyun (Jeffrey) Xie, Zhihai Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xvii

Documentation Accessibility xvii

Related Documents xviii

Conventions xviii

 Changes in This Release for Oracle Spatial and Graph GeoRaster
Developer's Guide

Changes in Oracle Database Release 20c xix

1 GeoRaster Overview and Concepts

1.1 Vector and Raster Data 1-4

1.2 Raster Data Sources 1-4

1.2.1 Remote Sensing 1-4

1.2.2 Photogrammetry 1-5

1.2.3 Geographic Information Systems 1-5

1.2.4 Cartography 1-5

1.2.5 Digital Image Processing 1-6

1.2.6 Geology, Geophysics, and Geochemistry 1-6

1.3 GeoRaster Data Model 1-6

1.4 GeoRaster Physical Storage 1-11

1.4.1 Storage Parameters 1-15

1.4.2 Raster Data Table 1-20

1.4.3 Blank and Empty GeoRaster Objects 1-21

1.4.4 Empty Raster Blocks 1-21

1.4.5 Cross-Schema Support with GeoRaster 1-22

1.5 Bands, Layers, and Metadata 1-22

1.6 Georeferencing 1-24

1.6.1 Functional Fitting Georeferencing Model 1-25

1.6.2 Ground Control Point (GCP) Georeferencing Model 1-27

1.6.3 Cell Coordinate and Model Coordinate Transformation 1-28

iii

1.7 Resampling and Interpolation 1-29

1.8 Pyramids 1-30

1.9 Bitmap Masks 1-32

1.10 NODATA Values and Value Ranges 1-33

1.11 Compression and Decompression 1-34

1.11.1 JPEG (JPEG-F) Compression of GeoRaster Objects 1-36

1.11.1.1 JPEG-B Support Deprecated 1-36

1.11.2 JPEG 2000 Compression of GeoRaster Objects 1-36

1.11.3 DEFLATE Compression of GeoRaster Objects 1-37

1.11.4 Decompression of GeoRaster Objects 1-37

1.11.5 Third-Party Plug-ins for Compression 1-38

1.11.6 Advanced LOB Compression 1-38

1.12 GeoRaster and Database Management 1-38

1.13 Parallel Processing in GeoRaster 1-39

1.14 Reporting Operation Progress in GeoRaster 1-40

1.15 GeoRaster PL/SQL API 1-41

1.16 GeoRaster Java API 1-42

1.17 GeoRaster Spatial Web Services 1-42

1.18 Map Visualization Component and GeoRaster 1-43

1.19 GeoRaster Tools: Viewer, Loader, Exporter 1-43

1.19.1 JAI-Based Viewer, Loader, and Exporter 1-44

1.19.2 GDAL-Based ETL Wizard for Concurrent Batch Loading and Exporting 1-45

1.19.3 Using GDAL from the Spatial and Graph Installation 1-46

1.19.4 Using the SDO_GEOR_GDAL Package 1-47

1.20 GeoRaster PL/SQL and Java Sample Files 1-48

1.21 README File for Spatial and Graph and Related Features 1-48

2 GeoRaster Data Types and Related Structures

2.1 SDO_GEORASTER Object Type 2-1

2.1.1 rasterType Attribute 2-2

2.1.2 spatialExtent Attribute 2-2

2.1.3 rasterDataTable Attribute 2-3

2.1.4 rasterID Attribute 2-3

2.1.5 metadata Attribute 2-3

2.2 SDO_RASTER Object Type and the Raster Data Table 2-3

2.2.1 rasterID Attribute 2-4

2.2.2 pyramidLevel Attribute 2-4

2.2.3 bandBlockNumber Attribute 2-5

2.2.4 rowBlockNumber Attribute 2-5

2.2.5 columnBlockNumber Attribute 2-5

iv

2.2.6 blockMBR Attribute 2-5

2.2.7 rasterBlock Attribute 2-5

2.3 Other GeoRaster Types 2-5

2.3.1 SDO_GEOR_HISTOGRAM Object Type 2-6

2.3.2 SDO_GEOR_HISTOGRAM_ARRAY Collection Type 2-6

2.3.3 SDO_GEOR_COLORMAP Object Type 2-7

2.3.4 SDO_GEOR_GRAYSCALE Object Type 2-8

2.3.5 SDO_RASTERSET Collection Type 2-9

2.3.6 SDO_GEOR_SRS Object Type 2-9

2.3.7 SDO_GEOR_GCP Object Type 2-12

2.3.8 SDO_GEOR_GCP_ COLLECTION Collection Type 2-13

2.3.9 SDO_GEOR_GCPGEOREFTYPE Object Type 2-13

2.4 GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA) 2-14

2.4.1 TABLE_NAME Column 2-15

2.4.2 COLUMN_NAME Column 2-16

2.4.3 METADATA_COLUMN_NAME Column 2-16

2.4.4 RDT_TABLE_NAME Column 2-16

2.4.5 RASTER_ID Column 2-16

2.4.6 OTHER_TABLE_NAMES Column 2-16

2.5 GeoRaster XML Schema 2-16

3 GeoRaster Database Creation and Management

3.1 Enabling GeoRaster at the Schema Level 3-2

3.2 Adding Data Files and Temporary Tablespaces for GeoRaster Users 3-2

3.3 Creating the GeoRaster Table and Raster Data Tables 3-3

3.3.1 Creating a GeoRaster Table 3-3

3.3.2 Creating Raster Data Tables 3-3

3.3.3 GeoRaster DML Trigger 3-5

3.4 Creating New GeoRaster Objects 3-5

3.5 Loading Raster Data 3-6

3.5.1 Loading with Blocking and Optimal Padding 3-7

3.5.2 Loading JPEG and JPEG 2000 Images Without Decompression 3-8

3.5.3 Reformatting the Source Raster Before Loading 3-8

3.6 Validating GeoRaster Objects 3-9

3.7 Georeferencing GeoRaster Objects 3-10

3.8 Generating and Setting Spatial Extents 3-12

3.8.1 Special Considerations if the GeoRaster Table Has a Spatial Index 3-13

3.9 Indexing GeoRaster Objects 3-14

3.10 Viewing GeoRaster Objects 3-15

3.11 Exporting GeoRaster Objects 3-16

v

3.12 Using GeoRaster with Workspace Manager and Label Security 3-16

3.12.1 Using GeoRaster with Workspace Manager 3-16

3.12.2 Using GeoRaster with Label Security 3-17

3.13 Maintaining Efficient Tablespace Use by GeoRaster Objects 3-18

3.14 Checking GeoRaster Tables and Objects in the Database 3-19

3.15 Maintaining GeoRaster Objects and System Data in the Database 3-20

3.16 Transferring GeoRaster Data Between Databases 3-21

3.16.1 Checking for and Resolving Conflicts 3-22

3.16.2 Performing the GeoRaster Data Transfer 3-23

3.17 Using Transportable Tablespaces with GeoRaster Data 3-24

4 GeoRaster Data Query and Manipulation

4.1 Querying and Searching GeoRaster Objects 4-1

4.2 Changing and Optimizing Raster Storage 4-2

4.3 Copying GeoRaster Objects 4-3

4.4 Subsetting GeoRaster Objects with Polygon Clipping 4-4

4.5 Querying and Updating GeoRaster Metadata 4-4

4.6 Querying and Updating GeoRaster Cell Data 4-5

4.7 Interpolating Cell Values 4-7

4.8 Processing and Analyzing GeoRaster Objects 4-7

4.9 Monitoring and Reporting GeoRaster Operation Progress 4-8

4.10 Compressing and Decompressing GeoRaster Objects 4-10

4.11 Deleting GeoRaster Objects, and Performing Actions on GeoRaster Tables
and RDTs 4-11

4.12 Performing Cross-Schema Operations 4-12

4.13 Managing Memory to Improve Performance 4-13

4.14 Updating GeoRaster Objects Before Committing 4-14

4.15 Updating GeoRaster Objects in a Loop 4-15

4.16 Using Template-Related Subprograms to Develop GeoRaster Applications 4-16

5 Raster Algebra and Analytics

5.1 Raster Algebra Language 5-2

5.1.1 Examples of Raster Algebra Expressions 5-5

5.2 Cell Value-Based Conditional Queries 5-7

5.3 Cell Value-Based Conditional Updates (Edits) 5-9

5.4 Mathematical Operations 5-12

5.5 Classification Operations 5-15

5.6 Statistical Operations 5-17

5.6.1 On-the-Fly Statistical Analysis 5-17

5.6.2 Stack Statistical Analysis 5-18

vi

5.7 Logical Operations 5-21

5.7.1 Using Raster Algebra Procedures with Logical Expressions 5-21

5.7.2 Using Raster Algebra Functions Only 5-23

5.8 Raster Data Scaling and Offsetting 5-25

5.9 Raster Data Casting 5-27

5.10 Cartographic Modeling 5-28

5.11 Terrain Modeling and Analysis 5-29

6 Image Processing and Virtual Mosaic

6.1 Advanced Georeferencing 6-3

6.2 Image Reprojection 6-6

6.3 Image Rectification 6-7

6.4 Image Orthorectification 6-8

6.4.1 Orthorectification with Average Height 6-8

6.4.2 Orthorectification with DEM 6-9

6.5 Image Warping 6-11

6.6 Image Affine Transformation and Scaling 6-12

6.7 Image Stretching, Normalization, Equalization, Histogram Matching, and
Dodging 6-14

6.8 Image Filtering 6-14

6.9 Image Segmentation 6-15

6.10 Image Pyramiding: Parallel Generation and Partial Update 6-15

6.11 Bitmap Pyramiding 6-17

6.12 Vegetation Index Computation 6-17

6.13 Tasseled Cap Transformation 6-18

6.14 Image Masking 6-18

6.15 Band Merging 6-19

6.16 Image Appending 6-20

6.17 Large-Scale Image Mosaicking 6-20

6.17.1 Color Balancing During Mosaicking 6-23

6.17.2 Parallel Compression, Copying, and Subsetting 6-25

6.18 Virtual Mosaic 6-27

6.18.1 Virtual Mosaic as One or a List of GeoRaster Tables 6-28

6.18.2 Virtual Mosaic as a View with a GeoRaster Column 6-29

6.18.3 Virtual Mosaic as a SQL Query Statement or a Cursor 6-30

6.18.4 Using Virtual Mosaic in Applications 6-31

6.18.5 Special Considerations for Large-Scale Virtual Mosaic 6-32

6.18.5.1 Improving Query Performance Using MIN_X_RES$ and
MAX_X_RES$ 6-33

6.19 Image Serving 6-34

vii

7 SDO_GEOR Package Reference

7.1 SDO_GEOR.addNODATA 7-5

7.2 SDO_GEOR.addSourceInfo 7-7

7.3 SDO_GEOR.affineTransform 7-8

7.4 SDO_GEOR.calcCompressionRatio 7-12

7.5 SDO_GEOR.changeCellValue 7-13

7.6 SDO_GEOR.changeCellValues 7-15

7.7 SDO_GEOR.changeFormatCopy 7-17

7.8 SDO_GEOR.compressJP2 7-19

7.9 SDO_GEOR.copy 7-22

7.10 SDO_GEOR.createBlank 7-23

7.11 SDO_GEOR.createTemplate 7-25

7.12 SDO_GEOR.decompressJP2 7-27

7.13 SDO_GEOR.deleteControlPoint 7-29

7.14 SDO_GEOR.deleteNODATA 7-29

7.15 SDO_GEOR.deletePyramid 7-31

7.16 SDO_GEOR.evaluateDouble 7-32

7.17 SDO_GEOR.evaluateDoubles 7-34

7.18 SDO_GEOR.exportTo 7-36

7.19 SDO_GEOR.generateAreaWeightedMean 7-39

7.20 SDO_GEOR.generateBitmapPyramid 7-40

7.21 SDO_GEOR.generateBlockMBR 7-42

7.22 SDO_GEOR.generatePyramid 7-43

7.23 SDO_GEOR.generateSpatialExtent 7-45

7.24 SDO_GEOR.generateSpatialResolutions 7-47

7.25 SDO_GEOR.generateStatistics 7-49

7.26 SDO_GEOR.generateStatisticsMax 7-54

7.27 SDO_GEOR.generateStatisticsMean 7-57

7.28 SDO_GEOR.generateStatisticsMedian 7-60

7.29 SDO_GEOR.generateStatisticsMin 7-62

7.30 SDO_GEOR.generateStatisticsMode 7-65

7.31 SDO_GEOR.generateStatisticsSTD 7-68

7.32 SDO_GEOR.generateStatisticsSum 7-71

7.33 SDO_GEOR.georeference 7-74

7.34 SDO_GEOR.getBandDimSize 7-79

7.35 SDO_GEOR.getBeginDateTime 7-79

7.36 SDO_GEOR.getBinFunction 7-80

7.37 SDO_GEOR.getBinTable 7-81

7.38 SDO_GEOR.getBinType 7-82

7.39 SDO_GEOR.getBitmapMask 7-83

viii

7.40 SDO_GEOR.getBitmapMaskSubset 7-84

7.41 SDO_GEOR.getBitmapMaskValue 7-87

7.42 SDO_GEOR.getBitmapMaskValues 7-88

7.43 SDO_GEOR.getBlankCellValue 7-89

7.44 SDO_GEOR.getBlockingType 7-90

7.45 SDO_GEOR.getBlockSize 7-91

7.46 SDO_GEOR.getCellCoordinate 7-91

7.47 SDO_GEOR.getCellDepth 7-94

7.48 SDO_GEOR.getCellValue 7-95

7.49 SDO_GEOR.getCellValues 7-97

7.50 SDO_GEOR.getColorMap 7-99

7.51 SDO_GEOR.getColorMapTable 7-101

7.52 SDO_GEOR.getCompressionType 7-102

7.53 SDO_GEOR.getControlPoint 7-102

7.54 SDO_GEOR.getDefaultAlpha 7-103

7.55 SDO_GEOR.getDefaultBlue 7-104

7.56 SDO_GEOR.getDefaultColorLayer 7-105

7.57 SDO_GEOR.getDefaultGreen 7-106

7.58 SDO_GEOR.getDefaultPyramidLevel 7-107

7.59 SDO_GEOR.getDefaultRed 7-107

7.60 SDO_GEOR.getEndDateTime 7-108

7.61 SDO_GEOR.getGCPGeorefMethod 7-109

7.62 SDO_GEOR.getGCPGeorefModel 7-110

7.63 SDO_GEOR.getGeoreferenceType 7-111

7.64 SDO_GEOR.getGrayScale 7-112

7.65 SDO_GEOR.getGrayScaleTable 7-112

7.66 SDO_GEOR.getHistogram 7-113

7.67 SDO_GEOR.getHistogramTable 7-114

7.68 SDO_GEOR.getID 7-115

7.69 SDO_GEOR.getInterleavingType 7-116

7.70 SDO_GEOR.getJP2TileSize 7-117

7.71 SDO_GEOR.getLayerDimension 7-117

7.72 SDO_GEOR.getLayerID 7-118

7.73 SDO_GEOR.getLayerOrdinate 7-119

7.74 SDO_GEOR.getModelCoordinate 7-120

7.75 SDO_GEOR.getModelCoordLocation 7-121

7.76 SDO_GEOR.getModelSRID 7-122

7.77 SDO_GEOR.getNODATA 7-123

7.78 SDO_GEOR.getPyramidMaxLevel 7-124

7.79 SDO_GEOR.getPyramidType 7-124

7.80 SDO_GEOR.getRasterBlockLocator 7-125

ix

7.81 SDO_GEOR.getRasterBlocks 7-127

7.82 SDO_GEOR.getRasterData 7-129

7.83 SDO_GEOR.getRasterRange 7-130

7.84 SDO_GEOR.getRasterSubset 7-131

7.85 SDO_GEOR.getScaling 7-136

7.86 SDO_GEOR.getSourceInfo 7-137

7.87 SDO_GEOR.getSpatialDimNumber 7-138

7.88 SDO_GEOR.getSpatialDimSizes 7-139

7.89 SDO_GEOR.getSpatialResolutions 7-140

7.90 SDO_GEOR.getSpectralResolution 7-140

7.91 SDO_GEOR.getSpectralUnit 7-141

7.92 SDO_GEOR.getSRS 7-142

7.93 SDO_GEOR.getStatistics 7-143

7.94 SDO_GEOR.getTotalLayerNumber 7-144

7.95 SDO_GEOR.getULTCoordinate 7-144

7.96 SDO_GEOR.getVAT 7-145

7.97 SDO_GEOR.getVersion 7-146

7.98 SDO_GEOR.hasBitmapMask 7-146

7.99 SDO_GEOR.hasGrayScale 7-147

7.100 SDO_GEOR.hasNODATAMask 7-148

7.101 SDO_GEOR.hasPseudoColor 7-149

7.102 SDO_GEOR.importFrom 7-149

7.103 SDO_GEOR.init 7-153

7.104 SDO_GEOR.isBlank 7-154

7.105 SDO_GEOR.isOrthoRectified 7-155

7.106 SDO_GEOR.isRectified 7-156

7.107 SDO_GEOR.isSpatialReferenced 7-157

7.108 SDO_GEOR.mask 7-158

7.109 SDO_GEOR.mergeLayers 7-160

7.110 SDO_GEOR.mosaic 7-163

7.111 SDO_GEOR.rectify 7-165

7.112 SDO_GEOR.reproject 7-172

7.113 SDO_GEOR.scaleCopy 7-176

7.114 SDO_GEOR.schemaValidate 7-179

7.115 SDO_GEOR.setBeginDateTime 7-180

7.116 SDO_GEOR.setBinFunction 7-181

7.117 SDO_GEOR.setBinTable 7-182

7.118 SDO_GEOR.setBitmapMask 7-183

7.119 SDO_GEOR.setBlankCellValue 7-184

7.120 SDO_GEOR.setColorMap 7-185

7.121 SDO_GEOR.setColorMapTable 7-186

x

7.122 SDO_GEOR.setControlPoint 7-187

7.123 SDO_GEOR.setDefaultAlpha 7-188

7.124 SDO_GEOR.setDefaultBlue 7-189

7.125 SDO_GEOR.setDefaultColorLayer 7-190

7.126 SDO_GEOR.setDefaultGreen 7-192

7.127 SDO_GEOR.setDefaultPyramidLevel 7-193

7.128 SDO_GEOR.setDefaultRed 7-194

7.129 SDO_GEOR.setEndDateTime 7-195

7.130 SDO_GEOR.setGCPGeorefMethod 7-196

7.131 SDO_GEOR.setGCPGeorefModel 7-197

7.132 SDO_GEOR.setGrayScale 7-198

7.133 SDO_GEOR.setGrayScaleTable 7-200

7.134 SDO_GEOR.setHistogramTable 7-201

7.135 SDO_GEOR.setID 7-202

7.136 SDO_GEOR.setLayerID 7-203

7.137 SDO_GEOR.setLayerOrdinate 7-204

7.138 SDO_GEOR.setModelCoordLocation 7-205

7.139 SDO_GEOR.setModelSRID 7-206

7.140 SDO_GEOR.setNODATAMask 7-207

7.141 SDO_GEOR.setOrthoRectified 7-208

7.142 SDO_GEOR.setRasterType 7-209

7.143 SDO_GEOR.setRectified 7-209

7.144 SDO_GEOR.setScaling 7-210

7.145 SDO_GEOR.setSourceInfo 7-211

7.146 SDO_GEOR.setSpatialReferenced 7-212

7.147 SDO_GEOR.setSpatialResolutions 7-213

7.148 SDO_GEOR.setSpectralResolution 7-214

7.149 SDO_GEOR.setSpectralUnit 7-215

7.150 SDO_GEOR.setSRS 7-216

7.151 SDO_GEOR.setStatistics 7-219

7.152 SDO_GEOR.setULTCoordinate 7-221

7.153 SDO_GEOR.setVAT 7-222

7.154 SDO_GEOR.setVersion 7-223

7.155 SDO_GEOR.subset 7-224

7.156 SDO_GEOR.updateRaster 7-228

7.157 SDO_GEOR.validateBlockMBR 7-231

7.158 SDO_GEOR.validateGeoRaster 7-232

7.159 SDO_GEOR.warp 7-234

xi

8 SDO_GEOR_ADMIN Package Reference

8.1 SDO_GEOR_ADMIN.checkSysdataEntries 8-1

8.2 SDO_GEOR_ADMIN.enableGeoRaster 8-2

8.3 SDO_GEOR_ADMIN.isGeoRasterEnabled 8-3

8.4 SDO_GEOR_ADMIN.isRDTNameUnique 8-4

8.5 SDO_GEOR_ADMIN.isUpgradeNeeded 8-4

8.6 SDO_GEOR_ADMIN.listGeoRasterColumns 8-5

8.7 SDO_GEOR_ADMIN.listGeoRasterObjects 8-6

8.8 SDO_GEOR_ADMIN.listGeoRasterTables 8-6

8.9 SDO_GEOR_ADMIN.listDanglingRasterData 8-7

8.10 SDO_GEOR_ADMIN.listRDT 8-8

8.11 SDO_GEOR_ADMIN.listRegisteredRDT 8-8

8.12 SDO_GEOR_ADMIN.listUnregisteredRDT 8-9

8.13 SDO_GEOR_ADMIN.maintainSysdataEntries 8-10

8.14 SDO_GEOR_ADMIN.registerGeoRasterColumns 8-11

8.15 SDO_GEOR_ADMIN.registerGeoRasterObjects 8-11

8.16 SDO_GEOR_ADMIN.upgradeGeoRaster 8-11

9 SDO_GEOR_AGGR Package Reference

9.1 SDO_GEOR_AGGR.append 9-1

9.2 SDO_GEOR_AGGR.getMosaicExtent 9-3

9.3 SDO_GEOR_AGGR.getMosaicResolutions 9-4

9.4 SDO_GEOR_AGGR.getMosaicStatistics 9-5

9.5 SDO_GEOR_AGGR.getMosaicSubset 9-7

9.6 SDO_GEOR_AGGR.mosaicSubset 9-13

9.7 SDO_GEOR_AGGR.validateForMosaicSubset 9-27

10

SDO_GEOR_GDAL Package Reference

10.1 SDO_GEOR_GDAL.dem 10-1

10.2 SDO_GEOR_GDAL.translate 10-3

11

SDO_GEOR_IP Package Reference

11.1 SDO_GEOR_IP.dodge 11-1

11.2 SDO_GEOR_IP.equalize 11-4

11.3 SDO_GEOR_IP.filter 11-7

11.4 SDO_GEOR_IP.histogramMatch 11-11

11.5 SDO_GEOR_IP.normalize 11-14

11.6 SDO_GEOR_IP.piecewiseStretch 11-19

xii

11.7 SDO_GEOR_IP.stretch 11-23

12

SDO_GEOR_RA Package Reference

12.1 SDO_GEOR_RA.classify 12-1

12.2 SDO_GEOR_RA.diff 12-8

12.3 SDO_GEOR_RA.findCells 12-11

12.4 SDO_GEOR_RA.isOverlap 12-14

12.5 SDO_GEOR_RA.over 12-16

12.6 SDO_GEOR_RA.rasterMathOp 12-19

12.7 SDO_GEOR_RA.rasterUpdate 12-28

12.8 SDO_GEOR_RA.stack 12-31

13

SDO_GEOR_UTL Package Reference

13.1 SDO_GEOR_UTL.calcOptimizedBlockSize 13-2

13.2 SDO_GEOR_UTL.calcRasterNominalSize 13-3

13.3 SDO_GEOR_UTL.calcRasterStorageSize 13-4

13.4 SDO_GEOR_UTL.calcSurfaceArea 13-5

13.5 SDO_GEOR_UTL.clearReportTable 13-6

13.6 SDO_GEOR_UTL.createDMLTrigger 13-6

13.7 SDO_GEOR_UTL.createReportTable 13-7

13.8 SDO_GEOR_UTL.disableReport 13-8

13.9 SDO_GEOR_UTL.dropReportTable 13-8

13.10 SDO_GEOR_UTL.emptyBlocks 13-9

13.11 SDO_GEOR_UTL.enableReport 13-10

13.12 SDO_GEOR_UTL.fillEmptyBlocks 13-10

13.13 SDO_GEOR_UTL.generateColorRamp 13-11

13.14 SDO_GEOR_UTL.generateGrayRamp 13-13

13.15 SDO_GEOR_UTL.getAllStatusReport 13-16

13.16 SDO_GEOR_UTL.getMaxMemSize 13-17

13.17 SDO_GEOR_UTL.getReadBlockMemSize 13-17

13.18 SDO_GEOR_UTL.getProgress 13-18

13.19 SDO_GEOR_UTL.getStatusReport 13-19

13.20 SDO_GEOR_UTL.getWriteBlockMemSize 13-20

13.21 SDO_GEOR_UTL.isReporting 13-20

13.22 SDO_GEOR_UTL.makeRDTNamesUnique 13-21

13.23 SDO_GEOR_UTL.recreateDMLTriggers 13-21

13.24 SDO_GEOR_UTL.renameRDT 13-22

13.25 SDO_GEOR_UTL.setClientID 13-23

13.26 SDO_GEOR_UTL.setMaxMemSize 13-23

xiii

13.27 SDO_GEOR_UTL.setReadBlockMemSize 13-24

13.28 SDO_GEOR_UTL.setSeqID 13-25

13.29 SDO_GEOR_UTL.setWriteBlockMemSize 13-25

A GeoRaster Metadata XML Schema

Index

xiv

List of Figures

1-1 Raster Space and Model Space 1-8

1-2 Two Types of Cell Coordinate Systems 1-9

1-3 Physical Storage of GeoRaster Data 1-13

1-4 GeoRaster Data in an Oracle Database 1-14

1-5 Layers, Bands, and the Raster Data Table 1-23

1-6 Polynomials Used for Georeferencing 1-25

1-7 Pyramid Levels 1-31

xv

List of Tables

1-1 storageParam Keywords for Raster Data 1-16

2-1 SDO_GEOR_HISTOGRAM Object Type Attributes 2-6

2-2 SDO_GEOR_COLORMAP Object Type Attributes 2-7

2-3 SDO_GEOR_GRAYSCALE Object Type Attributes 2-9

2-4 SDO_GEOR_SRS Object Type Attributes 2-10

2-5 SDO_GEOR_GCP Object Type Attributes 2-13

2-6 SDO_GEOR_GCPGEOREFTYPE Object Type Attributes 2-14

2-7 SDO_GEOR_XMLSCHEMA_TABLE Table Columns 2-17

4-1 GeoRaster Buffering Parameters 4-13

7-1 compressParam Keywords for JPEG 2000 (JP2) Compression 7-20

9-1 mosaicParam Keywords 9-17

10-1 openOptions Parameter Possible Values for dem Operations 10-2

10-2 options Parameter Possible Values for translate Operations 10-5

xvi

Preface

Oracle Spatial and Graph GeoRaster Developer's Guide provides usage and reference
information for the GeoRaster feature of Oracle Spatial and Graph, referred to in this
guide as GeoRaster. GeoRaster lets you store, index, query, analyze, and deliver
raster image and gridded data and its associated metadata. GeoRaster provides
Oracle Spatial and Graph data types and an object-relational schema. You can use
these data types and schema objects to store multidimensional grid layers and digital
images that can be referenced to positions on the Earth's surface or a local coordinate
system.

GeoRaster is not a separate product. It is available when you install Oracle Spatial and
Graph.

Note:

To use GeoRaster, you must understand the main concepts, data types,
techniques, operators, procedures, and functions of Oracle Spatial and
Graph, which are documented in Oracle Spatial and Graph Developer's
Guide.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for anyone who needs to store raster data in an Oracle
database.

You should be familiar with Oracle Spatial and Graph, PL/SQL programming, and
Oracle object-relational technology.

You should also be familiar with raster concepts and terminology, techniques for
capturing or creating raster data, and techniques for processing raster data. For
example, this guide mentions that data can be georeferenced if it is georectified;
however, it does not explain the process of georectification or the challenges and
techniques involved.

Documentation Accessibility

xvii

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following document:

• Oracle Spatial and Graph Developer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Changes in This Release for Oracle Spatial
and Graph GeoRaster Developer's Guide

This preface contains the following.

• Changes in Oracle Database Release 20c

Changes in Oracle Database Release 20c
The following are changes in Oracle Spatial and Graph GeoRaster Developer's Guide
for Oracle Database Release 20c.

New Formats for SDO_GEOR_RA.stack Procedure

For the SDO_GEOR_RA.stack procedure, several new formats are added with
SYS_REFCURSOR input and simplified band number specification using the
bandNumber parameter. Previously, only SDO_GEORASTER_ARRAY input was
available for this procedure.

New mask Parameter Formats for SDO_GEOR.generateStatisticsXxx Functions

Each SDO_GEOR.generateStatisticsXxx function has a new format that includes
the mask parameter, allowing you to use a bitmap mask to specify the
pixels or areas for the statistics calculation. For information, see the following
reference topics: SDO_GEOR.generateStatistics, SDO_GEOR.generateStatisticsMax,
SDO_GEOR.generateStatisticsMean, SDO_GEOR.generateStatisticsMedian,
SDO_GEOR.generateStatisticsMin, SDO_GEOR.generateStatisticsMode,
SDO_GEOR.generateStatisticsSTD, and SDO_GEOR.generateStatisticsSum.

New Function in SDO_GEOR Package

SDO_GEOR.getStatisticsSum is added to the SDO_GEOR package. This function
computes statistical data associated with one or more layers, and returns the sum
value.

GDAL Upgraded to Version 2.4.0

The GDAL integrated with GeoRaster is upgraded to version 2.4.0.

xix

1
GeoRaster Overview and Concepts

GeoRaster is a feature of Oracle Spatial and Graph that lets you store, index, query,
analyze, and deliver raster image and gridded data and its associated metadata.

GeoRaster provides Oracle spatial data types and an object-relational schema. You
can use these data types and schema objects to store multidimensional grid layers
and digital images that can be referenced to positions on the Earth's surface or in
a local coordinate system. If the data is georeferenced, you can find the location on
Earth for a cell in an image; or given a location on Earth, you can find the cell in an
image associated with that location.

GeoRaster can be used with data from any technology that captures or generates
images, such as remote sensing, photogrammetry, and thematic mapping. It
can be used in a wide variety of application areas, including location based
services, geoimagery archiving, environmental monitoring and assessment, geological
engineering and exploration, natural resource management, defense, emergency
response, telecommunications, transportation, urban planning, and homeland security.

Note:

To use GeoRaster, you must understand the main concepts, data types,
techniques, operators, procedures, and functions of Oracle Spatial and
Graph, which are documented in Oracle Spatial and Graph Developer's
Guide.

You should also be familiar with raster and image concepts and terminology,
techniques for capturing or creating raster data, and techniques for
processing raster data.

GeoRaster uses and depends upon several components that are included with Oracle
Database, including the Java virtual machine (JVM) and Oracle XML DB.

1-1

Note:

By default, the GeoRaster feature is disabled after Oracle Spatial and Graph
is initially installed, and it must be enabled for each schema that will use
GeoRaster. See Enabling GeoRaster at the Schema Level for information
and instructions.

You must also ensure that Oracle XML DB Repository is properly installed
and that the value of the COMPATIBILITY database initialization parameter is
10.0 or greater. For more information, see the appendix about installation,
compatibility, and upgrade issues in Oracle Spatial and Graph Developer's
Guide.

After a database upgrade, you should call the
SDO_GEOR_ADMIN.isUpgradeNeeded function to check for any invalid
GeoRaster objects and invalid system data for the current version. For more
information, see Maintaining GeoRaster Objects and System Data in the
Database.

This chapter describes the core concepts and features of GeoRaster, including
the GeoRaster data model and storage schema, georeferencing models, metadata
support, resampling algorithms, pyramids, compression, parallel processing, loading
and exporting capabilities, and the Java API. It contains the following major sections.

• Vector and Raster Data
Geographic features can be represented in vector or raster format, or both.

• Raster Data Sources
Raster data is collected and used by a variety of geographic information
technologies, including remote sensing, airborne photogrammetry, cartography,
and global positioning systems.

• GeoRaster Data Model
Raster data can have some or all of the following elements.

• GeoRaster Physical Storage
GeoRaster optimizes the physical storage of metadata and data.

• Bands, Layers, and Metadata
In GeoRaster, band and layer are different concepts.

• Georeferencing
The GeoRaster spatial reference system (SRS), a metadata component of the
GeoRaster object, includes information related to georeferencing. Georeferencing
establishes the relationship between cell coordinates of GeoRaster data and real-
world ground coordinates (or some local coordinates). Georeferencing assigns
ground coordinates to cell coordinates, and cell coordinates to ground coordinates.

• Resampling and Interpolation
Many image and raster transformations and operations involve pixel or cell
resampling and interpolation.

• Pyramids
Pyramids are subobjects of a GeoRaster object that represent the raster image or
raster data at differing sizes and degrees of resolution.

Chapter 1

1-2

• Bitmap Masks
A bitmap mask is a special one-bit deep rectangular raster grid with each pixel
having either the value of 0 or 1. It is used to define an irregularly shaped region
inside another image. The 1-bits define the interior of the region, and the 0-bits
define the exterior of the region.

• NODATA Values and Value Ranges
A NODATA value is used for cells whose values are either not known or
meaningless.

• Compression and Decompression
GeoRaster provides the following types of native compression to reduce storage
space requirements for GeoRaster objects: JPEG (JPEG-F), JPEG 2000, and
DEFLATE.

• GeoRaster and Database Management
GeoRaster enables you to perform database management tasks.

• Parallel Processing in GeoRaster
There are two types of parallel processing with GeoRaster.

• Reporting Operation Progress in GeoRaster
For some resource-intensive operations, GeoRaster enables you to monitor and
report their execution progress.

• GeoRaster PL/SQL API
GeoRaster provides the SDO_GEOR, SDO_GEOR_ADMIN, SDO_GEOR_AGGR,
SDO_GEOR_RA, and SDO_GEOR_UTL PL/SQL packages, which contain
subprograms (functions and procedures) to work with GeoRaster data and
metadata.

• GeoRaster Java API
The Oracle Spatial and Graph GeoRaster Java API consists of interfaces and
classes that support features available with the GeoRaster feature of Oracle
Spatial and Graph.

• GeoRaster Spatial Web Services
A web service enables developers of Oracle Spatial and Graph GeoRaster
applications to provide raster data and metadata to their application users over
the web. GeoRaster supports Open Geospatial Consortium (OGC) web services,
specifically, Web Coverage Services (WCS) and Web Map Services (WMS).

• Map Visualization Component and GeoRaster
The Spatial and Graph Map Visualization Component (formerly known as
MapViewer) is a programmable tool for rendering maps using spatial data
managed by Oracle Spatial and Graph. It fully supports GeoRaster data types and
is the web-based mapping and visualization application platform for GeoRaster.

• GeoRaster Tools: Viewer, Loader, Exporter
Oracle Spatial includes tools for viewing, loading, and exporting GeoRaster data.

• GeoRaster PL/SQL and Java Sample Files
GeoRaster includes several PL/SQL and Java sample code files that show
common operations.

• README File for Spatial and Graph and Related Features
Oracle Spatial and Graph includes a README.txt file.

Chapter 1

1-3

1.1 Vector and Raster Data
Geographic features can be represented in vector or raster format, or both.

With vector data, points are represented by their explicit x,y,z coordinates, lines are
strings of points, and areas are represented as polygons whose borders are lines. This
kind of vector format can be used to record precisely the location and shape of spatial
objects. With raster data, you can represent spatial objects by assigning values to the
cells that cover the objects, and you can represent the cells as arrays. This kind of
raster format has less precision than vector format, but it is ideal for many types of
spatial analysis.

In the raster geographic information systems (GIS) world, this kind of raster data
is normally called gridded data. In image processing systems, the raster data
representations are typically called images instead of grids. Despite any differences
between grids and images, both forms of spatial information are usually represented
as matrix structures (that is, arrays of cells), and each cell is usually regularly aligned
in the space.

1.2 Raster Data Sources
Raster data is collected and used by a variety of geographic information
technologies, including remote sensing, airborne photogrammetry, cartography, and
global positioning systems.

The collected data is then analyzed by digital image processing systems, computer
graphics applications, and computer vision technologies. These technologies use
several data formats and create a variety of products.

This section briefly describes some of the main data sources and uses for GeoRaster,
focusing on concepts and techniques you need to be aware of in developing
applications. It does not present detailed explanations of the technologies; you should
consult standard textbooks and reference materials for that information.

• Remote Sensing

• Photogrammetry

• Geographic Information Systems

• Cartography

• Digital Image Processing

• Geology, Geophysics, and Geochemistry

1.2.1 Remote Sensing
Remote sensing obtains information about an area or object through a device that
is not physically connected to the area or object. For example, the sensor might be
in a satellite, balloon, airplane, boat, or ground station. The sensor device can be
any of a variety of devices, including a frame camera, pushbroom (swath) imager,
synthetic aperture radar (SAR), hydrographic sonar, or paper or film scanner. Remote
sensing applications include environmental assessment and monitoring, global change
detection and monitoring, and natural resource surveying.

Chapter 1
Vector and Raster Data

1-4

The data collected by remote sensing is often called geoimagery. The wavelength,
number of bands, and other factors determine the radiometric characteristics of the
geoimages. The geoimages can be single-band, multiband, or hyperspectral, all of
which can be managed by GeoRaster. These geoimages can cover any area of the
Earth (especially for images sensed by satellite). The temporal resolution can be
high, such as with meteorological satellites, making it easier to detect changes. For
remote sensing applications, various types of resolution (temporal, spatial, spectral,
and radiometric) are often important.

1.2.2 Photogrammetry
Photogrammetry derives metric information from measurements made on
photographs. Most photogrammetry applications use airborne photos or high-
resolution images collected by satellite remote sensing. In traditional photogrammetry,
the main data includes images such as black and white photographs, color
photographs, and stereo photograph pairs.

Photogrammetry rigorously establishes the geometric relationship between the image
and the object as it existed at the time of the imaging event, and enables you to derive
information about the object from its imagery. The relationship between image and
object can be established by several means, which can be grouped in two categories:
analog (using optical, mechanical, and electronic components) or analytical (where
the modeling is mathematical and the processing is digital). Analog solutions are
increasingly being replaced by analytical/digital solutions, which are also referred to as
softcopy photogrammetry.

The main product from a softcopy photogrammetry system may include digital
elevation models (DEMs) and orthoimagery. GeoRaster can manage all this raster
data, together with its georeferencing information.

1.2.3 Geographic Information Systems
A geographic information system (GIS) captures, stores, and processes
geographically referenced information. GIS software has traditionally been either
vector-based or raster-based; however, with the GeoRaster feature, Oracle Spatial
and Graph handles both raster and vector data.

Raster-based GIS systems typically process georectified gridded data. Gridded data
can be discrete or continuous. Discrete data, such as political subdivisions, land use
and cover, bus routes, and oil wells, is usually stored as integer grids. Continuous
data, such as elevation, aspect, pollution concentration, ambient noise level, and wind
speed, is usually stored as floating-point grids. GeoRaster can store all this data.

The attributes of a discrete grid layer are stored in a relational table called a value
attribute table (VAT). A VAT contains columns specified by the GIS vendor, and may
also contain user-defined columns. The VAT can be stored in the Oracle database as
a plain table. The VAT name can be registered within the corresponding GeoRaster
object so that raster GIS applications can use the table.

1.2.4 Cartography
Cartography is the science of creating maps, which are two-dimensional
representations of the three-dimensional Earth (or of a non-Earth space using a local
coordinate system). Today, maps are digitized or scanned into digital forms, and map

Chapter 1
Raster Data Sources

1-5

production is largely automated. Maps stored on a computer can be queried, analyzed,
and updated quickly.

There are many types of maps, corresponding to a variety of uses or
purposes. Examples of map types include base (background), thematic, relief (three-
dimensional), aspect, cadastral (land use), and inset. Maps usually contain several
annotation elements to help explain the map, such as scale bars, legends, symbols
(such as the north arrow), and labels (names of cities, rivers, and so on).

Maps can be stored in raster format (and thus can be managed by GeoRaster), in
vector format, or in a hybrid format.

1.2.5 Digital Image Processing
Digital image processing is used to process raster data in standard image formats,
such as TIFF, GIF, JFIF (JPEG), as well as in many geoimage formats, such as NITF,
GeoTIFF, ERDAS IMG, and PCI PIX. Image processing techniques are widely used
in remote sensing and photogrammetry applications. These techniques are used as
needed to enhance, correct, and restore images to facilitate interpretation; to correct
for any blurring, distortion, or other degradation that may have occurred; and to
classify geo-objects automatically and identify targets. The source, intermediate, and
result imagery can be loaded and managed by GeoRaster.

1.2.6 Geology, Geophysics, and Geochemistry
Geology, geophysics, and geochemistry all use digital data and produce some digital
raster maps that can be managed by GeoRaster.

• In geology, the data includes regional geological maps, stratum maps,
and rock slide pictures. In geological exploration and petroleum geology,
computerized geostratum simulation, synthetic mineral prediction, and 3-D oil field
characterization, all of which involve raster data, are widely used.

• In geophysics, data about gravity, the magnetic field, seismic wave transportation,
and other subjects is saved, along with georeferencing information.

• In geochemistry, the contents of multiple chemical elements can be analyzed and
measured. The triangulated irregular network (TIN) technique is often used to
produce raster maps for further analysis, and image processing is widely used.

1.3 GeoRaster Data Model
Raster data can have some or all of the following elements.

• Cells or pixels

• Spatial domain (footprint)

• Spatial, temporal, and band reference information

• Cell attributes

• Metadata

• Processing data and map support data

GeoRaster defines a generic raster data model that is component-based, logically
layered, and multidimensional. The core data in a raster is a multidimensional array
or matrix of raster cells. Each cell is one element of the matrix, and its value is called

Chapter 1
GeoRaster Data Model

1-6

the cell value, which is sampled at the center of the cell. If the GeoRaster object
represents an image, a cell can also be called a pixel, which has only one value. (In
GeoRaster, the terms cell and pixel are interchangeable.) The matrix has a number of
dimensions, a cell depth, and a size for each dimension. The cell depth is the data
size of the value of each cell. The cell depth defines the range of all cell values, and
it applies to each single cell, not to an array of cells. This core raster data set can be
blocked for optimal storage and retrieval.

The data model has a logically layered structure. The core data consists of one
or more logical layers. For example, for multichannel remote sensing imagery, the
layers are used to model the channels of the imagery. (Bands and layers are
explained in Bands_ Layers_ and Metadata.) In the current release, each layer is a
two-dimensional matrix of cells that consists of the row dimension and the column
dimension.

GeoRaster data has metadata and attributes, and each layer of the GeoRaster data
can have its own metadata and attributes. In the GeoRaster data model, all data other
than the core cell matrix is the GeoRaster metadata. The GeoRaster metadata is
further divided into different components (and is thus called component-based), which
contain the following kinds of information:

• Object information

• Raster information

• Spatial reference system information

• Date and time (temporal reference system) information

• Band reference system information

• Layer information for each layer

Based on this data model, GeoRaster objects are described by the GeoRaster
metadata XML schema (described in GeoRaster Metadata XML Schema), which
is used to organize the metadata. Some schema components and subcomponents
are required and others are optional. You must understand this XML schema if you
develop GeoRaster loaders, exporters, or other applications. Some restrictions on the
metadata exist for the current release, and these are described in the Usage Notes for
the SDO_GEOR.validateGeoRaster function (documented in SDO_GEOR Package
Reference), which checks the validity of the metadata for a GeoRaster object.

The GeoRaster object data types, described in GeoRaster Data Types and Related
Structures, are based on the GeoRaster data model.

In this data model, two different types of coordinates need to be considered: the
coordinates of each pixel (cell) in the raster matrix and the coordinates on the Earth
that they represent. Consequently, two types of coordinate systems or spaces are
defined: the cell coordinate system and the model coordinate system.

The cell coordinate system (also called the raster space) is used to describe cells in
the raster matrix and their spacing, and its dimensions are (in this order) row, column,
and band. The model coordinate system (also called the ground coordinate system
or the model space) is used to describe points on the Earth or any other coordinate
system associated with an Oracle SRID value. The spatial dimensions of the model
coordinate system are (in this order) X and Y, corresponding to the column and row
dimensions, respectively, in the cell coordinate system. The logical layers correspond
to the band dimension in the cell space.

Chapter 1
GeoRaster Data Model

1-7

Figure 1-1 shows the relationship between a raster image and its associated
geographical (spatial) extent, and between parts of the image and their associated
geographical entities.

Figure 1-1 Raster Space and Model Space

Image

- Raster (cell) space

Geographic Entities

- Model (ground) space

- Cell coordinate system - Model (ground) coordinate system

National
Park

Restaurant

column

row

y

x

ULTCoordinate

In Figure 1-1:

• In the objects on the left, the medium-size rectangle represents a raster image,
and within it are a rectangular area showing a national park and a point identifying
the location of a specific restaurant. Each pixel in the image can be identified
by its coordinates in a cell coordinate system (the coordinate system associated
with the raster image). The upper-left corner of the medium-size rectangle has the
coordinate values associated with the ULTCoordinate value of the cell space for
the GeoRaster object.

• In the objects on the right, the large rectangle represents the geographical area
(in the model, or ground, space) that is shown in the raster image, and within it
are spatial geometries for the national park and the specific restaurant. Each entire
geographical area and geometries within it can be identified using coordinates in
its model (or, ground) coordinate system, such as WGS 84 for longitude/latitude
data.

For two-dimensional single-layer GeoRaster data, the cell coordinate system has a
row dimension pointing downward and a column dimension pointing to the right, as
shown in Figure 1-1. The origin of the cell space is always (0,0). The spacing is 1
cell or 1 pixel, and in most cases the cell coordinates are identified by integer row
and column numbers. For a multiband image, the axis along bands is called the band
dimension. For a time series multilayer image (where each layer has a different date or
timestamp), the axis along layers is called the temporal dimension. Three-dimensional
GeoRaster data includes the vertical dimension, which is vertical to both the row and
column dimensions.

Chapter 1
GeoRaster Data Model

1-8

Note:

Only row, column, and band dimensions in the cell coordinate system are
currently supported. The row and column dimensions are used to model
two-dimensional spatial coordinates. The band dimension can be used to
model multichannel remote sensing imagery or photographs and any other
types of layers, such as temporal layers and multiple-grid themes.

When the raster data is treated and processed as an array of numbers, integer
addressing using row and column numbers is sufficient in most applications. However,
the raster data array is generally a discretized representation of a continuous space,
and so a one-to-one mapping of coordinates between the cell space and the model
space is required, regardless of whether the value of a cell represents a collective
value of an area or a single value of a point.

In other words, sub-cell (sub-pixel) addressing in the cell space is necessary. To
support sub-cell addressing, GeoRaster defines two types of cell coordinate systems,
depending on where the origin (0,0) of cells is defined. Figure 1-2, where each square
represents one cell, shows the two types of cell coordinate systems: center-based and
upperleft-based.

Figure 1-2 Two Types of Cell Coordinate Systems

Center-Based

column

row

0

1

2

1 2

column

row

0

1

2

1 2

Upperleft-Based

The default cell coordinate system has its origin at the center of a cell, and is called
the center-based cell coordinate system. The other cell coordinate system has its
origin at the upper-left corner of a cell, and is called the upperleft-based cell coordinate
system. In both systems, the cells are squares with equal size and the unit is 1 cell.
Assuming that I and J are integers, and x and y are floating numbers:

• In center-based cell space, coordinate (x, y) is mapped to (I,J) as long as I-0.5 <=
x < I+0.5 and J-0.5 <= y < J+0.5.

• In upperleft-based cell space, coordinate (x, y) is mapped to cell (I,J) as long as I
<= x < I+1.0 and J <= y < J+1.0.

For example, sub-cell coordinate (0.3, 0.3) has the same integer cell coordinate (0,0)
in both coordinate systems, while (0.3,0.6) means (0,1) in center-based cell space but
means (0,0) in upperleft-based cell space. This two types of cell coordinate systems

Chapter 1
GeoRaster Data Model

1-9

are defined by the modelCoordinateLocation element in the spatialReferenceInfo
metadata; otherwise, the default type is center-based. GeoRaster supports both cell
coordinate systems, and effective with Oracle Database 11g, sub-cell addresses
are supported in the GeoRaster PL/SQL API. (Sub-cell addresses were internally
supported in previous releases.)

In GeoRaster, while the origin of the cell space is always at (0,0), the upper-left corner
cell of the raster data itself can have a different coordinate in its cell space from the
coordinate of the origin of the cell space. In other words, the integer (row, column)
coordinate of the upper-left corner cell is not necessarily (0,0). The upper-left corner
is called the ULTCoordinate, and its value is registered in the metadata. It basically
defines the relative location of the data in the cell space. If there is a band dimension,
the ULTCoordinate value is always (row,column,0). The coordinate of each cell is
relative to the origin of the cell space, not to the ULTCoordinate value. The origin of the
cell coordinate system might not be exactly at the ULTCoordinate value.

The model coordinate system consists of spatial dimensions, and other dimensions
if there are any. The spatial dimensions are called the x, y, and z dimensions,
and values in these dimensions can be associated with a geodetic, projected, or
local coordinate system. Other dimensions include spectral and temporal dimensions
(called the s dimension and t dimension, respectively). GeoRaster SRS currently
supports two spatial dimensions (X,Y) and three spatial dimensions (X, Y, Z) in the
model coordinate system. (For information about coordinate systems, including the
different types of coordinate systems, see Oracle Spatial and Graph Developer's
Guide.)

The GeoRaster model coordinate system is defined by an Oracle Spatial and Graph
SRID. The model coordinates have the same unit as that of the specified SRID and
should be in the value range defined by the model coordinate system. For example, if
the GeoRaster object is georeferenced to a geodetic coordinate system such as 4326
(EPSG WGS84), the unit of the model coordinates derived from the spatial reference
system (SRS) must be decimal degrees, and values should be in the ranges of -180.0
to +180.0 for longitude and -90.0 to +90.0 for latitude.

The relationships between cell coordinates and model coordinates are modeled
by GeoRaster reference systems (mapping schemes). The following GeoRaster
reference systems are defined:

• Spatial reference system, also called GeoRaster SRS, which maps cell
coordinates (row,column,vertical) to model coordinates (X,Y,Z). Using the spatial
reference system with GeoRaster data is referred to as georeferencing the data.
(Georeferencing is discussed in Georeferencing.)

• Temporal reference system, also called GeoRaster TRS, which maps cell
coordinates (temporal) to model coordinates (T).

• Band reference system, also called GeoRaster BRS, which maps cell
coordinates (band) to model coordinates (S, for Spectral).

Each of these reference systems is currently defined, at least partially, in the
GeoRaster XML schema. However, for the current release, only the spatial reference
system is supported. This means that only the relationship between (row,column) and
(X,Y) or (X, Y, Z) coordinates can be mapped. If the model coordinate system is
geodetic, (X,Y) means (longitude,latitude). The temporal and band reference systems
can be used, however, to store useful temporal and spectral information, such as the
spectral resolution and when the raster data was collected.

Chapter 1
GeoRaster Data Model

1-10

Other metadata is stored in the <layerInfo> element in the GeoRaster XML
metadata, as explained in Bands_ Layers_ and Metadata.

1.4 GeoRaster Physical Storage
GeoRaster optimizes the physical storage of metadata and data.

As mentioned in GeoRaster Data Model, GeoRaster data consists of a
multidimensional matrix of cells and the GeoRaster metadata. Most metadata is stored
as an XML document using the Oracle XMLType data type. The metadata is defined
according to the GeoRaster metadata XML schema, which is described in GeoRaster
Metadata XML Schema. The spatial extent (footprint) of a GeoRaster object is part
of the metadata, but it is stored separately as an attribute of the GeoRaster object.
This approach allows GeoRaster to take advantage of the spatial geometry type and
related capabilities, such as using R-tree indexing on GeoRaster objects. The spatial
extent is described in spatialExtent Attribute.

The GeoRaster metadata is stored using either the CLOB storage option or the binary
XML storage option. The binary XML storage option for the GeoRaster metadata is
the default, which saves disk space and improves performance. You can specify or
change the storage option when you create a GeoRaster table.

The multidimensional matrix of cells is blocked into small subsets for large-scale
GeoRaster object storage and optimal retrieval and processing. Each block is
stored in a table as a binary large object (BLOB), and a geometry object (of type
SDO_GEOMETRY) is used to define the precise extent of the block. Each row of the
table stores only one block and the blocking information related to that block. (This
blocking scheme applies to pyramids also.)

The dimension sizes (along row, column, and band dimensions) may not be evenly
divided by their respective block sizes. GeoRaster adds padding to the boundary
blocks that do not have enough original cells to be completely filled. The boundary
blocks are the end blocks along the positive direction of each dimension. The padding
cells have the same cell depth as other cells and have values equal to zero. Padding
makes each block have the same BLOB size. Padding mainly applies to row and
column blocks, but for multiband and hyperspectral imagery, padding can be applied
to the band dimension also. For example, assume the following specification: band
interleaved by line, blocking as (64,64,3), and 8 bands, each with 64 rows and 64
columns. In this case:

1. Bands 0, 1, and 2 are stored interleaved by line in the first block.

2. Bands 3, 4, and 5 are stored interleaved by line in the second block.

3. The third block holds the following in this order: line 1 of band 6, line 1 of band 7,
64 column values that are padding, line 2 of band 6, line 2 of band 7, 64 column
values that are padding, and so on, until all 64 rows are stored.

However, the top-level pyramids are not padded if both the row and column dimension
sizes of the pyramid level are less than or equal to one-half the row block size
and column block size, respectively. See Pyramids for information about the physical
storage of pyramids.

Each GeoRaster block has the same size. The dimension sizes of the blocks do not
need to be a power of 2. They can be random integer values. The block sizes can be
optimized automatically based on the dimension sizes of the GeoRaster object, so that
each GeoRaster object uses only minimum padding space. See Table 1-1 in Storage
Parameters for more information.

Chapter 1
GeoRaster Physical Storage

1-11

The raster blocks (BLOBs) contain the binary representation of the raster cell values.
Specifically, floating-point cell values are represented in the IEEE 754 standard
formats on supported platforms. If the cell depth is greater than 8 bits, GeoRaster
cell data is stored in big-endian format in raster blocks. If the cell depth is less than 8
bits, each byte in the raster blocks contains two or more cells, so that the bits of a byte
are fully filled with cell data. The cells are always filled into the byte from left to right.
For example, if the cell depth is 4 bits, one byte contains two cells: the first four bits
of the byte contain the value of a cell, and the second four bits contain the value of its
following cell, which is determined by the interleaving type.

Based on this physical storage model, two object types are provided:
SDO_GEORASTER for the raster data set and related metadata, and SDO_RASTER
for each block in a raster image.

• The SDO_GEORASTER object contains a spatial extent geometry (footprint or
coverage extent) and relevant metadata. A table containing one or more columns
of this object type is called a GeoRaster table.

• The SDO_RASTER object contains information about a block (tile) of a GeoRaster
object, and it uses a BLOB object to store the raster cell data for the block. An
object table of this object type, or a relational table containing the same columns
as the attributes of this object type, is called a raster data table (RDT).

The SDO_GEORASTER object stores and refers to an image or a raster data set. The
SDO_RASTER object is an internal object for GeoRaster. The SDO_GEORASTER
object fully encapsulates the raster data set's metadata and raster cell data,
that is, a collection of SDO_RASTER objects. The relationship between the
SDO_GEORASTER object and its SDO_RASTER objects is maintained by GeoRaster
automatically. All interfaces of GeoRaster functions and procedures deal with the
SDO_GEORASTER objects only; the SDO_RASTER objects of a SDO_GEORASTER
object are internally handled automatically. The SDO_GEORASTER object is the
major interface for users to build and manage a GeoRaster database; you only need to
use the SDO_RASTER object to create raster data tables (RDTs).

Each SDO_GEORASTER object has a pair of attributes (rasterDataTable, rasterID)
that uniquely identify the RDT and the rows within the RDT that are used to store the
raster cell data for the GeoRaster object.

Figure 1-3 shows the storage of GeoRaster objects, using as an example an image of
Boston, Massachusetts in a table that contains rows with images of various cities.

Chapter 1
GeoRaster Physical Storage

1-12

Figure 1-3 Physical Storage of GeoRaster Data

CITY_IMAGES table
(one row per city)

(Various user-defined columns...) SDO_GEORASTER object
(for example, for Boston)

GeoRaster
type

Spatial extent for
this image
(SDO_GEOMETRY)

Metadata
(SYS.XMLType)

Raster data table name
(table of SDO_RASTER)

Raster ID

(Raster ID,
pyramid level,
...)

MBR for this block
(SDO_GEOMETRY)

Image data for
this block (BLOB)

For each row
(each image):

For each row
(each block
of the image):

Raster data table
(one row of SDO_RASTER object type for each block)

SDO_GEORASTER object

As shown in Figure 1-3:

• Each row in the table of city images contains information about the image for a
specific city (such as Boston), including an SDO_GEORASTER object.

• The SDO_GEORASTER object includes the spatial extent geometry covering the
entire area of the image, the metadata, the raster ID, and the name of the raster
data table associated with this image.

• Each row in the raster data table contains information about a block (or tile) of the
image, including the block's minimum bounding rectangle (MBR) and image data
(stored as a BLOB). The raster data table is described in Raster Data Table.

The SDO_GEORASTER and SDO_RASTER object types are described in detail in
GeoRaster Data Types and Related Structures.

Figure 1-4 shows the physical storage of GeoRaster data and several related objects
in a database.

Chapter 1
GeoRaster Physical Storage

1-13

Figure 1-4 GeoRaster Data in an Oracle Database

GeoRaster table
GeoRaster
objects

Raster data table

... ...

(BLOBs)

. . .

Other related tables
(VAT, GCP, and so on)

Indexes

GeoRaster Database

GeoRaster system data
Indexes

In Figure 1-4:

• Each GeoRaster object in the GeoRaster table has an associated raster data
table, which has an entry for each block of the raster image.

• The BLOB with image data for each raster image block is stored separately from
the raster table data. You can specify storage parameters (described in Storage
Parameters) for the BLOBs.

• Each GeoRaster object has a raster data table associated with it. However, a
raster data table can store blocks of multiple GeoRaster objects, and GeoRaster
objects in a GeoRaster table can be associated with one or multiple raster data
tables.

• GeoRaster system data (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)) maintains the relationship between the GeoRaster
tables and the raster data tables.

• Indexes (standard and spatial) can be built on the GeoRaster table and raster data
tables. For information about indexing GeoRaster data, see Indexing GeoRaster
Objects.

• Additional information, such as ground control points (GCPs) and value attribute
tables (VATs), can be related to the GeoRaster objects.

You generally maintain a one-to-many relationship between a GeoRaster table and
its associated raster data tables, even though they could have a many-to-many
relationship. That is, let a raster data table only contain cell data of GeoRaster
objects that belong to the same GeoRaster table. A GeoRaster table can contain a
large number (potentially unlimited) of GeoRaster objects. An RDT should be used to
contain the raster blocks of a limited number of GeoRaster objects, depending on the
size of the rasters.

Chapter 1
GeoRaster Physical Storage

1-14

The following considerations apply to table and column names that are stored in any
Oracle Spatial and Graph metadata views. For example, these considerations apply to
geometry tables, GeoRaster tables, raster data tables, and geometry and GeoRaster
columns.

• The name must contain only letters, numbers, and underscores. For example, the
name cannot contain a space (), an apostrophe ('), a quotation mark ("), or a
comma (,).

• All letters in the names are converted to uppercase before the names
are stored in geometry metadata views or GeoRaster system data
(xxx_SDO_GEOR_SYSDATA) views or before the tables are accessed.

Note:

For schema names, some different considerations apply. The schema name
can be in mixed case and with special characters such as space () and
apostrophe ('). For more information about naming rules for schemas and
other objects, see "Database Object Naming Rules" in Database SQL
Language Reference.

For more information about raster data tables, see Raster Data Table.

• Storage Parameters

• Raster Data Table

• Blank and Empty GeoRaster Objects

• Empty Raster Blocks

• Cross-Schema Support with GeoRaster

1.4.1 Storage Parameters
Several GeoRaster operations let you specify or change aspects of the storage. The
relevant subprograms contain a parameter named storageParam, which is a quoted
string of keywords and their values. The storageParam parameter keywords apply to
characteristics of the raster data (see Table 1-1).

Note:

The keywords in this section either do not apply or only partially apply to
the storageParam parameter of the SDO_GEOR.importFrom procedure and
the subsetParam parameter of the SDO_GEOR.exportTo procedure. See
the reference information about the relevant parameters for each of these
procedures in SDO_GEOR Package Reference.

Chapter 1
GeoRaster Physical Storage

1-15

Note:

For any numbers in string (VARCHAR2) parameters to GeoRaster
subprograms, the period (.) must be used for any decimal points regardless
of the locale.

Table 1-1 storageParam Keywords for Raster Data

Keyword Explanation

bitmapmask Specifies whether or not bitmap masks are
considered. TRUE specifies to consider any
associated bitmap masks; FALSE specifies
not to consider the bitmap masks. The
default is TRUE for SDO_GEOR.copy,
SDO_GEOR.changeFormatCopy,
SDO_GEOR.mergeLayers,
SDO_GEOR.scaleCopy, and
SDO_GEOR.subset; the default is FALSE
for SDO_GEOR.mosaic (A value of TRUE is
invalid and is ignored for SDO_GEOR.mosaic.)

blocking Specifies whether or not raster data is
blocked. TRUE causes raster data to be
blocked using the blocks of the specified or
default blockSize value; OPTIMALPADDING
is the same as TRUE except that the
specified blockSize value will be adjusted
to an optimal value to reduce padding
space; FALSE causes raster data not to
be blocked (that is, only one block will
be used for the entire image). Specifying
OPTIMALPADDING causes GeoRaster to call
the SDO_GEOR_UTL.calcOptimizedBlockSize
procedure internally.

The default value for blocking is TRUE if
you specify the blockSize keyword. If you
specify blocking=TRUE but do not specify the
blockSize keyword, the default blockSize
is (512,512,B), where B is the number of
bands in the output GeoRaster object. If you
specify neither blocking nor blockSize,
default values are derived from the source
GeoRaster object: that is, if the original data is
not blocked, the data in the output GeoRaster
object is by default not blocked; and if the
original data is blocked, the data in the output
GeoRaster object is blocked with the same
blocking scheme.

Chapter 1
GeoRaster Physical Storage

1-16

Table 1-1 (Cont.) storageParam Keywords for Raster Data

Keyword Explanation

blockSize Specifies the block size, that is, the
number of cells per block. You must
specify a value for each dimension of
the output GeoRaster object. For example,
blocksize=(512,512,3) specifies 512 for
the row dimension, 512 for the column
dimension, and 3 for the band dimension; and
blocksize=(512,512) specifies row and
column block sizes of 512 for a GeoRaster
object that has no band dimension. The values
must be non-negative integers. If a value is 0,
it means the block size is the corresponding
dimension size. If a value is greater than
the corresponding dimension size, padding
is applied. See also the explanation of the
blocking keyword in this table and of
the SDO_GEOR_UTL.calcOptimizedBlockSize
procedure.

Only regular blocking is supported; that is, all
blocks must be the same size and be aligned
with each other, except for some top-level
pyramids. However, the dimension sizes of the
blocks do not need to be a power of 2. They
can be random integer values. For example,
the blockSize value can be (589,1236,7).

The physical storage size of a raster block
must be less than or equal to 4GB.

cellDepth Specifies the cell depth of the raster data set,
which indicates the number of bits and the sign
for the data type of all cells. Note, however,
that changing the cell depth can cause loss of
data and a reduction in precision and image
quality. Must be one of the following values
(_U indicating unsigned and _S indicating
signed): 1BIT, 2BIT, 4BIT, 8BIT_U, 8BIT_S,
16BIT_U, 16BIT_S, 32BIT_U, 32BIT_S,
32BIT_REAL, or 64BIT_REAL. (Complex
cellDepth types are not supported.) If
cellDepth is not specified, the value from the
source GeoRaster object is used by default.
Example: celldepth=16BIT_U

Chapter 1
GeoRaster Physical Storage

1-17

Table 1-1 (Cont.) storageParam Keywords for Raster Data

Keyword Explanation

compression Specifies the compression type to be
applied to the GeoRaster object. Must
be one of the following values: JPEG-F,
DEFLATE, or NONE. (You can use NONE
to decompress a compressed GeoRaster
object.) If compression is not specified, the
compression type of the source GeoRaster
object is used. For more information
about compression and decompression, see
Compression and Decompression. Example:
compression=JPEG-F

If the source GeoRaster object is blank,
the compression keyword is ignored, except
for the SDO_GEOR.getRasterSubset and
SDO_GEOR.getRasterData functions. (Blank
GeoRaster objects are explained in Blank and
Empty GeoRaster Objects.)

interleaving Specifies the interleaving type. (Interleaving is
explained in Bands_ Layers_ and Metadata.)
Must be one of the following values: BSQ (band
sequential), BIL (band interleaved by line),
or BIP (band interleaved by pixel). Example:
interleaving=BSQ

parallel Specifies the degree of parallelism for the
compression operation. (This parameter is
ignored when a subprogram call specifies the
parallelParam parameter.) If specified, must
be in the form parallel=n, where n is greater
than 1. Must be used with the compression
storage parameter. Parallelism is supported for
the following compression operations:

• From NONE to JPEG-F
• From NONE to DEFLATE
• From JPEG-F to NONE
• From DEFLATE to NONE
Parallelism is not supported for the following
compression operations:

• From JPEG-F to DEFLATE
• From DEFLATE to JPEG-F

Chapter 1
GeoRaster Physical Storage

1-18

Table 1-1 (Cont.) storageParam Keywords for Raster Data

Keyword Explanation

pyramid TRUE specifies to keep the original pyramid
data; FALSE specifies not to keep the
original pyramid data. The default value
depends on the specific procedure: the
default is TRUE for SDO_GEOR.copy
and SDO_GEOR.changeFormatCopy;
the default is FALSE for
SDO_GEOR.scaleCopy, SDO_GEOR.mosaic,
and SDO_GEOR.subset. (A value
of TRUE is invalid and is
ignored for SDO_GEOR.scaleCopy or
SDO_GEOR.subset.)

You cannot generate pyramid data through
the use of storage parameters; instead, you
must use the SDO_GEOR.generatePyramid
procedure after creating the GeoRaster object.

quality Specifies the JPEG compression quality, which
is the degree of lossiness caused by the
compression. Must be an integer from 0
(lowest quality) through 100 (highest quality)
to be applied to the GeoRaster object. The
default value is 75. For more information about
compression quality, see JPEG Compression
of GeoRaster Objects. Example: quality=80

Example 1-1 shows a GeoRaster object being copied, with its block size changed and
any pyramid data from the original object not copied.

Example 1-1 Using storageParam Keywords

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
INSERT INTO georaster_table (georid, georaster) VALUES (2,
sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;
SELECT georaster INTO gr1 FROM georaster_table WHERE georid=1;
sdo_geor.changeFormatCopy(gr1, 'blocking=OPTIMALPADDING
 blocksize=(512,512) pyramid=FALSE', gr2);
UPDATE georaster_table SET georaster=gr2 WHERE georid=2;
COMMIT;
END;
/

In Example 1-1, the raster data table for GeoRaster object gr2 is RDT_1. If raster data
is to be written into table RDT_1, that table must exist before the PL/SQL block is run;
otherwise, an error is generated by the SDO_GEOR.changeFormatCopy procedure.

Chapter 1
GeoRaster Physical Storage

1-19

Note:

If you insert, update, or delete GeoRaster cell data or metadata, update
the GeoRaster object before committing the transaction, as shown in
Example 1-1 and as explained in Updating GeoRaster Objects Before
Committing.

Example 1-1 and many examples in SDO_GEOR Package Reference refer to a table
named GEORASTER_TABLE, which has the following definition:

CREATE TABLE georaster_table
(georid NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 georaster SDO_GEORASTER);

1.4.2 Raster Data Table
A raster data table must be an object table of SDO_RASTER type, or a relational table
with the following column definitions:

 rasterID NUMBER,
 pyramidLevel NUMBER,
 bandBlockNumber NUMBER,
 rowBlockNumber NUMBER,
 columnBlockNumber NUMBER,
 blockMBR SDO_GEOMETRY,
 rasterBlock BLOB

The raster data table, whether an object table or a relational table, must have the
primary key defined on the columns (rasterID, pyramidLevel, bandBlockNumber,
rowBlockNumber, columnBlockNumber).

Each raster data table name must be or equivalent to a valid nonquoted identifier, and
it will be stored in the GeoRaster sysdata views and in the SDO_GEORASTER objects
in all uppercase characters, without any schema prefix. (Each GeoRaster column
name must be or equivalent to a valid nonquoted identifier, and it is stored in the
GeoRaster sysdata views in all uppercase characters.) Each raster data table name
must also be unique in the database. To resolve any duplication in raster data table
names, you can use SDO_GEOR_ADMIN.maintainSysdataEntries function.

Creating a raster data table enables you to control the placement and storage
characteristics of the RDT (for example, if the table should be partitioned for better
performance). For a large GeoRaster object, consider putting its raster data in a
separate raster data table and partitioning the raster data table by pyramid level
or block numbers, or both; however, always consider sharing an RDT for a certain
number of smaller GeoRaster objects to avoid creating too many RDTs. Do not use
the SYSTEM tablespace for storing GeoRaster tables and raster data tables. Instead,
create separate locally managed (the default) tablespaces for GeoRaster tables.

Never insert or delete any rows directly in a raster data table. The rows in the
appropriate RDTs are automatically inserted or deleted when GeoRaster objects are
created with raster data or deleted from a GeoRaster table.

In choosing block sizes for raster data, consider the following:

Chapter 1
GeoRaster Physical Storage

1-20

• The maximum length of a raster block is 4 GB; therefore, do not specify a block
size greater than 4 GB.

• Consider the cellDepth value of the GeoRaster object when you calculate the
desired size for a raster block.

• Choosing an appropriate block size is a trade-off between the size of a raster
block and the number of blocks needed for a GeoRaster object. For raster data
of a large size, Oracle recommends at least 512 by 512 for the row and column
dimension sizes. A blocking size value that results in a raster block smaller than
or close to 4 KB (such as 64 by 64) is usually a bad choice, because 4 KB is the
threshold for storing an Oracle BLOB out-of-line.

For information about creating object or relational raster data tables, see Creating
Raster Data Tables.

1.4.3 Blank and Empty GeoRaster Objects
A blank GeoRaster object is a special type of GeoRaster object in which all cells
have the same value. There is no need to store its cells in any SDO_RASTER block;
instead, the cell value is registered in the metadata in the blankCellValue element.
Otherwise, blank GeoRaster objects are treated in the same way as other GeoRaster
objects. Use the SDO_GEOR.createBlank function to create a blank GeoRaster
object, the SDO_GEOR.isBlank function to check if a GeoRaster object is a blank
GeoRaster object, and the SDO_GEOR.getBlankCellValue function to return the value
of the cells in a blank GeoRaster object.

An empty GeoRaster object contains only a rasterDataTable name and a rasterID.
To create an empty GeoRaster object, use the SDO_GEOR.init function. You must
create an empty GeoRaster object before you perform an action that outputs a new
GeoRaster object, so that the output can be stored in the previously initialized empty
GeoRaster object.

1.4.4 Empty Raster Blocks
GeoRaster supports empty raster blocks to save storage space with large mosaic
objects and to improve raster processing speed. Empty raster blocks are used when
there is no raster data available for a specific raster block of a large GeoRaster object.
Such GeoRaster data is of a special sparse data type. There is still an entry in the
raster data table for each empty raster block, but the length of the BLOB is zero
(indicating empty).

When a GeoRaster operation (for
example, SDO_GEOR.changeCellValue, SDO_GEOR.changeFormatCopy,
SDO_GEOR.generatePyramid, SDO_GEOR.getRasterData,
SDO_GEOR.getRasterSubset, SDO_GEOR.mergeLayers, SDO_GEOR.mosaic,
SDO_GEOR.scaleCopy, SDO_GEOR.subset, or SDO_GEOR.updateRaster) is
applied to a source GeoRaster object with empty raster blocks, it may lead to empty or
partially empty result raster blocks.

A resulting raster block is empty if all the cells in it are derived from empty source
raster blocks. A resulting raster block is partially empty if only some of the cells in
it are derived from empty source raster blocks. Any cells in a partially empty result
raster block that are derived from an empty source raster block are either set to
certain background values (as specified in the bgValues parameter) or set to 0 (if the
bgValues parameter is not specified). Once this is done, a partially empty raster block

Chapter 1
GeoRaster Physical Storage

1-21

becomes just like a normal non-empty raster block; and after the operation is finished,
each raster block in the resulting GeoRaster object is either empty or non-empty.

Because the filling of partially empty raster blocks changes the raster data
permanently, you should carefully choose consistent background values when
manipulating a GeoRaster object. The NODATA values stored in the GeoRaster
metadata, if present, are good choices for background values, although you can also
select other background values as long as they are used consistently.

If a GeoRaster object has empty raster blocks, its pyramid data may not contain
any empty raster blocks at all because partially empty raster blocks are filled with
background values or 0 during the SDO_GEOR.generatePyramid operation. When
you call this function to generate the pyramid, be careful in choosing a consistent
background value, as explained in this section.

A bitmap mask (see Bitmap Masks) can also have empty raster blocks, with the
missing cell values indicating 0. If filling is required, the missing cells are always filled
with the value 0.

1.4.5 Cross-Schema Support with GeoRaster
A GeoRaster table and its associated raster data table or tables must have the same
owner. However, users with appropriate privileges can create GeoRaster tables and
associated raster data tables owned by other schemas, and they can also create,
query, update, and delete GeoRaster objects owned by other schemas. For cross-
schema query of GeoRaster objects, you must have the SELECT or READ privilege
on the GeoRaster tables and their associated raster data tables. For cross-schema
update of GeoRaster objects, you must have the SELECT or READ privilege and
the INSERT, UPDATE, and DELETE privileges on the GeoRaster tables and their
associated raster data tables.

The ALL_SDO_GEOR_SYSDATA view (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)) contains information about all GeoRaster objects
accessible to the current user. For each object listed, the GeoRaster table must be
accessible by the current user. If the current user also needs to access the raster data,
that user must also have the appropriate privileges on the associated raster data table.

All SDO_GEOR subprograms can work on GeoRaster objects defined in schemas
other than the current connection schema.

For examples of cross-schema GeoRaster operations, see Performing Cross-Schema
Operations.

1.5 Bands, Layers, and Metadata
In GeoRaster, band and layer are different concepts.

Band is a physical dimension of the multidimensional raster data set; that is, it is
one ordinate in the cell space. For example, the cell space might have the ordinates
row, column, and band. Bands are numbered from 0 to n-1, where n is the highest
layer number. Layer is a logical concept in the GeoRaster data model. Layers are
mapped to bands. Typically, one layer corresponds to one band, and it consists of a
two-dimensional matrix of size rowDimensionSize and columnDimensionSize. Layers
are numbered from 1 to n; that is, layerNumber = bandNumber + 1.

Chapter 1
Bands, Layers, and Metadata

1-22

A GeoRaster object can contain multiple bands, which can also be called multiple
layers. For example, electromagnetic wave data from remote sensing devices is
grouped into a certain number of channels, where the number of possible channels
depends on the capabilities of the sensing device. Multispectral images contain
multiple channels, and hyperspectral images contain a very large number (say, 50
or more) of channels. The channels are all mapped into GeoRaster bands, which are
associated with layers.

In raster GIS applications, a data set can contain multiple raster layers, and each
layer is called a theme. For example, a raster may have a population density layer,
where different cell values are used to depict neighborhoods or counties depending on
their average number of inhabitants per square mile or kilometer. Other examples of
themes might be average income levels, land use (agricultural, residential, industrial,
and so on), and elevation above sea level. The raster GIS themes can be stored in
different GeoRaster objects or in one GeoRaster object, and each theme is modeled
as one layer. The raster themes and multispectral image channels can also be stored
together in one GeoRaster object as different layers, as long as they have the same
dimensions.

Figure 1-5 shows an image with multiple layers and a single raster data table. Each
layer contains multiple blocks, each of which typically contains many cells. Each block
has an entry in the raster data table. Note that GeoRaster starts layer numbering at 1
and band numbering at 0 (zero), as shown in Figure 1-5.

Figure 1-5 Layers, Bands, and the Raster Data Table

Raster data table

.

.

.

.

.

.

.

.

.

.

.

.

Band 0

Band 1

Band n-1

Layer 1

Layer 2

Layer n

LOGICAL PHYSICAL

The GeoRaster XML metadata refers to the object layer and to layers. The object
layer refers to the whole GeoRaster object, which may or may not contain multiple
layers. If the GeoRaster object contains multiple layers, each layer is a sublayer of the
object layer, and it refers to a single band.

Each layer can have an optional set of metadata associated with it. The metadata
items for a layer include the user-defined layer ID, description, bitmap mask,
NODATA values and value ranges, scaling function, bin function, statistical data
set (including histogram), grayscale lookup table, and colormap (or, pseudocolor
lookup table, also called a PCT). The metadata items are defined in the GeoRaster
metadata XML schema, which is presented in GeoRaster Metadata XML Schema. the
SDO_GEOR_HISTOGRAM object type in SDO_GEOR_HISTOGRAM Object Type,
the SDO_GEOR_COLORMAP object type in SDO_GEOR_COLORMAP Object Type,

Chapter 1
Bands, Layers, and Metadata

1-23

SDO_GEOR_GRAYSCALE object type in SDO_GEOR_GRAYSCALE Object Type,
and the SDO_GEOR_SRS object type in SDO_GEOR_SRS Object Type.

The metadata associated with the object layer applies to the whole GeoRaster object.
The metadata associated with a layer applies only to that layer. For example, the
statistical data set for the object layer is calculated based on all cells of the GeoRaster
object, regardless of how many layers the object has; but the statistical data for a layer
is calculated based only on the cells in that layer.

The metadata for the object layer and other layers is stored using <layerInfo>
elements in the GeoRaster XML metadata and sometimes in separate tables, such
as a colormap table or a histogram table. Metadata stored in the GeoRaster XML
metadata is managed by GeoRaster, and you can use the GeoRaster API to retrieve
and modify this metadata. For metadata stored in separate tables, the table name can
be registered in the GeoRaster XML schema, in which case applications can retrieve
the name of the table. However, GeoRaster does not check the existence or validity of
that table or provide any operations on that table.

Three types of interleaving are supported: BSQ (band sequential), BIL (band
interleaved by line), and BIP (band interleaved by pixel). Interleaving applies between
bands or layers only. Interleaving is limited to the interleaving of cells inside each
block of a GeoRaster object. This means GeoRaster always applies blocking on a
GeoRaster object first, and then it applies interleaving inside each block independently.
However, each block of the same GeoRaster object has the same interleaving type.
You can change the interleaving type of a copy of a GeoRaster object by calling
SDO_GEOR.changeFormatCopy procedure, so that the data can be more efficiently
processed and used.

1.6 Georeferencing
The GeoRaster spatial reference system (SRS), a metadata component of the
GeoRaster object, includes information related to georeferencing. Georeferencing
establishes the relationship between cell coordinates of GeoRaster data and real-
world ground coordinates (or some local coordinates). Georeferencing assigns ground
coordinates to cell coordinates, and cell coordinates to ground coordinates.

In GeoRaster, georeferencing is different from geocorrection, rectification, or
orthorectification. In these three latter processes, cell resampling is often performed
on the raster data, and the resulting GeoRaster data might have a different model
coordinate system and dimension sizes. Georeferencing establishes the relationship
between cell coordinates and real-world coordinates or some local coordinates.
Georeferencing can be accomplished by providing an appropriate mathematical
formula, enough ground control point (GCP) coordinates, or rigorous model data from
the remote sensing system. Georeferencing does not change the GeoRaster cell data
or other metadata, except as needed to facilitate the transformation of coordinates
between the cell coordinate system and the model coordinate system.

GeoRaster supports both the functional fitting model (explained in Functional Fitting
Georeferencing Model) and the stored function model (explained in Ground Control
Point (GCP) Georeferencing Model) for georeferencing. Rigorous models are not
supported. When a GeoRaster object is georeferenced with the functional fitting
model, the isReferenced value in the SRS metadata will be TRUE; otherwise, it should
be FALSE.

Rectification can be done with horizontal coordinates, so that cells of a GeoRaster
data set can be mapped to a projection map coordinate system. After rectification,

Chapter 1
Georeferencing

1-24

each cell is regularly sized in the map units and is aligned with the model coordinate
system, that is, with the East-West dimension and the North-South dimension.
If elevation data (DEM) is used in rectification, it is called orthorectification, a
special form of rectification that corrects terrain displacement. If a GeoRaster object
is rectified and georeferenced with the functional fitting model, the isRectified
value in its metadata will be TRUE; otherwise, it should be FALSE. If a GeoRaster
object is orthorectified and georeferenced with the functional fitting model, the
isOrthoRectified value in its metadata will be TRUE; otherwise, it should be FALSE.

To georeference a GeoRaster object, see Georeferencing GeoRaster Objects and
Advanced Georeferencing. To rectify and orthorectify a GeoRaster object, see Image
Rectification and Image Orthorectification.

• Functional Fitting Georeferencing Model

• Ground Control Point (GCP) Georeferencing Model

• Cell Coordinate and Model Coordinate Transformation

1.6.1 Functional Fitting Georeferencing Model
GeoRaster defines a generic functional fitting georeferencing model that is stored in
the GeoRaster metadata. It includes several widely used geometric models, and it
enables many non-rectified GeoRaster objects to be georeferenced.

This model supports transformations between two-dimensional or three-dimensional
ground coordinates and two-dimensional cell coordinates, or between two-dimensional
cell coordinates and two-dimensional or three-dimensional ground coordinates. The
following equations describe the model:

rn = p(Xn,Yn,Zn) / q(Xn,Yn,Zn)

cn = r(Xn,Yn,Zn) / s(Xn,Yn,Zn)

In these equations:

• rn = Normalized row index of the cell in the raster

• cn = Normalized column index of the cell in the raster

• Xn , Yn , Zn = Normalized ground coordinate values

The polynomials p(Xn , Yn , Zn), q(Xn , Yn , Zn), r(Xn , Yn , Zn), and s(Xn , Yn , Zn) have
the form shown in Figure 1-6:

Figure 1-6 Polynomials Used for Georeferencing

In the polynomial form shown in Figure 1-6, aijk are the coefficients for the polynomial.

Each of the four polynomials can be different, and each polynomial is described
independently by the following:

Chapter 1
Georeferencing

1-25

• pType = Polynomial type (1 or 2)

• nVars = Total number of variables (ground coordinate dimensions; 0, 2, or 3)

• order = Maximum order of power for each variable or maximum total order of
power for each polynomial term (up to 5)

• nCoefficients = Total number of coefficients (must be derived from the preceding
three numbers)

The pType indicates the meaning of the maximum total order of the polynomial, and
thus affects the total number of terms in the polynomial. pType = 1 indicates that the
maximum order is the maximum total order of all variables in each polynomial term.
pType = 2 indicates that the maximum order is the maximum order of each variable in
all polynomial term. The nVars indicates whether or not the ground coordinate system
is 2D (X, Y) or 3D (X,Y,Z). The cell coordinate systems are always 2D. For example, it
supports 2D-to-2D affine transformation and 3D-to-2D DLT and RPC models.

The total number and sequential ordering of the polynomial terms and their coefficients
are determined by the logic in the following looping pseudocode:

 n = 0;
 For (k = 0; k <= order; k++)
 For (j = 0; j <= order; j++)
 For (i = 0; i <= order; i++)
 {
 if (pType == 1 & (i+j+k) > order)
 break;
 polynomialCoefficients[n]=COEF[ijk];
 n++;
 }

In the preceding pseudocode, assume i is the order of X, j is the order of Y and k
is the order of Z, and n is the index of the coefficients inside the GeoRaster metadata
element <polynomialCoefficients>. Thus, COEF[ijk] is the coefficient of the term
x(i)y(j)z(k) of numerator p or denominator q; polynomialCoefficients[n] is the
nth double number of the <polynomialCoefficients> element (a list type of doubles)
inside the XML metadata; and COEF[ijk] and polynomialCoefficients[n] have a
one-to-one match.

Normalized values, rather than actual values, may or may not be stored and used
in order to minimize introduction of errors during the calculations, depending on the
data itself. The transformation between row and column values (row,column) and
normalized row and column values (rn, cn), and between the model coordinate (x,y,z)
and normalized model coordinate (Xn , Yn , Zn), is defined by a set of normalizing
translations (offsets) and scales:

• rn = (row - rowOff) / rowScale

• cn = (column - columnOff) / columnScale

• Xn = (x - xOff) / xScale

• Yn = (y - yOff) / yScale

• Zn = (z - zOff) / zScale

The coefficients, scales, and offsets are stored in the GeoRaster SRS metadata, and
are described in SDO_GEOR_SRS Object Type.

This functional fitting model is generic. It includes specific geometric models, such
as Affine Transformation, Quadratic Polynomial, Cubic Polynomial, Direct Linear

Chapter 1
Georeferencing

1-26

Transformation (DLT), Quadratic Rational, and Rational Polynomial Coefficients (RPC,
also called Rapid Positioning Coefficients). The coefficients of those standard models
are converted to the sequential ordering described in this section, for storage in
GeoRaster.

You can use the SDO_GEOR.setSRS procedure to directly set the spatial reference
information of a GeoRaster object, and the SDO_GEOR.getGeoreferenceType
function to find out the specific georeferencing model type in a GeoRaster object.

The simplest georeferencing model type is a special affine transformation, as follows:

row = a + c * y
column = d - c * x

In the preceding formulas, if c is not zero, the raster data is considered rectified, and
the isRectified value in its metadata will be TRUE.

For the Affine Transformation, pType can be either 1 or 2. nVars is 2, order is 1,
and nCoefficients is 3 for the p and r polynomials; and nVars is 0, order is 0, and
nCoefficients is 1 for the q and s polynomials.

For the Quadratic Polynomial model, pType is 1. nVars is 2, order is 2, and
nCoefficients is 6 for the p and r polynomials; and nVars is 0, order is 0, and
nCoefficients is 1 for the q and s polynomials.

For the Cubic Polynomial model, pType is 1. nVars is 2, order is 3, and nCoefficients
is 10 for the p and r polynomials; and nVars is 0, order is 0, and nCoefficients is 1
for the q and s polynomials.

For the DLT model, pType can be either 1 or 2. nVars is 3, order is 1, and
nCoefficients is 4 for all polynomials. In addition, the q and s polynomials must be
identical.

For the Quadratic Rational model, pType is 1. nVars is 3, order is 2, and
nCoefficients is 10 for all polynomials.

For the RPC model, pType is 1. nVars is 3, order is 3, and nCoefficients is 20 for all
polynomials.

For detailed information about the DLT, RPC, and other geometric models, see any
relevant third-party documentation.

1.6.2 Ground Control Point (GCP) Georeferencing Model
GeoRaster supports ground control point (GCP) storage and georeferencing. A
ground control point (GCP), or simply a control point, is a point for which you
know its coordinates (X,Y or X,Y,Z) in some reference coordinate system, as well as
its corresponding location (row, column) in cell space in the GeoRaster object. The
reference coordinate system can be any valid Oracle Spatial and Graph coordinate
system, including SRID 999999 for an "unknown" coordinate system. A collection of
GCPs and its associated geometric model (functional fitting method) are also referred
to as (called) the stored function georeferencing model in GeoRaster.

You can use GCPs that are either stored in the GeoRaster SRS or specified in
parameters to generate the Functional Fitting model. For more information, see the
SDO_GEOR.georeference function.

The guidelines for selecting GCPs include the following:

Chapter 1
Georeferencing

1-27

• The points should be easy to identify both in the GeoRaster object and in the
reference coordinate system.

• The points should be evenly distributed within the area covered by the GeoRaster
object, to ensure that results are not skewed.

• The points should not be on a line, so that the results can be stable.

GCPs or the stored function are specified using the SDO_GEOR_GCP object
type (see SDO_GEOR_GCP Object Type), the SDO_GEOR_GCP_ COLLECTION
collection type (see SDO_GEOR_GCP_ COLLECTION Collection Type), and the
SDO_GEOR_GCPGEOREFTYPE object type (see SDO_GEOR_GCPGEOREFTYPE
Object Type).

To georeference using GCPs, you must also select the geometric model, that is,
how the relationship between the GeoRaster object's cell space and the reference
coordinate system should be mathematically modeled. In GeoRaster, the following
geometric models are supported with GCP georeferencing: Affine (the default model),
Quadratic Polynomial, Cubic Polynomial, DLT, Quadratic Rational, and RPC. Affine,
Quadratic Polynomial, and Cubic Polynomial are two-dimensional polynomial models
with polynomial order 1, 2, and 3, respectively; DLT, Quadratic Rational, and RPC
are three-dimensional rational polynomial models with polynomial order 1, 2, and 3,
respectively. All the polynomials have polynomial type pType=1. (See Functional Fitting
Georeferencing Model for more information about the georeferencing model types.)

In georeferencing using GCPs, the cell and model coordinates of the GCPs are
used in the formula of the polynomial or rational polynomial model, and then a linear
equation system is formed. No weight is used in the formula, that is, all points have
equal weight 1.0. The linear equation system is solved by the least square method,
which generates the coefficients for the model that best fits the given control points.
Only GCPs with type Control Point are involved in the solution calculation; the GCP
with type Check Point is used to check the positioning accuracy of the solved model.
The solution accuracy is evaluated based on the residuals of the cell coordinates of
those control points involved in the solution.

Different geometric models require different model coordinate dimensions and a
different minimum number of GCPs. For two-dimensional geometric models, the model
coordinates must be 2D (X,Y); and for three-dimensional geometric models, the model
coordinates must be 3D (X, Y, Z). The minimum number of GCPs required for the
geometric models are as follows: Affine: 3, Quadratic Polynomial: 6, Cubic Polynomial:
10, DLT: 7, Quadratic Rational: 19, and RPC: 39. However, you should generally use
more than the minimum number of GCPs to do georeferencing.

For more information, see Advanced Georeferencing.

1.6.3 Cell Coordinate and Model Coordinate Transformation
Through the functional fitting georeferencing model, GeoRaster assigns ground
coordinates to cell coordinates, and cell coordinates to ground coordinates. As a
special case, a cell's integer coordinate (the array index of a cell in the cell matrix) can
be transformed into a model coordinate, which identifies an exact location of a point in
the model space. This point or model coordinate may be either the upper-left corner or
the center of the area represented by the cell in the model space.

Similarly, a model coordinate can be transformed into a cell coordinate through
georeferencing. However, the resulting cell coordinate from the direct solution of the
functional fitting georeferencing model is mostly in floating numbers. The type of
the cell space coordinate system, which is decided by the modelCoordinateLocation

Chapter 1
Georeferencing

1-28

element, determines which cell the floating coordinate refers to, as described in
GeoRaster Data Model. GeoRaster supports both floating (subcell) cell coordinates
and integer cell coordinates in all parts of its API.

Cell coordinate and model coordinate transformations are based on the functional
fitting model of the GeoRaster spatial reference system (SRS). Both before and after
transformation using the GeoRaster SRS, the (row, column) coordinate values of a
cell are relative to the GeoRaster cell space, not necessarily relative to the upper-left
corner of the raster data itself. The ULTCoordinate can have a different coordinate
(row and column values) from the coordinate of the origin of the cell space. That is, the
(row, column) coordinate of the upper-left corner is not necessarily (0,0).

Any application that defines the upper-left corner of a raster data as the origin (0, 0)
of its own cell space, as in many image file formats, must convert the (row, column)
derived from the GeoRaster SRS to be relative to that origin, if the value of GeoRaster
ULTCoordinate (row0, column0) is not (0, 0). This conversion must take the GeoRaster
ULTCoordinate into consideration, as shown in the following formulas:

row = row0 + m
column = column0 + n

In these formulas:

• row = Row index of the cell relative to the origin of the GeoRaster cell space.

• column = Column index of the cell relative to the origin of the GeoRaster cell
space.

• row0 = Row index of the ULTCoordinate relative to the origin of the GeoRaster cell
space.

• column0 = Column index of the ULTCoordinate relative to the origin of the
GeoRaster cell space.

• m = Row index (that is, the mth row, starting at 0 for the first row) of the cell
relative to the ULTCoordinate.

• n = Column index (that is, the nth column, starting at 0 for the first column) of the
cell relative to the ULTCoordinate.

In most applications, the ULTCoordinate and the origin of cell space are the same (that
is, row0 = 0 and column0 = 0), in which case m = row and n = column.

1.7 Resampling and Interpolation
Many image and raster transformations and operations involve pixel or cell resampling
and interpolation.

GeoRaster supports the following standard resampling and interpolation methods:

• Nearest neighbor (NN)

• Bilinear interpolation using 4 neighboring cells (BILINEAR)

• Biquadratic interpolation using 9 neighboring cells (BIQUADRATIC)

• Cubic convolution using 16 neighboring cells (CUBIC)

• Average using 4 neighboring cells (AVERAGE4)

• Average using 16 neighboring cells (AVERAGE16)

Chapter 1
Resampling and Interpolation

1-29

• OTHER

The keywords for these resampling types are defined in the resamplingType element
definition in the GeoRaster XML metadata schema (described in GeoRaster Metadata
XML Schema). Except for OTHER, the keywords can be used in several subprograms
including the following:

• SDO_GEOR.generatePyramid

• SDO_GEOR.scaleCopy

• SDO_GEOR.reproject

• SDO_GEOR.rectify

• SDO_GEOR_AGGR.append

• SDO_GEOR_AGGR.getMosaicSubset

• SDO_GEOR_AGGR.mosaicSubset

The resampling type OTHER is used only to indicate an unknown or external resampling
type when the pyramids of a GeoRaster object are generated or imported from
external sources, such as a file.

Raster data deals with real world phenomena that vary continuously over space.
This data is usually associated with grid interpolation, a method for interpolating
values at spatial positions between the cells or within the cells. In GeoRaster,
SDO_GEOR.evaluateDouble is the grid interpolation function. It uses the same
keywords for interpolation methods as those for resampling.

1.8 Pyramids
Pyramids are subobjects of a GeoRaster object that represent the raster image or
raster data at differing sizes and degrees of resolution.

The size is usually related to the amount of time that an application needs to retrieve
and display an image, particularly over the Web. That is, the smaller the image size,
the faster it can be displayed; and as long as detailed resolution is not needed (for
example, if the user has "zoomed out" considerably), the display quality for the smaller
image is adequate.

Pyramid levels represent reduced or increased resolution images that require less
or more storage space, respectively. (GeoRaster supports only reduced resolution
pyramids.) A pyramid level of 0 indicates the original raster data; that is, there is
no reduction in the image resolution and no change in the storage space required.
Values greater than 0 (zero) indicate increasingly reduced levels of image resolution
and reduced storage space requirements.

Pyramid type indicates the type of pyramid, and can be one of the following values:

• DECREASE means that pyramids decrease in size as the pyramid level increases.

• NONE means that there are no pyramids associated with the GeoRaster object.

Figure 1-7 shows the concept of pyramid levels with a pyramid type of DECREASE. It
conveys the idea that as the pyramid level number increases, the file size decreases,
but the resolution also decreases because fewer pixels are used to represent the
image.

Chapter 1
Pyramids

1-30

Figure 1-7 Pyramid Levels

Pyramid
Level 0

Pyramid
Level 1

Pyramid
Level 2

The size of the pyramid image at each level is determined by the original image size
and the pyramid level, according to the following formulas:

r(n) = (int)(r(0) / 2^n)
c(n) = (int)(c(0) / 2^n)

In the preceding formulas:

• r(0) and c(0) are the original row and column dimension size.

• r(n) and c(n) are the row and column dimension size of pyramid level n.

• int rounds off a number to the integer value that is less than but closest to that
number.

• 2^n means 2 to the power of n.

The smaller of the row and column dimension sizes of the top-level overview (the
smallest top-level pyramid) is 1. This determines the maximum reduced-resolution
pyramid level, which is calculated as follows: (int)(log2(a))

In the preceding calculation:

• log2 is a logarithmic function with 2 as its base.

• a is the smaller of the original row and column dimension size.

The addressing of cells in the pyramid uses the same type of cell addressing as
that defined for the original raster data, as described in GeoRaster Data Model. Each
pyramid level has its own cell space; however, all cell spaces of the pyramid levels
have the same type of cell coordinate system (either center-based or upper-left based)
as that of the original level (level zero). The cells are squares with equal size and
the unit is 1 cell. The upper-left corner cell in each pyramid level has the same
ULTCoordinate as that of the original raster data, registered in the metadata. Based on
this cell space definition and the pyramid levels, the cell coordinates in one pyramid
level can be converted to another.

Chapter 1
Pyramids

1-31

There is no separate SRS defined for each pyramid level in the GeoRaster metadata.
The model coordinates of the cells in the pyramid are derived by first converting the
cell coordinates of different pyramid level into cell coordinates of pyramid level zero
and then applying the GeoRaster SRS. Conversely, the cell coordinates of ground
points in the pyramid are derived by first obtaining the cell coordinates of those ground
points in pyramid level zero using the GeoRaster SRS, and then converting them into
a specific pyramid level. GeoRaster supports subcell addressing of pyramids in all
parts of its API.

The pyramids are stored in the same raster data table as the GeoRaster object. The
pyramidLevel attribute in the raster data table identifies all the blocks related to a
specific pyramid level. In general, the blocking scheme for each pyramid level is the
same as that for the original level (which is defined in the GeoRaster object metadata),
except in the following cases:

• If the original GeoRaster object is not blocked, that is, if the original cell data is
stored in one block (BLOB) of the exact size of the object, the cell data of each
pyramid level is stored in one block, and its size is the same as that of the actual
pyramid level image.

• If the original GeoRaster object is blocked (even if blocked as one block), the cell
data of each pyramid level is blocked in the same way as for the original level
data, and each block is stored in a different BLOB object as long as the maximum
dimension size of the actual pyramid level image is larger than the block sizes.
However, if lower-resolution pyramids are generated (that is, if both the row and
column dimension sizes of the pyramid level are less than or equal to one-half
the row block size and column block size, respectively), the cell data of each such
pyramid level is stored in one BLOB object and its size is the same as that of the
actual pyramid level image.

When pyramids are generated on a GeoRaster object or when a GeoRaster object
is scaled, resampling of cell data is required. GeoRaster provides the standard
resampling methods described in Resampling and Interpolation.

The following subprograms are associated with GeoRaster support for pyramids:

• SDO_GEOR.generatePyramid generates pyramid data for a GeoRaster object.

• SDO_GEOR.deletePyramid deletes pyramid data for a GeoRaster object.

• SDO_GEOR.getPyramidMaxLevel returns the maximum pyramid level of a
GeoRaster object.

• SDO_GEOR.getPyramidType returns the pyramid type for a GeoRaster object.

1.9 Bitmap Masks
A bitmap mask is a special one-bit deep rectangular raster grid with each pixel having
either the value of 0 or 1. It is used to define an irregularly shaped region inside
another image. The 1-bits define the interior of the region, and the 0-bits define the
exterior of the region.

A bitmap mask can be attached to or removed from a nonblank GeoRaster object.
Each band or layer of a nonblank GeoRaster object can also have a separate bitmap
mask associated with it. Thus, there can be at most n+1 bitmap masks associated
with a nonblank GeoRaster object, where n is the total number of sublayers of the
GeoRaster object. A bitmap mask can also be edited or updated independently.

Chapter 1
Bitmap Masks

1-32

If a bitmap mask is associated with the object layer, it also becomes the default bitmap
mask for all sublayers. A bitmap mask associated with a sublayer overrides the default
bitmap mask associated with the object layer.

A bitmap mask attached to a raster layer must have the same number of rows and
columns as any other raster layers in the image, and must precisely cover the same
area. It uses the same ULTCoordinate and SRS as that of the GeoRaster object itself.
Logically, it is not an integral part of the raster image itself, but rather an ancillary piece
of information; however, physically, it is stored inside the GeoRaster object.

The physical storage of bitmap masks is similar to that of a GeoRaster object's raster
data. Bitmap masks are stored in the raster data table of the associated GeoRaster
object, with exactly the same blocking attributes. However, the bandBlockNumber of
a bitmap mask entry is always set to the layer number with which the bitmap mask
is associated. For information about the relationship between bands and layers, see
Bands, Layers, and Metadata.

The pyramidLevel value starts with the value -99999 instead of 0, and it increases
by 1 for each upper pyramid level. Pyramids are built on bitmap masks along with
pyramids on the regular raster data, and bitmap masks can be scaled together with
the associated GeoRaster object with the SDO_GEOR.scaleCopy procedure, but the
resampling method used for bitmap masks is always NN (Nearest Neighbor). Bitmap
masks are compressed or decompressed when its associated GeoRaster object is
compressed or decompressed, and bitmap masks are always compressed with the
DEFLATE method (lossless). A bitmap mask can also be sparse and thus can contain
empty blocks, with the missing cell values indicating 0.

Bitmap masks are generally used by applications in either or both of the following
ways:

• When used as a transparency mask, a bitmap mask can be used by a display
application to determine which part of the image to display. For example, main
image pixels that correspond to 1-bits in the bitmap mask are imaged to the
screen or printer, but main image pixels that correspond to 0-bits in the mask are
not displayed or printed. It can also be used as the alpha channel of the image,
and so the 0 and 1 values can be mapped to different transparency values for
display.

• When used as a NODATA mask in a GIS application, a bitmap mask tells the
application to treat pixels that correspond to the exterior (0-bits) of the mask as
NODATA. For this purpose, it can be registered as a special type of NODATA in
the GeoRaster metadata, as explained in NODATA Values and Value Ranges.

Several PL/SQL subprograms perform operations on bitmap masks such as attaching
a bitmap mask to a GeoRaster object, replacing an existing bitmap mask, removing a
bitmap mask, checking whether a GeoRaster object has a certain bitmap mask, and
extracting an entire bitmap mask, a subset of it, or a single cell value of it. You can
also apply the masking operation inside the database using the SDO_GEOR.mask
procedure. For more information about image masking, see Image Masking.

1.10 NODATA Values and Value Ranges
A NODATA value is used for cells whose values are either not known or meaningless.

Each individual raster layer can have multiple NODATA values or NODATA value
ranges, or both, associated with it. The GeoRaster metadata schema stores the
NODATA information with each raster layer. Specifically, the NODATA values and

Chapter 1
NODATA Values and Value Ranges

1-33

value ranges associated with the object layer apply to any other sublayers. The
NODATA values and value ranges for a sublayer is the union of those for the object
layer and any NODATA metadata present in the sublayer. When you delete NODATA
values or value ranges from a sublayer, any values or value ranges present in the
object layer cannot be removed.

NODATA values and value ranges can be considered during resampling, for example,
when pyramids are generated or when an image is generated by scaling. NODATA
cells are by default treated as regular cells in those processes, to avoid dilations
or erosions. However, when NODATA values or value ranges are chosen to be
considered and the resampling method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, then whenever a cell value involved in the resampling calculation is a
NODATA value, the result of the resampling is also a NODATA value. The resulting
NODATA value is the first NODATA value inside each resampling window, where the
cell values are ordered row by row from the upper-left corner to the lower-right corner.

If you have GeoRaster objects from before release 11g with NODATA metadata stored
in the raster description, that metadata is still valid for backward compatibility. The
old NODATA value is considered to be object-wide, and it is moved to the object
layer when you call the SDO_GEOR.addNODATA procedure on the object layer or
when you call the SDO_GEOR.deleteNODATA procedure on the object layer without
deleting the old NODATA value.

A NODATA value or value range is described using the SDO_RANGE_ARRAY type,
which is defined as VARRAY(1048576) OF SDO_RANGE; the SDO_RANGE type specifies
a lower and upper bound and is defined as (LB NUMBER, UB NUMBER).

• To specify a single number in an SDO_RANGE definition, specify LB as the
number and UB as null. The following example specifies 2 as the NODATA value:
SDO_RANGE_ARRAY(SDO_RANGE(2,NULL))

• SDO_RANGE(LB, UB) where LB=UB is considered the same as
SDO_RANGE(LB, NULL).

• A real NODATA value range (where UB is not NULL and LB is less than UB) is
inclusive at the lower bound and exclusive at the upper bound.

• You can specify multiple NODATA value ranges and individual NODATA
values. The following example specifies one single NODATA value (5) and
two NODATA value ranges (1,3) and (7,8): SDO_RANGE_ARRAY(SDO_RANGE(1,3),
SDO_RANGE(5,NULL), SDO_RANGE(7,8))

Several PL/SQL subprograms perform operations (such as adding, removing, and
querying) on NODATA values and value ranges associated with a GeoRaster layer.

In GeoRaster, a bitmap mask can be treated as a special type of NODATA, that is, a
NODATA mask specifying one or more irregular areas as NODATA areas. In this case,
the bitmap mask is not only identified in the bitmapMask element of the layerInfo
metadata, but is also registered with the NODATA element of the layerInfo metadata.
However, bitmap mask NODATA values are not considered during any resampling
processing and statistical analysis.

1.11 Compression and Decompression
GeoRaster provides the following types of native compression to reduce storage
space requirements for GeoRaster objects: JPEG (JPEG-F), JPEG 2000, and
DEFLATE.

Chapter 1
Compression and Decompression

1-34

• With JPEG (JPEG-F) and DEFLATE compression, each block of a GeoRaster
object is compressed individually, as a distinct raster representation; and when
a compressed GeoRaster object is decompressed, each block is decompressed
individually

• With JPEG 2000 compression, each GeoRaster object is stored in a single BLOB
as a JP2 file, in which the raster can be internally blocked.

For JPEG (JPEG-F) and DEFLATE compression, any GeoRaster operation that
can be performed on a decompressed (uncompressed) GeoRaster object can also
be performed on a compressed GeoRaster object. When GeoRaster performs an
operation, if the source GeoRaster object is compressed, GeoRaster internally
decompresses blocks of the source object as needed, performs the specified
operation, and then compresses the resulting object in the format specified by the
compression keyword or, if the compression keyword is not specified, in the source
object's compression format. Therefore, you do not need to decompress compressed
GeoRaster objects before performing certain operations, but you might gain some
overall performance benefit if you decompress the objects before performing other
operations.

For JPEG 2000 compression, most GeoRaster operations can internally decompress
the JP2 compressed GeoRaster object while performing the operation.

Before a database user compresses or decompresses a GeoRaster object, ensure
that the database has been created with a default temporary tablespace or that the
user has been assigned a temporary tablespace or tablespace group. Otherwise,
by default the SYSTEM tablespace is used for the temporary tablespace, and large
temporary LOB data generated during GeoRaster operations are put in the SYSTEM
tablespace, possibly affecting overall database performance. For information about
managing temporary tablespaces, see Oracle Database Administrator's Guide.

To specify compression or decompression of a GeoRaster object, use the
compression keyword in the storageParam parameter, which is described in Storage
Parameters. You can use the compression keyword in the storageParam parameter
with all GeoRaster procedures. (For JPEG (JPEG-F) and DEFLATE compression,
there are no separate procedures for compressing and decompressing a GeoRaster
object.)

If the source GeoRaster object is blank, the compression keyword is ignored, except
for the SDO_GEOR.getRasterSubset and SDO_GEOR.getRasterData functions. That
is, a blank GeoRaster object is never compressed, and the compression type in the
metadata is always NONE. (Blank GeoRaster objects are explained in Blank and Empty
GeoRaster Objects.)

This section covers the following topics.

• JPEG (JPEG-F) Compression of GeoRaster Objects

• JPEG 2000 Compression of GeoRaster Objects

• DEFLATE Compression of GeoRaster Objects

• Decompression of GeoRaster Objects

• Third-Party Plug-ins for Compression

• Advanced LOB Compression

Chapter 1
Compression and Decompression

1-35

1.11.1 JPEG (JPEG-F) Compression of GeoRaster Objects
JPEG (JPEG-F) compression is supported only for GeoRaster objects with a
cellDepth value of 8BIT_U and no more than 4 bands per block, and each block
must have 1 band, 3 bands, or 4 bands. (2 bands per block is not supported for JPEG
compression.) You can JPEG compress GeoRaster objects of more than 4 bands by
reblocking the GeoRaster object with a band block size of 1, 3, or 4 bands. JPEG
compression is not supported for GeoRaster objects with a colormap.

Although JPEG compression is supported for GeoRaster objects of any size, the
total size (columnsPerBlock * rowsPerBlock * bandsPerBlock * cellDepth / 8) of
each block of the GeoRaster object must not exceed 50 megabytes (MB). For large
GeoRaster objects, you can call the SDO_GEOR.changeFormatCopy procedure to
block the GeoRaster object into blocks smaller than 50 MB, and then compress the
GeoRaster object; or you can perform the blocking and compression in the same call
to the SDO_GEOR.changeFormatCopy procedure.

GeoRaster supports the JPEG-F compression mode, which compresses objects in the
full-format baseline JPEG format.

JPEG-F compression is described in the CCITT Rec. T.81 JPEG specification (or
ICO/IEC IS 10918-1). GeoRaster uses the quantization table in Table K.2 of the CCITT
Rec. T.81 JPEG specification and (for the Huffman tables) standard chrominance
tables in Tables K.4 and K.6 of that specification. The quantization table is scaled by
the compression quality before the table is applied to data during the compression
process.

JPEG-F is a lossy compression format. You can control the degree of loss with the
quality keyword to the storageParam parameter. The quality keyword takes an
integer value from 0 to 100. A value of 0 (zero) provides maximum compression,
but causes substantial loss of data. A value of 75 (the GeoRaster default) provides
an image that most people perceive as having no loss of quality, but that provides
significant compression. A value of 100 provides the least compression, but the best
quality.

• JPEG-B Support Deprecated

1.11.1.1 JPEG-B Support Deprecated
GeoRaster support for JPEG-B compression, which compresses objects in the
abbreviated baseline JPEG format, is deprecated, and will be desupported in a future
release. If JPEG-B is specified in a parameter to a GeoRaster subprogram, JPEG-F
compression is used instead. You are encouraged to use the JPEG-F support.

1.11.2 JPEG 2000 Compression of GeoRaster Objects
GeoRaster supports JPEG 2000 (JP2) compression on cell depth 8BIT_U and 16BIT_U
raster images following the standard ISO/IEC 15444-1. A JPEG 2000 compressed
GeoRaster object is stored in one raster block. The data in this raster block is in JP2
file format as described in standard ISO/IEC 15444-1 Annex I. The image contained in
the JPEG 2000 compressed GeoRaster object can be internally tiled.

With JPEG 2000 compression, the pyramids are implicitly embedded in the JP2
compressed data, and thus there is no separate, explicit pyramid storage in the JP2
compressed GeoRaster object. The maximum level of pyramids that can be retrieved

Chapter 1
Compression and Decompression

1-36

from a JP2 compressed GeoRaster object is log2(min(tile_width, tile_height)),
where tile_width and tile_height are the width and height of the internal tiles,
respectively. Both lossy and lossless compressions are supported.

The SDO_GEOR.compressJP2 procedure is used to compress a GeoRaster
object into JP2 compressed GeoRaster object. The SDO_GEOR.decompressJP2
procedure can be used to explicitly decompress a JP2 compressed GeoRaster
object into another GeoRaster object. Other GeoRaster operations, such as
rectification, mosaicking, and raster algebra – but not SDO_GEOR.changeCellValue,
SDO_GEOR.reproject, SDO_GEOR.scaleScopy, and SDO_GEOR.mosaic – can
internally decompress the JP2 compressed GeoRaster object while performing the
operation.

Large images can be compressed, but the size is limited by memory and max number
of tiles (max_mem_size / 20 * 65535). To improve scalability and performance,
always apply internal tiling. The tile size can be specified using the tileSize
keyword in the compressParam parameter of the SDO_GEOR.compressJP2 procedure.
The maximum number of tiles supported is 65535.

1.11.3 DEFLATE Compression of GeoRaster Objects
DEFLATE compression compresses objects according to the Deflate Compressed
Data Format Specification (Network Working Group RFC 1951), and it stores the
compressed data in ZLIB format, as described in the ZLIB Compressed Data Format
Specification (Network Working Group RFC 1950). The ZLIB header and checksum
fields are included in the compressed GeoRaster object.

Although DEFLATE compression is supported for GeoRaster objects of any size, the
total size (columnsPerBlock * rowsPerBlock * bandsPerBlock * cellDepth / 8)
of each block of the GeoRaster object must not exceed 1 gigabyte (GB). For large
GeoRaster objects, you can call the SDO_GEOR.changeFormatCopy procedure to
block the GeoRaster object into blocks smaller than1 GB, and then compress the
GeoRaster object; or you can perform the blocking and compression in the same call
to the SDO_GEOR.changeFormatCopy procedure.

Because DEFLATE compression is lossless, compression quality does not apply, and
is ignored if it is specified.

1.11.4 Decompression of GeoRaster Objects
You can decompress a compressed GeoRaster object in the database by specifying
compression=NONE in the storageParam parameter. For JPEG-F compression, you
should not specify compression quality as a storage parameter.

You can decompress a compressed GeoRaster object outside the database (that
is, on the client side) by using an existing application programming interface (API),
such as PL/SQL or the Oracle Call Interface (OCI), to retrieve the BLOB objects
corresponding to the GeoRaster object's blocks, and decoding each compressed block
individually according to the specifications of the relevant compression format. For
example, if a GeoRaster object is compressed in JPEG-F mode, the decoding process
should first parse the JPEG headers to retrieve the tables and block dimensions, and
then apply Huffman decoding and dequantization to the image data.

Implementing JPEG decompression completely on your own is a complex, detail-
oriented process. Depending on the application, it may be better to use an existing
implementation. Libraries such as jpeglib in C and several imaging APIs in Java (for

Chapter 1
Compression and Decompression

1-37

example, Oracle J2SE and JAI) already implement JPEG decompression, and you
can adapt them to perform the decoding process on JPEG-compressed GeoRaster
objects. You can apply essentially the same approach for DEFLATE compression
using a ZLIB C library or Java API.

1.11.5 Third-Party Plug-ins for Compression
GeoRaster provides a plug-in architecture for third-party compression solutions.
LizardTech Corporation provides a plug-in that enables users to compress and store
raster imagery, in MrSID and JPEG 2000 compression types, natively in Oracle Spatial
and Graph GeoRaster.

Before you install the LizardTech plug-in, you must follow these steps:

1. Go to the $ORACLE_HOME/md/admin directory.

2. Connect to the database as SYS AS SYSDBA.

3. Enter the following SQL statement:

SQL> @prvtgrlt.plb

To get the LizardTech plug-in and related information, contact LizardTech Corporation.

1.11.6 Advanced LOB Compression
You can use Oracle Database Advanced LOB Compression (described briefly in
Oracle Database SecureFiles and Large Objects Developer's Guide) to achieve
lossless compression of GeoRaster raster data tables (RDTs), thus compressing the
GeoRaster objects. If you specify Advanced LOB Compression for LOB storage when
you create a table (such as the rasterBlock column of an RDT), then the SecureFiles
LOBs in all rows of that table are compressed using Advanced LOB Compression.
The compression is transparent to GeoRaster, and thus no application changes are
required. However, you should avoid using Advanced LOB Compression on the RDT
raster blocks if you are also using any GeoRaster-specific compression types (such as
JPEG, DEFLATE, or a third-party plug-in) on these blocks.

The use of Advanced LOB Compression requires licensing for the Oracle Database
Advanced Compression Option, which is described in Oracle Database Licensing
Information. Note that the Oracle Database Advanced Compression Option is not
required for GeoRaster compression operations that do not involve Advanced LOB
Compression.

1.12 GeoRaster and Database Management
GeoRaster enables you to perform database management tasks.

These tasks are described in GeoRaster Database Creation and Management. It also
performs many management tasks automatically, and enforces several guidelines to
facilitate its automatic management operations.

GeoRaster provides several subprograms for users who need to perform specialized
management tasks:

• SDO_GEOR_ADMIN.isRDTNameUnique checks for the uniqueness of an RDT
name, and SDO_GEOR_UTL.renameRDT renames the RDT in the database to
solve conflicts, which might happen during data migration.

Chapter 1
GeoRaster and Database Management

1-38

• SDO_GEOR_ADMIN.checkSysdataEntries and
SDO_GEOR_ADMIN.maintainSysdataEntries check for and fix corrupt SYSDATA
entries in the current schema or the database, depending on the privileges
associated with the database connection.

• The following subprograms check the status of existing
GeoRaster objects and related objects in the current schema
or the database, depending on the privileges associated with
the database connection: SDO_GEOR_ADMIN.listGeoRasterObjects,
SDO_GEOR_ADMIN.listGeoRasterColumns,
SDO_GEOR_ADMIN.listGeoRasterTables, SDO_GEOR_ADMIN.listRDT,
SDO_GEOR_ADMIN.listRegisteredRDT, and
SDO_GEOR_ADMIN.listUnregisteredRDT.

• The following subprograms enable you to register existing GeoRaster objects
in the current schema or the database, depending on the privileges associated
with the database connection: SDO_GEOR_ADMIN.registerGeoRasterObjects
and SDO_GEOR_ADMIN.registerGeoRasterColumns.

• SDO_GEOR_ADMIN.upgradeGeoRaster checks for and corrects errors after a
database upgrade.

For usage information related to the preceding subprograms, see Maintaining
GeoRaster Objects and System Data in the Database.

To ensure the reliability of GeoRaster data and metadata, the following actions are
performed and the following guidelines are enforced:

• To ensure the consistency and integrity of internal GeoRaster tables and data
structures, GeoRaster automatically creates a unique DML trigger for each
GeoRaster column whenever a user creates a GeoRaster table.

• GeoRaster triggers are maintained by GeoRaster, and they cannot be dropped or
altered by SQL statements issued by users directly.

• The name pattern GRDMLTR_* is reserved for GeoRaster triggers. Users must not
create any triggers whose names start with GRDMLTR_.

• The associated GeoRaster metadata entries are updated automatically in all of the
following cases: if a GeoRaster table is dropped, truncated, renamed, or altered; if
a GeoRaster column is dropped; or if a schema is dropped.

• A raster data table (RDT) cannot be dropped or directly renamed using standard
SQL statement as long as any GeoRaster object references that RDT.

For more information, see GeoRaster DML Trigger and Deleting GeoRaster Objects,
and Performing Actions on GeoRaster Tables and RDTs.

1.13 Parallel Processing in GeoRaster
There are two types of parallel processing with GeoRaster.

• Parallel execution of SQL statements

• Parallelized GeoRaster procedures

Parallel execution of SQL statements allows most SQL statements, both query and
DML, to run in parallel. When a SQL statement is executed, it is decomposed into
individual steps or row-sources, which are identified as separate lines in an execution
plan.

Chapter 1
Parallel Processing in GeoRaster

1-39

All GeoRaster read-only functions such as metadata-related query operations
(that is, all GeoRaster metadata get functions and SDO_GEOR.validateGeoRaster)
and all single-raster cell queries (SDO_GEOR.getCellValue and
SDO_GEOR.evaluateDouble) are enabled for parallel query. This means that in a
multi-CPU environment, if these functions are used to query many GeoRaster objects
in one or more GeoRaster tables and if the SQL statement is made to run in parallel,
the GeoRaster rows are automatically divided into multiple subsets, and multiple
Oracle server processes will work simultaneously to process each subset to reduce
the overall response time. By dividing the work to run a GeoRaster SQL statement
among multiple processes, you can more quickly maintain spatial indexes and find
GeoRaster objects based on their locations, various metadata, and attributes. You can
also use the pipelined and parallel table function to implement more sophisticated
procedures, including parallelizing some operations on a single GeoRaster object.

Parallelized GeoRaster procedures let you specify multiple subprocesses for
simultaneous processing of a GeoRaster object. Some individual raster and image
processing procedures are specifically implemented to support this type of parallelism.
With these procedures, you simply specify an integer number for the degree
of parallelism (DOP) as an input parameter, to cause the operation to be split
into that number of subprocesses to process the subsets of a single GeoRaster
object simultaneously. Each of those subprocesses runs independently. When all
subprocesses are finished, the whole process is finished. The following procedures
directly support this kind of parallel processing:

• SDO_GEOR.generatePyramid

• SDO_GEOR_RA.classify

• SDO_GEOR_RA.findCells

• SDO_GEOR_RA.rasterMathOp

• SDO_GEOR_RA.rasterUpdate

• SDO_GEOR_AGGR.mosaicSubset

Through the SDO_GEOR_AGGR.mosaicSubset procedure, other types of parallel
operations are supported. These include parallel compression and decompression,
parallel copying or change format copying, parallel subsetting, parallel reprojection,
and parallel rectification. See Parallel Compression, Copying, and Subsetting for more
information.

Imagery and raster data are typically very large, so the preceding operations can
be time consuming. Therefore, when using multi-CPU or multicore servers, always
consider using parallel processing to improve the performance.

1.14 Reporting Operation Progress in GeoRaster
For some resource-intensive operations, GeoRaster enables you to monitor and report
their execution progress.

This capability applies to the execution of the following subprograms:

• SDO_GEOR_AGGR.getMosaicSubset

• SDO_GEOR_AGGR.mosaicSubset

• SDO_GEOR.generatePyramid

• SDO_GEOR.mosaic

Chapter 1
Reporting Operation Progress in GeoRaster

1-40

To monitor and report on execution progress, you can use the following subprograms:

• SDO_GEOR_UTL.clearReportTable

• SDO_GEOR_UTL.createReportTable

• SDO_GEOR_UTL.disableReport

• SDO_GEOR_UTL.dropReportTable

• SDO_GEOR_UTL.enableReport

• SDO_GEOR_UTL.getAllStatusReport

• SDO_GEOR_UTL.getProgress

• SDO_GEOR_UTL.getStatusReport

• SDO_GEOR_UTL.isReporting

• SDO_GEOR_UTL.setClientID

• SDO_GEOR_UTL.setSeqID

For information about monitoring and reporting the progress of GeoRaster operations,
see Monitoring and Reporting GeoRaster Operation Progress.

1.15 GeoRaster PL/SQL API
GeoRaster provides the SDO_GEOR, SDO_GEOR_ADMIN, SDO_GEOR_AGGR,
SDO_GEOR_RA, and SDO_GEOR_UTL PL/SQL packages, which contain
subprograms (functions and procedures) to work with GeoRaster data and metadata.

Most of these subprograms fit into one of the following logical categories reflecting the
purpose of the subprogram:

• Create, load, and export GeoRaster data

• Georeference and validate GeoRaster objects

• Query and update GeoRaster metadata

• Query and update GeoRaster cell data

• Format, transform, process, and analyze GeoRaster objects

• Perform GeoRaster administrative functions

GeoRaster automatically validates the GeoRaster object after any set or process
procedure completes.

Reference chapters provide detailed information about the
subprograms in the SDO_GEOR (SDO_GEOR Package
Reference), SDO_GEOR_ADMIN (SDO_GEOR_ADMIN Package Reference),
SDO_GEOR_AGGR (SDO_GEOR_AGGR Package Reference), SDO_GEOR_RA
(SDO_GEOR_RA Package Reference), and SDO_GEOR_UTL (SDO_GEOR_UTL
Package Reference) PL/SQL packages. The subprograms are presented in
alphabetical order in those chapters. Basic GeoRaster Operations, Raster Algebra and
Analytics, and Image Processing and Virtual Mosaic describe operations that involve
the use of many of those subprograms, including the general steps for calling them.

GeoRaster uses spatial indexing capabilities and related operations, which are
described in Oracle Spatial and Graph Developer's Guide.

Chapter 1
GeoRaster PL/SQL API

1-41

1.16 GeoRaster Java API
The Oracle Spatial and Graph GeoRaster Java API consists of interfaces and classes
that support features available with the GeoRaster feature of Oracle Spatial and
Graph.

This API provides a complete mapping of the SDO_GEORASTER object type and
its metadata to Java objects, and it offers Java methods to manipulate GeoRaster
objects.

This API includes the following major packages:

• The oracle.spatial.georaster package is the core of this API. It provides a
complete mapping of the SDO_GEORASTER object type and its metadata to
Java objects, and it offers Java methods to manipulate GeoRaster objects. It also
provides a virtual mosaic class to support advanced visualization applications. It is
in pure Java and does not depend upon JAI.

• The oracle.spatial.georaster.sql package provides support for wrapping
some of the GeoRaster PL/SQL subprograms that do not have support included in
the oracle.spatial.georaster package.

• The oracle.spatial.georaster.image package provides support for generating
Java images from a GeoRaster object, a subset of a GeoRaster object, or a
virtual mosaic, and for processing the images. This package depends upon and
leverages JAI.

For detailed information about these packages, see Oracle Spatial and Graph Java
API Reference (Javadoc).

The Spatial and Graph Java class libraries are in .jar files under
the <ORACLE_HOME>/md/jlib/ directory. The GeoRaster Java API .jar file
is $ORACLE_HOME/md/jlib/georasterapi.jar.

1.17 GeoRaster Spatial Web Services
A web service enables developers of Oracle Spatial and Graph GeoRaster
applications to provide raster data and metadata to their application users over
the web. GeoRaster supports Open Geospatial Consortium (OGC) web services,
specifically, Web Coverage Services (WCS) and Web Map Services (WMS).

WCS offers multidimensional coverage data (imagery and gridded rasters) for access
over the Internet. You can publish GeoRaster objects in the database and allow
users to retrieve the raster data over the web, including subsetting, reprojection, and
GeoTIFF format support. WCS is described in a chapter in the Oracle Spatial and
Graph Developer’s Guide.

MapViewer supports the rendering of data delivered using the OGC Web Map Service
(WMS) protocol, specifically the WMS 1.1.1 and 1.3.0 implementation specifications. It
supports any images and gridded rasters stored in GeoRaster. WMS is described in an
appendix in the User’s Guide to Oracle MapViewer.

Chapter 1
GeoRaster Java API

1-42

1.18 Map Visualization Component and GeoRaster
The Spatial and Graph Map Visualization Component (formerly known as MapViewer)
is a programmable tool for rendering maps using spatial data managed by Oracle
Spatial and Graph. It fully supports GeoRaster data types and is the web-based
mapping and visualization application platform for GeoRaster.

The Map Visualization Component allows you to define GeoRaster themes (based
on an individual GeoRaster object) and GeoRaster virtual mosaic themes (based
on a collection of GeoRaster objects). You can use the Map Builder tool to define
GeoRaster themes and virtual mosaic themes, and to specify image processing
operations and rendering styles.

The Map Visualization Component also has a map tile server, which is a map image
caching engine that fetches, caches, and serves pregenerated, fixed-size map image
tiles. You can leverage it to cache GeoRaster images in the middle tier to speed up
applications.

The Map Visualization Component is documented in the Oracle Spatial and Graph
Map Visualization Developer's Guide.

1.19 GeoRaster Tools: Viewer, Loader, Exporter
Oracle Spatial includes tools for viewing, loading, and exporting GeoRaster data.

Oracle works closely with third parties to provide comprehensive ETL (extract,
transform, load) tools for loading and exporting various raster data formats and
to provide visualization clients to display GeoRaster objects. See the Spatial
and Graph partner solutions information at http://www.oracle.com/technetwork/
database-options/spatialandgraph/learnmore/ and the open source GDAL support
at http://www.gdal.org/frmt_georaster.html.

GeoRaster also includes the following client-side tools:

• JAI-based GeoRaster viewer, loader and exporter

• GDAL-based ETL wizard for concurrent batch loading and exporting of large
numbers of image and raster files

To use these client-side tools, you must install the demo files from the Oracle
Database Examples media (see Oracle Database Examples Installation Guide). After
the installation, these tools are in the following .jar file (assuming the default Spatial
and Graph installation directory of $ORACLE_HOME/md):

$ORACLE_HOME/md/demo/georaster/tool/georastertool.jar

In addition, GDAL itself is included with the Oracle Spatial and Graph installation.

• JAI-Based Viewer, Loader, and Exporter

• GDAL-Based ETL Wizard for Concurrent Batch Loading and Exporting

• Using GDAL from the Spatial and Graph Installation

• Using the SDO_GEOR_GDAL Package

Chapter 1
Map Visualization Component and GeoRaster

1-43

http://www.oracle.com/technetwork/database-options/spatialandgraph/learnmore/
http://www.oracle.com/technetwork/database-options/spatialandgraph/learnmore/
http://www.gdal.org/frmt_georaster.html

1.19.1 JAI-Based Viewer, Loader, and Exporter
The GeoRaster JAI-based tools include a viewer, a loader, and an exporter. These
tools are intended for DBAs and application developers. The viewer is especially
useful for examining all types of GeoRaster objects and their metadata. It can also
display a virtual mosaic defined as one or a list of GeoRaster tables or views.
The loader and exporter are lightweight tools for conveniently load and export a
limited number of image and raster files one at a time. The $ORACLE_HOME/md/demo/
georaster/tool/README.txt file includes helpful usage information and instructions
for using the following tools:

• GeoRaster viewer displays GeoRaster objects and metadata, as well as virtual
mosaics. You can connect to multiple databases simultaneously, and see
the GeoRaster objects from each database listed in the left pane. You can
quickly switch among views at various resolutions, from the original image
(pyramid level 0) to the overview (highest pyramid level). You can perform
image enhancement, such as linear stretch (automatic, manual, or piecewise),
normalization, equalization, and controls for brightness, contrast, and threshold.
(For more information about viewing GeoRaster objects, see Viewing GeoRaster
Objects.)

In the viewer, you can call the GeoRaster loader and exporter tools, thus
enabling you to use a single tool as an interface to the capabilities of all the
GeoRaster tools. The loader and exporter tools are described in this section and in
the $ORACLE_HOME/md/demo/georaster/tool/JAI_based_tools_user_guide.txt
file.

• GeoRaster loader, which loads raster data into the GeoRaster objects. It can load
the following image formats: TIFF, GeoTIFF, JPEG, BMP, GIF, PNG, and JP2.
Georeferencing information can be loaded from ESRI world files, GeoTIFF files
and Digital Globe RPC text files.

You can use the GeoRaster loader as an alternative to the
SDO_GEOR.importFrom procedure, which is documented in SDO_GEOR
Package Reference. However, on non-Windows systems this loader tool
does not support the BMP or GIF image formats, so you must use the
SDO_GEOR.importFrom procedure with these formats on non-Windows systems.
This tool does not support raster data that has a cell depth value of 2BIT, or
source multiband raster data with BIL or BSQ interleaving types. The imported
GeoRaster object has the BIP interleaving type. The loading operation of this tool
cannot be rolled back.

When an image in JPEG file format is loaded, the amount of memory required
for the operation depends on the size of the uncompressed image, and can be
specified as a command line parameter using the -Xmx option (for example, java
-Xmx256M oracle.spatial.georaster.tools.GeoRasterLoader ...).

• GeoRaster exporter, which exports GeoRaster objects to image files. The
GeoRaster exporter tool supports the following destination image file formats:
TIFF, GeoTIFF, JPEG, BMP, GIF, PNG, and JP2. Georeferencing information can
be exported to ESRI world files, GeoTIFF files and Digital Globe RPC text files.

You can use this as an alternative to the SDO_GEOR.exportTo procedure,
which is documented in SDO_GEOR Package Reference. Note, however, that
the GeoRaster exporter tool does not support GIF as a destination file format;
the SDO_GEOR.exportTo procedure does not support GIF, JPEG, or JP2 as a
destination file format. The GeoRaster exporter tool does not support GeoRaster

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

1-44

objects that have a cellDepth value of 2BIT. GeoRaster objects with a cell depth
of 8 bits or greater that have a BSQ or BIL interleaving are exported in BIP
interleaved format.

For information about limits on the amount of GeoRaster data that can be
exported in a single operation, see the Usage Notes for the SDO_GEOR.exportTo
procedure.

Some restrictions on load and export operations may apply regarding
image size and type; see the $ORACLE_HOME/md/demo/georaster/tool/
JAI_based_tools_user_guide.txt file for the GeoRaster tools.

These tools are developed in Java, so you can run them anywhere through an
intranet or the Internet, as long as you establish a network connection with the Oracle
database.

To load or export GeoTIFF images with the GeoRaster client-side tools, add the
following libraries to your CLASSPATH definition:

• xtiff-jai.jar (available from the SourceForge Extensible-TIFF-JAI group)

• geotiff-jai.jar (available from the SourceForge GeoTIFF-JAI group)

To load or export JP2 images, add the following library to your CLASSPATH definition:
jai-imageio.jar (available from the Oracle Java Advanced Imaging Image I/O Tools
download page).

After raster or image files are loaded into GeoRaster objects, the data is completely
stored in the native GeoRaster object data type and is independent from any specific
file formats.

If you want to create your own GeoRaster loader and exporter tools, you can develop
them using OCI, Oracle C++ Call Interface (OCCI), or Java, and you can implement
them as client-side commands or server-side SQL procedures or functions.

1.19.2 GDAL-Based ETL Wizard for Concurrent Batch Loading and
Exporting

GeoRaster includes an ETL wizard tool to automate and enable concurrent batch
loading and exporting of various image and raster files using GDAL. This powerful
tool can load and export large numbers of raster and image files in batches and
concurrently.

It defines an XML schema and provides a graphical user interface to create loading
and exporting description files in XML. Each description file describes how to load
or export a series of raster files into or from GeoRaster in a batch. After the XML
description files are created, you can use the same wizard tool to invoke multiple
description files to concurrently load and export raster files in batches. Any run-time
failures are caught and logged, but they do not stop the batch loading or exporting
processes. This tool supports all raster formats supported by GDAL.

To use this wizard, you must install the demo files from the Oracle Database Examples
media (see Oracle Database Examples Installation Guide). After the installation, this
wizard is in the following .jar file (assuming the default Spatial and Graph installation
directory of $ORACLE_HOME/md):

$ORACLE_HOME/md/demo/georaster/tool/georastertool.jar

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

1-45

The $ORACLE_HOME/md/demo/georaster/tool/README.txt file describes how to set up
GDAL and launch the wizard.

The $ORACLE_HOME/md/demo/georaster/tool/GDAL_based_etl_user_guide.pdf file
describes the usage in detail.

1.19.3 Using GDAL from the Spatial and Graph Installation
The GeoSpatial Data Abstraction Library (GDAL) is an Open Source software library
that supports many data formats and services. Oracle Spatial geometries and
GeoRaster objects are supported by the GDAL library, command line tools, and
programing interface.

GDAL is distributed with Oracle Spatial and Graph, where it is installed
under $ORACLE_HOME/md/gdal on Linux systems and %ORACLE_HOME% \md\gdal on
Windows systems. (GDAL is not distributed with Oracle Spatial and Graph on other
platforms.)

To prepare GDAL for command line use, you must add the GDAL bin, data, lib, and
plugins folders to the system environment variables.

The following examples set up GDAL on Linux:

setenv GDAL_HOME ${ORACLE_HOME}/md/gdal
setenv GDAL_DATA ${GDAL_HOME}/data
setenv GDAL_DRIVER_PATH ${GDAL_HOME}/lib/gdalplugins
setenv PATH ${GDAL_HOME}/bin:${PATH}
setenv LD_LIBRARY_PATH ${GDAL_HOME}/lib:${LD_LIBRARY_PATH}

The following examples set up GDAL on Windows:

set GDAL_HOME=%ORACLE_HOME%\md\gdal
set GDAL_DATA=%GDAL_HOME%\data
set GDAL_DRIVER_PATH=%GDAL_HOME%\bin\gdalplugins
set PATH=%GDAL_HOME%\bin;%PATH%

The preceding examples assume that Oracle OCI shared libraries are already
configured in the system. Oracle OCI shared libraries can be found in the Oracle
Database or Instant Client installation.

The following example adds Oracle Instant Client to the Windows PATH variable:

set PATH=C:\instantclient_12_1;%PATH%

The scripts to automatically set up GDAL are setup_gdal.conf and setup_gdal.bat,
which can be found in the following folder: $ORACLE_HOME/md/demo/georaster/tool

Loading Raster Data and its subtopics provide explanations and examples of how to
use GDAL to load raster files into GeoRaster.

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

1-46

http://www.gdal.org/

1.19.4 Using the SDO_GEOR_GDAL Package
The SDO_GEOR_GDAL PL/SQL package integrates the open source software GDAL
with Oracle Database Server through external procedures and provides PL/SQL APIs
to execute a set of GDAL functions.

The functions and procedures from the SDO_GEOR_GDAL package will execute on
the Oracle Database server system and can work together with any other GeoRaster
PL/SQL APIs.

Currently the SDO_GEOR_GDAL package is only available on the Windows and Linux
operating systems.

SDO_GEOR_GDAL Package Reference describes the SDO_GEOR_GDAL package
and includes reference information for the subprograms in that package.

Configuration Requirements for Using SDO_GEOR_GDAL

To use the SDO_GEOR_GDAL package, follow the instructions for your operating
system.

Linux Systems:

1. Add the following lines to the server configuration file: {ORACLE_HOME}/hs/admin/
extproc.ora
However, in each of these lines, replace ${ORACLE_HOME} with the actual path to
the Oracle home directory.

set EXTPROC_DLLS=${ORACLE_HOME}/md/lib/libsdogdal.so
set GDAL_DATA=${ORACLE_HOME}/md/gdal/data
set GDAL_DRIVER_PATH=${ORACLE_HOME}/md/gdal/lib/gdalplugins

2. Create a symbolic link as follows, but replacing ${ORACLE_HOME} with the actual
path to the Oracle home directory:

ln -s ${ORACLE_HOME}/md/gdal/lib/libgdal.so ${ORACLE_HOME}/lib/
libgdal.so

Windows Systems:

1. Add the following lines to the server configuration file: {ORACLE_HOME}
\hs\admin\extproc.ora
However, in each of these lines, replace %ORACLE_HOME% with the actual path to the
Oracle home directory.

set EXTPROC_DLLS=%ORACLE_HOME%\md\lib\libsdogdal.dll
set GDAL_DATA=%ORACLE_HOME%\md\gdal\data
set GDAL_DRIVER_PATH=%ORACLE_HOME%\md\gdal\bin\gdalplugins

2. Create a symbolic link as follows from an Administrator console, but replacing
%ORACLE_HOME% with the actual path to the Oracle home directory:

mklink %ORACLE_HOME%\lib\gdal240.dll %ORACLE_HOME%
\md\gdal\bin\gdal240.dll

Chapter 1
GeoRaster Tools: Viewer, Loader, Exporter

1-47

1.20 GeoRaster PL/SQL and Java Sample Files
GeoRaster includes several PL/SQL and Java sample code files that show common
operations.

If you installed the example files from the Oracle Database Examples media (see
Oracle Database Examples Installation Guide), these sample code files are in the
following directories under the Spatial and Graph installation directory (which by
default is $ORACLE_HOME/md):

/demo/georaster/plsql
/demo/georaster/java

The PL/SQL code examples demonstrate basic operations using the GeoRaster
PL/SQL API to initialize, import, insert, delete, query, process, update, and export
GeoRaster objects.

The Java code examples demonstrate how to use the GeoRaster Java API to develop
GeoRaster ETL (extract, transform, load) tools and applications.

1.21 README File for Spatial and Graph and Related
Features

Oracle Spatial and Graph includes a README.txt file.

This file supplements the information in the following manuals: Oracle Spatial and
Graph Developer's Guide, Oracle Spatial and Graph GeoRaster Developer's Guide
(this manual), and Oracle Spatial and Graph Topology Data Model and Network Data
Model Graph Developer's Guide. This file is located at:

$ORACLE_HOME/md/doc/README.txt

Chapter 1
GeoRaster PL/SQL and Java Sample Files

1-48

2
GeoRaster Data Types and Related
Structures

The object-relational implementation of GeoRaster consists of a set of object data
types for storing data and system data.

Each image or gridded raster data is stored in a column of type SDO_GEORASTER,
and the blocks in that raster data are stored in a raster data table of type
SDO_RASTER, as explained and illustrated in GeoRaster Physical Storage. This
chapter contains the following major sections.

• SDO_GEORASTER Object Type
In the GeoRaster object-relational model, a raster image or grid object is stored
in a single row, in a single column of object type SDO_GEORASTER in a user-
defined table. Tables with at least one column of type SDO_GEORASTER are
referred to as GeoRaster tables.

• SDO_RASTER Object Type and the Raster Data Table
In the GeoRaster object-relational model, a raster data table is used to store all
cell data in a raster image.

• Other GeoRaster Types
GeoRaster also porvides some other data types.

• GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)
GeoRaster uses a system data table (also called the sysdata table) to maintain the
relationship between GeoRaster tables and their related raster data tables.

• GeoRaster XML Schema
GeoRaster defines an XML schema to store and manage the GeoRaster
metadata.

2.1 SDO_GEORASTER Object Type
In the GeoRaster object-relational model, a raster image or grid object is stored in
a single row, in a single column of object type SDO_GEORASTER in a user-defined
table. Tables with at least one column of type SDO_GEORASTER are referred to as
GeoRaster tables.

The SDO_GEORASTER object type is defined as:

CREATE TYPE sdo_georaster AS OBJECT (
 rasterType NUMBER,
 spatialExtent SDO_GEOMETRY,
 rasterDataTable VARCHAR2(128),
 rasterID NUMBER,
 metadata XMLType);

The sections that follow describe the semantics of each SDO_GEORASTER attribute.

• rasterType Attribute

• spatialExtent Attribute

2-1

• rasterDataTable Attribute

• rasterID Attribute

• metadata Attribute

2.1.1 rasterType Attribute
The rasterType attribute must be a 5-digit number in the format [d][b][t][gt],
where:

• [d] identifies the number of spatial dimensions. Must be 2 for the current release.

• [b] indicates band or layer information: 0 means one band or layer; 1 means
one or more than one band or layer. Note that you are not specifying the total
number of bands or layers in this field. (For information about bands and layers,
see Bands_ Layers_ and Metadata.)

• [t] is reserved for future use and should be specified as 0 (zero).

• [gt] identifies the 2-digit GeoRaster type, and must be one of the following
values:

[gt] Value Meaning

00 Reserved for Oracle use.

01 Any GeoRaster type. This is the only value supported for the current release.
This value causes GeoRaster not to apply any restrictions associated with
specific types that might be implemented in future releases.

02-50 Reserved for Oracle use.

51-99 Reserved for customer use in future releases.

For example, a RasterType value of 20001 means:

• Two-dimensional data

• One band (layer)

• Any GeoRaster type

2.1.2 spatialExtent Attribute
The spatialExtent attribute identifies the spatial extent, or footprint, associated
with the raster data. The spatial extent is an Oracle Spatial and Graph geometry
of type SDO_GEOMETRY. The spatial extent geometry can be in any coordinate
system, not necessarily in the GeoRaster model space, and can be directly
updated by a SQL UPDATE statement specifying a geometry. However, the spatial
extent geometry is in the model (ground) space of the GeoRaster object if the
GeoRaster object is georeferenced and if you generate the spatial extent geometry
using any of the following methods: calling the SDO_GEOR.generateSpatialExtent
function, or specifying spatialExtent=TRUE as a storage parameter to the
SDO_GEOR.importFrom procedure or the GeoRaster client-side loader (described in
GeoRaster Tools: Viewer_ Loader_ Exporter).

You can call SDO_CS.transform to convert it to any other supported coordinate
system. The spatial extent is set to null, rather than cell space, if its SRID value is
null or 0 (zero). The SDO_GEOMETRY data type is described in Oracle Spatial and
Graph Developer's Guide.

Chapter 2
SDO_GEORASTER Object Type

2-2

The GeoRaster spatial extent is generally used to build a spatial R-tree index on
the GeoRaster column. For example, you can use a geodetic SRID for all the
spatial extents when all GeoRaster objects are in different local projections, and
then build a whole-Earth based spatial index on the GeoRaster table and spatially
search GeoRaster objects globally. Because of the potential performance benefits
of spatial indexing for GeoRaster applications, the geometry is associated with the
spatialExtent attribute, rather than being included in the XML metadata attribute
described in metadata Attribute. For information about indexing GeoRaster data, see
Indexing GeoRaster Objects.

2.1.3 rasterDataTable Attribute
The rasterDataTable attribute identifies the name of the raster data table. The raster
data table must be an object table of type SDO_RASTER or a relational table that
includes all columns defined by object type SDO_RASTER. It contains a row for each
raster block that is stored. You must create and (if necessary) drop the raster data
table. You should never modify the rows in this table directly, but you can query this
table to access the raster data.

This attribute must be a valid nonquoted identifier without any period separators, and
all the alphanumeric characters must be uppercase.

For more information about the raster data table and the SDO_RASTER type, see
SDO_RASTER Object Type and the Raster Data Table.

2.1.4 rasterID Attribute
The rasterID attribute value is stored in the rows of the raster data table to identify
which rows belong to the GeoRaster object. The rasterDataTable attribute and
rasterID attribute together uniquely identify the GeoRaster object in the database.
That is, each GeoRaster object has a raster data table, although a raster data table
can contain data from multiple GeoRaster objects.

You can specify the rasterID and rasterDataTable attributes for new GeoRaster
objects, as long as each pair is unique in the database. If you do not specify
these values, they are automatically generated by the SDO_GEOR.init and
SDO_GEOR.createBlank functions.

2.1.5 metadata Attribute
The metadata attribute contains the GeoRaster metadata that is defined by Oracle.
The metadata is described by the GeoRaster metadata XML schema, which is
documented in GeoRaster Metadata XML Schema. The metadata of any GeoRaster
object must be validated against this XML schema, and it must also be validated using
the SDO_GEOR.validateGeoRaster function, which imposes additional restrictions not
defined by this XML schema.

The default storage option for GeoRaster metadata is binary XML.

2.2 SDO_RASTER Object Type and the Raster Data Table
In the GeoRaster object-relational model, a raster data table is used to store all cell
data in a raster image.

Chapter 2
SDO_RASTER Object Type and the Raster Data Table

2-3

The cell data of a GeoRaster object is blocked, and each block is stored in the raster
data table as one row. You specify this table in the rasterDataTable attribute of the
SDO_GEORASTER object, as explained in rasterDataTable Attribute. You must create
the raster data table before you store any cell data in it.

The raster data table is an object table, defined as a table of SDO_RASTER
object type or as a relational table that includes all columns defined by object type
SDO_RASTER. The SDO_RASTER object type is defined as:

CREATE TYPE sdo_raster AS OBJECT (
 rasterID NUMBER,
 pyramidLevel NUMBER,
 bandBlockNumber NUMBER,
 rowBlockNumber NUMBER,
 columnBlockNumber NUMBER,
 blockMBR SDO_GEOMETRY,
 rasterBlock BLOB);

The sections that follow describe the semantics of each SDO_RASTER attribute.

• rasterID Attribute

• pyramidLevel Attribute

• bandBlockNumber Attribute

• rowBlockNumber Attribute

• columnBlockNumber Attribute

• blockMBR Attribute

• rasterBlock Attribute

2.2.1 rasterID Attribute
The rasterID attribute in the SDO_RASTER object must be a number that matches
the rasterID value in its associated SDO_GEORASTER object. (The rasterID
attribute of the SDO_GEORASTER object is described in rasterID Attribute.) The
matching of these numbers identifies the raster block as belonging to a specific
GeoRaster object.

2.2.2 pyramidLevel Attribute
The pyramidLevel attribute identifies the pyramid level for this block of cells. The
pyramid level is 0 or any positive integer. Pyramid levels are used to create reduced
resolution images that require less storage space. A pyramid level of 0 indicates the
original raster data; that is, there is no reduction in the image resolution and no change
in the storage space required. Values greater than 0 (zero) indicate increasingly
reduced levels of image resolution and reduced storage space requirements. For more
information about pyramids, see Pyramids.

This attribute and the bandBlockNumber attribute (described in bandBlockNumber
Attribute) are also used to indicate bitmap masks and their pyramids. For more
information about bitmap masks, bitmap mask pyramids, and how the pyramidLevel
and bandBlockNumber attributes are used, see Bitmap Masks.

Chapter 2
SDO_RASTER Object Type and the Raster Data Table

2-4

2.2.3 bandBlockNumber Attribute
The bandBlockNumber attribute identifies the block number along the band dimension.
For information about bands and layers, see Bands_ Layers_ and Metadata. For more
information about how the bandBlockNumber attribute is used with bitmap masks and
their pyramids, see Bitmap Masks.

2.2.4 rowBlockNumber Attribute
The rowBlockNumber attribute identifies the block number along the row dimension.

2.2.5 columnBlockNumber Attribute
The columnBlockNumber attribute identifies the block number along the column
dimension.

2.2.6 blockMBR Attribute
The blockMBR attribute is the geometry (of type SDO_GEOMETRY) for the minimum
bounding rectangle (MBR) for this block. The geometry is in cell space (that is,
its SRID value is null), and all ordinates are integers. The ordinates represent the
minimum row and column and the maximum row and column stored in this block.

2.2.7 rasterBlock Attribute
The rasterBlock attribute contains all raster cell data for this block. It is also used
to store bitmap masks of the GeoRaster object. The rasterBlock attribute is of type
BLOB.

2.3 Other GeoRaster Types
GeoRaster also porvides some other data types.

In addition to SDO_GEORASTER, SDO_RASTER, and SDO_RANGE_ARRAY and
SDO_RANGE, GeoRaster provides several other object and collection types, which
are used for specific kinds of operations. Unlike the SDO_GEORASTER and
SDO_RASTER types, which are used for storage in the database (for example, to
define a column in a table), the types described in this section are used only with the
GeoRaster PL/SQL API in the current release.

• SDO_GEOR_HISTOGRAM Object Type

• SDO_GEOR_HISTOGRAM_ARRAY Collection Type

• SDO_GEOR_COLORMAP Object Type

• SDO_GEOR_GRAYSCALE Object Type

• SDO_RASTERSET Collection Type

• SDO_GEOR_SRS Object Type

• SDO_GEOR_GCP Object Type

• SDO_GEOR_GCP_ COLLECTION Collection Type

Chapter 2
Other GeoRaster Types

2-5

• SDO_GEOR_GCPGEOREFTYPE Object Type

Related Topics

• SDO_GEORASTER Object Type

• SDO_RASTER Object Type and the Raster Data Table

• NODATA Values and Value Ranges

2.3.1 SDO_GEOR_HISTOGRAM Object Type
In GeoRaster, the histogram is stored in the GeoRaster metadata using
the XML schema defined in GeoRaster Metadata XML Schema. The
SDO_GEOR_HISTOGRAM object type is used in the PL/SQL API to contain the
histogram data of a GeoRaster object or a layer. The layers have the same histogram
data structure. Each cell has a value, and for each cell value or a value range there
may be any number of cells having that value or falling in that range.

The SDO_GEOR_HISTOGRAM object type is defined as:

CREATE TYPE sdo_geor_histogram AS OBJECT(
 cellValue SDO_NUMBER_ARRAY,
 count SDO_NUMBER_ARRAY);

Table 2-1 describes the attributes of the SDO_GEOR_HISTOGRAM object type. The
cellValue array and the count array must have the same length.

Table 2-1 SDO_GEOR_HISTOGRAM Object Type Attributes

Attribute Description

cellValue Array of cell values.

count Number of cells that correspond to each cell
value or cell value range.

The histogram contains the cell values (and the implied value ranges) and the total
number of cells related to each cell value or each cell value range. For example, if
(cellValue1, count1) and (cellValue2, count2) are the two adjacent entries in ascending
order in the histogram, the implied value range is [cellValue1, cellValue2) and the total
number of cells in this range is count1. The cell value range is always inclusive in its
lower boundary and exclusive in the upper boundary. The size of each range does not
necessarily have to be the same. Using this example, the range is equal to or greater
than cellValue1 and less than cellValue2. For a lower cell depth (for example, 1-bit to
8-bit integers), the cell value ranges are typically the same as the cell values.

2.3.2 SDO_GEOR_HISTOGRAM_ARRAY Collection Type
The SDO_GEOR_HISTOGRAM_ARRAY collection type is used to store an array
(collection) of SDO_GEOR_HISTOGRAM objects.

The SDO_GEOR_HISTOGRAM_ARRAY collection type is defined as:

CREATE TYPE sdo_geor_histogram_array AS
 VARRAY(10485760) OF SDO_GEOR_HISTOGRAM;

Chapter 2
Other GeoRaster Types

2-6

2.3.3 SDO_GEOR_COLORMAP Object Type
In GeoRaster, the color information is stored in the GeoRaster metadata
using the XML schema defined in GeoRaster Metadata XML Schema. The
SDO_GEOR_COLORMAP object type is used in the PL/SQL API to contain colormap
information, that is, pseudocolor information for identifying the red, green, blue,
and (optionally) alpha values of the color to be used to display cells that have a
specific value or are in a specific value range. The colormap is also called the
pseudocolor table or the palette table. The colormap in GeoRaster is in the default
sRGB ColorSpace, which is a proposed standard RGB color space, as explained at

http://www.w3.org/Graphics/Color/sRGB.html

The ranges for red, green, blue, and alpha values are all scaled to be 8-bit unsigned
integers from 0 to 255.

Alpha is also called opacity. An alpha value of 255 means that the color is completely
opaque, and an alpha value of 0 means that the color is completely transparent. The
color component values are never premultiplied by the alpha value.

The SDO_GEOR_COLORMAP object type is defined as:

CREATE TYPE sdo_geor_colormap AS OBJECT(
 cellValue SDO_NUMBER_ARRAY,
 red SDO_NUMBER_ARRAY,
 green SDO_NUMBER_ARRAY,
 blue SDO_NUMBER_ARRAY,
 alpha SDO_NUMBER_ARRAY);

Table 2-2 describes the attributes of the SDO_GEOR_COLORMAP object type.
Each attribute is an array of numbers. The arrays must have the same length, and
the values of the same index in each array must correspond to each other. Each
cellValue value must be consistent with the cellDepth value of the GeoRaster object.

The colormap contains the cell values (and the implied value ranges) and the
red, green, blue, and/or alpha values related to each cell value or each cell value
range. For example, if (cellValue1, red1, green1, blue1, alpha1) and (cellValue2,
red2, green2, blue2, alpha2) are the two adjacent entries in ascending order in
the colormap, the implied value range is [cellValue1, cellValue2), and the color
components associated with all cells in this range are (red1, green1, blue1, alpha1).
The cell value range is always inclusive in its lower boundary and exclusive in the
upper boundary. The size of each range does not necessarily have to be the same. In
this example, the range is equal to or greater than cellValue1 and less than cellValue2.
For a lower cell depth (for example, 1-bit to 8-bit integers), the cell value ranges are
typically the same as the cell values.

Table 2-2 SDO_GEOR_COLORMAP Object Type Attributes

Attribute Description

cellValue Array of cell values. The values must be stored
in ascending order.

red Array of red component values for pseudocolor
display of cells that have the values or value
ranges in cellValue. Must be integer values
from 0 to 255.

Chapter 2
Other GeoRaster Types

2-7

http://www.w3.org/Graphics/Color/sRGB.html

Table 2-2 (Cont.) SDO_GEOR_COLORMAP Object Type Attributes

Attribute Description

green Array of green component values for
pseudocolor display of cells that have the
values or value ranges in cellValue. Must be
integer values from 0 to 255.

blue Array of blue component values for
pseudocolor display of cells that have the
values or value ranges in cellValue. Must be
integer values from 0 to 255.

alpha Array of alpha component values for
pseudocolor display of cells that have the
values or value ranges in cellValue. Must be
integer values from 0 to 255.

2.3.4 SDO_GEOR_GRAYSCALE Object Type
In GeoRaster, the grayscale information is stored in the GeoRaster metadata
using the XML schema defined in GeoRaster Metadata XML Schema. The
SDO_GEOR_GRAYSCALE object type is used in the PL/SQL API to contain grayscale
information for identifying the grayscale value to be used to display cells that have a
specific value or fall into a specific value range. The grayscale table cell values can
be "stretched" in linear proportion using this grayscale table, so that the original raster
data can be properly displayed. The grayscale table value range is 8-bit unsigned
integer values from 0 to 255. The grayscale table is also called the contrast table or
the lookup table.

The SDO_GEOR_GRAYSCALE object type is defined as:

CREATE TYPE sdo_geor_grayscale AS OBJECT(
 cellValue SDO_NUMBER_ARRAY,
 gray SDO_NUMBER_ARRAY);

Table 2-3 describes the attributes of the SDO_GEOR_GRAYSCALE object type. The
cellValue array and the gray array must have the same length. Each cellValue
value must be consistent with the cellDepth value of the GeoRaster object.

The grayscale contains the cell values (and the implied value ranges) and the gray
values related to each cell value or each cell value range. For example, if (cellValue1,
gray1) and (cellValue2, gray2) are the two adjacent entries in ascending order in the
grayscale table, the implied value range is [cellValue1, cellValue2), and the gray color
associated with all cells in this range is gray1. The cell value range is always inclusive
in its lower boundary and exclusive in the upper boundary. The size of each range
does not necessarily have to be the same. Taking the same example, the range is
equal to or greater than cellValue1 and less than cellValue2. For a lower cell depth (for
example, 1-bit to 8-bit integers), the cell value ranges are typically the same as the cell
values.

Chapter 2
Other GeoRaster Types

2-8

Table 2-3 SDO_GEOR_GRAYSCALE Object Type Attributes

Attribute Description

cellValue Array of cell values. The values must be stored
in ascending order.

gray Array of gray component values for grayscale
display of cells that have the values or value
ranges in cellValue. Must be integer values
from 0 to 255.

2.3.5 SDO_RASTERSET Collection Type
The SDO_RASTERSET collection type is used as the return type of table functions
that query the raster data blocks (one or many blocks, the whole set or a subset).

The SDO_RASTERSET collection type is defined as:

CREATE TYPE sdo_rasterset AS TABLE of SDO_RASTER;

Related Topics

• SDO_RASTER Object Type and the Raster Data Table

2.3.6 SDO_GEOR_SRS Object Type
In GeoRaster, the spatial reference system (SRS) information is stored in the
GeoRaster metadata using the XML schema defined in GeoRaster Metadata XML
Schema. The SDO_GEOR_SRS object type is used in the PL/SQL API to contain
information related to the spatial referencing of a GeoRaster object. The metadata
and the object type contain the same information. You can use the object type to
retrieve the SRS information from GeoRaster objects or to load and update the SRS
information in GeoRaster objects.

The SDO_GEOR_SRS object type is defined as:

CREATE TYPE sdo_geor_srs AS OBJECT (
 isReferenced VARCHAR2(5),
 isRectified VARCHAR2(5),
 isOrthoRectified VARCHAR2(5),
 srid NUMBER,
 spatialResolution SDO_NUMBER_ARRAY,
 spatialTolerance NUMBER,
 coordLocation NUMBER,
 rowOff NUMBER,
 columnOff NUMBER,
 xOff NUMBER,
 yOff NUMBER,
 zOff NUMBER,
 rowScale NUMBER,
 columnScale NUMBER,
 xScale NUMBER,
 yScale NUMBER,
 zScale NUMBER,
 rowRMS NUMBER,
 columnRMS NUMBER,
 totalRMS NUMBER,

Chapter 2
Other GeoRaster Types

2-9

 rowNumerator SDO_NUMBER_ARRAY,
 rowDenominator SDO_NUMBER_ARRAY,
 columnNumerator SDO_NUMBER_ARRAY,
 columnDenominator SDO_NUMBER_ARRAY,
 xRMS NUMBER,
 yRMS NUMBER,
 zRMS NUMBER,
 modelTotalRMS NUMBER,
 GCPgeoreferenceModel SDO_GEOR_GCPGEOREFTYPE);

Table 2-4 describes the attributes of the SDO_GEOR_SRS object type.

Table 2-4 SDO_GEOR_SRS Object Type Attributes

Attribute Description

isReferenced TRUE if the GeoRaster object is georeferenced;
FALSE if the GeoRaster object is not
georeferenced.

isRectified TRUE if the GeoRaster object is both
georectified and georeferenced; FALSE if the
GeoRaster object is not georectified.

isOrthoRectified TRUE if the GeoRaster object is orthorectified,
georectified, and georeferenced; FALSE if the
GeoRaster object is not orthorectified.

srid SRID value of the model (ground) coordinate
system.

spatialResolution Spatial resolution values: an array of numeric
values, one for each spatial dimension.
Each value indicates the number of units of
measurement associated with the data area
represented by that spatial dimension of a cell.

spatialTolerance Tolerance value, for control of the precision.

coordLocation The model coordinate location defines the
type of the cell space, which represents either
upperleft-based (that is, coordLocation=1) or
center-based (that is, coordLocation=0). For
more information about model space and cell
(raster) space, see GeoRaster Data Model.

rowOff Row offset value.

columnOff Column offset value.

xOff X offset value.

yOff Y offset value.

zOff Z offset value.

rowScale Row scaling factor value.

columnScale Column scaling factor value.

xScale X scaling factor value.

yScale Y scaling factor value.

zScale Z scaling factor value.

rowRMS The row-dimension accuracy. It is
computed using control points if you call
SDO_GEOR.georeference using GCPs.

Chapter 2
Other GeoRaster Types

2-10

Table 2-4 (Cont.) SDO_GEOR_SRS Object Type Attributes

Attribute Description

columnRMS The column-dimension accuracy. It is
computed using control points if you call
SDO_GEOR.georeference using GCPs

totalRMS The total row and column accuracy. It is
computed using control points if you call
SDO_GEOR.georeference using GCPs

rowNumerator pType, nVars, order, nCoefficients, and
all coefficients of the numerator of the row
polynomial, where pType=1 or 2; nVars=0, 2,
or 3; 0<=order<=5; and nCoefficients is
derived from pType, nVars, and order. The
polynomials are explained in Functional Fitting
Georeferencing Model.

rowDenominator pType, nVars, order, nCoefficients, and
all coefficients of the denominator of the row
polynomial, where pType=1 or 2; nVars=0, 2,
or 3; 0<=order<=5; and nCoefficients is
derived from pType, nVars, and order. The
polynomials are explained in Functional Fitting
Georeferencing Model.

columnNumerator pType, nVars, order, nCoefficients, and
all coefficients of the numerator of the column
polynomial, where pType=1 or 2; nVars=0, 2,
or 3; 0<=order<=5; and nCoefficients is
derived from pType, nVars, and order. The
polynomials are explained in Functional Fitting
Georeferencing Model.

columnDenominator pType, nVars, order, nCoefficients,
and all coefficients of the denominator of
the column polynomial, where pType=1 or
2; nVars=0, 2, or 3; 0<=order<=5; and
nCoefficients is derived from pType,
nVars, and order. The polynomials are
explained in Functional Fitting Georeferencing
Model.

xRMS The x-dimension accuracy. It is computed
using check points if you call
SDO_GEOR.georeference using GCPs.

yRMS The y-dimension accuracy. It is computed
using check points if you call
SDO_GEOR.georeference using GCPs.

zRMS The z-dimension accuracy. It is computed
using check points if you call
SDO_GEOR.georeference using GCPs.

modelTotalRMS The total model accuracy. It is
computed using check points if you call
SDO_GEOR.georeference using GCPs.

Chapter 2
Other GeoRaster Types

2-11

Table 2-4 (Cont.) SDO_GEOR_SRS Object Type Attributes

Attribute Description

GCPgeoreferenceModel The stored function model information, that
is, all information about the GCP-based
georeferencing model. For information about
GCP-based georeferencing model information,
see SDO_GEOR_GCPGEOREFTYPE Object
Type.

However, when the direct and inverse solutions are derived from the functional fitting
model, the accuracy values listed in Table 2-4 are not considered in GeoRaster
internal cell coordinate and model coordinate transformation computations for the
current release.

The SDO_GEOR_SRS object type has two constructors:

• One constructor takes no parameters and creates an instance of the type with the
isReferenced attribute set to FALSE and the other attributes set to null values. This
constructor allows you to set up either the functional fitting model or the stored
function (GCP) model, or to set up both of them together.

• The other constructor takes all the attributes of this object type as parameters,
except those related to the stored function (GCP) model.

For examples of how to use the SDO_GEOR_SRS constructor, see the reference
section for the SDO_GEOR.setSRS procedure in SDO_GEOR Package Reference.

2.3.7 SDO_GEOR_GCP Object Type
In GeoRaster, the ground control point (GCP) information is stored in the GeoRaster
metadata using the XML schema defined in GeoRaster Metadata XML Schema. The
SDO_GEOR_GCP object type is used in the PL/SQL API to contain GCP information
related to the georeferencing of a GeoRaster object. The metadata and the object
type contain the same information. You can use the object type to retrieve the GCP
information from GeoRaster objects or to load and update the GCP information in
GeoRaster objects.

The SDO_GEOR_GCP object type is defined as:

CREATE TYPE sdo_geor_gcp AS OBJECT (
 pointID VARCHAR2(32),
 description VARCHAR2(256),
 pointType NUMBER,
 cellDimension NUMBER,
 cellCoordinates SDO_NUMBER_ARRAY,
 modelDimension NUMBER,
 modelCoordinates SDO_NUMBER_ARRAY,
 accuracy SDO_NUMBER_ARRAY,
 status NUMBER
);

Table 2-5 describes the attributes of the SDO_GEOR_GCP object type.

Chapter 2
Other GeoRaster Types

2-12

Table 2-5 SDO_GEOR_GCP Object Type Attributes

Attribute Description

pointID Unique ID of the control point. Must not more
32 characters.

description Descriptive information about the control point.

pointType Point type: 1 (control point) or 2 (check point).

cellDimension Dimensionality (number of dimensions) of the
cell coordinates: 2 or 3.

cellCoordinates Array of cell coordinates for the control points;
(row, column) or (row, column, vertical) for
each point.

modelDimension Dimensionality (number of dimensions) of the
model coordinates: 2 or 3.

modelCoordinates Array of model coordinates for the control
point, corresponding to the points in cell
space; (X,Y) or (X,Y,Z) for each point.

accuracy Accuracy of the control point, expressed as
the values of (xRMS, yRMS) or (xRMS, yRMS,
zRMS).

status Status of the GCP: Measured, Removed,
Estimated, Validated, or Invalid. The
value of this column is informational only, and
it has no effect on the usage of the GCP by
GeoRaster.

The SDO_GEOR_GCP constructor can be used to create an empty instance of this
object type. You should then fill in the necessary data before you use this instance.

2.3.8 SDO_GEOR_GCP_ COLLECTION Collection Type
The SDO_GEOR_GCP_ COLLECTION collection type is used to store an array (a
collection) of ground control points (GCPs).

The SDO_GEOR_GCP_ COLLECTION collection type is defined as:

CREATE TYPE sdo_geor_gcp_collection VARRAY(1048576) OF SDO_GEOR_GCP;

Related Topics

• SDO_GEOR_GCP Object Type

2.3.9 SDO_GEOR_GCPGEOREFTYPE Object Type
In GeoRaster, the GCP-based georeferencing model information is stored in the
GeoRaster metadata using the XML schema defined in GeoRaster Metadata XML
Schema. The SDO_GEOR_GCPGEOREFTYPE object includes the georeferencing
functional fitting method (that is, the geometric model), control points for solving the
model parameters, and solution accuracy. The SDO_GEOR_ GCPGEOREFTYPE
object type is used in the PL/SQL API to contain georeferencing model information
related to the GCP-based georeferencing of a GeoRaster object. The metadata and
the object type contain the same information. You can use the object type to retrieve

Chapter 2
Other GeoRaster Types

2-13

the georeferencing model information from GeoRaster objects or to load and update
the georeferencing model information in GeoRaster objects.

The SDO_GEOR_GCPGEOREFTYPE object type is defined as:

CREATE TYPE sdo_geor_gcpgeoreftype AS OBJECT (
 FFMethodType VARCHAR2(32),
 numberGCP NUMBER,
 GCPs SDO_GEOR_GCP_COLLECTION,
 solutionAccuracy SDO_NUMBER_ARRAY
);

Table 2-6 describes the attributes of the SDO_GEOR_GCPGEOREFTYPE object
type.

Table 2-6 SDO_GEOR_GCPGEOREFTYPE Object Type Attributes

Attribute Description

FFMethodType Functional fitting method. Must be
one of the following: Affine,
QuadraticPolynomial, CubicPolynomial,
DLT, QuadraticRational, or RPC.

numberGCP Number of ground control points in the GCP
collection (GCPs parameter).

GCPs The GCP collection, of type
SDO_GEOR_GCP_COLLECTION (described
in SDO_GEOR_GCP_ COLLECTION
Collection Type).

solutionAccuracy Array storing the accuracy of the
georeferencing solution in the following format:
(rowRMS, columnRMS, totalRMS, xRMS,
yRMS, zRMS, modelTotalRMS). The first three
RMS numbers are computed using control
points, and the last four RMS numbers are
computed using check points (if any). This
information is for output only; do not store or
modify values in this attribute.

The SDO_GEOR_GCPGEOREFTYPE object type has one constructor. The
constructor takes no parameters, and it creates an instance of the type with the
FFMethodType attribute set to Affine and the other attributes set to null values.

2.4 GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)

GeoRaster uses a system data table (also called the sysdata table) to maintain the
relationship between GeoRaster tables and their related raster data tables.

Each GeoRaster object (if it is not null) has a related raster data table, and it might
have other information, such as ground control points (GCPs) and value attribute
tables (VATs).

Chapter 2
GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)

2-14

For a given user, the raster data table name plus the rasterID uniquely identify a
GeoRaster object. It is possible for many GeoRaster objects (each with a different
rasterID value) in one GeoRaster table to share one raster data table.

Whenever a new GeoRaster object (including empty and blank GeoRaster objects) is
created, a raster data table is assigned to it and a rasterID value is assigned. All
SDO_GEORASTER objects (except atomic null objects) are automatically recorded in
the system data table when they are created.

The GeoRaster sysdata table is under the MDSYS schema. Most of the information
in the GeoRaster system data table is available for retrieval through system data
views, and thus it can be used as a dictionary or a catalog of all GeoRaster objects
in a GeoRaster database. Each GeoRaster user has the following system data views
available in the schema associated with that user:

• USER_SDO_GEOR_SYSDATA contains system data for all GeoRaster objects
owned by the current user.

• ALL_SDO_GEOR_SYSDATA contains system data for all GeoRaster objects
accessible by the current user.

The GeoRaster sysdata table and the USER_SDO_GEOR_SYSDATA and
ALL_SDO_GEOR_SYSDATA views should never be modified directly by users,
although they are updated by the DML trigger that is automatically created on each
SDO_GEORASTER column in each GeoRaster table.

The USER_SDO_GEOR_SYSDATA view has the following definition:

(
 TABLE_NAME VARCHAR2(128),
 COLUMN_NAME VARCHAR2(1024),
 METADATA_COLUMN_NAME VARCHAR2(1024),
 RDT_TABLE_NAME VARCHAR2(128),
 RASTER_ID NUMBER,
 OTHER_TABLE_NAMES SDO_STRING_ARRAY
);

The ALL_SDO_GEOR_SYSDATA view has all columns in the
USER_SDO_GEOR_SYSDATA view, but it also has an OWNER column identifying
the schema that owns the table specified in the TABLE_NAME column.

This section describes each of the columns common to both views. Note that for
VARCHAR2 data in any columns, names are stored in all uppercase characters.

• TABLE_NAME Column

• COLUMN_NAME Column

• METADATA_COLUMN_NAME Column

• RDT_TABLE_NAME Column

• RASTER_ID Column

• OTHER_TABLE_NAMES Column

2.4.1 TABLE_NAME Column
The TABLE_NAME column contains the name of a GeoRaster table that has at least
one column of type SDO_GEORASTER.

Chapter 2
GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)

2-15

2.4.2 COLUMN_NAME Column
The COLUMN_NAME column contains the name of a column of type
SDO_GEORASTER in the GeoRaster table specified in the TABLE_NAME column.

2.4.3 METADATA_COLUMN_NAME Column
The METADATA_COLUMN_NAME column is ignored for the current release.

2.4.4 RDT_TABLE_NAME Column
The RDT_TABLE_NAME column contains the name of the raster data table
associated with the table and column specified in the TABLE_NAME and
COLUMN_NAME columns.)

Related Topics

• SDO_RASTER Object Type and the Raster Data Table

2.4.5 RASTER_ID Column
The RASTER_ID column contains a number that, together with the
RDT_TABLE_NAME column value, uniquely identifies each GeoRaster object.

2.4.6 OTHER_TABLE_NAMES Column
The OTHER_TABLE_NAMES column is ignored for the current release.

2.5 GeoRaster XML Schema
GeoRaster defines an XML schema to store and manage the GeoRaster metadata.

The definition of this XML schema is included in GeoRaster Metadata XML
Schema. The namespace defined by the GeoRaster XML schema is http://
xmlns.oracle.com/spatial/georaster, and it is reserved for use by Oracle. You must
refer to this namespace if you want to manipulate a GeoRaster metadata document
using the SQL XML functions or the XMLType methods.

GeoRaster uses a table named SDO_GEOR_XMLSCHEMA_TABLE to store the
GeoRaster metadata XML schema and other information. This table is under the
MDSYS schema, and you must include the schema name if you reference this table.
For example:

DESCRIBE mdsys.sdo_geor_xmlschema_table
 Name Null? Type
 --- -------- ----------------------------
 ID NOT NULL NUMBER
 GEORASTERFORMAT VARCHAR2(1024)
 XMLSCHEMA CLOB

Table 2-7 describes the columns of the SDO_GEOR_XMLSCHEMA_TABLE table.

Chapter 2
GeoRaster XML Schema

2-16

Table 2-7 SDO_GEOR_XMLSCHEMA_TABLE Table Columns

Column Name Data Type Description

id NUMBER ID number, assigned by
Oracle. Values 1 through
50 are reserved for use by
Oracle.

georasterFormat VARCHAR2(1024) GeoRaster format identifier,
assigned by Oracle. The value
GEORASTER is reserved for use
by Oracle.

xmlSchema CLOB GeoRaster metadata XML
schema definition. This
definition is included in
GeoRaster Metadata XML
Schema.

There are no GeoRaster views defined on this table. It is mainly of interest to
advanced users who might want to query the table for GeoRaster XML schema
information.

You are encouraged not to modify the contents of this table, unless you want to
define your own XML schema for other metadata that is not included in the GeoRaster
XML schema, and to store that metadata in a new row in this table. If you add a
row for your own metadata, do not use an ID column value of 1 through 50 or a
GEORASTERFORMAT column value of GEORASTER, because these column values
are reserved for use by Oracle. If you specify an XMLSCHEMA column value, you
should choose a unique namespace for your own XML schema and register it using
a corresponding schema URL that will also be unique in the database. (For more
information, see Oracle XML DB Developer's Guide.)

Chapter 2
GeoRaster XML Schema

2-17

3
GeoRaster Database Creation and
Management

This chapter describes how to perform important GeoRaster database creation and
management operations. A typical workflow to build and manage a GeoRaster
database consists of most or all of the steps described.
After you enable GeoRaster for all schemas that will use the feature, create the
GeoRaster objects, load the data, and validate the GeoRaster objects, you can
perform the remaining operations in any order, depending on your application needs.
You may also be able to skip certain operations.

Some operations can be performed using SQL, and some operations must be
performed using PL/SQL blocks. You must update the GeoRaster object after you
insert, update, reformat, compress, decompress, or delete the metadata or cell data of
the GeoRaster object and before you commit the changes (see Updating GeoRaster
Objects Before Committing). For some examples of these operations, see the demo
files described in GeoRaster PL/SQL and Java Demo Files and the examples in
SDO_GEOR Package Reference.

See also the operations in GeoRaster Data Query and Manipulation.

Other chapters in this book cover advanced topics (Raster Algebra and Analytics
and Image Processing and Virtual Mosaic), and provide detailed reference
information about GeoRaster PL/SQL packages (SDO_GEOR Package Reference,
SDO_GEOR_ADMIN Package Reference, SDO_GEOR_AGGR Package Reference,
SDO_GEOR_RA Package Reference, and SDO_GEOR_UTL Package Reference).

• Enabling GeoRaster at the Schema Level

• Adding Data Files and Temporary Tablespaces for GeoRaster Users

• Creating the GeoRaster Table and Raster Data Tables

• Creating New GeoRaster Objects

• Loading Raster Data

• Validating GeoRaster Objects

• Georeferencing GeoRaster Objects

• Generating and Setting Spatial Extents

• Indexing GeoRaster Objects

• Viewing GeoRaster Objects

• Exporting GeoRaster Objects

• Using GeoRaster with Workspace Manager and Label Security

• Maintaining Efficient Tablespace Use by GeoRaster Objects

• Checking GeoRaster Tables and Objects in the Database

• Maintaining GeoRaster Objects and System Data in the Database

3-1

• Transferring GeoRaster Data Between Databases

• Using Transportable Tablespaces with GeoRaster Data

3.1 Enabling GeoRaster at the Schema Level
GeoRaster must be enabled for each database schema that will use the GeoRaster
feature.

By default, the GeoRaster feature is disabled after the Oracle Spatial and Graph is
initially installed. GeoRaster can be enabled only within the scope of a schema (that is,
not for the entire database), and it must be enabled for each schema that will use the
GeoRaster feature.

To enable GeoRaster, follow these steps for each schema for which GeoRaster will be
enabled:

1. Connect to the database as the user for that schema. For example:

CONNECT SCOTT/<password-for-scott>

2. Enter the following statement:

EXECUTE sdo_geor_admin.enableGeoRaster;

3. Verify that GeoRaster is now enabled by checking that the following statement
returns TRUE:

SELECT sdo_geor_admin.isGeoRasterEnabled FROM DUAL;

4. Ensure that the user for this schema has the CREATE TRIGGER privilege (which
is required for GeoRaster to work properly). If the user does not have the CREATE
TRIGGER privilege (or if you do not know), connect as a DBA user and grant the
user that privilege. For example:

CONNECT / AS SYSDBA
GRANT create trigger TO scott;

If a GeoRaster table has been created and populated with data, then after a database
upgrade, GeoRaster is automatically enabled for that table’s schema, and you do not
need to re-enable GeoRaster for the schema. (Just ensure that the CREATE TABLE
privilege is granted to the user.)

3.2 Adding Data Files and Temporary Tablespaces for
GeoRaster Users

A GeoRaster database is typically very large. For storage and performance reasons,
a database schema should use one or more user tablespaces for GeoRaster data
storage (avoid using the system tablespace for storing GeoRaster data), and you
should add data files to the tablespaces appropriately. If Oracle Automatic Storage
Management (Oracle ASM) or a bigfile tablespace is not being used, you should
create many data files for each tablespace and distribute the data files on different
disks if possible. You also should create data files or alter existing data files, so that
they automatically increase in size when more space is needed in the database.

A GeoRaster table can contain a large (potentially almost unlimited) number of
GeoRaster objects. A raster data table (RDT) should be used to contain the raster
blocks of a limited number of GeoRaster objects, depending on the size of the

Chapter 3
Enabling GeoRaster at the Schema Level

3-2

rasters. In contrast with GeoRaster tables, an RDT should not grow too large, unless
partitioning is to be applied. Also, RDTs can be created on different tablespaces,
so that the raster blocks are distributed to different disks. (See also Creating the
GeoRaster Table and Raster Data Tables.)

A GeoRaster database may use a temporary tablespace for some operations.
When compression is involved in GeoRaster operations, particularly for large scale
mosaicking operations, some temporary spaces are needed to store intermediate
compressed or uncompressed data. If the GeoRaster user does not have a temporary
tablespace, the database system temporary tablespace is used. This is not efficient
and may slow down the mosaicking and other operations. Therefore, you should
always create temporary tablespaces for GeoRaster users. For example:

CONNECT system/<password>;
CREATE TEMPORARY TABLESPACE geor_temp TEMPFILE 'geor_temp_1.f' SIZE 1G
AUTOEXTEND ON;
ALTER USER <georaster_user> TEMPORARY TABLESPACE geor_temp;

In general, the amount of temporary space needed is limited. However, for large scale
mosaicking, if the result is to be compressed, the temporary space needed is equal to
the uncompressed image size of the result. Therefore, specify AUTOEXTEND ON when
you create temporary tablespaces for GeoRaster users.

3.3 Creating the GeoRaster Table and Raster Data Tables
Before you can work with GeoRaster objects, you must create a GeoRaster table and
one or more raster data tables, if they do not already exist.

• Creating a GeoRaster Table

• Creating Raster Data Tables

• GeoRaster DML Trigger

3.3.1 Creating a GeoRaster Table
A GeoRaster table is any table that includes at least one column of type
SDO_GEORASTER. The column can be an attribute column of another user-defined
object type. Example 3-1 creates a GeoRaster table named CITY_IMAGES, which
contains a column named IMAGE for storing GeoRaster objects.

Example 3-1 Creating a GeoRaster Table for City Images

CREATE TABLE city_images (image_id NUMBER PRIMARY KEY, image_description
VARCHAR2(50), image SDO_GEORASTER);

For more information about GeoRaster tables, see GeoRaster Physical Storage.

3.3.2 Creating Raster Data Tables
After creating a GeoRaster table, you should create one or more raster data tables
(RDTs) to be used with the objects in the GeoRaster table. You can create a raster
data table as an object table or as a relational table. You should use the LOB storage
format SecureFiles LOBs (SecureFiles) when creating RDTs. Using SecureFiles
significantly improves the performance of GeoRaster operations, compared to using
the original LOB storage paradigm BasicFiles LOBS (BasicFiles).

Chapter 3
Creating the GeoRaster Table and Raster Data Tables

3-3

Example 3-2 creates a raster data table using SecureFiles. The RDT will be used to
store all raster blocks of one or many GeoRaster objects in the CITY_IMAGES table
or other GeoRaster tables. (The association between a GeoRaster object and a raster
data table is not made until you create a GeoRaster object, as explained in Creating
New GeoRaster Objects.)

Example 3-2 Creating a Raster Data Table Using SecureFiles

CREATE TABLE city_images_rdt OF SDO_RASTER
 (PRIMARY KEY (rasterID, pyramidLevel, bandBlockNumber,
 rowBlockNumber, columnBlockNumber))
 TABLESPACE im_tbs_2
 LOB(rasterBlock) STORE AS SECUREFILE
 (CACHE);

Example 3-3 Creating a Raster Data Table (Relational) Using SecureFiles

Example 3-3 creates a raster data table with the same name as in Example 3-2, also
using SecureFiles, but creating it as a relational table instead of an object table.

CREATE TABLE city_images_rdt
 (rasterID NUMBER,
 pyramidLevel NUMBER,
 bandBlockNumber NUMBER,
 rowBlockNumber NUMBER,
 columnBlockNumber NUMBER,
 blockMBR SDO_GEOMETRY,
 rasterBlock BLOB,
 CONSTRAINT pkey PRIMARY KEY (rasterId, pyramidLevel, bandBlockNumber,
 rowBlockNumber, columnBlockNumber))
 LOB (rasterblock) STORE AS SECUREFILE(cache);

The CREATE TABLE statement for a raster data table must include the following
clause (which is included in the preceding examples):

 (PRIMARY KEY (rasterID, pyramidLevel, bandBlockNumber,
 rowBlockNumber, columnBlockNumber))

This PRIMARY KEY clause creates a B-tree index on the raster data table, and this
index is essential for optimal query performance.

When you use BasicFiles, you can specify a larger CHUNK size (16 or 32 KB) for
the LOB storage to improve performance. With SecureFiles, there is no need to
specify the CHUNK size parameter, and there are few other storage parameters to
consider. Raster data tables using SecureFiles LOBs must be created in a tablespace
with the automatic segment space management option. For information about using
Oracle SecureFiles and performance considerations for BasicFiles LOBs, see Oracle
Database SecureFiles and Large Objects Developer's Guide.

For reference information about creating tables, including specifying LOB storage, see
the section about the CREATE TABLE statement in Oracle Database SQL Language
Reference.

For more information about the keywords and options when creating a raster data
table, see Raster Data Table.

Chapter 3
Creating the GeoRaster Table and Raster Data Tables

3-4

3.3.3 GeoRaster DML Trigger
To ensure the consistency and integrity of internal GeoRaster tables and data
structures, GeoRaster automatically creates a unique DML trigger for each GeoRaster
column whenever a user creates a GeoRaster table (that is, a table with at
least one GeoRaster column), with the following exception: if you use the ALTER
TABLE statement to add one or more GeoRaster columns, you must call the
SDO_GEOR_UTL.createDMLTrigger procedure to create the DML trigger on each
added GeoRaster column. In some scenarios, such as a database upgrade or a
data migration, you can call the SDO_GEOR_UTL.recreateDMLTriggers procedure to
re-create the DML triggers on all GeoRaster columns.

The trigger is fired after each of the following data manipulation language (DML)
operations affecting a GeoRaster object: insertion of a row, update of a GeoRaster
object, and deletion of a row.

GeoRaster automatically performs the following actions when the trigger is fired:

• After an insert operation, the trigger inserts a row with the GeoRaster table name,
GeoRaster column name, raster data table name, and rasterID value into the
USER_SDO_GEOR_SYSDATA view (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)). If an identical entry already exists, an exception is
raised.

• After an update operation, if the new GeoRaster object is null or empty,
the trigger deletes the old GeoRaster object. If there is no entry in the
USER_SDO_GEOR_SYSDATA view for the old GeoRaster object (that is, if the
old GeoRaster object is null), the trigger inserts a row into that view for the new
GeoRaster object. If there is an entry in the USER_SDO_GEOR_SYSDATA view
for the old GeoRaster object, the trigger updates the information to reflect the new
GeoRaster object.

• After a delete operation, the trigger deletes raster data blocks for the
GeoRaster object in its raster data table, and it deletes the row in the
USER_SDO_GEOR_SYSDATA view for the GeoRaster object.

3.4 Creating New GeoRaster Objects
Before you can store a GeoRaster image in a GeoRaster table, you must create the
GeoRaster object and insert it into a GeoRaster table before you start working on it. To
create a new GeoRaster object, you have the following options:

• Initialize an empty GeoRaster object, using the SDO_GEOR.init function.

• Create a blank GeoRaster object, using the SDO_GEOR.createBlank function.

You cannot perform any GeoRaster operations if the object has not been properly
created (that is, if the object is an atomic null). The SDO_GEOR.init and
SDO_GEOR.createBlank functions initialize GeoRaster objects with their raster data
table and raster ID values if these are not already specified, and the GeoRaster DML
trigger ensures that the raster data table name and raster ID value pair is unique for
the current user.

If the new GeoRaster object will hold raster cell data (resulting from another
GeoRaster procedure, such as SDO_GEOR.importFrom, SDO_GEOR.subset, or
SDO_GEOR.copy), and if the raster data table for this new GeoRaster object does

Chapter 3
Creating New GeoRaster Objects

3-5

not exist, you must first create the raster data table. For information about creating a
raster data table, including examples, see Creating Raster Data Tables.

To avoid potential GeoRaster data problems (some of which are described in
Maintaining GeoRaster Objects and System Data in the Database), an initialized
GeoRaster object must be registered in the GeoRaster system views, which is done
automatically when you insert the GeoRaster object into a GeoRaster table. This
should be done before you perform any other operations on the GeoRaster object. Any
GeoRaster operations that need to manipulate the raster data table raise an exception
if the source or target GeoRaster object is not registered.

3.5 Loading Raster Data
To load and export imagery or raster data, you can consider third-party ETL tools
(see the note in GeoRaster Tools: Viewer_ Loader_ Exporter). For example, you can
use the gdal_translate command line and other GDAL utilities, which fully support
GeoRaster through the Oracle Spatial GeoRaster driver.

You can also use features in GeoRaster to load raster data, With GeoRaster, you have
the following options:

• Use the GDAL based ETL tool for concurrent batch loading and exporting. This
tool is described in GDAL-Based ETL Wizard for Concurrent Batch Loading and
Exporting.

• In PL/SQL call the SDO_GEOR_GDAL.translate procedure to load images into
GeoRaster objects.

• In PL/SQL, call the SDO_GEOR.importFrom procedure to load images into
GeoRaster objects.

• Use the GeoRaster JAI-based loader tool or viewer tool, which are described in
JAI-Based Viewer_ Loader_ and Exporter.

With the last two options (SDO_GEOR.importFrom and JAI-based tool), you can do
the following:

• Compress raster data and store the data in JPEG-compressed or DEFLATE-
compressed GeoRaster objects.

• Load an ESRI world file or a Digital Globe RPC text file (.rpb) into an existing
GeoRaster object, and georeference the raster data without reloading it. You can
also specify an SRID with the world file and generate the spatial extent of the data.

• Load a GeoTIFF format file with georeferencing, with or without raster data. To
load and export the georeferencing information of GeoTIFF images, the GeoTIFF
libraries are required. See Georeferencing GeoRaster Objects for instructions.

After loading raster data into a GeoRaster object, you must ensure that the object is
valid by calling the SDO_GEOR.validateGeoRaster function, as explained in Validating
GeoRaster Objects.

Because an ESRI world file or .rpb file does not contain coordinate system
information, you can specify the SRID value of a coordinate reference system for
the load operation. However, if you do not specify an SRID, the model SRID of the
GeoRaster objects is set to 0 (zero) by the loader, which means that the GeoRaster
object is invalid, and therefore you must use the SDO_GEOR.setModelSRID
procedure to specify a valid model space for this object. If you do not yet know the
coordinate system of the model space, you can specify the SRID value as 999999,

Chapter 3
Loading Raster Data

3-6

which means that the coordinate reference system is unknown. (Specifically, SRID
999999 is associated with a coordinate reference system named unknown CRS.) Later,
when you know the actual coordinate reference system of the model space, you can
set the SRID value accordingly.

For more information about the unknown CRS (SRID 999999) coordinate reference
system, see Oracle Spatial and Graph Developer's Guide.

• Loading with Blocking and Optimal Padding

• Loading JPEG and JPEG 2000 Images Without Decompression

• Reformatting the Source Raster Before Loading

3.5.1 Loading with Blocking and Optimal Padding
Unless you want to load JPEG or JPEG2000 images and store them without any
change, when you load an image or raster file into GeoRaster object, always consider
and apply appropriate blocking of the data, because file formats might have very
different blocking schemes. In general, blocking sizes should be 512x512 or larger.
There is no absolute rule for the blocking sizes, but the larger the raster, the larger
the blocking sizes you might use. For regular rasters, 512x512 to 2048x2048 is
appropriate. For very small images (less than 1024x1024x3), no blocking may be
a good choice. Avoid blocking sizes that are either too small (such as 64x64 and
128x128) or too large, and avoid extreme blocking sizes such as 0.5 (one-half), 1, or 8
rows of pixels per block. Generally, the rectangular shape of blocks should be a square
or close to a square. For different applications, you might tune the blocking to balance
efficient storage with optimal performance.

You should also always apply optimal padding during loading. In other words,
specify blocking=OPTIMALPADDING in addition to specifying blocksize. GeoRaster
applies padding to the right column and bottom row of blocks to make them
the same size as other blocks. If the block size is not optimal for a specific
raster, the default resulting padding would waste some storage space. When
you specifyblocking=OPTIMALPADDING, all GeoRaster procedures and the ETL
tools automatically adjust the GeoRaster dimension size array so that it will
be optimal for reducing the amount of padding in GeoRaster object storage.
The adjustment is always made around the user-specified values. See the
explanation of the blocking keyword in the table in the Usage Notes for the
SDO_GEOR_UTL.calcOptimizedBlockSizeprocedure.

For how to apply optimal padding when using the GDAL command line, see the
following example:

gdal_translate -of georaster /images/image_1.tif \
 georaster:georaster/georaster@my_db, image_table, raster \
 -co "insert=(id,label,raster) values (1, 'image_1',
sdo_geor.init('rdt_table', 1)" \
 -co blockxsize= 512 \
 -co blockysize=512 \
 -co blockbsize=3 \
 -co blocking=optimalpadding \
 -co interleave=BIP

For how to apply optimal padding when using the SDO_GEOR.importFrom procedure,
see the examples in the reference topic for that procedure.

Chapter 3
Loading Raster Data

3-7

3.5.2 Loading JPEG and JPEG 2000 Images Without Decompression
GeoRaster supports JPEG compression, in which the GeoRaster blocks are stored
as JPEG files. GeoRaster also supports JPEG 2000 compression, in which the
GeoRaster has a single block stored as a JPEG 2000 file. There are some
special cases where you can load and export JPEG or JPEG 2000 images without
decompressing and recompressing, thus improving performance significantly.

For JPEG, you can use the JAI-based GeoRaster loader to load the image directly
without decompression and recompression if the image file is a JPEG file, the
GeoRaster object's compression type is specified as JPEG-F and no blocking is
specified for the GeoRaster object's storage (that is, the GeoRaster object has only
one block).

For JPEG 2000, you can use GDAL or the GDAL-based GeoRaster ETL tool to load
the image directly without decompression and recompression – if the image file is a
JPEG2000 file and if no parameters in use require any change to the internal structure
of the JPEG 2000 file. For example, the following script loads the JPEG 2000 file
directly without decompression.

gdal_translate -of georaster /images/image_3.jp2 \
 georaster:georaster/georaster@my_db,image_table,raster \
 -co "insert=(id,label,raster) values (3, 'image_3',
sdo_geor.init('rdt_table', 3)" \
 -co compress=jp2-f

However, if any of the parameter in use require changing the internal structure of the
JPEG 2000 data, direct loading will not be possible. The following example requires
decompression and recompression, resulting in a substantial increase of the loading
time.

gdal_translate -of georaster /images/image_4.jp2 \
 georaster:georaster/georaster@my_db,image_table,raster \
 -co "insert=(id,label,raster) values (4, 'image_4',
sdo_geor.init('rdt_table', 4)" \
 -co compress=jp2-f \
 -co blockxsize=1024 \
 -co blockysize=1024 \
 -srcwin 100 200 1000 1000 \
 -outsize 50% 50%

3.5.3 Reformatting the Source Raster Before Loading
The GeoRaster JAI-based loader does not support source raster files in BSQ
interleaving, and it might raise an "insufficient memory" error if the files are too big, and
it might have other restrictions. To avoid such problems, you can reformat and reblock
the source files so that they can be properly loaded. However, it is recommended that
you use the GDAL-based ETL loader, which generally does not have such issues and
requirements.

As an example, one way to do this is to use GDAL, an Open Source raster
transformation library available from http://www.gdal.org, to reformat or reblock
the image or raster file so that JAI (Java Advanced Imaging) can handle

Chapter 3
Loading Raster Data

3-8

http://www.gdal.org

it. GDAL supports GeoRaster natively and can import and export GeoRaster
objects directly, and can also process GeoRaster objects; for more information,
see http://www.oracle.com/technetwork/database/enterprise-edition/getting-
started-with-gdal-133874.pdf. You can also use GDAL to generate TFW files. For
example, execute commands such as the following two (each command on a single
line) using the GDAL command line or (for batch conversion) shell:

gdal_translate -of GTiff -co "TFW=YES" -co "INTERLEAVE=PIXEL" -co "TILED=YES"
D:\my_image.tif D:\my_new_image.tif

gdal_translate -of GTiff -co "TILED=YES" -co "TFW=YES" D:\my_image.ecw
D:\my_new_image.tif

In the preceding example, the first command generates a TFW file, changes the
interleaving to BIP (which is supported by JAI), and reblocks the image to 256x256.
The second command converts ECW to TIFF, generates TFW, and reblocks the
image.

Then use the GeoRaster loader tool (described in GeoRaster Tools: Viewer_ Loader_
Exporter) , specifying reblocking so that the image can be loaded successfully and
later retrieved from the database efficiently, as in the following example (a single
command):

java -Xmx1024m oracle.spatial.georaster.tools.GeoRasterLoader mymachine db11
6521 georaster georaster thin 32 T globe image "blocking=true,
blocksize=(512,512,3)" "D:my_image.tif,2,RDT_15, D:\my_image.tfw,82213"

If you receive an "insufficient memory" error when calling SDO_GEOR.importFrom to
load a very large image, try loading the image with a different blocking size parameter
or reblock the image into smaller internal tile sizes using GDAL before loading. For
extremely large images, you can also use GDAL to tile the image into multiple smaller
image files with sizes that JAI can handle, or you use GDAL to load and export the
images directly.

3.6 Validating GeoRaster Objects
Before you use a GeoRaster object or after you manually edit the raster data and
metadata of a GeoRaster object, you should ensure that the object is valid. Validation
for a GeoRaster object includes checking the registration of the GeoRaster object,
checking the metadata and the raster cell data, and making sure that the metadata
and data are consistent. For example, validation checks the raster type, dimension
information, and the actual sizes of cell blocks, and it performs other checks.

If you used the GeoRaster loader tool described in GeoRaster Tools: Viewer_ Loader_
Exporter, the GeoRaster objects were validated during the load operation.

GeoRaster provides the following validation subprograms:

• SDO_GEOR.validateGeoRaster validates the GeoRaster object, including cell
data and metadata. It returns TRUE if the object is valid; otherwise, it returns one of
the following: an Oracle error code indicating why the GeoRaster object is invalid,
FALSE if validation fails for an unknown reason, or NULL if the GeoRaster object is
null. You should always use this function after you create a GeoRaster object.

• SDO_GEOR.schemaValidate validates the metadata against the GeoRaster
XML schema. You can use this function to locate errors if the
SDO_GEOR.validateGeoRaster function returned the error code 13454. The

Chapter 3
Validating GeoRaster Objects

3-9

http://www.oracle.com/technetwork/database/enterprise-edition/getting-started-with-gdal-133874.pdf
http://www.oracle.com/technetwork/database/enterprise-edition/getting-started-with-gdal-133874.pdf

SDO_GEOR.schemaValidate and SDO_GEOR.validateGeoRaster functions do
not validate the spatial extent geometry.

• SDO_GEOR.validateBlockMBR validates the blockMBR geometry associated with
each raster block stored in the raster data table. If there are any invalid blockMBR
geometries, call the SDO_GEOR.generateBlockMBR procedure to regenerate
them.

3.7 Georeferencing GeoRaster Objects
Georeferencing, as explained in Georeferencing, establishes the relationship between
cell coordinates of GeoRaster data and real-world ground coordinates (or some
local coordinates). If you need to georeference GeoRaster objects, the following
approaches are available:

• If the original image is already georeferenced and if the georeferencing information
is stored in an ESRI world file or .rpb file containing RPC coefficients you can use
the SDO_GEOR.importFrom procedure to load an ESRI world file or .rpb file from
a file or from a CLOB object, along with the image data itself (in either FILE or
BLOB format). You can also use the GeoRaster client-side loader tool (described
in GeoRaster Tools: Viewer_ Loader_ Exporter) to load an ESRI world file or .rpb
file from a file, along with the image file itself.

Because an ESRI world file or .rpb file does not specify the model coordinate
system, you can set the model space of the georeferenced GeoRaster object
using an Oracle SRID in either of the following ways: specify the SRID along
with the world file as a parameter to the SDO_GEOR.importFrom procedure or
the GeoRaster client-side loader (described in GeoRaster Tools: Viewer_ Loader_
Exporter); or, after loading the world file, call the SDO_GEOR.setModelSRID
procedure. You can also call the SDO_GEOR.setModelSRID procedure to change
the model space of a georeferenced GeoRaster object.

• If the original image is a georeferenced GeoTIFF image, you can use the
SDO_GEOR.importFrom procedure to load the image with georeferencing,
by specifying GEOTIFF as the input format. To load only the georeferencing
information from a GeoTIFF image, without the raster image data, into an existing
GeoRaster object, add the raster=false storage parameter. You can specify a
backup SRID with the srid storage parameter, in case the GeoTIFF configuration
values do not match any SRID recognized by Oracle Spatial and Graph.

The GeoTIFF PixelIsArea raster space is equivalent to the GeoRaster upperleft-
based cell coordinate system. An export to GeoTiff is always in PixelIsArea
raster space, with a half-pixel adjustment of the affine transformation if the
GeoRaster object is in center-based cell coordinate system. An import from
GeoTIFF is always to the GeoRaster center-based cell coordinate system, with
a half-pixel adjustment of the affine transformation if the GeoTIFF file is specified
in PixelIsArea raster space.

You can also use the GeoRaster client-side loader tool (described in GeoRaster
Tools: Viewer_ Loader_ Exporter) to load GeoTIFF images with georeferencing,
using the storage parameter geotiff=true. If you omit this parameter or
specify geotiff=false, the image is loaded as a simple TIFF image without
georeferencing. The raster and srid storage parameters also apply to the client-
side loader tool.

To load or export GeoTIFF images with the GeoRaster client-side tools, add the
following GeoTIFF libraries to your CLASSPATH definition:

Chapter 3
Georeferencing GeoRaster Objects

3-10

– xtiff-jai.jar (available from the SourceForge Extensible-TIFF-JAI group)

– geotiff-jai.jar (available from the SourceForge GeoTIFF-JAI group)

To load or export GeoTIFF images with the SDO_GEOR.importFrom
or SDO_GEOR.exportTo procedure, load these libraries into the MDSYS
schema using $ORACLE_HOME/rdbms/admin/catcon.pl. Edit $ORACLE_HOME/md/
admin/sdoldgtf.sql as needed to reflect the paths to the xtiff-jai.jar and
geotiff-jai.jar files. Then enter the following commands:

perl $ORACLE_HOME/md/admin/catcon.pl -u sys -s -e -b sdoldgtf.log
$ORACLE_HOME/md/admin/sdoldgtf.sql > sdoldgtf_catcon.log >>
sdoldgtf_catcon.err

If the database is downgraded to a release before Oracle Database 11g, these
libraries should be uninstalled according to the script in $ORACLE_HOME/md/admin/
sdormgtf.sql, editing it as needed to reflect the paths to the xtiff-jai.jar and
geotiff-jai.jar files, and either running the sdormgtf.sql script or entering the
following commands:

dropjava -user system/password@database -resolve -force -synonym -schema
MDSYS -grant PUBLIC xtiff-jai.jar

dropjava -user system/password@database -resolve -force -synonym -schema
MDSYS -grant PUBLIC geotiff-jai.jar

• You can use the SDO_GEOR.setSRS procedure to add, modify, and delete
georeferencing information by directly accessing the GeoRaster SRS metadata.
For example, you can create an SDO_GEOR_SRS object and assign
the coefficients and related georeferencing information, and then call the
SDO_GEOR.setSRS procedure to add or update the spatial reference information
of any GeoRaster object. You can use the SDO_GEOR.setSRS procedure
to set up the spatial reference information for all supported functional fitting
georeferencing models. Examples of setting up the SRS information from an
existing DLT model and from an existing RPC model are included in reference
section for the SDO_GEOR.setSRS procedure.

If you know that one GeoRaster object has the same SRS information as
another GeoRaster object, you can call the SDO_GEOR.getSRS function to
retrieve an SDO_GEOR_SRS object from this GeoRaster object, and then call
the SDO_GEOR.setSRS procedure to georeference the first GeoRaster object.

• If the GeoRaster object can be georeferenced using an affine transformation,
you can call the SDO_GEOR.georeference procedure to georeference a
GeoRaster object directly. As described in the reference information for the
SDO_GEOR.georeference, this procedure takes the coefficients A, B, C, D, E, F
and other information, converts them into the coefficients a, b, c, d, e, f, and stores
them in the spatial reference information of a GeoRaster object. If the original
raster data is rectified and if the model coordinate of its origin (upper-left corner) is
(x0, y0) and its spatial resolution or scale is s, then the following are true: A = s, B
= 0, C = x0, D = 0, E = -s, F = y0.

• If you have ground control points (GCPs) or want to collect GCPs yourself, you
can call the SDO_GEOR.georeference function to georeference the GeoRaster
object. For more information, see Advanced Georeferencing.

Based on the SRS information of a georeferenced GeoRaster object, transforming
GeoRaster coordinate information means finding the model (ground) coordinate

Chapter 3
Georeferencing GeoRaster Objects

3-11

associated with a specific cell (raster) coordinate, and the reverse. That is, you can
do the following:

• Given a specific cell coordinate, you can find the associated model space
coordinate using the SDO_GEOR.getModelCoordinate function. For example,
if you identify a point in an image, you can find the longitude and latitude
coordinates associated with that point.

• Given a model space coordinate, you can find the associated cell coordinate using
the SDO_GEOR.getCellCoordinate function. For example, if you identify longitude
and latitude coordinates, you can find the cell in an image associated with those
coordinates.

3.8 Generating and Setting Spatial Extents
When a GeoRaster object is created, its spatial extent (spatialExtent attribute,
described in spatialExtent Attribute) is not necessarily the enclosing geometry in its
model space coordinate system. The spatial extent (footprint) geometry might initially
be null, or it might reflect the cell space coordinate system or some other coordinate
system. The ability to generate and set spatial extents is useful for building large
GeoRaster databases of a global or large regional scope, in which the spatial extents
are in one global geodetic coordinate system while the GeoRaster objects (imagery,
DEMs, and so on) are in different projected coordinate systems. In such a case, you
can create a spatial (R-tree) index on the spatial extents, which requires that all spatial
extent geometries have the same SRID value.

To ensure that the spatial extent geometry of each GeoRaster object in a table is
correct for its model space coordinate system (or for any other coordinate system that
you may want to use), you must set the spatial extent. Moreover, to use a spatial
index on the spatial extent geometries (described in Indexing GeoRaster Objects), all
indexed geometries must be based on the same coordinate system (that is, have the
same SRID value).

You can set the spatial extent in any of the following ways: specify
spatialExtent=TRUE as a storage parameter to the SDO_GEOR.importFrom
procedure or the GeoRaster client-side loader (described in GeoRaster Tools: Viewer_
Loader_ Exporter), use the SQL UPDATE statement, or set the spatial extent during
loading with GDAL. If you use the SDO_GEOR.importFrom procedure or the loader,
the SRID cannot be null or 0 (zero), and if there is an R-tree index on the GeoRaster
spatial extent, the SRID of the spatial extent must match the SRID of the existing
spatial index; otherwise, the spatial extent is set to a null value.

In addition, if you do not already have the spatial extent geometry, you can generate
it using the SDO_GEOR.generateSpatialExtent function, and use that geometry to
update the GeoRaster object. The following example updates the spatial extent
geometry of a specified GeoRaster object in the CITY_IMAGES table (created in
Example 3-1 in Creating a GeoRaster Table) to the generated spatial extent (reflecting
the model coordinate system) of that object:

UPDATE city_images c
 SET c.image.spatialExtent = sdo_geor.generateSpatialExtent(image)
 WHERE c.image_id = 100;
COMMIT;

The following example updates the spatial extent geometry of all GeoRaster objects
in the CITY_IMAGES table to the generated spatial extent (reflecting the model
coordinate system) of that object:

Chapter 3
Generating and Setting Spatial Extents

3-12

UPDATE city_images c
 SET c.image.spatialExtent = sdo_geor.generateSpatialExtent(image)
 WHERE c.image.spatialExtent is null;
COMMIT;

If you already know the spatial extent geometry for a GeoRaster object, or if you want
the spatial extent geometry to be based on a coordinate system other than the one for
the model space, construct the SDO_GEOMETRY object or select it from a table, and
then update the GeoRaster object to set its spatial extent attribute to that geometry, as
shown in the following example:

DECLARE
 geom sdo_geometry;
BEGIN
-- Set geom to an SDO_GEOMETRY object that covers the spatial extent
-- of the desired GeoRaster object. If necessary, perform coordinate
-- system transformation before setting geom.
-- geom := sdo_geometry(...);
 UPDATE city_images c
 SET c.image.spatialExtent = geom WHERE c.image_id = 100;
 COMMIT;
END;

• Special Considerations if the GeoRaster Table Has a Spatial Index

3.8.1 Special Considerations if the GeoRaster Table Has a Spatial
Index

If you create a spatial R-tree index on the GeoRaster spatial extents (as described
in Indexing GeoRaster Objects), all spatial extent geometries must have the same
SRID value. However, the GeoRaster objects may have different model SRIDs, and
most GeoRaster operations automatically generate a spatial extent for the output
GeoRaster objects based on the model SRID of the source GeoRaster object or
objects. This can cause problems when the resulting GeoRaster object with a spatial
extent is updated into a GeoRaster table, which might already have a spatial index
built on its spatialExtent attribute but using a different SRID.

In such cases, you must transform the spatial extent to the same SRID as that of the
spatial index before the insert or update operation. The following example performs
a mosaic operation, but then transforms the spatial extent of the resulting GeoRaster
object to SRID 4326 before updating the GeoRaster table with that object.

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM mosaic_test WHERE georid=1 FOR UPDATE;
 sdo_geor.mosaic('mosaic_data', 'georaster', gr, 'blocking=OPTIMALPADDING,
blocksize=(512,512)');
 -- Transform the spatial extent geometry, if ncessary.
 -- In this example example, the modelSRID of the mosaic is 27302,
 -- but the SRID of the spatial index on mosaic_test is 4326.
 gr.spatialExtent := sdo_cs.transform(gr.spatialExtent, 4326);
 UPDATE mosaic_test SET georaster=gr WHERE georid=1;
END;
/

If a spatial R-tree index exists, a commit operation after an insert or update operation
causes the index to be updated if the inserted or updated GeoRaster object has a

Chapter 3
Generating and Setting Spatial Extents

3-13

spatial extent geometry. This could slow some operations if you perform a commit
after each operation, particularly for batch jobs such as batch image loading. It is
usually more efficient to balance the performance of index updates with GeoRaster
operations, and to commit only in batches after the operations.

For example, image data loading (the SDO_GEOR.importFrom procedure and the
GeoRaster loader) is followed by an internal commit operation, so it would be
inefficient to load while generating spatial extents by specifying spatialExtent=TRUE.
Instead, you should probably specify spatialExtent=FALSE, and then update the
spatialExtent attribute afterward, to speed the loading process.

3.9 Indexing GeoRaster Objects
GeoRaster data can be indexed in various ways. The most important index you can
create on a GeoRaster object is a spatial (R-tree) index on the spatial extent (footprint)
geometry of the GeoRaster object (spatialExtent attribute, described in spatialExtent
Attribute). For large-scale geospatial image and raster databases, you should always
create spatial indexes on the GeoRaster columns. The following are the basic steps
to create a spatial index on GeoRaster column. (The examples assume that the
GeoRaster table name is CITY_IMAGES and its GeoRaster column name is IMAGE.)

1. Insert a row into the USER_SDO_GEOM_METADATA view with the georaster
table name (CITY_IMAGES in this example) and the spatial extent of the
GeoRaster column name (IMAGE.SPATIALEXTENT). Be sure that the correct
SRID value (3371 in this example) is registered.

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
VALUES (
 'city_images',
 'image.spatialextent',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', -1000000000, 1000000000, 0.005),
 SDO_DIM_ELEMENT('Y', -1000000000, 1000000000, 0.005)),
 3371
);

2. Create a spatial index on the GeoRaster column, as in the following example
which creates a spatial index named CITY_IMAGES_IDX on the spatial extents of
the images using default values for all parameters.

CREATE INDEX city_images_idx
 ON city_images (image.spatialextent)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

The preceding statement may fail if there are some invalid spatial extents or if
the SRID values in the GeoRaster table do not match the SRID registered in the
preceding step. If the statement fails, ensure that all GeoRaster objects have a
valid spatialExtent geometry attribute and that all spatialExtent geometries
have the same SRID. (Null for the spatialExtent values is acceptable.) Then
re-create the spatial index.

See also Special Considerations if the GeoRaster Table Has a Spatial Index for
special considerations if the GeoRaster table already has a spatial index. For more

Chapter 3
Indexing GeoRaster Objects

3-14

information about creating spatial indexes and about advanced capabilities, see
Oracle Spatial and Graph Developer's Guide.

You can also create one or more other indexes, such as:

• Function-based indexes on metadata objects using the Oracle XMLType or Oracle
Text document indexing functionality

• Standard indexes on other user-defined columns of the GeoRaster table, such as
cloud coverage, water coverage, or vegetation

You should also create a single B-tree index on the rasterId, pyramidLevel,
bandBlockNumber, rowBlockNumber, and columnBlockNumber columns of each raster
data table. This should be done using PRIMARY KEY (rasterID, pyramidLevel,
bandBlockNumber,rowBlockNumber, columnBlockNumber), as shown in Example 3-2
and Example 3-3.

3.10 Viewing GeoRaster Objects
To view GeoRaster objects, you have the following options:

• Call the SDO_GEOR.exportTo procedure to export GeoRaster objects to image
files, and then display the images using image tools or a Web browser.

• Use the standalone GeoRaster viewer tool (one of the tools described in
GeoRaster Tools: Viewer_ Loader_ Exporter).

• Use Oracle Fusion Middleware MapViewer or its associated Map Builder utility.

With the GeoRaster viewer tool, you can select a GeoRaster object of a database
schema (user), query and display the whole or a subset of a GeoRaster object,
zoom in and zoom out, scroll, and perform other basic operations. The pyramid
level, cell coordinates, and model coordinates (if the object is georeferenced) are
displayed for the point at the mouse pointer location. You can display individual cell
values and choose different layers of a multiband or hyperspectral image for RGB full
color display. The blocking boundaries can be overlapped on the top of the display.
Depending on the data and your requests, the viewer can display the raster data in
grayscale, pseudocolor, and 24-bit true color over an intranet or the Internet. Some of
the basic GeoRaster metadata is also displayed.

The GeoRaster viewer tool allows you to display a virtual mosaic defined as one or a
list of GeoRaster tables or views.

The GeoRaster viewer tool provides a set of image processing operators for enhanced
display of the GeoRaster objects, especially for those whose cell depth is greater than
8 or is a floating-point number. It can also display and apply bitmap masks on the
GeoRaster objects if they have bitmap masks.

The GeoRaster viewer tool also includes menu commands to call the GeoRaster
loader and exporter tools, thus enabling you to use a single tool as an interface to the
capabilities of all the GeoRaster tools.

Visualization applications can leverage the default RGBA and default pyramid
level specifications in the GeoRaster objects. You can set up different
bands in a multiband image as the default Red, Green, Blue, and Alpha
channels by calling SDO_GEOR.setDefaultColorLayer or SDO_GEOR.setDefaultRed,
SDO_GEOR.setDefaultGreen, SDO_GEOR.setDefaultBlue, and
SDO_GEOR.setDefaultAlpha. For large images, you can call
SDO_GEOR.setDefaultPyramidLevel to set up the best resolution (pyramid) level of

Chapter 3
Viewing GeoRaster Objects

3-15

an image for initial display in the applications. For example, for a complete overview of
a whole image, it is best to set the top pyramid level as the default pyramid level.

3.11 Exporting GeoRaster Objects
To load and export imagery or raster data, always consider third-party ETL tools (see
the note in GeoRaster Tools: Viewer_ Loader_ Exporter)

If you use features in GeoRaster to export GeoRaster objects to image files, you have
the following options:

• Use the GDAL-based ETL tool for concurrent batch exporting, which is described
in GDAL-Based ETL Wizard for Concurrent Batch Loading and Exporting.

• Call the SDO_GEOR.exportTo procedure (which can export either to a file or to a
BLOB object).

• Use the GeoRaster exporter tool or viewer tool, which are described in GeoRaster
Tools: Viewer_ Loader_ Exporter.

3.12 Using GeoRaster with Workspace Manager and Label
Security

Oracle Workspace Manager provides a versioning capability for the raster blocks of a
GeoRaster object. Oracle Label Security supports GeoRaster objects with enhanced
security at the row level of raster blocks.

To use GeoRaster with Oracle Workspace Manager or Oracle Label Security, you
should create a raster data table (RDT) as a relational table for the GeoRaster objects
(see Example 3-3). You do not need to define an object view of SDO_RASTER type
on the base relational RDT.

• Using GeoRaster with Workspace Manager

• Using GeoRaster with Label Security

3.12.1 Using GeoRaster with Workspace Manager
With Workspace Manager, you can conveniently manage changes to the raster
data by saving different raster data versions and making modifications in different
workspaces. To use GeoRaster with Workspace Manager, you must use relational
raster data tables for raster storage and version-enable these relational raster data
tables. For example (general format):

EXECUTE DBMS_WM.EnableVersioning (<rdt_relational_table>, 'VIEW_WO_OVERWRITE');

Note:

You can version-enable only raster data tables. Do not version-enable any
GeoRaster tables, where GeoRaster objects are stored, and do not perform
any operations that will require a GeoRaster table to be modified while you
are in a workspace.

Chapter 3
Exporting GeoRaster Objects

3-16

After you version-enable a relational RDT, you can use the subprograms in the
DBMS_WM package to manage changes to the raster data. If you need to directly
modify a raster block, call the DBMS_WM.copyForUpdate procedure before the
operation, as shown in the following example:

declare
 geor sdo_georaster;
 cond varchar2(1000);
 lb blob;
 r1 raw(1024);
 amt number;
begin
 r1 := utl_raw.copies(utl_raw.cast_to_raw('0'),1024);

 select georaster into geor from georaster_table where georid=1;
 cond := 'rasterId=' || geor.rasterId || ' AND pyramidLevel=0 AND ' ||
 ' bandBlockNumber=0 AND rowBlockNumber=0 AND columnBlockNumber=0';
 dbms_wm.copyForUpdate(geor.rasterDataTable, cond);
 sdo_geor.getRasterBlockLocator(geor, 0, 0, 0, 0, lb, null, 'TRUE');
 amt := 1024;
 dbms_lob.write(lb, amt, 1, r1);
end;
/

However, if you modify raster data using GeoRaster subprograms, you do not need to
call the DBMS_WM.copyForUpdate procedure beforehand.

For information about Workspace Manager, see Oracle Database Workspace Manager
Developer's Guide.

3.12.2 Using GeoRaster with Label Security
Oracle Label Security provides row-level access control for sensitive data based on a
user's level of security clearance. To use GeoRaster with Label Security, follow these
basic steps:

1. Create the GeoRaster table and relational RDT or RDTs.

2. Create an Oracle Label Security policy and define the label components.

3. Create labeling functions for the GeoRaster table and the relational RDT or RDTs.

The labels for rows in a GeoRaster table should be generated according to the
application's requirements. Use the same label for both the row that stores a
GeoRaster object and for the GeoRaster object's raster rows in the associated
RDT; otherwise, the GeoRaster objects might be invalid or have an inconsistent
status.

The following example creates the labeling function for a relational RDT:

CREATE OR REPLACE FUNCTION gen_rdt_label(rdt_name varchar2, rid number)
 RETURN LBACSYS.LBAC_LABEL
AS
 tabname varchar2(80);
 schema varchar2(32);
 grcol varchar2(1024);
 colname varchar2(30);
 label NUMBER;
BEGIN
 EXECUTE IMMEDIATE
 'SELECT v.owner, v.table_name, v.column_name grcol, p.column_name ' ||

Chapter 3
Using GeoRaster with Workspace Manager and Label Security

3-17

 ' FROM all_sdo_geor_sysdata v, all_sa_policies p, all_sa_table_policies
t '
 || ' WHERE v.rdt_table_name=:1 AND v.raster_id=:2 AND ' ||
 ' v.owner=t.schema_name AND v.table_name=t.table_name AND ' ||
 ' p.policy_name=t.policy_name '
 INTO schema, tabname, grcol, colname
 USING upper(rdt_name), rid;
 EXECUTE IMMEDIATE
 'SELECT t.' || colname ||
 ' FROM ' || schema || '.' || tabname || ' t ' ||
 ' WHERE t.' || grcol || '.rasterdatatable=:1 AND ' ||
 ' t.' || grcol || '.rasterid=:2'
 INTO label
 USING upper(rdt_name), rid;
 RETURN LBACSYS.LBAC_LABEL.NEW_LBAC_LABEL(label);
END;
/

4. Apply the Label Security policy to a GeoRaster table and its associated RDT or
RDTs.

The following example (general format) applies a Label Security policy to an RDT
using the labeling function example from the preceding step.

BEGIN

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY(<policy_name>,<schema_name>,<rdt_relation
al_table>);
 SA_POLICY_ADMIN.APPLY_TABLE_POLICY(
 POLICY_NAME => <policy_name>,
 SCHEMA_NAME => <schema_name>,
 TABLE_NAME => <rdt_relational_table>,
 TABLE_OPTIONS => 'READ_CONTROL,WRITE_CONTROL,CHECK_CONTROL',
 LABEL_FUNCTION =>
'<schema_name>.gen_rdt_label(<rdt_relational_table>,:new.rasterid)',
 PREDICATE => NULL);
END;
/

5. Create and authorize users, and complete other administrative tasks related to
Label Security.

You can load GeoRaster data before or after applying the policy to the tables.

The ALL_SDO_GEOR_SYSDATA view (described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA)) contains system data for all GeoRaster objects
accessible by the current user, and accessibility in this case is determined by the
user's privileges as defined in the context of discretionary access control (DAC).

After the label for a GeoRaster table row is updated, ensure that the related data
labels in the RDT are updated, so that the labels are synchronized.

For information about Label Security, see Oracle Label Security Administrator's Guide.

3.13 Maintaining Efficient Tablespace Use by GeoRaster
Objects

After delete or rollback operations, unused space allocated to a raster data table
might not be promptly returned to the underlying tablespace. This could result in
wasted tablespace area, and it can be a significant issue if the amount of raster data

Chapter 3
Maintaining Efficient Tablespace Use by GeoRaster Objects

3-18

is large. If the raster data table is created using BasicFiles LOBs in an automatic
segment space management tablespace, you can explicitly shrink the rasterBlock
LOB segment or the raster data table by altering the raster data table, as shown in
Example 3-4 and Example 3-5.

Example 3-4 Shrinking a BasicFile RasterBlock LOB Segment

ALTER TABLE city_images_rdt MODIFY LOB (rasterBlock) (SHRINK SPACE);

Example 3-5 Shrinking a Raster Data Table

ALTER TABLE city_images_rdt ENABLE ROW MOVEMENT;
ALTER TABLE city_images_rdt SHRINK SPACE CASCADE;

If you are using SecureFiles, or if you are using BasicFiles allocated in a manual
segment space management tablespace, you cannot reclaim unused space using
the ALTER TABLE statements as shown in the preceding examples. Instead, you
should create some working (for temporary use) raster data tables and try to put any
intermittent results in these RDTs, and then drop these working RDTs after they are no
longer needed.

3.14 Checking GeoRaster Tables and Objects in the
Database

For database management purposes, you might need check on GeoRaster tables
and objects in the whole database or under a specific schema. After the GeoRaster
database is created, you have the following options for checking or listing existing
GeoRaster tables, RDT tables, and GeoRaster objects.

• Use the following subprograms check the status of existing GeoRaster objects and
related objects in the current schema or the database, depending on the privileges
associated with the database connection.

SDO_GEOR_ADMIN.listGeoRasterObjects lists all GeoRaster objects defined in
the current schema; or if you call this function while connected as the MDSYS
user, all GeoRaster objects defined in the database are listed.

SDO_GEOR_ADMIN.listGeoRasterColumns lists all GeoRaster columns defined
in the current schema; or if you call this function while connected as the MDSYS
user, all GeoRaster columns defined in the database are listed.

SDO_GEOR_ADMIN.listGeoRasterTables lists all GeoRaster tables defined in the
current schema; or if you call this function while connected as the MDSYS user, all
GeoRaster tables defined in the database are listed.

SDO_GEOR_ADMIN.listRDT lists all raster data tables (RDTs) defined in the
current schema; or if you call this function while connected as the MDSYS user, all
raster data tables (RDTs) defined in the database are listed.

SDO_GEOR_ADMIN.listRegisteredRDT lists all registered raster data tables
(RDTs) defined in the current schema; or if you call this function while connected
as the MDSYS user, all registered RDTs defined in the database are listed . An
RDT is registered if at least one entry in the SYSDATA table refers to it.

SDO_GEOR_ADMIN.listUnregisteredRDT lists all unregistered raster data tables
(RDTs) defined in the current schema; or if you call this function while connected
as the MDSYS user, all unregistered RDTs defined in the database are listed.. An
RDT is unregistered if no entry in the SYSDATA table refers to it.

Chapter 3
Checking GeoRaster Tables and Objects in the Database

3-19

• Run SQL queries directly against GeoRaster sysdata views, and check or list
GeoRaster tables and objects stored in the different schemas. This approach is
more flexible than calling subprograms. It also enables some query results that
cannot be returned by functions defined in the SDO_GEOR_ADMIN package. The
following are some sample queries.

List all GeoRaster objects that are defined in the schema HERMAN and MYTEST
and accessible by the current schema.

SELECT owner,TABLE_NAME,COLUMN_NAME,RDT_TABLE_NAME,RASTER_ID
from all_sdo_geor_sysdata where owner='HERMAN' or owner='MYTEST';

Count the total number of GeoRaster objects accessible by the current schema.

SELECT count(*) from all_sdo_geor_sysdata;

Count the total number of GeoRaster objects stored in the GeoRaster table
GTF_TABLE in the current schema.

SELECT count(*) from user_sdo_geor_sysdata where
TABLE_NAME='GTF_TABLE';

List all GeoRaster objects stored in the RDT table RDT_1 in the current schema.

SELECT TABLE_NAME,COLUMN_NAME,RDT_TABLE_NAME,RASTER_ID from
user_sdo_geor_sysdata where RDT_TABLE_NAME='RDT_1';

Find out all GeoRaster tables that store some raster data in or reference the RDT
table RDT_1 in the current schema.

SELECT distinct TABLE_NAME from user_sdo_geor_sysdata where
RDT_TABLE_NAME='RDT_1';

List all RDT tables that are used by the GeoRaster table GTF_TABLE in the
current schema.

SELECT distinct RDT_TABLE_NAME from user_sdo_geor_sysdata where
TABLE_NAME='GTF_TABLE';

3.15 Maintaining GeoRaster Objects and System Data in the
Database

Although GeoRaster provides internal database mechanism to prevent the creation of
invalid GeoRaster objects and system data, sometimes such GeoRaster objects and
system data might exist in the database, especially after an upgrade from a previous
release, or after some user errors in operations on GeoRaster system data. Examples
of such invalid objects and system data include the following:

Chapter 3
Maintaining GeoRaster Objects and System Data in the Database

3-20

• An entry in the GeoRaster system data views (xxx_SDO_GEOR_SYSDATA,
described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)) refers
to a nonexistent GeoRaster table or column.

• Two or more GeoRaster objects have the same pair of RDT name and raster ID
values.

• Some GeoRaster objects, tables, columns, or RDTs not registered.

• An RDT name is not unique.

• A GeoRaster object is non-empty or nonblank, but an associated RDT does not
exist.

After a database upgrade, you should do the following.

• Call the SDO_GEOR_ADMIN.isGeoRasterEnabled function to ensure that
GeoRaster is enabled for the current schema.

• Call the SDO_GEOR_ADMIN.isUpgradeNeeded function to check for any invalid
GeoRaster objects and invalid system data for the current version.

• If there are any errors or invalid data, call the
SDO_GEOR_ADMIN.upgradeGeoRaster function to have the problems
automatically corrected.

• If you connect as user MDSYS, the SDO_GEOR_ADMIN.upgradeGeoRaster
function upgrades all GeoRaster objects in the database; otherwise, it upgrades
only GeoRaster objects in the schema of the current user. (See the reference and
usage information about SDO_GEOR_ADMIN.upgradeGeoRaster.

For regular maintenance due to possible user errors, several functions and procedures
will be helpful in checking for and correcting invalid GeoRaster objects and system
data entries:

• To check if GeoRaster is enabled, call SDO_GEOR_ADMIN.isGeoRasterEnabled.

• To enable GeoRaster, call SDO_GEOR_ADMIN.enableGeoRaster.

• To check for errors, call SDO_GEOR_ADMIN.checkSysdataEntries and
SDO_GEOR_ADMIN.listUnregisteredRDT.

• To check for dangling raster data, call
SDO_GEOR_ADMIN.listDanglingRasterData.

• To correct all invalid system data entries, call
SDO_GEOR_ADMIN.maintainSysdataEntries.

• To create correct DML triggers for all GeoRaster columns, call
SDO_GEOR_ADMIN.registerGeoRasterColumns.

• To register all existing GeoRaster objects in the sysdata table, call
SDO_GEOR_ADMIN.registerGeoRasterObjects.

See the reference and usage information about these procedures and functions in
SDO_GEOR_ADMIN Package Reference.

3.16 Transferring GeoRaster Data Between Databases
You can use either the Data Pump Export and Import utilities or the original Export
and Import utilities to transfer GeoRaster data between databases. You must export
and import rows from both the GeoRaster table and its related raster data table
or tables. After the transfer, you do not need to insert the GeoRaster system data

Chapter 3
Transferring GeoRaster Data Between Databases

3-21

for the imported GeoRaster objects into the USER_SDO_GEOR_SYSDATA view
(described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)) in the
target schema; however, you should use the SDO_GEOR.validateGeoRaster function
to check the validity of imported GeoRaster objects before you perform any operations
on these objects.

For information about the Data Pump Export and Import utilities and the original Export
and Import utilities, see Oracle Database Utilities.

To transfer GeoRaster data between databases, follow these general steps:

1. Check for and resolve any conflicts, as explained in Checking for and Resolving
Conflicts.

2. Perform the data transfer, as explained in Performing the GeoRaster Data
Transfer.

• Checking for and Resolving Conflicts

• Performing the GeoRaster Data Transfer

3.16.1 Checking for and Resolving Conflicts
For a successful import of GeoRaster data into a target database, there must be no
conflicts in the target schema's GeoRaster system data. The following conditions can
cause a conflict:

• A raster data table with the same name is already defined in another schema in
the target database.

For example, you might plan to import a GeoRaster object by creating its
raster data table (RDT) in the target schema, but an existing RDT in the target
schema might already have the same name. In this case, you should use the
SDO_GEOR_ADMIN.listRDT or SDO_GEOR_ADMIN.isRDTNameUnique function
to check both source database and target database to see if there are RDT name
conflicts; and if there are any conflicts, use the SDO_GEOR_UTL.renameRDT
procedure to rename the RDT to a different name in the target database to solve
the conflicts before you import the GeoRaster objects.

• Any pairs of raster data table name and raster ID to be inserted into the target
schema's USER_SDO_GEOR_SYSDATA view are not unique.

For example, if you import RDT data by appending to an existing RDT in the target
database, this conflict might occur. In this case, before importing the data into the
target database, use the SDO_GEOR_ADMIN.listGeoRasterObjects function to
list all GeoRaster objects defined in the target schema, and make sure that there
are no conflicts in the combination of RDT name and raster ID between existing
GeoRaster data and the GeoRaster data to be imported. If there are any conflicts,
change the raster ID of the GeoRaster object in the target schema to resolve the
conflicts; otherwise, those GeoRaster objects with conflicts in the dump file will get
rejected when you perform import process.

If you need to check the raster data table (RDT) name and raster ID (RID) information
in the dump file, you have the following options: check the information in the source
database; request the information from the provider of the dump file; load the dump file
into a separate test database and check the information there; or (if you cannot use
a separate database for testing) load the dump file into a test schema in the current
database and check the information. To load the dump file into a test schema in the
current database and check the information, follow these steps:

Chapter 3
Transferring GeoRaster Data Between Databases

3-22

1. Create a test schema in the target database.

2. Load all GeoRaster tables into this test schema from the dump file, using the Data
Pump Import utility with the CONTENT = METADATA_ONLY parameter.

3. Connect to the database as the MDSYS user, and disable all DML triggers on the
GeoRaster tables that were loaded in the preceding step.

4. Load the data into the GeoRaster tables, using the Data Pump Import utility with
the CONTENT = DATA_ONLY parameter.

5. Retrieve the RDT/RID (raster data table name and raster ID) pairs directly from the
GeoRaster tables in the test schema.

After you resolve conflicts, you should ensure the integrity of GeoRaster metadata
and data (see Maintaining GeoRaster Objects and System Data in the Database). You
should also validate any fixed GeoRaster objects before performing a commit or any
other operation.

For general information about resolving conflicts during import operations, see the
description of the TABLE_EXISTS_ACTION parameter in the Data Pump Import chapter of
Oracle Database Utilities.

3.16.2 Performing the GeoRaster Data Transfer
Performing the GeoRaster data transfer involves exporting data from one database
and importing it into another.

Note:

To successfully import GeoRaster data into a Release 19c database,
GeoRaster must be enabled for the imported schema and the schema user
must have the CREATE TRIGGER privilege.

When you export GeoRaster data from one database and import it into another, the
GeoRaster database management system ensures that the necessary GeoRaster
internal DML triggers and system data entries are automatically generated after the
GeoRaster tables and objects are imported into the target database. (GeoRaster
internal DDL triggers are created when GeoRaster is enabled.)

Therefore, all GeoRaster internal DML triggers and DDL triggers (which maintain the
integrity of the GeoRaster data) should be excluded in expdp and impdp operations;
otherwise, some impdp errors such as the following will be raised, even though the
errors can be safely ignored:

ORA-39083: Object type TRIGGER failed to create with error:
ORA-13391: GeoRaster reserved names cannot be used to create regular triggers

To export GeoRaster data, do as you would for other types of data, but exclude
the GeoRaster internal DML triggers (whose names start with GRDMLTR_) and the
internal DDL triggers (named SDO_GEOR_ADDL_TRIGGER and SDO_GEOR_BDDL_TRIGGER).
For example:

expdp scott schemas=scott directory=dump_dir dumpfile=exp.dmp parfile=exclude.par
Enter password: password

Chapter 3
Transferring GeoRaster Data Between Databases

3-23

where the exclude.par file contains the following:

exclude=trigger:"like 'GRDMLTR_%'"
exclude=trigger:"= 'SDO_GEOR_ADDL_TRIGGER'"
exclude=trigger:"= 'SDO_GEOR_BDDL_TRIGGER'"

To import GeoRaster data, do as you would for other types of data, but exclude the
GeoRaster internal DML triggers (whose names start with GRDMLTR_) and DDL triggers
(SDO_GEOR_ADDL_TRIGGER and SDO_GEOR_BDDL_TRIGGER from a Release 19c database)
if you did not exclude them in the export operation. For example:

1. Ensure that no conflicts exist between the GeoRaster data to be imported and the
existing GeoRaster data in the target database, as explained in Checking for and
Resolving Conflicts.

If any conflicts are not resolved, some exceptions will be raised and only non-
conflicted GeoRaster data will be imported into the target database.

2. Import GeoRaster data as you would for other types of data, but exclude the
GeoRaster internal DML triggers (whose names start with GRDMLTR_) and DDL
triggers (SDO_GEOR_ADDL_TRIGGER and SDO_GEOR_BDDL_TRIGGER from a Release
19c database) if you did not exclude them in the export operation. For example:

impdp scott schemas=scott directory=dump_dir dumpfile=exp.dmp
parfile=exclude.par
Enter password: password

where the exclude.par file contains the following:

exclude=trigger:"like 'GRDMLTR_%'"
exclude=trigger:"= 'SDO_GEOR_ADDL_TRIGGER'"
exclude=trigger:"= 'SDO_GEOR_BDDL_TRIGGER'"

3.17 Using Transportable Tablespaces with GeoRaster Data
You can use the Oracle Database transportable tablespaces feature with GeoRaster
data.

If a tablespace to be transported contains any spatial indexes on the GeoRaster
tables or raster data tables (RDTs), you may have to take some preparatory
steps. See the Usage Notes for the SDO_UTIL.PREPARE_FOR_TTS and
SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS procedures in Oracle Spatial and Graph
Developer's Guide for more information about using the transportable tablespace
feature with spatial data.

For a successful import of GeoRaster data into a target database, there must be
no conflicts in the target schema's GeoRaster system data. Before you transport the
tablespace to another database or schema, it is recommended (but not required)
that you check for and resolve such conflicts by following the procedure described in
Checking for and Resolving Conflicts. For this reason, you should design GeoRaster
tables and RDT tables so as to avoid such foreseeable conflicts before you use such
transportable tablespaces in the source database.

Regardless or whether a transported tablespace has any spatial indexes, after
transporting the tablespace that contains GeoRaster objects, do the following:

1. Call the SDO_GEOR_ADMIN.registerGeoRasterObjects procedure (described in
SDO_GEOR_ADMIN Package Reference) to register all GeoRaster objects in the
current schema or new database.

Chapter 3
Using Transportable Tablespaces with GeoRaster Data

3-24

2. Before you use the transported GeoRaster data, perform the "regular
maintenance" operations described in Maintaining GeoRaster Objects and System
Data in the Database, to maintain GeoRaster objects and system data and to
ensure all GeoRaster objects are correctly transported and properly registered.

3. If you find any conflicts, call the SDO_GEOR_UTL.renameRDT or
SDO_GEOR_UTL.makeRDTNamesUnique procedure to solve such conflicts, and
validate again.

For detailed information about transportable tablespaces and transporting tablespaces
to other databases, see Oracle Database Administrator's Guide.

Chapter 3
Using Transportable Tablespaces with GeoRaster Data

3-25

4
GeoRaster Data Query and Manipulation

This chapter describes how to perform several important GeoRaster data query and
manipulation operations. Typical GeoRaster data query and manipulation involve most
or all of the operations described.
See also the operations in GeoRaster Database Creation and Management.

Other chapters in this book cover advanced topics (Raster Algebra and Analytics
and Image Processing and Virtual Mosaic), and provide detailed reference
information about GeoRaster PL/SQL packages (SDO_GEOR Package Reference,
SDO_GEOR_ADMIN Package Reference, SDO_GEOR_AGGR Package Reference,
SDO_GEOR_RA Package Reference, and SDO_GEOR_UTL Package Reference).

• Querying and Searching GeoRaster Objects

• Changing and Optimizing Raster Storage

• Copying GeoRaster Objects

• Subsetting GeoRaster Objects with Polygon Clipping

• Querying and Updating GeoRaster Metadata

• Querying and Updating GeoRaster Cell Data

• Interpolating Cell Values

• Processing and Analyzing GeoRaster Objects

• Monitoring and Reporting GeoRaster Operation Progress

• Compressing and Decompressing GeoRaster Objects

• Deleting GeoRaster Objects, and Performing Actions on GeoRaster Tables and
RDTs

• Performing Cross-Schema Operations

• Managing Memory to Improve Performance

• Updating GeoRaster Objects Before Committing

• Updating GeoRaster Objects in a Loop

• Using Template-Related Subprograms to Develop GeoRaster Applications

4.1 Querying and Searching GeoRaster Objects
GeoRaster tables are regular relational tables that can have various columns, such
as an ID number, a name, a timestamp, and a unique description in the form of a
string. These columns can be indexed, and GeoRaster objects can be queried using
the standard database indexing and query statements, as shown in many examples in
this manual.

After the GeoRaster tables are spatially indexed (see Indexing GeoRaster Objects),
you can quickly query or search GeoRaster objects using a geometry as well. For

4-1

example, you may want to find all images (maybe hundreds or more) inside a specific
region and then generate full pyramids for each image, as in the following example.

Example 4-1 Searching GeoRaster Objects and Generating Pyramids for Them

DECLARE
 type curtype is ref cursor;
 my_cursor curtype;
 stmt varchar2(1000);
 tid number;
 gr sdo_georaster;
 gm sdo_geometry;
BEGIN
 -- 1. Define the query area in EPSG 4326 (WGS84) coordinate system
 gm := sdo_geometry(2003, 4326, null,
 sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(5,6,30,30));

 -- 2. Define the query statement on the GeoRaster table (city_images)using the
given geometry
 stmt := 'select id from city_images t ' ||
 'where sdo_inside(t.image.spatialextent, :1)=''TRUE''';

 -- 3. Spatially query all images INSIDE the query area
 -- and generate full pyramids for each of the images
 open my_cursor for stmt using gm;
 loop
 fetch my_cursor into tid;
 exit when my_cursor%NOTFOUND;
 -- retrieve the image to generate the pyramids
 select image into gr from city_images where id = tid for update;
 sdo_geor.generatePyramid(gr, 'resampling=bilinear', null, ‘parallel=4’);
 update city_images set image=gr
 where id = tid;
 commit;
 end loop;
 close my_cursor;
END;

You can also wrap up such blocks into a PL/SQL procedure and store it in the
database, then call the stored procedure directly. These features enable you to
organize complex processes and automate database administration tasks.

4.2 Changing and Optimizing Raster Storage
You can change or specify some aspects of the way raster image data is or will be
stored: the raster blocking size, cell depth, interleaving type, and other aspects. Such
flexibility allows you to optimize the raster data storage format to save disk space and
improve application performance.

To load and process a GeoRaster object to create another GeoRaster
object, you can specify storage parameters with GeoRaster PL/SQL
subprograms. That is, you can specify the output format when you call
functions or procedures such as SDO_GEOR.importFrom, SDO_GEOR.subset,
SDO_GEOR.rectify, SDO_GEOR_AGGR.append, SDO_GEOR.mergeLayers,
SDO_GEOR.createTemplate, SDO_GEOR_RA.rasterMathOp, and
SDO_GEOR_AGGR.mosaicSubset. You cannot directly make such changes
on an existing GeoRaster object; however, you can use the
SDO_GEOR.changeFormatCopyprocedure, and specify the desired storage

Chapter 4
Changing and Optimizing Raster Storage

4-2

parameter values with the storageParam parameter, to make a copy of the existing
GeoRaster object.

The storageParam parameter for the resulting GeoRaster objects should be based
on factors such as the data size, dimension sizes, and application needs, as you
determine them. However, the block sizes can also be optimized automatically based
on the dimension sizes of the GeoRaster object and the desired output required by
users, so that each GeoRaster object uses only minimum padding space but still
meets the application requirements. Depending on the raster dimension size and your
desired blocking size, padding might waste some storage space, so you should always
consider specifying blocking=OPTIMALPADDING in the storageParam parameter for the
output GeoRaster when a GeoRaster procedure is called.

For more information, see Storage Parameters, especially Table 1-1. For examples of
applying optimal padding, see the PL/SQL example at the end of Storage Parameters
and the GDAL example in Loading with Blocking and Optimal Padding

4.3 Copying GeoRaster Objects
To copy a GeoRaster object, you must either copy it into an empty GeoRaster
object or overwrite an existing valid GeoRaster object. (Empty GeoRaster objects are
explained in Blank and Empty GeoRaster Objects.) To make an identical copy of the
source GeoRaster object, use the SDO_GEOR.copy procedure; to make a copy that
includes storage format changes, use the SDO_GEOR.changeFormatCopy procedure
(see Changing and Optimizing Raster Storage).

To copy a GeoRaster object using an empty GeoRaster object, follow these steps:

1. Initialize an empty GeoRaster object while inserting it into the destination table,
returning the empty GeoRaster object.

2. Use the SDO_GEOR.copy or SDO_GEOR.changeFormatCopy procedure to copy
the GeoRaster object into the returned empty GeoRaster object.

3. Use UPDATE statement to update the desired row in the destination table so that
its GeoRaster column contains the copied GeoRaster object.

4. When you are ready to commit the transaction, use the COMMIT statement.

For an example of copying using an empty GeoRaster object, see the example for the
SDO_GEOR.copy procedure in SDO_GEOR Package Reference.

To copy a GeoRaster object so that it overwrites (replaces) an existing GeoRaster
object, follow these steps:

1. Select the existing GeoRaster object for update.

2. Use the SDO_GEOR.copy or SDO_GEOR.changeFormatCopy procedure to copy
the selected GeoRaster object into either a valid existing GeoRaster object or an
empty GeoRaster object.

3. Use UPDATE statement to update the desired row in the destination table so that
its GeoRaster column contains the copied GeoRaster object.

4. When you are ready to commit the transaction, use the COMMIT statement.

For an example of copying to replace an existing GeoRaster object and to change its
storage format, see the example for the SDO_GEOR.changeFormatCopy procedure in
SDO_GEOR Package Reference.

Chapter 4
Copying GeoRaster Objects

4-3

Parallel copying and subsetting are supported with the
SDO_GEOR_AGGR.mosaicSubset procedure. For parallelized copying and change
format copying, See Example 6-24 in Parallel Compression, Copying, and Subsetting.

4.4 Subsetting GeoRaster Objects with Polygon Clipping
With GeoRaster, subsetting means cropping rasters spatially, extracting or
duplicating raster layers, or doing both together. To perform subsetting, use the
SDO_GEOR.subset procedure. For example, you can call this procedure to crop a
small area or obtain a subset of a few layers of a GeoRaster object, to duplicate
layers, to specify storage parameters such as blocking and interleaving for the
resulting object, and to perform polygon clipping.

For examples, see the SDO_GEOR.subset reference topic.

You can also use the SDO_GEOR_AGGR.mosaicSubset procedure to perform
subsetting with parallelism (see Parallel Compression, Copying, and Subsetting).

4.5 Querying and Updating GeoRaster Metadata
You can query metadata for a GeoRaster object, and you can update many attributes
of the metadata.

You can use many functions, most of whose names start with get, to query the
metadata and ancillary information (for example, SDO_GEOR.getTotalLayerNumber
and SDO_GEOR.hasPseudoColor).

You can use several subprograms, most of whose names start with set,
to update metadata and ancillary data (for example, SDO_GEOR.setSRS and
SDO_GEOR.setColorMap).

For many of the get functions, there is a corresponding procedure, whose name
starts with set, to set, modify, or delete the value of a metadata attribute. For most
set procedures, to delete the value of the metadata attribute that the procedure is
designed to modify, specify a null value for the attribute. For example, to delete the bin
table for a layer of a GeoRaster object, call the SDO_GEOR.setBinTable procedure
and specify a null tableName parameter. However, in most cases you cannot specify
a null value for other related attributes. For example, you cannot specify a null
layerNumber parameter in a call to the SDO_GEOR.setBinTable procedure.

Note the following recommendations, requirements, and restrictions:

• Most GeoRaster metadata can also be retrieved using XMLType methods or XML-
specific SQL functions, such as extract, and be modified using XQuery Update.
However, if a GeoRaster get or set subprogram exists for the metadata attribute
you want to retrieve or change, use the GeoRaster subprogram instead of an
XMLType interface, because the GeoRaster subprograms validate any changes
before they are made. If you do call XMLType methods or XML-specific SQL
functions to update metadata, you should validate the GeoRaster object before
you commit the transaction.

• Never directly set the metadata to be null.

• Do not directly update the rasterType attribute of a GeoRaster object; instead, call
the SDO_GEOR.setRasterType procedure.

Chapter 4
Subsetting GeoRaster Objects with Polygon Clipping

4-4

• To change the raster data table name, use the SDO_GEOR_UTL.renameRDT
procedure.

• In general, you should not directly update the attributes of a GeoRaster object,
except for the spatialExtent attribute.

• After updating a GeoRaster object's metadata or cell data (or both) and before
you commit a database transaction, you should call the SQL UPDATE statement
to update the GeoRaster object (see Updating GeoRaster Objects Before
Committing).

4.6 Querying and Updating GeoRaster Cell Data
To query cell (pixel) data of a GeoRaster object for processing and visualization, you
can query the raster data for a cell (pixel), a range of cells, or the entire raster of a
GeoRaster object:

• SDO_GEOR.getCellValue returns cell values of one or multiple layers or bands for
a specified location.

• SDO_GEOR.getCellValues returns the cell values of one or more cells in an array.

• SDO_GEOR.evaluateDouble evaluates a direct location based on neighboring cell
values by using a specified interpolation method, and returns the raster values
(double precision numbers) for the specified bands or layers for that location. (See
Interpolating Cell Values for more information.)

• SDO_GEOR.evaluateDoubles evaluates multiple locations using a specified
interpolation method, and returns the raster values (double precision numbers)
for the specified band or layer for those locations.

• SDO_GEOR.getRasterSubset creates a single BLOB object or a single in-memory
SDO_NUMBER_ARRAY object containing all cells of a precise subset of the
GeoRaster object (as specified by a rectangular window or a clipping polygon
geometry, layer or band numbers, and pyramid level). This BLOB object or
SDO_NUMBER_ARRAY object contains only raster cells and no related metadata.

• SDO_GEOR.getRasterData creates a single BLOB object containing all cells of
the GeoRaster object at a specified pyramid level. This BLOB object contains only
raster cells and no related metadata.

• SDO_GEOR.getRasterBlocks returns an object that includes all image data
inside or touching a specified window. Specifically, it returns an object of the
SDO_RASTERSET collection type that identifies all blocks of a specified pyramid
level that are inside or touch a specified window.

• SDO_GEOR.reproject not only transforms a whole GeoRaster object from one
projected coordinate system to another, but can also include the same capability
as SDO_GEOR.getRasterSubset by directly transforming the query result into a
different coordinate system on-the-fly.

• SDO_GEOR.rectify performs reprojection, rectification, or orthorectification on all
or part of a georeferenced GeoRaster object based on a query window. The
resulting object can be a new GeoRaster object (for persistent storage) or a BLOB
(for temporary use).

• SDO_GEOR_RA.findCells generates a new GeoRaster object based on the cell
values using the GeoRaster Raster Algebra language. (See Cell Value-Based
Conditional Queries for more information.)

Chapter 4
Querying and Updating GeoRaster Cell Data

4-5

• SDO_GEOR_AGGR.mosaicSubset mosaics a number of GeoRaster objects into
one GeoRaster object.

• SDO_GEOR_AGGR.getMosaicSubset lets you query a virtual mosaic and returns
a mosaicked subset on-the-fly.

• SDO_GEOR.getBitmapMask, SDO_GEOR.getBitmapMaskSubset,
SDO_GEOR.getBitmapMaskValue, and SDO_GEOR.getBitmapMaskValues let
you query bitmap masks on the basis of a full raster, a window, or single cells.

You can also use the SDO_GEOR.exportTo procedure to export all or part of a raster
image to a BLOB object (binary image format) or to a file of a specified file format type.

There are two types of raster updates: space-based and cell value-based

• Space-based raster update allows you update a GeoRaster object's raster data
inside a specified window entirely using either a single value or another GeoRaster
object.

To update or change the value of raster cells in a specified window to a single
value, you can use the SDO_GEOR.changeCellValue procedure. To change the
value of raster cells specified by row/column arrays or by a multipoint geometry
to new values, you can use the SDO_GEOR.changeCellValuesprocedure. You
can call the SDO_GEOR.updateRaster procedure to update a specified pyramid
of a specified area, or the overlapping parts of one GeoRaster object, with a
specified pyramid and specified bands or layers of another GeoRaster object. Both
the SDO_GEOR.changeCellValue and the SDO_GEOR.updateRaster procedures
support all pyramid levels, including the original raster data (that is, pyramid level
0).

The SDO_GEOR_AGGR.append procedure can also be used to update an
existing image with a new image (see Image Appending).

• Cell value-based raster update allows you update a GeoRaster object's raster data
based on the cell values using the GeoRaster Raster Algebra language.

SDO_GEOR_RA.rasterUpdate selects cells from the specified GeoRaster object
based on Boolean strings specified in the conditions parameter, and updates
corresponding cell values by calculating expression strings specified in the
vals parameter. Both the conditions and vals parameters can be complicated
expressions using the raster algebra language. (See Cell Value-Based Conditional
Updates (Edits) for more information.)

If statistics are already set in the GeoRaster object when you perform space-based
or raster cell value-based updates, the statistics are not removed or updated
automatically after you run the raster update procedures. If necessary, you should
remove or regenerate the statistics.

Note:

If you use any procedure that adds or overwrites data in the input GeoRaster
object, you should make a copy of the original GeoRaster object and use the
procedure on the copied object. After you are satisfied with the result of the
procedure, you can discard the original GeoRaster object if you wish.

Chapter 4
Querying and Updating GeoRaster Cell Data

4-6

If you want to change the raster data table name, the attributes of a GeoRaster object,
or any other metadata, see the recommendations, requirements, and restrictions noted
in Querying and Updating GeoRaster Metadata.

After updating a GeoRaster object's metadata or cell data (or both) and before you
commit a database transaction, you should call the SQL UPDATE statement to update
the GeoRaster object (see Updating GeoRaster Objects Before Committing).

4.7 Interpolating Cell Values
GeoRaster objects are grid coverages. The "evaluate" operation of a grid coverage is
also called grid interpolation, a method for interpolating cell values at point positions
between the cells or within the cells. This operation in GeoRaster is performed by
the SDO_GEOR.evaluateDouble function, which evaluates any point in the raster
and returns a double number value for that location. You can use any one of the
six different interpolation methods (listed in Resampling and Interpolation) to do the
evaluation. For example, if a georaster object is a DEM layer, you can find out the
elevation of a random point location, using the following example:

SELECT SDO_GEOR.evaluateDouble(a.georaster, 0,
 SDO_GEOMETRY(2001, 4326, SDO_POINT_TYPE(112.704, 41.917, NULL),
 NULL, NULL),
 '1',
 'interpolationMethod=BILINEAR')
 FROM georaster_table a WHERE raster_name='myDEM';

If you call SDO_GEOR.evaluateDouble with 'interpolationMethod=NN', the
GeoRaster object is treated as a discrete raster and the preceding is the same as
calling SDO_GEOR.getCellValue, which gives you the same value (that is, the cell
value) at a different point location inside a cell. In this case, you can directly call
SDO_GEOR.getCellValue instead, particularly when you query only the cell values of
a single band. Other interpolation methods treat the raster as a continuous surface
and may give you different values at different point locations inside a cell.

4.8 Processing and Analyzing GeoRaster Objects
You can perform a variety of raster and image processing operations on GeoRaster
data, including changing the internal raster storage format, subsetting (cropping),
scaling, rotating, masking, stretching, filtering, dodging, reprojecting (from one
coordinate system to another), rectifying, orthorectifying, warping, mosaicking,
appending, and generating pyramids. GeoRaster also supports virtual mosaic. Some
relevant subprograms are SDO_GEOR.changeFormatCopy, SDO_GEOR.subset,
SDO_GEOR.reproject, SDO_GEOR.rectify, SDO_GEOR.generatePyramid,
SDO_GEOR.deletePyramid, SDO_GEOR.scaleCopy, SDO_GEOR.mergeLayers,
SDO_GEOR_AGGR.mosaicSubset, SDO_GEOR_AGGR.getMosaicSubset, and
SDO_GEOR_AGGR.append. For detailed descriptions, see Image Processing and
Virtual Mosaic, SDO_GEOR Package Reference, and SDO_GEOR_AGGR Package
Reference.

For raster cell value-based algebraic operations and cartographic
modeling and analysis, GeoRaster supports a raster algebra language
(PL/SQL and Algebraic Expressions) and related raster operations,
including conditional queries (SDO_GEOR_RA.findCells), cell value-based
updates or edits (SDO_GEOR_RA.rasterUpdate), logical and mathematical
operations (SDO_GEOR_RA.rasterMathOp), and image and raster

Chapter 4
Interpolating Cell Values

4-7

segmentation (SDO_GEOR_RA.classify). The SDO_GEOR.generateStatistics
function supports polygon-based statistics and histogram generation.
The following on-the-fly functions support interactive statistical analysis
of a GeoRaster object or its layers: SDO_GEOR.generateStatisticsMax,
SDO_GEOR.generateStatisticsMean, SDO_GEOR.generateStatisticsMedian,
SDO_GEOR.generateStatisticsMin, SDO_GEOR.generateStatisticsMode, and
SDO_GEOR.generateStatisticsSTD. For detailed descriptions, see Raster Algebra
and Analytics and SDO_GEOR_RA Package Reference.

See also the GeoRaster PL/SQL demo files, described in GeoRaster PL/SQL and
Java Demo Files, for examples and explanatory comments.

4.9 Monitoring and Reporting GeoRaster Operation
Progress

GeoRaster lets you monitor and report the execution progress of many operations
(listed in Reporting Operation Progress in GeoRaster). The following are the basic
steps for reporting the progress of an operation:

1. Use the SDO_GEOR_UTL.createReportTable procedure to create the report table
under the appropriate user's schema. (This must be called once before you can
monitor any operations.)

EXECUTE SDO_GEOR_UTL.createReportTable;

2. In the user session where the operations are to be executed and monitored,
perform the following actions:

a. Use SDO_GEOR_UTL.enableReport to enable the monitoring. (You must call
this procedure in order to be able to get the status report later.)

EXECUTE SDO_GEOR_UTL.enableReport;

b. Optionally, use SDO_GEOR_UTL.setClientID to set the client ID. The client
ID is used to identify the user session that executes the operation. If this
procedure is not called, the client ID defaults to the SQL session ID. For
example:

EXECUTE SDO_GEOR_UTL.setClientID(100);

c. Optionally, use SDO_GEOR_UTL.setSeqID to set the sequence ID. The
sequence ID is used to identify the repeated operations in the same SQL
session. If this procedure is not called, the sequence ID defaults to 0. For
example:

EXECUTE SDO_GEOR_UTL.setSeqID(1);

d. Execute the operation to be monitored. For example:

-- Generate pyramid for georid=6. The progress of this generatePyramid
call
-- can be monitored by step 3.
DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr
 FROM georaster_table WHERE georid = 6 FOR UPDATE;
 sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN');
 UPDATE georaster_table SET georaster = gr WHERE georid = 6;
 COMMIT;

Chapter 4
Monitoring and Reporting GeoRaster Operation Progress

4-8

END;
/

e. Optionally, repeat steps c and d for each additional operation to be monitored.
For example:

EXECUTE SDO_GEOR_UTL.setSeqID(2);
-- Generate pyramid for georid=7. The progress of this generatePyramid
call
-- can be monitored by step 3.
DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr
 FROM georaster_table WHERE georid = 7 FOR UPDATE;
 sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN');
 UPDATE georaster_table SET georaster = gr WHERE georid = 7;
 COMMIT;
END;
/

f. Optionally, use SDO_GEOR_UTL.disableReport to disable the monitoring. If
this procedure is not called, the monitoring is automatically stopped when the
user session ends.

EXECUTE SDO_GEOR_UTL.disableReport;

3. From another session under the same user, retrieve the execution status report.

To get the progress of a specific operation identified by client ID and sequence
ID, use the SDO_GEOR_UTL.getProgress function. This function returns the
progress as a number between 0 and 1 reflecting the percentage of completion.
For example, the following query shows that the operation if 55% complete:

SELECT sdo_geor_utl.getProgress(100, 2) progress FROM DUAL;

PROGRESS

 0.55

1 row selected.

To get the status report of a specific operation identified by client ID and sequence
ID, use the SDO_GEOR_UTL.getStatusReport function. This function returns an
array of strings describing the progress and other information about the operation.
For example:

-- Check the status of the generatePyramid on georid=6
SELECT sdo_geor_utl.getStatusReport(100, 1) FROM DUAL;
SDO_GEOR_UTL.GETSTATUSREPORT(100,1)

SDO_STRING2_ARRAY('31-OCT-11 02.20.04.854558 PM', 'GeneratePyramid',
'RDT:RDT_1', 'RID:6', '100% complete', 'operation completed')

1 row selected.

-- Check the status of the generatePyramid on georid=7
SELECT sdo_geor_utl.getStatusReport(100, 2) FROM DUAL;

SDO_GEOR_UTL.GETSTATUSREPORT(100,2)

SDO_STRING2_ARRAY('31-OCT-11 02.20.08.854558 PM', 'GeneratePyramid',
'RDT:RDT_1', 'RID:7', '55% complete', 'operation completed')

Chapter 4
Monitoring and Reporting GeoRaster Operation Progress

4-9

1 row selected.

To get the status of all the monitored operations, enter the following statement:

SELECT * from the (select sdo_geor_utl.getAllStatusReport() FROM DUAL);
COLUMN_VALUE

-
SDO_STRING2_ARRAY('Client:100', 'Sequence:1', '31-OCT-11 02.20.04.854558
PM', 'GeneratePyramid', 'RDT:RDT_1', 'RID:6', '100% complete', 'operation
completed')
SDO_STRING2_ARRAY('Client:100', 'Sequence:2', '31-OCT-11 02.20.08.854558
PM', 'GeneratePyramid', 'RDT:RDT_1', 'RID:7', '55% complete', NULL)

2 rows selected.

If you need to clear or drop the report table, use the
SDO_GEOR_UTL.clearReportTable or SDO_GEOR_UTL.dropReportTable procedure,
respectively:

EXECUTE SDO_GEOR_UTL.clearReportTable;
-- or:
EXECUTE SDO_GEOR_UTL.dropReportTable;

4.10 Compressing and Decompressing GeoRaster Objects
You can reduce the storage space requirements for GeoRaster objects by
compressing them using JPEG-F, DEFLATE, or JPEG 2000 compression. You can
decompress any compressed GeoRaster object, although this is not required for any
GeoRaster operations, because any GeoRaster operation that can be performed
on an uncompressed (decompressed) GeoRaster object can be performed on a
compressed GeoRaster object.

For JPEG-F and DEFLATE, to compress or decompress a GeoRaster
object, use the compression keyword in the storageParam parameter
with the SDO_GEOR.changeFormatCopy procedure, or with several other
procedures that load and process a GeoRaster object to create another
GeoRaster object, including SDO_GEOR.importFrom, SDO_GEOR.mosaic,
SDO_GEOR.scaleCopy, SDO_GEOR.subset, raster algebra (SDO_GEOR_RA)
procedures, and SDO_GEOR_AGGR.mosaicSubset. (For JPEG-F and DEFLATE
compression, there are no separate procedures for compressing and decompressing a
GeoRaster object.)

For JPEG 2000, use the SDO_GEOR.compressJP2 and SDO_GEOR.decompressJP2
procedures to compress and decompress a GeoRastrer object, respectively.
Most other procedures and functions (except for SDO_GEOR.changeCellValue,
SDO_GEOR.reproject, sdo_geor.scaleScopy, and sdo_geor.mosaic) can internally
decompress the JP2 compressed GeoRaster object while performing the operation.

For more information about GeoRaster compression and decompression, see
Compression and Decompression, including information about support for third-party
compression solutions in Third-Party Plug-ins for Compression.

In addition, when JPEG-F or DEFLATE compression is used with GeoRaster objects,
some special usage considerations apply:

Chapter 4
Compressing and Decompressing GeoRaster Objects

4-10

• If a large GeoRaster object is to be compressed and will have full pyramids built
on it, it is faster to generate pyramids on the uncompressed GeoRaster object first,
then apply compression.

• For large scale mosaicking, it is faster to mosaic without applying compression
first, then generate pyramids, then apply compression.

• In some operations, GeoRaster uses temporary tablespaces to compress and
decompress data, so adding temporary tablespaces for GeoRaster users is
essential for performance (see Adding Temporary Tablespaces for GeoRaster
Users).

Parallel compression and decompression for JPEG and DEFLATE are supported
with the SDO_GEOR.changeFormatCopy procedure, if reformatting is not needed,
by using the parallel keyword in the storageParam parameter. You can also call
the SDO_GEOR_AGGR.mosaicSubset procedure, which provides better performance
if you want to change the raster format while doing parallelized compression
or decompression. Parallel compression and decompression significantly improve
performance, which is especially useful for large images. See Example 6-23 in Parallel
Compression, Copying, and Subsetting

If you want to store compressed GeoRaster objects, make sure you create a
temporary tablespace for the users. For more information, see Adding Temporary
Tablespaces for GeoRaster Users.

4.11 Deleting GeoRaster Objects, and Performing Actions
on GeoRaster Tables and RDTs

GeoRaster automatically maintains the GeoRaster metadata and the relationship
between GeoRaster tables and raster data tables (RDTs). Therefore, for most
operations you can use the relevant traditional SQL statement.

• To delete a GeoRaster object, delete the row containing the object using the
DELETE statement (for example, DELETE FROM geor_table WHERE ...;).

After a GeoRaster object is deleted from a GeoRaster table, all related raster data
stored in the RDT is deleted automatically. Never insert or delete any rows directly
in a raster data table.

• To drop a GeoRaster table, use the DROP statement (for example, DROP
geor_table;).

After a GeoRaster table is dropped, all raster data associated with GeoRaster
objects in the deleted GeoRaster table is deleted automatically.

• To rename a GeoRaster table, use the RENAME statement (for example, RENAME
geor_table1 TO geor_table2;).

• To add a GeoRaster column to a table, use the ALTER TABLE statement.

However, if you use the ALTER TABLE statement to add one or more GeoRaster
columns, you must call the SDO_GEOR_UTL.createDMLTrigger procedure to
create the DML trigger on each added GeoRaster column. For example:

ALTER TABLE geor_table ADD (image SDO_GEORASTER);
CALL sdo_geor_utl.createdmltrigger('GEOR_TABLE','IMAGE');)

Chapter 4
Deleting GeoRaster Objects, and Performing Actions on GeoRaster Tables and RDTs

4-11

• To drop a GeoRaster column in a table, use the ALTER TABLE statement (for
example, ALTER TABLE geor_table DROP COLUMN image;).

Caution: Dropping a GeoRaster column will delete all GeoRaster objects in that
column.

• To drop an RDT, you must first delete all GeoRaster objects that reference the
RDT, after which you can use the DROP statement on the RDT.

If you do not delete all GeoRaster objects that reference the RDT before
attempting to drop the RDT, an exception is raised.

• To rename an RDT, use the SDO_GEOR_UTL.renameRDT procedure.

4.12 Performing Cross-Schema Operations
All GeoRaster operations can work on GeoRaster objects defined in schemas other
than the current connection schema. In other words, GeoRaster fully supports cross-
schema access, update, and processing.

For more information, see Cross-Schema Support with GeoRaster.

Example 4-2 Cross-Schema Copy Operation

In the following example, USER2 makes a copy of an image from USER1 and stores
it in the USER2 schema. Assume that USER1 owns the GEORASTER_TABLE table
and that USER2 owns the G_TABLE table.

--connect to user1 and grant permissons to user2
--assume user1 stores the image in georaster_table and the image’s RDT
table is rdt_1
conn user1/pswd1
 grant select on georaster_table to user2;
grant select on rdt_1 to user2;

--connect to user2 and make a copy of a georaster from user1
conn user2/pswd2
SQL> DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 --select the image from georaster_table in user1
 select georaster into gr1 from user1.georaster_table where georid =
100;
 -- the copy is to be stored in g_table in user2, assuming the
georaster object is already initiated
 select geor into gr2 from g_table where id = 1 for update;
 sdo_geor.changeFormatCopy(gr1, 'blocking=OPTIMALPADDING
blocksize=(512,512,3) interleaving=BIP', gr2);
 update g_table set geor=gr2 where id=1;
 commit;
END;
/

Chapter 4
Performing Cross-Schema Operations

4-12

Example 4-3 Cross-Schema Raster Algebra and Copy Operation

In the following example, USER2 runs a raster algebra operation on an image in
the USER1 schema and stores the result in USER1. Assume that USER1 owns
both the GEORASTER_TABLE and G_TABLE tables. The existing image is in
GEORASTER_TABLE and the image’s raster data table is RDT_1. The resulting
image is stored in G_TABLE and its raster data table is RDT_2.

--connect to user1 and grant permissons to user2
conn user1/pswd1
grant select on georaster_table to user2;
grant select on rdt_1 to user2;
grant select, update, insert, delete on g_table to user2;
grant select, update, insert, delete on rdt_2 to user2;

--connect to user2 and run a raster algebra operation on an image in
user1
conn user2/pswd2
DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 --select the image from georaster_table in user1
 select georaster into gr1 from user1.georaster_table where georid =
100;
 -- the result is to be stored in g_table in user1, assuming the
georaster object is already initiated
 select geor into gr2 from user1.g_table where id = 1 for update;
 sdo_geor_ra.rasterMathOp(gr1,sdo_string2_array('{0}','{1}','{2}'),
'blocking=OPTIMALPADDING blocksize=(512,512,3) interleaving=BIP',gr2);
 update user1.g_table set geor=gr2 where id=1;
 commit;
END;
/

4.13 Managing Memory to Improve Performance
GeoRaster has its own buffer system to read and write raster (LOB) data. This
system is separate from the Oracle Database buffer system. The following table lists
parameters that can be used to configure the GeoRaster buffer system, which is used
for all I/O operations on GeoRaster objects.

Table 4-1 GeoRaster Buffering Parameters

Parameter Name Description Default
Value

MemMaxSize Upper limit size of the memory that can be used for
GeoRaster buffering for each GeoRaster object.

17 MB

MemReadBlockSiz
e

Internal data block size for read-only operations for caching
raster data.

32 KB

MemWriteBlockSiz
e

Internal data block size for read/write operations for caching
raster data.

64 KB

Chapter 4
Managing Memory to Improve Performance

4-13

You can get and set the values of these parameters using the following PL/SQL
subprograms:

• SDO_GEOR_UTL.getMaxMemSize

• SDO_GEOR_UTL.setMaxMemSize

• SDO_GEOR_UTL.getReadBlockMemSize

• SDO_GEOR_UTL.setReadBlockMemSize

• SDO_GEOR_UTL.getWriteBlockMemSize

• SDO_GEOR_UTL.setWriteBlockMemSize

Because the parameters are set using PL/SQL, their values are defined for the
duration of the database session. For any subsequent sessions, if you want to use any
nondefault values for any of the parameters, you must set them using the appropriate
procedures.

In general, using large values for the parameters improves performance for GeoRaster
I/O operations. The following are some specific considerations and guidelines.

• Allocating more memory (increasing MemMaxSize) reduces disk access; and ideally,
allocating big enough memory to hold an entire GeoRaster object will dramatically
improve performance. However, Oracle Database allows multiple users and
concurrent access, and so you should aim for balanced memory allocation in such
an environment.

• Increasing the read block size (increasing MemReadBlockSize) reduces the number
of OCI LOB read operations, thus improving performance. However, in the case
of an interleaving change between the source and target GeoRaster objects in
an operation, a very large MemReadBlockSize value could cause frequent read
block page-in and page-out operations, thus degrading performance. In this case,
increase the MemMaxSize value accordingly, up to the size of the entire GeoRaster
object.

• Almost all GeoRaster operations are write-driven, so that a larger write block size
(increasing MemWriteBlockSize) will reduce number of OCI LOB write operations
and thus improve performance.

4.14 Updating GeoRaster Objects Before Committing
Before you commit a database transaction that inserts, updates, reformats,
compresses, decompresses, or deletes GeoRaster cell data or metadata, you should
use the SQL UPDATE statement to update the GeoRaster object. If you do not update
the GeoRaster object after changing cell data, one or more of the following can result:
an invalid GeoRaster object, dangling raster data, and inconsistent metadata. If you do
not update the GeoRaster object after changing GeoRaster metadata, the metadata
changes will not take effect.

If you decide to roll back the transaction instead of committing it, an UPDATE
statement is not needed.

In Example 4-4, the UPDATE statement is required after the call to the
SDO_GEOR.changeFormatCopy procedure and before the COMMIT statement.

Example 4-4 Updating a GeoRaster Object Before Committing

DECLARE
 gr1 sdo_georaster;

Chapter 4
Updating GeoRaster Objects Before Committing

4-14

 gr2 sdo_georaster;
BEGIN
 SELECT georaster INTO gr2 from georaster_table WHERE georid=11 FOR UPDATE;
 SELECT georaster INTO gr1 from georaster_table WHERE georid=1;
 sdo_geor.changeFormatCopy(gr1, 'blocksize=(2048,2048)', gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=11;
 COMMIT;
END;
/

4.15 Updating GeoRaster Objects in a Loop
When multiple GeoRaster objects are to be updated, a cursor is generally used.
However, if the GeoRaster operation in the loop is parallel enabled or the COMMIT
statement is executed after each UPDATE statement, the SQL query for the cursor
cannot have the FOR UPDATE clause because the commit within the loop will
invalidate the cursor with that clause.

Example 4-5 Updating GeoRaster Objects in a Loop With Parallel Processing
Enabled

In the following example, pyramids were generated on all the GeoRaster objects in
the table. An explicit commit is executed after each update, and parallel processing is
enabled (parallel=4) for the SDO_GEOR.generatePyramid procedure. The query of
the GeoRaster object with FOR UPDATE clause is executed within the loop, not in the
cursor query statement.

DECLARE
 gr1 sdo_georaster;
BEGIN
 FOR rec in (SELECT georid FROM georaster_table ORDER BY georid) LOOP
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=rec.georid FOR
UPDATE;
 sdo_geor.generatePyramid(gr1, 'rlevel=5, resampling=bilinear', null,
'parallel=4');
 UPDATE georaster_table SET georaster=gr1 WHERE georid=rec.georid;
 COMMIT;
 END LOOP;
 END;
/

Example 4-6 Updating GeoRaster Objects in a Loop Without Parallel
Processing Enabled

If the GeoRaster operation in the loop is not parallel enabled (as is the case in this
example), instead of executing a COMMIT after each update, the COMMIT statement
can be executed outside the cursor loop, to avoid invalidating the cursor with FOR
UPDATE clause. Also note that the example adds NODATA to all the GeoRaster
objects in the table.

BEGIN
FOR rec in (SELECT georid, georaster FROM georaster_table FOR UPDATE)
 LOOP
 sdo_geor.addNODATA(rec.georaster, 0, 0);
 UPDATE georaster_table SET georaster=rec.georaster
 WHERE georid=rec.georid;
END LOOP;
COMMIT;

Chapter 4
Updating GeoRaster Objects in a Loop

4-15

 END;
/

4.16 Using Template-Related Subprograms to Develop
GeoRaster Applications

The SDO_GEOR.createTemplate and SDO_GEOR.getRasterBlockLocator
subprograms enable you to develop GeoRaster applications, such as ETL tools and
image processing systems that work with GeoRaster objects, by reading and writing
GeoRaster metadata and binary raster data without dealing directly with the Oracle
XMLType, the GeoRaster XML schema, and Oracle BLOBs.

After you create a new GeoRaster object (explained in Creating New GeoRaster
Objects), you can use the SDO_GEOR.createTemplate function to populate the
metadata of the GeoRaster object with basic information, such as raster type,
dimension sizes, ultCoordinates, cell depth, interleaving type, blocking and block size,
pyramid resampling method and reducing level, and compression method and quality.
This function can optionally populate the raster data table with the correct number of
rows and row data consisting of raster blocks containing empty BLOBs.

The XML metadata generated by the SDO_GEOR.createTemplate function conforms
to the GeoRaster metadata schema. You can then use other GeoRaster subprogams
to query or update the metadata (see Querying and Updating GeoRaster Metadata).

You can use the SDO_GEOR.getRasterBlockLocator procedure to get the raster block
locator by specifying the pyramid level and block number. If you have the raster block
locator, you can then use the OCI or Java JDBC LOB interfaces to read and write the
binary raster data. (The SDO_GEOR.getRasterBlockLocator procedure does not itself
read or process LOB data.) To use this approach, you must understand the physical
storage of the raster data (explained in GeoRaster Physical Storage), and you must
compress and decompress the data as necessary before reading from or writing to the
BLOB.

Chapter 4
Using Template-Related Subprograms to Develop GeoRaster Applications

4-16

5
Raster Algebra and Analytics

This chapter describes the raster algebra language (PL/SQL and algebraic
expressions) and related raster operations, including conditional queries, cell value-
based updates or edits, mathematical operations, classify, on-the-fly statistical
analysis, logical operations, and their applications in cartographic modeling.

It contains the following major sections.

• Raster Algebra Language
Raster algebra is commonly used in raster data analysis and GIS modeling. In
GeoRaster, raster algebra is supported by the GeoRaster raster algebra language.

• Cell Value-Based Conditional Queries
Using cell-based conditional queries, you can generate a new GeoRaster object
based on a specified condition.

• Cell Value-Based Conditional Updates (Edits)
You can update raster cell values based on conditions.

• Mathematical Operations
A major use of raster algebra is to apply mathematical models to raster layers from
different sources.

• Classification Operations
Classification (segmentation) operations can be applied on source GeoRaster
objects to generate new objects.

• Statistical Operations
To apply statistical operations on one or more layers, which are from one or more
GeoRaster objects, the following types of operations are available.

• Logical Operations
A major use of raster algebra is to apply logical models to raster layers from
different sources; that is, you can apply logical operations on one or more layers,
from one or more GeoRaster objects, to generate a new GeoRaster object.

• Raster Data Scaling and Offsetting
You can perform raster data scaling and offsetting operations.

• Raster Data Casting
Raster data casting maps cell values from one data type to another.

• Cartographic Modeling
Raster algebra is widely used in cartographic modeling and is considered an
essential component of GIS systems. Using the PL/SQL and the raster algebra
expressions and functions, you can conduct cartographic modeling over a large
number of rasters and images of virtually unlimited size.

• Terrain Modeling and Analysis
You can use the data from input GeoRaster objects to perform terrain modeling
and analysis.

5-1

5.1 Raster Algebra Language
Raster algebra is commonly used in raster data analysis and GIS modeling. In
GeoRaster, raster algebra is supported by the GeoRaster raster algebra language.

The GeoRaster raster algebra language is an extension to the Oracle PL/SQL
language. PL/SQL provides declarations of variables and constants, general
mathematical expressions, basic functions, statements, and programming capabilities.
GeoRaster provides a raster algebra expression language and a set of raster
algebra functions for raster layer operations. The raster algebra expression language
includes general arithmetic, casting, logical, and relational operators and allows any
combination of them. The raster algebra functions enable the usage of the expressions
and support cell value-based conditional queries, mathematical modeling, classify
operations, and cell value-based updates or edits over one or many raster layers from
one or many GeoRaster objects.

This combination of the PL/SQL language and GeoRaster algebraic expressions and
functions provides an easy-to-use, powerful way to define raster analyses as algebraic
expressions, so that users can easily apply algebraic functions on raster data to derive
new results. For example, a simple raster operation can use two or more raster layers
with the same dimension sizes to produce a new raster layer by using algebraic
operations (addition, subtraction, and so on), or a sophisticated raster operation to
generate a Normalized Difference Vegetation Index (NDVI) from multiple bands of
satellite imagery.

GeoRaster supports raster algebra local operations, so the raster algebra operations
work on individual raster cells, or pixels.

The following is the GeoRaster raster algebra expression language definition:

<arithmeticExpr> ::=
 <unaryArithmeticExpr>
 | <binaryArithmeticExpr>
 | <functionalArithmeticExpr>
 | <conditionalExpr>
 | <castingExpr>
 | <booleanExpr>
 | <constantNumber>
 | <identifier>
 | (<arithmeticExpr>)

<unaryArithmeticExpr> ::=
 (<unaryArithmeticOp> <arithmeticExpr>)

<unaryArithmeticOp> ::=
 +
 | -

<binaryArithmeticExpr> ::=
 <arithmeticExpr> <binaryArithmeticOp> <arithmeticExpr>

<binaryArithmeticOp> ::=
 +
 | -
 | *
 | /
 | %

Chapter 5
Raster Algebra Language

5-2

<functionalArithmeticExpr> ::=
 <statisticalFunction> ()
 | <numericFunction_with_1_param> (<arithmeticExpr>)
 | <numericFunction_with_2_param> (<arithmeticExpr> ,
<arithmeticExpr>)
 | <numericFunction_with_3_param> (<arithmeticExpr> ,
<arithmeticExpr> , <arithmeticExpr>)

<statisticalFunction> ::=
 min
 | max
 | mean
 | median
 | std
 | minority
 | majority
 | sum
 | variety

<numericFunction_with_1_param> ::=
 abs
 | sqrt
 | exp
 | exp2
 | exp10
 | log
 | ln
 | log2
 | sin
 | cos
 | tan
 | sinh
 | cosh
 | tanh
 | arcsin
 | arccos
 | arctan
 | arcsinh
 | arccosh
 | arctanh
 | ceil
 | floor
 | factorial

<numericFunction_with_2_param> ::=
 power
 | max2
 | min2

<numericFunction_with_3_param> ::=
 max3
 | min3

<conditionalExpr> ::=
 <conditionalFunction> (<booleanExpr> , <arithmeticExpr> ,
<arithmeticExpr>)

<conditionalFunction> ::=
 condition

<castingExpr> ::=

Chapter 5
Raster Algebra Language

5-3

 <castingFunction> (<arithmeticExpr>)

<castingFunction> ::=
 castint
 | castonebit
 | casttwobit
 | castfourbit
 | casteightbit
 | castBoolean

<booleanExpr> ::=
 <unaryBooleanExpr>
 | <binaryBooleanExpr>
 | (<booleanExpr>)

<unaryBooleanExpr> ::=
 <unaryBooleanOp> <booleanExpr>

<unaryBooleanOp> ::=
 !

<binaryBooleanExpr> ::=
 <booleanExpr> <binaryBooleanOp> <booleanExpr>
 | <arithmeticExpr> <comparisonOp> <arithmeticExpr>

<binaryBooleanOp> ::=
 &
 | |
 | ^

<comparisonOp> ::=
 =
 | <
 | >
 | >=
 | <=
 | !=

<constantNumber> ::=
 <double number>

<identifier> ::=
 { <ID> , <band> }
 | { <band> }

<ID> ::=
 <integer number>

<band> ::=
 <integer number>

The precedence of the algebraic operators (+, -, *, /, and so on) in the expression
language complies with general conventions. However, in any case where the
expression might be misinterpreted, you should use parentheses to clarify which
interpretation is intended.

The booleanExpr can be used as arithmeticExpr, as defined in the GeoRaster raster
algebra expression language. In this case, the TRUE and FALSE evaluation results of
booleanExpr are cast to numeric values 1 and 0, respectively.

Chapter 5
Raster Algebra Language

5-4

The identifier in the expression refers to a raster layer of a GeoRaster object. It is
either a single band number if there is only one GeoRaster object involved, or a pair
of (ID, band) where ID refers to one of GeoRaster objects in the expression and band
refers to a specific layer of that GeoRaster object. The band number in this language
refers to the ordinate number of a layer along the band dimension in the cell space, so
it always starts with 0 (zero). The GeoRaster ID number always starts with 0 (zero).

The following procedures provide the main support for raster algebra operations:

• SDO_GEOR_RA.rasterMathOp takes arithmeticExpr to perform mathematical
operations or modeling, conditionalExpr and booleanExpr to perform logical
operations, and statisticalFunction expression to perform statistical analysis.

• SDO_GEOR_RA.findCells searches/masks cells based on a booleanExpr
condition.

• SDO_GEOR_RA.classify applies arithmeticExpr to cells and then segments the
raster.

• SDO_GEOR_RA.rasterUpdate updates cell values of a raster based on different
booleanExpr conditions.

• SDO_GEOR_RA.diff and SDO_GEOR_RA.over perform logical operations without
using expressions.

• SDO_GEOR_RA.stack and many other subprograms perform statistical analysis
or generate statistics.

These raster algebra functions take many layers from one or many GeoRaster objects,
apply booleanExpr and/or arithmeticExpr expressions over those layers, do the
specific algebraic computation or modeling, and output a new GeoRaster object. The
expressions can be defined in any way based on the syntax described earlier in this
section.

All raster algebra functions require that the raster layers overlap each other and
have the same dimension sizes and resolution if they are georeferenced, or
have the same dimension sizes if they are not georeferenced. Before you apply
raster algebra operations over two or more GeoRaster objects, you can use the
SDO_GEOR_RA.isOverlap function to determine if the GeoRaster objects are of the
same size and cover the same ground area.

Raster and image databases are generally very large. Querying and manipulating
such databases are computationally intensive operations. To improve performance,
all GeoRaster raster algebra functions are parallelized. You should always consider
applying parallel processing when using multi-CPU or multicore servers.

• Examples of Raster Algebra Expressions

5.1.1 Examples of Raster Algebra Expressions
This section contains examples showing how to define raster algebra expressions.

Example 5-1 Finding Pixels Based on a Comparison (>)

Example 5-1 finds all pixels that meet the condition defined by algebra expression
'{1}>200' , because there is only one GeoRaster object involved in the procedure,
so {1} refers to the cell value of second layer ({0} would be for the first layer),
and '{1}>200' means any pixels whose second layer value is greater than 200. The
example assumes that the source GeoRaster object has at least two layers.

Chapter 5
Raster Algebra Language

5-5

DECLARE
 geor MDSYS.SDO_GEORASTER;
 geor1 MDSYS.SDO_GEORASTER;
BEGIN
 select georaster into geor from georaster_table where georid = 1;
 select georaster into geor1 from georaster_table where georid = 5 for update;
 sdo_geor_ra.findcells(geor, '{1}>200','blocking=optimalpadding, blocking=true,
blocksize=(512,512,3)',geor1);
 update georaster_table set georaster = geor1 where georid = 5;
 commit;
END;
/

Example 5-2 Generating a GeoRaster Object Based on an Expressions Array

Example 5-2 generates a new GeoRaster object geor2 from two input
GeoRaster objects geor and geor1 based on the algebra expressions array
SDO_STRING2_ARRAY('{0,0}-0.5*{1,0}','{0,1}-0.5*{1,1}','{0,2}-0.5*{1,2}').
The example assumes that both of the source GeoRaster objects are images with
three bands.

DECLARE
 geor MDSYS.SDO_GEORASTER;
 geor1 MDSYS.SDO_GEORASTER;
 geor2 MDSYS.SDO_GEORASTER;
 geo_array MDSYS.SDO_GEORASTER_ARRAY;
BEGIN
 select georaster into geor from georaster_table where georid = 1;
 select georaster into geor1 from georaster_table where georid = 2;
 insert into georaster_table values (17, sdo_geor.init('rdt_1', 17)) returning
georaster into geor2;
 geo_array:=MDSYS.SDO_GEORASTER_ARRAY(geor,geor1);

sdo_geor_ra.rasterMathOp(geo_array,SDO_STRING2_ARRAY('{0,0}-0.5*{1,0}','{0,1}-0.5
{1,1}','{0,2}-0.5{1,2}'),null,geor2);
 update georaster_table set georaster = geor2 where georid = 17;
 commit;
END;
/

In the algebra expressions array in Example 5-2:

• {0,0} refers to the cell value of band 0 of the first input GeoRaster object geor.

• {0,1} refers to the cell value of band 1 of the first input GeoRaster object geor.

• {0,2} refers to the cell value of band 2 of the first input GeoRaster object geor.

• {1,0} refers to the cell value of band 0 of the second input GeoRaster object
geor1.

• {1,1} refers to the cell value of band 1 of the second input GeoRaster object
geor1.

• {1,2} refers to the cell value of band 2 of the second input GeoRaster object
geor1.

In Example 5-2, then, the target GeoRaster object geor2 will have three bands, and:

• The cell value of band 0 of target GeoRaster object geor2 is: {0,0}-0.5*{1,0}

• The cell value of band 1 of target GeoRaster object geor2 is: {0,1}-0.5*{1,1}

Chapter 5
Raster Algebra Language

5-6

• The cell value of band 2 of target GeoRaster object geor2 is: {0,2}-0.5*{1,2}

Example 5-3 Updating a GeoRaster Object Based on an Expressions Array

Example 5-3 updates cell values of the input
GeoRaster object based on the algebra expression array
SDO_STRING2_ARRAY('(abs({0}-{1})=48)&({2}-{1}=-101)','2*{0}-{1}/3=108').
The example assumes that the source GeoRaster object has three layers.

DECLARE
 geor MDSYS.SDO_GEORASTER;
 geor1 MDSYS.SDO_GEORASTER;
begin
 select georaster into geor from georaster_table where georid = 1;

sdo_geor_ra.rasterUpdate(geor,0,SDO_STRING2_ARRAY('(abs({0}-{1})=48)&({2}-{1}=-10
1)','2*{0}-{1}/
3=108'),SDO_STRING2_ARRAYSET(SDO_STRING2_ARRAY('123','54','89'),SDO_STRING2_ARRA
Y('98','56','123')));
END;
/

In Example 5-3, for each pixel:

• If (abs({0}-{1})=48)&({2}-{1}=-101) is true, then the cell values of the three
layers will be updated to ('123','54','89').

• If 2*{0}-{1}/3=108 is true, then the cell values of the three layers will be updated
to ('98','56','123').

5.2 Cell Value-Based Conditional Queries
Using cell-based conditional queries, you can generate a new GeoRaster object based
on a specified condition.

In addition to their use in space-based queries on rasters (such as with
SDO_GEOR.getRasterSubset), cell value-based queries are particularly useful in
analytics and application modeling. To perform cell value based conditional queries
and generate a new GeoRaster object based on the specified condition, you can
use the SDO_GEOR_RA.findCells procedure and specify an appropriate condition
parameter.

The condition parameter must specify a valid booleanExpr value (explained in Raster
Algebra Language). The procedure computes the booleanExpr against each cell in the
source GeoRaster object. If the result is TRUE, the original cell values are kept in the
output GeoRaster object; if the result is FALSE, the bgValues are used to fill cell values
in the output GeoRaster object. This can also be considered as a masking operation.

Example 5-4 Conditional Query

Example 5-4 calls the SDO_GEOR_RA.findCells procedure to find all pixels where the
value of the second band is greater than 200. Because the bgValues parameter is not
specified, the value 0 is used as the background value to fill all pixels that make the
condition false. The example assumes that the source GeoRaster object is an image
with more than two bands.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;

Chapter 5
Cell Value-Based Conditional Queries

5-7

BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 INSERT into georaster_table values (5, sdo_geor.init('rdt_1', 5)) returning
georaster into geor1;
 sdo_geor_ra.findcells(geor, '{ 1 }>200', 'blocking=optimalpadding,
blocksize=(512,512,3)', geor1);
 UPDATE georaster_table set georaster = geor1 WHERE georid = 5;
 COMMIT;
END;
/

-- This pixel is set to (0,0,0) because the cell value of the
-- second band is 136, which is not greater than 200.
SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1 OR georid=5 ORDER BY georid;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)
SDO_NUMBER_ARRAY(0, 0, 0)

2 rows selected.

-- This pixel keeps the original values because the cell value
-- of the second band is greater than 200.
SELECT sdo_geor.getcellvalue(georaster,0,132,116,'') FROM georaster_table WHERE
georid =1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,132,116,'')
--
SDO_NUMBER_ARRAY(242, 225, 233)
SDO_NUMBER_ARRAY(242, 225, 233)

2 rows selected.

-- This pixel keeps the original values because the cell value
-- of the second band is greater than 200.
SELECT sdo_geor.getcellvalue(georaster,0,261,185,'') FROM georaster_table WHERE
georid =1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,261,185,'')
--
SDO_NUMBER_ARRAY(255, 214, 2)
SDO_NUMBER_ARRAY(255, 214, 2)

Example 5-5 Conditional Query with nodata Parameter

Example 5-5 is basically the same as Example 5-4, except that the nodata parameter
value is set to 'TRUE', so that all NODATA pixels keep their original values from the
input GeoRaster object in the output GeoRaster object.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 INSERT into georaster_table values (5, sdo_geor.init('rdt_1', 5)) returning
georaster into geor1;
 sdo_geor_ra.findcells(geor, '{ 1 }>200', null, geor1, null, 'TRUE');
 UPDATE georaster_table set georaster = geor1 WHERE georid = 5;
 COMMIT;
END;

Chapter 5
Cell Value-Based Conditional Queries

5-8

/

SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)

1 row selected.

-- This pixel keeps its original cell values because it is nodata, even though
-- the cell value of the second band is not greater than 200.
SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid=5;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)

1 row selected.

Example 5-6 Conditional Query with parallelParam

Example 5-6 finds all pixels that meet all of the following conditions:

• The cell value of the first band is between (100,200).

• The cell value of the second band is between [50,250].

• The cell value of the third band is greater than 100.

In addition, because parallelParam is specified as 'parallel=4', the procedure in
Example 5-6 will run in parallel with four processes.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 2;
 INSERT into georaster_table values (10, sdo_geor.init('rdt_1', 10)) returning
georaster into geor1;
 sdo_geor_ra.findcells(geor,'({1}>=50)&({1}<=250)&({0}>100)&({0}<200)&{2}>100)
',null,geor1,null,'false','parallel=4');
 UPDATE georaster_table SET georaster = geor1 WHERE georid = 10;
 COMMIT;
END;
/

5.3 Cell Value-Based Conditional Updates (Edits)
You can update raster cell values based on conditions.

This section pertains to cell value-based raster updates and not space-based raster
updates, both of which types of update are described in Querying and Updating
GeoRaster Cell Data.

To update raster cell values based on conditions, you can use the
SDO_GEOR_RA.rasterUpdate procedure and specify appropriate condition and vals
parameters.

Chapter 5
Cell Value-Based Conditional Updates (Edits)

5-9

The condition parameter specifies an array of Boolean expressions, and the vals
parameter specifies an array of arrays of math expressions. (See the raster algebra
operation explanations in Raster Algebra Language). For each cell, if condition is
TRUE, its cell value is updated to the result of the corresponding math expression in the
vals array.

Example 5-7 Cell Value-Based Update

Example 5-7 assumes that the GeoRaster object to be updated is an image with three
bands, and it calls the SDO_GEOR_RA.rasterUpdate procedure to do the following:

• For any pixels if abs(first_band_value - second_band_value)=48 and
(third_band_value - second_band_value=-101), then the three band values will
be updated to (123,54,89), respectively.

• For any pixels if (2*first_band_value - second_band_value/3)=108, then the three
band values will be updated to (98,56,123), respectively.

Example 5-7 also includes several calls to the SDO_GEOR.getCellValue function to
show "before" and "after" values.

SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,130,130,'') FROM georaster_table WHERE
georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,130,130,'')
--
SDO_NUMBER_ARRAY(64, 60, 48)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,230,230,'') FROM georaster_table WHERE
georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,230,230,'')
--
SDO_NUMBER_ARRAY(11,11, 11)

1 row selected.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN

 SELECT georaster into geor FROM georaster_table WHERE georid = 1;

sdo_geor_ra.rasterUpdate(geor,0,SDO_STRING2_ARRAY('(abs({0}-{1})=48)&({2}-{1}=-10
1)','2*{0}-{1}/
3=108'),SDO_STRING2_ARRAYSET(SDO_STRING2_ARRAY('123','54','89'),SDO_STRING2_ARRA
Y('98','56','123')));
END;
/

Chapter 5
Cell Value-Based Conditional Updates (Edits)

5-10

PL/SQL procedure successfully completed.

show errors;
No errors.

-- This pixel gets updated because it meets the first condition.
SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(123, 54, 89)

1 row selected.

--This pixel gets updated because it meets the second condition.
SELECT sdo_geor.getcellvalue(georaster,0,130,130,'') FROM georaster_table WHERE
georid=1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,130,130,'')
--
SDO_NUMBER_ARRAY(98, 56, 123)

1 row selected.

-- This pixel keeps its original values because it does not meet any condition
-- in the "condition" array.
SELECT sdo_geor.getcellvalue(georaster,0,230,230,'') FROM georaster_table WHERE
georid =1;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,230,230,'')
--
SDO_NUMBER_ARRAY(11,11, 11)

1 row selected.

Example 5-8 Cell Value-Based Update with nodata Parameter

Example 5-8 is basically the same as Example 5-7, except that the nodata parameter
value is set to 'TRUE', so that all NODATA pixels keep their original values from the
input GeoRaster object in the output GeoRaster object.

SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,130,130,'') FROM georaster_table WHERE
georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,130,130,'')
--
SDO_NUMBER_ARRAY(64, 60, 48)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,230,230,'') FROM georaster_table WHERE

Chapter 5
Cell Value-Based Conditional Updates (Edits)

5-11

georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,230,230,'')
--
SDO_NUMBER_ARRAY(11,11, 11)

1 row selected.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN

 SELECT georaster into geor FROM georaster_table WHERE georid = 1;
 sdo_geor.addNODATA(geor, 1,88);

sdo_geor_ra.rasterUpdate(geor,0,SDO_STRING2_ARRAY('(abs({0}-{1})=48)&({2}-{1}=-10
1)','2*{0}-{1}/
3=108'),SDO_STRING2_ARRAYSET(SDO_STRING2_ARRAY('123','54','89'),SDO_STRING2_ARRA
Y('98','56','123')),null,'true');
END;
/

PL/SQL procedure successfully completed.

-- This pixel keeps its original values because it is a NODATA pixel.
SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)

1 row selected.

--This pixel gets updated because it meets the second condition.
SELECT sdo_geor.getcellvalue(georaster,0,130,130,'') FROM georaster_table WHERE
georid=1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,130,130,'')
--
SDO_NUMBER_ARRAY(98, 56, 123)

1 row selected.

5.4 Mathematical Operations
A major use of raster algebra is to apply mathematical models to raster layers from
different sources.

To apply mathematical operations on one or multiple layers, which could be from one
or more GeoRaster objects, to generate a new GeoRaster object, you can use the
SDO_GEOR_RA.rasterMathOp procedure.

For most formats of this procedure, the operation parameter specifies an array of
arithmeticExpr strings used to calculate raster cell values in the output GeoRaster
object. Each element of the array corresponds to a layer in the output GeoRaster
object.

Chapter 5
Mathematical Operations

5-12

Note that booleanExpr can be also used as arithmeticExpr, as is done in
Example 5-8.

Example 5-9 Mathematical Operations (1)

Example 5-9 calls the SDO_GEOR_RA.rasterMathOp procedure to generate a new
6-layer GeoRaster object from a 3-layer source GeoRaster object, and follows these
rules to calculate cell values of the target GeoRaster object:

• The cell value of the first three layers of target GeoRaster object is equal to the
value of the corresponding layer of source GeoRaster object, minus 10.

• The cell value of the last three layers of target GeoRaster object is equal to the
value of the first three layers of the source GeoRaster object, respectively.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 INSERT into georaster_table values (16, sdo_geor.init('rdt_1', 16)) returning
georaster into geor1;

sdo_geor_ra.rasterMathOp(geor,SDO_STRING2_ARRAY('{0,0}-10','{0,1}-10','{0,2}-10',
'{0,0}','{0,1}','{0,2}'),null,geor1);
 UPDATE georaster_table SET georaster = geor1 WHERE georid = 16;
 COMMIT;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM georaster_table WHERE
georid=1;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--
SDO_NUMBER_ARRAY(181, 163, 159)

1 row selected.

-- In the results of the next SELECT statement, note:
-- 171=181-10
-- 153=163-10
-- 149=159-10
-- 181=181
-- 163=163
-- 159=159
SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM georaster_table WHERE
georid =16;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--
SDO_NUMBER_ARRAY(171, 153, 149, 181, 163, 159)

1 row selected.

Example 5-10 Mathematical Operations (2)

Example 5-10 applies an operation on a 2-element GeoRaster array (containing two
3-layer source GeoRaster objects) to generate a new 3-layer GeoRaster object.

Chapter 5
Mathematical Operations

5-13

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
 geo_array SDO_GEORASTER_ARRAY;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 SELECT georaster INTO geor2 FROM georaster_table WHERE georid = 2;
 INSERT into georaster_table values (17, sdo_geor.init('rdt_1', 17)) returning
georaster into geor1;
 geo_array:=SDO_GEORASTER_ARRAY(geor,geor2);

sdo_geor_ra.rasterMathOp(geo_array,SDO_STRING2_ARRAY('{0,0}-0.5*{1,0}','{0,1}-0.5
{1,1}','{0,2}-0.5{1,2}'),null,geor1,'false',null,'parallel=4');
 UPDATE georaster_table SET georaster = geor1 WHERE georid = 17;
 COMMIT;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM georaster_table WHERE
georid=1 or georid=2;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--
SDO_NUMBER_ARRAY(181, 163, 159)
SDO_NUMBER_ARRAY(60, 80, 90)

2 rows selected.

-- In the results of the next SELECT statement, note:
-- 151=181-0.5*60
-- 123=163-0.5*80
-- 114=159-0.5*90
SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM georaster_table WHERE
georid =17;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--
SDO_NUMBER_ARRAY(151, 123 114)

1 row selected.

Example 5-11 Mathematical Operations (3)

Example 5-11 applies a subtraction operation on two 3-layer input GeoRaster objects
to generate a new GeoRaster object. The example also includes several calls to the
SDO_GEOR.getCellValue function to show "before" and "after" values.

SELECT sdo_geor.getcellvalue(georaster,0,10,10,'0-2') FROM georaster_table WHERE
georid=1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,10,10,'0-2')
--
SDO_NUMBER_ARRAY(88, 137, 32)
SDO_NUMBER_ARRAY(98, 147, 42)

2 rows selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'0-2') FROM georaster_table

Chapter 5
Mathematical Operations

5-14

WHERE georid=1 OR georid=5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'0-2')
--
SDO_NUMBER_ARRAY(181, 163, 159)
SDO_NUMBER_ARRAY(191, 173, 169)

2 rows selected.

DECLARE
 geor0 SDO_GEORASTER;
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 SELECT georaster INTO geor0 FROM georaster_table WHERE georid = 5;
 INSERT into georaster_table values (6, sdo_geor.init('rdt_1', 6)) returning
georaster into geor1;

sdo_geor_ra.rasterMathOp(geor0,geor,null,sdo_geor_ra.OPERATOR_SUBTRACT,null,geor1
);
 UPDATE georaster_table SET georaster = geor1 WHERE georid = 6;
 COMMIT;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo_geor.getcellvalue(georaster,0,10,10,'0-2') FROM georaster_table WHERE
georid=6;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,10,10,'0-2')
--
SDO_NUMBER_ARRAY(10, 10, 10)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'0-2') FROM georaster_table
WHERE georid=6;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'0-2')
--
SDO_NUMBER_ARRAY(10, 10, 10)

1 row selected.

5.5 Classification Operations
Classification (segmentation) operations can be applied on source GeoRaster objects
to generate new objects.

To apply simple classification operations on source GeoRaster objects and
generate new GeoRaster objects based on your specifications, you can use the
SDO_GEOR_RA.classify procedure and specify the expression, rangeArray, and
valueArray parameters. This classification procedure is also called segmentation.

The expression parameter is used to compute values that are used to map into
the value ranges defined in the rangeArray parameter. The rangeArray parameter
specifies a number array that defines ranges for classifying cell values, and this array

Chapter 5
Classification Operations

5-15

must have at least one element. The valueArray parameter is a number array that
defines the target cell value for each range, and its length must be the length of
rangeArray plus one.

Example 5-12 Classification

Example 5-12 calls the SDO_GEOR_RA.classify procedure to apply a segmentation
operation on the value of the first band of the input GeoRaster object. The example
assumes that the GeoRaster object is an image.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 rangeArray SDO_NUMBER_ARRAY;
 valueArray SDO_NUMBER_ARRAY;
BEGIN
 rangeArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180);
 valueArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180,190);
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 INSERT into georaster_table values (5, sdo_geor.init('rdt_1', 5)) returning
georaster into geor1;
 sdo_geor_ra.classify(geor,'{0}',rangeArray,valueArray,null,geor1);
 UPDATE georaster_table SET georaster = geor1 WHERE georid = 5;
 COMMIT;
END;
/

PL/SQL procedure successfully completed.

-- In the next statement, the target value is 90 because the value of the
-- first band of source GeoRaster object is 88, which is between 80 and 90.
SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1 OR georid =5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)
SDO_NUMBER_ARRAY(90)

2 rows selected.

-- In the next statement, the target value is 190 because the value of the
-- first band of source GeoRaster object is 242, which is greater than 180.
SELECT sdo_geor.getcellvalue(georaster,0,132,116,'') FROM georaster_table WHERE
georid =1 OR georid =5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,132,116,'')
--
SDO_NUMBER_ARRAY(242, 225, 233)
SDO_NUMBER_ARRAY(190)

2 rows selected.

Example 5-13 Classification with nodata and nodataValue Parameters

Example 5-13 calls the SDO_GEOR_RA.classify procedure to apply a segmentation
operation on the value of the first layer of the source GeoRaster object, and to set the
nodata parameter to 'TRUE' and the nodataValue parameter to 5, so that all NODATA
pixels will be set with a NODATA value of 5 in the target GeoRaster object.

Chapter 5
Classification Operations

5-16

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 rangeArray SDO_NUMEBR_ARRAY;
 valueArray SDO_NUMEBR_ARRAY;
BEGIN
 rangeArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180);
 valueArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180,190);
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 sdo_geor.addNODATA(geor, 2,136);
 INSERT into georaster_table values (5, sdo_geor.init('rdt_1', 5)) returning
georaster into geor1;
 sdo_geor_ra.classify(geor,'{0}',rangeArray,valueArray,null,geor1,'true',5);
 UPDATE georaster_table SET georaster = geor1 WHERE georid = 5;
END;
/

PL/SQL procedure successfully completed.

-- In the next statement, the target value of the cell is 5 because the value
-- of the second layer of the input GeoRaster object is 136, which is nodata.
SELECT sdo_geor.getcellvalue(georaster,0,30,30,'') FROM georaster_table WHERE
georid =1 OR georid =5 ORDER BY georid;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,30,30,'')
--
SDO_NUMBER_ARRAY(88, 136, 35)
SDO_NUMBER_ARRAY(5)

2 rows selected.

5.6 Statistical Operations
To apply statistical operations on one or more layers, which are from one or more
GeoRaster objects, the following types of operations are available.

• On-the-Fly Statistical Analysis

• Stack Statistical Analysis

5.6.1 On-the-Fly Statistical Analysis
Many applications require statistical analysis. GeoRaster provides statistical analysis
functions that dynamically ("on the fly") compute complete statistical values for a
GeoRaster object or the following individual statistical values: minimum, maximum,
mean, median, mode, and standard deviation. You can do this without generating a
histogram and updating the GeoRaster object metadata.

These subprograms support pyramids, band by band and the aggregation of specified
band numbers. Each subprogram returns an SDO_NUMBER_ARRAY object or a
number.

See the reference information for explanations and examples of these on-the-fly
statistics computation subprograms:

• SDO_GEOR.generateStatistics

• SDO_GEOR.generateStatisticsMax

• SDO_GEOR.generateStatisticsMean

Chapter 5
Statistical Operations

5-17

• SDO_GEOR.generateStatisticsMedian

• SDO_GEOR.generateStatisticsMin

• SDO_GEOR.generateStatisticsMode

• SDO_GEOR.generateStatisticsSTD

These subprograms do not modify the metadata in the GeoRaster object, except
for some formats of SDO_GEOR.generateStatistics that set statistical data in the
GeoRaster object metadata and return a string value of TRUE or FALSE instead of an
SDO_NUMBER_ARRAY object.

GeoRaster also provides statistical analysis functions that compute the area weighted
statistical mean value for the cells and sub-cells within a specific window of the
input GeoRaster object, and that calculate the three–dimensional (3D) surface area
represented by digital elevation model (DEM) data that is stored in a GeoRaster
object. See the reference information for explanations and examples of these on-the-
fly statistics computation functions:

• SDO_GEOR.generateAreaWeightedMean

• SDO_GEOR_UTL.calcSurfaceArea

These two functions support irregular polygon clipping and sub-cell computation, thus
providing very accurate results.

5.6.2 Stack Statistical Analysis
Stack statistical analysis generates a new one-layer GeoRaster object from one or
more layers, which are from one or more GeoRaster objects, by computing one of the
following statistical values for each cell: max, min, median, std, sum, minority, majority,
or diversity.

To perform stack statistical analysis, you have the following options:

• Use the SDO_GEOR_RA.stack procedure.

This option is more intuitive and does not require constructing raster algebra
expressions (especially for GeoRaster objects with many layers), and it allows you
to specify a list of layers instead of all layers.

• Use the SDO_GEOR_RA.rasterMathOp procedure.

This option is more flexible and powerful, allowing you to perform more
comlpicated statistical analysis.

Example 5-14 Using SDO_GEOR_RA.stack

This example uses the first option for performing stack statistical analysis. It calls the
SDO_GEOR_RA.stack procedure to generate a new GeoRaster object by computing
the maximum (max) value of layers 2 and 5 of two 3–layer source GeoRaster objects.

DECLARE
 geor MDSYS.SDO_GEORASTER;
 geor1 MDSYS.SDO_GEORASTER;
 geor2 MDSYS.SDO_GEORASTER;
 geom mdsys.sdo_geometry;
BEGIN
 geom:= sdo_geometry(2003,82394, NULL,
 sdo_elem_info_array(1, 1003, 1),

Chapter 5
Statistical Operations

5-18

 sdo_ordinate_array(20283.775, 1011087.9,
 18783.775, 1008687.9,
 21783.775, 1008687.9,
 22683.775+0.001,
1009587.9+0.001,
 20283.775, 1011087.9));
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor2 from georaster_table where georid = 102;
 select georaster into geor1 from georaster_table where georid = 101
for update;

sdo_geor_ra.stack(SDO_GEORASTER_ARRAY(geor,geor2),geom,SDO_NUMBER_ARRAY(
2,5),'max',null,geor1,'false',0,'TRUE');
 update georaster_table set georaster = geor1 where georid = 101;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid=100;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(121, 66, 181)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid=102;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(33, 55, 56)

1 row selected.

-- In the results of the next SELECT statement, note:
-- max(181,56) ==> 181

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid =101;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(181)

1 row selected.

Example 5-15 Using SDO_GEOR_RA.rasterMathOp

This example uses the second option for performing stack statistical analysis. It calls
the sdo_GEOR_RA.rasterMathOp specifying a statistical operation (max) to perform

Chapter 5
Statistical Operations

5-19

an operation similar to the preceding example, except that this example applies to all
layers.

DECLARE
 geor MDSYS.SDO_GEORASTER;
 geor1 MDSYS.SDO_GEORASTER;
 geor2 MDSYS.SDO_GEORASTER;
 geo_array MDSYS.SDO_GEORASTER_ARRAY;
BEGIN
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101;
 select georaster into geor2 from georaster_table where georid = 102
for update;
 geo_array:=MDSYS.SDO_GEORASTER_ARRAY(geor,geor1);

sdo_geor_ra.rasterMathOp(geo_array,SDO_STRING2_ARRAY('max()'),null,geor2
);
 update georaster_table set georaster = geor2 where georid = 102;
 commit;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid=100;
 SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(181, 163, 159)
1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid=101;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(181, 122, 159) 1 row selected.

-- In the results of the next SELECT statement, note:
-- max(181,163,159,181,122,159) ==> 181

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid =102;
 SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')

--

 SDO_NUMBER_ARRAY(181)
1 row selected.

Chapter 5
Statistical Operations

5-20

5.7 Logical Operations
A major use of raster algebra is to apply logical models to raster layers from different
sources; that is, you can apply logical operations on one or more layers, from one or
more GeoRaster objects, to generate a new GeoRaster object.

To apply logical operations, you can either use raster algebra procedures with logical
expressions, which is more flexible and powerful and mostly be used for some
complicated raster logical operations, or use raster algebra procedures only, which
are straightforward and do not require constructing complicated logical expressions.
However, using raster algebra procedures only (that is, without logical expressions)
has some limitations and is mainly used for some specific raster logical operations.

• Using Raster Algebra Procedures with Logical Expressions

• Using Raster Algebra Functions Only

5.7.1 Using Raster Algebra Procedures with Logical Expressions
GeoRaster logical expressions can be conditional expressions, boolean expressions,
or both, which can take any combination of unary and binary boolean operators (!, &, |,
^) and comparison operators (=, <, >, <=, >=, !=).

To apply logical expressions on the raster data, you must use raster algebra
procedures defined in the SDO_GEOR_RA package and specify appropriate
parameters with your constructed logical expressions.

Example 5-16 Using SDO_GEOR_RA.rasterMathOp with condition operators

This example implements logic described in the following pseudocode to implement
3–band raster data segmentation:

 if ((layer1 < 100)
 & (layer2< 1000)
 & (layer3< 500))
 then output = 10
 elsif ((layer1 < 200)
 & (layer2< 2000)
 & (layer3< 1000))
 then output = 20
 elsif ((layer1 < 300)
 & (layer2< 3000)
 & (layer3< 1500))
 then output = 30
 elsif ((layer1 < 400)
 & (layer2< 4000)
 & (layer3< 2000))
 then output = 40
 elsif ((layer1 < 500)
 & (layer2< 5000)
 & (layer3< 2500))
 then output = 50
 else
 output = 0

Chapter 5
Logical Operations

5-21

The example calls the SDO_GEOR_RA.rasterMathOp procedure, as follows

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 mycursor sys_refcursor;
 expr varchar2(1024);
BEGIN
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101
for update;
 --construct logical expression
 expr :='condition((({0}<100)&({1}<1000)&({2}<500)),'||
 '10,'||
 'condition((({0}<200)&({1}<2000)&({2}<1000)),'||
 '20,'||

'condition((({0}<300)&({1}<3000)&({2}<1500)),'||
 '30,'||

'condition((({0}<400)&({1}<4000)&({2}<2000)),'||
 '40,'||

'condition((({0}<500)&({1}<5000)&({2}<2500)),'||
 '50,'||
 '0)'||
 ')'||
 ')'||
 ')'||
 ')';

 sdo_geor_ra.rasterMathOp(geor, sdo_string2_array(expr),null, geor1,
'true', 0, 'parallel=4');
 update georaster_table set georaster = geor1 where georid = 101;
 commit;
END;
/

Example 5-17 Using SDO_GEOR_RA.rasterMathOp with a condition operator

This example uses statistical functions and arithmetic operations to implement the
simple logic described in the following pseudocode:

if (sum()>min()*3)
then
 output = sqrt(layer0+layer2)
else
 output = layer1*1.5

The example calls the SDO_GEOR_RA.rasterMathOp procedure, as follows

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;

Chapter 5
Logical Operations

5-22

 mycursor sys_refcursor;
 expr varchar2(1024);
BEGIN
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101
for update;
 --construct logical expression
 expr :='condition(sum()>min()*3,sqrt({0}+{2}),
{1}*1.5)';
 sdo_geor_ra.rasterMathOp(geor, sdo_string2_array(expr),null, geor1,
'true', 0, 'parallel=4');
 update georaster_table set georaster = geor1 where georid = 101;
 commit;
END;
/

5.7.2 Using Raster Algebra Functions Only
To perform logical operations using only raster algebra functions, you have the
following options

• Use the SDO_GEOR_RA.diff procedure.

For example, if a cell value in raster A is different from the cell value in raster B,
the cell value in raster A is returned. If the cell values are the same, the value 0
(zero) is returned.

• Use the SDO_GEOR_RA.over procedure.

For example, if a cell value in raster A is not equal to 0 (zero), the cell value in
raster A is returned. If the cell value in raster A is equal to 0, the cell value in raster
B is returned.

Example 5-18 Using SDO_GEOR_RA.diff

This example calls the SDO_GEOR_RA.diff procedure to generate a new GeoRaster
object from two 3–layer source GeoRaster objects.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
 geom sdo_geometry;
BEGIN
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101;
 select georaster into geor2 from georaster_table where georid = 102
for update;
 geom:=null;
 sdo_geor_ra.diff(geor,geor1,geom,null,geor2);
 update georaster_table set georaster = geor2 where georid = 102;
END;
/

PL/SQL procedure successfully completed.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM

Chapter 5
Logical Operations

5-23

georaster_table WHERE georid=100;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(181, 163, 159)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid=101;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(181, 122, 159)

1 row selected.

-- In the results of the next SELECT statement, note:
-- 181 =181 ==> 0
-- 163!=122 ==> 163
-- 159 =159 ==> 0

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid =102;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(0, 163, 0)

1 row selected.

Example 5-19 Using SDO_GEOR_RA.over

This example calls the SDO_GEOR_RA.over procedure to generate a new GeoRaster
object from two 3–layer source GeoRaster objects.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
 geom sdo_geometry;
BEGIN
 select georaster into geor from georaster_table where georid = 102;
 select georaster into geor1 from georaster_table where georid = 101;
 select georaster into geor2 from georaster_table where georid = 100
for update;
 geom:=null;
 sdo_geor_ra.over(geor,geor1,geom,null,geor2);
 update georaster_table set georaster = geor2 where georid = 100;
END;
/

PL/SQL procedure successfully completed.

Chapter 5
Logical Operations

5-24

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid=102;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(0, 163, 0)

1 row selected.

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid=101;

SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(181, 122, 159)

1 row selected.

-- In the results of the next SELECT statement, note:
-- 0 =0 ==> 181 result from georid=101
-- 163!=0 ==> 163 result from georid=102
-- 0 =0 ==> 159 result from georid=101

SELECT sdo_geor.getcellvalue(georaster,0,100,100,'') FROM
georaster_table WHERE georid =100;
SDO_GEOR.GETCELLVALUE(GEORASTER,0,100,100,'')
--

SDO_NUMBER_ARRAY(181, 163, 159)

1 row selected.

5.8 Raster Data Scaling and Offsetting
You can perform raster data scaling and offsetting operations.

Raster algebra has many applications, such as cartographic modeling (see
Cartographic Modeling), vegetation index computing (see Vegetation Index
Computation), and tasseled cap transformation (see Tasseled Cap Transformation).
Topics in this chapter and in Image Processing and Virtual Mosaic describe a few
sample applications of the GeoRaster raster algebra.

Example 5-20 Converting DEM Data from Feet to Meters

The cell value of a GeoRaster object may represent a quantitative attribute of spatial
objects, which could be in a specific unit. For example, the elevation data in a DEM
GeoRaster object could be in the unit of feet. An application may require you to
convert the elevations into another unit, such as meters, for georectification and other
operations. You can use the raster algebra to scale the DEM data from feet into meters
(that is, unit conversion), as shown in Example 5-20.

Chapter 5
Raster Data Scaling and Offsetting

5-25

DECLARE
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
BEGIN
 --Source GeoRaster object with a single DEM layer
 select georaster into geor1 from georaster_table where georid = 1;
 --To store the output DEM layer
 select georaster into geor2 from georaster_table where georid = 2 for update;
 --Scale elevation from feet to meters using the unit factor
 sdo_geor_ra.rasterMathOp(geor1,SDO_STRING2_ARRAY('{0} * 0.3048'),null,geor2);
 --Commit changes to the output georaster object
 update georaster_table set georaster = geor2 where georid = 2;
 commit;
END;
/

Example 5-21 Offsetting DEM by Geoid Height

The cell data of a GeoRaster object may need to be offset by a constant for further
processing. For example, a DEM layer may represent orthometric elevation instead
of ellipsoidal elevation. To orthorectify a raw image georeferenced by an RPC model
requires ellipsoidal elevation. Example 5-21 offsets the orthometric DEM by the geoid
height, resulting in an ellipsoidal DEM.

DECLARE
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
BEGIN
 --Source GeoRaster object with a single orthometric DEM layer
 select georaster into geor1 from georaster_table where georid = 1;
 --To store the output DEM layer
 select georaster into geor2 from georaster_table where georid = 2 for update;
 --Offset elevation by geoid height to get ellipsoidal elevation
 sdo_geor_ra.rasterMathOp(geor1,SDO_STRING2_ARRAY('{0} - 28.8'),null,geor2);
 --Commit changes to the output GeoRaster object
 update georaster_table set georaster = geor2 where georid = 2;
 commit;
END;
/

Example 5-22 Converting (Scaling) and Offsetting

You can combine the operations of Example 5-20 and Example 5-21 into a single
simple step, as shown in Example 5-22.

DECLARE
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
BEGIN
 --Source GeoRaster object with a single DEM layer
 select georaster into geor1 from georaster_table where georid = 1;
 --To store the output DEM layer
 select georaster into geor2 from georaster_table where georid = 2 for update;
 --Scale elevation from feet to meters and offset elevation by geoid height
 sdo_geor_ra.rasterMathOp(geor1,SDO_STRING2_ARRAY('{0} * 0.3048 -
28.8'),null,geor2);
 --Commit changes to the output georaster object
 update georaster_table set georaster = geor2 where georid = 2;
 commit;
END;
/

Chapter 5
Raster Data Scaling and Offsetting

5-26

5.9 Raster Data Casting
Raster data casting maps cell values from one data type to another.

In GeoRaster, there are two types of casting operations: one uses the cellDepth
keyword in the storageParam parameter of operations, and the other uses the
castingExpr operation in the GeoRaster raster algebra. (castingExpr is one of the
arithmeticExpr operations, as described in Raster Algebra Language.)

Whenever you apply an operation which stores the raster data result into a new
GeoRaster object, you can use the cellDepth keyword in the storageParam parameter
of that operation. (The cellDepth keyword and its values are described in Table 1-1.)
If the cellDepth is specified, the target GeoRaster object will be created using that
cellDepth value, and the raster cell data will be automatically cast to that cellDepth
value for storage. You can directly use cellDepth in the storageParam parameter to do
the casting if the source data is in lower cell depth and the resulting data is in higher
cell depth. In this case, the casting is transparent and fast.

However, if you specify a lower cell depth for data in higher cell depth, changing
the cell depth using the cellDepth keyword in the storageParam parameter can
cause loss or change of data and reduced precision or quality. To have better control
of the precision and accuracy, you can use the Raster Algebra casting operator,
castingExpr.

For example, assume you have a raster with a cell depth of 32BIT_REAL and a value
range in [0.0, 100.0). You can use Example 5-23 to perform linear segmentation of the
raster into 10 different classes, each of which has a cell value that is a multiple of 10
(0, 10, 20, …, 90), using the castint operator. This operation casts all cell values to
their closest lower multiple of 10; for example, all numbers from 60 to 69 are cast to
60.

Example 5-23 Linear Segmentation of a Raster

DECLARE
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
BEGIN
 --Source georaster object with cell value range [0.0,100.0)
 select georaster into geor1 from georaster_table where georid = 1;
 --Target georaster object to store the output layer
 select georaster into geor2 from georaster_table where georid = 2 for update;
 --Linearly segment the source raster into 10 classes and store in 8BIT cell
depth
 sdo_geor_ra.rasterMathOp(geor1,
 SDO_STRING2_ARRAY('(castint({0}/10)*10'),
 'celldepth=8BIT',
 geor2);
 --Commit changes to the output georaster object
 update georaster_table set georaster = geor2 where georid = 2;
 commit;
END;
/

As shown in Example 5-23, you can combine the usage of the cellDepth keyword
in the storageParam parameter with the raster algebra casting operator, so that the
result can be calculated correctly as well as stored in an appropriate and concise way.
In Example 5-23, the output cell values are integers equal to or less than 90, so the

Chapter 5
Raster Data Casting

5-27

resulting raster can be stored using 8BIT cell depth (instead of 32BIT_REAL), which
saves storage space.

5.10 Cartographic Modeling
Raster algebra is widely used in cartographic modeling and is considered an essential
component of GIS systems. Using the PL/SQL and the raster algebra expressions and
functions, you can conduct cartographic modeling over a large number of rasters and
images of virtually unlimited size.

For example, a cartographic modeling process for wildfire evaluation might retrieve the
elevation, slope, aspect, temperature, wetness, and other information from a series
of raster layers and then evaluate the cells one-by-one to create a resulting raster
map, which can be further classified to create a thematic map. Change analysis, site
selection, suitability analysis, climate modeling, and oil field evaluation using the raster
layer overlay technique are other typical cartographic modeling processes. In those
cases, arithmetic, relational, and logical operations may need to be combined.

Assume that a hypothetical cartographic model involves seven different raster layers
and has an expression as follows. and that the modeling result is a raster map with 0
and 1 as cell values:

output = 1 if ((100 < layer1 <= 500)
 & (layer2 == 3 or layer2 == 10)
 & ((layer3+layer4) * log(Layer5) / sqrt(layer5)) >= layer6)
 || (layer7 != 1))
 is TRUE and
 0 if otherwise

Example 5-24 shows how to run the preceding cartographic model in GeoRaster and
store the result as a bitmap.

Example 5-24 Cartographic Modeling

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 mycursor sys_refcursor;
 expr varchar2(1024);
BEGIN
 --7 source GeoRaster objects, each of which contains one source layer in the
order of 1 to 7
 OPEN mycursor FOR
 select georaster from georaster_table where georid >0 and georid <=7 order
by georid;
 --Output GeoRaster object to contain the result
 insert into georaster_table (georid, georaster) values (8,
sdo_geor.init('RDT_1',8))
 returning georaster into geor1;
 --Modeling using arithmeticExpr, booleanExpr, and rasterMathOp
 expr :=
 'condition(
 ((100<{0,0}) & ({0,0}<=500))
 & (({1,0}=3) | ({1,0}=10))
 & (((({2,0}+{3,0}) * log({4,0}) / sqrt({4,0})) >= {5,0}) |
({6,0}!=1)
),
 1,
 0)';

Chapter 5
Cartographic Modeling

5-28

 sdo_geor_ra.rasterMathOp(mycursor, sdo_string2_array(expr),
 'celldepth=1BIT', geor1, 'true', 0, 'parallel=4');
 update georaster_table set georaster = geor1 where georid = 8;
 commit;
END;
/

The process in Example 5-24 considers NODATA and will assign 0 (zero) to any cell
that is a NODATA cell in one or more source layers. It is also parallelized into four
processes to leverage multiple CPUs of the database server to improve performance.

5.11 Terrain Modeling and Analysis
You can use the data from input GeoRaster objects to perform terrain modeling and
analysis.

The SDO_GEOR_GDAL.dem procedure uses the data from an input GeoRaster
object to generate output based on the specified processing parameter. The input
GeoRaster object is usually a Digital Elevation Model, and the processing values
could be a value such as hillshade, slope, aspect, color-relief, or roughness.

Example 5-25 Hillshade

If the processing parameter value is hillshade the procedue generates a grayscale
image that represent the shadows of the elevated areas over the adjacent areas,
mimicking the visual effect of sunlight.

This example creates a hillshade image.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 select raster into gr1 from imagery where id = 1;
 delete from imagery where id = 2;
 insert into imagery values(2, sdo_geor.init('imagery_rdt',2))
 returning raster into gr2;
 sdo_geor_gdal.dem(gr1, gr2, 'hillshade');
 update imagery set raster = gr2 where id = 2;
 commit;
END;
/

Example 5-26 Slope

The procedure can generate a slope or aspect raster based on the elevation values
of an input raster. In that case the output pixel values does not produce a visual
appealing output, but a useful raster surface that might be used for land use and
land allocation analyses. For example, it could be used to define areas good for wine
production based on the slope and the angle of exposure to the sun (aspect).

Chapter 5
Terrain Modeling and Analysis

5-29

The following example creates a raster representing the slope generated from raster
elevation data. The resulting pixel values will be represented in percentage, instead of
the default degree output.

DECLARE
 gr1 sdo_georaster;
 gr3 sdo_georaster;
BEGIN
 select raster into gr1 from imagery where id = 1;
 delete from imagery where id = 3;
 insert into imagery values(3, sdo_geor.init('imagery_rdt', 3))
 returning raster into gr3;
 sdo_geor_gdal.dem(gr1, gr3, 'slope', 'slopevalue=percent');
 update imagery set raster = gr3 where id = 3;
 commit;
END;
/

Example 5-27 Aspect

This example creates a raster representing the aspect o generated from raster
elevation data. The pixel representing flat areas will have the value 0 instead of the
default -9999.

DECLARE
 gr1 sdo_georaster;
 gr4 sdo_georaster;
BEGIN
 select raster into gr1 from imagery where id = 1;
 delete from imagery where id = 4;
 insert into imagery values(4, sdo_geor.init('imagery_rdt', 4))
 returning raster into gr4;
 sdo_geor_gdal.dem(gr1, gr4, 'aspect', 'zeroforflat=yes');
 update imagery set raster = gr4 where id = 4;
 commit;
END;
/

Example 5-28 Color-relief

This example creates a raster representing the color-relief generated from raster
elevation data using the file colorfile.txt. For this example, the colorfile.txt file
contains the following "elevation-percent red green blue" values

0% 180 0 255
10% 70 0 255
20% 0 70 255
30% 0 180 255
40% 0 255 180
50% 0 255 70
60% 70 255 0
70% 180 255 0
80% 255 180 0

Chapter 5
Terrain Modeling and Analysis

5-30

90% 255 70 0
nv 0 0 0

DECLARE
 gr1 sdo_georaster;
 gr5 sdo_georaster;
BEGIN
 select raster into gr1 from imagery where id = 1;
 delete from imagery where id = 5;
 insert into imagery values(5, sdo_geor.init('imagery_rdt', 5))
 returning raster into gr5;
 sdo_geor_gdal.dem(inGeoRaster => gr1,
 outGeoRaster => gr5,
 processing => 'color-relief',
 colorDirectory => 'mydir’,
 colorFilename => 'colorfile.txt');
 update imagery set raster = gr5 where id = 5;
 commit;
END;
/

In addition to the operations shown in these examples, you can use the procedure
to generate Terrain Ruggedness Index (TRI) maps, Topographic Position Index (TPI)
maps, and roughness maps from DEM GeoRaster objects.

Chapter 5
Terrain Modeling and Analysis

5-31

6
Image Processing and Virtual Mosaic

This chapter describes advanced image processing capabilities, including GCP
georeferencing, reprojection, rectification, orthorectification, warping, image scaling,
stretching, filtering, masking, segmentation, NDVI computation, Tasseled Cap
Transformation, image appending, bands merging, and large-scale advanced image
mosaicking.

This chapter also describes the concept and application of virtual mosaic within the
context of a large-scale image database and on-the-fly spatial queries over it.

The operations in this chapter are most commonly used to process geospatial
images, particularly raw satellite imagery and airborne photographs. However, those
operations, just like the GeoRaster raster algebra, apply to all raster data types.

This chapter contains the following major sections.

• Advanced Georeferencing
In addition to spatial referencing capability, advanced georeferencing capabilities
are available.

• Image Reprojection
Image reprojection is the process of transforming an image from one SRS (spatial
reference system, or coordinate system) to another.

• Image Rectification
Most raster data originating from remote sensors above the ground is usually
subject to distortion caused by the terrain, the view angles of the instrument, and
the irregular shape of the Earth. Image rectification as explained in this section is
the process of transforming the images to reduce some of that distortion.

• Image Orthorectification
Orthorectification is a rectification transformation process where information about
the elevation, the terrain, and the shape of the Earth is used to improve the
quality of the output rectified image. Oracle GeoRaster supports single image
orthorectification with average height value or DEM.

• Image Warping
Image warping transforms an input GeoRaster object to an output GeoRaster
object using the spatial reference information from a specified SDO_GEOR_SRS
object.

• Image Affine Transformation and Scaling
Affine transformation is the process of using geometric transformations of
translation, scaling, rotation, shearing, and reflection on an image to produce
another image.

• Image Stretching, Normalization, Equalization, Histogram Matching, and Dodging
The color and contrast of images can be enhanced to improve their visual
quality. The SDO_GEOR_IP package (“IP” for image processing) provides a set
of subprograms for image enhancement, including performing image stretching,
image normalization, image equalization, histogram matching, and image dodging.

6-1

• Image Filtering
Image filtering is the process of applying a convolution filter on an image to
achieve a specific purpose. For example, applying a low-pass filter on an image
can smooth and reduce noise in an image, while applying a high-pass filter on an
image can enhance the details of the image or even detect the edges inside the
image.

• Image Segmentation
Segmentation is a simple type of classification algorithm, and can be useful in
classifying certain types of images into larger ground feature categories, such as
land, cloud, water, or snow.

• Image Pyramiding: Parallel Generation and Partial Update
Image pyramiding is one of the most commonly used processes in building large-
scale image databases.

• Bitmap Pyramiding
Bitmap pyramiding can produce high-quality pyramids in certain cases where
traditional pyramiding is not adequate.

• Vegetation Index Computation
In remote sensing, the Normalized Difference Vegetation Index (NDVI) is a widely
used vegetation index, enabling users to quickly identify vegetated areas and
monitor the growth and "condition" of plants.

• Tasseled Cap Transformation
Tasseled Cap Transformation (TCT) is a useful tool for analyzing physical ground
features using remotely sensed imagery.

• Image Masking
To perform image masking, an application can query the GeoRaster database for
bitmap masks, retrieve the desired bitmap mask or masks, and apply the masking
operation on the target GeoRaster object for the purpose of displaying the object
or performing some other processing.

• Band Merging
For image classification, time series analysis, and raster GIS modeling, multiple
bands or layers of different GeoRaster objects may need to be merged into a
single GeoRaster object.

• Image Appending
You can append one image to another image when the two images have the same
number of bands.

• Large-Scale Image Mosaicking
A large geospatial area typically consists of many smaller aerial photographs or
satellite images. Large-scale image mosaicking can stitch these small geospatial
images into one large image to get a better view of the whole spatial area.

• Virtual Mosaic
A virtual mosaic treats a set of GeoRaster images as one large virtually mosaicked
image.

• Image Serving
Serving of image and raster data to clients or applications is supported through
many features of the GeoRaster PL/SQL and Java APIs.

Chapter 6

6-2

6.1 Advanced Georeferencing
In addition to spatial referencing capability, advanced georeferencing capabilities are
available.

In GeoRaster, the spatial referencing capability is called SRS (spatial reference
system) or georeferencing, which may or may not be related to geography or
a geospatial scheme. Georeferencing is a key feature of GeoRaster and is the
foundation of spatial query and operations over geospatial image and gridded raster
data. See Georeferencing for a detailed description of the SRS models.

GeoRaster supports non-geospatial images, fine art photos, and multi-dimensional
arrays, which might not be associated with any coordinate system. For those images
and rasters, there is generally no need for georeferencing, but most of the GeoRaster
operations still work on them, such as pyramiding, scaling, subsetting, band merging,
stretching, and algebraic operations. In these cases, you address the pixels (cells)
using the raster's cell space coordinates (that is, row, column, and band).

You can also create a user-defined coordinate system (a new SRID) that is not related
to geography, and you can use that SRID as the model coordinate system for the
rasters. Then, you can spatially reference these rasters to that SRID; that is, an SRS
metadata component will be created for each of those rasters. Doing this causes
those rasters to be spatially referenced, and thus co-located in that user-defined model
coordinate system. After this is done for all related rasters, GeoRaster operations will
work on those rasters as if they are georeferenced to a geographic coordinate system.
For example, assume that an artist has painted a large mural on a wall, and that you
want to be able to take many high-resolution photographs of different tiles of this wall
and then stitch them together. You can spatially reference the tile images and then use
the GeoRaster mosaicking capability to do the stitching.

If you do not define a new coordinate system, you can still co-locate the images in the
cell space. That is, you can set up different ULT coordinates for the images by calling
the SDO_GEOR.setULTCoordinate procedure, so that the images are aligned in the
same coordinate system and then can be mosaicked.

Most geospatial image and raster files that you have are probably already
georeferenced by other software tools, and thus they may come with georeferencing
information. In those cases, the georeferencing information can be directly loaded with
the rasters or afterward by using SDO_GEOR.importFrom, SDO_GEOR.setSRS, the
GeoRaster loader tool, GDAL, or other third-party ETL tools. For more information,
check GeoRaster Tools: Viewer_ Loader_ Exporter and Georeferencing GeoRaster
Objects.

If a geospatial image does not have spatial reference information, you can use the
GeoRaster Ground Control Point (GCP) support to georeference the image. GCPs are
collected either automatically by the remote sensing system or manually afterward.
For an image without GCP information, you can use a GeoRaster visualization tool
to collection GCPs for the GeoRaster object. GCPs are described in Ground Control
Point (GCP) Georeferencing Model.

After you have the GCPs and want to store them in the GeoRaster metadata,
you can get and set the GCP-based georeferencing mode by using the
SDO_GEOR.getGCPGeorefModel function and the SDO_GEOR.setGCPGeorefModel
procedure. To get, set, and edit only GCPs, use the SDO_GEOR.getControlPoint
function and the SDO_GEOR.setControlPoint and SDO_GEOR.deleteControlPoint

Chapter 6
Advanced Georeferencing

6-3

procedures. The GCPs can also be stored in the GeoRaster metadata when you call
SDO_GEOR.georeference.

To get and set only the geometric model, use the SDO_GEOR.getGCPGeorefMethod
function and the SDO_GEOR.setGCPGeorefMethod procedure. GeoRaster also
allows you to store check points (pointType = 2), which are treated and manipulated in
the same way as control points (pointType = 1) except that check points are not used
to create the SRS coefficient when SDO_GEOR.georeference is called with the GCPs.

If you have ground control points (GCPs) that are either stored in the GeoRaster
object or not, and if you want to calculate the functional fitting georeferencing
model, you can call the SDO_GEOR.georeference procedure to find the solution.
The functional fitting georeferencing model stores all coefficients in the GeoRaster
SRS and enables the coordinate transformations between cell space and model
space. To generate the functional fitting georeferencing model using GCP, you must
specify an appropriate geometric model. The specific geometric models supported
by SDO_GEOR.georeference are Affine Transformation, Quadratic Polynomial, Cubic
Polynomial, DLT, Quadratic Rational, and RPC. These models are described in
Functional Fitting Georeferencing Model.

Example 6-1 Setting Up the GCP Georeferencing Model

For example, if you have a Landsat image in a plain area and want to georeference
it, you might choose the Quadratic Polynomial geometric model. For that purpose,
assuming you have collected 9 GCPs (at least 6 GCPs in this case) and 3 check
points, you can set up the GCPs and store them in the GeoRaster's metadata using
the code in Example 6-1.

DECLARE
 gr1 sdo_georaster;
 georefModel SDO_GEOR_GCPGEOREFTYPE;
 GCPs SDO_GEOR_GCP_COLLECTION;
BEGIN
 SELECT georaster INTO gr1 from georaster_table WHERE georid=1 FOR UPDATE;
 GCPs := SDO_GEOR_GCP_COLLECTION(
 SDO_GEOR_GCP('1', '', 1,
 2, sdo_number_array(25, 73),
 2, sdo_number_array(237036.9, 897987.2),
 NULL, NULL),
 SDO_GEOR_GCP('2', '', 1,
 2, sdo_number_array(100, 459),
 2, sdo_number_array(237229.6, 897949.7),
 NULL, NULL),
 SDO_GEOR_GCP('3', '', 1,
 2, sdo_number_array(362, 77),
 2, sdo_number_array(237038.9, 897818.8),
 NULL, NULL),
 SDO_GEOR_GCP('4', '', 1,
 2, sdo_number_array(478, 402),
 2, sdo_number_array(237201.06, 897760.56),
 NULL, NULL),
 SDO_GEOR_GCP('5', '', 1,
 2, sdo_number_array(167, 64),
 2, sdo_number_array(237032.02, 897916.26),
 NULL, NULL),
 SDO_GEOR_GCP('6', '', 1,
 2, sdo_number_array(101, 257),
 2, sdo_number_array(237128.9, 897949.3),
 NULL, NULL),
 SDO_GEOR_GCP('7', '', 1,

Chapter 6
Advanced Georeferencing

6-4

 2, sdo_number_array(235, 501),
 2, sdo_number_array(237250.9, 897882.2),
 NULL, NULL),
 SDO_GEOR_GCP('8', '', 1,
 2, sdo_number_array(423, 214),
 2, sdo_number_array(237107.3, 897788.0),
 NULL, NULL),
 SDO_GEOR_GCP('9', '', 1,
 2, sdo_number_array(127, 178),
 2, sdo_number_array(237089.0, 897936.5),
 NULL, NULL),
 SDO_GEOR_GCP('10', '', 2,
 2, sdo_number_array(131, 425),
 2, sdo_number_array(237212.8, 897934.2),
 NULL, NULL),
 SDO_GEOR_GCP('11', '', 2,
 2, sdo_number_array(299, 111),
 2, sdo_number_array(237055.7, 897850.4),
 NULL, NULL),
 SDO_GEOR_GCP('12', '', 2,
 2, sdo_number_array(329, 253),
 2, sdo_number_array(237126.9,897835.4),
 NULL, NULL));
 georefModel := SDO_GEOR_GCPGEOREFTYPE('QuadraticPolynomial', GCPs.count,
GCPs, NULL);
 -- Set and store the GCP georeference model into the GeoRaster object's
metadata
 sdo_geor.setGCPGeorefModel(gr1, georefModel);
 UPDATE georaster_table SET georaster=gr1 WHERE georid=1;
 COMMIT;
END;
/

Example 6-2 Generating the Functional Fitting Model Using GCPs

After using the code in Example 6-1, you can generate the functional fitting model
coefficients by using the code in Example 6-2.

DECLARE
 gr1 sdo_georaster;
 rms sdo_number_array;
BEGIN
 SELECT georaster INTO gr1 from georaster_table WHERE georid=1 FOR UPDATE;
 -- georeference the image using the GCPs stored in the image's metadata
 rms := sdo_geor.georeference(gr1, null, 26986, 0, 'TRUE');
 UPDATE georaster_table SET georaster=gr1 WHERE georid=1;
 COMMIT;
END;
/

The steps in Example 6-1 and Example 6-2 can be combined without the need
to pre-set the GCPs into the GeoRaster object's metadata (see the example for
SDO_GEOR.georeference in SDO_GEOR Package Reference). The returned value
array of SDO_GEOR.georeference in Example 6-2 contains RMS values and residuals
for each GCP. Using these, you can examine the solution accuracy and identify erratic
GCPs. If the accuracy is not satisfactory, recheck all GCPs to make sure they are
accurate and add more GCPs as necessary, and then run the script or scripts again.

The GCP support in GeoRaster enables you to spatially reference any non-geospatial
images and rasters also.

Chapter 6
Advanced Georeferencing

6-5

After geospatial images are georeferenced, you can process those images, such
as applying rectification, reprojection, and mosaicking, and spatially querying and
subsetting the rasters using geometry polygons in different coordinate systems.

6.2 Image Reprojection
Image reprojection is the process of transforming an image from one SRS (spatial
reference system, or coordinate system) to another.

Reprojection is particularly useful with certain GeoRaster operations that combine two
or more objects, because it requires that all the GeoRaster objects involved be in the
same SRS.

Basic reprojection in GeoRaster is performed by the SDO_GEOR.reproject procedure
and requires that the source GeoRaster SRID be different from the output SRID.

Example 6-3 Image Reprojection

Example 6-3 reprojects a raster image that had been loaded into a GeoRaster object
with SRID 4326, but needs to be reprojected to have the same SRID as other images
previously stored with SRID 23619.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 select raster into gr1 from georaster_load_table where georid = 10;
 delete from georaster_table where georid = 54;
 insert into georaster_table
 values(54,'reprojected', sdo_geor.init())
 returning georaster into gr2;
 sdo_geor.reproject(inGeoRaster => gr1,
 pyramidLevel => 0,
 cropArea => null,
 layerNumbers => null,
 resampleParam => 'resampling=BILINEAR',
 storageParam => null,
 outSRID => 32619,
 outGeoraster => gr2);
 update georaster_table set georaster = gr2 where georid = 54;
 commit;
END;

The same operation can be accomplished by the SDO_GEOR.rectify procedure,
producing similar results. The SDO_GEOR.rectify procedure offers more capabilities
and flexibility than SDO_GEOR.reproject; for example, the input and output SRID can
be the same and users can specify the precise resolution of the output (see Image
Rectification).

If a GeoRaster object does not have an associated SRS, the process for
georeferencing and rectifying it is explained in Georeferencing GeoRaster Objects and
Image Rectification.

Parallel reprojection is supported with the SDO_GEOR_AGGR.mosaicSubset
procedure.

Chapter 6
Image Reprojection

6-6

6.3 Image Rectification
Most raster data originating from remote sensors above the ground is usually subject
to distortion caused by the terrain, the view angles of the instrument, and the irregular
shape of the Earth. Image rectification as explained in this section is the process of
transforming the images to reduce some of that distortion.

Rectification is performed by the SDO_GEOR.rectify procedure, and requires that the
source GeoRaster object have at least a functional fitting georeferencing model. This
means that the image does not need to be rectified, but it needs to have georeference
information in the metadata (see Georeferencing GeoRaster Objects).

The SDO_GEOR.rectify procedure can use the information available in the source
GeoRaster object to automatically establish the spatial extents, dimension, and SRID
of the output GeoRaster, and users can also specify different values by using the
appropriate parameters.

Example 6-4 Image Rectification

Example 6-3 rectifies an aerial image that had been loaded into GeoRaster and later
georeferenced with GCPs (see Advanced Georeferencing). The image is rectified so
that the output GeoRaster object has the same SRS and resolution of an existing
GeoRaster object. The image is to be restricted to the area of existing GeoRaster
object, and the pixels should be perfectly aligned with the existing GeoRaster object.

DECLARE
 gr_src sdo_georaster;
 gr_ref sdo_georaster;
 gr_out sdo_georaster;
BEGIN
 select raster into gr_src from georaster_load_table where georid = 15;
 select raster into gr_ref from georaster_table where georid = 1;
 delete from georaster_table where georid = 2;
 insert into georaster_table
 values(2, 'rectified', sdo_geor.init())
 returning georaster into gr_out;
 sdo_geor.rectify(inGeoRaster => gr_src,
 pyramidLevel => null,
 elevationParam => null,
 dem => null,
 outSRID => sdo_geor.getModelSRID(gr_ref),
 outModelCoordLoc => null,
 cropArea => sdo_geor.generateSpatialExtent(gr_ref),
 polygonClip => null,
 layerNumbers => null,
 outResolutions => sdo_geor.getSpatialResolutions(gr_ref),
 resolutionUnit => 'unit=meters',
 referencePoint => sdo_geor.getModelCoordinate(gr_ref,
 0, sdo_number_array(-0.5,-0.5)),
 resampleParam => null,
 storageParam => null,
 outGeoraster => gr_out);
 update georaster_table set georaster = gr_out where georid = 2;
 commit;
END;

Chapter 6
Image Rectification

6-7

Rectification output can be significantly improved if information about elevation is
passed to the SDO_GEOR.rectify procedure. (See Image Orthorectification for more
information about elevation.)

Parallel rectification is supported with the SDO_GEOR_AGGR.mosaicSubset
procedure.

6.4 Image Orthorectification
Orthorectification is a rectification transformation process where information about the
elevation, the terrain, and the shape of the Earth is used to improve the quality of the
output rectified image. Oracle GeoRaster supports single image orthorectification with
average height value or DEM.

The orthorectification is done by the SDO_GEOR.rectify procedure and requires
that the source GeoRaster have a 3D SRS. The SDO_GEOR.rectify procedure can
execute orthorectification with just the average height of the area or with a detailed
Digital Elevation Model (DEM).

• Orthorectification with Average Height

• Orthorectification with DEM

6.4.1 Orthorectification with Average Height
A GeoRaster object with a Digital Elevation Model (DEM) is optional for
orthorectification. For relatively flat terrains, the 3D SRS together with the average
height value might be sufficient to correct the distortion of the source image.

Example 6-5 Orthorectification with Average Height

Example 6-5 shows orthorectification with average height. For this example, the
source image was acquired from DigitalGlobe with RPC. The DEM was not available,
but the average elevation of the area is known to be 1748.0 meters.

DECLARE
 gr_src sdo_georaster;
 gr_out sdo_georaster;
BEGIN
 select georaster into gr_src from georaster_table where georid = 1;
 delete from georaster_table where georid = 3;
 insert into georaster_table values(3, 'orthorectified without DEM',
 sdo_geor.init('rdt_4',3))
 returning georaster into gr_out;
 sdo_geor.rectify(inGeoRaster => gr_src,
 pyramidLevel => null,
 elevationParam => 'average=1748.8',
 dem => null,
 outSRID => 32613,
 outModelCoordLoc => null,
 cropArea => null,
 polygonClip => null,
 layerNumbers => null,
 outResolutions => null,
 resolutionUnit => null,
 referencePoint => null,
 resampleParam => 'resampling=AVERAGE4',
 storageParam => null,
 outGeoraster => gr_out);

Chapter 6
Image Orthorectification

6-8

 update georaster_table set georaster = gr_out where georid = 3;
 commit;
END;

In Example 6-5, the dem parameter is null, and the elevationParam average elevation
must be in the same unit as the SRS. Also, in elevationParam the offset and scale
keywords are not specified because they are relevant only if DEM is specified.

6.4.2 Orthorectification with DEM
The use of a DEM (Digital Elevation Model) layer improves the accuracy of the
rectification process and therefore produces a higher quality output GeoRaster object.

Orthorectification with DEM requires that the source GeoRaster have a 3D SRS. The
DEM must cover all the target output area, and it should be in the same SRID as the
output. The resolution of the DEM should be similar to the expected resolution of the
output GeoRaster object.

For orthorectification with DEM, the elevationParam average keyword is optional; and
if it is not specified, the procedure estimates elevation values based on sample values
extracted from the DEM on the target area.

The elevationParam offset and scale values can be used to modify the values from
the DEM. For example, scale can be used for unit conversion if the DEM values
are in a unit other than that of the source GeoRaster SRS, and offset can be used
to perform geoidal correction or other offsetting. However, these specifications do
not apply the changes to DEM values in the GeoRaster object. An alternative is to
pre-process the DEM values by applying the scaling and offsetting to the DEM data
before the orthorectification, as explained in Raster Data Scaling and Offsetting.

Example 6-6 Orthorectification with DEM

Example 6-6 example performs orthorectification with DEM. The DEM covers all the
output area in a resolution approximated to the resolution of the output GeoRaster.
The DEM values are in meters but the source image SRS is in feet. There is also a
geoid correction on that area of about -15.3 meters:

DECLARE
 gr_src sdo_georaster;
 gr_dem sdo_georaster;
 gr_out sdo_georaster;
BEGIN
 select georaster into gr_src from georaster_table where georid = 1;
 select georaster into gr_dem from georaster_table where georid = 5;
 delete from georaster_table where georid = 6;
 insert into georaster_table values(5, 'orthorectified with DEM',
 sdo_geor.init('rdt_4',6))
 returning georaster into gr_out;
 sdo_geor.rectify(inGeoRaster => gr_src,
 pyramidLevel => null,
 elevationParam => 'average=1748.8 offset=-15.3',
 dem => gr_dem,
 outSRID => 32613,
 outModelCoordLoc => null,
 cropArea => null,
 polygonClip => null,
 layerNumbers => null,
 outResolutions => null,
 resolutionUnit => null,

Chapter 6
Image Orthorectification

6-9

 referencePoint => null,
 resampleParam => 'resampling=BILINEAR',
 storageParam => null,
 outGeoraster => gr_out);
 update georaster_table set georaster = gr_out where georid = 6;
 commit;
END;

Example 6-7 Orthorectification with Cropped DEM

Typically, the DEM covers an area much larger than the target area, and the resolution
is coarser than the target resolution of the output GeoRaster object. Using this DEM
"as is" would result in poor quality orthorectification. The solution to that common
problem is to crop the DEM to the target area and rescale it to the desired resolution,
as shown in Example 6-7. This example uses the SDO_GEOR.rectify procedure to
transform the low-resolution DEM GeoRaster object into a second DEM GeoRaster
object that has the same resolution as the orthorectified GeoRaster object generated
by the second call to the SDO_GEOR.rectify procedure.

DECLARE
 height number := 1748.8;
 gr_src sdo_georaster;
 gr_out sdo_georaster;
 gr_dem sdo_georaster;
 gr_dem2 sdo_georaster;
 gm_area sdo_geometry;
begin
 select georaster into gr_src from georaster_table where georid = 1;
 select georaster into gr_dem from georaster_table where georid = 2;
 -- Calculate crop area
 gm_area := sdo_cs.make_2d(
 sdo_geor.generateSpatialExtent(gr_src,height),
 sdo_geor.getModelSRID(gr_dem));
 -- Rectify dem (re-project, crop area, re-escale and resample)
 delete from georaster_table where georid = 4;
 insert into georaster_table values(4,
 'rectified DEM',
 sdo_geor.init('rdt_4',4))
 returning georaster into gr_dem2;
 sdo_geor.rectify(inGeoRaster => gr_dem,
 pyramidLevel => null,
 elevationParam => null,
 dem => null,
 outSRID => 32613,
 outModelCoordLoc => null,
 cropArea => gm_area,
 polygonClip => null,
 layerNumbers => null,
 outResolutions => sdo_number_array(0.6,0.6),
 resolutionUnit => null,
 referencePoint => null,
 resampleParam => 'resampling=CUBIC',
 storageParam => null,
 outGeoraster => gr_dem2);
 update georaster_table set georaster = gr_dem2 where georid = 4;
 commit;
 -- Orthorectification with DEM
 select georaster into gr_dem2 from georaster_table where georid = 4;
 delete from georaster_table where georid = 5;
 insert into georaster_table
 values(5, 'orthorectified', sdo_geor.init('rdt_4',5))

Chapter 6
Image Orthorectification

6-10

 returning georaster into gr_out;
 sdo_geor.rectify(inGeoRaster => gr_src,
 pyramidLevel => null,
 elevationParam =>
 'average=' || height || ' offset=-15.588',
 dem => gr_dem2,
 outSRID => 32613,
 outModelCoordLoc => null,
 cropArea => gm_area,
 polygonClip => null,
 layerNumbers => null,
 outResolutions => sdo_number_array(0.6,0.6),
 resolutionUnit => null,
 referencePoint => null,
 resampleParam => 'resampling=average16',
 storageParam => null,
 outGeoraster => gr_out);
 update georaster_table set georaster = gr_out where georid = 5;
 commit;
end;
/

6.5 Image Warping
Image warping transforms an input GeoRaster object to an output GeoRaster object
using the spatial reference information from a specified SDO_GEOR_SRS object.

The reference SDO_GEOR_SRS object can be copied from an existing GeoRaster
object or created using a constructor. (For more information, see SDO_GEOR_SRS
Object Type.)

Warping is performed by the SDO_GEOR.warp procedure, and requires that the
source GeoRaster object have at least a functional fitting georeferencing model. This
means that the image does not need to be rectified, but it needs to have georeference
information in the metadata (see Georeferencing GeoRaster Objects).

Example 6-8 Image Warping

The following example uses the SDO_GEOR_SRS information from one GeoRaster
image (gr1) as a reference to transform an existing GeoRaster object (gr2) into a
new (warped) GeoRaster object (gr3). Thus, the third GeoRaster object is a “copy”
(actually, a transformation) of the second GeoRaster object, but reflects the same
georeferencing as the first GeoRaster object.

DECLARE
 srs sdo_geor_srs;
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 gr3 sdo_georaster;
BEGIN
 select georaster into gr1 from georaster_table where georid = 1;
 select georaster into gr2 from georaster_table where georid = 2;

 srs := sdo_geor.getSRS(gr1); -- get the SRS from image 1.

 insert into georaster_table values(3, 'Warped Object',
 sdo_geor.init('imagery_rdt'))
 returning georaster into gr3;

 sdo_geor.warp(inGeoRaster => gr2,

Chapter 6
Image Warping

6-11

 pyramidLevel => null,
 outSRS => srs, -- apply SRS to warp transformation
 cropArea => null,
 dimensionSize => null,
 layerNumbers => null,
 elevationParam => null,
 resampleParam => ‘resampling=AVERAGE4’,
 storageParam => ‘pyramid=true’,
 outGeoRaster => gr3,
 bgValues => sdo_number_array(0,0,0),
 parallelParam => ‘parellel=4’);

 update georaster_table set georaster = gr3 where georid = 3;
 commit;
END;

6.6 Image Affine Transformation and Scaling
Affine transformation is the process of using geometric transformations of translation,
scaling, rotation, shearing, and reflection on an image to produce another image.

For details and examples, see the SDO_GEOR.affineTransform reference topic.

Image scaling is the process of enlarging or shrinking an image by changing the pixel
size for the row and column dimensions of an image. Image scaling resamples the
pixel values from the original image to construct the rescaled version of that image.
Image scaling can be performed in several ways:

• Use the SDO_GEOR.scaleCopy procedure and specify for scaleParam a
scaleFactor to be applied to the input image dimensions or a maxDimSize for
the output image.

• Use the SDO_GEOR.rectify procedure and specify the resolution of the output
image. (This procedure can be executed in parallel.)

• During affine transformation, use the scales parameter of the
SDO_GEOR.affineTransform procedure. In that procedure, the scales parameter
is a two-number array where you can specify a scale factor for rows and for
columns independently. (This procedure can be executed in parallel.)

Example 6-9 Image Scaling Using SDO_GEOR.scaleCopy

This example performs rescaling by using SDO_GEOR.scaleCopy and specifying the
scaleFactor value as 2. The input image will have 2 times more rows and 2 times
more columns than the original, and the values will be resampled by the average16
algorithm. Note that the image will be 4 times larger than the original.

DECLARE
 gr_src sdo_georaster;
 gr_out sdo_georaster;
BEGIN
 select georaster into gr_src from georaster_table where georid = 7;
 -- Rescale
 delete from georaster_table where georid = 9;
 insert into georaster_table values(9, 're-scaled by scaleCopy',
 sdo_geor.init('rdt_4',9))
 returning georaster into gr_out;
 sdo_geor.scaleCopy(inGeoRaster => null,
 scaleFactor => 'scaleFactor=2',
 resampleParam => 'resampling=AVERAGE16',

Chapter 6
Image Affine Transformation and Scaling

6-12

 storageParam => null,
 outGeoraster => gr_out);
 update georaster_table set georaster = gr_out where georid = 9;
 commit;
END;
/

Example 6-10 Image Scaling Using SDO_GEOR.rectify

This example performs rescaling by using SDO_GEOR.rectify and specifying the
outResolutions parameter. The input image is already rectified, and the output will
have the same SRID as the input.

DECLARE
 gr_src sdo_georaster;
 gr_out sdo_georaster;
BEGIN
 select georaster into gr_src from georaster_table where georid = 7;
 -- Rescale
 delete from georaster_table where georid = 10;
 insert into georaster_table values(10, 're-scaled by rectify',
 sdo_geor.init('rdt_4',10))
 returning georaster into gr_out;
 sdo_geor.rectify(inGeoRaster => null,
 pyramidLevel => null,
 elevationParam => null,
 dem => null,
 outSRID => null,
 outModelCoordLoc => null,
 cropArea => null,
 polygonClip => null,
 layerNumbers => null,
 outResolutions => sdo_number_array(1.2,1.2),
 resolutionUnit => null,
 referencePoint => null,
 resampleParam => 'resampling=CUBIC',
 storageParam => null,
 outGeoraster => gr_out,
 parallelParam => 'parallel=4');
 update georaster_table set georaster = gr_out where georid = 10;
 commit;
END;
/

Example 6-11 Rescaling Using SDO_GEOR.affineTransform

This example performs rescaling by using the SDO_GEOR.affineTransform procedure
and specifying he scales parameter as sdo_number_array(2, 2), indicating that the
image will be enlarged 2 times on the rows dimension and 2 times on the columns
dimension.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 select georaster into gr1 from georaster_table where georid = 1;

 insert into georaster_table values(2, 'Rotated 90 left',
 sdo_geor.init('rdt0',2)) returning georaster into gr2;

 sdo_geor.affineTransform(inGeoRaster => gr1,

Chapter 6
Image Affine Transformation and Scaling

6-13

 translation => null,
 scales => sdo_number_array(2,2),
 rotatePt => null,
 rotateAngle => null,
 shear => null,
 reflection => null,
 storageParam => null,
 outGeoraster => gr2,
 parallelParam => 'parallel=4');

 update georaster_table set georaster = gr2 where georid = 2;
 commit;
END;

6.7 Image Stretching, Normalization, Equalization,
Histogram Matching, and Dodging

The color and contrast of images can be enhanced to improve their visual quality. The
SDO_GEOR_IP package (“IP” for image processing) provides a set of subprograms
for image enhancement, including performing image stretching, image normalization,
image equalization, histogram matching, and image dodging.

Linear stretching and piecewise stretching can stretch the image cell values
linearly for all cells values based on the minimum and maximum cell values or
at specified value range, to achieve better color and contrast. To perform image
stretching, you can use the following procedures:

• SDO_GEOR_IP.stretch stretches GeoRaster objects in any supported cell depth
(1BIT to 64BIT_REAL) to cell depth of 8BIT_U for display purposes.

• SDO_GEOR_IP.piecewiseStretch stretches GeoRaster objects of any supported
cell depth to the GeoRaster objects in higher or lower cell depth, not limited to
8BIT_U.

Image normalization linearly stretches the image based on the statistics (mean and
standard deviation) of the image cell values. To perform image normalization, use the
SDO_GEOR_IP.normalize.

Image equalization enhances image contrast by equalizaing its histogram. To perform
equalization, use the SDO_GEOR_IP.equalize procedure.

Image histogram matching stretches the image to match the specified histogram or
the histogram of a reference image. To perform image histogram matching, use the
SDO_GEOR_IP.histogramMatch procedure.

Image dodging balances image color by stretching the contrast of the image
locally instead of globally. To perform image dodging, use the SDO_GEOR_IP.dodge
procedure.

6.8 Image Filtering
Image filtering is the process of applying a convolution filter on an image to achieve a
specific purpose. For example, applying a low-pass filter on an image can smooth and
reduce noise in an image, while applying a high-pass filter on an image can enhance
the details of the image or even detect the edges inside the image.

Chapter 6
Image Stretching, Normalization, Equalization, Histogram Matching, and Dodging

6-14

The SDO_GEOR_IP.filter procedure provides standard filters such as low-pass filter
(LPF), high-pass filter (HPF), and high-boost filter (HBF). It also allows you to apply
customized filters on images.

The following example performs image filtering by providing a customized 3-by-3
Laplacian filter on the image for edge detection.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_geometry;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.filter(gr1, 0, cropArea, null, ‘filtertype=CUSTOM,
kernelsize=(3,3)’, sdo_number_array(0, 1, 0, 1, -4, 1, 0, 1, 0), null,
gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

6.9 Image Segmentation
Segmentation is a simple type of classification algorithm, and can be useful in
classifying certain types of images into larger ground feature categories, such as land,
cloud, water, or snow.

You can use the SDO_GEOR_RA.classify procedure to apply thresholding to images.
Thresholding is the simplest segmentation, which classifies an image into two
categories by using a single cell value as the threshold. The resulting image has only
two values and can be cast into a binary bitmap mask directly in the same process.

You can also apply more image segmentation operations using the
SDO_GEOR_RA.classify procedure, by first applying arithmetic operations on multiple
bands and then classifying the results into a number of categories.

For examples of using the SDO_GEOR_RA.classify procedure, see Classification
Operations.

6.10 Image Pyramiding: Parallel Generation and Partial
Update

Image pyramiding is one of the most commonly used processes in building large-scale
image databases.

This topic discusses some related techniques: pyramid generation in parallel, partial
updating of pyramids, and batch and concurrent processing.

Chapter 6
Image Segmentation

6-15

For working more efficiently with pyramids, you can generate pyramids in parallel and
perform a partial update of a pyramid. (This section assumes you understand the
concepts explained in Pyramids.)

Example 6-12 Parallel Generation of Pyramids

For faster pyramid generation, you can specify the parallelParam parameter with the
SDO_GEOR.generatePyramid procedure. In Example 6-12, the degree of parallelism
is set to 4. (The actual performance improvement for pyramid generation depends on
the number of CPUs available to Oracle Database.)

DECLARE
 gr sdo_georaster;
BEGIN

 SELECT georaster INTO gr
 FROM georaster_table WHERE georid = 6 FOR UPDATE;

 -- Generate pyramids.
 sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN', null, 'parallel=4');

 -- Update the original GeoRaster object.
 UPDATE georaster_table SET georaster = gr WHERE georid = 6;

 COMMIT;
END;
/

To enable parallel processing of the pyramid generation,
SDO_GEOR.generatePyramid performs an implicit commit operation. If an error
during the call, the GeoRaster object may in an invalid state. If this occurs, use
SDO_GEOR.deletePyramid to remove the newly generated and upper pyramid levels
of the GeoRaster object.

Example 6-13 Partial Updating of Pyramids

You can partially update pyramids by using the SDO_GEOR.updateRaster procedure.
In Example 6-13, the target GeoRaster object at a specified area (targetArea is
specified as area) is updated by another GeoRaster object. The updateUpperPyramids
parameter is set to true, so the upper pyramids of the target GeoRaster object are
only partially updated at the specified area. In other words, the upper pyramid levels
are not regenerated in full, but only the cells in that targetArea are regenerated, and
thus performance is improved.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 area sdo_number_array := sdo_number_array(-200,-50,201,162);
BEGIN
 SELECT georaster INTO gr2 FROM georaster_table WHERE georid=0 FOR UPDATE;
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=1;
 SDO_GEOR.updateRaster(gr2, 0, null, area, gr1, 0, null, 'true');
 UPDATE GEORASTER_TABLE SET georaster=gr2 WHERE georid=0;
 COMMIT;
END;
/

Other techniques to speed up and automate the pyramiding process include batch
processing and concurrent processing can be used. To batch pyramid many images

Chapter 6
Image Pyramiding: Parallel Generation and Partial Update

6-16

in a certain area, see the example in Querying and Searching GeoRaster Objects. To
process many batches concurrently, you can start different database sessions

6.11 Bitmap Pyramiding
Bitmap pyramiding can produce high-quality pyramids in certain cases where
traditional pyramiding is not adequate.

For most raster data types, image pyramiding as described in Image Pyramiding:
Parallel Generation and Partial Update results in pyramids of great quality. However,
for bitmap rasters of points, lines, or polylines, which are typically stored in 1-bit cell
depth, the same pyramiding approach may not create high-quality pyramids. Distorted
point patterns and dashed lines are commonly seen in those pyramids.

To solve such problems, you can use the SDO_GEOR.generateBitmapPyramid
procedure, instead of SDOGEOR.generatePyramid, to perform pyramiding on bitmap
GeoRaster objects. The SDO_GEOR.generateBitmapPyramid procedure significantly
improves the pyramid quality by avoiding distorted patterns, particularly dashed lines
or missing lines in a bitmap raster, such as a road raster map or utility network raster
map.

6.12 Vegetation Index Computation
In remote sensing, the Normalized Difference Vegetation Index (NDVI) is a widely
used vegetation index, enabling users to quickly identify vegetated areas and monitor
the growth and "condition" of plants.

Using Landsat TM imagery, the standard NDVI computation formula is: (TM4 - TM3) /
(TM4 + TM3).

Example 6-14 Vegetation Index Computation

Example 6-14takes a Landsat 7 ETM+ image and computes the NDVI with parallelism.
The result is stored as another raster of floating number data type. Note that in the
GeoRaster algebra language, band numbering starts with 0, so the formula translates
into the expression: ({3}-{2})/({3}+{2}).

DECLARE
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
EBGIN
 -- Source ETM+ image
 select georaster into geor1 from georaster_table where georid = 2;
 -- Store NDVI
 select georaster into geor2 from georaster_table where georid = 3 for update;
 sdo_geor_ra.rasterMathOp(geor1,
 SDO_STRING2_ARRAY('({3}-{2})/({3}+{2})'),
 'celldepth=32bit_real',geor2, null, null, ‘parallel=4’);
 update georaster_table set georaster = geor2 where georid = 3;
 commit;
end;
/

In addition to NDVI, there are many other vegetation indexes in the area of remote
sensing. Many of these can be similarly computed using the GeoRaster raster algebra.

Chapter 6
Bitmap Pyramiding

6-17

6.13 Tasseled Cap Transformation
Tasseled Cap Transformation (TCT) is a useful tool for analyzing physical ground
features using remotely sensed imagery.

With various Landsat imagery, it uses 5 bands of either original digital number
(DN) or reflectance data to generate 6 new bands, each of which represents
different ground features. The 6 resulting bands are generally called (soil) brightness,
(vegetation) greenness, (soil and canopy) wetness, haze, TC5, and TC6. Each one
or a combination of them is useful for different applications, such as crop growth
monitoring and analysis, biomass study, and agriculture planning.

Example 6-15 Tasseled Cap Transformation

Example 6-15 takes the DN data of a Landsat 5 TM image as input, executes the TCT
using the GeoRaster raster algebra with parallelism, and creates a new image holding
the results.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 ret varchar2(32);
BEGIN
 select georaster into gr1 from georaster_table where georid = 2;
 select georaster into gr2 from georaster_table where georid = 4 for update;
 sdo_geor_ra.rasterMathOp(
 gr1,
 SDO_STRING2_ARRAY(
 '0.3561*{0}+0.3972*{1}+0.3904*{2}+0.6966*{3}+0.2286*{4}+0.1596*{6}',
 '(-0.3344)*{0}-0.3544*{1}-0.4556*{2}+0.6966*{3}-0.0242*{4}-0.2630*{6}',
 '0.2626*{0}+0.2141*{1}+0.0926*{2}+0.0656*{3}-0.7629*{4}-0.5388*{6}',
 '0.0805*{0}-0.0498*{1}+0.1950*{2}-0.1327*{3}+0.5752*{4}-0.7775*{6}',
 '(-0.7252)*{0}-0.0202*{1}+0.6683*{2}+0.0631*{3}-0.1494*{4}-0.0274*{6}',
 '0.4000*{0}-0.8172*{1}+0.3832*{2}+0.0602*{3}-0.1095*{4}+0.0985*{6}'),
 'celldepth=32BIT_REAL',
 gr2, null, null, ‘parallel=4’);
 update georaster_table set georaster = gr2 where georid = 4;
 commit;
END;
/

You can also use the same raster algebra language to add code in Example 6-15 to
convert the 32-bit floating number image into an 8-bit integer image and to apply
image stretching (described in Image Stretching) on the resulting TCT image to
generate a new GeoRaster object for visualization and analysis.

In addition to using the optimized implementation of raster algebra algorithms and
the embedded parallel processing, you can further take advantage of the Oracle grid
computing infrastructure to quickly compute NDVI or apply TCT on thousands of
images stored in the GeoRaster database.

6.14 Image Masking
To perform image masking, an application can query the GeoRaster database for
bitmap masks, retrieve the desired bitmap mask or masks, and apply the masking

Chapter 6
Tasseled Cap Transformation

6-18

operation on the target GeoRaster object for the purpose of displaying the object or
performing some other processing.

A bitmap mask (described in Bitmap Masks) can be stored as an independent
GeoRaster object; it can also be stored as metadata inside a GeoRaster object and be
associated with a single band or with the whole GeoRaster object.

You can also perform masking operations inside the database to generate new
GeoRaster objects, using the SDO_GEOR.mask procedure.

6.15 Band Merging
For image classification, time series analysis, and raster GIS modeling, multiple
bands or layers of different GeoRaster objects may need to be merged into a single
GeoRaster object.

This operation is called band or layer merging in GeoRaster, and can be performed by
using the SDO_GEOR.mergeLayers procedure or the SDO_GEOR_RA.rasterMathOp
procedure. You can either append specified bands of a source GeoRaster object to a
target GeoRaster object or merge different bands from two GeoRaster objects into a
new GeoRaster object. By doing this merging or appending iteratively, you can merge
an unlimited number of bands into a single GeoRaster object.

Example 6-16 Band Merging

Example 6-16 includes two examples. The first example assumes there are eight
GeoRaster objects, each of which contains only one band loaded from a single-band
Landsat ETM+ image file in GeoTIFF format. The number of the band in each
GeoRaster object is the same as the GEORID column value for the GeoRaster object.
The example merges all bands into a single GeoRaster object to create a complete
ETM+ scene.

DECLARE
 gr1 sdo_georaster;
BEGIN
 select georaster into gr1 from georaster_table where georid = 1 for update;
 for rec in (select georaster from georaster_table
 where georid >= 2 and georid <= 8
 order by georid)
 loop
 sdo_geor.mergelayers(gr1, rec.georaster);
 end loop;
 update georaster_table set georaster = gr1 where georid = 1;
 commit;
END;
/

The second example assumes there are eight GeoRaster objects, each of which
contains three bands. The example picks up one band from each GeoRaster object
and merges them into a single 8-band GeoRaster object in parallel.

DECLARE
 geor SDO_GEORASTER;
 geo_array SDO_GEORASTER_ARRAY;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 0 for update;
 geo_array:=SDO_GEORASTER_ARRAY();
 for rec in (select georaster from georaster_table
 where georid >= 1 and georid <= 8

Chapter 6
Band Merging

6-19

 order by georid)
 loop
 geo_array.extend(1);
 geo_array(geo_array.last):=rec.georaster;
 end loop;

sdo_geor_ra.rasterMathOp(geo_array,SDO_STRING2_ARRAY('{0,0}','{1,1}','{2,2}','{3,
0}','{4,1}','{5,2}','{6,0}','{7,1}',),null,geor,'false',null,'parallel=4');
 UPDATE georaster_table SET georaster = geor WHERE georid = 0;
 COMMIT;
END;
/

6.16 Image Appending
You can append one image to another image when the two images have the same
number of bands.

Image appending is useful when the geospatial images are collected at intervals and
the captured image later needs to be appended to the existing image to make a large
image of the whole spatial area. Image appending is also useful for updating the
existing image with a new image.

The SDO_GEOR_AGGR.append procedure implements image appending by partially
updating the existing GeoRaster object with another GeoRaster object. If the existing
GeoRaster object contains pyramids, the pyramids with blocking are partially updated
with the new data.

Example 6-17 appends one image to another, with pyramids with blocking are updated
at the same time. Because the appendParam parameter specifies 'nodata=true', the
NODATA values in the overlapping area are considered transparent.

Example 6-17 Appending One Image to Another Image

DECLARE
 gr1 sdo_georaster;
 gr1 sdo_georaster;
BEGIN
 select georaster into gr1 from georaster_table where georid = 1 for update;
 select georaster into gr2 from georaster_table where georid = 2;
 sdo_geor_aggr.append(gr1, gr2, 0, 'nodata=true');
 update georaster_table set georaster = gr1 where georid= 1;
 commit;
END;
/

6.17 Large-Scale Image Mosaicking
A large geospatial area typically consists of many smaller aerial photographs or
satellite images. Large-scale image mosaicking can stitch these small geospatial
images into one large image to get a better view of the whole spatial area.

GeoRaster provides large-scale mosaicking functions that allow gaps, overlaps, and
missing source GeoRaster objects. It supports both rectified and unrectified images. It
supports internal reprojection and rectification, common point rules, and simple color
balancing. You can also mosaic at a certain pyramid level. This mosaicking process
results in a single GeoRaster object, which is also called a physical mosaic as
opposed to virtual mosaic (For information about virtual mosaic, see Virtual Mosaic).

Chapter 6
Image Appending

6-20

The SDO_GEOR.mosaic and SDO_GEOR_AGGR.mosaicSubset procedures
provide support for image mosaicking; however, you are strongly encouraged
to use SDO_GEOR_AGGR.mosaicSubset because it provides much more
advanced features and options, and it is also implemented with parallelism.
SDO_GEOR_AGGR.mosaicSubset can take a virtual mosaic, such as a list of
GeoRaster tables, a database view with a GeoRaster column, or a REF CURSOR,
as the source images.

The SDO_GEOR.mosaic procedure mosaics a set of source GeoRaster images that
are rectified, are geospatially aligned under the same SRID, and have the same
resolution. The result of the mosaic is another GeoRaster object. If there are overlaps
between the source images, the mosaic result will have the last source image's
content at the overlapping area. This procedure works well for preprocessed and
perfectly aligned source images.

In the examples in this section, the source images are stored in source GeoRaster
tables GRTAB, GRTAB1, and GRTAB2, which are defined with the following columns:

 (id NUMBER PRIMARY KEY,
 cloud_cover NUMBER -- percentage of cloud coverage
 last_update TIMESTAMP -- GeoRaster object's last update time
 grobj SDO_GEORASTER)

Oracle Spatial and Graph spatial indexes have been created on the spatialExtent
attribute of the GeoRaster object in these tables.

In these examples, the mosaicked image is stored in GEORASTER_TABLE, which is
defined in Storage Parameters.

Example 6-18 SDO_GEOR.mosaic (Table and Column Name)

Example 6-18 shows the SDO_GEOR.mosaic procedure.

DECLARE
 gr sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (12, sdo_geor.init('rdt_1'))
 RETURNING georaster INTO gr;
 sdo_geor.mosaic('grtab', 'grobj', gr, 'blocking=optimalpadding
blocksize=(512,512,1)');
 UPDATE georaster_table SET georaster=gr WHERE id=12;
END;
/

In the real world, however, the source images are often collected under
different circumstances so as to have different resolutions or large areas of
overlap, or using a different georeference system. In such cases, you can
use the SDO_GEOR_AGGR.mosaicSubset procedure to mosaic these source
images into one uniform mosaicked image. Compared to SDO_GEOR.mosaic, the
SDO_GEOR_AGGR.mosaicSubset procedure provides more features and options:

• The source images do not have to be in the same coordinate system (SRID) and
have the same georeferencing information or resolutions.

• The source images can be mosaicked on a user-specified pyramid level.

• The source images can be mosaicked on user-specified bands.

• The output images can have a different coordinate system and resolution than the
input images (outSRID and outResolutions parameters).

Chapter 6
Large-Scale Image Mosaicking

6-21

• You have more control on the output of the overlapping area through the
mosaicParam parameter: commonPointRule can specify which cell value to use for
the output at the overlapping area, and NODATA can indicate whether to consider
the NODATA value at the overlapping area.

• The output mosaicked image can be aligned at a specified point (the reference
point). The source image can be resampled in order to align with the reference
point if the source image is out of alignment more than the resampleTolerance
value specified in mosaicParam.

• If there is small gap between the source images that is less than 2 pixels wide,
it can be filled using the neighboring pixel values when fillGap is true in
mosaicParam.

• Limited color balancing (linear stretching and normalization) is supported.

• Parallel processing is supported to speed up the mosaicking process.

Example 6-19 SDO_GEOR_AGGR.mosaicSubset

Example 6-19 uses SDO_GEOR_AGGR.mosaicSubset to mosaic all the source
images from two GeoRaster tables (GRTAB1 and GRTAB2) into a large mosaicked
image in SRID 4326 with a resolution of 30 meters on the x and y dimensions.

DECLARE
 resolutions sdo_number_array;
 gr sdo_georaster;
BEGIN
 insert into georaster_table (georid, georaster)
 values (10, sdo_geor.init('RDT_1',10))
 returning georaster into gr;

 resolutions := sdo_number_array(30, 30);
 sdo_geor_aggr.mosaicSubset('grtab1, grtab2', 'grobj, grobj',
 0, 4326, null, null, null,
 null, null, null, resolutions, 'unit=meter',
 'commonPointRule = end, nodata=true,
resampleTolerance=0.2, resampling=bilinear, fillGap=true',
 'blocking=optimalpadding blocksize=(512, 512,
3)', gr, null, 'parallel=4');

 update georaster_table set georaster = gr where georid=10;
 commit;
END;
/

In Example 6-19:

• Any source image that is not rectified is rectified; any source image that is not in
SRID 4326 is reprojected to SRID 4326.

• Any source image that has a resolution other than 30 meters is scaled to a
resolution of 30 meters.

• The nodata keyword in the mosaicParam parameter is specified as true, which
means the NODATA values in the overlapping area are not considered.

• The resampleTolerance keyword in the mosaicParam parameter is specified as
0.2, which means that if the source image is offset from the target by more than
0.2 pixel, the source image is resampled.

• The resampling method is specified as bilinear in the mosaicParam parameter.

Chapter 6
Large-Scale Image Mosaicking

6-22

• The degree of parallelism is specified as 4 in the parallelParam parameter.

You can call SDO_GEOR_AGGR.validateForMosaicSubset before calling
SDO_GEOR_AGGR.getMosaicSubset to make sure that the source images can be
mosaicked.

• Color Balancing During Mosaicking

• Parallel Compression, Copying, and Subsetting

6.17.1 Color Balancing During Mosaicking
The source images of the mosaicking operation can have different luminance or colors
due to the differences in the lighting conditions, time of day, or other factors when the
images were captured. Color balancing minimizes the color differences between the
neighboring images and makes the resulting mosaic look more seamless.

SDO_GEOR_AGGR.mosaicSubset and SDO_GEOR_AGGR.getMosaicSubset
provide some basic color balancing methods during the mosaicking process.
Several color balancing methods are provided. They are identified by the keyword
colorbalance in the mosaicParam parameter:

• LINEARSTRETCHING: Perform the min-max stretch on each band of the source
images to a reference minimum and maximum range.

• STATISTICSMATCHING: Perform the image stretching so that the mean and standard
deviation of each band of the source images is stretched and matched to the
reference mean and standard deviation values.

• HISTOGRAMMATCHING: Perform the image stretching so that the histograms of the
resulting images match the reference histograms.

There are several ways to specify the reference values for the color balancing
methods. They are identified by the keyword cbreference in the mosaicParam
parameter:

• VALUE: The reference values are provided through referenceValue1,
referenceValue2, or refHistograms parameters directly.

• IMAGE: The reference values are derived from the image specified by the
referenceImage parameter. The reference image must have the same number
of bands as the source image.

• OVERLAP: The reference values are determined by the neighboring image
through the overlapped area with the neighboring image. This option requires
the source images have large enough overlaps so that the reference values can
be derived from the overlapped area. Note that because linear stretching method
does not provide a good result for this option, overlapped area reference is not
supported for the linear stretching method.

Example 6-20 LINEARSTRETCHING Color Balancing

This example shows how to use the LINEARSTRETCHING color balancing method
on the source images in the SDO_GEOR_AGGR.mosaicSubset procedure. The
reference minimum and maximum values are specified in the referenceValue1 and
referenceValue2 parameters. In the example, each band has different reference
value.

DECLARE
gr sdo_georaster;

Chapter 6
Large-Scale Image Mosaicking

6-23

resolutions sdo_number_array;
ref_min sdo_number_arrray;
ref_max sdo_number_array;
BEGIN
 -- create the new GeoRaster object for mosaic
 insert into georaster_table (georid, georaster)
 values (10, sdo_geor.init('RDT_1',10))
 returning georaster into gr;

 -- set the output resolution
 resolutions := sdo_number_array(30, 30);

 -- Set the reference values, there are 3 values, one for each band
 ref_min := sdo_number_array(10, 10, 10);
 ref_max := sdo_number_array(200, 255, 230);

 -- Mosaic
 sdo_geor_aggr.MosaicSubset('georaster_table_1',
 'georaster', null, 32610, null, null, null, null,
 null, null, null, resolutions, null,
 'colorBalance=linearstretching, cbreference=value',
 'blocking=optimalpadding, blocksize=(512,512,3)',
 gr, null, 'parallel=4', referenceValue1=>ref_min,
 referenceValue2=>ref_max);

 update georaster_table set georaster = gr where georid=10;

commit;
END;
/

Example 6-21 HISTOGRAMMATCHING Color Balancing

This example shows how to use the HISTOGRAMMATCHING color balancing method
on the source images in the SDO_GEOR_AGGR.mosaicSubset procedure. The
reference histograms are derived from the reference image. The reference image must
have the same number of bands as the source images.

DECLARE
gr sdo_georaster;
resolutions sdo_number_array;
ref_gr sdo_georaster;
BEGIN
 -- create the new GeoRaster object for mosaic
 insert into georaster_table (georid, georaster)
 values (10, sdo_geor.init('RDT_1',10))
 returning georaster into gr;

 -- set the output resolution
 resolutions := sdo_number_array(30, 30);

-- retrieve the reference image
Select georaster into ref_gr from georaster_table where georid = 1;

Chapter 6
Large-Scale Image Mosaicking

6-24

 -- Mosaic
 sdo_geor_aggr.MosaicSubset('georaster_table_1',
 'georaster', null, 32610, null, null, null, null,
 null, null, null, resolutions, null,
 'colorBalance=histogramMatching, cbreference=image',
 'blocking=optimalpadding, blocksize=(512,512,3)',
 gr, null, 'parallel=4', refereneImage=>ref_gr);

 update georaster_table set georaster = gr where georid=10;

commit;
END;
/

Example 6-22 STATISTICSMATCHING Color Balancing

This example shows how to use the STATISTICSMATCHING color balancing method on
the source images in the SDO_GEOR_AGGR.mosaicSubsetprocedure. The reference
statistics values are calculated from the overlapped area of the neighboring images.
This requires that the source images have significant overlaps so that the statistics of
the overlapped area can reflect the color difference between neighboring images.

DECLARE
gr sdo_georaster;
resolutions sdo_number_array;
BEGIN
 -- create the new GeoRaster object for mosaic
 insert into georaster_table (georid, georaster)
 values (10, sdo_geor.init('RDT_1',10))
 returning georaster into gr;

 -- set the output resolution
 resolutions := sdo_number_array(30, 30);

 -- Mosaic
 sdo_geor_aggr.MosaicSubset('georaster_table_1',
 'georaster', null, 32610, null, null, null, null,
 null, null, null, resolutions, null,
 'colorBalance=statisticsMatching,
cbreference=overlap',
 'blocking=optimalpadding, blocksize=(512,512,3)',
 gr, null, 'parallel=4');

 update georaster_table set georaster = gr where georid=10;

commit;
END;
/

6.17.2 Parallel Compression, Copying, and Subsetting
To parallelize rectification, orthorectification and reprojecting, use SDO_GEOR.rectify.
To parallelize warping, call SDO_GEOR.warp. All raster algebra operations are
parallelized too.

Chapter 6
Large-Scale Image Mosaicking

6-25

You can use the SDO_GEOR_AGGR.mosaicSubset procedure to conduct several
types of parallel operations, including parallel compression and decompression,
parallel copying or change format copying, parallel subsetting, parallel reprojection,
and parallel rectification. The copying and subsetting operations are not parallelized
directly. For JPEG and DEFLATE, the SDO_GEOR.changeFormatCopy procedure
can be called to do parallel compression and decompression if reformatting is not
required. This topic gives some examples for parallelized compressing, copying,
and subsetting operations. In all these cases, the SDO_GEOR_AGGR.mosaicSubset
procedure works on single GeoRaster objects.

To illustrate the parallelized operations, the examples in this section use a null value
for most parameters. In your applications, you can apply all other parameters of the
SDO_GEOR_AGGR.mosaicSubset procedure; however, the mosaicParam parameter
has no effect when the input is a single GeoRaster object.

Example 6-23 Parallel Compression

Example 6-23 shows parallel compression using the
SDO_GEOR_AGGR.mosaicSubset procedure. This applies to both DEFLATE and
JPEG compression and decompression.

DECLARE
 gr sdo_georaster;
 cur sys_refcursor;
 crop_area sdo_geometry := null;
BEGIN
 -- create a new georaster object with georid = 2
 -- to hold the compressed image
 delete from georaster_table where georid = 2;
 insert into georaster_table(georid, georaster) values (2,
 sdo_geor.init('RDT2', 2)) returning georaster into gr;

 -- reblock and compress the image with georid = 1 into JPEG using parallel
degree of 8
 open cur for 'select georaster from georaster_table where georid = 1';
 sdo_geor_aggr.mosaicSubset(cur, 0, null, null, null, crop_area,
 null, null, null, null, null, null,
 'compression=JPEG-F, blocking=optimalpadding,
blocksize=(512,512,3)',
 gr, null, 'parallel=8');

 update georaster_table set georaster = gr where georid = 2;
 commit;
END;
/

In the preceding example, if you adjust the storageParam parameter, it works as
a parallelized SDO_GEOR.changeFormatCopy operation, including compression and
decompression.

Example 6-24 Parallel Subsetting and Copying

Example 6-24 shows parallel subsetting and copying using
theSDO_GEOR_AGGR.mosaicSubset procedure.

DECLARE
 gr sdo_georaster;
 cur sys_refcursor;
 crop_area sdo_geometry := null;

Chapter 6
Large-Scale Image Mosaicking

6-26

BEGIN
 -- create a new georaster object with georid = 2 to hold the copy
 delete from georaster_table where georid = 2;
 insert into georaster_table(georid, georaster) values (2,
 sdo_geor.init('RDT2', 2)) returning georaster into gr;

 -- set the crop_area for subsetting.
 crop_area := sdo_geometry(2003, 26986, null, sdo_elem_info_array(1,1003,1),
 sdo_ordinate_array(237040, 897924,
 237013.3, 897831.6,
 237129, 897840,
 237182.5, 897785.5,
 237239.9, 897902.7,
 237223, 897954,
 237133, 897899,
 237040, 897924));

 -- subset from the image with georid = 1 using parallel degree of 8
 -- and do polygon clipping
 -- If the crop_area is set to null, the same call will do a simple
parallelized copying without subsetting.
 open cur for 'select georaster from georaster_table where georid = 1';
 sdo_geor_aggr.mosaicSubset(cur, 0, null, null, null, crop_area,
 'true', null, null, null, null, null,
 'pyramid=true', gr, null, 'parallel=8');
 update georaster_table set georaster = gr where georid = 2;
 commit;
END;
/

In Example 6-24, if you adjust the storageParam parameter, it works as a parallelized
copy or SDO_GEOR.changeFormatCopy operation, including compression and
decompression.

6.18 Virtual Mosaic
A virtual mosaic treats a set of GeoRaster images as one large virtually mosaicked
image.

For some applications, mosaicking a collection of images into a single physical mosaic
is not necessary or desirable. For example, you might not have enough disk space for
storing the mosaic separately or you simply want to save disk space. Another example
is if you do not want to keep two identical copies of the same data set but prefer to
have the original data set stored as is, such as a DEM data set, yet you want to query
over this data set seamlessly. Yet another example is if you want to apply different
processing and mosaicking rules for the same region when mosaicking the source
images -- a physical mosaic has no such flexibility.

In such cases, instead of mosaicking a set of GeoRaster images into one large
GeoRaster image and storing it in a GeoRaster table, you can create a virtual mosaic.
A virtual mosaic treats a set of GeoRaster images as one large virtually mosaicked
image, without storing it in a GeoRaster table.

In GeoRaster, a virtual mosaic is defined as any large collection of georeferenced
GeoRaster objects, rectified or unrectified, from one or more GeoRaster tables or
views that is treated as if it is a single GeoRaster object. Pyramids of virtual mosaic
are supported. A virtual mosaic can contain unlimited number of images, and a whole

Chapter 6
Virtual Mosaic

6-27

GeoRaster database can be treated as a virtual mosaic. You issue a single call to
query the virtual mosaic based on area-of-interest (that is, subsetting or cropping), and
you can request the cropped images to be in different coordinate system with different
resolutions. On-the-fly transformations with resampling and mosaicking with common
point rules, based on user requests, are done internally and automatically during the
query processes.

The following are ways to define a virtual mosaic:

• As a GeoRaster table or a list of GeoRaster tables (see Virtual Mosaic as One or a
List of GeoRaster Tables)

• As a database view with a GeoRaster column (see Virtual Mosaic as a View with a
GeoRaster Column)

• As a SQL query statement (a cursor) that results in a collection of GeoRaster
objects (see Virtual Mosaic as a SQL Query Statement or a Cursor)

Regardless of how the virtual mosaic is defined, the GeoRaster objects in the
GeoRaster tables must have the spatialExtent attribute generated or set; otherwise,
the SDO_GEOR_AGGR.getMosaicSubset and SDO_GEOR_AGGR.mosaicSubset
procedures return an empty lob locator or empty GeoRaster object. For general
use cases and best query performance, you should always create a spatial index
beforehand on the spatialExtent attribute.

After a virtual mosaic is defined, you can use these procedures to query or process it:

• SDO_GEOR_AGGR.getMosaicSubset to perform on-the-fly queries over the
virtual mosaic

In spatial query of any portion of that virtually mosaicked image, the
SDO_GEOR_AGGR.getMosaicSubset procedure performs the mosaic operation
dynamically for the queried area and returns the required result in a BLOB on-the-
fly, as if it were subsetting a physically stored mosaicked image.

• SDO_GEOR_AGGR.mosaicSubset to store the mosaicked subset in the database
as a GeoRaster object

The SDO_GEOR_AGGR.mosaicSubset procedure performs the mosaic operation
for the queried area and stores the required result in another GeoRaster object
persistently

For a typical workflow of using virtual mosaic, see Using Virtual Mosaic in Applications,
and Special Considerations for Large-Scale Virtual Mosaic and its related topic
Improving Query Performance Using MIN_X_RES$ and MAX_X_RES$.

• Virtual Mosaic as One or a List of GeoRaster Tables

• Virtual Mosaic as a View with a GeoRaster Column

• Virtual Mosaic as a SQL Query Statement or a Cursor

• Using Virtual Mosaic in Applications

• Special Considerations for Large-Scale Virtual Mosaic

6.18.1 Virtual Mosaic as One or a List of GeoRaster Tables
A virtual mosaic can be defined as one GeoRaster table or a list of GeoRaster
tables. Applications specify each table and its GeoRaster column. In this approach,
all GeoRaster objects in the specified GeoRaster columns of those GeoRaster tables
are part of the virtual mosaic.

Chapter 6
Virtual Mosaic

6-28

Example 6-25 specifies the source images for virtual mosaicking in a list of GeoRaster
tables (GRTAB1, GRTAB2, and GRTAB3, which have the same definitions as GRTAB
in Large-Scale Image Mosaicking).

Example 6-25 Virtual Mosaic as a List of GeoRaster Tables

DECLARE
 lb blob;
 cropArea sdo_geometry;
 outArea sdo_geometry := null;
 outWin sdo_number_array:=null;
 resolutions sdo_number_array;
BEGIN
 dbms_lob.createTemporary(lb, TRUE);

 cropArea := sdo_geometry(2003, 32610, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(399180, 4247820,
 496140,4353900));
 resolutions := sdo_number_array(30, 30);
 sdo_geor_aggr.getMosaicSubset('grtab1, grtab2, grtab3',
 'grobj, grobj, grobj',
 0, 32610, null, null, cropArea,
 null, null, null, resolutions, null,
 'commonPointRule = end, nodata=true',
 lb, outArea, outWin);
 dbms_lob.freeTemporary(lb);
 if outWin is not null then
 dbms_output.put_line('output window: (' || outWin(1) || ',' || outWin(2)
||', ' || outWin(3) || ', ' || outWin(4) || ')');
 end if;
END;
/

6.18.2 Virtual Mosaic as a View with a GeoRaster Column
A virtual mosaic can be defined as one database view with a GeoRaster column.
Applications specify the view name and its GeoRaster column. In this approach, all
GeoRaster objects in the specified GeoRaster column of the view are part of the
virtual mosaic. This approach allows you to select the images for the virtual mosaic in
complex ways from any number of GeoRaster tables, taking advantage of the spatial
index and any other relevant indexes.

You can also define a virtual mosaic as a list combining GeoRaster views and
GeoRaster tables.

When a virtual mosaic is defined as a database view, the view can be specified in the
georasterTableNames parameter when you query it. Example 6-26 queries the virtual
mosaic defined as a view. Note that in this example, the queries sort the images based
on their creation time and pick the latest (newest) image for the resulting mosaic in the
overlapping areas.

Example 6-26 Using a View on GeoRaster Tables for Virtual Mosaic

Create or replace view grview as select * from (
 Select grobj, last_update from grtab1 where cloud_cover=0 union all
 Select grobj, last_update from grtab2 where cloud_cover=0 union all
 Select grobj, last_update from grtab3) order by last_update;

DECLARE

Chapter 6
Virtual Mosaic

6-29

 lb blob;
 cropArea sdo_geometry;
 outArea sdo_geometry := null;
 outWin sdo_number_array:=null;
 resolutions sdo_number_array;
BEGIN
 dbms_lob.createTemporary(lb, TRUE);

 cropArea := sdo_geometry(2003, 32610, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(399180, 4247820,
 496140,4353900));
 resolutions := sdo_number_array(30, 30);
 sdo_geor_aggr.getMosaicSubset('grview', 'grobj',
 0, 32610, null, null, cropArea,
 null, null, null, resolutions, null,
 'commonPointRule = end, nodata=true',
 lb, outArea, outWin);
 dbms_lob.freeTemporary(lb);
 if outWin is not null then
 dbms_output.put_line('output window: (' || outWin(1) || ',' || outWin(2)
||', ' || outWin(3) || ', ' || outWin(4) || ')');
 end if;
END;
/

6.18.3 Virtual Mosaic as a SQL Query Statement or a Cursor
Instead of creating a view, you can define a virtual mosaic as a SQL statement or
a runtime database cursor, which selects a collection of GeoRaster objects from the
database. Applications create the cursor from the SQL statement and use the cursor
as the virtual mosaic. In this definition, all GeoRaster objects in the cursor are part
of the virtual mosaic. This approach allows you to select the images for the virtual
mosaic in complex ways from any number of GeoRaster tables. However, the spatial
indexes are not automatically used in queries over this type of virtual mosaic. To take
advantage of spatial indexes, dynamically add a spatial query condition directly using
the query window to the SQL statement, so that all images in that query window can
be more quickly located.

The SDO_GEOR_AGGR.getMosaicSubset and
SDO_GEOR_AGGR.mosaicSubsetprocedures accept a cursor of GeoRaster objects
as the virtual mosaic, as shown in Example 6-27. Note that in this example, the
queries sort the images based on their creation time and pick the latest (newest)
image for the resulting mosaic in the overlapping areas. For best performance when
there are many GeoRaster objects in the table, the query of the cursor should use the
spatial query window to filter out the unrelated GeoRaster objects, as described in the
preceding paragraph.

Example 6-27 Using a Cursor for Virtual Mosaic

DECLARE
 lb blob;
 outArea sdo_geometry := null;
 outWin sdo_number_array:=null;
 resolutions sdo_number_array;
 mosaic_stmt varchar2(1000);
 condition varchar2(1000);
BEGIN
 dbms_lob.createTemporary(lb, TRUE);

Chapter 6
Virtual Mosaic

6-30

 resolutions := sdo_number_array(30, 30);

 -- Define the query window (cropArea)
 cropArea := sdo_geometry(2003, 32610, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(399180, 4247820, 496140,4353900));

 -- Define the virtual mosaic
 mosaic_stmt := 'select grobj from (select grobj, last_update from grtab1 ' ||
 'where cloud_cover=0 union all select grobj, last_update
from grtab2 ' ||
 'where cloud_cover=0) t ';

 -- Apply filtering using the query window (cropArea) to speed up query
performance
 condition := 'where sdo_anyinteract(t.grobj.spatialExtent,:1) = ''true'' ' ||
 ' order by last_update';

 -- Open the virtual mosaic for query
 open cur for mosaic_stmt || condition using cropArea;

 -- Query the virtual mosaic (make sure the cropArea used here is the same
 -- as the one used at opening the cursor)
 sdo_geor_aggr.getMosaicSubset(cur,
 0, 32610, null, null, cropArea,
 null, null, null, resolutions, null,
 'commonPointRule=end, nodata=true',
 lb, outArea, outWin);
 dbms_lob.freeTemporary(lb);
 close cur;
 if outWin is not null then
 dbms_output.put_line('output window: (' || outWin(1) || ',' || outWin(2)
||', ' || outWin(3) || ', ' || outWin(4) || ')');
 end if;
END;
/

6.18.4 Using Virtual Mosaic in Applications
Virtual mosaic can be used as an image serving engine and in a
variety of other application scenarios. The definitions of virtual mosaics
can be stored by applications separately as strings or other forms.
Besides the major query procedures SDO_GEOR_AGGR.getMosaicSubset and
SDO_GEOR_AGGR.mosaicSubset, GeoRaster provides other subprograms in the
SDO_GEOR_AGGR package to facilitate application development:

• SDO_GEOR_AGGR.validateForMosaicSubset

• SDO_GEOR_AGGR.getMosaicExtent

• SDO_GEOR_AGGR.getMosaicResolutions

SDO_GEOR_AGGR.validateForMosaicSubset, SDO_GEOR_AGGR.getMosaicExtent,
and SDO_GEOR_AGGR.getMosaicResolutions can be called in an application to
make sure that the virtual mosaic is valid and that the spatial query falls inside the
virtual mosaic. The following steps describe a possible workflow for virtual mosaic in
an application:

1. Define a virtual mosaic. For example:

Chapter 6
Virtual Mosaic

6-31

Create or replace view grview as select * from (
Select grobj, last_update from grtab1 where cloud_cover=0 union all
Select grobj, last_update from grtab2 where cloud_cover=0 union all
Select grobj, last_update from grtab3) order by last_update;

Note that tables GRTAB1, GRTAB2, and GRTAB3 were created using the same
definition as GRTAB in Large-Scale Image Mosaicking, and Oracle Spatial and
Graph spatial indexes have been created on the spatialExtent attribute of the
GeoRaster object in these tables.

2. Validate the virtual mosaic data set. For example:

EXECUTE SDO_GEOR_AGGR.validateForMosaicSubset('grview', 'grobj', OUTSRID,
OUTResolutions);

A validation error table can be created and passed to the
call if more detailed validation information is needed. See the
SDO_GEOR_AGGR.validateForMosaicSubset reference section for details.

3. Get the spatial extent of the virtual mosaic. For example:

SELECT SDO_GEOR_AGGR.getMosaicExtent('grview', 'grobj', OUTSRID) from dual;

4. Get the resolution range of the existing source images. For example:

SELECT SDO_GEOR_AGGR.getMosaicResolutions('grview', 'grobj', 'unit=meter')
from dual;

The resolution range reflects the minimum and maximum resolutions of the source
images, including all pyramid levels.

5. Based on the information acquired in the preceding two steps, pass in the
spatial query window cropArea and OUTResolutions according to the application
requests to get a subset of the virtual mosaic and optionally to apply different
resampling methods, different common point rules, special nodata handling, and
color balancing. For example:

SDO_GEOR_AGGR.getMosaicSubset('grview', 'grobj', null, OUTSRID, null, null,
 cropArea, null, null, null, OUTResolutions, null,
 'commonPointRule=end, nodata=true', lb, outArea, outWin);

Note that OUTResolutions must be within the source image resolution range. If
OUTResolutions is the same as the resolutions of the source image at a specified
pyramid level, the pyramid data is used in the output mosaic; otherwise, the
source image is scaled to the target resolution.

A typical application repeatedly applies this step to query different areas of
interest over the same virtual mosaic for image display, image distribution, or other
purposes.

6.18.5 Special Considerations for Large-Scale Virtual Mosaic
A virtual mosaic can contain just several images, but it can also contain tens of
thousands or millions of images. Both SDO_GEOR_AGGR.getMosaicSubset and
SDO_GEOR_AGGR.mosaicSubset automatically search (using native spatial indexes)
the virtual mosaic for all images touching or inside the cropArea and check the
resolutions of those images and their pyramids. Only those images or their appropriate
pyramid levels touching or inside the cropArea and with their resolutions close to the
requested resolution will be used in the mosaicking process. So, the configuration of

Chapter 6
Virtual Mosaic

6-32

the source images and their pyramids is critical for the quality of the results and the
overall query performance.

The guideline is to avoid too many small images from either different source images or
their pyramids in the requested crop areas at the requested resolution.

For a smaller virtual mosaic with only a limited number of images, simply generate
full pyramids for each source image, and the query performance will be good for most
applications.

For a large area with a larger number of images (more than a few hundred images),
the application can generate only a certain number of pyramid levels for each source
image, mosaic their top pyramids into new GeoRaster objects, and then generate
pyramids for those mosaics, and so forth. For large-scale web visualization projects,
all images at source resolutions and at lower resolution levels might be stored as
GeoRaster objects without any pyramids built for them.

In these cases (large number of images and large-scale web visualization), if each
source image is small and there are many resolution levels in the virtual mosaic, a
query on the lower resolution levels would involve metadata resolution queries on
many unnecessary images at the higher resolution levels, which slows the query. To
improve performance, applications can define many virtual mosaics, each of which
includes only all the images at a specific resolution or a few resolution levels. Then,
the application finds the right virtual mosaic or mosaics based on the requested
resolution as the first step, and then only spatially queries those selected virtual
mosaics. This approach can significantly improve performance.

In addition to the preceding considerations, see Improving Query Performance Using
MIN_X_RES$ and MAX_X_RES$ for queries where many different resolution levels
are involved for the same area.

• Improving Query Performance Using MIN_X_RES$ and MAX_X_RES$

6.18.5.1 Improving Query Performance Using MIN_X_RES$ and
MAX_X_RES$

A more general solution (instead of defining multiple virtual mosaics) for speeding
virtual mosaic queries if there are many different resolution levels involved for
the same area is to use the MIN_X_RES$ and MAX_X_RES$ columns in the
GeoRaster tables or views. You must define these columns (NUMBER data type)
in the GeoRaster tables of a virtual mosaic, where they specify the minimum and
maximum spatial resolution values, respectively, of the source GeoRaster object.
After these columns are added and populated with correct resolution data, the
SDO_GEOR_AGGR.getMosaicSubset procedure will (if you use the format with the
georasterTableNames parameter) use the resolution range stored in these columns to
filter out the source GeoRaster objects that are not at the requested resolutions as
specified in the outResolutions parameter. This avoids parsing the metadata of each
GeoRaster objects in the cropArea, thus significantly improving performance.

To use this approach, follow these steps:

1. Add the columns MIN_X_RES$ and MAX_X_RES$ to the GeoRaster tables. For
example:

ALTER TABLE georaster_table ADD (MIN_X_RES$ number, MAX_X_RES$ number);

2. Populate the MIN_X_RES$ column. For example:

Chapter 6
Virtual Mosaic

6-33

UPDATE georaster_table t
 SET min_x_res$ = (select column_value from the
 (select sdo_geor.generateSpatialResolutions(t.georaster, null,
 t.georaster.spatialextent.sdo_srid) from dual)
 WHERE rownum=1);

3. Populate the MAX_X_RES$ column. For example:

UPDATE georaster_table t
 max_x_res$ = min_x_res$ * power(2,
sdo_geor.getPyramidMaxLevel(t.georaster));

If the virtual mosaic is defined as a view, the view should also have both columns. For
example, the view definition in Example 6-26 must be changed to the following:

Create or replace view grview as select * from (
 Select grobj, min_x_res$, max_x_res$, last_update from grtab1 where
cloud_cover=0 union all
 Select grobj, min_x_res$, max_x_res$, last_update from grtab2 where
cloud_cover=0 union all
 Select grobj, min_x_res$, max_x_res$, last_update from grtab3)
 order by last_update;

After a virtual mosaic is defined as described in this section, applications can
query and use it in the same ways as with all other virtual mosaics, but with
better performance for large-scale virtual mosaics that involve many resolution
levels. For more information, see the SDO_GEOR_AGGR.getMosaicSubset and
SDO_GEOR_AGGR.mosaicSubset reference sections.

6.19 Image Serving
Serving of image and raster data to clients or applications is supported through many
features of the GeoRaster PL/SQL and Java APIs.

Direct image serving includes searching and then subsetting or cropping the rasters
(SDO_GEOR.getRasterSubset), applying reprojection and rectification on-the-fly while
cropping the images (SDO_GEOR.reproject and SDO_GEOR.rectify), and directly
exporting to files (SDO_GEOR.exportTo).

Virtual mosaic is used mainly, and effectively, to serve an image database to
various applications, particularly when you do not want to create large physical
mosaics. Virtual mosaic does not require the source images to be preprocessed
or mosaicked beforehand. Instead, all images are stored as is, and the whole
image data set can be served based on small areas of interest using single calls
(SDO_GEOR_AGGR.getMosaicSubset) to the server.

Often, one or a series of preprocessing operations are applied to multiple GeoRaster
objects to create the resulting GeoRaster object, and then the features described
in this section are used on the resulting GeoRaster object to serve the raster data
directly to applications. Thus, a rich set of GeoRaster image manipulation and raster
algebra capabilities (described in GeoRaster Data Query and Manipulation, Raster
Algebra and Analytics, and this chapter) can be incorporated into the workflow to meet
complex image serving requirements.

Chapter 6
Image Serving

6-34

7
SDO_GEOR Package Reference

The SDO_GEOR package contains subprograms (functions and procedures) for
creating, modifying, and retrieving information about GeoRaster objects. This chapter
presents reference information, with one or more examples, for each subprogram.

The subprograms are presented in alphabetical order in this chapter. They can be
grouped into several logical categories, as explained in GeoRaster PL/SQL API.
Many of the subprograms are also discussed in GeoRaster Database Creation and
Management and GeoRaster Data Query and Manipulation.

Many examples in this chapter refer to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.

All SDO_GEOR subprograms can work on GeoRaster objects defined in schemas
other than the current connection schema.

• SDO_GEOR.addNODATA

• SDO_GEOR.addSourceInfo

• SDO_GEOR.affineTransform

• SDO_GEOR.calcCompressionRatio

• SDO_GEOR.changeCellValue

• SDO_GEOR.changeCellValues

• SDO_GEOR.changeFormatCopy

• SDO_GEOR.compressJP2

• SDO_GEOR.copy

• SDO_GEOR.createBlank

• SDO_GEOR.createTemplate

• SDO_GEOR.decompressJP2

• SDO_GEOR.deleteControlPoint

• SDO_GEOR.deleteNODATA

• SDO_GEOR.deletePyramid

• SDO_GEOR.evaluateDouble

• SDO_GEOR.evaluateDoubles

• SDO_GEOR.exportTo

• SDO_GEOR.generateAreaWeightedMean

• SDO_GEOR.generateBitmapPyramid

• SDO_GEOR.generateBlockMBR

• SDO_GEOR.generatePyramid

• SDO_GEOR.generateSpatialExtent

7-1

• SDO_GEOR.generateSpatialResolutions

• SDO_GEOR.generateStatistics

• SDO_GEOR.generateStatisticsMax

• SDO_GEOR.generateStatisticsMean

• SDO_GEOR.generateStatisticsMedian

• SDO_GEOR.generateStatisticsMin

• SDO_GEOR.generateStatisticsMode

• SDO_GEOR.generateStatisticsSTD

• SDO_GEOR.generateStatisticsSum

• SDO_GEOR.georeference

• SDO_GEOR.getBandDimSize

• SDO_GEOR.getBeginDateTime

• SDO_GEOR.getBinFunction

• SDO_GEOR.getBinTable

• SDO_GEOR.getBinType

• SDO_GEOR.getBitmapMask

• SDO_GEOR.getBitmapMaskSubset

• SDO_GEOR.getBitmapMaskValue

• SDO_GEOR.getBitmapMaskValues

• SDO_GEOR.getBlankCellValue

• SDO_GEOR.getBlockingType

• SDO_GEOR.getBlockSize

• SDO_GEOR.getCellCoordinate

• SDO_GEOR.getCellDepth

• SDO_GEOR.getCellValue

• SDO_GEOR.getCellValues

• SDO_GEOR.getColorMap

• SDO_GEOR.getColorMapTable

• SDO_GEOR.getCompressionType

• SDO_GEOR.getControlPoint

• SDO_GEOR.getDefaultAlpha

• SDO_GEOR.getDefaultBlue

• SDO_GEOR.getDefaultColorLayer

• SDO_GEOR.getDefaultGreen

• SDO_GEOR.getDefaultPyramidLevel

• SDO_GEOR.getDefaultRed

• SDO_GEOR.getEndDateTime

Chapter 7

7-2

• SDO_GEOR.getGCPGeorefMethod

• SDO_GEOR.getGCPGeorefModel

• SDO_GEOR.getGeoreferenceType

• SDO_GEOR.getGrayScale

• SDO_GEOR.getGrayScaleTable

• SDO_GEOR.getHistogram

• SDO_GEOR.getHistogramTable

• SDO_GEOR.getID

• SDO_GEOR.getInterleavingType

• SDO_GEOR.getJP2TileSize

• SDO_GEOR.getLayerDimension

• SDO_GEOR.getLayerID

• SDO_GEOR.getLayerOrdinate

• SDO_GEOR.getModelCoordinate

• SDO_GEOR.getModelCoordLocation

• SDO_GEOR.getModelSRID

• SDO_GEOR.getNODATA

• SDO_GEOR.getPyramidMaxLevel

• SDO_GEOR.getPyramidType

• SDO_GEOR.getRasterBlockLocator

• SDO_GEOR.getRasterBlocks

• SDO_GEOR.getRasterData

• SDO_GEOR.getRasterRange

• SDO_GEOR.getRasterSubset

• SDO_GEOR.getScaling

• SDO_GEOR.getSourceInfo

• SDO_GEOR.getSpatialDimNumber

• SDO_GEOR.getSpatialDimSizes

• SDO_GEOR.getSpatialResolutions

• SDO_GEOR.getSpectralResolution

• SDO_GEOR.getSpectralUnit

• SDO_GEOR.getSRS

• SDO_GEOR.getStatistics

• SDO_GEOR.getTotalLayerNumber

• SDO_GEOR.getULTCoordinate

• SDO_GEOR.getVAT

• SDO_GEOR.getVersion

Chapter 7

7-3

• SDO_GEOR.hasBitmapMask

• SDO_GEOR.hasGrayScale

• SDO_GEOR.hasNODATAMask

• SDO_GEOR.hasPseudoColor

• SDO_GEOR.importFrom

• SDO_GEOR.init

• SDO_GEOR.isBlank

• SDO_GEOR.isOrthoRectified

• SDO_GEOR.isRectified

• SDO_GEOR.isSpatialReferenced

• SDO_GEOR.mask

• SDO_GEOR.mergeLayers

• SDO_GEOR.mosaic

• SDO_GEOR.rectify

• SDO_GEOR.reproject

• SDO_GEOR.scaleCopy

• SDO_GEOR.schemaValidate

• SDO_GEOR.setBeginDateTime

• SDO_GEOR.setBinFunction

• SDO_GEOR.setBinTable

• SDO_GEOR.setBitmapMask

• SDO_GEOR.setBlankCellValue

• SDO_GEOR.setColorMap

• SDO_GEOR.setColorMapTable

• SDO_GEOR.setControlPoint

• SDO_GEOR.setDefaultAlpha

• SDO_GEOR.setDefaultBlue

• SDO_GEOR.setDefaultColorLayer

• SDO_GEOR.setDefaultGreen

• SDO_GEOR.setDefaultPyramidLevel

• SDO_GEOR.setDefaultRed

• SDO_GEOR.setEndDateTime

• SDO_GEOR.setGCPGeorefMethod

• SDO_GEOR.setGCPGeorefModel

• SDO_GEOR.setGrayScale

• SDO_GEOR.setGrayScaleTable

• SDO_GEOR.setHistogramTable

Chapter 7

7-4

• SDO_GEOR.setID

• SDO_GEOR.setLayerID

• SDO_GEOR.setLayerOrdinate

• SDO_GEOR.setModelCoordLocation

• SDO_GEOR.setModelSRID

• SDO_GEOR.setNODATAMask

• SDO_GEOR.setOrthoRectified

• SDO_GEOR.setRasterType

• SDO_GEOR.setRectified

• SDO_GEOR.setScaling

• SDO_GEOR.setSourceInfo

• SDO_GEOR.setSpatialReferenced

• SDO_GEOR.setSpatialResolutions

• SDO_GEOR.setSpectralResolution

• SDO_GEOR.setSpectralUnit

• SDO_GEOR.setSRS

• SDO_GEOR.setStatistics

• SDO_GEOR.setULTCoordinate

• SDO_GEOR.setVAT

• SDO_GEOR.setVersion

• SDO_GEOR.subset

• SDO_GEOR.updateRaster

• SDO_GEOR.validateBlockMBR

• SDO_GEOR.validateGeoRaster

• SDO_GEOR.warp

7.1 SDO_GEOR.addNODATA
Format

SDO_GEOR.addNODATA(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 nodata IN NUMBER);

or

SDO_GEOR.addNODATA(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 nodata IN SDO_RANGE_ARRAY);

Chapter 7
SDO_GEOR.addNODATA

7-5

Description

Adds one or more NODATA values or value ranges, to represent NODATA cells in one
layer or all layers in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Layer number in the GeoRaster object. A value of 0 (zero) indicates the object layer.

nodata
Either a single numeric value, or an array of numbers or number ranges. Any
NODATA value range is inclusive at the lower bound and exclusive at the upper
bound.
The SDO_RANGE_ARRAY type is described in NODATA Values and Value Ranges

Usage Notes

Some cells of a GeoRaster object may have no meaningful value assigned or
collected. Such cells contain a NODATA value are thus called NODATA cells, which
means that those cells are not semantically defined. The application is responsible
for defining the meaning or significance of cells identified as NODATA cells. For more
information about NODATA values and value ranges, see NODATA Values and Value
Ranges.

Any NODATA values or value ranges associated with the object layer apply to all
sublayers. For an explanation of layers, the object layer, and sublayers, see Bands_
Layers_ and Metadata.

NODATA values must be in the valid cell value range. Both the lower bound and the
upper bound of a NODATA value range must be valid cell values as specified by
the cell depth. Because NODATA value ranges are exclusive at the upper bound, if
you want to specify the maximum valid cell value as NODATA, you must specify the
maximum valid cell value as a single numeric NODATA value.

This procedure associates NODATA values or value ranges with a raster layer
incrementally. It removes duplicate values or value ranges and combines adjacent
values or value ranges to form a compact representation in the metadata whenever
feasible. However, a single numeric NODATA value that is equal to the upper bound of
a NODATA value range will not be combined together with the value range because it
is not always feasible to calculate the new exclusive upper bound.

To delete one or more NODATA values or value ranges, use the
SDO_GEOR.deleteNODATA procedure. To return the NODATA values for a
GeoRaster object, use the SDO_GEOR.getNODATA function.

Examples

The following example specifies that cells with values that are greater than or equal to
5 and less than 7, or that are equal to 9, are to be considered NODATA cells for the
object layer (and thus all sublayers) of a specified GeoRaster object.

DECLARE
 gr sdo_georaster;
BEGIN

Chapter 7
SDO_GEOR.addNODATA

7-6

 SELECT georaster INTO gr FROM georaster_table WHERE georid=1 FOR UPDATE;
 SDO_GEOR.addNODATA(gr, 0, sdo_range_array(sdo_range(5,7), sdo_range(9,null)));
 UPDATE georaster_table SET georaster=gr WHERE georid=1;
 COMMIT;
END;
/

7.2 SDO_GEOR.addSourceInfo
Format

SDO_GEOR.addSourceInfo(
 georaster IN OUT SDO_GEORASTER,
 sourceInfo IN VARCHAR2);

Description

Adds to the source information for a GeoRaster object.

Parameters

georaster
GeoRaster object.

sourceInfo
String with source information. Cannot exceed 4096 characters.

Usage Notes

The specified sourceInfo string is added to the <sourceInfo> element in the
metadata for the GeoRaster object (described in GeoRaster Metadata XML Schema).
You can call this procedure as many times as needed to put multiple string values in
the <sourceInfo> element or to add string values to any existing values.

If you want to replace any existing source information value or values, use the
SDO_GEOR.setSourceInfo procedure.

Examples

The following example sets and adds some source information for a specified
GeoRaster object, and then retrieves the information.

declare
 gr sdo_georaster;
begin
 select georaster into gr from georaster_table where georid=1 for update;
 sdo_geor.setSourceInfo(gr, 'Copyright (c) 2002, 2007, Oracle Corporation.');
 sdo_geor.addSourceInfo(gr, 'All rights reserved.');
 update georaster_table set georaster=gr where georid=1;
end;
/

select * from table(select sdo_geor.getSourceInfo(georaster) from
georaster_table where id=1);

COLUMN_VALUE
--
Copyright (c) 2002, 2007, Oracle Corporation.
All rights reserved.

Chapter 7
SDO_GEOR.addSourceInfo

7-7

7.3 SDO_GEOR.affineTransform
Format

SDO_GEOR.affineTransform(
 inGeoRaster IN SDO_GEORASTER,
 translation IN SDO_NUMBER_ARRAY DEFAULT NULL,
 scales IN SDO_NUMBER_ARRAY DEFAULT NULL,
 rotatePt IN SDO_NUMBER_ARRAY DEFAULT NULL,
 rotateAngle IN NUMBER DEFAULT NULL,
 shear IN SDO_NUMBER_ARRAY DEFAULT NULL,
 reflection IN NUMBER DEFAULT NULL,
 storageParam IN VARCHAR2 DEFAULT NULL,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

 inGeoRaster IN SDO_GEORASTER,
 translation IN SDO_NUMBER_ARRAY DEFAULT NULL,
 scales IN SDO_NUMBER_ARRAY DEFAULT NULL,
 rotatePt IN SDO_NUMBER_ARRAY DEFAULT NULL,
 rotateAngle IN NUMBER DEFAULT NULL,
 shear IN SDO_NUMBER_ARRAY DEFAULT NULL,
 reflection IN NUMBER DEFAULT NULL,
 storageParam IN VARCHAR DEFAULT2 DEFAULT NULL,
 rasterBlob IN OUT NOCOPY_BLOB,
 outArea OUT SDO_GEOMTRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Description

Performs affine transformation on the input GeoRaster image to produce an output
GeoRaster image based on the values of the parameters translation, scales,
rotatePt. rotateAngle, shear, and reflection.

Parameters

inGeoRaster
GeoRaster object on which to perform the operation. It does not need to be
georeferenced. (Georeferencing is explained in Georeferencing GeoRaster Objects
and Advanced Georeferencing.)

translation
When specified, should contain two integer numeric values with the number of rows
and columns to be applied to the translation transformation. The values for row and
columns translation are independent of each other, but positive values will translate
the image to the right and to the bottom, and negative values will translate the image
to the left and to the top. If this parameter is omitted, no translation is performed.

scales
When specified, should contain two numeric values with the scale factor to be applied
to the rows and columns to be applied to the scale transformation. The values for row

Chapter 7
SDO_GEOR.affineTransform

7-8

and columns scaling are independent from each other but values between 0 and 1
will reduce the size of the image in rows and/or columns while values greater than 1
will enlarge the size of image is rows and/or columns. If this parameter is omitted, no
scaling is performed.

rotatePt
When specified, should contain two numeric value representing the cell space
coordinate (row and columns) to be used as the center of the rotation operation.
In practical terms, the image feature associated with rotatePt will be the center of the
new output image. If this parameter is omitted, the center of the image is assumed.

rotateAngle
When specified, should contain a numeric value between -180 to 180 identifying the
angle to be applied to the rotation transformation. A positive value indicates that
the rotation will turn to the right and negative value indicates rotation to the left.
See usage notes for more information. If this parameter is omitted, no rotation is
performed.

shear
When specified, should contain two numeric value between the shear factor to be
applied to the x and y coordinates respectively in a shear transformation. The values
for row and columns shear are independent from each other. If this parameter is
omitted, no shearing is performed.

reflection
When specified, should contain the numeric values 1 or 2, representing vertical
or horizontal reflection, respectively. If this parameter is omitted, no reflection is
performed.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
GeoRaster object to hold the result of the operation. Must be either a valid existing
GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects are
explained in Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster
object as inGeoRaster

rasterBlob
BLOB to hold the output reflecting the rectification. It must exist or have been
initialized before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,

Chapter 7
SDO_GEOR.affineTransform

7-9

respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit operation. If an
error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

Usage Notes

This procedure has two formats:

• The first format generates a GeoRaster object for persistent storage in the
database.

• The second format generates a BLOB for temporary storage or immediate use,
such as to display data on the screen.

This procedure performs the specified simple affine transformation operations
individually or in combination.

For all the possible operations and combinations of operations, this procedure
will transform the physical representation of the stored image and build new
georeferencing information that preserves the original location of features in the
image. Thus, the image might look the same when projected by a visualization tool.

Examples

In the following example, the output GeoRaster object will be generated from rotating
the source image by -90 degrees (90 degrees to the left).

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 select georaster into gr1 from georaster_table where georid = 1;

 insert into georaster_table values(2, 'Rotated 90 left',
 sdo_geor.init('rdt0',2)) returning georaster into gr2;

 sdo_geor.affineTransform(inGeoRaster => gr1,
 translation => null,
 scales => null,
 rotatePt => null,
 rotateAngle => -90,
 shear => null,
 reflection => null,
 storageParam => 'pyramid=true',
 outGeoraster => gr2);

 update georaster_table set georaster = gr2 where georid = 2;
 commit;
END;

Chapter 7
SDO_GEOR.affineTransform

7-10

In the following example, the output GeoRaster object will be generated from enlarging
the source image two times bigger while rotating it by 15 degrees to the right.

DECLARE
 gr1 sdo_georaster;
 gr3 sdo_georaster;
BEGIN
 select georaster into gr2 from georaster_table where georid = 1;

 insert into georaster_table values(3, 'Scaled x 2 Rotated 15',
 sdo_geor.init('rdt0',3)) returning georaster into gr3;

 sdo_geor.affineTransform(inGeoRaster => gr1,
 translation => null,
 scales => sdo_number_array(2,2),
 rotatePt => null,
 rotateAngle => 15,
 shear => null,
 reflection => null,
 storageParam => 'blocksize=(512,512,3)',
 outGeoraster => gr3,
 parallelParam => 'parallel=4');

 update georaster_table set georaster = gr3 where georid = 3;
 commit;
END;

In the following example, the output GeoRaster object will be generated from shearing
the source image by a factor of 5 in both rows and columns:

DECLARE
 gr1 sdo_georaster;
 gr4 sdo_georaster;
BEGIN
 select georaster into gr2 from georaster_table where georid = 1;

 insert into georaster_table values(4, 'Shear 5,5',
 sdo_geor.init('rdt0',4)) returning georaster into gr4;

 sdo_geor.affineTransform(inGeoRaster => gr1,
 translation => null,
 scales => null,
 rotatePt => null,
 rotateAngle => null,
 shear => sdo_number_array(5,5),
 reflection => null,
 storageParam => 'pyramid=true',
 outGeoraster => gr4,
 parallelParam => 'parallel=4');

 update georaster_table set georaster = gr4 where georid = 4;
 commit;
END;

In the following example, the output GeoRaster object will be generated from the
vertical reflection of the source image.

DECLARE
 gr1 sdo_georaster;
 gr5 sdo_georaster;
BEGIN

Chapter 7
SDO_GEOR.affineTransform

7-11

 select georaster into gr2 from georaster_table where georid = 1;

 insert into georaster_table values(5, 'Vertical reflection',
 sdo_geor.init('rdt0',5)) returning georaster into gr5;

 sdo_geor.affineTransform(inGeoRaster => gr1,
 translation => null,
 scales => null,
 rotatePt => null,
 rotateAngle => null,
 shear => null,
 reflection => 1,
 storageParam => 'pyramid=true',
 outGeoraster => gr5,
 parallelParam => 'parallel=4');

 update georaster_table set georaster = gr5 where georid = 5;
 commit;
END;

7.4 SDO_GEOR.calcCompressionRatio
Format

SDO_GEOR.calcCompressionRatio(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the compression ratio of a specified GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The compression ratio is the sum of the sizes of all raster blocks (including pyramids)
in the uncompressed GeoRaster object divided by the sum of these sizes in the
compressed form of the object. If the input GeoRaster object is not compressed, the
compression ratio is 1 (that is, 1:1).

For a given original GeoRaster object, the greater the compression ratio, the smaller
is the compressed GeoRaster object. For example, a compression ratio of 20 (that is,
20:1), the data is compressed to 5 percent of its original size.

For more information about GeoRaster compression, see Compression and
Decompression.

Examples

The following example returns the compression type and compression ratio for the
GeoRaster object in the GEORASTER column of table GEORASTER_TABLE where
the GEORID column value is 1.

Chapter 7
SDO_GEOR.calcCompressionRatio

7-12

SELECT sdo_geor.getCompressionType(georaster) compType,
 sdo_geor.calcCompressionRatio(georaster) compRatio
 FROM georaster_table WHERE georid=1;

7.5 SDO_GEOR.changeCellValue
Format

SDO_GEOR.changeCellValue(
 georaster IN OUT SDO_GEORASTER,
 window IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 newCellValue IN NUMBER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.changeCellValue(
 georaster IN OUT SDO_GEORASTER,
 window IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 newCellValue IN NUMBER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Changes the value of raster cells in a specified window of a GeoRaster object to a
single new value.

Parameters

georaster
GeoRaster object.

window
Window in which to change the values of all cells to newCellValue. The data
type can be SDO_NUMBER_ARRAY or SDO_GEOMETRY. If the data type is
SDO_NUMBER_ARRAY, the parameter identifies the upper-left (row, column) and
lower-right (row, column) coordinates of a rectangular window, and raster space is
assumed. If the data type is SDO_GEOMETRY, see the Usage Notes for SDO_SRID
requirements and other information.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

newCellValue
The new cell value for each cell inside the window in the specified bands or layers.
The value must be in the range designated by the cellDepth value for the GeoRaster
object.

Chapter 7
SDO_GEOR.changeCellValue

7-13

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

Because this procedure overwrites data in the input GeoRaster object, you should
make a copy of the original GeoRaster object and use this procedure on the copied
object. After you are satisfied with the result of this procedure, you can discard the
original GeoRaster object if you wish.

This procedure can be used to mask, or conceal, parts of an image. For example, you
can change irrelevant parts of an image to a dull color before displaying the image, to
help people to focus on the relevant parts.

If the window parameter data type is SDO_GEOMETRY, the SDO_SRID value must be
one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the window parameter geometry and the model space
are different, the window parameter geometry is automatically transformed to the
coordinate system of the model space before the operation is performed. (Raster
space and model space are explained in GeoRaster Data Model.)

If the window parameter specifies a nonrectangular SDO_GEOMETRY object, this
function calculates the MBR of the geometry and update the cells inside that MBR,
including the cells on the boundary of the MBR.

If the window parameter specifies a geodetic MBR, it cannot cross the date line
meridian. For information about geodetic MBRs, see Oracle Spatial and Graph
Developer's Guide.

If georaster is a blank GeoRaster object and the whole area is updated, the result is a
blank GeoRaster object with the blankCellValue value set to newCellValue.

If georaster is a blank GeoRaster object and it is only partially updated, the result
is a nonblank GeoRaster object with the original blankCellValue and newCellValue
values set according to the window parameter and the bandNumbers or layerNumbers
parameter.

If georaster is a nonblank GeoRaster object, the result is a nonblank GeoRaster
object, even if all cells are set to the newCellValue value.

If georaster is null, this procedure performs no operation. If georaster is invalid, an
exception is raised.

If any pyramids are defined on the GeoRaster object, the corresponding cell values for
the pyramids are updated.

Chapter 7
SDO_GEOR.changeCellValue

7-14

To return the value of a single cell located anywhere in the GeoRaster object, use the
SDO_GEOR.getCellValue function.

Examples

The following example changes the value of all cells to 151 in a specified window in
band number 1. (It refers to a table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=110 FOR UPDATE;
 sdo_geor.changeCellValue(gr, sdo_number_array(100,67,134,113), '1', 151);
 UPDATE georaster_table SET georaster=gr WHERE georid=110;
 COMMIT;
END;
/

7.6 SDO_GEOR.changeCellValues
Format

SDO_GEOR.changeCellValues(
 georaster IN OUT SDO_GEORASTER,
 rowNumbers IN SDO_NUMBER_ARRAY,
 colNumbers IN SDO_NUMBER_ARRAY,
 bandNumber IN NUMBER,
 newCellValues IN SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.changeCellValues(
 georaster IN OUT SDO_GEORASTER,
 ptGeom IN SDO_GEOMETRY,
 layerNumber IN NUMBER,
 newCellValues IN SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Changes the value of raster cells specified by row/column arrays or by a multipoint
geometry to new values.

Parameters

georaster
GeoRaster object.

rowNumbers
Numbers of the rows that contains the cells whose values are to be changed.

colNumbers
Numbers of the columns that contains the cells whose values are to be changed.

bandNumber
Number of the physical band that contains the cells whose value is to be changed.

Chapter 7
SDO_GEOR.changeCellValues

7-15

ptGeom
Multipoint geometry that identifies the cells whose values are to be changed.

layerNumber
Number of the logical layer that contains the cells whose value is to be changed. (As
mentioned in Bands_ Layers_ and Metadata, the logical layer number is the physical
band number plus 1.)

newCellValues
The new cell value for each cell inside the window in the specified bands or layers.
The value must be in the range designated by the cellDepth value for the GeoRaster
object.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

Because this procedure overwrites data in the input GeoRaster object, you should
make a copy of the original GeoRaster object and use this procedure on the copied
object. After you are satisfied with the result of this procedure, you can discard the
original GeoRaster object if you wish.

This procedure can be used to mask, or conceal, parts of an image. For example, you
can change irrelevant parts of an image to a dull color before displaying the image, to
help people to focus on the relevant parts.

In the ptGeom SDO_GEOMETRY object, the SDO_SRID value must be one of the
following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the ptGeom parameter geometry and the model space
are different, the ptGeom parameter geometry is automatically transformed to the
coordinate system of the model space before the operation is performed. (Raster
space and model space are explained in GeoRaster Data Model.)

If georaster is null, this procedure performs no operation. If georaster is invalid, an
exception is raised.

If any pyramids are defined on the GeoRaster object, the corresponding cell values for
the pyramids are updated.

To return the values of cells located anywhere in the GeoRaster object, use the
SDO_GEOR.getCellValues function.

Chapter 7
SDO_GEOR.changeCellValues

7-16

Examples

The following example changes the value of two cells to 151 and 152 in band number
1. (It refers to a table named GEORASTER_TABLE, whose definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=110 FOR UPDATE;
 sdo_geor.changeCellValues(gr,
sdo_number_array(100,67),sdo_number_array(134,113), 1,
 sdo_number_array(151,152));
 UPDATE georaster_table SET georaster=gr WHERE georid=110;
 COMMIT;
END;
/

7.7 SDO_GEOR.changeFormatCopy
Format

SDO_GEOR.changeFormatCopy(
 inGeoRaster IN SDO_GEORASTER,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.changeFormatCopy(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Makes a copy of an existing GeoRaster object using a different storage format (for
example, changing the blocking, cell depth, or interleaving).

Parameters

inGeoRaster
The SDO_GEORASTER object whose format is to be copied.

pyramidLevel
A number specifying the pyramid level of the source GeoRaster object.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The SDO_GEORASTER object to hold the copy. Must be either a valid existing
GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects are

Chapter 7
SDO_GEOR.changeFormatCopy

7-17

explained in Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster
object as inGeoRaster.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

This procedure creates a new GeoRaster object that has the specified changes, based
on the original GeoRaster object or a specified pyramid level of it. After you use this
procedure, you can check to ensure that the desired changes were made in the copy,
and then discard the original GeoRaster object if you wish.

If you use the format that does not include the pyramidLevel parameter, the copy is
based on the original GeoRaster object (pyramidLevel=0).

If the copy is to be made from a pyramid of the original GeoRaster object
(pyramidLevel > 0), and if the original GeoRaster object is georeferenced,
georeferencing information is generated for the resulting GeoRaster object only when
the georeference is a valid polynomial transformation. The resulting object's row and
column ultCoordinates are set to (0,0).

To compress or decompress a GeoRaster object, use the compression keyword in the
storageParam parameter. (There is no separate GeoRaster function or procedure for
compressing or decompressing a GeoRaster object.)

If inGeoRaster is null, this procedure performs no operation.

If storageParam is null, inGeoRaster is copied to outGeoRaster.

If outGeoRaster has any raster data, it is deleted before the copy operation.

inGeoRaster and outGeoRaster must be different GeoRaster objects.

If pyramid data exists for inGeoRaster, any upper level pyramid data is copied to
outGeoRaster unless the storageParam string contains pyramid=FALSE.

An exception is raised if one or more of the following are true:

• inGeoRaster is invalid.

• outGeoRaster has not been initialized.

• A raster data table for outGeoRaster does not exist and outGeoRaster is not a
blank GeoRaster object.

Examples

The following example creates a GeoRaster object that is the same as the input
object except that the block size is set to 2048 for both dimensions. (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

Chapter 7
SDO_GEOR.changeFormatCopy

7-18

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 SELECT georaster INTO gr2 from georaster_table WHERE georid=11 FOR UPDATE;
 SELECT georaster INTO gr1 from georaster_table WHERE georid=1;

 sdo_geor.changeFormatCopy(gr1, 'blocksize=(2048,2048)', gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=11;
 COMMIT;
END;
/

The following example creates a GeoRaster object that is the same as the input
object except that raster data is compressed to deflate format and the compression
process is running in parallel. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 SELECT georaster INTO gr2 from georaster_table WHERE georid=11 FOR UPDATE;
 SELECT georaster INTO gr1 from georaster_table WHERE georid=1;

 sdo_geor.changeFormatCopy(gr1, 'compression=deflate parallel=4', gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=11;
 COMMIT;
END;
/

7.8 SDO_GEOR.compressJP2
Format

SDO_GEOR.compressJP2(
 inGeoRaster IN SDO_GEORASTER,
 compressParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER);

Description

Compresses the image in a GeoRaster object using JPEG 2000 compression.

Parameters

inGeoRaster
The SDO_GEORASTER object whose data is to be compressed.

compressParam
A string specifying one or more keywords for the compression parameter. For an
explanation of the available keywords, see the table in the Usage Notes.

outGeoRaster
The SDO_GEORASTER object to hold the result of the compression. Must be either
a valid existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster

Chapter 7
SDO_GEOR.compressJP2

7-19

objects are explained in Blank and Empty GeoRaster Objects.) Cannot be the same
GeoRaster object as inGeoRaster.

Usage Notes

The output compressed image is in JPEG 2000 (JP2) file format and stored in one
raster block of the outGeoRaster object. There are no pyramid raster blocks stored in
the raster data table, because the pyramids are stored in the JP2 file as part of the
compression.

If not specified in rlevel keyword of compressParam, the maximum number of pyramid
level is calculated as: floor(log2(tsize)), where tsize is the minimal value of the
tilesize parameter values for rows and columns. If the tiling parameter value
isfalse, tsize is the minimal value of the image height and width.

If neither ratio nor psnr is specified, the compression is loss-less

This procedure supports 8–bit and 16–bit source GeoRaster objects. The maximum of
number of tiles allowed is 65535.

The following table lists the available compressParam keywords for JPEG 2000 (JP2)
compression.

Table 7-1 compressParam Keywords for JPEG 2000 (JP2) Compression

Keyword Explanation

codeBlockSize=(cbrow, cbcol) Specifies the code block row and column size,
where cbrow and cbcol are the size of the
code block in rows and columns, respectively.
It must be in the range of [4, 1024] and cbrow *
cbcol <= 4096. By default, it is 64 x 64.

dwt=reversible | irreversible Specifies the discrete wavelet transform,
where reversible means to use the DWT 5–
3 transform, and irreversible means to use
the DWT 9–7 transform. Irreversible transforms
always result in lossy compression.

mct=true | false Specifies whether to use multiple component
transform. By default, RGB->YCC conversion
is used if there are 3 bands or more.

precinctSize=(pcrow, pccol) Specifies the precinct size, where pcrow and
pccol are the size of the precinct in rows and
columns, respectively. By default it is 512 x
512 on each resolution.

progressOrder=LRCP|RLCP|RPCL|PCRL|
CPRL

Specifies the progression order: LRCP (layer-
resolution-component-position progressive,
or rate scalable), RLCP (resolution-
layer-component-position progressive, or
resolution scalable), RPCL (resolution-position-
component-layer progressive), PCRL (position-
component-resolution-layer progressive), or
CPRL (component-position-resolution-layer)
progressive. By default, it is LRCP.

Chapter 7
SDO_GEOR.compressJP2

7-20

Table 7-1 (Cont.) compressParam Keywords for JPEG 2000 (JP2) Compression

Keyword Explanation

psnr=(p1, p2, p3, ...) Specifies the peak signal-to-noise ratio
(PSNR), where p1, p2, p3, ... are the
compression PSNR for layer 1, 2, 3, and so
on of the JP2 code stream. It should be in
increasing order. Example: psnr=(30, 40, 50).
By default, the compression is loss-less. This
parameter cannot be specified together with
the ratio parameter.

ratio=(r1, r2, r3, ...) Specifies the compression ratio, where p1,
p2, p3, ... are the compression ratios for
layers 1, 2, 3, and so on of the JP2 code
stream. It should be in decreasing order.
Example: ratio=(30, 20, 10). By default, the
compression is loss-less. This parameter
cannot be specified together with the psnr
parameter.

rlevel=n Specifies the number of decompositions of the
wavelet transform, and thus the number of
pyramids of the image. By default, the level of
decomposition is floor(log2(tileSize)).

tileSize=(trow, tcol) trow and tcol specify the row and column
size of the tile. If the tile size is greater than
the image size, no tiling is applied.

tiling=true | false Specifies whether to use tiling in the
JPEG2000 compression. By default, tiling is
true. If tiling is true and if tileSize is
not set, the default tile size is 512 x 512.

Note:

For any numbers in string (VARCHAR2) parameters to GeoRaster
subprograms, the period (.) must be used for any decimal points regardless
of the locale.

Examples

The following example creates a JPEG 2000 compressed GeoRaster object from the
original object. The JP2 file internal tile size is 512 by 512 and the compression ratio
values for JP2 layers 1, 2, and 3 are 30, 20, and 10, respectively. (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (4, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

Chapter 7
SDO_GEOR.compressJP2

7-21

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=1;

 sdo_geor.compressJP2(gr1,’tilesize=(512, 512), ratio=(30, 20, 10)’, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=4;
 COMMIT;
END;
/

7.9 SDO_GEOR.copy
Format

SDO_GEOR.copy(
 inGeoRaster IN SDO_GEORASTER,
 outGeoRaster IN OUT SDO_GEORASTER);

Description

Makes a copy of an existing GeoRaster object.

Parameters

inGeoRaster
GeoRaster object to be copied.

outGeoRaster
GeoRaster object to hold the result of the copy operation. Must be either a
valid existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster
objects are explained in Blank and Empty GeoRaster Objects.) Cannot be the same
GeoRaster object as inGeoRaster.

Usage Notes

The outGeoRaster object is an exact copy of the inGeoRaster object. To make
any changes to the output GeoRaster object during a copy operation, use the
SDO_GEOR.changeFormatCopy procedure.

If inGeoRaster is null, this procedure performs no operation.

If outGeoRaster has any raster data, it is deleted before the copy operation.

inGeoRaster and outGeoRaster must be different GeoRaster objects.

If pyramid data exists for inGeoRaster, the pyramid data is copied to outGeoRaster.

An exception is raised if one or more of the following are true:

• inGeoRaster is invalid.

• outGeoRaster has not been initialized.

• A raster data table for outGeoRaster does not exist and outGeoRaster is not a
blank GeoRaster object.

Examples

The following example inserts an initialized GeoRaster object (gr2) into the
GEORASTER column of table GEORASTER_TABLE, makes gr2 an exact copy of

Chapter 7
SDO_GEOR.copy

7-22

another GeoRaster object (gr1), and updates the row that had been inserted using gr2
for the GEORASTER column value. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 INSERT INTO georaster_table VALUES (11, sdo_geor.init('RDT_11', 1))
 RETURNING georaster INTO gr2;
 SELECT georaster INTO gr1 from georaster_table WHERE georid=1;

 sdo_geor.copy(gr1, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=11;
 COMMIT;
END;
/

7.10 SDO_GEOR.createBlank
Format

SDO_GEOR.createBlank(
 rasterType IN INTEGER,
 ultCoord IN SDO_NUMBER_ARRAY,
 dimSizes IN SDO_NUMBER_ARRAY,
 cellValue IN NUMBER,
 rasterDataTable IN VARCHAR2 DEFAULT NULL,
 rasterID IN NUMBER DEFAULT NULL
) RETURN SDO_GEORASTER;

Description

Creates a blank GeoRaster object, in which all cells have the same value; the object
must then be registered in the xxx_SDO_GEOR_SYSDATA views (see the Usage
Notes).

Parameters

rasterType
The 5-digit rasterType attribute value, as specified in rasterType Attribute.

ultCoord
An array of the upper-left coordinate integer values for the GeoRaster object. The
default value is (0,0) for a GeoRaster object without a band dimension, and (0,0,0)
for a GeoRaster object with a band dimension. If this parameter is null, the default
value of 0 is used for each dimension. If a value in the specified array is null, the
default value of 0 is used for the corresponding dimension. The value for the band
dimension must be 0, and you do not need to specify it. (If you specify an array
of values, the number of values must not be less than the number of the spatial
dimensions or more than the number of total dimensions.)

dimSizes
The number of cells along each dimension. The number of values in the array must
be equal to the total number of dimensions, and the size of each dimension must be
explicitly specified. The row and column dimension sizes must be greater than 1.

Chapter 7
SDO_GEOR.createBlank

7-23

cellValue
The cell value for all raster cells in the created GeoRaster object. Must be from 0 to
255, because the cell depth of the created GeoRaster object is 8BIT_UNSIGNED.

rasterDataTable
Name of the object table of type SDO_RASTER that stores the cell data blocks.
Must not contain spaces, period separators, or mixed-case letters in a quoted string;
the name is always converted to uppercase when stored in an SDO_GEORASTER
object. The RDT should be in the same schema as its associated GeoRaster table.
If you do not specify this parameter, GeoRaster generates a unique table name to
be used for the raster data table. If you specify this parameter and the table already
exists but is not an object table of type SDO_RASTER, an exception is raised.

rasterID
Number that uniquely identifies the cell blocks of this GeoRaster object in the raster
data table. If you do not specify this parameter, a unique sequence number is
generated for the ID.

Usage Notes

After creating the blank GeoRaster object and before performing any operations on the
object, you must register it in the xxx_SDO_GEOR_SYSDATA views by inserting the
empty GeoRaster object into a GeoRaster table. (The xxx_SDO_GEOR_SYSDATA
views are described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA).
GeoRaster operations are described in GeoRaster Database Creation and
Management and GeoRaster Data Query and Manipulation.)

The created GeoRaster object has no spatial reference information; therefore, its
spatial extent geometry has a null SRID (coordinate system) value. The spatial extent
geometry reflects the ultCoord and dimSizes values.

This function does not require that the specified raster data table exist. However, the
table must exist before any raster data can be inserted into it.

Although the cell depth of the created GeoRaster object is 8BIT_UNSIGNED,
you can change the cell depth after you create the blank GeoRaster object
by calling the SDO_GEOR.changeFormatCopy procedure. You can then call the
SDO_GEOR.setBlankCellValue procedure to reset the cell value in a different range.

For guidelines that apply to the SDO_GEOR.createBlank and SDO_GEOR.init
functions when a table has multiple GeoRaster object columns, see the Usage Notes
for the SDO_GEOR.init function.

An exception is raised if any value for an input parameter is invalid.

Examples

The following example inserts a row containing a blank GeoRaster object into the
table. (It refers to a table named GEORASTER_TABLE, whose definition is presented
after Example 1-1 in Storage Parameters.)

INSERT INTO georaster_table (georid, georaster) VALUES (
 1,
 sdo_geor.createBlank(20001, SDO_NUMBER_ARRAY(0,0),
 SDO_NUMBER_ARRAY(1024,1024), 255, 'RDT_1')
);

Chapter 7
SDO_GEOR.createBlank

7-24

7.11 SDO_GEOR.createTemplate
Format

SDO_GEOR.createTemplate(
 georaster IN OUT SDO_GEORASTER,
 rasterType IN INTEGER,
 rasterSpec IN VARCHAR2,
 maskLayers IN VARCHAR2 DEFAULT NULL,
 initRDTEntry IN VARCHAR2 DEFAULT NULL);

Description

Populates a GeoRaster object with metadata of a general pattern, and optionally
inserts entries with empty raster blocks into its raster data table.

Parameters

georaster
The GeoRaster object to be updated.

rasterType
The 5-digit rasterType attribute value, as specified in rasterType Attribute.

rasterSpec
A string with raster specification parameters, as explained in the Usage Notes.

maskLayers
A string identifying the logical layer numbers on which there are associated bitmap
masks. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

initRDTEntry
The string TRUE causes the raster data table to be populated; the string FALSE causes
the raster data table not to be populated. If you do not specify this parameter, the
raster data table is not populated.

Usage Notes

This function populates a GeoRaster object with metadata of a general pattern and
optionally inserts proper rows (with empty raster blocks) into its raster data table. If the
raster data table is to be populated, the raster data table must exist and the GeoRaster
object must have been registered in the GeoRaster SYSDATA table.

In general, only use this procedure with an empty GeoRaster object to populate its
XML metadata and raster blocks. If you use an existing (good) GeoRaster object, the
GeoRaster object will be replaced with the new template object upon update.

The rasterSpec parameter must be a quoted string that contains one or more
keyword-value pairs. The following keywords are supported for this parameter:

• blocking (for example, blocking=TRUE). For an explanation of this keyword, see
Table 1-1 in Storage Parameters.

• blocksize (for example, blocksize=(512,512,3)). For an explanation of this
keyword, see Table 1-1 in Storage Parameters.

Chapter 7
SDO_GEOR.createTemplate

7-25

• cellDepth (for example, cellDepth=8BIT_S). For an explanation of this keyword,
see Table 1-1 in Storage Parameters.

• compression (for example, compression=JPEG-F). For an explanation of this
keyword, see Table 1-1 in Storage Parameters.

• dimSize (for example, dimSize=(512,512,3)): Specifies the row, column, and
band dimension sizes. This keyword must be specified and must be consistent
with the rasterType parameter.

• interleaving (for example, interleaving=BIP). For an explanation of this
keyword, see Table 1-1 in Storage Parameters.

• quality (for example, quality=75). For an explanation of this keyword, see
Table 1-1 in Storage Parameters.

• resampling (for example, resampling=NN): Specifies the resampling method. Must
be one of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGE16.
For more information, see Resampling and Interpolation.

The resampling keyword is ignored if rLevel is not set.

• rLevel (for example, rLevel=2): Specifies the maximum pyramid reduction level.
Must be a positive integer. If you specify this keyword, the pyramid type is set to
DECREASE in the metadata; otherwise, the pyramid type is set to NONE.

• ultCoord (for example, ultCoord=(0,0,0)): Specifies the upper-left coordinate
integer values for the GeoRaster object. The default value is 0 for all the
dimensions. The value for the band dimension must be 0.

(Note that the following keywords in Table 1-1 in Storage Parameters are not
supported for the rasterSpec parameter: bitmapmask and pyramid.)

If the compression keyword in the rasterSpec parameter is set as JP2-F, the blocking
defaults to non-blocking no matter what the rasterSpec parameter specifies. If the
rlevel keyword in the rasterSpec parameter is not set and compression is JP2-F, the
pyramid maximum level in the GeoRaster metadata defaults to floor(log2(imageSize)),
where imageSize is the minimum of the image row and column size. The pyramid
maximum level should be adjusted later if the actual data has different levels of
resolutions.

For more information about using this function in developing GeoRaster applications,
see Using Template-Related Subprograms to Develop GeoRaster Applications.

Examples

The following example populates a GeoRaster object with metadata and initial raster
data table rows.

DECLARE
 gr sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (1, sdo_geor.init('RDT_1'))
 RETURNING georaster into gr;
 sdo_geor.createTemplate(gr, 21001,
 'dimSize=(512,512,3) blocking=false rlevel=2',
 null, 'TRUE');
 UPDATE georaster_table set georaster=gr where georid=1;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.createTemplate

7-26

7.12 SDO_GEOR.decompressJP2
Format

SDO_GEOR.decompressJP2(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER);

or

SDO_GEOR.decompressJP2(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER);

Description

Decompress the JPEG 2000 compressed GeoRaster image into a GeoRaster object.

Parameters

inGeoRaster
The SDO_GEORASTER object to be decompressed.

pyramidLevel
A number specifying the pyramid level to be decompressed in the source GeoRaster
object.

cropArea
Crop area definition. If the data type is SDO_NUMBER_ARRAY, the parameter
identifies the upper-left (row, column) and lower-right (row, column) coordinates
of a rectangular window, and raster space is assumed. If the data type is
SDO_GEOMETRY, the minimum bounding rectangle (MBR) of the geometry object
is used as the crop area; see also the Usage Notes for SDO_SRID requirements.
If cropArea is of type SDO_GEOMETRY, use the layerNumbers parameter to specify
one or more layer numbers; if cropArea is of type SDO_NUMBER_ARRAY, use the
bandNumbers parameter to specify one or more band numbers.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

Chapter 7
SDO_GEOR.decompressJP2

7-27

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

Usage Notes

In the storageParam parameter, any bitmapmask, compression, quality, and pyramid
keywords are ignored.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the cropArea parameter geometry and the model
space are different, the window parameter geometry is automatically transformed
to the coordinate system of the model space before the operation is performed.
(Raster space and model space are explained in GeoRaster Data Model.)

Examples

The following example creates an uncompressed GeoRaster object that contains only
specified bands from a specified window from the original object. The original object’s
raster data is compressed in JPEG 2000 compression. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor.decompressJP2(gr1, 0, sdo_geometry(2003, NULL, NULL,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(0,256,255,511)),
 '3,1-2',’blocksize=(512, 512, 3)’, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.decompressJP2

7-28

7.13 SDO_GEOR.deleteControlPoint
Format

SDO_GEOR.deleteControlPoint (
 inGeoraster IN SDO_GEORASTER,
 controlPointID IN VARCHAR2);

Description

Deletes a ground control point (GCP) that has the specified control point ID value.

Parameters

inGeoraster
GeoRaster object.

controlPointID
Control point ID for inGeoraster. Must be a string not more than 32 characters.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If the controlPointID is null, empty or not found in the existing GCPs stored in the
GeoRaster object metadata, an exception is raised. If a GCP with the specified point
ID is found, that GCP is deleted from the georeferencing model.

Examples

The following example deletes the GCP that has the ID value 23 in a specified
GeoRaster object.

DECLARE
 gr1 sdo_georaster;
BEGIN
 SELECT georaster INTO gr1 from herman.georaster_table WHERE georid=10 FOR
UPDATE;
 sdo_geor.deleteControlPoint(gr1, '23');
 UPDATE georaster_table SET georaster=gr1 WHERE georid=10;
 COMMIT;
END;
/

7.14 SDO_GEOR.deleteNODATA
Format

SDO_GEOR.deleteNODATA(title
 georaster IN OUT SDO_GEORASTER
 layerNumber IN NUMBER
 nodata IN NUMBER);

or

Chapter 7
SDO_GEOR.deleteControlPoint

7-29

SDO_GEOR.deleteNODATA(
 georaster IN OUT SDO_GEORASTER
 layerNumber IN NUMBER
 nodata IN SDO_RANGE_ARRAY);

Description

Deletes one or more NODATA values or value ranges.

Parameters

georaster
GeoRaster object.

layerNumber
Layer number in the GeoRaster object. A value of 0 (zero) indicates the object layer.

nodata
Either a single numeric value, or an array of numbers or number ranges. Any
NODATA value range is inclusive at the lower bound and exclusive at the upper
bound.
The SDO_RANGE_ARRAY type is described in NODATA Values and Value Ranges

Usage Notes

When a NODATA value or value range is deleted, the cell depth of the GeoRaster
object is taken into consideration to generate the correct new ranges. If the cell depth
specifies floating cell values, you can only remove existing single numeric NODATA
values or remove a sub-range from an existing NODATA value range.

For information about NODATA values and value ranges, see NODATA Values and
Value Ranges.

To add one or more NODATA values or value ranges, use the
SDO_GEOR.addNODATA procedure. To return the NODATA values for a GeoRaster
object, use the SDO_GEOR.getNODATA function.

Examples

The following example removes cell value 9 from the NODATA metadata associated
with the object layer.

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=0 FOR UPDATE;
 SDO_GEOR.deleteNODATA(gr, 0, 9);
 UPDATE georaster_table SET georaster=gr WHERE georid=0;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.deleteNODATA

7-30

7.15 SDO_GEOR.deletePyramid
Format

SDO_GEOR.deletePyramid(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER DEFAULT NULL);

Description

Deletes the pyramid data of a GeoRaster object from the given pyramid level and
above.

Parameters

georaster
GeoRaster object for which pyramid data is to be deleted.

pyramidLevel
The level of pyramid (and above) for which to delete pyramid data. By default, all the
pyramid data is deleted.

Usage Notes

For information about pyramid data, see Pyramids.

If georaster is null or has no pyramid data, this procedure performs no operation.

An exception is raised if georaster is invalid or if the value of pyramidLevel is less
than 1.

Examples

The following example deletes the pyramid data for a GeoRaster object. (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
BEGIN
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=21;

 sdo_geor.deletePyramid(gr1);
 UPDATE georaster_table SET georaster=gr1 WHERE georid=21;
 COMMIT;
END;
/

The following example deletes the pyramid data for a GeoRaster object where
the pyramid level is greater than or equal to 3. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
BEGIN
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=21;

Chapter 7
SDO_GEOR.deletePyramid

7-31

 sdo_geor.deletePyramid(gr1, 3);
 UPDATE georaster_table SET georaster=gr1 WHERE georid=21;
 COMMIT;
END;
/

7.16 SDO_GEOR.evaluateDouble
Format

SDO_GEOR.evaluateDouble(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 row IN NUMBER,
 column IN NUMBER,
 bands IN VARCHAR2,
 interpolationMethod IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.evaluateDouble(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 ptGeom IN SDO_GEOMETRY,
 layers IN VARCHAR2,
 interpolationMethod IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Evaluates a direct location using a specified interpolation method, and returns the
raster values (double precision numbers) for the specified bands or layers for that
location.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the location whose raster values are to be returned.

row
The row coordinate of the location whose raster values are to be returned. This can
be a floating point number.

column
The column coordinate of the location whose raster values are to be returned. This
can be a floating point number.

bands
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

Chapter 7
SDO_GEOR.evaluateDouble

7-32

ptGeom
Point geometry that identifies the direct location whose raster values are to be
returned.

layers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4). (As mentioned in Bands_ Layers_ and Metadata,
the logical layer number is the physical band number plus 1.)

interpolationMethod
A quoted string containing one or more keywords, each with an appropriate value.
See the Usage Notes for information about the available keywords and values.

Usage Notes

This function returns interpolated raster values in double precision. In GeoRaster, the
original cell values are always associated with the center of the cells, regardless of
whether the cell coordinate system type is center-based or upperleft-based.

Identify the location in the GeoRaster object either by specifying its row, column, and
band numbers in cell coordinate space, or by specifying a point geometry in either
model coordinate space or cell coordinate space.

interpolationMethod must be a quoted string that contains one or more of the
following keywords, each with an appropriate value:

• interpolationMethod (for example, interpolationMethod=NN): Specifies the
interpolation method. Must be one of the following: NN, BILINEAR, BIQUADRATIC,
CUBIC, AVERAGE4, AVERAGE16. For more information, see Resampling and
Interpolation.

• nodata (for example, nodata=TRUE): Specifies whether NODATA values and value
ranges should be considered during the procedure. Must be either TRUE (NODATA
values and value ranges should be considered) or FALSE (NODATA values and
value ranges should not be considered). The default value is FALSE. If the value
is TRUE and the interpolation method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, whenever a cell value involved in the interpolation calculation is
a NODATA value, the result of the interpolation is also a NODATA value. The
resulting NODATA value is the minimum NODATA value associated with the
current raster layer, if multiple NODATA values or value ranges exist.

If interpolationMethod is specified as 'interpolationMethod=NN', this function is
equivalent to calling the SDO_GEOR.getCellValue function.

Examples

The following examples return the raster values for a specified location in the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of
21 in the GEORASTER_TABLE table, whose definition is presented after Example 1-1
in Storage Parameters.

The examples show the two function formats, and they return the same values for the
same location specified in either cell space or model space.

SELECT SDO_GEOR.evaluateDouble(a.georaster, 0,
 10.2, 10.3,
 '0-2',
 'interpolationMethod=BILINEAR')

Chapter 7
SDO_GEOR.evaluateDouble

7-33

 FROM georaster_table a WHERE georid=21;

SDO_GEOR.EVALUATEDOUBLE(A.GEORASTER,0,10.2,10.3,'0-2','interpolationMethod=BILINE
AR')
--
SDO_NUMBER_ARRAY(86.68, 135.68, 31.72)

1 row selected.

SELECT SDO_GEOR.evaluateDouble(a.georaster, 0,
 SDO_GEOMETRY(2001, 82394, SDO_POINT_TYPE(18492.775, 1012881.9, NULL),
 NULL, NULL),
 '1-3',
 'interpolationMethod=BILINEAR')
 FROM georaster_table a WHERE georid=21;

SDO_GEOR.EVALUATEDOUBLE(A.GEORASTER,0,SDO_GEOR.GETMODELCOORDINATE(A.GEORASTER,0,
--
SDO_NUMBER_ARRAY(86.68, 135.68, 31.72)

1 row selected.

7.17 SDO_GEOR.evaluateDoubles
Format

SDO_GEOR.evaluateDoubles(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 rows IN SDO_NUMBER_ARRAY,
 cols IN SDO_NUMBER_ARRAY,
 band IN NUMBER,
 interpolationMethod IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.evaluateDouble(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 ptGeom IN SDO_GEOMETRY,
 layer IN NUMBER,
 interpolationMethod IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Evaluates multiple locations using a specified interpolation method, and returns the
raster values (double precision numbers) for the specified band or layer for those
locations.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the locations whose raster values are to be returned.

Chapter 7
SDO_GEOR.evaluateDoubles

7-34

row
The row coordinates of the locations whose raster values are to be returned.

column
The column coordinates of the locations whose raster values are to be returned.

band
Number of the physical band that contains the cell whose value is to be returned.

ptGeom
Multipoint geometry that identifies the cells whose values are to be returned.

layers
Number of the logical layer that contains the cell whose value is to be returned. (As
mentioned in Bands_ Layers_ and Metadata, the logical layer number is the physical
band number plus 1.)

interpolationMethod
A quoted string containing one or more keywords, each with an appropriate value.
See the Usage Notes for information about the available keywords and values.

Usage Notes

This function returns interpolated raster values in double precision. In GeoRaster, the
original cell values are always associated with the center of the cells, regardless of
whether the cell coordinate system type is center-based or upperleft-based.

interpolationMethod must be a quoted string that contains one or more of the
following keywords, each with an appropriate value:

• interpolationMethod (for example, interpolationMethod=NN): Specifies the
interpolation method. Must be one of the following: NN, BILINEAR, BIQUADRATIC,
CUBIC, AVERAGE4, AVERAGE16. For more information, see Resampling and
Interpolation.

• nodata (for example, nodata=TRUE): Specifies whether NODATA values and value
ranges should be considered during the procedure. Must be either TRUE (NODATA
values and value ranges should be considered) or FALSE (NODATA values and
value ranges should not be considered). The default value is FALSE. If the value
is TRUE and the interpolation method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, whenever a cell value involved in the interpolation calculation is
a NODATA value, the result of the interpolation is also a NODATA value. The
resulting NODATA value is the minimum NODATA value associated with the
current raster layer, if multiple NODATA values or value ranges exist.

If interpolationMethod is specified as 'interpolationMethod=NN', this function is
equivalent to calling the SDO_GEOR.getCellValues function.

Examples

The following example returns the raster values for specified locations in the
GeoRaster object (GEORASTER column) in the row with the GEORID column value of
21 in the GEORASTER_TABLE table, whose definition is presented after Example 1-1
in Storage Parameters.

SELECT SDO_GEOR.evaluateDoubles(a.georaster,
0,SDO_NUMBER_ARRAY(10.2,11.5),SDO_NUMBER_ARRAY(9.2,8.3),0,
 'interpolationMethod=BILINEAR')
 FROM georaster_table a WHERE georid=21;

Chapter 7
SDO_GEOR.evaluateDoubles

7-35

SDO_GEOR.EVALUATEDOUBLES(A.GEORASTER,0,SDO_NUMBER_ARRAY(10.2,11.5),SDO_NUMBER_ARR
AY(9.2,8.3),0,'interpolationMethod=BILINEAR')
--
SDO_NUMBER_ARRAY(86.68, 135.68)

1 row selected.

7.18 SDO_GEOR.exportTo
Format

SDO_GEOR.exportTo(
 georaster IN SDO_GEORASTER,
 subsetParam IN VARCHAR2,
 r_destFormat IN VARCHAR2,
 r_destType IN VARCHAR2,
 r_destName IN VARCHAR2,
 h_destFormat IN VARCHAR2 DEFAULT NULL,
 h_destType IN VARCHAR2 DEFAULT NULL,
 h_destName IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.exportTo(
 georaster IN SDO_GEORASTER,
 subsetParam IN VARCHAR2,
 r_destFormat IN VARCHAR2,
 r_destBLOB IN OUT NOCOPY BLOB);

or

SDO_GEOR.exportTo(
 georaster IN SDO_GEORASTER,
 subsetParam IN VARCHAR2,
 r_destFormat IN VARCHAR2,
 r_destBLOB IN OUT NOCOPY BLOB,
 h_destFormat IN VARCHAR2 DEFAULT NULL,
 h_destCLOB IN OUT NOCOPY CLOB DEFAULT NULL);

Description

Exports a GeoRaster object or a subset of a GeoRaster object to a file or to a BLOB
object.

Parameters

georaster
GeoRaster object that will be exported.

subsetParam
String containing subset parameters, for exporting a subset of the GeoRaster object.
The format and usage are as explained in Storage Parameters, although some
keywords described in that section do not apply to this procedure. The following
keywords are supported:

• pLevel: Pyramid level to be exported. The default is 0.

Chapter 7
SDO_GEOR.exportTo

7-36

• cropArea: Specify the area to be exported in the format cropArea = (startRow,
startCol, endRow, endCol). It identifies the upper-left (startRow, startCol) and
lower-right (endRow, endCol) coordinates of a rectangular window to be exported,
and raster space is assumed. If cropArea is not specified, the entire image is
exported.

• layerNumber: Layer numbers of the layers to be exported. For example,
layerNumber=(3-5) exports layers 3, 4, and 5; and layerNumber=(1,3,5) exports
layers 1, 3, and 5.

r_destFormat
Raster destination format. Must be one of the following: TIFF, BMP, GeoTIFF, or PNG.
(JPEG and GIF are not supported for this procedure.)

r_destType
Type of destination for the export operation. Must be FILE.

r_destName
Destination file name (with full path specification) if destType is FILE. Do not specify
the file extension. If you are using this procedure only to export the world file, specify
a null value for this parameter.

r_destBLOB
BLOB object to hold the image file resulting from the export operation.

h_destFormat
Geoheader destination format. Must be WORLDFILE.

h_destType
Geoheader type of destination for the export operation. Must be FILE.

h_destName
Geoheader destination file name (with full path specification) if h_destType is FILE.
Do not specify the file extension.

h_destCLOB
CLOB object to hold the geoheader file resulting from the export operation.

Usage Notes

Use a format with both r_xxx and h_xxx parameters only if the raster image and
geoheader are in separate files.

This procedure does not support JPEG or GIF as a destination file format. You can
use the client-side GeoRaster exporter tool, described in GeoRaster Tools: Viewer_
Loader_ Exporter, to export to a JPEG file.

This procedure does not support GeoRaster objects that have a cellDepth value of
2BIT.

GeoRaster objects with a cell depth of 8 bits or greater that have a BSQ or BIL
interleaving are exported in BIP interleaved format.

The GeoTIFF PixelIsArea raster space is equivalent to the GeoRaster upperleft-
based cell coordinate system. An export to GeoTiff is always in PixelIsArea raster
space, with a half-pixel adjustment of the affine transformation if the GeoRaster object
is in center-based cell coordinate system.

Chapter 7
SDO_GEOR.exportTo

7-37

To load GeoTIFF images with the SDO_GEOR.importFrom procedure, you will need
the xtiff-jai.jar and geotiff-jai.jar libraries. For more information about these
GeoTIFF libraries, see Georeferencing GeoRaster Objects.

Before you call this procedure, you must have write permission on the output file or the
directory to contain the files. The following example (run as user SYSTEM) grants write
permission on a specified file to user HERMAN:

call dbms_java.grant_permission('HERMAN','SYS:java.io.FilePermission',
 '/mydirectory/myimages/img1.tif', 'write');

The maximum amount of GeoRaster data that can be exported in a single operation is
67 megabytes (MB). Thus, the maximum dimensions of a GeoRaster object that can
be exported at one time must be such that width*height*bands*cellDepth/8 <= 67
MB and rowBlockSize*columnBlockSize*bands*cellDepth/8 <= 67 MB. For example,
for a 3-band, 8-bit GeoRaster object in which the width and height are equal:

• The largest exportable width and height are 4728x4728.

• The largest exportable block dimensions are 4096x4096.

Examples

The following example shows two export operations. The first operation exports an
entire GeoRaster object (except for any georeferencing information) into a BMP format
file. The second operation exports a subset of the GeoRaster object to a file with an
ESRI world file.

DECLARE
 geor SDO_GEORASTER;
 fileName VARCHAR2(1024);
 tfwName VARCHAR2(1024);

BEGIN

SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;

-- Export the whole GeoRaster object into a BMP file, excluding any
-- georeferencing information.
sdo_geor.exportTo(geor, NULL, 'BMP', 'file',
 '/mydirectory/myimages/img1_export');

-- Export a subset to a file with a world file.
fileName := '/mydir/parrotExported';
tfwName := '/mydir/parrotWorldFile';
SELECT georaster INTO geor FROM georaster_table WHERE georid = 8;
sdo_geor.exportTo(geor, 'cropArea=(0,0,500,500)',
 'TIFF', 'file', fileName, 'WORLDFILE', 'FILE', tfwName);

END;
/

The following example exports GeoRaster objects into BLOB and CLOB objects.

CREATE TABLE blob_table (blob_col BLOB, blobid NUMBER unique, clob_col CLOB);
INSERT INTO blob_table values (empty_blob(), 3, null);
INSERT INTO blob_table VALUES (empty_blob(), 4, empty_clob());

DECLARE
 lobd1 BLOB;
 lobd2 BLOB;

Chapter 7
SDO_GEOR.exportTo

7-38

 lobd3 CLOB;
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;

BEGIN

-- Example 1: Export to BLOB.
SELECT blob_col INTO lobd1 FROM blob_table WHERE blobid=3 for update;
SELECT georaster INTO geor1 FROM georaster_table WHERE georid = 13;
sdo_geor.exportTo(geor1, '', 'TIFF', lobd1);
UPDATE blob_table set blob_col = lobd1 WHERE blobid=3;
COMMIT;

-- Example 2: Export GeoRaster to BLOB with world file exported to CLOB.
SELECT blob_col INTO lobd2 FROM blob_table WHERE blobid=4 for update;
SELECT clob_col INTO lobd3 FROM blob_table WHERE blobid=4 for update;
SELECT georaster INTO geor2 FROM georaster_table WHERE georid = 8;
sdo_geor.exportTo(geor2, 'cropArea=(0,0,500,500)', 'TIFF', lobd2,
 'WORLDFILE', lobd3);
UPDATE blob_table set blob_col = lobd2, clob_col = lobd3 WHERE blobid = 4;
COMMIT;

END;
/

7.19 SDO_GEOR.generateAreaWeightedMean
Format

SDO_GEOR.generateAreaWeightedMean(
 georaster IN SDO_GEORASTER,
 window IN SDO_GEOMETRY,
 bandNumber IN NUMBER,
 nodata IN VARCHAR2 DEFAULT 'FALSE'
) RETURN NUMBER;

Description

Computes the area weighted statistical mean value on a specified band of the input
GeoRaster object.

Parameters

georaster
GeoRaster object.

window
A polygon geometry object from which to generate statistics. If it is in the model
space, it is transformed into raster space. See also the Usage Notes for the
SDO_GEOR.generateStatisticsfunction for SDO_SRID requirements.

bandNumber
Band ordinate number of the layer for which to perform the operation.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA

Chapter 7
SDO_GEOR.generateAreaWeightedMean

7-39

value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

Usage Notes

This function computes area weighted statistical mean value for the cells within a
specific window of the input GeoRaster object. It uses the area of the cell as the
weight for each cell value when computing the statistical mean value, so that all
subcells cut by the window boundary are processed appropriately.

Examples

The following example computes area weighted statistical mean value for the first
band of the input GeoRaster object.

SELECT sdo_geor.generateAreaWeightedMean(tmimage,sdo_geometry(2003,
 null,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1003, 3),
 MDSYS.SDO_ORDINATE_ARRAY(9.5,9.5,12.5,12.5)),0)
 FROM landsat WHERE id=11;

7.20 SDO_GEOR.generateBitmapPyramid
Format

SDO_GEOR.generateBitmapPyramid(
 src_geor IN SDO_GEORASTER,
 tmp_geor IN OUT SDO_GEORASTER,
 target_geor IN OUT SDO_GEORASTER,
 pyramidParams IN VARCHAR2,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL,
 addColorMap IN NUMBER DEFAULT 1);

Description

Generates pyramid data for a bitmap GeoRaster object.

Parameters

src_geor
Source GeoRaster object for which pyramid data is to be generated.

tmp_geor
Temporary GeoRaster object used to store temporary data

target_geor
Target GeoRaster object used to store the resulting GeoRaster data.

pyramidParams
A string containing the pyramid parameters. See the Usage Notes for information
about the available keywords and values.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads

Chapter 7
SDO_GEOR.generateBitmapPyramid

7-40

to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)

addColorMap
A number to specify whether to add a colormap to the target GeoRaster object to
display roads as white. 0 (zero) does not add such a colormap; 1 (the default) or any
other nonzero value adds such a colormap.

Usage Notes

For bitmap raster of points, lines, or polylines, which are typically stored in 1-bit cell
depth, the pyramiding approach described in Image Pyramiding: Parallel Generation
and Partial Update may not create high-quality pyramids. Distorted point patterns and
dashed lines are commonly seen in those pyramids. To solve such problems, you can
instead use the GeoRaster raster algebra to perform bitmap pyramiding, as explained
in Bitmap Pyramiding.

pyramidParams must be a quoted string that contains one or more of the following
keywords, each with an appropriate value:

• rLevel (for example, rLevel=2): Specifies the maximum reduction level: the
number of pyramid levels to create at a smaller (reduced) size than the original
object. If you do not specify this keyword, pyramid levels are generated until the
smaller of the number of rows or columns is between 64 and 128. The dimension
sizes at each lower resolution level are equal to the truncated integer values of the
dimension sizes at the next higher resolution level, divided by 2.

• resampling (for example, resampling=NN): Specifies the resampling method. Must
be one of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGE16.
For more information, see Resampling and Interpolation.

Note that for this procedure, BILINEAR and AVERAGE4 have the same effect.

• nodata (for example, nodata=TRUE): Specifies whether NODATA values and value
ranges should be considered during the procedure. Must be either TRUE (NODATA
values and value ranges should be considered) or FALSE (NODATA values and
value ranges should not be considered). The default value is FALSE. If the value
is TRUE and the resampling method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, whenever a cell value involved in the resampling calculation is a
NODATA value, the result of the resampling is also a NODATA value. The resulting
NODATA value is the minimum NODATA value associated with the current raster
layer, if multiple NODATA values or value ranges exist.

If you do not specify an rLevel value, the rLevel value is set to the default, which is
calculated as follows:

(int)(log2(a / 64))

Chapter 7
SDO_GEOR.generateBitmapPyramid

7-41

In the preceding calculation:

• log2 is a logarithmic function with 2 as its base.

• a is the smaller of the original row or column dimension size.

In the default case, the smaller of the row and column dimension sizes of the top-level
overview (the smallest top-level pyramid) is between 64 and 128. If you specify an
rLevel value greater than the maximum reduced-resolution level, the rLevel value is
set to the maximum reduced-resolution level, which is calculated as follows:

(int)(log2(a))

In this case, the smaller of the row and column dimension sizes of the top-level
overview is 1.

Examples

The following example generates a bitmap pyramid.

DECLARE
 src_gr sdo_georaster;
 tmp_gr sdo_georaster;
 target_gr sdo_georaster;
BEGIN

 SELECT georaster INTO src_gr
 FROM georaster_table WHERE georid = 6;
 SELECT georaster INTO tmp_gr
 FROM georaster_table WHERE georid = 7 FOR UPDATE;
 SELECT georaster INTO target_gr
 FROM georaster_table WHERE georid = 8 FOR UPDATE;

 -- Generate bitmap pyramids.
 sdo_geor.generateBitmapPyramid(src_gr,tmp_gr,target_gr 'rLevel=5,
resampling=NN');

 -- Update the target GeoRaster object.
 UPDATE georaster_table SET georaster =target_gr WHERE georid = 8;

END;
/

7.21 SDO_GEOR.generateBlockMBR
Format

SDO_GEOR.generateBlockMBR(
 georaster IN SDO_GEORASTER);

Description

Computes the minimum bounding rectangle (MBR) for each block in a GeoRaster
object, and sets the blockMBR attribute for each raster block in the raster data table.

Parameters

georaster
GeoRaster object.

Chapter 7
SDO_GEOR.generateBlockMBR

7-42

Usage Notes

This procedure does not change the GeoRaster object. It sets the value of the
blockMBR attribute (described in blockMBR Attribute) in each row of the raster data
table associated with the GeoRaster object.

If you created the GeoRaster object as described in Creating New GeoRaster
Objects, the blockMBR attribute values were automatically calculated and they
should not need to be validated or generated. However, if the GeoRaster object
was generated by a third party, you should validate the blockMBR attribute values
using the SDO_GEOR.validateBlockMBR function; and if any are not valid, call the
SDO_GEOR.generateBlockMBR procedure.

Examples

The following example computes the MBR for a specified GeoRaster object and sets
its blockMBR attribute.

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=1 FOR UPDATE;
 sdo_geor.generateBlockMBR(gr);
 COMMIT;
END;
/

7.22 SDO_GEOR.generatePyramid
Format

SDO_GEOR.generatePyramid(
 georaster IN OUT SDO_GEORASTER,
 pyramidParams IN VARCHAR2,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Description

Generates pyramid data, which is stored together with the original data.

Parameters

georaster
GeoRaster object for which pyramid data is to be generated and stored.

pyramidParams
A string containing the pyramid parameters. See the Usage Notes for information
about the available keywords and values.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,

Chapter 7
SDO_GEOR.generatePyramid

7-43

respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

Usage Notes

For information about pyramid data, see Pyramids.

pyramidParams must be a quoted string that contains one or more of the following
keywords, each with an appropriate value:

• rLevel (for example, rLevel=2): Specifies the maximum reduction level: the
number of pyramid levels to create at a smaller (reduced) size than the original
object. If you do not specify this keyword, pyramid levels are generated until the
smaller of the number of rows or columns is between 64 and 128. The dimension
sizes at each lower resolution level are equal to the truncated integer values of the
dimension sizes at the next higher resolution level, divided by 2.

• resampling (for example, resampling=NN): Specifies the resampling method. Must
be one of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGE16.
For more information, see Resampling and Interpolation.

Note that for this procedure, BILINEAR and AVERAGE4 have the same effect.

• nodata (for example, nodata=TRUE): Specifies whether NODATA values and value
ranges should be considered during the procedure. Must be either TRUE (NODATA
values and value ranges should be considered) or FALSE (NODATA values and
value ranges should not be considered). The default value is FALSE. If the value
is TRUE and the resampling method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, whenever a cell value involved in the resampling calculation is a
NODATA value, the result of the resampling is also a NODATA value. The resulting
NODATA value is the minimum NODATA value associated with the current raster
layer, if multiple NODATA values or value ranges exist.

If georaster is null or is a blank GeoRaster object, or if pyramid data exists
for georaster but it was created with the same pyramid parameters specified in
pyramidParams, this procedure performs no operation.

If pyramid data exists for georaster and it was created using a different resampling
value from that specified in pyramidParams, the old pyramid data is deleted and new
pyramid data is generated. However, a different nodata specification in pyramidParams
does not cause the pyramid data to be regenerated. To cause a new nodata value to
take effect, you must delete the old pyramid data and then regenerate it.

If you do not specify an rLevel value, the rLevel value is set to the default, which is
calculated as follows:

(int)(log2(a / 64))

Chapter 7
SDO_GEOR.generatePyramid

7-44

In the preceding calculation:

• log2 is a logarithmic function with 2 as its base.

• a is the smaller of the original row or column dimension size.

In the default case, the smaller of the row and column dimension sizes of the top-level
overview (the smallest top-level pyramid) is between 64 and 128. If you specify an
rLevel value greater than the maximum reduced-resolution level, the rLevel value is
set to the maximum reduced-resolution level, which is calculated as follows:

(int)(log2(a))

In this case, the smaller of the row and column dimension sizes of the top-level
overview is 1.

An exception is raised if georaster is invalid.

Examples

The following example creates pyramid data for a GeoRaster object.

DECLARE
 gr sdo_georaster;
BEGIN

 SELECT georaster INTO gr
 FROM georaster_table WHERE georid = 6 FOR UPDATE;

 -- Generate pyramids.
 sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN');

 -- Update the original GeoRaster object.
 UPDATE georaster_table SET georaster = gr WHERE georid = 6;

 COMMIT;
END;
/

7.23 SDO_GEOR.generateSpatialExtent
Format

SDO_GEOR.generateSpatialExtent(
 georaster IN SDO_GEORASTER,
 height IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

Description

Generates a spatial geometry that contains the spatial extent (footprint) of the
GeoRaster object.

Parameters

georaster
GeoRaster object.

Chapter 7
SDO_GEOR.generateSpatialExtent

7-45

height
Number specifying the Z value for three-dimensional (X, Y, Z) georeferencing.

Usage Notes

The returned SDO_GEOMETRY object is based on the model coordinate system
of the GeoRaster object. If the GeoRaster object is not georeferenced, the
SDO_GEOMETRY object has a null SDO_SRID value, which means the footprint
geometry is in cell space; otherwise, the SDO_SRID value of the SDO_GEOMETRY
object is the model SRID. Specifically:

• If the GeoRaster object is not georeferenced or if the model coordinate system is
projected, the spatial extent object is a single polygon derived from eight boundary
points.

• If the model coordinate system is geodetic, the spatial extent is densified
according to the object's spatial footprint. If the area of the footprint is not larger
than half of the Earth's surface, the result is a single geodetic polygon. Otherwise,
a geodetic MBR is returned as the generated spatial extent object, and this
returned object will be an invalid geometry according to Oracle Spatial and Graph
validation rules, but index and query operations will work on this returned object.

The footprint is automatically adjusted, based on the GeoRaster object's model
coordinate location (CENTER or UPPERLEFT), to cover the whole area in the model
space. CENTER is the default model coordinate location for non-georeferenced cases.

If the model coordinate system is three-dimensional, the generated spatial extent is a
three-dimensional geometry. To build a spatial index based on the generated value,
you may need to convert it into a two-dimensional geometry before saving it in the
spatialExtent attribute of the GeoRaster object. For more information about cross-
dimensionality transformations, see Oracle Spatial and Graph Developer's Guide.

This function does not set the spatial extent of the GeoRaster object (spatialExtent
attribute, described in spatialExtent Attribute). For information about setting the spatial
extent, see Generating and Setting Spatial Extents.

If georaster is null, this function returns a null SDO_GEOMETRY object. If georaster
is not valid, an exception is raised.

Examples

The following example generates a three-dimensional spatial extent, with a Z or height
dimension value of 10, in the geographic 3D coordinate system 4327 (the model
SRID). (The output is slightly reformatted.)

SELECT SDO_GEOR.generateSpatialExtent(georaster,10) spatialExtent
 FROM georaster_table where georid=10;

SPATIALEXTENT(A.GEORASTER,10)(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z),
SDO_ELEM_IN

-
SDO_GEOMETRY(3003, 4327, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARRAY(.181818182, 1.1627907, 10, 12.1228111, 1.07010227, 10,
19.3902574, 1.07010229, 10, 25.1482989, 1.07010229, 10, 30.0714774, 1.07010229,
10, 34.4500035, 1.07010229, 10, 38.3920079, 1.07010229, 10, 42.0490801,
1.07010229, 10, 45.4612165, 1.07010229, 10, 48.6719786, 1.07010229, 10,
53.6193472, 1.07010229, 10, 53.6193472, 12.346373, 10, 53.6178888, 15.3903048,
10, 53.6178888, 18.3032341, 10, 50.6322061, 18.3032341, 10, 47.5331761,
18.3032341, 10, 44.2541078, 18.3032341, 10, 40.7594212, 18.3032341, 10, 37,

Chapter 7
SDO_GEOR.generateSpatialExtent

7-46

18.3032341, 10, 32.9046537, 18.3032341, 10, 28.3630834, 18.3032341, 10,
23.1869539, 18.3032341, 10, 17, 18.3032341, 10, -2.220E-16, 18.3032341, 10, 0,
16.3247208, 10, -2.220E-16, 13.6133114, 10, .181818182, 1.1627907, 10))

The following examples return the spatial extent geometry of GeoRaster objects in the
GEORASTER column of the GEORASTER_TABLE table. (They refer to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

SELECT sdo_geor.generateSpatialExtent(georaster) spatialExtent
 FROM georaster_table WHERE georid=2;

SPATIALEXTENT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINA
--

SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_ARR
AY(0, 0, 256, 0, 511, 0, 511, 256, 511, 511, 256, 511, 0, 511, 0, 256, 0, 0))

SET NUMWIDTH 20
SELECT sdo_geor.generateSpatialExtent(georaster) spatialExtent
 FROM georaster_table WHERE georid=4;

SPATIALEXTENT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,
SDO_ORDINA
--

SDO_GEOMETRY(2003, 82263, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1), SDO_ORDINATE_AR
RAY(1828466.0909315, 646447.1932945, 1828466.0909315, 644479.85524, 1828466.0909
315, 642512.5171855, 1830433.428986, 642512.5171855, 1832400.7670405, 642512.517
1855, 1832400.7670405, 644479.85524, 1832400.7670405, 646447.1932945, 1830433.42
8986, 646447.1932945, 1828466.0909315, 646447.1932945))

7.24 SDO_GEOR.generateSpatialResolutions
Format (Procedure)

SDO_GEOR.generateSpatialResolutions(
 georaster IN OUT SDO_GEORASTER,
 outResolution OUT SDO_NUMBER_ARRAY);

Format (Function)

SDO_GEOR.generateSpatialResolutions(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER DEFAULT NULL,
 SRID IN NUMBER DEFAULT NULL,
 resolutionUnit IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_NUMBER_ARRAY;

Description

Generates the spatial resolution value along each spatial dimension of a GeoRaster
object.

Parameters

georaster
GeoRaster object.

Chapter 7
SDO_GEOR.generateSpatialResolutions

7-47

outResolution
Generated spatial resolutions of the GeoRaster object. It is an array of two numbers
that represent spatial resolutions on the X axis and Y axis, respectively.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

SRID
Coordinate system. Must be a value from the SRID column of the MDSYS.CS_SRS
table. The srid value cannot be 0 (zero). If not specified, the default is the SRID
associated with georaster.

resolutionUnit
Unit of measurement: a quoted string with unit=. If not specified, the unit associated
with SRID is used.

Usage Notes

SDO_GEOR.generateSpatialResolutions has two formats:

• The procedure format sets the generated spatial resolutions in the metadata for
the GeoRaster object. The metadata for the GeoRaster object is updated. The
GeoRaster object must be georeferenced in order to get the spatial resolution
generated.

• The function format generates and returns the spatial resolutions based on
the georeferencing information in the metadata for the GeoRaster object. The
metadata for the GeoRaster object is not updated.

The GeoRaster object must be georeferenced. The generated spatial resolution is the
resolution at the center cell of the GeoRaster object.

In the returned array of numeric values, each value indicates the number of units of
measurement associated with the data area represented by that spatial dimension
of a pixel. For example, if the spatial resolution values are (10,10) and the unit of
measurement for the ground data is meters, each pixel represents an area of 10
meters by 10 meters.

The GeoRaster object is automatically validated after the operation completes.

See also the Usage Notes for the SDO_GEOR.getSpatialResolutions function.

Examples

The following example generates the spatial resolution value along each spatial
dimension for pyramid level 2 of a specified GeoRaster object

SELECT sdo_geor.generateSpatialResolutions(georaster, 2, 4326, null) FROM
georaster_table WHERE georid=2;

SDO_GEOR.GENERATESPATIALRESOLUTIONS(GEORASTER,2,4326,NULL)
--
SDO_NUMBER_ARRAY(.000024266, .000018006)

Chapter 7
SDO_GEOR.generateSpatialResolutions

7-48

7.25 SDO_GEOR.generateStatistics
Format (Storage in Metadata)

SDO_GEOR.generateStatistics(
 georaster IN OUT SDO_GEORASTER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 histogram IN VARCHAR2,
 layerNumbers IN VARCHAR2 DEFAULT NULL,
 useBin IN VARCHAR2 DEFAULT 'TRUE',
 binFunction IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE'
) RETURN VARCHAR2;

or

SDO_GEOR.generateStatistics(
 georaster IN OUT SDO_GEORASTER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 histogram IN VARCHAR2,
 layerNumbers IN VARCHAR2 DEFAULT NULL,
 useBin IN VARCHAR2 DEFAULT 'TRUE',
 binFunction IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE'
) RETURN VARCHAR2;

Format (No Storage in Metadata)

SDO_GEOR.generateStatistics(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.generateStatistics(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.generateStatistics(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,

Chapter 7
SDO_GEOR.generateStatistics

7-49

 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN SDO_NUMBER_ARRAY;

Description

Computes statistical data associated with one or more layers, or with one or more
layers and pyramid levels. The two sets of function formats have significant usage
differences:

• Storage in Metadata formats also set statistical data in the GeoRaster object
metadata for each specified layer, and optionally for the whole raster. These
formats return the string TRUE or FALSE, indicating success or failure of the
operation.

• No Storage in Metadata formats do not set any GeoRaster object metadata, and
they calculate statistics for a single layer or for the aggregation of specified layers.
These formats return an SDO_NUMBER_ARRAY object where the numbers
reflect the aggregated minimum, maximum, mean, median, mode, standard
deviation, and sum values.

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level on which to perform the operation.

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the

Chapter 7
SDO_GEOR.generateStatistics

7-50

geometry object in raster space is used as the window. The default value is the entire
image.
In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.

histogram
Specify TRUE to cause a histogram to be computed and stored, or FALSE to
cause a histogram not to be computed and stored. Histograms are discussed in
SDO_GEOR_HISTOGRAM Object Type. The XML definitions of the <histogram>
element and the histogramType complex type are included in GeoRaster Metadata
XML Schema.

layerNumbers
Numbers of the layers for which to compute the statistics. This is a string that can
include numbers, number ranges indicated by hyphens (-), and commas to separate
numbers and number ranges. For example, '1,3-5,7' specifies layers 1, 3, 4, 5, and
7. Layer 0 (zero) indicates the object layer.

bandNumbers
Band ordinate numbers of the layers for which values are used in computing the
statistics. This is a string that can include numbers, number ranges indicated by
hyphens (-), and commas to separate numbers and number ranges. For example,
'0,1,3-5,7' specifies layers 1, 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are
used in computing the statistics.

useBin
Specifies whether or not to use a provided bin function (specified in the binFunction
parameter) when generating statistics. TRUE (the default) causes a bin function to be
used as follows: (1) the bin function specified by the binFunction parameter, if it is
not null; otherwise, (2) the bin function specified by the <binFunction> element in the
GeoRaster XML metadata, if one is specified; otherwise, (3) a dynamically generated
bin function, as explained in the Usage Notes. FALSE causes a dynamically generated
bin function to be used, and causes the binFunction parameter and <binFunction>
element to be ignored.
For information about bin functions, see the Usage Notes for the
SDO_GEOR.setBinFunction procedure.

binFunction
Bin function as an array whose elements specify the bin type, total number
of bins, first bin number, minimum cell value, and maximum cell value. The
SDO_NUMBER_ARRAY type is defined as VARRAY(1048576) OF NUMBER. For more
information about the bin function for SQO_GEOR.generateStatistics, see the Usage
Notes. For information about bin functions and an example, see the Usage Notes for
the SDO_GEOR.setBinFunction procedure.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

Chapter 7
SDO_GEOR.generateStatistics

7-51

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes and can set the statistical data described by the
<statisticDatasetType> element in the GeoRaster metadata XML schema, which
is described in GeoRaster Metadata XML Schema.

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

If histogram is TRUE, this function determines the range of each bin based on the bin
function being used, and within each range it computes the count of each pixel value.
The histogram and the bin function are related as follows: each bin is mapped to a
(value, count) pair of the histogram, and the lower boundary of each bin is mapped to
corresponding value of histogram (value, count) pair, with the following exceptions:

• If Min_r < Min, then one more pair (Min_r, count) is added as the first pair of
the histogram. (Min_r is the real minimum value of the data set computed by this
function, and Min is the min value specified in the bin function.)

• If Max_r > Max, then one more pair (Max_r, count) is added as the last pair of
the histogram. (Max_r is the real maximum value of the data set computed by this
function, and Max is the max value specified in the bin function.)

• Leading and trailing count=0 pairs in the histogram are suppressed. For example:

(1,0) (2,0) (3,11) (4,12) becomes (3,11) (4,12)
(1,11) (2,12) (3,0) (4,0) becomes (1,11) (2,12)

If histogram is TRUE, any existing histogram in the XML metadata is replaced by the
new generated histogram.

SQO_GEOR.generateStatistics supports only LINEAR bin functions (binType = 0), not
LOGARITHM or EXPLICIT bin functions. (The XML definitions of all bin function types
are in GeoRaster Metadata XML Schema.) If the useBin parameter value is FALSE,
this function ignores any binFunction parameter value and any <binFunction>
element in the GeoRaster XML metadata, and it uses a LINEAR bin function in which
the min and max values are the actual minimum and maximum values of the data set,
and the numbins value depends on the cell depth, as follows:

• If cellDepth = 1, numbins = 2.

• If cellDepth = 2, numbins = 4.

• If cellDepth = 4, numbins = 8.

• If cellDepth >= 8, numbins = 256.

Chapter 7
SDO_GEOR.generateStatistics

7-52

If the useBin parameter value is TRUE, this function uses a bin function as follows:

1. If the binFunction parameter specifies a valid bin function, it is used.

2. Otherwise, if a valid bin function is defined in the GeoRaster metadata, it is used.

3. Otherwise, the same bin function is used as when the useBin parameter value is
FALSE.

Contrast this function, which causes GeoRaster to compute and optionally set the
statistics, with the SDO_GEOR.setStatistics procedure, in which you specify the
statistics to be set.

To retrieve the statistical data associated with a layer, use the
SDO_GEOR.getStatistics function.

Examples

The following example generates the statistical data and a histogram.

DECLARE
 gr SDO_GEORASTER;
 ret VARCHAR2(256);
 window SDO_NUMBER_ARRAY := SDO_NUMBER_ARRAY(20,10,50,50);
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=1 FOR UPDATE;
 SDO_GEOR.setBinFunction(gr,1,sdo_number_array(0,10,1,50,200));
 ret := SDO_GEOR.generateStatistics(gr, 'samplingFactor=5', window, 'TRUE',
 '1-1', 'TRUE');
 UPDATE georaster_table SET georaster=gr WHERE georid=1;
 COMMIT;
END;
/

The following example generates the statistical data for all bands on pyramid level 1;
however, it does not create a histogram or modify the GeoRaster object metadata.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 stat sdo_number_array;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 stat:=sdo_geor.generateStatistics(gr,1,'samplingFactor=7',window,null,'false');
 dbms_output.put_line('min='||stat(1));
 dbms_output.put_line('max='||stat(2));
 dbms_output.put_line('mean='||stat(3));
 dbms_output.put_line('median='||stat(4));
 dbms_output.put_line('mode='||stat(5));
 dbms_output.put_line('std='||stat(6));
 dbms_output.put_line('sum='||stat(7));
END;
/

The following example uses the mask parameter to select the pixels for the statistics
calculation. The statistics are returned in an array.

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 stat sdo_number_array;
BEGIN

Chapter 7
SDO_GEOR.generateStatistics

7-53

 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 SELECT mask INTO maskgr FROM masks WHERE id=1;

stat:=sdo_geor.generateStatistics(gr,maskgr,'samplingFactor=2','0-2','false','par
allel=4');
 dbms_output.put_line('min='||stat(1));
 dbms_output.put_line('max='||stat(2));
 dbms_output.put_line('mean='||stat(3));
 dbms_output.put_line('median='||stat(4));
 dbms_output.put_line('mode='||stat(5));
 dbms_output.put_line('std='||stat(6));
 dbms_output.put_line('sum='||stat(7));
END;
/

7.26 SDO_GEOR.generateStatisticsMax
Format

SDO_GEOR.generateStatisticsMax(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMax(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMax(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Computes statistical data associated with one or more layers on a specified pyramid
level, and returns the maximum value. (It does not modify metadata in the GeoRaster
object.)

Chapter 7
SDO_GEOR.generateStatisticsMax

7-54

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the
geometry object in raster space is used as the window. The default value is the entire
image.
In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.
If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers
Band ordinate numbers of the layers for which to compute the statistics. This is
a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '1,3-5,7' specifies
layers 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are used in computing the
statistics.

Chapter 7
SDO_GEOR.generateStatisticsMax

7-55

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MAX value. (The statistical data
is described by the <statisticDatasetType> element in the GeoRaster metadata
XML schema, which is described in GeoRaster Metadata XML Schema; however, this
function does not update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and
returns the maximum value.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 max number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

max:=sdo_geor.generateStatisticsMax(gr,1,'samplingFactor=7',window,null,'false');
END;
/

The following example uses the mask parameter to select the pixels for the statistics
calculation. The max value is returned.

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 max_val number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 SELECT mask INTO maskgr FROM masks WHERE id=1;

Chapter 7
SDO_GEOR.generateStatisticsMax

7-56

max_val:=sdo_geor.generateStatisticsMax(gr,maskgr,'samplingFactor=2','0','false',
'parallel=4');
 dbms_output.put_line('max='||max_val);
END;
/

7.27 SDO_GEOR.generateStatisticsMean
Format

SDO_GEOR.generateStatisticsMean(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMean(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMean(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Computes statistical data associated with one or more layers on a specified pyramid
level, and returns the mean (average) value. (It does not modify metadata in the
GeoRaster object.)

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

Chapter 7
SDO_GEOR.generateStatisticsMean

7-57

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the
geometry object in raster space is used as the window. The default value is the entire
image.
In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.
If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers
Band ordinate numbers of the layers for which to compute the statistics. This is
a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '1,3-5,7' specifies
layers 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are used in computing the
statistics.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

Chapter 7
SDO_GEOR.generateStatisticsMean

7-58

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MEAN value. (The statistical
data is described by the <statisticDatasetType> element in the GeoRaster metadata
XML schema, which is described in GeoRaster Metadata XML Schema; however, this
function does not update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and
returns the mean value.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 mean number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

mean:=sdo_geor.generateStatisticsMean(gr,1,'samplingFactor=7',window,null,'false'
);
END;
/

The following example uses the mask parameter to select the pixels for the statistics
calculation. The mean value is returned.

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 mean_val number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 SELECT mask INTO maskgr FROM masks WHERE id=1;

mean_val:=sdo_geor.generateStatisticsMean(gr,maskgr,'samplingFactor=2','0','false
','parallel=4');
 dbms_output.put_line('mean='||mean_val);
END;
/

Chapter 7
SDO_GEOR.generateStatisticsMean

7-59

7.28 SDO_GEOR.generateStatisticsMedian
Format

SDO_GEOR.generateStatisticsMedian(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMedian(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMedian(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Computes statistical data associated with one or more layers on a specified pyramid
level, and returns the median value. (It does not modify metadata in the GeoRaster
object.)

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

Chapter 7
SDO_GEOR.generateStatisticsMedian

7-60

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the
geometry object in raster space is used as the window. The default value is the entire
image.
In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.
If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers
Band ordinate numbers of the layers for which to compute the statistics. This is
a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '1,3-5,7' specifies
layers 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are used in computing the
statistics.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of

Chapter 7
SDO_GEOR.generateStatisticsMedian

7-61

parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MEDIAN value. (The statistical
data is described by the <statisticDatasetType> element in the GeoRaster metadata
XML schema, which is described in GeoRaster Metadata XML Schema; however, this
function does not update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and
returns the median value.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 median number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

median:=sdo_geor.generateStatisticsMedian(gr,1,'samplingFactor=7',window,null,'fa
lse');
END;
/

The following example uses the mask parameter to select the pixels for the statistics
calculation. The median value is returned.

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 median_val number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 SELECT mask INTO maskgr FROM masks WHERE id=1;

median_val:=sdo_geor.generateStatisticsMedian(gr,maskgr,'samplingFactor=2','0','f
alse','parallel=4');
 dbms_output.put_line('median='||median_val);
END;
/

7.29 SDO_GEOR.generateStatisticsMin
Format

SDO_GEOR.generateStatisticsMin(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,

Chapter 7
SDO_GEOR.generateStatisticsMin

7-62

 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMin(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMin(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Computes statistical data associated with one or more layers on a specified pyramid
level, and returns the minimum value. (It does not modify metadata in the GeoRaster
object.)

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

Chapter 7
SDO_GEOR.generateStatisticsMin

7-63

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the
geometry object in raster space is used as the window. The default value is the entire
image.
In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.
If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers
Band ordinate numbers of the layers for which to compute the statistics. This is
a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '1,3-5,7' specifies
layers 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are used in computing the
statistics.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MIN value. (The statistical data
is described by the <statisticDatasetType> element in the GeoRaster metadata

Chapter 7
SDO_GEOR.generateStatisticsMin

7-64

XML schema, which is described in GeoRaster Metadata XML Schema; however, this
function does not update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and
returns the minimum value.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 min number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

min:=sdo_geor.generateStatisticsMin(gr,1,'samplingFactor=7',window,null,'false');
END;
/

The following example uses the mask parameter to select the pixels for the statistics
calculation. The min value is returned.

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 min_val number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 SELECT mask INTO maskgr FROM masks WHERE id=1;

min_val:=sdo_geor.generateStatisticsMin(gr,maskgr,'samplingFactor=2','0','false',
'parallel=4');
 dbms_output.put_line('min='||min_val);
END;
/

7.30 SDO_GEOR.generateStatisticsMode
Format

SDO_GEOR.generateStatisticsMode(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

Chapter 7
SDO_GEOR.generateStatisticsMode

7-65

SDO_GEOR.generateStatisticsMode(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsMode(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Computes statistical data associated with one or more layers on a specified pyramid
level, and returns the mode value (the value that occurs most frequently). (It does not
modify metadata in the GeoRaster object.)

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

Chapter 7
SDO_GEOR.generateStatisticsMode

7-66

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the
geometry object in raster space is used as the window. The default value is the entire
image.
In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.
If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers
Band ordinate numbers of the layers for which to compute the statistics. This is
a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '1,3-5,7' specifies
layers 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are used in computing the
statistics.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the MODEVALUE value. (The
statistical data is described by the <statisticDatasetType> element in the GeoRaster
metadata XML schema, which is described in GeoRaster Metadata XML Schema;
however, this function does not update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

Chapter 7
SDO_GEOR.generateStatisticsMode

7-67

Examples

The following example computes statistical data for all bands on pyramid level 1, and
returns the mode value.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 mode number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

mode:=sdo_geor.generateStatisticsMode(gr,1,'samplingFactor=7',window,null,'false'
);
END;
/

The following example uses the mask parameter to select the pixels for the statistics
calculation. The mode value is returned.

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 mode_val number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 SELECT mask INTO maskgr FROM masks WHERE id=1;

mode_val:=sdo_geor.generateStatisticsMode(gr,maskgr,'samplingFactor=2','0','false
','parallel=4');
 dbms_output.put_line('mode='||mode_val);
END;
/

7.31 SDO_GEOR.generateStatisticsSTD
Format

SDO_GEOR.generateStatisticsSTD(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsSTD(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',

Chapter 7
SDO_GEOR.generateStatisticsSTD

7-68

 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsSTD(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Description

Computes statistical data associated with one or more layers on a specified pyramid
level, and returns the standard deviation value. (It does not modify metadata in the
GeoRaster object.)

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the
geometry object in raster space is used as the window. The default value is the entire
image.

Chapter 7
SDO_GEOR.generateStatisticsSTD

7-69

In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.
If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers
Band ordinate numbers of the layers for which to compute the statistics. This is
a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '1,3-5,7' specifies
layers 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are used in computing the
statistics.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the STD value. (The statistical data
is described by the <statisticDatasetType> element in the GeoRaster metadata
XML schema, which is described in GeoRaster Metadata XML Schema; however, this
function does not update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and
returns the standard deviation value.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 std number;
BEGIN

Chapter 7
SDO_GEOR.generateStatisticsSTD

7-70

 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

std:=sdo_geor.generateStatisticsSTD(gr,1,'samplingFactor=7',window,null,'false');
END;
/

The following example uses the mask parameter to select the pixels for the statistics
calculation. The STD (standard deviation) value is returned.

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 std_val number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;
 SELECT mask INTO maskgr FROM masks WHERE id=1;

std_val:=sdo_geor.generateStatisticsSTD(gr,maskgr,'samplingFactor=2','0','false',
'parallel=4');
 dbms_output.put_line('std='||std_val);
END;
/

7.32 SDO_GEOR.generateStatisticsSum
Format

SDO_GEOR.generateStatisticsSum(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsSum(
 georaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 samplingFactor IN VARCHAR2,
 samplingWindow IN SDO_GEOMETRY,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT NULL',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

or

SDO_GEOR.generateStatisticsSum(
 georaster IN MDSYS.SDO_GEORASTER,
 mask IN MDSYS.SDO_GEORASTER,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 bandNumbers IN VARCHAR2 DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Chapter 7
SDO_GEOR.generateStatisticsSum

7-71

Description

Computes statistical data associated with one or more layers, and returns the sum
value. (It does not modify metadata in the GeoRaster object.)

Parameters

georaster
GeoRaster object.

mask
A bitmap mask stored in a GeoRaster object. It can be georeferenced or not:

• If the mask is not georeferenced, its extent will be used as cell space coordinates.

• If the mask is georeferenced, it must has the same SRID as the input GeoRaster
object.

The spatial area of the input GeoRaster object that is covered by the mask will be
calculated for statistics. A cell value of 1 in the mask means the pixel at the same
location of the source geoRaster will be used for the statistics calculation. The mask
can be smaller or larger than the source GeoRaster object.

pyramidLevel
Pyramid level of the returned resolution values. The default is pyramid level 0.

samplingFactor
Sampling factor in the format 'samplingFactor=n', with the denominator n in 1/(n*n)
representing the number of cells skipped in both row and column dimensions in
computing the statistics. For example, if samplingFactor is 4, one-sixteenth of the
cells are sampled; but if samplingFactor is 1, all cells are sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they will be
computed.

samplingWindow
A sampling window for which to generate statistics, specified either as a numeric
array or as an SDO_GEOMETRY object. If the data type is SDO_NUMBER_ARRAY
(defined as VARRAY(1048576) OF NUMBER), the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY, it is transformed into raster
space if it is in model space, and then the minimum bounding rectangle (MBR) of the
geometry object in raster space is used as the window. The default value is the entire
image.
In both cases, the intersection of the MBR of the sampling window in raster space
and the MBR of the GeoRaster object in raster space is used for computing statistics.
However, if polygonClip is TRUE, then the samplingWindow geometry object will be
used for the operation instead of the MBR of the sampling window, in which case only
cells within the samplingWindow geometry are counted.
If the data type is SDO_GEOMETRY, see also the Usage Notes for the
SDO_GEOR.generateStatistics function for SDO_SRID requirements.

bandNumbers
Band ordinate numbers of the layers for which to compute the statistics. This is
a string that can include numbers, number ranges indicated by hyphens (-), and
commas to separate numbers and number ranges. For example, '1,3-5,7' specifies

Chapter 7
SDO_GEOR.generateStatisticsSum

7-72

layers 2, 4, 5, 6, and 8. If bandNumbers is null, all bands are used in computing the
statistics.

nodata
Specifies whether or not to compare each cell values with NODATA values defined
in the metadata when computing statistics. TRUE causes all pixels with a NODATA
value not to be considered; FALSE (the default) causes pixels with NODATA values to
be considered as regular pixels. NODATA values and value ranges are discussed in
NODATA Values and Value Ranges.

polygonClip
The string TRUE causes the samplingWindow geometry object to be used for the
operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the samplingWindow geometry object to be used for the operation.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, you cannot roll back the results of this function.

Usage Notes

This function computes statistical data and returns the SUM value. (This function does
not update any metadata.)

If samplingWindow is outside the GeoRaster object or if it contains only NODATA
values, the following error is raised:

ORA-13393: null or invalid samplingWindow parameter

See also the SDO_GEOR.generateStatistics function.

Examples

The following example computes statistical data for all bands on pyramid level 1, and
returns the SUM value.

DECLARE
 gr sdo_georaster;
 window sdo_geometry;
 sum number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

sum:=sdo_geor.generateStatisticsSum(gr,1,'samplingFactor=7',window,null,'false');
END;
/

The following example uses the mask parameter to compute statistical data using the
given mask for band 0 with a samplingFactor of 2, and returns the SUM value

DECLARE
 gr sdo_georaster;
 maskgr sdo_georaster;
 sum_val number;
BEGIN
 SELECT tmimage INTO gr FROM landsat WHERE id=2021;

Chapter 7
SDO_GEOR.generateStatisticsSum

7-73

 SELECT mask INTO maskgr FROM masks WHERE id=1;

sum_val:=sdo_geor.generateStatisticsSum(gr,maskgr,'samplingFactor=2','0','false',
'parallel=4');
 dbms_output.put_line('sum='||sum_val);
END;
/

7.33 SDO_GEOR.georeference
Format (procedure)

SDO_GEOR.georeference(
 georaster IN OUT SDO_GEORASTER,
 srid IN NUMBER,
 modelCoordinateLocation IN NUMBER,
 xCoefficients IN SDO_NUMBER_ARRAY,
 yCoefficients IN SDO_NUMBER_ARRAY);

Format (function)

SDO_GEOR.georeference(
 georaster IN OUT SDO_GEORASTER,
 FFMethodType IN VARCHAR2,
 nGCP IN NUMBER,
 GCPs IN SDO_GEOR_GCP_COLLECTION,
 storeGCP IN VARCHAR2 DEFAULT 'TRUE',
 srid IN NUMBER DEFAULT NULL,
 modelCoordinateLocation IN NUMBER DEFAULT NULL,
 setResolution IN VARCHAR2 DEFAULT NULL
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.georeference(
 georaster IN OUT SDO_GEORASTER,
 gcpGeorefModel IN SDO_GEOR_GCPGEOREFTYPE,
 storeGCP IN VARCHAR2 DEFAULT 'TRUE',
 srid IN NUMBER DEFAULT NULL,
 modelCoordinateLocation IN NUMBER DEFAULT NULL,
 setResolution IN VARCHAR2 DEFAULT NULL
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.georeference(
 georaster IN OUT SDO_GEORASTER,
 FFMethodType IN VARCHAR2 DEFAULT NULL,
 srid IN NUMBER DEFAULT NULL,
 modelCoordinateLocation IN NUMBER DEFAULT NULL,
 setResolution IN VARCHAR2 DEFAULT NULL
) RETURN SDO_NUMBER_ARRAY;

Description

As a procedure, georeferences a GeoRaster object using specified cell-to-model
transformation coefficients of an affine transformation. As a function, returns the
solution of any one of the supported geometric models using ground control points
(GCPs) that are either stored in the database or specified in parameters.

Chapter 7
SDO_GEOR.georeference

7-74

Parameters

georaster
The SDO_GEORASTER object to be georeferenced.

srid
Model coordinate system. For the procedure, must not be null or 0 (zero); for function,
it can be null. It can be a value from the SRID column of the MDSYS.CS_SRS table. If
it is not a value from the SRID column of the MDSYS.CS_SRS table, the SRID is not
supported by Oracle Spatial and Graph, and some SRID-related operations may not
be supported.

modelCoordinateLocation
A value specifying the model location of the base of the area represented by a cell: 0
for CENTER or 1 for UPPERLEFT.

xCoefficients
An array specifying the A, B, and C coefficient values in the calculation, as explained
in the Usage Notes.

yCoefficients
An array specifying the D, E, and F coefficient values in the calculation, as explained
in the Usage Notes.

FFMethodType
Polynomial or rational polynomial function used as georeference geometric model.
Must be one of the following string values: Affine, QuadraticPolynomial,
CubicPolynomial, DLT, QuadraticRational, or RPC.

gcpGeorefModel
Object containing the following: FFMethodType, nGCP, GCPs, solutionAccuracy.

nGCP
Number of ground control points in the GCP collection (GCPs parameter).

GCPs
The GCP collection, of type SDO_GEOR_GCP_COLLECTION (described in
SDO_GEOR_GCP_ COLLECTION Collection Type).

storeGCP
A flag indicating whether the GCPs should be stored in the GeoRaster metadata. The
string TRUE (the default) stores the points in the GeoRaster metadata; the string FALSE
does not store the points in the GeoRaster metadata.

setResolution
A flag indicating whether the spatial resolution is calculated and stored in the
GeoRaster metadata. The string FALSE or a null value does not store the spatial
resolution in the GeoRaster metadata; the string TRUE stores the spatial resolution in
the GeoRaster metadata.

Usage Notes

Notes for the Procedure Format

Chapter 7
SDO_GEOR.georeference

7-75

Use this procedure to georeference a GeoRaster object based on an existing affine
transformation. Georeferencing is explained in Georeferencing and Georeferencing
GeoRaster Objects.

This procedure assumes that in the original georeferencing information in the source
data, such as in an ESRI world file, the transformation formulas are the following:

x = A * column + B * row + C
y = D * column + E * row + F

Specify the preceding A, B, C, D, E, and F coefficients to the
SDO_GEOR.georeference procedure. They are automatically adjusted internally to
produce the correct georeferencing result: a, b, c, d, e, and f coefficients, as in the
following formulas:

row = a + b * x + c * y
column = d + e * x + f * y

In these formulas:

• row = Row index of the cell in raster space.

• column = Column index of the cell in raster space.

• x = East-West position of the point on the ground or in model space.

• y = North-South position of the point on the ground or in model space.

• a, b, c, d, e, and f are coefficients, and they are stored in the GeoRaster SRS
metadata.

• b*f – c*e should not be equal to 0 (zero).

In these formulas, if b = 0, f = 0, c = -e, and both c and e are not 0 (zero), the raster
data is called rectified, and the formula becomes:

row = a + c * y
column = d - c * x

This procedure sets the spatial resolutions of the GeoRaster object.

The following also perform operations related to georeferencing:

• The SDO_GEOR.setSRS procedure sets or deletes georeferencing information.

• The SDO_GEOR.importFrom procedure can load an ESRI world file or a Digital
Globe RPC file from a file or from a CLOB object. It also loads geometadata from
a GeoTIFF file.

• The GeoRaster loader tool (described in GeoRaster Tools: Viewer_ Loader_
Exporter) can load an ESRI world file, a Digital Globe RPC file, or a GeoTIFF
file.

Notes for the Function Formats (for Use with GCPs)

This function calculates the solution of the specified geometric model (the
FFMethodType) using the GCPs that are either stored in the database or specified
in parameters, and it stores the solution in the GeoRaster functional fitting model.

The returned array contains RMS values and residuals, which have the following
order: the solution accuracy (rowRMS, colRMS, totalRMS) computed using control
points, the ground positioning accuracy (xRMS, yRMS, zRMS, modelTotalRMS)
computed using check points, the ground positioning accuracy (xRMS, yRMS, zRMS,

Chapter 7
SDO_GEOR.georeference

7-76

modelTotalRMS) computed using control points, and the (xResidual, yResidual) for
each control point (not for check points). The ordering of the residuals is the same as
the control points stored in the XML metadata (not necessarily in the sequential order
of the control point ID values if the ID values are numbers).

There are always at least 17 values returned (assuming at least 3 control points).
A positioning accuracy (RMS) value of –1.0 means that value does not exist. For a
two-dimensional geometric model, the zRMS value is always –1.0; otherwise, zRMS
values are always 0 in the current release.

The GCPs can either be retrieved from the GeoRaster metadata or provided using the
GCP-related object types.

For the interface without GCP information (that is, the format without the
gcpGeorefModel parameter), the GCPs are assumed to be stored in the GeoRaster
object's metadata. If no GCPs are stored or if not enough GCPs are stored for the
specified model, an exception is raised.

After this function call, the GeoRaster object is georeferenced and the coefficients of
the functional fitting model are set in the GeoRaster SRS metadata component.

For more information about georeferencing using GCPs, see Ground Control Point
(GCP) Georeferencing Model.

Examples

The following example georeferences a GeoRaster object directly using the cell-
to-model coefficients of an affine transformation. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid = 1 FOR UPDATE;
 sdo_geor.georeference(gr, 82394, 0,
 sdo_number_array(28.5, 0, 1232804.04),
 sdo_number_array(0, -28.5, 13678.09));
 UPDATE georaster_table SET georaster = gr WHERE georid = 1;
 COMMIT;
END;
/

PL/SQL procedure successfully completed.

SET NUMWIDTH 20
SELECT georid, sdo_geor.getSRS(georaster) SRS FROM georaster_table
 WHERE georid = 1;

 GEORID

SRS(ISREFERENCED, ISRECTIFIED, ISORTHORECTIFIED, SRID,
SPATIALRESOLUTION, SPATIA
--

 1
SDO_GEOR_SRS('TRUE', 'TRUE', NULL, 82394, SDO_NUMBER_ARRAY(28.5, 28.5), NULL, NU
LL, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, NULL, NULL, NULL, SDO_NUMBER_ARRAY(1, 2, 1, 3,
 479.93298245614, 0, -.0350877192982456), SDO_NUMBER_ARRAY(1, 0, 0, 1, 1), SDO_N

Chapter 7
SDO_GEOR.georeference

7-77

UMBER_ARRAY(1, 2, 1, 3, -43256.2821052632, .0350877192982456, 0), SDO_NUMBER_ARR
AY(1, 0, 0, 1, 1))

If the original raster data is rectified and if the model coordinate of the center point
of the upper-left corner cell is (x0, y0) and its spatial resolution is s, you can directly
use the preceding example code to georeference the GeoRaster object by replacing
28.5 with s, 1232804.04 with x0, and 13678.09 with y0. If you have other information
about the GeoRaster object, such as a well-defined precise envelope of the raster or
the model coordinates of the center point, you can compute the (x0, y0) and the spatial
resolution s, and then use the same approach to georeference the object.

The following example georeferences a GeoRaster object, using ground control point
(GCP) information.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 georefModel SDO_GEOR_GCPGEOREFTYPE;
 GCPs SDO_GEOR_GCP_COLLECTION;
 rms sdo_number_array;
BEGIN
 SELECT georaster INTO gr1 from georaster_table WHERE georid=10 FOR UPDATE;

 GCPs := SDO_GEOR_GCP_COLLECTION(
 SDO_GEOR_GCP('1', '', 1,
 2, sdo_number_array(25.625000, 73.875000),
 2, sdo_number_array(237036.937500, 897987.187500),
 NULL, NULL),
 SDO_GEOR_GCP('2', '', 1,
 2, sdo_number_array(100.625000, 459.125000),
 2, sdo_number_array(237229.562500, 897949.687500),
 NULL, NULL),
 SDO_GEOR_GCP('3', '', 1,
 2, sdo_number_array(362.375000, 77.875000),
 2, sdo_number_array(237038.937500, 897818.812500),
 NULL, NULL),
 SDO_GEOR_GCP('4', '', 1,
 2, sdo_number_array(478.875000, 402.125000),
 2, sdo_number_array(237201.062500, 897760.562500),
 NULL, NULL),
 SDO_GEOR_GCP('5', '', 2,
 2, sdo_number_array(167.470583, 64.030686),
 2, sdo_number_array(237032.015343, 897916.264708),
 NULL, NULL),
 SDO_GEOR_GCP('6', '', 2,
 2, sdo_number_array(101.456177, 257.915534),
 2, sdo_number_array(237128.957767, 897949.271912),
 NULL, NULL)
);

 georefModel := SDO_GEOR_GCPGEOREFTYPE('Affine',
GCPs.count, GCPs, NULL);

 rms := sdo_geor.georeference(gr1, georefModel, 'FALSE', 26986, 1);
 UPDATE georaster_table SET georaster=gr1 WHERE georid=10;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.georeference

7-78

7.34 SDO_GEOR.getBandDimSize
Format

SDO_GEOR.getBandDimSize(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of bands in a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

For an explanation of bands, see Bands_ Layers_ and Metadata.

If georaster or its metadata is null, this function returns a null value.

Examples

The following example returns the spatial dimension sizes and the number of
bands (one in this case) for a GeoRaster object. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters. The output is reformatted for readability.)

SELECT sdo_geor.getSpatialDimSizes(georaster) spatialDimSizes,
 sdo_geor.getBandDimSize(georaster) bandDimSize
 FROM georaster_table WHERE georid=21;

SPATIALDIMSIZES BANDDIMSIZE
-------------------------- -----------
SDO_NUMBER_ARRAY(512, 512) 1

7.35 SDO_GEOR.getBeginDateTime
Format

SDO_GEOR.getBeginDateTime(
 georaster IN SDO_GEORASTER
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns the beginning date and time for raster data collection in the metadata for a
GeoRaster object.

Parameters

georaster
GeoRaster object.

Chapter 7
SDO_GEOR.getBandDimSize

7-79

Usage Notes

To set the beginning date and time for raster data collection in the metadata for a
GeoRaster object, use the SDO_GEOR.setBeginDateTime procedure.

If georaster or its metadata is null, this function returns a null value.

Examples

The following example returns the beginning and ending dates and times for
raster data collection in the metadata for the GeoRaster object in a table named
GEORASTER_TABLE where the GEORID column contains the value 4. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

SELECT sdo_geor.getBeginDateTime(georaster) beginDateTime,
 sdo_geor.getEndDateTime(georaster) endDateTime
 FROM georaster_table WHERE georid=4;

BEGINDATETIME

ENDDATETIME

01-JAN-00 05.00.00.000000000 AM +00:00
15-NOV-02 08.00.00.000000000 PM +00:00

7.36 SDO_GEOR.getBinFunction
Format

SDO_GEOR.getBinFunction(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Gets the bin function associated with a layer.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin type. A value of 0 (zero) indicates the
object layer.

Usage Notes

This function returns the bin function as an array whose elements specify the bin type,
total number of bins, first bin number, minimum cell value, and maximum cell value.
The SDO_NUMBER_ARRAY type is defined as VARRAY(1048576) OF NUMBER.

If the bin type is EXPLICIT, an external bin table is used and this function returns a null
value.

Chapter 7
SDO_GEOR.getBinFunction

7-80

For a more detailed explanation of the bin function format, see the Usage Notes for the
SDO_GEOR.setBinFunction procedure.

An exception is raised if layerNumber is null, negative, or greater than the maximum
layer number.

Examples

The following example gets the bin function for layer 3 of a specified GeoRaster
object.

SELECT sdo_geor.getBinFunction(georaster,3) FROM georaster_table WHERE georid=4;

SDO_GEOR.GETBINFUNCTION(GEORASTER,3)
--
SDO_NUMBER_ARRAY(0, 10, 1, 0, 511)

7.37 SDO_GEOR.getBinTable
Format

SDO_GEOR.getBinTable(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the name of the bin table associated with a layer.

Note:

GeoRaster does not perform operations using the bin table in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin table name. A value of 0 (zero)
indicates the object layer.

Usage Notes

This function is relevant only if the bin type is EXPLICIT. To retrieve the bin type, use
the SDO_GEOR.getBinType function.

To specify a bin table for a layer, use the SDO_GEOR.setBinTable procedure.

See also the information in the Usage Notes for the SDO_GEOR.getBinType function.

If georaster or its metadata is null, this function returns a null value.

Chapter 7
SDO_GEOR.getBinTable

7-81

An exception is raised if layerNumber is null, negative, or greater than the maximum
layer number.

Examples

The following example returns the name of the bin table for layer number 4 of a
specified GeoRaster object in a table named GEORASTER_TABLE, whose definition
is presented after Example 1-1 in Storage Parameters.

SELECT sdo_geor.getBinTable(georaster, 4) FROM georaster_table WHERE georid=4;

7.38 SDO_GEOR.getBinType
Format

SDO_GEOR.getBinType(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the bin type associated with a layer.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin type. A value of 0 (zero) indicates the
object layer.

Usage Notes

This function returns one of the following bin type values: LINEAR, LOGARITHM, or
EXPLICIT.

The LINEAR bin type is defined as follows:

binNumber = numbins * (cellValue - min) / (max - min) + firstBinNumber
if (binNumber less than 0) binNumber = firstBinNumber
if (binNumber greater than or equal to numbins) binNumber = numbins +
firstBinNumber - 1

The LOGARITHM bin type is defined as follows:

binNumber = numbins * (ln (1.0 + ((cellValue - min)/(max - min)))/ ln (2.0)) +
firstBinNumber
if (binNumber less than 0) binNumber = firstBinNumber
if (binNumber greater than or equal to numbins) binNumber = numbins +
firstBinNumber - 1

The EXPLICIT bin type means that the value (or value range) for each bin is stored
in a bin table (which you can set using the SDO_GEOR.setBinTable procedure and
retrieve using the SDO_GEOR.getBinTable function).

Chapter 7
SDO_GEOR.getBinType

7-82

A bin function maps values or value ranges of the GeoRaster cells to specific bin
numbers, which are all integers. GeoRaster does not provide interfaces to manipulate
and process bin functions.

If georaster or its metadata is null, this function returns a null value.

An exception is raised if layerNumber is null, negative, or greater than the maximum
layer number.

Examples

The following example returns the bin types for layers 0 and 1 of a GeoRaster object.
(It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters. The output is reformatted for readability.)

SELECT substr(sdo_geor.getBinType(georaster, 0),1,20) binType0,
 substr(sdo_geor.getBinType(georaster, 1),1,20) binType1
 FROM georaster_table WHERE georid=4;

BINTYPE0 BINTYPE1
--------------- ---------------
EXPLICIT LINEAR

7.39 SDO_GEOR.getBitmapMask
Format

SDO_GEOR.getBitmapMask(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 storageParam IN VARCHAR2,
 mask IN OUT SDO_GEORASTER);

Description

Gets the bitmap mask that is associated with a GeoRaster object or a layer in a
GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
The layer on which to perform the operation. A value of 0 (zero) indicates the object
layer.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

mask
The resulting GeoRaster object to hold the bitmap mask. Must be either a valid
existing GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects
are explained in Blank and Empty GeoRaster Objects.) Cannot be the same
GeoRaster object as the input GeoRaster object (georaster parameter).

Chapter 7
SDO_GEOR.getBitmapMask

7-83

Usage Notes

If no bitmap mask is associated with the specified layer of the GeoRaster object, the
resulting GeoRaster object is not updated.

If the storageParam parameter is null, the resulting GeoRaster object has a celldepth
value of 1BIT celldepth, has DEFLATE compression if the input GeoRaster object is
compressed, and has the same interleaving type and blocking size as the input
GeoRaster object. It also contains all the bitmap mask pyramids if the input GeoRaster
object has pyramids built on it.

A bitmap mask may have empty raster blocks (see Empty Raster Blocks). If there is
reblocking that leads to partially empty raster blocks, any cells in a partially empty
block that are derived from an empty raster block are filled with the value 0 (zero).

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example retrieves the bitmap mask associated with the object layer of
the specified GeoRaster object.

DECLARE
 gr sdo_georaster;
 mk sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=4;
 INSERT INTO georaster_table (georid, georaster)
 VALUES (100, sdo_geor.init('rdt_1', 100))
 RETURNING georaster INTO mk;
 sdo_geor.getBitmapMask(gr, 0, 'compression=none', mk);
 UPDATE georaster_table SET georaster=mk WHERE georid=100;
 COMMIT;
END;
/

7.40 SDO_GEOR.getBitmapMaskSubset
Format

SDO_GEOR.getBitmapMaskSubset(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 window IN SDO_NUMBER_ARRAY,
 rasterBlob IN OUT NOCOPY BLOB,
 storageParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getBitmapMaskSubset(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 inWindow IN SDO_NUMBER_ARRAY,
 rasterBlob IN OUT NOCOPY BLOB,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL);

Chapter 7
SDO_GEOR.getBitmapMaskSubset

7-84

or

SDO_GEOR.getBitmapMaskSubset(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 window IN SDO_GEOMETRY,
 rasterBlob IN OUT NOCOPY BLOB,
 storageParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getBitmapMaskSubset(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 inWindow IN SDO_GEOMETRY,
 rasterBlob IN OUT NOCOPY BLOB,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL);

Description

Gets a subset of a bitmap mask.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer on which to perform the operation. A value of 0 (zero) indicates
the object layer.

pyramidLevel
Pyramid level containing the specified cell.

window, inWindow
A rectangular window for the subset, specified either as a numeric array with
the lower-left and upper-right coordinates or as an SDO_GEOMETRY object. The
SDO_NUMBER_ARRAY type is defined as VARRAY(1048576) OF NUMBER.

rasterBlob
BLOB to hold the output (the resulting subset).

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

storageParam
A string specifying storage parameters to be applied in creating rasterBlob. The only
storageParam keywords supported for this procedure are celldepth, compression,
interleaving, and quality; all other keywords are ignored. Storage parameters are
explained in Storage Parameters.
If the storageParam parameter is null, the resulting GeoRaster object has a celldepth
value of 1BIT celldepth, has DEFLATE compression if the input GeoRaster object is
compressed, and has the same interleaving type as the input GeoRaster object.

Chapter 7
SDO_GEOR.getBitmapMaskSubset

7-85

Usage Notes

If there is no bitmap associated with the specified GeoRaster object at the specified
raster layer, or the specified input window does not intersect with the spatial extent of
the GeoRaster object, the procedure returns with rasterBlob truncated to length zero
and the outWindow set to a null value.

This procedure operates on a single GeoRaster object. The procedure has four
formats, depending on whether the input window is specified as a geometry object
or as the upper-left and lower-right corners of a box, and on whether the outWindow
parameter is used to return the coordinates of the output window.

If the window or inWindow parameter data type is SDO_GEOMETRY, the SDO_SRID
value must be one of the following: null (to specify raster space) or a value from the
SRID column of the MDSYS.CS_SRS table.

If the SDO_SRID values for the window or inWindow parameter geometry and the
model space are different, the geometry parameter is automatically transformed to
the coordinate system of the model space before the operation is performed. (Raster
space and model space are explained in GeoRaster Data Model.)

If the window parameter specifies a geodetic MBR, it cannot cross the date line
meridian. For information about geodetic MBRs, see Oracle Spatial and Graph
Developer's Guide.

After the procedure completes, the rasterBLOB parameter contains the cell (pixel) data
in the cropped window without tiling. The cropped window is the overlapping portion
of the specified window of interest and the source GeoRaster object's spatial extent.
If the outWindow parameter is specified, after the procedure completes it contains the
coordinates of the cropped window in the cell space.

A bitmap mask may have empty raster blocks (see Empty Raster Blocks). Any cells in
the output window that are derived from an empty raster block are filled with the value
0 in the output BLOB.

The BLOB has no padding, except when the cell depth is less than 8 bits and the total
number of bits needed for the output cannot be divided by 8; in these cases, unlike
normal padding, only the last byte of the result is padded with 0 (zeros) for the trailing
bits.

You can specify compression regardless of whether the input GeoRaster object
is compressed or not. To have decompressed output for a compressed input
GeoRaster object, specify compression=NONE in the storageParam parameter. For
information about GeoRaster compression and decompression, see Compression and
Decompression.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example retrieves a subset of a bitmap mask associated with the object
layer of a specified GeoRaster object.

DECLARE
 gr sdo_georaster;
 lb blob;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=4;

Chapter 7
SDO_GEOR.getBitmapMaskSubset

7-86

 dbms_lob.createTemporary(lb, TRUE);
 sdo_geor.getBitmapMaskSubset(gr, 0, 0, sdo_number_array(0,0,99,99), lb,
'compression=none');
 dbms_lob.freeTemporary(lb);
END;
/

7.41 SDO_GEOR.getBitmapMaskValue
Format

SDO_GEOR.getBitmapMaskValue(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 rowNumber IN NUMBER,
 colNumber IN NUMBER
) RETURN NUMBER;

or

SDO_GEOR.getBitmapMaskValue(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 ptGeom IN SDO_GEOMETRY
) RETURN NUMBER;

Description

Gets the value of a single cell from a bitmap mask.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer on which to perform the operation. A value of 0 (zero) indicates
the object layer.

pyramidLevel
Pyramid level containing the specified cell.

rowNumber
Row number in cell space.

colNumber
Column number in cell space.

ptGeom
Point geometry in cell space or model space.

Usage Notes

You can specify the cell by its row and column numbers or by a point geometry object.

Chapter 7
SDO_GEOR.getBitmapMaskValue

7-87

If there is no bitmap associated with the specified GeoRaster object at the specified
raster layer, or the specified cell is in an empty raster block, the function returns a null
value.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example gets the value of four cells from the bitmap mask associated
with a specified GeoRaster object.

SELECT sdo_geor.getBitmapMaskValue(georaster,0,0,0,0) c1,
 sdo_geor.getBitmapMaskValue(georaster,0,0,9,9) c2,
 sdo_geor.getBitmapMaskValue(georaster,0,0,9,10) c3,
 sdo_geor.getBitmapMaskValue(georaster,0,0,10,9) c4
 FROM georaster_table WHERE georid=0;

7.42 SDO_GEOR.getBitmapMaskValues
Format

SDO_GEOR.getBitmapMaskValues(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 rowNumbers IN SDO_NUMBER_ARRAY,
 colNumbers IN SDO_NUMBER_ARRAY
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.getBitmapMaskValues(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER,
 pyramidLevel IN VARCHAR2,
 ptGeom IN SDO_GEOMETRY
) RETURN SDO_NUMBER_ARRAY;

Description

Gets the values of multiple cells from a bitmap mask.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer on which to perform the operation. A value of 0 (zero) indicates
the object layer.

pyramidLevel
Pyramid level containing the specified cell.

rowNumbers
Numbers of the rows that contain the cells whose values are to be returned.

Chapter 7
SDO_GEOR.getBitmapMaskValues

7-88

colNumbers
Numbers of the columns that contain the cells whose values are to be returned.

ptGeom
Multipoint geometry that identifies the cells whose values are to be returned.

Usage Notes

You can specify the cells by an array of row and column numbers or by a multipoint
geometry object.

If there is no bitmap associated with the specified GeoRaster object at the specified
raster layer, or the specified cell is in an empty raster block, the function returns a null
value.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example gets the value of four cells from the bitmap mask associated
with a specified GeoRaster object.

SELECT
sdo_geor.getBitmapMaskValues(georaster,0,0,sdo_number_array(0,9,9,10),sdo_number_
array(0,9,10,9))
 FROM georaster_table WHERE georid=0;

7.43 SDO_GEOR.getBlankCellValue
Format

SDO_GEOR.getBlankCellValue(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the cell value for all cells if a specified GeoRaster object is a blank GeoRaster
object.

Parameters

georaster
GeoRaster object.

Usage Notes

In a blank GeoRaster object, all cells have the same cell value. This function returns
the cell value for all cells if the specified GeoRaster object is a blank GeoRaster
object.

To set the cell value to be used if a specified GeoRaster object is a blank GeoRaster
object, use the SDO_GEOR.setBlankCellValue procedure. To determine if a specified
GeoRaster object is a blank GeoRaster object, use the SDO_GEOR.isBlank function.

If georaster is null, invalid, or is not a blank GeoRaster object, the
SDO_GEOR.getBlankCellValue function returns a null value.

Chapter 7
SDO_GEOR.getBlankCellValue

7-89

Examples

The following example returns the blank cell values for all blank GeoRaster objects in
the GEORASTER column of table GEORASTER_TABLE.

SELECT georid, sdo_geor.getBlankCellValue(georaster) blankValue
 FROM georaster_table WHERE sdo_geor.isBlank(georaster)='TRUE';

 GEORID BLANKVALUE
---------- ----------
 1 255
 2 155

7.44 SDO_GEOR.getBlockingType
Format

SDO_GEOR.getBlockingType(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the blocking type for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns one of the following values: NONE or REGULAR:

• NONE means that the GeoRaster object is not blocked, but is a single BLOB object.

• REGULAR means that the GeoRaster object uses regular blocking, that is, each
block has the same dimension sizes.

If georaster or its metadata is null, this function returns a null value.

Examples

The following example returns the cell depth, interleaving type, and blocking type of
the GeoRaster object (GEORASTER column) in the row with the GEORID column
value of 21 in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT sdo_geor.getCellDepth(georaster) CellDepth,
 substr(sdo_geor.getInterleavingType(georaster),1,8) interleavingType,
 substr(sdo_geor.getBlockingType(georaster),1,8) blocking
 FROM georaster_table WHERE georid=21;

 CELLDEPTH INTERLEA BLOCKING
---------- -------- --------
 8 BSQ REGULAR

Chapter 7
SDO_GEOR.getBlockingType

7-90

7.45 SDO_GEOR.getBlockSize
Format

SDO_GEOR.getBlockSize(
 georaster IN SDO_GEORASTER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the number of cells for each dimension in each block of a GeoRaster object in
an array showing the number of cells for each row, column, and (if relevant) band.

Parameters

georaster
GeoRaster object.

Usage Notes

If georaster or its metadata is null, or if georaster is not blocked, this function returns
a null value.

Examples

The following example returns the number of cells (512 in each dimension) in each
block of the GeoRaster object (GEORASTER column) in the row with the GEORID
column value of 21 in the GEORASTER_TABLE table, whose definition is presented
after Example 1-1 in Storage Parameters.

SELECT sdo_geor.getBlockSize(georaster) blockSize
 FROM georaster_table WHERE georid=21;

BLOCKSIZE
--
SDO_NUMBER_ARRAY(512, 512)

7.46 SDO_GEOR.getCellCoordinate
Format

SDO_GEOR.getCellCoordinate(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 modelCoordinate IN SDO_GEOMETRY,
 subCell IN VARCHAR2 DEFAULT NULL,
 height IN NUMBER DEFAULT NULL,
 vert_id IN NUMBER DEFAULT NULL,
 ellipsoidal IN VARCHAR2 DEFAULT NULL
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.getCellCoordinate(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 modelCoordinate IN SDO_GEOMETRY,

Chapter 7
SDO_GEOR.getBlockSize

7-91

 cellCoordinate OUT SDO_GEOMETRY,
 subCell IN VARCHAR2 DEFAULT NULL,
 height IN NUMBER DEFAULT NULL,
 vert_id IN NUMBER DEFAULT NULL,
 ellipsoidal IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getCellCoordinate(
 georaster IN SDO_GEORASTER,
 sourcePyramidLevel IN NUMBER,
 sourceCellCoordinate IN SDO_NUMBER_ARRAY,
 targetPyramidLevel IN NUMBER,
 subCell IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.getCellCoordinate(
 georaster IN SDO_GEORASTER,
 sourcePyramidLevel IN NUMBER,
 sourceCellCoordinate IN SDO_GEOMETRY,
 targetPyramidLevel IN NUMBER,
 subCell IN VARCHAR2 DEFAULT NULL,
) RETURN SDO_GEOMETRY;

Description

Returns the coordinates in the cell (raster) coordinate system associated with the
geometry at the specified model (ground) coordinates (first two formats), or converts
cell coordinates between pyramid levels (last two formats).

Note that the second format is a procedure; the other formats are functions.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cell specified in modelCoordinate.

modelCoordinate
The geometry that is to be converted.

cellCoordinate
The output geometry in the cell space of the GeoRaster object.

sourcePyramidLevel (last two formats)
Pyramid level with which the input cell coordinate is associated.

sourceCellCoordinate (last two formats)
Input cell coordinates to be converted. Must be a two-dimensional geometry, and its
SDO_SRID value must be null.

targetPyramidLevel (last two formats)
Pyramid level of the returned (target) GeoRaster object.

Chapter 7
SDO_GEOR.getCellCoordinate

7-92

subCell
String (TRUE or FALSE) specifying whether to return the cell coordinates in sub-pixel
(floating) values.

height
Number specifying the Z value for three-dimensional (X, Y, Z) georeferencing.

vert_id
Number specifying the vertical reference ID.

ellipsoidal
String specifying whether the vertical reference system is ellipsoidal (TRUE) or not
ellipsoidal (FALSE).

Usage Notes

The first two formats of this function return the coordinates in the cell (raster)
coordinate system associated with the geometry at the specified model (ground)
coordinates:

• Use the first format (a function without the cellCoordinate parameter) to
transform a point in the ground coordinate system (a longitude, latitude pair) to
the location of a point on the GeoRaster image.

• Use the second format (a procedure with the cellCoordinate parameter) to
transform a geometry in the ground coordinate system to the location of a
geometry in the raster space of the GeoRaster object. The conversion is done by
converting the coordinates of each vertex of the input geometry from the ground
coordinate system to the raster space of the GeoRaster object.

The last two formats of this function convert cell coordinates between pyramid levels.
If the type of the sourceCellCoordinate parameter is SDO_NUMBER_ARRAY, it
specifies the <row,column> pair for a point in the cell space at the source pyramid
level. If the type of the sourceCellCoordinate parameter is SDO_GEOMETRY, it
specifies a geometry in the cell space at the source pyramid level. The coordinates
of each vertex of the input geometry are converted according to the specified pyramid
levels.

• Use the first format (without the cellCoordinate parameter) to transform a point in
the ground coordinate system (a longitude, latitude pair) to the location of a point
on the GeoRaster image.

• Use the second format (with the cellCoordinate parameter) to transform a
geometry in the ground coordinate system to the location of a geometry in the
raster space of the GeoRaster object. The conversion is done by converting the
coordinates of each vertex of the input geometry from the ground coordinate
system to the raster space of the GeoRaster object.

If the SDO_SRID value of the modelCoordinate geometry is null, the parameter
specifies a geometry in the raster space; otherwise, it specifies a point in a
ground coordinate system. If the ground coordinate system is different from the
model coordinate system, the modelCoordinate parameter geometry is automatically
transformed to the coordinate system of the model space before the operation is
performed.

Contrast this function with SDO_GEOR.getModelCoordinate, which returns a point
geometry containing the coordinates in the model (ground) coordinate system
associated with the point at the specified cell coordinates.

Chapter 7
SDO_GEOR.getCellCoordinate

7-93

Examples

The following example returns the cell coordinates in the raster image associated with
model coordinate values (32343.64,7489527.23) in a specified GeoRaster object. (It
refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

SELECT sdo_geor.getCellCoordinate(georaster, 0, sdo_geometry(2001,82394,
 sdo_point_type(32343.64,7489527.23,null), null,null)) coord
FROM georaster_table WHERE georid=4;

COORD
--
SDO_NUMBER_ARRAY(100, 100)

The following example returns the geometry at pyramid level 0 that is associated
with the specified geometry at pyramid level 2, assuming the geometry is not
georeferenced (the model coordination location is CENTER) and the ultCoordinate
is (100,-100,0).

SELECT sdo_geor.getCellCoordinate(georaster, 2,
 sdo_geometry(2003,NULL,NULL,sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(100.8,-100.2,220.15,0.3)),
 0, 'true') coord
FROM georaster_table WHERE georid=1;

COORD
--
SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3), SDO_ORDINATE_ARR
AY(104.7, -99.3, 582.1, 302.7))

7.47 SDO_GEOR.getCellDepth
Format

SDO_GEOR.getCellDepth(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the cell depth in bits.

Parameters

georaster
GeoRaster object.

Usage Notes

The cell depth determines the precision and the data size of an image. As the cell
depth value decreases, less disk space is needed to store the image; as the cell depth
value increases, more disk space is needed to store the image.

To return the cell depth as a string (such as 32BIT_S) instead of a number, you can use
the XMLType PL/SQL interface extract. The possible string values are listed in the
cellDepthType definition in the GeoRaster metadata XML schema, which is described
in GeoRaster Metadata XML Schema. The following example returns a string value

Chapter 7
SDO_GEOR.getCellDepth

7-94

for the cell depth of the GeoRaster object with the GEORID column value of 21 in the
GEORASTER_TABLE table:

SELECT t.georaster.metadata.extract(
 '/georasterMetadata/rasterInfo/cellDepth/text()',
 'xmlns=http://xmlns.oracle.com/spatial/georaster')
 FROM georaster_table t WHERE t.georid=21;

Examples

The following example returns the cell depth, interleaving type, and blocking type of
the GeoRaster object (GEORASTER column) in the row with the GEORID column
value of 21 in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT sdo_geor.getCellDepth(georaster) CellDepth,
 substr(sdo_geor.getInterleavingType(georaster),1,8) interleavingType,
 substr(sdo_geor.getBlockingType(georaster),1,8) blocking
 FROM georaster_table WHERE georid=21;

 CELLDEPTH INTERLEA BLOCKING
---------- -------- --------
 8 BSQ REGULAR

7.48 SDO_GEOR.getCellValue
Format

SDO_GEOR.getCellValue(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 rowNumber IN NUMBER,
 colNumber IN NUMBER,
 bandNumber IN NUMBER
) RETURN NUMBER;

or

SDO_GEOR.getCellValue(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 rowNumber IN NUMBER,
 colNumber IN NUMBER,
 bands IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.getCellValue(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 ptGeom IN SDO_GEOMETRY,
 layerNumber IN NUMBER
) RETURN NUMBER;

or

SDO_GEOR.getCellValue(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,

Chapter 7
SDO_GEOR.getCellValue

7-95

 ptGeom IN SDO_GEOMETRY,
 layers IN VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the value of a single cell located anywhere in the GeoRaster object by
specifying its row, column, and band number or numbers in its cell coordinate system,
or by specifying a point geometry in its model coordinate system and its logical layer
number or numbers.

If the specified cell is in an empty raster block, the function returns a null value.

To change the value of raster data cells in a specified window of a GeoRaster object,
use the SDO_GEOR.changeCellValue procedure.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cell whose value is to be returned.

rowNumber
Number of the row that contains the cell whose value is to be returned.

colNumber
Number of the column that contains the cell whose value is to be returned.

bandNumber
Number of the physical band that contains the cell whose value is to be returned.

bands
A string identifying the physical band numbers on which the operation or operations
are to be performed. Use commas to delimit the values, and a hyphen to indicate a
range (for example, 1-3 for bands 1, 2, and 3).

ptGeom
Point geometry that identifies the cell whose value is to be returned.

layerNumber
Number of the logical layer that contains the cell whose value is to be returned. (As
mentioned in Bands_ Layers_ and Metadata, the logical layer number is the physical
band number plus 1.)

layers
A string identifying the logical layer numbers on which the operation or operations
are to be performed. Use commas to delimit the values, and a hyphen to indicate a
range (for example, 2-4 for layers 2, 3, and 4). (As mentioned in Bands_ Layers_ and
Metadata, the logical layer number is the physical band number plus 1.)

Usage Notes

This function returns the original cell value stored in the raster object. It does not do
any interpolation using cell values. (To evaluate a point location using an interpolation
method, use the SDO_GEOR.evaluateDouble function.) It does not apply the scaling
function defined in the metadata (which is typically used to scale the original cell data

Chapter 7
SDO_GEOR.getCellValue

7-96

to a desired value or range of values), and it does not apply the bin function. To get the
scaled cell value, follow these steps:

1. Call the SDO_GEOR.getCellValue function to return the original cell value.

2. Call the SDO_GEOR.getScaling function to return the coefficients of the scaling
function (a0, a1, b0, b1).

3. Using PL/SQL or another programming language, calculate the result using the
following formula:

value = (a0 + a1 * cellvalue) / (b0 + b1 * cellvalue)

Examples

The following example returns the values of four cells of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 21 in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT sdo_geor.getCellValue(georaster,0,383,47,0) V383_47,
 sdo_geor.getCellValue(georaster,0,47,383,0) V47_383,
 sdo_geor.getCellValue(georaster,0,128,192,0) V128_192,
 sdo_geor.getCellValue(georaster,0,320,256,0) V320_256
 FROM georaster_table WHERE georid=21;

 V383_47 V47_383 V128_192 V320_256
---------- ---------- ---------- ----------
 48 55 52 53

The following example returns the values of the cells in bands 0, 1, and 2 for row
number 10, column number 10 of the GeoRaster object (GEORASTER column) in the
row with the GEORID column value of 1 in the GEORASTER_TABLE table, whose
definition is presented after Example 1-1 in Storage Parameters.

SELECT sdo_geor.getcellvalue(a.georaster,0,10,10,'0-2')
 FROM georaster_table a WHERE georid=1;

SDO_GEOR.GETCELLVALUE(A.GEORASTER,0,10,10,'0-2')
--
SDO_NUMBER_ARRAY(88, 137, 32)

7.49 SDO_GEOR.getCellValues
Format

SDO_GEOR.getCellValues(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 rowNumbers IN SDO_NUMBER_ARRAY,
 colNumbers IN SDO_NUMBER_ARRAY,
 bandNumber IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

or

SDO_GEOR.getCellValues(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 ptGeom IN SDO_GEOMETRY,

Chapter 7
SDO_GEOR.getCellValues

7-97

 layerNumber IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the values of one or more cells located anywhere in the GeoRaster object by
specifying its row/column/band numbers in its cell coordinate space, or by specifying a
multipoint geometry in either model coordinate space or cell coordinate space and its
logical layer number.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cells whose values are to be returned.

rowNumbers
Numbers of the rows that contains the cells whose values are to be returned.

colNumbers
Numbers of the columns that contains the cells whose values are to be returned.

bandNumber
Number of the physical band that contains the cells whose values are to be returned.

ptGeom
Multipoint geometry that identifies the cell whose value is to be returned.

layerNumber
Number of the logical layer that contains the cells whose values are to be returned.
(As mentioned in Bands_ Layers_ and Metadata, the logical layer number is the
physical band number plus 1.)

Usage Notes

This function returns the original cell values stored in the raster object. It does not do
any interpolation using cell values. (To evaluate a point location using an interpolation
method, use the SDO_GEOR.evaluateDoubles function.) It does not apply the scaling
function defined in the metadata (which is typically used to scale the original cell data
to a desired value or range of values), and it does not apply the bin function.

Examples

The following example returns the values of four cells of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 21 in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT
sdo_geor.getCellValues(georaster,0,SDO_NUMBER_ARRAY(383,47,128,320),SDO_NUMBER_AR
RAY(47,383,192,256),0)
 FROM georaster_table WHERE georid=21;

SDO_GEOR.GETCELLVALUES(A.GEORASTER,0,SDO_NUMBER_ARRAY(383,47,128,320),SDO_NUMBER_
ARRAY(47,383,192,256),0)
--
SDO_NUMBER_ARRAY(48,55,52,53)

Chapter 7
SDO_GEOR.getCellValues

7-98

7.50 SDO_GEOR.getColorMap
Format

SDO_GEOR.getColorMap(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN SDO_GEOR_COLORMAP;

Description

Returns the colormap for pseudocolor display of a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the colormap. A value of 0 (zero) indicates the
object layer.

Usage Notes

This function returns an object of type SDO_GEOR_COLORMAP.
SDO_GEOR_COLORMAP Object Type describes colormaps and this object type.

To set the colormap for a layer in a GeoRaster object, use the
SDO_GEOR.setColorMap procedure.

If georaster or its metadata is null, this function returns a null value.

An exception is raised if layerNumber is null, negative, or greater than the maximum
layer number.

Examples

The following example returns the colormap for layer 1 of a GeoRaster object. (Part of
the output is omitted.)

SELECT sdo_geor.getColorMap(georaster, 1) FROM georaster_table
 WHERE georid = 4;

SDO_GEOR.GETCOLORMAP(GEORASTER,1)(CELLVALUE, RED, GREEN, BLUE, ALPHA)
--
SDO_GEOR_COLORMAP(SDO_NUMBER_ARRAY(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222,

Chapter 7
SDO_GEOR.getColorMap

7-99

223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238,
239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
255), SDO_NUMBER_ARRAY(180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 18
0, 127, 127, 100, 50, 50, 127, 159, 191, 223, 255, 255, 255, 255, 218, 182, 145,
 109, 72, 36, 0,
0, 0, 36, 72, 109, 145, 182, 218, 255, 200, 206, 212, 218, 224, 230, 236, 242,
248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255), SDO_NUMBER_ARRAY(127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 180, 127, 50, 100, 50, 127,
159, 191, 223, 255, 200, 150, 100, 122, 144, 166, 188, 210, 232, 255, 255, 255,
248, 241, 234, 227, 220, 213, 206, 200, 150, 100, 87, 75, 62, 50, 37, 25, 12, 0,
200, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 56, 85, 113, 141, 170, 198, 226, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255), SDO_NUMBER_ARRAY(127, 127, 127, 127,
127, 127, 127, 127, 127, 127, 127, 127, 127, 180, 50, 50, 100, 127, 95, 63, 31,
0, 0, 0, 0, 18, 36, 54, 72, 90, 108, 127, 100, 50, 43, 37, 31, 25, 18, 12, 6, 0,
0, 0, 31, 63, 95, 127, 159, 191, 223, 255, 255, 255, 127, 108, 90, 72, 54, 36,
18, 0, 0, 28, 56, 85, 113, 141, 170, 198, 226, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255), SDO_NUMBER_ARRAY(255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

Chapter 7
SDO_GEOR.getColorMap

7-100

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255))

7.51 SDO_GEOR.getColorMapTable
Format

SDO_GEOR.getColorMapTable(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the colormap table for pseudocolor display of a layer in a GeoRaster object.

Note:

GeoRaster does not perform operations using the colormap table in the
current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the colormap table. A value of 0 (zero)
indicates the object layer.

Usage Notes

This function returns the name of a user-defined colormap table. For information about
colormaps, see SDO_GEOR_COLORMAP Object Type.

To set the colormap table for a layer in a GeoRaster object, use the
SDO_GEOR.setColorMapTable procedure.

If georaster or its metadata is null, this function returns a null value.

An exception is raised if layerNumber is null, negative, or greater than the maximum
layer number.

Examples

The following example returns the colormap table for layer 2 of the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 4 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT sdo_geor.getColorMapTable(georaster, 2) FROM georaster_table WHERE
georid=4;

Chapter 7
SDO_GEOR.getColorMapTable

7-101

SDO_GEOR.GETCOLORMAPTABLE(GEORASTER,2)
--
CMT1

1 row selected.

7.52 SDO_GEOR.getCompressionType
Format

SDO_GEOR.getCompressionType(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the compression type for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function can return DEFLATE, JPEG-F, or NONE (the latter value meaning that the
GeoRaster object is not compressed). For information about GeoRaster compression,
see Compression and Decompression.

Examples

The following example returns the compression type for the GeoRaster objects
(GEORASTER column) in the GEORASTER_TABLE table, whose definition is
presented after Example 1-1 in Storage Parameters.

SELECT georid, substr(sdo_geor.getCompressionType(georaster),1,20)
compressionType
 FROM georaster_table;

 GEORID COMPRESSIONTYPE
---------- --------------------
 2 DEFLATE
 4 JPEG-F

7.53 SDO_GEOR.getControlPoint
Format

SDO_GEOR.getControlPoint (
 inGeoraster IN SDO_GEORASTER,
 controlPointID IN VARCHAR2
) RETURN SDO_GEOR_GCP;

Description

Returns the ground control point (GCP) that has the specified control point ID value.

Chapter 7
SDO_GEOR.getCompressionType

7-102

Parameters

inGeoraster
GeoRaster object.

controlPointID
Control point ID of inGeoraster. Must be a string not more than 32 characters.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

This function returns an object of type SDO_GEOR_GCP, which is described in
SDO_GEOR_GCP Object Type.

In the control point ID is null, empty, or missing in inGeoraster, an exception is raised.

Examples

The following example returns the GCP that has the ID value 25 in a specified
GeoRaster object.

SELECT sdo_geor.getControlPoint(georaster, '25') FROM georaster_table
 WHERE georid =10;

SDO_GEOR.GETCONTROLPOINT(GEORASTER,'25')(POINTID, DESCRIPTION, POINTTYPE, CELLDI
--
SDO_GEOR_GCP('25', NULL, 2, 2, SDO_NUMBER_ARRAY(167.470583, 64.030686), 2, SDO_N
UMBER_ARRAY(237032.015, 897916.265), NULL, NULL)

7.54 SDO_GEOR.getDefaultAlpha
Format

SDO_GEOR.getDefaultAlpha(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the layer to be used for the alpha color component (in the
RGBA color space) for displaying a GeoRaster object. If this value is not set in the
metadata, a null value is returned.

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, blue, and alpha values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all four color components (RGBA) by using the
SDO_GEOR.getDefaultColorLayer function.

Chapter 7
SDO_GEOR.getDefaultAlpha

7-103

Examples

The following example returns the layer numbers for the red, green, blue, and
alpha color components for displaying the GeoRaster objects in the table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT georid, sdo_geor.getDefaultRed(georaster) red,
 sdo_geor.getDefaultGreen(georaster) green,
 sdo_geor.getDefaultBlue(georaster) blue,
 sdo_geor.getDefaultAlpha(georaster) alpha
FROM georaster_table;

 GEORID RED GREEN BLUE ALPHA
---------- ---------- ---------- ---------- ----------
 1 1 2 3 4
 2
 3 31 20 13 10

7.55 SDO_GEOR.getDefaultBlue
Format

SDO_GEOR.getDefaultBlue(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the layer to be used for the blue color component (in the RGB
color space) for displaying a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all three color components (RGB) by using the
SDO_GEOR.getDefaultColorLayer function.

Examples

The following example returns the layer numbers for the red, blue, and green
color components for displaying the GeoRaster objects in the table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT georid, sdo_geor.getDefaultRed(georaster) red,
 sdo_geor.getDefaultGreen(georaster) green,
 sdo_geor.getDefaultBlue(georaster) blue
FROM georaster_table;

Chapter 7
SDO_GEOR.getDefaultBlue

7-104

 GEORID RED GREEN BLUE
---------- ---------- ---------- ----------
 1 1 2 3
 2
 3 31 20 13

7.56 SDO_GEOR.getDefaultColorLayer
Format

SDO_GEOR.getDefaultColorLayer(
 georaster IN SDO_GEORASTER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the default numbers of the layers to be used for the red, green, blue, and
alpha color components, respectively, for displaying a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The RGB layer numbers returned are used for true-color displays, not for pseudocolor
or grayscale displays.

You can return the layer number for each color component
(RGBA) by using the SDO_GEOR.getDefaultRed, SDO_GEOR.getDefaultGreen,
SDO_GEOR.getDefaultBlue, and SDO_GEOR.getDefaultAlpha functions.

The alpha color component is optional. If the default alpha color component exists
in the metadata, this functions returns an array of four numbers identifying the red,
green, blue, and alpha color components, respectively. If only the default red, green,
and blue color components exist in the metadata, this functions returns an array of
three numbers identifying the red, green, and blue color components respectively.

Examples

The following example sets the default red, green, and blue color layers for
the GeoRaster objects (GEORASTER column) in table GEORASTER_TABLE, and
it returns an array with the layer numbers for the red, green, and blue color
components for displaying these GeoRaster objects. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setDefaultRed(grobj, 2);
 sdo_geor.setDefaultGreen(grobj, 3);
 sdo_geor.setDefaultBlue(grobj, 1);
 sdo_geor.setDefaultAlpha(grobj, 4);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;

Chapter 7
SDO_GEOR.getDefaultColorLayer

7-105

END;
/

SELECT sdo_geor.getDefaultColorLayer(georaster) FROM georaster_table WHERE
georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER(GEORASTER)
--
SDO_NUMBER_ARRAY(2, 3, 1)
SDO_NUMBER_ARRAY(2, 3, 1, 4)

1 row selected.

7.57 SDO_GEOR.getDefaultGreen
Format

SDO_GEOR.getDefaultGreen(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the layer to be used for the green color component (in the RGB
color space) for displaying a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all three color components (RGB) by using the
SDO_GEOR.getDefaultColorLayer function.

Examples

The following example returns the layer numbers for the red, blue, and green
color components for displaying the GeoRaster objects in the table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT georid, sdo_geor.getDefaultRed(georaster) red,
 sdo_geor.getDefaultGreen(georaster) green,
 sdo_geor.getDefaultBlue(georaster) blue
FROM georaster_table;

 GEORID RED GREEN BLUE
---------- ---------- ---------- ----------
 1 1 2 3
 2
 3 31 20 13

Chapter 7
SDO_GEOR.getDefaultGreen

7-106

7.58 SDO_GEOR.getDefaultPyramidLevel
Format

SDO_GEOR.getDefaultPyramidLevel(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the default pyramid level for displaying a GeoRaster object. If
this value is not set in the metadata, a null value is returned.

Parameters

georaster
GeoRaster object.

Usage Notes

Pyramid levels represent reduced or increased resolution images that require less or
more storage space, respectively. For information about pyramids and pyramid levels,
see Pyramids.

You can set the default pyramid level by using the
SDO_GEOR.setDefaultPyramidLevel procedure.

Examples

The following example returns the default pyramid level for displaying a specified
GeoRaster object in the table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo_geor.getDefaultPyramidLevel(georaster) plevel,
FROM georaster_table WHERE georid = 6;

 GEORID PLEVEL
---------- ----------
 6 3

7.59 SDO_GEOR.getDefaultRed
Format

SDO_GEOR.getDefaultRed(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of the layer to be used for the red color component (in the RGB
color space) for displaying a GeoRaster object.

Chapter 7
SDO_GEOR.getDefaultPyramidLevel

7-107

Parameters

georaster
GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

You can return the layer numbers for all three color components (RGB) by using the
SDO_GEOR.getDefaultColorLayer function.

Examples

The following example returns the layer numbers for the red, blue, and green
color components for displaying the GeoRaster objects in the table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.

SELECT georid, sdo_geor.getDefaultRed(georaster) red,
 sdo_geor.getDefaultGreen(georaster) green,
 sdo_geor.getDefaultBlue(georaster) blue
FROM georaster_table;

 GEORID RED GREEN BLUE
---------- ---------- ---------- ----------
 1 1 2 3
 2
 3 31 20 13

7.60 SDO_GEOR.getEndDateTime
Format

SDO_GEOR.getEndDateTime(
 georaster IN SDO_GEORASTER
) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns the ending date and time for raster data collection in the metadata for a
GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

To set the ending date and time for raster data collection in the metadata for a
GeoRaster object, use the SDO_GEOR.setEndDateTime procedure.

If georaster or its metadata is null, this function returns a null value.

Chapter 7
SDO_GEOR.getEndDateTime

7-108

Examples

The following example returns the beginning and ending dates and times for
raster data collection in the metadata for the GeoRaster object in a table named
GEORASTER_TABLE where the GEORID column contains the value 4. (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

SELECT sdo_geor.getBeginDateTime(georaster) beginDateTime,
 sdo_geor.getEndDateTime(georaster) endDateTime
 FROM georaster_table WHERE georid=4;

BEGINDATETIME

ENDDATETIME

01-JAN-00 05.00.00.000000000 AM +00:00
15-NOV-02 08.00.00.000000000 PM +00:00

7.61 SDO_GEOR.getGCPGeorefMethod
Format

SDO_GEOR.getGCPGeorefMethod(
 inGeoraster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the ground control point (GCP)-based georeferencing geometric model type of
a GeoRaster object.

Parameters

inGeoraster
GeoRaster object.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If inGeoraster does contains valid georeferencing model information, it returns
one of the following values: Affine, QuadraticPolynomial, CubicPolynomial, DLT,
QuadraticRational, or RPC.

If inGeoraster does not contain any georeferencing model information, this function
returns a null value.

Examples

The following example returns the GCP-based georeferencing model information in a
specified GeoRaster object. (The output is reformatted for readability.)

SELECT sdo_geor.getGCPGeorefMethod(georaster) FROM georaster_table
 WHERE georid =10;

SDO_GEOR.GETGCPGEOREFMETHOD(GEORASTER)

Chapter 7
SDO_GEOR.getGCPGeorefMethod

7-109

--
Affine

7.62 SDO_GEOR.getGCPGeorefModel
Format

SDO_GEOR.getGCPGeorefModel(
 inGeoraster IN SDO_GEORASTER
) RETURN SDO_GEOR_GCPGEOREFTYPE;

Description

Returns all information about the ground control point (GCP)-based georeferencing
model in a GeoRaster object.

Parameters

inGeoraster
GeoRaster object.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

The SDO_GEOR_GCPGEOREFTYPE object type is defined in
SDO_GEOR_GCPGEOREFTYPE Object Type.

If inGeoraster does not contain any georeferencing model information, this function
returns a null value.

Examples

The following example returns the GCP-based georeferencing model information in a
specified GeoRaster object. (The output is reformatted for readability.)

SELECT sdo_geor.getGCPGeorefModel(georaster) FROM georaster_table WHERE
georid=10;

SDO_GEOR.GETGCPGEOREFMODEL(GEORASTER)(FFMETHODTYPE,
NUMBERGCP, GCPS(POINTID, DES...
--
SDO_GEOR_GCPGEOREFTYPE('Affine', 6,
SDO_GEOR_GCP_COLLECTION(
SDO_GEOR_GCP('21', NULL, 1, 2,SDO_NUMBER_ARRAY(25.625, 73.875), 2,
SDO_NUMBER_ARRAY(237036.938,897987.188), NULL, NULL),
SDO_GEOR_GCP('22', NULL, 1, 2,SDO_NUMBER_ARRAY(100.625, 459.125),
2,SDO_NUMBER_ARRAY(237229.563, 897949.688), NULL, NULL),
SDO_GEOR_GCP('23', NULL, 1, 2, SDO_NUMBER_ARRAY(362.375, 77.875), 2,
SDO_NUMBER_ARRAY(237038.938, 897818.813), NULL, NULL),
SDO_GEOR_GCP('24', NULL, 1, 2, SDO_NUMBER_ARRAY(478.875, 402.125), 2,
SDO_NUMBER_ARRAY(237201.063, 897760.563), NULL, NULL),
SDO_GEOR_GCP('25', NULL, 2, 2, SDO_NUMBER_ARRAY(167.470583,
64.030686), 2, SDO_NUMBER_ARRAY(237032.015, 897916.265), NULL, NULL),
SDO_GEOR_GCP('26', NULL, 2, 2, SDO_NUMBER_ARRAY(101.456177,
257.915534), 2, SDO_NUMBER_ARRAY(237128.958, 897949.272), NULL, NULL)),
NULL)

Chapter 7
SDO_GEOR.getGCPGeorefModel

7-110

7.63 SDO_GEOR.getGeoreferenceType
Format

SDO_GEOR.getGeoreferenceType(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns a number that indicates the georeference type for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns one of the following numbers to indicate the georeference type:
1 for unknown type or null GeoRaster object, 2 for affine transform, 3 for direct linear
transform (DLT), 4 for rational polynomial coefficient (RPC), 5 for cubic polynomial, 6
for quadratic rational polynomial, or 7 for quadratic polynomial.

For an explanation of georeferencing, see Georeferencing.

Examples

The following example returns the georeference type for the GeoRaster objects in a
table named GEORASTER_TABLE. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

SELECT georid,sdo_geor.getGeoreferenceType(a.georaster)
 FROM georaster_table a ORDER BY georid;

 GEORID SDO_GEOR.GETGEOREFERENCETYPE(A.GEORASTER)
---------- ---
 1 1
 2 1
 3 1
 4 1
 5 1
 7 1
 8 2
 9 1
 10 1
 12 1
 13 1
 14 2
 15 1
 16 1
 17 1
 18 1
 19 2
 20 2
 21 4
 22 4

Chapter 7
SDO_GEOR.getGeoreferenceType

7-111

7.64 SDO_GEOR.getGrayScale
Format

SDO_GEOR.getGrayScale(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN SDO_GEOR_GRAYSCALE;

Description

Returns the grayscale mappings for a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the grayscale mappings. A value of 0 (zero)
indicates the object layer.

Usage Notes

This function returns an object of type SDO_GEOR_GRAYSCALE.
SDO_GEOR_GRAYSCALE Object Type describes grayscale display and this object
type.

To set the grayscale mappings for a layer in a GeoRaster object, use the
SDO_GEOR.setGrayScale procedure.

Examples

The following example returns the grayscale mappings for layer 0 of the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 0 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT sdo_geor.getGrayScale(georaster, 0) FROM georaster_table WHERE georid=0;

SDO_GEOR.GETGRAYSCALE(GEORASTER,0)(CELLVALUE, GRAY)
--
SDO_GEOR_GRAYSCALE(SDO_NUMBER_ARRAY(10, 20, 30, 255), SDO_NUMBER_ARRAY(180, 210,
230, 250))

7.65 SDO_GEOR.getGrayScaleTable
Format

SDO_GEOR.getGrayScaleTable(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Chapter 7
SDO_GEOR.getGrayScale

7-112

Description

Returns the grayscale mapping table for a layer in a GeoRaster object.

Note:

GeoRaster does not perform operations using the grayscale mapping table in
the current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the grayscale mapping table. A value of 0
(zero) indicates the object layer.

Usage Notes

This function returns the name of a user-defined grayscale table.
SDO_GEOR_GRAYSCALE Object Type describes grayscale display.

To set the grayscale mapping table for a layer in a GeoRaster object, use the
SDO_GEOR.setGrayScaleTable procedure.

Examples

The following example returns the grayscale mapping tables for layers 0, 1, 2, and
3 of the GeoRaster object (GEORASTER column) in the row with the GEORID
column value of 4 in the GEORASTER_TABLE table. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters. The output is reformatted for readability.)

SELECT substr(sdo_geor.getGrayScaleTable(georaster, 0),1,20) grayScaleTable0,
 substr(sdo_geor.getGrayScaleTable(georaster, 1),1,20) grayScaleTable1,
 substr(sdo_geor.getGrayScaleTable(georaster, 2),1,20) grayScaleTable2,
 substr(sdo_geor.getGrayScaleTable(georaster, 3),1,20) grayScaleTable3
 FROM georaster_table WHERE georid=4;

GRAYSCALETABLE0 GRAYSCALETABLE1 GRAYSCALETABLE2 GRAYSCALETABLE3
-------------------- -------------------- -------------------- -----------------
SCL0 SCL1 SCL2 SCL3

7.66 SDO_GEOR.getHistogram
Format

SDO_GEOR.getHistogram(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN SDO_GEOR_HISTOGRAM;

Chapter 7
SDO_GEOR.getHistogram

7-113

Description

Returns the histogram for a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the histogram. A value of 0 (zero) indicates the
object layer.

Usage Notes

This function returns an object of type SDO_GEOR_HISTOGRAM.
SDO_GEOR_HISTOGRAM Object Type describes this object type and briefly
discusses histograms.

Examples

The following example returns the histogram for layer 1 of a 4-bit GeoRaster object
in the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT sdo_geor.getHistogram(georaster, 1) layer1
 FROM georaster_table WHERE georid=17;

LAYER1(CELLVALUE, COUNT)
--
SDO_GEOR_HISTOGRAM(SDO_NUMBER_ARRAY(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13,
 14, 15), SDO_NUMBER_ARRAY(10, 18, 10, 110, 200, 120, 130, 150, 160, 103, 106,
 190, 12, 17, 10, 5))

7.67 SDO_GEOR.getHistogramTable
Format

SDO_GEOR.getHistogramTable(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the histogram table for a layer in a GeoRaster object.

Note:

GeoRaster does not perform operations using the histogram table in the
current release.

Chapter 7
SDO_GEOR.getHistogramTable

7-114

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the name of the histogram table. A value of 0
(zero) indicates the object layer.

Usage Notes

This function returns a user-defined histogram table. SDO_GEOR_HISTOGRAM
Object Type briefly discusses histograms.

To set the name of the histogram table for a layer, use the
SDO_GEOR.setHistogramTable procedure.

Examples

The following example returns the histogram tables for layers 0 (the whole object), 1,
2, and 3 of the GeoRaster object (GEORASTER column) in the row with the GEORID
column value of 4 in the GEORASTER_TABLE table. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters. The output is reformatted for readability.)

SELECT substr(sdo_geor.getHistogramTable(georaster, 0),1,20) histogramTable0,
 substr(sdo_geor.getHistogramTable(georaster, 1),1,20) histogramTable1,
 substr(sdo_geor.getHistogramTable(georaster, 2),1,20) histogramTable2,
 substr(sdo_geor.getHistogramTable(georaster, 3),1,20) histogramTable3
 FROM georaster_table WHERE georid=4;

HISTOGRAMTABLE0 HISTOGRAMTABLE1 HISTOGRAMTABLE2 HISTOGRAMTABLE3
-------------------- -------------------- -------------------- -----------------
HIST0 HIST1 HIST2 HIST3

7.68 SDO_GEOR.getID
Format

SDO_GEOR.getID(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the user-defined identifier value associated with a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

To set a user-defined identifier value for a GeoRaster object, use the
SDO_GEOR.setID procedure.

Chapter 7
SDO_GEOR.getID

7-115

Examples

The following example returns the user-defined identifier values of the GeoRaster
objects (GEORASTER column) in the GEORASTER_TABLE table, whose definition is
presented after Example 1-1 in Storage Parameters.

SELECT georid, substr(sdo_geor.getID(georaster),1,50) GEOR_ID
 FROM georaster_table;

 GEORID GEOR_ID
---------- --
 2 TM_102
 4 TM_104

7.69 SDO_GEOR.getInterleavingType
Format

SDO_GEOR.getInterleavingType(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the interleaving type for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns one of the following values: BSQ (band sequential), BIL (band
interleaved by line), or BIP (band interleaved by pixel).

To change the interleaving type for a GeoRaster object, use the
SDO_GEOR.changeFormatCopy procedure, and use the interleaving keyword in
the storageParam parameter string.

Examples

The following example returns the cell depth, interleaving type, and blocking type of
the GeoRaster object (GEORASTER column) in the row with the GEORID column
value of 21 in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT sdo_geor.getCellDepth(georaster) CellDepth,
 substr(sdo_geor.getInterleavingType(georaster),1,8) interleavingType,
 substr(sdo_geor.getBlockingType(georaster),1,8) blocking
 FROM georaster_table WHERE georid=21;

 CELLDEPTH INTERLEA BLOCKING
---------- -------- --------
 8 BSQ REGULAR

Chapter 7
SDO_GEOR.getInterleavingType

7-116

7.70 SDO_GEOR.getJP2TileSize
Format

SDO_GEOR.getJP2TileSize(
 georaster IN SDO_GEORASTER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array showing the size of tiles in the JPEG2000 compressed GeoRaster
image, in row and column order.

Parameters

georaster
GeoRaster object.

Usage Notes

If there is no tiling in the JPEG2000 compressed GeoRaster image, null is returned.

Examples

The following example returns the tile size in the JPEG2000 compressed GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 21 in
the GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT sdo_geor.getJP2TileSize(georaster) JP2TileSize
 FROM georaster_table WHERE georid=21;

JP2TILESIZE
--
SDO_NUMBER_ARRAY(350, 512)

7.71 SDO_GEOR.getLayerDimension
Format

SDO_GEOR.getLayerDimension(
 georaster IN SDO_GEORASTER
) RETURN SDO_STRING_ARRAY;

Description

Returns the dimension that is mapped as the logical layer dimension of a GeoRaster
object.

Parameters

georaster
GeoRaster object.

Chapter 7
SDO_GEOR.getJP2TileSize

7-117

Usage Notes

The layer dimension refers to the physical entity associated with the logical term
layer. For the current release, the only supported layer dimension is BAND: that is, the
logical concept layer is associated with the physical term band, as shown in Figure 1-5
in Bands_ Layers_ and Metadata. In this case, layers will be mapped to the BAND
dimension, so that the first layer is band 0, the second layer is band 1, and so on.

Examples

The following example returns the layer dimension of each GeoRaster object
(GEORASTER column) in the GEORASTER_TABLE table, whose definition is
presented after Example 1-1 in Storage Parameters. (The output is reformatted for
readability.)

SELECT georid, sdo_geor.getLayerDimension(georaster) FROM georaster_table;

 GEORID SDO_GEOR.GETLAYERDIMENSION(GEORASTER)
---------- --
 2 SDO_STRING_ARRAY('BAND')
 4 SDO_STRING_ARRAY('BAND')

7.72 SDO_GEOR.getLayerID
Format

SDO_GEOR.getLayerID(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the user-defined identifier value associated with a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the user-defined identifier value. A value of 0
(zero) indicates the object layer.

Usage Notes

To set a user-defined identifier value for a layer in a GeoRaster object, use the
SDO_GEOR.setLayerID procedure.

Examples

The following example returns the user-defined identifier values of layers 0, 1, 2,
and 3 of the GeoRaster object (GEORASTER column) in the row with the GEORID
column value of 4 in the GEORASTER_TABLE table, whose definition is presented
after Example 1-1 in Storage Parameters.

Chapter 7
SDO_GEOR.getLayerID

7-118

SELECT substr(sdo_geor.getLayerID(georaster, 0),1,12) layerID0,
 substr(sdo_geor.getLayerID(georaster, 1),1,12) layerID1,
 substr(sdo_geor.getLayerID(georaster, 2),1,12) layerID2,
 substr(sdo_geor.getLayerID(georaster, 3),1,12) layerID3
 FROM georaster_table WHERE georid=4;

LAYERID0 LAYERID1 LAYERID2 LAYERID3
------------ ------------ ------------ ------------
TM543 TM3 TM4 TM5

7.73 SDO_GEOR.getLayerOrdinate
Format

SDO_GEOR.getLayerOrdinate(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN NUMBER;

Description

Returns the band ordinate for a layer in a GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the physical band ordinate. A value of 0 (zero)
indicates the object layer.

Usage Notes

The returned number refers to the physical band that a layer (layerNumber parameter
value) is associated with. For the current release, by default the associations are as
shown in Figure 1-5 in Bands_ Layers_ and Metadata: layer 1 is band 0, layer 2 is
band 1, and so on.

To set the band ordinate value for a layer, use the SDO_GEOR.setLayerOrdinate
procedure.

Examples

The following example returns the band numbers associated with layers 0, 1, 2, and 3
of the GeoRaster object (GEORASTER column) in the row with the GEORID column
value of 4 in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT sdo_geor.getLayerOrdinate(georaster, 0) layerOrdinate0,
 sdo_geor.getLayerOrdinate(georaster, 1) layerOrdinate1,
 sdo_geor.getLayerOrdinate(georaster, 2) layerOrdinate2,
 sdo_geor.getLayerOrdinate(georaster, 3) layerOrdinate3
 FROM georaster_table WHERE georid=4;

LAYERORDINATE0 LAYERORDINATE1 LAYERORDINATE2 LAYERORDINATE3
-------------- -------------- -------------- --------------
 0 1 2

Chapter 7
SDO_GEOR.getLayerOrdinate

7-119

7.74 SDO_GEOR.getModelCoordinate
Format

SDO_GEOR.getModelCoordinate(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cellCoordinate IN SDO_NUMBER_ARRAY,
 height IN NUMBER DEFAULT NULL,
) RETURN SDO_GEOMETRY;

or

SDO_GEOR.getModelCoordinate(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cellCoordinate IN SDO_GEOMETRY,
 modelCoordinate OUT SDO_GEOMETRY,
 height IN NUMBER DEFAULT NULL);

Description

Returns a geometry associated with the specified cell (raster) coordinates at the
specified pyramid level.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level containing the cell specified in cellCoordinate.

cellCoordinate
If the type is SDO_NUMBER_ARRAY, cellCoordinate is an array of two coordinates
identifying the point in the cell coordinate system: the two coordinates are the
row number and column number of the point. If the type is SDO_GEOMETRY,
cellCoordinate specifies a geometry in the cell coordinate system

modelCoordinate
The output geometry.

height
Number specifying the Z value for three-dimensional (X, Y, Z) georeferencing.

Usage Notes

SDO_GEOR.getModelCoordinate has two formats:

• Use the first format (a function without the modelCoordinate parameter) to
transform the location of a point in the GeoRaster object's raster space.

• Use the second format (a procedure with the modelCoordinate parameter) to
transform a geometry in the raster space of the GeoRaster object. The conversion
is done by converting the coordinates of each vertex of the input geometry. Use an
appropriate input geometry so that the output geometry will be valid. For example,

Chapter 7
SDO_GEOR.getModelCoordinate

7-120

if the model coordinate system is geodetic, the input geometry should not contain
any arcs.

Use SDO_GEOR.getModelCoordinate to transform the location of a point on the
GeoRaster object to the longitude and latitude coordinates of its associated point in
the ground coordinate system.

If the GeoRaster object is georeferenced, the output geometry contains the
coordinates in the model (ground) coordinate system. If the GeoRaster object is not
georeferenced, the output geometry contains cell coordinates at the original image
level.

If the GeoRaster object is georeferenced, the SDO_SRID value of the output geometry
is the same as the model SRID of the GeoRaster object.

Contrast SDO_GEOR.getModelCoordinate with SDO_GEOR.getCellCoordinate,
which returns the coordinates in the cell (raster) coordinate system associated with
the point at the specified model (ground) coordinates.

Examples

The following example returns a point geometry object containing the model
coordinates associated with cell coordinates (100,100) in a specified GeoRaster
object. (It refers to a table named GEORASTER_TABLE, whose definition is presented
after Example 1-1 in Storage Parameters.)

SET NUMWIDTH 20
SELECT sdo_geor.getModelCoordinate(georaster, 0,
sdo_number_array(100,100)) mcoord
 FROM georaster_table WHERE georid=4;

MCOORD(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)
--

SDO_GEOMETRY(2001, 82394, SDO_POINT_TYPE(347.666315789474, 43274.9052631579, NUL
L), NULL, NULL)

7.75 SDO_GEOR.getModelCoordLocation
Format

SDO_GEOR.getModelCoordLocation(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the model coordinate location value for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns a null value if the GeoRaster object is not georeferenced or if the
modelCoordinateLocation element is not specified in the SRS metadata. Otherwise, it
returns the modelCoordinateLocation element value specified in the SRS metadata.

Chapter 7
SDO_GEOR.getModelCoordLocation

7-121

A null return value or a value of CENTER means that the cell coordinate system is
center-based. A value of UPPERLEFT means that the cell coordinate system is based on
the upper-left corner.

To set or delete the model coordinate location value for a GeoRaster object, use the
SDO_GEOR.setModelCoordLocation procedure.

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

Examples

The following example returns the model coordinate location of a specified GeoRaster
object.

SELECT sdo_geor.getModelCoordLocation(georaster) modelCoordLocation
 FROM georaster_table
 WHERE georid = 1;

7.76 SDO_GEOR.getModelSRID
Format

SDO_GEOR.getModelSRID(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the coordinate system (SDO_SRID value) associated with the model (ground)
space for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns a null value if no coordinate system is associated with the model
space.

To set the coordinate system (SDO_SRID value) associated with the model space, use
the SDO_GEOR.setModelSRID procedure.

Examples

The following example returns the SDO_SRID values associated with the GeoRaster
objects (GEORASTER column) in the GEORASTER_TABLE table, whose definition is
presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo_geor.getModelSRID(georaster) SRID FROM georaster_table;

 GEORID SRID
---------- ----------
 2 82394
 4 82394

Chapter 7
SDO_GEOR.getModelSRID

7-122

7.77 SDO_GEOR.getNODATA
Format

SDO_GEOR.getNODATA(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN SDO_RANGE_ARRAY;

Description

Returns the values or value ranges that represent NODATA cells in a GeoRaster
object (in ascending order, without duplicates).

Parameters

georaster
GeoRaster object.

layerNumber
Layer number in the GeoRaster object. A value of 0 (zero) indicates the object layer.

Usage Notes

Some cells of a GeoRaster object may have no meaningful value assigned or
collected. Such cells contain a NODATA value are thus called NODATA cells, which
means that those cells are not semantically defined. The application is responsible
for defining the meaning or significance of cells identified as NODATA cells. For more
information about NODATA values and value ranges, see NODATA Values and Value
Ranges.

This function returns all the NODATA values and value ranges associated with a
specified raster layer of the specified GeoRaster object, in ascending order and in a
compact form with duplicates eliminated. The set of NODATA values and value ranges
associated with a sublayer (layerNumber > 0) is always a superset of the values
and value ranges of the object layer (layerNumber = 0). The result for a sublayer
is the combination of the NODATA metadata entries for the specified sublayer, the
object layer, and any pre-release 11g NODATA metadata stored as part of the raster
description information.

If the specified GeoRaster object or layer has more than one NODATA value, you
must use the function format that returns an SDO_RANGE_ARRAY object. The
SDO_RANGE_ARRAY type is described in NODATA Values and Value Ranges.

If this function returns a null value, it means that all cells of the GeoRaster object or of
the specified layer are defined and have a meaningful cell value.

To specify the NODATA values for a GeoRaster object, use the
SDO_GEOR.addNODATA procedure.

Examples

The following example returns the value to be used for NODATA cells in the
GeoRaster objects (GEORASTER column) in table GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.

Chapter 7
SDO_GEOR.getNODATA

7-123

SELECT SDO_GEOR.getNODATA(georaster, 0) NODATA FROM georaster_table WHERE
georid=0;

NODATA

SDO_RANGE_ARRAY(SDO_RANGE(5,7))

7.78 SDO_GEOR.getPyramidMaxLevel
Format

SDO_GEOR.getPyramidMaxLevel(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the level number of the top pyramid of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

For information about pyramids, see Pyramids.

Examples

The following example returns the pyramid type and level number of the top pyramid
for the GeoRaster object (GEORASTER column) in the row with an GEORID column
value of 21 in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT substr(sdo_geor.getPyramidType(georaster),1,10) pyramidType,
 sdo_geor.getPyramidMaxLevel(georaster) maxLevel
 FROM georaster_table WHERE georid=21;

PYRAMIDTYP MAXLEVEL
---------- ----------
DECREASE 3

7.79 SDO_GEOR.getPyramidType
Format

SDO_GEOR.getPyramidType(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the pyramid type for a GeoRaster object.

Chapter 7
SDO_GEOR.getPyramidMaxLevel

7-124

Parameters

georaster
GeoRaster object.

Usage Notes

The pyramid type can be NONE (no pyramids) or DECREASE.

For information about pyramids, see Pyramids.

Examples

The following example returns the pyramid type and level number of the top pyramid
for the GeoRaster object (GEORASTER column) in the row with an GEORID column
value of 21 in the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.

SELECT substr(sdo_geor.getPyramidType(georaster),1,10) pyramidType,
 sdo_geor.getPyramidMaxLevel(georaster) maxLevel
 FROM georaster_table WHERE georid=21;

PYRAMIDTYP MAXLEVEL
---------- ----------
DECREASE 3

7.80 SDO_GEOR.getRasterBlockLocator
Format

SDO_GEOR.getRasterBlockLocator(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 bandBlockNumber IN NUMBER,
 rowBlockNumber IN NUMBER,
 columnBlockNumber IN NUMBER,
 loc IN OUT NOCOPY BLOB,
 isBitmapMask IN VARCHAR2 DEFAULT NULL,
 lock_for_write IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getRasterBlockLocator(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 rowNumber IN NUMBER,
 colNumber IN NUMBER,
 bandNumber IN NUMBER,
 offset OUT NUMBER,
 loc IN OUT NOCOPY BLOB,
 isBitmapMask IN VARCHAR2 DEFAULT NULL,
 lock_for_write IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getRasterBlockLocator(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 ptGeom IN SDO_GEOMETRY,

Chapter 7
SDO_GEOR.getRasterBlockLocator

7-125

 layerNumber IN NUMBER,
 offset OUT NUMBER,
 loc IN OUT NOCOPY BLOB,
 isBitmapMask IN VARCHAR2 DEFAULT NULL,
 lock_for_write IN VARCHAR2 DEFAULT NULL);

Description

This procedure has three formats:

• The first listed format returns the LOB locator of a raster block by specifying
the pyramidLevel, bandBlockNumber, rowBlockNumber, and columnBlockNumber
parameters.

• The second and third listed formats return the LOB locator of a raster block that
contains a specific single cell and the offset of the cell within the raster block. The
specific single cell is identified by the pyramidLevel, rowNumber, columnNumber,
and bandNumber parameters or by a point geometry parameter (ptGeom) in either
the cell coordinate space or the model coordinate space.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level of the block.

bandBlockNumber
Band number of the block.

bandNumber
Band number of the cell.

rowBlockNumber
Row number of the block.

rowNumber
Row number of the cell.

columnBlockNumber
Column number of the block.

columnNumber
Column number of the cell.

ptGeom
Point geometry that locates the cell.

layerNumber
Number of the logical layer that contains the cell whose value is to be returned. (As
mentioned in Bands_ Layers_ and Metadata, the logical layer number is the physical
band ordinate number plus 1.

offset
Output parameter to contain the offset (in bytes) of the cell inside the raster block that
is located. If the raster block is compressed, it always refers to the offset of the cell in
the decompressed version of the block.

Chapter 7
SDO_GEOR.getRasterBlockLocator

7-126

loc
LOB locator.

isBitmapMask
The string TRUE specifies that a bitmap mask block will be accessed; the string
FALSE specifies that a regular raster block will be accessed. If you do not specify
this parameter, a regular raster block will be accessed. For an explanation of bitmap
masks, see Bitmap Masks.

lockForWrite
The string TRUE locks the row in the raster data table so that other users cannot lock
or update that row until the current transaction ends; the string FALSE does not lock
the row in the raster data table. If you do not specify this parameter, the row is not
locked.

Usage Notes

This procedure gets the raster block locator (and for some formats, the offset) using
the specified parameters. The LOB locator is not opened, and no data is read or
processed. You should use standard LOB operations to open and close the LOB
locator and to read data from and write data to the LOB locator.

To ensure that data is read or written correctly, you must understand the physical
storage of the raster data (described in GeoRaster Physical Storage), and you must
compress and decompress the raster data as needed.

For information about LOB locators, see Oracle Database SecureFiles and Large
Objects Developer's Guide.

Examples

The following example gets the LOB locators of two raster blocks, the first a
regular raster block and the second a bitmap mask block. Both calls to the
SDO_GEOR.getRasterBlockLocator procedure lock the row in the raster data table.

DECLARE
 gr sdo_georaster;
 lb blob;
 offset number;
BEGIN
 select georaster into gr from georaster_table where georid=1;
 sdo_geor.getRasterBlockLocator(gr, 0, 0, 0, 0, offset,lb, null, 'TRUE');
 sdo_geor.getRasterBlockLocator(gr, 0, 0, 0, 0, offset,lb, 'TRUE', 'TRUE');
END;
/

7.81 SDO_GEOR.getRasterBlocks
Format

SDO_GEOR.getRasterBlocks(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 window IN SDO_NUMBER_ARRAY
) RETURN SDO_RASTERSET;

or

Chapter 7
SDO_GEOR.getRasterBlocks

7-127

SDO_GEOR.getRasterBlocks(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 window IN SDO_GEOMETRY
) RETURN SDO_RASTERSET;

Description

Returns an object of the SDO_RASTERSET collection type that identifies all blocks of
a specified pyramid level that have any spatial interaction with a specified window.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level from which to return the blocks that have any spatial interaction with the
specified window.

window
Window from which to return the blocks that are in pyramidLevel. The data
type can be SDO_NUMBER_ARRAY or SDO_GEOMETRY. If the data type is
SDO_NUMBER_ARRAY, the parameter identifies the upper-left (row, column) and
lower-right (row, column) coordinates of a rectangular window, and raster space is
assumed. If the data type is SDO_GEOMETRY, see the Usage Notes for SDO_SRID
requirements.

Usage Notes

The SDO_RASTERSET collection type is described in SDO_RASTERSET Collection
Type.

If the window parameter data type is SDO_GEOMETRY, the SDO_SRID value must be
one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the window parameter geometry and the model space
are different, the window parameter geometry is automatically transformed to the
coordinate system of the model space before the operation is performed. (Raster
space and model space are explained in GeoRaster Data Model.)

Examples

The following example returns a collection set that identifies all raster blocks that
have any spatial interaction with the specified window. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr sdo_georaster;
 ds sdo_rasterset;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=2;
 ds := sdo_geor.getRasterBlocks(gr, 0, sdo_number_array(11,65,192,244));
 COMMIT;

Chapter 7
SDO_GEOR.getRasterBlocks

7-128

END;
/

7.82 SDO_GEOR.getRasterData
Format

SDO_GEOR.getRasterData(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 rasterBlob IN OUT NOCOPY BLOB,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Creates a single BLOB object that contains all raster data of the input GeoRaster
object at the specified pyramid level.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level for which to perform the operation.

rasterBlob
BLOB object to hold the result.

storageParam
A string specifying storage parameters to be applied in creating rasterBlob. The only
storageParam keywords supported for this procedure are celldepth, compression,
interleaving, and quality; all other keywords are ignored. Storage parameters are
explained in Storage Parameters.
If storageParam is null or not specified, the cell depth, interleaving, and compression
type (and compression quality, if applicable) are the same as for the input GeoRaster
object.

bgValues
Background values for filling sparse data. The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for
all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
This parameter is useful when the source has empty raster blocks (see Empty Raster
Blocks). If this parameter is not specified, any cells that are derived from an empty
raster block are filled with the value 0 in the output BLOB.

Usage Notes

If the GeoRaster object is blocked, the mosaic of all blocks of the specified pyramid
level is returned.

After the procedure completes, the rasterBlob object contains the cell (pixel) data
without tiling.

Chapter 7
SDO_GEOR.getRasterData

7-129

You can specify compression even if the input GeoRaster object is not compressed
or is compressed in a different format from what you specify in the storageParam
parameter. To have decompressed output for a compressed input GeoRaster object,
specify compression=NONE in the storageParam parameter. For information about
GeoRaster compression and decompression, see Compression and Decompression.

Examples

The following example creates a BLOB object, using full-format baseline JPEG (JPEG-
F) compression, with all raster data from the GeoRaster object whose ID value is
2 in the GEORASTER_TABLE table. The definition of this table is presented after
Example 1-1 in Storage Parameters.

DECLARE
 gr sdo_georaster;
 lb blob;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=2;
 dbms_lob.createTemporary(lb, FALSE);
 sdo_geor.getRasterData(gr, 0, lb, 'compress=JPEG-F');
 dbms_lob.freeTemporary(lb);
END;
/

7.83 SDO_GEOR.getRasterRange
Format

SDO_GEOR.getRasterRange(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER DEFAULT 0
) RETURN SDO_NUMBER_ARRAY;

Description

Computes and returns the minimum and maximum cell values of a specified layer of a
GeoRaster object or of the GeoRaster object itself (the object layer).

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the range of cell values. A value of 0 (zero, the
default) indicates the object layer. (As mentioned in Bands_ Layers_ and Metadata,
the logical layer number is the physical band number plus 1.)

Usage Notes

This function goes through all cell values of a specified layer of a GeoRaster object,
and returns an SDO_NUMBER_ARRAY object with two values: the minimum and
maximum cell values.

If the GeoRaster object already has statistical metadata generated, you can call
the SDO_GEOR.getStatistics function to quickly retrieve the minimum and maximum
values directly for the raster range.

Chapter 7
SDO_GEOR.getRasterRange

7-130

For information about bands and layers, see Bands_ Layers_ and Metadata.

Examples

The following example computes and returns the raster range for the whole GeoRaster
object.

DECLARE
 gr sdo_georaster;
 range sdo_number_array;
BEGIN
 select georaster into gr from georaster_table where georid=1;
 range:=sdo_geor.getRasterRange(gr, 0);
END;
/

7.84 SDO_GEOR.getRasterSubset
Format

SDO_GEOR.getRasterSubset(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 window IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.getRasterSubset(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 inWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.getRasterSubset(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 window IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 polygonClip IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getRasterSubset(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 inWindow IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,

Chapter 7
SDO_GEOR.getRasterSubset

7-131

 rasterBlob IN OUT NOCOPY BLOB,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 polygonClip IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.getRasterSubset(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 inWindow IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 rasterData IN OUT SDO_NUMBER_ARRAY,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.getRasterSubset(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 inWindow IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 rasterData IN OUT SDO_NUMBER_ARRAY,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 polygonClip IN VARCHAR2 DEFAULT NULL);

or

FUNCTION SDO_GEOR.getRasterSubset(
 georaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER DEFAULT 0,
 inWindow IN SDO_GEOMETRY DEFAULT NULL,
 layerNumber IN NUMBER DEFAULT 1,
 pointPolygon IN NUMBER DEFAULT 1,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 polygonClip IN VARCHAR2 DEFAULT NULL
RETURN SDO_GEOR_CELL_TABLE PIPELINED);

Description

The procedure formats create a single BLOB object or a single
SDO_NUMBER_ARRAY object containing all cells of a specified pyramid level that
are inside or on the boundary of either a specified rectangular window or polygon
geometry object. The function format returns a nested table that holds the cell value,
pyramid, row, column, layer, and area or point geometry of all cells inside and touching
the specified window.

Parameters

georaster
GeoRaster object.

pyramidLevel
Pyramid level on which to perform the operation.

Chapter 7
SDO_GEOR.getRasterSubset

7-132

window, inWindow
A rectangular window or a polygon geometry object from which to crop the cells. If
the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left (row,
column) and lower-right (row, column) coordinates of a rectangular window, and raster
space is assumed. If the data type is SDO_GEOMETRY and the polygonClip value
is FALSE, the MBR of the geometry object is used as the window; if the data type is
SDO_GEOMETRY and the polygonClip value is TRUE, the polygon geometry object
(if valid) is used as the window. If the data type is SDO_GEOMETRY, see also the
Usage Notes for SDO_SRID requirements.
If window or inWindow is of type SDO_NUMBER_ARRAY, use the bandNumbers
parameter to specify one or more band numbers; if window or inWindow is of type
SDO_GEOMETRY, use the layerNumbers parameter to specify one or more layer
numbers.

layerNumbers
A string identifying the logical layer numbers on which the operation or operations are
to be performed. Use commas to delimit the values, and a hyphen to indicate a range
(for example, 2-4 for layers 2, 3, and 4). If you specify a null value for this parameter,
the operation or operations are performed on all layers.

layerNumber
For the function format, the layer number on which to perform the operation. The
default value is 1.

bandNumbers
A string identifying the physical band numbers on which the operation or operations
are to be performed. Use commas to delimit the values, and a hyphen to indicate a
range (for example, 1-3 for bands 1, 2, and 3). If you specify a null value for this
parameter, the operation or operations are performed on all bands.

rasterBlob
BLOB object to hold the result (the mosaicked raster subset) of the operation. It must
exist or have been initialized before the operation.

rasterData
SDO_NUMBER_ARRAY object to hold the result (the mosaicked raster subset) of the
operation.
(Note: The upper limit of element numbers in an SDO_NUMBER_ARRAY object is
1048576.)

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

storageParam
A string specifying storage parameters to be applied in creating rasterBlob. The
only supported storageParam keywords supported for this procedure are celldepth,
compression, interleaving, and quality; all other keywords are ignored. Storage
parameters are explained in Storage Parameters.
If storageParam is null or not specified, the cell depth, interleaving, and compression
type (and compression quality, if applicable) are the same as for the input GeoRaster
object.

Chapter 7
SDO_GEOR.getRasterSubset

7-133

pointPolygon
If 0, the function returns a boundary polygon geometry for each cell; if 1 (the default),
the function returns the central point geometry for each cell.

bgValues
Background values for filling sparse data. The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for
all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
This parameter is useful when the source has empty raster blocks and the output
window intersects any empty raster blocks (see Empty Raster Blocks). If this
parameter is not specified, any cells in the output window that are derived from an
empty raster block are filled with the value 0 in the output BLOB.

polygonClip
The string TRUE causes the window or inWindow geometry object to be used for the
subset operation; the string FALSE or a null value causes the MBR (minimum bounding
rectangle) of the window or inWindow geometry object to be used for the subset
operation.

Usage Notes

This subprogram has several procedure formats and a function format. The procedure
format to use depends whether the input window is specified as a geometry object or
as the upper-left and lower-right corners of a box, whether the result of the operation is
a BLOB or SDO_NUMEBR_ARRAY object, and on whether the outWindow parameter
is used to return the coordinates of the output window.

If the window or inWindow parameter data type is SDO_GEOMETRY, the SDO_SRID
value must be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the window parameter geometry and the model space
are different, the window parameter geometry is automatically transformed to the
coordinate system of the model space before the operation is performed. (Raster
space and model space are explained in GeoRaster Data Model.)

If the window or inWindow parameter specifies a geodetic MBR, it cannot cross the
date line meridian. For information about geodetic MBRs, see Oracle Spatial and
Graph Developer's Guide.

After the procedure completes, the rasterBLOB parameter contains the cell (pixel) data
in the cropped window without tiling. The cropped window is the overlapping portion
of the specified window of interest and the source GeoRaster object's spatial extent.
If the outWindow parameter is specified, after the procedure completes it contains the
coordinates of the cropped window in the cell space.

The BLOB has no padding, except when the cell depth is less than 8 bits and the total
number of bits needed for the output cannot be divided by 8; in these cases, unlike
normal padding, only the last byte of the result is padded with 0 (zeros) for the trailing
bits.

If polygonClip is TRUE, and if this procedure creates a rectangular image subset
but the geometry is not a rectangle, check the validity of the inWindow geometry

Chapter 7
SDO_GEOR.getRasterSubset

7-134

object with the function SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT. For
an invalid geometry, this procedure operates as if the polygonClip value is FALSE or a
null value.

You can specify compression even if the input GeoRaster object is not compressed
or is compressed in a different format from what you specify in the storageParam
parameter. To have decompressed output for a compressed input GeoRaster object,
specify compression=NONE in the storageParam parameter. For information about
GeoRaster compression and decompression, see Compression and Decompression.

If you want to get a subset and reproject it to another coordinate system, do not use
this procedure, but instead use the SDO_GEOR.reproject procedure using a format
that includes the rasterBlob parameter, so that this BLOB holds the desired subset.

The SDO_GEOR_CELL_TABLE type for the result of the function format has the
following definition:

SDO_GEOR_CELL_TABLE TABLE OF MDSYS.SDO_GEOR_CELL
Name Null? Type
------------------------------ -------- ----------------------------
VALUE NUMBER
PYRAMIDLEVEL NUMBER
ROWNUMBER NUMBER
COLNUMBER NUMBER
LAYERNUMBER NUMBER
GEOM MDSYS.SDO_GEOMETRY

Examples

The following two examples retrieve raster data of a specified pyramid level inside
a specified window into a BLOB object and an SDO_NUMBER_ARRAY object.
(They refer to the GEORASTER_TABLE table, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
 gr sdo_georaster;
 lb blob;
 win sdo_number_array;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=4;
 dbms_lob.createTemporary(lb, TRUE);
 win := sdo_number_array(-21,100,100,200);
 sdo_geor.getRasterSubset(gr, 0, win, null, lb);
 dbms_lob.freeTemporary(lb);
END;
/

DECLARE
 gr sdo_georaster;
 data sdo_number_array;
 win sdo_number_array;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=4;
 win := sdo_number_array(-21,100,100,200);
 sdo_geor.getRasterSubset(gr, 0, win, null, data);
END;
/

The following example demonstrates how to get the window for the cropping.

Chapter 7
SDO_GEOR.getRasterSubset

7-135

DECLARE
 gr sdo_georaster;
 lb blob;
 win1 sdo_geometry;
 win2 sdo_number_array;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=4;
 dbms_lob.createTemporary(lb, TRUE);
 win1 := sdo_geometry(2003,82263,null,sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(1828466,646447,1823400,642512));
 sdo_geor.getRasterSubset(gr, 0, win1, '1-3', lb, win2, 'compression=NONE');
 dbms_lob.freeTemporary(lb);
 IF win2 IS NOT NULL THEN
 dbms_output.put_line('output window: (' || win2(1) || ',' ||
 win2(2) || ',' || win2(3) || ',' || win2(4) || ')');
 END IF;
END;
/

The following example demonstrates how to do clipping while querying a subset using
a polygon.

DECLARE
 gr sdo_georaster;
 lb blob;
 win1 sdo_geometry;
 win2 sdo_number_array;
BEGIN
 dbms_lob.createTemporary(lb, TRUE);
 SELECT georaster INTO gr FROM rstpoly_table WHERE georid=1;
 -- querying/clipping polygon
 win1 := sdo_geometry(2003, 26986, null, sdo_elem_info_array(1,1003,1),
 sdo_ordinate_array(237040, 897924,
 237013.3, 897831.6,
 237129, 897840,
 237182.5, 897785.5,
 237239.9, 897902.7,
 237223, 897954,
 237133, 897899,
 237040, 897924));
 sdo_geor.getRasterSubset(gr, 0, win1, '1-3',
 lb, win2, NULL, NULL, 'TRUE');
 -- Then work on the resulting subset stored in lb.
END;
/

7.85 SDO_GEOR.getScaling
Format

SDO_GEOR.getScaling(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the coefficients of the scaling function for a layer of a GeoRaster object.

Chapter 7
SDO_GEOR.getScaling

7-136

Note:

GeoRaster does not perform operations using the scaling function in the
current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the coefficients. A value of 0 (zero) indicates
the object layer.

Usage Notes

The scaling function is as follows:

value = (a0 + a1 * cellvalue) / (b0 + b1 * cellvalue)

The order of the coefficients is: a0, a1, b0, b1.

Examples

The following example returns the scaling coefficients for layer number 0 (the whole
object) of a specified GeoRaster object in a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters. It scales
original value range 0.0 to 1000.0 to be in the range 0.0 to 250.0.

SELECT sdo_geor.getScaling(georaster, 0) FROM georaster_table WHERE georid=0;

SDO_GEOR.GETSCALING(GEORASTER,0)
--
SDO_NUMBER_ARRAY(0.0, 0.25, 1, 0.0)

7.86 SDO_GEOR.getSourceInfo
Format

SDO_GEOR.getSourceInfo(
 georaster IN OUT SDO_GEORASTER,
) RETURN SDO_STRING2_ARRAY;

Description

Gets the source information for a GeoRaster object.

Parameters

georaster
GeoRaster object.

Chapter 7
SDO_GEOR.getSourceInfo

7-137

Usage Notes

This function returns the source information stored in the <sourceInfo> element in the
metadata for the GeoRaster object (described in GeoRaster Metadata XML Schema).

The SDO_STRING2_ARRAY type is defined as VARRAY(2147483647) OF
VARCHAR2(4096).

To replace or delete source information, use the SDO_GEOR.setSourceInfo
procedure. To add source information, use the SDO_GEOR.addSourceInfo procedure.

Examples

The following example sets and adds some source information for a specified
GeoRaster object, and then retrieves the information.

declare
 gr sdo_georaster;
begin
 select georaster into gr from georaster_table where georid=1 for update;
 sdo_geor.setSourceInfo(gr, 'Copyright (c) 2002, 2007, Oracle Corporation.');
 sdo_geor.addSourceInfo(gr, 'All rights reserved.');
 update georaster_table set georaster=gr where georid=1;
end;
/

select * from table(select sdo_geor.getSourceInfo(georaster) from
georaster_table where id=1);

COLUMN_VALUE
--
Copyright (c) 2002, 2007, Oracle Corporation.
All rights reserved.

7.87 SDO_GEOR.getSpatialDimNumber
Format

SDO_GEOR.getSpatialDimNumber(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the number of spatial dimensions of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

For the current release, this function always returns 2.

To return the number of cells in each spatial dimension of a GeoRaster object, use the
SDO_GEOR.getSpatialDimSizes function.

Chapter 7
SDO_GEOR.getSpatialDimNumber

7-138

Examples

The following example returns the GEORID column value, the number of spatial
dimensions, and the number of cells in each spatial dimension for the GeoRaster
objects in the table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters. (The output is reformatted for readability.)

SELECT georid, sdo_geor.getSpatialDimNumber(georaster) spatialDim,
 sdo_geor.getSpatialDimSizes(georaster) spatialDimSizes
 FROM georaster_table;

 GEORID SPATIALDIM SPATIALDIMSIZES
---------- ---------- --
 0 2 SDO_NUMBER_ARRAY(1024, 1024)

 1 2 SDO_NUMBER_ARRAY(384, 251)

 2 2 SDO_NUMBER_ARRAY(512, 512)

 4 2 SDO_NUMBER_ARRAY(512, 512)

 11 2 SDO_NUMBER_ARRAY(7957, 5828)

7.88 SDO_GEOR.getSpatialDimSizes
Format

SDO_GEOR.getSpatialDimSizes(
 georaster IN SDO_GEORASTER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the number of cells in each spatial dimension of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

To return the number of spatial dimensions for a GeoRaster object, use the
SDO_GEOR.getSpatialDimNumber function.

Examples

The following example returns the spatial dimension sizes and the number of bands
for a GeoRaster object. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters. The output is
reformatted for readability.)

SELECT sdo_geor.getSpatialDimSizes(georaster) spatialDimSizes,
 sdo_geor.getBandDimSize(georaster) bandDimSize
 FROM georaster_table WHERE georid=21;

SPATIALDIMSIZES BANDDIMSIZE

Chapter 7
SDO_GEOR.getSpatialDimSizes

7-139

-------------------------- -----------
SDO_NUMBER_ARRAY(512, 512) 1

7.89 SDO_GEOR.getSpatialResolutions
Format

SDO_GEOR.getSpatialResolutions(
 georaster IN SDO_GEORASTER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the spatial resolution value along each spatial dimension of a GeoRaster
object.

Parameters

georaster
GeoRaster object.

Usage Notes

Each value indicates the number of units of measurement associated with the data
area represented by that spatial dimension of a pixel. For example, if the spatial
resolution values are (10,10) and the unit of measurement for the ground data is
meters, each pixel represents an area of 10 meters by 10 meters.

The spatial resolutions may be inconsistent with the georeferencing information,
especially when the GeoRaster object is not georectified. You can use the
SDO_GEOR.setSpatialResolutions procedure to set the spatial resolutions to be the
average resolutions for an image or the resolutions when the data was collected. In
this case, georeferencing information should be used for precise measurement.

Examples

The following example returns the spatial resolution values along the column and
row (X and Y) dimensions of a GeoRaster object. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

SELECT sdo_geor.getSpatialResolutions(georaster) spatialResolution
 FROM georaster_table WHERE georid=42;

SPATIALRESOLUTION
--
SDO_NUMBER_ARRAY(28.5, 28.5)

7.90 SDO_GEOR.getSpectralResolution
Format

SDO_GEOR.getSpectralResolution(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Chapter 7
SDO_GEOR.getSpatialResolutions

7-140

Description

Returns the spectral resolution of a GeoRaster object if it is a hyperspectral or
multiband image.

Parameters

georaster
GeoRaster object.

Usage Notes

Taken together, the spectral unit and spectral resolution identify the wavelength
interval for a band. For example, if the spectral resolution value is 2 and the spectral
unit value is MILLIMETER, the wavelength interval for a band is 2 millimeters.

To set the spectral resolution for a GeoRaster object, use the
SDO_GEOR.setSpectralResolution procedure.

Examples

The following example returns the spectral unit and spectral resolution for all spatially
referenced GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE
table, whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, substr(sdo_geor.getSpectralUnit(georaster),1,20) spectralUnit,
 sdo_geor.getSpectralResolution(georaster) spectralResolution
 FROM georaster_table
 WHERE sdo_geor.isSpatialReferenced(georaster)='TRUE';

 GEORID SPECTRALUNIT SPECTRALRESOLUTION
---------- -------------------- ------------------
 4 MILLIMETER 0.075

7.91 SDO_GEOR.getSpectralUnit
Format

SDO_GEOR.getSpectralUnit(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the unit of measurement for identifying the wavelength interval for a band.

Parameters

georaster
GeoRaster object.

Usage Notes

This function can return one of the following values: METER, MILLIMETER, MICROMETER,
NANOMETER.

Chapter 7
SDO_GEOR.getSpectralUnit

7-141

Taken together, the spectral unit and spectral resolution identify the wavelength
interval for a band. For example, if the spectral resolution value is 2 and the spectral
unit value is MILLIMETER, the wavelength interval for a band is 2 millimeters.

To set the spectral unit for a GeoRaster object, use the SDO_GEOR.setSpectralUnit
procedure.

Examples

The following example returns the spectral unit and spectral resolution for all spatially
referenced GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE
table, whose definition is presented after Example 1-1 in Storage Parameters.

SELECT georid, substr(sdo_geor.getSpectralUnit(georaster),1,20) spectralUnit,
 sdo_geor.getSpectralResolution(georaster) spectralResolution
 FROM georaster_table
 WHERE sdo_geor.isSpatialReferenced(georaster)='TRUE';

 GEORID SPECTRALUNIT SPECTRALRESOLUTION
---------- -------------------- ------------------
 4 MILLIMETER 0.075

7.92 SDO_GEOR.getSRS
Format

SDO_GEOR.getSRS(
 georaster IN SDO_GEORASTER
) RETURN SDO_GEOR_SRS;

Description

Returns an object of type SDO_GEOR_SRS containing information related to the
spatial referencing of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The SDO_GEOR_SRS object type is described in SDO_GEOR_SRS Object Type.

Examples

The following example returns information related to the spatial referencing
of all spatially referenced GeoRaster objects (GEORASTER column) in the
GEORASTER_TABLE table, whose definition is presented after Example 1-1 in
Storage Parameters.

SELECT georid, sdo_geor.getSRS(georaster) SRS
 FROM georaster_table
 WHERE sdo_geor.isSpatialReferenced(georaster)='TRUE';

 GEORID

SRS(ISREFERENCED, ISRECTIFIED, ISORTHORECTIFIED, SRID, SPATIALRESOLUTION, SPATIA
--

Chapter 7
SDO_GEOR.getSRS

7-142

 4
SDO_GEOR_SRS('TRUE', 'TRUE', NULL, 82262, SDO_NUMBER_ARRAY(28.5, 28.5), NULL, NU
LL, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, NULL, NULL, NULL, SDO_NUMBER_ARRAY(1, 2, 1, 3,
 32631.5614, 0, -.03508772), SDO_NUMBER_ARRAY(1, 0, 0, 1, 1), SDO_NUMBER_ARRAY(1
, 2, 1, 3, -7894.7544, .035087719, 0), SDO_NUMBER_ARRAY(1, 0, 0, 1, 1) , NULL,
NULL, NULL, NULL, NULL)

7.93 SDO_GEOR.getStatistics
Format

SDO_GEOR.getStatistics(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns statistical data associated with a layer.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the statistics. A value of 0 (zero) indicates the
object layer.

Usage Notes

This function returns statistical data described by the <statisticDatasetType>
element in the GeoRaster metadata XML schema, which is described in GeoRaster
Metadata XML Schema. The function returns an array with the following values: MIN,
MAX, MEAN, MEDIAN, MODEVALUE, and STD.

To set the statistical data associated with a layer, use the SDO_GEOR.setStatistics
procedure.

Examples

The following example returns statistical data for layer 1 of a GeoRaster object. (It
refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

SELECT sdo_geor.getStatistics(georaster, 1) layer1
FROM georaster_table WHERE georid=4;

LAYER1
--
SDO_NUMBER_ARRAY(0, 255, 100, 127, 95, 25)

Chapter 7
SDO_GEOR.getStatistics

7-143

7.94 SDO_GEOR.getTotalLayerNumber
Format

SDO_GEOR.getTotalLayerNumber(
 georaster IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the total number of layers in a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

For information about layers, see Bands_ Layers_ and Metadata.

Examples

The following example returns the total number of layers in each GeoRaster
object (GEORASTER column) in the GEORASTER_TABLE table, whose definition is
presented after Example 1-1 in Storage Parameters.

SELECT georid, sdo_geor.getTotalLayerNumber(georaster) totalLayerNumber
 FROM georaster_table;

 GEORID TOTALLAYERNUMBER
---------- ----------------
 2 1
 4 3

7.95 SDO_GEOR.getULTCoordinate
Format

SDO_GEOR.getULTCoordinate(
 georaster IN SDO_GEORASTER
) RETURN SDO_NUMBER_ARRAY ;

Description

Returns the cell coordinates of the upper-left corner of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Chapter 7
SDO_GEOR.getTotalLayerNumber

7-144

Usage Notes

This function returns two or three numbers. If it returns two numbers, they are row
and column ordinates. If it returns three numbers, they are row, column, and band
ordinates.

Examples

The following example returns the row, column, and band ordinates for the upper-left
corner of a GeoRaster object. (It refers to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.)

SELECT sdo_geor.getULTCoordinate(georaster) FROM georaster_table WHERE georid=23;

SDO_GEOR.GETULTCOORDINATE(GEORASTER)
--
SDO_NUMBER_ARRAY(256, 0, 0)

7.96 SDO_GEOR.getVAT
Format

SDO_GEOR.getVAT(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Returns the name of the value attribute table (VAT) associated with a layer of a
GeoRaster object.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the VAT. A value of 0 (zero) indicates the
object layer.

Usage Notes

For more information about value attribute tables, see Geographic Information
Systems.

To set the name of the value attribute table to be associated with a layer of a
GeoRaster object, use the SDO_GEOR.setVAT procedure.

Examples

The following example returns the value attribute tables for layers 0, 1, 2, and
3 of the GeoRaster objects (GEORASTER column) in the row with the GEORID
column value of 4 in the GEORASTER_TABLE table. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters. The output is reformatted for readability.)

Chapter 7
SDO_GEOR.getVAT

7-145

SELECT substr(sdo_geor.getVAT(georaster, 0),1,20) vatTable0,
 substr(sdo_geor.getVAT(georaster, 1),1,20) vatTable1,
 substr(sdo_geor.getVAT(georaster, 2),1,20) vatTable2,
 substr(sdo_geor.getVAT(georaster, 3),1,20) vatTable3
 FROM georaster_table WHERE georid=4;

VATTABLE0 VATTABLE1 VATTABLE2 VATTABLE3
-------------------- -------------------- -------------------- ----------------
VAT0 VAT1 VAT2 VAT1

7.97 SDO_GEOR.getVersion
Format

SDO_GEOR.getVersion(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the user-specified version of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

The version returned is in the format major-version.minor-version.

To set the user-specified version of a GeoRaster object, use the
SDO_GEOR.setVersion procedure.

Examples

The following example returns the user-specified version of the GeoRaster objects
(GEORASTER column) in the GEORASTER_TABLE table, whose definition is
presented after Example 1-1 in Storage Parameters. (The output is reformatted for
readability.)

SELECT georid, sdo_geor.getVersion(georaster) version FROM georaster_table;

 GEORID VERSION
---------- --
 2 10.1
 4 9i.2

7.98 SDO_GEOR.hasBitmapMask
Format

SDO_GEOR.hasBitmapMask(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Chapter 7
SDO_GEOR.getVersion

7-146

Description

Checks if a GeoRaster object or layer has an associated bitmap mask.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of 0 (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the GeoRaster object or layer has an associated
bitmap mask, or FALSE if it does not have an associated bitmap mask.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example checks if layers 0 through 4 of a specified GeoRaster object
have associated bitmap masks.

SELECT substr(sdo_geor.hasBitmapMask(georaster,0),1,12) BM0,
 substr(sdo_geor.hasBitmapMask(georaster,1),1,12) BM1,
 substr(sdo_geor.hasBitmapMask(georaster,2),1,12) BM2,
 substr(sdo_geor.hasBitmapMask(georaster,3),1,12) BM3
 FROM georaster_table WHERE georid=0;

7.99 SDO_GEOR.hasGrayScale
Format

SDO_GEOR.hasGrayScale(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Checks if a layer of a GeoRaster object has grayscale information.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of 0 (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the layer has grayscale information, or FALSE
if the layer does not use grayscale representation. SDO_GEOR_GRAYSCALE Object
Type describes grayscale display.

Chapter 7
SDO_GEOR.hasGrayScale

7-147

If the layer has grayscale information, you can get and set the grayscale mappings
and the grayscale mapping table name. See the following: SDO_GEOR.getGrayScale
and SDO_GEOR.getGrayScaleTable functions, and SDO_GEOR.setGrayScale and
SDO_GEOR.setGrayScaleTable procedures.

Examples

The following example checks if layers 0 and 1 of a specified GeoRaster object
(GEORASTER column) have grayscale information. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

SELECT substr(sdo_geor.hasGrayScale(georaster, 0),1,15) hasGrayScale0,
 substr(sdo_geor.hasGrayScale(georaster, 1),1,15) hasGrayScale1
 FROM georaster_table WHERE georid=4;

HASGRAYSCALE0 HASGRAYSCALE1
--------------- ---------------
TRUE FALSE

7.100 SDO_GEOR.hasNODATAMask
Format

SDO_GEOR.hasNODATAMask(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Checks if a GeoRaster object or layer has an associated NODATA bitmap mask.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of 0 (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the GeoRaster object or layer has an associated
NODATA bitmap mask, or FALSE if it does not have an associated NODATA bitmap
mask.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example checks if layers 0 through 4 of a specified GeoRaster object
have associated NODATA bitmap masks.

SELECT substr(sdo_geor.hasNODATAMask(georaster,0),1,12) BM0,
 substr(sdo_geor.hasNODATAMask(georaster,1),1,12) BM1,
 substr(sdo_geor.hasNODATAMask(georaster,2),1,12) BM2,
 substr(sdo_geor.hasNODATAMask(georaster,3),1,12) BM3
 FROM georaster_table WHERE georid=0;

Chapter 7
SDO_GEOR.hasNODATAMask

7-148

7.101 SDO_GEOR.hasPseudoColor
Format

SDO_GEOR.hasPseudoColor(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
) RETURN VARCHAR2;

Description

Checks if a layer of a GeoRaster object has pseudocolor information.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer to check. A value of 0 (zero) indicates the object layer.

Usage Notes

This function returns the string TRUE if the layer has pseudocolor information, or FALSE
if the layer does not have pseudocolor information (that is, does not use pseudocolor
representation). SDO_GEOR_COLORMAP Object Type describes colormaps and
pseudocolor display.

If the layer has pseudocolor information, you can get and set the colormap
and colormap table name. See the following: SDO_GEOR.getColorMap and
SDO_GEOR.getColorMapTable functions, and SDO_GEOR.setColorMap and
SDO_GEOR.setColorMapTable procedures.

Examples

The following example checks if layers 0 and 1 of a specified GeoRaster object
(GEORASTER column) have pseudocolor information. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

SELECT substr(sdo_geor.hasPseudoColor(georaster, 0),1,15) hasPseudoColor0,
 substr(sdo_geor.hasPseudoColor(georaster, 1),1,15) hasPseudoColor1
 FROM georaster_table WHERE georid=4;

HASPSEUDOCOLOR0 HASPSEUDOCOLOR1
--------------- ---------------
FALSE TRUE

7.102 SDO_GEOR.importFrom
Format

SDO_GEOR.importFrom(
 georaster IN OUT SDO_GEORASTER,
 storageParam IN VARCHAR2,
 r_sourceFormat IN VARCHAR2,

Chapter 7
SDO_GEOR.hasPseudoColor

7-149

 r_sourceType IN VARCHAR2,
 r_sourceName IN VARCHAR2,
 h_sourceFormat IN VARCHAR2 DEFAULT NULL,
 h_sourceType IN VARCHAR2 DEFAULT NULL,
 h_sourceName IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.importFrom(
 georaster IN OUT SDO_GEORASTER,
 storageParam IN VARCHAR2,
 r_sourceFormat IN VARCHAR2,
 r_sourceBLOB IN BLOB,
 h_sourceFormat IN VARCHAR2 DEFAULT NULL,
 h_sourceCLOB IN CLOB DEFAULT NULL);

Description

Imports an image file or BLOB object into a GeoRaster object stored in the database.

Parameters

georaster
GeoRaster object to hold the result of the operation.

storageParam
String containing storage parameters. The format and usage are as explained in
Storage Parameters. Currently, the keywords supported for this operation are:

• blocking: (See the explanation in Table 1-1 in Storage Parameters.)

• blocksize: (See the explanation in Table 1-1 in Storage Parameters.)

• compression: (See the explanation in Table 1-1 in Storage Parameters.) The
default value is NONE, which causes the raw data to be loaded without any
compression.

• quality: (See the explanation in Table 1-1 in Storage Parameters.)

• raster: TRUE (the default) causes the raster image data in a GeoTIFF format file
to be loaded along with the georeferencing information; FALSE causes only the
georeferencing information to be loaded from the GeoTIFF format file, without the
raster image data, into an existing GeoRaster object.

• spatialExtent: FALSE (the default) causes a spatial extent not to be generated;
TRUE causes a spatial extent to be generated if the SRID is nonzero and matches
the SRID of any existing spatial extent index.

• srid: Coordinate system SRID numeric value, identifying an optional backup
SRID, relevant when loading a GeoTIFF format file. This SRID value is used if
the GeoTIFF configuration values do not match any SRID values recognized by
Oracle Spatial and Graph.

r_sourceFormat
Raster source format. Must be one of the following: TIFF, GIF, BMP, GeoTIFF, or
PNG. (JPEG is not supported for this procedure; however, you can use the client-side
GeoRaster loader tool, described in GeoRaster Tools: Viewer_ Loader_ Exporter, to
import a JPEG file.)

Chapter 7
SDO_GEOR.importFrom

7-150

r_sourceType
Type of source for the import operation. Must be FILE.

r_sourceName
Source file name (with full path specification) if r_sourceType is FILE. If you are using
this procedure only to load the world file into an existing GeoRaster object, specify a
null value for this parameter.

r_sourceBLOB
Raster source object of type BLOB.

h_sourceFormat
Geoheader source format. Must be WORLDFILE.

h_sourceType
Geoheader type of source for the import operation. Must be FILE.

h_sourceName
Geoheader source file name (with full path specification) if h_sourceType is FILE.,
and optionally an SRID value. To specify the SRID value, add it after the file name,
separated by a comma. Example: '/mypath/mydir/worldfile.tfw,82934' (UNIX or
Linux) or 'C:\mypath\mydir\worldfile.tfw,82934' (Windows)

h_sourceCLOB
Geoheader source as an object of type CLOB.

Usage Notes

For information about using this procedure or the GeoRaster loader tool to load raster
data, see Loading Raster Data.

If you receive an "insufficient memory" error when loading a very large image, see
Reformatting the Source Raster Before Loading.

When loading an image into a GeoRaster database, you should always specify a block
size, and it should generally be 512x512 or larger.

Specify values for the parameters with names that start with r_ and h_ only if the raster
image and the geoheader are in separate files or objects.

This procedure can load an ESRI world file from a file or from a CLOB object.

This procedure does not support JPEG as a source file format. You can use the
client-side GeoRaster loader tool, described in GeoRaster Tools: Viewer_ Loader_
Exporter, to import a JPEG file.

The GeoTIFF PixelIsArea raster space is equivalent to the GeoRaster upperleft-
based cell coordinate system. An import from GeoTIFF is always to the GeoRaster
center-based cell coordinate system, with a half-pixel adjustment of the affine
transformation if the GeoTIFF file is specified in PixelIsArea raster space.

To load GeoTIFF images with the SDO_GEOR.importFrom procedure, you will need
the xtiff-jai.jar and geotiff-jai.jar libraries. For more information about these
GeoTIFF libraries, see Georeferencing GeoRaster Objects.

This procedure does not support raster data that has a cell depth value of 2BIT or
source multiband raster data with BIL and BSQ interleaving types.

The imported GeoRaster object has the BIP interleaving type.

Chapter 7
SDO_GEOR.importFrom

7-151

Before this procedure is called, the calling user and the MDSYS user must have
read permission on the files to be imported or the directory that contains the files.
The following example (run as user SYSTEM) grants read permission on a file to users
HERMAN and MDSYS:

call dbms_java.grant_permission('HERMAN','SYS:java.io.FilePermission',
 '/mydirectory/myimages/img1.tif', 'read');
call dbms_java.grant_permission('MDSYS','SYS:java.io.FilePermission',
 '/mydirectory/myimages/img1.tif', 'read');

Examples

The following example initializes an empty GeoRaster object into which an external
image in TIFF format is to be imported, and then imports the image. The example
grants the necessary permissions at the beginning and revokes them at the end.

connect / as sysdba

call dbms_java.grant_permission('HERMAN','SYS:java.io.FilePermission',
 '/mydirectory/myimages/img1.tif', 'read');
call dbms_java.grant_permission('MDSYS','SYS:java.io.FilePermission',
 '/mydirectory/myimages/img1.tif', 'read');

connect herman/<password>

DECLARE
 geor SDO_GEORASTER;
BEGIN
-- Initialize an empty GeoRaster object into which the external image
-- is to be imported.
INSERT INTO georaster_table
 values(1, 'TIFF', sdo_geor.init('rdt_1'));

-- Import the TIFF image.
SELECT georaster INTO geor FROM georaster_table
 WHERE georid = 1 FOR UPDATE;
sdo_geor.importFrom(geor, 'blocking=OPTIMALPADDING,blocksize=(512,512,3)',
'TIFF', 'file',
 '/mydirectory/myimages/img1.tif');
UPDATE georaster_table SET georaster = geor WHERE georid = 1;
COMMIT;
END;/

connect / as sysdba

call dbms_java.revoke_permission('HERMAN','SYS:java.io.FilePermission',
 '/mydirectory/myimages/img1.tif', 'read');
call dbms_java.revoke_permission('MDSYS','SYS:java.io.FilePermission',
 '/mydirectory/myimages/img1.tif', 'read');

The following example imports an image from a BLOB and an ESRI world file from a
CLOB. The image and the ESRI world file are stored in the BLOB and CLOB columns
defined in the table blob_table.

CREATE TABLE blob_table (blob_col BLOB, blobid NUMBER unique, clob_col CLOB);

DECLARE
 geor1 SDO_GEORASTER;
 lobd1 BLOB;
 lobd2 CLOB;
BEGIN

Chapter 7
SDO_GEOR.importFrom

7-152

-- Get the image and world file from BLOB and CLOB, respectively.
SELECT clob_col into lobd2 from blob_table WHERE blobid = 2 ;
SELECT blob_col into lobd1 from blob_table WHERE blobid = 2 ;

-- Then, import this BLOB into a GeoRaster object.
SELECT georaster INTO geor1 from georaster_table WHERE georid = 14 for update;
sdo_geor.importFrom(geor1,'', 'TIFF', lobd1, 'WORLDFILE', lobd2);
sdo_geor.setModelSRID(geor1, 82394);
UPDATE georaster_table SET georaster = geor1 WHERE georid = 14;
COMMIT;
END;
/

7.103 SDO_GEOR.init
Format

SDO_GEOR.init(
 rasterDataTable IN VARCHAR2 DEFAULT NULL,
 rasterID IN NUMBER DEFAULT NULL
) RETURN SDO_GEORASTER;

Description

Initializes an empty GeoRaster object, which must then be registered n the
xxx_SDO_GEOR_SYSDATA views (see the Usage Notes).

Parameters

rasterDataTable
Name of the object table of type SDO_RASTER that stores the cell data blocks.
Must not contain spaces, period separators, or mixed-case letters in a quoted string;
the name is always converted to uppercase when stored in an SDO_GEORASTER
object. The RDT should be in the same schema as its associated GeoRaster table.
If you do not specify this parameter, GeoRaster generates a unique table name to
be used for the raster data table. If you specify this parameter and the table already
exists but is not an object table of type SDO_RASTER, an exception is raised.

rasterID
Number that uniquely identifies the blocks of this GeoRaster object in its raster data
table. If you do not specify this parameter, a unique sequence number is generated
for the ID.

Usage Notes

After initializing the empty GeoRaster object and before performing any
operations on the object, you must register it in the xxx_SDO_GEOR_SYSDATA
views by inserting the empty GeoRaster object into a GeoRaster table. (The
xxx_SDO_GEOR_SYSDATA views are described in GeoRaster System Data Views
(xxx_SDO_GEOR_SYSDATA). GeoRaster operations are described in GeoRaster
Database Creation and Management and GeoRaster Data Query and Manipulation.)

This function returns an empty SDO_GEORASTER object with its rasterDataTable
and rasterID attributes set. All other attributes of the SDO_GEORASTER object are
null.

Chapter 7
SDO_GEOR.init

7-153

This function does not require that the specified raster data table exist. However, the
table must exist before any data can be inserted into it, and you must create the table.

If a table has multiple GeoRaster object columns, and if for each column you
plan to call the SDO_GEOR.init or SDO_GEOR.createBlank function with identical
parameter values that contain a null rasterDataTable or rasterID parameter value,
do not try to use the SDO_GEOR.init or SDO_GEOR.createBlank function on all such
columns with a single INSERT or UPDATE statement. For example, assuming a table
named LSAT_TABLE containing the columns (georid NUMBER, type VARCHAR2(32),
image_date VARCHAR2(32), image_15m SDO_GEORASTER, image_30m SDO_GEORASTER,
image_60m SDO_GEORASTER), do not use a statement like the following:

INSERT INTO lsat_table VALUES(1, 'L1G', '2004-02-25',
 sdo_geor.init('RDT_1'), sdo_geor.init('RDT_1'),
 sdo_geor.init('RDT_1'));

Instead, in cases such as this, do either of the following:

• Always specify a rasterID parameter value when calling the function. The following
example specifies raster ID values of 1, 2, and 3 for the GeoRaster objects being
inserted into the last three columns:

INSERT INTO lsat_table VALUES(1, 'L1G', '2004-02-25',
 sdo_geor.init('RDT_1', 1), sdo_geor.init('RDT_1', 2),
 sdo_geor.init('RDT_1', 3));

• Use the function with only one GeoRaster object with each INSERT or UPDATE
statement. The following example inserts a row initializing one GeoRaster object
column and specifying the other two as null, and then updates the row twice to
initialize the second and third GeoRaster object columns:

INSERT INTO lsat_table VALUES(1, 'L1G', '2004-02-25',
 sdo_geor.init('RDT_1'), null, null);
UPDATE lsat_table SET image_30m = sdo_geor.init('RDT_1')
 WHERE georid = 1;
UPDATE lsat_table SET image_60m = sdo_geor.init('RDT_1')
 WHERE georid = 1;

Examples

The following example inserts an initialized GeoRaster object into the
GEORASTER_TABLE table. The raster data table associated with the GeoRaster
object is RDT_1. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

INSERT INTO georaster_table (georid, georaster)
 VALUES (1, sdo_geor.init('RDT_1'));

7.104 SDO_GEOR.isBlank
Format

SDO_GEOR.isBlank(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Chapter 7
SDO_GEOR.isBlank

7-154

Description

Returns the string TRUE if the GeoRaster object is a blank GeoRaster object, or FALSE if
the GeoRaster object is not a blank GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

In a blank GeoRaster object, all cells have the same cell value.

To change the cell value of an existing blank GeoRaster object, use the
SDO_GEOR.setBlankCellValue procedure. To return the cell value of a specified
GeoRaster object, use the SDO_GEOR.getBlankCellValue function.

Examples

The following example determines whether or not each GeoRaster object in the
GEORASTER column of the GEORASTER_TABLE table is a blank GeoRaster object.
(The GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

SELECT georid, substr(sdo_geor.isBlank(georaster),1,7) isBlank
 FROM georaster_table;

 GEORID ISBLANK
---------- -------
 2 FALSE
 4 FALSE

7.105 SDO_GEOR.isOrthoRectified
Format

SDO_GEOR.isOrthoRectified(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the string TRUE if the GeoRaster object is identified as orthorectified, or FALSE
if the GeoRaster object is not identified as orthorectified.

Parameters

georaster
GeoRaster object.

Usage Notes

This function checks the GeoRaster metadata for the object to see if it is specified
as orthorectified. It does not check if the object is actually orthorectified. Users are
responsible for validating the GeoRaster object and ensuring that orthorectification is
performed.

Chapter 7
SDO_GEOR.isOrthoRectified

7-155

To specify that a GeoRaster object is orthorectified, use the
SDO_GEOR.setOrthoRectified procedure.

Examples

The following example checks if the GeoRaster objects (GEORASTER column)
in the GEORASTER_TABLE table are specified as spatially referenced, rectified,
and orthorectified. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

SELECT georid, substr(sdo_geor.isSpatialReferenced(georaster),1,20)
 isSpatialReferenced,
 substr(sdo_geor.isRectified(georaster),1,20) isRectified,
 substr(sdo_geor.isOrthoRectified(georaster),1,20) isOrthoRectified
 FROM georaster_table;

 GEORID ISSPATIALREFERENCED ISRECTIFIED ISORTHORECTIFIED
---------- -------------------- -------------------- --------------------
 2 TRUE TRUE TRUE
 4 TRUE TRUE FALSE

7.106 SDO_GEOR.isRectified
Format

SDO_GEOR.isRectified(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the string TRUE if the GeoRaster object is identified as rectified, or FALSE if the
GeoRaster object is not identified as rectified.

Parameters

georaster
GeoRaster object.

Usage Notes

This function checks the GeoRaster metadata for the object to see if it is specified as
rectified. Users are responsible for validating the GeoRaster object and ensuring that
rectification is performed.

To specify that a GeoRaster object is rectified, use the SDO_GEOR.setRectified
procedure.

Examples

The following example checks if the GeoRaster objects (GEORASTER column)
in the GEORASTER_TABLE table are specified as spatially referenced, rectified,
and orthorectified. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

SELECT georid, substr(sdo_geor.isSpatialReferenced(georaster),1,20)
 isSpatialReferenced,
 substr(sdo_geor.isRectified(georaster),1,20) isRectified,
 substr(sdo_geor.isOrthoRectified(georaster),1,20) isOrthoRectified

Chapter 7
SDO_GEOR.isRectified

7-156

 FROM georaster_table;

 GEORID ISSPATIALREFERENCED ISRECTIFIED ISORTHORECTIFIED
---------- -------------------- -------------------- --------------------
 2 TRUE TRUE TRUE
 4 TRUE TRUE FALSE

7.107 SDO_GEOR.isSpatialReferenced
Format

SDO_GEOR.isSpatialReferenced(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Returns the string TRUE if the GeoRaster object is spatially referenced, or FALSE if the
GeoRaster object is not spatially referenced.

Parameters

georaster
GeoRaster object.

Usage Notes

The GeoRaster object must have been validated.

Examples

The following example checks if the GeoRaster objects (GEORASTER column)
in the GEORASTER_TABLE table are specified as spatially referenced, rectified,
and orthorectified. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

SELECT georid, substr(sdo_geor.isSpatialReferenced(georaster),1,20)
 isSpatialReferenced,
 substr(sdo_geor.isRectified(georaster),1,20) isRectified,
 substr(sdo_geor.isOrthoRectified(georaster),1,20) isOrthoRectified
 FROM georaster_table;

 GEORID ISSPATIALREFERENCED ISRECTIFIED ISORTHORECTIFIED
---------- -------------------- -------------------- --------------------
 2 TRUE TRUE TRUE
 4 TRUE TRUE FALSE

The following example searches for all empty and nongeoreferenced GeoRaster
objects.

SELECT georid FROM georaster_table a
 WHERE sdo_geor.isSpatialReferenced(a.georaster) IS NULL OR
 sdo_geor.isSpatialReferenced(a.georaster) = 'FALSE';

Chapter 7
SDO_GEOR.isSpatialReferenced

7-157

7.108 SDO_GEOR.mask
Format

SDO_GEOR.mask(
 inGeoRaster IN SDO_GEORASTER,
 bandNumbers IN VARCHAR2,
 mask IN SDO_GEORASTER,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 zeroMapping IN NUMBER DEFAULT 0,
 oneMapping IN NUMBER DEFAULT 1,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Applies a mask to specified layers of an existing (input) GeoRaster object. The mask
GeoRaster object and the input GeoRaster object can have the same storage format
or different storage formats, and you can specify storage format options for the output
GeoRaster object (for example, to change the blocking, cell depth, or interleaving).

For information about how to determine the mask value to use, see the Usage Notes.

Parameters

inGeoRaster
The SDO_GEORASTER object on which the mask operation is to be performed to
create the new object.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for the second, third, and forth layers).

mask
The SDO_GEORASTER object to be used as a mask on the input GeoRaster object
for generating the output GeoRaster object. If this parameter is specified as null, then
available attached masks of the input GeoRaster object are applied to the specified
layers.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The new SDO_GEORASTER object that reflects the results of the mask operation.
Must be either a valid existing GeoRaster object or an empty GeoRaster object.
(Empty GeoRaster objects are explained in Blank and Empty GeoRaster Objects.)
Cannot be the same GeoRaster object as inGeoRaster.
If the output GeoRaster object has any existing raster data, it is deleted before the
mask operation is performed. The output GeoRaster object is overwritten as a result
of this function.

zeroMapping
Value used for mask cell value 0 (zero). The default value is 0.

Chapter 7
SDO_GEOR.mask

7-158

oneMapping
Value used for mask cell value 1 (one). The default value is 1.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all layers) or the band dimension size (a different filling value for each layer,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first layer with 1, the
second layer with 5, and the third layer with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

To determine the mask value to use with the mask parameter, apply the following logic:

If(cellValue_mask==0)
 cellValue_target=cellValue_source * zeroMapping;
else
 cellValue_target=cellValue_source * oneMapping;

where:

• cellValue_source is the cell value of inGeoraster at coordinate (x,y).

• cellValue_target is the cell value of outGeoraster at coordinate (x,y).

• cellValue_mask is the cell value of mask at coordinate (x,y).

If inGeoRaster is null, no operation is performed.

If pyramid data exists for inGeoRaster, then the mask GeoRaster object must have at
least the same number of pyramid levels as inGeoRaster.

If mask is not null, its dimension (row and column) size must be equal to that of
inGeoRaster, and mask must overlap on inGeoRaster. (You can check for overlap
using the SDO_GEOR_RA.isOverlap function.)

If mask is null and if no attached mask is available for the specified layers, then
inGeoRaster is copied to outGeoRaster, which is also modified as specified by any
storageParam specifications.

Contrast this function with the SDO_GEOR.setBitmapMask function:
SDO_GEOR.mask calculates cell values in layers and stores them in the target
GeoRaster object, whereas SDO_GEOR.setBitmapMask associates mask data with
specified layers of the source GeoRaster object.

An exception is raised if one or more of the following are true:

• inGeoRaster is invalid.

• outGeoRaster has not been initialized.

• A raster data table for outGeoRaster does not exist and outGeoRaster is not a
blank GeoRaster object.

Chapter 7
SDO_GEOR.mask

7-159

Examples

The following example applies mask GeoRaster object gr2 to the source GeoRaster
object gr1. (It refers to a table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 gr3 sdo_georaster;
BEGIN
 select tmimage into gr1 from landsat where id=103;
 select tmimage into gr3 from landsat where id=1015;
 select grobj into gr2 from grtab where id=1;
 SDO_GEOR.mask(gr1,null,gr2,'blocksize=(100,100,3)',gr3,0.1,0.9,null);
 update landsat set tmimage=gr3 where id=1007;
END;
/

The following example applies the attached mask of the source GeoRaster object gr1
to its second layer.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 gr3 sdo_georaster;
BEGIN
 select tmimage into gr1 from landsat where id=103;
 select tmimage into gr3 from landsat where id=1015;
 gr2:=null;
 SDO_GEOR.mask(gr1,'1',gr2,'blocksize=(100,100,3)',gr3,0.1,0.9,null);
 update landsat set tmimage=gr3 where id=1007;
END;
/

7.109 SDO_GEOR.mergeLayers
Format

SDO_GEOR.mergeLayers(
 targetGeoRaster IN OUT SDO_GEORASTER,
 sourceGeoRaster IN SDO_GEORASTER,
 sourceLayerNumbers IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.mergeLayers(
 source1GeoRaster IN SDO_GEORASTER,
 source1LayerNumbers IN VARCHAR2,
 source2GeoRaster IN SDO_GEORASTER,
 source2LayerNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 pyramidLevel IN NUMBER DEFAULT NULL);

Chapter 7
SDO_GEOR.mergeLayers

7-160

Description

Merges the layers of two GeoRaster objects, either by appending source layers to
a target GeoRaster object (first format) or by performing a union operation (second
format).

Parameters

targetGeoRaster
GeoRaster object to which layers in sourceGeoRaster are to be appended. Cannot
be the same GeoRaster object as sourceGeoRaster. (Be sure to make a copy of this
object before calling this procedure.)

sourceGeoRaster
GeoRaster object in which specified layers are to be appended to targetGeoRaster.

sourceLayerNumbers
String specifying one or more layer numbers of layers in sourceGeoRaster to be
appended to targetGeoRaster. Use commas to delimit numbers or ranges, and use a
hyphen to indicate a range. Example: '1,3-5,7' for layers 1, 3, 4, 5, and 7.

source1GeoRaster
One GeoRaster object in which specified layers are to be joined in a union operation
with layers from source2GeoRaster in the output GeoRaster object outGeoRaster.

source1LayerNumbers
String specifying one or more layer numbers of layers in source1GeoRaster to
be joined in a union operation with layers from source2GeoRaster in the output
GeoRaster object outGeoRaster. Use commas to delimit numbers or ranges, and use
a hyphen to indicate a range. Example: '1,3-5,7' for layers 1, 3, 4, 5, and 7.

source2GeoRaster
One GeoRaster object in which specified layers are to be joined in a union operation
with layers from source1GeoRaster in the output GeoRaster object outGeoRaster.

source2LayerNumbers
String specifying one or more layer numbers of layers in source2GeoRaster to
be joined in a union operation with layers from source1GeoRaster in the output
GeoRaster object outGeoRaster. Use commas to delimit numbers or ranges, and use
a hyphen to indicate a range. Example: '1,3-5,7' for layers 1, 3, 4, 5, and 7.

storageParam
A string specifying storage parameters to be applied in creating outGeoRaster.
Storage parameters are explained in Storage Parameters.

outGeoRaster
The new SDO_GEORASTER object that reflects the results of the union operation.
Must be either a valid existing GeoRaster object or an empty GeoRaster object.
(Empty GeoRaster objects are explained in Blank and Empty GeoRaster Objects.)
Cannot be the same GeoRaster object as source1GeoRaster or source2GeoRaster.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements

Chapter 7
SDO_GEOR.mergeLayers

7-161

in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

pyramidLevel
A number specifying the pyramid level at which the source GeoRaster objects are
merged. If not specified, pyramid level 0 is used.

Usage Notes

Note:

Be sure to make a copy of the targetGeoRaster object before you call this
procedure, because the changes made to this GeoRaster object might not be
reversible after the procedure completes.

The resulting GeoRaster object (georaster or outGeoRaster parameter) must
not be the same GeoRaster object as sourceGeoRaster, source1GeoRaster, or
source2GeoRaster.

The two GeoRaster objects to be appended or unioned together must have the same
spatial dimension sizes and cover the same area. If one of the GeoRaster objects
is georeferenced, the other one must also be georeferenced, have the same model
SRID and spatial resolutions, and cover the same area in the model space. If neither
GeoRaster object is georeferenced, their ultCoordinates must be the same.

Examples

The following example merges specified layers of two GeoRaster objects into a third
GeoRaster object, by performing a union operation.

declare
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 gr3 sdo_georaster;
begin
 select georaster into gr1 from georaster_table where georid=1;
 select georaster into gr2 from georaster_table where georid=2;
 insert into georaster_table(georid, georaster) values (3,
sdo_geor.init('RDT_1'))
 returning georaster into gr3;
 sdo_geor.mergeLayers(gr1, '3', gr2, '2,1', 'blocking=false', gr3);
 update georaster_table set georaster=gr3 where georid=3;
 commit;
end;
/

For an example of using SDO_GEOR.mergLayers to append several layers to an
existing GeoRaster object., see the example in Band Merging.

Chapter 7
SDO_GEOR.mergeLayers

7-162

7.110 SDO_GEOR.mosaic
Format

SDO_GEOR.mosaic(
 georasterTableName IN VARCHAR2,
 georasterColumnName IN VARCHAR2,
 georaster IN OUT SDO_GEORASTER,
 storageParam IN VARCHAR2,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Mosaics a set of source GeoRaster objects that are rectified, are geospatially aligned
under the same SRID, and have the same resolution.

Parameters

georasterTableName
Name of the table or view containing all source GeoRaster objects.

georasterColumnName
Column of type SDO_GEORASTER in georasterTableName.

georaster
GeoRaster object to hold the result of the mosaic operation. Cannot be the same as
any GeoRaster object in georasterColumnName in georasterTableName.

storageParam
A string specifying storage parameters, as explained in Storage Parameters. If this
parameter is null, the resulting GeoRaster object has the same storage parameters
(blockSize, cellDepth, interleaving, and compression) as the upper-left corner
source GeoRaster object in the model space (if applicable) or cell space. However,
it is recommended that you specify the storage parameters, particularly the blocking
size, as appropriate for the size of the output mosaic, unless you want the mosaic to
have the same storage parameters as those of the upper-left corner GeoRaster object
to be mosaicked.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
current operation leads to partially empty raster blocks (see Empty Raster Blocks),
which could happen when the source GeoRaster objects have empty raster blocks
or when the source GeoRaster objects do not cover the whole area. The number of
elements in the SDO_NUMBER_ARRAY object must be either one (same filling value
used for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

This procedure has limited mosaicking capabilities, and works well for preprocessed
and perfectly aligned source GeoRaster objects only. It does not work on unrectified
rasters and does not support parallel processing. For advanced mosaicking

Chapter 7
SDO_GEOR.mosaic

7-163

capabilities, including parallel processing, use the SDO_GEOR_AGGR.mosaicSubset
procedure. See Large-Scale Image Mosaicking for more information.

For this procedure, the source GeoRaster objects must be prepared images or raster
data so that they can be mosaicked directly. The GeoRaster objects to be mosaicked
must:

• Not be a mixture of georeferenced and nongeoreferenced objects. Either all of the
objects are georeferenced, or none of the objects is georeferenced.

• Have the same SRID value if the objects are georeferenced, and the
georeferencing method must be affine transformation. The affine transformations
of the GeoRaster objects must have the same set of coefficients (A, B, D and E)
or (b, c, e, f). This means that the images must have the same X resolution and
Y resolution (although the X and Y resolutions do not have to be the same), the
same rotation angle, and the same skewing factor; in other words, the images
must have the same resolutions, and be rotated and skewed in the same way if
the images are rotated and skewed.

• Have the same number of layers or bands. There is no restriction on the row and
column dimension sizes of the source objects; for example, they do not need to be
a power of 2.

• Have the same mapping between band number and layers.

If the GeoRaster objects to be mosaicked are georeferenced, they are co-located
according to their georeferencing information. If the GeoRaster objects are not
georeferenced, they are co-located according to their ULTCoordinate values. (The
ULTCoordinate is explained in GeoRaster Data Model.)

If applicable, the resulting GeoRaster object takes the spatial reference metadata
information from the upper-left corner source GeoRaster object in the model space. It
also takes the cell space and any default storage attributes from the upper-left corner
source GeoRaster object in the model space.

If the source GeoRaster objects have empty raster blocks or do not cover the whole
area, the mosaicked result GeoRaster object may have empty or partially empty raster
blocks (see Empty Raster Blocks). A result raster block that is not covered by any
of the source GeoRaster objects is kept empty. Any partially empty raster blocks are
filled with the values specified in the bgValues parameter, or with 0 if the bgValues
parameter is not specified.

If the source GeoRaster objects overlap, data of the overlapping area comes from the
source object that covers it and that has the largest ultCoordinate in the cell space
where all the source objects are co-located.

Any bitmap masks associated with the source GeoRaster objects are not considered,
and the bitmapmask parameter is ignored if it is specified in the storageParam string.

If all source GeoRaster objects are blank and have the same blankCellValue value,
the resulting GeoRaster object is blank and has that blankCellValue value; otherwise,
the resulting GeoRaster object is not blank.

The GeoRaster object to contain the results of the mosaic operation (georaster
parameter) must not be any of the source GeoRaster objects (the objects on which
the mosaic operation is performed).

The mosaic operation performs internal commit operations at regular intervals, and
thus it cannot be rolled back. If the operation is interrupted, dangling raster blocks may
exist in the raster data table. You can handle dangling raster blocks by maintaining

Chapter 7
SDO_GEOR.mosaic

7-164

GeoRaster objects and system data in the database, as explained in Maintaining
GeoRaster Objects and System Data in the Database.

Examples

The following example inserts an initialized GeoRaster object into the
GEORASTER_TABLE table, returns the GeoRaster object into a variable named
gr, mosaics all the GeoRaster objects in the GROBJ column of a table named
GRTAB, and stores the resulting mosaicked GeoRaster object in the same variable.
(The GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters. The GRTAB table definition is not important to the example and is not
presented here.)

DECLARE
 gr sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (12, sdo_geor.init('rdt_1'))
 RETURNING georaster INTO gr;
 sdo_geor.mosaic('grtab', 'grobj', gr, 'blocking=optimalpadding
blocksize=(512,512,1)');
 UPDATE georaster_table SET georaster=gr WHERE id=12;
END;
/

7.111 SDO_GEOR.rectify
Format

SDO_GEOR.rectify(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 elevationParam IN VARCHAR2,
 DEM IN SDO_GEORASTER,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 referencePoint IN SDO_GEOMETRY,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.rectify(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 elevationParam IN VARCHAR2,
 DEM IN SDO_GEORASTER,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,

Chapter 7
SDO_GEOR.rectify

7-165

 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 referencePoint IN SDO_GEOMETRY,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL;

Description

Perform rectification on all or part of a georeferenced GeoRaster object. The resulting
object can be a new GeoRaster object (for persistent storage) or a BLOB (for
temporary use). If the input model coordinate system (SRID) is three-dimensional,
the average elevation or a Digital Elevation Model (DEM) can be used to perform the
orthorectification.

Parameters

inGeoRaster
GeoRaster object on which to perform the operation. It must be georeferenced (see
the SDO_GEOR.georeference subprogram).

pyramidLevel
Pyramid level of the source GeoRaster object for the operation.

• For BLOB output, this parameter is required.

• For SDO_GEORASTER output, if this parameter is null and the storageParam
pyramid value is FALSE, only the pyramid level 0 is rectified and the output will
have only level 0. If this parameter is null and the storageParam pyramid value is
TRUE, all the pyramid levels from the input are rectified.

• If the number 0 or greater is specified, only that pyramid level is used for the
rectification, producing a result in scale based on that pyramid level image.

elevationParam
A string containing one or more of the elevation parameters average (average surface
height), scale (scale value applied to all DEM values), and offset (offset applied to
all DEM values), where the new value is (value + offset) * scale. This parameter
must be a quoted string that contains one or more keyword=value pairs (for example,
'average=800 scale=3.2808399 offset=10'). If this parameter is null, 0 is assumed
for average and offset, and 1 is used for scale. Any scale and offset values are
ignored if DEM is not specified.
The use of the elevationParam parameter requires that the input GeoRaster object
have a 3D model SRID.
When the input GeoRaster object has a 3D model SRID, the average elevation is
important for defining the extents of the output image. If that information is available,
it should be specified even if DEM is also specified. If the average elevation is not
specified, the procedure will calculate an approximate value for the average elevation.

Chapter 7
SDO_GEOR.rectify

7-166

Note:

For any numbers in string (VARCHAR2) parameters to GeoRaster
subprograms, the period (.) must be used for any decimal points regardless
of the locale.

DEM
GeoRaster object with a digital elevation model (DEM); used to perform
orthorectification, as explained in the Usage Notes. Must have the same SRID as
outGeoRaster. The DEM area should cover the entire outGeoRaster area, or the
cropArea if used. The elevation data is assumed to be on the first layer of the
DEM GeoRaster object. If this parameter is null, the elevationParam value is used.
For best results, the resolution of the DEM GeoRaster object should be close to the
resolution of the input GeoRaster object.
The use of the DEM parameter requires that the input GeoRaster object have a 3D
model SRID.
When the input GeoRaster object has a 3D model SRID, the average elevation is
important for defining the extents of the output image. If that information is available,
it should be specified in the elevationParam parameter even if DEM is also specified.
If the average elevation is not specified, the procedure will calculate an approximate
value for the average elevation.

outSRID
Coordinate system for the output GeoRaster object. Must be either null or a value
from the SRID column of the MDSYS.CS_SRS table. If it is null, the output GeoRaster
object will have the same SRID as the input GeoRaster object.

outModelCoordLoc
A value specifying the model location of the base of the area represented by a cell: 0
for CENTER or 1 for UPPERLEFT. If null, CENTER is used.

cropArea
Crop area definition. If null, no cropping is performed, and polygonClip is ignored.
If polygonClip is FALSE, the MBR of the cropArea is used to crop the output image. If
polygonClip is TRUE, the geometry of the cropArea is used to crop the output image.
Areas outside the crop area are filled with the background value

polygonClip
Ignored if cropArea is null. Otherwise, the string TRUE causes the cropArea value to
be used to crop the mosaicked data; the string FALSE or a null value causes the MBR
of cropArea to be used to crop the output image.

layerNumbers
A string identifying the logical layer numbers for the rectification and the output to
outGeoRaster. Use commas to delimit the values, and a hyphen to indicate a range
(for example, 2-4 for layers 2, 3, and 4).

outResolutions
An array of numeric values, one for each spatial dimension. Each value indicates the
number of units of measure associated with the data area represented by that spatial
dimension of a pixel. For example, if the spatial resolution values are (10,10) and the
unit of measure for the ground data is meters, each pixel represents an area of 10

Chapter 7
SDO_GEOR.rectify

7-167

meters by 10 meters. If null, the default is the resolution of the source data at the
specified pyramid level.

resolutionUnit
The unit of the outResolutions parameter. If resolutionUnit is different from
the outGeoRaster SRID unit, an appropriate conversion is computed (the value
of the output resolution is calculated by converting the outResolutions value in
resolutionUnit to the unit of the output SRID) . If resolutionUnit is null, the
default is the unit of the output SRID. If specified, it must be a quoted string in
the format "unit=value" where value is the unit name. This parameter is ignored if
outResolutions is null.

referencePoint
A point of type SDO_GEOMETRY indicating a reference to where the outGeoRaster
object should be aligned so that the distance between the referencePoint and the
upper-left corner of the output will have an integer number of pixels.

resampleParam
A comma-separated quoted string of keyword=value pairs for specifying resampling
parameters. See the Usage Notes for more information.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
GeoRaster object to hold the result of the operation. Must be either a valid existing
GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects are
explained in Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster
object as inGeoRaster

rasterBlob
BLOB to hold the output reflecting the rectification. It must exist or have been
initialized before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Chapter 7
SDO_GEOR.rectify

7-168

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit operation. If an
error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

Usage Notes

This procedure has two formats:

• One format generates a GeoRaster object for persistent storage in the database.

• The other format generates a BLOB for temporary storage or immediate use, such
as to display data on the screen.

This procedure uses a non-parametric rectification method that takes the
georeferencing polynomials from the input GeoRaster object to transform the original
image space into the target image space. Therefore, the input GeoRaster object must
be georeferenced (see the SDO_GEOR.georeference subprogram).

Orthorectification can be performed if the input GeoRaster object has a 3D model
SRID. A digital elevation model (DEM) GeoRaster object can be used to improve
the accuracy of the orthorectification. If the DEM parameter is not specified, the
elevationParam average value is used as the height for the whole target area. If the
elevationParam average value is not specified, it is estimated based on the SRS and
DEM information (see Image Orthorectification).

resampleParam, if specified, must be a quoted string that contains one or more of the
following keywords, each with an appropriate value:

• resampling (for example, resampling=NN): Specifies the resampling method.
Must be one of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, or
AVERAGE16. For more information, see Resampling and Interpolation.

• nodata (for example, nodata=TRUE): Specifies whether NODATA values and value
ranges should be considered during the procedure. Must be either TRUE (NODATA
values and value ranges should be considered) or FALSE (NODATA values and
value ranges should not be considered). The default value is FALSE. If the value
is TRUE and the resampling method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, whenever a cell value involved in the resampling calculation is a
NODATA value, the result of the resampling is also a NODATA value. The resulting
NODATA value is the minimum NODATA value associated with the current raster
layer, if multiple NODATA values or value ranges exist.

Examples

In the following example, the input GeoRaster object is rectified to the same SRID.
The input GeoRaster object was georeferenced using GCPs with SRID 32619.

The layerNumbers parameter indicates the order of selection of three bands of
the seven bands from the input GeoRaster object, producing a three-band output
GeoRaster object.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;

Chapter 7
SDO_GEOR.rectify

7-169

BEGIN
 select raster into gr1 from georaster_table where georid = 1;
 insert into georaster_table values(2, 'Rectified image',
 sdo_geor.init('georaster_rdt')) returning raster into gr2;
 sdo_geor.rectify(inGeoRaster => gr1,
 pyramidLevel => null,
 elevationParam => null,
 dem => null,
 outSRID => null,
 outModelCoordLoc => null,
 cropArea => null,
 polygonClip => null,
 layerNumbers => '2,4,5',
 outResolutions => null,
 resolutionUnit => null,
 referencePoint => null,
 resampleParam => null,
 storageParam => null,
 outGeoraster => gr2);
 update georaster_table set georaster = gr2 where georid = 2;
 commit;
END;

In the following example, the input GeoRaster object was georeferenced using 3D
GCPs with SRID 32619, and the function produces an orthorectified GeoRaster with
SRID 4326.

• The dem parameter specifies the GeoRaster object gr3 as the digital elevation
model for providing height values for each pixel for the orthorectification.

• resampleParam specifies the resampling method as BILINEAR.

• The storageParam parameter specifies the interleaving as BSQ and the
compression as DEFLATE.

• The specified outResolutions value has the same unit of measurement as the
output GeoRaster SRID because resolutionUnit is null.

• The point geometry specified by referencePoint causes the output image upper-
left corner to be aligned with that coordinate, with a integer number of pixel (rows
and columns resolution) in between them.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 gr3 sdo_georaster;
 pto sdo_geometry;
BEGIN
 pto := sdo_geometry(2001, 4326, sdo_point_type(-71.50,42.0, null));
 select raster into gr1 from georaster_table where georid = 1;
 select raster into gr1 from georaster_table where georid = 3;
 insert into georaster_table values(2, 'Rectified image',
 sdo_geor.init('georaster_rdt')) returning raster into gr2;
 sdo_geor.rectify(inGeoRaster => gr1,
 pyramidLevel => 1,
 elevationParam => null,
 dem => gr3,
 outSRID => 4326,
 outModelCoordLoc => null,
 cropArea => null,
 polygonClip => null,
 layerNumbers => null,

Chapter 7
SDO_GEOR.rectify

7-170

 outResolutions => sdo_number_array(0.0025,0.0025),
 resolutionUnit => null,
 referencePoint => pto,
 resampleParam => 'resampling=BILINEAR',
 storageParam => 'interleaving=BSQ compress=DEFLATE',
 outGeoraster => gr2);
 update georaster_table set georaster = gr2 where georid = 2;
 commit;
END;

In the following example, the input GeoRaster object was georeferenced using GCPs
with SRID 32619, and the output GeoRaster object is projected to SRID 4326.

• resampleParam specifies the resampling method as CUBIC.

• The storageParam parameter specifies blockSize as (512,512,3). Because
interleaving is not specified, the interleaving method for inGeoRaster is used.

• outResolutions and resolutionUnit are specified in meters, which is a different
unit from outSRID 4316. In this case, the SDO_NUMBER_ARRAY values (30,30)
are converted to degrees.

• The SDO_GEOMETRY polygon specified for cropArea is used to crop the output
area to the extents of that polygon; and because polygonClip is TRUE, the area of
the image outside of the polygon is set to background values.

• The model coordinate location of the output object is UpperLeft because
outModelCoordLoc is specified as 1.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 pol sdo_geometry;
BEGIN
 pol := sdo_geometry(2003,4326,NULL,sdo_elem_info_array(1,1003,1),
 sdo_ordinate_array(-70.869495075803073, 42.349420282160885,
 -70.468523716196913, 42.813138293441916,
 -70.957334345349082, 43.218053058782452,
 -71.350984405166344, 42.736563729419181,
 -70.869495075803073, 42.349420282160885));
 select raster into gr1 from georaster_table where georid = 1;
 insert into georaster_table values(2, 'Rectified image',
 sdo_geor.init('georaster_rdt')) returning raster into gr2;
 sdo_geor.rectify(inGeoRaster => gr1,
 pyramidLevel => 0,
 elevationParam => null,
 dem => null,
 outSRID => 4326,
 outModelCoordLoc => 1,
 cropArea => pol,
 polygonClip => 'true',
 layerNumbers => null,
 outResolutions => sdo_number_array(30,30),
 resolutionUnit => 'unit=meter',
 referencePoint => null,
 resampleParam => 'resampling=CUBIC',
 storageParam => 'blocking=optimalpadding
blockSize=(512,512,3)',
 outGeoraster => gr2);
 update georaster_table set georaster = gr2 where georid = 2;
 commit;
END;

Chapter 7
SDO_GEOR.rectify

7-171

7.112 SDO_GEOR.reproject
Format

SDO_GEOR.reproject(
 inGeoRaster IN SDO_GEORASTER,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outSRID IN NUMBER,
 outGeoraster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.reproject(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outSRID IN NUMBER,
 outGeoraster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.reproject(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outSRID IN NUMBER,
 outGeoraster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.reproject(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outSRID IN NUMBER,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.reproject(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,

Chapter 7
SDO_GEOR.reproject

7-172

 bandNumbers IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outSRID IN NUMBER,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Reprojects all or part of a GeoRaster object to a different Oracle Spatial and Graph
coordinate system (specified by the outSRID parameter). The resulting object can be a
new GeoRaster object (for persistent storage) or a BLOB (for temporary use).

Parameters

inGeoRaster
The SDO_GEORASTER object on which the reprojection operation is to be
performed to create the new object.

pyramidLevel
A number specifying the pyramid level of the source GeoRaster object.

cropArea
Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more
band numbers.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the crop area; see also
the Usage Notes for SDO_SRID requirements.

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

resampleParam
A string containing the resampling parameters. See the Usage Notes for information
about the available keywords and values.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The new SDO_GEORASTER object that reflects the results of the scaling operation.
Must be either a valid existing GeoRaster object or an empty GeoRaster object.

Chapter 7
SDO_GEOR.reproject

7-173

(Empty GeoRaster objects are explained in Blank and Empty GeoRaster Objects.)
Cannot be the same GeoRaster object as inGeoRaster.

rasterBlob
BLOB to hold the output reflecting the new coordinate system. It must exist or have
been initialized before the reprojection operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

This procedure has two general kinds of interfaces:

• The first three formats generate a persistent GeoRaster object for storage in the
database.

• The remaining formats generate a BLOB for temporary storage for immediate use,
such as to display data on the screen.

inGeoRaster should be georeferenced and have a SRID value from the SRID
column of the MDSYS.CS_SRS table. outSRID should be different from the SRID of
inGeoRaster. In some cases, the reprojection is inappropriate, such as reprojecting a
GeoRaster object in NAD83, Massachusetts Mainland (SRID = 26986) to coordinate
system NAD 27, UTM zone 49N (SRID = 2032649). In this case, the reprojection
would result in a large distortion and thus is not performed.

inGeoRaster and outGeoRaster must be different GeoRaster objects. After the
operation, the ULT coordinates of the resulting GeoRaster object are set to zero (0).

If the source or destination object has a three-dimensional coordinate system, the
height (Z) values are set to zero (0).

If you use the format that includes the pyramidLevel parameter and you specify a
value greater than zero (0), the reprojection is based on the specified pyramid level
of the source GeoRaster object; otherwise, the reprojection is based on the original
GeoRaster object (pyramidLevel=0). The output GeoRaster object has no pyramid
data.

If the cropArea parameter data type is SDO_GEOMETRY, its SDO_SRID value must
be a value from the SRID column of the MDSYS.CS_SRS table. If the SDO_SRID
values for the cropArea parameter geometry and the inGeoraster object model space

Chapter 7
SDO_GEOR.reproject

7-174

are different, the cropArea parameter geometry is automatically transformed to the
coordinate system of the model space before the operation is performed. (Raster
space and model space are explained in GeoRaster Data Model.)

If the cropArea parameter specifies a geodetic MBR, it cannot cross the date line
meridian. (For information about geodetic MBRs, see Oracle Spatial and Graph
Developer's Guide.) Only the overlapping portion of the specified crop area and the
spatial extent of the source GeoRaster object is reprojected.

resampleParam must be a quoted string that contains one or more of the following
keywords, each with an appropriate value:

• resampling (for example, resampling=NN): Specifies the resampling method. Must
be one of the following: NN, BILINEAR, CUBIC, AVERAGE4, AVERAGE16. For more
information, see Resampling and Interpolation.

• nodata (for example, nodata=TRUE): Specifies whether NODATA values and value
ranges should be considered during the procedure. Must be either TRUE (NODATA
values and value ranges should be considered) or FALSE (NODATA values and
value ranges should not be considered). The default value is FALSE. If the value
is TRUE and the resampling method is BILINEAR, CUBIC, AVERAGE4, or AVERAGE16,
whenever a cell value involved in the resampling calculation is a NODATA value,
the result of the resampling is also a NODATA value. The resulting NODATA value
is the minimum NODATA value associated with the current raster layer, if multiple
NODATA values or value ranges exist.

Examples

The following example reprojects a GeoRaster object into the coordinate system
defined by SRID 32618. The result is another GeoRaster object.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 SELECT georaster INTO gr1 from georaster_table WHERE georid=10;
 INSERT INTO reproject_table VALUES (21, 'WGS 84 / UTM zone 18N',
 SDO_GEOR.init('rdt_5', 21))
 RETURNING georaster INTO gr2;
 sdo_geor.Reproject(gr1, 0, 0, SDO_NUMBER_ARRAY(0, 0, 517, 517),
 null, null, 'blocking=optimalpadding,
blocksize=(512,512,3),
 interleaving=BSQ', 32618, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=21;
 COMMIT;
END;
/

The following example reprojects a GeoRaster object into the coordinate system
defined by SRID 32618. The result is temporary BLOB containing data in JPEG-F
format.

DECLARE
 gr1 sdo_georaster;
 lob1 BLOB;
 outArea SDO_Geometry;
 outWindow SDO_NUMBER_ARRAY;
BEGIN
 SELECT georaster INTO gr1 from georaster_table WHERE georid=10;
 dbms_lob.createTemporary(lob1, TRUE);

Chapter 7
SDO_GEOR.reproject

7-175

 sdo_geor.Reproject(gr1, 0, SDO_NUMBER_ARRAY(0, 0, 120, 300),
 '0', null, 'compression = JPEG-F', 32618,
 lob1, outArea, outWindow);

 dbms_lob.freeTemporary(lob1);
 COMMIT;
END;
/

7.113 SDO_GEOR.scaleCopy
Format

SDO_GEOR.scaleCopy(
 inGeoRaster IN SDO_GEORASTER,
 scaleParam IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.scaleCopy(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 scaleParam IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Scales a GeoRaster object by enlarging or reducing the image along row and column
dimensions, and puts the result into a new object that reflects the scaling.

Parameters

inGeoRaster
The SDO_GEORASTER object on which the scaling operation is to be performed to
create the new object (outGeoRaster).

pyramidLevel
A number specifying the pyramid level of the source GeoRaster object.

scaleParam
A string specifying a scaling parameter keyword and its associated value. The
keyword must be one of the following:

Chapter 7
SDO_GEOR.scaleCopy

7-176

Note:

For any numbers in string (VARCHAR2) parameters to GeoRaster
subprograms, the period (.) must be used for any decimal points regardless
of the locale.

• scaleFactor, to reduce or enlarge as a multiple of the original size. This
keyword must have a numeric value greater than 0 (zero) (for example,
'scaleFactor=0.75'). A value of 1.0 will not change the current size; a value
less than 1 will reduce the image; a value greater than 1 will enlarge the image.
The number of cells along each dimension is the original number multiplied by
scaleFactor. For example, if the scaleFactor value is 2 and the GeoRaster
object has X and Y dimensions, the number of cells along each dimension is
doubled.

• maxDimSize, to specify a size in terms of the maximum number of cells for each
dimension. This keyword must have a numeric value for each dimension (for
example, 'maxDimSize=(512,512)'). The aspect ratio is not changed.

• rowMaxDimSize and columnMaxDimSize, to specify sizes in terms of
the maximum number of cells for row and column dimensions. This
pair of keywords must have numeric values for each dimension (for
example, 'rowMaxDimSize=512,columnMaxDimSize=256'). The aspect ratio can
be changed, and the two keywords must be specified together.

• rowScaleFactor and columnScaleFactor, to reduce or enlarge as a multiple of
the original size. This pair of keywords must have numeric values greater than
0 (zero). A value of 1.0 will not change the current size; a value less than 1 will
reduce the image; a value greater than 1 will enlarge the image. The number of
cells along row dimension is the original number multiplied by rowScaleFactor.
The number of cells along column dimension is the original number multiplied
by columnScaleFactor. rowScaleFactor and columnScaleFactor can be different
numbers, but must be specified together.

resampleParam
A string containing the resampling parameters. See the Usage Notes for information
about the available keywords and values.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The new SDO_GEORASTER object that reflects the results of the scaling operation.
Must be either a valid existing GeoRaster object or an empty GeoRaster object.
(Empty GeoRaster objects are explained in Blank and Empty GeoRaster Objects.)
Cannot be the same GeoRaster object as inGeoRaster.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,

Chapter 7
SDO_GEOR.scaleCopy

7-177

respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

Use this procedure to create a new GeoRaster object reflecting the specified scaling,
based on the original GeoRaster object or a specified pyramid level of the GeoRaster
object. After you use this procedure, you can check to ensure that the desired changes
were made in the copy of the original GeoRaster object, and then discard the original
GeoRaster object if you wish.

If you use the format that does not include the pyramidLevel parameter, the scaling is
based on the original GeoRaster object (pyramidLevel=0).

If you need to get the scaled cell values, use the procedure described in the Usage
Notes for the SDO_GEOR.getCellValue function.

inGeoRaster and outGeoRaster must be different GeoRaster objects.

resampleParam must be a quoted string that contains one or more of the following
keywords, each with an appropriate value:

• resampling (for example, resampling=NN): Specifies the resampling method. Must
be one of the following: NN, BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4, AVERAGE16.
For more information, see Resampling and Interpolation.

• nodata (for example, nodata=TRUE): Specifies whether NODATA values and value
ranges should be considered during the procedure. Must be either TRUE (NODATA
values and value ranges should be considered) or FALSE (NODATA values and
value ranges should not be considered). The default value is FALSE. If the value
is TRUE and the resampling method is BILINEAR, BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, whenever a cell value involved in the resampling calculation is a
NODATA value, the result of the resampling is also a NODATA value. The resulting
NODATA value is the minimum NODATA value associated with the current raster
layer, if multiple NODATA values or value ranges exist.

Any upper-level pyramid data in the input GeoRaster object is not considered during
this operation, and the output GeoRaster object has no pyramid data.

After the operation, the row and column ULT coordinates are always set to 0 (zero),
even if no scaling is performed (that is, even if scaleFactor=1).

This procedure does not scale along the band dimension.

If the source GeoRaster object is georeferenced with a valid polynomial
transformation, the georeferencing information for the resulting GeoRaster object is
generated accordingly; otherwise, the result GeoRaster object contains no spatial
reference information.

An exception is raised if one or more of the following are true:

• inGeoRaster is invalid.

• outGeoRaster has not been initialized.

• A raster data table for outGeoRaster does not exist and outGeoRaster is not a
blank GeoRaster object.

Chapter 7
SDO_GEOR.scaleCopy

7-178

Examples

The following example reduces an image to three-fourths (0.75) size, specifies
AVERAGE4 resampling, and specifies an optimized block size around 512 for
each dimension in the storage parameters. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (21, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=2;

 sdo_geor.scaleCopy(gr1, 'scaleFactor=0.75', 'resampling=AVERAGE4',
 'blocking=optimalpadding blocksize=(512,512)', gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=21;
 COMMIT;
END;
/

7.114 SDO_GEOR.schemaValidate
Format

SDO_GEOR.schemaValidate(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Validates a GeoRaster object's metadata against the GeoRaster XML schema.

Parameters

georaster
GeoRaster object.

Usage Notes

This function returns the string TRUE if the metadata is valid, a null value if the
GeoRaster object or its metadata is null, or one or more Oracle error codes indicating
why the metadata is not valid and the exact location of the errors.

Use this function with the SDO_GEOR.validateGeoRaster function. If the
SDO_GEOR.validateGeoRaster function identifies a GeoRaster object as invalid with
an error code of 13454, the object's metadata is not valid according to the GeoRaster
XML schema. If this happens, call the SDO_GEOR.schemaValidate function to get
specific information, including the location in the metadata, about the errors.

Examples

The following example validates a GeoRaster object's metadata.

Chapter 7
SDO_GEOR.schemaValidate

7-179

SELECT t.georid,
 sdo_geor.schemavalidate(t.georaster)
 FROM georaster_table t
 WHERE t.georid = 1;

7.115 SDO_GEOR.setBeginDateTime
Format

SDO_GEOR.setBeginDateTime(
 georaster IN OUT SDO_GEORASTER,
 beginTime TIMESTAMP WITH TIME ZONE);

Description

Sets the beginning date and time for raster data collection in the metadata for
a GeoRaster object, or deletes the existing value if you specify a null beginTime
parameter.

Parameters

georaster
GeoRaster object.

beginTime
Time specification.

Usage Notes

To see the current beginning date and time (if any) in the metadata for the GeoRaster
object, use the SDO_GEOR.getBeginDateTime function.

An exception is raised if beginTime is later than the ending date and time specified
in the metadata for the GeoRaster object (see the SDO_GEOR.setEndDateTime
procedure).

The GeoRaster object is automatically validated after the operation completes.

Examples

The following example sets the beginning and ending dates and times for raster
data collection in the metadata for a GeoRaster object. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setBeginDateTime(grobj, timestamp '2002-11-15 15:00:00');
 sdo_geor.setEndDateTime(grobj, timestamp '2002-11-15 15:00:10');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setBeginDateTime

7-180

7.116 SDO_GEOR.setBinFunction
Format

SDO_GEOR.setBinFunction(
 georaster IN SDO_GEORASTER,
 layerNumber IN NUMBER
 binFunction IN SDO_NUMBER_ARRAY);

Description

Sets the bin function associated with a layer.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to return the bin type. A value of 0 (zero) indicates the
object layer.

binFunction
Bin function as an array whose elements specify the bin type, total number
of bins, first bin number, minimum cell value, and maximum cell value. The
SDO_NUMBER_ARRAY type is defined as VARRAY(1048576) OF NUMBER. See the
Usage Notes for more information and an example.

Usage Notes

A bin function maps values or value ranges of the GeoRaster cells to specific bin
numbers, which are all integers. If a bin function of type LINEAR is defined, it is used
by the SDO_GEOR.generateStatistics function for calculating statistics on cell values.
GeoRaster does not provide interfaces to manipulate and process bin functions.

The binFunction parameter specifies an array of five numbers, which have the
following meaning:

• The first number identifies the bin type, and must be 0 (LINEAR) or 1 (LOGARIGHM).

• The second number identifies the total number of bins.

• The third number identifies the number of the first bin.

• The fourth number is the minimum cell value in the range.

• The fifth number is the maximum cell value in the range.

For example, if binFunction is SDO_NUMBER_ARRAY(0,10,1,0,511), the bin type is
LINEAR, there are 10 bins numbered 1 through 10 (that is, starting at 1), and cell values
from 0 through 511 are uniformly distributed to bins 1 through 10.

An exception is raised if layerNumber is null, negative, or greater than the maximum
layer number.

Examples

The following example sets the bin function for layer 3 of a specified GeoRaster object,
using the binFunction parameter value explained in the Usage Notes.

Chapter 7
SDO_GEOR.setBinFunction

7-181

DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setBinFunction(gr, 3, sdo_number_array(0,10,1,0,511));
 UPDATE georaster_table SET georaster=gr WHERE georid=4;
END;
/

7.117 SDO_GEOR.setBinTable
Format

SDO_GEOR.setBinTable(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 tableName IN VARCHAR2);

Description

Sets the name of the bin table associated with a layer, or deletes the existing value if
you specify a null tableName parameter.

Note:

GeoRaster does not perform operations using the bin table in the current
release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the bin table name. A value of 0 (zero) indicates
the object layer.

tableName
Name of the bin table associated with a layer.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

This procedure is relevant only if the bin type is EXPLICIT. To retrieve the bin type, use
the SDO_GEOR.getBinType function.

To return the bin table for a layer, use the SDO_GEOR.getBinTable function.

See also the information in the Usage Notes for the SDO_GEOR.getBinType function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if
tableName is an empty string ('').

Chapter 7
SDO_GEOR.setBinTable

7-182

Examples

The following example sets BINT1 as the name of the bin table for layer number 3 of
a specified GeoRaster object in the GEORASTER_TABLE table, whose definition is
presented after Example 1-1 in Storage Parameters.

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setBinTable(grobj, 3, 'BINT1');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.118 SDO_GEOR.setBitmapMask
Format

SDO_GEOR.setBitmapMask(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 mask IN SDO_GEORASTER,
 NODATAMask IN VARCHAR2 DEFAULT NULL);

Description

Attaches a bitmap mask to a GeoRaster object, or replaces or removes the current
bitmap mask.

Parameters

georaster
GeoRaster object.

layerNumber
Layer with which to associate the bitmap mask. A value of 0 (zero) indicates the
object layer.

mask
The bitmap mask to be attached to the GeoRaster object. If this parameter is null, any
existing bitmap mask associated with the specified layer of the GeoRaster object is
removed.

NODATAMask
Specifies whether mask is to be interpreted as a NODATA mask. The string TRUE
causes mask to be interpreted as a NODATA mask; any other value (including null)
causes mask not to be interpreted as a NODATA mask.

Usage Notes

If the specified GeoRaster object or layer already has an associated bitmap mask,
this procedure replaces it with the specified mask, or removes it if the mask parameter
specifies a null value.

Chapter 7
SDO_GEOR.setBitmapMask

7-183

If the mask parameter value is not null, the bitmap mask must be a valid 1BIT
GeoRaster object with only one band, and the row and column dimension sizes of
the bitmap mask must be the same as those of the target GeoRaster object. It cannot
be the same GeoRaster object as the input GeoRaster object (georaster parameter).

This procedure raises an exception if the target GeoRaster object is a blank
GeoRaster object.

For an explanation of bitmap masks, see Bitmap Masks.

Examples

The following example uses a GeoRaster object in the table GRTAB (where id=1)
as the bitmap mask to be attached to layer number 1 of an GeoRaster object in the
GEORASTER_TABLE (where georid=1). The bitmap mask will be interpreted as a
NODATA mask.

declare
 gr sdo_georaster;
 mk sdo_georaster;
begin
 select georaster into gr from georaster_table where georid=1 for update;
 select grobj into mk from grtab where id=1;
 sdo_geor.setBitmapMask(gr, 1, mk, 'true');
 update georaster_table set georaster=gr where georid=0;
 commit;
end;
/

7.119 SDO_GEOR.setBlankCellValue
Format

SDO_GEOR.setBlankCellValue(
 georaster IN OUT SDO_GEORASTER,
 value IN NUMBER);

Description

Sets (modifies) the cell value to be used for all cells if a specified GeoRaster object is
a blank GeoRaster object.

Parameters

georaster
GeoRaster object.

value
Cell value to be used for the blank GeoRaster object. Cannot be a null value.

Usage Notes

In a blank GeoRaster object, all cells have the same cell value.

The GeoRaster object is automatically validated after the operation completes.

To return the blank cell value of a blank GeoRaster object, use the
SDO_GEOR.getBlankCellValue function. To determine if a specified GeoRaster object
is a blank GeoRaster object, use the SDO_GEOR.isBlank function.

Chapter 7
SDO_GEOR.setBlankCellValue

7-184

An exception is raised if value is null or inconsistent with the cellDepth specification,
or if the GeoRaster object is not blank.

Examples

The following example specifies a value of 255 to be used for all cells in the
GeoRaster object column (GEORASTER) in the GEORASTER_TABLE table for the
row with an GEORID column value of 1. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=1 FOR UPDATE;
 sdo_geor.setBlankCellValue(grobj, 255);
 UPDATE georaster_table SET georaster = grobj WHERE georid=1;
 COMMIT;
END;
/

7.120 SDO_GEOR.setColorMap
Format

SDO_GEOR.setColorMap(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 colorMap IN SDO_GEOR_COLORMAP);

Description

Sets the colormap for a layer in a GeoRaster object, or deletes the existing value if you
specify a null colorMap parameter.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

colorMap
Colormap object of type SDO_GEOR_COLORMAP, which is described in
SDO_GEOR_COLORMAP Object Type.

Usage Notes

The following must be true of the specified colormap object:

• The cellValue values are consistent with and in the value range for the cellDepth
value of the GeoRaster object.

• The red, green, blue, and alpha values are integers from 0 to 255.

• The cellValue array contains no duplicate entries.

• The entries in the cellValue array are in ascending order.

The GeoRaster object is automatically validated after the operation completes.

Chapter 7
SDO_GEOR.setColorMap

7-185

You can create a colormap or retrieve a colormap from an existing GeoRaster
object for use. To return the colormap for a layer in a GeoRaster object, use the
SDO_GEOR.getColorMap function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if
any of the following exist in colorMap: the red, green, blue, or alpha value is null or out
of scope; duplicate values exist in the cellValue array, or any cellValue values are
null, out of scope, or out of order.

Examples

The following example sets the colormap for layer 2 of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. It assumes that the GeoRaster object is a bitmap. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 grobj sdo_georaster;
 cmobj sdo_geor_colormap;
BEGIN
 cmobj := sdo_geor_colormap(sdo_number_array(0, 1),
 sdo_number_array(0, 255),
 sdo_number_array(0, 0),
 sdo_number_array(0, 0),
 sdo_number_array(255, 255));

 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setColorMap(grobj, 2, cmobj);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.121 SDO_GEOR.setColorMapTable
Format

SDO_GEOR.setColorMapTable(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 tableName IN VARCHAR2);

Description

Sets the colormap table for a layer in a GeoRaster object, or deletes the existing value
if you specify a null tableName parameter.

Note:

This procedure registers the colormap table name with GeoRaster; however,
GeoRaster does not perform operations using the colormap table in the
current release.

Chapter 7
SDO_GEOR.setColorMapTable

7-186

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

tableName
Name of the user-defined colormap table. SDO_GEOR_COLORMAP Object Type
describes colormaps.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

To return the colormap table for a layer in a GeoRaster object, use the
SDO_GEOR.getColorMapTable function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if
tableName is an empty string ('').

Examples

The following example sets the colormap table to be null for layer 2 of the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setColorMapTable(grobj, 2, null);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.122 SDO_GEOR.setControlPoint
Format

SDO_GEOR.setControlPoint (
 inGeoraster IN OUT SDO_GEORASTER,
 controlPoint IN SDO_GEOR_GCP);

Description

Adds a ground control point (GCP) for the GeoRaster object, or replaces an existing
GCP if it has the same ID value as the input control point.

Parameters

inGeoraster
GeoRaster object.

Chapter 7
SDO_GEOR.setControlPoint

7-187

controlPoint
GCP to be added for inGeoraster. Must be an object of type SDO_GEOR_GCP,
which is described in SDO_GEOR_GCP Object Type.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If the controlPoint is null, the function returns without performing any action. If
a GCP is found in the GeoRaster object metadata with the same point ID as
defined in controlPoint, that GCP is replaced; otherwise, this GCP is added to the
georeferencing model.

Examples

The following example adds a GCP for a specified GeoRaster object.

DECLARE
 gr1 sdo_georaster;
 GCP SDO_GEOR_GCP;
BEGIN
 SELECT georaster INTO gr1 from georaster_table WHERE georid=10 FOR UPDATE;

 GCP := SDO_GEOR_GCP('21', 'Updated', 1,
 2, sdo_number_array(25.625000, 73.875000),
 2, sdo_number_array(237036.937500, 897987.187500),
 NULL, NULL);
 sdo_geor.setControlPoint(gr1, GCP);
 UPDATE georaster_table SET georaster=gr1 WHERE georid=10;
 COMMIT;
END;
/

7.123 SDO_GEOR.setDefaultAlpha
Format

SDO_GEOR.setDefaultAlpha(
 georaster IN OUT SDO_GEORASTER,
 defaultAlpha IN NUMBER);

Description

Sets the number of the layer to be used for the alpha color component (in the RGBA
color space) for displaying a GeoRaster object, or deletes the existing value if you
specify a null defaultAlpha parameter.

Parameters

georaster
GeoRaster object.

defaultAlpha
Number of the layer to be used for the alpha color component (in the RGBA color
space) for displaying the specified GeoRaster object. Must be greater than 0 (zero)
and less than or equal to the highest layer number in the GeoRaster object.

Chapter 7
SDO_GEOR.setDefaultAlpha

7-188

Usage Notes

The default red, green, blue, and alpha values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if you are trying to set the number of the layer to be used for
the alpha color component only, or if defaultAlpha is not a valid layer number for the
GeoRaster object.

Examples

The following example sets the default red, green, blue, and alpha color layers for
the GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table, and
it returns an array with the layer numbers for the red, green, blue, and alpha color
components for displaying these GeoRaster objects. (The GEORASTER_TABLE table
definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setDefaultRed(grobj, 5);
 sdo_geor.setDefaultGreen(grobj, 4);
 sdo_geor.setDefaultBlue(grobj, 3);
 sdo_geor.setDefaultAlpha(grobj, 2);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

SELECT sdo_geor.getDefaultColorLayer(georaster) FROM georaster_table
 WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER(GEORASTER)
--
SDO_NUMBER_ARRAY(5, 4, 3, 2)

1 row selected.

7.124 SDO_GEOR.setDefaultBlue
Format

SDO_GEOR.setDefaultBlue(
 georaster IN OUT SDO_GEORASTER,
 defaultBlue IN NUMBER);

Description

Sets the number of the layer to be used for the blue color component (in the RGB
color space) for displaying a GeoRaster object, or deletes the existing value if you
specify a null defaultBlue parameter.

Chapter 7
SDO_GEOR.setDefaultBlue

7-189

Parameters

georaster
GeoRaster object.

defaultBlue
Number of the layer to be used for the blue color component (in the RGB color space)
for displaying the specified GeoRaster object. Must be greater than 0 (zero) and less
than or equal to the highest layer number in the GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if you are trying to set or remove the number of the layer to be
used for the blue color component only, or if defaultBlue is not a valid layer number
for the GeoRaster object.

Examples

The following example sets the default red, green, and blue color layers for the
GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table, and it
returns an array with the layer numbers for the red, green, and blue color components
for displaying these GeoRaster objects. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setDefaultRed(grobj, 5);
 sdo_geor.setDefaultGreen(grobj, 4);
 sdo_geor.setDefaultBlue(grobj, 3);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

SELECT sdo_geor.getDefaultColorLayer(georaster) FROM georaster_table
 WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER(GEORASTER)
--
SDO_NUMBER_ARRAY(5, 4, 3)

1 row selected.

7.125 SDO_GEOR.setDefaultColorLayer
Format

SDO_GEOR.setDefaultColorLayer(
 georaster IN OUT SDO_GEORASTER,
 defaultRGB IN SDO_NUMBER_ARRAY);

Chapter 7
SDO_GEOR.setDefaultColorLayer

7-190

Description

Sets the default numbers of the layers to be used for the red, green, blue, and
alpha color components, respectively, for displaying a GeoRaster object, or deletes the
existing values if you specify a null defaultRGB parameter.

Parameters

georaster
GeoRaster object.

defaultRGB
Array of three or four numbers identifying the red, green, blue, and alpha color
components, respectively, for displaying the specified GeoRaster object. Each
number must be greater than 0 (zero) and less than or equal to the highest layer
number in the GeoRaster object.

Usage Notes

The RGBA layer numbers specified are used for true-color displays, not for
pseudocolor or grayscale displays.

The GeoRaster object is automatically validated after the operation completes.

You can set the layer number for each color component (RGB)
by using the SDO_GEOR.setDefaultRed, SDO_GEOR.setDefaultGreen,
SDO_GEOR.setDefaultBlue, and SDO_GEOR.setDefaultAlpha procedures.

The default RGBA layer numbers must be set or removed at the same time. The
default alpha layer number is optional. If the default red, green, and blue layer
numbers are set, the default alpha layer number can be set. If the default red, green,
and blue layer numbers are removed, the default alpha layer number must also be
removed.

Because the default alpha layer is optional, you can either (A) set the default red,
green, and blue color components only by providing three numbers to this procedure
or (B) set the default red, green, blue, and alpha color components by providing four
numbers to this procedure. If defaultRGB is an array of three numbers, it identifies the
red, green and blue color components only. If defaultRGB is an array of four numbers,
it identifies the red, green, blue, and alpha components.

An exception is raised if defaultRGB is of the wrong size or if any elements in it are null
or are invalid layer numbers for the GeoRaster object.

Examples

The following example specifies that layer number 1 is to be used for the red, green,
blue. and alpha color components for displaying the GeoRaster object (GEORASTER
column) in the row with an GEORID column value of 2 in the GEORASTER_TABLE
table. (The GEORASTER_TABLE table definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=2 FOR UPDATE;
 sdo_geor.setDefaultColorLayer(grobj, sdo_number_array(1,1,1,1));
 UPDATE georaster_table SET georaster = grobj WHERE georid=2;

Chapter 7
SDO_GEOR.setDefaultColorLayer

7-191

 COMMIT;
END;
/

7.126 SDO_GEOR.setDefaultGreen
Format

SDO_GEOR.setDefaultGreen(
 georaster IN OUT SDO_GEORASTER,
 defaultGreen IN NUMBER);

Description

Sets the number of the layer to be used for the green color component (in the RGB
color space) for displaying a GeoRaster object, or deletes the existing value if you
specify a null defaultGreen parameter.

Parameters

georaster
GeoRaster object.

defaultGreen
Number of the layer to be used for the green color component (in the RGB color
space) for displaying the specified GeoRaster object. Must be greater than 0 (zero)
and less than or equal to the highest layer number in the GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if you are trying to set or remove the number of the layer to
be used for the green color component only, or if defaultGreen is not a valid layer
number for the GeoRaster object.

Examples

The following example sets the default red, green, and blue color layers for the
GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table, and it
returns an array with the layer numbers for the red, green, and blue color components
for displaying these GeoRaster objects. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setDefaultRed(grobj, 5);
 sdo_geor.setDefaultGreen(grobj, 4);
 sdo_geor.setDefaultBlue(grobj, 3);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;

Chapter 7
SDO_GEOR.setDefaultGreen

7-192

/

SELECT sdo_geor.getDefaultColorLayer(georaster) FROM georaster_table
 WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER(GEORASTER)
--
SDO_NUMBER_ARRAY(5, 4, 3)

1 row selected.

7.127 SDO_GEOR.setDefaultPyramidLevel
Format

SDO_GEOR.setDefaultPyramidLevel(
 georaster IN OUT SDO_GEORASTER,
 defaultPyramidLevel IN NUMBER);

Description

Sets the number of the layer to be used for the default pyramid level for
displaying a GeoRaster object, or deletes the existing value if you specify a null
defaultPyramidLevel parameter.

Parameters

georaster
GeoRaster object.

defaultPyramidLevel
The default pyramid level for displaying the specified GeoRaster object. Must be
greater than or equal to 0 (zero) and less than or equal to the maximum pyramid level
in the GeoRaster object.

Usage Notes

Pyramid levels represent reduced or increased resolution images that require less or
more storage space, respectively. For information about pyramids and pyramid levels,
see Pyramids.

Specifying a default pyramid level is an optional operation, and is intended for use only
when visualizing GeoRaster objects with pyramids generated.

The GeoRaster object is automatically validated after the operation completes.

When pyramids are removed from a GeoRaster object by any other operation (such as
SDO_GEOR.deletePyramid or SDO_GEOR.subset), the default pyramid level for the
object is also removed from the metadata.

An exception is raised if there are no pyramids generated for the GeoRaster object, or
if defaultPyramidLevel is not a valid pyramid level number for the GeoRaster object.

You can get the default pyramid level by using the
SDO_GEOR.getDefaultPyramidLevel function.

Chapter 7
SDO_GEOR.setDefaultPyramidLevel

7-193

Examples

The following example generates the pyramids and sets the default pyramid level for
a specified GeoRaster object (GEORASTER column) in the GEORASTER_TABLE
table, and it returns the default pyramid level set for the GeoRaster object. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=6 FOR UPDATE;
 sdo_geor.generatePyramid(grobj, 'rLevel=5, resampling=NN');
 sdo_geor.setDefaultPyramidLevel(grobj, 3);
 UPDATE georaster_table SET georaster = grobj WHERE georid=6;
 COMMIT;
END;
/

SELECT georid, sdo_geor.getDefaultPyramidLevel(georaster) FROM georaster_table
 WHERE georid=6;

 GEORID PLEVEL
-------------- ----------
 6 3

7.128 SDO_GEOR.setDefaultRed
Format

SDO_GEOR.setDefaultRed(
 georaster IN OUT SDO_GEORASTER,
 defaultRed IN NUMBER);

Description

Sets the number of the layer to be used for the red color component (in the RGB color
space) for displaying a GeoRaster object, or deletes the existing value if you specify a
null defaultRed parameter.

Parameters

georaster
GeoRaster object.

defaultRed
Number of the layer to be used for the red color component (in the RGB color space)
for displaying the specified GeoRaster object. Must be greater than 0 (zero) and less
than or equal to the highest layer number in the GeoRaster object.

Usage Notes

The default red, green, and blue values are used for true-color displays, not for
pseudocolor or grayscale displays. These values are optional, and they are intended
for use only when visualizing multilayer or hyperspectral GeoRaster objects.

The GeoRaster object is automatically validated after the operation completes.

Chapter 7
SDO_GEOR.setDefaultRed

7-194

An exception is raised if you are trying to set or remove the number of the layer to be
used for the red color component only, or if defaultRed is not a valid layer number for
the GeoRaster object.

Examples

The following example sets the default red, green, and blue color layers for the
GeoRaster objects (GEORASTER column) in the GEORASTER_TABLE table, and it
returns an array with the layer numbers for the red, green, and blue color components
for displaying these GeoRaster objects. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setDefaultRed(grobj, 5);
 sdo_geor.setDefaultGreen(grobj, 4);
 sdo_geor.setDefaultBlue(grobj, 3);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

SELECT sdo_geor.getDefaultColorLayer(georaster) FROM georaster_table
 WHERE georid=4;

SDO_GEOR.GETDEFAULTCOLORLAYER(GEORASTER)
--
SDO_NUMBER_ARRAY(5, 4, 3)

1 row selected.

7.129 SDO_GEOR.setEndDateTime
Format

SDO_GEOR.setEndDateTime(
 georaster IN OUT SDO_GEORASTER,
 endTime IN TIMESTAMP WITH TIME ZONE);

Description

Sets the ending date and time for raster data collection in the metadata for a
GeoRaster object, or deletes the existing value if you specify a null endTime
parameter.

Parameters

georaster
GeoRaster object.

endTime
Time specification.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

Chapter 7
SDO_GEOR.setEndDateTime

7-195

To see the current ending date and time (if any) in the metadata for the GeoRaster
object, use the SDO_GEOR.getEndDateTime function.

An exception is raised if endTime is earlier than the beginning date and time specified
in the metadata for the GeoRaster object (see the SDO_GEOR.setBeginDateTime
procedure).

Examples

The following example sets the beginning and ending dates and times for raster
data collection in the metadata for a GeoRaster object. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setBeginDateTime(grobj, timestamp '2002-11-15 15:00:00');
 sdo_geor.setEndDateTime(grobj, timestamp '2002-11-15 15:00:10');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.130 SDO_GEOR.setGCPGeorefMethod
Format

SDO_GEOR.setGCPGeorefMethod(
 inGeoraster IN OUT SDO_GEORASTER
 gcpGeorefMethod IN VARCHAR2);

Description

Sets the GCP-based georeferencing geometric model type of a GeoRaster object.

Parameters

inGeoraster
GeoRaster object.

gcpGeorefMethod
Georeferencing geometric model type to set for the GeoRaster object. Its value must
be one of following strings: Affine, QuadraticPolynomial, CubicPolynomial, DLT,
QuadraticRational, or RPC.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

If inGeoraster does not contain GCP-based georeferencing information, no action
is performed; otherwise, the existing model type is replaced with the specified
gcpGeorefMethod value.

The procedure just set the model type value; no new solution is calculated. To get the
solution for the newly set model type, use the SDO_GEOR.georeference function.

Chapter 7
SDO_GEOR.setGCPGeorefMethod

7-196

Examples

The following example sets the GCP-based georeferencing geometric model type of a
specified GeoRaster object, and updates the object.

DECLARE
 gr1 sdo_georaster;
BEGIN
 SELECT georaster INTO gr1 from georaster_table WHERE georid=10 FOR UPDATE;
 sdo_geor.setGCPGeorefMethod(gr1, 'DLT');
 UPDATE georaster_table SET georaster=gr1 WHERE georid=10;
 COMMIT;
END;
/

7.131 SDO_GEOR.setGCPGeorefModel
Format

SDO_GEOR.setGCPGeorefModel(
 inGeoraster IN OUT SDO_GEORASTER
 gcpGeorefModel IN SDO_GEOR_GCPGEOREFTYPE);

Description

Sets the GCP-based georeferencing model information for a GeoRaster object.

Parameters

inGeoraster
GeoRaster object.

gcpGeorefModel
Object containing the following: FFMethodType, nGCP, GCPs, solutionAccuracy.

Usage Notes

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

The SDO_GEOR_GCPGEOREFTYPE object type is defined in
SDO_GEOR_GCPGEOREFTYPE Object Type.

This procedure stores the GCP information in the GeoRaster SRS metadata
component. If gcpGeorefModel is null and if the GeoRaster object has a
georeferencing model, this model information will be deleted.

If there are not enough GCPs specified in gcpGeorefModel for the geometric model
specified, the function will still succeed, but an exception will be raised if the
SDO_GEOR.georeference is called specifying this GeoRaster object.

Examples

The following example sets the GCP-based georeferencing model information in a
specified GeoRaster object.

DECLARE
 gr1 sdo_georaster;

Chapter 7
SDO_GEOR.setGCPGeorefModel

7-197

 georefModel SDO_GEOR_GCPGEOREFTYPE;
 GCPs SDO_GEOR_GCP_COLLECTION;
 rms sdo_number_array;
BEGIN
 SELECT georaster INTO gr1 from herman.georaster_table WHERE georid=10 FOR
UPDATE;

 GCPs:=SDO_GEOR_GCP_COLLECTION(
 SDO_GEOR_GCP('21', '', 1,
 2, sdo_number_array(25.625000, 73.875000),
 2, sdo_number_array(237036.937500, 897987.187500),
 NULL, NULL),
 SDO_GEOR_GCP('22', '', 1,
 2, sdo_number_array(100.625000, 459.125000),
 2, sdo_number_array(237229.562500, 897949.687500),
 NULL, NULL),
 SDO_GEOR_GCP('23', '', 1,
 2, sdo_number_array(362.375000, 77.875000),
 2, sdo_number_array(237038.937500, 897818.812500),
 NULL, NULL),
 SDO_GEOR_GCP('24', '', 1,
 2, sdo_number_array(478.875000, 402.125000),
 2, sdo_number_array(237201.062500, 897760.562500),
 NULL, NULL),
 SDO_GEOR_GCP('25', '', 2,
 2, sdo_number_array(167.470583, 64.030686),
 2, sdo_number_array(237032.015343, 897916.264708),
 NULL, NULL),
 SDO_GEOR_GCP('26', '', 2,
 2, sdo_number_array(101.456177, 257.915534),
 2, sdo_number_array(237128.957767, 897949.271912),
 NULL, NULL)
);

 georefModel := SDO_GEOR_GCPGEOREFTYPE('Affine',

GCPs.count, GCPs, rms);
 sdo_geor.setGCPGeorefModel(gr1, georefModel);
 UPDATE georaster_table SET georaster=gr1 WHERE georid=10;

 COMMIT;
END;
/

7.132 SDO_GEOR.setGrayScale
Format

SDO_GEOR.setGrayScale(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 grayScale IN SDO_GEOR_GRAYSCALE);

Description

Sets the grayscale mappings for a layer in a GeoRaster object, or deletes the existing
values if you specify a null grayScale parameter.

Chapter 7
SDO_GEOR.setGrayScale

7-198

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the grayscale mappings. A value of 0 (zero)
indicates the object layer.

grayScale
An object of type SDO_GEOR_GRAYSCALE, which is described in
SDO_GEOR_GRAYSCALE Object Type.

Usage Notes

The following must be true of the specified SDO_GEOR_GRAYSCALE object:

• The cellValue values are consistent with and in the value range for the cellDepth
value of the GeoRaster object.

• The gray value is an integer from 0 to 255.

• The cellValue array contains no duplicate entries.

• The entries in the cellValue array are in ascending order.

The GeoRaster object is automatically validated after the operation completes.

To return the grayscale mappings for a layer in a GeoRaster object, use the
SDO_GEOR.getGrayScale function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, any
gray values are null or out of scope, the cellValue array contains any duplicate
values, or any cellValue values are null, out of scope, or out of order.

Examples

The following example sets the grayscale mappings for layer 3 of the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
 gsobj sdo_geor_grayscale;
BEGIN
 gsobj := sdo_geor_grayscale(sdo_number_array(1, 10, 20, 30, 255),
 sdo_number_array(0, 180, 210, 230, 250));

 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setGrayScale(grobj, 3, gsobj);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setGrayScale

7-199

7.133 SDO_GEOR.setGrayScaleTable
Format

SDO_GEOR.setGrayScaleTable(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 tableName IN VARCHAR2);

Description

Sets the grayscale mapping table for a layer in a GeoRaster object, or deletes the
existing value if you specify a null tableName parameter.

Note:

This procedure registers the grayscale mapping table name with GeoRaster;
however, GeoRaster does not perform operations using the grayscale
mapping table in the current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the grayscale mapping table. A value of 0 (zero)
indicates the object layer.

tableName
Name of the grayscale mapping table for a layer in the specified GeoRaster object.

Usage Notes

SDO_GEOR_GRAYSCALE Object Type describes grayscale display.

The GeoRaster object is automatically validated after the operation completes.

To return the grayscale mapping table for a layer in a GeoRaster object, use the
SDO_GEOR.getGrayScaleTable function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if
tableName is an empty string ('').

Examples

The following example sets GST1 as the grayscale mapping table for layer 3 of the
GeoRaster object (GEORASTER column) in the row with the GEORID column value
of 4 in the GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN

Chapter 7
SDO_GEOR.setGrayScaleTable

7-200

 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setGrayScaleTable(grobj, 3, 'GST1');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.134 SDO_GEOR.setHistogramTable
Format

SDO_GEOR.setHistogramTable(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER
 tableName IN VARCHAR2);

Description

Sets the histogram table for a layer in a GeoRaster object.

Note:

This procedure registers the histogram table name with GeoRaster; however,
GeoRaster does not perform operations using the histogram table in the
current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the name of the histogram table. A value of 0
(zero) indicates the object layer.

tableName
Name of the histogram table. If this parameter is null, the metadata information
for any existing histogram table (but not the actual table) is deleted. If there is no
statistics information for the layer, this parameter must be null. The parameter value
cannot be an empty string (that is, it cannot be '').

Usage Notes

This procedure specifies a user-defined histogram table. SDO_GEOR_HISTOGRAM
Object Type briefly discusses histograms.

To return the name of the histogram table for a layer, use the
SDO_GEOR.getHistogramTable function.

An exception is raised if one or more of the following are true:

• layerNumber is null or invalid for the GeoRaster object,.

• tableName is an empty string ('').

• The statistical data associated with the specified layer is not set.

Chapter 7
SDO_GEOR.setHistogramTable

7-201

To set the statistical data for a layer, call the SDO_GEOR.setStatistics procedure.

Examples

The following example sets HIST1 as the histogram table for layer 3 of the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setHistogramTable(grobj, 3, 'HIST1');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.135 SDO_GEOR.setID
Format

SDO_GEOR.setID(
 georaster IN OUT SDO_GEORASTER,
 id IN VARCHAR2);

Description

Sets a user-defined identifier to be associated with a GeoRaster object, or deletes the
existing value if you specify a null id parameter.

Parameters

georaster
GeoRaster object.

id
ID value to be associated with the GeoRaster object.

Usage Notes

This procedure is useful for assigning unique meaningful alphanumeric identifiers to
GeoRaster objects, so that users and applications can easily identify the objects.

The GeoRaster object is automatically validated after the operation completes.

To return the user-defined identifier value for a GeoRaster object, use the
SDO_GEOR.getID function.

Examples

The following example sets newid as the user-defined identifier value of the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 2 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;

Chapter 7
SDO_GEOR.setID

7-202

BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=2 FOR UPDATE;
 sdo_geor.setID(grobj, 'newid');
 UPDATE georaster_table SET georaster = grobj WHERE georid=2;
 COMMIT;
END;
/

7.136 SDO_GEOR.setLayerID
Format

SDO_GEOR.setLayerID(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 id IN VARCHAR2);

Description

Sets a user-defined identifier to be associated with a layer in a GeoRaster object, or
deletes the existing value if you specify a null id parameter.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

id
ID value to be associated with the specified layer in the GeoRaster object.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

To return the user-defined identifier value for a layer in a GeoRaster object, use the
SDO_GEOR.getLayerID function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if id
is null yet the corresponding layer information does exist.

Examples

The following example sets TM_Band_2 as the user-defined identifier value of layer
2 in the GeoRaster object (GEORASTER column) in the row with the GEORID
column value of 4 in the GEORASTER_TABLE table. (The GEORASTER_TABLE
table definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setLayerID(grobj, 2, 'TM_Band_2');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setLayerID

7-203

7.137 SDO_GEOR.setLayerOrdinate
Format

SDO_GEOR.setLayerOrdinate(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 ordinate IN NUMBER);

Description

Sets the band ordinate value for a specified layer in a GeoRaster object, or deletes the
existing value if you specify a null ordinate parameter.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

ordinate
Band ordinate value of the layer along the band dimension.

Usage Notes

The band ordinate of the layer refers to the physical band that a layer (layerNumber
parameter value) is associated with. For the current release, the associations must be
as shown in Figure 1-5 in Bands_ Layers_ and Metadata: layer 1 is band 0, layer 2 is
band 1, and so on.

The band ordinate for the object layer is ignored by GeoRaster.

The GeoRaster object is automatically validated after the operation completes.

To return the band ordinate value for a layer, use the SDO_GEOR.getLayerOrdinate
function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, if
ordinate is null, or if ordinate does not equal layerNumber-1 when layerNumber does
not specify the object layer.

Examples

The following example sets the band ordinate value for layer 1 to be 0 (zero) in the
GeoRaster object (GEORASTER column) in the row with the GEORID column value
of 4 in the GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setLayerOrdinate(grobj, 1, 0);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;

Chapter 7
SDO_GEOR.setLayerOrdinate

7-204

END;
/

7.138 SDO_GEOR.setModelCoordLocation
Format

SDO_GEOR.setModelCoordLocation(
 georaster IN OUT SDO_GEORASTER
 modelCoordLoc IN VARCHAR2);

Description

Sets the model coordinate location value for a GeoRaster object, or deletes the current
model coordinate location value (if any) if the modelCoordLoc parameter is specified as
null.

Parameters

georaster
GeoRaster object.

modelCoordLoc
Model coordinate location to set for the GeoRaster object. It must be specified
as either null (to delete any current model coordinate location value) or one of
the following string values: CENTER (the cell coordinate system is center-based) or
UPPERLEFT (the cell coordinate system is based on the upper-left corner).

Usage Notes

This procedure enables you to change the cell coordinate system from CENTER to
UPPERLEFT or from UPPERLEFT to CENTER.

This procedure applies only to georeferenced GeoRaster objects, and it automatically
adjusts the functional fitting coefficients of the GeoRaster SRS accordingly to reflect
the change (to ensure that the relationship between cell coordinates and model
coordinates does not change).

To get the model coordinate location value for a GeoRaster object, use the
SDO_GEOR.getModelCoordLocation function.

For an explanation of georeferencing using GCPs, see Ground Control Point (GCP)
Georeferencing Model.

Examples

The following example changes the cell coordinate system to CENTER for a
GeoRaster object.

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setModelCoordLocation(grobj, 'CENTER');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setModelCoordLocation

7-205

7.139 SDO_GEOR.setModelSRID
Format

SDO_GEOR.setModelSRID(
 georaster IN OUT SDO_GEORASTER,
 srid IN NUMBER);

Description

Sets the coordinate system (SDO_SRID value) for the model (ground) space for a
GeoRaster object, or deletes the existing value if you specify a null srid parameter
and the GeoRaster metadata does not contain spatial reference information.

Parameters

georaster
GeoRaster object.

srid
Coordinate system. Must be a value from the SRID column of the MDSYS.CS_SRS
table if the GeoRaster metadata contains spatial reference information; or must be
null (causing no coordinate system associated with the model space) if the GeoRaster
metadata does not contain spatial reference information. The srid value cannot be 0
(zero).

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

If the original GeoRaster object had a different model space SRID value, this
procedure does not change the raster data itself and it does not adjust the
georeferencing coefficients accordingly. In other words, this procedure does not cause
any reprojection or resampling on the cell data of the GeoRaster object, and you must
specify the correct SRID.

To return the coordinate system (SDO_SRID value) associated with the model space
for a GeoRaster object, use the SDO_GEOR.getModelSRID function.

Examples

The following example changes the coordinate system for a GeoRaster object to
Longitude / Latitude (WGS 66), which is the coordinate system associated with SRID
value 82394 in the MDSYS.CS_SRS system table. (The example refers to a table
named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setModelSRID(grobj, 82394);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setModelSRID

7-206

7.140 SDO_GEOR.setNODATAMask
Format

SDO_GEOR.setNODATAMask(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 isNODATAMask IN VARCHAR2);

Description

Specifies whether a bitmap mask of the specified GeoRaster layer is a NODATA mask,
and updates the GeoRaster metadata accordingly.

Parameters

georaster
GeoRaster object.

layerNumber
Layer with the relevant bitmap mask. A value of 0 (zero) indicates the object layer.

mask
The bitmap mask to be attached to the GeoRaster object. If this parameter is null, any
existing bitmap mask associated with the specified layer of the GeoRaster object is
removed.

isNODATAMask
Specifies whether the bitmap mask of the layerNumber layer is to be interpreted as
a NODATA mask. The string TRUE causes that bitmap mask to be interpreted as a
NODATA mask; the string FALSE causes that bitmap mask not to be interpreted as a
NODATA mask.

Usage Notes

For information about a bitmap mask being treated as a special type of NODATA, that
is, a NODATA mask specifying one or more irregular areas as NODATA areas, see
NODATA Values and Value Ranges.

Examples

The following example sets the bitmap mask of sublayer 1 to be a NODATA mask.

declare
 gr sdo_georaster;
begin
 select georaster into gr from georaster_table where georid=1 for update;
 sdo_geor.setNODATAMask(gr, 1, 'true');
 update georaster_table set georster=gr where georid=1;
 commit;
end;

Chapter 7
SDO_GEOR.setNODATAMask

7-207

7.141 SDO_GEOR.setOrthoRectified
Format

SDO_GEOR.setOrthoRectified(
 georaster IN OUT SDO_GEORASTER,
 isOrthoRectified IN VARCHAR2);

Description

Specifies whether or not a GeoRaster object is orthorectified, or deletes the existing
value if you specify a null isOrthoRectified parameter.

Parameters

georaster
GeoRaster object.

isOrthoRectified
Specify TRUE to specify that the GeoRaster object is orthorectified, FALSE to specify
that the GeoRaster object is not orthorectified, or null if the GeoRaster metadata does
not contain spatial reference information. Must be TRUE or FALSE (case-insensitive) if
the GeoRaster metadata contains spatial reference information.

Usage Notes

This procedure modifies the GeoRaster metadata for the object. It does not actually
orthorectify the object. Users are responsible for ensuring that orthorectification is
performed.

The GeoRaster object is automatically validated after the operation completes.

To be set as orthorectified, a GeoRaster object must be spatially referenced and
rectified.

Examples

The following example identifies the GeoRaster object (GEORASTER column) in
the row with the GEORID column value of 4 in the GEORASTER_TABLE table
as orthorectified. (The GEORASTER_TABLE table definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setOrthoRectified(grobj, 'TRUE');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setOrthoRectified

7-208

7.142 SDO_GEOR.setRasterType
Format

SDO_GEOR.setRasterType(
 georaster IN OUT SDO_GEORASTER,
 rasterType IN NUMBER);

Description

Sets the raster type of a GeoRaster object.

Parameters

georaster
GeoRaster object.

rasterType
Numeric value to be set as the rasterType attribute of the GeoRaster object. Must be
a valid 5-digit numeric value, in the format described in rasterType Attribute.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if rasterType is null or if the first three digits of the existing
rasterType value are changed.

Examples

The following example sets the rasterType attribute value of a GeoRaster object to
20001. (It refers to a table named GEORASTER_TABLE, whose definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=2 FOR UPDATE;
 sdo_geor.setRasterType(grobj, 20001);
 UPDATE georaster_table SET georaster = grobj WHERE georid=2;
 COMMIT;
END;
/

7.143 SDO_GEOR.setRectified
Format

SDO_GEOR.setRectified(
 georaster IN OUT SDO_GEORASTER,
 isRectified IN VARCHAR2);

Description

Specifies whether or not a GeoRaster object is rectified, or deletes the existing value if
you specify a null isRectified parameter.

Chapter 7
SDO_GEOR.setRasterType

7-209

Parameters

georaster
GeoRaster object.

isRectified
Specify TRUE to specify that the GeoRaster object is rectified, FALSE to specify that
the GeoRaster object is not rectified, or null if the GeoRaster metadata does not
contain spatial reference information. Must be TRUE or FALSE (case-insensitive) if the
GeoRaster metadata contains spatial reference information.

Usage Notes

This procedure modifies the GeoRaster metadata for the object. It does not actually
rectify the object. Users are responsible for ensuring that rectification is performed.
(To rectify or orthorectify a GeoRaster object, you can use the SDO_GEOR.rectify
procedure.)

The GeoRaster object is automatically validated after the operation completes.

A GeoRaster object must be spatially referenced if you want to set isRectified to
TRUE (see the SDO_GEOR.setSpatialReferenced procedure).

Examples

The following example identifies the GeoRaster object (GEORASTER column) in the
row with the GEORID column value of 4 in the GEORASTER_TABLE table as not
rectified. (The GEORASTER_TABLE table definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setRectified(grobj, 'false');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.144 SDO_GEOR.setScaling
Format

SDO_GEOR.setScaling(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 scalingFunc IN SDO_NUMBER_ARRAY);

Description

Sets the scaling function associated with a layer, or deletes the existing value if you
specify a null scalingFunc parameter.

Chapter 7
SDO_GEOR.setScaling

7-210

Note:

GeoRaster does not perform operations using the scaling function in the
current release.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

scalingFunc
An array of numeric values, with one value for each coefficient in the scaling function.
The scaling function is as follows:

value = (a0 + a1 * cellvalue) / (b0 + b1 * cellvalue)

The order of the coefficients is: a0, a1, b0, b1.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

An exception is raised if layerNumber is null or invalid for the GeoRaster object; if
scalingFunc is of the wrong array size; if one of a0, a1, b0, and b1 is null; or if both b0
and b1 are 0 (zero).

Examples

The following example sets the coefficients of the scaling function for layer 2 of a
GeoRaster object. (It refers to a table named GEORASTER_TABLE, whose definition
is presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setScaling(grobj, 2, sdo_number_array(1, 0.5, 1, 0));
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.145 SDO_GEOR.setSourceInfo
Format

SDO_GEOR.setSourceInfo(
 georaster IN OUT SDO_GEORASTER,
 sourceInfo IN VARCHAR2);

Chapter 7
SDO_GEOR.setSourceInfo

7-211

Description

Sets the source information for a GeoRaster object, or deletes the existing value if you
specify a null sourceInfo parameter.

Parameters

georaster
GeoRaster object.

sourceInfo
String with source information. Cannot exceed 4096 characters.

Usage Notes

The specified sourceInfo string is stored in the <sourceInfo> element in the metadata
for the GeoRaster object (described in GeoRaster Metadata XML Schema).

This procedure replaces any existing source information value or values. If
you want to keep any existing values and add one or more values, use the
SDO_GEOR.addSourceInfo procedure.

Examples

The following example sets and adds some source information for a specified
GeoRaster object, and then retrieves the information.

declare
 gr sdo_georaster;
begin
 select georaster into gr from georaster_table where georid=1 for update;
 sdo_geor.setSourceInfo(gr, 'Copyright (c) 2002, 2007, Oracle Corporation.');
 sdo_geor.addSourceInfo(gr, 'All rights reserved.');
 update georaster_table set georaster=gr where georid=1;
end;
/

select * from table(select sdo_geor.getSourceInfo(georaster) from
georaster_table where id=1);

COLUMN_VALUE
--
Copyright (c) 2002, 2007, Oracle Corporation.
All rights reserved.

7.146 SDO_GEOR.setSpatialReferenced
Format

SDO_GEOR.setSpatialReferenced(
 georaster IN OUT SDO_GEORASTER,
 isReferenced IN VARCHAR2);

Description

Specifies whether or not a GeoRaster object is spatially referenced, or deletes the
existing value if you specify a null isReferenced parameter.

Chapter 7
SDO_GEOR.setSpatialReferenced

7-212

Parameters

georaster
GeoRaster object.

isReferenced
Specify TRUE to specify that the GeoRaster object is spatially referenced, FALSE to
specify that the GeoRaster object is not spatially referenced, or null if the GeoRaster
metadata does not contain spatial reference information. Must be TRUE or FALSE
(case-insensitive) if the GeoRaster metadata contains spatial reference information.

Usage Notes

This procedure sets the GeoRaster object to be spatially referenced or not spatially
referenced.

The GeoRaster object is automatically validated after the operation completes.

Examples

The following example sets the GeoRaster object (GEORASTER column) in the row
with the GEORID column value of 4 in the GEORASTER_TABLE table as not spatially
referenced. (The GEORASTER_TABLE table definition is presented after Example 1-1
in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setSpatialReferenced(grobj, 'FALSE');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.147 SDO_GEOR.setSpatialResolutions
Format

SDO_GEOR.setSpatialResolutions(
 georaster IN OUT SDO_GEORASTER,
 resolutions IN SDO_NUMBER_ARRAY);

Description

Sets the spatial resolution value along each spatial dimension of a GeoRaster object,
or deletes the existing values if you specify a null resolutions parameter.

Parameters

georaster
GeoRaster object.

resolutions
An array of numeric values, one for each spatial dimension. Each value indicates the
number of units of measurement associated with the data area represented by that

Chapter 7
SDO_GEOR.setSpatialResolutions

7-213

spatial dimension of a pixel. For example, if the spatial resolution values are (10,10)
and the unit of measurement for the ground data is meters, each pixel represents an
area of 10 meters by 10 meters.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

If resolutions is not null and if the GeoRaster metadata currently does not contain
spatial reference information, this procedure adds spatial reference information with
minimum default values.

See also the Usage Notes for the SDO_GEOR.getSpatialResolutions function.

Examples

The following example sets the spatial resolution values along the column and
row (X and Y) dimensions of a GeoRaster object. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setSpatialResolutions(grobj, sdo_number_array(28.5,28.5));
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.148 SDO_GEOR.setSpectralResolution
Format

SDO_GEOR.setSpectralResolution(
 georaster IN OUT SDO_GEORASTER,
 resolution IN NUMBER);

Description

Sets the spectral resolution of a GeoRaster object if it is a hyperspectral or multiband
image, or deletes the existing value if you specify a null resolution parameter.

Parameters

georaster
GeoRaster object.

resolution
Spectral resolution value. Must be null if the GeoRaster metadata does not contain
band reference information.

Usage Notes

Taken together, the spectral unit and spectral resolution identify the wavelength
interval for a band. For example, if the spectral resolution value is 2 and the spectral
unit value is MILLIMETER, the wavelength interval for a band is 2 millimeters.

Chapter 7
SDO_GEOR.setSpectralResolution

7-214

The GeoRaster object is automatically validated after the operation completes.

To return the spectral resolution for a GeoRaster object, use the
SDO_GEOR.getSpectralResolution function.

Examples

The following example sets 0.5 as the spectral resolution value for the GeoRaster
object (GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setSpectralResolution(grobj, 0.5);
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.149 SDO_GEOR.setSpectralUnit
Format

SDO_GEOR.setSpectralUnit(
 georaster IN OUT SDO_GEORASTER,
 unit IN VARCHAR2);

Description

Sets the unit of measurement for identifying the wavelength interval for a band, or
deletes the existing value if you specify a null unit parameter.

Parameters

georaster
GeoRaster object.

unit
Spectral unit. Must be one of the following values if the GeoRaster metadata contains
band reference information: METER, MILLIMETER, MICROMETER, NANOMETER. Must be null
if the GeoRaster metadata does not contain band reference information.

Usage Notes

Taken together, the spectral unit and spectral resolution identify the wavelength
interval for a band. For example, if the spectral resolution value is 2 and the spectral
unit value is MILLIMETER, the wavelength interval for a band is 2 millimeters.

The GeoRaster object is automatically validated after the operation completes.

To return the spectral unit for a GeoRaster object, use the
SDO_GEOR.getSpectralUnit function.

Chapter 7
SDO_GEOR.setSpectralUnit

7-215

Examples

The following example sets MICROMETER as the spectral unit for the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setSpectralUnit(grobj, 'micrometer');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

7.150 SDO_GEOR.setSRS
Format

SDO_GEOR.setSRS(
 georaster IN OUT SDO_GEORASTER,
 srs IN SDO_GEOR_SRS);

Description

Sets the spatial reference information of a GeoRaster object, or deletes the existing
information if you specify a null srs parameter.

Parameters

georaster
GeoRaster object.

srs
An object of type SDO_GEOR_SRS. The SDO_GEOR_SRS object type and its
constructor are described in SDO_GEOR_SRS Object Type.
In this object, isReferenced, isRectified, and isOrthoRectified must be TRUE or
FALSE (case-insensitive); spatialResolution must be an array of the correct size;
the spatial tolerance cannot be negative; CoordLocation must be 0 or 1; and the
polynomial parameters cannot be null.

Usage Notes

You can use this procedure to set the GeoRaster SRS for any functional fitting
georeferencing models, including the affine transformation, DLT, and RPC models.

For the stored function (GCP) model only, you may find it more convenient not to use
this procedure, but instead to use the SDO_GEOR.setGCPGeorefModel procedure to
set the stored function (GCP) model.

The GeoRaster object is automatically validated after the operation completes.

To return the SDO_GEOR_SRS information for a GeoRaster object, use the
SDO_GEOR.getSRS function.

Chapter 7
SDO_GEOR.setSRS

7-216

Examples

The following examples specify spatial reference attributes of a GeoRaster object, and
updates the GeoRaster object. (They refer to a table named GEORASTER_TABLE,
whose definition is presented after Example 1-1 in Storage Parameters.) Notes explain
the operations in more detail.

The first example shows how to set an affine transformation model to a GeoRaster
object.

DECLARE
 grobj sdo_georaster;
 srs sdo_geor_srs;

BEGIN

SELECT georaster INTO grobj FROM georaster_table WHERE georid=4;
srs := sdo_geor_srs('TRUE', 'TRUE', null, 82262,
 sdo_number_array(28.5, 28.5),0.5,0,
 0,0,0,0,0,1,1,1,1,1,0,0,0,
 SDO_NUMBER_ARRAY(1, 2, 1, 3, 32631.5614, 0, -.03508772),
 SDO_NUMBER_ARRAY(1, 0, 0, 1, 1),
 SDO_NUMBER_ARRAY(1, 2, 1, 3, -7894.7544, .03508772, 0),
 SDO_NUMBER_ARRAY(1, 0, 0, 1, 1));
sdo_geor.setSRS(grobj, srs);

UPDATE georaster_table SET georaster = grobj WHERE georid=4;
COMMIT;
END;
/

In the preceding example, the GeoRaster object has the following affine
transformation:

row = 32631.5614 + 0 * x + (-0.03508772) * y
col = -7894.7544 + 0.03508772 * x + 0 * y

To use the generic functional fitting georeferencing model described in Functional
Fitting Georeferencing Model, the values of SRS attributes are as follows:

xOff=yOff=zOff=0
rowOff=columnOff=0
xScale=yScale=zScale=1
rowScale=columnScale=1
polynomial p : pType=1, nVars=2, order=1, nCoefficients= 3
polynomial q : pType=1, nVars=0, order=0, nCoefficients= 1
polynomial r : pType=1, nVars=2, order=1, nCoefficients= 3
polynomial s : pType=1, nVars=0, order=0, nCoefficients= 1

rowNumerator = 32631.5614, 0, -0.03508772
rowDenominator = 1
columnNumerator = -7894.7544, 0.03508772, 0
columnDenominator = 1

In the SRS structure, the rowNumerator, rowDenominator, columnNumerator, and
columnDenominator elements are used to specify pType, nVars, order, and
nCoefficients, and the remaining elements are used to specify coefficients of each
polynomial.

Chapter 7
SDO_GEOR.setSRS

7-217

The second example shows how to set a DLT model to a GeoRaster object. In a
typical photogrammetry application, the interior orientation parameters and exterior
orientation parameters of an oriented digital aerial photo can be used to derive a
DLT model, which is widely used to simplify and approximate the rigorous model. The
following is an example of a DLT model derived from a standard frame camera model.

row = (-46507111.2127784 + 65.81484127*X + 13.13186856*Y - 49.62133265*Z) /
(-41.47013322 + 0.00004128*X + 0.00009740*Y - 0.00655704*Z)

col = (-5259855.00453679 - 12.07452653*X + 66.23319061*Y - 49.45792766*Z) /
(-41.47013322 + 0.00004128*X + 0.00009740*Y - 0.00655704*Z)

For this example, the corresponding GeoRaster SRS parameters and coefficients are:

rowOff=0, colOff=0; rowScale = colScale = 1;
xOff = 0, yOff = 0, zOff = 0; xScale = yScale = zScale =1;
polynomial p : pType=1, nVars=3, order=1, nCoefficients= 4
polynomial q : pType=1, nVars=3, order=1, nCoefficients= 4
polynomial r : pType=1, nVars=3, order=1, nCoefficients= 4
polynomial s : pType=1, nVars=3, order=1, nCoefficients= 4

rowNumerator = -5259855.00453679, -12.07452653, 66.23319061, -49.45792766
rowDenominator = -41.47013322, 0.00004128, 0.00009740, -0.00655704
columnNumerator = -46507111.2127784, 65.81484127, 13.13186856, -49.62133265
columnDenominator = -41.47013322, 0.00004128, 0.00009740, -0.00655704

The following sets up the DLT model for the GeoRaster object. It uses the
SDO_GEOR_SRS constructor to create an instance of the SDO_GEOR_SRS type,
and then sets the appropriate attributes.

DECLARE
 grobj sdo_georaster;
 srs sdo_geor_srs;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid = 101;

 -- Initiate the SRS object.
 srs:=sdo_geor_srs();

 -- Fill the parameters of the SRS object.
 srs.isReferenced := 'TRUE';
 srs.isRectified := 'FALSE';
 srs.isOrthoRectified := 'FALSE';
 srs.srid := 7406;
 srs.spatialResolution := sdo_number_array(0.07, 0.07);
 srs.coordLocation := 1;
 srs.rowOff := 0;
 srs.columnOff := 0;
 srs.xOff := 0;
 srs.yOff := 0;
 srs.zOff := 0;
 srs.rowScale := 1;
 srs.columnScale := 1;
 srs.xScale := 1;
 srs.yScale := 1;
 srs.zScale := 1;
 srs.rowNumerator := SDO_NUMBER_ARRAY(1, 3, 1, 4, -5259855.00453679,
 -12.07452653,66.23319061,-49.45792766);
 srs.rowDenominator := SDO_NUMBER_ARRAY(1, 3, 1, 4, -41.4701332195,
 0.0000412763, 0.0000974018, -0.0065570398);

Chapter 7
SDO_GEOR.setSRS

7-218

 srs.columnNumerator := SDO_NUMBER_ARRAY(1, 3, 1, 4,
 -46507111.2127784, 65.81484127, 13.13186856, -49.62133265);
 srs.columnDenominator := SDO_NUMBER_ARRAY(1, 3, 1, 4,
 -41.4701332195, 0.0000412763, 0.0000974018, -0.0065570398);

 -- Set the SRS metadata to the GeoRaster object.
 sdo_geor.setSRS(grobj,srs);
 UPDATE georaster_table SET georaster = grobj WHERE georid= 101;
 COMMIT;

END;
/

7.151 SDO_GEOR.setStatistics
Format

SDO_GEOR.setStatistics(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 statistics IN SDO_NUMBER_ARRAY);

or

SDO_GEOR.setStatistics(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 statistics IN SDO_NUMBER_ARRAY,
 histogram IN SDO_GEOR_HISTOGRAM,
 samplingFactor IN NUMBER DEFAULT 1,
 samplingWindow IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.setStatistics(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 statistics IN SDO_NUMBER_ARRAY,
 histogram IN SDO_GEOR_HISTOGRAM,
 samplingFactor IN NUMBER DEFAULT 1,
 samplingWindow IN SDO_GEOMETRY DEFAULT NULL);

Description

Sets statistical data associated with a layer.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to set the statistics. A value of 0 (zero) indicates the
object layer.

Chapter 7
SDO_GEOR.setStatistics

7-219

statistics
An array with the following numeric values: MIN, MAX, MEAN, MEDIAN, MODEVALUE,
STD. You must specify non-null values for all values in the array. The
SDO_NUMBER_ARRAY type is defined as VARRAY(1048576) OF NUMBER.
If this parameter is null, all statistical information associated with the layer is deleted.

histogram
Histogram of type SDO_GEOR_HISTOGRAM. SDO_GEOR_HISTOGRAM Object
Type describes this object type and briefly discusses histograms.

samplingFactor
Sampling factor. The denominator n in 1/n, representing the number of cells sampled
in computing the statistics. For example, if samplingFactor is 4, one-fourth of the
cells were sampled. The default is 1; that is, all cells were sampled. The higher the
value, the less accurate the statistics are likely to be, but the more quickly they were
computed.

samplingWindow
Sampling window: a rectangular window for which to set statistics, specified
either as a numeric array with the lower-left and upper-right coordinates or as
an SDO_GEOMETRY object. The SDO_NUMBER_ARRAY type is defined as
VARRAY(1048576) OF NUMBER. The window must be inside the extent in cell space.
The default for this parameter is the entire image.

Usage Notes

This procedure sets statistical data described by the <statisticDatasetType>
element in the GeoRaster metadata XML schema, which is described in GeoRaster
Metadata XML Schema.

If histogram is specified as null, and if there is an existing histogram and you set the
statistics using a different sampling factor or sampling window, the existing histogram
is removed.

Contrast this procedure, in which you specify the statistics to be set, with the
SDO_GEOR.generateStatistics function, which causes GeoRaster to compute and set
the statistics.

To retrieve the statistical data associated with a layer, use the
SDO_GEOR.getStatistics function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if
statistics is of the wrong array size or has any null array elements.

Examples

The following example sets the statistical data for layer 0 of the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setStatistics(grobj, 0, SDO_NUMBER_ARRAY(0, 255, 100, 127, 95, 25));
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;

Chapter 7
SDO_GEOR.setStatistics

7-220

END;
/

7.152 SDO_GEOR.setULTCoordinate
Format

SDO_GEOR.setULTCoordinate(
 georaster IN OUT SDO_GEORASTER,
 ultCoord IN SDO_NUMBER_ARRAY);

Description

Sets or adjusts the cell coordinate values of the upper-left corner of a GeoRaster
object.

Parameters

georaster
GeoRaster object.

ultCoord
An array of two numbers (row and column ordinates) if the rasterType value is 20001,
or three numbers (row, column, and band ordinates) if the rasterType value is 21001.
If you specify three numbers, the third one (band number) must be 0. For more
information about the ULTCoordinate, see GeoRaster Data Model.

Usage Notes

If the metadata contains spatial reference information and the GeoRaster object is
georeferenced, the spatial reference information is checked for validity. If it is valid, the
spatial reference information including the georeferencing information is updated and
adjusted according to the new ULT coordinates; otherwise, an exception is raised.

To return the upper-left coordinate values for a GeoRaster object, use the
SDO_GEOR.getULTCoordinate function.

An exception is raised if ultCoord is null or of the wrong array size or has any null
array elements.

Examples

The following example sets the row and column ordinates of the upper-left corner of
a GeoRaster object, with logic to handle whether the rasterType value is 20001 or
21001. (The example refers to a table named GEORASTER_TABLE, whose definition
is presented after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=1 FOR UPDATE;
 if grobj.rasterType = 20001 then
 sdo_geor.setULTCoordinate(grobj, sdo_number_array(0, 0));
 elsif grobj.rasterType = 21001 then
 sdo_geor.setULTCoordinate(grobj, sdo_number_array(0, 0, 0));
 end if;
 UPDATE georaster_table SET georaster = grobj WHERE georid=1;
 COMMIT;

Chapter 7
SDO_GEOR.setULTCoordinate

7-221

END;
/

7.153 SDO_GEOR.setVAT
Format

SDO_GEOR.setVAT(
 georaster IN OUT SDO_GEORASTER,
 layerNumber IN NUMBER,
 vatName IN VARCHAR2);

Description

Sets the name of the value attribute table (VAT) associated with a layer of a
GeoRaster object, or deletes the existing value if you specify a null vatName
parameter.

Parameters

georaster
GeoRaster object.

layerNumber
Number of the layer for which to perform the operation.

vatName
Name of the value attribute table.

Usage Notes

The GeoRaster object is automatically validated after the operation completes.

For more information about value attribute tables, see Geographic Information
Systems.

To return the name of the value attribute table associated with a layer of a GeoRaster
object, use the SDO_GEOR.getVAT function.

An exception is raised if layerNumber is null or invalid for the GeoRaster object, or if
vatName is an empty string ('').

Examples

The following example specifies VATT1 as the value attribute table to be
associated with layer 3 of the GeoRaster object (GEORASTER column) in the
row with the GEORID column value of 4 in the GEORASTER_TABLE table. (The
GEORASTER_TABLE table definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setVAT(grobj, 3, 'VATT1');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setVAT

7-222

7.154 SDO_GEOR.setVersion
Format

SDO_GEOR.setVersion(
 georaster IN OUT SDO_GEORASTER,
 majorVersion IN VARCHAR2,
 minorVersion IN VARCHAR2);

Description

Sets the user-specified version of a GeoRaster object.

Parameters

georaster
GeoRaster object.

majorVersion
String representing the major version of the GeoRaster object. For example, if the
complete version string is 15a.beta1, specify the majorVersion value as 15a.
If the parameter value is null, any existing majorVersion value in the GeoRaster
object is deleted.

minorVersion
String representing the minor version of the GeoRaster object. For example, if the
complete version string is 15a.beta1, specify the minorVersion value as beta1.
If the parameter value is null, any existing minorVersion value in the GeoRaster
object is deleted.

Usage Notes

The major and minor version strings can reflect any versioning scheme that you
choose. The majorVersion and minorVersion values can be any string, except that
neither can be an empty string (that is, neither can be '').

To retrieve the version string for a GeoRaster object, use the SDO_GEOR.getVersion
function, which returns the version in the format major-version.minor-version.

Examples

The following example sets 15a.beta1 as the version for the GeoRaster object
(GEORASTER column) in the row with the GEORID column value of 4 in the
GEORASTER_TABLE table. (The GEORASTER_TABLE table definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 grobj sdo_georaster;
BEGIN
 SELECT georaster INTO grobj FROM georaster_table WHERE georid=4 FOR UPDATE;
 sdo_geor.setVersion(grobj, '15a', 'beta1');
 UPDATE georaster_table SET georaster = grobj WHERE georid=4;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.setVersion

7-223

7.155 SDO_GEOR.subset
Format

SDO_GEOR.subset(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 polygonClip IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.subset(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 polygonClip IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.subset(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.subset(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Performs either or both of the following operations: (1) spatial crop, cut, or clip, or (2)
layer or band subset or duplicate.

Parameters

inGeoRaster
The SDO_GEORASTER object on which the operation or operations are to be
performed.

Chapter 7
SDO_GEOR.subset

7-224

pyramidLevel
A number specifying the pyramid level of the source GeoRaster object.

cropArea
Crop area definition. If the data type is SDO_NUMBER_ARRAY, the parameter
identifies the upper-left (row, column) and lower-right (row, column) coordinates
of a rectangular window, and raster space is assumed. If the data type is
SDO_GEOMETRY, the minimum bounding rectangle (MBR) of the geometry object
is used as the crop area; see also the Usage Notes for SDO_SRID requirements.
If cropArea is of type SDO_GEOMETRY, use the layerNumbers parameter to specify
one or more layer numbers; if cropArea is of type SDO_NUMBER_ARRAY, use the
bandNumbers parameter to specify one or more band numbers.

layerNumbers
A string identifying the logical layer numbers on which the operation or operations are
to be performed. Use commas to delimit the values, and a hyphen to indicate a range
(for example, 2-4 for layers 2, 3, and 4).

bandNumbers
A string identifying the physical band numbers on which the operation or operations
are to be performed. Use commas to delimit the values, and a hyphen to indicate a
range (for example, 1-3 for bands 1, 2, and 3).

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The new SDO_GEORASTER object. Must be either a valid existing GeoRaster object
or an empty GeoRaster object. (Empty GeoRaster objects are explained in Blank and
Empty GeoRaster Objects.) Cannot be the same GeoRaster object as inGeoRaster.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

polygonClip
The string TRUE causes the clipping window (cropArea geometry object) to be used
for the subset operation; the string FALSE or a null value causes the MBR (minimum
bounding rectangle) of the clipping window to be used for the subset operation.

Usage Notes

This procedure has a variety of possible uses. For example, you can call it to crop a
small area or obtain a subset of a few layers of a GeoRaster object, you can duplicate
layers, and you can specify storage parameters such as blocking and interleaving for
the resulting object.

If you use the format that includes the pyramidLevel parameter and specify a value
greater than zero (0), the cropping is done based on the specified pyramid level of the

Chapter 7
SDO_GEOR.subset

7-225

source GeoRaster object; otherwise, the cropping is done based on the original source
GeoRaster object (pyramidLevel = 0).

If the source GeoRaster object is georeferenced and the pyramidLevel parameter
value is greater than 0, the georeferencing information is generated for the resulting
GeoRaster object only when the georeference is a valid polynomial transformation.

Any upper-level pyramid data in the input GeoRaster object is not considered in this
operation, and the output GeoRaster object has no pyramid data.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the cropArea parameter geometry and the model
space are different, the window parameter geometry is automatically transformed
to the coordinate system of the model space before the operation is performed.
(Raster space and model space are explained in GeoRaster Data Model.)

If the cropArea parameter specifies a geodetic MBR, it cannot cross the date line
meridian. For information about geodetic MBRs, see Oracle Spatial and Graph
Developer's Guide.

To be able to use the clipping window geometry object itself to subset the GeoRaster
object, the geometry object must be a valid two-dimensional polygon geometry, simple
or multipolygon, with an SDO_GTYPE value in the form 2nn3 or 2nn7. For any other
SDO_GTYPE value, the MBR of the geometry object is used regardless of the value of
the polygonClip parameter. (For an explanation of SDO_GTYPE values, see Oracle
Spatial and Graph Developer's Guide.)

If the clipping window geometry object itself is applied to the subset process, all cells
inside the polygon or touched by the polygon edges are returned; other cells within
the MBR of the geometry object are clipped, that is, filled by the specified or default
bgValues parameter values.

If polygonClip is TRUE, and if this procedure creates a rectangular image subset
but the geometry is not a rectangle, check the validity of the inWindow geometry
object with the function SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT. For
an invalid geometry, this procedure operates as if the polygonClip value is FALSE or a
null value.

inGeoRaster and outGeoRaster must be different GeoRaster objects.

Only the overlapping portion of the specified window of interest and the source
GeoRaster object's spatial extent is copied.

If you want to reproject the output GeoRaster object to a different coordinate system,
use the SDO_GEOR.reproject procedure.

An exception is raised if one or more of the following are true:

• inGeoRaster is invalid.

• outGeoRaster has not been initialized.

• A raster data table for outGeoRaster does not exist and outGeoRaster is not a
blank GeoRaster object.

Chapter 7
SDO_GEOR.subset

7-226

• The specified window of interest falls outside of the GeoRaster object's spatial
extent.

Examples

The following example creates a GeoRaster object that contains only specified
bands from a specified window from the original object. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor.subset(gr1, sdo_geometry(2003, NULL, NULL,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(0,256,255,511)),
 '3,1-2', null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

The following example demonstrates how to do clipping while subsetting a GeoRaster
object using a polygon. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
 gr sdo_georaster;
 grsub sdo_georaster;
 win1 sdo_geometry;
BEGIN
 Delete from georaster_table where georid = 111;
 INSERT INTO georaster_table VALUES (111, 'ClippedImage',
 sdo_geor.init('georaster_RDT', 111))
 RETURNING georaster INTO grsub;
 SELECT georaster INTO gr FROM georaster_table WHERE georid=1;
 win1 := sdo_geometry(2003, 26986, null, sdo_elem_info_array(1,1003,1),
 sdo_ordinate_array(237040, 897924,
 237013.3, 897831.6,
 237129, 897840,
 237182.5, 897785.5,
 237239.9, 897902.7,
 237223, 897954,
 237133, 897899,
 237040, 897924));
 sdo_geor.subset(gr, 0, win1, '1-3',
 'interleaving = BIL, compression=DEFLATE',
 grsub, NULL, 'TRUE');
 UPDATE georaster_table SET georaster=grsub WHERE georid=111;
 COMMIT;
END;
/

Chapter 7
SDO_GEOR.subset

7-227

7.156 SDO_GEOR.updateRaster
Format

SDO_GEOR.updateRaster(
 targetGeoRaster IN OUT SDO_GEORASTER,
 targetPyramidLevel IN NUMBER,
 targetLayerNumbers IN VARCHAR2,
 targetArea IN SDO_GEOMETRY,
 sourceGeoRaster IN SDO_GEORASTER,
 sourcePyramidLevel IN NUMBER,
 sourceLayerNumbers IN VARCHAR2,
 updateUpperPyramids IN VARCHAR2,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR.updateRaster(
 targetGeoRaster IN OUT SDO_GEORASTER,
 targetPyramidLevel IN NUMBER,
 targetBandNumbers IN VARCHAR2,
 targetArea IN SDO_NUMBER_ARRAY,
 sourceGeoRaster IN SDO_GEORASTER,
 sourcePyramidLevel IN NUMBER,
 sourceBandNumbers IN VARCHAR2,
 updateUpperPyramids IN VARCHAR2,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Updates a specified pyramid of a specified area or the overlapping parts of one
GeoRaster object with selected pyramid and selected bands or layers of another
GeoRaster object.

Parameters

targetGeoRaster
GeoRaster object to be updated. (Be sure to make a copy of this object before you
update it.)

targetPyramidLevel
Number specifying the pyramid level of the target GeoRaster object to be updated.

targetLayerNumbers
String specifying one or more layer numbers of layers in targetGeoRaster to be
updated. Use commas to delimit numbers or ranges, and use a hyphen to indicate a
range. Example: '1,3-5,7' for layers 1, 3, 4, 5, and 7.

targetBandNumbers
String specifying one or more band numbers of bands in targetGeoRaster to be
updated. Use commas to delimit numbers or ranges, and use a hyphen to indicate a
range. Example: '0,3-5,7' for bands 0, 3, 4, 5, and 7. Any bands that you specify
for this parameter must be compatible with the bands to be updated in the target
GeoRaster object.

Chapter 7
SDO_GEOR.updateRaster

7-228

targetArea
Area to be updated in targetGeoRaster: a rectangular window, specified either
as a numeric array with the lower-left and upper-right coordinates or as
an SDO_GEOMETRY object. The SDO_NUMBER_ARRAY type is defined as
VARRAY(1048576) OF NUMBER.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the target area; see also
the Usage Notes for SDO_SRID requirements.
If targetArea is of type SDO_GEOMETRY, use the targetLayerNumbers and
sourceLayerNumbers parameters to specify one or more layer numbers; if
targetArea is of type SDO_NUMBER_ARRAY, use the targetBandNumbers and
sourceBandNumbers parameters to specify one or more band numbers.
If the specified area does not intersect with the spatial extent of targetGeoRaster, no
update is performed. If this parameter is specified as null, all of the overlapping area
is updated.
For more information about using this parameter, see Image Pyramiding: Parallel
Generation and Partial Update.

sourceGeoRaster
GeoRaster object in which specified layers are to be used to update
targetGeoRaster.

sourcePyramidLevel
Number specifying the pyramid level of the sourceGeoRaster object.

sourceLayerNumbers
String specifying one or more layer numbers of layers in sourceGeoRaster to be used
to update targetGeoRaster. Use commas to delimit numbers or ranges, and use a
hyphen to indicate a range. Example: '1,3-5,7' for layers 1, 3, 4, 5, and 7.
Any layers that you specify for this parameter must be compatible with the layers to
be updated in the target GeoRaster object.

sourceBandNumbers
String specifying one or more band numbers of bands in sourceGeoRaster to be used
to update targetGeoRaster. Use commas to delimit numbers or ranges, and use a
hyphen to indicate a range. Example: '0,3-5,7' for bands 0, 3, 4, 5, and 7.
Any bands that you specify for this parameter must be compatible with the bands to
be updated in the target GeoRaster object.

updateUpperPyramids
String (TRUE or FALSE) specifying whether to update upper-level pyramids. (This
parameter has no default value; you should always specify it.) For more information
about using this parameter, see Image Pyramiding: Parallel Generation and Partial
Update.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).

Chapter 7
SDO_GEOR.updateRaster

7-229

The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

Usage Notes

Note:

Be sure to make a copy of the targetGeoRaster object before you call this
procedure, because the changes made to this GeoRaster object might not be
reversible after the procedure completes.

If both GeoRaster objects are georeferenced, they must use the same coordinate
system, have the same cell depth, and have the same spatial resolutions at the
specified pyramid levels; however, the targetPyramidLevel and sourcePyramidLevel
values can be different. If both GeoRaster objects are not georeferenced, the
ULTCoordinates will be considered to co-locate them into each other.

The two GeoRaster objects can have different dimensions and sizes.

If the targetArea parameter data type is SDO_GEOMETRY, the SDO_SRID value
must be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the window parameter geometry and the model space
are different, the window parameter geometry is automatically transformed to the
coordinate system of the model space before the operation is performed. (Raster
space and model space are explained in GeoRaster Data Model.)

If the targetArea parameter specifies a geodetic MBR, it cannot cross the date
line meridian. For information about geodetic MBRs, see Oracle Spatial and Graph
Developer's Guide.

Any existing bitmap masks are not updated.

If the source GeoRaster object is not large enough to fill in the target area, the
uncovered area will not be updated.

If the target GeoRaster object has pyramids or is compressed, or both, the updates will
be reflected in the pyramids and the compression.

To update upper-level pyramids, you must specify the updateUpperPyramids
parameter as 'TRUE'. (This parameter has no default value; you should always specify
'TRUE' or 'FALSE'.)

Examples

The following example updates a specified area in band 1 of the specified target
GeoRaster object with band 0 of the same area of another GeoRaster object.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 area sdo_number_array := sdo_number_array(-200,-50,201,162);
BEGIN

Chapter 7
SDO_GEOR.updateRaster

7-230

 SELECT georaster INTO gr2 FROM georaster_table WHERE georid=0 FOR UPDATE;
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=1;
 SDO_GEOR.updateRaster(gr2, 0, '1', area, gr1, 0, '0', 'true');
 UPDATE GEORASTER_TABLE SET georaster=gr2 WHERE georid=0;
 COMMIT;
END;
/

7.157 SDO_GEOR.validateBlockMBR
Format

SDO_GEOR.validateBlockMBR(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Validates the blockMBR attribute of each block of a GeoRaster object.

Parameters

georaster
GeoRaster object.

Usage Notes

This function checks the blockMBR attribute (described in blockMBR Attribute) in each
row of the raster data table associated with the specified GeoRaster object to see if its
geometry is the actual minimum bounding rectangle (MBR) of that block.

This function returns the string TRUE if the blockMBR attribute is the MBR of each block,
a null value if the GeoRaster object is null, an Oracle error code if the error is known,
or FALSE for an unknown error.

If you created the GeoRaster object as described in Creating New GeoRaster Objects,
the blockMBR attribute values were automatically calculated and they should not need
to be validated or generated. However, if the GeoRaster object was generated by a
third party, you should validate the blockMBR attribute values using this function; and if
any are not valid, call the SDO_GEOR.generateBlockMBR procedure.

Examples

The following example validates the blockMBR attribute of each block of a specified
GeoRaster object.

SELECT sdo_geor.validateBlockMBR(georaster) FROM georaster_table WHERE georid=1;

SDO_GEOR.VALIDATEBLOCKMBR(GEORASTER)
--
TRUE

Chapter 7
SDO_GEOR.validateBlockMBR

7-231

7.158 SDO_GEOR.validateGeoRaster
Format

SDO_GEOR.validateGeoRaster(
 georaster IN SDO_GEORASTER
) RETURN VARCHAR2;

Description

Validates a GeoRaster object, checking its raster data and metadata.

Parameters

georaster
GeoRaster object to be checked for validity.

Usage Notes

This function returns the string TRUE if the GeoRaster object is valid, a null value if
the GeoRaster object is null, an Oracle error code if the error is known, or FALSE
for an unknown error.You should use this function after you create, load, or modify a
GeoRaster object, to ensure that it is valid before you process it further.

If this function identifies a GeoRaster object as invalid with an error code of 13454,
the object's metadata is not valid according to the GeoRaster XML schema. If this
happens, call the SDO_GEOR.schemaValidate function to find specific locations and
other information about the errors.

This function not only validates GeoRaster metadata against the GeoRaster XML
schema, but it also enforces restrictions and requirements in the current release that
are not described in the XML schema. The following are some of the restrictions and
requirements enforced by this function:

• Layer numbers must be from 1 to n where n is the total number of layers.

• The cellRepresentationType value must be UNDEFINED.

• If totalBandBlocks or bandBlockSize is specified in the metadata, both must be
specified. If there is only one band, no band blocking is allowed.

• The total number of blocks times the blocking size along a dimension must match
the dimension size plus padding size, and the size of each cell data BLOB object
must match the metadata description in terms of blocking or nonblocking, or of
empty or not empty.

• The size and number of GeoRaster data blocks stored in the raster data table
must be consistent with the metadata description. For cell data, the number and
size of the blocks are checked; the content of the blocks is not checked.

• The only pyramid types supported are NONE (no pyramids) and DECREASE. (For
more information about pyramids, see Pyramids.)

• The name of the raster data table must not contain spaces, period separators, or
mixed-case letters in a quoted string, and all the alphanumeric characters must be
uppercase.

• The raster data table must be an object table of SDO_RASTER type, and the table
must exist if the GeoRaster object is not blank. To use GeoRaster with Oracle

Chapter 7
SDO_GEOR.validateGeoRaster

7-232

Workspace Manager or Oracle Label Security (OLS), you can define an object
view of SDO_RASTER type and use the object view as the raster storage.

• There must be an entry for the GeoRaster object in the
ALL_SDO_GEOR_SYSDATA view.

• Each associated bitmap mask must have the correct number of rows in the RDT.

• Any NODATA values and value ranges are in the valid cell value range as
designated by the cell depth.

• For an uncompressed GeoRaster object, the size of the BLOB object in each
raster block is checked based on the blocking size and cell depth. However, for a
compressed GeoRaster object, the size of the BLOB object in each raster block is
not checked. Thus, when a compressed GeoRaster object is decompressed, the
data might not be valid with respect to size. (A BLOB with zero length is valid; it is
an empty raster block.)

• For an uncompressed GeoRaster object, the raster block size of each bitmap
mask is checked, based on the blocking size and 1BIT cell depth. (A BLOB with
zero length is valid; it is an empty bitmap mask raster block.)

• A generic functional fitting polynomial model is supported, as described in
Functional Fitting Georeferencing Model. The limitations on offsets, scales, RMS
values, pType, nVars, and number of coefficients of the polynomials are described
in Functional Fitting Georeferencing Model and Table 2-4 in SDO_GEOR_SRS
Object Type.

• The SRID in the GeoRaster SRS metadata is not checked against the CS_SRS
table and is not validated. To validate the SRID, call SDO_GEOR.getModelSRID
and SDO_CS.VALIDATE_WKT (the latter described in Oracle Spatial and Graph
Developer's Guide). The verticalSRID value is not used in the current release.

• Ground control points (GCPs), as the StoredFunction georeferencing model,
are supported. The gcpGeoreferenceModel in the metadata should follow
the definition of the SDO_GEOR_GCPGEOREFTYPE type as described in
SDO_GEOR_GCPGEOREFTYPE Object Type, and each GCP should follow the
specification of the SDO_GEOR_GCP type as described in SDO_GEOR_GCP
Object Type. The number of GCPs is not checked against the FFMethod attribute,
so you can have the flexibility to add GCPs gradually.

• The RigorousModel georeferencing model is not supported. If the functional
polynomial coefficients are set, the modelType value must be set to
FunctionalFitting and the isReferenced value is set as TRUE. If are GCPs are
stored in the metadata, the modelType value must be set to StoredFunction.
If both conditions are true, two modelType values are added to contain both
StoredFunction and FunctionalFitting values.

• Spatial resolutions can be inconsistent with the affine transformation scales if the
GeoRaster object is georeferenced.

• GeoRaster temporal referencing and band referencing are not supported, although
in the temporal reference system (TRS) and band reference system (BRS) you
can store the beginning and ending date and time, the spectral resolution, the
spectral unit, and related descriptive information.

• Only one layerInfo element is supported. A layer can be defined only along
one dimension, and this dimension must be BAND. However, within the layerInfo
element, the number of subLayer elements is limited only by the total number
of layers. The layer number for the objectLayer elements is 0, and the layer
numbers for subLayer elements are 1 to n where n is the total number of layers.

Chapter 7
SDO_GEOR.validateGeoRaster

7-233

• The scaling function, bin function, and statistical data or histogram can be stored
in the GeoRaster metadata and must be valid against the XML schema, but the
value ranges for these items are not restricted. GeoRaster interfaces that use this
metadata are limited. Applications should validate this optional metadata before
using it.

• The numbers of colormap values and grayscale mapping values are not restricted,
but there must be no duplicate colormap or grayscale values, and the values in
each array must be consistent with the cellDepth value of the GeoRaster object
and must be in ascending order. The value range of the red, green, blue, alpha,
and gray components must be integers from 0 to 255.

• Complex cellDepth values are not supported.

• This function does not check any external tables (such as a bin table, histogram
table, grayscale table, or colormap table) whose names are registered in the XML
metadata.

• This function does not validate the spatial extent geometry, or
whether or not the spatial relationship between the geometry
and the raster data is correct. To validate the spatial extent
geometry, use the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
or SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT procedure, which are
documented in Oracle Spatial and Graph Developer's Guide.

• This function does not validate the geometry specified in the blockMBR attribute in
raster data tables, or whether or not the geometry precisely encloses the raster
blocks. (The blockMBR attribute is described in blockMBR Attribute.) To validate the
blockMBR geometries, use the SDO_GEOR.validateBlockMBR function.

If there is no entry for the GeoRaster object in the ALL_SDO_GEOR_SYSDATA
view (described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)), this
procedure returns an error stating that the GeoRaster object is not registered. To
prevent this error, be sure that the GeoRaster object is inserted into a GeoRaster table
and that this table has the required GeoRaster DML trigger created on it. To enable
cross-schema access, you must also ensure that users calling this procedure have an
appropriate privilege on both the GeoRaster table and the associated raster data table.

Examples

The following example validates the GeoRaster objects in a table.

SELECT t.georid,
 sdo_geor.validategeoraster(t.georaster) isvalid
 from georaster_table t order by georid;

 GEORID ISVALID
---------- ----------
 3 TRUE
 4 TRUE

7.159 SDO_GEOR.warp
Format

SDO_GEOR.warp(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 outSRS IN NUMBER,

Chapter 7
SDO_GEOR.warp

7-234

 cropArea IN SDO_GEOMETRY,
 dimensionSize IN SDO_NUMBER_ARRAY,
 layerNumbers IN VARCHAR2,
 elevationParam IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR.warp(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 outSRS IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 dimensionSize IN SDO_NUMBER_ARRAY,
 layerNumbers IN VARCHAR2,
 elevationParam IN VARCHAR2,
 resampleParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Description

Perform geometric transformation on the input GeoRaster object to produce an output
GeoRaster object with the specified output spatial reference system.

Parameters

inGeoRaster
GeoRaster object on which to perform the operation. It must be georeferenced (see
Georeferencing GeoRaster Objects and Advanced Georeferencing).

pyramidLevel
Pyramid level of the source GeoRaster object for the operation.

• For BLOB output, this parameter is required.

• For SDO_GEORASTER output, if this parameter is null, all pyramid levels from
the input GeoRaster object are processed.

• If the number 0 or greater is specified, only that pyramid level is used for the
rectification, producing a result in scale based on that pyramid level image.

outSRS
Coordinate system (spatial reference system) for the output GeoRaster object. Must
be either null or a value from the SRID column of the MDSYS.CS_SRS table. If it is
null, the output GeoRaster object will have the same SRID as the input GeoRaster
object.

Chapter 7
SDO_GEOR.warp

7-235

cropArea
Defines the shape of the area to be covered by the output image. Areas outside this
polygon will be filled with the background value. If this parameter is not specified, no
cropping is performed.

dimensionSize
Dimension size array of the GeoRaster object. Defines the extent of the image in cell
space.

layerNumbers
String specifying one or more numbers of layers from inGeoRaster to be transferred
to outGeoRaster. Use commas to delimit numbers or ranges, and use a hyphen to
indicate a range. Example: ’1,3-5,7’ for layers 1, 3, 4, 5, and 7. If this parameter is
null (the default), all the layers will be processed.

elevationParam
A string containing one or more of the elevation parameters average (average surface
height), scale (scale value applied to all DEM values), and offset (offset applied to
all DEM values), where the new value is (value + offset) * scale. This parameter
must be a quoted string that contains one or more keyword=value pairs (for example,
'average=800 scale=3.2808399 offset=10'). If this parameter is null, 0 is assumed
for average and offset, and 1 is used for scale. Any scale and offset values are
ignored if DEM is not specified.
The use of the elevationParam parameter requires that the input GeoRaster object
have a 3D model SRID.
When the input GeoRaster object has a 3D model SRID, the average elevation is
important for defining the extents of the output image. If that information is available,
it should be specified even if DEM is also specified. If the average elevation is not
specified, the procedure will calculate an approximate value for the average elevation.

Note:

For any numbers in string (VARCHAR2) parameters to GeoRaster
subprograms, the period (.) must be used for any decimal points regardless
of the locale.

resampleParam
A comma-separated quoted string of keyword=value pairs for specifying resampling
parameters. See the Usage Notes for more information.

storaageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
GeoRaster object to hold the result of the operation. Must be either a valid existing
GeoRaster object or an empty GeoRaster object. (Empty GeoRaster objects are
explained in Blank and Empty GeoRaster Objects.) Cannot be the same GeoRaster
object as inGeoRaster

rasterBlob
BLOB to hold the output reflecting the rectification. It must exist or have been
initialized before the operation.

Chapter 7
SDO_GEOR.warp

7-236

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit operation. If an
error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

Usage Notes

This procedure has two formats:

• One format generates a GeoRaster object for persistent storage in the database.

• The other format generates a BLOB for temporary storage or immediate use, such
as to display data on the screen.

This procedure uses a non-parametric rectification method that takes the
georeferencing polynomials from the input GeoRaster object to transform the
original image space into the georeferencing polynomials given by the outSRS
parameter. Therefore, the input GeoRaster object must be georeferenced (see the
SDO_GEOR.georeference subprogram).

For more information, see Image Warping.

Examples

In the following example, the output (generated) GeoRaster object will have the same
spatial reference system (coordinate system) as outSRS. The input GeoRaster object is
a fully georeferenced image.

DECLARE
 srs sdo_geor_srs;
 gr2 sdo_georaster;
 gr3 sdo_georaster;
 gr4 sdo_georaster;
BEGIN
 select georaster into gr2 from georaster_table where georid = 2;
 srs := sdo_geor.getSRS(gr2);

Chapter 7
SDO_GEOR.warp

7-237

 select georaster into gr3 from georaster_table where georid = 3;

 insert into georaster_table values(4, 'Warped',
 sdo_geor.init('warp_rdt',4)) returning raster into gr4;

 sdo_geor.warp(inGeoRaster => gr3,
 pyramidLevel => null,
 outSRS => srs,
 cropArea => null,
 dimensionSize => sdo_number_array(518,518),
 layerNumbers => ‘4,5,3’,
 elevationParam => `average=300`,
 resampleParam => ‘resampling=AVERAGE4’,
 storageParam => ‘pyramid=true’,
 outGeoRaster => gr4,
 bgValues => sdo_number_array(0,0,0),
 parallelParam => ‘parellel=4’);

 update georaster_table set georaster = gr4 where georid = 4;
 commit;
END;

Chapter 7
SDO_GEOR.warp

7-238

8
SDO_GEOR_ADMIN Package Reference

The SDO_GEOR_ADMIN package contains subprograms (functions and procedures)
for administrative operations related to GeoRaster. This chapter presents reference
information, with one or more examples, for each subprogram.

• SDO_GEOR_ADMIN.checkSysdataEntries

• SDO_GEOR_ADMIN.enableGeoRaster

• SDO_GEOR_ADMIN.isGeoRasterEnabled

• SDO_GEOR_ADMIN.isRDTNameUnique

• SDO_GEOR_ADMIN.isUpgradeNeeded

• SDO_GEOR_ADMIN.listGeoRasterColumns

• SDO_GEOR_ADMIN.listGeoRasterObjects

• SDO_GEOR_ADMIN.listGeoRasterTables

• SDO_GEOR_ADMIN.listDanglingRasterData

• SDO_GEOR_ADMIN.listRDT

• SDO_GEOR_ADMIN.listRegisteredRDT

• SDO_GEOR_ADMIN.listUnregisteredRDT

• SDO_GEOR_ADMIN.maintainSysdataEntries

• SDO_GEOR_ADMIN.registerGeoRasterColumns

• SDO_GEOR_ADMIN.registerGeoRasterObjects

• SDO_GEOR_ADMIN.upgradeGeoRaster

8.1 SDO_GEOR_ADMIN.checkSysdataEntries
Format

SDO_GEOR_ADMIN.checkSysdataEntries() RETURN SDO_STRING2_ARRAY;

Description

Checks the USER_SDO_GEOR_SYSDATA view for any invalid entries.

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of GeoRaster system data
entries that are invalid. It checks for errors such as the following:

• The RDT name is not unique.

8-1

• The GeoRaster table does not exist.

• The GeoRaster column does not exist.

• The GeoRaster objects does not exist.

• The GeoRaster object is non-empty or nonblank, but the RDT does not exist.

• Duplicate GeoRaster objects exist (that is, one or more non-unique combinations
of RDT and raster ID).

The USER_SDO_GEOR_DATA and ALL_SDO_GEOR_SYSDATA views are
described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA).

Examples

The following example checks the USER_SDO_GEOR_SYSDATA view for invalid
entries.

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.checkSysdataEntries FROM DUAL);

COLUMN_VALUE
--
The RDT name "RDT1" is not unique
The GeoRaster object GEOR_TEST1.TABLE1.GEOR: RDT=RDT2 RID=3 is associated with a
 non-existing RDT table!
The specification of GeoRaster column GEOR_TEST1.TABLE1.c1 is not correct.
The GeoRaster object GEOR_TEST1.TABLE1.geor: RDT=dt3 RID=2 doesn't exist!
The GeoRaster table GEOR_TEST1.t1 doesn't exist!

8.2 SDO_GEOR_ADMIN.enableGeoRaster
Format

SDO_GEOR_ADMIN.enableGeoRaster;

Description

Enables the GeoRaster feature for the current schema.

Parameters

None.

Usage Notes

The session user that calls this procedure must be the same as the database user for
the current schema.

The user must have the CREATE TRIGGER privilege

Examples

The following example checks if GeoRaster is enabled for the current schema (before
the enabling occurs), then enables GeoRaster for the current schema, and then again
checks if GeoRaster is enabled for the current schema.

SQL> SELECT SDO_GEOR_ADMIN.isGeoRasterEnabled FROM DUAL;

ISGEORASTERENABLED
--

Chapter 8
SDO_GEOR_ADMIN.enableGeoRaster

8-2

FALSE

SQL> EXECUTE SDO_GEOR_ADMIN.enableGeoRaster;

PL/SQL procedure successfully completed.

SQL> SELECT SDO_GEOR_ADMIN.isGeoRasterEnabled FROM DUAL;

ISGEORASTERENABLED
--
TRUE

SQL>

8.3 SDO_GEOR_ADMIN.isGeoRasterEnabled
Format

SDO_GEOR_ADMIN.isGeoRasterEnabled RETURN VARCHAR2;

Description

Returns the string TRUE if the GeoRaster feature is enabled for the current schema;
returns the string FALSE if GeoRaster is not enabled for the current schema.

Parameters

None.

Usage Notes

The session user that calls this procedure must be the same as the database user for
the current schema.

The user must have the CREATE TRIGGER privilege

Examples

The following example checks if GeoRaster is enabled for the current schema (before
the enabling occurs), then enables GeoRaster for the current schema, and then again
checks if GeoRaster is enabled for the current schema.

SQL> SELECT SDO_GEOR_ADMIN.isGeoRasterEnabled FROM DUAL;

ISGEORASTERENABLED

FALSE

SQL> EXECUTE SDO_GEOR_ADMIN.enableGeoRaster;

PL/SQL procedure successfully completed.

SQL> SELECT SDO_GEOR_ADMIN.isGeoRasterEnabled FROM DUAL;

ISGEORASTERENABLED

TRUE

SQL>

Chapter 8
SDO_GEOR_ADMIN.isGeoRasterEnabled

8-3

8.4 SDO_GEOR_ADMIN.isRDTNameUnique
Format

SDO_GEOR_ADMIN.isRDTNameUniquer(
 rdtName VARCHAR2)
 RETURN VARCHAR2;

Description

Checks if the specified raster data table (RDT) name is unique among RDT names in
the database.

Parameters

rdtName
Name to be checked for uniqueness.

Usage Notes

You can use this function to check, before you create an RDT, if the RDT name that
you plan to use is unique.

This function returns the string TRUE if the name is unique and the string FALSE if the
name is not unique.

Examples

The following example checks if the name MY_RDT is unique.

SELECT SDO_GEOR_ADMIN.IsRDTNameUnique('MY_RDT') FROM DUAL;

SDO_GEOR_ADMIN.ISRDTNAMEUNIQUE('MY_RDT')
--
TRUE

8.5 SDO_GEOR_ADMIN.isUpgradeNeeded
Format

SDO_GEOR_ADMIN.isUpgradeNeeded() RETURN SDO_STRING2_ARRAY;

Description

Checks the GeoRaster system data entries and GeoRaster data for the current
schema.

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of GeoRaster system data
entries and GeoRaster columns and objects that are invalid. It can report errors such
as the following:

Chapter 8
SDO_GEOR_ADMIN.isRDTNameUnique

8-4

• System data entry error, the RDT name is not unique.

• System data entry error, the RDT/RID pair is not unique.

• System data entry error, the GeoRaster table does not exist.

• System data entry error, the GeoRaster column does not exist.

• System data entry error, the GeoRaster object does not exist.

• The GeoRaster object is non-empty or nonblank, but the RDT does not exist.

• Duplicate GeoRaster objects exist (that is, one or more non-unique combinations
of RDT and raster ID).

• There is a non-registered pair of (GeoRaster column, GeoRaster object).

Examples

The following example checks the GeoRaster system data entries and GeoRaster
data. It assumes that you are connected as the MDSYS user.

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.isUpgradeNeeded FROM DUAL);

COLUMN_VALUE
--
The following GeoRaster columns aren't registered:
 SCHEMA:GEOR_TEST TABLE:TABLE1 COLUMN:GEOR
The following GeoRaster objects aren't registered:
 SCHEMA:GEOR_TEST TABLE:TABLE1 COLUMN:GEOR RDT:RDT RID:3
 SCHEMA:GEOR_TEST TABLE:TABLE1 COLUMN:GEOR RDT:RDT RID:4

8.6 SDO_GEOR_ADMIN.listGeoRasterColumns
Format

SDO_GEOR_ADMIN.listGeoRasterColumns() RETURN SDO_STRING2_ARRAYSET;

Description

Lists the GeoRaster columns defined in the current schema.

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of GeoRaster columns with their
registration status. The list contains the following information:

• Schema name (only if you are connected as the MDSYS user)

• GeoRaster table name

• GeoRaster column name

• Status: registered (a DML trigger is created for the GeoRaster column) or
unregistered (no DML trigger is created for the GeoRaster column)

Examples

The following example lists the GeoRaster columns defined in the current schema.

Chapter 8
SDO_GEOR_ADMIN.listGeoRasterColumns

8-5

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.listGeoRasterColumns FROM DUAL);

COLUMN_VALUE

SDO_STRING2_ARRAY('TEST_TABLE1', 'GEOR', 'registered')
SDO_STRING2_ARRAY('TEST_TABLE2', 'GEOR', 'registered')

8.7 SDO_GEOR_ADMIN.listGeoRasterObjects
Format

SDO_GEOR_ADMIN.listGeoRasterObjects() RETURN SDO_STRING2_ARRAYSET;

Description

Lists the GeoRaster objects defined in the current schema.

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of GeoRaster objects with their
registration status. The list contains the following information:

• Schema name (only if you are connected as the MDSYS user)

• GeoRaster table name

• GeoRaster column name

• RDT name

• Raster ID

• Status: registered (the GeoRaster object has been registered in the SYSDATA
table) or unregistered (the GeoRaster object has not been registered in the
SYSDATA table)

Examples

The following example lists the GeoRaster objects defined in the current schema.

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.listGeoRasterObjects FROM DUAL);

COLUMN_VALUE

SDO_STRING2_ARRAY('TEST_TABLE1', 'GEOR', 'RDT_REGULAR_01', '1', 'registered')
SDO_STRING2_ARRAY('TEST_TABLE2', 'GEOR', 'RDT_REGULAR_01', '2', 'registered')

8.8 SDO_GEOR_ADMIN.listGeoRasterTables
Format

SDO_GEOR_ADMIN.listGeoRasterTables() RETURN SDO_STRING2_ARRAYSET;

Description

Lists the GeoRaster tables defined in the current schema.

Chapter 8
SDO_GEOR_ADMIN.listGeoRasterObjects

8-6

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of GeoRaster tables. The list
contains the following information:

• Schema name (only if you are connected as the MDSYS user)

• GeoRaster table name

Examples

The following example lists the GeoRaster tables defined in the database. It assumes
that you are connected as the MDSYS user.

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.listGeoRasterTables FROM DUAL);

COLUMN_VALUE

SDO_STRING2_ARRAY('GEOR_TEST', 'TEST_TABLE1')
SDO_STRING2_ARRAY('GEOR_TEST', 'TEST_TABLE2')

8.9 SDO_GEOR_ADMIN.listDanglingRasterData
Format

SDO_GEOR_ADMIN.listDanglingRasterData() RETURN SDO_STRING2_ARRAYSET;

Description

Checks the GeoRaster system data entries and GeoRaster data, and lists all dangling
raster data.

Parameters

None.

Usage Notes

Raster data table (RDT) rows might exist for nonexistent GeoRaster objects or
GeoRaster objects that are not referred to in the SYSDATA table. The raster
blocks associated with such rows are referred to dangling blocks. The dangling
raster blocks cause wasted disk space in the RDT although otherwise they do not
present a problem as long as the necessary primary key is defined on the RDT.
To find these dangling blocks in the current schema or in all schemas, call the
SDO_GEOR_ADMIN.listDanglingRasterData function.

Before you call this function, you should call
SDO_GEOR_ADMIN.registerGeoRasterObjects to register all existing GeoRaster
objects.

To remove the dangling raster block data from an RDT, delete the rows associated
with the problems discovered by the SDO_GEOR_ADMIN.listDanglingRasterData
function.

Chapter 8
SDO_GEOR_ADMIN.listDanglingRasterData

8-7

This function returns an array of comma-delimited list of dangling raster data. The list
contains the following information:

• Schema name (only if you are connected as the MDSYS user)

• RDT name

• Raster ID

Examples

The following example lists all dangling raster data in the current schema.

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.listDanglingRasterData FROM DUAL);

COLUMN_VALUE
--
SDO_STRING2_ARRAY('RDT11', '3')

8.10 SDO_GEOR_ADMIN.listRDT
Format

SDO_GEOR_ADMIN.listRDT() RETURN SDO_STRING2_ARRAYSET;

Description

Lists the raster data tables (RDTs) defined in the current schema.

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of RDTs. The list contains the
following information:

• Schema name (only if you are connected as the MDSYS user)

• RDT name

Examples

The following example lists the RDTs defined in the current schema.

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.listRDT FROM DUAL);

COLUMN_VALUE

SDO_STRING2_ARRAY('RDT_REGULAR_01')
SDO_STRING2_ARRAY('RDT_REGULAR_02')

8.11 SDO_GEOR_ADMIN.listRegisteredRDT
Format

SDO_GEOR_ADMIN.listRegisteredRDT() RETURN SDO_STRING2_ARRAYSET;

Chapter 8
SDO_GEOR_ADMIN.listRDT

8-8

Description

Lists the registered raster data tables (RDTs) defined in the current schema. An RDT
is registered if at least one entry in the SYSDATA table refers to it.

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of RDTs. The list contains the
following information:

• Schema name (only if you are connected as the MDSYS user)

• RDT name

Examples

The following example lists the registered RDTs defined in the current schema.

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.listRegisteredRDT FROM DUAL);

COLUMN_VALUE

SDO_STRING2_ARRAY('RDT1_REGULAR_01')

8.12 SDO_GEOR_ADMIN.listUnregisteredRDT
Format

SDO_GEOR_ADMIN.listUnregusteredRDT() RETURN SDO_STRING2_ARRAYSET;

Description

Lists the unregistered raster data tables (RDTs) defined in the current schema. An
RDT is unregistered if no entries in the SYSDATA table refer to it.

Parameters

None.

Usage Notes

This function returns an array of comma-delimited list of RDTs. The list contains the
following information:

• Schema name (only if you are connected as the MDSYS user)

• RDT name

Examples

SELECT * FROM THE (SELECT SDO_GEOR_ADMIN.listUnregisteredRDT FROM DUAL);

COLUMN_VALUE

SDO_STRING2_ARRAY('RDT_REGULAR_02')

Chapter 8
SDO_GEOR_ADMIN.listUnregisteredRDT

8-9

8.13 SDO_GEOR_ADMIN.maintainSysdataEntries
Format

SDO_GEOR_ADMIN.maintainSysdataEntries() RETURN SDO_STRING2_ARRAY;

Description

Checks the USER_SDO_GEOR_SYSDATA view for any invalid entries, and takes
corrective action as appropriate.

Parameters

None.

Usage Notes

This function performs the same checks as the
SDO_GEOR_ADMIN.checkSysdataEntries function, and it takes the corrective action
that is appropriate (if any). For each of the following errors, the function does the
following:

• The RDT name is not unique. If you are connected as a user other then MDSYS,
no action is taken; if you are connected as user MDSYS, duplicate RDTs are
renamed so that their names are unique.

• The GeoRaster table does not exist. The entry is deleted.

• The GeoRaster column does not exist. The entry is deleted.

• The GeoRaster objects does not exist. The entry is deleted.

• The GeoRaster object is non-empty or nonblank, but the RDT does not exist. The
entry is deleted.

• Duplicate GeoRaster objects exist (that is, one or more non-unique combinations
of RDT and raster ID). The entry is deleted.

The USER_SDO_GEOR_DATA and ALL_SDO_GEOR_SYSDATA views are
described in GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA).

Examples

The following example checks the USER_SDO_GEOR_SYSDATA view for invalid
entries, and performs corrective action as appropriate.

DECLARE
 ret SDO_STRING2_ARRAY;
BEGIN
 ret:=sdo_geor_admin.MAINTAINSYSDATAENTRIES;
 for i in 1..ret.count loop
 dbms_output.put_line(ret(i));
 end loop;
END;
/
The RDT name GEOR_TEST1.RDT2 is renamed to GEOR_TEST1.RDT1!
The sysdata entry (SCHEMA=GEOR_TEST1 RDT=dt1 RID=1) is deleted!

PL/SQL procedure successfully completed.

Chapter 8
SDO_GEOR_ADMIN.maintainSysdataEntries

8-10

8.14 SDO_GEOR_ADMIN.registerGeoRasterColumns
Format

SDO_GEOR_ADMIN.registerGeoRasterColumns;

Description

Creates DML triggers for all GeoRaster columns defined in the current schema.

Parameters

None.

Usage Notes

You should not normally need to execute this procedure. You should execute it only if
some error or other condition has resulted in GeoRaster columns without associated
DML triggers.

Examples

The following example creates DML triggers for all GeoRaster columns defined in the
current schema.

EXECUTE sdo_geor_admin.registerGeoRasterColumns;

8.15 SDO_GEOR_ADMIN.registerGeoRasterObjects
Format

SDO_GEOR_ADMIN.registerGeoRasterObjects;

Description

Registers all GeoRaster objects defined in the current schema.

Parameters

None.

Usage Notes

(None.)

Examples

The following example registers all GeoRaster objects defined in the current schema.

EXECUTE sdo_geor_admin.registerGeoRasterObjects;

8.16 SDO_GEOR_ADMIN.upgradeGeoRaster
Format

SDO_GEOR_ADMIN.upgradeGeoRaster() RETURN SDO_STRING2_ARRAY;

Chapter 8
SDO_GEOR_ADMIN.registerGeoRasterColumns

8-11

Description

Checks the GeoRaster system data entries and GeoRaster data for the current
schema, and performs any corrective action as appropriate.

Parameters

None.

Usage Notes

This function performs the same checks as the
SDO_GEOR_ADMIN.isUpgradeNeeded function, and it takes the corrective action
that is appropriate (if any) for the following errors:

• System data entry error, the RDT name is not unique.

• System data entry error, the RDT/RID pair is not unique.

• System data entry error, the GeoRaster table does not exist.

• System data entry error, the GeoRaster column does not exist.

• System data entry error, the GeoRaster object does not exist.

• The GeoRaster object is non-empty or nonblank, but the RDT does not exist.

• Duplicate GeoRaster objects exist (that is, one or more non-unique combinations
of RDT and raster ID).

• There is a non-registered pair of (GeoRaster column, GeoRaster object).

Examples

The following example checks the GeoRaster system data entries and GeoRaster data
for the current schema, and performs any corrective action as appropriate.

DECLARE
 ret SDO_STRING2_ARRAY;
BEGIN
 ret:=sdo_geor_admin.upgradeGeoraster;
 for i in 1..ret.count loop
 dbms_output.put_line(ret(i));
 end loop;
END;
/

Chapter 8
SDO_GEOR_ADMIN.upgradeGeoRaster

8-12

9
SDO_GEOR_AGGR Package Reference

The SDO_GEOR_AGGR package contains subprograms (functions and procedures)
for performing advanced large-scale mosaicking, appending, and virtual mosaic
operations on GeoRaster objects. This chapter presents reference information, with
one or more examples, for each subprogram.

• SDO_GEOR_AGGR.append

• SDO_GEOR_AGGR.getMosaicExtent

• SDO_GEOR_AGGR.getMosaicResolutions

• SDO_GEOR_AGGR.getMosaicStatistics

• SDO_GEOR_AGGR.getMosaicSubset

• SDO_GEOR_AGGR.mosaicSubset

• SDO_GEOR_AGGR.validateForMosaicSubset

9.1 SDO_GEOR_AGGR.append
Format

SDO_GEOR_AGGR.append(
 targetGeoRaster IN OUT SDO_GEORASTER,
 sourceGeoRaster IN SDO_GEORASTER,
 sourcePyramidLevel IN NUMBER,
 appendParam IN VARCHAR2,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Appends the source GeoRaster object to the target GeoRaster object. Internal
rectification, common point rules, gap filling, and color balancing are performed
whenever necessary.

Parameters

targetGeoRaster
GeoRaster object to be updated. Cannot be the same as sourceGeoRaster. (Be sure
to make a copy of this object before you update it.)

sourceGeoRaster
GeoRaster object to be appended to targetGeoRaster.

sourcePyramidLevel
Pyramid level of the source GeoRaster object to be appended at the target GeoRaster
object pyramid Level 0. If NULL, pyramid level 0 is used.

9-1

appendParam
A comma-separated quoted string of keyword=value pairs for specifying parameters
for the operation. It can contain one or more of the keywords in Table 9-1 in the
SDO_GEOR_AGGR.mosaicSubset reference section, unless specified in that table
that the keyword is always ignored for SDO_GEOR_AGGR.append.
If a nondefault value for colorBalance is specified, it is performed on the source
GeoRaster object using the target GeoRaster object's statistics as the reference, and
the following keywords (if specified) are ignored: maxVal, minVal, std, and min.

bgValues
Background values for filling partially empty raster blocks. It is only useful when the
source GeoRaster object has empty raster blocks and the current operation leads
to partially empty raster blocks (see Empty Raster Blocks). The number of elements
in the SDO_NUMBER_ARRAY object must be either one (same filling value used
for all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the
second band with 5, and the third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth.

Usage Notes

Note:

Be sure to make a copy of the targetGeoRaster object before you call this
procedure, because the changes made to this GeoRaster object might not be
reversible after the procedure completes.

The source and target GeoRaster objects must have the same number of bands or
layers. If the cell depths of the source and target GeoRaster objects are not the same,
the cell value of the source GeoRaster object is either expanded or truncated to the
cell depth of the target GeoRaster object.

The target GeoRaster object's raster data must be blocked.

There is no change on metadata of target GeoRaster object, except that the extent
and the number of blocks are updated and the statistics are removed.

The source GeoRaster object is appended to the target GeoRaster object pyramid
level 0. The pyramids of the target GeoRaster object are also updated.

The overlapping areas and gaps of the source and target GeoRaster objects are
resolved according to the rules defined in the appendParam parameter.

The source GeoRaster object can be located on or touching any side of the target
GeoRaster object (that is, it does not have to be on the right or bottom side). The
target GeoRaster object will be automatically expanded accordingly.

Examples

The following example appends the GeoRaster object with georid = 2 to the
GeoRaster object with at georid = 1.

declare
 gr1 sdo_georaster;
 gr1 sdo_georaster;

Chapter 9
SDO_GEOR_AGGR.append

9-2

begin
 select georaster into gr1 from georaster_table where georid = 1 for update;
 select georaster into gr2 from georaster_table where georid = 2;
 sdo_geor_aggr.append(gr1, gr2, 0, null);
 update georaster_table set georaster = gr1 where georid= 1;
 commit;
end;
/

9.2 SDO_GEOR_AGGR.getMosaicExtent
Format

SDO_GEOR_AGGR.getMosaicExtent(
 inGeoRasters IN SYS_REFCURSOR,
 outSRID IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

or

SDO_GEOR_AGGR.getMosaicExtent(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 outSRID IN NUMBER DEFAULT NULL
) RETURN SDO_GEOMETRY;

Description

Calculates and returns the minimum bounding rectangle (MBR) of the spatial extent of
a virtual mosaic or a collection of GeoRaster objects.

Parameters

inGeoRasters
Source GeoRaster objects in a cursor.

georasterTableNames
Names (comma-separated) of the tables containing the source GeoRaster objects.

georasterColumnNames
Names (comma-separated) of the columns of type SDO_GEORASTER in tables
corresponding to the table names in georasterTableNames.

outSRID
Coordinate system for the output GeoRaster object. Must be either null or a value
from the SRID column of the MDSYS.CS_SRS table. If this parameter is null (the
default), 4326 (EPSG SRID value for the WGS 84 (longitude/latitude) coordinate
system) is used.

Usage Notes

In calculating the spatial extent of a virtual mosaic or a collection of GeoRaster
objects, this function tries to use the spatialExtent attribute of each GeoRaster
object. If the spatialExtent attribute is null, the extent of the GeoRaster object is
calculated based on the object's metadata.

Chapter 9
SDO_GEOR_AGGR.getMosaicExtent

9-3

Examples

The following example shows how to get the spatial extent when the virtual mosaic or
the collection of GeoRaster objects is a cursor.

declare
 cur sys_refcursor,
begin
 open cur for select georaster from georaster_table_1 union all select
georaster from georaster_table_2;
 extent := sdo_geor_aggr.getMosaicExtent(cur, 26986);
 close cur;
end;
/

The following example shows how to get the mosaic extent by specifying the table
column names.

select sdo_geor_aggr.getMosaicExtent('georaster_table_1, georaster_table_2',
'georaster, georaster', 26986) from dual;

9.3 SDO_GEOR_AGGR.getMosaicResolutions
Format

SDO_GEOR_AGGR.getMosaicResolutions(
 inGeoRasters IN SYS_REFCURSOR,
 resolutionUnit IN VARCHAR2 DEFAULT NULL
) RETURN SDO_RANGE_ARRAY;;

or

SDO_GEOR_AGGR.getMosaicResolutions(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 resolutionUnit IN VARCHAR2 DEFAULT NULL
) RETURN SDO_RANGE_ARRAY;

Description

Returns the resolution range of a virtual mosaic or a collection of GeoRaster objects in
a specified unit.

Parameters

inGeoRasters
Source GeoRaster objects in a cursor.

georasterTableNames
Names (comma-separated) of the tables containing the source GeoRaster objects.

georasterColumnNames
Names (comma-separated) of the columns of type SDO_GEORASTER in tables
corresponding to the table names in georasterTableNames.

Chapter 9
SDO_GEOR_AGGR.getMosaicResolutions

9-4

resolutionUnit
Unit of measure for the returned resolution range. If specified, it must be a quoted
string in the format 'unit=value' where value is the unit name value (a valid
UNIT_OF_MEAS_NAME value from the SDO_UNITS_OF_MEASURE table). If not
specified or null, the returned resolution range is in the unit of meter.

Usage Notes

The returned resolution range is in the format of
SDO_RANGE_ARRAY(SDO_RANGE(min_x, max_x), SDO_RANGE(min_y, max_y)).
where min_x, max_x are the minimum and maximum resolution on the x dimension,
and min_y, max_y are the minimum and maximum resolution on the y dimension.

The SDO_RANGE_ARRAY type is defined as VARRAY(1048576) OF SDO_RANGE. The
SDO_RANGE type is defined as:

Name Null? Type
--- -------- -------
LB NUMBER
UB NUMBER

Examples

The following example gets the spatial resolution of a virtual mosaic or a collection of
GeoRaster objects with the returned values in meters.

SELECT sdo_geor_aggr.getMosaicResolutions('georatser_table_1,
georaster_table_2', 'georaster, georaster', 'unit=meter') FROM DUAL;

9.4 SDO_GEOR_AGGR.getMosaicStatistics
Format

SDO_GEOR_AGGR.getMosaicStatistics(
 inGeoRasters IN SYS_REFCURSOR,
 skipFactor IN NUMBER DEFAULT 1,
 genHistogram IN VARCHAR2 DEFAULT 'FALSE',
 outStatistics OUT SDO_NUMBER_ARRAYSET,
 outHistograms OUT SDO_GEOR_HISTOGRAM_ARRAY);

or

SDO_GEOR_AGGR.getMosaicStatistics(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 skipFactor IN NUMBER DEFAULT 1,
 genHistogram IN VARCHAR2 DEFAULT 'FALSE',
 outStatistics OUT SDO_NUMBER_ARRAYSET,
 outHistograms OUT SDO_GEOR_HISTOGRAM_ARRAY);

Description

Calculates and returns the estimated statistics of a virtual mosaic or a collection of
GeoRaster objects.

Chapter 9
SDO_GEOR_AGGR.getMosaicStatistics

9-5

Parameters

inGeoRasters
Source GeoRaster objects in a cursor.

georasterTableNames
Names (comma-separated) of the tables containing the source GeoRaster objects.

georasterColumnNames
Names (comma-separated) of the columns of type SDO_GEORASTER in tables
corresponding to the table names in georasterTableNames.

skipFactor
Number indicating every nth image to be used during the calculation. For example, if
skipFactor is 3, then every third image in the source images is used in the statistics
calculation. The skipFactor parameter can be used to reduce the calculation time
for a large image set. The default is 1 (that is, every image is used; no images are
skipped).

genHistogram
String (true or false) whether to return the estimated histogram of the virtual mosaic.
The default is false.

outStatistics
The returned statistics in the order of the bands of the source images. For each band,
if genHistogram is false, the statistics that are returned are min, max, mean, and std;
but if genHistogram is true, the statistics that are returned are min, max, mean, std,
median, and mode.
For example, if the source images have three bands and

• if genHistogram is false, the ourStatistics parameter has the value:
sdo_number_arrayset(sdo_number_array(17.0, 255.0, 154.64, 71.29),
sdo_number_array(14.0, 255.0, 155.86, 56.08), sdo_number_array(0.0,
255.0, 98.60, 73.08))

• if genHistogram is true, the ourStatistics parameter has the value:
sdo_number_arrayset(sdo_number_array(17.0, 255.0, 154.64, 71.29,
112.0, 255.0), sdo_number_array(14.0, 255.0, 155.86, 56.08, 143.0,
255.0), sdo_number_array(0.0, 255.0, 98.60, 73.08, 61.0, 0.0))

The SDO_NUMBER_ARRAYSET type is defined as VARRAY(1048576) OF
SDO_NUMBER_ARRAY.

outHistograms
If genHistogram is the string true, outHistograms will contain the returned histograms
as an array of type SDO_GEOR_HISTOGRAM_ARRAY Collection Type, with each
item containing the histogram for each band.
If genHistogram is the string false, outHistograms will be null.

Usage Notes

To calculate the statistics of the source images, the statistics of the source images
must be present in the GeoRaster object's metadata.

The source images must have the same number of bands and same celldepth.

Chapter 9
SDO_GEOR_AGGR.getMosaicStatistics

9-6

The returned statistics for non-overlapping source images with celldepth less than or
equal to 16bit are accurate calculations; otherwise, the returned statistics are close
estimates.

Examples

The following example shows how to get the statistics when the virtual mosaic or the
collection of GeoRaster objects is a cursor. The skipFactor is 1 and genHistogram
parameter is false.

declare
 cur sys_refcursor,
 outStats sdo_number_arrayset := null;
 outHists sdo_geor_histogram_array := null;
begin
 open cur for select georaster from georaster_table_1 union all select
georaster from georaster_table_2;
 sdo_geor_aggr.getMosaicStatistics(cur, 1, 'false', outStats, outHists);
 close cur;
end;
/

The following example shows how to get the statistics by specifying the table column
names. The skipFactor is 5 and genHistogram parameter is true.

declare
 outStats sdo_number_arrayset := null;
 outHists sdo_geor_histogram_array := null;
begin
 sdo_geor_aggr.getMosaicStatistics('georaster_table_1, georaster_table_2',
'georaster, georaster', 5, 'true', outStats, outHists);
end;
/

9.5 SDO_GEOR_AGGR.getMosaicSubset
Format

SDO_GEOR_AGGR.getMosaicSubset(
 inGeoRasters IN SYS_REFCURSOR,
 pyramidLevel IN NUMBER,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 mosaicParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

Chapter 9
SDO_GEOR_AGGR.getMosaicSubset

9-7

SDO_GEOR_AGGR.getMosaicSubset(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 pyramidLevel IN NUMBER,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 mosaicParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

or

SDO_GEOR_AGGR.getMosaicSubset(
 inGeoRasters IN SYS_REFCURSOR,
 pyramidLevel IN NUMBER,
 elevationParam IN VARCHAR2,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 mosaicParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 referenceImage IN SDO_GEORASTER DEFAULT NULL,
 referenceValue1 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 referenceValue2 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 refHistograms IN SDO_GEOR_HISTOGRAM_ARRAY DEFAULT NULL);

or

SDO_GEOR_AGGR.getMosaicSubset(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 pyramidLevel IN NUMBER,
 elevationParam IN VARCHAR2,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,

Chapter 9
SDO_GEOR_AGGR.getMosaicSubset

9-8

 resolutionUnit IN VARCHAR2,
 mosaicParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2 DEFAULT NULL,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 referenceImage IN SDO_GEORASTER DEFAULT NULL,
 referenceValue1 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 referenceValue2 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 refHistograms IN SDO_GEOR_HISTOGRAM_ARRAY DEFAULT NULL);

Description

Performs subsetting over a virtual mosaic or a collection of GeoRaster objects. It
performs mosaic operations dynamically for the queried area and returns the required
result in a BLOB on-the-fly. Internal rectification, common point rules, gap filling, and
color balancing are performed whenever necessary.

Parameters

inGeoRasters
Source GeoRaster objects in a cursor.

georasterTableNames
Names (comma-separated) of the tables containing the source GeoRaster objects.
For information about defining and using MIN_X_RES$ and MAX_X_RES$ columns
in these tables, see the Usage Notes and Improving Query Performance Using
MIN_X_RES$ and MAX_X_RES$.

georasterColumnNames
Names (comma-separated) of the columns of type SDO_GEORASTER in tables
corresponding to the table names in georasterTableNames.

pyramidLevel
Pyramid level of the source GeoRaster objects for the operation. This parameter
is used when the outResolutions parameter is not specified; otherwise, the
pyramid level of the source GeoRaster objects is determined by the outResolutions
parameter.

elevationParam
A string containing the elevation parameter average (average surface height). This
parameter must be a quoted string that contains a keyword=value pair (for example,
'average=800'). This parameter specifies the elevation of the output GeoRaster
object. If this parameter is null, 0 is assumed for average.
The use of the elevationParam parameter requires that the input GeoRaster objects
have a 3D model SRID and a nonzero average height.

outSRID
Coordinate system for the output GeoRaster object. Must be either null or a value
from the SRID column of the MDSYS.CS_SRS table.

outModelCoordLoc
A value specifying the model location of the base of the area represented by a cell: 0
for CENTER or 1 for UPPERLEFT. If null, CENTER is used.

Chapter 9
SDO_GEOR_AGGR.getMosaicSubset

9-9

referencePoint
A point of type SDO_GEOMETRY used as the reference point of mosaic. If a point is
specified, the mosaicked image's upper left corner aligns with the reference point, that
is, the distance between the referencePoint and the upper-left corner of the output
will have an integer number of pixels. If this parameter is null, the reference point
implicitly uses the upper-left corner of the cropArea, or when the cropArea is null, the
upper-left corner of the output extent.

cropArea
Crop area definition. If the SDO_GEOMETRY object has a non-null SRID, the
coordinates specified in the SDO_GEOMETRY object are in model space and
the source GeoRaster objects must be georeferenced; otherwise, the coordinates
specified in the SDO_GEOMETRY object are in cell space and the source GeoRaster
objects can be georeferenced or non-georeferenced. If polygonClip is FALSE, the
MBR of the cropArea is used to crop the mosaicked data. If polygonClip is TRUE, the
geometry of the cropArea is used to crop the mosaicked data.

polygonClip
The string TRUE causes the cropArea value to be used to crop the mosaicked data;
the string FALSE or a null value causes the MBR of the cropArea to be used to crop
the mosaicked data.

boundaryClip
The string TRUE or a null value causes the boundary of the virtual mosaic to be used to
clip the cropArea; the string FALSE causes the area that is outside the virtual mosaic
but within the cropArea to be filled with the background value.

layerNumbers
A string identifying the logical layer numbers on which the operation or operations are
to be performed. Use commas to delimit the values, and a hyphen to indicate a range
(for example, 2-4 for layers 2, 3, and 4). If not specified, the mosaic result contains
the same number of bands as the source GeoRaster objects.

outResolutions
Resolution requested for the output GeoRaster data. If null, the default is the
resolution of the first encountered GeoRaster object. See the Usage Notes for details.

resolutionUnit
The unit of the outResolutions parameter. If null, the default is the unit of the
output SRID. If specified, it must be a quoted string in the format "unit=value"
where value is the unit name value (a valid UNIT_OF_MEAS_NAME value from the
SDO_UNITS_OF_MEASURE table). This parameter is ignored if outResolutions is
null.

mosaicParam
A comma-separated quoted string of keyword=value pairs for specifying mosaic
parameters. It can contain one or more of the keywords in Table 9-1 in the
SDO_GEOR_AGGR.mosaicSubset reference section.

rasterBlob
BLOB (binary large object) to hold the result of the operation. It must exist or have
been initialized before the operation is performed. It is usually a temporary BLOB.

outArea
Geometry object that describes the extent of the output data.

Chapter 9
SDO_GEOR_AGGR.getMosaicSubset

9-10

outWindow
An SDO_NUMBER_ARRAY object that identifies the coordinates of the upper-left
and lower-right corners of the output window in the cell space. For this function, the
upper-left corner of the output window is always (0,0).

storageParam
A string specifying storage parameters, as explained in Storage Parameters. If
this parameter is null, the resulting GeoRaster object has the same storage
parameters (cellDepth, interleaving, and compression) as the first encountered
source GeoRaster object in the model space (if applicable) or cell space.
If pyramid=true is specified, it is ignored for this procedure, but not for
SDO_GEOR_AGGR.mosaicSubset.
If bitmapmask=true is specified, it is ignored for this procedure.

bgValues
Background cell values for filling partially empty raster blocks (full empty raster blocks
are left as empty without filling). They are used to fill the empty areas resulted from
the mosaicking operation, such as the areas that are outside of the clipping polygon
or the gap areas not covered by any source images. (See alsoEmpty Raster Blocks.)
The number of elements in the SDO_NUMBER_ARRAY object must be either one
(same filling value used for all bands) or the band dimension size (a different filling
value for each band, respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the
first band with 1, the second band with 5, and the third band with 10. The default
bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth.

referenceImage
Specifies the reference image used during the color balance operation. If null, it
defaults to the source image that is closest to the center of the output mosaic.

referenceValue1
Specifies the reference value or values used during the color balance operation. The
meaning of the values is determined by the color balance method.

referenceValue2
Specifies the reference value or values used during the color balance operation. The
meaning of the values is determined by the color balance method.

referenceHistograms
Specifies the reference histograms used during the color balance operation.

Usage Notes

The first two formats of the procedure provide the basic color balancing method and
assume that the elevation of the output GeoRaster object is 0. The last two formats
of the procedure provide more advanced color balancing method using the reference
values or reference images, and they let you specify the elevation value for the output
GeoRaster object.

The source GeoRaster objects must be prepared images or raster data so that they
can be mosaicked. That is, the GeoRaster objects in the virtual mosaic must:

• Not be a mixture of georeferenced and nongeoreferenced objects. Either all of the
objects are georeferenced, or none of the objects is georeferenced.

• Have the same number of layers or bands. There is no restriction on the row and
column dimension sizes of the source objects.

Chapter 9
SDO_GEOR_AGGR.getMosaicSubset

9-11

If the GeoRaster objects to be mosaicked are georeferenced, they are co-located
according to their georeferencing information. If the GeoRaster objects are not
georeferenced, they are co-located according to their ULTCoordinate values. (The
ULTCoordinate is explained in GeoRaster Data Model.)

The resulting GeoRaster object's spatial reference metadata information is determined
by the outSRID and outResolutions parameters. If outSRID is not specified, the SRID
of the first encountered source GeoRaster object is used. If outResolutions is not
specified, the spatial resolution of the first encountered source GeoRaster object at
thespecified pyramid level (pyramidLevel parameter) is used. The spatial resolution
must be set in the metadata of all the source images.

If any source GeoRaster object has a different SRID from outSRID or is not rectified,
it is dynamically reprojected or rectified so that the mosaicked GeoRaster object has
uniform SRID and spatial resolution values.

If the source GeoRaster objects overlap, data of the overlapping area follows the
rules specified in the mosaicParam parameter. By default, the cell value of the last
encountered source GeoRaster object is used.

The source GeoRaster objects that contributes to the output mosaic are selected by
the cropArea parameter spatially and outResolutions parameter in resolution wise
(resolution selection).

• The cropArea parameter is used to query the source GeoRaster objects' spatial
extents to determine the GeoRaster objects that are covered by the cropArea
geometry; thus, a patial index should be built on the spatialExtent attribute of the
GeoRaster objects.

• The outResolutions parameter is used to find the source GeoRaster objects
so that the outResolutions value is within the resolution range of the source
GeoRaster objects. A GeoRaster object's spatial resolution range is determined
by the resolution at pyramid level 0 and the resolution at the top pyramid level of
the GeoRaster object. It is a half pyramid lower than the pyramid level 0 and a
half pyramid level higher than the top pyramid level. For example, if a GeoRaster
object has a resolution of 30 meters at pyramid level 0 and a resolution of 960
meters at the top pyramid level 5, this GeoRaster object’s spatial resolution range
is between 22.5 meters ((30 + 30/2)/2) and 1440 meters ((960 + 960*2)/2).

The resolution selection using the outResolutions parameter can be speeded up
by defining the columns MIN_X_RES$ and MAX_X_RES$ (both of type NUMBER)
in the tables listed in the georasterTableNames parameter, where MIN_X_RES$
and MAX_X_RES$ specify the minimum and maximum spatial resolution values,
respectively, of the source GeoRaster object. (A B-tree index should be created on
the MIN_X_RES$ and MAX_X_RES$ columns if there are a large number of source
GeoRaster objects.) To take advantage of this feature, the procedure format with the
georasterTableNames parameter must be used. It also requires that the resolution
values stored in the MIN_X_RES$ and MAX_X_RES$ columns have the same unit as
the unit of the SRID that is stored in the source GeoRaster object’s spatialExtent
attribute.

The resolution selection can be turned off by setting resFilter=false in the
mosaicParam parameter. When the resolution selection is turned off, the source
GeoRaster objects will only be filtered spatially.

If the source GeoRaster objects have empty raster blocks or do not cover the whole
area, the empty areas are filled with the values specified in the bgValues parameter, or
with 0 if the bgValues parameter is not specified.

Chapter 9
SDO_GEOR_AGGR.getMosaicSubset

9-12

In order to use the colorBalance option in mosaicParam, you should call
SDO_GEOR.generateStatistics on the source images to generate the image's
statistics and store them in the metadata for the source image.

If all source GeoRaster objects are blank and have the same blankCellValue value,
the resulting rasterBlob is filled with the blankCellValue value.

For more information, see Virtual Mosaic.

Examples

The following example gets the subset of a virtual mosaic (defined as two GeoRaster
tables) at SRID 32610 with resolution of 30 meters by specifying a cropArea window.
NODATA is considered at the resampling process (if there is one) and at the
overlapping area of the source images.

declare
 lb blob;
 cropArea sdo_geometry;
 outArea sdo_geometry := null;
 outWin sdo_number_array:=null;
 resolutions sdo_number_array;
begin
 dbms_lob.createTemporary(lb, TRUE);

 cropArea := sdo_geometry(2003, 26986, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(399180, 4247820,
 496140,4353900));
 resolutions := sdo_number_array(30, 30);
 sdo_geor_aggr.getMosaicSubset('georaster_table_1, georaster_table_2',
 'georaster, georaster',
 0, 32610, null, null, cropArea,
 null, null, null, resolutions, null,
 'nodata=true',
 lb, outArea, outWin);
 dbms_lob.freeTemporary(lb);
 if outWin is not null then
 dbms_output.put_line('output window: (' || outWin(1) || ',' || outWin(2)
||', ' || outWin(3) || ', ' || outWin(4) || ')');
 end if;
end;

9.6 SDO_GEOR_AGGR.mosaicSubset
Format

SDO_GEOR_AGGR.mosaicSubset(
 inGeoRasters IN SYS_REFCURSOR,
 pyramidLevel IN NUMBER,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-13

 mosaicParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_AGGR.mosaicSubset(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 pyramidLevel IN NUMBER,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 mosaicParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_AGGR.mosaicSubset(
 inGeoRasters IN SYS_REFCURSOR,
 pyramidLevel IN NUMBER,
 elevationParam IN VARCHAR2,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,
 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 mosaicParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL,
 referenceImage IN SDO_GEORASTER DEFAULT NULL,
 referenceValue1 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 referenceValue2 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 refHistograms IN SDO_GEOR_HISTOGRAM_ARRAY DEFAULT NULL);

or

SDO_GEOR_AGGR.mosaicSubset(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 pyramidLevel IN NUMBER,
 elevationParam IN VARCHAR2,
 outSRID IN NUMBER,
 outModelCoordLoc IN NUMBER,
 referencePoint IN SDO_GEOMETRY,

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-14

 cropArea IN SDO_GEOMETRY,
 polygonClip IN VARCHAR2,
 boundaryClip IN VARCHAR2,
 layerNumbers IN VARCHAR2,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 mosaicParam IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 parallelParam IN VARCHAR2 DEFAULT NULL,
 referenceImage IN SDO_GEORASTER DEFAULT NULL,
 referenceValue1 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 referenceValue2 IN SDO_NUMBER_ARRAY DEFAULT NULL,
 refHistograms IN SDO_GEOR_HISTOGRAM_ARRAY DEFAULT NULL);

Description

Performs advanced large-scale mosaicking or subsetting from a virtual mosaic or a
collection of GeoRaster objects. The output data is written into a GeoRaster object for
persistent storage or other processing. Internal rectification, common point rules, gap
filling, and color balancing are performed whenever necessary.

Parameters

inGeoRasters
Source GeoRaster objects in a cursor.

georasterTableNames
Names (comma-separated) of the tables containing the source GeoRaster objects.
For information about defining and using MIN_X_RES$ and MAX_X_RES$ columns
in these tables, see the Usage Notes and Improving Query Performance Using
MIN_X_RES$ and MAX_X_RES$.

georasterColumnNames
Names (comma-separated) of the columns of type SDO_GEORASTER in tables
corresponding to the table names in georasterTableNames.

pyramidLevel
Pyramid level of the source GeoRaster objects for the operation. This parameter is
used when the outResolutions parameter is not specified; otherwise, the pyramid
level of the source GeoRaster objects involved in the mosaic is determined by the
outResolutions parameter.
The pyramidLevel parameter and the option pyramid=true in the storageParam
parameter are valid only when the source GeoRaster objects have the same
resolution on pyramid level 0.
If the outResolutions parameter is not null, the pyramidLevel parameter is ignored.

elevationParam
A string containing the elevation parameter average (average surface height). This
parameter must be a quoted string that contains a keyword=value pair (for example,
'average=800'). This parameter specifies the elevation of the output GeoRaster
object. If this parameter is null, 0 is assumed for average.
The use of the elevationParam parameter requires that the input GeoRaster objects
have a 3D model SRID and a nonzero average surface height.

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-15

outSRID
Coordinate system for the output GeoRaster object. Must be either null or a value
from the SRID column of the MDSYS.CS_SRS table.

outModelCoordLoc
A value specifying the model location of the base of the area represented by a cell: 0
for CENTER or 1 for UPPERLEFT. If null, CENTER is used.

referencePoint
A point of type SDO_GEOMETRY used as the reference point of mosaic. If a point is
specified, the mosaicked image's upper left corner aligns with the reference point, that
is, the distance between the referencePoint and the upper-left corner of the output
will have an integer number of pixels. If this parameter is null, the reference point
implicitly uses the upper-left corner of the cropArea, or when the cropArea is null, the
upper-left corner of the output extent.

cropArea
Crop area definition. If the SDO_GEOMETRY object has a non-null SRID, the
coordinates specified in the SDO_GEOMETRY object are in model space and
the source GeoRaster objects must be georeferenced; otherwise, the coordinates
specified in the SDO_GEOMETRY object are in cell space and the source GeoRaster
objects can be georeferenced or non-georeferenced. If polygonClip is FALSE, the
MBR of the cropArea is used to crop the mosaicked data. If polygonClip is TRUE, the
geometry of the cropArea is used to crop the mosaicked data.

polygonClip
The string TRUE causes the cropArea value to be used to crop the mosaicked data;
the string FALSE or a null value causes the MBR of the cropArea to be used to crop
the mosaicked data.

boundaryClip
The string TRUE or a null value causes the boundary of the virtual mosaic to be used to
clip the cropArea; the string FALSE causes the area that is outside the virtual mosaic
but within the cropArea to be filled with the background value

layerNumbers
A string identifying the logical layer numbers on which the operation or operations are
to be performed. Use commas to delimit the values, and a hyphen to indicate a range
(for example, 2-4 for layers 2, 3, and 4). If not specified, the mosaic result contains
the same number of bands as the source GeoRaster objects.

outResolutions
Resolution of the output GeoRaster data. If null, the default is the resolution of the first
encountered GeoRaster object. See the Usage Notes for details.

resolutionUnit
The unit of the outResolutions parameter. If null, the default is the unit of the
output SRID. If specified, it must be a quoted string in the format "unit=value"
where value is the unit name value (a valid UNIT_OF_MEAS_NAME value from the
SDO_UNITS_OF_MEASURE table). This parameter is ignored if outResolutions is
null.

mosaicParam
A comma-separated quoted string of keyword=value pairs for specifying mosaic
parameters. It can contain one or more of the keywords in Table 9-1.

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-16

Note:

For any numbers in string (VARCHAR2) parameters to GeoRaster
subprograms, the period (.) must be used for any decimal points regardless
of the locale.

Keyword Explanation

cbreference (Supported with the
procedure formats that
include the referenceImage,
referenceValue1, /
referenceValue2, and
refHistograms parameters.)
Specifies the source of the reference
value used in colorBalance.
Can have one of the following values:
• VALUE: The reference

value is specified in
the referenceValue1 and
referenceValue2 parameters.

• IMAGE: The reference value
is retrieved from the
referenceImage parameter.

• OVERLAP: the reference value is
derived from the overlapping area
of the source images.
(Always ignored if specified
in appendParam for
SDO_GEOR_AGGR.append.)

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-17

Keyword Explanation

colorBalance Specifies the method for color
balancing. Can have one of the
following values:
• NONE (the default): No color

balancing is performed.

• LINEARSTRETCHING: Use the
linear stretching method to
stretch the source image’s cell
values to the reference minimum
and maximum value.
If the cbreference parameter
is VALUE, then parameter
referenceValue1 has the
reference minimum values and
parameter referenceValue2
has the reference maximum
values. If the referenceValue1
or referenceValue2 is null,
default values 0 and 255
are used, respectively. If
the referenceValue1 or
referenceValue2 has only one
value, it is applied to all the
bands; otherwise, the reference
values are corresponding to each
band. Thus, the number of values
in the SDO_NUMBER_ARRAY
must be the same as the number
of bands in the source images.
If the cbreference parameter
is IMAGE, then the minimum
and maximum values of
referenceImage are used as
the reference.
If the cbreference parameter
is not specified, the minVal
and maxVal parameters are
used to specify the minimum
and maximum reference values,
respectively.

• STATISTICMATCHING: Stretch
the source images to match the
reference statistics.
If the cbreference
parameter is VALUE, then
parameter referenceValue1
has the reference mean
value and parameter
referenceValue2 has the
reference standard deviation
value. If the referenceValue1

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-18

Keyword Explanation

or referenceValue2 is null,
default values 128 and
100 are used, respectively.
If the referenceValue1 or
referenceValue2 has only one
value, it is applied to all the
bands; otherwise, the reference
values are corresponding to each
band. Thus, the number of values
in the SDO_NUMBER_ARRAY
must be the same as the number
of bands in the source images.
If the cbreference parameter
is IMAGE, then the reference
image’s mean and standard
deviation values are used for the
matching.
If the cbreference parameter
is OVERLAP, then the mean and
standard deviation values are
derived from the overlapping
area.
If the cbreference parameter is
not specified, the std and mean
parameters are used to specify
the reference statistics.

• HISTOGRAMMATCHING: Use the
reference histogram as the
source image’s histogram.
If the cbreference parameter
is VALUE, then parameter
referenceHistogram defines
the reference histograms for each
band. If only one reference
histogram is specified, it is
applied to all the bands.
If the cbreference parameter
is IMAGE, then the referencce
image’s histograms for each
band are used as the reference
for matching
If the cbreference parameter
is OVERLAP, then histograms at
the overlapping area are used to
derive the matching.

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-19

Keyword Explanation

commonPointRule Specifies the method for getting the
cell value at the overlapping area.
Can have one of the following values:
• START: The value from the first

encountered GeoRaster object is
used.

• END: The value from the last
encountered GeoRaster object is
used.

• LATEST: The value from the
GeoRaster object that has the
most recent EndDateTime in the
metadata is used.

• OLDEST: The value from the
GeoRaster object that has the
oldest EndDateTime in the
metadata is used.

• CTC: The call value from the
GeoRaster object that is closest
to the center of the output
window is used.

• HIGH: The maximum cell value
of all the overlapping GeoRaster
objects is used.

• LOW: The minimum cell value of
all the overlapping GeoRaster
objects is used.

• AVERAGE: The average of all
cell values from the overlapping
GeoRaster objects is used.

• HIGHRES: The value from the
GeoRaster object that has the
highest spatial resolution is used.

fillGap Specifies whether or not to fill the
narrow gap between source images.
TRUE causes any gap that is less than
or equal to 2 pixels wide to be filled
with the nearest-neighbor pixel value.
FALSE causes any gaps to be filled
with zero or bgValue.

maxVal Ignored if colorBalance is not
LINEARSTRETCHING or if the
cbreference keyword is specified;
otherwise, specifies the highest value
in the range of the linear stretching
method. Defaults to 255. (Always
ignored if specified in appendParam
for SDO_GEOR_AGGR.append.)

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-20

Keyword Explanation

mean Ignored if colorBalance is
not STATISTICMATCHING or if
the cbreference keyword is
specified; otherwise, specifies the
reference mean of the statistic
matching method. (Always ignored
if specified in appendParam for
SDO_GEOR_AGGR.append.)

minVal Ignored if colorBalance is not
LINEARSTRETCHING or if the
cbreference keyword is specified;
otherwise, specifies the lowest value
in the range of the linear stretching
method. Defaults to 0. (Always
ignored if specified in appendParam
for SDO_GEOR_AGGR.append.)

nodata Specifies whether or not to consider
NODATA (NODATA value or NODATA
bitmap mask) when handling the
overlap area or when resampling
is performed. The default value is
FALSE.
When handling the overlap area,
nodata=TRUE causes any NODATA
values cells not to be involved
in the overlap area calculation;
nodata=FALSE causes all the
overlapped cells to be involved in the
overlap area calculation.
When resampling is performed and
the resampling method is BILINEAR,
BIQUADRATIC, CUBIC, AVERAGE4,
or AVERAGE16, if any of the cells
involved in the resampling has a
NODATA value, then nodata=TRUE
causes the result of the resampling to
be a NODATA value.

resampling Specifies the resampling method (if
resampling is involved or rectification
is needed) to be used during the
mosaic operation. Can have one
of the following values: NN (the
default), BILINEAR, BIQUADRATIC,
CUBIC, AVERAGE4, or AVERAGE16. For
more information, see Resampling
and Interpolation.

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-21

Keyword Explanation

resamplingTolerance Specifies the tolerance for not
doing resampling when the source
GeoRaster objects are not perfectly
aligned. The value should be between
0 and 0.5, where the unit is pixel or
cell (for example, 0.5 meaning one-
half pixel or cell). If not specified, 0.5
is used, which means no resampling
will occur.

resFilter Specifies whether or not to filter the
source GeoRaster objects to select
only the GeoRaster object that is in
the range of the output resolution
(outResolution parameter). TRUE
(the default) enables resolution
filtering. FALSE disables resolution
filtering, causing all the source
GeoRaster objects to be involved
in the mosaicking process. (Always
ignored if specified in appendParam
for SDO_GEOR_AGGR.append.)

std Ignored if colorBalance is not
STATISTICMATCHING or if the
cbreference keyword is specified;
otherwise, specifies the reference
standard deviation for the statistic
matching method. (Always ignored
if specified in appendParam for
SDO_GEOR_AGGR.append.)

storageParam
A string specifying storage parameters, as explained in Storage Parameters. If this
parameter is null, the resulting GeoRaster object has the same storage parameters
(blockSize, cellDepth, interleaving, and compression) as the first encountered
source GeoRaster object in the model space (if applicable) or cell space. However,
it is recommended that you specify the storage parameters, particularly the blocking
size, as appropriate for the size of the output mosaic, unless you want the mosaic
to have the same storage parameters as those of the first encountered GeoRaster
object to be mosaicked.
If pyramid=true is specified, the pyramids of the source GeoRaster objects are
mosaicked when the outResolutions parameter is null and the pyramidLevel
parameter is not null. The maximum pyramid level of the result GeoRaster object
is the minimal value of the maximum pyramid level of the source GeoRaster objects.
By default, pyramid=false, and thus the pyramids are not mosaicked.
If bitmapmask=true is specified, the bitmap masks of the source GeoRaster objects
are mosaicked also.

outGeoRaster
GeoRaster object to hold the result of the operation. Cannot be the same as any
source GeoRaster object.

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-22

bgValues
Background cell values for filling partially empty raster blocks (full empty raster blocks
are left as empty without filling). They are used to fill the empty areas resulted from
the mosaicking operation, such as the areas that are outside of the clipping polygon
or the gap areas not covered by any source images. (See alsoEmpty Raster Blocks.)
The number of elements in the SDO_NUMBER_ARRAY object must be either one
(same filling value used for all bands) or the band dimension size (a different filling
value for each band, respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the
first band with 1, the second band with 5, and the third band with 10. The default
bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit operation. If an
error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting mosaicked GeoRaster object explicitly in order to roll back the operation.

referenceImage
Specifies the reference image used during the color balance operation. If null, it
defaults to the first image from the query.

referenceValue1
Specifies the reference value or values used during the color balance operation. The
meaning of the values is determined by the color balance method.

referenceValue2
Specifies the reference value or values used during the color balance operation. The
meaning of the values is determined by the color balance method.

referenceHistograms
Specifies the reference histograms used during the color balance operation.

Usage Notes

The first two formats of the procedure provide the basic color balancing method and
assume that the elevation of the output GeoRaster object is 0. The last two formats
of the procedure provide more advanced color balancing method using the reference
values or reference images, and they let you specify the elevation value for the output
GeoRaster object.

The source GeoRaster objects must be prepared images or raster data so that they
can be mosaicked. That is, the GeoRaster objects to be mosaicked must:

• Not be a mixture of georeferenced and nongeoreferenced objects. Either all of the
objects are georeferenced, or none of the objects is georeferenced.

• Have the same number of layers or bands. There is no restriction on the row and
column dimension sizes of the source objects.

If the GeoRaster objects to be mosaicked are georeferenced, they are co-located
according to their georeferencing information. If the GeoRaster objects are not
georeferenced, they are co-located according to their ULTCoordinate values. (The
ULTCoordinate is explained in GeoRaster Data Model.)

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-23

The resulting GeoRaster object's spatial reference metadata information is determined
by the outSRID and outResolutions parameters. If outSRID is not specified, the SRID
of the first encountered source GeoRaster object is used. If outResolutions is not
specified, the spatial resolution of the first encountered source GeoRaster object at
specified pyramid level (pyramidLevel parameter) is used. The spatial resolution must
be set in the metadata of all the source images.

If any source GeoRaster object has a different SRID from outSRID or is not rectified,
it is dynamically reprojected or rectified so that the mosaicked GeoRaster object has
uniform SRID and spatial resolution values.

If the source GeoRaster objects overlap, data of the overlapping area follows the
rules specified in the mosaicParam parameter. By default, the cell value of the last
encountered source GeoRaster object is used.

The source GeoRaster objects that contributes to the output mosaic are selected by
the cropArea parameter spatially and outResolutions parameter in resolution wise
(resolution selection).

• The cropArea parameter is used to query the source GeoRaster objects' spatial
extents to determine the GeoRaster objects that are covered by the cropArea
geometry,. Thus, a spatial index should be built on the spatialExtent attribute of
the GeoRaster objects.

• The outResolutions parameter is used to find the source GeoRaster objects
so that the outResolutions value is within the resolution range of the source
GeoRaster objects. A GeoRaster object's spatial resolution range is determined
by the resolution at pyramid level 0 and the resolution at the top pyramid level of
the GeoRaster object. It is a half pyramid lower than the pyramid level 0 and a
half pyramid level higher than the top pyramid level. For example, if a GeoRaster
object has a resolution of 30 meters at pyramid level 0 and a resolution of 960
meters at the top pyramid level 5, this GeoRaster object’s spatial resolution range
is between 22.5 meters ((30 + 30/2)/2) and 1440 meters ((960 + 960*2)/2).

The resolution selection using the outResolutions parameter can be speeded up
by defining the columns MIN_X_RES$ and MAX_X_RES$ (both of type NUMBER)
in the tables listed in georasterTableNames parameter, where MIN_X_RES$ and
MAX_X_RES$ specify the minimum and maximum spatial resolution values,
respectively, of the source GeoRaster object. (A B-tree index should be created on
the MIN_X_RES$ and MAX_X_RES$ columns if there are a large number of source
GeoRaster objects.) To take advantage of this feature, the procedure format with the
georasterTableNames parameter must be used. It also requires that the resolution
values stored in the MIN_X_RES$ and MAX_X_RES$ columns have the same unit
as the unit of the SRID that is stored in the source GeoRaster object spatialExtent
attribute.

The resolution selection can be turned off by setting resFilter=false in the
mosaicParam parameter. When the resolution selection is turned off, the source
GeoRaster objects will only be filtered spatially.

If the source GeoRaster objects have empty raster blocks or do not cover the whole
area, the mosaicked result GeoRaster object may have empty or partially empty raster
blocks (see Empty Raster Blocks). A result raster block that is not covered by any
of the source GeoRaster objects is kept empty. Any partially empty raster blocks are
filled with the values specified in the bgValues parameter, or with 0 if the bgValues
parameter is not specified.

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-24

If the bitmapmask parameter is set to true in the storageParam string, the bitmap
masks are mosaicked. By default, the bitmap masks are not mosaciked. Note that the
bitmap mask may also be considered as NODATA; and if they are, see the NODATA
keyword in Table 9-1.

In order to use the colorBalance option in mosaicParam, you should you should
call SDO_GEOR.generateStatistics on the source images to generate the image's
statistics and store them in the metadata for the source image.

If all source GeoRaster objects are blank and have the same blankCellValue value,
the resulting GeoRaster object is blank and has that blankCellValue value; otherwise,
the resulting GeoRaster object is not blank.

The GeoRaster object to contain the results of the mosaic operation (georaster
parameter) must not be any of the source GeoRaster objects (the objects on which
the mosaic operation is performed).

The mosaic operation performs internal commit operations at regular intervals, and
thus it cannot be rolled back. If the operation is interrupted, dangling raster blocks may
exist in the raster data table. You can handle dangling raster blocks by maintaining
GeoRaster objects and system data in the database, as explained as explained in
Maintaining GeoRaster Objects and System Data in the Database.

For more information, see Large-Scale Image Mosaicking and Virtual Mosaic.

Examples

The following example shows how to color balance the source images using the linear
stretching method (colorBalance=linearstretching). It stretches the source image
cell values (cbreference=value) to the minimum and maximum reference values. The
reference values are specified in the ref_min and ref_max variables.

DECLARE
gr sdo_georaster;
resolutions sdo_number_array;
ref_min sdo_number_arrray;
ref_max sdo_number_array;
BEGIN
 insert into georaster_table (georid, georaster)
 values (10, sdo_geor.init('RDT_1',10))
 returning georaster into gr;

 resolutions := sdo_number_array(30, 30);
 ref_min := sdo_number_array(10, 10, 10);
 ref_max := sdo_number_array(200, 255, 230);

 sdo_geor_aggr.mosaicSubset('georaster_table_1, georaster_table_2',
 'georaster, georaster',
 0, null, 32610, null, null, null,
 null, null, null, resolutions, null,
 'commonPointRule=average, colorBalance=linearstretching,
cbreference=value',
 'blocking=optimalpadding, blocksize=(512,512,3)', gr, null,
'parallel=4', null, ref_min, ref_max);

 update georaster_table set georaster = gr where georid=10;
 commit;
END;
/

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-25

The following example shows how to color balance the source images using
the histogram matching method (colorBalance=histogramMatching). It matches the
histogram of each source image (cbreference=image) to the reference image’s
histogram.

DECLARE
gr sdo_georaster;
resolutions sdo_number_array;
refgr sdo_georaster;
BEGIN
 -- get the reference image
select georaster into refgr from georaster_table where georid = 1;

-- insert new georaster for the mosaic
 insert into georaster_table (georid, georaster)
 values (10, sdo_geor.init('RDT_1',10))
 returning georaster into gr;

 resolutions := sdo_number_array(30, 30);

 -- mosaic
 sdo_geor_aggr.mosaicSubset('georaster_table_1, georaster_table_2',
 'georaster, georaster',
 0, 32610, null, null, null, null,
 null, null, null, resolutions, null,
 'commonPointRule=average, colorBalance=histogramMatching,
cbreference=image',
 'blocking=optimalpadding, blocksize=(512,512,3)', gr, null,
'parallel=4', refgr);

 update georaster_table set georaster = gr where georid=10;
 commit;
END;
/

The following example shows how to color balance the source images using the
statistic matching method (colorBalance=statisticMatching). It adjusts the statistics
of the source images based on the overlapping areas (cbreference=overlap).

DECLARE
gr sdo_georaster;
resolutions sdo_number_array;
BEGIN
 -- get the reference image
select georaster into refgr from georaster_table where georid = 1;

-- insert new georaster for the mosaic
 insert into georaster_table (georid, georaster)
 values (10, sdo_geor.init('RDT_1',10))
 returning georaster into gr;

 resolutions := sdo_number_array(30, 30);

 -- mosaic
 sdo_geor_aggr.mosaicSubset('georaster_table_1, georaster_table_2',
 'georaster, georaster',
 0, null, 32610, null, null, null,
 null, null, null, resolutions, null,
 'commonPointRule=average, colorBalance=statisticMatching,
cbreference=overlap',
 'blocking=optimalpadding, blocksize=(512,512,3)', gr, null,

Chapter 9
SDO_GEOR_AGGR.mosaicSubset

9-26

'parallel=4');

 update georaster_table set georaster = gr where georid=10;
 commit;
END;
/

9.7 SDO_GEOR_AGGR.validateForMosaicSubset
Format

SDO_GEOR_AGGR.validateForMosaicSubset(
 inGeoRasters IN SYS_REFCURSOR,
 outSRID IN NUMBER,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 resultTableName IN VARCHAR2);

or

SDO_GEOR_AGGR.validateForMosaicSubset(
 georasterTableNames IN VARCHAR2,
 georasterColumnNames IN VARCHAR2,
 outSRID IN NUMBER,
 outResolutions IN SDO_NUMBER_ARRAY,
 resolutionUnit IN VARCHAR2,
 resultTableName IN VARCHAR2);

Description

Checks if it is feasible to do mosaicking or subset query operations over a virtual
mosaic or a large collection of GeoRaster objects. Any validation errors and notes are
stored in a user-created result table.

Parameters

inGeoRasters
Source GeoRaster objects in a cursor.

georasterTableNames
Names (comma-separated) of the tables containing the source GeoRaster objects.

georasterColumnNames
Names (comma-separated) of the columns of type SDO_GEORASTER in tables
corresponding to the table names in georasterTableNames.

outSRID
Coordinate system for the output GeoRaster object. Must be either null or a value
from the SRID column of the MDSYS.CS_SRS table.

outResolutions
Resolution of the output GeoRaster data. If null, the default is the resolution of the first
encountered source GeoRaster object.

resolutionUnit
The unit of the outResolutions parameter. If null, the default is the unit of the
output SRID. If specified, it must be a quoted string in the format "unit=value"

Chapter 9
SDO_GEOR_AGGR.validateForMosaicSubset

9-27

where value is the unit name value (a valid UNIT_OF_MEAS_NAME value from the
SDO_UNITS_OF_MEASURE table). This parameter is ignored if outResolutions is
null.

resultTableName
Name of the validation result table. This table must already exist, and it must have the
following column definitions:

time timestamp,
type varchar2(16),
description varchar2(512),
table_name varchar2(32),
column_name varchar2(1024),
rdt_table_name varchar2(32),
raster_id number

Usage Notes

The following considerations apply to the resultTableName parameter value:

• If the specified table does not exist, an error is generated.

• If the parameter is not specified or is specified as null, the procedure throws
an error at the first validation error found; otherwise, the procedure puts all the
validation errors in the table and completes without error.

• If the specified table is not empty, the procedure appends rows to the existing data
in the table; and if there is a unique constraint on any column and if the newly
appended data has the same value as existing data in that constrained column, an
error is generated.

• The TYPE column of the table contains a string indicating the type of issue, such
as ERROR (something that must be fixed) or NOTE (information that may or may not
require some action). The DESCRIPTION column provides details about the issue.

This procedure performs the following validation checks:

• The source GeoRaster objects must have the same band dimension size.

• The source GeoRaster objects must have consistent georeference status, that is,
either all are georeferenced or all are not georeferenced.

• If reprojection or rectification to be performed when doing the mosaic, the
operation must be feasible.

Examples

The following example checks if a mosaic operation is possible. Any validation errors
are stored in the predefined table MOSAIC_ERROR.

EXECUTE sdo_geor_aggr.validateForMosaicSubset('georaster_table_1,
georaster_table_2', 'georaster, georaster', 26986, sdo_number_array(30, 30),
'unit=meter', 'mosaic_error');

-- Check the validation results:
SELECT table_name table, column_name column, rdt_table_name rdt, raster_id rid,
type, description FROM mosaic_error ORDER BY time;

TABLE COLUMN RDT RID TYPE DESCRIPTION
---------- -------- ----- --- ----- ---------------------------------------
GEORASTER_1 GEORASTER RDT_1 2 ERROR The source georaster object is
 not georeferenced.

Chapter 9
SDO_GEOR_AGGR.validateForMosaicSubset

9-28

10
SDO_GEOR_GDAL Package Reference

The SDO_GEOR_GDAL package integrates the open source software GDAL with
Oracle Database Server through external procedures and provides PL/SQL APIs to
execute a set of GDAL operations. This chapter presents reference information, with
one or more examples, for each subprogram.

The functions and procedures in the SDO_GEOR_GDAL package execute on the
Oracle Database server machine and can work together with any other GeoRaster
PL/SQL APIs.

Currently, the SDO_GEOR_GDAL package is only available on Windows and Linux
operating systems.

For more information, including configuration requirements, see Using the
SDO_GEOR_GDAL Package.

• SDO_GEOR_GDAL.dem

• SDO_GEOR_GDAL.translate

10.1 SDO_GEOR_GDAL.dem
Format

SDO_GEOR_GDAL.dem(
 inGeoRaster IN SDO_GEORASTER,
 outGeoRaster IN OUT SDO_GEORASTER,
 processing IN VARCHAR2 DEFAULT NULL,
 options IN VARCHAR2 DEFAULT NULL,
 createOptions IN VARCHAR2 DEFAULT NULL,
 metadataOptions IN VARCHAR2 DEFAULT NULL,
 colorDirectory IN VARCHAR2 DEFAULT NULL,
 colorFileName IN VARCHAR2 DEFAULT NULL,
 openOptions IN VARCHAR2 DEFAULT NULL);

Description

Processes an input Digital Elevation Model (DEM) to produce an output GeoRaster
object that reflects specified processing and translation options.

Parameters

inGeoRaster
GeoRaster object, typically a Digital Elevation Model (DEM).

outGeoRaster
GeoRaster object to hold the result of the operation. Must be a valid initialized
GeoRaster object. Cannot be the same GeoRaster object as inGeoRaster

10-1

processing
When specified, identifies the name of the DEM processing technique to apply:

• aspect generates an aspect map.

• color-relief generates a color relief map.

• hillshade generates a shaded relief map.

• Roughness generates a map of roughness.

• slope generates a slope map.

• TPI generates a map of Topographic Position Index.

• TRI generates a map of Terrain Ruggedness Index.

options
When specified, identifies options for the GDAL translate operation. See the Usage
Notes for a table of names and explanations of possible options parameter values.
Example: options => 'outputType=float32'

createOptions
When specified, identifies options specific to the output driver. Format 'name=value',
with options separated by space. Example: "COMPRESS=JPEG-F GENPYRAMID=NN"

metadataOptions
When specified, assigns metadata values specific to the output driver. Format
'name=value', with options separated by space. Example: "TIFFTAG_POINTAREA=AREA"

colorDirectory
When specified, identifies the name of a directory object related to the file system
directory where the input color table file is located.

colorFileName
When specified, identifies the base file name of a GDAL compatible color table file.

openOptions
When specified, identifies ptions specific to the input driver format. See the GDAL
supported format list for details.

Usage Notes

The openOptions parameter possible keywords are listed in the following table.

Table 10-1 openOptions Parameter Possible Values for dem Operations

Keyword Explanation

alg Indicates whether to use the ZevenbergenThorne algorithm instead of
Horn’s formula. Boolean type; default is false.

altitude For hillshade processing only. Indicates the altitude of the light, in
degrees (90 if the light comes from above the DEM, 0 if it is raking light).

azimuth For hillshade processing only. The default value is 315. It should rarely
be changed, because this is the value generally used to generate shaded
maps.

band Band number that identifies the DEM. Values start at 1 (the default).

Chapter 10
SDO_GEOR_GDAL.dem

10-2

Table 10-1 (Cont.) openOptions Parameter Possible Values for dem Operations

Keyword Explanation

Combined For hillshade processing only. Indicates whether to compute combined
shading, a combination of slope and oblique shading.

computeEdges Indicates whether to compute values at raster edges or not. Boolean type;
default is false.

outputType Output pixel data type. Supported values are: Byte, Int16, UInt16,
UInt32, Int32, Float32, Float64, CInt16, CInt32, CFloat32 , and
CFloat64. Example: 'outputtype=float64'

If this option is not specified, the input data type will be used.

Check if the output format supports the data type in use.

scale Indicates the ratio to multiply the vertical units. For example, use
scale=111120 if the vertical units are meters (or scale=370400 if they
are in feet) and need to be converted.

Trigonometric For aspect processing only. Indicates whether to return the trigonometric
angle instead of azimuth. 0deg means East, 90deg means North, 180deg
means West, and 270deg means South.

zeroForFlat For aspect processing only. Indicates whether to return 0 for flat areas with
slope=0, instead of -9999.

zFactor For hillshade processing only, indicate the vertical exaggeration.

For convenience, the arguments of the options parameter can also be entered in the
same format as the GDAL gdal_dem command line tool. Example: ”-b 1 –scale 10”

Examples

The following example produces an aspect map from an input DEM.

DECLARE
 gr6 sdo_georaster;
 gr7 sdo_georaster;
BEHIN
 delete from imagery where id = 7;
 insert into imagery values(7, sdo_geor.init('dem_rdt',7))
 returning raster into gr7;
 select raster into gr6 from imagery where id = 6;
 sdo_geor_gdal.dem(inGeoRaster => gr6,
 outGeoRaster => gr7,
 processing => 'aspect',
 options => 'outputType=float32');
 update imagery set raster = gr7 where id = 7;
 commit;
END;

10.2 SDO_GEOR_GDAL.translate
Format

SDO_GEOR_GDAL.translate(
 inDirectory IN SDO_VARCHAR2,
 InFileName IN OUT SDO_VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,

Chapter 10
SDO_GEOR_GDAL.translate

10-3

 options IN VARCHAR2 DEFAULT NULL,
 createOptions IN VARCHAR2 DEFAULT NULL,
 metadataOptions IN VARCHAR2 DEFAULT NULL,
 openOptions IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_GDAL.translate(
 inGeoRaster IN SDO_GEORASTER,
 outDirectory IN VARCHAR2,
 outFileName IN VARCHAR2,
 options IN VARCHAR2 DEFAULT NULL,
 createOptions IN VARCHAR2 DEFAULT NULL,
 metadataOptions IN VARCHAR2 DEFAULT NULL,
 openOptions IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_GDAL.translate(
 inGeoRaster IN SDO_GEORASTER,
 outGeoRaster IN OUT SDO_GEORASTER,
 options IN VARCHAR2 DEFAULT NULL,
 createOptions IN VARCHAR2 DEFAULT NULL,
 metadataOptions IN VARCHAR2 DEFAULT NULL,
 openOptions IN VARCHAR2 DEFAULT NULL);

Description

Converts raster data between different formats, potentially performing some operations
like subsettings, resampling, and rescaling pixels in the process

Parameters

inDirectory
The name of a directory object pointing at the system directory containing the input
file.

inFileName
A base file name (file name without path) of any GDAL compatible raster data source
specification.

inGeoRaster
Input GeoRaster object

outGeoRaster
GeoRaster object to hold the result of the operation. Must be a valid initialized
GeoRaster object. Cannot be the same GeoRaster object as inGeoRaster

outDirectory
The name of a directory object pointing at the system directory to contain the output
file.

outFileName
GeoRaster object to hold the result of the operation. Must be a valid initialized
GeoRaster object. Cannot be the same GeoRaster object as inGeoRaster

Chapter 10
SDO_GEOR_GDAL.translate

10-4

options
When specified, identifies options for the GDAL translate operation. See the Usage
Notes for a table of names and explanations of possible options parameter values.
Example: options => 'srcwin=100,100,2500,2500'

createOptions
When specified, identifies options specific to the output driver. Format 'name=value',
with options separated by space. Example: "COMPRESS=JPEG-F GENPYRAMID=NN"

metadataOptions
When specified, assigns metadata values specific to the output driver. Format
'name=value', with options separated by space. Example: "TIFFTAG_POINTAREA=AREA"

openOptions
When specified, identifies ptions specific to the input driver format. See the GDAL
supported format list for details.

Usage Notes

This function performs the same action as the GDAL translate command.

The options parameter possible keywords are listed in the following table.

Table 10-2 options Parameter Possible Values for translate Operations

Keyword Explanation

bandList Array of band numbers. Integer list; 1 is the first band. Example:
'bandlist=4,3,2'

If not specified, the band list from the input file will be used.

eco Show error when projWin is completely outside. Boolean type; default is
false. Example: 'eco=true'

epo Show error when projWin is partially outside. Boolean type; default is
false. Example: 'epo=true'

exponentList Apply non linear scaling with a power function. Must be positive. Used with
the scale option. Example: 'exponent=10,100'

format The name of GDAL driver that support dataset creating. String type.
Example: 'format=gtiff'. This option is not needed for sdo_georaster
output. For file output, if this option is not specified, 'GTIFF' is assumed.

GCP Ground Control Points. May be provided multiple times to provide a set
of GCPs. In the format “pixel,line,easting,northing,elevation”
where elevation is optional. Example: “gcp=10,40,234.2,734
gcp=13,54,28.4,837 gcp=20,90,285.2,934”

maskBandList Array of band numbers. Integer list, where 1 is the first band. Example:
'maskbandlist=1'

If not specified, the band list from the input file will be used.

nodata List of Nodata value (or none to unset it) for each output band.
Example: ”nodata=9990”

outputBounds Assigned the output bounds of the output image in the format “upper-
left-x, upper-left-y, lower-right-x, lower-right-y”.
Example: 'outputbounds=293.992,643.447,361.104, 118.648'

Chapter 10
SDO_GEOR_GDAL.translate

10-5

Table 10-2 (Cont.) options Parameter Possible Values for translate Operations

Keyword Explanation

outputBoundSRS The spatial reference system (SRS) for outputBounds. Example:
outputBoundsSRS=EPSG:4326. If not specified, assumes the input image
SRS.

outputType Output pixel data type. Supported values are: Byte, Int16, UInt16,
UInt32, Int32, Float32, Float64, CInt16, CInt32, CFloat32, and
CFloat64. Example: 'outputtype=float64'

If this option is not specified, the input data type will be used.

Check if the output format support the data type in use.

outsize Set the size of the output image defined by rows and columns or by the
relative percentage of the original image size. Example:

'outsize=50%,50%', 'outsize=1024,512',
'outsize=200%,200%'

If not specified, the original size of the input image will be used.

projWin Source window sub region from input image defined in coordinates as in
“upper-left-x, upper-left-y, lower-right-x, lower-right-
y”. Example: 'srcwin=180,90,0,0'. If not specified, the entire input
image will be used.

projWinSRS The spatial reference system (SRS) for projWin. Example:
projWinSRS=EPSG:4326. If not specified, assumes the input image SRS.

rat Indicate whether to copy the source image raster attribute table to the
output image . Default is true. Example: “rat=false”

The operation depend on the capacity of the output format to support
raster attribute table.

resampleAlg Resampling mode {nearest(default), bilinear, cubic, cubicspline,
lanczos, average, mode}. Example:: resample=cubic

rgbExpand Indicate whether to translate a dataset with 1 band with a color table as a
dataset with 3 (RGB) or 4 (RGBA) bands. Expands a dataset with a color
table that only contains gray levels to a gray indexed dataset. {gray|rgb|
rgba}. Example: “rgbExpand=rgb”

scale List of values to rescale the pixel values from the input
image to the output image. The values cam be defined
as “src_min,src_max” or “src_min,src_max,dst_min,dst_max”.
Example: 'scale=-10,2400,0,255'

srcWin Source window subregion from input image defined in pixels
coordinates as in “left_x, top_y, width, height”. Example:
'srcwin=10,31,400,800'

If not specified, the entire input image will be used.

stats Calculate and store statistics on output image. Boolean type; default is
false. Example: 'stats=true'

strict Raise an error if are data type mismatches and lost data when
translating to the output format. Boolean type; default is false. Example:
'strict=true'

xyRes Output horizontal and vertical output image resolution. Example: :
'xyres=30.0,30.0'. If not specified, the resolution of the input image
will be used.

Chapter 10
SDO_GEOR_GDAL.translate

10-6

For convenience, the arguments of the options parameter can also be entered in the
same format as the GDAL gdal_translate command line tool. Example: “-srcwin 10
10 512 512 –outsize 1024 1024“

Examples

The following example loads a geotiff file from the file system to an initialized
GeoRaster object.

CREATE OR REPLACE DIRECTORY mydata_dir AS '/folder_name/data/';

BEGIN
 delete from imagery where id = 1;
 insert into imagery values(1, sdo_geor.init('imagery_rdt',1))
 returning raster into gr;
 sdo_geor_gdal.translate(inDirectory => 'mydata_dir',
 inFileName => 'sample.tif',
 outGeoRaster => gr);
 update imagery set raster = gr where id = 1;
 commit;
END;

The following example exports a GeoRaster object to a geotiff file.

CREATE OR REPLACE DIRECTORY dump_dir AS '/folder_name/dump/';

DECLARE
 gr sdo_georaster;
BEGIN
 select raster into gr from imagery where id = 1;
 sdo_geor_gdal.translate(inGeoRaster => gr,
 outDirectory => 'dump_dir',
 outFileName => 'copy_imagery_id_1.tif');
END;

The following example copies a GeoRaster object into another cropping part of the
image while changing the resolution and the scale of values.

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 delete from imagery where id = 2;
 select raster into gr1 where id = 2;
 insert into imagery values(2, sdo_geor.init('imagery',2))
 returning raster into gr2;
 sdo_geor_gdal.translate(
 inGeoraster => gr1,
 options => 'srcwin=100,100,2500,2500' ||
 'scale=0,255' ||
 'resxy=400,400',
 outGeoRaster => gr);
 update imagery set raster = gr2 where id = 2;
 commit;
END;

The following example exports a GeoRaster object into a file in Erdas .img format.

CREATE OR REPLACE DIRECTORY myoutput_dir AS '/folder_name/data/';

DECLARE

Chapter 10
SDO_GEOR_GDAL.translate

10-7

 gr sdo_georaster;
BEGIN
 select raster into gr where id = 3;
 sdo_geor_gdal.translate(
 inGeoraster => gr,
 outDirectory => myoutput_dir,,
 outFilename => 'exported.img',
 options => 'format=hfa');
END;

Chapter 10
SDO_GEOR_GDAL.translate

10-8

11
SDO_GEOR_IP Package Reference

The SDO_GEOR_IP package contains subprograms (functions and procedures) for
performing image processing operations on GeoRaster objects. This chapter presents
reference information, with one or more examples, for each subprogram.

Many examples in this chapter refer to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.

All SDO_GEOR_IP subprograms can work on GeoRaster objects defined in schemas
other than the current connection schema.

• SDO_GEOR_IP.dodge

• SDO_GEOR_IP.equalize

• SDO_GEOR_IP.filter

• SDO_GEOR_IP.histogramMatch

• SDO_GEOR_IP.normalize

• SDO_GEOR_IP.piecewiseStretch

• SDO_GEOR_IP.stretch

11.1 SDO_GEOR_IP.dodge
Format

SDO_GEOR_IP.dodge(
 inGeoRaster IN SDO_GEORASTER,
 gridsize IN SDO_NUMBER_ARRAY,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 means IN SDO_NUMBER_ARRAY DEFAULT NULL,
 standardDeviations IN SDO_NUMBER_ARRAY DEFAULT NULL,
 storageParam IN VARCHAR2 DEFAULT NULL,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.dodge(
 inGeoRaster IN SDO_GEORASTER,
 gridsize IN SDO_NUMBER_ARRAY,
 samplingFactor IN VARCHAR2 DEFAULT NULL,
 refGeoraster IN SDO_GEORASTER,
 standardDeviations IN SDO_NUMBER_ARRAY DEFAULT NULL,
 storageParam IN VARCHAR2 DEFAULT NULL,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Description

Apply a dodging algorithm on the input GeoRaster object to color balance the image.

11-1

Parameters

inGeoRaster
The SDO_GEORASTER object to be processed.

gridSize
The size of each grid in x and y direction, respectively. It is an array of one or two
numbers. If only one number is specified, then it is for both x and y direction.

samplingFactor
Sampling factor, used to control the calculation of the statistics, in the
format'samplingFactor=n', with the denominator n in 1/(n*n) representing the
number of cells skipped in both row and column dimensions in computing the
statistics. For example, if samplingFactor is 4, one-sixteenth of the cells are sampled;
but if samplingFactor is 1, all cells are sampled. The higher the value, the less
accurate the statistics are likely to be, but the more quickly they will be computed. If
not specified (null), the default is 1.
samplingFactor cannot be greater than or equal to one-half (0.5) of gridSize.

means
The target mean values for each output bands. If only one value is specified, it is
applied to all the output bands; otherwise, it must have the same number of values
as the number bands of the output GeoRaster object. If null, it is calculated as the
average mean value over all the grids.

standardDeviations
The target standard deviation values for each output bands. If only one value is
specified, it is applied to all the output bands; otherwise, it must have the same
number of values as the number of bands of the output GeoRaster object. If null, it is
calculated as the average standard deviation over all the grids.

refGeoraster
The reference GeoRaster object. The output of the dodging result will adapt to the
statistics of the reference GeoRaster object.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

Chapter 11
SDO_GEOR_IP.dodge

11-2

Usage Notes

This dodging operation uses an adaptive image enhancement method to make the
image tone more balanced, that is, the darker area becomes brighter and the bright
area becomes darker. The statistics for the grid defined by the gridsize parameter are
collected on the fly and adjusted to the target mean and standard deviation values.
The grid size should be smaller than the imbalanced area in order to remove the
imbalance. Adjust the gridSize parameter to achieve the best result.

The input GeoRaster image must have a cellDepth value of 8BIT_U. Any celldepth
value in the storage parameters is ignored. The cell depth of the outGeoRaster object
is always 8BIT_U.

Color map in the input GeoRaster object is not supported.

The output GeoRaster object has no pyramid or mask.

Examples

The following example creates a GeoRaster object that is the result of dodging on the
input GeoRaster object. The desired mean and standard deviation are set as 125 and
80, respectively. The grid size is 512 on x and y direction. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.dodge(gr1, sdo_number_array(512, 512), ‘samplingFactor=3’,
sdo_number_array(125), sdo_number_array(80), null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

The following example creates a GeoRaster object that is the result of dodging on the
input GeoRaster object based on the reference GeoRaster object. Parallel processing
is enabled with parallel degree of 4. The grid size is 512 on x and y direction. (It
refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
gr1 sdo_georaster;
gr2 sdo_georaster;
refgr sdo_georaster;
BEGIN
 INSERT INTO georaster_table (georid, georaster) VALUES (41,
sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;
 SELECT georaster INTO refgr FROM georaster_table WHERE georid=1;
 sdo_geor_ip.dodge(gr1, sdo_number_array(512, 512), ‘samplingFactor=3’, refgr,

Chapter 11
SDO_GEOR_IP.dodge

11-3

null,
 gr2, 'parallel=4');
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
COMMIT;
END;
/

11.2 SDO_GEOR_IP.equalize
Format

SDO_GEOR_IP.equalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.equalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.equalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

or

SDO_GEOR_IP.equalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

Description

Process the input GeoRaster object by using histogram equalization method. The
processed image is stored in the output GeoRaster object or in a BLOB.

Chapter 11
SDO_GEOR_IP.equalize

11-4

Parameters

inGeoRaster
The SDO_GEORASTER object to be equalized.

pyramidLevel
A number specifying the pyramid level to be equalized in the source GeoRaster
object. If null, the default is 0.

cropArea
Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more
band numbers.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the crop area; see also
the Usage Notes for SDO_SRID requirements.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

Chapter 11
SDO_GEOR_IP.equalize

11-5

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

Usage Notes

The input GeoRaster object must have histogram generated for each output band.

The equalization is performed based on the histograms stored in the metadata of the
input GeoRaster object.

Color map stored in the input GeoRaster object is not supported.

The output GeoRaster object has no pyramid or mask.

The cell depth of the output GeoRaster object is always 8BIT_U.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the cropArea parameter geometry and the
model space are different, the cropArea parameter geometry is automatically
transformed to the coordinate system of the model space before the operation
is performed. (Raster space and model space are explained in GeoRaster Data
Model.)

If the cropArea parameter specifies a geodetic MBR, it cannot cross the date line
meridian

Examples

The following example creates a GeoRaster object that has each input band
equalized based on the histogram stored in the metadata. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_number_array := null;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.equalize(gr1, cropArea, null, null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

Chapter 11
SDO_GEOR_IP.equalize

11-6

The following example performs the image equalization based on the histogram stored
in the metadata; the output is in a temporary BLOB. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 out_lob BLOB;
 cropArea sdo_number_array := null;
 outArea sdo_geometry;
 outWindow sdo_number_array;
BEGIN
 dbms_lob.create_temporary(out_lob, TRUE);
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.equalize(gr1, cropArea, null, null, out_lob, outArea, outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);
END;
/

11.3 SDO_GEOR_IP.filter
Format

SDO_GEOR_IP.filter(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 filterParam IN VARCHAR2,
 filterKernel IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.filter(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 filterParam IN VARCHAR2,
 filterKernel IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.filter(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,

Chapter 11
SDO_GEOR_IP.filter

11-7

 filterParam IN VARCHAR2,
 filterKernel IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

or

SDO_GEOR_IP.filter(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 filterParam IN VARCHAR2,
 filterKernel IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

Description

Applies the convolution filter on the input GeoRaster object. The processed image is
stored in the output GeoRaster object or in a BLOB.

Parameters

inGeoRaster
The SDO_GEORASTER object for the filter operation.

pyramidLevel
A number specifying the pyramid level for the filter operation in the source GeoRaster
object. If null, the default is 0.

cropArea
Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more
band numbers.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the crop area; see also
the Usage Notes for SDO_SRID requirements.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

Chapter 11
SDO_GEOR_IP.filter

11-8

filterParam
The type of the filter to be applied on the input GeoRaster. It is in the format
‘filterType=value’ where value can be one of the following: LPF (low-pass filter,
the default), HPF (high-pass filter), HBF (high-boost filter), MIN (minimum filter), MAX
(maximum filter), MEDIAN (median filter), MODE (mode filter), or CUSTOM (user-provided
filter kernel).
filterParam can also include:

• ‘kernelSize=(kx, ky)’ where kx, ky are the size of the kernel on the x and
y direction. For a filter type other than CUSTOM, the kx and ky should be odd
numbers greater than or equal to 3.

• ‘p1 = value’, used by the HBF filter to indicate the degree of boost.

filterKernel
Required only when filterType=CUSTOM. It is the kx * ky numbers in an
SDO_NUMBER_ARRAY object.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

Usage Notes

For an introduction to image filtering, see Image Filtering.

The following are filterKernel values for some of the predefined 3x3 filters:

• LPF: (1, 1, 1, 1, 1, 1, 1, 1, 1)*1/9

• HPF: (-1, -1, -1, -1, 8, -1, -1, -1, -1)*1/9

Chapter 11
SDO_GEOR_IP.filter

11-9

• HBF: (-k, -k, -k, -k, 8k, -k, -k, -k, -k)*1/9, where k is the boost factor specified by
parameter p1

For kernelSize, kx * ky must be less than 10000.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the cropArea parameter geometry and the
model space are different, the cropArea parameter geometry is automatically
transformed to the coordinate system of the model space before the operation
is performed. (Raster space and model space are explained in GeoRaster Data
Model.)

Color map in the input GeoRaster object is not supported.

The output GeoRaster object has no pyramid or mask.

Examples

The following example creates a GeoRaster object that is the result of using the
default low-pass filter on the input GeoRaster object. The filter kernel size is 3 by 3.
(It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_geometry := null;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.filter(gr1, 0, cropArea, null, ‘filtertype=LPF, kernelsize=(3,
3)’, null, null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

The following example applies a custom (user–provided) 3 by 3 filter on the input
GeoRaster object; the output is in a temporary BLOB. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_geometry := null;
 out_lob BLOB;
 outArea sdo_geometry := null;
 outWindow sdo_geometry := null;
BEGIN
 dbms_lob.create_temporary(out_lob, TRUE);

Chapter 11
SDO_GEOR_IP.filter

11-10

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.filter(gr1, 0, cropArea, null, ‘filtertype=CUSTOM,
kernelsize=(3,3)’, sdo_number_array(1/4, 1/2, 1/4, 1/2, 1, 1/2, 1/4, 1.2, 1/4),
null, out_lob, outArea, outWindow);

 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);

 END;
/

11.4 SDO_GEOR_IP.histogramMatch
Format

SDO_GEOR_IP.histogramMatch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 refHistograms IN SDO_GEOR_HISTOGRAM_ARRAY,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.histogramMatch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 refHistograms IN SDO_GEOR_HISTOGRAM_ARRAY,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.histogramMatch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 refGeoRaster IN SDO_GEORASTER,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.histogramMatch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,

Chapter 11
SDO_GEOR_IP.histogramMatch

11-11

 layerNumbers IN VARCHAR2,
 refGeoRaster IN SDO_GEORASTER,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Description

Processes the input GeoRaster object so that the histograms of the output GeoRaster
object matches the histogram of a reference GeoRaster object (refGeoRaster) or a
reference histogram (refHistograms).

Parameters

inGeoRaster
The SDO_GEORASTER object for the histogram matching operation.

pyramidLevel
A number specifying the pyramid level for the histogram matching operation. If null,
the default is 0.

cropArea
Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more
band numbers.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the crop area; see also
the Usage Notes for SDO_SRID requirements.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

refHistograms
An array of reference histograms. If there is only one element in the array, all the
output bands match to this histogram; otherwise, the length of the array must be the
same as the number of the bands in the output GeoRaster object.

refGeoRaster
The reference GeoRaster object. The reference GeoRaster object must have a
histogram stored in the metadata, and must have the same number of bands as the
input GeoRaster object.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

Chapter 11
SDO_GEOR_IP.histogramMatch

11-12

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

Usage Notes

The input GeoRaster object must have histograms generated for each band and
stored in the metadata.

The reference GeoRaster object must have the same number of bands as the input
GeoRaster object. The cell depth of the reference GeoRaster cannot be greater than
the cell depth of the outGeoRaster object. The reference GeoRaster object must have
histograms set in the metadata.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the cropArea parameter geometry and the
model space are different, the cropArea parameter geometry is automatically
transformed to the coordinate system of the model space before the operation
is performed. (Raster space and model space are explained in GeoRaster Data
Model.)

Color map stored in the input GeoRaster object is not supported.

The output GeoRaster object has no pyramid or mask.

Examples

The following example creates a GeoRaster object that is the result
of histogram matching the input GeoRaster object to the reference
histograms. In the example, the reference histograms are stored in a table
histogram_table(histogram sdo_geor_histogram, band number). (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_number_array := null;
 refHists sdo_geor_histogram_array;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))

Chapter 11
SDO_GEOR_IP.histogramMatch

11-13

 RETURNING georaster INTO gr2;

 -- get the source GeoRaster object
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 -- get the reference histogram
 SELECT histogram bulk collect into refHists from histogram_table order by band;

 sdo_geor_ip.histogramMatch(gr1, 0, cropArea, null, refHists, null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

The following example creates a GeoRaster object that is the result of histogram
matching the input GeoRaster object to the reference GeoRaster object. (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 refgr sdo_georaster;
 cropArea sdo_number_array := null;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 -- get the source GeoRaster object
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 -- get the reference GeoRaster object
 SELECT georaster INTO refgr FROM georaster_table WHERE georid=5;

 sdo_geor_ip.histogramMatch(gr1, 0, cropArea, null, refgr, null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

11.5 SDO_GEOR_IP.normalize
Format

SDO_GEOR_IP.normalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 means IN SDO_NUMBER_ARRAY,
 standardDeviations IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.normalize(
 inGeoRaster IN SDO_GEORASTER,

Chapter 11
SDO_GEOR_IP.normalize

11-14

 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 means IN SDO_NUMBER_ARRAY,
 standardDeviations IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.normalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 means IN SDO_NUMBER_ARRAY,
 standardDeviations IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

or

SDO_GEOR_IP.normalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 means IN SDO_NUMBER_ARRAY,
 standardDeviations IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

or

SDO_GEOR_IP.normalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 refGeoRaster IN SDO_GEORASTER,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.normalize(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 refGeoRaster IN SDO_GEORASTER,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Chapter 11
SDO_GEOR_IP.normalize

11-15

Description

Normalizes the input GeoRaster object using the specified mean and standard
deviation.

Parameters

inGeoRaster
The SDO_GEORASTER object to be normalized.

pyramidLevel
A number specifying the pyramid level to be normalized in the source GeoRaster
object. If null, the default is 0.

cropArea
Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more
band numbers.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the crop area; see also
the Usage Notes for SDO_SRID requirements.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

means
The target mean values for each output band. If only one value is specified, it is
applied to all the output bands; otherwise, it must have the same number of values as
the number of bands of the output GeoRaster object. The target mean values must be
in the range of the cell depth of the outGeoRaster object. If null, it defaults to 128.

standardDeviations
The target standard deviation values for each output band. If only one value is
specified, it is applied to all the output bands; otherwise, it must have the same
number of values as the number of bands of the output GeoRaster object. The target
standard deviation values must be in the range of the cell depth of the outGeoRaster
object. If null, it defaults to 100.

refGeoRaster
The reference GeoRaster object. Instead of giving the target mean and standard
deviation, the mean and standard deviation of refGeoRaster are used as the target.
The reference GeoRaster object must have the same number of bands as the input
GeoRaster object.

Chapter 11
SDO_GEOR_IP.normalize

11-16

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

Usage Notes

The input GeoRaster object must have statistics generated for each output band.

The reference GeoRaster object must have the same number of bands as the input
GeoRaster object. The cell depth of the refGeoRaster object cannot be greater than
the cell depth of the outGeoRaster object. The reference GeoRaster object must have
statistics set in the metadata.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

If the SDO_SRID values for the cropArea parameter geometry and the
model space are different, the cropArea parameter geometry is automatically
transformed to the coordinate system of the model space before the operation
is performed. (Raster space and model space are explained in GeoRaster Data
Model.)

Color map in the input GeoRaster object is not supported.

The output GeoRaster object has no pyramid or mask.

Chapter 11
SDO_GEOR_IP.normalize

11-17

Examples

The following example creates a GeoRaster object and performs normalization on
the bands of the input GeoRaster object based on the given means and standard
deviations. (It refers to a table named GEORASTER_TABLE, whose definition is
presented after Example 1-1 in Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_number_array := null;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.normalize(gr1, 0, cropArea, null, sdo_number_array(50, 80, 100),
sdo_number_array(30, 20, 50), null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

The following exampleperforms normalization on the bands of the input GeoRaster
object based on the given means and standard deviations; the output is in a temporary
BLOB. (It refers to a table named GEORASTER_TABLE, whose definition is presented
after Example 1-1 in Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_number_array := null;
 out_lob BLOB;
 outArea sdo_geometry := null;
 outWindow sdo_geometry := null;
BEGIN
 dbms_lob.create_temporary(out_lob, TRUE);

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.normalize(gr1, 0, cropArea, null, sdo_number_array(50, 80, 100),
sdo_number_array(30, 20, 50), null, out_lob, outArea, outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);

END;
/

The following example creates a GeoRaster object and performs normalization on the
bands of the input GeoRaster object based on the given reference GeoRaster object .
(It refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

Chapter 11
SDO_GEOR_IP.normalize

11-18

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 refgr sdo_georaster;
 cropArea sdo_number_array := null;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 -- get the source GeoRaster object
 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 -- get the reference GeoRaster object
 SELECT georaster INTO refgr FROM georaster_table WHERE georid=5;

 sdo_geor_ip.normalize(gr1, 0, cropArea, null, refgr, null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

11.6 SDO_GEOR_IP.piecewiseStretch
Format

SDO_GEOR_IP.piecewiseStretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 inValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 outValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.piecewiseStretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 inValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 outValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.piecewiseStretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 inValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 outValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 storageParam IN VARCHAR2,

Chapter 11
SDO_GEOR_IP.piecewiseStretch

11-19

 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

or

SDO_GEOR_IP.piecewiseStretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 inValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 outValues IN SDO_NUMBER_ARRAYSET DEFAULT NULL,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

Description

Performs a linear stretch on the input GeoRaster object using the minimum and
maximum values. The processed image is stored in the output GeoRaster object or
in a BLOB.

Parameters

inGeoRaster
The SDO_GEORASTER object to be stretched.

pyramidLevel
A number specifying the pyramid level to be stretched in the source GeoRaster
object. If null, the default is 0.

cropArea
Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more
band numbers.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the crop area; see also
the Usage Notes for SDO_SRID requirements.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

inValues
An array of SDO_NUMBER_ARRAY objects corresponding to each input band. If
only one element is specified, all the output bands are stretched in the same way.

Chapter 11
SDO_GEOR_IP.piecewiseStretch

11-20

Each SDO_NUMBER_ARRAY specifies the input GeoRaster object cell value ranges
used in the stretch. For example, sdo_number_array(0, 50, 255) specifies two value
ranges, from 0 to 50 and 50 to 255.

outValues
An array of SDO_NUMBER_ARRAY objects corresponding to each output band. If
only one element is specified, all the output bands are stretched in the same way.
Each SDO_NUMBER_ARRAY specifies the target values ranges corresponding to
the value ranges of the inValues parameter. For example, sdo_number_array(0, 200,
255) specifies two value ranges, from 0 to 200 and 200 to 255.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

Usage Notes

The inValues and outValues parameters must have the same number of values, and
the range specified in the inValues parameter must be in ascending order. The values
in the inValues parameter must be in the range of the cell depth of the inGeoRaster
object. The values in the outValues parameter must be in the range of the cell depth
of the outGeoRaster object.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

Chapter 11
SDO_GEOR_IP.piecewiseStretch

11-21

If the SDO_SRID values for the cropArea parameter geometry and the
model space are different, the cropArea parameter geometry is automatically
transformed to the coordinate system of the model space before the operation
is performed. (Raster space and model space are explained in GeoRaster Data
Model.)

Color map stored in the input GeoRaster object is not supported.

The output GeoRaster object has no pyramid or mask.

Examples

The following example creates a GeoRaster object that piecewise stretches all bands
of the input GeoRaster object into different cell depths: a linear stretch of input
values between 0 and 255 to the range 0 to 2000. (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_number_array := null;
 inValues sdo_number_arrayset;
 outValues sdo_number_arrayset;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 -- define the input and output value ranges
 inValues := sdo_number_arrayset(sdo_number_array(0, 255));
 outValues := sdo_number_arrayset(sdo_number_array(0, 2000));

 sdo_geor_ip.piecewisestretch(gr1, 0, cropArea, null,
 inValues, outValues, 'celldepth=16bit_u', gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

The following example piecewise stretches each band for different ranges; the output
is in a temporary BLOB. (It refers to a table named GEORASTER_TABLE, whose
definition is presented after Example 1-1 in Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 cropArea sdo_number_array := null;
 inValues sdo_number_arrayset;
 outValues sdo_number_arrayset;
 out_lob BLOB;
 outArea sdo_geometry := null;
 outWindow sdo_geometry := null;
 BEGIN
 dbms_lob.create_temporary(out_lob, TRUE);

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 -- define the input and output values ranges
 inValues := sdo_number_arrayset(sdo_number_array(0, 30, 80, 255),

Chapter 11
SDO_GEOR_IP.piecewiseStretch

11-22

 sdo_number_array(0, 10, 50, 255),
 sdo_number_array(0, 50, 150, 255));
 outValues := sdo_number_arrayset(
 sdo_number_array(0, 80, 200, 255),
 sdo_number_array(0, 60, 150, 255),
 sdo_number_array(0, 100, 250,255));

 sdo_geor_ip.piecewisestretch(gr1, 0, cropArea, null, inValues, outValues,
 null, out_lob, outArea, outWindow);

 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);

END;
/

11.7 SDO_GEOR_IP.stretch
Format

SDO_GEOR_IP.stretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 minValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 maxValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER),
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.stretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 minValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 max_values IN SDO_NUMBER_ARRAY DEFAULT NULL,
 storageParam IN VARCHAR2,
 outGeoraster IN OUT SDO_GEORASTER),
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_IP.stretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumbers IN VARCHAR2,
 minValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 maxValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,

Chapter 11
SDO_GEOR_IP.stretch

11-23

 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

or

SDO_GEOR_IP.stretch(
 inGeoRaster IN SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 cropArea IN SDO_GEOMETRY,
 layerNumbers IN VARCHAR2,
 minValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 max_values IN SDO_NUMBER_ARRAY DEFAULT NULL,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY);

Description

Performs a min-max linear stretch on the input GeoRaster object using the minimum
and maximum values. The processed image is stored in the output GeoRaster object
or in a BLOB.

Parameters

inGeoRaster
The SDO_GEORASTER object to be stretched.

pyramidLevel
A number specifying the pyramid level to be stretched in the source GeoRaster
object. If null, the default is 0.

cropArea
Crop area definition. If cropArea is of type SDO_GEOMETRY, use the layerNumbers
parameter to specify one or more layer numbers; if cropArea is of type
SDO_NUMBER_ARRAY, use the bandNumbers parameter to specify one or more
band numbers.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window,
and raster space is assumed. If the data type is SDO_GEOMETRY, the minimum
bounding rectangle (MBR) of the geometry object is used as the crop area; see also
the Usage Notes for SDO_SRID requirements.

bandNumbers
A string identifying the physical band numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 1-3 for bands 1, 2, and 3).

layerNumbers
A string identifying the logical layer numbers on which the operation is to be
performed. Use commas to delimit the values, and a hyphen to indicate a range (for
example, 2-4 for layers 2, 3, and 4).

minValues
The minimum values of the bands to be stretched. If it is null, the minimum value of
the input GeoRaster object that is stored in the layer metadata is used. If there is only
one value in the SDO_NUMBER_ARRAY, it is used as the minimum value of all the

Chapter 11
SDO_GEOR_IP.stretch

11-24

input bands; otherwise, the number of values in the SDO_NUMBER_ARRAY must be
the same as the number of bands of the output GeoRaster object.

maxValues
The maximum values of the bands to be stretched. If it is null, the maximum value of
the input GeoRaster object that is stored in the layer metadata is used. If there is only
one value in the SDO_NUMBER_ARRAY, it is used as the maximum value of all the
input bands; otherwise, the number of values in the SDO_NUMBER_ARRAY must be
the same as the number of bands of the output GeoRaster object.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
The output SDO_GEORASTER object that reflects the results of the operation. Must
be either a valid existing GeoRaster object or an empty GeoRaster object. (Empty
GeoRaster objects are explained in Blank and Empty GeoRaster Objects.) Cannot be
the same GeoRaster object as inGeoRaster.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
If parallelism is specified, the procedure performs an internal commit while the
process is running. Therefore, you cannot roll back the results of this procedure. If
an error occurs (even if it is raised by the Oracle parallel server), you must delete the
resulting output GeoRaster object explicitly in order to roll back the operation.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

Usage Notes

The input GeoRaster object is stretched to 0-255 using the values in minValues and
maxValues parameters, or the minimum and maximum values stored in the statistics
metadata of the image. If the minValues and maxValues parameters are null, the input
GeoRaster object must have the statistics set in its metadata.

The cell depth of the output GeoRaster object is always 8BIT_U. When a GeoRaster
image needs to be stretched to an image with a cell depth other than 8BIT_U, you can
use SDO_GEOR_IP.piecewiseStretch.

If the cropArea parameter data type is SDO_GEOMETRY, the SDO_SRID value must
be one of the following:

• Null, to specify raster space

• A value from the SRID column of the MDSYS.CS_SRS table

Chapter 11
SDO_GEOR_IP.stretch

11-25

If the SDO_SRID values for the cropArea parameter geometry and the
model space are different, the cropArea parameter geometry is automatically
transformed to the coordinate system of the model space before the operation
is performed. (Raster space and model space are explained in GeoRaster Data
Model.)

Color map stored in the input GeoRaster object is not supported.

The output GeoRaster object has no pyramid or mask.

Examples

The following example creates a GeoRaster object that stretches band 2 of the input
GeoRaster object from value range of (30, 150) to (0, 255). (It refers to a table named
GEORASTER_TABLE, whose definition is presented after Example 1-1 in Storage
Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_number_array := null;
BEGIN
 INSERT INTO georaster_table (georid, georaster)
 VALUES (41, sdo_geor.init('RDT_1'))
 RETURNING georaster INTO gr2;

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.stretch(gr1, 0, cropArea, '2', sdo_number_array(30),
sdo_number_array(150), null, gr2);
 UPDATE georaster_table SET georaster=gr2 WHERE georid=41;
 COMMIT;
END;
/

The following example stretches band 2 of the input GeoRaster object from value
range of (30, 150) to (0, 255); the output is in a temporary BLOB. (It refers to a
table named GEORASTER_TABLE, whose definition is presented after Example 1-1 in
Storage Parameters.)

DECLARE
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 cropArea sdo_number_array := null;
 out_lob BLOB;
 outArea sdo_geometry := null;
 outWindow sdo_geometry := null;
 BEGIN
 dbms_lob.create_temporary(out_lob, TRUE);

 SELECT georaster INTO gr1 FROM georaster_table WHERE georid=4;

 sdo_geor_ip.stretch(gr1, 0, cropArea, '2', sdo_number_array(30),
sdo_number_array(150), null, out_lob, outArea, outWindow);

 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);

Chapter 11
SDO_GEOR_IP.stretch

11-26

END;
/

Chapter 11
SDO_GEOR_IP.stretch

11-27

12
SDO_GEOR_RA Package Reference

The SDO_GEOR_RA package contains subprograms (functions and procedures) for
raster algebra and analytic operations related to GeoRaster. This chapter presents
reference information, with one or more examples, for each subprogram.

To use the subprograms in ths chapter, you should junderstand the main concepts and
techniques described in Raster Algebra and Analytics.

• SDO_GEOR_RA.classify

• SDO_GEOR_RA.diff

• SDO_GEOR_RA.findCells

• SDO_GEOR_RA.isOverlap

• SDO_GEOR_RA.over

• SDO_GEOR_RA.rasterMathOp

• SDO_GEOR_RA.rasterUpdate

• SDO_GEOR_RA.stack

12.1 SDO_GEOR_RA.classify
Format

Operation on a Single GeoRaster Object

SDO_GEOR_RA.classify(
 inGeoRaster IN SDO_GEORASTER,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.classify(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

12-1

SDO_GEOR_RA.classify(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.classify(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'false',
 nodataValue IN NUMBER default 0);

SDO_GEOR_RA.classify(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE');

Operation on an Array of GeoRaster Objects

SDO_GEOR_RA.classify(
 georArray IN SDO_GEORASTER_ARRAY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.classify(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_NUMBER_ARRAY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,

Chapter 12
SDO_GEOR_RA.classify

12-2

 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.classify(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_GEOMETRY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.classify(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_NUMBER_ARRAY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0);

SDO_GEOR_RA.classify(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_GEOMETRY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE');

Operation on GeoRaster Objects Specified by a Cursor

SDO_GEOR_RA.classify(
 inGeoRasters IN SYS_REFCURSOR,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Chapter 12
SDO_GEOR_RA.classify

12-3

or

SDO_GEOR_RA.classify(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_NUMBER_ARRAY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.classify(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_GEOMETRY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.classify(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_NUMBER_ARRAY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0);

SDO_GEOR_RA.classify(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_GEOMETRY,
 expression IN VARCHAR2,
 rangeArray IN SDO_NUMBER_ARRAY,
 valueArray IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE');

Description

Generates a new GeoRaster object after applying the specified classification operation
on the input GeoRaster object or objects.

Chapter 12
SDO_GEOR_RA.classify

12-4

There are several formats for each of three input GeoRaster object or
objects specification options (SDO_GEORASTER, SDO_GEORASTER_ARRAY,
SYS_REEFCURSOR). Within each group of formats, you can specify no crop
area or a crop area of SDO_NUMBER_ARRAY or SDO_GEOMETRY. For an
SDO_GEOMETRY crop area, you can specify a polygon clip option, and the output
can be either a GeoRaster object or a BLOB.

Parameters

inGeoRaster
Input GeoRaster object.

georArray
An array of GeoRaster objects. The data type is SDO_GEOR_ARRAY, which is
defined as VARRAY(10485760) OF SDO_GEORASTER.

inGeoRasters
Cursor (SYS_REFCURSOR type) for the input GeoRaster objects.

cropArea
Crop area definition. If the data type is SDO_GEOMETRY, the minimum bounding
rectangle (MBR) of the geometry object is used as a rectangular crop area to
generate the output GeoRaster object. If the parameter polygonClip is TRUE, then
only cells within the crop area geometry are processed, and all cells outside the crop
area geometry are set to zero (0). If the parameter polygonClip is FALSE, then all cells
within the minimum bounding rectangle are processed.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window, and
raster space is assumed.

expression
An arithmetic expression used to classify cell values. See the Usage Notes for more
information about specifying this parameter.

rangeArray
A number array that defines ranges for classifying cell values. The array must contain
at least one element.

valueArray
A number array that defines the target cell value for each range. The number of
elements must be 1 greater than the elements in rangeArray (that is, its length must
be rangeArray+1).

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
Output GeoRaster object.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

Chapter 12
SDO_GEOR_RA.classify

12-5

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

nodata
The string TRUE specifies if any cell value involved in the expression evaluation
has a NODATA value, the expression is evaluated as a NODATA value; thus, the
corresponding cells in the output GeoRaster object are to be set to the value specified
for the nodataValue parameter. The string FALSE (the default) causes cells with
NODATA values to be considered as regular data. NODATA values and value ranges
are discussed in NODATA Values and Value Ranges.

nodataValue
The value used to set NODATA cells if the nodata parameter value is the string TRUE.

polygonClip
Ignored if cropArea is null. Otherwise, the string TRUE causes the cropArea geometry
to be used to process the data; the string FALSE or a null value causes the minimum
bounding rectangle (MBR) of thecropArea geometry to be used to process the data.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
Specifying parallelParam means that you cannot roll back the results of this
procedure, as explained in the Usage Notes.

Usage Notes

This procedure generates a new raster either in a GeoRaster object or a single BLOB,
based on the input GeoRaster object or objects and the expression parameter, which
is an arithmetic expression string. For each cell in the output GeoRaster object,
expression is evaluated against corresponding cell values in the input GeoRaster
object, and the following algorithm is used to calculate cell values of the output
GeoRaster object:

if (value of expression < rangeArray[0])
 cellValue=valueArray[0]
else if (value of expression >= rangeArray[n-1])
 cellValue=valueArray[n]
else if rangeArray[m-1] <= value of expression < rangeArray[m]
 cellValue=valueArray[m]

In the expression calculation:

• Length of rangeArray is n

• Length of valueArray is n+1

• 0 < m < n-1

For more information, see Raster Algebra Language.

There are several formats for each of the input GeoRaster object or
objects specification options (SDO_GEORASTER, SDO_GEORASTER_ARRAY,
SYS_REFCURSOR). Within each group of formats, you can specify no crop
area or a crop area of SDO_NUMBER_ARRAY or SDO_GEOMETRY. For an

Chapter 12
SDO_GEOR_RA.classify

12-6

SDO_GEOMETRY crop area, you can specify a polygon clip option, and the output
can be either a GeoRaster object or a BLOB.

If you specify parallelParam, some execution units of the procedure run as
autonomous transactions, which means that some changes are committed while the
procedure is running and therefore you cannot roll back those changes. If you do not
specify this parameter, you can roll back all changes.

Examples

The following example classifies cell values based on the cell values of the first layer.
The output is a GeoRaster object.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 rangeArray SDO_NUMBER_ARRAY;
 valueArray SDO_NUMBER_ARRAY;
BEGIN
 rangeArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180);
 valueArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180,190);
 select georaster into geor from georaster_table where georid = 1;
 insert into georaster_table values (5, sdo_geor.init('rdt_1', 5)) returning
georaster into geor1;
 sdo_geor_ra.classify(geor,'{0}',rangeArray,valueArray,null,geor1);
 update georaster_table set georaster = geor1 where georid = 5;
 commit;
END;
/

The following example classifies cell values based on the cell values of the first layer.
The output is a BLOB.

DECLARE
 geor SDO_GEORASTER;
 out_lob BLOB;
 outArea sdo_geometry;
 outWindow sdo_number_array;
 rangeArray SDO_NUMBER_ARRAY;
 valueArray SDO_NUMBER_ARRAY;
BEGIN
 rangeArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180);
 valueArray:=sdo_number_array(70,80,90,100,110,120,130,140,150,160,170,180,190);
 select georaster into geor from georaster_table where georid = 1;
 dbms_lob.create_temporary(out_lob, TRUE);
 sdo_geor_ra.classify(geor,'{0}',rangeArray,valueArray,null,out_lob, outArea,
outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);
END;
/

Chapter 12
SDO_GEOR_RA.classify

12-7

12.2 SDO_GEOR_RA.diff
Format

SDO_GEOR_RA.diff(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.diff(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 ploygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.diff(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0;

SDO_GEOR_RA.diff(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE');

Description

Generates a new GeoRaster object by performing the diff operation (explained in the
Usage Notes). The new raster is either in a GeoRaster object or a single BLOB.

Chapter 12
SDO_GEOR_RA.diff

12-8

Parameters

geor
First input GeoRaster object.

geor1
Second input GeoRaster object.

cropArea
Crop area definition. If the data type is SDO_GEOMETRY, the minimum bounding
rectangle (MBR) of the geometry object is used as a rectangular crop area to
generate the output GeoRaster object. If the parameter polygonClip is TRUE, then
only cells within the crop area geometry are processed, and all cells outside
the crop area geometry are set to zero (0). See also the Usage Notes for
SDO_GEOR.reproject for SDO_SRID requirements.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window, and
raster space is assumed.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
Output GeoRaster object.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

nodata
The string TRUE specifies that for any NODATA cells in an input GeoRaster object,
the corresponding cells in the output GeoRaster object are to be set to the value
specified for the nodataValue parameter. The string FALSE (the default) causes cells
with NODATA values to be considered as regular data. NODATA values and value
ranges are discussed in NODATA Values and Value Ranges.

nodataValue
The value used to set NODATA cells if the nodata parameter value is the string TRUE.

polygonClip
Ignored if cropArea is null. Otherwise, the string TRUE causes the cropArea value to
be used to crop the mosaicked data; the string FALSE or a null value causes the MBR
of cropArea to be used to crop the output image.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of

Chapter 12
SDO_GEOR_RA.diff

12-9

parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
Specifying parallelParam means that you cannot roll back the results of this
procedure, as explained in the Usage Notes.

Usage Notes

This procedure generates a new GeoRaster object by taking two input GeoRaster
objects and applying the over operation: specifically, for each cell value in each layer,
if the values in the two input objects are different, the value on the first input is output,
but if the values in the two input objects are the same, the output is zero.

The two input GeoRaster objects must have same dimension size and same number
of bands; otherwise, the ORA-13397 error is generated.

If you specify parallelParam, some execution units of the procedure run as
autonomous transactions, which means that some changes are committed while the
procedure is running and therefore you cannot roll back those changes. If you do not
specify this parameter, you can roll back all changes.

For more information, see Logical Operations.

Examples

The following example performs the diff operation on the two input GeoRaster objects.
The output is a GeoRaster object.

declare
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
 geom sdo_geometry;
begin
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101;
 select georaster into geor2 from georaster_table where georid = 102 for update;
 geom:=null;
 sdo_geor_ra.diff(geor,geor1,geom,null,geor2);
 update georaster_table set georaster = geor2 where georid = 102;
end;
/

The following example performs the diff operation on the two input GeoRaster objects.
The output is a GeoRaster object. The output is a BLOB.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 out_lob BLOB;
 outArea sdo_geometry;
 outWindow sdo_number_array;
 geom sdo_geometry;
BEGIN
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101;
 dbms_lob.create_temporary(out_lob, TRUE);
 geom:=null;
 sdo_geor_ra.diff(geor,geor1,geom,null,out_lob, outArea, outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||

Chapter 12
SDO_GEOR_RA.diff

12-10

 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);
END;
/

12.3 SDO_GEOR_RA.findCells
Format

SDO_GEOR_AGGR.findCells(
 inGeoRaster IN SDO_GEORASTER,
 condition IN VARCHAR2,
 storageParam IN VARCHAR2
 outGeoRaster OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_AGGR.findCells(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,
 condition IN VARCHAR2,
 storageParam IN VARCHAR2
 outGeoRaster OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_AGGR.findCells(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 condition IN VARCHAR2,
 storageParam IN VARCHAR2
 outGeoRaster OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_AGGR.findCells(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 condition IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’;

SDO_GEOR_AGGR.findCells(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 condition IN VARCHAR2,

Chapter 12
SDO_GEOR_RA.findCells

12-11

 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Description

Generates a new raster either in a GeoRaster object or a single BLOB based on
the input GeoRaster object, but masking all cells that do not satisfy the condition
parameter specification.

Parameters

inGeoRaster
Input GeoRaster object.

cropArea
Crop area definition. If the data type is SDO_GEOMETRY, the minimum bounding
rectangle (MBR) of the geometry object is used as a rectangular crop area
to generate the output GeoRaster object; see also the Usage Notes for
SDO_GEOR.reproject for SDO_SRID requirements.. If the parameter polygonClip
is TRUE, then only cells within the crop area geometry are processed, and all cells
outside the crop area geometry are set to zero (0). If the parameter polygonClip is
FALSE, then all cells within the minimum bounding rectangle are processed.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window, and
raster space is assumed.

condition
An expression string used to filter out cells. (See the Usage Notes for more
information.).

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
Output GeoRaster object.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

bgValues
Background values to represent values of cells in the empty raster blocks of the
input GeoRaster object. The number of elements in the SDO_NUMBER_ARRAY
object must be either one (same filling value used for all bands) or the band

Chapter 12
SDO_GEOR_RA.findCells

12-12

dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the second band with 5, and the
third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

nodata
The string TRUE means that the original values for any NODATA cells in the GeoRaster
object are kept, and NODATA values are considered in the condition parameter
evaluation. If any cell value involved in the condition parameter evaluation has a
NODATA value, the condition parameter is evaluated as FALSE (see the Usage
Notes regarding the condition parameter). The string FALSE (the default) causes cells
with NODATA values to be considered as regular data. NODATA values and value
ranges are discussed in NODATA Values and Value Ranges.

polygonClip
Ignored if cropArea is null. Otherwise, the string TRUE causes the cropArea geometry
to be used to process the data; the string FALSE or a null value causes the minimum
bounding rectangle (MBR) of thecropArea geometry to be used to process the data.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
Specifying parallelParam means that you cannot roll back the results of this
procedure, as explained in the Usage Notes.

Usage Notes

This procedure generates a new raster either in a GeoRaster object or a single
BLOB based on the input GeoRaster object and the condition parameter, which is
booleanExpr, a Boolean expression string. For each cell in the output GeoRaster
object, condition is evaluated against corresponding cell values in the input GeoRaster
object. If condition is true for a cell, the original cell value is kept in the output
GeoRaster object; otherwise, bgValues are filled for the cell in the output GeoRaster
object

For more information, see Raster Algebra Language.

If you specify parallelParam, some execution units of the procedure run as
autonomous transactions, which means that some changes are committed while the
procedure is running and therefore you cannot roll back those changes. If you do not
specify this parameter, you can roll back all changes.

Examples

The following example changes cell values to default background values 0, if cell value
of the second layer is less than or equal to 200.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN
 select georaster into geor from georaster_table where georid = 1;
 insert into georaster_table values (5, sdo_geor.init('rdt_1', 5)) returning
georaster into geor1;

Chapter 12
SDO_GEOR_RA.findCells

12-13

 sdo_geor_ra.findcells(geor, '{1}>200',null,geor1);
 update georaster_table set georaster = geor1 where georid = 5;
 commit;
END;
/

The following example changes cell values to default background values 0, if cell value
of the second layer is less than or equal to 200. The output is in a BLOB..

DECLARE
 geor SDO_GEORASTER;
 out_lob BLOB;
 outArea sdo_geometry;
 outWindow sdo_number_array;
BEGIN
 select georaster into geor from georaster_table where georid = 1;
 dbms_lob.create_temporary(out_lob, TRUE);
 sdo_geor_ra.findcells(geor, '{1}>200',null,out_lob, outArea, outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);
END;
/

The following example uses a geometry object (geom) as the input cropArea.

DECLARE
 geor SDO_GEORASTER;
 geor0 SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geom SDO_GEOMETRY;
BEGIN
 geom:= sdo_geometry(2003,82394, NULL,
 sdo_elem_info_array(1, 1003, 1),
 sdo_ordinate_array(21783.775, 1008687.9,
 18783.775, 966687.905,
 63783.775, 966687.905,
 81783.775, 990687.905,
 21783.775, 1008687.9));
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101 for update;
 sdo_geor_ra.findcells(geor,geom,'({1}=42)','blocking=true,
blocksize=(256,256,3)',geor1,null,'false');
 update georaster_table set georaster = geor1 where georid = 101;
END;
/

12.4 SDO_GEOR_RA.isOverlap
Format

SDO_GEOR.isOverlap(
 georaster1 IN SDO_GEORASTER,
 georaster2 IN SDO_GEORASTER,
 tolerance IN NUMBER DEFAULT 0.5
) RETURN VARCHAR2;

Chapter 12
SDO_GEOR_RA.isOverlap

12-14

or

SDO_GEOR_RA.isOverlap(
 georArray IN SDO_GEORASTER_ARRAY,
 tolerance IN NUMBER DEFAULT 0.5
) RETURN VARCHAR2;

or

SDO_GEOR_RA.isOverlap(
 geor_cur IN SYS_REFCURSOR,
 tolerance IN NUMBER DEFAULT 0.5
) RETURN VARCHAR2;

Description

Returns the string TRUE if two or more GeoRaster objects overlap, or FALSE if two or
more GeoRaster objects do not overlap. (See the Usage Notes for the logic used to
determine of two GeoRaster objects, whether georeferenced or not, overlap.)

Parameters

georaster1
GeoRaster object.

georaster2
GeoRaster object.

georArray
An array of GeoRaster objects. The data type is SDO_GEOR_ARRAY, which is
defined as VARRAY(10485760) OF SDO_GEORASTER.

geor_cur
Cursor (SYS_REFCURSOR type) for the input GeoRaster objects.

tolerance
Tolerance value used to determine if two cells in the cell space overlap in the model
space. The value should be between 0 and 1, and the unit is cell. For example,
0.5 (the default) means one-half cell, namely, that two cells overlap if the distance
between them in 0.5 cell or less.

Usage Notes

The GeoRaster objects being compared for overlap must be either all georeferenced
or all non-georeferenced.

The following logic is applied to determine if two GeoRaster objects overlap:

1. If the row or column dimension size of two GeoRaster objects is different, then
return 'FALSE'. Otherwise, continue to the next step.

2. Check if both GeoRaster objects are georeferenced.

a. If one is georeferenced and the other one is not, then return 'FALSE'.

b. If both are non-georeferenced, and if the ultCoordinate of both GeoRaster
objects is the same, then return 'TRUE'; else, return 'FALSE'.

c. If both are georeferenced, go to the next step.

Chapter 12
SDO_GEOR_RA.isOverlap

12-15

3. Check the pType, nVars, order, and nCoefficients values (explained in
Functional Fitting Georeferencing Model) of the p, q, r, and s polynomials. If any
are different, then return 'FALSE'; else, go to the next step.

4. Calculate the upper-left, upper-right, lower-left, and lower-right four points from
cell space to model space. If the distance of corresponding points of the two
GeoRaster objects is within the tolerance value (converted from cell space to
model space), then return 'TRUE'; else, return 'FALSE'.

The raster algebra functions of GeoRaster require the raster layers from different
GeoRaster objects have the same size and completely overlap each other. Before you
apply raster algebra operations over two or more GeoRaster objects or perform other
operations, you can use the SDO_GEOR_RA.isOverlap function to determine if the
GeoRaster objects are of the same size and cover the same ground area.

Examples

The following examples check if two GeoRaster objects overlap. (They use two
different formats of the function.)

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN

 SELECT georaster INTO geor FROM georaster_table WHERE georid = 1;
 SELECT georaster INTO geor1 FROM georaster_table WHERE georid = 30;
 dbms_output.put_line(sdo_geor_ra.isOverlap(geor,geor1,0.5));
END;
/

DECLARE
 mycursor sys_refcursor;
BEGIN
 OPEN mycursor FOR
 SELECT georaster FROM georaster_table WHERE georid = 1 or georid=30;
 dbms_output.put_line(sdo_geor_ra.isOverlap(mycursor,0.5));
END;
/

12.5 SDO_GEOR_RA.over
Format

SDO_GEOR_RA.over(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.over(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 storageParam IN VARCHAR2,

Chapter 12
SDO_GEOR_RA.over

12-16

 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 ploygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.over(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0;

SDO_GEOR_RA.over(
 geor IN SDO_GEORASTER,
 geor1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Description

Generates a new raster, either in a GeoRaster object or in a single BLOB, by
performing the over operation (explained in the Usage Notes).

Parameters

geor
First input GeoRaster object.

geor1
Second input GeoRaster object.

cropArea
Crop area definition. If the data type is SDO_GEOMETRY, the minimum bounding
rectangle (MBR) of the geometry object is used as a rectangular crop area to
generate the output GeoRaster object. If the parameter polygonClip is TRUE, then
only cells within the crop area geometry are processed, and all cells outside
the crop area geometry are set to zero (0). See also the Usage Notes for
SDO_GEOR.reproject for SDO_SRID requirements.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window, and
raster space is assumed.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

Chapter 12
SDO_GEOR_RA.over

12-17

outGeoRaster
Output GeoRaster object.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

nodata
The string TRUE specifies that for any NODATA cells in an input GeoRaster object,
the corresponding cells in the output GeoRaster object are to be set to the value
specified for the nodataValue parameter. The string FALSE (the default) causes cells
with NODATA values to be considered as regular data. NODATA values and value
ranges are discussed in NODATA Values and Value Ranges.

nodataValue
The value used to set NODATA cells if the nodata parameter value is the string TRUE.

polygonClip
Ignored if cropArea is null. Otherwise, the string TRUE causes the cropArea value to
be used to crop the mosaicked data; the string FALSE or a null value causes the MBR
of cropArea to be used to crop the output image.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
Specifying parallelParam means that you cannot roll back the results of this
procedure, as explained in the Usage Notes.

Usage Notes

This procedure generates a new raster, either in a GeoRaster object or in a single
BLOB, by taking two input GeoRaster objects and applying the over operation:
specifically, each cell in each layer in the output raster will contain the value from the
corresponding cell in first input GeoRaster object if that value is not zero; otherwise, it
will contain the value of the corresponding cell in the second GeoRaster object.

If you specify parallelParam, some execution units of the procedure run as
autonomous transactions, which means that some changes are committed while the
procedure is running and therefore you cannot roll back those changes. If you do not
specify this parameter, you can roll back all changes.

For more information, see Logical Operations.

Examples

The following example performs the over operation on the two input GeoRaster
objects. The output is in a GeoRaster object.

Chapter 12
SDO_GEOR_RA.over

12-18

DECLARE
 geor MDSYS.SDO_GEORASTER;
 geor1 MDSYS.SDO_GEORASTER;
 geor2 MDSYS.SDO_GEORASTER;
 geom mdsys.sdo_geometry;
BEGIN
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101;
 select georaster into geor2 from georaster_table where georid = 102 for update;
 geom:=null;
 mdsys.sdo_geor_ra.over(geor,geor1,geom,null,geor2);
 update georaster_table set georaster = geor2 where georid = 102;
END;
/

The following example performs the over operation on the two input GeoRaster
objects. The output is in a BLOB.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 out_lob BLOB;
 outArea sdo_geometry;
 outWindow sdo_number_array;
 geom sdo_geometry;
BEGIN
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101;
 dbms_lob.create_temporary(out_lob, TRUE);
 geom:=null;
 sdo_geor_ra.over(geor,geor1,geom,null,out_lob, outArea, outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);
END;
/

12.6 SDO_GEOR_RA.rasterMathOp
Format

Operation on a Single GeoRaster Object

SDO_GEOR_RA.rasterMathOp(
 inGeoRaster IN SDO_GEORASTER,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-19

 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.rasterMathOp(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0;

SDO_GEOR_RA.rasterMathOp(
 inGeoRaster IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Operation on an Array of GeoRaster Objects

SDO_GEOR_RA.rasterMathOp(
 georArray IN SDO_GEORASTER_ARRAY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_NUMBER_ARRAY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-20

 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.rasterMathOp(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0;

SDO_GEOR_RA.rasterMathOp(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Operation on GeoRaster Objects Specified by a Cursor

SDO_GEOR_RA.rasterMathOp(
 inGeoRasters IN SYS_REFCURSOR,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_NUMBER_ARRAY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-21

SDO_GEOR_RA.rasterMathOp(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0;

SDO_GEOR_RA.rasterMathOp(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_GEOMETRY,
 operation IN SDO_STRING2_ARRAY,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Operation on All Corresponding Cells of Each Layer

SDO_GEOR_RA.rasterMathOp(
 georaster0 IN SDO_GEORASTER,
 georaster1 IN SDO_GEORASTER,
 constant IN NUMBER,
 operator IN PLS_INTEGER,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 georaster0 IN SDO_GEORASTER,
 georaster1 IN SDO_GEORASTER,
 cropArea IN SDO_NUMBER_ARRAY,
 constant IN NUMBER,
 operator IN PLS_INTEGER,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-22

 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.rasterMathOp(
 georaster0 IN SDO_GEORASTER,
 georaster1 IN SDO_GEORASTER,
 cropArea IN SDO_GHEOMETRY,
 constant IN NUMBER,
 operator IN PLS_INTEGER,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterMathOp(
 georaster0 IN SDO_GEORASTER,
 georaster1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 constant IN NUMBER,
 operator IN PLS_INTEGER,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0;

SDO_GEOR_RA.rasterMathOp(
 georaster0 IN SDO_GEORASTER,
 georaster1 IN SDO_GEORASTER,
 cropArea IN SDO_GEOMETRY,
 constant IN NUMBER,
 operator IN PLS_INTEGER,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Description

Performs a raster mathematical operation on one or more GeoRaster objects.

Parameters

inGeoRaster
Input GeoRaster object.

georArray
An array of GeoRaster objects. The data type is SDO_GEOR_ARRAY, which is
defined as VARRAY(10485760) OF SDO_GEORASTER.

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-23

inGeoRasters
Cursor (SYS_REFCURSOR type) for the input GeoRaster objects.

georaster0
The left operand.

georaster1
The right operand.

cropArea
Crop area definition. If the data type is SDO_GEOMETRY, the minimum bounding
rectangle (MBR) of the geometry object is used as a rectangular crop area to
generate the output GeoRaster object. If the parameter polygonClip is TRUE, then
only cells within the crop area geometry are processed, and all cells outside
the crop area geometry are set to zero (0). See also the Usage Notes for
SDO_GEOR.reproject for SDO_SRID requirements.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window, and
raster space is assumed.

operation
An array of arithmeticExpr expression strings used to calculate raster cell values in
the output GeoRaster object. Each element of the array corresponds to a layer in the
output GeoRaster object. The data type is SDO_STRING2_ARRAY, which is defined
as VARRAY(2147483647) OF VARCHAR2(4096).
The syntax for the arithmeticExpr expressions is explained in Raster Algebra
Language.

constant
Constant value for some operators (see the operator parameter), such as addConst
and divConstant.

operator
One of the following math operators, which are defined in the SDO_GEOR_RA
package:

OPERATOR_ABSOLUTE
OPERATOR_ADD
OPERATOR_ADDCONST
OPERATOR_DIVIDE
OPERATOR_DIVIDECONST
OPERATOR_EXP
OPERATOR_INVERT
OPERATOR_LOG
OPERATOR_MULTIPLY
OPERATOR_MULTIPLYCONST
OPERATOR_SUBTRACT
OPERATOR_SUBTRACTCONST

For the definitions of these operators, see the Usage Notes.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
Output GeoRaster object.

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-24

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

bgValues
Background values to represent values of cells in the empty raster blocks of the
input GeoRaster object. The number of elements in the SDO_NUMBER_ARRAY
object must be either one (same filling value used for all bands) or the band
dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the second band with 5, and the
third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

nodata
The string TRUE specifies that if there are any NODATA cells in the operands of
the math operation, the operation result is evaluated as a NODATA value; thus,
the corresponding cells in the output GeoRaster object are to be set to the value
specified for the nodataValue parameter. The string FALSE (the default) causes cells
with NODATA values to be considered as regular data. NODATA values and value
ranges are discussed in NODATA Values and Value Ranges.

nodataValue
The value used to set NODATA cells if the nodata parameter value is the string TRUE.

polygonClip
Ignored if cropArea is null. Otherwise, the string TRUE causes the cropArea value to
be used to crop the mosaicked data; the string FALSE or a null value causes the MBR
of cropArea to be used to crop the output image.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
Specifying parallelParam means that you cannot roll back the results of this
procedure, as explained in the Usage Notes.

Usage Notes

This procedure has 20 formats, which can be considered as 4 groups of 5 formats
each:

• Operation on a single GeoRaster object

• Operation on an array of GeoRaster objects

• Operation on GeoRaster objects specified by a cursor (SYS_REFCURSOR type)

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-25

• Operation on all corresponding cells of each layer or one or two GeoRaster
objjects

Within each group, the options include specifying a crop areas of type
SDO_NUMBER_ARRAY or SDO_GEOMETRY, and for an SDO_GEOMETRY crop
area, whether to use the crop area’s geometry object or the MBR of that object. The
output raster can be in a GeoRaster object or a single BLOB.

The first three groups of formats are used to generate a new raster from layers of one
or more input GeoRaster objects based on the operation parameter. For example, the
following example generates a new GeoRaster object that has three layers, and each
layer's value is the cell value of the input GeoRaster object minus 10:

sdo_geor_ra.rasterMathOp(geor,SDO_STRING2_ARRAY('{0,0}-10','{0,1}-10','{0,2}-10')
,null,geor1);

The fourth group of formats applies a mathematical operation on all corresponding
cells of each layer of input GeoRaster objects, and generates a new GeoRaster object
with the same dimension size as the first input GeoRaster object (geoRaster0). The
two input GeoRaster objects must have same row/column/band dimension size.

For the fourth group of formats, when the output raster is a GeoRaster object, all
pyramids are removed in the resulting GeoRaster object, but masks of the first input
GeoRaster object are kept in the resulting GeoRaster object; when the output raster is
in a BLOB, all pyramids and masks are removed from the output.

For the operator parameter, the operators have the following definitions:

OPERATOR_ABSOLUTE :
 if (src[x][y][b] < 0) {
 dst[x][y][b] = -src[x][y][b];
 } else {
 dst[x][y][b] = src[x][y][b];
 }

OPERATOR_ADD
 dst[x][y][b]=src1[x][y][b]+src2[x][y][b]
OPERATOR_ADDCONST
 dst[x][y][b]=src[x][y][b] +constant --constant is the third parameter

OPERATOR_DIVIDE
 dst[x][y][b]=src1[x][y][b]/src2[x][y][b]

OPERATOR_DIVIDECONST
 dst[x][y][b]=src[x][y][b]/constant --constant is the third parameter

OPERATOR_EXP
 dst[x][y][b]=exp(src[x][y][b])

OPERATOR_INVERT :
 Inverts the cell values: dst[x][y][b]=-src[x][y][b]

OPERATOR_LOG :
 dst[x][y][b]=log(src[x][y][b])

OPERATOR_MULTIPLY
 dst[x][y][b]=src1[x][y][b]*src2[x][y][b]

OPERATOR_MULTIPLYCONST
 dst[x][y][b]=src[x][y][b]*constant --constant is the third parameter

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-26

OPERATOR_SUBTRACT
 dst[x][y][b]=src1[x][y][b]-src2[x][y][b]

OPERATOR_SUBTRACTCONST
 dst[x][y][b]=src[x][y][b]-constant --constant is the third parameter

For more information about the raster algebra language, see Raster Algebra
Language.

If you specify parallelParam, some execution units of the procedure run as
autonomous transactions, which means that some changes are committed while the
procedure is running and therefore you cannot roll back those changes. If you do not
specify this parameter, you can roll back all changes.

Examples

The following example adds the constant 10 to all cell values of the input GeoRaster
object. The output is a GeoRaster object.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
BEGIN

 select georaster into geor from georaster_table where georid = 1;
 insert into georaster_table values (5, sdo_geor.init('rdt_1', 5)) returning
georaster into geor1;

sdo_geor_ra.rasterMathOp(geor,null,10,sdo_geor_ra.OPERATOR_ADDCONST,null,geor1);
 update georaster_table set georaster = geor1 where georid = 5;
 commit;
END;
/

The following example adds the constant 10 to all cell values of the input GeoRaster
object. The output is a BLOB.

DECLARE
 geor SDO_GEORASTER;
 out_lob BLOB;
 outArea sdo_geometry;
 outWindow sdo_number_array;
BEGIN

 select georaster into geor from georaster_table where georid = 1;
 dbms_lob.create_temporary(out_lob, TRUE);

sdo_geor_ra.rasterMathOp(geor,null,10,sdo_geor_ra.OPERATOR_ADDCONST,null,out_lob,
 outArea, outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);

END;
/

Chapter 12
SDO_GEOR_RA.rasterMathOp

12-27

The following example generates a new three-layer GeoRaster object from three
layers of the input GeoRaster object, and each cell value in the new GeoRaster object
is the value of the corresponding "old" cell divided by 2.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geo_array SDO_GEORASTER_ARRAY;
BEGIN
 select georaster into geor from georaster_table where georid = 2;
 insert into georaster_table values (20, sdo_geor.init('rdt_1', 20)) returning
georaster into geor1;
 geo_array:=SDO_GEORASTER_ARRAY(geor);
 sdo_geor_ra.rasterMathOp(geo_array,SDO_STRING2_ARRAY('{0,0}/2','{0,1}/
2','{0,2}/2'),null,geor1);
 update georaster_table set georaster = geor1 where georid = 20;
 commit;
END;
/

The following example performs a raster math operation with a geometry object as the
crop area.

DECLARE
 geor SDO_GEORASTER;
 geor1 SDO_GEORASTER;
 geom SDO_GEOMETRY;
 geo_array SDO_GEORASTER_ARRAY;
BEGIN
 geom:= sdo_geometry(2003,82394, NULL,
 sdo_elem_info_array(1, 1003, 1),
 sdo_ordinate_array(21783.775, 1008687.9,
 18783.775, 966687.905,
 63783.775, 966687.905,
 81783.775, 990687.905,
 21783.775, 1008687.9));
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor1 from georaster_table where georid = 101 for update;
 geo_array:=SDO_GEORASTER_ARRAY(geor);
 mdsys.sdo_geor_ra.rasterMathOp(geo_array,geom,SDO_STRING2_ARRAY('{0,0}/
2','{0,1}/2','{0,2}/2'),null,geor1);
 update georaster_table set georaster = geor1 where georid = 101;
 commit;
END;
/

12.7 SDO_GEOR_RA.rasterUpdate
Format

SDO_GEOR_RA.rasterUpdate(
 geoRaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 conditions IN SDO_STRING2_ARRAY,
 vals IN SDO_STRING2_ARRAYSET,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

Chapter 12
SDO_GEOR_RA.rasterUpdate

12-28

SDO_GEOR_RA.rasterUpdate(
 geoRaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 targetArea IN SDO_NUMBER_ARRAY,
 conditions IN SDO_STRING2_ARRAY,
 vals IN SDO_STRING2_ARRAYSET,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

SDO_GEOR_RA.rasterUpdate(
 geoRaster IN OUT SDO_GEORASTER,
 pyramidLevel IN NUMBER,
 targetArea IN SDO_GEOMETRY,
 conditions IN SDO_STRING2_ARRAY,
 vals IN SDO_STRING2_ARRAYSET,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

Description

Updates all cells for which the conditions specification is true, using values calculated
from the vals specification.

Parameters

geoRaster
GeoRaster object that is used for input and for output (updating based on specified
conditions).

pyramidLevel
Pyramid level to be updated. If this parameter is null, all pyramid levels are updated.

targetArea
Target area definition. If the data type is SDO_GEOMETRY, then if the parameter
polygonClip is TRUE, only cells within the target area geometry are updated,
and all cells outside the target area geometry keep original values; but if the
parameter polygonClip is FALSE, all cells in the MBR of the target area geometry
are updated.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window, and
raster space is assumed.

conditions
An array of booleanExpr expression strings used to select cells. (See the Usage
Notes for more information.) The data type is SDO_STRING2_ARRAY, which is
defined as VARRAY(2147483647) OF VARCHAR2(4096).

vals
An array or arrays of arithmeticExpr expressions, with the outer array corresponding
to each condition and the inner array corresponding to each layer. The data
type is SDO_STRING2_ARRAYSET, which is defined as VARRAY(2147483647) OF
SDO_STRING2_ARRAY.

Chapter 12
SDO_GEOR_RA.rasterUpdate

12-29

bgValues
Background values to represent values of cells in the empty raster blocks of the
input GeoRaster object. The number of elements in the SDO_NUMBER_ARRAY
object must be either one (same filling value used for all bands) or the band
dimension size (a different filling value for each band, respectively). For example,
SDO_NUMBER_ARRAY(1,5,10) fills the first band with 1, the second band with 5, and the
third band with 10. The default bgValues are zero (0).
The filling values must be valid cell values as specified by the target cell depth
background values for filling sparse data.

nodata
The string TRUE means that the original values for any NODATA cells in the
GeoRaster object are not to be updated, and NODATA values are considered in
the conditions parameter evaluation. If any cell value involved in the conditions
parameter evaluation has a NODATA value, the conditions parameter is evaluated
as FALSE (See the Usage Notes regarding the conditions parameter). The string
FALSE (the default) causes cells with NODATA values to be considered as regular
cells and thus eligible for updating. NODATA values and value ranges are discussed
in NODATA Values and Value Ranges.

polygonClip
Ignored if targetArea is null. Otherwise, the string TRUE causes the targetArea
geometry value to be used to update raster cell values; the string FALSE or a null value
causes the MBR of targetArea geometry to be used to update raster cell values.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
Specifying parallelParam means that you cannot roll back the results of this
procedure, as explained in the Usage Notes.

Usage Notes

Because this procedure overwrites data in the input GeoRaster object, you should
make a copy of the original GeoRaster object and use this procedure on the copied
object. After you are satisfied with the result of this procedure, you can discard the
original GeoRaster object if you wish.

This procedure selects cells from the specified GeoRaster object based
on booleanExpr strings specified in the conditions parameter, and updates
corresponding cell values by calculating arithmeticExpr expression strings specified
in the vals parameter. For example, if:

conditions = SDO_STRING2_ARRAY('{0}=48','{0}=108')
vals =
SDO_STRING2_ARRAYSET(SDO_STRING2_ARRAY('123','54','89'),SDO_STRING2_ARRAY('98','5
6','123'))

Then:

• For all cells whose first layer value equals 48, their first, second, and third layer
values are set to 123,54,89, respectively.

• For all cells whose first layer value equals 108, their first, second, and third layer
values are set to 98,56,123, respectively.

Chapter 12
SDO_GEOR_RA.rasterUpdate

12-30

For more information, see Raster Algebra Language.

If you specify parallelParam, some execution units of the procedure run as
autonomous transactions, which means that some changes are committed while the
procedure is running and therefore you cannot roll back those changes. If you do not
specify this parameter, you can roll back all changes.

Examples

The following example updates all cells for which the conditions specification is true,
using values calculated from the vals specification.

DECLARE
 geor SDO_GEORASTER;
BEGIN
 select georaster into geor from georaster_table where georid = 1;

sdo_geor_ra.rasterUpdate(geor,0,SDO_STRING2_ARRAY('(abs({0}-{1})=48)&({2}-{1}=-10
1)','2*{0}-{1}/
3=108'),SDO_STRING2_ARRAYSET(SDO_STRING2_ARRAY('123','54','89'),SDO_STRING2_ARRA
Y('98','56','123')));
END;
/

12.8 SDO_GEOR_RA.stack
Format (SDO_GEORASTER_ARRAY input)

SDO_GEOR_RA.stack(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_NUMBER_ARRAY,
 layerList IN SDO_NUMBER_ARRAY,
 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.stack(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_GEOMETRY,
 layerList IN SDO_NUMBER_ARRAY,
 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

DO_GEOR_RA.stack(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_NUMBER_ARRAY,
 layerList IN SDO_NUMBER_ARRAY,
 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,

Chapter 12
SDO_GEOR_RA.stack

12-31

 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0,;

SDO_GEOR_RA.stack(
 georArray IN SDO_GEORASTER_ARRAY,
 cropArea IN SDO_GEOMETRY,
 layerList IN SDO_NUMBER_ARRAY,
 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT ‘FALSE’,
 nodataValue IN NUMBER default 0,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Format (SYS_REFCURSOR input)

SDO_GEOR_RA.stack(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumber IN NUMBER,
 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 parallelParam IN VARCHAR2 DEFAULT NULL);

SDO_GEOR_RA.stack(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_GEOMETRY,
 bandNumber IN NUMBER,
 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 outGeoRaster IN OUT SDO_GEORASTER,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT 'FALSE',
 parallelParam IN VARCHAR2 DEFAULT NULL);

or

DO_GEOR_RA.stack(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_NUMBER_ARRAY,
 bandNumber IN NUMBER,
 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER default 0,;

SDO_GEOR_RA.stack(
 inGeoRasters IN SYS_REFCURSOR,
 cropArea IN SDO_GEOMETRY,
 bandNumber IN NUMBER,

Chapter 12
SDO_GEOR_RA.stack

12-32

 method IN VARCHAR2,
 storageParam IN VARCHAR2,
 rasterBlob IN OUT NOCOPY BLOB,
 outArea OUT SDO_GEOMETRY,
 outWindow OUT SDO_NUMBER_ARRAY,
 nodata IN VARCHAR2 DEFAULT 'FALSE',
 nodataValue IN NUMBER DEFAULT 0,
 polygonClip IN VARCHAR2 DEFAULT ‘FALSE’);

Description

Generates a single-layer raster either in a GeoRaster object or a single BLOB whose
cell values are a local statistics value of a list of layers or bands of the input GeoRaster
objects. The input layers are specified by the layerList parameter (or input bands
by the bandNumber parameter), and the statistics method is specified by the method
parameter.

Parameters

georArray
An array of GeoRaster objects. The data type is SDO_GEOR_ARRAY, which is
defined as VARRAY(10485760) OF SDO_GEORASTER.

inGeoRasters
Cursor (SYS_REFCURSOR type) for the input GeoRaster objects.

cropArea
Crop area definition. If the SDO_GEOMETRY object has a non-null SRID, the source
GeoRaster objects must be georeferenced; otherwise, the source GeoRaster objects
can be georeferenced or non-georeferenced. If polygonClip is FALSE, the MBR of
the cropArea is used to crop the data. If polygonClip is TRUE, the geometry of the
cropArea is used to crop the data.
If the data type is SDO_NUMBER_ARRAY, the parameter identifies the upper-left
(row, column) and lower-right (row, column) coordinates of a rectangular window, and
raster space is assumed.

layerList
A number array to specify which bands of the input GeoRaster objects are used
to compute statistics value for output. For example, if georArray specifies three
GeoRaster objects geor1,geor2,geor3, which have 2,3,4 bands respectively, a layer
list {0,3,7} is used to specify three bands as follows:

• The first band of the first GeoRaster object geor1

• The second band of the second GeoRaster object geor2

• The third band of the third GeoRaster object geor3

bandNumber
If null, then all bands of the input GeoRaster objects are involved in the statistics
calculation; otherwise, the specified band of the input GeoRaster objects is involved
in the statistics calculation. For example, if bandNumber is 0 (zero), then all of the first
band of the input GeoRaster objects are involved in the statistics calculation.

Chapter 12
SDO_GEOR_RA.stack

12-33

method
A string to specify what local statistics value should be returned. It should be
one of the following values: max, min, median, mean, std, sum, minority, majority,
diversity.

storageParam
A string specifying storage parameters, as explained in Storage Parameters.

outGeoRaster
Output GeoRaster object.

rasterBlob
BLOB to hold the output of the processing result. It must exist or have been initialized
before the operation.

outArea
An SDO_GEOMETRY object containing the MBR (minimum bounding rectangle) in
the model coordinate system of the resulting object.

outWindow
An SDO_NUMBER_ARRAY object identifying the coordinates of the upper-left and
lower-right corners of the output window in the cell space.

nodata
The string TRUE specifies that if there are any NODATA cells in the specified
layerList parameter, the corresponding cells in the output GeoRaster object are
to be set to the value specified for the nodataValue parameter. The string FALSE (the
default) causes cells with NODATA values to be considered as regular data. NODATA
values and value ranges are discussed in NODATA Values and Value Ranges.

nodataValue
The value used to set NODATA cells if the nodata parameter value is the string TRUE.

parallelParam
Specifies the degree of parallelism for the operation. If specified, must be in the form
parallel=n, where n is greater than 1. The database optimizer uses the degree of
parallelism specified by this parameter. If not specified, then by default there is no
parallel processing. (For more information, see Parallel Processing in GeoRaster.)
Specifying parallelParam means that you cannot roll back the results of this
procedure, as explained in the Usage Notes.

Usage Notes

All of the input GeoRaster objects must have same dimension size; otherwise, the
ORA-13397 error is generated.

If you specify parallelParam, some execution units of the procedure run as
autonomous transactions, which means that some changes are committed while the
procedure is running and therefore you cannot roll back those changes. If you do not
specify this parameter, you can roll back all changes.

Examples

The following example performs the stack operation on two input GeoRaster objects.
The output is a GeoRaster object.

DECLARE
 geor SDO_GEORASTER;

Chapter 12
SDO_GEOR_RA.stack

12-34

 geor1 SDO_GEORASTER;
 geor2 SDO_GEORASTER;
 geom mdsys.sdo_geometry;
BEGIN
 geom:= sdo_geometry(2003,82394, NULL,
 sdo_elem_info_array(1, 1003, 1),
 sdo_ordinate_array(20283.775, 1011087.9,
 18783.775, 1008687.9,
 21783.775, 1008687.9,
 22683.775+0.001, 1009587.9+0.001,
 20283.775, 1011087.9));
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor2 from georaster_table where georid = 102;
 select georaster into geor1 from georaster_table where georid = 101 for update;

sdo_geor_ra.stack(SDO_GEORASTER_ARRAY(geor,geor2),geom,SDO_NUMBER_ARRAY(3,5),'max
',null,geor1,'false',0,'TRUE');
 update georaster_table set georaster = geor1 where georid = 101;
END;
/

The following example performs the stack operation on two input GeoRaster objects.
The output is a BLOB.

DECLARE
 geor SDO_GEORASTER;
 geor2 SDO_GEORASTER;
 geom sdo_geometry;
 out_lob BLOB;
 outArea sdo_geometry;
 outWindow sdo_number_array;
BEGIN
 geom:= null;
 select georaster into geor from georaster_table where georid = 100;
 select georaster into geor2 from georaster_table where georid = 102;
 dbms_lob.create_temporary(out_lob, TRUE);

sdo_geor_ra.stack(SDO_GEORASTER_ARRAY(geor,geor2),geom,SDO_NUMBER_ARRAY(3,5),'max
',null,out_lob, outArea, outWindow);
 if outWindow is not null then
 dbms_output.put_line('output window: (' || outWindow(1) || ',' ||
 outWindow(2) || ',' || outWindow(3) || ',' ||
outWindow(4) || ')');
 end if;
 dbms_lob.freeTemporary(out_lob);
END;
/

The following example performs the stack operation on the first band of the two input
GeoRaster objects in a cursor. The output is a GeoRaster object.

DECLARE
 geor1 SDO_GEORASTER;
 mycur SYS_REFCURSOR;
 geom mdsys.sdo_geometry;
BEGIN
 geom:= sdo_geometry(2003,82394, NULL,
 sdo_elem_info_array(1, 1003, 1),
 sdo_ordinate_array(20283.775, 1011087.9,
 18783.775, 1008687.9,
 21783.775, 1008687.9,

Chapter 12
SDO_GEOR_RA.stack

12-35

 22683.775+0.001, 1009587.9+0.001,
 20283.775, 1011087.9));
 open mycur for 'select georaster from georaster_table where georid in (100,
102)';
 select georaster into geor1 from georaster_table where georid = 101 for update;
 sdo_geor_ra.stack(mycur,geom,0,'max',null,geor1,'false',0,'TRUE');
 update georaster_table set georaster = geor1 where georid = 101;
END;
/

Chapter 12
SDO_GEOR_RA.stack

12-36

13
SDO_GEOR_UTL Package Reference

The SDO_GEOR_UTL package contains subprograms (functions and procedures) for
utility operations related to GeoRaster. This chapter presents reference information,
with one or more examples, for each subprogram.

• SDO_GEOR_UTL.calcOptimizedBlockSize

• SDO_GEOR_UTL.calcRasterNominalSize

• SDO_GEOR_UTL.calcRasterStorageSize

• SDO_GEOR_UTL.calcSurfaceArea

• SDO_GEOR_UTL.clearReportTable

• SDO_GEOR_UTL.createDMLTrigger

• SDO_GEOR_UTL.createReportTable

• SDO_GEOR_UTL.disableReport

• SDO_GEOR_UTL.dropReportTable

• SDO_GEOR_UTL.emptyBlocks

• SDO_GEOR_UTL.enableReport

• SDO_GEOR_UTL.fillEmptyBlocks

• SDO_GEOR_UTL.generateColorRamp

• SDO_GEOR_UTL.generateGrayRamp

• SDO_GEOR_UTL.getAllStatusReport

• SDO_GEOR_UTL.getMaxMemSize

• SDO_GEOR_UTL.getReadBlockMemSize

• SDO_GEOR_UTL.getProgress

• SDO_GEOR_UTL.getStatusReport

• SDO_GEOR_UTL.getWriteBlockMemSize

• SDO_GEOR_UTL.isReporting

• SDO_GEOR_UTL.makeRDTNamesUnique

• SDO_GEOR_UTL.recreateDMLTriggers

• SDO_GEOR_UTL.renameRDT

• SDO_GEOR_UTL.setClientID

• SDO_GEOR_UTL.setMaxMemSize

• SDO_GEOR_UTL.setReadBlockMemSize

• SDO_GEOR_UTL.setSeqID

• SDO_GEOR_UTL.setWriteBlockMemSize

13-1

13.1 SDO_GEOR_UTL.calcOptimizedBlockSize
Format

SDO_GEOR_UTL.calcOptimizedBlockSize(
 dimensionSize IN SDO_NUMBER_ARRAY,
 blockSize IN OUT SDO_NUMBER_ARRAY,
 pyramidLevel IN number default 0);

Description

Calculates an optimal blockSize value that will use less padding space in the
GeoRaster object storage, based on the GeoRaster dimension sizes and the user-
specified block size values.

Parameters

dimensionSize
Dimension size array of the GeoRaster object.

blockSize
Block size array, which holds the user-specified block size values and into which the
procedure outputs the adjusted optimal block size values.

pyramidLevel
Maximum pyramid level. The default value is 0.

Usage Notes

This procedure enables you to give desired block size values (which may not be
optimal), automatically adjust them, and then determine the block size array values
for a specified GeoRaster dimension size array that will be optimal for reducing the
amount of padding space in GeoRaster object storage. The adjustment is always
made around the user-specified values. For more information, see the explanations of
the blocking and blockSize keywords in Table 1-1 in Storage Parameters.

In the dimensionSize and blockSize parameter values, specify the values for the
dimensions in this order: row, column, band.

An exception is generated if the input dimensionSize or blockSize parameter contains
any invalid values.

Examples

The following example calculates and displays an optimal block size value, based on
a specified dimension size array of (12371,11261,13) and a specified block size array
of (512,512,5). Note that the optimal rowBlockSize value returned is 538 as opposed
to the original value of 512, and the optimal bandBlockSize value returned is 1 as
opposed to the original value of 5.

DECLARE
 dimensionSize sdo_number_array;
 blockSize sdo_number_array;
BEGIN
 dimensionSize:=sdo_number_array(12371,11261,13);
 blockSize:=sdo_number_array(512,512,5);
 sdo_geor_utl.calcOptimizedBlockSize(dimensionSize,blockSize);

Chapter 13
SDO_GEOR_UTL.calcOptimizedBlockSize

13-2

 dbms_output.put_line('Optimized rowBlockSize = '||blockSize(1));
 dbms_output.put_line('Optimized colBlockSize = '||blockSize(2));
 dbms_output.put_line('Optimized bandBlockSize = '||blockSize(3));
END;
/
Optimized rowBlockSize = 538
Optimized colBlockSize = 512
Optimized bandBlockSize = 1

13.2 SDO_GEOR_UTL.calcRasterNominalSize
Format

SDO_GEOR_UTL.calcRasterNominalSize(
 geor IN SDO_GEORASTER,
 padding IN VARCHAR2 DEFAULT 'TRUE',
 pyramid IN VARCHAR2 DEFAULT 'TRUE',
 bitmapMask IN VARCHAR2 DEFAULT 'TRUE'
) RETURN NUMBER;

Description

Returns the total raster block length (in bytes) of a GeoRaster object, as if it were not
compressed and did not contain any empty raster blocks.

Parameters

geor
GeoRaster object.

padding
The string TRUE (the default) causes padding in the raster blocks to be considered; the
string FALSE causes padding in the raster blocks not to be considered.

pyramid
The string TRUE (the default) causes the size of any pyramids to be considered; the
string FALSE causes the size of any pyramids not to be considered.

bitmapMask
The string TRUE (the default) causes any associated bitmap masks to be considered;
the string FALSE causes any associated bitmap masks not to be considered. For an
explanation of bitmap masks, see Bitmap Masks.

Usage Notes

This function does not consider any LOB storage overhead, so the result is only an
approximation of the real storage requirements for the GeoRaster object.

The result of this function will be greater than or equal to the result of the
SDO_GEOR_UTL.calcRasterStorageSize function on the same GeoRaster object. If
this function returns a larger value than the SDO_GEOR_UTL.calcRasterStorageSize
function on the same GeoRaster object, the difference in the values reflects the space
saved by the use of compression or empty raster blocks, or both.

For information about GeoRaster compression, see Compression and Decompression.

Chapter 13
SDO_GEOR_UTL.calcRasterNominalSize

13-3

Examples

The following example calculates the nominal raster size (in bytes) of a GeoRaster
object, according to its current blocking scheme. The returned size includes (by
default) any padding in the raster blocks, any associated bitmap masks, and any
pyramids.

SELECT SDO_GEOR_UTL.calcRasterNominalSize(georaster) nsize FROM georaster_table
 WHERE georid=1;

 NSIZE

 289150

13.3 SDO_GEOR_UTL.calcRasterStorageSize
Format

SDO_GEOR_UTL.calcRasterStorageSize(
 geor IN SDO_GEORASTER
) RETURN NUMBER;

Description

Returns the actual length (in bytes) of all raster blocks of a GeoRaster object.

Parameters

geor
GeoRaster object.

Usage Notes

The function calculates the actual length of all raster blocks of a GeoRaster object. It
does not consider any LOB storage overhead, so the result is only an approximation
of the real storage size of the GeoRaster object. In essence, this function executes the
following statement:

EXECUTE IMMEDIATE
'SELECT SUM(DBMS_LOB.getLength(rasterBlock)) FROM ' || geor.rasterDataTable || '
WHERE rasterId=' || geor.rasterId;

The result of this function will be less than or equal to the
result of the SDO_GEOR_UTL.calcRasterNominalSize function on the same
GeoRaster object. If this function returns a smaller value than the
SDO_GEOR_UTL.calcRasterNominalSize function on the same GeoRaster object, the
difference in the values reflects the space saved by the use of compression or empty
raster blocks, or both.

Examples

The following example calculates ratio (as a decimal fraction) of the actual size to the
nominal size of a specified GeoRaster object. In this example, the actual size is about
one-twentieth (1/20) of the nominal size.

SELECT SDO_GEOR_UTL.calcRasterStorageSize(georaster)/
 SDO_GEOR_UTL.calcRasterNominalSize(georaster) ratio
 FROM georaster_table WHERE georid=1;

Chapter 13
SDO_GEOR_UTL.calcRasterStorageSize

13-4

 RATIO

.056198816

13.4 SDO_GEOR_UTL.calcSurfaceArea
Format

SDO_GEOR_UTL.calcSurfaceArea(
 georaster IN SDO_GEORASTER,
 window IN SDO_GEOMETRY,
 parallel IN NUMBER
) RETURN NUMBER;

Description

Calculates and returns the three–dimensional (3D) surface area represented by digital
elevation model (DEM) data that is stored in a GeoRaster object.

Parameters

georaster
GeoRaster object in which DEM data is stored.

window
The 2D geometry object specifying the area of which the 3D surface area is to be
calculated.

parallel
Degree of parallelism for the operation. It should be more than 0. The recommended
value is 2 times the number of CPUs

Usage Notes

This function first finds out all cells within or touching a certain area specified by
the window parameter, splits each of the cells into two 3D triangles, computes the
3D surface area of each triangle, and then returns the sum of these area values as
the result. The areas of the triangles that intersect with the window boundary are
computed based on the intersected geometries, so this function returns the surface
area with a high degree of precision.

If the parallel parameter value is less than 1, then 1 is used (that is, no parallelism).

Examples

The following example calculates the surface area within geom using DEM data. (It
refers to a table named GEORASTER_TABLE, whose definition is presented after
Example 1-1 in Storage Parameters.)

DECLARE
 geor SDO_GEORASTER;
 geom SDO_GEOMETRY;
 area number;
BEGIN
 geom:=sdo_geometry(2003,82394, NULL,
 mdsys.sdo_elem_info_array(1, 1003, 1),
 mdsys.sdo_ordinate_array(20283.775, 1011087.9,

Chapter 13
SDO_GEOR_UTL.calcSurfaceArea

13-5

 18783.775, 1008687.9,
 21783.775, 1008687.9,
 22683.775+0.001, 1009587.9,
 20283.775, 1011087.9));
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 3;
 area:=SDO_GEOR_UTL.calcSurfaceArea(geor,geom,2);
END;
/

13.5 SDO_GEOR_UTL.clearReportTable
Format

SDO_GEOR_UTL.clearReportTable(
 client_id IN NUMBER DEFAULT NULL);

Description

Deletes records in the table that contains GeoRaster operation status information.

Parameters

client_id
ID of the client whose records are to be deleted. If this parameter is not specified, all
records in the table are deleted.
(The client ID can be set by using the SDO_GEOR_UTL.setClientID procedure.)

Usage Notes

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example deletes all the records in the report table.

EXECUTE SDO_GEOR_UTL.clearReportTable;

13.6 SDO_GEOR_UTL.createDMLTrigger
Format

SDO_GEOR_UTL.createDMLTrigger(
 tableName IN VARCHAR2,
 columnName IN VARCHAR2);

Description

Creates the required standard GeoRaster data manipulation language (DML) trigger
on a GeoRaster column in a GeoRaster table, so that the appropriate operations are
performed when its associated trigger is fired.

Chapter 13
SDO_GEOR_UTL.clearReportTable

13-6

Parameters

tableName
Name of a GeoRaster table (the table containing rows with at least one GeoRaster
object column).

columnName
Name of a column of type SDO_GEORASTER in the GeoRaster table.

Usage Notes

Note:

A more convenient alternative may be to use the
SDO_GEOR_UTL.recreateDMLTriggers procedure, where one call to the
procedure re-creates or creates the DML triggers on all GeoRaster columns
that the current user has privileges to access.

As explained in GeoRaster DML Trigger, to ensure the consistency and integrity of
internal GeoRaster tables and data structures, GeoRaster automatically creates a
unique DML trigger for each GeoRaster column whenever a user creates a GeoRaster
table (that is, a table with at least one GeoRaster column), with the following
exception: if you use the ALTER TABLE statement to add one or more GeoRaster
columns. In this case, you must call the SDO_GEOR_UTL.createDMLTrigger
procedure to create the DML trigger on each added GeoRaster column.

Otherwise, you usually do not need to call this procedure, although but it is still useful
for re-creating the DML trigger in some scenarios, such as a database upgrade or a
data migration.

Examples

The following example creates the standard GeoRaster DML trigger for a table named
XYZ_GEOR_TAB containing a GeoRaster column named GEOR_COL.

EXECUTE sdo_geor_utl.createDMLTrigger('XYZ_GEOR_TAB', 'GEOR_COL');

13.7 SDO_GEOR_UTL.createReportTable
Format

SDO_GEOR_UTL.createReportTable;

Description

Creates the table to contain GeoRaster operation status information.

Parameters

None.

Chapter 13
SDO_GEOR_UTL.createReportTable

13-7

Usage Notes

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example creates the table to contain GeoRaster operation status
information.

EXECUTE SDO_GEOR_UTL.createReportTable;

13.8 SDO_GEOR_UTL.disableReport
Format

SDO_GEOR_UTL.disableReport;

Description

Disables status reporting on GeoRaster operations in the current session.

Parameters

None.

Usage Notes

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example disables status reporting on GeoRaster operations in the
current session.

EXECUTE SDO_GEOR_UTL.disableReport;

13.9 SDO_GEOR_UTL.dropReportTable
Format

SDO_GEOR_UTL.dropReportTable;

Description

Drops the table that contains GeoRaster operation status information.

Parameters

None.

Chapter 13
SDO_GEOR_UTL.disableReport

13-8

Usage Notes

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example drops the table that contains GeoRaster operation status
information.

EXECUTE SDO_GEOR_UTL.dropReportTable;

13.10 SDO_GEOR_UTL.emptyBlocks
Format

SDO_GEOR_UTL.emptyBlocks(
 georaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Trims all blocks that contain only the specified background values to empty LOBs, thus
making them empty blocks. Can be used to reduce disk space required for GeoRaster
storage.

Parameters

georaster
GeoRaster object.

bgValues
Background values for determining if a block can be made an empty raster block. The
number of elements in the SDO_NUMBER_ARRAY object must be either one (same
filling value used for all layers) or the layer dimension size (a different filling value for
each layer, respectively). For example, SDO_NUMBER_ARRAY(1,5,10) means that a
block with the first layer with 1, the second layer with 5, and the third layer with 10 are
made empty blocks. If this parameter is null, then bgValues will be the default value (a
single element SDO_NUMBER_ARRAY(0)).

Usage Notes

If georaster is null, this procedure performs no operation.

Contrast this procedure with SDO_GEOR_UTL.fillEmptyBlocks, which uses specified
background values to fill in all empty blocks.

Examples

The following example empties blocks whose cell values are background values
(255,0,0).

DECLARE
 geor SDO_GEORASTER;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 3 FOR UPDATE;

Chapter 13
SDO_GEOR_UTL.emptyBlocks

13-9

 SDO_GEOR_UTL.emptyBlocks(geor, SDO_NUMBER_ARRAY(255,0,0));
 UPDATE georaster_table SET georaster = geor WHERE georid = 3;
 COMMIT;
END;
/

13.11 SDO_GEOR_UTL.enableReport
Format

SDO_GEOR_UTL.enableReport;

Description

Enables status reporting on GeoRaster operations in the current session.

Parameters

None.

Usage Notes

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example enables status reporting on GeoRaster operations in the
current session.

EXECUTE SDO_GEOR_UTL.enableReport;

13.12 SDO_GEOR_UTL.fillEmptyBlocks
Format

SDO_GEOR_UTL.fillEmptyBlocks(
 georaster IN OUT SDO_GEORASTER,
 bgValues IN SDO_NUMBER_ARRAY DEFAULT NULL);

Description

Fills in all empty blocks with specified background values.

Parameters

georaster
GeoRaster object in which to fill empty blocks.

bgValues
Background values for filling empty raster blocks. The number of elements in the
SDO_NUMBER_ARRAY object must be either one (same filling value used for
all bands) or the band dimension size (a different filling value for each band,
respectively). For example, SDO_NUMBER_ARRAY(1,5,10) fills the first band with

Chapter 13
SDO_GEOR_UTL.enableReport

13-10

1, the second band with 5, and the third band with 10. If this parameter is null, then
bgValues will be 0 (zero).

Usage Notes

If georaster is null, this procedure performs no operation.

If pyramid data exists for georaster, the pyramid is regenerated based on pyramid
information stored in the metadata.

Contrast this procedure with SDO_GEOR_UTL.emptyBlocks, which turns blocks with
specified background values into empty blocks.

Examples

The following example empties blocks that have background values (255,0,0).

DECLARE
 geor SDO_GEORASTER;
BEGIN
 SELECT georaster INTO geor FROM georaster_table WHERE georid = 3 FOR UPDATE;
 SDO_GEOR_UTL.emptyBlocks(geor, SDO_NUMBER_ARRAY(255,0,0));
 UPDATE georaster_table SET georaster = geor WHERE georid = 3;
 COMMIT;
END;
/

13.13 SDO_GEOR_UTL.generateColorRamp
Format

SDO_GEOR_UTL.generateColorRamp(
 colorSeeds IN SDO_GEOR_COLORMAP,
 rampSteps IN SDO_NUMBER_ARRAY,
 cellValueType IN VARCHAR2 DEFAULT 'integer',
 interpoParam IN VARCHAR2 DEFAULT 'method=linear'
) RETURN SDO_GEOR_COLORMAP;

Description

Generates an SDO_GEOR_COLORMAP object with a color ramp (gradient) by
interpolating the red, green, blue, and alpha values entered as seed.

Parameters

colorSeeds
An SDO_GEOR_COLORMAP object with the seed values to be used as the
beginning and end values for the interpolation. Should contain at least two groups,
each containing a pixel value and set of RGBA values. (RGBA = red, green, blue,
alpha)

rampSteps
An array where each item indicates how many interpolated values will be generated
for each section of the color ramp. Should contain at least one integer value indicating
how many values will be generated for each section.

Chapter 13
SDO_GEOR_UTL.generateColorRamp

13-11

cellValueType
A string indicating whether the cell values should be creates as integer or real values.
The possible values for this parameter are integer (the default) or real.

interpoParam
A string specifying the interpolation method. The possible values are method=linear
(the default) and method=cosine.

Usage Notes

This function returns an object of type SDO_GEOR_COLORMAP, which is described
in SDO_GEOR_COLORMAP Object Type.

A color ramp can have several different sections with different lengths for each section.
If colorSeeds specifies three RGBA values, the function will generate two sections
on the same color ramp. The number of color levels for each section is controlled
by rampSteps array. To generate independent sections, insert a new item in the
colorSeeds parameter, and a new item in rampSetps. (Any value of 0 in rampSetps
indicates that no interpolated values are needed to generate in that section.)

Examples

The following example generates and applies a color ramp containing 256 colors
interpolated linearly from green to red. (It assumes the existence of a table named
RAMP_TEST containing at least columns named ID and RASTER.)

DECLARE
 gr sdo_georaster;
 cmp sdo_geor_colormap;
BEGIN
 select raster into gr from ramp_test where id = 1 for update;

 cmp := sdo_geor_utl.generateColorRamp(
 colorSeeds => sdo_geor_colormap(
 sdo_number_array(1,1000),
 sdo_number_array(0, 255),
 sdo_number_array(255, 0),
 sdo_number_array(0, 0),
 sdo_number_array(255, 255)),
 rampSteps => sdo_number_array(256),
 cellValueType => 'integer',
 interpoParam => 'method=linear');

 sdo_geor.setColorMap(gr, 0, cmp);

 update ramp_test set raster = gr where id = 1;
 commit;
END;

The following example generates and applies a color ramp that goes from shades of
green turning into blue and from blue turning into red. (It assumes the existence of a
table named RAMP_TEST containing at least columns named ID and RASTER.) The
two sections will share the second item from the colorSeeds parameter value, the blue
color.

DECLARE
 gr sdo_georaster;
 cmp sdo_geor_colormap;
BEGIN

Chapter 13
SDO_GEOR_UTL.generateColorRamp

13-12

 select raster into gr from ramp_test where id = 1 for update;

 cmp := sdo_geor_utl.generateColorRamp(
 colorSeeds => sdo_geor_colormap(
 sdo_number_array(1, 500, 1000),
 sdo_number_array(0, 0, 255),
 sdo_number_array(255, 0, 0),
 sdo_number_array(0, 255, 0),
 sdo_number_array(255, 255, 255)),
 rampSteps => sdo_number_array(128, 128),
 cellValueType => 'integer',
 interpoParam => 'method=linear');

 sdo_geor.setColorMap(gr, 0, cmp);

 update ramp_test set raster = gr where id = 1;
 commit;
END;

The following example generates a color ramp of 256 items with a section that goes
from green to blue and a section that goes from white to red. (It assumes the existence
of a table named RAMP_TEST containing at least columns named ID and RASTER.)

DECLARE
 gr sdo_georaster;
 cmp sdo_geor_colormap;
BEGIN
 select raster into gr from ramp_test where id = 1 for update;

 cmp := sdo_geor_utl.generateColorRamp(
 colorSeeds => sdo_geor_colormap(
 sdo_number_array(1, 500, 500, 1000),
 sdo_number_array(0, 0, 255, 255),
 sdo_number_array(255, 0, 255, 0),
 sdo_number_array(0, 255, 255, 0),
 sdo_number_array(255, 255, 255, 255)),
 rampSteps => sdo_number_array(128, 0, 128),
 cellValueType => 'integer',
 interpoParam => 'method=linear');

 sdo_geor.setColorMap(gr, 0, cmp);

 update ramp_test set raster = gr where id = 1;
 commit;
END;

The value of 0 in the rampSteps array (rampSteps => sdo_number_array(128, 0,
128);) indicates that no interpolated values are needed for generation in the second
section.

13.14 SDO_GEOR_UTL.generateGrayRamp
Format

SDO_GEOR_UTL.generateGrayRamp(
 graySeeds IN SDO_GEOR_GRAYSCALE,
 rampSteps IN SDO_NUMBER_ARRAY,
 cellValueType IN VARCHAR2 DEFAULT 'integer',

Chapter 13
SDO_GEOR_UTL.generateGrayRamp

13-13

 interpoParam IN VARCHAR2 DEFAULT 'method=linear'
) RETURN SDO_GEOR_GRAYSCALE;

Description

Generates an SDO_GEOR_GRAYSCALE object with a grayscale ramp (gradient) by
interpolating the values entered as seed.

Parameters

colorSeeds
An SDO_GEOR_GRAYSCALE object with the seed values to be used as the
beginning and end values for the interpolation. Should should contain at least one
pixel-value/gray-value pair.

rampSteps
An array where each item indicates how many interpolated values will be generated
for each section of the gray ramp. Should contain at least one integer value indicating
how many values will be generated for each section of the gray ramp.

cellValueType
A string indicating whether the cell values should be creates as integer or real values.
The possible values for this parameter are integer (the default) or real.

interpoParam
A string specifying the interpolation method. The possible values are method=linear
(the default) and method=cosine.

Usage Notes

This function returns an object of type SDO_GEOR_GRAYSCALE, which is described
in SDO_GEOR_GRAYSCALE Object Type.

A gray ramp can have several different sections with different lengths for each
section. If graySeeds specifies three values, the function will generate two sections
on the same gray ramp. The number of gray levels for each section is controlled
by rampSteps array. To generate independent sections, insert a new item in the
graySeeds parameter, and a new item in rampSetps. (Any value of 0 in rampSetps
indicates that no interpolated values are needed to generate in that section.)

Examples

The following example generates and applies a gray ramp containing 256 colors
interpolated linearly from green to red. (It assumes the existence of a table named
RAMP_TEST containing at least columns named ID and RASTER.)

DECLARE
 gr sdo_georaster;
 gs sdo_geor_grayscale;
BEGIN
 select raster into gr from ramp_test where id = 3 for update;

 gs := sdo_geor_utl.generateGrayRamp(
 graySeeds => sdo_geor_grayscale(
 sdo_number_array(0, 1000),
 sdo_number_array(0, 255)),
 rampSteps => sdo_number_array(100),
 cellValueType => 'integer',
 interpoParam => 'method=linear');

Chapter 13
SDO_GEOR_UTL.generateGrayRamp

13-14

 sdo_geor.setGrayScale(gr, 0, gs);

 update ramp_test set raster = gr where id = 3;
 commit;
END;

The following example generates and applies a gray ramp 256 items interpolating
values from -100 to 0 and from 0 to 1000. (It assumes the existence of a table named
RAMP_TEST containing at least columns named ID and RASTER.).

DECLARE
 gr sdo_georaster;
 gs sdo_geor_grayscale;
BEGIN
 select raster into gr from ramp_test where id = 3 for update;

 gs := sdo_geor_utl.generateGrayRamp(
 graySeeds => sdo_geor_grayscale(
 sdo_number_array(-100, 0, 1000),
 sdo_number_array(255, 0, 255)),
 rampSteps => sdo_number_array(100, 100),
 cellValueType => 'real',
 interpoParam => 'method=linear');

 sdo_geor.setGrayScale(gr, 0, gs);

 update ramp_test set raster = gr where id = 3;
 commit;
END;

The following example generates a gray ramp of 256 items with a section that goes
from green to blue and a section that goes from white to red. (It assumes the existence
of a table named RAMP_TEST containing at least columns named ID and RASTER.)

DECLARE
 gr sdo_georaster;
 gs sdo_geor_grayscale;
BEGIN
 select raster into gr from ramp_test where id = 3 for update;

 gs := sdo_geor_utl.generateGrayRamp(
 graySeeds => sdo_geor_grayscale(
 sdo_number_array(-100, 0, 0, 1000),
 sdo_number_array(0, 10, 100, 200)),
 rampSteps => sdo_number_array(100, 0, 100),
 cellValueType => 'real',
 interpoParam => 'method=linear');

 sdo_geor.setGrayScale(gr, 0, gs);

 update ramp_test set raster = gr where id = 3;
 commit;
END;

The value of 0 in the rampSteps array (rampSteps => sdo_number_array(128, 0,
128);) indicates that no interpolated values are needed for generation in the second
section.

Chapter 13
SDO_GEOR_UTL.generateGrayRamp

13-15

13.15 SDO_GEOR_UTL.getAllStatusReport
Format

SDO_GEOR_UTL.getAllStatusReport() RETURN SDO_STRING2_ARRAYSET;

Description

Returns the current status for all operations for all clients in the status table.

Parameters

None.

Usage Notes

This function returns an array with a comma-delimited list of status
information: <client_id>, <sequence_id>, <timestamp>, <operation name>, <RDT
table name>, <Raster ID>, <progress>, <description>. The data type is
SDO_STRING2_ARRAYSET, which is defined as VARRAY(2147483647) OF
SDO_STRING2_ARRAY.

If the status table has not been created, the function returns 'The report table does
not exist.'

This function is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example returns the current status for all operations for all clients. It
returns two SDO_STRING2_ARRAY objects.

SELECT * from the (SELECT SDO_GEOR_UTL.getAllStatusReport FROM DUAL);

COLUMN_VALUE

SDO_STRING2_ARRAY('Client:23', 'Sequence:1', '24-SEP-12 11.10.42.030169 AM',
'Mosaic', 'RDT:LANDSAT_MOSAIC_RDT', 'RID:1', '100% complete', NULL)
SDO_STRING2_ARRAY('Client:1', 'Sequence:0', '24-SEP-12 11.10.42.379631 AM',
'GeneratePyramid', 'RDT:LANDSAT_MOSAIC_RDT', 'RID:1', '100% complete',
'operation completed')

2 rows selected.

The following example also returns the current status for all operations for all clients. It
uses a different SELECT statement format than the preceding example, and returns a
single SDO_STRING2_ARRAYSET object that contains two SDO_STRING2_ARRAY
objects.

set linesize 80
SELECT SDO_GEOR_UTL.getAllStatusReport FROM DUAL;

SDO_GEOR_UTL.GETALLSTATUSREPORT()
--
SDO_STRING2_ARRAYSET(SDO_STRING2_ARRAY('Client:27', 'Sequence:1', '26-SEP-12 11.
31.03.473087 AM', 'Mosaic', 'RDT:LANDSAT_MOSAIC_RDT', 'RID:1', '100% complete',

Chapter 13
SDO_GEOR_UTL.getAllStatusReport

13-16

NULL), SDO_STRING2_ARRAY('Client:-1', 'Sequence:0', '26-SEP-12 11.31.03.962948 A
M', 'GeneratePyramid', 'RDT:LANDSAT_MOSAIC_RDT', 'RID:1', '100% complete', 'oper
ation completed'))

1 row selected.

13.16 SDO_GEOR_UTL.getMaxMemSize
Format

SDO_GEOR_UTL.getMaxMemSize RETURN NUMBER;

Description

Returns the upper limit size of the memory that can be used for managing memory
using the GeoRaster buffer system.

Parameters

(None.)

Usage Notes

Managing Memory for GeoRaster Buffering provides conceptual and usage
information, including explanations of the relevant parameters.

Examples

The following example returns the current upper limit size of the memory that can be
used for managing memory using the GeoRaster buffer system.

SELECT sdo_geor_utl.getMaxMemSize FROM DUAL;

GETMAXMEMSIZE

 16777216

13.17 SDO_GEOR_UTL.getReadBlockMemSize
Format

SDO_GEOR_UTL.getReadBlockMemSize RETURN NUMBER;

Description

Returns the size in bytes of the GeoRaster internal data block for read-only operations.

Parameters

(None.)

Usage Notes

Managing Memory for GeoRaster Buffering provides conceptual and usage
information, including explanations of the relevant parameters.

Chapter 13
SDO_GEOR_UTL.getMaxMemSize

13-17

Examples

The following example returns the current size in bytes of the GeoRaster internal data
block for read-only operations.

SELECT sdo_geor_utl.getReadBlockMemSize FROM DUAL;

GETREADBLOCKMEMSIZE

 32768

13.18 SDO_GEOR_UTL.getProgress
Format

SDO_GEOR_UTL.getProgress(
 client_id IN NUMBER,
 seq_id IN NUMBER DEFAULT 0
) RETURN NUMBER;

Description

Returns the progress of the operation for a specified client (session) and optionally for
a specified operation. The returned value is the percentage of completion as a floating
point number between 0 and 1.

Parameters

client_id
Unique numeric value identifying the session.

seq_id
Unique numeric value (within the specified session) identifying the operation for which
to return status information.

Usage Notes

This function returns a number that is the latest estimated progress of the operation
identified by the client_id and seq_id. Make sure that the correct client_id and
seq_id values are used.

If the status table has no record of the specified operation with the given client_id
and seq_id, null is returned.

If the status table has not been created, the function returns 'The report table does
not exist.'

This function is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example returns the progress of the operation with client ID 5 and
operation sequence ID 3.

SELECT sdo_geor_utl.getgetProgress(5, 3) progress FROM dual;

Chapter 13
SDO_GEOR_UTL.getProgress

13-18

PROGRESS

 .305

13.19 SDO_GEOR_UTL.getStatusReport
Format

SDO_GEOR_UTL.getStatusReport(
 client_id IN NUMBER,
 seq_id IN NUMBER DEFAULT 0
) RETURN SDO_STRING2_ARRAY;

Description

Returns the current status of the operations in the status table for a specified client
(session) and optionally for a specified operation.

Parameters

client_id
Unique numeric value identifying the session.

seq_id
Unique numeric value (within the specified session) identifying the operation for which
to return status information.

Usage Notes

This function returns the current status of a specified session (client_id) in an
array of comma-delimited lists of status information: <client_id>, <sequence_id>,
<timestamp>, <operation name>, <RDT table name>, <Raster ID>, <progress>,
<description>. The data type is SDO_STRING2_ARRAY, which is defined as
VARRAY(2147483647) OF VARCHAR2(4096).

If the status table has not been created, the function returns 'The report table does
not exist.'

This function is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example returns the status of the operation with client ID 5 and operation
sequence ID 3.

SELECT sdo_geor_utl.getStatusReport(5, 3) FROM dual;

SDO_GEOR_UTL.GETSTATUSREPORT(5,3)
--
SDO_STRING2_ARRAY('24-SEP-12 11.10.43.477804 AM', 'Mosaic', 'RDT:LANDSAT_MOSAIC_
RDT', 'RID:2', '100% complete', 'operation completed')

Chapter 13
SDO_GEOR_UTL.getStatusReport

13-19

13.20 SDO_GEOR_UTL.getWriteBlockMemSize
Format

SDO_GEOR_UTL.getWriteBlockMemSize RETURN NUMBER;

Description

Returns the size in bytes of the GeoRaster internal data block for read/write
operations.

Parameters

(None.)

Usage Notes

Managing Memory for GeoRaster Buffering provides conceptual and usage
information, including explanations of the relevant parameters.

Examples

The following example returns the current size in bytes of the GeoRaster internal data
block for read/write operations.

SELECT sdo_geor_utl.getWriteBlockMemSize FROM DUAL;

GETWRITEBLOCKMEMSIZE

 65536

13.21 SDO_GEOR_UTL.isReporting
Format

SDO_GEOR_UTL.isReporting() RETURN NUMBER;

Description

Checks if any session has status reporting enabled.

Parameters

None.

Usage Notes

This function returns 1 if one or more sessions have status reporting enabled; it
returns 0 if no sessions have status reporting enabled.

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example checks if any session has status reporting enabled.

Chapter 13
SDO_GEOR_UTL.getWriteBlockMemSize

13-20

SELECT SDO_GEOR_UTL.isReporting FROM DUAL;

ISREPORTING

 1

13.22 SDO_GEOR_UTL.makeRDTNamesUnique
Format

SDO_GEOR_UTL.makeRDTNamesUnique;

Description

Renames some existing registered raster data tables that do not have unique names
so that all raster data table names are unique within the database, and updates the
GeoRaster system data and all affected GeoRaster objects to reflect the new names.

Parameters

None.

Usage Notes

If one or more registered raster data tables have the same name (under different
schemas), you can use this procedure or the SDO_GEOR_UTL.renameRDT
procedure, or both, to eliminate the duplication.

Run this procedure when you are connected to the database with the DBA role.

This procedure is not transactional, and the result cannot be rolled back.

Examples

The following example automatically renames some existing registered raster data
tables that do not have unique names so that all registered raster data table names
are unique within the database, and it updates the GeoRaster system data and all
affected GeoRaster objects to reflect the new names.

EXECUTE sdo_geor_utl.makeRDTNamesUnique;

13.23 SDO_GEOR_UTL.recreateDMLTriggers
Format

SDO_GEOR_UTL.recreateDMLTriggers;

Description

Re-creates the required standard GeoRaster data manipulation language (DML)
triggers on all GeoRaster columns that the current user has privileges to access, so
that the appropriate operations are performed when the triggers are fired.

Parameters

(None)

Chapter 13
SDO_GEOR_UTL.makeRDTNamesUnique

13-21

Usage Notes

As explained in GeoRaster DML Trigger, to ensure the consistency and integrity
of internal GeoRaster tables and data structures, GeoRaster automatically creates
a unique DML trigger for each GeoRaster column whenever a user creates
a GeoRaster table (that is, a table with at least one GeoRaster column),
with the following exception: if you use the ALTER TABLE statement to add
one or more GeoRaster columns. If this happens you can either call the
SDO_GEOR_UTL.createDMLTrigger procedure for those added GeoRaster columns
or call the SDO_GEOR_UTL.recreateDMLTriggers procedure to recreate the DML
triggers on all GeoRaster columns.

You usually do not need to call this procedure, but it is useful for re-creating the DML
triggers in some scenarios, such as a database upgrade or a data migration.

Examples

The following example re-creates the standard GeoRaster DML triggers.

EXECUTE sdo_geor_utl.recreateDMLTriggers;

13.24 SDO_GEOR_UTL.renameRDT
Format

SDO_GEOR_UTL.renameRDT(
 oldRDTs VARCHAR2,
 newRDTs VARCHAR2 DEFAULT NULL);

Description

Renames one or more existing registered raster data tables owned by the current
user, and updates the GeoRaster system data and all affected GeoRaster objects to
reflect the new names.

Parameters

oldRDTs
Name of the registered raster data table or tables to be renamed. For multiple tables,
use a comma-delimited list.

newRDTs
New names to be assigned to the raster data table or tables that are specified
in oldRDTs. For multiple tables, use a comma-delimited list with an order exactly
reflecting the names in oldRDTs. If this parameter is null, GeoRaster assigns a unique
new name to each input raster data table.

Usage Notes

If one or more registered raster data tables owned by different users have the same
name, you can use this procedure or the SDO_GEOR_UTL.makeRDTNamesUnique
procedure, or both, to eliminate the duplication.

Before using this procedure, you must connect to the database as the owner of the
raster data table or tables. You cannot use this procedure to rename a raster data
table owned by another user.

Chapter 13
SDO_GEOR_UTL.renameRDT

13-22

If any table in oldRDTs is not included in the GeoRaster system data, it is ignored.

If any table in newRDTs conflicts with a name in the GeoRaster system data or with the
name of another object owned by the current user, an exception is raised.

This procedure is not transactional, and the result cannot be rolled back.

Examples

The following example renames the registered raster data tables RDT_1 and RDT_2
to ST_RDT_1 and ST_RDT_2, respectively.

EXECUTE sdo_geor_utl.renameRDT('RDT_1,RDT_2','ST_RDT_1,ST_RDT_2');

13.25 SDO_GEOR_UTL.setClientID
Format

SDO_GEOR_UTL.setClientID(
 client_id IN NUMBER);

Description

Sets the client ID for a session.

Parameters

client_id
Unique ID value to identify the session.

Usage Notes

This procedure can be used to identify different sessions under the same user. The
client ID can be the database session ID or the client ID in the mid-tier environment.

If this procedure is not called, the client ID in the status report defaults to the database
session ID.

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example sets the client ID to 1.

EXECUTE SDO_GEOR_UTL.setClientID(1);

13.26 SDO_GEOR_UTL.setMaxMemSize
Format

SDO_GEOR_UTL.setMaxMemSize(
 maxMemSize IN NUMBER DEFAULT 16777216);

Chapter 13
SDO_GEOR_UTL.setClientID

13-23

Description

Sets the upper limit size of the memory that can be used for managing memory using
the GeoRaster buffer system.

Parameters

maxMemSize
Number of bytes that can be used for managing memory using the GeoRaster buffer
system. The default value is 16777216 (16 MB).

Usage Notes

Managing Memory for GeoRaster Buffering provides conceptual and usage
information, including explanations of the relevant parameters.

Examples

The following example sets the maxMemSize value to 100 million bytes (approximately
100 MB).

EXECUTE sdo_geor_utl.setMaxMemSize(100000000);

The following example sets the maxMemSize value to the default size (16 MB).

EXECUTE sdo_geor_utl.setMaxMemSize();

13.27 SDO_GEOR_UTL.setReadBlockMemSize
Format

SDO_GEOR_UTL.setReadBlockMemSize(
 memBlockSize IN NUMBER DEFAULT 32768);

Description

Sets the size of the GeoRaster internal data block for read-only operations.

Parameters

memBlockSize
Number of bytes that can be used for the GeoRaster internal data block for read-only
operations. The default value is 32768 (32 KB).

Usage Notes

Managing Memory for GeoRaster Buffering provides conceptual and usage
information, including explanations of the relevant parameters.

Examples

The following example sets the memBlockSize value to 1 million bytes (approximately 1
MB).

EXECUTE sdo_geor_utl.setReadBlockMemSize(1000000);

The following example sets the memBlockSize value to the default value (32 KB).

Chapter 13
SDO_GEOR_UTL.setReadBlockMemSize

13-24

EXECUTE sdo_geor_utl.setReadBlockMemSize();

13.28 SDO_GEOR_UTL.setSeqID
Format

SDO_GEOR_UTL.setSeqID(
 seq_id IN NUMBER);

Description

Sets the sequence ID for a session.

Parameters

seq_id
Unique ID value to identify the operation in a session.

Usage Notes

This procedure can be used to identify different operations in the same session.

If this procedure is not called, the sequence ID in the status report defaults to 0.

This procedure is one of the subprograms available for monitoring and reporting the
progress of GeoRaster operations. For an overview of this capability, see Reporting
Operation Progress in GeoRaster.

Examples

The following example sets the sequence ID to 1.

EXECUTE SDO_GEOR_UTL.setSeqID(1);

13.29 SDO_GEOR_UTL.setWriteBlockMemSize
Format

SDO_GEOR_UTL.setWriteBlockMemSize(
 memBlockSize IN NUMBER);

Description

Sets the size of the GeoRaster internal data block for read/write operations.

Parameters

memBlockSize
Number of bytes that can be used for the GeoRaster internal data block for read/write
operations. The default value is 65536 (64 KB).

Usage Notes

Managing Memory for GeoRaster Buffering provides conceptual and usage
information, including explanations of the relevant parameters.

Chapter 13
SDO_GEOR_UTL.setSeqID

13-25

Examples

The following example sets the memBlockSize value to 1 million bytes (approximately 1
MB).

EXECUTE sdo_geor_utl.setWriteBlockMemSize(1000000);

The following example sets the memBlockSize value to the default value (64 KB).

EXECUTE sdo_geor_utl.setWriteBlockMemSize();

Chapter 13
SDO_GEOR_UTL.setWriteBlockMemSize

13-26

A
GeoRaster Metadata XML Schema

This appendix provides the XML schema definition that is used for GeoRaster
metadata.

The following is the definition of the GeoRaster metadata XML schema. (You can also
see this definition by querying the SDO_GEOR_XMLSCHEMA_TABLE table, which is
described in GeoRaster XML Schema.)

<?xml version="1.0" encoding="UTF-8"?>
<!-- Oracle GeoRaster Metadata Schema -->
<xsd:schema targetNamespace="http://xmlns.oracle.com/spatial/georaster"
xmlns="http://xmlns.oracle.com/spatial/georaster" xmlns:xsd="http://www.w3.org/
2001/XMLSchema" elementFormDefault="qualified" version="0.0">
<xsd:annotation>
 <xsd:documentation>==
 This is the XML Schema defining the metadata of Oracle GeoRaster object type
 It consists of two parts: data type definitions and its element content
 Part 1: Data Types
 Part 1.1: Data Types for Object Info
 Part 1.2: Data Types for Raster Info
 Part 1.3: Data Types for Spatial-Temporal-Band Reference Systems
 Part 1.3.1: Data Types for Raster Spatial Reference Systems
 Part 1.3.2: Data Types for Raster Temporal Reference Systems
 Part 1.3.3: Data Types for Raster Band Reference Systems
 Part 1.4: Data Types for Layer Metadata
 Part 2: GeoRaster Metadata Elements or Content Structure
 ===
 </xsd:documentation>
 </xsd:annotation>
<xsd:annotation>
 <xsd:documentation> ===
 Part 1: Data Types
 ==
 </xsd:documentation>
 </xsd:annotation>
<xsd:annotation>
 <xsd:documentation> ==============================
 Part 1.1: Data Types for Object Info
 =============================
 </xsd:documentation>
</xsd:annotation>
<xsd:complexType name="objectDescriptionType">
 <xsd:sequence>
 <xsd:element name="rasterType" type="xsd:integer"/>
 <xsd:element name="ID" type="xsd:string" minOccurs="0"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="majorVersion" type="xsd:string" minOccurs="0"/>
 <xsd:element name="minorVersion" type="xsd:string" minOccurs="0"/>
 <xsd:element name="isBlank" type="xsd:boolean" default="false"/>
 <xsd:element name="blankCellValue" type="xsd:double" minOccurs="0"/>
 <xsd:element name="defaultRed" type="xsd:positiveInteger" minOccurs="0"/>
 <xsd:element name="defaultGreen" type="xsd:positiveInteger" minOccurs="0"/>

A-1

 <xsd:element name="defaultBlue" type="xsd:positiveInteger" minOccurs="0"/>

 <xsd:element name="defaultAlpha" type="xsd:positiveInteger" minOccurs="0"/>

 <xsd:element name="defaultPyramidLevel" type="xsd:integer" minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:annotation>
 <xsd:documentation> ==============================
 Part 1.2: Data Types for Raster Info
 ==============================
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType name="cellRepresentationType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="POINT"/>
 <xsd:enumeration value="SEGMENT"/>
 <xsd:enumeration value="TRIANGLE"/>
 <xsd:enumeration value="SQUARE"/>
 <xsd:enumeration value="RECTANGLE"/>
 <xsd:enumeration value="CUBE"/>
 <xsd:enumeration value="TETRAHEDRON"/>
 <xsd:enumeration value="HEXAHEDRON"/>
 <xsd:enumeration value="UNDEFINED"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="cellDepthType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="1BIT"/>
 <xsd:enumeration value="2BIT"/>
 <xsd:enumeration value="4BIT"/>
 <xsd:enumeration value="8BIT_U"/>
 <xsd:enumeration value="8BIT_S"/>
 <xsd:enumeration value="16BIT_U"/>
 <xsd:enumeration value="16BIT_S"/>
 <xsd:enumeration value="32BIT_U"/>
 <xsd:enumeration value="32BIT_S"/>
 <xsd:enumeration value="32BIT_REAL"/>
 <xsd:enumeration value="64BIT_REAL"/>
 <xsd:enumeration value="64BIT_COMPLEX"/>
 <xsd:enumeration value="128BIT_COMPLEX"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="supportedDimensionNumber">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="2"/>
 <xsd:maxInclusive value="3"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="cellDimensionType">
 <xsd:annotation>
 <xsd:documentation>
 The "Band" dimension can be treated as any other semantic dimension
 or any "Layer" if not remote sensing imagery or photographs
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ROW"/>
 <xsd:enumeration value="COLUMN"/>
 <xsd:enumeration value="VERTICAL"/>

Appendix A

A-2

 <xsd:enumeration value="BAND"/>
 <xsd:enumeration value="TEMPORAL"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="cellDimensionSizeType">
 <xsd:sequence>
 <xsd:element name="size" type="xsd:positiveInteger" default="1"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="cellDimensionType" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="cellCoordinateType">
 <xsd:sequence>
 <xsd:element name="row" type="xsd:integer" default="0"/>
 <xsd:element name="column" type="xsd:integer" default="0"/>
 <xsd:element name="vertical" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="band" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="temporal" type="xsd:integer" minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="compressionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NONE"/>
 <xsd:enumeration value="JPEG-F"/>
 <xsd:enumeration value="DEFLATE"/>
 <xsd:enumeration value="LT-MG2"/>
 <xsd:enumeration value="LT-MG3"/>
 <xsd:enumeration value="LT-JP2"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="compressionQuality">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="compressionDescriptionType">
 <xsd:sequence>
 <xsd:element name="type" type="compressionType" default="NONE"/>
 <xsd:element name="quality" type="compressionQuality" minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="blockingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NONE"/>
 <xsd:enumeration value="REGULAR"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="blockingDescriptionType">
 <xsd:sequence>
 <xsd:element name="type" type="blockingType" default="NONE"/>
 <xsd:element name="totalRowBlocks" type="xsd:positiveInteger" default="1"/>
 <xsd:element name="totalColumnBlocks" type="xsd:positiveInteger"
default="1"/>
 <xsd:element name="totalBandBlocks" type="xsd:positiveInteger" default="1"
minOccurs="0"/>
 <xsd:element name="rowBlockSize" type="xsd:positiveInteger"/>
 <xsd:element name="columnBlockSize" type="xsd:positiveInteger"/>
 <xsd:element name="bandBlockSize" type="xsd:positiveInteger"
minOccurs="0"/>

Appendix A

A-3

 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="cellInterleavingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BSQ"/>
 <xsd:enumeration value="BIL"/>
 <xsd:enumeration value="BIP"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="pyramidType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NONE"/>
 <xsd:enumeration value="DECREASE"/>
 <xsd:enumeration value="INCREASE"/>
 <xsd:enumeration value="BIDIRECTION"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="resamplingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NN"/>
 <xsd:enumeration value="BILINEAR"/>
 <xsd:enumeration value="CUBIC"/>
 <xsd:enumeration value="AVERAGE4"/>
 <xsd:enumeration value="AVERAGE16"/>
 <xsd:enumeration value="BIQUADRATIC"/>
 <xsd:enumeration value="OTHER"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="pyramidDescriptionType">
 <xsd:sequence>
 <xsd:element name="type" type="pyramidType" default="NONE"/>
 <xsd:element name="resampling" type="resamplingType" default="NN"
minOccurs="0"/>
 <xsd:element name="maxLevel" type="xsd:nonNegativeInteger" default="0"
minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="rasterDescriptionType">
 <xsd:sequence>
 <xsd:element name="cellRepresentation" type="cellRepresentationType"
default="UNDEFINED"/>
 <xsd:element name="cellDepth" type="cellDepthType" default="8BIT_U"/>
 <xsd:element name="NODATA" type="xsd:double" minOccurs="0"/>
 <xsd:element name="totalDimensions" type="supportedDimensionNumber"
default="2"/>
 <xsd:element name="dimensionSize" type="cellDimensionSizeType"
maxOccurs="5"/>
 <xsd:element name="ULTCoordinate" type="cellCoordinateType"/>
 <xsd:element name="blocking" type="blockingDescriptionType"/>
 <xsd:element name="interleaving" type="cellInterleavingType"
default="BSQ"/>
 <xsd:element name="pyramid" type="pyramidDescriptionType"/>
 <xsd:element name="compression" type="compressionDescriptionType"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:annotation>

<xsd:documentation>===

Appendix A

A-4

 Part 1.3.1: Data Types for GeoRaster Spatial Reference System

 Spatial extent (footprint) is recorded as an attribute of GeoRaster object.
 ts type is SDO_GEOMETRY. So it is not included in the metadata
 The cell space coordinates are named as (row, column, vertical)
 The model space coordinates are named as (x, y, z)
 Spatial unit information is stored in the WKT of the specified SRID
 ==
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType name="modelDimensionType">
 <xsd:annotation>
 <xsd:documentation>
 The following "S" means "Spectral" for remote sensing imagery. Any of X, Y,
 and Z can be horizontal or vertical or any other spatial direction
 (depending on user interpretation in "modelDimensionDescription").
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="X"/>
 <xsd:enumeration value="Y"/>
 <xsd:enumeration value="Z"/>
 <xsd:enumeration value="T"/>
 <xsd:enumeration value="S"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="resolutionType">
 <xsd:sequence>
 <xsd:element name="resolution" type="xsd:double" default="1"/>
 </xsd:sequence>
 <xsd:attribute name="dimensionType" type="modelDimensionType"
use="required"/>
 </xsd:complexType>
 <xsd:simpleType name="doubleNumberListType">
 <xsd:list itemType="xsd:double"/>
 </xsd:simpleType>
 <xsd:complexType name="polynomialType">
 <xsd:sequence>
 <xsd:element name="polynomialCoefficients" type="doubleNumberListType"/>
 </xsd:sequence>
 <xsd:attribute name="pType" type="xsd:nonNegativeInteger" use="optional"
default="1"/>
 <xsd:attribute name="nVars" type="xsd:nonNegativeInteger" use="required"/>
 <xsd:attribute name="order" type="xsd:nonNegativeInteger" use="required"/>
 <xsd:attribute name="nCoefficients" type="xsd:nonNegativeInteger"
use="required"/>
 <xsd:anyAttribute/>
 </xsd:complexType>
 <xsd:complexType name="rationalPolynomialType">
 <xsd:annotation>
 <xsd:documentation>
 row = pPolynomial(x, y, z) / qPolynomial(x, y, z)
 column = rPolynomial(x, y, z) / sPolynomial(x, y, z)
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="pPolynomial" type="polynomialType"/>
 <xsd:element name="qPolynomial" type="polynomialType"/>
 <xsd:element name="rPolynomial" type="polynomialType"/>
 <xsd:element name="sPolynomial" type="polynomialType"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>

Appendix A

A-5

 </xsd:sequence>
 <xsd:attribute name="rowOff" type="xsd:double" use="required"/>
 <xsd:attribute name="columnOff" type="xsd:double" use="required"/>
 <xsd:attribute name="xOff" type="xsd:double" use="required"/>
 <xsd:attribute name="yOff" type="xsd:double" use="required"/>
 <xsd:attribute name="zOff" type="xsd:double" use="required"/>
 <xsd:attribute name="rowScale" type="xsd:double" use="required"/>
 <xsd:attribute name="columnScale" type="xsd:double" use="required"/>
 <xsd:attribute name="xScale" type="xsd:double" use="required"/>
 <xsd:attribute name="yScale" type="xsd:double" use="required"/>
 <xsd:attribute name="zScale" type="xsd:double" use="required"/>
 <xsd:attribute name="rowRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="columnRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="totalRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="xRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="yRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="zRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="modelTotalRMS" type="xsd:double" use="optional"/>
 <xsd:anyAttribute/>
 </xsd:complexType>
 <xsd:annotation>
 <xsd:documentation>
 The following types and definitions are for GCP support. It stores
 GCP collection for the GeoRaster object. It also optionally specify
 the Functional Fitting method for generating FFM using the GCP collection.
 cellDimension can 2 or 3 (only 2 is supported in current release).
 modelDimension can be 2, 3, -2, -3. cellCoordinate must be (row, column)
 in current release.
 modelCoordinate must be (X, Y) or (X, Y, Z) in current release.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType name="gcpPointType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ControlPoint"/>
 <xsd:enumeration value="CheckPoint"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="gcpPointStatusType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Measured"/>
 <xsd:enumeration value="Removed"/>
 <xsd:enumeration value="Estimated"/>
 <xsd:enumeration value="Validated"/>
 <xsd:enumeration value="Invalid"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="GCPType">
 <xsd:attribute name="ID" type="xsd:string" use="optional"/>
 <xsd:attribute name="description" type="xsd:string" use="optional"/>
 <xsd:attribute name="type" type="gcpPointType" use="required"/>
 <xsd:attribute name="cellDimension" type="xsd:nonNegativeInteger"
use="required"/>
 <xsd:attribute name="row" type="xsd:double" default="0" />
 <xsd:attribute name="column" type="xsd:double" default="0" />
 <xsd:attribute name="vertical" type="xsd:integer" use="optional"/>
 <xsd:attribute name="modelDimension" type="xsd:nonNegativeInteger"
use="required"/>
 <xsd:attribute name="X" type="xsd:double" default="0"/>
 <xsd:attribute name="Y" type="xsd:double" default="0"/>
 <xsd:attribute name="Z" type="xsd:double" use="optional"/>
 <xsd:attribute name="xRMS" type="xsd:double" use="optional"/>

Appendix A

A-6

 <xsd:attribute name="yRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="zRMS" type="xsd:double" use="optional"/>
 <xsd:attribute name="status" type="gcpPointStatusType" use="optional"/>
 <xsd:anyAttribute/>
 </xsd:complexType>
 <xsd:simpleType name="FFMethodType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Affine"/>
 <xsd:enumeration value="QuadraticPolynomial"/>
 <xsd:enumeration value="CubicPolynomial"/>
 <xsd:enumeration value="DLT"/>
 <xsd:enumeration value="QuadraticRational"/>
 <xsd:enumeration value="RPC"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="GCPGeoreferenceType">
 <xsd:sequence>
 <xsd:element name="gcp" type="GCPType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="FFMethod" type="FFMethodType" use="optional"/>
 </xsd:complexType>
 <xsd:simpleType name="rasterSpatialReferenceModelType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="RigorousModel"/>
 <xsd:enumeration value="StoredFunction"/>
 <xsd:enumeration value="FunctionalFitting"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="rasterSpatialReferenceSystemType">
 <xsd:sequence>
 <xsd:element name="isReferenced" type="xsd:boolean" default="false"/>
 <xsd:element name="isRectified" type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="isOrthoRectified" type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="SRID" type="xsd:nonNegativeInteger" default="0"/>
 <xsd:element name="verticalSRID" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="modelDimensionDescription" type="xsd:string"
minOccurs="0"/>
 <xsd:element name="spatialResolution" type="resolutionType" minOccurs="0"
maxOccurs="3"/>
 <xsd:element name="spatialTolerance" type="xsd:double" minOccurs="0"/>
 <xsd:element name="modelCoordinateLocation" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="CENTER"/>
 <xsd:enumeration value="UPPERLEFT"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="modelType" type="rasterSpatialReferenceModelType"
 minOccurs="0" maxOccurs="3"/>
 <xsd:element name="polynomialModel" type="rationalPolynomialType"
 minOccurs="0"/>
 <xsd:choice minOccurs="0">
 <xsd:element name="gcpGeoreferenceModel" type="GCPGeoreferenceType"/>
 <xsd:element name="gcpTableName" type="xsd:string" minOccurs="0"/>
 </xsd:choice>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

Appendix A

A-7

 <xsd:annotation>
 <xsd:documentation> ===
 Part 1.3.2: Data Types for GeoRaster Temporal Reference System

 The TRS will be modeled by formulas in the future.
 ===
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType name="rasterTemporalReferenceSystemType">
 <xsd:sequence>
 <xsd:element name="isReferenced" type="xsd:boolean" default="false"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="beginDateTime" type="xsd:dateTime" minOccurs="0"/>
 <xsd:element name="endDateTime" type="xsd:dateTime" minOccurs="0"/>
 <xsd:element name="temporalResolutionDescription" type="xsd:string"
minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:annotation>
 <xsd:documentation> ==
 Part 1.3.3: Data Types for GeoRaster Band Reference System

 For multispectral remote sensing images, each band is optionally
 described in the layerDescriptionType.
 The BRS is modeled by formulas for hyperspectral imagery
 based on number of spectral segments, min and max wavelength
 and number of bands for each segment.
 Detailed radiometric info will be added in the future.
 ===
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleType name="wavelengthUnit">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="METER"/>
 <xsd:enumeration value="MILLIMETER"/>
 <xsd:enumeration value="MICROMETER"/>
 <xsd:enumeration value="NANOMETER"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="extentType">
 <xsd:sequence>
 <xsd:element name="min" type="xsd:double"/>
 <xsd:element name="max" type="xsd:double"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="segmentationDataType">
 <xsd:sequence>
 <xsd:element name="totalSegNumber" type="xsd:positiveInteger" default="1"/>
 <xsd:element name="firstSegNumber" type="xsd:integer" default="1"/>
 <xsd:element name="extent" type="extentType"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="bandReferenceType">
 <xsd:sequence>
 <xsd:element name="bands" type="segmentationDataType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="rasterBandReferenceSystemType">

Appendix A

A-8

 <xsd:sequence>
 <xsd:element name="isReferenced" type="xsd:boolean" default="false"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="radiometricResolutionDescription" type="xsd:string"
minOccurs="0"/>
 <xsd:element name="spectralUnit" type="wavelengthUnit"
default="MICROMETER"/>
 <xsd:element name="spectralTolerance" type="xsd:double" minOccurs="0"/>
 <xsd:element name="spectralResolutionDescription" type="xsd:string"
minOccurs="0"/>
 <xsd:element name="minSpectralResolution" type="resolutionType"
minOccurs="0"/>
 <xsd:element name="spectralExtent" type="extentType"/>
 <xsd:element name="bandReference" type="bandReferenceType" minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:annotation>
 <xsd:documentation> ==
 Part 1.4: Data Types for Layer Metadata

 For each sub-layer the layerNumber is a positive integer, i.e., layers are
 logically numbered from 1 to n if the size of the specified layerDimension is
 n. The layerDimensionOrdinate of each sublayer must be in the range of the
 dimension and must be in the order of band ordinates.
 For objectLayer, the layerNumber should be 0 but its layerDimensionOrdinate
 is not used.
 ===
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType name="NODATAType">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:double" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="range" type="extentType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="mask" type="xsd:boolean" minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="scalingFunctionType">
 <xsd:annotation>
 <xsd:documentation>
 value = (a0 + a1 * cellValue) / (b0 + b1 * cellValue)
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="a0" type="xsd:double" default="1"/>
 <xsd:element name="a1" type="xsd:double" default="0"/>
 <xsd:element name="b0" type="xsd:double" default="1"/>
 <xsd:element name="b1" type="xsd:double" default="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="binType">
 <xsd:annotation>
 <xsd:documentation>
 LINEAR bin function:
 binNumber = numbins * (cellValue - min) / (max - min) + firstBinNumber
 if (binNumber less than 0) binNumber = firstBinNumber
 if (binNumber greater than or equal to numbins) binNumber = numbins +

Appendix A

A-9

firstBinNumber - 1
 LOGARITHM bin function:
 binNumber = numbins * (ln (1.0 + ((cellValue - min)/(max - min)))/ ln
(2.0)) + firstBinNumber
 if (binNumber less than 0) binNumber = firstBinNumber
 if (binNumber greater than or equal to numbins) binNumber = numbins +
firstBinNumber - 1
 EXPLICIT bin function means explicit (or direct) value (or value range)
 for each bin and it will be stored in a table
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LINEAR"/>
 <xsd:enumeration value="LOGARITHM"/>
 <xsd:enumeration value="EXPLICIT"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="binFunctionType">
 <xsd:annotation>
 <xsd:documentation>
 The MAX and MIN in statistic dataset will be used if they are not provided
 here. binTableName is used by EXPLICIT type only.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="binFunctionData" type="segmentationDataType"/>
 <xsd:element name="binTableName" type="xsd:string"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="type" type="binType" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="rectangularWindowType">
 <xsd:sequence>
 <xsd:element name="origin" type="cellCoordinateType"/>
 <xsd:element name="rowHeight" type="xsd:positiveInteger"/>
 <xsd:element name="columnWidth" type="xsd:positiveInteger"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="cellCountType">
 <xsd:attribute name="value" type="xsd:double" use="required"/>
 <xsd:attribute name="count" type="xsd:nonNegativeInteger" use="required"/>
 <xsd:anyAttribute/>
 </xsd:complexType>
 <xsd:complexType name="rasterCountType">
 <xsd:sequence>
 <xsd:element name="cell" type="cellCountType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="histogramType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="counts" type="rasterCountType"/>
 <xsd:element name="tableName" type="xsd:string"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="statisticDatasetType">
 <xsd:sequence>

Appendix A

A-10

 <xsd:element name="samplingFactor" type="xsd:positiveInteger" default="1"/>
 <xsd:element name="samplingWindow" type="rectangularWindowType"
minOccurs="0"/>
 <xsd:element name="MIN" type="xsd:double"/>
 <xsd:element name="MAX" type="xsd:double"/>
 <xsd:element name="MEAN" type="xsd:double"/>
 <xsd:element name="MEDIAN" type="xsd:double"/>
 <xsd:element name="MODEVALUE" type="xsd:double"/>
 <xsd:element name="STD" type="xsd:double"/>
 <xsd:element name="histogram" type="histogramType" minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="cellGrayType">
 <xsd:attribute name="value" type="xsd:double" use="required"/>
 <xsd:attribute name="gray" type="xsd:integer" use="required"/>
 <xsd:anyAttribute/>
 </xsd:complexType>
 <xsd:complexType name="rasterGrayType">
 <xsd:sequence>
 <xsd:element name="cell" type="cellGrayType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="grayScaleType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="grays" type="rasterGrayType"/>
 <xsd:element name="tableName" type="xsd:string"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="cellPseudoColorType">
 <xsd:attribute name="value" type="xsd:double" use="required"/>
 <xsd:attribute name="red" type="xsd:integer" use="required"/>
 <xsd:attribute name="green" type="xsd:integer" use="required"/>
 <xsd:attribute name="blue" type="xsd:integer" use="required"/>
 <xsd:attribute name="alpha" type="xsd:double" use="optional"/>
 <xsd:anyAttribute/>
 </xsd:complexType>
 <xsd:complexType name="rasterPseudoColorType">
 <xsd:sequence>
 <xsd:element name="cell" type="cellPseudoColorType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="colorMapType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="colors" type="rasterPseudoColorType"/>
 <xsd:element name="tableName" type="xsd:string"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="layerType">
 <xsd:sequence>
 <xsd:element name="layerNumber" type="xsd:nonNegativeInteger"/>
 <xsd:element name="layerDimensionOrdinate" type="xsd:integer"/>
 <xsd:element name="layerID" type="xsd:string"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="bitmapMask" type="xsd:boolean"
minOccurs="0" default="false"/>

Appendix A

A-11

 <xsd:element name="NODATA" type="NODATAType"
minOccurs="0"/>
 <xsd:element name="scalingFunction" type="scalingFunctionType"
minOccurs="0"/>
 <xsd:element name="binFunction" type="binFunctionType" minOccurs="0"/>
 <xsd:element name="statisticDataset" type="statisticDatasetType"
minOccurs="0"/>
 <xsd:element name="grayScale" type="grayScaleType" minOccurs="0"/>
 <xsd:element name="colorMap" type="colorMapType" minOccurs="0"/>
 <xsd:element name="vatTableName" type="xsd:string" minOccurs="0"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="layerDescriptionType">
 <xsd:sequence>
 <xsd:element name="layerDimension" type="cellDimensionType"
default="BAND"/>
 <xsd:element name="objectLayer" type="layerType" minOccurs="0"/>
 <xsd:element name="subLayer" type="layerType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:annotation>
 <xsd:documentation> ===
 Part 2: Metadata Elements / Content Structure of Oracle GeoRaster Object
 ==
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="georasterMetadata">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="objectInfo" type="objectDescriptionType"/>
 <xsd:element name="rasterInfo" type="rasterDescriptionType"/>
 <xsd:element name="spatialReferenceInfo"
type="rasterSpatialReferenceSystemType" minOccurs="0"/>
 <xsd:element name="temporalReferenceInfo"
type="rasterTemporalReferenceSystemType" minOccurs="0"/>
 <xsd:element name="bandReferenceInfo"
type="rasterBandReferenceSystemType" minOccurs="0"/>
 <xsd:element name="layerInfo" type="layerDescriptionType"
maxOccurs="unbounded"/>
 <xsd:element name="sourceInfo" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:any minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Appendix A

A-12

Index

A
addNODATA procedure, 7-5
administrative subprograms

GeoRaster, 8-1
Advanced LOB Compression, 1-38
affine transformation

images, 6-12
SDO_GEOR.affineTransform procedure, 7-8

aggregate subprograms
GeoRaster, 9-1, 12-1

ALL_SDO_GEOR_SYSDATA view, 2-15
alpha (opacity) value, 2-7
append procedure, 9-1
appending images, 6-20
AVERAGE16 resampling and interpolation

method, 1-29
AVERAGE4 resampling and interpolation

method, 1-29

B
band numbers, 1-22

bandBlockNumber attribute, 2-5
band reference system (BRS)

description, 1-6
bandBlockNumber attribute of SDO_RASTER,

2-5
bands

description, 1-22
merging, 6-19

BILINEAR resampling and interpolation method,
1-29

BIQUADRATIC resampling and interpolation
method, 1-29

bitmap masks, 1-32
bitmap pyramiding, 6-17
bitmapmask keyword

for storageParam parameter, 1-16
blank GeoRaster objects, 1-21
BLOB data

raster block data, 2-5
block size

calculating optimal, 13-2

blocking keyword
for importFrom storageParam parameter,

7-150
for storageParam parameter, 1-16

blockMBR attribute of SDO_RASTER, 2-5
blockSize keyword for storageParam, 1-17
BMP image format

support by GeoRaster, 1-43
BRS (band reference system)

description, 1-6

C
calcCompressionRatio function, 7-12
calcOptimizedBlockSize procedure, 13-2
calcRasterNominalSize function, 13-3
calcRasterStorageSize function, 13-4
calcSurfaceArea function, 13-5
cartographic modeling, 5-28
cartography

description, 1-5
casting

raster data, 5-27
cbreference keyword

for mosaicParam parameter, 9-17
cell coordinate system, 1-6

relationship to model coordinate system,
1-10

cell data
interpolating cell values, 4-7
querying and updating, 4-5

cell value-based conditional queries, 5-7
cell-value based conditional updates, 5-9
cellDepth keyword for storageParam, 1-17
changeCellValue procedure, 7-13
changeCellValues procedure, 7-15
changeFormatCopy procedure, 7-17
checkSysdataEntries function, 8-1
classification operations, 5-15
classify procedure, 12-1
clearReportTable procedure, 13-6
codeBlockSize keyword

for compressParam parameter, 7-20
color balancing, 6-23
color gradient (ramp), 13-11

Index-1

color ramp, 13-11
colorBalance keyword

for mosaicParam parameter, 9-18
colormap

alpha (opacity) value, 2-7
getting, 7-99
getting table, 7-101
pseudocolor information, 7-149
SDO_GEOR_COLORMAP object type, 2-7

COLUMN_NAME column (in
USER_SDO_GEOR_SYSDATA view),
2-16

columnBlockNumber attribute of SDO_RASTER,
2-5

commonPointRule keyword
for mosaicParam parameter, 9-20

COMPATIBILITY database initialization
parameter

requirement if upgrading, 1-2
compression

Advanced LOB Compression, 1-38
compression ratio, 7-12
decompression of GeoRaster objects, 1-37
DEFLATE format, 1-37
JPEG 2000 format, 1-36
JPEG format, 1-36
keyword for storageParam parameter, 1-18
LizardTech plug-in, 1-38
of GeoRaster objects, 1-34, 4-10
performance considerations, 1-35
quality, 1-19, 1-36
third-party plug-ins, 1-38

compressJP2 procedure, 7-19
compressParam parameter, 7-19
conditional queries

cell value-based, 5-7
contrast table

grayscale table, 2-8
copy procedure, 7-22
createBlank function, 7-23
createDMLTrigger procedure, 13-6
createReportTable procedure, 13-7
createTemplate function, 7-25
cross-schema support with GeoRaster, 1-22,

4-12
CUBIC resampling and interpolation method,

1-29

D
dangling raster blocks

caused by interrupting mosaic operation,
7-164

finding, 8-7

data model
GeoRaster, 1-6

decompression
of GeoRaster objects, 1-37, 4-10
performance considerations, 1-35

decompressJP2 procedure, 7-27
DEFLATE compression, 1-37
deleteControlPoint procedure, 7-29
deleteNODATA function, 7-29
deletePyramid procedure, 7-31
DEM (Digital Elevation Model)

orthorectification with, 6-9
SDO_GEOR_GDAL.dem procedure, 10-1

diff procedure, 12-8
Digital Elevation Model (DEM)

orthorectification with, 6-9
digital image processing

description, 1-6
disableReport procedure, 13-8
DML trigger

creating, 3-3, 3-5, 13-6
re-creating, 13-21

dodge procedure, 11-1
dropReportTable procedure, 13-8
dwt keyword

for compressParam parameter, 7-20

E
empty blocks

changing to empty LOBs, 13-5, 13-9
filling with background values, 13-10

empty GeoRaster objects, 1-21
emptyBlocks procedure, 13-9
enableGeoRaster procedure, 8-2
enableReport procedure, 13-10
enabling GeoRaster after Spatial and Graph

installation, 1-2
equalize procedure, 11-4
ESRI world files

loading, 7-151
support by GeoRaster, 1-43

ETL (extract, transform, load) solutions
tools for, 1-43
using Java API to develop, 1-48

evaluateDouble function, 7-32
evaluateDoubles function, 7-34
exporter tool for GeoRaster, 1-43
exporting

GeoRaster objects, 3-16
exportTo procedure, 7-36
extract, transform, load (ETL) solutions

tools for, 1-43
using Java API to develop, 1-48

Index

Index-2

F
fillEmptyBlocks procedure, 13-10
fillGap keyword

for mosaicParam parameter, 9-20
filter procedure, 11-7
filtering images, 6-14
findCells procedure, 12-11
footprint, 2-2
formats

image (supported by GeoRaster), 1-43
vector and raster, 1-4

functional fitting polynomial model
support by GeoRaster, 1-25

G
generateAreaWeightedMean function, 7-39
generateBitmapPyramid procedure, 7-40
generateBlockMBR function, 7-42
generateColorRamp function, 13-11
generateGrayRamp function, 13-13
generatePyramid procedure, 7-43
generateSpatialExtent function, 7-45
generateSpatialResolutions function, 7-47
generateStatistics function, 7-49
generateStatisticsMax function, 7-54
generateStatisticsMean function, 7-57
generateStatisticsMedian function, 7-60
generateStatisticsMin function, 7-62
generateStatisticsMode function, 7-65
generateStatisticsSTD function, 7-68
generateStatisticsSum function, 7-71
geochemistry

raster data used by, 1-6
geographic information systems (GIS)

raster-based, 1-5
geology

raster data used by, 1-6
geometadata, 2-3
geophysics

raster data used by, 1-6
GeoRaster

checking if enabled for current schema, 8-3
enabling for current schema, 8-2

GeoRaster BRS, 1-6
GeoRaster data model, 1-6
GeoRaster management, 1-38
GeoRaster objects

blank, 1-21
changing format, 7-17
changing physical storage, 4-2
color balancing (dodge operation), 11-1
compressing, 4-10
compressing (JPEG2000), 7-19

GeoRaster objects (continued)
copying, 4-3, 7-22
copying and changing format, 7-17
copying and scaling, 7-176
creating, 3-5
creating blank, 7-23
creating template, 7-25
decompressing, 4-10
decompressing JPEG 2000, 7-27
deleting, 4-11
empty, 1-21
equalizing, 11-4
exporting, 1-43, 3-16
filtering, 11-7
georeferencing, 3-10
histogram matching, 11-11
indexing spatial extent geometry, 3-14
initializing, 7-153
interpolating cell values, 4-7
loading, 1-43, 3-6
loading with blocking and optimal padding,

3-7
normalizing, 11-14
optimizing physical storage, 4-2
physical storage, 1-11

changing, 4-2
optimizing, 4-2

piecewise stretching, 11-19
processing, 4-7
pyramids

definition, 1-30
querying and searching, 4-1
querying and updating cell data, 4-5
querying and updating metadata, 4-4
registering, 3-6
reprojecting, 7-172
scaling, 7-176
stretching, 11-23
subsetting with polygon clipping, 4-4
transferring between databases, 3-21
transforming coordinate information, 3-11
updating before committing, 4-14
updating in a loop, 4-15
validating, 3-9
viewing, 1-43, 3-15

GeoRaster parallel processing, 1-39
GeoRaster spatial web services, 1-42
GeoRaster SRS, 1-6
GeoRaster tables

column with GeoRaster object, 2-16
creating, 3-3
cross-schema support, 1-22
definition, 1-11
dropping, 4-11
metadata column, 2-16

Index

3

GeoRaster tables (continued)
name, 2-15
other related tables, 2-16
raster data table, 2-16
raster ID, 2-16
renaming, 4-11

GeoRaster tools, 1-43
GeoRaster TRS, 1-6
GeoRaster XML schema table, 2-16
georaster_tools.jar file, 1-43
georastertool.jar file, 1-45
georeference procedure, 7-74
georeferencing

cell coordinate and model coordinate
transformation, 1-28

description, 1-24
functional fitting model details and formulas,

1-25
methods for performing, 3-10

GeoTIFF files
loading libraries using sdoldgtf.sql script,

3-11
GeoTIFF image format

support by GeoRaster, 1-43
getAllStatusReport function, 13-16
getBandDimSize function, 7-79
getBeginDateTime function, 7-79
getBinFunction function, 7-80
getBinTable function, 7-81
getBinType function, 7-82
getBitmapMask procedure, 7-83
getBitmapMaskSubset procedure, 7-84
getBitmapMaskValue procedure, 7-87
getBitmapMaskValues procedure, 7-88
getBlankCellValue function, 7-89
getBlockingType function, 7-90
getBlockSize function, 7-91
getCellCoordinate function, 7-91
getCellDepth function, 7-94
getCellValue function, 7-95
getCellValues function, 7-97
getColorMap function, 7-99
getColorMapTable function, 7-101
getCompressionType function, 7-102
getControlPoint function, 7-102
getDefaultAlpha function, 7-103
getDefaultBlue function, 7-104
getDefaultColorLayer function, 7-105
getDefaultGreen function, 7-106
getDefaultPyramidLevel function, 7-107
getDefaultRed function, 7-107
getEndDateTime function, 7-108
getGCPGeorefMethod function, 7-109
getGCPGeorefModel function, 7-110
getGeoreferenceType function, 7-111

getGrayScale function, 7-112
getGrayScaleTable function, 7-112
getHistogram function, 7-113
getHistogramTable function, 7-114
getID function, 7-115
getInterleavingType function, 7-116
getJP2TileSize function, 7-117
getLayerDimension function, 7-117
getLayerID function, 7-118
getLayerOrdinate function, 7-119
getMaxMemSize function, 13-17
getModelCoordinate function, 7-120
getModelCoordLocation function, 7-121
getModelSRID function, 7-122
getMosaicExtent procedure, 9-3
getMosaicResolutions procedure, 9-4
getMosaicStatistics procedure, 9-5
getMosaicSubset procedure, 9-7
getNODATA function, 7-123
getProgress function, 13-18
getPyramidMaxLevel function, 7-124
getPyramidType function, 7-124
getRasterBlockLocator procedure, 7-125
getRasterBlocks function, 7-127
getRasterData procedure, 7-129
getRasterRange function, 7-130
getRasterSubset procedure, 7-131
getReadBlockMemSize function, 13-17
getScaling function, 7-136
getSourceInfo procedure, 7-137
getSpatialDimNumber function, 7-138
getSpatialDimSizes function, 7-139
getSpatialResolutions function, 7-140
getSpectralResolution function, 7-140
getSpectralUnit function, 7-141
getSRS function, 7-142
getStatistics function, 7-143
getStatusReport function, 13-19
getTotalLayerNumber function, 7-144
getULTCoordinate function, 7-144
getVAT function, 7-145
getVersion function, 7-146
getWriteBlockMemSize function, 13-20
GIF image format

support by GeoRaster, 1-43
gray gradient (ramp), 13-13
gray ramp), 13-13
grayscale

checking for, 7-147
returning mapping table, 7-112
returning mappings, 7-112
SDO_GEOR_GRAYSCALE object type, 2-8
setting mapping table, 7-200
setting mappings for a layer, 7-198

grayscale table, 2-8

Index

Index-4

GRDMLTR_
user trigger names cannot start with, 1-39

grid interpolation, 1-30
gridded data, 1-4
ground control points (GCPs)

adding to a GeoRaster object, 7-187
advanced georeferencing, 6-3
georeferencing using GCPs, 1-27
SDO_GEOR_GCP object type, 2-12
SDO_GEOR_GCP_ COLLECTION collection

type, 2-13
SDO_GEOR_GCPGEOREFTYPE object

type, 2-13
ground coordinate system, 1-6

H
hasBitmapMask function, 7-146
hasGrayScale function, 7-147
hasNODATAMask function, 7-148
hasPseudoColor function, 7-149
histogram table

getting, 7-114
setting, 7-201

histogramMatch procedure, 11-11
histograms

getting, 7-113
SDO_GEOR_HISTOGRAM object type, 2-6
SDO_GEOR_HISTOGRAM_ARRAY

collection type, 2-6

I
image filtering, 6-14
image formats

supported by GeoRaster, 1-43
image masking, 6-18
image segmentation, 6-15
images

appending, 6-20
dodging, 6-14
equalization, 6-14
histogram matching, 6-14
masking, 6-18
normalization, 6-14
serving, 6-34
stretching, 6-14

importFrom procedure, 7-149
indexing

GeoRaster data, 3-14
init function, 7-153
initializing

GeoRaster objects, 7-153
interleaving, 1-24

getting type, 7-116

interleaving (continued)
keyword for storageParam, 1-18

interpolating cell values, 4-7
interpolation, 1-29
interpolationMethod keyword, 7-33, 7-35
interpolationMethod parameter, 7-33, 7-35
isBlank function, 7-154
isGeoRasterEnabled function, 8-3
isOrthoRectified function, 7-155
isOverlap function, 12-14
isRDTNameUnique function, 8-4
isRectified function, 7-156
isReporting function, 13-20
isSpatialReferenced function, 7-157
isUpgradeNeeded function, 8-4

J
JAI_based_tools_user_guide.txt file

for GeoRaster tools, 1-44
Java sample files for GeoRaster, 1-48
Java virtual machine (JVM)

use of by GeoRaster, 1-1
JPEG 2000 (JP2) compression parameters, 7-19
JPEG 2000 compression, 1-36
JPEG 2000 images

loading without decompression, 3-8
JPEG compression, 1-36
JPEG image format

loading (GeoRaster loader tool only), 7-151
support by GeoRaster, 1-43

JPEG images
loading without decompression, 3-8

JPEG-F compression mode, 1-36

L
layer numbers, 1-22
layerInfo element, 1-24
layers

description, 1-22
dimension, 7-117
ID, 7-118
metadata stored in layerInfo elements, 1-24
ordinate, 7-119

listDanglingRasterData function, 8-7
listGeoRasterColumns function, 8-5
listGeoRasterObjects function, 8-6
listGeoRasterTables function, 8-6
listRDT function, 8-8
listRegisteredRDT function, 8-8
listUnregieteredRDT function, 8-9
LizardTech

plug-in for MrSID and JPEG 2000
compression, 1-38

Index

5

loader tool for GeoRaster, 1-43
loading

GeoRaster data, 3-6
logical expressions, 5-21
logical operations, 5-21
lookup table

grayscale table, 2-8
lossiness, 1-19, 1-36

M
maintainSysdataEntries function, 8-10
makeRDTNamesUnique procedure, 13-21
management of GeoRaster objects, 1-38
Map Visualization Component and GeoRaster,

1-43
maps

managing with GeoRaster, 1-5
mask procedure, 7-158
masks

bitmap, 1-32
mathematical operations, 5-12
maxVal keyword

for mosaicParam parameter, 9-20
MBR (minimum bounding rectangle)

blockMBR attribute, 2-5
mct keyword

for compressParam parameter, 7-20
mean keyword

for mosaicParam parameter, 9-21
mergeLayers procedure, 7-160
merging bands, 6-19
metadata

GeoRaster, 2-3
XML schema, A-1

metadata attribute of SDO_GEORASTER, 2-3
METADATA_COLUMN_NAME column (in

USER_SDO_GEOR_SYSDATA view),
2-16

minimum bounding rectangle (MBR)
blockMBR attribute, 2-5

minVal keyword
for mosaicParam parameter, 9-21

model coordinate system, 1-6
relationship to cell coordinate system, 1-10

model space, 1-6
modeling

cartographic, 5-28
terrain, 5-29

mosaic
color balancing during, 6-23
large-scale image, 6-20
virtual, 6-27

mosaic procedure, 7-163
mosaicSubset procedure, 9-13

MrSID
LizardTech plug-in for compression, 1-38

N
naming considerations

spatial table and column names, 1-15
NDVI (Normalized Difference Vegetation Index),

6-17
Nearest Neighbor (NN) interpolation method,

7-33, 7-35
NN (Nearest Neighbor) interpolation method,

7-33, 7-35
NN resampling and interpolation method, 1-29
nodata cells

adding, 7-5
deleting, 7-29
getting value for, 7-123

nodata keyword
for mosaicParam parameter, 9-21

nominal size
raster, 13-3

normalize procedure, 11-14
Normalized Difference Vegetation Index (NDVI),

6-17

O
object layer, 1-23
offsetting

raster data, 5-25
on-the-fly statistical analysis, 5-17
opacity

alpha value, 2-7
operation progress

report by client and optionally operation,
13-18

reporting, 1-40
operation status

disabling status reporting, 13-8
enabling status reporting, 13-10
report all, 13-16
report by client and optionally operation,

13-19
operation status reporting

checking if enabled, 13-20
optimal padding, 3-7
Oracle Label Security (OLS)

using GeoRaster with, 7-232
Oracle SecureFiles

using with GeoRaster, 3-3
orthorectification, 1-24, 1-25

checking for, 7-155
of images, 6-8
setting, 7-208

Index

Index-6

orthorectification (continued)
See also rectification

OTHER_TABLE_NAMES column (in
USER_SDO_GEOR_SYSDATA view),
2-16

over procedure, 12-16

P
padding, 1-11
palette table, 2-7
parallel keyword for storageParam, 1-18
parallel processing in GeoRaster, 1-39
photogrammetry

description, 1-5
physical storage

GeoRaster objects, 1-11
piecewiseStretch procedure, 11-19
PL/SQL sample files for GeoRaster, 1-48
PNG image format

support by GeoRaster, 1-43
precinctSize keyword

for compressParam parameter, 7-20
progressOrder keyword

for compressParam parameter, 7-20
pseudocolor

checking for, 7-149
pseudocolor table, 2-7
psnr keyword

for compressParam parameter, 7-21
pyramid keyword for storageParam, 1-19
pyramid level

getting default, 7-107
setting default, 7-193

pyramid levels
definition, 1-30
pyramidLevel attribute of

SDO_GEORASTER, 2-4
pyramid type, 1-30
pyramidLevel attribute of SDO_RASTER, 2-4
pyramidParams parameter, 7-41, 7-44
pyramids, 1-30

bitmap pyramiding, 6-17
deleting data for, 7-31
formulas for determining, 1-31
generating data for, 7-40, 7-43
illustration of, 1-30
image pyramiding, 6-15
pyramid parameters, 7-41, 7-44
returning level number of top pyramid, 7-124

Q
quality

keyword for storageParam parameter, 1-19

R
raster

nominal size, 13-3
storage size, 13-4

raster algebra language, 5-2
raster block data, 2-5
raster data

casting, 5-27
introduction, 1-4
offsetting, 5-25
scaling, 5-25

raster data table (RDT)
creating, 3-3
cross-schema support, 1-22
definition, 1-11
dropping, 4-11
making names unique, 13-21
object table of type SDO_RASTER, 2-3
rasterDataTable attribute, 2-3
RDT_TABLE_NAME column, 2-16
renaming, 4-11, 13-22

raster ID, 2-3, 2-4
raster space, 1-6
raster type, 2-2
RASTER_ID column (in

USER_SDO_GEOR_SYSDATA view),
2-16

rasterBlock attribute of SDO_RASTER, 2-5
rasterDataTable attribute of SDO_GEORASTER,

2-3
rasterID attribute of SDO_GEORASTER, 2-3
rasterID attribute of SDO_RASTER, 2-4
rasterMathOp procedure, 12-19
rasterType attribute of SDO_GEORASTER, 2-2
rasterUpdate procedure, 12-28
ratio keyword

for compressParam parameter, 7-21
RDT_TABLE_NAME column (in

USER_SDO_GEOR_SYSDATA view),
2-16

README file
for Spatial and Graph and related features,

1-48
recreateDMLTriggers procedure, 13-21
rectification, 1-24

checking for, 7-156
of images, 6-7
SDO_GEOR.rectify procedure, 7-165
setting, 7-209

See also orthorectification
registerGeoRasterColumns procedure, 8-11
registerGeoRasterObjects procedure, 8-11
registering a GeoRaster object, 3-6

Index

7

remote sensing
description, 1-4

renameRDT procedure, 13-22
report table

clearing, 13-6
creating, 13-7
dropping, 13-8

reporting operation progress, 1-40
reproject procedure, 7-172
reprojecting GeoRaster objects, 4-7, 6-6
resampleParam parameter, 7-169, 7-175, 7-178
resampling, 1-29
resampling keyword

for mosaicParam parameter, 9-21
resamplingTolerance keyword

for mosaicParam parameter, 9-22
resFilter keyword

for mosaicParam parameter, 9-22
resolution

spectral, 7-214
rlevel keyword

for compressParam parameter, 7-21
rowBlockNumber attribute of SDO_RASTER, 2-5

S
sample files for GeoRaster

PL/SQL and Java, 1-48
scaleCopy procedure, 7-176
scaling

images, 6-12
raster data, 5-25

schemaValidate function, 7-179
SDO_GEOR package

addNODATA, 7-5
affineTransform, 7-8
calcCompressionRatio, 7-12
calcSurfaceArea, 13-5
changeCellValue, 7-13
changeCellValues, 7-15
changeFormatCopy, 7-17
compressJP2, 7-19
copy, 7-22
createBlank, 7-23
createTemplate, 7-25
decompressJP2, 7-27
deleteControlPoint, 7-29
deleteNODATA, 7-29
deletePyramid, 7-31
emptyBlocks, 13-9
evaluateDouble, 7-32
evaluateDoubles, 7-34
exportTo, 7-36
fillEmptyBlocks, 13-10
generateAreaWeightedMean, 7-39

SDO_GEOR package (continued)
generateBitmapPyramid, 7-40
generateBlockMBR, 7-42
generatePyramid, 7-43
generateSpatialExtent, 7-45
generateSpatialResolutions, 7-47
generateStatistics, 7-49
generateStatisticsMax, 7-54
generateStatisticsMean, 7-57
generateStatisticsMedian, 7-60
generateStatisticsMin, 7-62
generateStatisticsMode, 7-65
generateStatisticsSTD, 7-68
generateStatisticsSum, 7-71
georeference, 7-74
getBandDimSize, 7-79
getBeginDateTime, 7-79
getBinFunction, 7-80
getBinTable, 7-81
getBinType, 7-82
getBitmapMask, 7-83
getBitmapMaskSubset, 7-84
getBitmapMaskValue, 7-87
getBitmapMaskValues, 7-88
getBlankCellValue, 7-89
getBlockingType, 7-90
getBlockSize, 7-91
getCellCoordinate, 7-91
getCellDepth, 7-94
getCellValue, 7-95
getCellValues, 7-97
getColorMap, 7-99
getColorMapTable, 7-101
getCompressionType, 7-102
getControlPoint, 7-102
getDefaultAlpha, 7-103
getDefaultBlue, 7-104
getDefaultColorLayer, 7-105
getDefaultGreen, 7-106
getDefaultPyramidLevel, 7-107
getDefaultRed, 7-107
getEndDateTime, 7-108
getGCPGeorefMethod, 7-109
getGCPGeorefModel, 7-110
getGeoreferenceType, 7-111
getGrayScale, 7-112
getGrayScaleTable, 7-112
getHistogram, 7-113
getHistogramTable, 7-114
getID, 7-115
getInterleavingType, 7-116
getJP2TileSize, 7-117
getLayerDimension, 7-117
getLayerID, 7-118
getLayerOrdinate, 7-119

Index

Index-8

SDO_GEOR package (continued)
getModelCoordinate, 7-120
getModelCoordLocation, 7-121
getModelSRID, 7-122
getNODATA, 7-123
getPyramidMaxLevel, 7-124
getPyramidType, 7-124
getRasterBlockLocator, 7-125
getRasterBlocks, 7-127
getRasterData, 7-129
getRasterRange, 7-130
getRasterSubset, 7-131
getScaling, 7-136
getSourceInfo, 7-137
getSpatialDimNumber, 7-138
getSpatialDimSizes, 7-139
getSpatialResolutions, 7-140
getSpectralResolution, 7-140
getSpectralUnit, 7-141
getSRS, 7-142
getStatistics, 7-143
getTotalLayerNumber, 7-144
getULTCoordinate, 7-144
getVAT, 7-145
getVersion, 7-146
hasBitmapMask, 7-146
hasGrayScale, 7-147
hasNODATAMask, 7-148
hasPseudoColor, 7-149
importFrom, 7-149
init, 7-153
isBlank, 7-154
isOrthoRectified, 7-155
isRectified, 7-156
isSpatialReferenced, 7-157
mask, 7-158
mergeLayers layers

merging, 7-160
mosaic, 7-163
PyramidLevel, 7-193
rectify, 7-165
reference information, 7-1
reproject, 7-172
scaleCopy, 7-176
schemaValidate, 7-179
setBeginDateTime, 7-180
setBinFunction, 7-181
setBinTable, 7-182
setBitmapMask, 7-183
setBlankCellValue, 7-184
setColorMap, 7-185
setColorMapTable, 7-186
setControlPoint, 7-187
setDefaultAlpha, 7-188
setDefaultBlue, 7-189

SDO_GEOR package (continued)
setDefaultColorLayer, 7-190
setDefaultGreen, 7-192
setDefaultRed, 7-194
setEndDateTime, 7-195
setGCPGeorefMethod, 7-196
setGCPGeorefModel, 7-197
setGrayScale, 7-198
setGrayScaleTable, 7-200
setHistogramTable, 7-201
setID, 7-202
setLayerID, 7-203
setLayerOrdinate, 7-204
setModelCoordLocation, 7-205
setModelSRID, 7-206
setNODATAMask, 7-207
setOrthoRectified, 7-208
setRasterType, 7-209
setRectified, 7-209
setScaling, 7-210
setSourceInfo, 7-7, 7-211
setSpatialReferenced, 7-212
setSpatialResolutions, 7-213
setSpectralResolution, 7-214
setSpectralUnit, 7-215
setSRS, 7-216
setStatistics, 7-219
setULTCoordinate, 7-221
setVAT, 7-222
setVersion, 7-223
subset, 7-224
updateRaster, 7-228
validateBlockMBR, 7-231
validateGeoRaster, 7-232
warp, 7-234

SDO_GEOR_ADMIN package
checkSysdataEntries, 8-1
enableGeoRaster, 8-2
isGeoRasterEnabled, 8-3
isRDTNameUnique, 8-4
isUpgradeNeeded, 8-4
listDanglingRasterData, 8-7
listGeoRasterColumns, 8-5
listGeoRasterObjects, 8-6
listGeoRasterTables, 8-6
listRDT, 8-8
listRegisteredRDT, 8-8
listUnregisteredRDT, 8-9
maintainSysdataEntries, 8-10
reference information, 8-1
registerGeoRasterColumns, 8-11
registerGeoRasterObjects, 8-11
upgradeGeoRaster, 8-11

SDO_GEOR_AGGR package
append, 9-1

Index

9

SDO_GEOR_AGGR package (continued)
getMosaicExtent, 9-3
getMosaicResolutions, 9-4
getMosaicStatistics, 9-5
getMosaicSubset, 9-7
mosaicSubset, 9-13
reference information, 9-1, 12-1
validateForMosaicSubset, 9-27

SDO_GEOR_COLORMAP object type, 2-7
SDO_GEOR_GCP object type, 2-12
SDO_GEOR_GCP_ COLLECTION collection

type, 2-13
SDO_GEOR_GCPGEOREFTYPE object type,

2-13
SDO_GEOR_GDAL package

dem, 10-1
reference information, 10-1
translate, 10-3

SDO_GEOR_GRAYSCALE object type, 2-8
SDO_GEOR_HISTOGRAM object type, 2-6
SDO_GEOR_HISTOGRAM_ARRAY collection

type, 2-6
SDO_GEOR_IP package

dodge, 11-1
equalize, 11-4
filter, 11-7
histogramMatch, 11-11
normalize, 11-14
piecewiseStretch, 11-19
reference information, 11-1
stretch, 11-23

SDO_GEOR_RA package
classify, 12-1
diff, 12-8
findCells, 12-11
isOverlap, 12-14
over, 12-16
rasterMathOp, 12-19
rasterUpdate, 12-28
stack, 12-31

SDO_GEOR_SRS constructor, 2-12
SDO_GEOR_SRS object type, 2-9
SDO_GEOR_UTL package

calcOptimizedBlockSize, 13-2
calcRasterNominalSize, 13-3
calcRasterStorageSize, 13-4
clearReportTable, 13-6
createDMLTrigger, 13-6
createReportTable, 13-7
disableReport, 13-8
dropReportTable, 13-8
enableReport, 13-10
generateColorRamp, 13-11
generateGrayRamp, 13-13
getAllStatusReport, 13-16

SDO_GEOR_UTL package (continued)
getMaxMemSize, 13-17
getProgress, 13-18
getReadBlockMemSize, 13-17
getStatusReport, 13-19
getWriteBlockMemSize, 13-20
isReporting, 13-20
makeRDTNamesUnique, 13-21
recreateDMLTriggers, 13-21
reference information, 13-1
renameRDT, 13-22
setClientID, 13-23
setMaxMemSize, 13-23
setReadBlockMemSize, 13-24
setSeqID, 13-25
setWriteBlockMemSize, 13-25

SDO_GEOR_XMLSCHEMA_TABLE table, 2-16
SDO_GEORASTER object type, 2-1

metadata attribute, 2-3
rasterDataTable attribute, 2-3
rasterID attribute, 2-3
rasterType attribute, 2-2
spatialExtent attribute, 2-2

SDO_RASTER object type, 2-3
bandBlockNumber attribute, 2-5
blockMBR attribute, 2-5
columnBlockNumber attribute, 2-5
pyramidLevel attribute, 2-4
rasterBlock attribute, 2-5
rasterID attribute, 2-4
rowBlockNumber attribute, 2-5

SDO_RASTERSET collection type, 2-9
sdoldgtf.sql script, 3-11
SecureFiles

using Oracle SecureFiles with GeoRaster,
3-3

segmentation (classification), 5-15
segmenting images, 6-15
serving images, 6-34
setBeginDateTime procedure, 7-180
setBinFunction procedure, 7-181
setBinTable procedure, 7-182
setBitmapMask procedure, 7-183
setBlankCellValue procedure, 7-184
setClientID procedure, 13-23
setColorMap procedure, 7-185
setColorMapTable procedure, 7-186
setControlPoint procedure, 7-187
setDefaultAlpha procedure, 7-188
setDefaultBlue procedure, 7-189
setDefaultColorLayer procedure, 7-190
setDefaultGreen procedure, 7-192
setDefaultPyramidLevel procedure, 7-193
setDefaultRed procedure, 7-194
setEndDateTime procedure, 7-195

Index

Index-10

setGCPGeorefMethod procedure, 7-196
setGCPGeorefModel procedure, 7-197
setGrayScale procedure, 7-198
setGrayScaleTable procedure, 7-200
setHistogramTable procedure, 7-201
setID procedure, 7-202
setLayerID procedure, 7-203
setLayerOrdinate procedure, 7-204
setMaxMemSize procedure, 13-23
setModelCoordLocation procedure, 7-205
setModelSRID procedure, 7-206
setNODATAMask procedure, 7-207
setOrthoRectified procedure, 7-208
setRasterType procedure, 7-209
setReadBlockMemSize procedure, 13-24
setRectified procedure, 7-209
setScaling procedure, 7-210
setSeqID procedure, 13-25
setSourceInfo procedure, 7-7, 7-211
setSpatialReferenced procedure, 7-212
setSpatialResolutions procedure, 7-213
setSpectralResolution procedure, 7-214
setSpectralUnit procedure, 7-215
setSRS procedure, 7-216
setStatistics procedure, 7-219
setULTCoordinate procedure, 7-221
setVAT procedure, 7-222
setVersion procedure, 7-223
setWriteBlockMemSize procedure, 13-25
source information

adding, 7-7
getting, 7-137
setting, replacing, or deleting, 7-211

spatial extent, 2-2
generating and setting, 3-12

spatial reference system (SRS)
description, 1-6

spatial resolution values
generating, 7-47
getting, 7-140
setting, 7-213

spatialExtent attribute of SDO_GEORASTER,
2-2

generating and setting, 3-12
spectral resolution

getting, 7-140
setting, 7-214

spectral unit
getting, 7-141
setting, 7-215

sRGB ColorSpace, 2-7
SRID 999999 (unknown CRS), 3-6
SRS (spatial reference system)

description, 1-6
stack procedure, 12-31

stack statistical analysis, 5-18
statistical analysis

on-the-fly, 5-17
statistical operations, 5-17
std keyword

for mosaicParam parameter, 9-22
storage parameters, 1-15
storage size

raster, 13-4
storageParam parameter, 1-15
stretch procedure, 11-23
stretching images, 6-14
subset procedure, 7-224

T
TABLE_NAME column (in

USER_SDO_GEOR_SYSDATA view),
2-15

Tasseled Cap Computation (TCT), 6-18
TCT (Tasseled Cap Computation), 6-18
templates

developing GeoRaster applications, 4-16
temporal reference system (TRS)

description, 1-6
terrain modeling and analysis, 5-29
themes

raster layers, 1-23
thresholding, 6-15
TIFF image format

support by GeoRaster, 1-43
tileSize keyword

for compressParam parameter, 7-21
tiling keyword

for compressParam parameter, 7-21
transferring

GeoRaster data between databases, 3-21
transforming

GeoRaster coordinate information, 3-11
transportable tablespaces

using with GeoRaster data, 3-24
triggers

creating GeoRaster DML trigger, 3-3, 3-5,
13-6

re-creating GeoRaster DML trigger, 13-21
TRS (temporal reference system)

description, 1-6

U
ULTCoordinate

definition, 1-6
unknown CRS coordinate reference system, 3-6
updateRaster procedure, 7-228

Index

11

updating
before committing GeoRaster objects, 4-14

upgradeGeoRaster function, 8-11
upgrading from previous release

requirements, 1-2
USER_SDO_GEOR_SYSDATA view, 2-15
utility subprograms

GeoRaster, 13-1

V
validateBlockMBR function, 7-231
validateForMosaicSubset procedure, 9-27
validateGeoRaster function, 7-232
validating

GeoRaster objects, 3-9
value attribute table (VAT)

getting name of, 7-145
setting name of, 7-222

vector data
description, 1-4

vegetation index computation, 6-17
viewer tool

GeoRaster, 3-15
viewer tool for GeoRaster, 1-43
views

ALL_SDO_GEOR_SYSDATA, 2-14
USER_SDO_GEOR_SYSDATA, 2-14

virtual mosaic, 6-27

W
warping

of images, 6-11
SDO_GEOR.warp procedure, 7-234

web services
GeoRaster spatial, 1-42

Workspace Manager
using GeoRaster with, 7-232

world files (ESRI)
loading, 7-151
support by GeoRaster, 1-43

X
XML DB

use of by GeoRaster, 1-1
XML DB Repository

must be installed if upgrading, 1-2
XML schema for GeoRaster metadata, A-1
XML schema table for GeoRaster, 2-16

Z
ZLIB format

storing compressed data in, 1-37

Index

Index-12

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Spatial and Graph GeoRaster Developer's Guide
	Changes in Oracle Database Release 20c

	1 GeoRaster Overview and Concepts
	1.1 Vector and Raster Data
	1.2 Raster Data Sources
	1.2.1 Remote Sensing
	1.2.2 Photogrammetry
	1.2.3 Geographic Information Systems
	1.2.4 Cartography
	1.2.5 Digital Image Processing
	1.2.6 Geology, Geophysics, and Geochemistry

	1.3 GeoRaster Data Model
	1.4 GeoRaster Physical Storage
	1.4.1 Storage Parameters
	1.4.2 Raster Data Table
	1.4.3 Blank and Empty GeoRaster Objects
	1.4.4 Empty Raster Blocks
	1.4.5 Cross-Schema Support with GeoRaster

	1.5 Bands, Layers, and Metadata
	1.6 Georeferencing
	1.6.1 Functional Fitting Georeferencing Model
	1.6.2 Ground Control Point (GCP) Georeferencing Model
	1.6.3 Cell Coordinate and Model Coordinate Transformation

	1.7 Resampling and Interpolation
	1.8 Pyramids
	1.9 Bitmap Masks
	1.10 NODATA Values and Value Ranges
	1.11 Compression and Decompression
	1.11.1 JPEG (JPEG-F) Compression of GeoRaster Objects
	1.11.1.1 JPEG-B Support Deprecated

	1.11.2 JPEG 2000 Compression of GeoRaster Objects
	1.11.3 DEFLATE Compression of GeoRaster Objects
	1.11.4 Decompression of GeoRaster Objects
	1.11.5 Third-Party Plug-ins for Compression
	1.11.6 Advanced LOB Compression

	1.12 GeoRaster and Database Management
	1.13 Parallel Processing in GeoRaster
	1.14 Reporting Operation Progress in GeoRaster
	1.15 GeoRaster PL/SQL API
	1.16 GeoRaster Java API
	1.17 GeoRaster Spatial Web Services
	1.18 Map Visualization Component and GeoRaster
	1.19 GeoRaster Tools: Viewer, Loader, Exporter
	1.19.1 JAI-Based Viewer, Loader, and Exporter
	1.19.2 GDAL-Based ETL Wizard for Concurrent Batch Loading and Exporting
	1.19.3 Using GDAL from the Spatial and Graph Installation
	1.19.4 Using the SDO_GEOR_GDAL Package

	1.20 GeoRaster PL/SQL and Java Sample Files
	1.21 README File for Spatial and Graph and Related Features

	2 GeoRaster Data Types and Related Structures
	2.1 SDO_GEORASTER Object Type
	2.1.1 rasterType Attribute
	2.1.2 spatialExtent Attribute
	2.1.3 rasterDataTable Attribute
	2.1.4 rasterID Attribute
	2.1.5 metadata Attribute

	2.2 SDO_RASTER Object Type and the Raster Data Table
	2.2.1 rasterID Attribute
	2.2.2 pyramidLevel Attribute
	2.2.3 bandBlockNumber Attribute
	2.2.4 rowBlockNumber Attribute
	2.2.5 columnBlockNumber Attribute
	2.2.6 blockMBR Attribute
	2.2.7 rasterBlock Attribute

	2.3 Other GeoRaster Types
	2.3.1 SDO_GEOR_HISTOGRAM Object Type
	2.3.2 SDO_GEOR_HISTOGRAM_ARRAY Collection Type
	2.3.3 SDO_GEOR_COLORMAP Object Type
	2.3.4 SDO_GEOR_GRAYSCALE Object Type
	2.3.5 SDO_RASTERSET Collection Type
	2.3.6 SDO_GEOR_SRS Object Type
	2.3.7 SDO_GEOR_GCP Object Type
	2.3.8 SDO_GEOR_GCP_ COLLECTION Collection Type
	2.3.9 SDO_GEOR_GCPGEOREFTYPE Object Type

	2.4 GeoRaster System Data Views (xxx_SDO_GEOR_SYSDATA)
	2.4.1 TABLE_NAME Column
	2.4.2 COLUMN_NAME Column
	2.4.3 METADATA_COLUMN_NAME Column
	2.4.4 RDT_TABLE_NAME Column
	2.4.5 RASTER_ID Column
	2.4.6 OTHER_TABLE_NAMES Column

	2.5 GeoRaster XML Schema

	3 GeoRaster Database Creation and Management
	3.1 Enabling GeoRaster at the Schema Level
	3.2 Adding Data Files and Temporary Tablespaces for GeoRaster Users
	3.3 Creating the GeoRaster Table and Raster Data Tables
	3.3.1 Creating a GeoRaster Table
	3.3.2 Creating Raster Data Tables
	3.3.3 GeoRaster DML Trigger

	3.4 Creating New GeoRaster Objects
	3.5 Loading Raster Data
	3.5.1 Loading with Blocking and Optimal Padding
	3.5.2 Loading JPEG and JPEG 2000 Images Without Decompression
	3.5.3 Reformatting the Source Raster Before Loading

	3.6 Validating GeoRaster Objects
	3.7 Georeferencing GeoRaster Objects
	3.8 Generating and Setting Spatial Extents
	3.8.1 Special Considerations if the GeoRaster Table Has a Spatial Index

	3.9 Indexing GeoRaster Objects
	3.10 Viewing GeoRaster Objects
	3.11 Exporting GeoRaster Objects
	3.12 Using GeoRaster with Workspace Manager and Label Security
	3.12.1 Using GeoRaster with Workspace Manager
	3.12.2 Using GeoRaster with Label Security

	3.13 Maintaining Efficient Tablespace Use by GeoRaster Objects
	3.14 Checking GeoRaster Tables and Objects in the Database
	3.15 Maintaining GeoRaster Objects and System Data in the Database
	3.16 Transferring GeoRaster Data Between Databases
	3.16.1 Checking for and Resolving Conflicts
	3.16.2 Performing the GeoRaster Data Transfer

	3.17 Using Transportable Tablespaces with GeoRaster Data

	4 GeoRaster Data Query and Manipulation
	4.1 Querying and Searching GeoRaster Objects
	4.2 Changing and Optimizing Raster Storage
	4.3 Copying GeoRaster Objects
	4.4 Subsetting GeoRaster Objects with Polygon Clipping
	4.5 Querying and Updating GeoRaster Metadata
	4.6 Querying and Updating GeoRaster Cell Data
	4.7 Interpolating Cell Values
	4.8 Processing and Analyzing GeoRaster Objects
	4.9 Monitoring and Reporting GeoRaster Operation Progress
	4.10 Compressing and Decompressing GeoRaster Objects
	4.11 Deleting GeoRaster Objects, and Performing Actions on GeoRaster Tables and RDTs
	4.12 Performing Cross-Schema Operations
	4.13 Managing Memory to Improve Performance
	4.14 Updating GeoRaster Objects Before Committing
	4.15 Updating GeoRaster Objects in a Loop
	4.16 Using Template-Related Subprograms to Develop GeoRaster Applications

	5 Raster Algebra and Analytics
	5.1 Raster Algebra Language
	5.1.1 Examples of Raster Algebra Expressions

	5.2 Cell Value-Based Conditional Queries
	5.3 Cell Value-Based Conditional Updates (Edits)
	5.4 Mathematical Operations
	5.5 Classification Operations
	5.6 Statistical Operations
	5.6.1 On-the-Fly Statistical Analysis
	5.6.2 Stack Statistical Analysis

	5.7 Logical Operations
	5.7.1 Using Raster Algebra Procedures with Logical Expressions
	5.7.2 Using Raster Algebra Functions Only

	5.8 Raster Data Scaling and Offsetting
	5.9 Raster Data Casting
	5.10 Cartographic Modeling
	5.11 Terrain Modeling and Analysis

	6 Image Processing and Virtual Mosaic
	6.1 Advanced Georeferencing
	6.2 Image Reprojection
	6.3 Image Rectification
	6.4 Image Orthorectification
	6.4.1 Orthorectification with Average Height
	6.4.2 Orthorectification with DEM

	6.5 Image Warping
	6.6 Image Affine Transformation and Scaling
	6.7 Image Stretching, Normalization, Equalization, Histogram Matching, and Dodging
	6.8 Image Filtering
	6.9 Image Segmentation
	6.10 Image Pyramiding: Parallel Generation and Partial Update
	6.11 Bitmap Pyramiding
	6.12 Vegetation Index Computation
	6.13 Tasseled Cap Transformation
	6.14 Image Masking
	6.15 Band Merging
	6.16 Image Appending
	6.17 Large-Scale Image Mosaicking
	6.17.1 Color Balancing During Mosaicking
	6.17.2 Parallel Compression, Copying, and Subsetting

	6.18 Virtual Mosaic
	6.18.1 Virtual Mosaic as One or a List of GeoRaster Tables
	6.18.2 Virtual Mosaic as a View with a GeoRaster Column
	6.18.3 Virtual Mosaic as a SQL Query Statement or a Cursor
	6.18.4 Using Virtual Mosaic in Applications
	6.18.5 Special Considerations for Large-Scale Virtual Mosaic
	6.18.5.1 Improving Query Performance Using MIN_X_RES$ and MAX_X_RES$

	6.19 Image Serving

	7 SDO_GEOR Package Reference
	7.1 SDO_GEOR.addNODATA
	7.2 SDO_GEOR.addSourceInfo
	7.3 SDO_GEOR.affineTransform
	7.4 SDO_GEOR.calcCompressionRatio
	7.5 SDO_GEOR.changeCellValue
	7.6 SDO_GEOR.changeCellValues
	7.7 SDO_GEOR.changeFormatCopy
	7.8 SDO_GEOR.compressJP2
	7.9 SDO_GEOR.copy
	7.10 SDO_GEOR.createBlank
	7.11 SDO_GEOR.createTemplate
	7.12 SDO_GEOR.decompressJP2
	7.13 SDO_GEOR.deleteControlPoint
	7.14 SDO_GEOR.deleteNODATA
	7.15 SDO_GEOR.deletePyramid
	7.16 SDO_GEOR.evaluateDouble
	7.17 SDO_GEOR.evaluateDoubles
	7.18 SDO_GEOR.exportTo
	7.19 SDO_GEOR.generateAreaWeightedMean
	7.20 SDO_GEOR.generateBitmapPyramid
	7.21 SDO_GEOR.generateBlockMBR
	7.22 SDO_GEOR.generatePyramid
	7.23 SDO_GEOR.generateSpatialExtent
	7.24 SDO_GEOR.generateSpatialResolutions
	7.25 SDO_GEOR.generateStatistics
	7.26 SDO_GEOR.generateStatisticsMax
	7.27 SDO_GEOR.generateStatisticsMean
	7.28 SDO_GEOR.generateStatisticsMedian
	7.29 SDO_GEOR.generateStatisticsMin
	7.30 SDO_GEOR.generateStatisticsMode
	7.31 SDO_GEOR.generateStatisticsSTD
	7.32 SDO_GEOR.generateStatisticsSum
	7.33 SDO_GEOR.georeference
	7.34 SDO_GEOR.getBandDimSize
	7.35 SDO_GEOR.getBeginDateTime
	7.36 SDO_GEOR.getBinFunction
	7.37 SDO_GEOR.getBinTable
	7.38 SDO_GEOR.getBinType
	7.39 SDO_GEOR.getBitmapMask
	7.40 SDO_GEOR.getBitmapMaskSubset
	7.41 SDO_GEOR.getBitmapMaskValue
	7.42 SDO_GEOR.getBitmapMaskValues
	7.43 SDO_GEOR.getBlankCellValue
	7.44 SDO_GEOR.getBlockingType
	7.45 SDO_GEOR.getBlockSize
	7.46 SDO_GEOR.getCellCoordinate
	7.47 SDO_GEOR.getCellDepth
	7.48 SDO_GEOR.getCellValue
	7.49 SDO_GEOR.getCellValues
	7.50 SDO_GEOR.getColorMap
	7.51 SDO_GEOR.getColorMapTable
	7.52 SDO_GEOR.getCompressionType
	7.53 SDO_GEOR.getControlPoint
	7.54 SDO_GEOR.getDefaultAlpha
	7.55 SDO_GEOR.getDefaultBlue
	7.56 SDO_GEOR.getDefaultColorLayer
	7.57 SDO_GEOR.getDefaultGreen
	7.58 SDO_GEOR.getDefaultPyramidLevel
	7.59 SDO_GEOR.getDefaultRed
	7.60 SDO_GEOR.getEndDateTime
	7.61 SDO_GEOR.getGCPGeorefMethod
	7.62 SDO_GEOR.getGCPGeorefModel
	7.63 SDO_GEOR.getGeoreferenceType
	7.64 SDO_GEOR.getGrayScale
	7.65 SDO_GEOR.getGrayScaleTable
	7.66 SDO_GEOR.getHistogram
	7.67 SDO_GEOR.getHistogramTable
	7.68 SDO_GEOR.getID
	7.69 SDO_GEOR.getInterleavingType
	7.70 SDO_GEOR.getJP2TileSize
	7.71 SDO_GEOR.getLayerDimension
	7.72 SDO_GEOR.getLayerID
	7.73 SDO_GEOR.getLayerOrdinate
	7.74 SDO_GEOR.getModelCoordinate
	7.75 SDO_GEOR.getModelCoordLocation
	7.76 SDO_GEOR.getModelSRID
	7.77 SDO_GEOR.getNODATA
	7.78 SDO_GEOR.getPyramidMaxLevel
	7.79 SDO_GEOR.getPyramidType
	7.80 SDO_GEOR.getRasterBlockLocator
	7.81 SDO_GEOR.getRasterBlocks
	7.82 SDO_GEOR.getRasterData
	7.83 SDO_GEOR.getRasterRange
	7.84 SDO_GEOR.getRasterSubset
	7.85 SDO_GEOR.getScaling
	7.86 SDO_GEOR.getSourceInfo
	7.87 SDO_GEOR.getSpatialDimNumber
	7.88 SDO_GEOR.getSpatialDimSizes
	7.89 SDO_GEOR.getSpatialResolutions
	7.90 SDO_GEOR.getSpectralResolution
	7.91 SDO_GEOR.getSpectralUnit
	7.92 SDO_GEOR.getSRS
	7.93 SDO_GEOR.getStatistics
	7.94 SDO_GEOR.getTotalLayerNumber
	7.95 SDO_GEOR.getULTCoordinate
	7.96 SDO_GEOR.getVAT
	7.97 SDO_GEOR.getVersion
	7.98 SDO_GEOR.hasBitmapMask
	7.99 SDO_GEOR.hasGrayScale
	7.100 SDO_GEOR.hasNODATAMask
	7.101 SDO_GEOR.hasPseudoColor
	7.102 SDO_GEOR.importFrom
	7.103 SDO_GEOR.init
	7.104 SDO_GEOR.isBlank
	7.105 SDO_GEOR.isOrthoRectified
	7.106 SDO_GEOR.isRectified
	7.107 SDO_GEOR.isSpatialReferenced
	7.108 SDO_GEOR.mask
	7.109 SDO_GEOR.mergeLayers
	7.110 SDO_GEOR.mosaic
	7.111 SDO_GEOR.rectify
	7.112 SDO_GEOR.reproject
	7.113 SDO_GEOR.scaleCopy
	7.114 SDO_GEOR.schemaValidate
	7.115 SDO_GEOR.setBeginDateTime
	7.116 SDO_GEOR.setBinFunction
	7.117 SDO_GEOR.setBinTable
	7.118 SDO_GEOR.setBitmapMask
	7.119 SDO_GEOR.setBlankCellValue
	7.120 SDO_GEOR.setColorMap
	7.121 SDO_GEOR.setColorMapTable
	7.122 SDO_GEOR.setControlPoint
	7.123 SDO_GEOR.setDefaultAlpha
	7.124 SDO_GEOR.setDefaultBlue
	7.125 SDO_GEOR.setDefaultColorLayer
	7.126 SDO_GEOR.setDefaultGreen
	7.127 SDO_GEOR.setDefaultPyramidLevel
	7.128 SDO_GEOR.setDefaultRed
	7.129 SDO_GEOR.setEndDateTime
	7.130 SDO_GEOR.setGCPGeorefMethod
	7.131 SDO_GEOR.setGCPGeorefModel
	7.132 SDO_GEOR.setGrayScale
	7.133 SDO_GEOR.setGrayScaleTable
	7.134 SDO_GEOR.setHistogramTable
	7.135 SDO_GEOR.setID
	7.136 SDO_GEOR.setLayerID
	7.137 SDO_GEOR.setLayerOrdinate
	7.138 SDO_GEOR.setModelCoordLocation
	7.139 SDO_GEOR.setModelSRID
	7.140 SDO_GEOR.setNODATAMask
	7.141 SDO_GEOR.setOrthoRectified
	7.142 SDO_GEOR.setRasterType
	7.143 SDO_GEOR.setRectified
	7.144 SDO_GEOR.setScaling
	7.145 SDO_GEOR.setSourceInfo
	7.146 SDO_GEOR.setSpatialReferenced
	7.147 SDO_GEOR.setSpatialResolutions
	7.148 SDO_GEOR.setSpectralResolution
	7.149 SDO_GEOR.setSpectralUnit
	7.150 SDO_GEOR.setSRS
	7.151 SDO_GEOR.setStatistics
	7.152 SDO_GEOR.setULTCoordinate
	7.153 SDO_GEOR.setVAT
	7.154 SDO_GEOR.setVersion
	7.155 SDO_GEOR.subset
	7.156 SDO_GEOR.updateRaster
	7.157 SDO_GEOR.validateBlockMBR
	7.158 SDO_GEOR.validateGeoRaster
	7.159 SDO_GEOR.warp

	8 SDO_GEOR_ADMIN Package Reference
	8.1 SDO_GEOR_ADMIN.checkSysdataEntries
	8.2 SDO_GEOR_ADMIN.enableGeoRaster
	8.3 SDO_GEOR_ADMIN.isGeoRasterEnabled
	8.4 SDO_GEOR_ADMIN.isRDTNameUnique
	8.5 SDO_GEOR_ADMIN.isUpgradeNeeded
	8.6 SDO_GEOR_ADMIN.listGeoRasterColumns
	8.7 SDO_GEOR_ADMIN.listGeoRasterObjects
	8.8 SDO_GEOR_ADMIN.listGeoRasterTables
	8.9 SDO_GEOR_ADMIN.listDanglingRasterData
	8.10 SDO_GEOR_ADMIN.listRDT
	8.11 SDO_GEOR_ADMIN.listRegisteredRDT
	8.12 SDO_GEOR_ADMIN.listUnregisteredRDT
	8.13 SDO_GEOR_ADMIN.maintainSysdataEntries
	8.14 SDO_GEOR_ADMIN.registerGeoRasterColumns
	8.15 SDO_GEOR_ADMIN.registerGeoRasterObjects
	8.16 SDO_GEOR_ADMIN.upgradeGeoRaster

	9 SDO_GEOR_AGGR Package Reference
	9.1 SDO_GEOR_AGGR.append
	9.2 SDO_GEOR_AGGR.getMosaicExtent
	9.3 SDO_GEOR_AGGR.getMosaicResolutions
	9.4 SDO_GEOR_AGGR.getMosaicStatistics
	9.5 SDO_GEOR_AGGR.getMosaicSubset
	9.6 SDO_GEOR_AGGR.mosaicSubset
	9.7 SDO_GEOR_AGGR.validateForMosaicSubset

	10 SDO_GEOR_GDAL Package Reference
	10.1 SDO_GEOR_GDAL.dem
	10.2 SDO_GEOR_GDAL.translate

	11 SDO_GEOR_IP Package Reference
	11.1 SDO_GEOR_IP.dodge
	11.2 SDO_GEOR_IP.equalize
	11.3 SDO_GEOR_IP.filter
	11.4 SDO_GEOR_IP.histogramMatch
	11.5 SDO_GEOR_IP.normalize
	11.6 SDO_GEOR_IP.piecewiseStretch
	11.7 SDO_GEOR_IP.stretch

	12 SDO_GEOR_RA Package Reference
	12.1 SDO_GEOR_RA.classify
	12.2 SDO_GEOR_RA.diff
	12.3 SDO_GEOR_RA.findCells
	12.4 SDO_GEOR_RA.isOverlap
	12.5 SDO_GEOR_RA.over
	12.6 SDO_GEOR_RA.rasterMathOp
	12.7 SDO_GEOR_RA.rasterUpdate
	12.8 SDO_GEOR_RA.stack

	13 SDO_GEOR_UTL Package Reference
	13.1 SDO_GEOR_UTL.calcOptimizedBlockSize
	13.2 SDO_GEOR_UTL.calcRasterNominalSize
	13.3 SDO_GEOR_UTL.calcRasterStorageSize
	13.4 SDO_GEOR_UTL.calcSurfaceArea
	13.5 SDO_GEOR_UTL.clearReportTable
	13.6 SDO_GEOR_UTL.createDMLTrigger
	13.7 SDO_GEOR_UTL.createReportTable
	13.8 SDO_GEOR_UTL.disableReport
	13.9 SDO_GEOR_UTL.dropReportTable
	13.10 SDO_GEOR_UTL.emptyBlocks
	13.11 SDO_GEOR_UTL.enableReport
	13.12 SDO_GEOR_UTL.fillEmptyBlocks
	13.13 SDO_GEOR_UTL.generateColorRamp
	13.14 SDO_GEOR_UTL.generateGrayRamp
	13.15 SDO_GEOR_UTL.getAllStatusReport
	13.16 SDO_GEOR_UTL.getMaxMemSize
	13.17 SDO_GEOR_UTL.getReadBlockMemSize
	13.18 SDO_GEOR_UTL.getProgress
	13.19 SDO_GEOR_UTL.getStatusReport
	13.20 SDO_GEOR_UTL.getWriteBlockMemSize
	13.21 SDO_GEOR_UTL.isReporting
	13.22 SDO_GEOR_UTL.makeRDTNamesUnique
	13.23 SDO_GEOR_UTL.recreateDMLTriggers
	13.24 SDO_GEOR_UTL.renameRDT
	13.25 SDO_GEOR_UTL.setClientID
	13.26 SDO_GEOR_UTL.setMaxMemSize
	13.27 SDO_GEOR_UTL.setReadBlockMemSize
	13.28 SDO_GEOR_UTL.setSeqID
	13.29 SDO_GEOR_UTL.setWriteBlockMemSize

	A GeoRaster Metadata XML Schema
	Index

