
Oracle® Database
Utilities

20c
F17070-02
April 2020

Oracle Database Utilities, 20c

F17070-02

Copyright © 2002, 2020, Oracle and/or its affiliates.

Primary Author: Douglas Williams

Contributors: William Beauregard, Steve DiPirro, John Kalogeropoulos, Rod Payne, Rich Phillips, Mike
Sakayeda, Jim Stenoish, Roy Swonger

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxviii

Documentation Accessibility xxxviii

Related Documentation xxxix

Syntax Diagrams xxxix

Conventions xxxix

Part I Oracle Data Pump

1 Overview of Oracle Data Pump

1.1 Oracle Data Pump Components 1-2

1.2 How Does Oracle Data Pump Move Data? 1-3

1.2.1 Using Data File Copying to Move Data 1-4

1.2.2 Using Direct Path to Move Data 1-5

1.2.3 Using External Tables to Move Data 1-6

1.2.4 Using Conventional Path to Move Data 1-7

1.2.5 Using Network Link Import to Move Data 1-7

1.3 Using Oracle Data Pump With CDBs 1-8

1.3.1 About Using Oracle Data Pump in a Multitenant Environment 1-9

1.3.2 Using Oracle Data Pump to Move Data Into a CDB 1-9

1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs 1-12

1.4 Required Roles for Oracle Data Pump Export and Import Operations 1-12

1.5 What Happens During Execution of an Oracle Data Pump Job? 1-13

1.5.1 Coordination of an Oracle Data Pump Job 1-14

1.5.2 Tracking Progress Within an Oracle Data Pump Job 1-14

1.5.3 Filtering Data and Metadata During an Oracle Data Pump Job 1-15

1.5.4 Transforming Metadata During an Oracle Data Pump Job 1-15

1.5.5 Maximizing Job Performance of Oracle Data Pump 1-15

1.5.6 Loading and Unloading Data with Oracle Data Pump 1-16

1.6 How to Monitor Status of Oracle Data Pump Jobs 1-17

1.7 How to Monitor the Progress of Executing Jobs 1-17

iii

1.8 File Allocation with Oracle Data Pump 1-18

1.8.1 Understanding File Allocation in Oracle Data Pump 1-18

1.8.2 Specifying Files and Adding Additional Dump Files 1-19

1.8.3 Default Locations for Dump, Log, and SQL Files 1-19

1.8.3.1 Understanding Dump, Log, and SQL File Default Locations 1-19

1.8.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC 1-21

1.8.3.3 Using Directory Objects When Oracle Automatic Storage
Management Is Enabled 1-22

1.8.3.4 The DATA_PUMP_DIR Directory Object and Pluggable
Databases 1-23

1.8.4 Using Substitution Variables with Oracle Data Pump Exports 1-23

1.9 Exporting and Importing Between Different Oracle Database Releases 1-24

1.10 Exporting and Importing Blockchain Tables with Oracle Data Pump 1-26

1.11 Managing SecureFiles Large Object Exports with Oracle Data Pump 1-26

1.12 Oracle Data Pump Process Exit Codes 1-27

1.13 How to Monitor Oracle Data Pump Jobs with Unified Auditing 1-28

1.14 Encrypted Data Security Warnings for Oracle Data Pump Operations 1-28

1.15 How Does Oracle Data Pump Handle Timestamp Data? 1-29

1.15.1 TIMESTAMP WITH TIMEZONE Restrictions 1-29

1.15.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions 1-29

1.15.1.2 Data Pump Support for TIMESTAMP WITH TIME ZONE Data 1-30

1.15.1.3 Time Zone File Versions on the Source and Target 1-31

1.15.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions 1-31

1.16 Character Set and Globalization Support Considerations 1-32

1.16.1 Data Definition Language (DDL) 1-32

1.16.2 Single-Byte Character Sets and Export and Import 1-32

1.16.3 Multibyte Character Sets and Export and Import 1-32

1.17 Oracle Data Pump Behavior with Data-Bound Collation 1-33

2 Oracle Data Pump Export

2.1 What Is Oracle Data Pump Export? 2-1

2.2 Starting Oracle Data Pump Export 2-2

2.2.1 Oracle Data Pump Export Interfaces 2-2

2.2.2 Oracle Data Pump Export Modes 2-3

2.2.2.1 Full Mode 2-4

2.2.2.2 Schema Mode 2-5

2.2.2.3 Table Mode 2-6

2.2.2.4 Tablespace Mode 2-6

2.2.2.5 Transportable Tablespace Mode 2-7

2.2.3 Network Considerations for Oracle Data Pump Export 2-8

2.3 Filtering During Export Operations 2-9

iv

2.3.1 Oracle Data Pump Export Data Filters 2-9

2.3.2 Oracle Data Pump Metadata Filters 2-9

2.4 Parameters Available in Data Pump Export Command-Line Mode 2-11

2.4.1 About Data Pump Export Parameters 2-15

2.4.2 ABORT_STEP 2-17

2.4.3 ACCESS_METHOD 2-17

2.4.4 ATTACH 2-18

2.4.5 CHECKSUM 2-19

2.4.6 CHECKSUM_ALGORITM 2-20

2.4.7 CLUSTER 2-21

2.4.8 COMPRESSION 2-22

2.4.9 COMPRESSION_ALGORITHM 2-23

2.4.10 CONTENT 2-24

2.4.11 CREDENTIAL 2-25

2.4.12 DATA_OPTIONS 2-26

2.4.13 DIRECTORY 2-27

2.4.14 DUMPFILE 2-28

2.4.15 ENABLE_SECURE_ROLES 2-30

2.4.16 ENCRYPTION 2-31

2.4.17 ENCRYPTION_ALGORITHM 2-33

2.4.18 ENCRYPTION_MODE 2-34

2.4.19 ENCRYPTION_PASSWORD 2-35

2.4.20 ENCRYPTION_PWD_PROMPT 2-37

2.4.21 ESTIMATE 2-38

2.4.22 ESTIMATE_ONLY 2-39

2.4.23 EXCLUDE 2-40

2.4.24 FILESIZE 2-42

2.4.25 FLASHBACK_SCN 2-43

2.4.26 FLASHBACK_TIME 2-44

2.4.27 FULL 2-45

2.4.28 HELP 2-46

2.4.29 INCLUDE 2-47

2.4.30 JOB_NAME 2-49

2.4.31 KEEP_MASTER 2-49

2.4.32 LOGFILE 2-50

2.4.33 LOGTIME 2-51

2.4.34 METRICS 2-53

2.4.35 NETWORK_LINK 2-53

2.4.36 NOLOGFILE 2-55

2.4.37 PARALLEL 2-56

2.4.38 PARFILE 2-57

v

2.4.39 QUERY 2-58

2.4.40 REMAP_DATA 2-60

2.4.41 REUSE_DUMPFILES 2-62

2.4.42 SAMPLE 2-62

2.4.43 SCHEMAS 2-63

2.4.44 SERVICE_NAME 2-64

2.4.45 SOURCE_EDITION 2-65

2.4.46 STATUS 2-66

2.4.47 TABLES 2-67

2.4.48 TABLESPACES 2-69

2.4.49 TRANSPORT_DATAFILES_LOG 2-70

2.4.50 TRANSPORT_FULL_CHECK 2-71

2.4.51 TRANSPORT_TABLESPACES 2-73

2.4.52 TRANSPORTABLE 2-74

2.4.53 TTS_CLOSURE_CHECK 2-76

2.4.54 VERSION 2-77

2.4.55 VIEWS_AS_TABLES 2-78

2.5 Commands Available in Data Pump Export Interactive-Command Mode 2-80

2.5.1 About Data Pump Export Interactive Command Mode 2-81

2.5.2 ADD_FILE 2-81

2.5.3 CONTINUE_CLIENT 2-82

2.5.4 EXIT_CLIENT 2-82

2.5.5 FILESIZE 2-83

2.5.6 HELP 2-83

2.5.7 KILL_JOB 2-84

2.5.8 PARALLEL 2-84

2.5.9 START_JOB 2-85

2.5.10 STATUS 2-86

2.5.11 STOP_JOB 2-86

2.6 Examples of Using Oracle Data Pump Export 2-87

2.6.1 Performing a Table-Mode Export 2-87

2.6.2 Data-Only Unload of Selected Tables and Rows 2-87

2.6.3 Estimating Disk Space Needed in a Table-Mode Export 2-88

2.6.4 Performing a Schema-Mode Export 2-88

2.6.5 Performing a Parallel Full Database Export 2-89

2.6.6 Using Interactive Mode to Stop and Reattach to a Job 2-89

2.7 Syntax Diagrams for Oracle Data Pump Export 2-90

3 Oracle Data Pump Import

3.1 What Is Oracle Data Pump Import? 3-1

vi

3.2 Starting Oracle Data Pump Import 3-2

3.2.1 Data Pump Import Interfaces 3-2

3.2.2 Data Pump Import Modes 3-3

3.2.2.1 About Data Pump Import Modes 3-3

3.2.2.2 Full Import Mode 3-4

3.2.2.3 Schema Mode 3-5

3.2.2.4 Table Mode 3-5

3.2.2.5 Tablespace Mode 3-6

3.2.2.6 Transportable Tablespace Mode 3-6

3.2.3 Network Considerations for Oracle Data Pump Import 3-7

3.3 Filtering During Import Operations 3-8

3.3.1 Oracle Data Pump Import Data Filters 3-8

3.3.2 Oracle Data Pump Import Metadata Filters 3-8

3.4 Parameters Available in Oracle Data Pump Import Command-Line Mode 3-9

3.4.1 About Import Command-Line Mode 3-14

3.4.2 ABORT_STEP 3-16

3.4.3 ACCESS_METHOD 3-17

3.4.4 ATTACH 3-18

3.4.5 CLUSTER 3-19

3.4.6 CONTENT 3-20

3.4.7 CREDENTIAL 3-21

3.4.8 DATA_OPTIONS 3-22

3.4.9 DIRECTORY 3-25

3.4.10 DUMPFILE 3-26

3.4.11 ENABLE_SECURE_ROLES 3-29

3.4.12 ENCRYPTION_PASSWORD 3-29

3.4.13 ENCRYPTION_PWD_PROMPT 3-30

3.4.14 ESTIMATE 3-31

3.4.15 EXCLUDE 3-32

3.4.16 FLASHBACK_SCN 3-35

3.4.17 FLASHBACK_TIME 3-36

3.4.18 FULL 3-37

3.4.19 HELP 3-38

3.4.20 INCLUDE 3-39

3.4.21 JOB_NAME 3-41

3.4.22 KEEP_MASTER 3-41

3.4.23 LOGFILE 3-42

3.4.24 LOGTIME 3-43

3.4.25 MASTER_ONLY 3-44

3.4.26 METRICS 3-44

3.4.27 NETWORK_LINK 3-45

vii

3.4.28 NOLOGFILE 3-47

3.4.29 PARALLEL 3-47

3.4.30 PARFILE 3-50

3.4.31 PARTITION_OPTIONS 3-51

3.4.32 QUERY 3-52

3.4.33 REMAP_DATA 3-55

3.4.34 REMAP_DATAFILE 3-56

3.4.35 REMAP_DIRECTORY 3-57

3.4.36 REMAP_SCHEMA 3-58

3.4.37 REMAP_TABLE 3-60

3.4.38 REMAP_TABLESPACE 3-61

3.4.39 SCHEMAS 3-62

3.4.40 SERVICE_NAME 3-63

3.4.41 SKIP_UNUSABLE_INDEXES 3-64

3.4.42 SOURCE_EDITION 3-65

3.4.43 SQLFILE 3-66

3.4.44 STATUS 3-67

3.4.45 STREAMS_CONFIGURATION 3-68

3.4.46 TABLE_EXISTS_ACTION 3-68

3.4.47 REUSE_DATAFILES 3-70

3.4.48 TABLES 3-71

3.4.49 TABLESPACES 3-73

3.4.50 TARGET_EDITION 3-74

3.4.51 TRANSFORM 3-75

3.4.52 TRANSPORT_DATAFILES 3-81

3.4.53 TRANSPORT_FULL_CHECK 3-84

3.4.54 TRANSPORT_TABLESPACES 3-85

3.4.55 TRANSPORTABLE 3-87

3.4.56 VERIFY_CHECKSUM 3-89

3.4.57 VERIFY_ONLY 3-90

3.4.58 VERSION 3-90

3.4.59 VIEWS_AS_TABLES (Network Import) 3-92

3.4.60 VIEWS_AS_TABLES (Non-Network Import) 3-93

3.5 Commands Available in Oracle Data Pump Import Interactive-Command
Mode 3-94

3.5.1 About Oracle Data Pump Import Interactive Command Mode 3-95

3.5.2 CONTINUE_CLIENT 3-96

3.5.3 EXIT_CLIENT 3-96

3.5.4 HELP 3-97

3.5.5 KILL_JOB 3-97

3.5.6 PARALLEL 3-98

viii

3.5.7 START_JOB 3-99

3.5.8 STATUS 3-99

3.5.9 STOP_JOB 3-100

3.6 Examples of Using Oracle Data Pump Import 3-100

3.6.1 Performing a Data-Only Table-Mode Import 3-101

3.6.2 Performing a Schema-Mode Import 3-101

3.6.3 Performing a Network-Mode Import 3-101

3.6.4 Using Wildcards in URL-Based Dumpfile Names 3-102

3.7 Syntax Diagrams for Data Pump Import 3-102

4 Oracle Data Pump Legacy Mode

4.1 Oracle Data Pump Legacy Mode Use Cases 4-1

4.2 Parameter Mappings 4-2

4.2.1 Using Original Export Parameters with Oracle Data Pump 4-2

4.2.2 Using Original Import Parameters with Oracle Data Pump 4-5

4.3 Management of File Locations in Oracle Data Pump Legacy Mode 4-10

4.4 Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors 4-13

4.4.1 Log Files 4-13

4.4.2 Error Cases 4-13

4.4.3 Exit Status 4-13

5 Oracle Data Pump Performance

5.1 Data Performance Improvements for Oracle Data Pump Export and Import 5-1

5.2 Tuning Performance 5-2

5.2.1 How To Manage Oracle Data Pump Resource Consumption 5-2

5.2.2 Effect of Compression and Encryption on Performance 5-3

5.2.3 Memory Considerations When Exporting and Importing Statistics 5-3

5.3 Initialization Parameters That Affect Oracle Data Pump Performance 5-3

5.3.1 Performance Guidelines for Oracle Data Pump Parameters 5-4

5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate Replication
Environment 5-4

5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump Jobs 5-5

6 Using the Oracle Data Pump API

6.1 How Does the Oracle Data Pump Client Interface API Work? 6-1

6.2 DBMS_DATAPUMP Job States 6-2

6.3 What Are the Basic Steps in Using the Oracle Data Pump API? 6-4

6.4 Examples of Using the Oracle Data Pump API 6-4

6.4.1 Using the Oracle Data Pump API Examples with Your Database 6-5

ix

6.4.2 Performing a Simple Schema Export with Oracle Data Pump 6-6

6.4.3 Importing a Dump File and Remapping All Schema Objects 6-7

6.4.4 Using Exception Handling During a Simple Schema Export 6-9

6.4.5 Displaying Dump File Information for Oracle Data Pump Jobs 6-12

Part II SQL*Loader

7 Understanding How to Use SQL*Loader

7.1 SQL*Loader Features 7-2

7.2 SQL*Loader Parameters 7-3

7.3 SQL*Loader Control File 7-4

7.4 Input Data and Data Fields in SQL*Loader 7-4

7.4.1 How SQL*Loader Reads Input Data and Data Files 7-5

7.4.2 Fixed Record Format 7-5

7.4.3 Variable Record Format and SQL*Loader 7-6

7.4.4 Stream Record Format and SQL*Loader 7-7

7.4.5 Logical Records and SQL*Loader 7-8

7.4.6 Data Field Setting and SQL*Loader 7-9

7.5 LOBFILEs and Secondary Data Files (SDFs) 7-9

7.6 Data Conversion and Data Type Specification 7-10

7.7 SQL*Loader Discarded and Rejected Records 7-11

7.7.1 The SQL*Loader Bad File 7-11

7.7.1.1 Records Rejected by SQL*Loader 7-11

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader
Operation 7-11

7.7.2 The SQL*Loader Discard File 7-12

7.8 Log File and Logging Information 7-12

7.9 Conventional Path Loads, Direct Path Loads, and External Table Loads 7-12

7.9.1 Conventional Path Loads 7-13

7.9.2 Direct Path Loads 7-13

7.9.3 Parallel Direct Path 7-13

7.9.4 External Table Loads 7-14

7.9.5 Choosing External Tables Versus SQL*Loader 7-14

7.9.6 Behavior Differences Between SQL*Loader and External Tables 7-15

7.9.6.1 Multiple Primary Input Data Files 7-15

7.9.6.2 Syntax and Data Types 7-15

7.9.6.3 Byte-Order Marks 7-16

7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator 7-16

7.9.6.5 Use of the Backslash Escape Character 7-16

7.10 Loading Objects, Collections, and LOBs with SQL*Loader 7-16

x

7.10.1 Supported Object Types 7-17

7.10.1.1 column objects 7-17

7.10.1.2 row objects 7-17

7.10.2 Supported Collection Types 7-17

7.10.2.1 Nested Tables 7-18

7.10.2.2 VARRAYs 7-18

7.10.3 Supported LOB Data Types 7-18

7.11 Partitioned Object Support in SQL*Loader 7-19

7.12 Application Development: Direct Path Load API 7-19

7.13 SQL*Loader Case Studies 7-19

7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies 7-20

7.13.2 Case Study Files 7-21

7.13.3 Running the Case Studies 7-21

7.13.4 Case Study Log Files 7-22

7.13.5 Checking the Results of a Case Study 7-22

8 SQL*Loader Command-Line Reference

8.1 Starting SQL*Loader 8-1

8.1.1 Specifying Parameters on the Command Line 8-2

8.1.2 Alternative Ways to Specify SQL*Loader Parameters 8-2

8.1.3 Using SQL*Loader to Load Data Across a Network 8-3

8.2 Command-Line Parameters for SQL*Loader 8-3

8.2.1 BAD 8-6

8.2.2 BINDSIZE 8-8

8.2.3 COLUMNARRAYROWS 8-9

8.2.4 CONTROL 8-9

8.2.5 CREDENTIAL 8-10

8.2.6 DATA 8-12

8.2.7 DATE_CACHE 8-13

8.2.8 DEFAULTS 8-14

8.2.9 DEGREE_OF_PARALLELISM 8-16

8.2.10 DIRECT 8-17

8.2.11 DIRECT_PATH_LOCK_WAIT 8-17

8.2.12 DISCARD 8-18

8.2.13 DISCARDMAX 8-19

8.2.14 DNFS_ENABLE 8-20

8.2.15 DNFS_READBUFFERS 8-21

8.2.16 EMPTY_LOBS_ARE_NULL 8-22

8.2.17 ERRORS 8-23

8.2.18 EXTERNAL_TABLE 8-23

xi

8.2.19 FILE 8-26

8.2.20 HELP 8-26

8.2.21 LOAD 8-27

8.2.22 LOG 8-27

8.2.23 MULTITHREADING 8-28

8.2.24 NO_INDEX_ERRORS 8-29

8.2.25 PARALLEL 8-29

8.2.26 PARFILE 8-30

8.2.27 PARTITION_MEMORY 8-31

8.2.28 READSIZE 8-31

8.2.29 RESUMABLE 8-32

8.2.30 RESUMABLE_NAME 8-33

8.2.31 RESUMABLE_TIMEOUT 8-34

8.2.32 ROWS 8-34

8.2.33 SDF_PREFIX 8-35

8.2.34 SILENT 8-36

8.2.35 SKIP 8-37

8.2.36 SKIP_INDEX_MAINTENANCE 8-38

8.2.37 SKIP_UNUSABLE_INDEXES 8-39

8.2.38 STREAMSIZE 8-40

8.2.39 TRIM 8-41

8.2.40 USERID 8-42

8.3 Exit Codes for Inspection and Display 8-43

9 SQL*Loader Control File Reference

9.1 Control File Contents 9-2

9.2 Comments in the Control File 9-4

9.3 Specifying Command-Line Parameters in the Control File 9-4

9.3.1 OPTIONS Clause 9-4

9.3.2 Specifying the Number of Default Expressions to Be Evaluated At One
Time 9-5

9.4 Specifying File Names and Object Names 9-5

9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved Words 9-6

9.4.2 Specifying SQL Strings in the SQL*Loader Control File 9-6

9.4.3 Operating Systems and SQL Loader Control File Characters 9-6

9.4.3.1 Specifying a Complete Path 9-7

9.4.3.2 Backslash Escape Character 9-7

9.4.3.3 Nonportable Strings 9-8

9.4.3.4 Using the Backslash as an Escape Character 9-8

9.4.3.5 Escape Character Is Sometimes Disallowed 9-8

9.5 Identifying XMLType Tables 9-8

xii

9.6 Specifying Field Order 9-10

9.7 Specifying Data Files 9-10

9.7.1 Understanding How to Specify Data Files 9-11

9.7.2 Examples of INFILE Syntax 9-12

9.7.3 Specifying Multiple Data Files 9-13

9.8 Specifying CSV Format Files 9-13

9.9 Identifying Data in the Control File with BEGINDATA 9-14

9.10 Specifying Data File Format and Buffering 9-15

9.11 Specifying the Bad File 9-16

9.11.1 Understanding and Specifying the Bad File 9-16

9.11.2 Examples of Specifying a Bad File Name 9-17

9.11.3 How Bad Files Are Handled with LOBFILEs and SDFs 9-17

9.11.4 Criteria for Rejected Records 9-18

9.12 Specifying the Discard File 9-18

9.12.1 Understanding and Specifying the Discard File 9-19

9.12.2 Specifying the Discard File in the Control File 9-19

9.12.3 Limiting the Number of Discard Records 9-20

9.12.4 Examples of Specifying a Discard File Name 9-20

9.12.5 Criteria for Discarded Records 9-20

9.12.6 How Discard Files Are Handled with LOBFILEs and SDFs 9-21

9.12.7 Specifying the Discard File from the Command Line 9-21

9.13 Specifying a NULLIF Clause At the Table Level 9-21

9.14 Specifying Datetime Formats At the Table Level 9-21

9.15 Handling Different Character Encoding Schemes 9-22

9.15.1 Multibyte (Asian) Character Sets 9-23

9.15.2 Unicode Character Sets 9-23

9.15.3 Database Character Sets 9-24

9.15.4 Data File Character Sets 9-25

9.15.5 Input Character Conversion with SQL*Loader 9-25

9.15.5.1 Options for Converting Character Sets Using SQL*Loader 9-25

9.15.5.2 Considerations When Loading Data into VARRAYs or Primary-
Key-Based REFs 9-26

9.15.5.3 CHARACTERSET Parameter 9-27

9.15.5.4 Control File Character Set 9-28

9.15.5.5 Character-Length Semantics 9-29

9.15.6 Shift-sensitive Character Data 9-30

9.16 Interrupted SQL*Loader Loads 9-30

9.16.1 Understanding Causes of Interrupted SQL*Loader Loads 9-31

9.16.2 Discontinued Conventional Path Loads 9-31

9.16.3 Discontinued Direct Path Loads 9-31

9.16.3.1 Load Discontinued Because of Space Errors 9-32

xiii

9.16.3.2 Load Discontinued Because Maximum Number of Errors
Exceeded 9-32

9.16.3.3 Load Discontinued Because of Fatal Errors 9-33

9.16.3.4 Load Discontinued Because a Ctrl+C Was Issued 9-33

9.16.4 Status of Tables and Indexes After an Interrupted Load 9-33

9.16.5 Using the Log File to Determine Load Status 9-33

9.16.6 Continuing Single-Table Loads 9-33

9.17 Assembling Logical Records from Physical Records 9-34

9.17.1 Using CONCATENATE to Assemble Logical Records 9-34

9.17.2 Using CONTINUEIF to Assemble Logical Records 9-35

9.18 Loading Logical Records into Tables 9-38

9.18.1 Specifying Table Names 9-39

9.18.2 INTO TABLE Clause 9-39

9.18.3 Table-Specific Loading Method 9-40

9.18.4 Loading Data into Empty Tables with INSERT 9-40

9.18.5 Loading Data into Nonempty Tables 9-41

9.18.5.1 APPEND 9-41

9.18.5.2 REPLACE 9-41

9.18.5.3 Updating Existing Rows 9-42

9.18.5.4 TRUNCATE 9-42

9.18.6 Table-Specific OPTIONS Parameter 9-42

9.18.7 Loading Records Based on a Condition 9-42

9.18.8 Using the WHEN Clause with LOBFILEs and SDFs 9-43

9.18.9 Specifying Default Data Delimiters 9-43

9.18.9.1 fields_spec 9-44

9.18.9.2 termination_spec 9-44

9.18.9.3 enclosure_spec 9-44

9.18.10 Handling Records with Missing Specified Fields 9-45

9.18.10.1 SQL*Loader Management of Short Records with Missing Data 9-45

9.18.10.2 TRAILING NULLCOLS Clause 9-46

9.19 Index Options 9-46

9.19.1 Understanding the SORTED INDEXES Parameter 9-47

9.19.2 Understanding the SINGLEROW Parameter 9-47

9.20 Benefits of Using Multiple INTO TABLE Clauses 9-47

9.20.1 Understanding the SQL*Loader INTO TABLE Clause 9-48

9.20.2 Distinguishing Different Input Record Formats 9-49

9.20.3 Relative Positioning Based on the POSITION Parameter 9-49

9.20.4 Distinguishing Different Input Row Object Subtypes 9-50

9.20.5 Loading Data into Multiple Tables 9-51

9.20.6 Summary of Using Multiple INTO TABLE Clauses 9-51

9.20.7 Extracting Multiple Logical Records 9-52

xiv

9.20.7.1 Example of Extracting Multiple Logical Records From a Physical
Record 9-52

9.20.7.2 Example of Relative Positioning Based on Delimiters 9-52

9.21 Bind Arrays and Conventional Path Loads 9-53

9.21.1 Differences Between Bind Arrays and Conventional Path Loads 9-54

9.21.2 Size Requirements for Bind Arrays 9-54

9.21.3 Performance Implications of Bind Arrays 9-54

9.21.4 Specifying Number of Rows Versus Size of Bind Array 9-55

9.21.5 Setting Up SQL*Loader Bind Arrays 9-55

9.21.5.1 Calculations to Determine Bind Array Size 9-56

9.21.5.2 Determining the Size of the Length Indicator 9-57

9.21.5.3 Calculating the Size of Field Buffers 9-58

9.21.6 Minimizing Memory Requirements for Bind Arrays 9-59

9.21.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses 9-60

10

SQL*Loader Field List Reference

10.1 Field List Contents 10-2

10.2 Specifying the Position of a Data Field. 10-3

10.2.1 POSITION 10-3

10.2.2 Using POSITION with Data Containing Tabs 10-4

10.2.3 Using POSITION with Multiple Table Loads 10-4

10.2.4 Examples of Using POSITION in SQL*Loader Specifications 10-5

10.3 Specifying Columns and Fields 10-5

10.3.1 Options for Column and Field Specification 10-6

10.3.2 Specifying Filler Fields 10-6

10.3.3 Specifying the Data Type of a Data Field 10-8

10.4 SQL*Loader Data Types 10-8

10.4.1 Portable and Nonportable Data Type Differences 10-9

10.4.2 Nonportable Data Types 10-9

10.4.2.1 Categories of Nonportable Data Types 10-10

10.4.2.2 INTEGER(n) 10-11

10.4.2.3 SMALLINT 10-11

10.4.2.4 FLOAT 10-12

10.4.2.5 DOUBLE 10-13

10.4.2.6 BYTEINT 10-13

10.4.2.7 ZONED 10-14

10.4.2.8 DECIMAL 10-14

10.4.2.9 VARGRAPHIC 10-15

10.4.2.10 VARCHAR 10-16

10.4.2.11 VARRAW 10-17

10.4.2.12 LONG VARRAW 10-18

xv

10.4.3 Portable Data Types 10-18

10.4.3.1 Categories of Portable Data Types 10-19

10.4.3.2 CHAR 10-20

10.4.3.3 Datetime and Interval Data Types 10-21

10.4.3.4 GRAPHIC 10-25

10.4.3.5 GRAPHIC EXTERNAL 10-26

10.4.3.6 Numeric EXTERNAL 10-27

10.4.3.7 RAW 10-28

10.4.3.8 VARCHARC 10-28

10.4.3.9 VARRAWC 10-29

10.4.3.10 Conflicting Native Data Type Field Lengths 10-30

10.4.3.11 Field Lengths for Length-Value Data Types 10-31

10.4.4 Data Type Conversions 10-31

10.4.5 Data Type Conversions for Datetime and Interval Data Types 10-32

10.4.6 Specifying Delimiters 10-33

10.4.6.1 Syntax for Termination and Enclosure Specification 10-33

10.4.6.2 Delimiter Marks in the Data 10-35

10.4.6.3 Maximum Length of Delimited Data 10-35

10.4.6.4 Loading Trailing Blanks with Delimiters 10-36

10.4.7 How Delimited Data Is Processed 10-36

10.4.7.1 Fields Using Only TERMINATED BY 10-36

10.4.7.2 Fields Using ENCLOSED BY Without TERMINATED BY 10-37

10.4.7.3 Fields Using ENCLOSED BY With TERMINATED BY 10-37

10.4.7.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED
BY 10-38

10.4.8 Conflicting Field Lengths for Character Data Types 10-39

10.4.8.1 Predetermined Size Fields 10-39

10.4.8.2 Delimited Fields 10-39

10.4.8.3 Date Field Masks 10-40

10.5 Specifying Field Conditions 10-40

10.5.1 Comparing Fields to BLANKS 10-42

10.5.2 Comparing Fields to Literals 10-42

10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses 10-43

10.7 Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses 10-45

10.8 Loading Data Across Different Platforms 10-47

10.9 Byte Ordering 10-47

10.9.1 Specifying Byte Order 10-48

10.9.2 Using Byte Order Marks (BOMs) 10-49

10.9.2.1 Suppressing Checks for BOMs 10-51

10.10 Loading All-Blank Fields 10-51

10.11 Trimming Whitespace 10-52

xvi

10.11.1 Data Types for Which Whitespace Can Be Trimmed 10-54

10.11.2 Specifying Field Length for Data Types for Which Whitespace Can Be
Trimmed 10-55

10.11.2.1 Predetermined Size Fields 10-55

10.11.2.2 Delimited Fields 10-55

10.11.3 Relative Positioning of Fields 10-56

10.11.3.1 No Start Position Specified for a Field 10-56

10.11.3.2 Previous Field Terminated by a Delimiter 10-56

10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters 10-57

10.11.4 Leading Whitespace 10-57

10.11.4.1 Previous Field Terminated by Whitespace 10-57

10.11.4.2 Optional Enclosure Delimiters 10-58

10.11.5 Trimming Trailing Whitespace 10-58

10.11.6 Trimming Enclosed Fields 10-58

10.12 How the PRESERVE BLANKS Option Affects Whitespace Trimming 10-59

10.13 How [NO] PRESERVE BLANKS Works with Delimiter Clauses 10-59

10.14 Applying SQL Operators to Fields 10-60

10.14.1 Referencing Fields 10-62

10.14.2 Common Uses of SQL Operators in Field Specifications 10-63

10.14.3 Combinations of SQL Operators 10-64

10.14.4 Using SQL Strings with a Date Mask 10-64

10.14.5 Interpreting Formatted Fields 10-64

10.14.6 Using SQL Strings to Load the ANYDATA Database Type 10-65

10.15 Using SQL*Loader to Generate Data for Input 10-65

10.15.1 Loading Data Without Files 10-66

10.15.2 Setting a Column to a Constant Value 10-66

10.15.2.1 CONSTANT Parameter 10-66

10.15.3 Setting a Column to an Expression Value 10-67

10.15.3.1 EXPRESSION Parameter 10-67

10.15.4 Setting a Column to the Data File Record Number 10-67

10.15.4.1 RECNUM Parameter 10-68

10.15.5 Setting a Column to the Current Date 10-68

10.15.5.1 SYSDATE Parameter 10-68

10.15.6 Setting a Column to a Unique Sequence Number 10-68

10.15.6.1 SEQUENCE Parameter 10-68

10.15.7 Generating Sequence Numbers for Multiple Tables 10-69

10.15.7.1 Example: Generating Different Sequence Numbers for Each
Insert 10-70

xvii

11

Loading Objects, LOBs, and Collections with SQL*Loader

11.1 Loading Column Objects 11-1

11.1.1 Understanding Column Object Attributes 11-2

11.1.2 Loading Column Objects in Stream Record Format 11-2

11.1.3 Loading Column Objects in Variable Record Format 11-3

11.1.4 Loading Nested Column Objects 11-4

11.1.5 Loading Column Objects with a Derived Subtype 11-5

11.1.6 Specifying Null Values for Objects 11-6

11.1.6.1 Specifying Attribute Nulls 11-6

11.1.6.2 Specifying Atomic Nulls 11-7

11.1.7 Loading Column Objects with User-Defined Constructors 11-8

11.2 Loading Object Tables with SQL*Loader 11-11

11.2.1 Examples of Loading Object Tables with SQL*Loader 11-11

11.2.2 Loading Object Tables with Subtypes 11-13

11.3 Loading REF Columns with SQL*Loader 11-14

11.3.1 Specifying Table Names in a REF Clause 11-15

11.3.2 System-Generated OID REF Columns 11-15

11.3.3 Primary Key REF Columns 11-16

11.3.4 Unscoped REF Columns That Allow Primary Keys 11-17

11.4 Loading LOBs with SQL*Loader 11-18

11.4.1 Overview of Loading LOBs with SQL*Loader 11-19

11.4.2 Loading LOB Data from a Primary Data File 11-20

11.4.2.1 LOB Data in Predetermined Size Fields 11-20

11.4.2.2 LOB Data in Delimited Fields 11-21

11.4.2.3 LOB Data in Length-Value Pair Fields 11-23

11.4.3 Loading LOB Data from LOBFILEs 11-24

11.4.3.1 Overview of Loading LOB Data from LOBFILEs 11-24

11.4.3.2 Dynamic Versus Static LOBFILE Specifications 11-25

11.4.3.3 Examples of Loading LOB Data from LOBFILEs 11-25

11.4.3.4 Considerations When Loading LOBs from LOBFILEs 11-29

11.4.4 Loading Data Files that Contain LLS Fields 11-30

11.5 Loading BFILE Columns with SQL*Loader 11-31

11.6 Loading Collections (Nested Tables and VARRAYs) 11-33

11.6.1 Overview of Loading Collections (Nested Tables and VARRAYS) 11-33

11.6.2 Restrictions in Nested Tables and VARRAYs 11-34

11.6.3 Secondary Data Files (SDFs) 11-36

11.7 Choosing Dynamic or Static SDF Specifications 11-37

11.8 Loading a Parent Table Separately from Its Child Table 11-37

11.8.1 Memory Issues When Loading VARRAY Columns 11-39

xviii

12

Conventional and Direct Path Loads

12.1 Data Loading Methods 12-2

12.2 Loading ROWID Columns 12-2

12.3 Conventional Path Loads 12-2

12.3.1 Conventional Path Load 12-3

12.3.2 When to Use a Conventional Path Load 12-3

12.3.3 Conventional Path Load of a Single Partition 12-4

12.4 Direct Path Loads 12-4

12.4.1 About SQL*Loader Direct Path Load 12-5

12.4.2 Loading into Synonyms 12-5

12.4.3 Field Defaults on the Direct Path 12-5

12.4.4 Integrity Constraints 12-5

12.4.5 When to Use a Direct Path Load 12-6

12.4.6 Restrictions on a Direct Path Load of a Single Partition 12-6

12.4.7 Restrictions on Using Direct Path Loads 12-6

12.4.8 Advantages of a Direct Path Load 12-7

12.4.9 Direct Path Load of a Single Partition or Subpartition 12-8

12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table 12-8

12.4.11 Data Conversion During Direct Path Loads 12-9

12.5 Optimizing Performance of Direct Path Loads 12-9

12.5.1 Minimizing Time and Space Required for Direct Path Loads 12-10

12.5.2 Preallocating Storage for Faster Loading 12-10

12.5.3 Presorting Data for Faster Indexing 12-11

12.5.3.1 Advantages of Presorting Data 12-11

12.5.3.2 SORTED INDEXES Clause 12-11

12.5.3.3 Unsorted Data 12-12

12.5.3.4 Multiple-Column Indexes 12-12

12.5.3.5 Choosing the Best Sort Order 12-12

12.5.4 Infrequent Data Saves 12-13

12.5.5 Minimizing Use of the Redo Log 12-13

12.5.5.1 Disabling Archiving 12-13

12.5.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause 12-13

12.5.5.3 Setting the SQL NOLOGGING Parameter 12-14

12.5.6 Specifying the Number of Column Array Rows and Size of Stream
Buffers 12-14

12.5.7 Specifying a Value for DATE_CACHE 12-15

12.6 Using Direct Path Load 12-16

12.6.1 Setting Up for Direct Path Loads 12-17

12.6.2 Specifying a Direct Path Load 12-17

12.6.3 Building Indexes 12-17

12.6.3.1 Improving Performance 12-18

xix

12.6.3.2 Temporary Segment Storage Requirements 12-18

12.6.4 Indexes Left in an Unusable State 12-19

12.6.5 Using Data Saves to Protect Against Data Loss 12-19

12.6.5.1 Using the ROWS Parameter 12-20

12.6.5.2 Data Save Versus Commit 12-20

12.6.6 Data Recovery During Direct Path Loads 12-20

12.6.6.1 Media Recovery and Direct Path Loads 12-21

12.6.6.2 Instance Recovery and Direct Path Loads 12-21

12.6.7 Loading Long Data Fields 12-22

12.6.8 Loading Data As PIECED 12-22

12.6.9 Auditing SQL*Loader Operations That Use Direct Path Mode 12-23

12.7 Optimizing Direct Path Loads on Multiple-CPU Systems 12-23

12.8 Avoiding Index Maintenance 12-24

12.9 Direct Path Loads, Integrity Constraints, and Triggers 12-25

12.9.1 Integrity Constraints 12-25

12.9.1.1 Enabled Constraints 12-25

12.9.1.2 Disabled Constraints 12-26

12.9.1.3 Reenable Constraints 12-26

12.9.2 Database Insert Triggers 12-27

12.9.2.1 Replacing Insert Triggers with Integrity Constraints 12-28

12.9.2.2 When Automatic Constraints Cannot Be Used 12-28

12.9.2.3 Preparation 12-28

12.9.2.4 Using an Update Trigger 12-29

12.9.2.5 Duplicating the Effects of Exception Conditions 12-29

12.9.2.6 Using a Stored Procedure 12-29

12.9.3 Permanently Disabled Triggers and Constraints 12-30

12.9.4 Increasing Performance with Concurrent Conventional Path Loads 12-30

12.10 Optimizing Performance of Direct Path Loads 12-31

12.10.1 About SQL*Loader Parallel Data Loading Models 12-31

12.10.2 Concurrent Conventional Path Loads 12-31

12.10.3 Intersegment Concurrency with Direct Path 12-32

12.10.4 Intrasegment Concurrency with Direct Path 12-32

12.10.5 Restrictions on Parallel Direct Path Loads 12-32

12.10.6 Initiating Multiple SQL*Loader Sessions 12-33

12.10.7 Parameters for Parallel Direct Path Loads 12-33

12.10.7.1 Using the FILE Parameter to Specify Temporary Segments 12-34

12.10.8 Enabling Constraints After a Parallel Direct Path Load 12-35

12.10.9 PRIMARY KEY and UNIQUE KEY Constraints 12-35

12.11 General Performance Improvement Hints 12-35

xx

13

SQL*Loader Express

13.1 What is SQL*Loader Express Mode? 13-1

13.2 Using SQL*Loader Express Mode 13-1

13.2.1 Starting SQL*Loader in Express Mode 13-2

13.2.2 Default Values Used by SQL*Loader Express Mode 13-3

13.2.3 How SQL*Loader Express Mode Handles Byte Order 13-4

13.3 SQL*Loader Express Mode Parameter Reference 13-4

13.3.1 BAD 13-6

13.3.2 CHARACTERSET 13-7

13.3.3 CSV 13-9

13.3.4 DATA 13-10

13.3.5 DATE_FORMAT 13-11

13.3.6 DEGREE_OF_PARALLELISM 13-12

13.3.7 DIRECT 13-13

13.3.8 DNFS_ENABLE 13-14

13.3.9 DNFS_READBUFFERS 13-14

13.3.10 ENCLOSED_BY 13-15

13.3.11 EXTERNAL_TABLE 13-16

13.3.12 FIELD_NAMES 13-17

13.3.13 LOAD 13-18

13.3.14 NULLIF 13-19

13.3.15 OPTIONALLY_ENCLOSED_BY 13-19

13.3.16 PARFILE 13-20

13.3.17 SILENT 13-21

13.3.18 TABLE 13-22

13.3.19 TERMINATED_BY 13-23

13.3.20 TIMESTAMP_FORMAT 13-23

13.3.21 TRIM 13-24

13.3.22 USERID 13-25

13.4 SQL*Loader Express Mode Syntax Diagrams 13-26

Part III External Tables

14

External Tables Concepts

14.1 How Are External Tables Created? 14-1

14.2 Location of Data Files and Output Files 14-4

14.3 Access Parameters for External Tables 14-5

14.4 Data Type Conversion During External Table Use 14-6

xxi

15

The ORACLE_LOADER Access Driver

15.1 About the ORACLE_LOADER Access Driver 15-1

15.2 access_parameters Clause 15-2

15.3 record_format_info Clause 15-4

15.3.1 Overview of record_format_info Clause 15-5

15.3.2 FIXED Length 15-7

15.3.3 VARIABLE size 15-8

15.3.4 DELIMITED BY 15-8

15.3.5 XMLTAG 15-10

15.3.6 CHARACTERSET 15-12

15.3.7 EXTERNAL VARIABLE DATA 15-13

15.3.8 PREPROCESSOR 15-14

15.3.9 LANGUAGE 15-19

15.3.10 TERRITORY 15-20

15.3.11 DATA IS...ENDIAN 15-20

15.3.12 BYTEORDERMARK (CHECK | NOCHECK) 15-21

15.3.13 STRING SIZES ARE IN 15-21

15.3.14 LOAD WHEN 15-21

15.3.15 BADFILE | NOBADFILE 15-22

15.3.16 DISCARDFILE | NODISCARDFILE 15-22

15.3.17 LOGFILE | NOLOGFILE 15-23

15.3.18 SKIP 15-23

15.3.19 FIELD NAMES 15-23

15.3.20 READSIZE 15-24

15.3.21 DATE_CACHE 15-24

15.3.22 string 15-24

15.3.23 condition_spec 15-25

15.3.24 [directory object name:] [filename] 15-26

15.3.25 condition 15-27

15.3.25.1 range start : range end 15-27

15.3.26 IO_OPTIONS clause 15-28

15.3.27 DNFS_DISABLE | DNFS_ENABLE 15-29

15.3.28 DNFS_READBUFFERS 15-29

15.4 field_definitions Clause 15-30

15.4.1 Overview of field_definitions Clause 15-30

15.4.2 delim_spec 15-35

15.4.2.1 Example: External Table with Terminating Delimiters 15-36

15.4.2.2 Example: External Table with Enclosure and Terminator
Delimiters 15-37

15.4.2.3 Example: External Table with Optional Enclosure Delimiters 15-37

15.4.3 trim_spec 15-37

xxii

15.4.4 MISSING FIELD VALUES ARE NULL 15-39

15.4.5 field_list 15-39

15.4.6 pos_spec Clause 15-40

15.4.6.1 pos_spec Clause Syntax 15-41

15.4.6.2 start 15-41

15.4.6.3 * 15-41

15.4.6.4 increment 15-42

15.4.6.5 end 15-42

15.4.6.6 length 15-42

15.4.7 datatype_spec Clause 15-43

15.4.7.1 datatype_spec Clause Syntax 15-44

15.4.7.2 [UNSIGNED] INTEGER [EXTERNAL] [(len)] 15-45

15.4.7.3 DECIMAL [EXTERNAL] and ZONED [EXTERNAL] 15-45

15.4.7.4 ORACLE_DATE 15-45

15.4.7.5 ORACLE_NUMBER 15-46

15.4.7.6 Floating-Point Numbers 15-46

15.4.7.7 DOUBLE 15-46

15.4.7.8 FLOAT [EXTERNAL] 15-46

15.4.7.9 BINARY_DOUBLE 15-47

15.4.7.10 BINARY_FLOAT 15-47

15.4.7.11 RAW 15-47

15.4.7.12 CHAR 15-47

15.4.7.13 date_format_spec 15-48

15.4.7.14 VARCHAR and VARRAW 15-50

15.4.7.15 VARCHARC and VARRAWC 15-52

15.4.8 init_spec Clause 15-52

15.4.9 LLS Clause 15-53

15.5 column_transforms Clause 15-54

15.5.1 transform 15-54

15.5.1.1 column_name FROM 15-55

15.5.1.2 NULL 15-55

15.5.1.3 CONSTANT 15-56

15.5.1.4 CONCAT 15-56

15.5.1.5 LOBFILE 15-56

15.5.1.6 lobfile_attr_list 15-56

15.5.1.7 STARTOF source_field (length) 15-57

15.6 Parallel Loading Considerations for the ORACLE_LOADER Access Driver 15-58

15.7 Performance Hints When Using the ORACLE_LOADER Access Driver 15-59

15.8 Restrictions When Using the ORACLE_LOADER Access Driver 15-60

15.9 Reserved Words for the ORACLE_LOADER Access Driver 15-60

xxiii

16

The ORACLE_DATAPUMP Access Driver

16.1 Using the ORACLE_DATAPUMP Access Driver 16-1

16.2 access_parameters Clause 16-2

16.2.1 Comments 16-4

16.2.2 ENCRYPTION 16-4

16.2.3 LOGFILE | NOLOGFILE 16-4

16.2.3.1 Log File Naming in Parallel Loads 16-5

16.2.4 COMPRESSION 16-6

16.2.5 VERSION Clause 16-7

16.2.6 HADOOP_TRAILERS Clause 16-7

16.2.7 Effects of Using the SQL ENCRYPT Clause 16-7

16.3 Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver 16-8

16.3.1 Parallel Loading and Unloading 16-11

16.3.2 Combining Dump Files 16-11

16.4 Supported Data Types 16-12

16.5 Unsupported Data Types 16-13

16.5.1 Unloading and Loading BFILE Data Types 16-14

16.5.2 Unloading LONG and LONG RAW Data Types 16-16

16.5.3 Unloading and Loading Columns Containing Final Object Types 16-17

16.5.4 Tables of Final Object Types 16-18

16.6 Performance Hints When Using the ORACLE_DATAPUMP Access Driver 16-19

16.7 Restrictions When Using the ORACLE_DATAPUMP Access Driver 16-19

16.8 Reserved Words for the ORACLE_DATAPUMP Access Driver 16-20

17

ORACLE_HDFS and ORACLE_HIVE Access Drivers

17.1 Syntax Rules for Specifying Properties 17-1

17.2 ORACLE_HDFS Access Parameters 17-2

17.2.1 Default Parameter Settings for ORACLE_HDFS 17-2

17.2.2 Optional Parameter Settings for ORACLE_HDFS 17-3

17.3 ORACLE_HIVE Access Parameters 17-4

17.3.1 Default Parameter Settings for ORACLE_HIVE 17-4

17.3.2 Optional Parameter Settings for ORACLE_HIVE 17-4

17.4 Descriptions of com.oracle.bigdata Parameters 17-5

17.4.1 com.oracle.bigdata.colmap 17-5

17.4.2 com.oracle.bigdata.datamode 17-6

17.4.3 com.oracle.bigdata.erroropt 17-7

17.4.4 com.oracle.bigdata.fields 17-8

17.4.5 com.oracle.bigdata.fileformat 17-10

17.4.6 com.oracle.bigdata.log.exec 17-11

17.4.7 com.oracle.bigdata.log.qc 17-12

xxiv

17.4.8 com.oracle.bigdata.overflow 17-13

17.4.9 com.oracle.bigdata.rowformat 17-14

17.4.10 com.oracle.bigdata.tablename 17-15

18

External Tables Examples

18.1 Using the ORACLE_LOADER Access Driver to Create Partitioned External
Tables 18-1

18.2 Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid
Tables 18-4

18.3 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned
External Tables 18-5

18.4 Using the ORACLE_HDFS Access Driver to Create Partitioned External
Tables 18-8

18.5 Using the ORACLE_HIVE Access Driver to Create Partitioned External
Tables 18-11

18.6 Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned
External Tables 18-15

18.7 Loading LOBs From External Tables 18-16

18.8 Loading CSV Files From External Tables 18-18

Part IV Other Utilities

19

ADRCI: ADR Command Interpreter

19.1 About the ADR Command Interpreter (ADRCI) Utility 19-2

19.2 Definitions for Oracle Database ADRC 19-2

19.3 Starting ADRCI and Getting Help 19-5

19.3.1 Using ADRCI in Interactive Mode 19-5

19.3.2 Getting Help 19-5

19.3.3 Using ADRCI in Batch Mode 19-6

19.4 Setting the ADRCI Homepath Before Using ADRCI Commands 19-7

19.5 Viewing the Alert Log 19-8

19.6 Finding Trace Files 19-10

19.7 Viewing Incidents 19-11

19.8 Packaging Incidents 19-12

19.8.1 About Packaging Incidents 19-12

19.8.2 Creating Incident Packages 19-13

19.8.2.1 Creating a Logical Incident Package 19-13

19.8.2.2 Adding Diagnostic Information to a Logical Incident Package 19-15

19.8.2.3 Generating a Physical Incident Package 19-16

19.9 ADRCI Command Reference 19-16

xxv

19.9.1 CREATE REPORT 19-18

19.9.2 ECHO 19-19

19.9.3 EXIT 19-20

19.9.4 HOST 19-20

19.9.5 IPS 19-20

19.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands 19-22

19.9.5.2 IPS ADD 19-22

19.9.5.3 IPS ADD FILE 19-24

19.9.5.4 IPS ADD NEW INCIDENTS 19-24

19.9.5.5 IPS COPY IN FILE 19-25

19.9.5.6 IPS COPY OUT FILE 19-26

19.9.5.7 IPS CREATE PACKAGE 19-26

19.9.5.8 IPS DELETE PACKAGE 19-29

19.9.5.9 IPS FINALIZE 19-29

19.9.5.10 IPS GENERATE PACKAGE 19-29

19.9.5.11 IPS GET MANIFEST 19-30

19.9.5.12 IPS GET METADATA 19-31

19.9.5.13 IPS PACK 19-31

19.9.5.14 IPS REMOVE 19-33

19.9.5.15 IPS REMOVE FILE 19-34

19.9.5.16 IPS SET CONFIGURATION 19-35

19.9.5.17 IPS SHOW CONFIGURATION 19-35

19.9.5.18 IPS SHOW FILES 19-39

19.9.5.19 IPS SHOW INCIDENTS 19-40

19.9.5.20 IPS SHOW PACKAGE 19-40

19.9.5.21 IPS UNPACK FILE 19-41

19.9.6 PURGE 19-41

19.9.7 QUIT 19-43

19.9.8 RUN 19-43

19.9.9 SELECT 19-43

19.9.9.1 AVG 19-46

19.9.9.2 CONCAT 19-47

19.9.9.3 COUNT 19-47

19.9.9.4 DECODE 19-48

19.9.9.5 LENGTH 19-48

19.9.9.6 MAX 19-49

19.9.9.7 MIN 19-49

19.9.9.8 NVL 19-50

19.9.9.9 REGEXP_LIKE 19-50

19.9.9.10 SUBSTR 19-51

xxvi

19.9.9.11 SUM 19-51

19.9.9.12 TIMESTAMP_TO_CHAR 19-52

19.9.9.13 TOLOWER 19-52

19.9.9.14 TOUPPER 19-53

19.9.10 SET BASE 19-53

19.9.11 SET BROWSER 19-54

19.9.12 SET CONTROL 19-54

19.9.13 SET ECHO 19-55

19.9.14 SET EDITOR 19-55

19.9.15 SET HOMEPATH 19-56

19.9.16 SET TERMOUT 19-56

19.9.17 SHOW ALERT 19-57

19.9.18 SHOW BASE 19-59

19.9.19 SHOW CONTROL 19-60

19.9.20 SHOW HM_RUN 19-61

19.9.21 SHOW HOMEPATH 19-62

19.9.22 SHOW HOMES 19-62

19.9.23 SHOW INCDIR 19-63

19.9.24 SHOW INCIDENT 19-64

19.9.25 SHOW LOG 19-67

19.9.26 SHOW PROBLEM 19-69

19.9.27 SHOW REPORT 19-70

19.9.28 SHOW TRACEFILE 19-71

19.9.29 SPOOL 19-72

19.10 Troubleshooting ADRCI 19-72

20

DBVERIFY: Offline Database Verification Utility

20.1 Using DBVERIFY to Validate Disk Blocks of a Single Data File 20-1

20.1.1 DBVERIFY Syntax When Validating Blocks of a Single File 20-2

20.1.2 DBVERIFY Parameters When Validating Blocks of a Single File 20-2

20.1.3 Sample DBVERIFY Output For a Single Data File 20-3

20.2 Using DBVERIFY to Validate a Segment 20-4

20.2.1 DBVERIFY Syntax When Validating a Segment 20-4

20.2.2 DBVERIFY Parameters When Validating a Single Segment 20-5

20.2.3 Sample DBVERIFY Output For a Validated Segment 20-5

21

DBNEWID Utility

21.1 What Is the DBNEWID Utility? 21-1

21.2 Ramifications of Changing the DBID and DBNAME 21-1

xxvii

21.2.1 Considerations for Global Database Names 21-2

21.3 DBNEWID Considerations for CDBs and PDBs 21-2

21.4 Changing the DBID and DBNAME of a Database 21-3

21.4.1 Changing the DBID and Database Name 21-3

21.4.2 Changing Only the Database ID 21-5

21.4.3 Changing Only the Database Name 21-6

21.4.4 Troubleshooting DBNEWID 21-8

21.5 DBNEWID Syntax 21-9

21.5.1 DBNEWID Parameters 21-10

21.5.2 Restrictions and Usage Notes 21-10

21.5.3 Additional Restrictions for Releases Earlier Than Oracle Database 10g 21-11

22

Using LogMiner to Analyze Redo Log Files

22.1 LogMiner Benefits 22-2

22.2 Introduction to LogMiner 22-3

22.2.1 LogMiner Configuration 22-3

22.2.1.1 Objects in LogMiner Configuration Files 22-3

22.2.1.2 LogMiner Configuration Example 22-4

22.2.1.3 DataMiner Requirements 22-5

22.2.2 Directing LogMiner Operations and Retrieving Data of Interest 22-6

22.3 Using LogMiner in a CDB 22-7

22.3.1 LogMiner V$ Views and DBA Views in a CDB 22-8

22.3.2 The V$LOGMNR_CONTENTS View in a CDB 22-9

22.3.3 Enabling Supplemental Logging in a CDB 22-9

22.3.4 Using a Flat File Dictionary in a CDB 22-10

22.4 How to Configure Supplemental Logging for Oracle GoldenGate 22-10

22.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-Grained
Supplemental Logging 22-10

22.4.2 Logical Replication of Tables with LogMiner and Oracle GoldenGate 22-11

22.4.3 Views that Show Tables Enabled for Oracle GoldenGate Automatic
Capture 22-12

22.5 LogMiner Dictionary Files and Redo Log Files 22-13

22.5.1 LogMiner Dictionary Options 22-13

22.5.1.1 Using the Online Catalog 22-15

22.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files 22-15

22.5.1.3 Extracting the LogMiner Dictionary to a Flat File 22-16

22.5.2 Specifying Redo Log Files for Data Mining 22-17

22.6 Starting LogMiner 22-18

22.7 Querying V$LOGMNR_CONTENTS for Redo Data of Interest 22-19

22.7.1 How to Use V$LOGMNR_CONTENTS to Find Redo Data 22-19

22.7.2 How the V$LOGMNR_CONTENTS View Is Populated 22-21

xxviii

22.7.3 Querying V$LOGMNR_CONTENTS Based on Column Values 22-22

22.7.3.1 Example of Querying V$LOGMNR_CONTENTS Column Values 22-22

22.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE
Function 22-23

22.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT
Functions 22-23

22.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an
NCHAR Value 22-24

22.7.4 Querying V$LOGMNR_CONTENTS Based on XMLType Columns and
Tables 22-24

22.7.4.1 Restrictions When Using LogMiner With XMLType Data 22-26

22.7.4.2 Example of a PL/SQL Procedure for Assembling XMLType Data 22-26

22.8 Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS 22-29

22.8.1 Showing Only Committed Transactions 22-30

22.8.2 Skipping Redo Corruptions 22-32

22.8.3 Filtering Data by Time 22-33

22.8.4 Filtering Data by SCN 22-33

22.8.5 Formatting Reconstructed SQL Statements for Re-execution 22-34

22.8.6 Formatting the Appearance of Returned Data for Readability 22-34

22.9 Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS 22-35

22.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple Times 22-36

22.11 Supplemental Logging 22-37

22.11.1 Database-Level Supplemental Logging 22-38

22.11.1.1 Minimal Supplemental Logging 22-39

22.11.1.2 Database-Level Identification Key Logging 22-39

22.11.1.3 Procedural Supplemental Logging 22-40

22.11.2 Disabling Database-Level Supplemental Logging 22-41

22.11.3 Table-Level Supplemental Logging 22-41

22.11.3.1 Table-Level Identification Key Logging 22-42

22.11.3.2 Table-Level User-Defined Supplemental Log Groups 22-42

22.11.3.3 Usage Notes for User-Defined Supplemental Log Groups 22-43

22.11.4 Tracking DDL Statements in the LogMiner Dictionary 22-44

22.11.5 DDL_DICT_TRACKING and Supplemental Logging Settings 22-45

22.11.6 DDL_DICT_TRACKING and Specified Time or SCN Ranges 22-46

22.12 Accessing LogMiner Operational Information in Views 22-47

22.12.1 Querying V$LOGMNR_LOGS 22-47

22.12.2 Querying Views for Supplemental Logging Settings 22-49

22.13 Steps in a Typical LogMiner Session 22-50

22.13.1 Understanding How to Run LogMiner Sessions 22-51

22.13.2 Typical LogMiner Session Task 1: Enable Supplemental Logging 22-51

22.13.3 Typical LogMiner Session Task 2: Extract a LogMiner Dictionary 22-52

xxix

22.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for
Analysis 22-52

22.13.5 Start LogMiner 22-53

22.13.6 Query V$LOGMNR_CONTENTS 22-54

22.13.7 Typical LogMiner Session Task 6: End the LogMiner Session 22-56

22.14 Examples Using LogMiner 22-56

22.14.1 Examples of Mining by Explicitly Specifying the Redo Log Files of
Interest 22-57

22.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo
Log File 22-57

22.14.1.2 Example 2: Grouping DML Statements into Committed
Transactions 22-60

22.14.1.3 Example 3: Formatting the Reconstructed SQL 22-62

22.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log
Files 22-65

22.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary 22-73

22.14.1.6 Example 6: Filtering Output by Time Range 22-77

22.14.2 LogMiner Use Case Scenarios 22-79

22.14.2.1 Using LogMiner to Track Changes Made by a Specific User 22-79

22.14.2.2 Using LogMiner to Calculate Table Access Statistics 22-81

22.15 Supported Data Types, Storage Attributes, and Database and Redo Log
File Versions 22-82

22.15.1 Supported Data Types and Table Storage Attributes 22-83

22.15.2 Database Compatibility Requirements for LogMiner 22-84

22.15.3 Unsupported Data Types and Table Storage Attributes 22-85

22.15.4 Supported Databases and Redo Log File Versions 22-85

22.15.5 SecureFiles LOB Considerations 22-86

23

Using the Metadata APIs

23.1 Why Use the DBMS_METADATA API? 23-2

23.2 Overview of the DBMS_METADATA API 23-2

23.3 Using the DBMS_METADATA API to Retrieve an Object's Metadata 23-5

23.3.1 How to Use the DBMS_METADATA API to Retrieve Object Metadata 23-5

23.3.2 Typical Steps Used for Basic Metadata Retrieval 23-6

23.3.3 Retrieving Multiple Objects 23-7

23.3.4 Placing Conditions on Transforms 23-8

23.3.5 Accessing Specific Metadata Attributes 23-11

23.4 Using the DBMS_METADATA API to Recreate a Retrieved Object 23-13

23.5 Using the DBMS_METADATA API to Retrieve Collections of Different Object
Types 23-16

23.6 Filtering the Return of Heterogeneous Object Types 23-17

23.7 Using the DBMS_METADATA_DIFF API to Compare Object Metadata 23-19

xxx

23.8 Performance Tips for the Programmatic Interface of the DBMS_METADATA
API 23-27

23.9 Example Usage of the DBMS_METADATA API 23-28

23.9.1 What Does the DBMS_METADATA Example Do? 23-29

23.9.2 Output Generated from the GET_PAYROLL_TABLES Procedure 23-31

23.10 Summary of DBMS_METADATA Procedures 23-32

23.11 Summary of DBMS_METADATA_DIFF Procedures 23-34

24

Original Export

24.1 What is the Export Utility? 24-2

24.2 Before Using Export 24-3

24.2.1 Preparation Checklist for Using Export 24-3

24.2.2 Running catexp.sql or catalog.sql 24-3

24.2.3 Ensuring Sufficient Disk Space for Export Operations 24-4

24.2.4 Verifying Access Privileges for Export and Import Operations 24-4

24.3 Invoking Export 24-4

24.3.1 Invoking Export as SYSDBA 24-5

24.3.2 Command-Line Entries 24-5

24.3.3 Parameter Files 24-5

24.3.4 Interactive Mode 24-6

24.3.4.1 Restrictions When Using Export's Interactive Method 24-6

24.3.5 Getting Online Help 24-7

24.4 Export Modes 24-7

24.4.1 Table-Level and Partition-Level Export 24-10

24.4.1.1 Table-Level Export 24-10

24.4.1.2 Partition-Level Export 24-10

24.5 Export Parameters 24-11

24.5.1 BUFFER 24-13

24.5.2 COMPRESS 24-13

24.5.3 CONSISTENT 24-14

24.5.4 CONSTRAINTS 24-16

24.5.5 DIRECT 24-16

24.5.6 FEEDBACK 24-16

24.5.7 FILE 24-17

24.5.8 FILESIZE 24-17

24.5.9 FLASHBACK_SCN 24-18

24.5.10 FLASHBACK_TIME 24-18

24.5.11 FULL 24-19

24.5.11.1 Points to Consider for Full Database Exports and Imports 24-19

24.5.12 GRANTS 24-20

24.5.13 HELP 24-20

xxxi

24.5.14 INDEXES 24-21

24.5.15 LOG 24-21

24.5.16 OBJECT_CONSISTENT 24-21

24.5.17 OWNER 24-21

24.5.18 PARFILE 24-22

24.5.19 QUERY 24-22

24.5.19.1 Restrictions When Using the QUERY Parameter 24-23

24.5.20 RECORDLENGTH 24-23

24.5.21 RESUMABLE 24-24

24.5.22 RESUMABLE_NAME 24-24

24.5.23 RESUMABLE_TIMEOUT 24-24

24.5.24 ROWS 24-25

24.5.25 STATISTICS 24-25

24.5.26 TABLES 24-25

24.5.27 TABLESPACES 24-27

24.5.28 TRANSPORT_TABLESPACE 24-28

24.5.29 TRIGGERS 24-28

24.5.30 TTS_FULL_CHECK 24-28

24.5.31 USERID (username/password) 24-28

24.5.32 VOLSIZE 24-29

24.6 Example Export Sessions 24-29

24.6.1 Example Export Session in Full Database Mode 24-29

24.6.2 Example Export Session in User Mode 24-30

24.6.3 Example Export Sessions in Table Mode 24-30

24.6.3.1 Example 1: DBA Exporting Tables for Two Users 24-31

24.6.3.2 Example 2: User Exports Tables That He Owns 24-31

24.6.3.3 Example 3: Using Pattern Matching to Export Various Tables 24-32

24.6.4 Example Export Session Using Partition-Level Export 24-33

24.6.4.1 Example 1: Exporting a Table Without Specifying a Partition 24-33

24.6.4.2 Example 2: Exporting a Table with a Specified Partition 24-33

24.6.4.3 Example 3: Exporting a Composite Partition 24-34

24.7 Warning, Error, and Completion Messages 24-35

24.7.1 Log File 24-35

24.7.2 Warning Messages 24-35

24.7.3 Nonrecoverable Error Messages 24-35

24.7.4 Completion Messages 24-36

24.8 Exit Codes for Inspection and Display 24-36

24.9 Conventional Path Export Versus Direct Path Export 24-36

24.10 Starting a Direct Path Export 24-37

24.10.1 Security Considerations for Direct Path Exports 24-37

24.10.2 Performance Considerations for Direct Path Exports 24-38

xxxii

24.10.3 Restrictions for Direct Path Exports 24-38

24.11 Network Considerations for Original Oracle Data Pump Export 24-39

24.11.1 Transporting Export Files Across a Network 24-39

24.11.2 Exporting with Oracle Net 24-39

24.12 Character Set and Globalization Support Considerations 24-39

24.12.1 User Data 24-40

24.12.1.1 Effect of Character Set Sorting Order on Conversions 24-40

24.12.2 Data Definition Language (DDL) 24-41

24.12.3 Single-Byte Character Sets and Export and Import 24-41

24.12.4 Multibyte Character Sets and Export and Import 24-41

24.13 Using Instance Affinity with Export and Import 24-42

24.14 Considerations When Exporting Database Objects 24-42

24.14.1 Exporting Sequences 24-43

24.14.2 Exporting LONG and LOB Data Types 24-43

24.14.3 Exporting Foreign Function Libraries 24-43

24.14.4 Exporting Offline Locally-Managed Tablespaces 24-44

24.14.5 Exporting Directory Aliases 24-44

24.14.6 Exporting BFILE Columns and Attributes 24-44

24.14.7 Exporting External Tables 24-44

24.14.8 Exporting Object Type Definitions 24-44

24.14.9 Exporting Nested Tables 24-45

24.14.10 Exporting Advanced Queue (AQ) Tables 24-45

24.14.11 Exporting Synonyms 24-45

24.14.12 Possible Export Errors Related to Java Synonyms 24-46

24.14.13 Support for Fine-Grained Access Control 24-46

24.15 Transportable Tablespaces 24-46

24.16 Exporting From a Read-Only Database 24-47

24.17 Using Export and Import to Partition a Database Migration 24-47

24.17.1 Advantages of Partitioning a Migration 24-47

24.17.2 Disadvantages of Partitioning a Migration 24-48

24.17.3 How to Use Export and Import to Partition a Database Migration 24-48

24.18 Using Different Releases of Export and Import 24-48

24.18.1 Restrictions When Using Different Releases of Export and Import 24-49

24.18.2 Examples of Using Different Releases of Export and Import 24-49

25

Original Import

25.1 What Is the Import Utility? 25-3

25.2 Table Objects: Order of Import 25-3

25.3 Before Using Import 25-3

25.3.1 Overview of Import Preparation 25-4

xxxiii

25.3.2 Running catexp.sql or catalog.sql 25-4

25.3.3 Verifying Access Privileges for Import Operations 25-4

25.3.3.1 Importing Objects Into Your Own Schema 25-5

25.3.3.2 Importing Grants 25-5

25.3.3.3 Importing Objects Into Other Schemas 25-6

25.3.3.4 Importing System Objects 25-6

25.3.4 Processing Restrictions 25-7

25.4 Importing into Existing Tables 25-7

25.4.1 Manually Creating Tables Before Importing Data 25-7

25.4.2 Disabling Referential Constraints 25-8

25.4.3 Manually Ordering the Import 25-8

25.5 Effect of Schema and Database Triggers on Import Operations 25-8

25.6 Invoking Import 25-9

25.6.1 Command-Line Entries 25-9

25.6.2 Parameter Files 25-10

25.6.3 Interactive Mode 25-11

25.6.4 Invoking Import As SYSDBA 25-11

25.6.5 Getting Online Help 25-11

25.7 Import Modes 25-11

25.8 Import Parameters 25-15

25.8.1 BUFFER 25-17

25.8.2 COMMIT 25-18

25.8.3 COMPILE 25-18

25.8.4 CONSTRAINTS 25-19

25.8.5 DATA_ONLY 25-19

25.8.6 DATAFILES 25-19

25.8.7 DESTROY 25-20

25.8.8 FEEDBACK 25-20

25.8.9 FILE 25-20

25.8.10 FILESIZE 25-21

25.8.11 FROMUSER 25-21

25.8.12 FULL 25-22

25.8.12.1 Points to Consider for Full Database Exports and Imports 25-22

25.8.13 GRANTS 25-23

25.8.14 HELP 25-24

25.8.15 IGNORE 25-24

25.8.16 INDEXES 25-24

25.8.17 INDEXFILE 25-25

25.8.18 LOG 25-25

25.8.19 PARFILE 25-25

25.8.20 RECORDLENGTH 25-26

xxxiv

25.8.21 RESUMABLE 25-26

25.8.22 RESUMABLE_NAME 25-26

25.8.23 RESUMABLE_TIMEOUT 25-27

25.8.24 ROWS 25-27

25.8.25 SHOW 25-27

25.8.26 SKIP_UNUSABLE_INDEXES 25-28

25.8.27 STATISTICS 25-28

25.8.28 STREAMS_CONFIGURATION 25-29

25.8.29 STREAMS_INSTANTIATION 25-29

25.8.30 TABLES 25-29

25.8.30.1 Table Name Restrictions 25-31

25.8.31 TABLESPACES 25-32

25.8.32 TOID_NOVALIDATE 25-32

25.8.33 TOUSER 25-33

25.8.34 TRANSPORT_TABLESPACE 25-34

25.8.35 TTS_OWNERS 25-34

25.8.36 USERID (username/password) 25-34

25.8.37 VOLSIZE 25-35

25.9 Example Import Sessions 25-35

25.9.1 Example Import of Selected Tables for a Specific User 25-35

25.9.2 Example Import of Tables Exported by Another User 25-36

25.9.3 Example Import of Tables from One User to Another 25-36

25.9.4 Example Import Session Using Partition-Level Import 25-37

25.9.4.1 Example 1: A Partition-Level Import 25-37

25.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned
Table 25-37

25.9.4.3 Example 3: Repartitioning a Table on a Different Column 25-38

25.9.5 Example Import Using Pattern Matching to Import Various Tables 25-40

25.10 Exit Codes for Inspection and Display 25-41

25.11 Error Handling During an Import 25-41

25.11.1 Row Errors 25-41

25.11.1.1 Failed Integrity Constraints 25-42

25.11.1.2 Invalid Data 25-42

25.11.2 Errors Importing Database Objects 25-42

25.11.2.1 Object Already Exists 25-43

25.11.2.2 Sequences 25-43

25.11.2.3 Resource Errors 25-43

25.11.2.4 Domain Index Metadata 25-44

25.12 Table-Level and Partition-Level Import 25-44

25.12.1 Guidelines for Using Table-Level Import 25-44

25.12.2 Guidelines for Using Partition-Level Import 25-44

xxxv

25.12.3 Migrating Data Across Partitions and Tables 25-45

25.13 Controlling Index Creation and Maintenance 25-46

25.13.1 Delaying Index Creation 25-46

25.13.2 Index Creation and Maintenance Controls 25-46

25.13.2.1 Example of Postponing Index Maintenance 25-47

25.14 Network Considerations for Using Oracle Net with Original Import 25-47

25.15 Character Set and Globalization Support Considerations 25-48

25.15.1 User Data 25-48

25.15.1.1 Effect of Character Set Sorting Order on Conversions 25-48

25.15.2 Data Definition Language (DDL) 25-49

25.15.3 Single-Byte Character Sets 25-49

25.15.4 Multibyte Character Sets 25-50

25.16 Using Instance Affinity 25-50

25.17 Considerations When Importing Database Objects 25-50

25.17.1 Importing Object Identifiers 25-51

25.17.2 Importing Existing Object Tables and Tables That Contain Object
Types 25-53

25.17.3 Importing Nested Tables 25-53

25.17.4 Importing REF Data 25-54

25.17.5 Importing BFILE Columns and Directory Aliases 25-54

25.17.6 Importing Foreign Function Libraries 25-55

25.17.7 Importing Stored Procedures, Functions, and Packages 25-55

25.17.8 Importing Java Objects 25-55

25.17.9 Importing External Tables 25-56

25.17.10 Importing Advanced Queue (AQ) Tables 25-56

25.17.11 Importing LONG Columns 25-56

25.17.12 Importing LOB Columns When Triggers Are Present 25-57

25.17.13 Importing Views 25-57

25.17.14 Importing Partitioned Tables 25-58

25.18 Support for Fine-Grained Access Control 25-58

25.19 Snapshots and Snapshot Logs 25-58

25.19.1 Snapshot Log 25-58

25.19.2 Snapshots 25-59

25.19.2.1 Importing a Snapshot 25-59

25.19.2.2 Importing a Snapshot into a Different Schema 25-59

25.20 Transportable Tablespaces 25-60

25.21 Storage Parameters 25-61

25.21.1 The OPTIMAL Parameter 25-61

25.21.2 Storage Parameters for OID Indexes and LOB Columns 25-61

25.21.3 Overriding Storage Parameters 25-62

25.22 Read-Only Tablespaces 25-62

xxxvi

25.23 Dropping a Tablespace 25-62

25.24 Reorganizing Tablespaces 25-62

25.25 Importing Statistics 25-63

25.26 Using Export and Import to Partition a Database Migration 25-64

25.26.1 Advantages of Partitioning a Migration 25-64

25.26.2 Disadvantages of Partitioning a Migration 25-64

25.26.3 How to Use Export and Import to Partition a Database Migration 25-64

25.27 Tuning Considerations for Import Operations 25-65

25.27.1 Changing System-Level Options 25-65

25.27.2 Changing Initialization Parameters 25-66

25.27.3 Changing Import Options 25-66

25.27.4 Dealing with Large Amounts of LOB Data 25-66

25.27.5 Dealing with Large Amounts of LONG Data 25-67

25.28 Using Different Releases of Export and Import 25-67

25.28.1 Restrictions When Using Different Releases of Export and Import 25-68

25.28.2 Examples of Using Different Releases of Export and Import 25-68

Part V Appendices

A Instant Client for SQL*Loader, Export, and Import

A.1 What is the Tools Instant Client? A-1

A.2 Choosing Which Instant Client to Install A-2

A.3 Installing Instant Client Tools by Downloading from OTN A-3

A.3.1 Installing Instant Client and Instant Client Tools RPM Packages for
Linux A-3

A.3.2 Installing Instant Client and Instant Client Tools from Unix or Windows
Zip Files A-4

A.4 Installing Tools Instant Client from the Client Release Media A-5

A.5 List of Oracle Instant Client Tools Files A-5

A.6 Configuring Tools Instant Client Package A-6

A.7 Connecting to a Database with the Tools Instant Client Package A-8

A.8 Uninstalling Tools Instant Client Package and Instant Client A-10

B SQL*Loader Syntax Diagrams

xxxvii

Preface

This document describes how to use Oracle Database utilities for data transfer, data
maintenance, and database administration.

• Audience

• Documentation Accessibility

• Related Documentation

• Syntax Diagrams

• Conventions

Audience
The utilities described in this book are intended for database administrators (DBAs),
application programmers, security administrators, system operators, and other Oracle
Database users who perform the following tasks:

• Archive data, back up Oracle Database, or move data between different Oracle
Databases using the Export and Import utilities (both the original versions and the
Oracle Data Pump versions)

• Load data into Oracle Database tables from operating system files, using
SQL*Loader

• Load data from external sources, using the external tables feature

• Perform a physical data structure integrity check on an offline database, using the
DBVERIFY utility

• Maintain the internal database identifier (DBID) and the database name (DBNAME)
for an operational database, using the DBNEWID utility

• Extract and manipulate complete representations of the metadata for Oracle
Database objects, using the Metadata API

• Query and analyze redo log files (through a SQL interface), using the LogMiner
utility

• Use the Automatic Diagnostic Repository Command Interpreter (ADRCI) utility to
manage Oracle Database diagnostic data.

To use this manual, you need a working knowledge of SQL and of Oracle
fundamentals. You can find such information inOracle Database Concepts In addition,
to use SQL*Loader, you must know how to use the file management facilities of your
operating system.

Documentation Accessibility

Preface

xxxviii

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documentation
For more information, refer to the Oracle Database documentation set. In particular,
check the following documents:

• Oracle Database Concepts

• Oracle Database SQL Language Reference

• Oracle Database Administrator’s Guide

• Oracle Database PL/SQL Packages and Types Reference

Some of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemasfor information about how these schemas were created,
and how you can use them yourself.

Syntax Diagrams
Syntax descriptions are provided in this book for various SQL, PL/SQL, or other
command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle
Database SQL Language Reference for information about how to interpret these
descriptions.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxxix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Oracle Data Pump

Learn about data movement options using Oracle Data Pump Export, Oracle Data
Pump Import, legacy mode, performance, and the Oracle Data Pump API
DBMS_DATAPUMP.

• Overview of Oracle Data Pump
Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another.

• Oracle Data Pump Export
The Oracle Data Pump Export utility is used to unload data and metadata into a
set of operating system files, which are called a dump file set.

• Oracle Data Pump Import
With Oracle Data Pump Import, you can load an export dump file set into a target
database, or load a target database directly from a source database with no
intervening files.

• Oracle Data Pump Legacy Mode
With Oracle Data Pump legacy mode, you can use original Export and Import
parameters on the Oracle Data Pump Export and Data Pump Import command
lines.

• Oracle Data Pump Performance
Learn how Oracle Data Pump Export and Import is better than that of original
Export and Import, and how to enhance performance of export and import
operations.

• Using the Oracle Data Pump API
You can automate data movement operations by using the Oracle Data Pump
PL/SQL API DBMS_DATAPUMP.

1
Overview of Oracle Data Pump

Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another.

An understanding of the following topics can help you to successfully use Oracle Data
Pump to its fullest advantage:

• Oracle Data Pump Components
Oracle Data Pump is made up of three distinct components: Command-line
clients, expdp and impdp; the DBMS_DATAPUMP PL/SQL package (also known as the
Data Pump API); and the DBMS_METADATA PL/SQL package (also known as the
Metadata API).

• How Does Oracle Data Pump Move Data?
There are several Oracle Data Pump methods that you can use to move data in
and out of databases. You can select the method that best fits your use case.

• Using Oracle Data Pump With CDBs
Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into
a PDB, between PDBs within the same or different CDBs, and from a PDB into a
non-CDB.

• Required Roles for Oracle Data Pump Export and Import Operations
The roles DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_IMP_FULL_DATABASE are
required for many Export and Import operations.

• What Happens During Execution of an Oracle Data Pump Job?
Oracle Data Pump jobs use a master table, a master process, and worker
processes to perform the work and keep track of progress.

• How to Monitor Status of Oracle Data Pump Jobs
The Oracle Data Pump Export and Import client utilities can attach to a job in
either logging mode or interactive-command mode.

• How to Monitor the Progress of Executing Jobs
To monitor table data transfers, you can use the V$SESSION_LONGOPS dynamic
performance view to monitor Oracle Data Pump jobs.

• File Allocation with Oracle Data Pump
You can modify how Oracle Data Pump allocates and handles files by using
commands in interactive mode.

• Exporting and Importing Between Different Oracle Database Releases
You can use Oracle Data Pump to migrate all or any portion of an Oracle
Database between different releases of the database software.

• Exporting and Importing Blockchain Tables with Oracle Data Pump
If you use Oracle Data Pump with blockchain tables, then you can use only
CONVENTIONAL access_method.

• Managing SecureFiles Large Object Exports with Oracle Data Pump
Exports of SecureFiles large objects (LOBs) are affected by the content type, the
VERSION parameter, and other variables.

1-1

• Oracle Data Pump Process Exit Codes
To check the status of your Oracle Data Pump export and import operations,
review the process exit codes in the log file.

• How to Monitor Oracle Data Pump Jobs with Unified Auditing
To monitor and record specific user database actions, perform auditing on Data
Pump jobs with unified auditing.

• Encrypted Data Security Warnings for Oracle Data Pump Operations
Oracle Data Pump warns you when encrypted data is exported as unencrypted
data.

• How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs
that involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP
WITH LOCAL TIMEZONE.

• Character Set and Globalization Support Considerations
Learn about Globalization support of Oracle Data Pump Export and Import using
character set conversion of user data, and data definition language (DDL).

• Oracle Data Pump Behavior with Data-Bound Collation
Oracle Data Pump supports data-bound collation (DBC).

1.1 Oracle Data Pump Components
Oracle Data Pump is made up of three distinct components: Command-line clients,
expdp and impdp; the DBMS_DATAPUMP PL/SQL package (also known as the Data Pump
API); and the DBMS_METADATA PL/SQL package (also known as the Metadata API).

The Oracle Data Pump clients, expdp and impdp, start the Oracle Data Pump Export
utility and Oracle Data Pump Import utility, respectively.

The expdp and impdp clients use the procedures provided in the DBMS_DATAPUMP
PL/SQL package to execute export and import commands, using the parameters
entered at the command line. These parameters enable the exporting and importing of
data and metadata for a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the
DBMS_METADATA PL/SQL package. The DBMS_METADATA package provides a centralized
facility for the extraction, manipulation, and re-creation of dictionary metadata.

The DBMS_DATAPUMP and DBMS_METADATA PL/SQL packages can be used independently
of the Data Pump clients.

Note:

All Oracle Data Pump Export and Import processing, including the reading
and writing of dump files, is done on the system (server) selected by the
specified database connect string. This means that for unprivileged users,
the database administrator (DBA) must create directory objects for the
Data Pump files that are read and written on that server file system. (For
security reasons, DBAs must ensure that only approved users are allowed
access to directory objects.) For privileged users, a default directory object is
available.

Chapter 1
Oracle Data Pump Components

1-2

Starting with Oracle Database 18c, you can include the unified audit trail in either full
or partial export and import operations using Oracle Data Pump. There is no change to
the user interface. When you perform the export or import operations of a database,
the unified audit trail is automatically included in the Oracle Data Pump dump files.
See Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_DATAPUMP and the DBMS_METADATA packages. See Oracle Database Security
Guide for information about exporting and importing the unified audit trail using Oracle
Data Pump.

Related Topics

• Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files,
and SQL files are accessed relative to server-based directory paths.

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Security Guide

1.2 How Does Oracle Data Pump Move Data?
There are several Oracle Data Pump methods that you can use to move data in and
out of databases. You can select the method that best fits your use case.

Note:

The UTL_FILE_DIR desupport in Oracle Database 18c and later releases
affects Oracle Data Pump. This desupport can affect any feature from an
earlier release using symbolic links, including (but not restricted to) Oracle
Data Pump, BFILEs, and External Tables. If you attempt to use an affected
feature configured with symbolic links, then you encounter ORA-29283:
invalid file operation: path traverses a symlink. Oracle
recommends that you instead use directory objects in place of symbolic links.

Data Pump does not load tables with disabled unique indexes. To load data
into the table, the indexes must be either dropped or reenabled.

• Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

• Using Direct Path to Move Data
After data file copying, direct path is the fastest method of moving data. In this
method, the SQL layer of the database is bypassed and rows are moved to and
from the dump file with only minimal interpretation.

• Using External Tables to Move Data
If you do not select data file copying, and the data cannot be moved using direct
path, you can use the external tables mechanism.

• Using Conventional Path to Move Data
Where there are conflicting table attributes, Oracle Data Pump uses conventional
path to move data.

Chapter 1
How Does Oracle Data Pump Move Data?

1-3

• Using Network Link Import to Move Data
When the Import NETWORK_LINK parameter is used to specify a network link for an
import operation, the direct path method is used by default. Review supported
database link types.

1.2.1 Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

When you copy database data files to the target database with this method, Data
Pump Export is used to unload only structural information (metadata) into the dump
file.

• The TRANSPORT_TABLESPACES parameter is used to specify a transportable
tablespace export. Only metadata for the specified tablespaces is exported.

• The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter) or a full mode network import (specified with the FULL and
NETWORK_LINK parameters).

When an export operation uses data file copying, the corresponding import job always
also uses data file copying. During the ensuing import operation, both the data files
and the export dump file must be loaded.

Note:

Starting with Oracle Database 20c, transportable jobs are restartable at or
near the point of failure During transportable imports tablespaces are
temporarily made read/write and then set back to read-only.The temporary
setting change was introduced with Oracle Database 12c Release 1
(12.1.0.2) to improve performance. However, be aware that this behavior
also causes the SCNs of the import job data files to change. Changing the
SCNs for data files can cause issues during future transportable imports of
those files.

For example, if a transportable tablespace import fails at any point after the
tablespaces have been made read/write (even if they are now read-only
again), then the data files at that section of the export become corrupt. They
cannot be recovered.

When transportable jobs are performed, it is best practice to keep a copy of
the data files on the source system until the import job has successfully
completed on the target system. If the import job fails for some reason, then
keeping copies ensures that you can have uncorrupted copies of the data
files.

When data is moved by using data file copying, there are some limitations regarding
character set compatibility between the source and target databases.

If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target platform.

Chapter 1
How Does Oracle Data Pump Move Data?

1-4

You can use the DBMS_FILE_TRANSFER PL/SQL package or the RMAN CONVERT command
to convert the data.

See Also:

• Oracle Database Backup and Recovery Reference for information about
the RMAN CONVERT command

• Oracle Database Administrator’s Guide for a description and example
(including how to convert the data) of transporting tablespaces between
databases

1.2.2 Using Direct Path to Move Data
After data file copying, direct path is the fastest method of moving data. In this method,
the SQL layer of the database is bypassed and rows are moved to and from the dump
file with only minimal interpretation.

Data Pump automatically uses the direct path method for loading and unloading data
unless the structure of a table does not allow it. For example, if a table contains a
column of type BFILE, then direct path cannot be used to load that table and external
tables is used instead.

The following sections describe situations in which direct path cannot be used for
loading and unloading.

Situations in Which Direct Path Load Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables
to load the data for that table, instead of direct path:

• A domain index that is not a CONTEXT type index exists for a LOB column.

• A global index on multipartition tables exists during a single-partition load. This
case includes object tables that are partitioned.

• A table is in a cluster.

• There is an active trigger on a preexisting table.

• Fine-grained access control is enabled in insert mode on a preexisting table.

• A table contains BFILE columns or columns of opaque types.

• A referential integrity constraint is present on a preexisting table.

• A table contains VARRAY columns with an embedded opaque type.

• The table has encrypted columns.

• The table into which data is being imported is a preexisting table and at least one
of the following conditions exists:

– There is an active trigger

– The table is partitioned

– Fine-grained access control is in insert mode

Chapter 1
How Does Oracle Data Pump Move Data?

1-5

– A referential integrity constraint exists

– A unique index exists

• Supplemental logging is enabled, and the table has at least one LOB column.

• The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

• A table contains a column (including a VARRAY column) with a TIMESTAMP WITH
TIME ZONE data type, and the version of the time zone data file is different between
the export and import systems.

Situations in Which Direct Path Unload Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables
rather than direct path to unload the data:

• Fine-grained access control for SELECT is enabled.

• The table is a queue table.

• The table contains one or more columns of type BFILE or opaque, or an object
type containing opaque columns.

• The table contains encrypted columns.

• The table contains a column of an evolved type that needs upgrading.

• The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

• Before the unload operation, the table was altered to contain a column that is NOT
NULL, and also has a default value specified.

1.2.3 Using External Tables to Move Data
If you do not select data file copying, and the data cannot be moved using direct path,
you can use the external tables mechanism.

The external tables mechanism creates an external table that maps to the dump file
data for the database table. The SQL engine is then used to move the data. If
possible, use the APPEND hint on import to speed the copying of the data into the
database. The representation of data for direct path data and external table data is the
same in a dump file. Because they are the same, Oracle Data Pump can use the direct
path mechanism at export time, but use external tables when the data is imported into
the target database. Similarly, Oracle Data Pump can use external tables for the
export, but use direct path for the import.

In particular, Oracle Data Pump can use external tables in the following situations:

• Loading and unloading very large tables and partitions in situations where it is
advantageous to use parallel SQL capabilities

• Loading tables with global or domain indexes defined on them, including
partitioned object tables

• Loading tables with active triggers or clustered tables

• Loading and unloading tables with encrypted columns

• Loading tables with fine-grained access control enabled for inserts

Chapter 1
How Does Oracle Data Pump Move Data?

1-6

• Loading a table not created by the import operation (the table exists before the
import starts)

Note:

When Oracle Data Pump uses external tables as the data access
mechanism, it uses the ORACLE_DATAPUMP access driver. However, be aware
that the files that Data Pump creates when it uses external tables are not
compatible with files created when you manually create an external table
using the SQL CREATE TABLE ... ORGANIZATION EXTERNAL statement.

Related Topics

• The ORACLE_DATAPUMP Access Driver
The ORACLE_DATAPUMP access driver provides a set of access parameters that are
unique to external tables of the type ORACLE_DATAPUMP.

See Also:

Oracle Database SQL Language Reference for information about using the
APPEND hint

1.2.4 Using Conventional Path to Move Data
Where there are conflicting table attributes, Oracle Data Pump uses conventional path
to move data.

In situations where there are conflicting table attributes, Oracle Data Pump is not able
to load data into a table using either direct path or external tables. In such cases,
conventional path is used, which can affect performance.

1.2.5 Using Network Link Import to Move Data
When the Import NETWORK_LINK parameter is used to specify a network link for an
import operation, the direct path method is used by default. Review supported
database link types.

If direct path cannot be used (for example, because one of the columns is a BFILE),
then SQL is used to move the data using an INSERT SELECT statement. (Before Oracle
Database 12c Release 2 (12.2.0.1), the default was to use the INSERT SELECT
statement.) The SELECT clause retrieves the data from the remote database over the
network link. The INSERT clause uses SQL to insert the data into the target database.
There are no dump files involved.

When the Export NETWORK_LINK parameter is used to specify a network link for an
export operation, the data from the remote database is written to dump files on the
target database. (Note that to export from a read-only database, the NETWORK_LINK
parameter is required.)

Chapter 1
How Does Oracle Data Pump Move Data?

1-7

Because the link can identify a remotely networked database, the terms database link
and network link are used interchangeably.

Supported Link Types

The following types of database links are supported for use with Data Pump Export
and Import:

• Public fixed user

• Public connected user

• Public shared user (only when used by link owner)

• Private shared user (only when used by link owner)

• Private fixed user (only when used by link owner)

Unsupported Link Types

The following types of database links are not supported for use with Data Pump Export
and Import:

• Private connected user

• Current user

• Parallel export or import of metadata for network jobs.

For conventional jobs, if you need parallel metadata import, then use a dumpfile
instead of NETWORK_LINK.

See Also:

• The Export NETWORK_LINK parameter for information about
performing exports over a database link

• The Import NETWORK_LINK parameter for information about
performing imports over a database link

• Oracle Database Administrator’s Guide for information about creating
database links and the different types of links

1.3 Using Oracle Data Pump With CDBs
Oracle Data Pump can migrate all, or portions of, a database from a non-CDB into a
PDB, between PDBs within the same or different CDBs, and from a PDB into a non-
CDB.

• About Using Oracle Data Pump in a Multitenant Environment
In general, using Oracle Data Pump with PDBs is identical to using Oracle Data
Pump with a non-CDB.

• Using Oracle Data Pump to Move Data Into a CDB
After you create an empty PDB, to move data into the PDB, you can use an Oracle
Data Pump full-mode export and import operation.

Chapter 1
Using Oracle Data Pump With CDBs

1-8

• Using Oracle Data Pump to Move PDBs Within or Between CDBs
Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export
and import operations on PDBs.

1.3.1 About Using Oracle Data Pump in a Multitenant Environment
In general, using Oracle Data Pump with PDBs is identical to using Oracle Data Pump
with a non-CDB.

A multitenant container database (CDB) is an Oracle Database that includes zero,
one, or many user-created pluggable databases (PDBs). A PDB is a portable set of
schemas, schema objects, and nonschema objects that appear to an Oracle Net client
as a non-CDB. A non-CDB is an Oracle Database that is not a CDB. Non-CDB
architecture Oracle Database was deprecated in Oracle Database 12c Release 1
(12.1). Starting with Oracle Database 20c, non-CDB architecture deployments are
desupported.

You can use Oracle Data Pump to migrate all or some of a database in the following
scenarios:

• From a non-CDB into a PDB

• Between PDBs within the same or different CDBs

• From a PDB into an earlier release non-CDB

Note:

Oracle Data Pump does not support any CDB-wide operations. If you are
connected to the root or seed database of a CDB, then Oracle Data Pump
issues the following warning:

ORA-39357: Warning: Oracle Data Pump operations are not typically
needed when connected to the root or seed of a container database.

1.3.2 Using Oracle Data Pump to Move Data Into a CDB
After you create an empty PDB, to move data into the PDB, you can use an Oracle
Data Pump full-mode export and import operation.

You can import data with or without the transportable option. If you use the
transportable option on a full mode export or import, then it is referred to as a full
transportable export/import.

When the transportable option is used, export and import use both transportable
tablespace data movement and conventional data movement; the latter for those
tables that reside in non-transportable tablespaces such as SYSTEM and SYSAUX. Using
the transportable option can reduce the export time, and especially, the import time.
With the transportable option, table data does not need to be unloaded and reloaded,
and index structures in user tablespaces do not need to be recreated.

Note the following requirements when using Oracle Data Pump to move data into a
CDB:

Chapter 1
Using Oracle Data Pump With CDBs

1-9

• To administer a multitenant environment, you must have the CDB_DBA role.

• Full database exports from Oracle Database 11.2.0.2 and earlier can be imported
into Oracle Database 12c or later (CDB or non-CDB). However, Oracle
recommends that you first upgrade the source database to Oracle Database 11g
Release 2 (11.2.0.3 or later), so that information about registered options and
components is included in the export.

• When migrating Oracle Database 11g Release 2 (11.2.0.3 or later) to a CDB (or to
a non-CDB) using either full database export or full transportable database export,
you must set the Oracle Data Pump Export parameter at least to VERSION=12 to
generate a dump file that is ready for import into an Oracle Database 12c or later
release. If you do not set VERSION=12, then the export file that is generated does
not contain complete information about registered database options and
components.

• Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT_DATAFILES=datafile_name parameters.
When the source database is Oracle Database 11g Release 11.2.0.3 or later, but
earlier than Oracle Database 12c Release 1 (12.1), the VERSION=12 parameter is
also required.

• File-based full transportable imports only require use of the
TRANSPORT_DATAFILES=datafile_name parameter. Data Pump Import infers the
presence of the TRANSPORTABLE=ALWAYS and FULL=YES parameters.

• As of Oracle Database 12c Release 2 (12.2), in a multitenant container database
(CDB) environment, the default Oracle Data Pump directory object,
DATA_PUMP_DIR, is defined as a unique path for each PDB in the CDB. This unique
path is defined whether the PATH_PREFIX clause of the CREATE PLUGGABLE
DATABASE statement is defined or is not defined for relative paths.

• Starting in Oracle Database 19c, the credential parameter of impdp specifies the
name of the credential object that contains the user name and password required
to access an object store bucket. You can also specify a default credential using
the PDB property named DEFAULT_CREDENTIAL. When you run impdb with then
default credential, you prefix the dump file name with DEFAULT_CREDENTIAL: and
you do not specify the credential parameter.

Example 1-1 Importing a Table into a PDB

To specify a particular PDB for the export/import operation, supply a connect identifier
in the connect string when you start Data Pump. For example, to import data to a PDB
named pdb1, you could enter the following on the Data Pump command line:

impdp hr@pdb1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Example 1-2 Specifying a Credential When Importing Data

This example assumes that you created a credential named HR_CRED using
DBMS_CREDENTIAL.CREATE_CREDENTIAL as follows:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'HR_CRED',
 username => 'atpc_user@example.com',
 password => 'password'
);

Chapter 1
Using Oracle Data Pump With CDBs

1-10

END;
/

The following command specifies credential HR_CRED, and specifies the file stored in an
object store. The URL of the file is https://example.com/ostore/dnfs/myt.dmp.

impdp hr@pdb1 \
 table_exists_action=replace \
 credential=HR_CRED \
 parallel=16 \
 dumpfile=https://example.com/ostore/dnfs/myt.dmp

Example 1-3 Importing Data Using a Default Credential

1. You create a credential named HR_CRED using
DBMS_CREDENTIAL.CREATE_CREDENTIAL as follows:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'HR_CRED',
 username => 'atpc_user@example.com',
 password => 'password'
);
END;
/

2. You set the PDB property DEFAULT_CREDENTIAL as follows:

ALTER DATABASE PROPERTY SET DEFAULT_CREDENTIAL = 'ADMIN.HR_CRED'

3. The following command specifies the default credential as a prefix to the dump file
location https://example.com/ostore/dnfs/myt.dmp:

impdp hr@pdb1 \
 table_exists_action=replace \
 parallel=16 \
 dumpfile=default_credential:https://example.com/ostore/dnfs/
myt.dmp

Note that the credential parameter is not specified.

See Also:

• Oracle Database Security Guide to learn how to configure SSL
authentication, which is necessary for object store access

• Oracle Database Utilities to learn about using Oracle Data Pump Import
to load files to the object store

Chapter 1
Using Oracle Data Pump With CDBs

1-11

1.3.3 Using Oracle Data Pump to Move PDBs Within or Between
CDBs

Learn how to avoid ORA-65094 user schema errors with Oracle Data Pump export and
import operations on PDBs.

If you create a common user in a CDB, then a full database or privileged schema
export of that user from within any PDB in the CDB results in a standard CREATE USER
C##common name DDL statement being performed upon import. However, the
statement fails because of the common user prefix C## on the user name. The
following error message is returned:

ORA-65094:invalid local user or role name

Example 1-4 Avoiding Invalid Local User Error

In the PDB being exported, if you have created local objects in that user's schema,
and you want to import them, then either make sure a common user of the same name
already exists in the target CDB instance, or use the Oracle Data Pump Import
REMAP_SCHEMA parameter on the impdp command to remap the schema to a valid local
user. For example:

REMAP_SCHEMA=C##common name:local user name

Related Topics

• Full Mode
You can use Data Pump to carry out a full database export by using the FULL
parameter.

• Full Import Mode
A full import is specified using the FULL parameter.

• Network Considerations for Original Oracle Data Pump Export
When you use original Export (exp) across a network, review protocols and
connection qualifier strings.

1.4 Required Roles for Oracle Data Pump Export and Import
Operations

The roles DATAPUMP_EXP_FULL_DATABASE and DATAPUMP_IMP_FULL_DATABASE are
required for many Export and Import operations.

When you run Export or Import operations, the operation can require that the user
account you are using to run the operations is granted either the
DATAPUMP_EXP_FULL_DATABASE role, or the DATAPUMP_IMP_FULL_DATABASE role, or both
roles. These roles are automatically defined for Oracle Database when you run the
standard scripts that are part of database creation. (Note that although the names of
these roles contain the word FULL, these roles actually apply to any privileged
operations in any export or import mode, not only Full mode.)

Chapter 1
Required Roles for Oracle Data Pump Export and Import Operations

1-12

The DATAPUMP_EXP_FULL_DATABASE role affects only export operations. The
DATAPUMP_IMP_FULL_DATABASE role affects import operations and operations that use
the Import SQLFILE parameter. These roles allow users performing exports and
imports to do the following:

• Perform the operation outside the scope of their schema

• Monitor jobs that were initiated by another user

• Export objects (such as tablespace definitions) and import objects (such as
directory definitions) that unprivileged users cannot reference

These are powerful roles. As a database administrator, you should use caution when
granting these roles to users.

Although the SYS schema does not have either of these roles assigned to it, all security
checks performed by Oracle Data Pump that require these roles also grant access to
the SYS schema.

Note:

If you receive an ORA-39181: Only Partial Data Exported Due to Fine
Grain Access Control error message, then see My Oracle Support Note
422480.1 for information about security during an export of table data with
fine-grained access control policies enabled.:

https://support.oracle.com/rs?type=doc&id=422480.1

Some Oracle roles require authorization. If you need to use these roles with Oracle
Data Pump exports and imports, then you must explicitly enable them by setting the
ENABLE_SECURE_ROLES parameter to YES.

See Also:

Oracle Database Security Guide for more information about predefined roles
in an Oracle Database installation

1.5 What Happens During Execution of an Oracle Data
Pump Job?

Oracle Data Pump jobs use a master table, a master process, and worker processes
to perform the work and keep track of progress.

• Coordination of an Oracle Data Pump Job
A master process is created to coordinate every Oracle Data Pump Export and
Import job.

• Tracking Progress Within an Oracle Data Pump Job
While Oracle Data Pump transfers data and metadata, a master table is used to
track the progress within a job.

Chapter 1
What Happens During Execution of an Oracle Data Pump Job?

1-13

https://support.oracle.com/rs?type=doc&id=422480.1

• Filtering Data and Metadata During an Oracle Data Pump Job
If you want to filter the types of objects that are exported and imported with Oracle
Data Pump, then you can use the EXCLUDE and INCLUDE parameters.

• Transforming Metadata During an Oracle Data Pump Job
When you move data from one database to another, you can perform
transformations on the metadata by using Oracle Data Pump Import parameters.

• Maximizing Job Performance of Oracle Data Pump
To increase job performance, you can use the Oracle Data Pump PARALLEL
parameter to run multiple worker processes in parallel.

• Loading and Unloading Data with Oracle Data Pump
Learn how Oracle Data Pump worker processes operate during data imports and
exports.

1.5.1 Coordination of an Oracle Data Pump Job
A master process is created to coordinate every Oracle Data Pump Export and Import
job.

The master process controls the entire job, including communicating with the clients,
creating and controlling a pool of worker processes, and performing logging
operations.

1.5.2 Tracking Progress Within an Oracle Data Pump Job
While Oracle Data Pump transfers data and metadata, a master table is used to track
the progress within a job.

The Oracle Data Pump master table is implemented as a user table within the
database. The specific function of the master table for export and import jobs is as
follows:

• For export jobs, the master table records the location of database objects within a
dump file set. Export builds and maintains the master table for the duration of the
job. At the end of an export job, the content of the master table is written to a file in
the dump file set.

• For import jobs, the master table is loaded from the dump file set and is used to
control the sequence of operations for locating objects that need to be imported
into the target database.

The master table is created in the schema of the current user performing the export or
import operation. Therefore, that user must have the CREATE TABLE system privilege
and a sufficient tablespace quota for creation of the master table. The name of the
master table is the same as the name of the job that created it. Therefore, you cannot
explicitly give a Data Pump job the same name as a preexisting table or view.

For all operations, the information in the master table is used to restart a job.

The master table is either retained or dropped, depending on the circumstances, as
follows:

• Upon successful job completion, the master table is dropped. You can override
this by setting the Data Pump KEEP_MASTER=YES parameter for the job.

• The master table is automatically retained for jobs that do not complete
successfully.

Chapter 1
What Happens During Execution of an Oracle Data Pump Job?

1-14

• If a job is stopped using the STOP_JOB interactive command, then the master table
is retained for use in restarting the job.

• If a job is killed using the KILL_JOB interactive command, then the master table is
dropped and the job cannot be restarted.

• If a job terminates unexpectedly, then the master table is retained. You can delete
it if you do not intend to restart the job.

• If a job stops before it starts running (that is, before any database objects have
been copied), then the master table is dropped.

Related Topics

• JOB_NAME
The Data Pump Export command-line utility JOB_NAME parameter identifies the
export job in subsequent actions, such as when using ATTACH to attach to a job, or
to identify a job using DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS views.

1.5.3 Filtering Data and Metadata During an Oracle Data Pump Job
If you want to filter the types of objects that are exported and imported with Oracle
Data Pump, then you can use the EXCLUDE and INCLUDE parameters.

Within the master table, specific objects are assigned attributes such as name or
owning schema. Objects also belong to a class of objects (such as TABLE, INDEX, or
DIRECTORY). The class of an object is called its object type. You can use the EXCLUDE
and INCLUDE parameters to restrict the types of objects that are exported and
imported. The objects can be based upon the name of the object or the name of the
schema that owns the object. You can also specify data-specific filters to restrict the
rows that are exported and imported.

Related Topics

• Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This
capability helps you limit the type of information that is exported.

• Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which
can help you limit the type of information that you import.

1.5.4 Transforming Metadata During an Oracle Data Pump Job
When you move data from one database to another, you can perform transformations
on the metadata by using Oracle Data Pump Import parameters.

It is often useful to perform transformations on your metadata, so that you can remap
storage between tablespaces, or redefine the owner of a particular set of objects.
When you move data, you can perform transformations by using the Oracle Data
Pump import parameters REMAP_DATAFILE, REMAP_SCHEMA,
REMAP_TABLE,REMAP_TABLESPACE, TRANSFORM, and PARTITION_OPTIONS.

1.5.5 Maximizing Job Performance of Oracle Data Pump
To increase job performance, you can use the Oracle Data Pump PARALLEL parameter
to run multiple worker processes in parallel.

Chapter 1
What Happens During Execution of an Oracle Data Pump Job?

1-15

The PARALLEL parameter enables you to set a degree of parallelism that takes
maximum advantage of current conditions. For example, to limit the effect of a job on a
production system, database administrators can choose to restrict the parallelism. The
degree of parallelism can be reset at any time during a job. For example, during
production hours, you can set PARALLEL to 2, so that you restrict a particular job to only
two degrees of parallelism. During nonproduction hours, you can reset the degree of
parallelism to 8. The parallelism setting is enforced by the master process, which
allocates workloads to worker processes that perform the data and metadata
processing within an operation. These worker processes operate in parallel. For
recommendations on setting the degree of parallelism, refer to the Export PARALLEL
and Import PARALLEL parameter descriptions.

Note:

The ability to adjust the degree of parallelism is available only in the
Enterprise Edition of Oracle Database.

Related Topics

• PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies
the maximum number of processes of active execution operating on behalf of the
export job.

• PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

1.5.6 Loading and Unloading Data with Oracle Data Pump
Learn how Oracle Data Pump worker processes operate during data imports and
exports.

Oracle Data Pump worker processes unload and load metadata and table data. For
export, all metadata and data are unloaded in parallel, with the exception of jobs that
use transportable tablespace. For import, objects must be created in the correct
dependency order.

If there are enough objects of the same type to make use of multiple workers, then the
objects are imported by multiple worker processes. Some metadata objects have
interdependencies, which require one worker process to create them serially to satisfy
those dependencies. Worker processes are created as needed until the number of
worker processes equals the value supplied for the PARALLEL command-line
parameter. The number of active worker processes can be reset throughout the life of
a job. Worker processes can be started on different nodes in an Oracle Real
Application Clusters (Oracle RAC) environment.

Note:

The value of PARALLEL is restricted to 1 in the Standard Edition of Oracle
Database.

Chapter 1
What Happens During Execution of an Oracle Data Pump Job?

1-16

When a worker process is assigned the task of loading or unloading a very large table
or partition, to make maximum use of parallel execution, it can make use of the
external tables access method. In such a case, the worker process becomes a parallel
execution coordinator. The actual loading and unloading work is divided among some
number of parallel I/O execution processes (sometimes called slaves) allocated from a
pool of available processes in an Oracle Real Application Clusters (Oracle RAC)
environment.

Related Topics

• PARALLEL

• PARALLEL

1.6 How to Monitor Status of Oracle Data Pump Jobs
The Oracle Data Pump Export and Import client utilities can attach to a job in either
logging mode or interactive-command mode.

In logging mode, real-time detailed status about the job is automatically displayed
during job execution. The information displayed can include the job and parameter
descriptions, an estimate of the amount of data to be processed, a description of the
current operation or item being processed, files used during the job, any errors
encountered, and the final job state (Stopped or Completed).

In interactive-command mode, job status can be displayed on request. The information
displayed can include the job description and state, a description of the current
operation or item being processed, files being written, and a cumulative status.

You can also have a log file written during the execution of a job. The log file
summarizes the progress of the job, lists any errors encountered during execution of
the job, and records the completion status of the job.

As an alternative to determine job status or other information about Oracle Data Pump
jobs, you can query the DBA_DATAPUMP_JOBS, USER_DATAPUMP_JOBS, or
DBA_DATAPUMP_SESSIONS views. Refer to Oracle Database Reference for more
information.

Related Topics

• Oracle Database Reference

1.7 How to Monitor the Progress of Executing Jobs
To monitor table data transfers, you can use the V$SESSION_LONGOPS dynamic
performance view to monitor Oracle Data Pump jobs.

Oracle Data Pump operations that transfer table data (export and import) maintain an
entry in the V$SESSION_LONGOPS dynamic performance view indicating the job progress
(in megabytes of table data transferred). The entry contains the estimated transfer size
and is periodically updated to reflect the actual amount of data transferred.

Use of the COMPRESSION, ENCRYPTION, ENCRYPTION_ALGORITHM, ENCRYPTION_MODE,
ENCRYPTION_PASSWORD, QUERY, and REMAP_DATA parameters are not reflected in the
determination of estimate values.

The usefulness of the estimate value for export operations depends on the type of
estimation requested when the operation was initiated, and it is updated as required if

Chapter 1
How to Monitor Status of Oracle Data Pump Jobs

1-17

exceeded by the actual transfer amount. The estimate value for import operations is
exact.

The V$SESSION_LONGOPS columns that are relevant to a Data Pump job are as follows:

• USERNAME: Job owner

• OPNAME: Job name

• TARGET_DESC: Job operation

• SOFAR: Megabytes transferred thus far during the job

• TOTALWORK Estimated number of megabytes in the job

• UNITS: Megabytes (MB)

• MESSAGE: A formatted status message that uses the following format:

'job_name: operation_name : nnn out of mmm MB done'

1.8 File Allocation with Oracle Data Pump
You can modify how Oracle Data Pump allocates and handles files by using
commands in interactive mode.

• Understanding File Allocation in Oracle Data Pump
Understanding how Oracle Data Pump allocates and handles files helps you to
use Export and Import to their fullest advantage.

• Specifying Files and Adding Additional Dump Files
For export operations, you can either specify dump files at the time you define the
Oracle Data Pump job, or at a later time during the operation.

• Default Locations for Dump, Log, and SQL Files
Review these topics to understand the Oracle Data Pump default file locations,
and to understand how these locations are affected when you are using Oracle
RAC, Oracle Automatic Storage Management, and multitenant architecture.

• Using Substitution Variables with Oracle Data Pump Exports
If you want to specify multiple dump files during Oracle Data Pump export
operations, then use the DUMPFILE parameter with a substitution variable in the file
name.

1.8.1 Understanding File Allocation in Oracle Data Pump
Understanding how Oracle Data Pump allocates and handles files helps you to use
Export and Import to their fullest advantage.

Oracle Data Pump jobs manage the following types of files:

• Dump files, to contain the data and metadata that is being moved.

• Log files, to record the messages associated with an operation.

• SQL files, to record the output of a SQLFILE operation. A SQLFILE operation is
started using the Oracle Data Pump Import SQLFILE parameter. This operation
results in all of the SQL DDL that Import would execute, based on other parameters,
being written to a SQL file.

Chapter 1
File Allocation with Oracle Data Pump

1-18

• Files specified by the DATA_FILES parameter during a transportable import.

Note:

If your Oracle Data Pump job generates errors related to Network File
Storage (NFS), then consult the installation guide for your platform to
determine the correct NFS mount settings.

1.8.2 Specifying Files and Adding Additional Dump Files
For export operations, you can either specify dump files at the time you define the
Oracle Data Pump job, or at a later time during the operation.

If you discover that space is running low during an export operation, then you can add
additional dump files by using the Oracle Data Pump Export ADD_FILE command in
interactive mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files overwrite previously existing files. For dump files, you can use
the Export REUSE_DUMPFILES parameter to specify whether to overwrite a preexisting
dump file.

1.8.3 Default Locations for Dump, Log, and SQL Files
Review these topics to understand the Oracle Data Pump default file locations, and to
understand how these locations are affected when you are using Oracle RAC, Oracle
Automatic Storage Management, and multitenant architecture.

• Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files,
and SQL files are accessed relative to server-based directory paths.

• Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to make sure that you are
making cluster member nodes available.

• Using Directory Objects When Oracle Automatic Storage Management Is Enabled
If you use Oracle Data Pump Export or Import with Oracle Automatic Storage
Management (Oracle ASM) enabled, then define the directory object used for the
dump file.

• The DATA_PUMP_DIR Directory Object and Pluggable Databases
The default Oracle Data Pump directory object, DATA_PUMP_DIR, is defined as a
unique path for each PDB in the CDB.

1.8.3.1 Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

Oracle Data Pump requires that directory paths are specified as directory objects. A
directory object maps a name to a directory path on the file system. As a database

Chapter 1
File Allocation with Oracle Data Pump

1-19

administrator, you must ensure that only approved users are allowed access to the
directory object associated with the directory path.

The following example shows a SQL statement that creates a directory object named
dpump_dir1 that is mapped to a directory located at /usr/apps/datafiles.

SQL> CREATE DIRECTORY dpump_dir1 AS '/usr/apps/datafiles';

The reason that a directory object is required is to ensure data security and integrity.
For example:

• If you are allowed to specify a directory path location for an input file, then it is
possible that you could be able to read data that the server has access to, but to
which you should not.

• If you are allowed to specify a directory path location for an output file, then it is
possible that you could overwrite a file that normally you do not have privileges to
delete.

On Unix, Linux, and Windows operating systems, a default directory object,
DATA_PUMP_DIR, is created at database creation, or whenever the database dictionary
is upgraded. By default, this directory object is available only to privileged users. (The
user SYSTEM has read and write access to the DATA_PUMP_DIR directory, by default.)
Oracle can change the definition of the DATA_PUMP_DIR directory, either during Oracle
Database upgrades, or when patches are applied.

If you are not a privileged user, then before you can run Oracle Data Pump Export or
Import, a directory object must be created by a database administrator (DBA), or by
any user with the CREATE ANY DIRECTORY privilege.

After a directory is created, the user creating the directory object must grant READ or
WRITE permission on the directory to other users. For example, to allow Oracle
Database to read and write files on behalf of user hr in the directory named by
dpump_dir1, the DBA must run the following command:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir1 TO hr;

Note that READ or WRITE permission to a directory object only means that Oracle
Database can read or write files in the corresponding directory on your behalf. Outside
of Oracle Database, uou are not given direct access to those files, unless you have the
appropriate operating system privileges. Similarly, Oracle Database requires
permission from the operating system to read and write files in the directories.

Oracle Data Pump Export and Import use the following order of precedence to
determine a file's location:

1. If a directory object is specified as part of the file specification, then the location
specified by that directory object is used. (The directory object must be separated
from the file name by a colon.)

2. If a directory object is not specified as part of the file specification, then the
directory object named by the DIRECTORY parameter is used.

3. If a directory object is not specified as part of the file specification, and if no
directory object is named by the DIRECTORY parameter, then the value of the
environment variable, DATA_PUMP_DIR, is used. This environment variable is
defined by using operating system commands on the client system where the Data

Chapter 1
File Allocation with Oracle Data Pump

1-20

Pump Export and Import utilities are run. The value assigned to this client-based
environment variable must be the name of a server-based directory object, which
must first be created on the server system by a DBA. For example, the following
SQL statement creates a directory object on the server system. The name of the
directory object is DUMP_FILES1, and it is located at '/usr/apps/dumpfiles1'.

SQL> CREATE DIRECTORY DUMP_FILES1 AS '/usr/apps/dumpfiles1';

After this statement is run, a user on a Unix-based client system using csh can
assign the value DUMP_FILES1 to the environment variable DATA_PUMP_DIR. The
DIRECTORY parameter can then be omitted from the command line. The dump file
employees.dmp, and the log file export.log, are written to '/usr/apps/
dumpfiles1'.

%setenv DATA_PUMP_DIR DUMP_FILES1
%expdp hr TABLES=employees DUMPFILE=employees.dmp

4. If none of the previous three conditions yields a directory object, and you are a
privileged user, then Oracle Data Pump attempts to use the value of the default
server-based directory object, DATA_PUMP_DIR. This directory object is
automatically created, either at database creation, or when the database dictionary
is upgraded. To see the path definition for DATA_PUMP_DIR, you can use the
following SQL query:

SQL> SELECT directory_name, directory_path FROM dba_directories
2 WHERE directory_name='DATA_PUMP_DIR';

If you are not a privileged user, then access to the DATA_PUMP_DIR directory object
must have previously been granted to you by a DBA.

Do not confuse the default DATA_PUMP_DIR directory object with the client-based
environment variable of the same name.

1.8.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to make sure that you are making
cluster member nodes available.

• To use Data Pump or external tables in an Oracle RAC configuration, you must
ensure that the directory object path is on a cluster-wide file system.

The directory object must point to shared physical storage that is visible to, and
accessible from, all instances where Data Pump and/or external tables processes
can run.

• The default Data Pump behavior is that worker processes can run on any instance
in an Oracle RAC configuration. Therefore, workers on those Oracle RAC
instances must have physical access to the location defined by the directory
object, such as shared storage media. If the configuration does not have shared
storage for this purpose, but you still require parallelism, then you can use the
CLUSTER=NO parameter to constrain all worker processes to the instance where the
Data Pump job was started.

Chapter 1
File Allocation with Oracle Data Pump

1-21

• Under certain circumstances, Data Pump uses parallel query slaves to load or
unload data. In an Oracle RAC environment, Data Pump does not control where
these slaves run. Therefore, these slaves can run on other cluster member nodes
in the cluster, regardless of which instance is specified for CLUSTER and
SERVICE_NAME for the Data Pump job. Controls for parallel query operations are
independent of Data Pump. When parallel query slaves run on other instances as
part of a Data Pump job, they also require access to the physical storage of the
dump file set.

1.8.3.3 Using Directory Objects When Oracle Automatic Storage Management
Is Enabled

If you use Oracle Data Pump Export or Import with Oracle Automatic Storage
Management (Oracle ASM) enabled, then define the directory object used for the
dump file.

You must define the directory object used for the dump file so that the Oracle ASM
disk group name is used, instead of an operating system directory path.

For log file, use a separate directory object that points to an operating system directory
path.

For example, you can create a directory object for the Oracle ASM dump file using this
procedure.

SQL> CREATE or REPLACE DIRECTORY dpump_dir as '+DATAFILES/';

After you create the directory object, you then create a separate directory object for
the log file:

SQL> CREATE or REPLACE DIRECTORY dpump_log as '/homedir/user1/';

To enable user hr to have access to these directory objects, you assign the necessary
privileges for that user:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir TO hr;
SQL> GRANT READ, WRITE ON DIRECTORY dpump_log TO hr;

Finally, you then can use use the following Data Pump Export command:

> expdp hr DIRECTORY=dpump_dir DUMPFILE=hr.dmp LOGFILE=dpump_log:hr.log

Before the command executes, you are prompted for the password.

Note:

If you simply want to copy Data Pump dump files between ASM and disk
directories, you can use the DBMS_FILE_TRANSFER PL/SQL package.

Related Topics

• Oracle Database SQL Language Reference

Chapter 1
File Allocation with Oracle Data Pump

1-22

• Oracle Database PL/SQL Packages and Types Reference

1.8.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases
The default Oracle Data Pump directory object, DATA_PUMP_DIR, is defined as a unique
path for each PDB in the CDB.

As of Oracle Database 12c Release 2 (12.2), in a multitenant container database
(CDB) environment, the default Oracle Data Pump directory object, DATA_PUMP_DIR, is
defined as a unique path for each PDB in the CDB, whether or not the PATH_PREFIX
clause of the CREATE PLUGGABLE DATABASE statement is defined for relative paths.

1.8.4 Using Substitution Variables with Oracle Data Pump Exports
If you want to specify multiple dump files during Oracle Data Pump export operations,
then use the DUMPFILE parameter with a substitution variable in the file name.

When you use substitution variables with file names, instead of or in addition to listing
specific file names, then those filenames with a substitution variable are called dump
file templates.

Note:

In the examples that follow, the substitution variable %U is used to explain
how Oracle Data Pump uses substitution variables. You can view other
available substitution variables under the Import or Export DUMPFILE
parameter reference topics.

When you use dump file templates, new dump files are created as they are needed.
For example, if you are using the substitution variable %U, then new dump files are
created as needed beginning with 01 for %U, and then using 02, 03, and so on. Enough
dump files are created to allow all processes specified by the current setting of the
PARALLEL parameter to be active. If one of the dump files becomes full because its size
has reached the maximum size specified by the FILESIZE parameter, then it is closed,
and a new dump file (with a new generated name) is created to take its place.

If multiple dump file templates are provided, then they are used to generate dump files
in a round-robin fashion. For example, if expa%U, expb%U, and expc%U are all specified
for a job having a parallelism of 6, then the initial dump files created are expa01.dmp,
expb01.dmp, expc01.dmp, expa02.dmp, expb02.dmp, and expc02.dmp.

For import and SQLFILE operations, if dump file specifications expa%U, expb%U, and
expc%U are specified, then the operation begins by attempting to open the dump files
expa01.dmp, expb01.dmp, and expc01.dmp. It is possible for the master table to span
multiple dump files. For this reason, until all pieces of the master table are found,
dump files continue to be opened by incrementing the substitution variable, and
looking up the new file names (For example: expa02.dmp, expb02.dmp, and
expc02.dmp). If a dump file does not exist, then the operation stops incrementing the
substitution variable for the dump file specification that was in error. For example, if
expb01.dmp and expb02.dmp are found, but expb03.dmp is not found, then no more files
are searched for using the expb%U specification. After the entire master table is found,
it is used to determine whether all dump files in the dump file set have been located.

Chapter 1
File Allocation with Oracle Data Pump

1-23

Related Topics

• DUMPFILE
The Data Pump Export command-line utility DUMPFILE parameter specifies the
names, and optionally, the directory objects of dump files for an export job.

• DUMPFILE
The Data Pump Import command-line mode DUMPFILE parameter specifies the
names, and optionally, the directory objects of the dump file set that Export
created.

1.9 Exporting and Importing Between Different Oracle
Database Releases

You can use Oracle Data Pump to migrate all or any portion of an Oracle Database
between different releases of the database software.

Typically, you use the Oracle Data Pump Export VERSION parameter to migrate
between database releases.Using VERSION generates an Oracle Data Pump dump file
set that is compatible with the specified version.

The default value for VERSION is COMPATIBLE. This value indicates that exported
database object definitions are compatible with the release specified for the
COMPATIBLE initialization parameter.

In an upgrade situation, when the target release of an Oracle Data Pump-based
migration is higher than the source, you typically do not have to specify the VERSION
parameter. When the target release is higher then the source, all objects in the source
database are compatible with the higher target release. However, an exception is
when an entire Oracle Database 11g (Release 11.2.0.3 or higher) is exported in
preparation for importing into Oracle Database 12c Release 1 (12.1.0.1) or later. In
this case, to include a complete set of Oracle Database internal component metadata,
explicitly specify VERSION=12 with FULL=YES.

In a downgrade situation, when the target release of an Oracle Data Pump-based
migration is lower than the source, set the VERSION parameter value to be the same
version as the target. An exception is when the target release version is the same as
the value of the COMPATIBLE initialization parameter on the source system. In that case,
you do not need to specify VERSION. In general, however, Oracle Data Pump import
cannot read dump file sets created by an Oracle Database release that is newer than
the current release, unless you explicitly specify the VERSION parameter.

Keep the following information in mind when you are exporting and importing between
different database releases:

• On an Oracle Data Pump export, if you specify a database version that is older
than the current database version, then a dump file set is created that you can
import into that older version of the database. For example, if you are running
Oracle Database 12c Release 1 (12.1.0.2), and you specify VERSION=11.2 on an
export, then the dump file set that is created can be imported into an Oracle
Database 11g (Release 11.2) database.

Chapter 1
Exporting and Importing Between Different Oracle Database Releases

1-24

Note:

– Database privileges that are valid only in Oracle Database 12c
Release 1 (12.1.0.2) and later (for example, the READ privilege on
tables, views, materialized views, and synonyms) cannot be
imported into Oracle Database 12c Release 1 (12.1.0.1) or earlier. If
an attempt is made to do so, then Import reports it as an error, and
continues the import operation.

– When you export to a release earlier than Oracle Database 12c
Release 2 (12.2.0.1), Oracle Data Pump does not filter out object
names longer than 30 bytes. The objects are exported. At import
time, if you attempt to create an object with a name longer than 30
bytes, then an error is returned.

• If you specify an Oracle Database release that is older than the current Oracle
Database release, then certain features and data types can be unavailable. For
example, specifying VERSION=10.1 causes an error if data compression is also
specified for the job, because compression was not supported in Oracle Database
10g release 1 (10.1). Another example: If a user-defined type or Oracle-supplied
type in the source Oracle Database release is a later version than the type in the
target Oracle Database release, then that type is not loaded, because it does not
match any version of the type in the target database.

• Oracle Data Pump Import can always read Oracle Data Pump dump file sets
created by older Oracle Database releases.

• When operating across a network link, Oracle Data Pump requires that the source
and target Oracle Database releases differ by no more than two versions.

For example, if one database is Oracle Database 12c, then the other Oracle
Database release must be 12c, 11g, or 10g. Oracle Data Pump checks only the
major version number (for example, 10g,11g, 12c), not specific Oracle Database
release numbers (for example, 12.2, 12.1, 11.1, 11.2, 10.1, or 10.2).

• Importing Oracle Database 11g dump files that contain table statistics into Oracle
Database 12c Release 1 (12.1) or later Oracle Database releases can result in an
Oracle ORA-39346 error. This error occurs because Oracle Database 11g dump
files contain table statistics as metadata. Oracle Database 12c Release 1 (12.1)
and later releases require table statistics to be presented as table data. The
workaround is to ignore the error during the import operation. After the import
operation completes, regather table statistics.

Related Topics

• VERSION

• VERSION

See Also:

• Oracle Database Security Guide for more information about the READ and
READ ANY TABLE privileges

Chapter 1
Exporting and Importing Between Different Oracle Database Releases

1-25

1.10 Exporting and Importing Blockchain Tables with Oracle
Data Pump

If you use Oracle Data Pump with blockchain tables, then you can use only
CONVENTIONAL access_method.

If you attempt to use Oracle Data Pump options that are not supported with blockchain
tables, then you receive errors when you attempt to use those options.

The following options of Oracle Data Pump are not supported with blockchain tables:

• ACCESS_METHOD=[DIRECT_PATH, EXTERNAL_TABLE, INSERT_AS_SELECT]

• TABLE_EXISTS_ACTION=[REPLACE | APPEND | TRUNCATE]

These options result in errors when you attempt to use them to import data into an
existing blockchain table.

• CONTENT=DATA_ONLY

This option results in error when you attempt to import data into a blockchain table.

• PARTITION_OPTIONS= [DEPARTITIONING | MERGE]

If you request departitioning using this option with blockchain tables, then the
blockchain tables are skipped during departitioning.

• NETWORK IMPORT

• TRANSPORTABLE

• SAMPLE, QUERY and REMAP_DATA

1.11 Managing SecureFiles Large Object Exports with
Oracle Data Pump

Exports of SecureFiles large objects (LOBs) are affected by the content type, the
VERSION parameter, and other variables.

LOBs are a set of data types that are designed to hold large amounts of data. When
you use Oracle Data Pump Export to export SecureFiles LOBs, the export behavior
depends on several things, including the Export VERSION parameter value, whether a
content type (ContentType) is present, and whether the LOB is archived and data is
cached.

The following scenarios cover different combinations of these variables:

• If a table contains SecureFiles LOBs with a ContentType, and the Export VERSION
parameter is set to a value earlier than 11.2.0.0.0, then the ContentType is not
exported.

• If a table contains SecureFiles LOBs with a ContentType, and the Export VERSION
parameter is set to a value of 11.2.0.0.0 or later, then the ContentType is
exported and restored on a subsequent import.

• If a table contains a SecureFiles LOB that is currently archived, the data is cached,
and the Export VERSION parameter is set to a value earlier than 11.2.0.0.0, then

Chapter 1
Exporting and Importing Blockchain Tables with Oracle Data Pump

1-26

the SecureFiles LOB data is exported and the archive metadata is dropped. In this
scenario, if VERSION is set to 11.1 or later, then the SecureFiles LOB becomes a
plain SecureFiles LOB. But if VERSION is set to a value earlier than 11.1, then the
SecureFiles LOB becomes a BasicFiles LOB.

• If a table contains a SecureFiles LOB that is currently archived, but the data is not
cached, and the Export VERSION parameter is set to a value earlier than
11.2.0.0.0, then an ORA-45001 error is returned.

• If a table contains a SecureFiles LOB that is currently archived, the data is cached,
and the Export VERSION parameter is set to a value of 11.2.0.0.0 or later, then
both the cached data and the archive metadata is exported.

Refer to Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about SecureFiles LOBs.

Related Topics

• Oracle Database SecureFiles and Large Objects Developer's Guide

1.12 Oracle Data Pump Process Exit Codes
To check the status of your Oracle Data Pump export and import operations, review
the process exit codes in the log file.

Oracle Data Pump provides the results of export and import operations immediately
upon completion. In addition to recording the results in a log file, Oracle Data Pump
can also report the outcome in a process exit code. Use the Oracle Data Pump exit
code to check the outcome of an Oracle Data Pump job from the command line or a
script:

Table 1-1 Oracle Data Pump Exit Codes

Exit Code Meaning

EX_SUCC 0 The export or import job completed successfully. No errors are displayed to the
output device or recorded in the log file, if there is one.

EX_SUCC_ERR 5 The export or import job completed successfully, but there were errors
encountered during the job. The errors are displayed to the output device and
recorded in the log file, if there is one.

EX_FAIL 1 The export or import job encountered one or more fatal errors, including the
following:

• Errors on the command line or in command syntax
• Oracle database errors from which export or import cannot recover
• Operating system errors (such as malloc)
• Invalid parameter values that prevent the job from starting (for example, an

invalid directory object specified in the DIRECTORY parameter)
A fatal error is displayed to the output device but may not be recorded in the log
file. Whether it is recorded in the log file can depend on several factors, including:

• Was a log file specified at the start of the job?
• Did the processing of the job proceed far enough for a log file to be opened?

Chapter 1
Oracle Data Pump Process Exit Codes

1-27

1.13 How to Monitor Oracle Data Pump Jobs with Unified
Auditing

To monitor and record specific user database actions, perform auditing on Data Pump
jobs with unified auditing.

To monitor and record specific user database actions, you can perform auditing on
Oracle Data Pump jobs. Oracle Data Pump uses unified auditing, in which all audit
records are centralized in one place. To set up unified auditing, you create a unified
audit policy, or alter an existing audit policy. An audit policy is a named group of audit
settings that enable you to audit a particular aspect of user behavior in the database.

To create the policy, use the SQL CREATE AUDIT POLICY statement. After creating the
audit policy, use the AUDIT SQL statement to enable the policy.

To disable the policy, use the NOAUDIT SQL statement.

See Also:

• Oracle Database SQL Language Reference for more information about
the SQL CREATE AUDIT POLICY,ALTER AUDIT POLICY, AUDIT, and
NOAUDIT statements

• Oracle Database Security Guide for more information about using
auditing in an Oracle database

1.14 Encrypted Data Security Warnings for Oracle Data
Pump Operations

Oracle Data Pump warns you when encrypted data is exported as unencrypted data.

During Oracle Data Pump export operations, you receive an ORA-39173 warning when
Oracle Data Pump encounters encrypted data specified when the export job was
started. This ORA-39173 warning ("ORA-39173: Encrypted data has been stored
unencrypted in dump file set") is also written to the the audit record. You can view the
ORA-39173 errors encountered during the export operation by checking the
DP_WARNINGS1 column in the unified audit trail. Obtain the audit information by running
the following SQL statement:

SELECT DP_WARNINGS1 FROM UNIFIED_AUDIT_TRAIL WHERE ACTION_NAME = 'EXPORT'
ORDER BY 1;

Chapter 1
How to Monitor Oracle Data Pump Jobs with Unified Auditing

1-28

1.15 How Does Oracle Data Pump Handle Timestamp
Data?

Learn about factors that can affect successful completion of export and import jobs
that involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP WITH
LOCAL TIMEZONE.

Note:

The information in this section applies only to Oracle Data Pump running on
Oracle Database 12c and later.

• TIMESTAMP WITH TIMEZONE Restrictions
Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

• TIMESTAMP WITH LOCAL TIME ZONE Restrictions
Moving tables using a transportable mode is restricted.

1.15.1 TIMESTAMP WITH TIMEZONE Restrictions
Export and import jobs that have TIMESTAMP WITH TIME ZONE data are restricted.

• Understanding TIMESTAMP WITH TIME ZONE Restrictions
Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

• Data Pump Support for TIMESTAMP WITH TIME ZONE Data
Data Pump supports TIMESTAMP WITH TIME ZONE data during different export and
import modes like non-transportable mode, transportable tablespace and
transportable table mode, and full transportable mode.

• Time Zone File Versions on the Source and Target
Successful job completion can depend on whether the source and target time
zone file versions match.

1.15.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions
Carrying out export and import jobs that have TIMESTAMP WITH TIME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

Successful job completion can depend on the following factors:

• The version of the Oracle Database time zone files on the source and target
databases.

• The export/import mode and whether the Data Pump version being used supports
TIMESTAMP WITH TIME ZONE data. (Data Pump 11.2.0.1 and later provide support
for TIMESTAMP WITH TIME ZONE data.)

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

1-29

To identify the time zone file version of a database, you can execute the following SQL
statement:

SQL> SELECT VERSION FROM V$TIMEZONE_FILE;

See Oracle Database Globalization Support Guide for more information about time
zone files.

Related Topics

• Oracle Database Globalization Support Guide

1.15.1.2 Data Pump Support for TIMESTAMP WITH TIME ZONE Data
Data Pump supports TIMESTAMP WITH TIME ZONE data during different export and
import modes like non-transportable mode, transportable tablespace and transportable
table mode, and full transportable mode.

This section describes Data Pump support for TIMESTAMP WITH TIME ZONE data during
different export and import modes when versions of the Oracle Database time zone file
are different on the source and target databases.

Non-transportable Modes

• If the dump file is created with a Data Pump version that supports TIMESTAMP WITH
TIME ZONE data (11.2.0.1 or later), then the time zone file version of the export
system is recorded in the dump file. Data Pump uses that information to determine
whether data conversion is necessary. If the target database knows about the
source time zone version, but is actually using a later version, then the data is
converted to the later version. TIMESTAMP WITH TIME ZONE data cannot be
downgraded, so if you attempt to import to a target that is using an earlier version
of the time zone file than the source used, the import fails.

• If the dump file is created with a Data Pump version prior to Oracle Database 11g
release 2 (11.2.0.1), then TIMESTAMP WITH TIME ZONE data is not supported, so no
conversion is done and corruption may occur.

Transportable Tablespace and Transportable Table Modes

• In transportable tablespace and transportable table modes, if the source and
target have different time zone file versions, then tables with TIMESTAMP WITH
TIME ZONE columns are not created. A warning is displayed at the beginning of the
job showing the source and target database time zone file versions. A message is
also displayed for each table not created. This is true even if the Data Pump
version used to create the dump file supports TIMESTAMP WITH TIME ZONE data.
(Release 11.2.0.1 and later support TIMESTAMP WITH TIMEZONE data.)

• If the source is earlier than Oracle Database 11g release 2 (11.2.0.1), then the
time zone file version must be the same on the source and target database for all
transportable jobs regardless of whether the transportable set uses TIMESTAMP
WITH TIME ZONE columns.

Full Transportable Mode

Full transportable exports and imports are supported when the source database is at
least Oracle Database 11g release 2 (11.2.0.3) and the target is Oracle Database 12c
release 1 (12.1) or later.

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

1-30

Data Pump 11.2.0.1 and later provide support for TIMESTAMP WITH TIME ZONE data.
Therefore, in full transportable operations, tables with TIMESTAMP WITH TIME ZONE
columns are created. If the source and target database have different time zone file
versions, then TIMESTAMP WITH TIME ZONE columns from the source are converted to
the time zone file version of the target.

See Also:

• Oracle Database Administrator's Guide for more information about
transportable tablespaces

• Using the Transportable Option During Full Mode Exports for more
information about full transportable exports

• Using the Transportable Option During Full Mode Imports for more
information about full transportable imports

1.15.1.3 Time Zone File Versions on the Source and Target
Successful job completion can depend on whether the source and target time zone file
versions match.

• If the Oracle Database time zone file version is the same on the source and target
databases, then conversion of TIMESTAMP WITH TIME ZONE data is not necessary.
The export/import job should complete successfully.

The exception to this is a transportable tablespace or transportable table export
performed using a Data Pump release earlier than 11.2.0.1. In that case, tables in
the dump file that have TIMESTAMP WITH TIME ZONE columns are not created on
import even though the time zone file version is the same on the source and
target.

• If the source time zone file version is not available on the target database, then the
job fails. The version of the time zone file on the source may not be available on
the target because the source may have had its time zone file updated to a later
version but the target has not. For example, if the export is done on Oracle
Database 11g release 2 (11.2.0.2) with a time zone file version of 17, and the
import is done on 11.2.0.2 with only a time zone file of 16 available, then the job
fails.

1.15.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions
Moving tables using a transportable mode is restricted.

If a table is moved using a transportable mode (transportable table, transportable
tablespace, or full transportable), and the following conditions exist, then a warning is
issued and the table is not created:

• The source and target databases have different database time zones.

• The table contains TIMESTAMP WITH LOCAL TIME ZONE data types.

To successfully move a table that was not created because of these conditions, use a
non-transportable export and import mode.

Chapter 1
How Does Oracle Data Pump Handle Timestamp Data?

1-31

1.16 Character Set and Globalization Support
Considerations

Learn about Globalization support of Oracle Data Pump Export and Import using
character set conversion of user data, and data definition language (DDL).

• Data Definition Language (DDL)
The Export utility writes dump files using the database character set of the export
system.

• Single-Byte Character Sets and Export and Import
Ensure that the export database and the import database use the same character
set.

• Multibyte Character Sets and Export and Import
During an Oracle Data Pump export and import, the character set conversion
depends on the importing Oracle Database character set.

1.16.1 Data Definition Language (DDL)
The Export utility writes dump files using the database character set of the export
system.

When the dump file is imported, a character set conversion is required for DDL only if
the database character set of the import system is different from the database
character set of the export system.

To minimize data loss due to character set conversions, ensure that the import
database character set is a superset of the export database character set.

1.16.2 Single-Byte Character Sets and Export and Import
Ensure that the export database and the import database use the same character set.

If the system on which the import occurs uses a 7-bit character set, and you import an
8-bit character set dump file, then some 8-bit characters may be converted to 7-bit
equivalents. An indication that this has happened is when accented characters lose
the accent mark.

To avoid this unwanted conversion, ensure that the export database and the import
database use the same character set.

1.16.3 Multibyte Character Sets and Export and Import
During an Oracle Data Pump export and import, the character set conversion depends
on the importing Oracle Database character set.

During character set conversion, any characters in the export file that have no
equivalent in the import database character set are replaced with a default character.
The import database character set defines the default character.

If the import system has to use replacement characters while converting DDL, then a
warning message is displayed and the system attempts to load the converted DDL.

Chapter 1
Character Set and Globalization Support Considerations

1-32

If the import system has to use replacement characters while converting user data,
then the default behavior is to load the converted data. However, it is possible to
instruct the import system to reject rows of user data that were converted using
replacement characters. See the Import DATA OPTIONS parameter for details.

To guarantee 100% conversion, the import database character set must be a superset
(or equivalent) of the character set used to generate the export file.

Caution:

When the database character set of the export system differs from that of the
import system, the import system displays informational messages at the
start of the job that show what the database character set is.

When the import database character set is not a superset of the character
set used to generate the export file, the import system displays a warning
that possible data loss may occur due to character set conversions.

Related Topics

• DATA_OPTIONS

1.17 Oracle Data Pump Behavior with Data-Bound Collation
Oracle Data Pump supports data-bound collation (DBC).

Oracle Data Pump Export always includes all available collation metadata into the
created dump file. This includes:

• Current default collations of exported users' schemas

• Current default collations of exported tables, views, materialized views and
PL/SQL units (including user-defined types)

• Declared collations of all table and cluster character data type columns

When importing a dump file exported from an Oracle Database 12c Release 2 (12.2)
database, Oracle Data Pump Import's behavior depends both on the effective value of
the Oracle Data Pump VERSION parameter at the time of import, and on whether the
data-bound collation (DBC) feature is enabled in the target database. The effective
value of the VERSION parameter is determined by how it is specified. Yu can specify the
parameter using the following:

• VERSION=n, which means the effective value is the specific version number n. For
example: VERSION=19

• VERSION=LATEST, which means the effective value is the currently running
database version

• VERSION=COMPATIBLE, which means the effective value is the same as the value of
the database initialization parameter COMPATIBLE. This is also true if no value is
specified for VERSION.

For the DBC feature to be enabled in a database, the initialization parameter
COMPATIBLE must be set to 12.2 or higher, and the initialization parameter
MAX_STRING_SIZE must be set to EXTENDED.

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

1-33

If the effective value of the Oracle Data Pump Import VERSION parameter is 12.2, and
DBC is enabled in the target database, then Oracle Data Pump Import generates DDL
statements with collation clauses referencing collation metadata from the dump file.
Exported objects are created with the original collation metadata that they had in the
source database.

No collation syntax is generated if DBC is disabled, or if the Oracle Data Pump Import
VERSION parameter is set to a value lower than 12.2.

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

1-34

2
Oracle Data Pump Export

The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files, which are called a dump file set.

• What Is Oracle Data Pump Export?
Oracle Data Pump Export is a utility for unloading data and metadata into a set of
operating system files that are called a dump file set.

• Starting Oracle Data Pump Export
Start the Oracle Data Pump Export utility by using the expdp command.

• Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This
capability helps you limit the type of information that is exported.

• Parameters Available in Data Pump Export Command-Line Mode
Use Oracle Data Pump parameters for Export (expdp) to manage your data
exports.

• Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export
in interactive mode.

• Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can use Oracle
Data Pump Export to move your data.

• Syntax Diagrams for Oracle Data Pump Export
Use the syntax diagrams for Oracle Data Pump to see how to use SQL commands
with Data Pump Export.

2.1 What Is Oracle Data Pump Export?
Oracle Data Pump Export is a utility for unloading data and metadata into a set of
operating system files that are called a dump file set.

You can import a dump file set only by using the Oracle Data Pump Import utility. You
can import the dump file set on the same system, or import it to another system, and
loaded there.

The dump file set is made up of one or more disk files that contain table data,
database object metadata, and control information. The files are written in a
proprietary, binary format. During an import operation, the Oracle Data Pump Import
utility uses these files to locate each database object in the dump file set.

Because the dump files are written by the server, rather than by the client, you must
create directory objects that define the server locations to which files are written.

Oracle Data Pump Export enables you to specify that you want a job to move a subset
of the data and metadata, as determined by the export mode. This subset selection is
done by using data filters and metadata filters, which are specified through Oracle
Data Pump Export parameters.

2-1

Related Topics

• Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files,
and SQL files are accessed relative to server-based directory paths.

• Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This
capability helps you limit the type of information that is exported.

• Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can use Oracle
Data Pump Export to move your data.

2.2 Starting Oracle Data Pump Export
Start the Oracle Data Pump Export utility by using the expdp command.

The characteristics of the Oracle Data Pump export operation are determined by the
Export parameters that you specify. You can specify these parameters either on the
command line, or in a parameter file.

Caution:

Do not start Export as SYSDBA, except at the request of Oracle technical
support. SYSDBA is used internally and has specialized functions; its behavior
is not the same as for general users.

• Oracle Data Pump Export Interfaces
You can interact with Oracle Data Pump Export by using a command line, a
parameter file, or an interactive-command mode.

• Oracle Data Pump Export Modes
Export provides different modes for unloading different portions of Oracle
Database data.

• Network Considerations for Oracle Data Pump Export
Learn how Oracle Data Pump Export utility expdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and
how they are different from export operations using the NETWORK_LINK parameter.

2.2.1 Oracle Data Pump Export Interfaces
You can interact with Oracle Data Pump Export by using a command line, a parameter
file, or an interactive-command mode.

Choose among the three options:

• Command-Line Interface: Enables you to specify most of the Export parameters
directly on the command line.

• Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter, because parameter
files cannot be nested. If you are using parameters whose values require quotation
marks, then Oracle recommends that you use parameter files.

Chapter 2
Starting Oracle Data Pump Export

2-2

• Interactive-Command Interface: Stops logging to the terminal and displays the
Export prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an export operation started with the command-line interface, or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

Related Topics

• Parameters Available in Data Pump Export Command-Line Mode
Use Oracle Data Pump parameters for Export (expdp) to manage your data
exports.

• Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export
in interactive mode.

2.2.2 Oracle Data Pump Export Modes
Export provides different modes for unloading different portions of Oracle Database
data.

Specify export modes on the command line, using the appropriate parameter.

Note:

You cannot export several Oracle-managed system schemas for Oracle
Database, because they are not user schemas; they contain Oracle-
managed data and metadata. Examples of system schemas that are not
exported include SYS, ORDSYS, and MDSYS.

• Full Mode
You can use Data Pump to carry out a full database export by using the FULL
parameter.

• Schema Mode
You can specify a schema export with Data Pump by using the SCHEMAS
parameter. A schema export is the default export mode.

• Table Mode
You can use Data Pump to carry out a table mode export by specifying the table
using the TABLES parameter.

• Tablespace Mode
You can use Data Pump to carry out a tablespace export by specifying tables
using the TABLESPACES parameter.

• Transportable Tablespace Mode
You can use Oracle Data Pump to carry out a transportable tablespace export by
using the TRANSPORT_TABLESPACES parameter.

Related Topics

• Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can use Oracle
Data Pump Export to move your data.

Chapter 2
Starting Oracle Data Pump Export

2-3

2.2.2.1 Full Mode
You can use Data Pump to carry out a full database export by using the FULL
parameter.

In a full database export, the entire database is unloaded. This mode requires that you
have the DATAPUMP_EXP_FULL_DATABASE role.

Using the Transportable Option During Full Mode Exports

If you specify the TRANSPORTABLE=ALWAYS parameter along with the FULL parameter,
then Data Pump performs a full transportable export. A full transportable export
exports all objects and data necessary to create a complete copy of the database. A
mix of data movement methods is used:

• Objects residing in transportable tablespaces have only their metadata unloaded
into the dump file set; the data itself is moved when you copy the data files to the
target database. The data files that must be copied are listed at the end of the log
file for the export operation.

• Objects residing in non-transportable tablespaces (for example, SYSTEM and
SYSAUX) have both their metadata and data unloaded into the dump file set, using
direct path unload and external tables.

Performing a full transportable export has the following restrictions:

• The user performing a full transportable export requires the
DATAPUMP_EXP_FULL_DATABASE privilege.

• The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

• If the database being exported contains either encrypted tablespaces or tables
with encrypted columns (either Transparent Data Encryption (TDE) columns or
SecureFiles LOB columns), then the ENCRYPTION_PASSWORD parameter must also
be supplied.

• The source and target databases must be on platforms with the same endianness
if there are encrypted tablespaces in the source database.

• If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target
platform. You can use the DBMS_FILE_TRANSFER package or the RMAN CONVERT
command to convert the data.

• All objects with storage that are selected for export must have all of their storage
segments either entirely within administrative, non-transportable tablespaces
(SYSTEM/SYSAUX) or entirely within user-defined, transportable tablespaces.
Storage for a single object cannot straddle the two kinds of tablespaces.

• When transporting a database over the network using full transportable export,
auditing cannot be enabled for tables stored in an administrative tablespace (such
as SYSTEM and SYSAUX) if the audit trail information itself is stored in a user-defined
tablespace.

• If both the source and target databases are running Oracle Database 12c, then to
perform a full transportable export, either the Data Pump VERSION parameter must
be set to at least 12.0. or the COMPATIBLE database initialization parameter must
be set to at least 12.0 or later.

Chapter 2
Starting Oracle Data Pump Export

2-4

Full transportable exports are supported from a source database running release
11.2.0.3. To do so, set the Data Pump VERSION parameter to at least 12.0, as shown in
the following syntax example, where user_name is the user performing a full
transportable export:

> expdp user_name FULL=y DUMPFILE=expdat.dmp DIRECTORY=data_pump_dir
 TRANSPORTABLE=always VERSION=12.0 LOGFILE=export.log

Related Topics

• FULL
The Export command-line FULL parameter specifies that you want to perform a
full database mode export

• TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

See Also:

• Oracle Database Backup and Recovery Reference for information about
the RMAN CONVERT command

• Oracle Database Administrator’s Guide for an example of performing a
full transportable export

2.2.2.2 Schema Mode
You can specify a schema export with Data Pump by using the SCHEMAS parameter. A
schema export is the default export mode.

If you have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify a list of
schemas, optionally including the schema definitions themselves and also system
privilege grants to those schemas. If you do not have the
DATAPUMP_EXP_FULL_DATABASE role, then you can export only your own schema.

The SYS schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also
specified in the list of schemas to be exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not explicitly
specified, is not exported. Also, external type definitions upon which tables in the
specified schemas depend are not exported. In such a case, it is expected that the
type definitions already exist in the target instance at import time.

Related Topics

• SCHEMAS
The Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export. This is the default mode for Export.

Chapter 2
Starting Oracle Data Pump Export

2-5

2.2.2.3 Table Mode
You can use Data Pump to carry out a table mode export by specifying the table using
the TABLES parameter.

In table mode, only a specified set of tables, partitions, and their dependent objects
are unloaded. Any object required to create the table, such as the owning schema, or
types for columns, must already exist.

If you specify the TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, then
only object metadata is unloaded. To move the actual data, you copy the data files to
the target database. This results in quicker export times. If you are moving data files
between releases or platforms, then the data files need to be processed by Oracle
Recovery Manager (RMAN).

You must have the DATAPUMP_EXP_FULL_DATABASE role to specify tables that are not in
your own schema. Note that type definitions for columns are not exported in table
mode. It is expected that the type definitions already exist in the target instance at
import time. Also, as in schema exports, cross-schema references are not exported.

To recover tables and table partitions, you can also use RMAN backups and the
RMAN RECOVER TABLE command. During this process, RMAN creates (and optionally
imports) a Data Pump export dump file that contains the recovered objects. Refer to
Oracle Database Backup and Recovery Guide for more information about transporting
data across platforms.

Carrying out a table mode export has the following restriction:

• When using TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, the
ENCRYPTION_PASSWORD parameter must also be used if the table being exported
contains encrypted columns, either Transparent Data Encryption (TDE) columns
or SecureFiles LOB columns.

Related Topics

• TABLES
The Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

• TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

• Oracle Database Backup and Recovery User’s Guide

2.2.2.4 Tablespace Mode
You can use Data Pump to carry out a tablespace export by specifying tables using
the TABLESPACES parameter.

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both
object metadata and data are unloaded. In tablespace mode, if any part of a table
resides in the specified set, then that table and all of its dependent objects are

Chapter 2
Starting Oracle Data Pump Export

2-6

exported. Privileged users get all tables. Unprivileged users get only the tables in their
own schemas.

Related Topics

• TABLESPACES
The Data Pump Export command-line utility TABLESPACES parameter specifies
a list of tablespace names to be exported in tablespace mode.

2.2.2.5 Transportable Tablespace Mode
You can use Oracle Data Pump to carry out a transportable tablespace export by
using the TRANSPORT_TABLESPACES parameter.

In transportable tablespace mode, only the metadata for the tables (and their
dependent objects) within a specified set of tablespaces is exported. The tablespace
data files are copied in a separate operation. Then, a transportable tablespace import
is performed to import the dump file containing the metadata and to specify the data
files to use.

Transportable tablespace mode requires that the specified tables be completely self-
contained. That is, all storage segments of all tables (and their indexes) defined within
the tablespace set must also be contained within the set. If there are self-containment
violations, then Export identifies all of the problems without actually performing the
export.

Type definitions for columns of tables in the specified tablespaces are exported and
imported. The schemas owning those types must be present in the target instance.

Starting with Oracle Database 20c, transportable tablespace exports can be done with
degrees of parallelism greater than 1.

Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

Using Oracle Data Pump to carry out a transportable tablespace export has the
following restrictions:

• If any of the tablespaces being exported contains tables with encrypted columns,
either Transparent Data Encryption (TDE) columns or SecureFiles LOB columns,
then the ENCRYPTION_PASSWORD parameter must also be supplied..

• If any of the tablespaces being exported is encrypted, then the use of the
ENCRYPTION_PASSWORD is optional but recommended. If the ENCRYPTION_PASSWORD
is omitted in this case, then the following warning message is displayed:

ORA-39396: Warning: exporting encrypted data using transportable option
without password

This warning points out that in order to successfully import such a transportable
tablespace job, the target database wallet must contain a copy of the same

Chapter 2
Starting Oracle Data Pump Export

2-7

database master key used in the source database when performing the export.
Using the ENCRYPTION_PASSWORD parameter during the export and import
eliminates this requirement.

Related Topics

• How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs
that involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP
WITH LOCAL TIMEZONE.

2.2.3 Network Considerations for Oracle Data Pump Export
Learn how Oracle Data Pump Export utility expdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and how
they are different from export operations using the NETWORK_LINK parameter.

When you start expdp, you can specify a connect identifier in the connect string that
can be different from the current instance identified by the current Oracle System ID
(SID).

You can specify a connect identifier by using either an Oracle*Net connect descriptor,
or using a net service name (usually defined in the tnsnames.ora file) that maps to a
connect descriptor. To use a connect identifier, you must have Oracle Net Listener
running (to start the default listener, enter lsnrctl start). The following example
shows this type of connection, in which inst1 is the connect identifier:

expdp hr@inst1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Export then prompts you for a password:

Password: password

The local Export client connects to the database instance defined by the connect
identifier inst1 (a Net service name), retrieves data from inst1, and writes it to the
dump file hr.dmp on inst1.

Specifying a connect identifier when you start the Export utility is different from
performing an export operation using the NETWORK_LINK parameter. When you start an
export operation and specify a connect identifier, the local Export client connects to the
database instance identified by the connect identifier, retrieves data from that
database instance, and writes it to a dump file set on that database instance. By
contrast, when you perform an export using the NETWORK_LINK parameter, the export is
performed using a database link. (A database link is a connection between two
physical database servers that allows a client to access them as one logical
database.)

Related Topics

• NETWORK_LINK
The Data Pump Export command-line utility NETWORK_LINK parameter enables an
export from a (source) database identified by a valid database link. The data from
the source database instance is written to a dump file set on the connected
database instance.

Chapter 2
Starting Oracle Data Pump Export

2-8

See Also:

• Oracle Database Administrator’s Guide for more information about
database links

• Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

2.3 Filtering During Export Operations
Oracle Data Pump Export provides data and metadata filtering capability. This
capability helps you limit the type of information that is exported.

• Oracle Data Pump Export Data Filters
You can specify restrictions on the table rows that you export by using Oracle Data
Pump Data-specific filtering through the QUERY and SAMPLE parameters.

• Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump
metadata filters

2.3.1 Oracle Data Pump Export Data Filters
You can specify restrictions on the table rows that you export by using Oracle Data
Pump Data-specific filtering through the QUERY and SAMPLE parameters.

Oracle Data Pump can also implement Data filtering indirectly because of metadata
filtering, which can include or exclude table objects along with any associated row
data.

Each data filter can be specified once for each table within a job. If different filters
using the same name are applied to both a particular table and to the whole job, then
the filter parameter supplied for the specific table takes precedence.

2.3.2 Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump metadata
filters

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters.
Metadata filters identify a set of objects that you want to be included or excluded from
an Export or Import operation. For example, you can request a full export, but without
Package Specifications or Package Bodies.

To use filters correctly and to obtain the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For
example, if a filter specifies that you want an index included in an operation, then
statistics from that index are also included. Likewise, if a table is excluded by a filter,
then indexes, constraints, grants, and triggers upon the table are also excluded by the
filter.

Starting with Oracle Database 20c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in

Chapter 2
Filtering During Export Operations

2-9

a command, Oracle Data Pump processes the INCLUDE parameter first, such that the
Oracle Data Pump job includes only objects identified as included. Then it processes
the EXCLUDE parameters, which can further restrict the objects processed by the job.
As the command runs, any objects specified by the EXCLUDE parameter that are in the
list of INCLUDE objects are removed.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects pertaining to the job must pass all of the filters applied
to their object types.

You can specify the same metadata filter name multiple times within a job.

To see a list of valid object types, query the following views:
DATABASE_EXPORT_OBJECTS for full mode, SCHEMA_EXPORT_OBJECTS for schema mode,
and TABLE_EXPORT_OBJECTS for table and tablespace mode. The values listed in the
OBJECT_PATH column are the valid object types. For example, you could perform the
following query:

SQL> SELECT OBJECT_PATH, COMMENTS FROM SCHEMA_EXPORT_OBJECTS
 2 WHERE OBJECT_PATH LIKE '%GRANT' AND OBJECT_PATH NOT LIKE '%/%';

The output of this query looks similar to the following:

OBJECT_PATH

COMMENTS

GRANT
Object grants on the selected tables

OBJECT_GRANT
Object grants on the selected tables

PROCDEPOBJ_GRANT
Grants on instance procedural objects

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE_GRANT
Role grants to users associated with the selected schemas

SYSTEM_GRANT
System privileges granted to users associated with the selected schemas

Related Topics

• EXCLUDE
The Data Pump Export command-line utility EXCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types that you
want to exclude from the export operation.

Chapter 2
Filtering During Export Operations

2-10

• INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables
you to filter the metadata that is exported by specifying objects and object types
for the current export mode.

Related Topics

• EXCLUDE
The Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

• INCLUDE
The Data Pump Import command-line mode INCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the
current import mode.

2.4 Parameters Available in Data Pump Export Command-
Line Mode

Use Oracle Data Pump parameters for Export (expdp) to manage your data exports.

• About Data Pump Export Parameters
Learn how to use Oracle Data Pump Export parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information
about how to use examples.

• ABORT_STEP
The Data Pump Export command-line utility ABORT_STEP parameter stops the job
after it is initialized.

• ACCESS_METHOD
The Data Pump Export command-line utility ACCESS_METHOD parameter instructs
Export to use a particular method to unload data.

• ATTACH
The Data Pump Export command-line utility ATTACH parameter attaches the client
session to an existing export job, and automatically places you in the interactive-
command interface.

• CHECKSUM
The Oracle Data Pump Export command-line utility CHECKSUM parameter enables
the export to perform checksum validations for exports.

• CHECKSUM_ALGORITM
The Oracle Data Pump Export command-line utility CHECKSUM_ALGORITHM
parameter specifies which checksum algorithm to use when calculating
checksums.

• CLUSTER
The Data Pump Export command-line utility CLUSTER parameter determines
whether Data Pump can use Oracle RAC, resources, and start workers on other
Oracle RAC instances.

• COMPRESSION
The Data Pump Export command-line utility COMPRESSION parameter specifies
which data to compress before writing to the dump file set.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-11

• COMPRESSION_ALGORITHM
The Data Pump Export command-line utility COMPRESSION_ALGORITHM parameter
specifies the compression algorithm that you want to use when compressing dump
file data.

• CONTENT
The Data Pump Export command-line utility CONTENT parameter enables you to
filter what Export unloads: data only, metadata only, or both.

• CREDENTIAL
The Oracle Data Pump Export command-line utility CREDENTIAL parameter enables
the export to write data stored into object stores.

• DATA_OPTIONS
The Oracle Data Pump Export command-line utility DATA_OPTIONS parameter
designates how you want certain types of data handled during export operations.

• DIRECTORY
The Data Pump Export command-line utility PARALLEL parameter specifies the
default location to which Export can write the dump file set and the log file.

• DUMPFILE
The Data Pump Export command-line utility DUMPFILE parameter specifies the
names, and optionally, the directory objects of dump files for an export job.

• ENABLE_SECURE_ROLES
The Data Pump Export command-line utility ENABLE_SECURE_ROLES parameter
prevents inadvertent use of protected roles during exports.

• ENCRYPTION
The Oracle Data Pump Export command-line utility ENCRYPTION parameter
specifies whether to encrypt data before writing it to the dump file set.

• ENCRYPTION_ALGORITHM
The Oracle Data Pump Export command-line utility ENCRYPTION_ALGORITHM
parameter specifies which cryptographic algorithm should be used to perform the
encryption.

• ENCRYPTION_MODE
The Oracle Data Pump Export command-line utility ENCRYPTION_MODE parameter
specifies the type of security to use when encryption and decryption are
performed.

• ENCRYPTION_PASSWORD
The Oracle Data Pump Export command-line utility ENCRYPTION_PASSWORD
parameter prevents unauthorized access to an encrypted dump file set.

• ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Export command-line utility ENCRYPTION_PWD_PROMPT
specifies whether Oracle Data Pump prompts you for the encryption password.

• ESTIMATE
The Data Pump Export command-line utility ESTIMATE parameter specifies the
method that Export uses to estimate how much disk space each table in the export
job will consume (in bytes).

• ESTIMATE_ONLY
The Data Pump Export command-line utility ESTIMATE_ONLY parameter instructs
Export to estimate the space that a job consumes, without actually performing the
export operation.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-12

• EXCLUDE
The Data Pump Export command-line utility EXCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types that you
want to exclude from the export operation.

• FILESIZE
The Data Pump Export command-line utility FILESIZE parameter specifies the
maximum size of each dump file.

• FLASHBACK_SCN
The Data Pump Export command-line utility FLASHBACK_SCN parameter specifies
the system change number (SCN) that Export uses to enable the Flashback Query
utility.

• FLASHBACK_TIME
The Data Pump Export command-line utility FLASHBACK_TIME parameter finds the
SCN that most closely matches the specified time. This SCN is used to enable the
Flashback utility. The export operation is performed with data that is consistent up
to this SCN.

• FULL
The Export command-line FULL parameter specifies that you want to perform a
full database mode export

• HELP
The Data Pump Export command-line utility HELP parameter displays online help
for the Export utility.

• INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables
you to filter the metadata that is exported by specifying objects and object types
for the current export mode.

• JOB_NAME
The Data Pump Export command-line utility JOB_NAME parameter identifies the
export job in subsequent actions, such as when using ATTACH to attach to a job, or
to identify a job using DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS views.

• KEEP_MASTER
The Data Pump Export command-line utility KEEP_MASTER parameter indicates
whether the master table should be deleted or retained at the end of a Data Pump
job that completes successfully. The master table is automatically retained for jobs
that do not complete successfully.

• LOGFILE
The Data Pump Export command-line utility LOGFILE parameter specifies the
name, and optionally, a directory, for the log file of the export job.

• LOGTIME
The Data Pump Export command-line utility LOGTIME parameter specifies that
messages displayed during export operations are timestamped.

• METRICS
The Data Pump Export command-line utility METRICS parameter indicates whether
you want additional information about the job reported to the Data Pump log file.

• NETWORK_LINK
The Data Pump Export command-line utility NETWORK_LINK parameter enables an
export from a (source) database identified by a valid database link. The data from
the source database instance is written to a dump file set on the connected
database instance.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-13

• NOLOGFILE
The Data Pump Export command-line utility NOLOGFILE parameter specifies
whether to suppress creation of a log file.

• PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies
the maximum number of processes of active execution operating on behalf of the
export job.

• PARFILE
The Data Pump Export command-line utility PARFILE parameter specifies the
name of an export parameter file.

• QUERY
The Data Pump Export command-line utility QUERY parameter enables you to
specify a query clause that is used to filter the data that gets exported.

• REMAP_DATA
The Data Pump Export command-line utility REMAP_DATA parameter enables you to
specify a remap function that takes as a source the original value of the
designated column and returns a remapped value that will replace the original
value in the dump file.

• REUSE_DUMPFILES
The Data Pump Export command-line utility xxx parameter specifies whether to
overwrite a preexisting dump file.

• SAMPLE
The Data Pump Export command-line utility SAMPLE parameter specifies a
percentage of the data rows that you want to be sampled and unloaded from the
source database.

• SCHEMAS
The Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export. This is the default mode for Export.

• SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE_NAME parameter
specifies a service name that you want to use in conjunction with the CLUSTER
parameter.

• SOURCE_EDITION
The Data Pump Export command-line utility SOURCE_EDITION parameter specifies
the database edition from which objects are exported.

• STATUS
The Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated

• TABLES
The Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

• TABLESPACES
The Data Pump Export command-line utility TABLESPACES parameter specifies
a list of tablespace names to be exported in tablespace mode.

• TRANSPORT_DATAFILES_LOG
The Oracle Data Pump Export command-line mode TRANSPORT_DATAFILES_LOG
parameter specifies a file into which the list of data files associated with a
transportable export is written.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-14

• TRANSPORT_FULL_CHECK
The Data Pump Export command-line utility TRANSPORT_FULL_CHECK parameter
specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is
applicable only to a transportable-tablespace mode export.

• TRANSPORT_TABLESPACES
The Data Pump Export command-line utility TRANSPORT_TABLESPACES parameter
specifies that you want to perform an export in transportable-tablespace mode

• TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

• TTS_CLOSURE_CHECK
The Data Pump Export command-line mode TTS_CLOSURE_CHECK parameter is
used to indicate the degree of closure checking to be performed as part of a Data
Pump transportable tablespace operation.

• VERSION
The Data Pump Export command-line utility VERSION parameter specifies the
version of database objects that you want to export.

• VIEWS_AS_TABLES
The Data Pump Export command-line utility VIEWS_AS_TABLES parameter specifies
that you want one or more views exported as tables.

2.4.1 About Data Pump Export Parameters
Learn how to use Oracle Data Pump Export parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information about
how to use examples.

Specifying Export Parameters

For parameters that can have multiple values specified, you can specify the values by
commas, or by spaces. For example, you can specify TABLES=employees,jobs or
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=), and a value. Data
Pump has no other way of knowing that the previous parameter specification is
complete and a new parameter specification is beginning. For example, in the
following command line, even though NOLOGFILE is a valid parameter, Export interprets
the string as another dump file name for the DUMPFILE parameter:

expdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This command results in two dump files being created, test.dmp and nologfile.dmp.

To avoid this result, specify either NOLOGFILE=YES or NOLOGFILE=NO.

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on, that you enter as
parameter values, Oracle Data Pump by default changes values entered as lowercase
or mixed-case into uppercase. For example, if you enter TABLE=hr.employees, then it

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-15

is changed to TABLE=HR.EMPLOYEES. To maintain case, you must enclose the value
within quotation marks. For example, TABLE="hr.employees" would preserve the table
name in all lower case. The name you enter must exactly match the name stored in
the database.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters. These operating
systems therefore do not pass quotation marks on to an application unless quotation
marks are preceded by an escape character, such as the backslash (\). This
requirement is true both on the command lin, and within parameter files. Some
operating systems can require an additional set of single or double quotation marks on
the command line around the entire parameter value containing the special characters.

The following examples are provided to illustrate these concepts. Note that your
particular operating system can have different requirements. The documentation
examples cannot fully anticipate operating environments, which are unique to each
user.

In this example, the TABLES parameter is specified in a parameter file:

TABLES = \"MixedCaseTableName\"

If you specify that value on the command line, then some operating systems require
that you surround the parameter file name using single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply more quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file, and
the parameter value being specified does not have quotation marks as the first
character in the string (for example, TABLES=scott."EmP"), then some operating
systems do not require the use of escape characters.

Using the Export Parameter Examples

If you try running the examples that are provided for each parameter, be aware of the
following:

• After you enter the user name and parameters as shown in the example, Export is
started, and you are prompted for a password. You are required to enter the
password before a database connection is made.

• Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

• The examples assume that the directory objects, dpump_dir1 and dpump_dir2,
already exist, and that READ and WRITE privileges are granted to the hr user for
these directory objects.

• Some of the examples require the DATAPUMP_EXP_FULL_DATABASE and
DATAPUMP_IMP_FULL_DATABASE roles. The examples assume that the hr user is
granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Unless specifically noted, you can also specify these parameters in a parameter file.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-16

See Also:

• Oracle Database Sample Schemas

• Your Oracle operating system-specific documentation for information
about how special and reserved characters are handled on your system

2.4.2 ABORT_STEP
The Data Pump Export command-line utility ABORT_STEP parameter stops the job after
it is initialized.

Default: Null

Purpose

Used to stop the job after it is initialized. Stopping a job after it is initialized enables
you to query the master table to be queried before any data is exported.

Syntax and Description

ABORT_STEP=[n | -1]

The possible values correspond to a process order number in the master table. The
result of using each number is as follows:

• n: If the value is zero or greater, then the export operation is started and the job is
aborted at the object that is stored in the master table with the corresponding
process order number.

• -1: If the value is negative one (-1), then abort the job after setting it up, but before
exporting any objects or data.

Restrictions

• None

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
ABORT_STEP=-1

2.4.3 ACCESS_METHOD
The Data Pump Export command-line utility ACCESS_METHOD parameter instructs Export
to use a particular method to unload data.

Default: AUTOMATIC

Purpose

Instructs Export to use a particular method to unload data.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-17

Syntax and Description

ACCESS_METHOD=[AUTOMATIC | DIRECT_PATH | EXTERNAL_TABLE | INSERT_AS_SELECT]

The ACCESS_METHOD parameter is provided so that you can try an alternative method if
the default method does not work for some reason. All methods can be specified for a
network export. If the data for a table cannot be unloaded with the specified access
method, then the data displays an error for the table and continues with the next work
item.

The available options are as follows:

• AUTOMATIC — Data Pump determines the best way to unload data for each table.
Oracle recommends that you use AUTOMATIC whenever possible because it allows
Data Pump to automatically select the most efficient method.

• DIRECT_PATH — Data Pump uses direct path unload for every table.

• EXTERNAL_TABLE — Data Pump uses a SQL CREATE TABLE AS SELECT statement
to create an external table using data that is stored in the dump file. The SELECT
clause reads from the table to be unloaded.

• INSERT_AS_SELECT — Data Pump executes a SQL INSERT AS SELECT statement to
unload data from a remote database. This option is only available for network
mode exports.

Restrictions

• To use the ACCESS_METHOD parameter with network exports, you must be using
Oracle Database 12c Release 2 (12.2.0.1) or later.

• The ACCESS_METHOD parameter for Data Pump Export is not valid for transportable
tablespace jobs.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
ACCESS_METHOD=EXTERNAL_TABLE

2.4.4 ATTACH
The Data Pump Export command-line utility ATTACH parameter attaches the client
session to an existing export job, and automatically places you in the interactive-
command interface.

Default: job currently in the user schema, if there is only one

Purpose

Attaches the client session to an existing export job and automatically places you in
the interactive-command interface. Export displays a description of the job to which
you are attached and also displays the Export prompt.

Syntax and Description

ATTACH [=[schema_name.]job_name]

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-18

The schema_name is optional. To specify a schema other than your own, you must have
the DATAPUMP_EXP_FULL_DATABASE role.

The job_name is optional if only one export job is associated with your schema and the
job is active. To attach to a stopped job, you must supply the job name. To see a list of
Data Pump job names, you can query the DBA_DATAPUMP_JOBS view, or the
USER_DATAPUMP_JOBS view.

When you are attached to the job, Export displays a description of the job and then
displays the Export prompt.

Restrictions

• When you specify the ATTACH parameter, the only other Data Pump parameter you
can specify on the command line is ENCRYPTION_PASSWORD.

• If the job to which you are attaching was initially started using an encryption
password, then when you attach to the job, you must again enter the
ENCRYPTION_PASSWORD parameter on the command line to respecify that password.
The only exception to this requirement is if the job was initially started with the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY parameter. In that case, the encryption
password is not needed when attaching to the job.

• You cannot attach to a job in another schema unless it is already running.

• If the dump file set or master table for the job have been deleted, then the attach
operation fails.

• Altering the master table in any way leads to unpredictable results.

Example

The following is an example of using the ATTACH parameter. It assumes that the job
hr.export_job is an existing job.

> expdp hr ATTACH=hr.export_job

Related Topics

• Commands Available in Data Pump Export Interactive-Command Mode

2.4.5 CHECKSUM
The Oracle Data Pump Export command-line utility CHECKSUM parameter enables the
export to perform checksum validations for exports.

Default

The default value depends upon the combination of checksum-related parameters that
are used. To enable checksums, you must specify either the CHECKSUM or the
CHECKSUM_ALGORITHM parameter.

If you specify only the CHECKSUM_ALGORITHM parameter, then CHECKSUM defaults to YES.

If you specify neither the CHECKSUM nor the CHECKSUM_ALGORITHM parameters, then
CHECKSUM defaults to NO.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-19

Purpose

Specifies whether Oracle Data Pump calculates checksums for the export dump file
set.

The checksum is calculated at the end of the job, so the time scales according to the
size of the file. Multiple files can be processed in parallel. You can use this parameter
to validate that a dumpfile is complete and not corrupted after copying it over the
network to an object store, or using it to validate an old dumpfile.

Syntax and Description

CHECKSUM=[YES|NO]

• YES Specifies that Oracle Data Pump calculates a file checksum for each dump file
in the export dump file set.

• NO Specifies that Oacle Data Pump does not calculate file checksums.

Restrictions

To use this checksum feature, the COMPATIBLE initialization parameter must be set to at
least 20.0.

Example

This example performs a schema-mode unload of the HR schema, and generates an
SHA256 (the default CHECKSUM_ALGORITHM) checksum for each dump file in the dump file
set.

expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CHECKSUM=YES

2.4.6 CHECKSUM_ALGORITM
The Oracle Data Pump Export command-line utility CHECKSUM_ALGORITHM parameter
specifies which checksum algorithm to use when calculating checksums.

Default

The default value depends upon the combination of checksum-related parameters that
are used. To enable checksums, you must specify either the CHECKSUM or the
CHECKSUM_ALGORITHM parameter.

If the CHECKSUM parameter is set to YES, and you have not specified a value for
CHECKSUM_ALGORITHM, then CHECKSUM_ALGORITHM defaults to the SHA256 Secure Hash
Algorithm.

Purpose

Helps to ensure the integrity of the contents of a dump file beyond the header block by
using a cryptographic hash to ensure that there are no unintentional errors in a dump
file, such as can occur with a transmission error. Setting the value specifies whether
Oracle Data Pump calculates checksums for the export dump file set, and which hash
algorithm is used to calculate the checksum.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-20

Syntax and Description

CHECKSUM_ALGORITHM = [CRC32|SHA256|SHA384|SHA512]

• CRC32 Specifies that Oracle Data Pump genrerates a 32-bit checksum.

• SHA256 Specifies that Oracle Data Pump generates a 256-bit checksum.

• SHA384 Specifies that Oracle Data Pump generates a 384-bit checksum.

• SHA512 Specifies that Oracle Data Pump generates a 512-bit checksum.

Restrictions

To use this checksum feature, the COMPATIBLE initialization parameter must be set to at
least 20.0.

Example

This example performs a schema-mode unload of the HR schema, and generates an
SHA384 checksum for each dump file in the dump file set that is generated.

expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CHECKSUM_ALGORITHM=SHA384

2.4.7 CLUSTER
The Data Pump Export command-line utility CLUSTER parameter determines whether
Data Pump can use Oracle RAC, resources, and start workers on other Oracle RAC
instances.

Default: YES

Purpose

Determines whether Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources and start workers on other Oracle RAC instances.

Syntax and Description

CLUSTER=[YES | NO]

To force Data Pump Export to use only the instance where the job is started and to
replicate pre-Oracle Database 11g release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service and constrain worker processes to run only on
instances defined for that service, use the SERVICE_NAME parameter with the
CLUSTER=YES parameter.

Use of the CLUSTER parameter can affect performance because there is some
additional overhead in distributing the export job across Oracle RAC instances. For
small jobs, it can be better to specify CLUSTER=NO to constrain the job to run on the
instance where it is started. Jobs whose performance benefits the most from using the
CLUSTER parameter are those involving large amounts of data.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-21

Example

The following is an example of using the CLUSTER parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_clus%U.dmp CLUSTER=NO PARALLEL=3

This example starts a schema-mode export (the default) of the hr schema. Because
CLUSTER=NO is specified, the job uses only the instance on which it started. (If you do
not specify the CLUSTER parameter, then the default value of Y is used. With that value,
if necessary, workers are started on other instances in the Oracle RAC cluster). The
dump files are written to the location specified for the dpump_dir1 directory object. The
job can have up to 3 parallel processes.

Related Topics

• SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE_NAME parameter
specifies a service name that you want to use in conjunction with the CLUSTER
parameter.

• Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to make sure that you are
making cluster member nodes available.

2.4.8 COMPRESSION
The Data Pump Export command-line utility COMPRESSION parameter specifies which
data to compress before writing to the dump file set.

Default: METADATA_ONLY

Purpose

Specifies which data to compress before writing to the dump file set.

Syntax and Description

COMPRESSION=[ALL | DATA_ONLY | METADATA_ONLY | NONE]

• ALL enables compression for the entire export operation. The ALL option requires
that the Oracle Advanced Compression option be enabled.

• DATA_ONLY results in all data being written to the dump file in compressed format.
The DATA_ONLY option requires that the Oracle Advanced Compression option be
enabled.

• METADATA_ONLY results in all metadata being written to the dump file in compressed
format. This is the default.

• NONE disables compression for the entire export operation.

Restrictions

• To make full use of all these compression options, the COMPATIBLE initialization
parameter must be set to at least 11.0.0.

• The METADATA_ONLY option can be used even if the COMPATIBLE initialization
parameter is set to 10.2.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-22

• Compression of data using ALL or DATA_ONLY is valid only in the Enterprise Edition
of Oracle Database 11g or later, and they require that the Oracle Advanced
Compression option be enabled.

Example

The following is an example of using the COMPRESSION parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_comp.dmp
COMPRESSION=METADATA_ONLY

This command executes a schema-mode export that compresses all metadata before
writing it out to the dump file, hr_comp.dmp. It defaults to a schema-mode export,
because no export mode is specified.

See Oracle Database Licensing Information for information about licensing
requirements for the Oracle Advanced Compression option.

Related Topics

• Oracle Database Licensing Information User Manual

2.4.9 COMPRESSION_ALGORITHM
The Data Pump Export command-line utility COMPRESSION_ALGORITHM parameter
specifies the compression algorithm that you want to use when compressing dump file
data.

Default: BASIC

Purpose

Specifies the compression algorithm to be used when compressing dump file data.

Syntax and Description

COMPRESSION_ALGORITHM = {BASIC | LOW | MEDIUM | HIGH}

The parameter options are defined as follows:

• BASIC: Offers a good combination of compression ratios and speed; the algorithm
used is the same as in previous versions of Oracle Data Pump.

• LOW: Least impact on export throughput. This option is suited for environments
where CPU resources are the limiting factor.

• MEDIUM: Recommended for most environments. This option, like the BASIC option,
provides a good combination of compression ratios and speed, but it uses a
different algorithm than BASIC.

• HIGH: Best suited for situations in which dump files are copied over slower
networks, where the limiting factor is network speed.

You characterize the performance of a compression algorithm by its CPU usage, and
by the compression ratio (the size of the compressed output as a percentage of the
uncompressed input). These measures vary, based on the size and type of inputs, as
well as the speed of the compression algorithms used. The compression ratio
generally increases from low to high, with a trade-off of potentially consuming more
CPU resources.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-23

It is recommended that you run tests with the different compression levels on the data
in your environment. Choosing a compression level based on your environment,
workload characteristics, and size and type of data is the only way to ensure that the
exported dump file set compression level meets your performance and storage
requirements.

Restrictions

• To use this feature, database compatibility must be set to 12.0.0 or later.

• This feature requires that you have the Oracle Advanced Compression option
enabled.

Example 1

This example performs a schema-mode unload of the HR schema and compresses
only the table data using a compression algorithm with a low level of compression.
Using this command option can result in fewer CPU resources being used, at the
expense of a less than optimal compression ratio.

 > expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp COMPRESSION=DATA_ONLY
COMPRESSION_ALGORITHM=LOW

Example 2

This example performs a schema-mode unload of the HR schema, and compresses
both metadata and table data using the basic level of compression. Omitting the
COMPRESSION_ALGORITHM parameter altogether is equivalent to specifying BASIC as the
value.

 > expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp COMPRESSION=ALL
COMPRESSION_ALGORITHM=BASIC

2.4.10 CONTENT
The Data Pump Export command-line utility CONTENT parameter enables you to filter
what Export unloads: data only, metadata only, or both.

Default: ALL

Purpose

Enables you to filter what Export unloads: data only, metadata only, or both.

Syntax and Description

CONTENT=[ALL | DATA_ONLY | METADATA_ONLY]

• ALL unloads both data and metadata. This option is the default.

• DATA_ONLY unloads only table row data; no database object definitions are
unloaded.

• METADATA_ONLY unloads only database object definitions; no table row data is
unloaded. Be aware that if you specify CONTENT=METADATA_ONLY, then afterward,
when the dump file is imported, any index or table statistics imported from the
dump file are locked after the import.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-24

Restrictions

• The CONTENT=METADATA_ONLY parameter cannot be used with the
TRANSPORT_TABLESPACES (transportable-tablespace mode) parameter or with the
QUERY parameter.

Example

The following is an example of using the CONTENT parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CONTENT=METADATA_ONLY

This command executes a schema-mode export that unloads only the metadata
associated with the hr schema. It defaults to a schema-mode export of the hr schema,
because no export mode is specified.

2.4.11 CREDENTIAL
The Oracle Data Pump Export command-line utility CREDENTIAL parameter enables the
export to write data stored into object stores.

Default

none.

Purpose

Enables Oracle Data Pump exports to write data files to object stores. For a data file,
you can specify the URI for the data file that you want to be stored on the object store.
The CREDENTIAL values specifies credentials granted to the user starting the export.
These permissions enable the Oracle Data Pump export to access and write to the
object store, so that data files can be written to object stores.

Syntax and Description

CREDENTIAL=user-credential

Usage Notes

The CREDENTIAL parameter changes how expdp interprets the text string in DUMPFILE. If
the CREDENTIAL parameter is not specified, then the DUMPFILE parameter can specify
an optional directory object and file name in directory-object-name:file-name
format. If the CREDENTIAL parameter is used, then it provides authentication and
authorization for expdp to write to one or more object storage URIs specified by
DUMPFILE.

If you do not specify the CREDENTIAL parameter, then the dumpfile value is not treated
as a URI, but instead treated as a file specification. The dumpfile specification only

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-25

contains the file name; it cannot contain a path. As a result, if you do not specify the
CREDENTIAL parameter, then you receive the following errors:

ORA-39001: invalid argument value
ORA-39000: bad dump file specification
ORA-39088: file name cannot contain a path specification

Restrictions

• For Cloud systems, UTIL_FILE does not support writing to the cloud. In that case,
the export continues to use the value set by the DEFAULT_DIRECTORY parameter as
the location of the log files. Also, you can specify directory object names as part of
the file names for LOGFILE.

• If you attempt to specify a URI for a dump file, and the CREDENTIAL parameter is
not specified, then you encounter the error ORA-39000 bad dumpfile
specification, as shown in the preceding usage notes.

Examples

The following example provides a credential, "sales-dept" and DUMPFILE specifies an
Object Storage URI in which to export:

expdp hr DUMPFILE=https://objectstorage.example.com/images_basic.dmp
CREDENTIAL=sales-dept

The following example does not specify a credential:

expdp hr DUMPFILE=dir obj:filename

2.4.12 DATA_OPTIONS
The Oracle Data Pump Export command-line utility DATA_OPTIONS parameter
designates how you want certain types of data handled during export operations.

Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter designates how certain types of data should be handled
during export operations.

Syntax and Description

• GROUP_PARTITION_TABLE_DATA: Tells Data Pump to unload all table data in one
operation rather than unload each table partition as a separate operation. As a
result, the definition of the table will not matter at import time because Import will
see one partition of data that will be loaded into the entire table.

• VERIFY_STREAM_FORMAT: Validates the format of a data stream before it is written to
the Data Pump dump file. The verification checks for a valid format for the stream
after it is generated but before it is written to disk. This assures that there are no

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-26

errors when the dump file is created, which in turn helps to assure that there will
not be errors when the stream is read at import time.

Restrictions

DATA_OPTIONS= [GROUP_PARTITION_TABLE_DATA | VERIFY_STREAM_FORMAT]

• The Export DATA_OPTIONS parameter requires the job version to be set to 11.0.0
or later. See VERSION.

Example

This example shows an export operation in which data for all partitions of a table are
unloaded together instead of the default behavior of unloading the data for each
partition separately.

> expdp hr TABLES=hr.tab1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp
VERSION=11.2 GROUP_PARTITION_TABLE_DATA

See Oracle XML DB Developer’s Guide for information specific to exporting and
importing XMLType tables.

Related Topics

• VERSION

2.4.13 DIRECTORY
The Data Pump Export command-line utility PARALLEL parameter specifies the default
location to which Export can write the dump file set and the log file.

Default: DATA_PUMP_DIR

Purpose

Specifies the default location to which Export can write the dump file set and the log
file.

Syntax and Description

DIRECTORY=directory_object

The directory_object is the name of a database directory object. It is not the file path
of an actual directory. Privileged users have access to a default directory object
named DATA_PUMP_DIR. The definition of the DATA_PUMP_DIR directory can be changed
by Oracle during upgrades, or when patches are applied.

Users with access to the default DATA_PUMP_DIR directory object do not need to use the
DIRECTORY parameter.

A directory object specified on the DUMPFILE or LOGFILE parameter overrides any
directory object that you specify for the DIRECTORY parameter.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-27

Example

The following is an example of using the DIRECTORY parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=employees.dmp
CONTENT=METADATA_ONLY

In this example, the dump file, employees.dump is written to the path that is associated
with the directory object dpump_dir1.

Related Topics

• Understanding Dump, Log, and SQL File Default Locations

• Understanding How to Use Oracle Data Pump with Oracle RAC

• Oracle Database SQL Language Reference

2.4.14 DUMPFILE
The Data Pump Export command-line utility DUMPFILE parameter specifies the names,
and optionally, the directory objects of dump files for an export job.

Default: expdat.dmp

Purpose

Specifies the names, and optionally, the directory objects of dump files for an export
job.

Syntax and Description

DUMPFILE=[directory_object:]file_name [, ...]

Specifying directory_object is optional if you have already specified the directory
object by using the DIRECTORY parameter. If you supply a value here, then it must be a
directory object that exists, and to which you have access. A database directory object
that is specified as part of the DUMPFILE parameter overrides a value specified by the
DIRECTORY parameter, or by the default directory object.

You can supply multiple file_name specifications as a comma-delimited list or in
separate DUMPFILE parameter specifications. If no extension is given for the file name,
then Export uses the default file extension of .dmp. The file names can contain a
substitution variable. The following table lists the available substitution variables.

Substitution
Variable

Meaning

%U The substitution variable is expanded in the resulting file names into a 2-digit,
fixed-width, incrementing integer that starts at 01 and ends at 99. If a file
specification contains two substitution variables, then both are incremented at
the same time. For example, exp%Uaa%U.dmp resolves to exp01aa01.dmp,
exp02aa02.dmp, and so forth.

%d, %D Specifies the current day of the month from the Gregorian calendar in format
DD.
Note: This substitution variable cannot be used in an import file name.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-28

Substitution
Variable

Meaning

%m, %M Specifies the month in the Gregorian calendar in format MM.
Note: This substitution variable cannot be used in an import file name.

%t, %T Specifies the year, month, and day in the Gregorian calendar in this format:
YYYYMMDD.
Note: This substitution variable cannot be used in an import file name.

%l, %L Specifies a system-generated unique file name.
The file names can contain a substitution variable (%L), which implies that
multiple files can be generated. The substitution variable is expanded in the
resulting file names into a 2-digit, fixed-width, incrementing integer starting at
01 and ending at 99 which is the same as (%U). In addition, the substitution
variable is expanded in the resulting file names into a 3-digit to 10-digit,
variable-width, incrementing integers starting at 100 and ending at
2147483646. The width field is determined by the number of digits in the
integer.

For example if the current integer is 1, then exp%Laa%L.dmp resolves to:

exp01aa01.dmp
exp02aa02.dmp

and so forth, up until 99. Then, the next file name has 3 digits substituted:

exp100aa100.dmp
exp101aa101.dmp

and so forth, up until 999, where the next file has 4 digits substituted. The
substitutions continue up to the largest number substitution allowed, which is
2147483646.

%y, %Y Specifies the year in this format: YYYY.
Note: This substitution variable cannot be used in an import file name.

If the FILESIZE parameter is specified, then each dump file has a maximum of that
size and be nonextensible. If more space is required for the dump file set, and a
template with a substitution variable was supplied, then a new dump file is
automatically created of the size specified by the FILESIZE parameter, if there is room
on the device.

As each file specification or file template containing a substitution variable is defined, it
is instantiated into one fully qualified file name, and Export attempts to create the file.
The file specifications are processed in the order in which they are specified. If the job
needs extra files because the maximum file size is reached, or to keep parallel
workers active, then more files are created if file templates with substitution variables
were specified.

Although it is possible to specify multiple files using the DUMPFILE parameter, the
export job can only require a subset of those files to hold the exported data. The dump
file set displayed at the end of the export job shows exactly which files were used. It is
this list of files that is required to perform an import operation using this dump file set.
Any files that were not used can be discarded.

When you specify the DUMPFILE parameter, it is possible to introduce conflicting file
names, regardless of whether substitution variables are used. The following are some

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-29

examples of expdp commands that would produce file name conflicts. For all these
examples, an ORA-27308 created file already exists error is returned:

expdp system/manager directory=dpump_dir schemas=hr DUMPFILE=foo%U.dmp,foo
%U.dmp

expdp system/manager directory=dpump_dir schemas=hr DUMPFILE=foo%U.dmp,foo
%L.dmp

expdp system/manager directory=dpump_dir schemas=hr DUMPFILE=foo%U.dmp,foo
%D.dmp

expdp system/manager directory =dpump_dir schemas=hr DUMPFILE=foo%tK_%t_%u_
%y_P,foo%TK_%T_%U_%Y_P

Restrictions

• Any resulting dump file names that match preexisting dump file names generate
an error, and the preexisting dump files are not overwritten. You can override this
behavior by specifying the Export parameter REUSE_DUMPFILES=YES.

• Dump files created on Oracle Database 11g releases with the Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1
(12.1) and later.

Example

The following is an example of using the DUMPFILE parameter:

> expdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp,
 exp2%U.dmp PARALLEL=3

The dump file, exp1.dmp, is written to the path associated with the directory object
dpump_dir2, because dpump_dir2 was specified as part of the dump file name, and
therefore overrides the directory object specified with the DIRECTORY parameter.
Because all three parallel processes are given work to perform during this job, dump
files named exp201.dmp and exp202.dmp is created, based on the specified
substitution variable exp2%U.dmp. Because no directory is specified for them, they are
written to the path associated with the directory object, dpump_dir1, that was specified
with the DIRECTORY parameter.

Related Topics

• Using Substitution Variables with Oracle Data Pump Exports

2.4.15 ENABLE_SECURE_ROLES
The Data Pump Export command-line utility ENABLE_SECURE_ROLES parameter prevents
inadvertent use of protected roles during exports.

Default: In Oracle Database 19c and later releases, the default value is NO.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-30

Purpose

Some Oracle roles require authorization. If you need to use these roles with Oracle
Data Pump exports, then you must explicitly enable them by setting the
ENABLE_SECURE_ROLES parameter to YES.

Syntax

ENABLE_SECURE_ROLES=[NO|YES]

• NO Disables Oracle roles that require authorization.

• YES Enables Oracle roles that require authorization.

Example

expdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp,
 exp2%U.dmp ENABLE_SECURE_ROLES=YES

2.4.16 ENCRYPTION
The Oracle Data Pump Export command-line utility ENCRYPTION parameter specifies
whether to encrypt data before writing it to the dump file set.

Default: The default value depends upon the combination of encryption-related
parameters that are used. To enable encryption, either the ENCRYPTION or
ENCRYPTION_PASSWORD parameter, or both, must be specified.

If only the ENCRYPTION_PASSWORD parameter is specified, then the ENCRYPTION
parameter defaults to ALL.

If only the ENCRYPTION parameter is specified and the Oracle encryption wallet is open,
then the default mode is TRANSPARENT. If only the ENCRYPTION parameter is specified
and the wallet is closed, then an error is returned.

If neither ENCRYPTION nor ENCRYPTION_PASSWORD is specified, then ENCRYPTION defaults
to NONE.

Purpose

Specifies whether to encrypt data before writing it to the dump file set.

Syntax and Description

ENCRYPTION = [ALL | DATA_ONLY | ENCRYPTED_COLUMNS_ONLY | METADATA_ONLY | NONE]

• ALL enables encryption for all data and metadata in the export operation.

• DATA_ONLY specifies that only data is written to the dump file set in encrypted
format.

• ENCRYPTED_COLUMNS_ONLY specifies that only encrypted columns are written to the
dump file set in encrypted format. This option cannot be used with the
ENCRYPTION_ALGORITHM parameter because the columns already have an assigned
encryption format and by definition, a column can have only one form of
encryption.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-31

To use the ENCRYPTED_COLUMNS_ONLY option, you must also use the
ENCRYPTION_PASSWORD parameter.

To use the ENCRYPTED_COLUMNS_ONLY option, you must have Oracle Advanced
Security Transparent Data Encryption (TDE) enabled. See Oracle Database
Advanced Security Guide for more information about TDE.

• METADATA_ONLY specifies that only metadata is written to the dump file set in
encrypted format.

• NONE specifies that no data is written to the dump file set in encrypted format.

SecureFiles Considerations for Encryption

If the data being exported includes SecureFiles that you want to be encrypted, then
you must specify ENCRYPTION=ALL to encrypt the entire dump file set. Encryption of the
entire dump file set is the only way to achieve encryption security for SecureFiles
during a Data Pump export operation. For more information about SecureFiles, see
Oracle Database SecureFiles and Large Objects Developer’s Guide.

Oracle Database Vault Considerations for Encryption

When an export operation is started, Data Pump determines whether Oracle Database
Vault is enabled. If it is, and dump file encryption has not been specified for the job, a
warning message is returned to alert you that secure data is being written in an
insecure manner (clear text) to the dump file set:

ORA-39327: Oracle Database Vault data is being stored unencrypted in dump
file set

You can abort the current export operation and start a new one, specifying that you
want the output dump file set to be encrypted.

Restrictions

• To specify the ALL, DATA_ONLY, or METADATA_ONLY options, the COMPATIBLE
initialization parameter must be set to at least 11.0.0.

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

• To use the ALL, DATA_ONLY or METADATA_ONLY options without also using an
encryption password, you must have the Oracle Advanced Security option
enabled. See Oracle Database Licensing Information for information about
licensing requirements for the Oracle Advanced Security option.

The following example performs an export operation in which only data is encrypted in
the dump file:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc.dmp JOB_NAME=enc1
ENCRYPTION=data_only ENCRYPTION_PASSWORD=foobar

Related Topics

• Oracle Database Security Guide

• SecureFiles LOB Storage

• Oracle Database Options and Their Permitted Features

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-32

2.4.17 ENCRYPTION_ALGORITHM
The Oracle Data Pump Export command-line utility ENCRYPTION_ALGORITHM parameter
specifies which cryptographic algorithm should be used to perform the encryption.

Default

AES128

Purpose

Specifies which cryptographic algorithm should be used to perform the encryption.

Syntax and Description

ENCRYPTION_ALGORITHM = [AES128 | AES192 | AES256]

Restrictions

• To use this encryption feature, the COMPATIBLE initialization parameter must be set
to at least 11.0.0.

• The ENCRYPTION_ALGORITHM parameter requires that you also specify either the
ENCRYPTION or ENCRYPTION_PASSWORD parameter; otherwise an error is returned.

• The ENCRYPTION_ALGORITHM parameter cannot be used in conjunction with
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY because columns that are already
encrypted cannot have an additional encryption format assigned to them.

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

• The ENCRYPTION _ALGORITHM parameter does not require that you have the Oracle
Advanced Security enabled, but it can be used in conjunction with other
encryption-related parameters that do require that option. See Oracle Database
Licensing Information for information about licensing requirements for the Oracle
Advanced Security option.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc3.dmp
ENCRYPTION_PASSWORD=foobar ENCRYPTION_ALGORITHM=AES128

Related Topics

• Oracle Database Security Guide

• Oracle Database Licensing Information User Manual

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-33

2.4.18 ENCRYPTION_MODE
The Oracle Data Pump Export command-line utility ENCRYPTION_MODE parameter
specifies the type of security to use when encryption and decryption are performed.

Default

The default mode depends on which other encryption-related parameters are used. If
only the ENCRYPTION parameter is specified and the Oracle encryption wallet is open,
then the default mode is TRANSPARENT. If only the ENCRYPTION parameter is specified
and the wallet is closed, then an error is returned.

If the ENCRYPTION_PASSWORD parameter is specified and the wallet is open, then the
default is DUAL. If the ENCRYPTION_PASSWORD parameter is specified and the wallet is
closed, then the default is PASSWORD.

Purpose

Specifies the type of security to use when encryption and decryption are performed.

Syntax and Description

ENCRYPTION_MODE = [DUAL | PASSWORD | TRANSPARENT]

DUAL mode creates a dump file set that can later be imported either transparently or by
specifying a password that was used when the dual-mode encrypted dump file set was
created. When you later import the dump file set created in DUAL mode, you can use
either the wallet or the password that was specified with the ENCRYPTION_PASSWORD
parameter. DUAL mode is best suited for cases in which the dump file set will be
imported on-site using the wallet, but which may also need to be imported offsite
where the wallet is not available.

PASSWORD mode requires that you provide a password when creating encrypted dump
file sets. You will need to provide the same password when you import the dump file
set. PASSWORD mode requires that you also specify the ENCRYPTION_PASSWORD
parameter. The PASSWORD mode is best suited for cases in which the dump file set will
be imported into a different or remote database, but which must remain secure in
transit.

TRANSPARENT mode enables you to create an encrypted dump file set without any
intervention from a database administrator (DBA), provided the required wallet is
available. Therefore, the ENCRYPTION_PASSWORD parameter is not required. The
parameter will, in fact, cause an error if it is used in TRANSPARENT mode. This
encryption mode is best suited for cases in which the dump file set is imported into the
same database from which it was exported.

Restrictions

• To use DUAL or TRANSPARENT mode, the COMPATIBLE initialization parameter must
be set to at least 11.0.0.

• When you use the ENCRYPTION_MODE parameter, you must also use either the
ENCRYPTION or ENCRYPTION_PASSWORD parameter. Otherwise, an error is returned.

• When you use the ENCRYPTION=ENCRYPTED_COLUMNS_ONLY, you cannot use the
ENCRYPTION_MODE parameter. Otherwise, an error is returned.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-34

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

• The use of DUAL or TRANSPARENT mode requires that the Oracle Advanced Security
option is enabled. See Oracle Database Licensing Information for information
about licensing requirements for the Oracle Advanced Security option.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc4.dmp
ENCRYPTION=all ENCRYPTION_PASSWORD=secretwords
ENCRYPTION_ALGORITHM=AES256 ENCRYPTION_MODE=DUAL

Related Topics

• Oracle Database Licensing Information User Manual

2.4.19 ENCRYPTION_PASSWORD
The Oracle Data Pump Export command-line utility ENCRYPTION_PASSWORD parameter
prevents unauthorized access to an encrypted dump file set.

Default

There is no default; the value is user-provided.

Purpose

Specifies a password for encrypting encrypted column data, metadata, or table data in
the export dump file. Using this parameter prevents unauthorized access to an
encrypted dump file set.

Note:

Data Pump encryption functionality changed as of Oracle Database 11g
release 1 (11.1). Before release 11.1, the ENCRYPTION_PASSWORD parameter
applied only to encrypted columns. However, as of release 11.1, the new
ENCRYPTION parameter provides options for encrypting other types of data.
As a result of this change, if you now specify ENCRYPTION_PASSWORD without
also specifying ENCRYPTION and a specific option, then all data written to the
dump file is encrypted (equivalent to specifying ENCRYPTION=ALL). To re-
encrypt only encrypted columns, you must now specify
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY in addition to ENCRYPTION_PASSWORD.

Syntax and Description

ENCRYPTION_PASSWORD = password

The password value that is supplied specifies a key for re-encrypting encrypted table
columns, metadata, or table data so that they are not written as clear text in the dump
file set. If the export operation involves encrypted table columns, but an encryption

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-35

password is not supplied, then the encrypted columns are written to the dump file set
as clear text and a warning is issued.

The password that you enter is echoed to the screen. If you do not want the password
shown on the screen as you enter it, then use the ENCRYPTION_PWD_PROMPT parameter.

The maximum length allowed for an encryption password is usually 128 bytes.
However, the limit is 30 bytes if ENCRYPTION=ENCRYPTED_COLUMNS_ONLY and either the
VERSION parameter or database compatibility is set to less than 12.2.

For export operations, this parameter is required if the ENCRYPTION_MODE parameter is
set to either PASSWORD or DUAL.

Note:

There is no connection or dependency between the key specified with the
Data Pump ENCRYPTION_PASSWORD parameter and the key specified with the
ENCRYPT keyword when the table with encrypted columns was initially
created. For example, suppose that a table is created as follows, with an
encrypted column whose key is xyz:

CREATE TABLE emp (col1 VARCHAR2(256) ENCRYPT IDENTIFIED BY "xyz");

When you export the emp table, you can supply any arbitrary value for
ENCRYPTION_PASSWORD. It does not have to be xyz.

Restrictions

• This parameter is valid only in Oracle Database Enterprise Edition 11g or later.

• The ENCRYPTION_PASSWORD parameter is required for the transport of encrypted
tablespaces and tablespaces containing tables with encrypted columns in a full
transportable export.

• If ENCRYPTION_PASSWORD is specified but ENCRYPTION_MODE is not specified, then it
is not necessary to have Oracle Advanced Security Transparent Data Encryption
enabled, because ENCRYPTION_MODE defaults to PASSWORD.

• If the requested encryption mode is TRANSPARENT, then the ENCRYPTION_PASSWORD
parameter is not valid.

• If ENCRYPTION_MODE is set to DUAL, then to use the ENCRYPTION_PASSWORD
parameter, you must have Oracle Advanced Security Transparent Data Encryption
(TDE) enabled. See Oracle Database Advanced Security Guide for more
information about TDE.

• For network exports, the ENCRYPTION_PASSWORD parameter in conjunction with
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY is not supported with user-defined external
tables that have encrypted columns. The table is skipped, and an error message is
displayed, but the job continues.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-36

Example

In the following example, an encryption password, 123456, is assigned to the dump
file, dpcd2be1.dmp.

> expdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir1
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PASSWORD=123456

Encrypted columns in the employee_s_encrypt table are not written as clear text in the
dpcd2be1.dmp dump file. Afterward, if you want to import the dpcd2be1.dmp file created
by this example, then you must supply the same encryption password.

Related Topics

• Oracle Database Licensing Information User Manual

• Oracle Database Advanced Security Guide

2.4.20 ENCRYPTION_PWD_PROMPT
The Oracle Data Pump Export command-line utility ENCRYPTION_PWD_PROMPT specifies
whether Oracle Data Pump prompts you for the encryption password.

Default

NO

Purpose

Specifies whether Data Pump should prompt you for the encryption password.

Syntax and Description

ENCRYPTION_PWD_PROMPT=[YES | NO]

Specify ENCRYPTION_PWD_PROMPT=YES on the command line to instruct Data Pump to
prompt you for the encryption password, rather than you entering it on the command
line with the ENCRYPTION_PASSWORD parameter. The advantage to doing this is that the
encryption password is not echoed to the screen when it is entered at the prompt.
Whereas, when it is entered on the command line using the ENCRYPTION_PASSWORD
parameter, it appears in plain text.

The encryption password that you enter at the prompt is subject to the same criteria
described for the ENCRYPTION_PASSWORD parameter.

If you specify an encryption password on the export operation, you must also supply it
on the import operation.

Restrictions

• Concurrent use of the ENCRYPTION_PWD_PROMPT and ENCRYPTION_PASSWORD
parameters is prohibited.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-37

Example

The following syntax example shows Data Pump first prompting for the user password
and then for the encryption password.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp ENCRYPTION_PWD_PROMPT=YES
.
.
.
Copyright (c) 1982, 2017, Oracle and/or its affiliates. All rights
reserved.

Password:

Connected to: Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 -
Production
Version 18.1.0.0.0

Encryption Password:

Starting "HR"."SYS_EXPORT_SCHEMA_01": hr/******** directory=dpump_dir1
dumpfile=hr.dmp encryption_pwd_prompt=Y
.
.
.

2.4.21 ESTIMATE
The Data Pump Export command-line utility ESTIMATE parameter specifies the method
that Export uses to estimate how much disk space each table in the export job will
consume (in bytes).

Default: BLOCKS

Purpose

Specifies the method that Export will use to estimate how much disk space each table
in the export job will consume (in bytes). The estimate is printed in the log file and
displayed on the client's standard output device. The estimate is for table row data
only; it does not include metadata.

Syntax and Description

ESTIMATE=[BLOCKS | STATISTICS]

• BLOCKS - The estimate is calculated by multiplying the number of database blocks
used by the source objects, times the appropriate block sizes.

• STATISTICS - The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed
recently. (Table analysis can be done with either the SQL ANALYZE statement or
the DBMS_STATS PL/SQL package.)

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-38

Restrictions

• If the Data Pump export job involves compressed tables, then when you use
ESTIMATE=BLOCKS, the default size estimation given for the compressed table is
inaccurate. This inaccuracy results because the size estimate does not reflect that
the data was stored in a compressed form. To obtain a more accurate size
estimate for compressed tables, use ESTIMATE=STATISTICS.

• If either the QUERY or REMAP_DATA parameter is used, then the estimate can also be
inaccurate.

Example

The following example shows a use of the ESTIMATE parameter in which the estimate
is calculated using statistics for the employees table:

> expdp hr TABLES=employees ESTIMATE=STATISTICS DIRECTORY=dpump_dir1
 DUMPFILE=estimate_stat.dmp

2.4.22 ESTIMATE_ONLY
The Data Pump Export command-line utility ESTIMATE_ONLY parameter instructs Export
to estimate the space that a job consumes, without actually performing the export
operation.

Default: NO

Purpose

Instructs Export to estimate the space that a job consumes, without actually
performing the export operation.

Syntax and Description

ESTIMATE_ONLY=[YES | NO]

If ESTIMATE_ONLY=YES, then Export estimates the space that would be consumed, but
quits without actually performing the export operation.

Restrictions

• The ESTIMATE_ONLY parameter cannot be used in conjunction with the QUERY
parameter.

Example

The following shows an example of using the ESTIMATE_ONLY parameter to determine
how much space an export of the HR schema requires.

> expdp hr ESTIMATE_ONLY=YES NOLOGFILE=YES SCHEMAS=HR

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-39

2.4.23 EXCLUDE
The Data Pump Export command-line utility EXCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types that you want to
exclude from the export operation.

Default

There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object
types that you want to exclude from the export operation.

Syntax and Description

EXCLUDE=object_type[:name_clause] [, ...]

The object_type specifies the type of object that you want to exclude. To see a list of
valid values for object_type, query the following views: DATABASE_EXPORT_OBJECTS for
full mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for
table and tablespace mode. The values listed in the OBJECT_PATH column are the valid
object types.

All object types for the given mode of export are included in the export, except object
types specified in an EXCLUDE statement. If an object is excluded, then all dependent
objects are also excluded. For example, excluding a table also excludes all indexes
and triggers on the table.

The name_clause is optional. Using this parameter enables selection of specific
objects within an object type. It is a SQL expression used as a filter on the object
names of that type. It consists of a SQL operator, and the values against which you
want to compare the object names of the specified type. The name_clause applies only
to object types whose instances have names (for example, it is applicable to TABLE,
but not to GRANT). It must be separated from the object type with a colon, and enclosed
in double quotation marks, because single quotation marks are required to delimit the
name strings. For example, you can set EXCLUDE=INDEX:"LIKE 'EMP%'" to exclude all
indexes whose names start with EMP.

The name that you supply for the name_clause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_clause
you supply is for a table named EMPLOYEES, then there must be an existing table
named EMPLOYEES using all upper case. If you supplied the name_clause as Employees
or employees or any other variation that does not match the existing table, then the
table is not found.

If no name_clause is provided, then all objects of the specified type are excluded.

You can specify more than one EXCLUDE statement.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that otherwise can be needed on the command line.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-40

If the object_type you specify is CONSTRAINT, GRANT, or USER, then be aware of the
effects, as described in the following paragraphs.

Excluding Constraints

The following constraints cannot be explicitly excluded:

• Constraints needed for the table to be created and loaded successfully; for
example, primary key constraints for index-organized tables, or REF SCOPE and
WITH ROWID constraints for tables with REF columns

For example, the following EXCLUDE statements are interpreted as follows:

• EXCLUDE=CONSTRAINT excludes all constraints, except for any constraints needed
for successful table creation and loading.

• EXCLUDE=REF_CONSTRAINT excludes referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system
privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects
contained within user schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

expdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

In this example, the export mode FULL is specified. If no mode is specified, then the
default mode is used. The default mode is SCHEMAS. But if the default mode is used,
then in this example, the default causes an error, because if SCHEMAS is used, then the
command indicates that you want the schema both exported and excluded at the
same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER:"='HR'", then
only the information used in CREATE USER hr DDL statements is excluded, and you
can obtain unexpected results.

Starting with Oracle Database 20c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in
a command, Oracle Data Pump processes the INCLUDE parameter first, and includes
all objects identified by the parameter. Then it processes the exclude parameters,
eliminating the excluded objects from the included set.

Example

The following is an example of using the EXCLUDE statement.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_exclude.dmp EXCLUDE=VIEW,
PACKAGE, FUNCTION

This example results in a schema-mode export (the default export mode) in which all
the hr schema is exported except its views, packages, and functions.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-41

Related Topics

• Oracle Data Pump Metadata Filters

• Filtering During Export Operations

• INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables
you to filter the metadata that is exported by specifying objects and object types
for the current export mode.

• Parameters Available in Data Pump Export Command-Line Mode

2.4.24 FILESIZE
The Data Pump Export command-line utility FILESIZE parameter specifies the
maximum size of each dump file.

Default: 0 (equivalent to the maximum size of 16 terabytes)

Purpose

Specifies the maximum size of each dump file. If the size is reached for any member
of the dump file set, then that file is closed and an attempt is made to create a new file,
if the file specification contains a substitution variable or if more dump files have been
added to the job.

Syntax and Description

FILESIZE=integer[B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes
is the default. The actual size of the resulting file can be rounded down slightly to
match the size of the internal blocks used in dump files.

Restrictions

• The minimum size for a file is 10 times the default Data Pump block size, which is
4 kilobytes.

• The maximum size for a file is 16 terabytes.

Example

The following example shows setting the size of the dump file to 3 megabytes:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_3m.dmp FILESIZE=3MB

In this scenario, if the 3 megabytes allocated was not sufficient to hold all the exported
data, then the following error results, and displayed and the job stops:

ORA-39095: Dump file space has been exhausted: Unable to allocate 217088
bytes

The actual number of bytes that cannot be allocated can vary. Also, this number does
not represent the amount of space required complete the entire export operation. It
indicates only the size of the current object that was being exported when the job ran

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-42

out of dump file space. You can correct this problem by first attaching to the stopped
job, adding one or more files using the ADD_FILE command, and then restarting the
operation.

2.4.25 FLASHBACK_SCN
The Data Pump Export command-line utility FLASHBACK_SCN parameter specifies the
system change number (SCN) that Export uses to enable the Flashback Query utility.

Default: There is no default

Purpose

Specifies the system change number (SCN) that Export will use to enable the
Flashback Query utility.

Syntax and Description

FLASHBACK_SCN=scn_value

The export operation is performed with data that is consistent up to the specified SCN.
If the NETWORK_LINK parameter is specified, then the SCN refers to the SCN of the
source database.

As of Oracle Database 12c release 2 (12.2) and later, the SCN value can be a big
SCN (8 bytes). You can also specify a big SCN when you create a dump file for an
earlier version that does not support big SCNs, because actual SCN values are not
moved. See the following restrictions for more information about using big SCNs.

Restrictions

• FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

• The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

• You cannot specify a big SCN for a network export or network import from a
version that does not support big SCNs.

Example

The following example assumes that an existing SCN value of 384632 exists. It exports
the hr schema up to SCN 384632.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_scn.dmp FLASHBACK_SCN=384632

Note:

If you are on a logical standby system and using a network link to access the
logical standby primary, then the FLASHBACK_SCN parameter is ignored
because SCNs are selected by logical standby. See Oracle Data Guard
Concepts and Administration for information about logical standby
databases.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-43

Related Topics

• Oracle Data Guard Concepts and Administration

2.4.26 FLASHBACK_TIME
The Data Pump Export command-line utility FLASHBACK_TIME parameter finds the SCN
that most closely matches the specified time. This SCN is used to enable the
Flashback utility. The export operation is performed with data that is consistent up to
this SCN.

Default: There is no default

Purpose

Finds the SCN that most closely matches the specified time. This SCN is used to
enable the Flashback utility. The export operation is performed with data that is
consistent up to this SCN.

Syntax and Description

FLASHBACK_TIME="TO_TIMESTAMP(time-value)"

Because the TO_TIMESTAMP value is enclosed in quotation marks, it is best to put this
parameter in a parameter file.

Alternatively, you can enter the following parameter setting. This setting initiate a
consistent export that is based on current system time:

FLASHBACK_TIME=systimestamp

Restrictions

• FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

• The FLASHBACK_TIME parameter pertains only to the flashback query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

Example

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME
procedure accepts. For example, suppose you have a parameter file, flashback.par,
with the following contents:

DIRECTORY=dpump_dir1
DUMPFILE=hr_time.dmp
FLASHBACK_TIME="TO_TIMESTAMP('27-10-2012 13:16:00', 'DD-MM-YYYY
HH24:MI:SS')"

You can then issue the following command:

> expdp hr PARFILE=flashback.par

The export operation is performed with data that is consistent with the SCN that most
closely matches the specified time.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-44

Note:

If you are on a logical standby system and using a network link to access the
logical standby primary, then the FLASHBACK_SCN parameter is ignored,
because the logical standby selects the SCNs. See Oracle Data Guard
Concepts and Administration for information about logical standby
databases.

See Oracle Database Development Guide for information about using
Flashback Query.

Related Topics

• Parameters Available in Data Pump Export Command-Line Mode

• Oracle Data Guard Concepts and Administration

• Oracle Database Development Guide

2.4.27 FULL
The Export command-line FULL parameter specifies that you want to perform a full
database mode export

Default: NO

Purpose

Specifies that you want to perform a full database mode export.

Syntax and Description

FULL=[YES | NO]

FULL=YES indicates that all data and metadata are to be exported. To perform a full
export, you must have the DATAPUMP_EXP_FULL_DATABASE role.

Filtering can restrict what is exported using this export mode.

You can perform a full mode export using the transportable option
(TRANSPORTABLE=ALWAYS). This is referred to as a full transportable export, which
exports all objects and data necessary to create a complete copy of the database. See
Full Mode.

Note:

Be aware that when you later import a dump file that was created by a full-
mode export, the import operation attempts to copy the password for the SYS
account from the source database. This sometimes fails (for example, if the
password is in a shared password file). If it does fail, then after the import
completes, you must set the password for the SYS account at the target
database to a password of your choice.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-45

Restrictions

• To use the FULL parameter in conjunction with TRANSPORTABLE (a full transportable
export), either the Data Pump VERSION parameter must be set to at least 12.0. or
the COMPATIBLE database initialization parameter must be set to at least 12.0 or
later.

• A full export does not, by default, export system schemas that contain Oracle-
managed data and metadata. Examples of system schemas that are not exported
by default include SYS, ORDSYS, and MDSYS.

• Grants on objects owned by the SYS schema are never exported.

• A full export operation exports objects from only one database edition; by default it
exports the current edition but you can use the Export SOURCE_EDITION parameter
to specify a different edition.

• If you are exporting data that is protected by a realm, then you must have
authorization for that realm.

• The Automatic Workload Repository (AWR) is not moved in a full database export
and import operation. (See Oracle Database Performance Tuning Guide for
information about using Data Pump to move AWR snapshots.)

• The XDB repository is not moved in a full database export and import operation.
User created XML schemas are moved.

Example

The following is an example of using the FULL parameter. The dump file, expfull.dmp
is written to the dpump_dir2 directory.

> expdp hr DIRECTORY=dpump_dir2 DUMPFILE=expfull.dmp FULL=YES NOLOGFILE=YES

To see a detailed example of how to perform a full transportable export, see Oracle
Database Administrator’s Guide. For information about configuring realms, see Oracle
Database Vault Administrator’s Guide.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database Administrator’s Guide

• Oracle Database Vault Administrator’s Guide

2.4.28 HELP
The Data Pump Export command-line utility HELP parameter displays online help for
the Export utility.

Default: NO

Purpose

Displays online help for the Export utility.

Syntax and Description

HELP = [YES | NO]

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-46

If HELP=YES is specified, then Export displays a summary of all Export command-line
parameters and interactive commands.

Example

> expdp HELP = YES

This example display a brief description of all Export parameters and commands.

2.4.29 INCLUDE
The Oracle Data Pump Export command-line utility INCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types for the
current export mode.

Default

There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object
types for the current export mode. The specified objects and all their dependent
objects are exported. Grants on these objects are also exported.

Syntax and Description

INCLUDE = object_type[:name_clause] [, ...]

The object_type specifies the type of object to be included. To see a list of valid
values for object_type, query the following views: DATABASE_EXPORT_OBJECTS for full
mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for
table and tablespace mode. The values listed in the OBJECT_PATH column are the valid
object types.

Only object types explicitly specified in INCLUDE statements, and their dependent
objects, are exported. No other object types, including the schema definition
information that is normally part of a schema-mode export when you have the
DATAPUMP_EXP_FULL_DATABASE role, are exported.

The name_clause is optional. It allows fine-grained selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of the type.
It consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name_clause applies only to object types
whose instances have names (for example, it is applicable to TABLE, but not to GRANT).
It must be separated from the object type with a colon and enclosed in double
quotation marks, because single quotation marks are required to delimit the name
strings.

The name that you supply for the name_clause must exactly match an existing object
in the database, including upper- and lower- case letters. For example, if the
name_clause you supply is for a table named EMPLOYEES, then there must be an
existing table named EMPLOYEES using all upper-case letters. If the name_clause is
provided as Employees or employees or any other variation, then the table is not found.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-47

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that you otherwise need to enter on the command line.

For example, suppose you have a parameter file named hr.par with the following
content:

SCHEMAS=HR
DUMPFILE=expinclude.dmp
DIRECTORY=dpump_dir1
LOGFILE=expinclude.log
INCLUDE=TABLE:"IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE
INCLUDE=INDEX:"LIKE 'EMP%'"

You can then use the hr.par file to start an export operation, without having to enter
any other parameters on the command line. The EMPLOYEES and DEPARTMENTS tables,
all procedures, and all index names with an EMP prefix, are included in the export.

> expdp hr PARFILE=hr.par

Including Constraints

If the object_type that you specify is a CONSTRAINT, then be aware of the effects of
using a constraint..

You cannot include explicitly the following constraints:

• NOT NULL constraints

• Constraints that are required for the table to be created and loaded successfully.
For example: you cannot include primary key constraints for index-organized
tables, or REF SCOPE and WITH ROWID constraints for tables with REF columns.

For example, the following INCLUDE statements are interpreted as follows:

• INCLUDE=CONSTRAINT includes all (nonreferential) constraints, except for NOT NULL
constraints, and any constraints needed for successful table creation and loading.

• INCLUDE=REF_CONSTRAINT includes referential integrity (foreign key) constraints.

You can set both INCLUDE and EXCLUDE parameters in the same command.

When you include both parameters in a command, Oracle Data Pump processes the
INCLUDE parameter first, and includes all objects identified by the parameter. Then it
processes the exclude parameters. Any objects specified by the EXCLUDE parameter
that are in the list of include objects are removed as the command executes.

Restrictions

• Grants on objects owned by the SYS schema are never exported.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-48

Example

The following example performs an export of all tables (and their dependent objects) in
the hr schema:

> expdp hr INCLUDE=TABLE DUMPFILE=dpump_dir1:exp_inc.dmp NOLOGFILE=YES

Related Topics

• Oracle Data Pump Metadata Filters

• Parameters Available in Data Pump Export Command-Line Mode

2.4.30 JOB_NAME
The Data Pump Export command-line utility JOB_NAME parameter identifies the export
job in subsequent actions, such as when using ATTACH to attach to a job, or to identify
a job using DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS views.

Default: system-generated name of the form SYS_EXPORT_<mode>_NN

Purpose

Used to identify the export job in subsequent actions, such as when the ATTACH
parameter is used to attach to a job, or to identify the job using the DBA_DATAPUMP_JOBS
or USER_DATAPUMP_JOBS views.

Syntax and Description

JOB_NAME=jobname_string

The jobname_string specifies a name of up to 128 bytes for this export job. The bytes
must represent printable characters and spaces. If spaces are included, then the name
must be enclosed in single quotation marks (for example, 'Thursday Export'). The job
name is implicitly qualified by the schema of the user performing the export operation.
The job name is used as the name of the master table, which controls the export job.

The default job name is system-generated in the form SYS_EXPORT_mode_NN, where NN
expands to a 2-digit incrementing integer starting at 01. An example of a default name
is 'SYS_EXPORT_TABLESPACE_02'.

Example

The following example shows an export operation that is assigned a job name of
exp_job:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_job.dmp JOB_NAME=exp_job
NOLOGFILE=YES

2.4.31 KEEP_MASTER
The Data Pump Export command-line utility KEEP_MASTER parameter indicates
whether the master table should be deleted or retained at the end of a Data Pump job

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-49

that completes successfully. The master table is automatically retained for jobs that do
not complete successfully.

Default: NO

Purpose

Indicates whether the master table should be deleted or retained at the end of a Data
Pump job that completes successfully. The master table is automatically retained for
jobs that do not complete successfully.

Syntax and Description

KEEP_MASTER=[YES | NO]

Restrictions

• None

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr
KEEP_MASTER=YES

2.4.32 LOGFILE
The Data Pump Export command-line utility LOGFILE parameter specifies the name,
and optionally, a directory, for the log file of the export job.

Default: export.log

Purpose

Specifies the name, and optionally, a directory, for the log file of the export job.

Syntax and Description

LOGFILE=[directory_object:]file_name

You can specify a database directory_object previously established by the DBA,
assuming that you have access to it. This setting overrides the directory object
specified with the DIRECTORY parameter.

The file_name specifies a name for the log file. The default behavior is to create a file
named export.log in the directory referenced by the directory object specified in the
DIRECTORY parameter.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in
interactive mode.)

A log file is always created for an export job unless the NOLOGFILE parameter is
specified. As with the dump file set, the log file is relative to the server and not the
client.

An existing file matching the file name is overwritten.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-50

Restrictions

• To perform a Data Pump Export using Oracle Automatic Storage Management
(Oracle ASM), you must specify a LOGFILE parameter that includes a directory
object that does not include the Oracle ASM + notation. That is, the log file must
be written to a disk file, and not written into the Oracle ASM storage. Alternatively,
you can specify NOLOGFILE=YES. However, if you specify NOLOGFILE=YES, then that
setting prevents the writing of the log file.

Example

The following example shows how to specify a log file name when you do not want to
use the default:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp LOGFILE=hr_export.log

Note:

Data Pump Export writes the log file using the database character set. If your
client NLS_LANG environment setting sets up a different client character set
from the database character set, then it is possible that table names can be
different in the log file than they are when displayed on the client output
screen.

Related Topics

• STATUS

• Using Directory Objects When Oracle Automatic Storage Management Is Enabled

2.4.33 LOGTIME
The Data Pump Export command-line utility LOGTIME parameter specifies that
messages displayed during export operations are timestamped.

Default: No timestamps are recorded

Purpose

Specifies that messages displayed during export operations are timestamped. You can
use the timestamps to figure out the elapsed time between different phases of a Data
Pump operation. Such information can be helpful in diagnosing performance problems
and estimating the timing of future similar operations.

Syntax and Description

LOGTIME=[NONE | STATUS | LOGFILE | ALL]

The available options are defined as follows:

• NONE: No timestamps on status or log file messages (same as default)

• STATUS: Timestamps on status messages only

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-51

• LOGFILE: Timestamps on log file messages only

• ALL: Timestamps on both status and log file messages

Restrictions

• None

Example

The following example records timestamps for all status and log file messages that are
displayed during the export operation:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr LOGTIME=ALL

The output looks similar to the following:

10-JUL-12 10:12:22.300: Starting "HR"."SYS_EXPORT_SCHEMA_01": hr/********
directory=dpump_dir1 dumpfile=expdat.dmp schemas=hr logtime=all
10-JUL-12 10:12:22.915: Estimate in progress using BLOCKS method...
10-JUL-12 10:12:24.422: Processing object type SCHEMA_EXPORT/TABLE/
TABLE_DATA
10-JUL-12 10:12:24.498: Total estimation using BLOCKS method: 128 KB
10-JUL-12 10:12:24.822: Processing object type SCHEMA_EXPORT/USER
10-JUL-12 10:12:24.902: Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
10-JUL-12 10:12:24.926: Processing object type SCHEMA_EXPORT/ROLE_GRANT
10-JUL-12 10:12:24.948: Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
10-JUL-12 10:12:24.967: Processing object type SCHEMA_EXPORT/
TABLESPACE_QUOTA
10-JUL-12 10:12:25.747: Processing object type SCHEMA_EXPORT/PRE_SCHEMA/
PROCACT_SCHEMA
10-JUL-12 10:12:32.762: Processing object type SCHEMA_EXPORT/SEQUENCE/
SEQUENCE
10-JUL-12 10:12:46.631: Processing object type SCHEMA_EXPORT/TABLE/TABLE
10-JUL-12 10:12:58.007: Processing object type SCHEMA_EXPORT/TABLE/GRANT/
OWNER_GRANT/OBJECT_GRANT
10-JUL-12 10:12:58.106: Processing object type SCHEMA_EXPORT/TABLE/COMMENT
10-JUL-12 10:12:58.516: Processing object type SCHEMA_EXPORT/PROCEDURE/
PROCEDURE
10-JUL-12 10:12:58.630: Processing object type SCHEMA_EXPORT/PROCEDURE/
ALTER_PROCEDURE
10-JUL-12 10:12:59.365: Processing object type SCHEMA_EXPORT/TABLE/INDEX/
INDEX
10-JUL-12 10:13:01.066: Processing object type SCHEMA_EXPORT/TABLE/
CONSTRAINT/CONSTRAINT
10-JUL-12 10:13:01.143: Processing object type SCHEMA_EXPORT/TABLE/INDEX/
STATISTICS/INDEX_STATISTICS
10-JUL-12 10:13:02.503: Processing object type SCHEMA_EXPORT/VIEW/VIEW
10-JUL-12 10:13:03.288: Processing object type SCHEMA_EXPORT/TABLE/
CONSTRAINT/REF_CONSTRAINT
10-JUL-12 10:13:04.067: Processing object type SCHEMA_EXPORT/TABLE/TRIGGER
10-JUL-12 10:13:05.251: Processing object type SCHEMA_EXPORT/TABLE/
STATISTICS/TABLE_STATISTICS
10-JUL-12 10:13:06.172: . . exported
"HR"."EMPLOYEES" 17.05 KB 107 rows

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-52

10-JUL-12 10:13:06.658: . . exported
"HR"."COUNTRIES" 6.429 KB 25 rows
10-JUL-12 10:13:06.691: . . exported
"HR"."DEPARTMENTS" 7.093 KB 27 rows
10-JUL-12 10:13:06.723: . . exported
"HR"."JOBS" 7.078 KB 19 rows
10-JUL-12 10:13:06.758: . . exported
"HR"."JOB_HISTORY" 7.164 KB 10 rows
10-JUL-12 10:13:06.794: . . exported
"HR"."LOCATIONS" 8.398 KB 23 rows
10-JUL-12 10:13:06.824: . . exported
"HR"."REGIONS" 5.515 KB 4 rows
10-JUL-12 10:13:07.500: Master table "HR"."SYS_EXPORT_SCHEMA_01"
successfully loaded/unloaded
10-JUL-12 10:13:07.503:

2.4.34 METRICS
The Data Pump Export command-line utility METRICS parameter indicates whether you
want additional information about the job reported to the Data Pump log file.

Default: NO

Purpose

Indicates whether additional information about the job should be reported to the Data
Pump log file.

Syntax and Description

METRICS=[YES | NO]

When METRICS=YES is used, the number of objects and the elapsed time are recorded
in the Data Pump log file.

Restrictions

• None

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr METRICS=YES

2.4.35 NETWORK_LINK
The Data Pump Export command-line utility NETWORK_LINK parameter enables an
export from a (source) database identified by a valid database link. The data from the
source database instance is written to a dump file set on the connected database
instance.

Default: There is no default

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-53

Purpose

Enables an export from a (source) database identified by a valid database link. The
data from the source database instance is written to a dump file set on the connected
database instance.

Syntax and Description

NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an export using a database link. This export
setting means that the system to which the expdp client is connected contacts the
source database referenced by the source_database_link, retrieves data from it, and
writes the data to a dump file set back on the connected system.

The source_database_link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, then you or your DBA must create one using the SQL CREATE DATABASE LINK
statement.

If the source database is read-only, then the user on the source database must have a
locally managed temporary tablespace assigned as the default temporary tablespace.
Otherwise, the job will fail.

The following types of database links are supported for use with Data Pump Export:

• Public fixed user

• Public connected user

• Public shared user (only when used by link owner)

• Private shared user (only when used by link owner)

• Private fixed user (only when used by link owner)

Caution:

If an export operation is performed over an unencrypted network link, then all
data is exported as clear text, even if it is encrypted in the database. See
Oracle Database Security Guide for more information about network security.

Restrictions

• The following types of database links are not supported for use with Data Pump
Export:

– Private connected user

– Current user

• When operating across a network link, Data Pump requires that the source and
target databases differ by no more than two versions. For example, if one
database is Oracle Database 12c, then the other database must be 12c, 11g, or
10g. Note that Data Pump checks only the major version number (for example,
10g,11g, 12c), not specific release numbers (for example, 12.1, 12.2, 11.1, 11.2,
10.1 or 10.2).

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-54

• When transporting a database over the network using full transportable export,
auditing cannot be enabled for tables stored in an administrative tablespace (such
as SYSTEM and SYSAUX) if the audit trail information itself is stored in a user-defined
tablespace.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is also
used

Example

The following is a syntax example of using the NETWORK_LINK parameter. Replace the
variable source_database_link with the name of a valid database link that must
already exist.

> expdp hr DIRECTORY=dpump_dir1 NETWORK_LINK=source_database_link
 DUMPFILE=network_export.dmp LOGFILE=network_export.log

See Also:

• Oracle Database Administrator’s Guide for more information about
database links

• Oracle Database SQL Language Reference for more information about
the CREATE DATABASE LINK statement

• Oracle Database Administrator’s Guide for more information about
locally managed tablespaces

2.4.36 NOLOGFILE
The Data Pump Export command-line utility NOLOGFILE parameter specifies whether
to suppress creation of a log file.

Default: NO

Purpose

Specifies whether to suppress creation of a log file.

Syntax and Description

NOLOGFILE=[YES | NO]

Specify NOLOGFILE=YES to suppress the default behavior of creating a log file. Progress
and error information is still written to the standard output device of any attached
clients, including the client that started the original export operation. If there are no
clients attached to a running job, and you specify NOLOGFILE=YES, then you run the risk
of losing important progress and error information.

Example

The following is an example of using the NOLOGFILE parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp NOLOGFILE=YES

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-55

This command results in a schema-mode export (the default), in which no log file is
written.

2.4.37 PARALLEL
The Oracle Data Pump Export command-line utility PARALLEL parameter specifies the
maximum number of processes of active execution operating on behalf of the export
job.

Default

1

Purpose

Specifies the maximum number of processes of active execution operating on behalf
of the export job. This execution set consists of a combination of worker processes
and parallel I/O server processes. The master control process and worker processes
acting as query coordinators in parallel query operations do not count toward this total.

This parameter enables you to make trade-offs between resource consumption and
elapsed time.

Syntax and Description

PARALLEL=integer

The value that you specify for integer should be less than, or equal to, the number of
files in the dump file set (or you should specify either the %U or %L substitution
variables in the dump file specifications). Because each active worker process or I/O
server process writes exclusively to one file at a time, an insufficient number of files
can have adverse effects. For example, some of the worker processes can be idle
while waiting for files, thereby degrading the overall performance of the job. More
importantly, if any member of a cooperating group of parallel I/O server processes
cannot obtain a file for output, then the export operation is stopped with an ORA-39095
error. Both situations can be corrected by attaching to the job using the Data Pump
Export utility, adding more files using the ADD_FILE command while in interactive
mode, and in the case of a stopped job, restarting the job.

To increase or decrease the value of PARALLEL during job execution, use interactive-
command mode. Decreasing parallelism does not result in fewer worker processes
associated with the job; it decreases the number of worker processes that are
executing at any given time. Also, any ongoing work must reach an orderly completion
point before the decrease takes effect. Therefore, it may take a while to see any effect
from decreasing the value. Idle workers are not deleted until the job exits.

If there is work that can be performed in parallel, then increasing the parallelism takes
effect immediately .

Using PARALLEL During An Export In An Oracle RAC Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, if an export
operation has PARALLEL=1, then all Data Pump processes reside on the instance
where the job is started. Therefore, the directory object can point to local storage for
that instance.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-56

If the export operation has PARALLEL set to a value greater than 1, then Data Pump
processes can reside on instances other than the one where the job was started.
Therefore, the directory object must point to shared storage that is accessible by all
instances of the Oracle RAC.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

• To export a table or table partition in parallel (using PQ slaves), you must have the
DATAPUMP_EXP_FULL_DATABASE role.

• Transportable tablespace metadata cannot be exported in parallel.

• Metadata cannot be exported in parallel when the NETWORK_LINK parameter is also
used.

• The following objects cannot be exported in parallel:

– TRIGGER

– VIEW

– OBJECT_GRANT

– SEQUENCE

– CONSTRAINT

– REF_CONSTRAINT

Example

The following is an example of using the PARALLEL parameter:

> expdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_export.log
JOB_NAME=par4_job DUMPFILE=par_exp%u.dmp PARALLEL=4

This results in a schema-mode export (the default) of the hr schema, in which up to
four files can be created in the path pointed to by the directory object, dpump_dir1.

Related Topics

• DUMPFILE

• Commands Available in Data Pump Export Interactive-Command Mode

• Performing a Parallel Full Database Export

2.4.38 PARFILE
The Data Pump Export command-line utility PARFILE parameter specifies the name of
an export parameter file.

Default: There is no default

Purpose

Specifies the name of an export parameter file.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-57

Syntax and Description

PARFILE=[directory_path]file_name

A parameter file enables you to specify Data Pump parameters within a file. You can
then specify that file on the command line, instead of entering all of the individual
commands. Using a parameter file can be useful if you use the same parameter
combination many times. The use of parameter files is also highly recommended when
you use parameters whose values require the use of quotation marks.

A directory object is not specified for the parameter file. You do not specify a directory
object, because the parameter file is opened and read by the expdp client, unlike dump
files, log files, and SQL files which are created and written by the server. The default
location of the parameter file is the user's current directory.

Within a parameter file, a comma is implicit at every newline character so you do not
have to enter commas at the end of each line. If you have a long line that wraps, such
as a long table name, then enter the backslash continuation character (\) at the end of
the current line to continue onto the next line.

The contents of the parameter file are written to the Data Pump log file.

Restrictions

• The PARFILE parameter cannot be specified within a parameter file.

Example

The content of an example parameter file, hr.par, might be as follows:

SCHEMAS=HR
DUMPFILE=exp.dmp
DIRECTORY=dpump_dir1
LOGFILE=exp.log

You could then issue the following Export command to specify the parameter file:

> expdp hr PARFILE=hr.par

Related Topics

• About Data Pump Export Parameters

2.4.39 QUERY
The Data Pump Export command-line utility QUERY parameter enables you to specify a
query clause that is used to filter the data that gets exported.

Default: There is no default

Purpose

enables you to specify a query clause that is used to filter the data that gets exported.

Syntax and Description

QUERY = [schema.][table_name:] query_clause

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-58

The query_clause is typically a SQL WHERE clause for fine-grained row selection, but
could be any SQL clause. For example, you can use an ORDER BY clause to speed up
a migration from a heap-organized table to an index-organized table. If a schema and
table name are not supplied, then the query is applied to (and must be valid for) all
tables in the export job. A table-specific query overrides a query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table
name from the query clause. More than one table-specific query can be specified, but
only one query can be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any
objects specified in the query_clause that are on the remote (source) node must be
explicitly qualified with the NETWORK_LINK value. Otherwise, Data Pump assumes that
the object is on the local (target) node; if it is not, then an error is returned and the
import of the table from the remote (source) system fails.

For example, if you specify NETWORK_LINK=dblink1, then the query_clause of the
QUERY parameter must specify that link, as shown in the following example:

QUERY=(hr.employees:"WHERE last_name IN(SELECT last_name
FROM hr.employees@dblink1)")

Depending on your operating system, when you specify a value for this parameter that
the uses quotation marks, it can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line. .

To specify a schema other than your own in a table-specific query, you must be
granted access to that specific table.

Restrictions

• The QUERY parameter cannot be used with the following parameters:

– CONTENT=METADATA_ONLY

– ESTIMATE_ONLY

– TRANSPORT_TABLESPACES

• When the QUERY parameter is specified for a table, Data Pump uses external
tables to unload the target table. External tables uses a SQL CREATE TABLE AS
SELECT statement. The value of the QUERY parameter is the WHERE clause in the
SELECT portion of the CREATE TABLE statement. If the QUERY parameter includes
references to another table with columns whose names match the table being
unloaded, and if those columns are used in the query, then you will need to use a
table alias to distinguish between columns in the table being unloaded and
columns in the SELECT statement with the same name. The table alias used by
Data Pump for the table being unloaded is KU$.

For example, suppose you want to export a subset of the sh.sales table based on
the credit limit for a customer in the sh.customers table. In the following example,
KU$ is used to qualify the cust_id field in the QUERY parameter for unloading

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-59

sh.sales. As a result, Data Pump exports only rows for customers whose credit
limit is greater than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

In the following query, KU$ is not used for a table alias. The result is that all rows
are unloaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

• The maximum length allowed for a QUERY string is 4000 bytes, which includes
quotation marks. This restriction means that the actual maximum length allowed is
3998 bytes.

Example

The following is an example of using the QUERY parameter:

> expdp hr PARFILE=emp_query.par

The contents of the emp_query.par file are as follows:

QUERY=employees:"WHERE department_id > 10 AND salary > 10000"
NOLOGFILE=YES
DIRECTORY=dpump_dir1
DUMPFILE=exp1.dmp

This example unloads all tables in the hr schema, but only the rows that fit the query
expression. In this case, all rows in all tables (except employees) in the hr schema are
unloaded. For the employees table, only rows that meet the query criteria are
unloaded.

Related Topics

• About Data Pump Export Parameters

2.4.40 REMAP_DATA
The Data Pump Export command-line utility REMAP_DATA parameter enables you to
specify a remap function that takes as a source the original value of the designated
column and returns a remapped value that will replace the original value in the dump
file.

Default: There is no default

Purpose

The REMAP_DATA parameter allows you to specify a remap function that takes as a
source the original value of the designated column and returns a remapped value that
will replace the original value in the dump file. A common use for this option is to mask
data when moving from a production system to a test system. For example, a column
of sensitive customer data such as credit card numbers could be replaced with
numbers generated by a REMAP_DATA function. This would allow the data to retain its

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-60

essential formatting and processing characteristics without exposing private data to
unauthorized personnel.

The same function can be applied to multiple columns being dumped. This is useful
when you want to guarantee consistency in remapping both the child and parent
column in a referential constraint.

Syntax and Description

REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

The description of each syntax element, in the order in which they appear in the
syntax, is as follows:

schema: the schema containing the table to be remapped. By default, this is the
schema of the user doing the export.

tablename : the table whose column will be remapped.

column_name: the column whose data is to be remapped.

schema : the schema containing the PL/SQL package you have created that contains
the remapping function. As a default, this is the schema of the user doing the export.

pkg: the name of the PL/SQL package you have created that contains the remapping
function.

function: the name of the function within the PL/SQL that will be called to remap the
column table in each row of the specified table.

Restrictions

• The data types and sizes of the source argument and the returned value must
both match the data type and size of the designated column in the table.

• Remapping functions should not perform commits or rollbacks except in
autonomous transactions.

• The use of synonyms as values for the REMAP_DATA parameter is not supported.
For example, if the regions table in the hr schema had a synonym of regn, an
error would be returned if you specified regn as part of the REMPA_DATA
specification.

• Remapping LOB column data of a remote table is not supported.

• Columns of the following types are not supported byREMAP_DATA: User Defined
Types, attributes of User Defined Types, LONGs, REFs, VARRAYs, Nested
Tables, BFILEs, and XMLtype.

Example

The following example assumes a package named remap has been created that
contains functions named minus10 and plusx. These functions change the values for
employee_id and first_name in the employees table.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=remap1.dmp TABLES=employees
REMAP_DATA=hr.employees.employee_id:hr.remap.minus10
REMAP_DATA=hr.employees.first_name:hr.remap.plusx

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-61

2.4.41 REUSE_DUMPFILES
The Data Pump Export command-line utility xxx parameter specifies whether to
overwrite a preexisting dump file.

Default: NO

Purpose

Specifies whether to overwrite a preexisting dump file.

Syntax and Description

REUSE_DUMPFILES=[YES | NO]

Normally, Data Pump Export will return an error if you specify a dump file name that
already exists. The REUSE_DUMPFILES parameter allows you to override that behavior
and reuse a dump file name. For example, if you performed an export and specified
DUMPFILE=hr.dmp and REUSE_DUMPFILES=YES, then hr.dmp is overwritten if it already
exists. Its previous contents are then lost, and it instead contains data for the current
export.

Example

The following export operation creates a dump file named enc1.dmp, even if a dump
file with that name already exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=enc1.dmp
TABLES=employees REUSE_DUMPFILES=YES

2.4.42 SAMPLE
The Data Pump Export command-line utility SAMPLE parameter specifies a percentage
of the data rows that you want to be sampled and unloaded from the source database.

Default: There is no default

Purpose

Specifies a percentage of the data rows that you want to be sampled and unloaded
from the source database.

Syntax and Description

SAMPLE=[[schema_name.]table_name:]sample_percent

This parameter allows you to export subsets of data by specifying the percentage of
data to be sampled and exported. The sample_percent indicates the probability that a
row will be selected as part of the sample. It does not mean that the database will
retrieve exactly that amount of rows from the table. The value you supply for
sample_percent can be anywhere from .000001 up to, but not including, 100.

You can apply the sample_percent to specific tables. In the following example, 50% of
the HR.EMPLOYEES table is exported:

SAMPLE="HR"."EMPLOYEES":50

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-62

If you specify a schema, then you must also specify a table. However, you can specify
a table without specifying a schema. In that scenario, the current user is assumed. If
no table is specified, then the sample_percent value applies to the entire export job.

You can use this parameter with the Data Pump Import PCTSPACE transform, so that
the size of storage allocations matches the sampled data subset. (See the Import
TRANSFORM parameter).

Restrictions

• The SAMPLE parameter is not valid for network exports.

Example

In the following example, the value 70 for SAMPLE is applied to the entire export job
because no table name is specified.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=sample.dmp SAMPLE=70

Related Topics

• TRANSFORM

2.4.43 SCHEMAS
The Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export. This is the default mode for Export.

Default: current user's schema

Purpose

Specifies that you want to perform a schema-mode export. This is the default mode for
Export.

Syntax and Description

SCHEMAS=schema_name [, ...]

If you have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify a single
schema other than your own or a list of schema names. The
DATAPUMP_EXP_FULL_DATABASE role also allows you to export additional nonschema
object information for each specified schema so that the schemas can be re-created at
import time. This additional information includes the user definitions themselves and all
associated system and role grants, user password history, and so on. Filtering can
further restrict what is exported using schema mode.

Restrictions

• If you do not have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify
only your own schema.

• The SYS schema cannot be used as a source schema for export jobs.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-63

Example

The following is an example of using the SCHEMAS parameter. Note that user hr is
allowed to specify more than one schema, because the DATAPUMP_EXP_FULL_DATABASE
role was previously assigned to it for the purpose of these examples.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr,sh,oe

This results in a schema-mode export in which the schemas, hr, sh, and oe will be
written to the expdat.dmp dump file located in the dpump_dir1 directory.

Related Topics

• Filtering During Export Operations

2.4.44 SERVICE_NAME
The Oracle Data Pump Export command-line utility SERVICE_NAME parameter specifies
a service name that you want to use in conjunction with the CLUSTER parameter.

Default: There is no default

Purpose

Specifies a service name that you want to use in conjunction with the CLUSTER
parameter.

Syntax and Description

SERVICE_NAME=name

You can use the SERVICE_NAME parameter with the CLUSTER=YES parameter to specify
an existing service associated with a resource group that defines a set of Oracle Real
Application Clusters (Oracle RAC) instances belonging to that resource group.
Typically, the resource group is a subset of all the Oracle RAC instances.

The service name is only used to determine the resource group, and the instances
defined for that resource group. The instance where the job is started is always used,
regardless of whether it is part of the resource group.

If CLUSTER=NO is also specified, then the SERVICE_NAME parameter is ignored

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D.
Also suppose that a service named my_service exists with a resource group
consisting of instances A, B, and C only. In such a scenario, the following is true:

• If you start an Oracle Data Pump job on instance A, and specify CLUSTER=YES (or
accept the default, which is Y), and you do not specify the SERVICE_NAME
parameter, then Oracle Data Pump creates workers on all instances: A, B, C, and
D, depending on the degree of parallelism specified.

• If you start a Data Pump job on instance A, and specify CLUSTER=YES, and
SERVICE_NAME=my_service, then workers can be started on instances A, B, and C
only.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-64

• If you start a Data Pump job on instance D, and specify CLUSTER=YES, and
SERVICE_NAME=my_service, then workers can be started on instances A, B, C, and
D. Even though instance D is not in my_service it is included because it is the
instance on which the job was started.

• If you start a Data Pump job on instance A, and specify CLUSTER=NO, then any
SERVICE_NAME parameter that you specify is ignored. All processes start on
instance A.

Example

The following is an example of using the SERVICE_NAME parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_svname2.dmp SERVICE_NAME=sales

This example starts a schema-mode export (the default mode) of the hr schema. Even
though CLUSTER=YES is not specified on the command line, it is the default behavior, so
the job uses all instances in the resource group associated with the service name
sales. A dump file named hr_svname2.dmp is written to the location specified by the
dpump_dir1 directory object.

Related Topics

• CLUSTER

2.4.45 SOURCE_EDITION
The Data Pump Export command-line utility SOURCE_EDITION parameter specifies the
database edition from which objects are exported.

Default: the default database edition on the system

Purpose

Specifies the database edition from which objects are exported.

Syntax and Description

SOURCE_EDITION=edition_name

If SOURCE_EDITION=edition_name is specified, then the objects from that edition are
exported. Data Pump selects all inherited objects that have not changed, and all actual
objects that have changed.

If this parameter is not specified, then the default edition is used. If the specified
edition does not exist or is not usable, then an error message is returned.

Restrictions

• This parameter is only useful if there are two or more versions of the same
versionable objects in the database.

• The job version must be 11.2 or later.

Example

The following is an example of using the SOURCE_EDITION parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_dat.dmp SOURCE_EDITION=exp_edition
EXCLUDE=USER

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-65

This example assumes the existence of an edition named exp_edition on the system
from which objects are being exported. Because no export mode is specified, the
default of schema mode will be used. The EXCLUDE=user parameter excludes only the
definitions of users, not the objects contained within users' schemas.

Related Topics

• VERSION

• Oracle Database SQL Language Reference

• Oracle Database Development Guide

See Also:

• Oracle Database SQL Language Reference for information about how
editions are created

• Oracle Database Development Guide for more information about the
editions feature, including inherited and actual objects

2.4.46 STATUS
The Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated

Default: 0

Purpose

Specifies the frequency at which the job status display is updated.

Syntax and Description

STATUS=[integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, then no additional information is displayed beyond information about the
completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log file
(if one is in effect).

Example

The following is an example of using the STATUS parameter.

> expdp hr DIRECTORY=dpump_dir1 SCHEMAS=hr,sh STATUS=300

This example exports the hr and sh schemas, and displays the status of the export
every 5 minutes (60 seconds x 5 = 300 seconds).

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-66

2.4.47 TABLES
The Data Pump Export command-line utility TABLES parameter specifies that you want
to perform a table-mode export.

Default: There is no default

Purpose

Specifies that you want to perform a table-mode export.

Syntax and Description

TABLES=[schema_name.]table_name[:partition_name] [, ...]

Filtering can restrict what is exported using this mode. You can filter the data and
metadata that is exported by specifying a comma-delimited list of tables and partitions
or subpartitions. If a partition name is specified, then it must be the name of a partition
or subpartition in the associated table. Only the specified set of tables, partitions, and
their dependent objects are unloaded.

If an entire partitioned table is exported, then it is imported in its entirety as a
partitioned table. The only case in which this is not true is if
PARTITION_OPTIONS=DEPARTITION is specified during import.

The table name that you specify can be preceded by a qualifying schema name. The
schema defaults to that of the current user. To specify a schema other than your own,
you must have the DATAPUMP_EXP_FULL_DATABASE role.

Use of the wildcard character (%) to specify table names and partition names is
supported.

The following restrictions apply to table names:

• By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for
the table name, then you must enclose the name in quotation marks. The name
must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line are
preceded by an escape character. The following examples show of how case-
sensitivity can be preserved in the different Export modes.

– In command-line mode:

TABLES='\"Emp\"'

– In parameter file mode:

TABLES='"Emp"'

• Table names specified on the command line cannot include a pound sign (#),
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound sign (#), then the Export utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation
marks.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-67

For example, if the parameter file contains the following line, then Export interprets
everything on the line after emp# as a comment, and does not export the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, if the parameter file contains the following line, then the Export utility
exports all three tables, because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

Note:

Some operating systems use single quotation marks as escape
characters, rather than double quotation marks, and others the reverse.
See your Oracle operating system-specific documentation. Different
operating systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a dollar
sign ($) or pound sign (#), or certain other special characters. You must
use escape characters to be able to use such characters in the name
and have them ignored by the shell, and used by Export.

Using the Transportable Option During Table-Mode Export

To use the transportable option during a table-mode export, specify the
TRANSPORTABLE=ALWAYS parameter with the TABLES parameter. Metadata for the
specified tables, partitions, or subpartitions is exported to the dump file. To move the
actual data, you copy the data files to the target database.

If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

Restrictions

• Cross-schema references are not exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not
explicitly specified, is not exported.

• Types used by the table are not exported in table mode. This restriction means
that if you subsequently import the dump file, and the type does not already exist
in the destination database, then the table creation fails.

• The use of synonyms as values for the TABLES parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, then it is
not valid to use TABLES=regn. If you attempt to use the synonym, then an error is
returned.

• The export of tables that include a wildcard character (%) in the table name is not
supported if the table has partitions.

• The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK_LINK parameter to an Oracle
Database release 10.2.0.3 or earlier, or to a read-only database. In such cases,
the limit is 4 KB.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-68

• You can only specify partitions from one table if TRANSPORTABLE=ALWAYS is also set
on the export.

Examples

The following example shows a simple use of the TABLES parameter to export three
tables found in the hr schema: employees, jobs, and departments. Because user hr is
exporting tables found in the hr schema, the schema name is not needed before the
table names.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables.dmp
TABLES=employees,jobs,departments

The following example assumes that user hr has the DATAPUMP_EXP_FULL_DATABASE
role. It shows the use of the TABLES parameter to export partitions.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables_part.dmp
TABLES=sh.sales:sales_Q1_2012,sh.sales:sales_Q2_2012

This example exports the partitions, sales_Q1_2012 and sales_Q2_2012, from the table
sales in the schema sh.

Related Topics

• Filtering During Export Operations

• TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

• REMAP_TABLE
The Data Pump Import command-line mode REMAP_TABLE parameter enables you
to rename tables during an import operation.

• Using Data File Copying to Move Data

2.4.48 TABLESPACES
The Data Pump Export command-line utility TABLESPACES parameter specifies a list
of tablespace names to be exported in tablespace mode.

Default: There is no default

Purpose

Specifies a list of tablespace names to be exported in tablespace mode.

Syntax and Description

TABLESPACES=tablespace_name [, ...]

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both
object metadata and data are unloaded. If any part of a table resides in the specified

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-69

set, then that table and all of its dependent objects are exported. Privileged users get
all tables. Unprivileged users obtain only the tables in their own schemas

Filtering can restrict what is exported using this mode.

Restrictions

• The length of the tablespace name list specified for the TABLESPACES parameter is
limited to a maximum of 4 MB, unless you are using the NETWORK_LINK to an
Oracle Database release 10.2.0.3 or earlier, or to a read-only database. In such
cases, the limit is 4 KB.

Example

The following is an example of using the TABLESPACES parameter. The example
assumes that tablespaces tbs_4, tbs_5, and tbs_6 already exist.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tbs.dmp
TABLESPACES=tbs_4, tbs_5, tbs_6

This command results in a tablespace export in which tables (and their dependent
objects) from the specified tablespaces (tbs_4, tbs_5, and tbs_6) is unloaded.

Related Topics

• Filtering During Export Operations

2.4.49 TRANSPORT_DATAFILES_LOG
The Oracle Data Pump Export command-line mode TRANSPORT_DATAFILES_LOG
parameter specifies a file into which the list of data files associated with a
transportable export is written.

Default

None

Purpose

Specifies a file into which the list of data files associated with a transportable export is
written.

Syntax and Description

TRANSPORT_DATAFILES_LOG=[directory_object:]file_name

If you specify a directory_object, then it must be an object that was previously
established in the database and to which you have access. This parameter overrides
the directory object specified with the DIRECTORY parameter. There is no default for the
log file file_name. If specified, the file is created in the directory object specified in the
DIRECTORY parameter, unless you explicitly specify another directory_object. Any
existing file that has a name matching the one specified with this parameter is
overwritten.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-70

Usage Notes

The specified file written to as the TRANSPORT_DATAFILES_LOG file is formatted as an
Oracle Data Pump parameter file. You can modify this file to add any other parameters
you want to use, and specify this file as the value of the PARFILE parameter on a
subsequent import.

Restrictions

This parameter is valid for transportable mode exports

Example

The following is an example of using the TRANSPORT_DATAFILES_LOG parameter.

 > expdp hr DIRECTORY=dpump_dir DUMPFILE=tts.dmp
TRANSPORT_TABLESPACE=tbs_1, tbs_2 TRANSPORT_DATAFILES_LOG=tts.tdl

The following is an example of a file generated as the output using the
TRANSPORT_DATAFILES_LOG parameter. In the example, target_database_area_path is
the path to the tablespace file::

#

The dump file set and data files must be copied to the target database
area.
The data file paths must be updated accordingly before initiating the
Import.

#
Dump file set for SYSTEM.SYS_EXPORT_TRANSPORTABLE_01 is:
dpumpdir1:ttbs.dmp
#
Datafiles required for transportable tablespace TBS1:
/oracle/dbs/tbs1.dbf
#
Datafiles required for transportable tablespace TBS2:
/oracle/dbs/tbs2.dbf
#
#
TRANSPORT_DATAFILES=
'target_database_area_pathtbs1.dbf'
'target_database_area_pathtbs2.dbf'

2.4.50 TRANSPORT_FULL_CHECK
The Data Pump Export command-line utility TRANSPORT_FULL_CHECK parameter
specifies whether to check for dependencies between those objects inside the

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-71

transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Default: NO

Purpose

Specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Syntax and Description

TRANSPORT_FULL_CHECK=[YES | NO]

If TRANSPORT_FULL_CHECK=YES, then Export verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set, but its index is not, then a failure is returned, and the export
operation is terminated. Similarly, a failure is also returned if an index is in the
transportable set, but the table is not.

If TRANSPORT_FULL_CHECK=NO then Export verifies only that there are no objects within
the transportable set that are dependent on objects outside the transportable set. This
check addresses a one-way dependency. For example, a table is not dependent on an
index, but an index is dependent on a table, because an index without a table has no
meaning. Therefore, if the transportable set contains a table, but not its index, then this
check succeeds. However, if the transportable set contains an index, but not the table,
then the export operation is terminated.

There are other checks performed as well. For instance, export always verifies that all
storage segments of all tables (and their indexes) defined within the tablespace set
specified by TRANSPORT_TABLESPACES are actually contained within the tablespace set.

There are two current command line parameters that control full closure check:

TTS_FULL_CHECK=[YES|NO]
TRANSPORT_FULL_CHECK=[YES|NO]

[TTS|TRANSPORT]_FULL_CHECK=YES is interpreted as TTS_CLOSURE_CHECK=FULL.[TTS|
TRANSPORT]_FULL_CHECK=NO is interpreted as TTS_CLOSURE_CHECK=ON.

Example

The following is an example of using the TRANSPORT_FULL_CHECK parameter. It
assumes that tablespace tbs_1 exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-72

2.4.51 TRANSPORT_TABLESPACES
The Data Pump Export command-line utility TRANSPORT_TABLESPACES parameter
specifies that you want to perform an export in transportable-tablespace mode

Default

There is no default

Purpose

Specifies that you want to perform an export in transportable-tablespace mode.

Syntax and Description

TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for
which object metadata will be exported from the source database into the target
database.

The log file for the export lists the data files that are used in the transportable set, the
dump files, and any containment violations.

The TRANSPORT_TABLESPACES parameter exports metadata for all objects within the
specified tablespaces. If you want to perform a transportable export of only certain
tables, partitions, or subpartitions, then you must use the TABLES parameter with the
TRANSPORTABLE=ALWAYS parameter.

Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

Restrictions

• Transportable tablespace jobs are no longer restricted to a degree of parallelism of
1.

• Transportable tablespace mode requires that you have the
DATAPUMP_EXP_FULL_DATABASE role.

• The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

• The SYSTEM and SYSAUX tablespaces are not transportable in transportable
tablespace mode.

• All tablespaces in the transportable set must be set to read-only.

• If the Data Pump Export VERSION parameter is specified along with the
TRANSPORT_TABLESPACES parameter, then the version must be equal to or greater
than the Oracle Database COMPATIBLE initialization parameter.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-73

• The TRANSPORT_TABLESPACES parameter cannot be used in conjunction with the
QUERY parameter.

• Transportable tablespace jobs do not support the ACCESS_METHOD parameter for
Data Pump Export.

Example

The following is an example of using the TRANSPORT_TABLESPACES parameter in a file-
based job (rather than network-based). The tablespace tbs_1 is the tablespace being
moved. This example assumes that tablespace tbs_1 exists and that it has been set to
read-only. This example also assumes that the default tablespace was changed before
this export command was issued.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=YES LOGFILE=tts.log

See Oracle Database Administrator's Guide for detailed information about transporting
tablespaces between databases

Related Topics

• Transportable Tablespace Mode

• Using Data File Copying to Move Data

• How Does Oracle Data Pump Handle Timestamp Data?

• Oracle Database Administrator’s Guide

2.4.52 TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export (specified
with the TABLES parameter) or a full mode export (specified with the FULL parameter).

Default: NEVER

Purpose

Specifies whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

Syntax and Description

TRANSPORTABLE = [ALWAYS | NEVER]

The definitions of the allowed values are as follows:

ALWAYS - Instructs the export job to use the transportable option. If transportable is not
possible, then the job fails.

In a table mode export, using the transportable option results in a transportable
tablespace export in which metadata for only the specified tables, partitions, or
subpartitions is exported.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-74

In a full mode export, using the transportable option results in a full transportable
export which exports all objects and data necessary to create a complete copy of the
database.

NEVER - Instructs the export job to use either the direct path or external table method to
unload data rather than the transportable option. This is the default.

Note:

To export an entire tablespace in transportable mode, use the
TRANSPORT_TABLESPACES parameter.

• If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

• If only a subset of a table's partitions are exported and the TRANSPORTABLE
parameter is not used at all or is set to NEVER (the default), then on import:

– If PARTITION_OPTIONS=DEPARTITION is used, then each partition included in the
dump file set is created as a non-partitioned table.

– If PARTITION_OPTIONS is not used, then the complete table is created. That is,
all the metadata for the complete table is present, so that the table definition
looks the same on the target system as it did on the source. But only the data
that was exported for the specified partitions is inserted into the table.

Restrictions

• The TRANSPORTABLE parameter is only valid in table mode exports and full mode
exports.

• To use the TRANSPORTABLE parameter, the COMPATIBLE initialization parameter
must be set to at least 11.0.0.

• To use the FULL parameter in conjunction with TRANSPORTABLE (to perform a full
transportable export), the Data Pump VERSION parameter must be set to at least
12.0. If the VERSION parameter is not specified, then the COMPATIBLE database
initialization parameter must be set to at least 12.0 or later.

• The user performing a transportable export requires the
DATAPUMP_EXP_FULL_DATABASE privilege.

• Tablespaces associated with tables, partitions, and subpartitions must be read-
only.

• A full transportable export uses a mix of data movement methods. Objects residing
in a transportable tablespace have only their metadata unloaded; data is copied
when the data files are copied from the source system to the target system. The
data files that must be copied are listed at the end of the log file for the export
operation. Objects residing in non-transportable tablespaces (for example, SYSTEM
and SYSAUX) have both their metadata and data unloaded into the dump file set.
(See Oracle Database Administrator's Guide for more information about
performing full transportable exports.)

• The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-75

Example

The following example assumes that the sh user has the
DATAPUMP_EXP_FULL_DATABASE role and that table sales2 is partitioned and contained
within tablespace tbs2. (The tbs2 tablespace must be set to read-only in the source
database.)

> expdp sh DIRECTORY=dpump_dir1 DUMPFILE=tto1.dmp
TABLES=sh.sales2 TRANSPORTABLE=ALWAYS

After the export completes successfully, you must copy the data files to the target
database area. You could then perform an import operation using the
PARTITION_OPTIONS and REMAP_SCHEMA parameters to make each of the partitions in
sales2 its own table.

> impdp system PARTITION_OPTIONS=DEPARTITION
TRANSPORT_DATAFILES=oracle/dbs/tbs2 DIRECTORY=dpump_dir1
DUMPFILE=tto1.dmp REMAP_SCHEMA=sh:dp

Related Topics

• Oracle Database Administrator’s Guide

• Full Mode

• Using Data File Copying to Move Data

2.4.53 TTS_CLOSURE_CHECK
The Data Pump Export command-line mode TTS_CLOSURE_CHECK parameter is used to
indicate the degree of closure checking to be performed as part of a Data Pump
transportable tablespace operation.

Purpose

Specifies the level of closure check to be performed as part of the transportable export
operation. TTS_CLOSURE_CHECK parameter can also be used to indicate that
tablespaces can remain read-write during a test mode transportable tablespace
operation. This option is used to obtain the timing requirements of the export
operation. It is for testing purposes only. The dump file is unavailable for import.

Syntax and Description

TTS_CLOSURE_CHECK = [ON | OFF | FULL | TEST_MODE]
TTS_CLOSURE_CHECK parameter supports the following options:

• ON - indicates self-containment closure check be performed

• OFF - indicates no closure check be performed

• FULL - indicates full bidirectional closure check be performed

• TEST_MODE - indicates that tablespaces are not required to be in read-only mode

ON,OFF, and FULL options are mutually exclusive. TEST_MODE is a Data Pump Export
option only.

Example 2-1 Example

TTS_CLOSURE_CHECK=FULL

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-76

2.4.54 VERSION
The Data Pump Export command-line utility VERSION parameter specifies the version
of database objects that you want to export.

Default: COMPATIBLE

Purpose

Specifies the version of database objects that you want to export. Only database
objects and attributes that are compatible with the specified release are exported. You
can use the VERSION parameter to create a dump file set that is compatible with a
previous release of Oracle Database. You cannot use Data Pump Export with releases
of Oracle Database before Oracle Database 10g release 1 (10.1). Data Pump Export
only works with Oracle Database 10g release 1 (10.1) or later. The VERSION parameter
simply allows you to identify the version of objects that you export.

On Oracle Database 11g release 2 (11.2.0.3) or later, you can specify the VERSION
parameter as VERSION=12 with FULL=Y to generate a full export dump file that is ready
for import into Oracle Database 12c. The export with the later release target VERSION
value includes information from registered database options and components. The
dump file set specifying a later release version can only be imported into Oracle
Database 12c Release 1 (12.1.0.1) and later. For example, if VERSION=12 is used with
FULL=Y and also with TRANSPORTABLE=ALWAYS, then a full transportable export dump file
is generated that is ready for import into Oracle Database 12c. For more information,
refer to the FULL export parameter option.

Syntax and Description

VERSION=[COMPATIBLE | LATEST | version_string]

The legal values for the VERSION parameter are as follows:

• COMPATIBLE - This value is the default value. The version of the metadata
corresponds to the database compatibility level as specified on the COMPATIBLE
initialization parameter.

Note: Database compatibility must be set to 9.2 or later.

• LATEST - The version of the metadata and resulting SQL DDL corresponds to the
database release, regardless of its compatibility level.

• version_string - A specific database release (for example, 11.2.0). In Oracle
Database 11g, this value cannot be lower than 9.2.

Database objects or attributes that are incompatible with the release specified for
VERSION are not exported. For example, tables containing new data types that are not
supported in the specified release are not exported.

Restrictions

• Exporting a table with archived LOBs to a database release earlier than 11.2 is not
allowed.

• If the Data Pump Export VERSION parameter is specified with the
TRANSPORT_TABLESPACES parameter, then the value for VERSION must be equal to
or greater than the Oracle Database COMPATIBLE initialization parameter.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-77

• If the Data Pump VERSION parameter is specified as any value earlier than 12.1,
then the Data Pump dump file excludes any tables that contain VARCHAR2 or
NVARCHAR2 columns longer than 4000 bytes, and any RAW columns longer than
2000 bytes.

• Dump files created on Oracle Database 11g releases with the Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1
(12.1) and later.

Example

The following example shows an export for which the version of the metadata
corresponds to the database release:

> expdp hr TABLES=hr.employees VERSION=LATEST DIRECTORY=dpump_dir1
DUMPFILE=emp.dmp NOLOGFILE=YES

Related Topics

• Full Mode

• Exporting and Importing Between Different Oracle Database Releases

2.4.55 VIEWS_AS_TABLES
The Data Pump Export command-line utility VIEWS_AS_TABLES parameter specifies that
you want one or more views exported as tables.

Default: There is no default.

Caution:

The VIEWS_AS_TABLES parameter unloads view data in unencrypted format,
and creates an unencrypted table. If you are unloading sensitive data, then
Oracle strongly recommends that you enable encryption on the export
operation and that you ensure the table is created in an encrypted
tablespace. You can use the REMAP_TABLESPACE parameter to move the table
to such a tablespace.

Purpose

Specifies that one or more views are to be exported as tables.

Syntax and Description

VIEWS_AS_TABLES=[schema_name.]view_name[:table_name], ...

Data Pump exports a table with the same columns as the view and with row data
obtained from the view. Data Pump also exports objects dependent on the view, such
as grants and constraints. Dependent objects that do not apply to tables (for example,
grants of the UNDER object privilege) are not exported. You can use the
VIEWS_AS_TABLES parameter by itself, or with the TABLES parameter. If either is used,
then Data Pump performs a table-mode export.

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-78

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is
not supplied, it defaults to the user performing the export.

view_name: The name of the view to be exported as a table. The view must exist and
it must be a relational view with only scalar, non-LOB columns. If you specify an invalid
or non-existent view, the view is skipped and an error message is returned.

table_name: The name of a table that you want to serve as the source of the metadata
for the exported view. By default, Data Pump automatically creates a temporary
"template table" with the same columns and data types as the view, but no rows. If the
database is read-only, then this default creation of a template table fails. In such a
case, you can specify a table name. The table must be in the same schema as the
view. It must be a non-partitioned relational table with heap organization. It cannot be
a nested table.

If the export job contains multiple views with explicitly specified template tables, then
the template tables must all be different. For example, in the following job (in which
two views use the same template table) one of the views is skipped:

expdp scott/password directory=dpump_dir dumpfile=a.dmp
views_as_tables=v1:emp,v2:emp

An error message is returned reporting the omitted object.

Template tables are automatically dropped after the export operation is completed.
While they exist, you can perform the following query to view their names (which all
begin with KU$VAT):

SQL> SELECT * FROM user_tab_comments WHERE table_name LIKE 'KU$VAT%';
TABLE_NAME TABLE_TYPE
------------------------------ -----------
COMMENTS

KU$VAT_63629 TABLE
Data Pump metadata template table for view SCOTT.EMPV

Restrictions

• The VIEWS_AS_TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

• Tables created using the VIEWS_AS_TABLES parameter do not contain any hidden
or invisible columns that were part of the specified view.

• The VIEWS_AS_TABLES parameter does not support tables that have columns with a
data type of LONG.

Example

The following example exports the contents of view scott.view1 to a dump file named
scott1.dmp.

> expdp scott/password views_as_tables=view1 directory=data_pump_dir
dumpfile=scott1.dmp

Chapter 2
Parameters Available in Data Pump Export Command-Line Mode

2-79

The dump file contains a table named view1 with rows obtained from the view.

2.5 Commands Available in Data Pump Export Interactive-
Command Mode

Check which command options are available to you when using Data Pump Export in
interactive mode.

• About Data Pump Export Interactive Command Mode
Learn about commands you can use with Data Pump Export in interactive
command mode while your current job is running.

• ADD_FILE
The Data Pump Export interactive command mode ADD_FILE parameter adds
additional files or substitution variables to the export dump file set.

• CONTINUE_CLIENT
The Data Pump Export interactive command mode CONTINUE_CLIENT parameter
changes the Export mode from interactive-command mode to logging mod

• EXIT_CLIENT
The Data Pump Export interactive command mode EXIT_CLIENT parameter stops
the export client session, exits Export, and discontinues logging to the terminal,
but leaves the current job running.

• FILESIZE
The Data Pump Export interactive command mode FILESIZE parameter redefines
the maximum size of subsequent dump files.

• HELP
The Data Pump Export interactive command mode HELP parameter provides
information about Data Pump Export commands available in interactive-command
mode.

• KILL_JOB
The Data Pump Export interactive command mode KILL_JOB parameter detaches
all currently attached client sessions and then terminates the current job. It exits
Export and returns to the terminal prompt.

• PARALLEL
The Export Interactive-Command Mode PARALLEL parameter enables you to
increase or decrease the number of active processes (worker and parallel slaves)
for the current job.

• START_JOB
The Data Pump Export interactive command mode START_JOB parameter starts
the current job to which you are attached.

• STATUS
The Export interactive command STATUS parameter displays status information
about the export, and enables to to set the display interval for logging mode status.

• STOP_JOB
The Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and
exits Export.

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-80

2.5.1 About Data Pump Export Interactive Command Mode
Learn about commands you can use with Data Pump Export in interactive command
mode while your current job is running.

In interactive command mode, the current job continues running, but logging to the
terminal is suspended, and the Export prompt (Export>) is displayed.

To start interactive-command mode, do one of the following:

• From an attached client, press Ctrl+C.

• From a terminal other than the one on which the job is running, specify the ATTACH
parameter in an expdp command to attach to the job. ATTACH is is a useful feature
in situations in which you start a job at one location, and need to check on it at a
later time from a different location.

The following table lists the activities that you can perform for the current job from the
Data Pump Export prompt in interactive-command mode.

Table 2-1 Supported Activities in Data Pump Export's Interactive-Command
Mode

Activity Command Used

Add additional dump files. ADD_FILE

Exit interactive mode and enter logging mode. CONTINUE_CLIENT

Stop the export client session, but leave the job running. EXIT_CLIENT

Redefine the default size to be used for any subsequent
dump files.

FILESIZE

Display a summary of available commands. HELP

Detach all currently attached client sessions and terminate
the current job.

KILL_JOB

Increase or decrease the number of active worker processes
for the current job. This command is valid only in the
Enterprise Edition of Oracle Database 11g or later.

PARALLEL

Restart a stopped job to which you are attached. START_JOB

Display detailed status for the current job and/or set status
interval.

STATUS

Stop the current job for later restart. STOP_JOB

2.5.2 ADD_FILE
The Data Pump Export interactive command mode ADD_FILE parameter adds
additional files or substitution variables to the export dump file set.

Purpose

Adds additional files or substitution variables to the export dump file set.

Syntax and Description

ADD_FILE=[directory_object:]file_name [,...]

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-81

Each file name can have a different directory object. If no directory object is specified,
then the default is assumed.

The file_name must not contain any directory path information. However, it can
include a substitution variable, %U, which indicates that multiple files can be generated
using the specified file name as a template.

The size of the file being added is determined by the setting of the FILESIZE
parameter.

Example

The following example adds two dump files to the dump file set. A directory object is
not specified for the dump file named hr2.dmp, so the default directory object for the
job is assumed. A different directory object, dpump_dir2, is specified for the dump file
named hr3.dmp.

Export> ADD_FILE=hr2.dmp, dpump_dir2:hr3.dmp

Related Topics

• File Allocation with Oracle Data Pump

2.5.3 CONTINUE_CLIENT
The Data Pump Export interactive command mode CONTINUE_CLIENT parameter
changes the Export mode from interactive-command mode to logging mod

Purpose

Changes the Export mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE_CLIENT

In logging mode, status is continually output to the terminal. If the job is currently
stopped, then CONTINUE_CLIENT also causes the client to attempt to start the job.

Example

Export> CONTINUE_CLIENT

2.5.4 EXIT_CLIENT
The Data Pump Export interactive command mode EXIT_CLIENT parameter stops the
export client session, exits Export, and discontinues logging to the terminal, but leaves
the current job running.

Purpose

Stops the export client session, exits Export, and discontinues logging to the terminal,
but leaves the current job running.

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-82

Syntax and Description

EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time.
To see the status of the job, you can monitor the log file for the job, or you can query
the USER_DATAPUMP_JOBS view, or the V$SESSION_LONGOPS view.

Example

Export> EXIT_CLIENT

2.5.5 FILESIZE
The Data Pump Export interactive command mode FILESIZE parameter redefines the
maximum size of subsequent dump files.

Purpose

Redefines the maximum size of subsequent dump files. If the size is reached for any
member of the dump file set, then that file is closed and an attempt is made to create a
new file, if the file specification contains a substitution variable or if additional dump
files have been added to the job.

Syntax and Description

FILESIZE=integer[B | KB | MB | GB | TB]

The integer can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes
is the default. The actual size of the resulting file may be rounded down slightly to
match the size of the internal blocks used in dump files.

A file size of 0 is equivalent to the maximum file size of 16 TB.

Restrictions

• The minimum size for a file is ten times the default Data Pump block size, which is
4 kilobytes.

• The maximum size for a file is 16 terabytes.

Example

Export> FILESIZE=100MB

2.5.6 HELP
The Data Pump Export interactive command mode HELP parameter provides
information about Data Pump Export commands available in interactive-command
mode.

Purpose

Provides information about Data Pump Export commands available in interactive-
command mode.

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-83

Syntax and Description

HELP

Displays information about the commands available in interactive-command mode.

Example

Export> HELP

2.5.7 KILL_JOB
The Data Pump Export interactive command mode KILL_JOB parameter detaches all
currently attached client sessions and then terminates the current job. It exits Export
and returns to the terminal prompt.

Purpose

Detaches all currently attached client sessions and then terminates the current job. It
exits Export and returns to the terminal prompt.

Syntax and Description

KILL_JOB

A job that is terminated using KILL_JOB cannot be restarted. All attached clients,
including the one issuing the KILL_JOB command, receive a warning that the job is
being terminated by the current user and are then detached. After all clients are
detached, the job's process structure is immediately run down and the master table
and dump files are deleted. Log files are not deleted.

Example

Export> KILL_JOB

2.5.8 PARALLEL
The Export Interactive-Command Mode PARALLEL parameter enables you to increase
or decrease the number of active processes (worker and parallel slaves) for the
current job.

Purpose

Enables you to increase or decrease the number of active processes (worker and
parallel slaves) for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter, and as an interactive-
command mode parameter. You set it to the desired number of parallel processes
(worker and parallel slaves). An increase takes effect immediately if there are sufficient
files and resources. A decrease does not take effect until an existing process finishes

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-84

its current task. If the value is decreased, then workers are idled but not deleted until
the job exits.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later releases.

• Transportable tablespace metadata cannot be imported in parallel.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is
used.

In addition, the following objects cannot be imported in parallel:

• TRIGGER

• VIEW

• OBJECT_GRANT

• SEQUENCE

• CONSTRAINT

• REF_CONSTRAINT

Example

Export> PARALLEL=10

Related Topics

• PARALLEL

2.5.9 START_JOB
The Data Pump Export interactive command mode START_JOB parameter starts the
current job to which you are attached.

Purpose

Starts the current job to which you are attached.

Syntax and Description

START_JOB

The START_JOB command restarts the current job to which you are attached (the job
cannot be currently executing). The job is restarted with no data loss or corruption
after an unexpected failure or after you issued a STOP_JOB command, provided the
dump file set and master table have not been altered in any way.

Example

Export> START_JOB

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-85

2.5.10 STATUS
The Export interactive command STATUS parameter displays status information about
the export, and enables to to set the display interval for logging mode status.

Purpose

Displays cumulative status of the job, a description of the current operation, and an
estimated completion percentage. It also allows you to reset the display interval for
logging mode status.

Syntax and Description

STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
then the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log file
(even if one is in effect).

Example

The following example displays the current job status, and changes the logging mode
display interval to five minutes (300 seconds):

Export> STATUS=300

2.5.11 STOP_JOB
The Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and exits
Export.

Purpose

Stops the current job, either immediately, or after an orderly shutdown, and exits
Export.

Syntax and Description

STOP_JOB[=IMMEDIATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB
command is issued, then the job can be attached to and restarted at a later time with
the START_JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A
warning requiring confirmation will be issued. An orderly shutdown stops the job after
worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring
confirmation will be issued. All attached clients, including the one issuing the STOP_JOB
command, receive a warning that the job is being stopped by the current user and they

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2-86

will be detached. After all clients are detached, the process structure of the job is
immediately run down. That is, the master process will not wait for the worker
processes to finish their current tasks. There is no risk of corruption or data loss when
you specify STOP_JOB=IMMEDIATE. However, some tasks that were incomplete at the
time of shutdown may have to be redone at restart time.

Example

Export> STOP_JOB=IMMEDIATE

2.6 Examples of Using Oracle Data Pump Export
You can use these common scenario examples to learn how you can use Oracle Data
Pump Export to move your data.

• Performing a Table-Mode Export
This example shows a table-mode export, specified using the TABLES parameter.

• Data-Only Unload of Selected Tables and Rows
This example shows data-only unload of selected tables and rows.

• Estimating Disk Space Needed in a Table-Mode Export
This example shows how to estimate the disk space needed in a table-mode
export.

• Performing a Schema-Mode Export
This example shows you how to perform a schema-mode export.

• Performing a Parallel Full Database Export
This example shows you how to perform a parallel full database export.

• Using Interactive Mode to Stop and Reattach to a Job
This example shows you how to use interactive mode to stop and reattach to a
job.

2.6.1 Performing a Table-Mode Export
This example shows a table-mode export, specified using the TABLES parameter.

In this example, the Data Pump export command performs a table export of the tables
employees and jobs from the human resources (hr) schema.

Because user hr is exporting tables in his own schema, it is not necessary to specify
the schema name for the tables. The NOLOGFILE=YES parameter indicates that an
Export log file of the operation is not generated.

Example 2-2 Performing a Table-Mode Export

expdp hr TABLES=employees,jobs DUMPFILE=dpump_dir1:table.dmp NOLOGFILE=YES

2.6.2 Data-Only Unload of Selected Tables and Rows
This example shows data-only unload of selected tables and rows.

The example shows the contents of a parameter file (exp.par), which you can use to
perform a data-only unload of all the tables in the human resources (hr) schema,
except for the tables countries and regions. Rows in the employees table are

Chapter 2
Examples of Using Oracle Data Pump Export

2-87

unloaded that have a department_id other than 50. The rows are ordered by
employee_id.

You can issue the following command to execute the exp.par parameter file:

> expdp hr PARFILE=exp.par

This export performs a schema-mode export (the default mode), but the CONTENT
parameter effectively limits the export to an unload of just the table data. The DBA
previously created the directory object dpump_dir1, which points to the directory on the
server where user hr is authorized to read and write export dump files. The dump file
dataonly.dmp is created in dpump_dir1.

Example 2-3 Data-Only Unload of Selected Tables and Rows

DIRECTORY=dpump_dir1
DUMPFILE=dataonly.dmp
CONTENT=DATA_ONLY
EXCLUDE=TABLE:"IN ('COUNTRIES', 'REGIONS')"
QUERY=employees:"WHERE department_id !=50 ORDER BY employee_id"

2.6.3 Estimating Disk Space Needed in a Table-Mode Export
This example shows how to estimate the disk space needed in a table-mode export.

In this example, the ESTIMATE_ONLY parameter is used to estimate the space that is
consumed in a table-mode export, without actually performing the export operation.
Issue the following command to use the BLOCKS method to estimate the number of
bytes required to export the data in the following three tables located in the human
resource (hr) schema: employees, departments, and locations.

The estimate is printed in the log file and displayed on the client's standard output
device. The estimate is for table row data only; it does not include metadata.

Example 2-4 Estimating Disk Space Needed in a Table-Mode Export

> expdp hr DIRECTORY=dpump_dir1 ESTIMATE_ONLY=YES TABLES=employees,
departments, locations LOGFILE=estimate.log

2.6.4 Performing a Schema-Mode Export
This example shows you how to perform a schema-mode export.

The example shows a schema-mode export of the hr schema. In a schema-mode
export, only objects belonging to the corresponding schemas are unloaded. Because
schema mode is the default mode, it is not necessary to specify the SCHEMAS
parameter on the command line, unless you are specifying more than one schema or
a schema other than your own.

Example 2-5 Performing a Schema Mode Export

> expdp hr DUMPFILE=dpump_dir1:expschema.dmp
LOGFILE=dpump_dir1:expschema.log

Chapter 2
Examples of Using Oracle Data Pump Export

2-88

2.6.5 Performing a Parallel Full Database Export
This example shows you how to perform a parallel full database export.

The example shows a full database Export that can use 3 parallel processes (worker
or PQ slaves).

Example 2-6 Parallel Full Export

> expdp hr FULL=YES DUMPFILE=dpump_dir1:full1%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dir1:expfull.log JOB_NAME=expfull

Because this export is a full database export, all data and metadata in the database is
exported. Dump files full101.dmp, full201.dmp, full102.dmp, and so on, are created
in a round-robin fashion in the directories pointed to by the dpump_dir1 and
dpump_dir2 directory objects. For best performance, Oracle recommends that you
place the dump files on separate I/O channels. Each file is up to 2 gigabytes in size, as
necessary. Initially, up to three files are created. If needed, more files are created. The
job and master table has a name of expfull. The log file is written to expfull.log in
the dpump_dir1 directory.

2.6.6 Using Interactive Mode to Stop and Reattach to a Job
This example shows you how to use interactive mode to stop and reattach to a job.

To start this example, reexecute the parallel full export described here:

Performing a Parallel Full Database Export

While the export is running, press Ctrl+C. This keyboard command starts the
interactive-command interface of Data Pump Export. In the interactive interface,
logging to the terminal stops, and the Export prompt is displayed.

After the job status is displayed, you can issue the CONTINUE_CLIENT command to
resume logging mode and restart the expfull job.

Export> CONTINUE_CLIENT

A message is displayed that the job has been reopened, and processing status is
output to the client.

Example 2-7 Stopping and Reattaching to a Job

At the Export prompt, issue the following command to stop the job:

Export> STOP_JOB=IMMEDIATE
Are you sure you wish to stop this job ([y]/n): y

The job is placed in a stopped state, and exits the client.

To reattach to the job you just stopped, enter the following command:

> expdp hr ATTACH=EXPFULL

Chapter 2
Examples of Using Oracle Data Pump Export

2-89

2.7 Syntax Diagrams for Oracle Data Pump Export
Use the syntax diagrams for Oracle Data Pump to see how to use SQL commands
with Data Pump Export.

These diagrams use standard SQL syntax notation. For more information about SQL
syntax notation, see Oracle Database SQL Language Reference.

ExpInit

expdp

HELP =
YES

NO

username / password

@ connect_identifier AS SYSDBA

ExpStart

ExpStart

ExpModes ExpOpts ExpFileOpts

ATTACH

=

schema_name .

job_name

ExpEncrypt

ExpModes

FULL =
YES

NO

SCHEMAS = schema_name

,

TABLES =

schema_name .

table_name

: partition_name

,

TABLESPACES = tablespace_name

,

TRANSPORT_TABLESPACES = tablespace_name

, TRANSPORT_FULL_CHECK =
YES

NO

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-90

ExpOpts

CONTENT =

ALL

DATA_ONLY

METADATA_ONLY

ExpCompression

DATA_OPTIONS =
GROUP_PARTITION_TABLE_DATA

VERIFY_STREAM_FORMAT

ESTIMATE =
BLOCKS

STATISTICS

ESTIMATE_ONLY =
YES

NO

ExpEncrypt

ExpFilter

FLASHBACK_SCN = scn_value

FLASHBACK_TIME = timestamp

JOB_NAME = jobname_string

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-91

ExpOpts_Cont

LOGTIME =

NONE

STATUS

LOGFILE

ALL

NETWORK_LINK = database_link

PARALLEL = integer

ExpRacOpt

ExpRemap

SOURCE_EDITION = source_edition_name

STATUS = integer

TRANSPORTABLE =
ALWAYS

NEVER

ExpVersion

VIEWS_AS_TABLES =

schema_object.

view_name

:table_name

,

ExpDiagnostics

ExpCompression

COMPRESSION =

ALL

DATA_ONLY

METADATA_ONLY

NONE

COMPRESSION_ALGORITHM =

BASIC

LOW

MEDIUM

HIGH

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-92

ExpEncrypt

ENCRYPTION =

ALL

DATA_ONLY

METADATA_ONLY

ENCRYPTED_COLUMNS_ONLY

NONE

ENCRYPTION_ALGORITHM =

AES128

AES192

AES256

ENCRYPTION_MODE =

PASSWORD

TRANSPARENT

DUAL

ENCRYPTION_PASSWORD = password

ENCRYPTION_PWD_PROMPT =
YES

NO

ExpFilter

EXCLUDE = object_type

: name_clause

INCLUDE = object_type

: name_clause

QUERY =

schema_name .

table_name :

query_clause

SAMPLE =

schema_name .

table_name :

sample_percent

ExpRacOpt

CLUSTER =

YES

NO

SERVICE_NAME = service_name

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-93

ExpRemap

REMAP_DATA =

schema .

table . column :

schema .

pkg . function

ExpVersion

VERSION =

COMPATIBLE

LATEST

version_string

ExpFileOpts

DIRECTORY = directory_object

DUMPFILE =

directory_object :

file_name

,

FILESIZE = number_of_bytes

LOGFILE =

directory_object :

file_name

NOLOGFILE =
YES

NO

PARFILE =

directory_path

file_name

REUSE_DUMPFILES =
YES

NO

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-94

ExpDynOpts

ADD_FILE =

directory_object :

file_name

,

CONTINUE_CLIENT

EXIT_CLIENT

FILESIZE = number_of_bytes

HELP

KILL_JOB

PARALLEL = integer

START_JOB

= SKIP_CURRENT =
YES

NO

STATUS

= integer

STOP_JOB

= IMMEDIATE

ExpDiagnostics

ABORT_STEP = integer

ACCESS_METHOD =

AUTOMATIC

EXTERNAL_TABLE

DIRECT_PATH

INSERT_AS_SELECT

KEEP_MASTER =
YES

NO

METRICS =
YES

NO

Related Topics

• Oracle Database SQL Language Reference

Chapter 2
Syntax Diagrams for Oracle Data Pump Export

2-95

3
Oracle Data Pump Import

With Oracle Data Pump Import, you can load an export dump file set into a target
database, or load a target database directly from a source database with no
intervening files.

• What Is Oracle Data Pump Import?
Oracle Data Pump Import is a utility for loading an Oracle export dump file set into
a target system.

• Starting Oracle Data Pump Import
Start the Oracle Data Pump Import utility by using the impdp command.

• Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which
can help you limit the type of information that you import.

• Parameters Available in Oracle Data Pump Import Command-Line Mode
Use Oracle Data Pump parameters for Import (impdp) to manage your data
imports.

• Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

• Examples of Using Oracle Data Pump Import
You can use these common scenario examples to learn how you can use Oracle
Data Pump Import to move your data.

• Syntax Diagrams for Data Pump Import
This section provides syntax diagrams for Data Pump Import.

3.1 What Is Oracle Data Pump Import?
Oracle Data Pump Import is a utility for loading an Oracle export dump file set into a
target system.

An export dump file set is made up of one or more disk files that contain table data,
database object metadata, and control information. The files are written in a
proprietary, binary format. During an Oracle Data Pump import operation, the Import
utility uses these files to locate each database object in the dump file set.

You can also use Import to load a target database directly from a source database
with no intervening dump files. This type of import is called a network import.

Import enables you to specify whether a job should move a subset of the data and
metadata from the dump file set or the source database (in the case of a network
import), as determined by the import mode. This is done by using data filters and
metadata filters, which are implemented through Import commands.

3-1

3.2 Starting Oracle Data Pump Import
Start the Oracle Data Pump Import utility by using the impdp command.

The characteristics of the import operation are determined by the import parameters
you specify. These parameters can be specified either on the command line or in a
parameter file.

Note:

• Do not start Import as SYSDBA, except at the request of Oracle technical
support. SYSDBA is used internally and has specialized functions; its
behavior is not the same as for general users.

• Be aware that if you are performing a Data Pump Import into a table or
tablespace created with the NOLOGGING clause enabled, then a redo log
file may still be generated. The redo that is generated in such a case is
generally for maintenance of the master table or related to underlying
recursive space transactions, data dictionary changes, and index
maintenance for indices on the table that require logging.

• If the timezone version used by the export database is older than the
version used by the import database, then loading columns with data
type TIMESTAMP WITH TIMEZONE takes longer than it would otherwise.
This additional time is required because the database must check to
determine if the new timezone rules change the values being loaded.

• Data Pump Import Interfaces
You can interact with Data Pump Import by using a command line, a parameter
file, or an interactive-command mode.

• Data Pump Import Modes
The import mode determines what is imported.

• Network Considerations for Oracle Data Pump Import
Learn how Oracle Data Pump Import utility impdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and
how they are different from import operations using the NETWORK_LINK
parameter.

3.2.1 Data Pump Import Interfaces
You can interact with Data Pump Import by using a command line, a parameter file, or
an interactive-command mode.

• Command-Line Interface: Enables you to specify the Import parameters directly on
the command line. For a complete description of the parameters available in the
command-line interface.

• Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFILE parameter because parameter
files cannot be nested. The use of parameter files is recommended if you are
using parameters whose values require quotation marks.

Chapter 3
Starting Oracle Data Pump Import

3-2

• Interactive-Command Interface: Stops logging to the terminal and displays the
Import prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an import operation started with the command-line interface or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

Related Topics

• Parameters Available in Oracle Data Pump Import Command-Line Mode
Use Oracle Data Pump parameters for Import (impdp) to manage your data
imports.

• Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

3.2.2 Data Pump Import Modes
The import mode determines what is imported.

The available impot modes are described in the following sections.

• About Data Pump Import Modes
Learn how Data Pump Import modes operate during the import.

• Full Import Mode
A full import is specified using the FULL parameter.

• Schema Mode
A schema import is specified using the SCHEMAS parameter.

• Table Mode
A table-mode import is specified using the TABLES parameter.

• Tablespace Mode
A tablespace-mode import is specified using the TABLESPACES parameter.

• Transportable Tablespace Mode
A transportable tablespace import is specified using the TRANSPORT_TABLESPACES
parameter.

3.2.2.1 About Data Pump Import Modes
Learn how Data Pump Import modes operate during the import.

The Data Pump import mode that you specify for the import applies to the source of
the operation. If you specify the NETWORK_LINK parameter, then that source is either a
dump file set, or another database.

When the source of the import operation is a dump file set, specifying a mode is
optional. If you do not specify a mode, then Import attempts to load the entire dump file
set in the mode in which the export operation was run.

The mode is specified on the command line, using the appropriate parameter.

Chapter 3
Starting Oracle Data Pump Import

3-3

Note:

When you import a dump file that was created by a full-mode export, the
import operation attempts to copy the password for the SYS account from the
source database. This copy sometimes fails (For example, if the password is
in a shared password file). If it does fail, then after the import completes, you
must set the password for the SYS account at the target database to a
password of your choice.

3.2.2.2 Full Import Mode
A full import is specified using the FULL parameter.

In full import mode, the entire content of the source (dump file set or another
database) is loaded into the target database. This mode is the default for file-based
imports. If the source is another database containing schemas other than your own,
then you must have the DATAPUMP_IMP_FULL_DATABASE role.

Cross-schema references are not imported for non-privileged users. For example, a
trigger defined on a table within the schema of the importing user, but residing in
another user schema, is not imported.

The DATAPUMP_IMP_FULL_DATABASE role is required on the target database. If the
NETWORK_LINK parameter is used for a full import, then the
DATAPUMP_EXP_FULL_DATABASE role is required on the source database

Using the Transportable Option During Full Mode Imports

You can use the transportable option during a full-mode import to perform a full
transportable import.

Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT_DATAFILES=datafile_name parameters.

File-based full transportable imports only require use of the
TRANSPORT_DATAFILES=datafile_name parameter. Data Pump Import infers the
presence of the TRANSPORTABLE=ALWAYS and FULL=Y parameters.

There are several requirements when performing a full transportable import:

• Either you must also specify the NETWORK_LINK parameter, or the dump file set
being imported must have been created using the transportable option during
export.

• If you are using a network link, then the database specified on the NETWORK_LINK
parameter must be Oracle Database 11g release 2 (11.2.0.3) or later, and the
Data Pump VERSION parameter must be set to at least 12. (In a non-network
import, VERSION=12 is implicitly determined from the dump file.)

• If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target
platform. You can use the DBMS_FILE_TRANSFER package or the RMAN CONVERT
command to convert the data.

Chapter 3
Starting Oracle Data Pump Import

3-4

• If the source and target platforms do not have the same endianness, then a full
transportable import of encrypted tablespaces is not supported in network mode or
in dump file mode

Related Topics

• FULL
The Data Pump Import command-line mode FULL parameter specifies that you
want to perform a full database import.

• TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE
parameter specifies either that transportable tables are imported with
KEEP_READ_ONLY, or NO_BITMAP_REBUILD.

See Also:

Oracle Database Administrator’s Guide for a detailed example of performing
a full transportable import

3.2.2.3 Schema Mode
A schema import is specified using the SCHEMAS parameter.

In a schema import, only objects owned by the specified schemas are loaded. The
source can be a full, table, tablespace, or schema-mode export dump file set or
another database. If you have the DATAPUMP_IMP_FULL_DATABASE role, then a list of
schemas can be specified and the schemas themselves (including system privilege
grants) are created in the database in addition to the objects contained within those
schemas.

Cross-schema references are not imported for non-privileged users unless the other
schema is remapped to the current schema. For example, a trigger defined on a table
within the importing user's schema, but residing in another user's schema, is not
imported.

Related Topics

• SCHEMAS
The Data Pump Import command-line mode SCHEMAS parameter specifies that you
want a schema-mode import to be performed.

3.2.2.4 Table Mode
A table-mode import is specified using the TABLES parameter.

A table-mode import is specified using the TABLES parameter. In table mode, only the
specified set of tables, partitions, and their dependent objects are loaded. The source
can be a full, schema, tablespace, or table-mode export dump file set or another
database. You must have the DATAPUMP_IMP_FULL_DATABASE role to specify tables that
are not in your own schema.

You can use the transportable option during a table-mode import by specifying the
TRANPORTABLE=ALWAYS parameter with the TABLES parameter. If you use this option,
then you must also use the NETWORK_LINK parameter.

Chapter 3
Starting Oracle Data Pump Import

3-5

To recover tables and table partitions, you can also use RMAN backups and the
RMAN RECOVER TABLE command. During this process, RMAN creates (and optionally
imports) a Data Pump export dump file that contains the recovered objects.

Related Topics

• TABLES
The Data Pump Import command-line mode TABLES parameter specifies that you
want to perform a table-mode import.

• TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE
parameter specifies either that transportable tables are imported with
KEEP_READ_ONLY, or NO_BITMAP_REBUILD.

• Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

• Oracle Database Backup and Recovery User’s Guide

3.2.2.5 Tablespace Mode
A tablespace-mode import is specified using the TABLESPACES parameter.

A tablespace-mode import is specified using the TABLESPACES parameter. In
tablespace mode, all objects contained within the specified set of tablespaces are
loaded, along with the dependent objects. The source can be a full, schema,
tablespace, or table-mode export dump file set or another database. For unprivileged
users, objects not remapped to the current schema will not be processed.

Related Topics

• TABLESPACES
The Data Pump Import command-line mode TABLESPACES parameter specifies that
you want to perform a tablespace-mode import.

3.2.2.6 Transportable Tablespace Mode
A transportable tablespace import is specified using the TRANSPORT_TABLESPACES
parameter.

In transportable tablespace mode, the metadata from another database is loaded
using either a database link (specified with the NETWORK_LINK parameter) or by
specifying a dump file that contains the metadata. The actual data files, specified by
the TRANSPORT_DATAFILES parameter, must be made available from the source system
for use in the target database, typically by copying them over to the target system.

When transportable jobs are performed, it is best practice to keep a copy of the data
files on the source system until the import job has successfully completed on the target
system. If the import job should fail for some reason, you will still have uncorrupted
copies of the data files.

This mode requires the DATAPUMP_IMP_FULL_DATABASE role.

Chapter 3
Starting Oracle Data Pump Import

3-6

Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

Related Topics

• How Does Oracle Data Pump Handle Timestamp Data?
Learn about factors that can affect successful completion of export and import jobs
that involve the timestamp data types TIMESTAMP WITH TIMEZONE and TIMESTAMP
WITH LOCAL TIMEZONE.

• Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data.

3.2.3 Network Considerations for Oracle Data Pump Import
Learn how Oracle Data Pump Import utility impdp identifies instances with connect
identifiers in the connection string using Oracle*Net or a net service name, and how
they are different from import operations using the NETWORK_LINK parameter.

When you start impdp, you can specify a connect identifier in the connect string that
can be different from the current instance identified by the current Oracle System ID
(SID).

You can specify a connect identifier by using either an Oracle*Net connect descriptor,
or by using a net service name (usually defined in the tnsnames.ora file) that maps to
a connect descriptor. Use of a connect identifier requires that you have Oracle Net
Listener running (to start the default listener, enter lsnrctl start). The following
example shows this type of connection, in which inst1 is the connect identifier:

impdp hr@inst1 DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Import then prompts you for a password:

Password: password

The local Import client connects to the database instance identified by the connect
identifier inst1 (a net service name), and imports the data from the dump file hr.dmp
to inst1.

Specifying a connect identifier when you start the Import utility is different from
performing an import operation using the NETWORK_LINK parameter. When you start an
import operation and specify a connect identifier, the local Import client connects to the
database instance identified by the connect identifier and imports the data from the
dump file named on the command line to that database instance.

By contrast, when you perform an import using the NETWORK_LINK parameter, the
import is performed using a database link, and there is no dump file involved. (A
database link is a connection between two physical database servers that allows a
client to access them as one logical database.)

Chapter 3
Starting Oracle Data Pump Import

3-7

Related Topics

• NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK_LINK parameter
enables an import from a source database identified by a valid database link.

See Also:

• Oracle Database Administrator's Guide for more information about
database links

• Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

3.3 Filtering During Import Operations
Oracle Data Pump Import provides data and metadata filtering capability, which can
help you limit the type of information that you import.

• Oracle Data Pump Import Data Filters
You can specify restrictions on the table rows that you import by using Oracle Data
Pump Data-specific filtering through the QUERY and SAMPLE parameters.

• Oracle Data Pump Import Metadata Filters
To exclude or include objects in an import operation, use Oracle Data Pump
metadata filters.

3.3.1 Oracle Data Pump Import Data Filters
You can specify restrictions on the table rows that you import by using Oracle Data
Pump Data-specific filtering through the QUERY and SAMPLE parameters.

Oracle Data Pump can also implement Data filtering indirectly because of metadata
filtering, which can include or exclude table objects along with any associated row
data.

Each data filter can be specified once for each table within a job. If different filters
using the same name are applied to both a particular table and to the whole job, then
the filter parameter supplied for the specific table takes precedence.

3.3.2 Oracle Data Pump Import Metadata Filters
To exclude or include objects in an import operation, use Oracle Data Pump metadata
filters.

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters.
Metadata filters identify a set of objects to be included or excluded from a Data Pump
operation. For example, you could request a full import, but without Package
Specifications or Package Bodies. Data Pump Import provides much greater metadata
filtering capability than was provided by the original Import utility.

To use filters correctly and to get the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For

Chapter 3
Filtering During Import Operations

3-8

example, if a filter specifies that a package is to be included in an operation, then
grants upon that package will also be included. Likewise, if a table is excluded by a
filter, then indexes, constraints, grants, and triggers upon the table will also be
excluded by the filter.

Starting with Oracle Database 20c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in
a command, Oracle Data Pump processes the INCLUDE parameter first, and includes
all objects identified by the parameter. Then it processes the exclude parameters.
Specifically, the EXCLUDE_PATH_EXPR, EXCLUDE_PATH_LIST and EXCLUDE_TABLE
parameters are processed last.. Any objects specified by the EXCLUDE parameter that
are in the list of include objects are removed as the command executes.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects participating in the job must pass all of the filters
applied to their object types.

The same filter name can be specified multiple times within a job.

To see a list of valid object types, query the following views:
DATABASE_EXPORT_OBJECTS for full mode, SCHEMA_EXPORT_OBJECTS for schema mode,
and TABLE_EXPORT_OBJECTS for table and tablespace mode. The values listed in the
OBJECT_PATH column are the valid object types. Note that full object path names are
determined by the export mode, not by the import mode.

Related Topics

• Oracle Data Pump Metadata Filters
To exclude or include objects in an export operation, use Oracle Data Pump
metadata filters

• EXCLUDE
The Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

• INCLUDE
The Data Pump Import command-line mode INCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the
current import mode.

3.4 Parameters Available in Oracle Data Pump Import
Command-Line Mode

Use Oracle Data Pump parameters for Import (impdp) to manage your data imports.

• About Import Command-Line Mode
Learn how to use Oracle Data Pump Import parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information
about how to use examples.

• ABORT_STEP
The Data Pump Import command-line mode ABORT_STEP parameter stops the job
after it is initialized. Stopping the job enables the master table to be queried before
any data is imported.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-9

• ACCESS_METHOD
The Data Pump Import command-line mode ACCESS_METHOD parameter instructs
Import to use a particular method to load data

• ATTACH
The Oracle Data Pump Import command-line mode ATTACH parameter attaches
the client session to an existing import job and automatically places you in
interactive-command mode.

• CLUSTER
The Data Pump Import command-line mode CLUSTER parameter determines
whether Data Pump can use Oracle Real Application Clusters (Oracle RAC)
resources, and start workers on other Oracle RAC instances.

• CONTENT
The Data Pump Import command-line mode CONTENT parameter enables you to
filter what is loaded during the import operation.

• CREDENTIAL
The Data Pump Import command-line mode CREDENTIAL parameter specifies the
credential object name owned by the database user that Import uses to process
files in the dump file set imported into cloud storage.

• DATA_OPTIONS
The Data Pump Import command-line mode DATA_OPTIONS parameter designates
how you want certain types of data to be handled during import operations.

• DIRECTORY
The Data Pump Import command-line mode DIRECTORY parameter specifies the
default location in which the import job can find the dump file set, and create log
and SQL files.

• DUMPFILE
The Data Pump Import command-line mode DUMPFILE parameter specifies the
names, and optionally, the directory objects of the dump file set that Export
created.

• ENABLE_SECURE_ROLES
The Data Pump Import command-line utility ENABLE_SECURE_ROLES parameter
prevents inadvertent use of protected roles during exports.

• ENCRYPTION_PASSWORD
The Oracle Data Pump Import command-line mode ENCRYPTION_PASSWORD
parameter specifies a password for accessing encrypted column data in the dump
file set.

• ENCRYPTION_PWD_PROMPT
The Data Pump Import command-line mode ENCRYPTION_PWD_PROMPT parameter
specifies whether Data Pump should prompt you for the encryption password.

• ESTIMATE
The Data Pump Import command-line mode ESTIMATE parameter instructs the
source system in a network import operation to estimate how much data is
generated during the import.

• EXCLUDE
The Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-10

• FLASHBACK_SCN
The Data Pump Import command-line mode FLASHBACK_SCN specifies the system
change number (SCN) that Import uses to enable the Flashback utility.

• FLASHBACK_TIME
The Data Pump Import command-line mode FLASHBACK_TIME parameter specifies
the system change number (SCN) that Import uses to enable the Flashback utility.

• FULL
The Data Pump Import command-line mode FULL parameter specifies that you
want to perform a full database import.

• HELP
The Data Pump Import command-line mode HELP parameter displays online help
for the Import utility.

• INCLUDE
The Data Pump Import command-line mode INCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the
current import mode.

• JOB_NAME
The Data Pump Import command-line mode JOB_NAME parameter is used to
identify the import job in subsequent actions.

• KEEP_MASTER
The Data Pump Import command-line mode KEEP_MASTER parameter indicates
whether the master table should be deleted or retained at the end of a Data Pump
job that completes successfully.

• LOGFILE
The Data Pump Import command-line mode LOGFILE parameter specifies the
name, and optionally, a directory object, for the log file of the import job.

• LOGTIME
The Data Pump Import command-line mode LOGTIME parameter specifies that you
want to have messages displayed with timestamps during import.

• MASTER_ONLY
The Data Pump Import command-line mode MASTER_ONLY parameter indicates
whether to import just the master table and then stop the job so that the contents
of the master table can be examined.

• METRICS
The Data Pump Import command-line mode METRICS parameter indicates whether
additional information about the job should be reported to the Data Pump log file.

• NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK_LINK parameter
enables an import from a source database identified by a valid database link.

• NOLOGFILE
The Data Pump Import command-line mode NOLOGFILE parameter specifies
whether to suppress the default behavior of creating a log file.

• PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

• PARFILE
The Data Pump Import command-line mode PARFILE parameter specifies the
name of an import parameter file.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-11

• PARTITION_OPTIONS
The Data Pump Import command-line mode PARTITION_OPTIONS parameter
specifies how you want table partitions created during an import operation.

• QUERY
The Oracle Data Pump Import command-line mode QUERY parameter enables you
to specify a query clause that filters the data that is imported.

• REMAP_DATA
The Data Pump Import command-line mode REMAP_DATA parameter enables you to
remap data as it is being inserted into a new database.

• REMAP_DATAFILE

• REMAP_DIRECTORY
The Data Pump Import command-line mode REMAP_DIRECTORY parameter

• REMAP_SCHEMA
The Data Pump Import command-line mode REMAP_SCHEMA parameter loads
all objects from the source schema into a target schema.

• REMAP_TABLE
The Data Pump Import command-line mode REMAP_TABLE parameter enables you
to rename tables during an import operation.

• REMAP_TABLESPACE
The Data Pump Import command-line mode REMAP_TABLESPACE parameter remaps
all objects selected for import with persistent data in the source tablespace to be
created in the target tablespace.

• SCHEMAS
The Data Pump Import command-line mode SCHEMAS parameter specifies that you
want a schema-mode import to be performed.

• SERVICE_NAME
The Data Pump Import command-line mode SERVICE_NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

• SKIP_UNUSABLE_INDEXES
The Data Pump Import command-line mode SKIP_UNUSABLE_INDEXES parameter
specifies whether Import skips loading tables that have indexes that were set to
the Index Unusable state (by either the system or the user).

• SOURCE_EDITION
The Data Pump Import command-line mode SOURCE_EDITION parameter specifies
the database edition on the remote node from which objects are fetched.

• SQLFILE
The Data Pump Import command-line mode SQLFILE parameter specifies a file
into which all the SQL DDL that Import prepares to execute is written, based on
other Import parameters selected.

• STATUS
The Data Pump Import command-line mode STATUS parameter specifies the
frequency at which the job status is displayed.

• STREAMS_CONFIGURATION
The Data Pump Import command-line mode STREAMS_CONFIGURATION parameter
specifies whether to import any GoldenGate Replication metadata that may be
present in the export dump file.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-12

• TABLE_EXISTS_ACTION
The Data Pump Import command-line mode TABLE_EXISTS_ACTION parameter
specifies for Import what to do if the table it is trying to create already exists.

• REUSE_DATAFILES
The Data Pump Import command-line mode REUSE_DATAFILES parameter specifies
whether you want the import job to reuse existing data files for tablespace
creation.

• TABLES
The Data Pump Import command-line mode TABLES parameter specifies that you
want to perform a table-mode import.

• TABLESPACES
The Data Pump Import command-line mode TABLESPACES parameter specifies that
you want to perform a tablespace-mode import.

• TARGET_EDITION
The Data Pump Import command-line mode TARGET_EDITION parameter pecifies
the database edition into which you want objects imported.

• TRANSFORM
The Oracle Data Pump Import command-line mode TRANSFORM parameter enables
you to alter object creation DDL for objects being imported.

• TRANSPORT_DATAFILES
The Data Pump Import command-line mode TRANSPORT_DATAFILES parameter
specifies a list of data files that are imported into the target database by a
transportable-tablespace mode import, or by a table-mode or full-mode import
when TRANSPORTABLE=ALWAYS is set during the export.

• TRANSPORT_FULL_CHECK
The Data Pump Import command-line mode TRANSPORT_FULL_CHECK parameter
specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

• TRANSPORT_TABLESPACES
The Data Pump Import command-line mode TRANSPORT_TABLESPACES parameter
specifies that you want to perform an import in transportable-tablespace mode
over a database link (as specified with the NETWORK_LINK parameter.)

• TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE
parameter specifies either that transportable tables are imported with
KEEP_READ_ONLY, or NO_BITMAP_REBUILD.

• VERIFY_CHECKSUM
The Oracle Data Pump Import command-line utility VERIFY_CHECKSUM parameter
specifies whether to verify dump file checksums.

• VERIFY_ONLY
The Oracle Data Pump Import command-line utility VERIFY_ONLY parameter
enables you to verify the verify the checksum for the dump file.

• VERSION
The Data Pump Import command-line mode VERSION parameter specifies the
version of database objects that you want to import; only database objects and
attributes that are compatible with the specified release are imported.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-13

• VIEWS_AS_TABLES (Network Import)
The Data Pump Import command-line mode VIEWS_AS_TABLES (Network Import)
parameter specifies that you want one or more views to be imported as tables.

• VIEWS_AS_TABLES (Non-Network Import)
The Data Pump Import command-line mode VIEWS_AS_TABLES (Non-Network
Import) parameter specifies that you want to import one or more tables in the
dump file that were exported as views.

Related Topics

• PARFILE
The Data Pump Import command-line mode PARFILE parameter specifies the
name of an import parameter file.

• Understanding Dump, Log, and SQL File Default Locations
Oracle Data Pump is server-based, rather than client-based. Dump files, log files,
and SQL files are accessed relative to server-based directory paths.

• Examples of Using Oracle Data Pump Import
You can use these common scenario examples to learn how you can use Oracle
Data Pump Import to move your data.

• Syntax Diagrams for Data Pump Import
This section provides syntax diagrams for Data Pump Import.

3.4.1 About Import Command-Line Mode
Learn how to use Oracle Data Pump Import parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information about
how to use examples.

Before using Oracle Data Pump import parameters, read the following sections:

• Specifying Import Parameter

• Use of Quotation Marks On the Data Pump Command Line

Many of the descriptions include an example of how to use the parameter. For
background information on setting up the necessary environment to run the examples,
see:

• Using the Import Parameter Examples

Specifying Import Parameters

For parameters that can have multiple values specified, the values can be separated
by commas or by spaces. For example, you could specify TABLES=employees,jobs or
TABLES=employees jobs.

For every parameter you enter, you must enter an equal sign (=) and a value. Data
Pump has no other way of knowing that the previous parameter specification is
complete and a new parameter specification is beginning. For example, in the
following command line, even though NOLOGFILE is a valid parameter, it would be
interpreted as another dump file name for the DUMPFILE parameter:

impdp DIRECTORY=dpumpdir DUMPFILE=test.dmp NOLOGFILE TABLES=employees

This would result in two dump files being created, test.dmp and nologfile.dmp.

To avoid this, specify either NOLOGFILE=YES or NOLOGFILE=NO.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-14

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on that you enter as
parameter values, Oracle Data Pump by default changes values entered as lowercase
or mixed-case into uppercase. For example, if you enter TABLE=hr.employees, then it
is changed to TABLE=HR.EMPLOYEES. To maintain case, you must enclose the value
within quotation marks. For example, TABLE="hr.employees" would preserve the table
name in all lower case. The name you enter must exactly match the name stored in
the database.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters and will therefore
not pass them to an application unless they are preceded by an escape character,
such as the backslash (\). This is true both on the command line and within parameter
files. Some operating systems may require an additional set of single or double
quotation marks on the command line around the entire parameter value containing
the special characters.

The following examples are provided to illustrate these concepts. Be aware that they
may not apply to your particular operating system and that this documentation cannot
anticipate the operating environments unique to each user.

Suppose you specify the TABLES parameter in a parameter file, as follows:

TABLES = \"MixedCaseTableName\"

If you were to specify that on the command line, then some operating systems would
require that it be surrounded by single quotation marks, as follows:

TABLES = '\"MixedCaseTableName\"'

To avoid having to supply additional quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file and
the parameter value being specified does not have quotation marks as the first
character in the string (for example, TABLES=scott."EmP"), then the use of escape
characters may not be necessary on some systems.

Using the Import Parameter Examples

If you try running the examples that are provided for each parameter, then be aware of
the following:

• After you enter the username and parameters as shown in the example, Import is
started and you are prompted for a password. You must supply a password before
a database connection is made.

• Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

• Examples that specify a dump file to import assume that the dump file exists.
Wherever possible, the examples use dump files that are generated when you run
the Export examples.

• The examples assume that the directory objects, dpump_dir1 and dpump_dir2,
already exist and that READ and WRITE privileges have been granted to the hr user
for these directory objects.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-15

• Some of the examples require the DATAPUMP_EXP_FULL_DATABASE and
DATAPUMP_IMP_FULL_DATABASE roles. The examples assume that the hr user has
been granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Unless specifically noted, these parameters can also be specified in a parameter file.

See Also:

Oracle Database Sample Schemas

Your Oracle operating system-specific documentation for information about
how special and reserved characters are handled on your system.

3.4.2 ABORT_STEP
The Data Pump Import command-line mode ABORT_STEP parameter stops the job after
it is initialized. Stopping the job enables the master table to be queried before any data
is imported.

Default: Null

Purpose

Stops the job after it is initialized. Stopping the job enables the master table to be
queried before any data is imported.

Syntax and Description

ABORT_STEP=[n | -1]

The possible values correspond to a process order number in the master table. The
result of using each number is as follows:

• n: If the value is zero or greater, then the import operation is started. The job is
aborted at the object that is stored in the master table with the corresponding
process order number.

• -1 The import job uses a NETWORK_LINK: Abort the job after setting it up but before
importing any objects.

• -1 The import job does not use NETWORK_LINK: Abort the job after loading the
master table and applying filters.

Restrictions

• None

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp ABORT_STEP=-1

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-16

3.4.3 ACCESS_METHOD
The Data Pump Import command-line mode ACCESS_METHOD parameter instructs Import
to use a particular method to load data

Default: AUTOMATIC

Purpose

Instructs Import to use a particular method to load data.

Syntax and Description

ACCESS_METHOD=[AUTOMATIC | DIRECT_PATH | EXTERNAL_TABLE | CONVENTIONAL_PATH |
INSERT_AS_SELECT]

The ACCESS_METHOD parameter is provided so that you can try an alternative method if
the default method does not work for some reason. If the data for a table cannot be
loaded with the specified access method, then the data displays an error for the table
and continues with the next work item.

The available options are:

• AUTOMATIC: This access method is the default. Data Pump determines the best
way to load data for each table. Oracle recommends that you use AUTOMATIC
whenever possible, because it enables Data Pump to automatically select the
most efficient method.

• DIRECT_PATH: Data Pump uses direct path load for every table.

• EXTERNAL_TABLE: Data Pump creates an external table over the data stored in the
dump file, and uses a SQL INSERT AS SELECT statement to load the data into the
table. Data Pump applies the APPEND hint to the INSERT statement.

• CONVENTIONAL_PATH: Data Pump creates an external table over the data stored in
the dump file and reads rows from the external table one at a time. Every time it
reads a row, Data Pump executes an insert statement that loads that row into the
target table. This method takes a long time to load data, but it is the only way to
load data that cannot be loaded by direct path and external tables.

• INSERT_AS_SELECT: Data Pump loads tables by executing a SQL INSERT AS
SELECT statement that selects data from the remote database and inserts it into the
target table. This option is available only for network mode imports. It is used to
disable use of DIRECT_PATH when data is moved over the network.

Restrictions

• The valid options for network mode import are AUTOMATIC, DIRECT_PATH and
INSERT_AS_SELECT .

• The only valid options when importing from a dump file are AUTOMATIC,
DIRECT_PATH, EXTERNAL_TABLE and CONVENTIONAL_PATH

• To use the ACCESS_METHOD parameter with network imports, you must be using
Oracle Database 12c Release 2 (12.2.0.1) or later

• The ACCESS_METHOD parameter for Data Pump Import is not valid for transportable
tablespace jobs.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-17

Example

The following example allows Data Pump to load data for multiple partitions of the pre-
existing table SALES at the same time.

impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp ACCESS_METHOD=CONVENTIONAL

3.4.4 ATTACH
The Oracle Data Pump Import command-line mode ATTACH parameter attaches the
client session to an existing import job and automatically places you in interactive-
command mode.

Default

If there is only one running job, then the current job in user's schema.

Purpose

This command attaches the client session to an existing import job, and automatically
places you in interactive-command mode.

Syntax and Description

ATTACH [=[schema_name.]job_name]

Specify a schema_name if the schema to which you are attaching is not your own. To do
this, you must have the DATAPUMP_IMP_FULL_DATABASE role.

A job_name does not have to be specified if only one running job is associated with
your schema, and if the job is active. If the job you are attaching to is stopped, then
you must supply the job name. To see a list of Oracle Data Pump job names, you can
query the DBA_DATAPUMP_JOBS view or the USER_DATAPUMP_JOBS view.

When you are attached to the job, Import displays a description of the job, and then
displays the Import prompt.

Restrictions

• When you specify the ATTACH parameter, the only other Data Pump parameter you
can specify on the command line is ENCRYPTION_PASSWORD.

• If the job you are attaching to was initially started using an encryption password,
then when you attach to the job, you must again enter the ENCRYPTION_PASSWORD
parameter on the command line to re-specify that password.

• You cannot attach to a job in another schema unless it is already running.

• If the dump file set or master table for the job have been deleted, then the attach
operation fails.

• Altering the master table in any way can lead to unpredictable results.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-18

Example

The following is an example of using the ATTACH parameter.

> impdp hr ATTACH=import_job

This example assumes that a job named import_job exists in the hr schema.

Related Topics

• Commands Available in Oracle Data Pump Import Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

3.4.5 CLUSTER
The Data Pump Import command-line mode CLUSTER parameter determines whether
Data Pump can use Oracle Real Application Clusters (Oracle RAC) resources, and
start workers on other Oracle RAC instances.

Default: YES

Purpose

Determines whether Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources, and start workers on other Oracle RAC instances.

Syntax and Description

CLUSTER=[YES | NO]

To force Data Pump Import to use only the instance where the job is started and to
replicate pre-Oracle Database 11g release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service and constrain worker processes to run only on
instances defined for that service, use the SERVICE_NAME parameter with the
CLUSTER=YES parameter.

Using he CLUSTER parameter can affect performance, because there is some additional
overhead in distributing the import job across Oracle RAC instances. For small jobs, it
can be be better to specify CLUSTER=NO so that the job is constrained to run on the
instance where it is started. Jobs that obtain the most performance benefits from using
the CLUSTER parameter are those involving large amounts of data.

Example

> impdp hr DIRECTORY=dpump_dir1 SCHEMAS=hr CLUSTER=NO PARALLEL=3
NETWORK_LINK=dbs1

This example performs a schema-mode import of the hr schema. Because
CLUSTER=NO is used, the job uses only the instance where it is started. Up to 3 parallel
processes can be used. The NETWORK_LINK value of dbs1 would be replaced with the
name of the source database from which you were importing data. (Note that there is
no dump file generated because this is a network import.)

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-19

In this example, the NETWORK_LINK parameter is only used as part of the example. It is
not required when using the CLUSTER parameter.

Related Topics

• SERVICE_NAME
The Data Pump Import command-line mode SERVICE_NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

• Understanding How to Use Oracle Data Pump with Oracle RAC

3.4.6 CONTENT
The Data Pump Import command-line mode CONTENT parameter enables you to filter
what is loaded during the import operation.

Default: ALL

Purpose

Enables you to filter what is loaded during the import operation.

Syntax and Description

CONTENT=[ALL | DATA_ONLY | METADATA_ONLY]

• ALL: loads any data and metadata contained in the source. This is the default.

• DATA_ONLY: loads only table row data into existing tables; no database objects are
created.

• METADATA_ONLY: loads only database object definitions. It does not load table row
data. Be aware that if you specify CONTENT=METADATA_ONLY, then any index or table
statistics imported from the dump file are locked after the import operation is
complete.

Restrictions

• The CONTENT=METADATA_ONLY parameter and value cannot be used in conjunction
with the TRANSPORT_TABLESPACES (transportable-tablespace mode) parameter or
the QUERY parameter.

• The CONTENT=ALL and CONTENT=DATA_ONLY parameter and values cannot be used
in conjunction with the SQLFILE parameter.

Example

The following is an example of using the CONTENT parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp CONTENT=METADATA_ONLY

This command executes a full import that loads only the metadata in the expfull.dmp
dump file. It executes a full import, because a full import is the default for file-based
imports in which no import mode is specified.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-20

Related Topics

• FULL

3.4.7 CREDENTIAL
The Data Pump Import command-line mode CREDENTIAL parameter specifies the
credential object name owned by the database user that Import uses to process files in
the dump file set imported into cloud storage.

Default: none.

Purpose

Specifies the credential object name owned by the database user that Import uses to
process files in the dump file set imported into cloud storage.

Syntax and Description

CREDENTIAL=credential_object_name
The import operation reads and processes files in the dump file set stored in the cloud
the same as files stored on local file systems.

If the CREDENTIAL parameter is specified, then the value for the DUMPFILE parameter is
a list of comma-delimited strings that Import treats as URI values. Starting with Oracle
Database 19c, the URI files in the dump file set can include templates that contain the
Data Pump substitution variables, such as %U, %L, and so on. For example: urlpathexp
%U.dmp.

Note:

Substitution variables are only allowed in the filename portion of the URI.

The DUMPFILE parameter enables you to specify an optional directory object, using the
format directory_object _name:file_name. However, if you specify the CREDENTIAL
parameter, then Import does not attempt to look for a directory object name in the
strings passed for DUMPFILE. Instead, the strings are treated as URI strings.

The DIRECTORY parameter is still used as the location of log files and SQL files. Also,
you can still specify directory object names as part of the file names for LOGFILE and
SQLFILE.

Oracle Data Pump import is no longer constrained to using the default_credential
value in Oracle Autonomous Database. The Import CREDENTIAL parameter now
accepts any Oracle Cloud Infrastructure (OCI) Object Storage credential created in the
Oracle Autonomous Database that is added to the database using the
DBMS_CLOUD.CREATE_CREDENTIAL() procedure. Oracle Data Pump validates if the
credential exists, and if the user has access to read the credential. Any errors are
returned back to the impdp client.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-21

Example: Using the Import CREDENTIAL Parameter

The following is an example of using the Import CREDENTIAL parameter. You can
create the dump files used in this example by running the example provided for the
Export DUMPFILE parameter, and then uploading the dump files into your cloud storage.

> impdp hr/your_password DIRECTORY=dpump_dir1
CREDENTIAL=user_accessible_credential
 DUMPFILE=’https://objectstorage.example.com/exp1.dmp’,
 ’https://objectstorage.example.com/exp201.dmp’,
 ’https://objectstorage.example.com/exp202.dmp’

The import job looks in the specified cloud storage for the dump files. The log file is
written to the path associated with the directory object, dpump_dir1, that was specified
with the DIRECTORY parameter.

Example: Specifying a User-Defined Credential

The following example creates a new user-defined credential in the Oracle
Autonomous Database, and uses the same credential in an impdp command:

 BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => ‘MY_CRED_NAME’,
 username => 'adwc_user@example.com’,
 password => ‘Auth token'); END;

 > impdp admin/password@ADWC1_high
 directory=data_pump_dir
 credential=MY_cred_name …

3.4.8 DATA_OPTIONS
The Data Pump Import command-line mode DATA_OPTIONS parameter designates how
you want certain types of data to be handled during import operations.

Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter designates how you want certain types of data to be
handled during import operations.

Syntax and Description

DATA_OPTIONS = [DISABLE_APPEND_HINT | SKIP_CONSTRAINT_ERRORS |
REJECT_ROWS_WITH_REPL_CHAR | GROUP_PARTITION_TABLE_DATA |
TRUST_EXISTING_TABLE_PARTITIONS |
VALIDATE_TABLE_DATA | ENABLE_NETWORK_COMPRESSION |
CONTINUE_LOAD_ON_FORMAT_ERROR]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-22

• DISABLE_APPEND_HINT: Specifies that you do not want the import operation to use
the APPEND hint while loading the data object. Disabling the APPEND hint can be
useful to address duplicate data. For example, you can use DISABLE_APPEND_HINT
when there is a small set of data objects to load that exists already in the
database, and some other application can be concurrently accessing one or more
of the data objects.

DISABLE_APPEND_HINT: Changes the default behavior so that the APPEND hint is not
used for loading data objects. When not set, the default is to use the APPEND hint
for loading data objects.

• GROUP_PARTITION_TABLE_DATA: Tells Oracle Data Pump to import the table data in
all partitions of a table as one operation. The default behavior is to import each
table partition as a separate operation. If you know that the data for a partition will
not move, then choose this parameter to accelerate the import of partitioned table
data. There are cases when Oracle Data Pump attempts to load only one partition
at a time. It does this when the table already exists, or when there is a risk that the
data for one partition might be moved to another partition.

• REJECT_ROWS_WITH_REPL_CHAR: Specifies that you want the import operation to
reject any rows that experience data loss because the default replacement
character was used during character set conversion.

If REJECT_ROWS_WITH_REPL_CHAR is not set, then the default behavior is to load the
converted rows with replacement characters.

• SKIP_CONSTRAINT_ERRORS: Affects how non-deferred constraint violations are
handled while a data object (table, partition, or subpartition) is being loaded.

If deferred constraint violations are encountered, then SKIP_CONSTRAINT_ERRORS
has no effect on the load. Deferred constraint violations always cause the entire
load to be rolled back.

The SKIP_CONSTRAINT_ERRORS option specifies that you want the import operation
to proceed even if non-deferred constraint violations are encountered. It logs any
rows that cause non-deferred constraint violations, but does not stop the load for
the data object experiencing the violation.

SKIP_CONSTRAINT_ERRORS: Prevents roll back of the entire data object when non-
deferred constraint violations are encountered.

If SKIP_CONSTRAINT_ERRORS is not set, then the default behavior is to roll back the
entire load of the data object on which non-deferred constraint violations are
encountered.

• TRUST_EXISTING_TABLE_PARTITIONS: Tells Data Pump to load partition data in
parallel into existing tables.

Use this option when you are using Data Pump to create the table from the
definition in the export database before the table data import is started. Typically,
you use this parameter as part of a migration when the metadata is static, and you
can move it before the databases are taken off line to migrate the data. Moving the
metadata separately minimizes downtime. If you use this option, and if other
attributes of the database are the same (for example, character set), then the data
from the export database goes to the same partitions in the import database.

You can create the table outside of the data pump. However, if you create tables
as a separate option from using Data Pump, then the partition attributes and
partition names must be identical to the export database.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-23

• VALIDATE_TABLE_DATA: Directs Data Pump to validate the number and date data
types in table data columns.

If the import encounters invalid data, then an ORA-39376 error is written to the .log
file. The error text includes the column name. The default is to do no validation.
Use this option if the source of the Data Pump dump file is not trusted.

• ENABLE_NETWORK_COMPRESSION: Used for network imports in which the Data Pump
ACCESS_METHOD parameter is set to DIRECT_PATH to load remote table data.

When ENABLE_NETWORK_COMPRESSION is specified, Data Pump compresses data on
the remote node before it is sent over the network to the target database, where it
is decompressed. This option is useful if the network connection between the
remote and local database is slow, because it reduces the amount of data sent
over the network.

Setting ACCESS_METHOD=AUTOMATIC enables Data Pump to set
ENABLE_NETWORK_COMPRESSION automatically during the import if Data Pump uses
DIRECT_PATH for a network import.

The ENABLE_NETWORK_COMPRESSION option is ignored if Data Pump is importing
data from a dump file, if the remote data base is earlier than Oracle Database 12c
Release 2 (12.2), or if an INSERT_AS_SELECT statement is being used to load data
from the remote database.

• CONTINUE_LOAD_ON_FORMAT_ERROR: Directs Data Pump to skip forward to the start
of the next granule when a stream format error is encountered while loading table
data.

Stream format errors typically are the result of corrupt dump files. If Data Pump
encounters a stream format error, and the original export database is not available
to export the table data again, then you can use
CONTINUE_LOAD_ON_FORMAT_ERROR. If Data Pump skips over data, then not all data
from the source database is imported, which potentially skips hundreds or
thousands of rows.

Restrictions

• If you use DISABLE_APPEND_HINT, then it can take longer for data objects to load.

• If you use SKIP_CONSTRAINT_ERRORS, and if a data object has unique indexes or
constraints defined on it at the time of the load, then the APPEND hint is not used for
loading that data object. Therefore, loading such data objects can take longer
when the SKIP_CONSTRAINT_ERRORS option is used.

• Even if SKIP_CONSTRAINT_ERRORS is specified, it is not used unless a data object is
being loaded using the external table access method.

Example

This example shows a data-only table mode import with SKIP_CONSTRAINT_ERRORS
enabled:

> impdp hr TABLES=employees CONTENT=DATA_ONLY
DUMPFILE=dpump_dir1:table.dmp DATA_OPTIONS=skip_constraint_errors

If any non-deferred constraint violations are encountered during this import operation,
then they are logged. The import continues on to completion.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-24

3.4.9 DIRECTORY
The Data Pump Import command-line mode DIRECTORY parameter specifies the default
location in which the import job can find the dump file set, and create log and SQL
files.

Default: DATA_PUMP_DIR

Purpose

Specifies the default location in which the import job can find the dump file set and
where it should create log and SQL files.

Syntax and Description

DIRECTORY=directory_object
The directory_object is the name of a database directory object. It is not the file path
of an actual directory. Privileged users have access to a default directory object
named DATA_PUMP_DIR. The definition of the DATA_PUMP_DIR directory can be changed
by Oracle during upgrades, or when patches are applied.

Users with access to the default DATA_PUMP_DIR directory object do not need to use the
DIRECTORY parameter.

A directory object specified on the DUMPFILE, LOGFILE, or SQLFILE parameter overrides
any directory object that you specify for the DIRECTORY parameter. You must have
Read access to the directory used for the dump file set. You must have Write access
to the directory used to create the log and SQL files.

Example

The following is an example of using the DIRECTORY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
LOGFILE=dpump_dir2:expfull.log

This command results in the import job looking for the expfull.dmp dump file in the
directory pointed to by the dpump_dir1 directory object. The dpump_dir2 directory
object specified on the LOGFILE parameter overrides the DIRECTORY parameter so that
the log file is written to dpump_dir2. Refer to Oracle Database SQL Language
Reference for more information about the CREATE DIRECTORY command.

Related Topics

• Understanding Dump, Log, and SQL File Default Locations

• Understanding How to Use Oracle Data Pump with Oracle RAC

• Oracle Database SQL Language Reference

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-25

3.4.10 DUMPFILE
The Data Pump Import command-line mode DUMPFILE parameter specifies the names,
and optionally, the directory objects of the dump file set that Export created.

Default

expdat.dmp

Purpose

Specifies the names, and, if you choose, the directory objects or default credential of
the dump file set that was created by Export.

Syntax and Description

DUMPFILE=[directory_object:]file_name [, ...]

Or

DUMPFILE=[DEFAULT_CREDENTIAL:]URI_file [, ...]

The directory_object is optional if one is already established by the DIRECTORY
parameter. If you do supply a value, then it must be a directory object that already
exists, and to which you have access. A database directory object that is specified as
part of the DUMPFILE parameter overrides a value specified by the DIRECTORY
parameter.

The file_name is the name of a file in the dump file set. The file names can also be
templates that contain the substitution variable %U. The Import process checks each
file that matches the template to locate all files that are part of the dump file set, until
no match is found. Sufficient information is contained within the files for Import to
locate the entire set, provided that the file specifications defined in the DUMPFILE
parameter encompass the entire set. The files are not required to have the same
names, locations, or order used at export time.

The possible substitution variables are described in the following table.

Substitution Variable Description

%U If %U is used, then the%U expands to a 2-digit incrementing
integer starting with 01.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-26

Substitution Variable Description

%l, %L Specifies a system-generated unique file name.
The file names can contain a substitution variable (%L), which
implies that multiple files may be generated. The substitution
variable is expanded in the resulting file names into a 2-digit,
fixed-width, incrementing integer starting at 01 and ending at
99 which is the same as (%U). In addition, the substitution
variable is expanded in the resulting file names into a 3-digit to
10-digit, variable-width, incrementing integers starting at 100
and ending at 2147483646. The width field is determined by
the number of digits in the integer.

For example if the current integer is 1, then exp%Laa%L.dmp
resolves to the following sequence order

exp01aa01.dmp
exp02aa02.dmp

The 2-digit increment continues increasing, up to 99. Then, the
next file names substitute a 3-digit increment:

exp100aa100.dmp
exp101aa101.dmp

The 3-digit increments continue up until 999. Then, the next
file names substitute a 4-digit increment. The substitutions
continue up to the largest number substitution allowed, which
is 2147483646.

Restrictions

• Dump files created on Oracle Database 11g releases with the Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1
(12.1) and later.

Example of Using the Import DUMPFILE Parameter

You can create the dump files used in this example by running the example provided
for the Export DUMPFILE parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp, exp2%U.dmp

Because a directory object (dpump_dir2) is specified for the exp1.dmp dump file, the
import job looks there for the file. It also looks in dpump_dir1 for dump files of the form
exp2nn.dmp. The log file is written to dpump_dir1.

If you use the alternative DEFAULT_CREDENTIAL keyword syntax for the Import DUMPFILE
parameter, then a default credential with user access must already exist. The import
operation uses the default credential to read and process files in the dump file set that
is stored in the cloud at the specified URI_file location.

The variable URI_file represents the name of a URI file in the dump file set. The file
name cannot be the same as templates that contain the Data Pump substitution
variables, such as %U, %L, and so on.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-27

The DUMPFILE parameter DEFAULT_CREDENTIAL keyword syntax is mutually exclusive to
the directory_object syntax. Only one form can be used in the same command line.

Example of Using the Import DUMPFILE with User-Defined Credentials

This example specifies the default location in which the import job can find the dump
file set, and create log and SQL files, and specifies the credential object name owned
by the database user that Import uses to process files in the dump file set that were
previously imported into cloud storage.

> impdp admin/password@ADWC1_high
 directory=data_pump_dir
 credential=MY_cred_name …

Example of Using the Import DUMPFILE parameter with DEFAULT_CREDENTIAL
Keywords.

You can create the dump files used in this example by running the example provided
for the Export DUMPFILE parameter.

> impdp hr/your_password DIRECTORY=dpump_dir1
 DUMPFILE=’DEFAULT_CREDENTIAL:https://objectstorage.example.com/
exp1.dmp’,
 ’DEFAULT_CREDENTIAL:https://objectstorage.example.com/exp201.dmp’,
 ’DEFAULT_CREDENTIAL:https://objectstorage.example.com/exp202.dmp’

The import job looks in the specified URI_file location for the dump files using the
default credential which has already been setup for the user. The log file is written to
the path associated with the directory object, dpump_dir1 that was specified with the
DIRECTORY parameter.

Example of Using the Import DUMPFILE parameter with User-Defined
Credentials

This example specifies the default location in which the import job can find the dump
file set, and create log and SQL files, and specifies the credential object name owned
by the database user that Import uses to process files in the dump file set that were
previously imported into cloud storage.

> impdp impdp admin/password@ADWC1_high DIRECTORY=data_pump_dir
 DUMPFILE=’MY_cred_name:https://objectstorage.example.com/exp1.dmp’,
 ’MY_cred_name:https://objectstorage.example.com/exp201.dmp’,
 ’MY_cred_name:https://objectstorage.example.com/exp202.dmp’

Related Topics

• DUMPFILE

• File Allocation with Oracle Data Pump

• Performing a Data-Only Table-Mode Import

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-28

3.4.11 ENABLE_SECURE_ROLES
The Data Pump Import command-line utility ENABLE_SECURE_ROLES parameter prevents
inadvertent use of protected roles during exports.

Default

In Oracle Database 19c and later releases, the default value is NO.

Purpose

Some Oracle roles require authorization. If you need to use these roles with Oracle
Data Pump imports, then you must explicitly enable them by setting the
ENABLE_SECURE_ROLES parameter to YES.

Syntax

ENABLE_SECURE_ROLES=[NO|YES]

• NO Disables Oracle roles that require authorization.

• YES Enables Oracle roles that require authorization.

Example

impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:imp1.dmp,
 imp2%U.dmp ENABLE_SECURE_ROLES=YES

3.4.12 ENCRYPTION_PASSWORD
The Oracle Data Pump Import command-line mode ENCRYPTION_PASSWORD parameter
specifies a password for accessing encrypted column data in the dump file set.

Default

There is no default; the value is user-supplied.

Purpose

Specifies a password for accessing encrypted column data in the dump file set. Using
passwords prevents unauthorized access to an encrypted dump file set.

This parameter is also required for the transport of keys associated with encrypted
tablespaces, and transporting tables with encrypted columns during a full transportable
export or import operation.

The password that you enter is echoed to the screen. If you do not want the password
shown on the screen as you enter it, then use the ENCRYPTION_PWD_PROMPT parameter.

Syntax and Description

ENCRYPTION_PASSWORD = password

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-29

If an encryption password was specified on the export operation, then this parameter
is required on an import operation. The password that is specified must be the same
one that was specified on the export operation.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

• Data Pump encryption features require that you have the Oracle Advanced
Security option enabled. Refer to Oracle Database Licensing Information for
information about licensing requirements for the Oracle Advanced Security option.

• The ENCRYPTION_PASSWORD parameter is not valid if the dump file set was created
using the transparent mode of encryption.

• The ENCRYPTION_PASSWORD parameter is required for network-based full
transportable imports where the source database has encrypted tablespaces or
tables with encrypted columns.

• If the source table and target tables have different column encryption attributes,
then import can fail to load the source table rows into the target table. If this issue
occurs, then an error indicating a difference in column encryption properties is
raised.

Example

In the following example, the encryption password, 123456, must be specified,
because it was specified when the dpcd2be1.dmp dump file was created.

> impdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
 DUMPFILE=dpcd2be1.dmp ENCRYPTION_PASSWORD=123456

During the import operation, any columns in the employee_s_encrypt table encrypted
during the export operation are decrypted before being imported.

Related Topics

• ENCRYPTION_PASSWORD

• Oracle Database Licensing Information User Manual

3.4.13 ENCRYPTION_PWD_PROMPT
The Data Pump Import command-line mode ENCRYPTION_PWD_PROMPT parameter
specifies whether Data Pump should prompt you for the encryption password.

Default: NO

Purpose

Specifies whether Data Pump should prompt you for the encryption password.

Syntax and Description

ENCRYPTION_PWD_PROMPT=[YES | NO]

Specify ENCRYPTION_PWD_PROMPT=YES on the command line to instruct Data Pump to
prompt you for the encryption password, rather than you entering it on the command

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-30

line with the ENCRYPTION_PASSWORD parameter. The advantage to doing this is that the
encryption password is not echoed to the screen when it is entered at the prompt.
Whereas, when it is entered on the command line using the ENCRYPTION_PASSWORD
parameter, it appears in plain text.

The encryption password that you enter at the prompt is subject to the same criteria
described for the ENCRYPTION_PASSWORD parameter.

If you specify an encryption password on the export operation, you must also supply it
on the import operation.

Restrictions

• Concurrent use of the ENCRYPTION_PWD_PROMPT and ENCRYPTION_PASSWORD
parameters is prohibited.

Example

The following example shows Data Pump first prompting for the user password and
then for the encryption password.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp ENCRYPTION_PWD_PROMPT=YES
.
.
.
Copyright (c) 1982, 2017, Oracle and/or its affiliates. All rights
reserved.

Password:

Connected to: Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 -
Development
Version 18.1.0.0.0

Encryption Password:

Master table "HR"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "HR"."SYS_IMPORT_FULL_01": hr/******** directory=dpump_dir1
dumpfile=hr.dmp encryption_pwd_prompt=Y
.
.
.

3.4.14 ESTIMATE
The Data Pump Import command-line mode ESTIMATE parameter instructs the source
system in a network import operation to estimate how much data is generated during
the import.

Default: BLOCKS

Purpose

Instructs the source system in a network import operation to estimate how much data
is generated during the import.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-31

Syntax and Description

ESTIMATE=[BLOCKS | STATISTICS]

The valid choices for the ESTIMATE parameter are as follows:

• BLOCKS: The estimate is calculated by multiplying the number of database blocks
used by the source objects times the appropriate block sizes.

• STATISTICS: The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed
recently. (Table analysis can be done with either the SQL ANALYZE statement or
the DBMS_STATS PL/SQL package.)

You can use the estimate that is generated to determine a percentage complete
throughout the execution of the import job.

Restrictions

• The Import ESTIMATE parameter is valid only if the NETWORK_LINK parameter is also
specified.

• When the import source is a dump file set, the amount of data to be loaded is
already known, so the percentage complete is automatically calculated.

• The estimate may be inaccurate if either the QUERY or REMAP_DATA parameter is
used.

Example

In the following syntax example, you replace the variable source_database_link with
the name of a valid link to the source database.

> impdp hr TABLES=job_history NETWORK_LINK=source_database_link
 DIRECTORY=dpump_dir1 ESTIMATE=STATISTICS

The job_history table in the hr schema is imported from the source database. A log
file is created by default and written to the directory pointed to by the dpump_dir1
directory object. When the job begins, an estimate for the job is calculated based on
table statistics.

3.4.15 EXCLUDE
The Data Pump Import command-line mode EXCLUDE parameter enables you to filter
the metadata that is imported by specifying objects and object types to exclude from
the import job.

Default

There is no default.

Purpose

Enables you to filter the metadata that is imported by specifying objects and object
types to exclude from the import job.

Syntax and Description

EXCLUDE=object_type[:name_clause] [, ...]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-32

The object_type specifies the type of object to be excluded. To see a list of valid
values for object_type, query the following views: DATABASE_EXPORT_OBJECTS for full
mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for
table and tablespace mode. The values listed in the OBJECT_PATH column are the valid
object types.

For the given mode of import, all object types contained within the source (and their
dependents) are included, except those specified in an EXCLUDE statement. If an object
is excluded, then all of its dependent objects are also excluded. For example,
excluding a table will also exclude all indexes and triggers on the table.

The name_clause is optional. It allows fine-grained selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of the type.
It consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name_clause applies only to object types
whose instances have names (for example, it is applicable to TABLE and VIEW, but not
to GRANT). It must be separated from the object type with a colon and enclosed in
double quotation marks, because single quotation marks are required to delimit the
name strings. For example, you could set EXCLUDE=INDEX:"LIKE 'DEPT%'" to exclude
all indexes whose names start with dept.

The name that you supply for the name_clause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_clause
you supply is for a table named EMPLOYEES, then there must be an existing table
named EMPLOYEES using all upper case. If the name_clause were supplied as
Employees or employees or any other variation, then the table would not be found.

More than one EXCLUDE statement can be specified.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line.

As explained in the following sections, you should be aware of the effects of specifying
certain objects for exclusion, in particular, CONSTRAINT, GRANT, and USER.

Excluding Constraints

The following constraints cannot be excluded:

• Constraints needed for the table to be created and loaded successfully (for
example, primary key constraints for index-organized tables or REF SCOPE and WITH
ROWID constraints for tables with REF columns).

This means that the following EXCLUDE statements will be interpreted as follows:

• EXCLUDE=CONSTRAINT excludes all constraints, except for any constraints needed
for successful table creation and loading.

• EXCLUDE=REF_CONSTRAINT excludes referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system
privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects
contained within users' schemas.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-33

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

impdp FULL=YES DUMPFILE=expfull.dmp EXCLUDE=SCHEMA:"='HR'"

Note that in this example, the FULL import mode is specified. If no mode is specified,
then SCHEMAS is used, because that is the default mode. However, with this example, if
you do not specify FULL, and instead use SCHEMAS, followed by the EXCLUDE=SCHEMA
argument, then that causes an error, because in that case you are indicating that you
want the schema both to be imported and excluded at the same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER:"= 'HR'",
then only CREATE USER hr DDL statements are excluded, which can return unexpected
results.

Starting with Oracle Database 20c, Oracle Data Pump permits you to set both INCLUDE
and EXCLUDE parameters in the same command. When you include both parameters in
a command, Oracle Data Pump processes the INCLUDE parameter first, and include all
objects identified by the parameter. Then it processes the exclude parameters. Any
objects specified by the EXCLUDE parameter that are in the list of include objects are
removed as the command executes.

Example

Assume the following is in a parameter file, exclude.par, being used by a DBA or
some other user with the DATAPUMP_IMP_FULL_DATABASE role. (To run the example, you
must first create this file.)

EXCLUDE=FUNCTION
EXCLUDE=PROCEDURE
EXCLUDE=PACKAGE
EXCLUDE=INDEX:"LIKE 'EMP%' "

You then issue the following command:

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
PARFILE=exclude.par

You can create the expfull.dmp dump file used in this command by running the
example provided for the Export FULL parameter. in the FULL reference topic. All data
from the expfull.dmp dump file is loaded, except for functions, procedures, packages,
and indexes whose names start with emp.

Related Topics

• FULL

• Oracle Data Pump Import Metadata Filters

• Filtering During Import Operations

• About Import Command-Line Mode

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-34

3.4.16 FLASHBACK_SCN
The Data Pump Import command-line mode FLASHBACK_SCN specifies the system
change number (SCN) that Import uses to enable the Flashback utility.

Default: There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the
Flashback utility.

Syntax and Description

FLASHBACK_SCN=scn_number

The import operation is performed with data that is consistent up to the specified
scn_number.

As of Oracle Database 12c release 2 (12.2), the SCN value can be a big SCN (8
bytes). See the following restrictions for more information about using big SCNs.

Note:

If you are on a logical standby system, then the FLASHBACK_SCN parameter is
ignored, because SCNs are selected by logical standby. SeeOracle Data
Guard Concepts and Administrationfor information about logical standby
databases.

Restrictions

• The FLASHBACK_SCN parameter is valid only when the NETWORK_LINK parameter is
also specified.

• The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

• FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

• You cannot specify a big SCN for a network export or network import from a
version that does not support big SCNs.

Example

The following is a syntax example of using the FLASHBACK_SCN parameter.

> impdp hr DIRECTORY=dpump_dir1 FLASHBACK_SCN=123456
NETWORK_LINK=source_database_link

When using this command, replace the variables 123456 and source_database_link
with the SCN and the name of a source database from which you are importing data.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-35

3.4.17 FLASHBACK_TIME
The Data Pump Import command-line mode FLASHBACK_TIME parameter specifies the
system change number (SCN) that Import uses to enable the Flashback utility.

Default: There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the
Flashback utility.

Syntax and Description

FLASHBACK_TIME="TO_TIMESTAMP()"

The SCN that most closely matches the specified time is found, and this SCN is used
to enable the Flashback utility. The import operation is performed with data that is
consistent up to this SCN. Because the TO_TIMESTAMP value is enclosed in quotation
marks, it would be best to put this parameter in a parameter file.

Note:

If you are on a logical standby system, then the FLASHBACK_TIME parameter
is ignored because SCNs are selected by logical standby. See Oracle Data
Guard Concepts and Administration for information about logical standby
databases.

Restrictions

• This parameter is valid only when the NETWORK_LINK parameter is also specified.

• The FLASHBACK_TIME parameter pertains only to the flashback query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

• FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

Example

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME
procedure accepts,. For example, suppose you have a parameter file,
flashback_imp.par, that contains the following:

FLASHBACK_TIME="TO_TIMESTAMP('27-10-2012 13:40:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:

> impdp hr DIRECTORY=dpump_dir1 PARFILE=flashback_imp.par
NETWORK_LINK=source_database_link

The import operation will be performed with data that is consistent with the SCN that
most closely matches the specified time.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-36

Note:

See Oracle Database Development Guide for information about using
flashback

Related Topics

• About Import Command-Line Mode

• Oracle Data Guard Concepts and Administration

• Oracle Database Development Guide

3.4.18 FULL
The Data Pump Import command-line mode FULL parameter specifies that you want to
perform a full database import.

Default: YES

Purpose

Specifies that you want to perform a full database import.

Syntax and Description

FULL=YES

A value of FULL=YES indicates that all data and metadata from the source is imported.
The source can be a dump file set for a file-based import or it can be another
database, specified with the NETWORK_LINK parameter, for a network import.

If you are importing from a file and do not have the DATAPUMP_IMP_FULL_DATABASE role,
then only schemas that map to your own schema are imported.

If the NETWORK_LINK parameter is used and the user executing the import job has the
DATAPUMP_IMP_FULL_DATABASE role on the target database, then that user must also
have the DATAPUMP_EXP_FULL_DATABASE role on the source database.

Filtering can restrict what is imported using this import mode.

FULL is the default mode, and does not need to be specified on the command line
when you are performing a file-based import, but if you are performing a network-
based full import then you must specify FULL=Y on the command line.

You can use the transportable option during a full-mode import to perform a full
transportable import.

Restrictions

• The Automatic Workload Repository (AWR) is not moved in a full database export
and import operation. (See Oracle Database Performance Tuning Guide for
information about using Data Pump to move AWR snapshots.)

• The XDB repository is not moved in a full database export and import operation.
User created XML schemas are moved.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-37

• If the target is Oracle Database 12c Release 1 (12.1.0.1) or later and the source is
Oracle Database 11g Release 2 (11.2.0.3) or later, then Full imports performed
over a network link require that you set VERSION=12

Example

The following is an example of using the FULL parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DUMPFILE=dpump_dir1:expfull.dmp FULL=YES
LOGFILE=dpump_dir2:full_imp.log

This example imports everything from the expfull.dmp dump file. In this example, a
DIRECTORY parameter is not provided. Therefore, a directory object must be provided
on both the DUMPFILE parameter and the LOGFILE parameter. The directory objects can
be different, as shown in this example.

Related Topics

• Filtering During Import Operations

• Full Import Mode

• Oracle Database Performance Tuning Guide

• FULL

3.4.19 HELP
The Data Pump Import command-line mode HELP parameter displays online help for
the Import utility.

Default: NO

Purpose

Displays online help for the Import utility.

Syntax and Description

HELP=YES

If HELP=YES is specified, then Import displays a summary of all Import command-line
parameters and interactive commands.

Example

This example displays a brief description of all Import parameters and commands.

> impdp HELP = YES

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-38

3.4.20 INCLUDE
The Data Pump Import command-line mode INCLUDE parameter enables you to filter
the metadata that is imported by specifying objects and object types for the current
import mode.

Default

There is no default.

Purpose

Enables you to filter the metadata that is imported by specifying objects and object
types for the current import mode.

Syntax and Description

INCLUDE = object_type[:name_clause] [, ...]

The variable object_type in the syntax specifies the type of object that you want to
include. To see a list of valid values for object_type, query the following views:

• Full mode: DATABASE_EXPORT_OBJECTS

• Schema mode: SCHEMA_EXPORT_OBJECTS

• Table and Tablespace mode: TABLE_EXPORT_OBJECTS

In the query result, the values listed in the OBJECT_PATH column are the valid object
types. (See "Metadata Filters" for an example of how to perform such a query.)

Only object types in the source (and their dependents) that you explicitly specify in the
INCLUDE statement are imported.

The variable name_clause in the syntax is optional. It enables you to perform fine-
grained selection of specific objects within an object type. It is a SQL expression used
as a filter on the object names of the type. It consists of a SQL operator, and the
values against which the object names of the specified type are to be compared. The
name_clause applies only to object types whose instances have names (for example, it
is applicable to TABLE, but not to GRANT). It must be separated from the object type with
a colon, and enclosed in double quotation marks. You must use double quotation
marks, because single quotation marks are required to delimit the name strings.

The name string that you supply for the name_clause must exactly match an existing
object in the database, including upper and lower case. For example, if the
name_clause that you supply is for a table named EMPLOYEES, then there must be an
existing table named EMPLOYEES, using all upper case characters. If the name_clause is
supplied as Employees, or employees, or uses any other variation from the existing
table names string, then the table is not found.

You can specify more than one INCLUDE statement.

Depending on your operating system, when you specify a value for this parameter with
the use of quotation marks, you can also be required to use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that you otherwise must use in the command line..

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-39

To see a list of valid paths for use with the INCLUDE parameter, query the following
views:

• Full mode: DATABASE_EXPORT_OBJECTS

• Schema mode: SCHEMA_EXPORT_OBJECTS

• Table and Tablespace mode: TABLE_EXPORT_OBJECTS

Starting with Oracle Database 20c, the following additional enhancements are
available:

• You can include and exclude JSON and SODA collections. For example, where
the collection name is DOCUMENT_SET:

INCLUDE=SODA_COLLECTION:”IN (‘DOCUMENT_SET’)

• You can set both INCLUDE and EXCLUDE parameters in the same command.

When you include both parameters in a command, Oracle Data Pump processes
the INCLUDE parameter first, and includes all objects identified by the parameter.
Then it processes the exclude parameters. Any objects specified by the EXCLUDE
parameter that are in the list of include objects are removed as the command
executes.

Example

Assume the following is in a parameter file named imp_include.par. This parameter
file is being used by a DBA or some other user that is granted the role
DATAPUMP_IMP_FULL_DATABASE:

INCLUDE=FUNCTION
INCLUDE=PROCEDURE
INCLUDE=PACKAGE
INCLUDE=INDEX:"LIKE 'EMP%' "

With the aid of this parameter file, you can then issue the following command:

> impdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
PARFILE=imp_include.par

You can create the expfull.dmp dump file used in this example by running the
example provided for the Export FULL parameter.

The Import operation will load only functions, procedures, and packages from the hr
schema and indexes whose names start with EMP. Although this is a privileged-mode
import (the user must have the DATAPUMP_IMP_FULL_DATABASE role), the schema
definition is not imported, because the USER object type was not specified in an
INCLUDE statement.

Related Topics

• Oracle Data Pump Metadata Filters

• About Import Command-Line Mode

• FULL

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-40

3.4.21 JOB_NAME
The Data Pump Import command-line mode JOB_NAME parameter is used to identify the
import job in subsequent actions.

Default: system-generated name of the form SYS_IMPORT or SQLFILE_mode_NN

Purpose

UseJOB_NAME parameter when you want to identify the import job in subsequent
actions. For example, when you want to use the ATTACH parameter to attach to a job,
you use the JOB_NAME parameter to identify the job you want to attach. You can also
use JOB_NAME to identify the job by using the views DBA_DATAPUMP_JOBS or
USER_DATAPUMP_JOBS.

Syntax and Description

JOB_NAME=jobname_string

The variable jobname_string specifies a name of up to 128 bytes for the import job.
The bytes must represent printable characters and spaces. If the string includes
spaces, then the name must be enclosed in single quotation marks (for example,
'Thursday Import'). The job name is implicitly qualified by the schema of the user
performing the import operation. The job name is used as the name of the master
table, which controls the export job.

The default job name is system-generated in the form SYS_IMPORT_mode_NN or
SYS_SQLFILE_mode_NN, where NN expands to a 2-digit incrementing integer, starting at
01. For example, SYS_IMPORT_TABLESPACE_02' is a default job name.

Example

The following is an example of using the JOB_NAME parameter. You can create the
expfull.dmp dump file that is used in this example by running the example provided in
the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp JOB_NAME=impjob01

Related Topics

• FULL

3.4.22 KEEP_MASTER
The Data Pump Import command-line mode KEEP_MASTER parameter indicates
whether the master table should be deleted or retained at the end of a Data Pump job
that completes successfully.

Default: NO

Purpose

Indicates whether the master table should be deleted or retained at the end of a Data
Pump job that completes successfully. The master table is automatically retained for
jobs that do not complete successfully.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-41

Syntax and Description

KEEP_MASTER=[YES | NO]

Restrictions

• None

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp KEEP_MASTER=YES

3.4.23 LOGFILE
The Data Pump Import command-line mode LOGFILE parameter specifies the name,
and optionally, a directory object, for the log file of the import job.

Default: import.log

Purpose

Specifies the name, and optionally, a directory object, for the log file of the import job.

Syntax and Description

LOGFILE=[directory_object:]file_name

If you specify a directory_object, then it must be one that was previously established
by the DBA, and to which you have access. This parameter overrides the directory
object specified with the DIRECTORY parameter. The default behavior is to create
import.log in the directory referenced by the directory object specified in the
DIRECTORY parameter.

If the file_name you specify already exists, then it is overwritten.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in
interactive mode.)

A log file is always created, unless you specify the NOLOGFILE parameter. As with the
dump file set, the log file is relative to the server, and not the client.

Note:

Data Pump Import writes the log file using the database character set. If your
client NLS_LANG environment sets up a different client character set from the
database character set, then it is possible that table names can be different
in the log file than they are when displayed on the client output screen.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-42

Restrictions

• To perform a Data Pump Import using Oracle Automatic Storage Management
(Oracle ASM), you must specify a LOGFILE parameter that includes a directory
object that does not include the Oracle ASM + notation. That is, the log file must
be written to a disk file, and not written into the Oracle ASM storage. Alternatively,
you can specify NOLOGFILE=YES. However, this prevents the writing of the log file.

Example

The following is an example of using the LOGFILE parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr SCHEMAS=HR DIRECTORY=dpump_dir2 LOGFILE=imp.log
 DUMPFILE=dpump_dir1:expfull.dmp

Because no directory object is specified on the LOGFILE parameter, the log file is
written to the directory object specified on the DIRECTORY parameter.

Related Topics

• STATUS

• Using Directory Objects When Oracle Automatic Storage Management Is Enabled

• FULL

3.4.24 LOGTIME
The Data Pump Import command-line mode LOGTIME parameter specifies that you
want to have messages displayed with timestamps during import.

Default: No timestamps are recorded

Purpose

Specifies that you want to have messages displayed with timestamps during import..
You can use the timestamps to figure out the elapsed time between different phases of
a Data Pump operation. Such information can be helpful in diagnosing performance
problems and estimating the timing of future similar operations.

Syntax and Description

LOGTIME=[NONE | STATUS | LOGFILE | ALL]

The available options are defined as follows:

• NONE: No timestamps on status or log file messages (same as default)

• STATUS: Timestamps on status messages only

• LOGFILE: Timestamps on log file messages only

• ALL: Timestamps on both status and log file messages

Restrictions

• None

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-43

Example

The following example records timestamps for all status and log file messages that are
displayed during the import operation:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr LOGTIME=ALL
TABLE_EXISTS_ACTION=REPLACE

For an example of what the LOGTIME output looks like, see the Export LOGTIME
parameter.

Related Topics

• LOGTIME

3.4.25 MASTER_ONLY
The Data Pump Import command-line mode MASTER_ONLY parameter indicates whether
to import just the master table and then stop the job so that the contents of the master
table can be examined.

Default: NO

Purpose

Indicates whether to import just the master table and then stop the job so that the
contents of the master table can be examined.

Syntax and Description

MASTER_ONLY=[YES | NO]

Restrictions

• If the NETWORK_LINK parameter is also specified, then MASTER_ONLY=YES is not
supported.

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp MASTER_ONLY=YES

3.4.26 METRICS
The Data Pump Import command-line mode METRICS parameter indicates whether
additional information about the job should be reported to the Data Pump log file.

Default: NO

Purpose

Indicates whether additional information about the job should be reported to the Data
Pump log file.

Syntax and Description

METRICS=[YES | NO]

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-44

When METRICS=YES is used, the number of objects and the elapsed time are recorded
in the Data Pump log file.

Restrictions

• None

Example

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp METRICS=YES

3.4.27 NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK_LINK parameter enables
an import from a source database identified by a valid database link.

Default:

There is no default

Purpose

Enables an import from a source database identified by a valid database link. The data
from the source database instance is written directly back to the connected database
instance.

Syntax and Description

NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an import via a database link. This means that
the system to which the impdp client is connected contacts the source database
referenced by the source_database_link, retrieves data from it, and writes the data
directly to the database on the connected instance. There are no dump files involved.

The source_database_link provided must be the name of a database link to an
available database. If the database on that instance does not already have a database
link, then you or your DBA must create one using the SQL CREATE DATABASE LINK
statement.

When you perform a network import using the transportable method, you must copy
the source data files to the target database before you start the import.

If the source database is read-only, then the connected user must have a locally
managed tablespace assigned as the default temporary tablespace on the source
database. Otherwise, the job will fail.

This parameter is required when any of the following parameters are specified:
FLASHBACK_SCN, FLASHBACK_TIME, ESTIMATE, TRANSPORT_TABLESPACES, or
TRANSPORTABLE.

The following types of database links are supported for use with Oracle Data Pump
Import:

• Public fixed user

• Public connected user

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-45

• Public shared user (only when used by link owner)

• Private shared user (only when used by link owner)

• Private fixed user (only when used by link owner)

Caution:

If an import operation is performed over an unencrypted network link, then all
data is imported as clear text even if it is encrypted in the database. See
Oracle Database Security Guide for more information about network security.

Restrictions

• The following types of database links are not supported for use with Oracle Data
Pump Import:

– Private connected user

– Current user

• The Import NETWORK_LINK parameter is not supported for tables containing
SecureFiles that have ContentType set or that are currently stored outside of the
SecureFiles segment through Oracle Database File System Links.

• Network imports do not support the use of evolved types.

• When operating across a network link, Data Pump requires that the source and
target databases differ by no more than two versions. For example, if one
database is Oracle Database 12c, then the other database must be 12c, 11g, or
10g. Note that Oracle Data Pump checks only the major version number (for
example, 10g,11g, 12c), not specific release numbers (for example, 12.1, 12.2,
11.1, 11.2, 10.1, or 10.2).

• If the USERID that is executing the import job has the
DATAPUMP_IMP_FULL_DATABASE role on the target database, then that user must
also have the DATAPUMP_EXP_FULL_DATABASE role on the source database.

• Network mode import does not use parallel query (PQ) slaves.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is also
used

• When transporting a database over the network using full transportable import,
auditing cannot be enabled for tables stored in an administrative tablespace (such
as SYSTEM and SYSAUX) if the audit trail information itself is stored in a user-defined
tablespace.

Example

In the following syntax example, replace source_database_link with the name of a
valid database link.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link EXCLUDE=CONSTRAINT

This example results in an import of the employees table (excluding constraints) from
the source database. The log file is written to dpump_dir1, specified on the DIRECTORY
parameter.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-46

Related Topics

• PARALLEL

See Also:

• Oracle Database Administrator’s Guide for more information about
database links

• Oracle Database SQL Language Reference for more information about
the CREATE DATABASE LINK statement

• Oracle Database Administrator’s Guide for more information about
locally managed tablespaces

3.4.28 NOLOGFILE
The Data Pump Import command-line mode NOLOGFILE parameter specifies whether to
suppress the default behavior of creating a log file.

Default: NO

Purpose

Specifies whether to suppress the default behavior of creating a log file.

Syntax and Description

NOLOGFILE=[YES | NO]

If you specify NOLOGFILE=YES to suppress creation of a log file, then progress and error
information is still written to the standard output device of any attached clients,
including the client that started the original export operation. If there are no clients
attached to a running job, and you specify NOLOGFILE=YES, then you run the risk of
losing important progress and error information.

Example

The following is an example of using the NOLOGFILE parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp NOLOGFILE=YES

This command results in a full mode import (the default for file-based imports) of the
expfull.dmp dump file. No log file is written, because NOLOGFILE is set to YES.

3.4.29 PARALLEL
The Oracle Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

Default: 1

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-47

Purpose

Specifies the maximum number of processes of active execution operating on behalf
of the import job.

Syntax and Description

PARALLEL=integer

The value that you specify for integer specifies the maximum number of processes of
active execution operating on behalf of the import job. This execution set consists of a
combination of worker processes and parallel I/O server processes. The master
control process, idle workers, and worker processes acting as parallel execution
coordinators in parallel I/O operations do not count toward this total. This parameter
enables you to make trade-offs between resource consumption and elapsed time.

If the source of the import is a dump file set consisting of files, then multiple processes
can read from the same file, but performance can be limited by I/O contention.

To increase or decrease the value of PARALLEL during job execution, use interactive-
command mode.

Using PARALLEL During a Network Mode Import

During a network mode import, the PARALLEL parameter defines the maximum number
of worker processes that can be assigned to the job. To understand the effect of the
PARALLEL parameter during a network import mode, it is important to understand the
concept of "table_data objects" as defined by Data Pump. When Data Pump moves
data, it considers the following items to be individual "table_data objects":

• a complete table (one that is not partitioned or subpartitioned)

• partitions, if the table is partitioned but not subpartitioned

• subpartitions, if the table is subpartitioned

For example:

• A nonpartitioned table, scott.non_part_table, has one table_data object:

scott.non_part_table

• A partitioned table, scott.part_table (having partition p1 and partition p2), has
two table_data objects:

scott.part_table:p1

scott.part_table:p2

• A subpartitioned table, scott.sub_part_table (having partition p1 and p2, and
subpartitions p1s1, p1s2, p2s1, and p2s2) has four table_data objects:

scott.sub_part_table:p1s1

scott.sub_part_table:p1s2

scott.sub_part_table:p2s1

scott.sub_part_table:p2s2

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-48

During a network mode import, each table_data object is assigned its own worker
process, up to the value specified for the PARALLEL parameter. No parallel query (PQ)
slaves are assigned because network mode import does not use parallel query (PQ)
slaves. Multiple table_data objects can be unloaded at the same time. However, each
table_data object is unloaded using a single process.

Using PARALLEL During An Import In An Oracle RAC Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, if an import
operation has PARALLEL=1, then all Data Pump processes reside on the instance
where the job is started. Therefore, the directory object can point to local storage for
that instance.

If the import operation has PARALLEL set to a value greater than 1, then Data Pump
processes can reside on instances other than the one where the job was started.
Therefore, the directory object must point to shared storage that is accessible by all
instances of the Oracle RAC.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

• Transportable tablespace metadata cannnot be imported in parallel.

• To import a table or table partition in parallel (using PQ slaves), you must have the
DATAPUMP_IMP_FULL_DATABASE role.

• In addition, the following objects cannot be imported in parallel:

– TRIGGER

– VIEW

– OBJECT_GRANT

– SEQUENCE

– CONSTRAINT

– REF_CONSTRAINT

Example

The following is an example of using the PARALLEL parameter.

> impdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_import.log
JOB_NAME=imp_par3 DUMPFILE=par_exp%U.dmp PARALLEL=3

This command imports the dump file set that is created when you run the example for
the Export PARALLEL parameter) The names of the dump files are par_exp01.dmp,
par_exp02.dmp, and par_exp03.dmp.

Related Topics

• PARALLEL

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-49

3.4.30 PARFILE
The Data Pump Import command-line mode PARFILE parameter specifies the name of
an import parameter file.

Default: There is no default

Purpose

Specifies the name of an import parameter file.

Syntax and Description

PARFILE=[directory_path]file_name

A parameter file allows you to specify Data Pump parameters within a file, and then
that file can be specified on the command line instead of entering all the individual
commands. This can be useful if you use the same parameter combination many
times. The use of parameter files is also highly recommended if you are using
parameters whose values require the use of quotation marks.

A directory object is not specified for the parameter file because unlike dump files, log
files, and SQL files which are created and written by the server, the parameter file is
opened and read by the impdp client. The default location of the parameter file is the
user's current directory.

Within a parameter file, a comma is implicit at every newline character so you do not
have to enter commas at the end of each line. If you have a long line that wraps, such
as a long table name, enter the backslash continuation character (\) at the end of the
current line to continue onto the next line.

The contents of the parameter file are written to the Data Pump log file.

Restrictions

• The PARFILE parameter cannot be specified within a parameter file.

Example

Suppose the content of an example parameter file, hr_imp.par, are as follows:

TABLES= countries, locations, regions
DUMPFILE=dpump_dir2:exp1.dmp,exp2%U.dmp
DIRECTORY=dpump_dir1
PARALLEL=3

You can then issue the following command to execute the parameter file:

> impdp hr PARFILE=hr_imp.par

As a result of the command, the tables named countries, locations, and regions are
imported from the dump file set that is created when you run the example for the
Export DUMPFILE parameter. (See the Export DUMPFILE parameter.) The import job
looks for the exp1.dmp file in the location pointed to by dpump_dir2. It looks for any

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-50

dump files of the form exp2nn.dmp in the location pointed to by dpump_dir1. The log file
for the job is also written to dpump_dir1.

Related Topics

• DUMPFILE

• About Import Command-Line Mode

3.4.31 PARTITION_OPTIONS
The Data Pump Import command-line mode PARTITION_OPTIONS parameter specifies
how you want table partitions created during an import operation.

Default

The default is departition when partition names are specified on the TABLES
parameter and TRANPORTABLE=ALWAYS is set (whether on the import operation or during
the export). Otherwise, the default is none.

Purpose

Specifies how you want table partitions created during an import operation.

Syntax and Description

PARTITION_OPTIONS=[NONE | DEPARTITION | MERGE]

A value of NONE creates tables as they existed on the system from which the export
operation was performed. If the export was performed with the transportable method,
with a partition or subpartition filter, then you cannot use either the NONE option or the
MERGE option. In that case, you must use the DEPARTITION option.

A value of DEPARTITION promotes each partition or subpartition to a new individual
table. The default name of the new table is the concatenation of the table and partition
name, or the table and subpartition name, as appropriate.

A value of MERGE combines all partitions and subpartitions into one table.

Parallel processing during import of partitioned tables is subject to the following:

• If a partitioned table is imported into an existing partitioned table, then Data Pump
only processes one partition or subpartition at a time, regardless of any value
specified with the PARALLEL parameter.

• If the table into which you are importing does not already exist, and Data Pump
has to create it, then the import runs in parallel up to the parallelism specified on
the PARALLEL parameter when the import is started.

Restrictions

• You use departitioning to create and populate tables that are based on the source
tables partitions.

To avoid naming conflicts, when the value for PARTITION_OPTIONS is set to
DEPARTITION, then the dependent objects, such as constraints and indexes, are
not created along with these tables. This error message is included in the log file if

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-51

any tables are affected by this restriction: ORA-39427: Dependent objects of
partitioned tables will not be imported. To suppress this message, you can
use the EXCLUDE parameter to exclude dependent objects from the import.

• When the value for PARTITION_OPTIONS is set to MERGE, domain indexes are
not created with these tables. If this event occurs, then the error is reported in the
log file: ORA-39426: Domain indexes of partitioned tables will not be
imported. To suppress this message, you can use the EXCLUDE parameter to
exclude the indexes: EXCLUDE=DOMAIN_INDEX.

• If the export operation that created the dump file was performed with the
transportable method, and if a partition or subpartition was specified, then the
import operation must use the DEPARTITION option.

• If the export operation that created the dump file was performed with the
transportable method, then the import operation cannot use
PARTITION_OPTIONS=MERGE.

• If there are any grants on objects being departitioned, then an error message is
generated, and the objects are not loaded.

Example

The following example assumes that the sh.sales table has been exported into a
dump file named sales.dmp. It uses the merge option to merge all the partitions in
sh.sales into one non-partitioned table in scott schema.

> impdp system TABLES=sh.sales PARTITION_OPTIONS=MERGE
DIRECTORY=dpump_dir1 DUMPFILE=sales.dmp REMAP_SCHEMA=sh:scott

Related Topics

• TRANSPORTABLE

See Also:

The Export TRANSPORTABLE parameter for an example of performing an
import operation using PARTITION_OPTIONS=DEPARTITION

3.4.32 QUERY
The Oracle Data Pump Import command-line mode QUERY parameter enables you to
specify a query clause that filters the data that is imported.

Default

There is no default

Purpose

Enables you to specify a query clause that filters the data that is imported.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-52

Syntax and Description

QUERY=[[schema_name.]table_name:]query_clause

The query_clause typically is a SQL WHERE clause for fine-grained row selection.
However, it can be any SQL clause. For example, you can use an ORDER BY clause to
speed up a migration from a heap-organized table to an index-organized table. If a
schema and table name are not supplied, then the query is applied to (and must be
valid for) all tables in the source dump file set or database. A table-specific query
overrides a query applied to all tables.

When you want to apply the query to a specific table, you must separate the table
name from the query cause with a colon (:). You can specify more than one table-
specific query , but only one query can be specified per table.

If the NETWORK_LINK parameter is specified along with the QUERY parameter, then any
objects specified in the query_clause that are on the remote (source) node must be
explicitly qualified with the NETWORK_LINK value. Otherwise, Data Pump assumes that
the object is on the local (target) node; if it is not, then an error is returned and the
import of the table from the remote (source) system fails.

For example, if you specify NETWORK_LINK=dblink1, then the query_clause of the
QUERY parameter must specify that link, as shown in the following example:

QUERY=(hr.employees:"WHERE last_name IN(SELECT last_name
FROM hr.employees@dblink1)")

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter may also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line.
See ”About Import Command-Line Mode."

If you use the QUERY parameter , then the external tables method (rather than the direct
path method) is used for data access.

To specify a schema other than your own in a table-specific query, you must be
granted access to that specific table.

Restrictions

• When trying to select a subset of rows stored in the export dump file, the QUERY
parameter cannot contain references to virtual columns for import

The reason for this restriction is that virtual column values are only present in a
table in the database. Such a table does not contain the virtual column data in an
Oracle Data Pump export file, so having a reference to a virtual column in an
import QUERY parameter does not match any known column in the source table in
the dump file. However, you can include the virtual column in an import QUERY
parameter if you use a network import link (NETWORK_LINK=dblink to source db)
that imports directly from the source table in the remote database.

• You cannot use the QUERY parameter with the following parameters:

– CONTENT=METADATA_ONLY

– SQLFILE

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-53

– TRANSPORT_DATAFILES

• When the QUERY parameter is specified for a table, Oracle Data Pump uses
external tables to load the target table. External tables uses a SQL INSERT
statement with a SELECT clause. The value of the QUERY parameter is included in
the WHERE clause of the SELECT portion of the INSERT statement. If the QUERY
parameter includes references to another table with columns whose names match
the table being loaded, and if those columns are used in the query, then you must
use a table alias to distinguish between columns in the table being loaded, and
columns in the SELECT statement with the same name.

For example, suppose you are importing a subset of the sh.sales table based on
the credit limit for a customer in the sh.customers table. In the following example,
the table alias used by Data Pump for the table being loaded is KU$. KU$ is used to
qualify the cust_id field in the QUERY parameter for loading sh.sales. As a result,
Data Pump imports only rows for customers whose credit limit is greater
than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

If KU$ is not used for a table alias, then all rows are loaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

• The maximum length allowed for a QUERY string is 4000 bytes, including quotation
marks, which means that the actual maximum length allowed is 3998 bytes.

Example

The following is an example of using the QUERY parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter. See the Export FULL parameter. Because the QUERY value
uses quotation marks, Oracle recommends that you use a parameter file.

Suppose you have a parameter file, query_imp.par, that contains the following:

QUERY=departments:"WHERE department_id < 120"

You can then enter the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
 PARFILE=query_imp.par NOLOGFILE=YES

All tables in expfull.dmp are imported, but for the departments table, only data that
meets the criteria specified in the QUERY parameter is imported.

Related Topics

• About Import Command-Line Mode

• FULL

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-54

3.4.33 REMAP_DATA
The Data Pump Import command-line mode REMAP_DATA parameter enables you to
remap data as it is being inserted into a new database.

Default: There is no default

Purpose

The REMAP_DATA parameter enables you to remap data as it is being inserted into a
new database. A common use is to regenerate primary keys to avoid conflict when
importing a table into a pre-existing table on the target database.

You can specify a remap function that takes as a source the value of the designated
column from either the dump file or a remote database. The remap function then
returns a remapped value that replaces the original value in the target database.

The same function can be applied to multiple columns being dumped. This function is
useful when you want to guarantee consistency in remapping both the child and parent
column in a referential constraint.

Syntax and Description

REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

The following is a list of each syntax element, in the order in which they appear in the
syntax:

schema: the schema containing the table that you want remapped. By default, this
schema is the schema of the user doing the import.

tablename: the table whose column is remapped.

column_name: the column whose data is to be remapped.

schema: the schema containing the PL/SQL package you created that contains the
remapping function. As a default, this is the schema of the user doing the import.

pkg: the name of the PL/SQL package you created that contains the remapping
function.

function: the name of the function within the PL/SQL that is called to remap the
column table in each row of the specified table.

Restrictions

• The data types and sizes of the source argument and the returned value must
both match the data type and size of the designated column in the table.

• Remapping functions should not perform commits or rollbacks except in
autonomous transactions.

• The use of synonyms as values for the REMAP_DATA parameter is not supported.
For example, if the regions table in the hr schema had a synonym of regn, an
error would be returned if you specified regn as part of the REMPA_DATA
specification.

• Remapping LOB column data of a remote table is not supported.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-55

• REMAP_DATA does not support columns of the following types: User-Defined Types,
attributes of User-Defined Types, LONG, REF, VARRAY, Nested Tables, BFILE, and
XMLtype.

Example

The following example assumes a package named remap has been created that
contains a function named plusx that changes the values for first_name in the
employees table.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_DATA=hr.employees.first_name:hr.remap.plusx

3.4.34 REMAP_DATAFILE
Default: There is no default

Purpose

Changes the name of the source data file to the target data file name in all SQL
statements where the source data file is referenced: CREATE TABLESPACE, CREATE
LIBRARY, and CREATE DIRECTORY.

Syntax and Description

REMAP_DATAFILE=source_datafile:target_datafile

Remapping data files is useful when you move databases between platforms that have
different file naming conventions. The source_datafile and target_datafile names
should be exactly as you want them to appear in the SQL statements where they are
referenced. Oracle recommends that you enclose data file names in quotation marks
to eliminate ambiguity on platforms for which a colon is a valid file specification
character.

Depending on your operating system, escape characters can be required if you use
quotation marks when you specify a value for this parameter. Oracle recommends that
you place this parameter in a parameter file, which can reduce the number of escape
characters that you otherwise would require on the command line.

You must have the DATAPUMP_IMP_FULL_DATABASE role to specify this parameter.

Example

Suppose you had a parameter file, payroll.par, with the following content:

DIRECTORY=dpump_dir1
FULL=YES
DUMPFILE=db_full.dmp
REMAP_DATAFILE="'DB1$:[HRDATA.PAYROLL]tbs6.dbf':'/db1/hrdata/payroll/
tbs6.dbf'"

You can then issue the following command:

> impdp hr PARFILE=payroll.par

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-56

This example remaps a VMS file specification (DR1$:[HRDATA.PAYROLL]tbs6.dbf) to a
UNIX file specification, (/db1/hrdata/payroll/tbs6.dbf) for all SQL DDL statements
during the import. The dump file, db_full.dmp, is located by the directory object,
dpump_dir1.

Related Topics

• About Import Command-Line Mode

3.4.35 REMAP_DIRECTORY
The Data Pump Import command-line mode REMAP_DIRECTORY parameter

The REMAP_DIRECTORY parameter lets you remap directories when you move
databases between platforms.

Default: There is no default.

Purpose

The REMAP_DIRECTORY parameter changes the source directory string to the target
directory string in all SQL statements where the source directory is the left-most
portion of a full file or directory specification: CREATE TABLESPACE, CREATE LIBRARY,
and CREATE DIRECTORY.

Syntax and Description

REMAP_DIRECTORY=source_directory_string:target_directory_string

Remapping a directory is useful when you move databases between platforms that
have different directory file naming conventions. This provides an easy way to remap
multiple data files in a directory when you only want to change the directory file
specification while preserving the original data file names.

The source_directory_string and target_directory_string should be exactly as
you want them to appear in the SQL statements where they are referenced. In
addition, Oracle recommends that the directory be properly terminated with the
directory file terminator for the respective source and target platform. Oracle
recommends that you enclose the directory names in quotation marks to eliminate
ambiguity on platforms for which a colon is a valid directory file specification character.

Depending on your operating system, escape characters can be required if you use
quotation marks when you specify a value for this parameter. Oracle recommends that
you place this parameter in a parameter file, which can reduce the number of escape
characters that you otherwise would require on the command line.

You must have the DATAPUMP_IMP_FULL_DATABASE role to specify this parameter.

Restrictions

• The REMAP_DIRECTORY and REMAP_DATAFILE parameters are mutually exclusive.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-57

Example

Suppose you want to remap the following data files:

DB1$:[HRDATA.PAYROLL]tbs5.dbf
DB1$:[HRDATA.PAYROLL]tbs6.dbf

In addition, you have a parameter file, payroll.par, with the following content:

DIRECTORY=dpump_dir1
FULL=YES
DUMPFILE=db_full.dmp
REMAP_DIRECTORY="'DB1$:[HRDATA.PAYROLL]':'/db1/hrdata/payroll/'"

You can issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps the VMS file specifications (DB1$:[HRDATA.PAYROLL]tbs5.dbf,
and DB1$:[HRDATA.PAYROLL]tbs6.dbf) to UNIX file specifications, (/db1/hrdata/
payroll/tbs5.dbf, and /db1/hrdata/payroll/tbs6.dbf) for all SQL DDL statements
during the import. The dump file, db_full.dmp, is located by the directory object,
dpump_dir1.

3.4.36 REMAP_SCHEMA
The Data Pump Import command-line mode REMAP_SCHEMA parameter loads all
objects from the source schema into a target schema.

Default: There is no default

Purpose

Loads all objects from the source schema into a target schema.

Syntax and Description

REMAP_SCHEMA=source_schema:target_schema

Multiple REMAP_SCHEMA lines can be specified, but the source schema must be different
for each one. However, different source schemas can map to the same target schema.
The mapping can be incomplete; see the Restrictions section in this topic.

If the schema you are remapping to does not exist before the import, then the import
operation can create it, except in the case of REMAP_SCHEMA for the SYSTEM user. The
target schema of the REMAP_SCHEMA must exist before the import. To create the
schema, the dump file set must contain the necessary CREATE USER metadata for the
source schema, and you must be carrying out the import with enough privileges. For
example, the following Export commands create dump file sets with the necessary
metadata to create a schema, because the user SYSTEM has the necessary privileges:

> expdp system SCHEMAS=hr
Password: password

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-58

> expdp system FULL=YES
Password: password

If your dump file set does not contain the metadata necessary to create a schema, or if
you do not have privileges, then the target schema must be created before the import
operation is performed. You must have the target schema created before the import,
because the unprivileged dump files do not contain the necessary information for the
import to create the schema automatically.

For Oracle Database releases earlier than Oracle Database 11g, if the import
operation does create the schema, then after the import is complete, you must assign
it a valid password to connect to it. You can then use the following SQL statement to
assign the password; note that you require privileges:

SQL> ALTER USER schema_name IDENTIFIED BY new_password

In Oracle Database releases after Oracle Database 11g Release 1 (11.1.0.1), it is no
longer necessary to reset the schema password; the original password remains valid.

Restrictions

• Unprivileged users can perform schema remaps only if their schema is the target
schema of the remap. (Privileged users can perform unrestricted schema remaps.)
For example, SCOTT can remap his BLAKE's objects to SCOTT, but SCOTT cannot
remap SCOTT's objects to BLAKE.

• The mapping can be incomplete, because there are certain schema references
that Import is not capable of finding. For example, Import does not find schema
references embedded within the body of definitions of types, views, procedures,
and packages.

• For triggers, REMAP_SCHEMA affects only the trigger owner.

• If any table in the schema being remapped contains user-defined object types, and
that table changes between the time it is exported and the time you attempt to
import it, then the import of that table fails. However, the import operation itself
continues.

• By default, if schema objects on the source database have object identifiers
(OIDs), then they are imported to the target database with those same OIDs. If an
object is imported back into the same database from which it was exported, but
into a different schema, then the OID of the new (imported) object is the same as
that of the existing object and the import fails. For the import to succeed, you must
also specify the TRANSFORM=OID:N parameter on the import. The transform OID:N
causes a new OID to be created for the new object, which allows the import to
succeed.

Example

Suppose that, as user SYSTEM, you execute the following Export and Import commands
to remap the hr schema into the scott schema:

> expdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp REMAP_SCHEMA=hr:scott

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-59

In this example, if user scott already exists before the import, then the Import
REMAP_SCHEMA command adds objects from the hr schema into the existing scott
schema. You can connect to the scott schema after the import by using the existing
password (without resetting it).

If user scott does not exist before you execute the import operation, then Import
automatically creates it with an unusable password. This action is possible because
the dump file, hr.dmp, was created by SYSTEM, which has the privileges necessary to
create a dump file that contains the metadata needed to create a schema. However,
you cannot connect to scott on completion of the import, unless you reset the
password for scott on the target database after the import completes.

3.4.37 REMAP_TABLE
The Data Pump Import command-line mode REMAP_TABLE parameter enables you to
rename tables during an import operation.

Default: There is no default

Purpose

Enables you to rename tables during an import operation.

Syntax and Description

You can use either of the following syntaxes (see the Usage Notes):

REMAP_TABLE=[schema.]old_tablename[.partition]:new_tablename

OR

REMAP_TABLE=[schema.]old_tablename[:partition]:new_tablename

If the table is being departitioned, then ou can use the REMAP_TABLE parameter to
rename entire tables, or to rename table partitions (See PARTITION_OPTIONS).

You can also use REMAP_TABLE to override the automatic naming of exported table
partitions.

Usage Notes

With the first syntax, if you specify REMAP_TABLE=A.B:C, then Import assumes that A is
a schema name, B is the old table name, and C is the new table name. To use the first
syntax to rename a partition that is being promoted to a nonpartitioned table, you must
specify a schema name.

To use the second syntax to rename a partition being promoted to a nonpartitioned
table, you qualify it with the old table name. No schema name is required.

Restrictions

• The REMAP_TABLE parameter only handles user-created tables. Data Pump does
not have enough information for any dependent tables created internally.
Therefore, the REMAP_TABLE parameter cannot remap internally created tables.

• Only objects created by the Import are remapped. In particular, pre-existing tables
are not remapped.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-60

• If the table being remapped has named constraints in the same schema, and the
constraints must be created when the table is created, then REMAP_TABLE
parameter does not work

Example

The following is an example of using the REMAP_TABLE parameter to rename the
employees table to a new name of emps:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_TABLE=hr.employees:emps

Related Topics

• PARTITION_OPTIONS

3.4.38 REMAP_TABLESPACE
The Data Pump Import command-line mode REMAP_TABLESPACE parameter remaps all
objects selected for import with persistent data in the source tablespace to be created
in the target tablespace.

Default: There is no default

Purpose

Remaps all objects selected for import with persistent data in the source tablespace to
be created in the target tablespace.

Syntax and Description

REMAP_TABLESPACE=source_tablespace:target_tablespace

Multiple REMAP_TABLESPACE parameters can be specified, but no 2 can have the same
source tablespace. The target schema must have sufficient quota in the target
tablespace.

REMAP_TABLESPACE is the only way to remap a tablespace in Data Pump Import. The
REMAP_TABLESPACE method is a simpler and cleaner method than the one provided in
the original Import utility. That method was subject to many restrictions (including the
number of tablespace subclauses), which sometimes resulted in the failure of some
DDL commands.

By contrast, the Data Pump Import method of using the REMAP_TABLESPACE parameter
works for all objects, including the user, and it works regardless of how many
tablespace subclauses are in the DDL statement.

Restrictions

• Data Pump Import can only remap tablespaces for transportable imports in
databases where the compatibility level is set to 10.1 or later.

• Only objects created by the Import are remapped. In particular, if
TABLE_EXISTS_ACTION is set to SKIP, TRUNCATE, or APPEND, then the tablespaces
for pre-existing tables are not remapped.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-61

Example

The following is an example of using the REMAP_TABLESPACE parameter.

> impdp hr REMAP_TABLESPACE=tbs_1:tbs_6 DIRECTORY=dpump_dir1
 DUMPFILE=employees.dmp

3.4.39 SCHEMAS
The Data Pump Import command-line mode SCHEMAS parameter specifies that you
want a schema-mode import to be performed.

Default: There is no default

Purpose

Specifies that you want a schema-mode import to be performed.

Syntax and Description

SCHEMAS=schema_name [,...]

If you have the DATAPUMP_IMP_FULL_DATABASE role, then you can use this parameter to
perform a schema-mode import by specifying a list of schemas to import. First, the
user definitions are imported (if they do not already exist), including system and role
grants, password history, and so on. Then all objects contained within the schemas
are imported. Unprivileged users can specify only their own schemas, or schemas
remapped to their own schemas. In that case, no information about the schema
definition is imported, only the objects contained within it.

To restrict what is imported byusing this import mode, you can use filtering.

Schema mode is the default mode when you are performing a network-based import.

Example

The following is an example of using the SCHEMAS parameter. You can create the
expdat.dmp file used in this example by running the example provided for the Export
SCHEMAS parameter.

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp

The hr schema is imported from the expdat.dmp file. The log file, schemas.log, is
written to dpump_dir1.

Related Topics

• Filtering During Import Operations

• SCHEMAS

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-62

3.4.40 SERVICE_NAME
The Data Pump Import command-line mode SERVICE_NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

Default: There is no default

Purpose

Used to specify a service name to be used with the CLUSTER parameter.

Syntax and Description

SERVICE_NAME=name

The SERVICE_NAME parameter can be used with the CLUSTER=YES parameter to specify
an existing service associated with a resource group that defines a set of Oracle Real
Application Clusters (Oracle RAC) instances belonging to that resource group,
typically a subset of all the Oracle RAC instances.

The service name is only used to determine the resource group and instances defined
for that resource group. The instance where the job is started is always used,
regardless of whether it is part of the resource group.

The SERVICE_NAME parameter is ignored whenCLUSTER=NO is also specified.

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D.
Also suppose that a service named my_service exists with a resource group
consisting of instances A, B, and C only. In such a scenario, the following would be
true:

• If you start a Data Pump job on instance A and specify CLUSTER=YES (or accept the
default, which is YES) and you do not specify the SERVICE_NAME parameter, then
Data Pump creates workers on all instances: A, B, C, and D, depending on the
degree of parallelism specified.

• If you start a Data Pump job on instance A and specify CLUSTER=YES and
SERVICE_NAME=my_service, then workers can be started on instances A, B, and C
only.

• If you start a Data Pump job on instance D and specify CLUSTER=YES and
SERVICE_NAME=my_service, then workers can be started on instances A, B, C, and
D. Even though instance D is not in my_service it is included because it is the
instance on which the job was started.

• If you start a Data Pump job on instance A and specify CLUSTER=NO, then any
SERVICE_NAME parameter that you specify is ignored, and all processes start on
instance A.

Example

> impdp system DIRECTORY=dpump_dir1 SCHEMAS=hr
 SERVICE_NAME=sales NETWORK_LINK=dbs1

This example starts a schema-mode network import of the hr schema. Even though
CLUSTER=YES is not specified on the command line, it is the default behavior, so the job

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-63

uses all instances in the resource group associated with the service name sales. The
NETWORK_LINK value of dbs1 is replaced with the name of the source database from
which you are importing data. (Note that there is no dump file generated with a
network import.)

The NETWORK_LINK parameter is simply being used as part of the example. It is not
required when using the SERVICE_NAME parameter.

Related Topics

• CLUSTER

3.4.41 SKIP_UNUSABLE_INDEXES
The Data Pump Import command-line mode SKIP_UNUSABLE_INDEXES parameter
specifies whether Import skips loading tables that have indexes that were set to the
Index Unusable state (by either the system or the user).

Default: the value of the Oracle Database configuration parameter,
SKIP_UNUSABLE_INDEXES.

Purpose

Specifies whether Import skips loading tables that have indexes that were set to the
Index Unusable state (by either the system or the user).

Syntax and Description

SKIP_UNUSABLE_INDEXES=[YES | NO]

If SKIP_UNUSABLE_INDEXES is set to YES, and a table or partition with an index in the
Unusable state is encountered, then the load of that table or partition proceeds
anyway, as if the unusable index did not exist.

If SKIP_UNUSABLE_INDEXES is set to NO, and a table or partition with an index in the
Unusable state is encountered, then that table or partition is not loaded. Other tables,
with indexes not previously set Unusable, continue to be updated as rows are inserted.

If the SKIP_UNUSABLE_INDEXES parameter is not specified, then the setting of the
Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES is used to
determine how to handle unusable indexes. The default value for that parameter is y).

If indexes used to enforce constraints are marked unusable, then the data is not
imported into that table.

Note:

SKIP_UNUSABLE_INDEXES is useful only when importing data into an existing
table. It has no practical effect when a table is created as part of an import. In
that case, the table and indexes are newly created, and are not marked
unusable.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-64

Example

The following is an example of using the SKIP_UNUSABLE_INDEXES parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=skip.log
SKIP_UNUSABLE_INDEXES=YES

Related Topics

• FULL

3.4.42 SOURCE_EDITION
The Data Pump Import command-line mode SOURCE_EDITION parameter specifies the
database edition on the remote node from which objects are fetched.

Default: the default database edition on the remote node from which objects are
fetched

Purpose

Specifies the database edition on the remote node from which objects are e fetched.

Syntax and Description

SOURCE_EDITION=edition_name

If SOURCE_EDITION=edition_name is specified, then the objects from that edition are
imported. Data Pump selects all inherited objects that have not changed and all actual
objects that have changed.

If this parameter is not specified, then the default edition is used. If the specified
edition does not exist or is not usable, then an error message is returned.

Restrictions

• The SOURCE_EDITION parameter is valid on an import operation only when the
NETWORK_LINK parameter is also specified.

• This parameter is only useful if there are two or more versions of the same
versionable objects in the database.

• The job version must be set to 11.2 or later.

Example

The following is an example of using the import SOURCE_EDITION parameter:

> impdp hr DIRECTORY=dpump_dir1 SOURCE_EDITION=exp_edition
NETWORK_LINK=source_database_link EXCLUDE=USER

This example assumes the existence of an edition named exp_edition on the system
from which objects are being imported. Because no import mode is specified, the
default of schema mode will be used. Replace source_database_link with the name
of the source database from which you are importing data. The EXCLUDE=USER

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-65

parameter excludes only the definitions of users, not the objects contained within user
schemas. No dump file generated, because this is a network import.

Related Topics

• NETWORK_LINK

• VERSION

See Also:

• Oracle Database SQL Language Reference for information about how
editions are created

• Oracle Database Development Guide for more information about the
editions feature, including inherited and actual objects

3.4.43 SQLFILE
The Data Pump Import command-line mode SQLFILE parameter specifies a file into
which all the SQL DDL that Import prepares to execute is written, based on other
Import parameters selected.

Default: There is no default

Purpose

Specifies a file into which all the SQL DDL that Import prepares to execute is written,
based on other Import parameters selected.

Syntax and Description

SQLFILE=[directory_object:]file_name

The file_name specifies where the import job writes the DDL that is prepared to
execute during the job. The SQL is not actually executed, and the target system
remains unchanged. The file is written to the directory object specified in the
DIRECTORY parameter, unless you explicitly specify another directory_object. Any
existing file that has a name matching the one specified with this parameter is
overwritten.

Note that passwords are not included in the SQL file. For example, if a CONNECT
statement is part of the DDL that was executed, then it is replaced by a comment with
only the schema name shown. In the following example, the dashes (--) indicate that
a comment follows. The hr schema name is shown, but not the password.

-- CONNECT hr

Therefore, before you can execute the SQL file, you must edit it by removing the
dashes indicating a comment and adding the password for the hr schema.

Data Pump places any ALTER SESSION statements at the top of the SQL file created by
Data Pump import. If the import operation has different connection statements, then

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-66

you must manually copy each of the ALTER SESSION statements, and paste them after
the appropriate CONNECT statements.

For Streams and other Oracle Database options, anonymous PL/SQL blocks can
appear within the SQLFILE output. Do not execute these PL/SQL blocks directly.

Restrictions

• If SQLFILE is specified, then the CONTENT parameter is ignored if it is set to either
ALL or DATA_ONLY.

• To perform a Data Pump Import to a SQL file using Oracle Automatic Storage
Management (Oracle ASM), the SQLFILE parameter that you specify must include
a directory object that does not use the Oracle ASM + notation. That is, the SQL file
must be written to a disk file, not into the Oracle ASM storage.

• You cannot use the SQLFILE parameter in conjunction with the QUERY parameter.

Example

The following is an example of using the SQLFILE parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
SQLFILE=dpump_dir2:expfull.sql

A SQL file named expfull.sql is written to dpump_dir2.

Related Topics

• FULL

3.4.44 STATUS
The Data Pump Import command-line mode STATUS parameter specifies the frequency
at which the job status is displayed.

Default: 0

Purpose

Specifies the frequency at which the job status is displayed.

Syntax and Description

STATUS[=integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, then no additional information is displayed beyond information about the
completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log file
(if one is in effect).

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-67

Example

The following is an example of using the STATUS parameter. You can create the
expfull.dmp dump file used in this example by running the example provided for the
Export FULL parameter..

> impdp hr NOLOGFILE=YES STATUS=120 DIRECTORY=dpump_dir1
DUMPFILE=expfull.dmp

In this example, the status is shown every two minutes (120 seconds).

Related Topics

• FULL

3.4.45 STREAMS_CONFIGURATION
The Data Pump Import command-line mode STREAMS_CONFIGURATION parameter
specifies whether to import any GoldenGate Replication metadata that may be present
in the export dump file.

Default: YES

Purpose

Specifies whether to import any GoldenGate Replication metadata that can be present
in the export dump file.

Syntax and Description

STREAMS_CONFIGURATION=[YES | NO]

Example

The following is an example of using the STREAMS_CONFIGURATION parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
STREAMS_CONFIGURATION=NO

3.4.46 TABLE_EXISTS_ACTION
The Data Pump Import command-line mode TABLE_EXISTS_ACTION parameter
specifies for Import what to do if the table it is trying to create already exists.

Default: SKIP (Note that if CONTENT=DATA_ONLY is specified, then the default is APPEND,
not SKIP.)

Purpose

Specifies for Import what to do if the table it is trying to create already exists.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-68

Syntax and Description

TABLE_EXISTS_ACTION=[SKIP | APPEND | TRUNCATE | REPLACE]

The possible values have the following effects:

• SKIP leaves the table as is and moves on to the next object. This option is not valid
when the CONTENT parameter is set to DATA_ONLY.

• APPEND loads rows from the source and leaves existing rows unchanged.

• TRUNCATE deletes existing rows and then loads rows from the source.

• REPLACE drops the existing table, and then creates and loads it from the source.
This option is not valid when the CONTENT parameter is set to DATA_ONLY.

The following considerations apply when you are using these options:

• When you use TRUNCATE or REPLACE, ensure that rows in the affected tables are
not targets of any referential constraints.

• When you use SKIP, APPEND, or TRUNCATE, existing table-dependent objects in the
source, such as indexes, grants, triggers, and constraints, are not modified. For
REPLACE, the dependent objects are dropped and recreated from the source, if they
are not explicitly or implicitly excluded (using EXCLUDE) and if they exist in the
source dump file or system.

• When you use APPEND or TRUNCATE, Import checks that rows from the source are
compatible with the existing table before performing any action.

If the existing table has active constraints and triggers, then it is loaded using the
external tables access method. If any row violates an active constraint, then the
load fails and no data is loaded. You can override this behavior by specifying
DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS on the Import command line.

If you have data that must be loaded, but that can cause constraint violations, then
consider disabling the constraints, loading the data, and then deleting the problem
rows before re-enabling the constraints.

• When you use APPEND, the data is always loaded into new space; existing space,
even if available, is not reused. For this reason, you may want to compress your
data after the load.

• Also see the description of the Import PARTITION_OPTIONS parameter for
information about how parallel processing of partitioned tables is affected,
depending on whether the target table already exists or not.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-69

Note:

When Data Pump detects that the source table and target table do not match
(the two tables do not have the same number of columns or the target table
has a column name that is not present in the source table), it compares
column names between the two tables. If the tables have at least one column
in common, then the data for the common columns is imported into the table
(assuming the data types are compatible). The following restrictions apply:

• This behavior is not supported for network imports.

• The following types of columns cannot be dropped: object columns,
object attributes, nested table columns, and ref columns based on a
primary key.

Restrictions

• TRUNCATE cannot be used on clustered tables.

Example

The following is an example of using the TABLE_EXISTS_ACTION parameter. You can
create the expfull.dmp dump file used in this example by running the example
provided for the Export FULL parameter.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
TABLE_EXISTS_ACTION=REPLACE

Related Topics

• PARTITION_OPTIONS

• FULL

3.4.47 REUSE_DATAFILES
The Data Pump Import command-line mode REUSE_DATAFILES parameter specifies
whether you want the import job to reuse existing data files for tablespace creation.

Default: NO

Purpose

Specifies whether you want the import job to reuse existing data files for tablespace
creation.

Syntax and Description

REUSE_DATAFILES=[YES | NO]

If you use the default (n), and the data files specified in CREATE TABLESPACE
statements already exist, then an error message from the failing CREATE TABLESPACE
statement is issued, but the import job continues.

If this parameter is specified as y, then the existing data files are reinitialized.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-70

Caution:

Specifying REUSE_DATAFILES=YES can result in a loss of data.

Example

The following is an example of using the REUSE_DATAFILES parameter. You can create
the expfull.dmp dump file used in this example by running the example provided for
the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=reuse.log
REUSE_DATAFILES=YES

This example reinitializes data files referenced by CREATE TABLESPACE statements in
the expfull.dmp file.

Related Topics

• FULL

3.4.48 TABLES
The Data Pump Import command-line mode TABLES parameter specifies that you want
to perform a table-mode import.

Default: There is no default

Purpose

Specifies that you want to perform a table-mode import.

Syntax and Description

TABLES=[schema_name.]table_name[:partition_name]

In a table-mode import, you can filter the data that is imported from the source by
specifying a comma-delimited list of tables and partitions or subpartitions.

If you do not supply a schema_name, then it defaults to that of the current user. To
specify a schema other than your own, you must either have the
DATAPUMP_IMP_FULL_DATABASE role or remap the schema to the current user.

If you want to restrict what is imported, you can use filtering with this import mode.

If you specify partition_name, then it must be the name of a partition or subpartition in
the associated table.

You can specify table names and partition names by using the wildcard character %.

The following restrictions apply to table names:

• By default, table names in a database are stored as uppercase characters. If you
have a table name in mixed-case or lowercase characters, and you want to
preserve case sensitivity for the table name, then you must enclose the name in

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-71

quotation marks. The name must exactly match the table name stored in the
database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how case-
sensitivity can be preserved in the different Import modes.

– In command-line mode:

TABLES='\"Emp\"'

– In parameter file mode:

TABLES='"Emp"'

• Table names specified on the command line cannot include a pound sign (#),
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound sign (#), then unless the table name is
enclosed in quotation marks, the Import utility interprets the rest of the line as a
comment.

For example, if the parameter file contains the following line, then Import interprets
everything on the line after emp# as a comment, and does not import the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, if the parameter file contains the following line, then the Import utility
imports all three tables because emp# is enclosed in quotation marks:

TABLES=('"emp#"', dept, mydata)

Note:

Some operating systems require single quotation marks rather than
double quotation marks, or the reverse; see your operating system
documentation. Different operating systems also have other restrictions
on table naming.

For example, the UNIX C shell attaches a special meaning to a dollar
sign ($) or pound sign (#), or certain other special characters. You must
use escape characters to use these special characters in the names so
that the operating system shell ignores them, and they can be used with
Import.

Restrictions

• The use of synonyms as values for the TABLES parameter is not supported. For
example, if the regions table in the hr schema had a synonym of regn, then it
would not be valid to use TABLES=regn. An error would be returned.

• You can only specify partitions from one table if PARTITION_OPTIONS=DEPARTITION
is also specified on the import.

• If you specify TRANSPORTABLE=ALWAYS, then all partitions specified on the TABLES
parameter must be in the same table.

• The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK_LINK parameter to an Oracle

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-72

Database release 10.2.0.3 or earlier or to a read-only database. In such cases, the
limit is 4 KB.

Example

The following example shows a simple use of the TABLES parameter to import only the
employees and jobs tables from the expfull.dmp file. You can create the expfull.dmp
dump file used in this example by running the example provided for the Export FULL
parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLES=employees,jobs

The following example is a command to import partitions using the TABLES:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp
TABLES=sh.sales:sales_Q1_2012,sh.sales:sales_Q2_2012

This example imports the partitions sales_Q1_2012 and sales_Q2_2012 for the table
sales in the schema sh.

Related Topics

• Filtering During Import Operations

• FULL

3.4.49 TABLESPACES
The Data Pump Import command-line mode TABLESPACES parameter specifies that you
want to perform a tablespace-mode import.

Default: There is no default

Purpose

Specifies that you want to perform a tablespace-mode import.

Syntax and Description

TABLESPACES=tablespace_name [, ...]

Use TABLESPACES to specify a list of tablespace names whose tables and dependent
objects are to be imported from the source (full, schema, tablespace, or table-mode
export dump file set or another database).

During the following import situations, Data Pump automatically creates the
tablespaces into which the data will be imported:

• The import is being done in FULL or TRANSPORT_TABLESPACES mode

• The import is being done in table mode with TRANSPORTABLE=ALWAYS

In all other cases, the tablespaces for the selected objects must already exist on the
import database. You could also use the Import REMAP_TABLESPACE parameter to map
the tablespace name to an existing tablespace on the import database.

If you want to restrict what is imported, you can use filtering with this import mode.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-73

Restrictions

• The length of the list of tablespace names specified for the TABLESPACES
parameter is limited to a maximum of 4 MB, unless you are using the
NETWORK_LINK parameter to a 10.2.0.3 or earlier database or to a read-only
database. In such cases, the limit is 4 KB.

Example

The following is an example of using the TABLESPACES parameter. It assumes that the
tablespaces already exist. You can create the expfull.dmp dump file used in this
example by running the example provided for the Export FULL parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
TABLESPACES=tbs_1,tbs_2,tbs_3,tbs_4

This example imports all tables that have data in tablespaces tbs_1, tbs_2, tbs_3, and
tbs_4.

Related Topics

• Filtering During Import Operations

• FULL

3.4.50 TARGET_EDITION
The Data Pump Import command-line mode TARGET_EDITION parameter pecifies the
database edition into which you want objects imported.

Default: the default database edition on the system

Purpose

Specifies the database edition into which you want objects imported.

Syntax and Description

TARGET_EDITION=name

If you specify TARGET_EDITION=name, then Data Pump Import creates all of the objects
found in the dump file. Objects that are not editionable are created in all editions.

For example, tables are not editionable, so if there is a table in the dump file, then the
table is created, and all editions see it. Objects in the dump file that are editionable,
such as procedures, are created only in the specified target edition.

If this parameter is not specified, then Import uses the default edition on the target
database, even if an edition was specified in the export job. If the specified edition
does not exist, or is not usable, then an error message is returned.

Restrictions

• This parameter is only useful if there are two or more versions of the same
versionable objects in the database.

• The job version must be 11.2 or later.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-74

Example

The following is an example of using the TARGET_EDITION parameter:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_dat.dmp
TARGET_EDITION=exp_edition

This example assumes the existence of an edition named exp_edition on the system
to which objects are being imported. Because no import mode is specified, the default
of schema mode will be used.

See Oracle Database SQL Language Reference for information about how editions
are created. See Oracle Database Development Guide for more information about the
editions features.

Related Topics

• VERSION

• Oracle Database SQL Language Reference

• Oracle Database Development Guide

3.4.51 TRANSFORM
The Oracle Data Pump Import command-line mode TRANSFORM parameter enables you
to alter object creation DDL for objects being imported.

Default

There is no default

Purpose

Enables you to alter object creation DDL for objects being imported.

Syntax and Description

TRANSFORM = transform_name:value[:object_type]

The transform_name specifies the name of the transform.

Specifying object_type is optional. If supplied, this parameter designates the object
type to which the transform is applied. If no object type is specified, then the transform
applies to all valid object types.

The available transforms are as follows, in alphabetical order:

• CONSTRAINT_NAME_FROM_INDEX: [Y | N]

This transform is valid for the following object types:TABLE and CONSTRAINT object
types.

This transform parameter affects the generation of the pk or fk constraint which
reference user created indexes. If set to Y, it forces the name of the constraint to
match the name of the index.

If set to N (the default), the constraint is created as named on the source database.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-75

• CONSTRAINT_USE_DEFAULT_INDEX: [Y | N]

This transform is valid for the following object types:TABLE and CONSTRAINT object
types.

This transform parameter affects the generation of index relating to the pk or fk
constraint. If set to Y, it forces the name of an index automatically created to
enforce the constraint to be identical to the constraint name.

If set to N (the default), the index is created as named on the source database.

• DISABLE_ARCHIVE_LOGGING:[Y | N]

This transform is valid for the following object types: INDEX and TABLE.

If set to Y, then the logging attributes for the specified object types (TABLE and/or
INDEX) are disabled before the data is imported. If set to N (the default), then
archive logging is not disabled during import. After the data has been loaded, the
logging attributes for the objects are restored to their original settings. If no object
type is specified, then the DISABLE_ARCHIVE_LOGGING behavior is applied to both
TABLE and INDEX object types. This transform works for both file mode imports and
network mode imports. It does not apply to transportable tablespace imports.

Note:

If the database is in FORCE LOGGING mode, then the
DISABLE_ARCHIVE_LOGGING option does not disable logging when indexes
and tables are created.

• DWCS_CVT_IOTS: [Y | N]

This transform is valid for TABLE object types.

If set to Y, it directs Oracle Data Pump to transform Index Organized tables to
heap organized tables by suppressing the ORGANIZATION INDEX clause when
creating the table.

If set to N (the default), the generated DDL retains the table characteristics of the
source object.

• DWCS_CVT_CONSTRAINTS: [Y | N]

This transform is valid for the following object types:TABLE and CONSTRAINT object
types.

If set to Y, it directs Oracle Data Pump to create pk, fk, or uk constraints as
disabled.

If set to N (the default), it directs Oracle Data Pump to createpk, fk, or uk
constraints based on the source database status.

• INDEX_COMPRESSION_CLAUSE [NONE | compression_clause]

This transform is valid for the object type INDEX. As with the
TABLE_COMPRESSION_CLAUSE, the INDEX_COMPRESSION_CLAUSE
enables you to control index compression on import.

If NONE is specified, then the index compression clause is omitted (and the index is
given the default compression for the tablespace). However, if you use
compression, then Oracle recommends that you use COMPRESS ADVANCED LOW).

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-76

Indexes are created with the specified compression. See Oracle Database SQL
Language Reference for information about valid table compression syntax.

If the index compression clause is more than one word, then it must be contained
in single or double quotation marks. Also, your operating system can require you
to enclose the clause in escape characters, such as the backslash character. For
example:

TRANSFORM=INDEX_COMPRESSION_CLAUSE:\"COMPRESS ADVANCED LOW\"

Specifying this transform changes the type of compression for all indexes in the
job.

• INMEMORY:[Y | N]

This transform is valid for the following object types: TABLE and TABLESPACE

The INMEMORY transform is related to the In-Memory Column Store (IM column
store). The IM column store is an optional portion of the system global area (SGA)
that stores copies of tables, table partitions, and other database objects. In the IM
column store, data is populated by column rather than row as it is in other parts of
the SGA, and data is optimized for rapid scans. The IM column store does not
replace the buffer cache, but acts as a supplement so that both memory areas can
store the same data in different formats. The IM column store is included with the
Oracle Database In-Memory option.

If Y (the default value) is specified on import, then Data Pump keeps the IM column
store clause for all objects that have one. When those objects are recreated at
import time, Data Pump generates the IM column store clause that matches the
setting for those objects at export time.

If N is specified on import, then Data Pump drops the IM column store clause from
all objects that have one. If there is no IM column store clause for an object that is
stored in a tablespace, then the object inherits the IM column store clause from the
tablespace. So if you are migrating a database, and you want the new database to
use IM column store features, then you can pre-create the tablespaces with the
appropriate IM column store clause and then use TRANSFORM=INMEMORY:N on the
import command. The object then inherits the IM column store clause from the
new pre-created tablespace.

If you do not use the INMEMORY transform, then you must individually alter every
object to add the appropriate IM column store clause.

Note:

The INMEMORY transform is available only in Oracle Database 12c
Release 1 (12.1.0.2) or later.

See Oracle Database Administrator’s Guide for information about using
the In-Memory Column Store (IM column store).

• INMEMORY_CLAUSE:"string with a valid in-memory parameter”

This transform is valid for the following object types: TABLE and TABLESPACE.

The INMEMORY_CLAUSE transform is related to the In-Memory Column Store (IM
column store). The IM column store is an optional portion of the system global

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-77

area (SGA) that stores copies of tables, table partitions, and other database
objects. In the IM column store, data is populated by column rather than row as it
is in other parts of the SGA, and data is optimized for rapid scans. The IM column
store does not replace the buffer cache, but acts as a supplement so that both
memory areas can store the same data in different formats. The IM column store
is included with the Oracle Database In-Memory option.

When you specify this transform, Data Pump uses the contents of the string as the
INMEMORY_CLAUSE for all objects being imported that have an IM column store
clause in their DDL. This transform is useful when you want to override the IM
column store clause for an object in the dump file.

The string that you supply must be enclosed in double quotation marks. If you are
entering the command on the command line, be aware that some operating
systems can strip out the quotation marks during parsing of the command, which
causes an error. You can avoid this error by using backslash escape characters
(\). For example:

transform=inmemory_clause:\"INMEMORY MEMCOMPRESS FOR DML PRIORITY
CRITICAL\"

Alternatively you can put parameters in a parameter file. Quotation marks in the
parameter file are maintained during processing.

Note:

The INMEMORY_CLAUSE transform is available only in Oracle Database 12c
Release 1 (12.1.0.2) or later.

See Oracle Database Administrator's Guide for information about using
the In-Memory Column Store (IM column store). See Oracle Database
Reference for a listing and description of parameters that can be
specified in an IM column store clause

• LOB_STORAGE:[SECUREFILE | BASICFILE | DEFAULT | NO_CHANGE]

This transform is valid for the object type TABLE.

LOB segments are created with the specified storage, either SECUREFILE or
BASICFILE. If the value is NO_CHANGE (the default), then the LOB segments are
created with the same storage that they had in the source database. If the value is
DEFAULT, then the keyword (SECUREFILE or BASICFILE) is omitted, and the LOB
segment is created with the default storage.

Specifying this transform changes LOB storage for all tables in the job, including
tables that provide storage for materialized views.

The LOB_STORAGE transform is not valid in transportable import jobs.

• OID:[Y | N]

This transform is valid for the following object types: INC_TYPE, TABLE, and TYPE.

If Y (the default value) is specified on import, then the exported OIDs are assigned
to new object tables and types. Data Pump also performs OID checking when
looking for an existing matching type on the target database.

If N is specified on import, then:

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-78

– The assignment of the exported OID during the creation of new object tables
and types is inhibited. Instead, a new OID is assigned. Inhibiting assignment of
exported OIDs can be useful for cloning schemas, but does not affect
referenced objects.

– Before loading data for a table associated with a type, Data Pump skips
normal type OID checking when looking for an existing matching type on the
target database. Other checks using a hash code for a type, version number,
and type name are still performed.

• OMIT_ENCRYPTION_CLAUSE: [Y | N]

This transform is valid for TABLE object types.

If set to Y, it directs Oracle Data Pump to suppress column encryption clauses.
Columns which were encrypted in the source database are not encrypted in
imported tables.

If set to N (the default), it directs Oracle Data Pump to create column encryption
clauses, as in the source database.

• PCTSPACE:some_number_greater_than_zero

This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK_SEGMENT, TABLE, and TABLESPACE.

The value supplied for this transform must be a number greater than zero. It
represents the percentage multiplier used to alter extent allocations and the size of
data files.

You can use the PCTSPACE transform with the Data Pump Export SAMPLE parameter
so that the size of storage allocations matches the sampled data subset. (See the
SAMPLE export parameter.)

• SEGMENT_ATTRIBUTES:[Y | N]

This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK_SEGMENT, TABLE, and TABLESPACE.

If the value is specified as Y, then segment attributes (physical attributes, storage
attributes, tablespaces, and logging) are included, with appropriate DDL. The
default is Y.

• SEGMENT_CREATION:[Y | N]

This transform is valid for the object type TABLE.

If set to Y (the default), then this transform causes the SQL SEGMENT CREATION
clause to be added to the CREATE TABLE statement. That is, the CREATE TABLE
statement explicitly says either SEGMENT CREATION DEFERRED or SEGMENT CREATION
IMMEDIATE. If the value is N, then the SEGMENT CREATION clause is omitted from the
CREATE TABLE statement. Set this parameter to N to use the default segment
creation attributes for the tables being loaded. (This functionality is available with
Oracle Database 11g release 2 (11.2.0.2) and later releases.

• STORAGE:[Y | N]

This transform is valid for the following object types: CLUSTER, CONSTRAINT, INDEX,
ROLLBACK_SEGMENT, and TABLE.

If the value is specified as Y, then the storage clauses are included, with
appropriate DDL. The default is Y. This parameter is ignored if
SEGMENT_ATTRIBUTES=N.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-79

• TABLE_COMPRESSION_CLAUSE:[NONE | compression_clause]

This transform is valid for the object type TABLE.

If NONE is specified, then the table compression clause is omitted (and the table is
given the default compression for the tablespace). Otherwise, the value is a valid
table compression clause (for example, NOCOMPRESS, COMPRESS BASIC, and so on).
Tables are created with the specified compression. See Oracle Database SQL
Language Reference for information about valid table compression syntax.

If the table compression clause is more than one word, then it must be contained
in single or double quotation marks. Also, your operating system can require you
to enclose the clause in escape characters, such as the backslash character. For
example:

TRANSFORM=TABLE_COMPRESSION_CLAUSE:\"COLUMN STORE COMPRESS FOR QUERY
HIGH\"

Specifying this transform changes the type of compression for all tables in the job,
including tables that provide storage for materialized views.

Example

For the following example, assume that you have exported the employees table in the
hr schema. The SQL CREATE TABLE statement that results when you then import the
table is similar to the following:

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL
ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 10240 NEXT 16384 MINEXTENTS 1 MAXEXTENTS 121
 PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "SYSTEM" ;

If you do not want to retain the STORAGE clause or TABLESPACE clause, then you can
remove them from the CREATE STATEMENT by using the Import TRANSFORM parameter.
Specify the value of SEGMENT_ATTRIBUTES as N. This results in the exclusion of
segment attributes (both storage and tablespace) from the table.

> impdp hr TABLES=hr.employees DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp
 TRANSFORM=SEGMENT_ATTRIBUTES:N:table

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-80

The resulting CREATE TABLE statement for the employees table then looks similar to the
following. It does not contain a STORAGE or TABLESPACE clause; the attributes for the
default tablespace for the HR schema are used instead.

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL
ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
);

As shown in the previous example, the SEGMENT_ATTRIBUTES transform applies to both
storage and tablespace attributes. To omit only the STORAGE clause and retain the
TABLESPACE clause, you can use the STORAGE transform, as follows:

> impdp hr TABLES=hr.employees DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp
 TRANSFORM=STORAGE:N:table

The SEGMENT_ATTRIBUTES and STORAGE transforms can be applied to all applicable
table and index objects by not specifying the object type on the TRANSFORM parameter,
as shown in the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp SCHEMAS=hr
TRANSFORM=SEGMENT_ATTRIBUTES:N

Related Topics

• CREATE INDEX and Index Compression

• Oracle Database Administrator’s Guide

• Oracle Database Reference

• SAMPLE

• Oracle Database SQL Language Reference

3.4.52 TRANSPORT_DATAFILES
The Data Pump Import command-line mode TRANSPORT_DATAFILES parameter
specifies a list of data files that are imported into the target database by a
transportable-tablespace mode import, or by a table-mode or full-mode import when
TRANSPORTABLE=ALWAYS is set during the export.

Default

There is no default

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-81

Purpose

Specifies a list of data files that are imported into the target database by a
transportable-tablespace mode import, or by a table-mode or full-mode import, when
TRANSPORTABLE=ALWAYSis set during the export. The data files must already exist on the
target database system.

Syntax and Description

TRANSPORT_DATAFILES=datafile_name

The datafile_name must include an absolute directory path specification (not a
directory object name) that is valid on the system where the target database resides.

The datafile_name can also use wildcards in the file name portion of an absolute path
specification. An Asterisk (*) matches 0 to N characters. A question mark (?) matches
exactly one character. You cannot use wildcards in the directory portions of the
absolute path specification. If a wildcard is used, then all matching files must be part of
the transport set. If any files are found that are not part of the transport set, then an
error is displayed, and the import job terminates.

At some point before the import operation, you must copy the data files from the
source system to the target system. You can copy the data files by using any copy
method supported by your operating system. If desired, you can rename the files when
you copy them to the target system. See Example 2.

If you already have a dump file set generated by any transportable mode export, then
you can perform a transportable-mode import of that dump file by specifying the dump
file (which contains the metadata) and the TRANSPORT_DATAFILES parameter. The
presence of the TRANSPORT_DATAFILES parameter tells import that it is a transportable-
mode import and where to get the actual data.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that you would otherwise be required to use on the
command line.

Restrictions

• You cannot use the TRANSPORT_DATAFILES parameter in conjunction with the QUERY
parameter.

• The TRANSPORT_DATAFILES directory portion of the absolute file path cannot
contain wildcards. However, the file name portion of the absolute file path can
contain wildcards

Example 1

The following is an example of using the TRANSPORT_DATAFILES parameter. Assume
you have a parameter file, trans_datafiles.par, with the following content:

DIRECTORY=dpump_dir1
DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user01/data/tbs1.dbf'

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-82

You can then issue the following command:

> impdp hr PARFILE=trans_datafiles.par

Example 2

This example illustrates the renaming of data files as part of a transportable
tablespace export and import operation. Assume that you have a data file named
employees.dat on your source system.

1. Using a method supported by your operating system, manually copy the data file
named employees.dat from your source system to the system where your target
database resides. As part of the copy operation, rename it to workers.dat.

2. Perform a transportable tablespace export of tablespace tbs_1.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1

The metadata only (no data) for tbs_1 is exported to a dump file named tts.dmp.
The actual data was copied over to the target database in step 1.

3. Perform a transportable tablespace import, specifying an absolute directory path
for the data file named workers.dat:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user01/data/workers.dat'

The metadata contained in tts.dmp is imported and Data Pump then assigns the
information in the workers.dat file to the correct place in the database.

Example 3

This example illustrates use of the asterisk (*) wildcard character in the file name
when used with the TRANSPORT_DATAFILES parameter.

TRANSPORT_DATAFILES='/db1/hrdata/payroll/emp*.dbf'

This parameter use results in Data Pump validating that all files in the directory /db1/
hrdata/payroll/ of type .dbf whose names begin with emp are part of the transport
set.

Example 4

This example illustrates use of the question mark (?) wildcard character in the file
name when used with the TRANSPORT_DATAFILES parameter.

TRANSPORT_DATAFILES='/db1/hrdata/payroll/m?emp.dbf'

This parameter use results in Data Pump validating that all files in the directory /db1/
hrdata/payroll/ of type .dbf whose name begins with m, followed by any other single
character, and ending in emp are part of the transport set. For example, a file named
myemp.dbf is included, but memp.dbf is not included.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-83

Related Topics

• About Import Command-Line Mode

3.4.53 TRANSPORT_FULL_CHECK
The Data Pump Import command-line mode TRANSPORT_FULL_CHECK parameter
specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

Default: NO

Purpose

Specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

Syntax and Description

TRANSPORT_FULL_CHECK=[YES | NO]

If TRANSPORT_FULL_CHECK=YES, then Import verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set but its index is not, then a failure is returned and the import operation
is terminated. Similarly, a failure is also returned if an index is in the transportable set
but the table is not.

If TRANSPORT_FULL_CHECK=NO, then Import verifies only that there are no objects within
the transportable set that are dependent on objects outside the transportable set. This
check addresses a one-way dependency. For example, a table is not dependent on an
index, but an index is dependent on a table, because an index without a table has no
meaning. Therefore, if the transportable set contains a table, but not its index, then this
check succeeds. However, if the transportable set contains an index, but not the table,
then the import operation is terminated.

In addition to this check, Import always verifies that all storage segments of all tables
(and their indexes) defined within the tablespace set specified by
TRANSPORT_TABLESPACES are actually contained within the tablespace set.

Restrictions

• This parameter is valid for transportable mode (or table mode or full mode when
TRANSPORTABLE=ALWAYS was specified on the export) only when the NETWORK_LINK
parameter is specified.

Example

In the following example, source_database_link would be replaced with the name of
a valid database link. The example also assumes that a data file named tbs6.dbf
already exists.

Assume you have a parameter file, full_check.par, with the following content:

DIRECTORY=dpump_dir1
TRANSPORT_TABLESPACES=tbs_6
NETWORK_LINK=source_database_link

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-84

TRANSPORT_FULL_CHECK=YES
TRANSPORT_DATAFILES='/wkdir/data/tbs6.dbf'

You can then issue the following command:

> impdp hr PARFILE=full_check.par

3.4.54 TRANSPORT_TABLESPACES
The Data Pump Import command-line mode TRANSPORT_TABLESPACES parameter
specifies that you want to perform an import in transportable-tablespace mode over a
database link (as specified with the NETWORK_LINK parameter.)

Default: There is no default.

Purpose

Specifies that you want to perform an import in transportable-tablespace mode over a
database link (as specified with the NETWORK_LINK parameter.)

Syntax and Description

TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for
which object metadata are imported from the source database into the target
database.

Because this import is a transportable-mode import, the tablespaces into which the
data is imported are automatically created by Data Pump.You do not need to pre-
create them. However, copy the data files to the target database before starting the
import.

When you specify TRANSPORT_TABLESPACES on the import command line, you must also
use the NETWORK_LINK parameter to specify a database link. A database link is a
connection between two physical database servers that allows a client to access them
as one logical database. Therefore, the NETWORK_LINK parameter is required, because
the object metadata is exported from the source (the database being pointed to by
NETWORK_LINK) and then imported directly into the target (database from which the
impdp command is issued), using that database link. There are no dump files involved
in this situation. If you copied the actual data to the target in a separate operation
using some other means, then specify the TRANSPORT_DATAFILES parameter and
indicate where the data is located.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-85

Note:

If you already have a dump file set generated by a transportable-tablespace
mode export, then you can perform a transportable-mode import of that
dump file, but in this case you do not specify TRANSPORT_TABLESPACES or
NETWORK_LINK. Doing so would result in an error. Rather, you specify the
dump file (which contains the metadata) and the TRANSPORT_DATAFILES
parameter. The presence of the TRANSPORT_DATAFILES parameter tells import
that it's a transportable-mode import and where to get the actual data.

When transportable jobs are performed, it is best practice to keep a copy of the data
files on the source system until the import job has successfully completed on the target
system. If the import job fails, then you still have uncorrupted copies of the data files.

Restrictions

• You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database into which you are
importing must be at the same or later release level as the source database.

• The TRANSPORT_TABLESPACES parameter is valid only when the NETWORK_LINK
parameter is also specified.

• To use the TRANSPORT_TABLESPACES parameter to perform a transportable
tablespace import, the COMPATIBLE initialization parameter must be set to at least
11.0.0.

• Depending on your operating system, the use of quotation marks when you
specify a value for this parameter can also require that you use escape characters.
Oracle recommends that you place this parameter in a parameter file. If you use a
parameter file, then that can reduce the number of escape characters that you
have to use on a command line.

• Transportable tablespace jobs do not support the ACCESS_METHOD parameter for
Data Pump Import.

Example

In the following example, the source_database_link would be replaced with the name
of a valid database link. The example also assumes that a data file named tbs6.dbf
has already been copied from the source database to the local system. Suppose you
have a parameter file, tablespaces.par, with the following content:

DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link
TRANSPORT_TABLESPACES=tbs_6
TRANSPORT_FULL_CHECK=NO
TRANSPORT_DATAFILES='user01/data/tbs6.dbf'

You can then issue the following command:

> impdp hr PARFILE=tablespaces.par

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-86

Related Topics

• Oracle Database Administrator’s Guide

• Using Data File Copying to Move Data

• How Does Oracle Data Pump Handle Timestamp Data?

• About Import Command-Line Mode

3.4.55 TRANSPORTABLE
The optional Oracle Data Pump Import command-line mode TRANSPORTABLE parameter
specifies either that transportable tables are imported with KEEP_READ_ONLY, or
NO_BITMAP_REBUILD.

Default

None.

Purpose

This optional parameter enables you to specify two values to control how transportable
table imports are managed: KEEP_READ_ONLY and NO_BITMAP_REBUILD.There is no
default value for the TRANSPORTABLE parameter.

Syntax and Description

TRANSPORTABLE = [ALWAYS|NEVER|KEEP_READ_ONLY|NO_BITMAP_REBUILD]

The definitions of the allowed values are as follows:

• ALWAYS (valid for Full and Table Export) indicates a transportable export. If
specified, then only the metadata is exported, and data files are plugged into the
target database during the import.

• NEVER indicates that only a traditional data export is enabled.

• KEEP_READ_ONLY: Valid with transportable mode imports (table, tablespace, full). If
specified, then tablespaces and data files remain in read-only mode. Keeping
tablespaces and data files in read-only mode enables the transportable data file
set to be available to be plugged in to multiple target databases. When data files
are in read-only mode, this disables updating tables containing TSTZ column data,
if that data needs to be updated, to avoid issues with different TSTZ versions. For
this reason, tables with TSTZ columns are dropped from the transportable import.
Placing data files in read-only mode also disables rebuilding of tablespace storage
bitmaps to reclaim segments.

• NO_BITMAP_REBUILD: Indicates that you do not want Oracle Data Pump to reclaim
storage segments by rebuilding tablespace storage bitmaps during the
transportable import. Not rebuilding the bitmaps can speed up the import. You can
reclaim segments at a later time by using the
DBMS_SPACE_ADMIN.TABLESPACE_REBUILD_BITMAPS() procedure.

APIs or Classes

You can set the TRANSPORTABLE parameter value by using the existing procedure
DBMS_DATAPUMP.SET_PARAMETER.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-87

Restrictions

• The Import TRANSPORTABLE parameter is valid only if the NETWORK_LINK parameter
is also specified.

• The TRANSPORTABLE parameter is only valid in table mode imports and full mode
imports.

• The user performing a transportable import requires both the
DATAPUMP_EXP_FULL_DATABASE role on the source database, and the
DATAPUMP_IMP_FULL_DATABASE role on the target database.

• All objects with storage that are selected for network import must have all of their
storage segments on the source system either entirely within administrative, non-
transportable tablespaces (SYSTEM / SYSAUX), or entirely within user-defined,
transportable tablespaces. Storage for a single object cannot straddle the two
kinds of tablespaces.

• To use the TRANSPORTABLE parameter to perform a network-based full
transportable import, the Data Pump VERSION parameter must be set to at least
12.0 if the source database is release 11.2.0.3. If the source database is release
12.1 or later, then the VERSION parameter is not required, but the COMPATIBLE
database initialization parameter must be set to 12.0.0 or later.

Example of a Network Link Import

The following example shows the use of the TRANSPORTABLE parameter during a
network link import, where datafile_name is the data file that you want to import.

> impdp system TABLES=hr.sales TRANSPORTABLE=ALWAYS
 DIRECTORY=dpump_dir1 NETWORK_LINK=dbs1 PARTITION_OPTIONS=DEPARTITION
 TRANSPORT_DATAFILES=datafile_name

Example of a Full Transportable Import

The following example shows the use of the TRANSPORTABLE parameter when
performing a full transportable import over the database link dbs1. The import specifies
a password for the tables with encrypted columns.

> impdp import_admin FULL=Y TRANSPORTABLE=ALWAYS VERSION=12
NETWORK_LINK=dbs1
 ENCRYPTION_PASSWORD=password TRANSPORT_DATAFILES=datafile_name
 LOGFILE=dpump_dir1:fullnet.log

Example of Setting NEVER or ALWAYS

Setting the TRANSPORTABLE parameter with string values is limited to NEVER or ALWAYS
values:

SYS.DBMS_DATAPUMP.SET_PARAMETER(jobhdl, ‘TRANSPORTABLE’,’ALWAYS’);
SYS.DBMS_DATAPUMP.SET_PARAMETER(jobhdl, ‘TRANSPORTABLE’,’NEVER’);

The new TRANSPORTABLE parameter options are set using the new numeric bitmask
values:

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-88

DBMS_DATAPUMP.KU$_TTS_NEVER is the value 1

DBMS_DATAPUMP.KU$_TTS_ALWAYS is the value 2

DBMS_DATAPUMP.KU$_TTS_KEEP_READ_ONLY is the value 4

DBMS_DATAPUMP.KU$_TTS_NO_BITMAP_REBUILD is the value 8

SYS.DBMS_DATAPUMP.SET_PARAMETER(jobhdl, ‘TRANSPORTABLE’,
DBMS_DATAPUMP.KU$_TTS_ALWAYS+DBMS_DATAPUMP.KU$_TTS_KEEP_READ_ONLY);

Example of a File-Based Transportable Tablespace Import

The following example shows the use of the TRANSPORTABLE parameter during a file-
based transportable tablespace import. The specified KEEP_READ_ONLY option indicates
that the data file remains in read–only access throughout the import operation. The
required data files are reported by the transportable tablespace export.

impdp system DIRECTORY=dpump_dir DUMPFILE=dumpfile_name
TRANSPORT_DATAFILES=datafile_name TRANSPORTABLE=KEEP_READ_ONLY

Related Topics

• About Import Command-Line Mode

• Using Data File Copying to Move Data

3.4.56 VERIFY_CHECKSUM
The Oracle Data Pump Import command-line utility VERIFY_CHECKSUM parameter
specifies whether to verify dump file checksums.

Default

If checksums were generated when the export dump files were first produced, then the
default value is YES.

Purpose

Specifies whether Oracle Data Pump verifies dump file checksums before proceeding
with the import operation.

Syntax and Description

VERIFY_CHECKSUM=[YES|NO]

• YES Specifies that Oracle Data Pump performs file checksum verification for each
dump file in the export dump file set.

• NO Specifies that Oacle Data Pump does not perform checksum verification for the
dump file set.

Restrictions

• To use this checksum feature, the COMPATIBLE initialization parameter must be
set to at least 20.0.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-89

• The VERIFY_CHECKSUM and VERIFY_ONLY parameters are mutually
exclusive.

Example

This example performs a schema-mode load of the HR schema. Checksum verification
of the dump files is performed before the actual import operation begins.

impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp VERIFY_CHECKSUM=YES

3.4.57 VERIFY_ONLY
The Oracle Data Pump Import command-line utility VERIFY_ONLY parameter enables
you to verify the verify the checksum for the dump file.

Default

NO

Purpose

Specifies whether Oracle Data Pump verifies the dump file checksums.

Syntax and Description

VERIFY_ONLY=[YES|NO]

When set to YES, Oracle Data Pump verifies the checksum. If there are no errors, then
you can issue another import command for the dump file set.

Restrictions

• When you set the VERIFY_ONLY parameter to YES, no actual import operation is
performed. The Oracle Data Pump Import job only completes the listed verification
checks.

• The VERIFY_CHECKSUM and VERIFY_ONLY parameters are mutually exclusive.

Example

This example performs a verification check of the hr.dmp dump file. Beyond the
verification checks, no actual import of data is performed.

impdp system directory=dpump_dir1 dumpfile=hr.dmp verify_checksum=yes

3.4.58 VERSION
The Data Pump Import command-line mode VERSION parameter specifies the version
of database objects that you want to import; only database objects and attributes that
are compatible with the specified release are imported.

Default: You should rarely have to specify the VERSION parameter on an import
operation. Data Pump uses whichever of the following is earlier:

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-90

• The version associated with the dump file, or source database in the case of
network imports

• The version specified by the COMPATIBLE initialization parameter on the target
database

Purpose

Specifies the version of database objects to be imported (that is, only database objects
and attributes that are compatible with the specified release will be imported). Note
that this does not mean that Data Pump Import can be used with releases of Oracle
Database earlier than 10.1. Data Pump Import only works with Oracle Database 10g
release 1 (10.1) or later. The VERSION parameter simply allows you to identify the
version of the objects being imported.

Syntax and Description

VERSION=[COMPATIBLE | LATEST | version_string]

This parameter can be used to load a target system whose Oracle database is at an
earlier compatibility release than that of the source system. When the VERSION
parameter is set, database objects or attributes on the source system that are
incompatible with the specified release are not moved to the target. For example,
tables containing new data types that are not supported in the specified release are
not imported. Legal values for this parameter are as follows:

• COMPATIBLE - This is the default value. The version of the metadata corresponds to
the database compatibility level. Database compatibility must be set to 9.2.0 or
later.

• LATEST - The version of the metadata corresponds to the database release.
Specifying VERSION=LATEST on an import job has no effect when the target
database's actual version is later than the version specified in its COMPATIBLE
initialization parameter.

• version_string - A specific database release (for example, 11.2.0).

Restrictions

• If the Data Pump VERSION parameter is specified as any value earlier than 12.1,
then the Data Pump dump file excludes any tables that contain VARCHAR2 or
NVARCHAR2 columns longer than 4000 bytes and any RAW columns longer than 2000
bytes.

• Full imports performed over a network link require that you set VERSION=12 if the
target is Oracle Database 12c Release 1 (12.1.0.1) or later and the source is
Oracle Database 11g Release 2 (11.2.0.3) or later.

• Dump files created on Oracle Database 11g releases with the Data Pump
parameter VERSION=12 can only be imported on Oracle Database 12c Release 1
(12.1) and later.

• The value of the VERSION parameter affects the import differently depending on
whether data-bound collation (DBC) is enabled.

Example

In the following example, assume that the target is an Oracle Database 12c Release 1
(12.1.0.1) database and the source is an Oracle Database 11g Release 2 (11.2.0.3)
database. In that situation, you must set VERSION=12 for network-based imports. Also

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-91

note that even though full is the default import mode, you must specify it on the
command line when the NETWORK_LINK parameter is being used.

> impdp hr FULL=Y DIRECTORY=dpump_dir1
 NETWORK_LINK=source_database_link VERSION=12

Related Topics

• Oracle Data Pump Behavior with Data-Bound Collation

• Exporting and Importing Between Different Oracle Database Releases

3.4.59 VIEWS_AS_TABLES (Network Import)
The Data Pump Import command-line mode VIEWS_AS_TABLES (Network Import)
parameter specifies that you want one or more views to be imported as tables.

Default: There is no default.

Note:

This description of VIEWS_AS_TABLES is applicable during network imports,
meaning that you supply a value for the Data Pump Import NETWORK_LINK
parameter. If you are performing an import that is not a network import, then
see VIEWS_AS_TABLES (Non-Network Import).

Purpose

Specifies that you want one or more views to be imported as tables.

Syntax and Description

VIEWS_AS_TABLES=[schema_name.]view_name[:table_name], ...

Data Pump imports a table with the same columns as the view and with row data
fetched from the view. Data Pump also imports objects dependent on the view, such
as grants and constraints. Dependent objects that do not apply to tables (for example,
grants of the UNDER object privilege) are not imported. You can use the
VIEWS_AS_TABLES parameter by itself, or along with the TABLES parameter. If either is
used, Data Pump performs a table-mode import.

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is
not supplied, it defaults to the user performing the import.

view_name: The name of the view to be imported as a table. The view must exist and it
must be a relational view with only scalar, non-LOB columns. If you specify an invalid
or non-existent view, the view is skipped and an error message is returned.

table_name: The name of a table to serve as the source of the metadata for the
imported view. By default Data Pump automatically creates a temporary "template
table" with the same columns and data types as the view, but no rows. If the database
is read-only, then this default creation of a template table fails. In such a case, you can

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-92

specify a table name. The table must be in the same schema as the view. It must be a
non-partitioned relational table with heap organization. It cannot be a nested table.

If the import job contains multiple views with explicitly specified template tables, the
template tables must all be different. For example, in the following job (in which two
views use the same template table) one of the views is skipped:

impdp hr DIRECTORY=dpump_dir NETWORK_LINK=dblink1
VIEWS_AS_TABLES=v1:employees,v2:employees

An error message is returned reporting the omitted object.

Template tables are automatically dropped after the import operation is completed.
While they exist, you can perform the following query to view their names (which all
begin with KU$VAT):

SQL> SELECT * FROM user_tab_comments WHERE table_name LIKE 'KU$VAT%';
TABLE_NAME TABLE_TYPE
------------------------------ -----------
COMMENTS

KU$VAT_63629 TABLE
Data Pump metadata template table for view HR.EMPLOYEESV

Restrictions

• The VIEWS_AS_TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

• Tables created using the VIEWS_AS_TABLES parameter do not contain any hidden
columns that were part of the specified view.

• The VIEWS_AS_TABLES parameter does not support tables that have columns with a
data type of LONG.

Example

The following example performs a network import to import the contents of the view
hr.v1 from a read-only database. The hr schema on the source database must
contain a template table with the same geometry as the view view1 (call this table
view1_tab). The VIEWS_AS_TABLES parameter lists the view name and the table name
separated by a colon:

> impdp hr VIEWS_AS_TABLES=view1:view1_tab NETWORK_LINK=dblink1

The view is imported as a table named view1 with rows fetched from the view. The
metadata for the table is copied from the template table view1_tab.

3.4.60 VIEWS_AS_TABLES (Non-Network Import)
The Data Pump Import command-line mode VIEWS_AS_TABLES (Non-Network Import)
parameter specifies that you want to import one or more tables in the dump file that
were exported as views.

Default: There is no default.

Chapter 3
Parameters Available in Oracle Data Pump Import Command-Line Mode

3-93

Purpose

Specifies that you want to import one or more tables in the dump file that were
exported as views.

Syntax and Description

VIEWS_AS_TABLES=[schema_name.]view_name,...

The VIEWS_AS_TABLES parameter can be used by itself or along with the TABLES
parameter. If either is used, Data Pump performs a table-mode import.

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is
not supplied, it defaults to the user performing the import.

view_name: The name of the view to be imported as a table.

Restrictions

• The VIEWS_AS_TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

• Tables created using the VIEWS_AS_TABLES parameter do not contain any hidden
columns that were part of the specified view.

• The VIEWS_AS_TABLES parameter does not support tables that have columns with a
data type of LONG.

Example

The following example imports the table in the scott1.dmp dump file that was exported
as view1:

> impdp scott/password views_as_tables=view1 directory=data_pump_dir
dumpfile=scott1.dmp

3.5 Commands Available in Oracle Data Pump Import
Interactive-Command Mode

In interactive-command mode, the current job continues running, but logging to the
terminal is suspended, and the Import prompt (Import>) is displayed.

• About Oracle Data Pump Import Interactive Command Mode
Learn how to run Oracle Data Pump commands from an attached client, or from a
terminal other than the one on which the job is running.

• CONTINUE_CLIENT
The Data Pump Import interactive command mode CONTINUE_CLIENT parameter
changes the mode from interactive-command mode to logging mode.

• EXIT_CLIENT
The Data Pump Import interactive command mode EXIT_CLIENT parameter stops
the import client session, exits Import, and discontinues logging to the terminal, but
leaves the current job running.

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-94

• HELP
The Data Pump Import interactive command mode HELP parameter provides
information about Data Pump Import commands available in interactive-command
mode.

• KILL_JOB
The Data Pump Import interactive command mode KILL_JOB parameter detaches
all currently attached client sessions and then terminates the current job. It exits
Import and returns to the terminal prompt.

• PARALLEL
The Data Pump Import interactive command mode PARALLEL parameter enables
you to increase or decrease the number of active worker processes, PQ slaves, or
both for the current job.

• START_JOB
The Data Pump Import interactive command mode START_JOB parameter starts the
current job to which you are attached.

• STATUS
The Import interactive command STATUS parameter displays the status of the
current import operation. It also allows you to reset the display interval for logging
mode status.

• STOP_JOB
The Data Pump Import interactive command mode STOP_JOB parameter stops the
current job, either immediately or after an orderly shutdown, and exits Import.

3.5.1 About Oracle Data Pump Import Interactive Command Mode
Learn how to run Oracle Data Pump commands from an attached client, or from a
terminal other than the one on which the job is running.

To start interactive-command mode, do one of the following:

• From an attached client, press Ctrl+C.

• From a terminal other than the one on which the job is running, use the ATTACH
parameter to attach to the job. This feature is useful in situations in which you start
a job at one location, and must check it at a later time from a different location.

Commands for Oracle Data Pump Interactive Mode

The following table lists the activities that you can perform for the current job from the
Oracle Data Pump Import prompt in interactive-command mode.

Table 3-1 Supported Activities in Oracle Data Pump Import's Interactive-
Command Mode

Activity Command Used

Exit interactive-command mode. CONTINUE_CLIENT

Stop the import client session, but leave the current job
running.

EXIT_CLIENT

Display a summary of available commands. HELP

Detach all currently attached client sessions and terminate the
current job.

KILL_JOB

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-95

Table 3-1 (Cont.) Supported Activities in Oracle Data Pump Import's
Interactive-Command Mode

Activity Command Used

Increase or decrease the number of active worker processes
for the current job. This command is valid only in Oracle
Database Enterprise Edition.

PARALLEL

Restart a stopped job to which you are attached. START_JOB

Display detailed status for the current job. STATUS

Stop the current job. STOP_JOB

3.5.2 CONTINUE_CLIENT
The Data Pump Import interactive command mode CONTINUE_CLIENT parameter
changes the mode from interactive-command mode to logging mode.

Purpose

Changes the mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE_CLIENT

In logging mode, the job status is continually output to the terminal. If the job is
currently stopped, then CONTINUE_CLIENT also causes the client to attempt to start the
job.

Example

Import> CONTINUE_CLIENT

3.5.3 EXIT_CLIENT
The Data Pump Import interactive command mode EXIT_CLIENT parameter stops the
import client session, exits Import, and discontinues logging to the terminal, but leaves
the current job running.

Purpose

Stops the import client session, exits Import, and discontinues logging to the terminal,
but leaves the current job running.

Syntax and Description

EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time
if it is still executing or in a stopped state. To see the status of the job, you can monitor
the log file for the job, or you can query the USER_DATAPUMP_JOBS view or the
V$SESSION_LONGOPS view.

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-96

Example

Import> EXIT_CLIENT

3.5.4 HELP
The Data Pump Import interactive command mode HELP parameter provides
information about Data Pump Import commands available in interactive-command
mode.

Purpose

Provides information about Data Pump Import commands available in interactive-
command mode.

Syntax and Description

HELP

Displays information about the commands available in interactive-command mode.

Example

Import> HELP

3.5.5 KILL_JOB
The Data Pump Import interactive command mode KILL_JOB parameter detaches all
currently attached client sessions and then terminates the current job. It exits Import
and returns to the terminal prompt.

Purpose

Detaches all currently attached client sessions and then terminates the current job. It
exits Import and returns to the terminal prompt.

Syntax and Description

KILL_JOB

A job that is terminated using KILL_JOB cannot be restarted. All attached clients,
including the one issuing the KILL_JOB command, receive a warning that the job is
being terminated by the current user, and are then detached. After all clients are
detached, the job process structure is immediately run down, and the master table is
deleted. Log files are not deleted.

Example

Import> KILL_JOB

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-97

3.5.6 PARALLEL
The Data Pump Import interactive command mode PARALLEL parameter enables you
to increase or decrease the number of active worker processes, PQ slaves, or both for
the current job.

Purpose

Enables you to increase or decrease the number of active worker processes, PQ
slaves, or both for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter and an interactive-mode
parameter. You set it to the desired number of parallel processes. An increase takes
effect immediately if there are enough resources, and if there is enough work requiring
parallelization. A decrease does not take effect until an existing process finishes its
current task. If the integer value is decreased, then workers are idled but not deleted
until the job exits.

Restrictions

• This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later releases.

• Transportable tablespace metadata cannot be imported in parallel.

• Metadata cannot be imported in parallel when the NETWORK_LINK parameter is also
used

• The following objects cannot be imported in parallel:

– TRIGGER

– VIEW

– OBJECT_GRANT

– SEQUENCE

– CONSTRAINT

– REF_CONSTRAINT

Example

Import> PARALLEL=10

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-98

3.5.7 START_JOB
The Data Pump Import interactive command mode START_JOB parameter starts the
current job to which you are attached.

Purpose

Starts the current job to which you are attached.

Syntax and Description

START_JOB[=SKIP_CURRENT=YES]

The START_JOB command restarts the job to which you are currently attached (the job
cannot be currently executing). The job is restarted with no data loss or corruption
after an unexpected failure or after you issue a STOP_JOB command, provided the
dump file set and master table remain undisturbed.

The SKIP_CURRENT option allows you to restart a job that previously failed, or that is
hung or performing slowly on a particular object. The failing statement or current object
being processed is skipped and the job is restarted from the next work item. For
parallel jobs, this option causes each worker to skip whatever it is currently working on
and to move on to the next item at restart.

You cannot restart SQLFILE jobs.

Example

Import> START_JOB

3.5.8 STATUS
The Import interactive command STATUS parameter displays the status of the current
import operation. It also allows you to reset the display interval for logging mode
status.

Purpose

Displays cumulative status of the job, a description of the current operation, and an
estimated completion percentage. It also allows you to reset the display interval for
logging mode status.

Syntax and Description

STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
then the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log file
(even if one is in effect).

Chapter 3
Commands Available in Oracle Data Pump Import Interactive-Command Mode

3-99

Example

The following example displays the current job status, and changes the logging mode
display interval to two minutes (120 seconds).

Import> STATUS=120

3.5.9 STOP_JOB
The Data Pump Import interactive command mode STOP_JOB parameter stops the
current job, either immediately or after an orderly shutdown, and exits Import.

Purpose

Stops the current job, either immediately or after an orderly shutdown, and exits
Import.

Syntax and Description

STOP_JOB[=IMMEDIATE]

After you run STOP_JOB, you can attach and restart jobs later with START_JOB. To attach
and restart jobs, the master table and dump file set must not be disturbed, either when
you issue the command, or after you issue the command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A
warning requiring confirmation is then issued. An orderly shutdown stops the job after
worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring
confirmation is then issued. All attached clients, including the one issuing the STOP_JOB
command, receive a warning that the current user is stopping the job. They are then
detached. After all clients are detached, the process structure of the job is immediately
run down. That is, the master process does not wait for the worker processes to finish
their current tasks. When you specify STOP_JOB=IMMEDIATE, there is no risk of
corruption or data loss. However, you can be required to redo some tasks that were
incomplete at the time of shutdown at restart time.

Example

Import> STOP_JOB=IMMEDIATE

3.6 Examples of Using Oracle Data Pump Import
You can use these common scenario examples to learn how you can use Oracle Data
Pump Import to move your data.

• Performing a Data-Only Table-Mode Import
This example shows how to perform a data-only table-mode import.

• Performing a Schema-Mode Import
This example shows a schema-mode import.

• Performing a Network-Mode Import
This example shows a network-mode import.

Chapter 3
Examples of Using Oracle Data Pump Import

3-100

• Using Wildcards in URL-Based Dumpfile Names
Oracle Data Pump simplifies importing multiple dump files into Oracle Autonomous
Database from the Oracle Object Store Service by allowing wildcards for URL-
based dumpfile names.

3.6.1 Performing a Data-Only Table-Mode Import
This example shows how to perform a data-only table-mode import.

In the example, the table is named employees. It uses the dump file created in
"Performing a Table-Mode Export.".

The CONTENT=DATA_ONLY parameter filters out any database object definitions
(metadata). Only table row data is loaded.

Example 3-1 Performing a Data-Only Table-Mode Import

> impdp hr TABLES=employees CONTENT=DATA_ONLY DUMPFILE=dpump_dir1:table.dmp
NOLOGFILE=YES

Related Topics

• Performing a Table-Mode Export

3.6.2 Performing a Schema-Mode Import
This example shows a schema-mode import.

The example is a schema-mode import of the dump file set created in "Performing a
Schema-Mode Export".

Example 3-2 Performing a Schema-Mode Import

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
 EXCLUDE=CONSTRAINT,REF_CONSTRAINT,INDEX TABLE_EXISTS_ACTION=REPLACE

The EXCLUDE parameter filters the metadata that is imported. For the given mode of
import, all the objects contained within the source, and all their dependent objects, are
included except those specified in an EXCLUDE statement. If an object is excluded, then
all of its dependent objects are also excluded. The TABLE_EXISTS_ACTION=REPLACE
parameter tells Import to drop the table if it already exists and to then re-create and
load it using the dump file contents.

Related Topics

• Performing a Schema-Mode Export

3.6.3 Performing a Network-Mode Import
This example shows a network-mode import.

The network-mode import uses as its source the database specified by the
NETWORK_LINK parameter.

Chapter 3
Examples of Using Oracle Data Pump Import

3-101

Example 3-3 Network-Mode Import of Schemas

> impdp hr TABLES=employees REMAP_SCHEMA=hr:scott DIRECTORY=dpump_dir1
NETWORK_LINK=dblink

This example imports the employees table from the hr schema into the scott schema.
The dblink references a source database that is different than the target database.

To remap the schema, user hr must have the DATAPUMP_IMP_FULL_DATABASE role on
the local database and the DATAPUMP_EXP_FULL_DATABASE role on the source database.

REMAP_SCHEMA loads all the objects from the source schema into the target schema.

Related Topics

• NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK_LINK parameter
enables an import from a source database identified by a valid database link.

3.6.4 Using Wildcards in URL-Based Dumpfile Names
Oracle Data Pump simplifies importing multiple dump files into Oracle Autonomous
Database from the Oracle Object Store Service by allowing wildcards for URL-based
dumpfile names.

Example 3-4 Wildcards Used in a URL-based Filename

This example shows how to use wildcards in the file name for importing multiple dump
files into Oracle Autonomous Database from the Oracle Object Store Service.

> impdp admin/password@ATPC1_high
 directory=data_pump_dir credential=my_cred_name
 dumpfile= https://objectstorage.example.com/v1/atpc/atpc_user/exp
%u.dmp"

Note:

You cannot use wildcard characters in the bucket-name component of the
URL.

3.7 Syntax Diagrams for Data Pump Import
This section provides syntax diagrams for Data Pump Import.

These diagrams use standard SQL syntax notation. For more information about SQL
syntax notation, see Oracle Database SQL Language Reference.

Chapter 3
Syntax Diagrams for Data Pump Import

3-102

ImpInit

impdp

HELP =
YES

NO

username / password

@ connect_identifier AS SYSDBA

ImpStart

ImpStart

ImpModes ImpOpts ImpFileOpts

ATTACH

=

schema_name .

job_name

ImpEncrypt

ImpModes

FULL =
YES

NO

SCHEMAS = schema_name

,

TABLES =

schema_name .

table_name

: partition_name

,

TABLESPACES = tablespace_name

,

Chapter 3
Syntax Diagrams for Data Pump Import

3-103

ImpOpts

ImpContent

DATA_OPTIONS =

DISABLE_APPEND_HINT

SKIP_CONSTRAINT_ERRORS

REJECT_ROWS_WITH_REPL_CHAR

TRUST_EXISTING_TABLE_PARTITIONS

VALIDATE_TABLE_DATA

ENABLE_NETWORK_COMPRESSION

CONTINUE_LOAD_ON_FORMAT_ERROR

ImpEncrypt

ImpFilter

JOB_NAME = jobname_string

LOGTIME =

NONE

STATUS

LOGFILE

ALL

PARALLEL = integer

ImpRemap

REUSE_DATAFILES =
YES

NO

ImpPartitioning

ImpRacOpt

Chapter 3
Syntax Diagrams for Data Pump Import

3-104

ImpOpts_Cont

SKIP_UNUSABLE_INDEXES =
YES

NO

STATUS = integer

STREAMS_CONFIGURATION =
YES

NO

TABLE_EXISTS_ACTION =

SKIP

APPEND

TRUNCATE

REPLACE

TARGET_EDITION = target_edition_name

ImpTransforms

ImpVersion

VIEWS_AS_TABLES =

schema_object.

view_name

:table_name

,

schema_object.

view_name

,

ImpDiagnostics

ImpContent

CONTENT =

ALL

DATA_ONLY

METADATA_ONLY

ImpEncrypt

ENCRYPTION_PASSWORD = password

ENCRYPTION_PWD_PROMPT =
YES

NO

Chapter 3
Syntax Diagrams for Data Pump Import

3-105

ImpFilter

EXCLUDE = object_type

: name_clause

INCLUDE = object_type

: name_clause

QUERY =

schema_name .

table_name :

query_clause

ImpPartitioning

PARTITION_OPTIONS =

NONE

DEPARTITION

EXCHANGE

MERGE

ImpRacOpt

CLUSTER =

YES

NO

SERVICE_NAME = service_name

ImpRemap

REMAP_DATA =

schema .

table . column :

schema .

pkg . function

REMAP_DATAFILE = source_datafile : target_datafile

REMAP_DIRECTORY = source_directory_string : target_directory_string

REMAP_SCHEMA = source_schema : target_schema

REMAP_TABLE =

schema_name .

old_table_name

: partition

: new_tablename

REMAP_TABLESPACE = source_tablespace : target_tablespace

Chapter 3
Syntax Diagrams for Data Pump Import

3-106

Note: The REMAP_DATAFILE and REMAP_DIRECTORY parameters are mutually exclusive.

ImpFileOpts

DIRECTORY = directory_object

NETWORK_LINK = database_link ImpNetworkOpts

DUMPFILE =

directory_object :

file_name

,

LOGFILE =

directory_object :

file_name

NOLOGFILE =
YES

NO

PARFILE =

directory_path

file_name

SQLFILE =

directory_object :

file_name

ImpNetworkOpts

ESTIMATE =
BLOCKS

STATISTICS

FLASHBACK_SCN = SCN_number

FLASHBACK_TIME = timestamp

TRANSPORTABLE =
ALWAYS

NEVER

TRANSPORT_TABLESPACES = tablespace_name

,

TRANSPORT_DATAFILES = datafile_name

,

TRANSPORT_FULL_CHECK =
YES

NO

Chapter 3
Syntax Diagrams for Data Pump Import

3-107

ImpDynOpts

CONTINUE_CLIENT

EXIT_CLIENT

HELP

KILL_JOB

PARALLEL = integer

START_JOB

= SKIP_CURRENT =
YES

NO

STATUS

= integer

STOP_JOB

= IMMEDIATE

ImpTransforms

TRANSFORM =

SEGMENT_ATTRIBUTES

STORAGE

OID

PARTITION

PCTSPACE

DISABLE_ARCHIVE_LOGGING

LOB_STORAGE

TABLE_COMPRESSION_CLAUSE

: value

: object_type

ImpVersion

VERSION =

COMPATIBLE

LATEST

version_string

Chapter 3
Syntax Diagrams for Data Pump Import

3-108

ImpDiagnostics

ABORT_STEP = integer

ACCESS_METHOD =

AUTOMATIC

EXTERNAL_TABLE

DIRECT_PATH

CONVENTIONAL

INSERT_AS_SELECT

KEEP_MASTER =
YES

NO

MASTER_ONLY =
YES

NO

METRICS =
YES

NO

Chapter 3
Syntax Diagrams for Data Pump Import

3-109

4
Oracle Data Pump Legacy Mode

With Oracle Data Pump legacy mode, you can use original Export and Import
parameters on the Oracle Data Pump Export and Data Pump Import command lines.

• Oracle Data Pump Legacy Mode Use Cases
Oracle Data Pump enters legacy mode when it encounters legacy export or import
parameters, so that you can continue using existing scripts.

• Parameter Mappings
You can use original Oracle Export and Import parameters when they map to
Oracle Data Pump Export and Import parameters that supply similar functionality.

• Management of File Locations in Oracle Data Pump Legacy Mode
Original Export and Import and Oracle Data Pump Export and Import differ on
where dump files and log files can be written to and read from, because the
original version is client-based, and Data Pump is server-based.

• Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors
When you use Oracle Data Pump in legacy mode, you must review and update
your existing scripts written for original Export and Import

4.1 Oracle Data Pump Legacy Mode Use Cases
Oracle Data Pump enters legacy mode when it encounters legacy export or import
parameters, so that you can continue using existing scripts.

If you use original Export (exp) and Import (imp), then you probably have scripts you
have been using for many years. Data Pump provides a legacy mode, which allows
you to continue to use your existing scripts with Oracle Data Pump.

Oracle Data Pump enters legacy mode when it determines that a parameter unique to
original Export or Import is present, either on the command line, or in a script. As Data
Pump processes the parameter, the analogous Oracle Data Pump Export or Oracle
Data Pump Import parameter is displayed. Oracle strongly recommends that you view
the new syntax and make script changes as time permits.

Note:

The Oracle Data Pump Export and Import utilities create and read dump files
and log files in Oracle Data Pump format only. They never create or read
dump files compatible with original Export or Import. If you have a dump file
created with original Export, then you must use original Import to import the
data into the database.

4-1

4.2 Parameter Mappings
You can use original Oracle Export and Import parameters when they map to Oracle
Data Pump Export and Import parameters that supply similar functionality.

• Using Original Export Parameters with Oracle Data Pump
Oracle Data Pump Export accepts original Export parameters when they map to a
corresponding Oracle Data Pump parameter.

• Using Original Import Parameters with Oracle Data Pump
Oracle Data Pump Import accepts original Import parameters when they map to a
corresponding Oracle Data Pump parameter.

4.2.1 Using Original Export Parameters with Oracle Data Pump
Oracle Data Pump Export accepts original Export parameters when they map to a
corresponding Oracle Data Pump parameter.

Oracle Data Pump Interpretation of Original Export Parameters

To see how Oracle Data Pump Export interprets original Export parameters, refer to
the table for comparisons. Parameters that have the same name and functionality in
both original Export and Oracle Data Pump Export are not included in this table.

Table 4-1 How Oracle Data Pump Export Handles Original Export Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

BUFFER This parameter is ignored.

COMPRESS This parameter is ignored. In original Export,
the COMPRESS parameter affected how the
initial extent was managed. Setting
COMPRESS=n caused original Export to use
current storage parameters for the initial and
next extent.

The Oracle Data Pump Export COMPRESSION
parameter is used to specify how data is
compressed in the dump file, and is not related
to the original Export COMPRESS parameter.

CONSISTENT Oracle Data Pump Export determines the
current time, and uses FLASHBACK_TIME.

CONSTRAINTS If original Export used CONSTRAINTS=n, then
Oracle Data Pump Export uses
EXCLUDE=CONSTRAINTS.

The default behavior is to include constraints
as part of the export.

DIRECT This parameter is ignored. Oracle Data Pump
Export automatically chooses the best export
method.

Chapter 4
Parameter Mappings

4-2

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export
Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

FEEDBACK The Oracle Data Pump Export STATUS=30
command is used. Note that this is not a direct
mapping because the STATUS command
returns the status of the export job, as well as
the rows being processed.

In original Export, feedback was given after a
certain number of rows, as specified with the
FEEDBACK command. In Oracle Data Pump
Export, the status is given every so many
seconds, as specified by STATUS.

FILE Oracle Data Pump Export attempts to
determine the path that was specified or
defaulted to for the FILE parameter, and also
to determine whether a directory object exists
to which the schema has read and write
access. Original Export and Import and Data
Pump Export and Import differ on where dump
files and log files can be written to and read
from, because the original version is client-
based, and Oracle Data Pump is server-
based.

GRANTS If original Export used GRANTS=n, then Data
Pump Export uses EXCLUDE=GRANT.

If original Export used GRANTS=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Export default behavior.

INDEXES If original Export used INDEXES=n, then
Oracle Data Pump Export uses the
EXCLUDE=INDEX parameter.

If original Export used INDEXES=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Export default behavior.

LOG Oracle Data Pump Export attempts to
determine the path that was specified or
defaulted to for the LOG parameter, and also to
determine whether a directory object exists to
which the schema has read and write access.

Original Export and Import and Data Pump
Export and Import differ on where dump files
and log files can be written to and read from,
because the original version is client-based,
and Oracle Data Pump is server-based.

The contents of the log file will be those of an
Oracle Data Pump Export operation.

Chapter 4
Parameter Mappings

4-3

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export
Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

OBJECT_CONSISTENT This parameter is ignored, because Oracle
Data Pump Export processing ensures that
each object is in a consistent state when being
exported.

OWNER The Oracle Data Pump SCHEMAS parameter is
used.

RECORDLENGTH This parameter is ignored, because Oracle
Data Pump Export automatically takes care of
buffer sizing.

RESUMABLE This parameter is ignored, because Oracle
Data Pump Export automatically provides this
functionality to users who have been granted
the EXP_FULL_DATABASE role.

RESUMABLE_NAME This parameter is ignored, because Oracle
Data Pump Export automatically provides this
functionality to users who have been granted
the EXP_FULL_DATABASE role.

RESUMABLE_TIMEOUT This parameter is ignored, because Oracle
Data Pump Export automatically provides this
functionality to users who have been granted
the EXP_FULL_DATABASE role.

ROWS If original Export used ROWS=y, then Oracle
Data Pump Export uses the CONTENT=ALL
parameter.

If original Export used ROWS=n, then Oracle
Data Pump Export uses the
CONTENT=METADATA_ONLY parameter.

STATISTICS This parameter is ignored, because statistics
are always saved for tables as part of an
Oracle Data Pump export operation.

TABLESPACES If original Export also specified
TRANSPORT_TABLESPACE=n, then Oracle Data
Pump Export ignores the TABLESPACES
parameter.

If original Export also specified
TRANSPORT_TABLESPACE=y, then Oracle Data
Pump Export takes the names listed for the
TABLESPACES parameter and uses them on
the Oracle Data Pump Export
TRANSPORT_TABLESPACES parameter.

Chapter 4
Parameter Mappings

4-4

Table 4-1 (Cont.) How Oracle Data Pump Export Handles Original Export
Parameters

Original Export Parameter Action Taken by Data Pump Export
Parameter

TRANSPORT_TABLESPACE If original Export used
TRANSPORT_TABLESPACE=n (the default), then
Oracle Data Pump Export uses the
TABLESPACES parameter.

If original Export used
TRANSPORT_TABLESPACE=y, then Oracle Data
Pump Export uses the
TRANSPORT_TABLESPACES parameter, and
only the metadata is exported.

TRIGGERS If original Export used TRIGGERS=n, then
Oracle Data Pump Export uses the
EXCLUDE=TRIGGER parameter.

If original Export used TRIGGERS=y, then the
parameter is ignored. The parameter does not
need to be remapped, because that is the
Oracle Data Pump Export default behavior.

TTS_FULL_CHECK If original Export used TTS_FULL_CHECK=y,
then Oracle Data Pump Export uses the
TRANSPORT_FULL_CHECK parameter.

If original Export used TTS_FULL_CHECK=y,
then the parameter is ignored. The parameter
does not need to be remapped, because that
is the Oracle Data Pump Export default
behavior.

VOLSIZE When the original Export VOLSIZE parameter
is used, it means the location specified for the
dump file is a tape device. The Oracle Data
Pump Export dump file format does not
support tape devices. Therefore, this operation
terminates with an error.

Related Topics

• Management of File Locations in Oracle Data Pump Legacy Mode
Original Export and Import and Oracle Data Pump Export and Import differ on
where dump files and log files can be written to and read from, because the
original version is client-based, and Data Pump is server-based.

4.2.2 Using Original Import Parameters with Oracle Data Pump
Oracle Data Pump Import accepts original Import parameters when they map to a
corresponding Oracle Data Pump parameter.

To see how Oracle Data Pump Import interprets original Export parameters, refer to
the table for comparisons. Parameters that have the same name and functionality in
both original Import and Oracle Data Pump Import are not included in this table.

Chapter 4
Parameter Mappings

4-5

Table 4-2 How Oracle Data Pump Import Handles Original Import Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

BUFFER This parameter is ignored.

CHARSET This parameter was desupported several
releases ago, and should no longer be used.
Attempting to use this desupported parametr
causes the Oracle Data Pump Import
operation to abort.

COMMIT This parameter is ignored. Oracle Data Pump
Import automatically performs a commit after
each table is processed.

COMPILE This parameter is ignored. Oracle Data Pump
Import compiles procedures after they are
created. If necessary for dependencies, a
recompile can be run.

CONSTRAINTS If original Import used CONSTRAINTS=n, then
Oracle Data Pump Import uses the
EXCLUDE=CONSTRAINT parameter.

If original Import used CONSTRAINTS=y, then
the parameter is ignored. The parameter does
not need to be remapped, because that is the
Oracle Data Pump Import default behavior.

DATAFILES The Oracle Data Pump Import
TRANSPORT_DATAFILES parameter is used.

DESTROY If original Import used DESTROY=y, then Oracle
Data Pump Import uses the
REUSE_DATAFILES=y parameter.

If original Import used DESTROY=n, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Import default behavior.

FEEDBACK The Oracle Data Pump Import STATUS=30
command is used. Note that this is not a direct
mapping, because the STATUS command
returns the status of the import job, as well as
the rows being processed.

In original Import, feedback was given after a
certain number of rows, as specified with the
FEEDBACK command. In Oracle Data Pump
Import, the status is given every so many
seconds, as specified by STATUS.

Chapter 4
Parameter Mappings

4-6

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

FILE Oracle Data Pump Import attempts to
determine the path that was specified or
defaulted to for the FILE parameter, and also
to determine whether a directory object exists
to which the schema has read and write
access.

Original Export and Import and Data Pump
Export and Import differ on where dump files
and log files can be written to and read from
because the original version is client-based
and Data Pump is server-based.

FILESIZE This parameter is ignored, because the
information is already contained in the Oracle
Data Pump dump file set.

FROMUSER The Oracle Data Pump Import SCHEMAS
parameter is used. If FROMUSER was used
without TOUSER also being used, then import
schemas that have the IMP_FULL_DATABASE
role cause Oracle Data Pump Import to
attempt to create the schema and then import
that schema's objects. Import schemas that do
not have the IMP_FULL_DATABASE role can
only import their own schema from the dump
file set.

GRANTS If original Import used GRANTS=n, then Oracle
Data Pump Import uses the
EXCLUDE=OBJECT_GRANT parameter.

If original Import used GRANTS=y, then the
parameter is ignored and does not need to be
remapped because that is the Oracle Data
Pump Import default behavior.

IGNORE If original Import used IGNORE=y, then Oracle
Data Pump Import uses the
TABLE_EXISTS_ACTION=APPEND parameter.
This causes the processing of table data to
continue.

If original Import used IGNORE=n, then the
parameter is ignored and does not need to be
remapped, because that is the Oracle Data
Pump Import default behavior.

INDEXES If original Import used INDEXES=n, then Oracle
Data Pump Import uses the EXCLUDE=INDEX
parameter.

If original Import used INDEXES=y, then the
parameter is ignored and does not need to be
remapped, because that is the Oracle Data
Pump Import default behavior.

Chapter 4
Parameter Mappings

4-7

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

INDEXFILE The Oracle Data Pump Import
SQLFILE={directory-object:}filename
and INCLUDE=INDEX parameters are used.

The same method and attempts made when
looking for a directory object described for the
FILE parameter also take place for the
INDEXFILE parameter.

If no directory object was specified on the
original Import, then Oracle Data Pump Import
uses the directory object specified with the
DIRECTORY parameter.

LOG Oracle Data Pump Import attempts to
determine the path that was specified or
defaulted to for the LOG parameter, and also to
determine whether a directory object exists to
which the schema has read and write access.

The contents of the log file will be those of an
Oracle Data Pump Import operation.

RECORDLENGTH This parameter is ignored, because Oracle
Data Pump handles issues about record
length internally.

RESUMABLE This parameter is ignored, because this
functionality is automatically provided for users
who have been granted the
IMP_FULL_DATABASE role.

RESUMABLE_NAME This parameter is ignored, because this
functionality is automatically provided for users
who have been granted the
IMP_FULL_DATABASE role.

RESUMABLE_TIMEOUT This parameter is ignored, because this
functionality is automatically provided for users
who have been granted the
IMP_FULL_DATABASE role.

ROWS=N If original Import used ROWS=n, then Oracle
Data Pump Import uses the
CONTENT=METADATA_ONLY parameter.

If original Import used ROWS=y, then Oracle
Data Pump Import uses the CONTENT=ALL
parameter.

Chapter 4
Parameter Mappings

4-8

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

SHOW If SHOW=y is specified, then the Oracle Data
Pump Import parameter
SQLFILE=[directory_object:]file_name
is used to write the DDL for the import
operation to a file. Only the DDL (not the entire
contents of the dump file) is written to the
specified file. (Note that the output is not
shown on the screen, as it was in original
Import.)

The file name given is the file name specified
on the DUMPFILE parameter (or on the original
Import FILE parameter, which is remapped to
DUMPFILE). If multiple dump file names are
listed, then the first file name in the list is used.
The file is placed in the directory object
location specified on the DIRECTORY
parameter, or the directory object included on
the DUMPFILE parameter. (Directory objects
specified on the DUMPFILE parameter take
precedence.)

STATISTICS This parameter is ignored, because statistics
are always saved for tables as part of an
Oracle Data Pump Import operation.

STREAMS_CONFIGURATION This parameter is ignored, because Oracle
Data Pump Import automatically determines it;
it does not need to be specified.

STREAMS_INSTANTIATION This parameter is ignored, because Oracle
Data Pump Import automatically determines it;
it does not need to be specified

TABLESPACES If original Import also specified
TRANSPORT_TABLESPACE=n (the default), then
Oracle Data Pump Import ignores the
TABLESPACES parameter.

If original Import also specified
TRANSPORT_TABLESPACE=y, then Oracle Data
Pump Import takes the names supplied for this
TABLESPACES parameter and applies them to
the Oracle Data Pump Import
TRANSPORT_TABLESPACES parameter.

TOID_NOVALIDATE This parameter is ignored. OIDs are no longer
used for type validation.

Chapter 4
Parameter Mappings

4-9

Table 4-2 (Cont.) How Oracle Data Pump Import Handles Original Import
Parameters

Original Import Parameter Action Taken by Oracle Data Pump Import
Parameter

TOUSER The Oracle Data Pump Import REMAP_SCHEMA
parameter is used. There can be more objects
imported than with original Import. Also,
Oracle Data Pump Import can create the
target schema, if it does not already exist.

The FROMUSER parameter must also have
been specified in original Import. If FROMUSER
was not originally specified, then the operation
fails.

TRANSPORT_TABLESPACE The TRANSPORT_TABLESPACE parameter is
ignored, but if you also specified the
DATAFILES parameter, then the import job
continues to load the metadata. If the
DATAFILES parameter is not specified, then
an ORA-39002:invalid operation error
message is returned.

TTS_OWNERS This parameter is ignored because this
information is automatically stored in the
Oracle Data Pump dump file set.

VOLSIZE When the original Import VOLSIZE parameter
is used, it means the location specified for the
dump file is a tape device. The Oracle Data
Pump Import dump file format does not
support tape devices. Therefore, this operation
terminates with an error.

Related Topics

• Management of File Locations in Oracle Data Pump Legacy Mode
Original Export and Import and Oracle Data Pump Export and Import differ on
where dump files and log files can be written to and read from, because the
original version is client-based, and Data Pump is server-based.

• Log Files
Oracle Data Pump Export and Import do not generate log files in the same format
as those created by original Export and Import.

4.3 Management of File Locations in Oracle Data Pump
Legacy Mode

Original Export and Import and Oracle Data Pump Export and Import differ on where
dump files and log files can be written to and read from, because the original version is
client-based, and Data Pump is server-based.

Original Export and Import use the FILE and LOG parameters to specify dump file and
log file names, respectively. These file names always refer to files local to the client
system and they may also contain a path specification.

Chapter 4
Management of File Locations in Oracle Data Pump Legacy Mode

4-10

Oracle Data Pump Export and Import use the DUMPFILE and LOGFILE parameters to
specify dump file and log file names, respectively. These file names always refer to
files local to the server system, and cannot contain any path information. Instead, a
directory object is used to indirectly specify path information. The path value defined
by the directory object must be accessible to the server. The directory object is
specified for an Oracle Data Pump job through the DIRECTORY parameter. It is also
possible to prepend a directory object to the file names passed to the DUMPFILE and
LOGFILE parameters. For privileged users, Oracle Data Pump supports the use of a
default directory object if one is not specified on the command line. This default
directory object, DATA_PUMP_DIR, is set up at installation time.

If Data Pump legacy mode is enabled and the original Export FILE=filespec
parameter and/or LOG=filespec parameter are present on the command line, then the
following rules of precedence are used to determine file location:

Note:

If the FILE parameter and LOG parameter are both present on the command
line, then the rules of precedence are applied separately to each parameter.

When a mix of original Export/Import and Oracle Data Pump Export/Import
parameters are used, separate rules apply to them. For example, suppose
you have the following command:

expdp system FILE=/user/disk/foo.dmp LOGFILE=foo.log
DIRECTORY=dpump_dir

In this case, the Oracle Data Pump legacy mode file management rules, as
explained in this section, apply to the FILE parameter. The normal (that is,
non-legacy mode) Oracle Data Pump file management rules for default
locations of Dump, Log, and SQL files locations apply to the LOGFILE
parameter.

Example 4-1 Oracle Data Pump Legacy Mode File Management Rules Applied

File management proceeds in the following sequence:

1. If you specify a path location as part of the file specification, then Oracle Data
Pump attempts to look for a directory object accessible to the schema running the
export job whose path location matches the path location of the file specification. If
such a directory object cannot be found, then an error is returned. For example,
suppose that you defined a server-based directory object named USER_DUMP_FILES
with a path value of '/disk1/user1/dumpfiles/', and that read and write access
to this directory object has been granted to the hr schema. The following
command causes Oracle Data Pump to look for a server-based directory object
whose path value contains '/disk1/user1/dumpfiles/' and to which the hr
schema has been granted read and write access:

expdp hr FILE=/disk1/user1/dumpfiles/hrdata.dmp

Chapter 4
Management of File Locations in Oracle Data Pump Legacy Mode

4-11

In this case, Oracle Data Pump uses the directory object USER_DUMP_FILES. The
path value, in this example '/disk1/user1/dumpfiles/', must refer to a path on
the server system that is accessible to Oracle Database.

If a path location is specified as part of the file specification, then any directory
object provided using the DIRECTORY parameter is ignored. For example, if you
issue the following command, then Oracle Data Pump does not use the DPUMP_DIR
directory object for the file parameter, but instead looks for a server-based
directory object whose path value contains '/disk1/user1/dumpfiles/' and to
which the hr schema has been granted read and write access:

expdp hr FILE=/disk1/user1/dumpfiles/hrdata.dmp DIRECTORY=dpump_dir

2. If you have not specified a path location as part of the file specification, then the
directory object named by the DIRECTORY parameter is used. For example, if you
issue the following command, then Oracle Data Pump applies the path location
defined for the DPUMP_DIR directory object to the hrdata.dmp file:

expdp hr FILE=hrdata.dmp DIRECTORY=dpump_dir

3. If you specify no path location as part of the file specification, and no directory
object is named by the DIRECTORY parameter, then Oracle Data Pump does the
following, in the order shown:

a. Oracle Data Pump looks for the existence of a directory object of the form
DATA_PUMP_DIR_schema_name, where schema_name is the schema that is
running the Oracle Data Pump job. For example, if you issued the following
command, then it would cause Oracle Data Pump to look for the existence of a
server-based directory object named DATA_PUMP_DIR_HR:

expdp hr FILE=hrdata.dmp

The hr schema also must have been granted read and write access to this
directory object. If such a directory object does not exist, then the process
moves to step b.

b. Oracle Data Pump looks for the existence of the client-based environment
variable DATA_PUMP_DIR. For instance, suppose that a server-based directory
object named DUMP_FILES1 has been defined, and the hr schema has been
granted read and write access to it. Then on the client system, you can set the
environment variable DATA_PUMP_DIR to point to DUMP_FILES1 as follows:

setenv DATA_PUMP_DIR DUMP_FILES1
expdp hr FILE=hrdata.dmp

Oracle Data Pump then uses the served-based directory object DUMP_FILES1
for the hrdata.dmp file.

If a client-based environment variable DATA_PUMP_DIR does not exist, then the
process moves to step c.

c. If the schema that is running the Oracle Data Pump job has DBA privileges,
then the default Oracle Data Pump directory object, DATA_PUMP_DIR, is used.
This default directory object is established at installation time. For example,
the following command causes Oracle Data Pump to attempt to use the

Chapter 4
Management of File Locations in Oracle Data Pump Legacy Mode

4-12

default DATA_PUMP_DIR directory object, assuming that system has DBA
privileges:

expdp system FILE=hrdata.dmp

Related Topics

• Understanding Dump, Log, and SQL File Default Locations

4.4 Adjusting Existing Scripts for Oracle Data Pump Log
Files and Errors

When you use Oracle Data Pump in legacy mode, you must review and update your
existing scripts written for original Export and Import

Oracle Data Pump legacy mode requires that you make adjustments to existing
scripts, because of differences in file format and error reporting.

• Log Files
Oracle Data Pump Export and Import do not generate log files in the same format
as those created by original Export and Import.

• Error Cases
The errors that Oracle Data Pump Export and Import generate can be different
from the errors generated by original Export and Import.

• Exit Status
Oracle Data Pump Export and Import have enhanced exit status values to enable
scripts to better determine the success or failure of export and import jobs.

4.4.1 Log Files
Oracle Data Pump Export and Import do not generate log files in the same format as
those created by original Export and Import.

You must update any scripts you have that parse the output of original Export and
Import, so that they handle the log file format used by Oracle Data Pump Export and
Import. For example, the message Successfully Terminated does not appear in
Oracle Data Pump log files.

4.4.2 Error Cases
The errors that Oracle Data Pump Export and Import generate can be different from
the errors generated by original Export and Import.

For example, suppose that a parameter that is ignored by Oracle Data Pump Export
would have generated an out-of-range value in original Export. In that case, an
informational message is written to the log file stating that the parameter is being
ignored. However, no value checking is performed, so no error message is generated.

4.4.3 Exit Status
Oracle Data Pump Export and Import have enhanced exit status values to enable
scripts to better determine the success or failure of export and import jobs.

Chapter 4
Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors

4-13

Because Oracle Data Pump Export and Import can have different exit status values,
Oracle recommends that you review, and if necessary, update, any scripts that look at
the exit status.

Chapter 4
Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors

4-14

5
Oracle Data Pump Performance

Learn how Oracle Data Pump Export and Import is better than that of original Export
and Import, and how to enhance performance of export and import operations.

The Oracle Data Pump Export and Import utilities are designed especially for very
large databases. If you have large quantities of data versus metadata, then you should
experience increased data performance compared to the original Export and Import
utilities. (Performance of metadata extraction and database object creation in Data
Pump Export and Import remains essentially equivalent to that of the original Export
and Import utilities.)

• Data Performance Improvements for Oracle Data Pump Export and Import
Oracle Data Pump Export (expdp) and Import (impdp) contain many features that
improve performance compared to legacy Export (exp) and Import (imp).

• Tuning Performance
Oracle Data Pump is designed to fully use all available resources to maximize
throughput, and minimize elapsed job time.

• Initialization Parameters That Affect Oracle Data Pump Performance
Learn what you can do to obtain the best performance from your Oracle Data
Pump exports and imports.

5.1 Data Performance Improvements for Oracle Data Pump
Export and Import

Oracle Data Pump Export (expdp) and Import (impdp) contain many features that
improve performance compared to legacy Export (exp) and Import (imp).

The improved performance of the Data Pump Export and Import utilities is attributable
to several factors, including the following:

• Multiple worker processes can perform intertable and interpartition parallelism to
load and unload tables in multiple, parallel, direct-path streams.

• For very large tables and partitions, single worker processes can choose
intrapartition parallelism through multiple parallel queries and parallel DML I/O
server processes when the external tables method is used to access data.

• Oracle Data Pump uses parallelism to build indexes and load package bodies.

• Because Dump files are read and written directly by the server, they do not require
any data movement to the client.

• The dump file storage format is the internal stream format of the direct path API.
This format is very similar to the format stored in Oracle Database data files inside
of tablespaces. Therefore, no client-side conversion to INSERT statement bind
variables is performed.

• The supported data access methods, direct path and external tables, are faster
than conventional SQL. The direct path API provides the fastest single-stream

5-1

performance. The external tables feature makes efficient use of the parallel
queries and parallel DML capabilities of Oracle Database.

• Metadata and data extraction can be overlapped during export.

5.2 Tuning Performance
Oracle Data Pump is designed to fully use all available resources to maximize
throughput, and minimize elapsed job time.

To maximize available resources, a system must be well-balanced across CPU,
memory, and I/O. In addition, standard performance tuning principles apply. For
example, for maximum performance, ensure that the files that are members of a dump
file set reside on separate disks, because the dump files are written and read in
parallel. Also, the disks should not be the same ones on which the source or target
tablespaces reside.

Any performance tuning activity involves making trade-offs between performance and
resource consumption.

• How To Manage Oracle Data Pump Resource Consumption
With the PARALLEL parameter, you cab dynamically increase and decrease Oracle
Data Pump Export and Import resource consumption for each job.

• Effect of Compression and Encryption on Performance
You can improve performance by using Oracle Data Pump parameters related to
compression and encryption, particularly in the case of jobs performed in network
mode.

• Memory Considerations When Exporting and Importing Statistics
When you use Oracle Data Pump Export dump files created with a release prior to
12.1, and that contain large amounts of statistics data, this can cause large
memory demands during an import operation.

5.2.1 How To Manage Oracle Data Pump Resource Consumption
With the PARALLEL parameter, you cab dynamically increase and decrease Oracle
Data Pump Export and Import resource consumption for each job.

You can manage resource allocations for Oracle Data Pump by using the PARALLEL
parameter to specify a degree of parallelism for the Oracle Data Pump job. For
maximum throughput, do not set PARALLEL to much more than twice the number of
CPUs (two workers for each CPU).

As you increase the degree of parallelism, CPU usage, memory consumption, and I/O
bandwidth usage also increase. You must ensure that adequate amounts of these
resources are available. If necessary, to obtain the needed I/O bandwidth, you can
distribute files across different disk devices or channels.

To maximize parallelism, you must supply at least one file for each degree of
parallelism. The simplest way of doing this is to use substitution variables in your file
names (for example, file%u.dmp). However, if your disk setup could creat contention
issues (for example, with simple, non-striped disks), you can prefr not to put all dump
files on one device. In this case, Oracle recommends that you specify multiple file
names using substitution variables, with each file in a separate directory resolving to a
separate disk. Even with fast CPUs and fast disks, the path between the CPU and the

Chapter 5
Tuning Performance

5-2

disk can be the constraining factor in the degree of parallelism that your system can
sustain.

The Oracle Data Pump PARALLEL parameter is valid only in Oracle Database
Enterprise Edition 11g or later.

5.2.2 Effect of Compression and Encryption on Performance
You can improve performance by using Oracle Data Pump parameters related to
compression and encryption, particularly in the case of jobs performed in network
mode.

When you attempt to tune performance, keep in mind your resource availability.
Performance can be affected negatively with compression and encryption, because of
the additional CPU resources required to perform transformations on the raw data.
There are trade-offs on both sides.

5.2.3 Memory Considerations When Exporting and Importing Statistics
When you use Oracle Data Pump Export dump files created with a release prior to
12.1, and that contain large amounts of statistics data, this can cause large memory
demands during an import operation.

To avoid running out of memory during the import operation, be sure to allocate
enough memory before beginning the import. The exact amount of memory needed
depends on how much data you are importing, the platform you are using, and other
variables unique to your configuration.

One way to avoid this problem altogether is to set the Data Pump
EXCLUDE=STATISTICS parameter on either the export or import operation. To
regenerate the statistics on the target database, you can use the DBMS_STATS PL/SQL
package after the import has completed.

Related Topics

• EXCLUDE

• EXCLUDE

• Oracle Database SQL Tuning Guide

5.3 Initialization Parameters That Affect Oracle Data Pump
Performance

Learn what you can do to obtain the best performance from your Oracle Data Pump
exports and imports.

• Performance Guidelines for Oracle Data Pump Parameters
To obtain optimal performance with exports and imports, review and test
initialization parameter settings that can improve performance.

• Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment
Oracle Data Pump uses GoldenGate Replication functionality to communicate
between processes.

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5-3

• Managing Resource Usage for Multiple User Oracle Data Pump Jobs
To obtain more control over resource use when you have multiple users
performing data pump jobs in the same database environment, use the
MAX_DATAPUMP_JOBS_PER_PDB and MAX_DATAPUMP_PARALLEL_PER_JOB initialization
parameters .

5.3.1 Performance Guidelines for Oracle Data Pump Parameters
To obtain optimal performance with exports and imports, review and test initialization
parameter settings that can improve performance.

The settings for certain Oracle Database initialization parameters can affect the
performance of Data Pump Export and Import.

In particular, you can try using the following settings to improve performance, although
the effect may not be the same on all platforms.

• DISK_ASYNCH_IO=TRUE

• DB_BLOCK_CHECKING=FALSE

• DB_BLOCK_CHECKSUM=FALSE

The following initialization parameters must have values set high enough to allow for
maximum parallelism:

• PROCESSES

• SESSIONS

• PARALLEL_MAX_SERVERS

Additionally, the SHARED_POOL_SIZE and UNDO_TABLESPACE initialization parameters
should be generously sized. The exact values depend upon the size of your database.

5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate
Replication Environment

Oracle Data Pump uses GoldenGate Replication functionality to communicate
between processes.

If the SGA_TARGET initialization parameter is set, then the STREAMS_POOL_SIZE
initialization parameter is automatically set to a reasonable value.

If the SGA_TARGET initialization parameter is not set and the STREAMS_POOL_SIZE
initialization parameter is not defined, then the size of the streams pool automatically
defaults to 10% of the size of the shared pool.

When the streams pool is created, the required SGA memory is taken from memory
allocated to the buffer cache, reducing the size of the cache to less than what was
specified by the DB_CACHE_SIZE initialization parameter. This means that if the buffer
cache was configured with only the minimal required SGA, then Data Pump operations
may not work properly. A minimum size of 10 MB is recommended for
STREAMS_POOL_SIZE to ensure successful Data Pump operations.

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5-4

5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump
Jobs

To obtain more control over resource use when you have multiple users performing
data pump jobs in the same database environment, use the
MAX_DATAPUMP_JOBS_PER_PDB and MAX_DATAPUMP_PARALLEL_PER_JOB initialization
parameters .

The initialization parameter MAX_DATAPUMP_JOBS_PER_PDB determines the maximum
number of concurrent Oracle Data Pump jobs for each pluggable database (PDB).
With Oracle Database 19c and later releases, you can set the parameter to AUTO. This
setting means that Oracle Data Pump derives the actual value of
MAX_DATAPUMP_JOBS_PER_PDB to be 50 percent (50%) of the value of the SESSIONS
initialization parameter. If you do not set the value to AUTO, then the default value is
100. You can set the value from 0 to 250.

Oracle Database Release 19c and later releases contain the initialization parameter
MAX_DATAPUMP_PARALLEL_PER_JOB. When you have multiple users performing data
pump jobs at the same time in a given database environment, you can use this
parameter to obtain more control over resource utilization. The parameter
MAX_DATAPUMP_PARALLEL_PER_JOB specifies the maximum number of parallel
processes that are made available for each Oracle Data Pump job. You can specify a
specific maximum number of processes, or you can select AUTO. If you choose to
specify a set value, then this maximum number can be from1 to 1024 (the default is
1024). If you choose to specify AUTO, then Oracle Data Pump derives the actual value
of the parameter MAX_DATAPUMP_PARALLEL_PER_JOB to be 25 percent (25%) of the value
of the SESSIONS initialization parameter.

Related Topics

• MAX_DATAPUMP_JOBS_PER_PDB Oracle Database Reference

• MAX_DATAPUMP_PARALLEL_PER_JOB Oracle Database Reference

Chapter 5
Initialization Parameters That Affect Oracle Data Pump Performance

5-5

6
Using the Oracle Data Pump API

You can automate data movement operations by using the Oracle Data Pump PL/SQL
API DBMS_DATAPUMP.

The Oracle Data Pump API DBMS_DATAPUMP provides a high-speed mechanism that
you can use to move all or part of the data and metadata for a site from one Oracle
Database to another. The Oracle Data Pump Export and Oracle Data Pump Import
utilities are based on the Oracle Data Pump API.

Oracle Database PL/SQL Packages and Types Reference

• How Does the Oracle Data Pump Client Interface API Work?
The main structure used in the client interface is a job handle, which appears to
the caller as an integer.

• DBMS_DATAPUMP Job States
Use Oracle Data Pump DBMS_DATAPUMP job states show to know which stage your
data movement job is performing, and what options are available at each stage.

• What Are the Basic Steps in Using the Oracle Data Pump API?
To use the Oracle Data Pump API, you use the procedures provided in the
DBMS_DATAPUMP package.

• Examples of Using the Oracle Data Pump API
To get started using the Oracle Data Pump API, review examples that show what
you can do with Oracle Data Pump exports and imports.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

6.1 How Does the Oracle Data Pump Client Interface API
Work?

The main structure used in the client interface is a job handle, which appears to the
caller as an integer.

Handles are created using the DBMS_DATAPUMP.OPEN or DBMS_DATAPUMP.ATTACH
function. Other sessions can attach to a job to monitor and control its progress.
Handles are session specific. The same job can create different handles in different
sessions. As a DBA, the benefit of this feature is that you can start up a job before
departing from work, and then watch the progress of the job from home.

6-1

6.2 DBMS_DATAPUMP Job States
Use Oracle Data Pump DBMS_DATAPUMP job states show to know which stage your data
movement job is performing, and what options are available at each stage.

Job State Definitions

Each phase of a job is associated with a state:

• Undefined — before a handle is created

• Defining — when the handle is first created

• Executing — when the DBMS_DATAPUMP.START_JOB procedure is executed

• Completing — when the job has finished its work and the Data Pump processes
are ending

• Completed — when the job is completed

• Stop Pending — when an orderly job shutdown has been requested

• Stopping — when the job is stopping

• Idling — the period between the time that a DBMS_DATAPUMP.ATTACH is executed to
attach to a stopped job, and the time that a DBMS_DATAPUMP.START_JOB is executed
to restart that job

• Not Running — when a master table exists for a job that is not running (has no
Data Pump processes associated with it)

Usage Notes

Performing DBMS_DATAPUMP.START_JOB on a job in an Idling state returns that job to an
Executing state.

If all users execute DBMS_DATAPUMP.DETACH to detach from a job in the Defining state,
then the job is totally removed from the database.

If a job abnormally terminates, or if an instance running the job is shut down, and the
job was previously in an Executing or Idling state, then the job is placed in the Not
Running state. You can then then restart the job.

The master control process is active in the Defining, Idling, Executing, Stopping,
Stop Pending, and Completing states. It is also active briefly in the Stopped and
Completed states. The master table for the job exists in all states except the
Undefined state. Worker processes are only active in the Executing and Stop
Pending states, and briefly in the Defining state for import jobs.

Detaching while a job is in the Executing state does not halt the job. You can reattach
to an executing job at any time to resume obtaining status information about the job.

A Detach can occur explicitly, when the DBMS_DATAPUMP.DETACH procedure is executed,
or it can occur implicitly when a Data Pump API session is run down, when the Data
Pump API is unable to communicate with an Oracle Data Pump job, or when the
DBMS_DATAPUMP.STOP_JOB procedure is executed.

The Not Running state indicates that a master table exists outside the context of an
executing job. This state occurs if a job is stopped (and likely can restart later), or if a
job has abnormally terminated. You can also see this state momentarily during job

Chapter 6
DBMS_DATAPUMP Job States

6-2

state transitions at the beginning of a job, and at the end of a job before the master
table is dropped. Note that the Not Running state is shown only in the views
DBA_DATAPUMP_JOBS and USER_DATAPUMP_JOBS. It is never returned by the GET_STATUS
procedure.

The following table shows the valid job states in which DBMS_DATAPUMP procedures can
be executed. The states listed are valid for both export and import jobs, unless
otherwise noted.

Table 6-1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be
Executed

Procedure Name Valid States Description

ADD_FILE Defining (valid for both export
and import jobs)

Executing and Idling (valid
only for specifying dump files
for export jobs)

Specifies a file for the dump
file set, the log file, or the
SQLFILE output.

ATTACH Defining, Executing, Idling,
Stopped, Completed,
Completing, Not Running

Enables a user session to
monitor a job, or to restart a
stopped job. If the dump file
set or master table for the job
have been deleted or altered
in any way, then the attach
fails.

DATA_FILTER Defining Restricts data processed by a
job.

DETACH All Disconnects a user session
from a job.

GET_DUMPFILE_INFO All Retrieves dump file header
information.

GET_STATUS All, except Completed, Not
Running, Stopped, and
Undefined

Obtains the status of a job.

LOG_ENTRY Defining, Executing, Idling,
Stop Pending, Completing

Adds an entry to the log file.

METADATA_FILTER Defining Restricts metadata processed
by a job.

METADATA_REMAP Defining Remaps metadata processed
by a job.

METADATA_TRANSFORM Defining Alters metadata processed by
a job.

OPEN Undefined Creates a new job.

SET_PARALLEL Defining, Executing, Idling Specifies parallelism for a job.

SET_PARAMETER Defining
Note: You can enter the
ENCRYPTION_PASSWORD
parameter during the Defining
and Idling states.

Alters default processing by a
job.

START_JOB Defining, Idling Begins or resumes execution
of a job.

Chapter 6
DBMS_DATAPUMP Job States

6-3

Table 6-1 (Cont.) Valid Job States in Which DBMS_DATAPUMP Procedures
Can Be Executed

Procedure Name Valid States Description

STOP_JOB Defining, Executing, Idling,
Stop Pending

Initiates shutdown of a job.

WAIT_FOR_JOB All, except Completed, Not
Running, Stopped, and
Undefined

Waits for a job to end.

6.3 What Are the Basic Steps in Using the Oracle Data
Pump API?

To use the Oracle Data Pump API, you use the procedures provided in the
DBMS_DATAPUMP package.

The following steps list the basic activities involved in using the Data Pump API,
including the point in running an Oracle Data Pump job in which you can perform
optional steps. The steps are presented in the order in which you would generally
perform the activities.

1. To create an Oracle Data Pump job and its infrastructure, run the
DBMS_DATAPUMP.OPEN procedure.

When you run the procedure, the Oracle Data Pump job is started.

2. Define any parameters for the job.

3. Start the job.

4. (Optional) Monitor the job until it completes.

5. (Optional) Detach from the job, and reattach at a later time.

6. (Optional) Stop the job.

7. (Optional) Restart the job, if desired.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

6.4 Examples of Using the Oracle Data Pump API
To get started using the Oracle Data Pump API, review examples that show what you
can do with Oracle Data Pump exports and imports.

• Using the Oracle Data Pump API Examples with Your Database
If you want to copy these scripts and run them, then you must complete setup
tasks on your database before you run the scripts.

• Performing a Simple Schema Export with Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump
job to perform a schema export.

Chapter 6
What Are the Basic Steps in Using the Oracle Data Pump API?

6-4

• Importing a Dump File and Remapping All Schema Objects
See an example of how you can create, start, and monitor an Oracle Data Pump
job to import a dump file.

• Using Exception Handling During a Simple Schema Export
See an example of how you can create, start, and monitor an Oracle Data Pump
job to perform a schema export.

• Displaying Dump File Information for Oracle Data Pump Jobs
See an example of how you can display information about a Data Pump dump file
outside the context of any Data Pump job.

6.4.1 Using the Oracle Data Pump API Examples with Your Database
If you want to copy these scripts and run them, then you must complete setup tasks on
your database before you run the scripts.

The Oracle Data Pump API examples are in the form of PL/SQL scripts. To run these
example scripts on your own database, You have to ensure that you have the required
directory objects. permissions, roles, and display settings configured.

Example 6-1 Create a Directory Object and Grant READ AND WRITE Access

In this example, you create a directory object named dmpdir to which you have
access, and then replace user with your username.

SQL> CREATE DIRECTORY dmpdir AS '/rdbms/work';
SQL> GRANT READ, WRITE ON DIRECTORY dmpdir TO user;

Example 6-2 Ensure You Have EXP_FULL_DATABASE and IMP_FULL_DATABASE Roles

To see a list of all roles assigned to you within your security domain, enter the
following statement:

SQL> SELECT * FROM SESSION_ROLES;

Review the roles that you see displayed. If you do not have the EXP_FULL_DATABASE
and IMP_FULL_DATABASE roles assigned to you, then contact your database
administrator for help.

Example 6-3 Turn on Server Display Output

To see output display on your screen, ensure that server output is turned on. To do
this, enter the following command:

SQL> SET SERVEROUTPUT ON

If server display output is not turned on, then output is not displayed to your screen.
You must set the display output to ON in the same session in which you run the
example. If you exit SQL*Plus, then this setting is lost and must be reset when you
begin a new session. If you connect to the database using a different user name, then
you must also reset SERVEROUTPUT to ON for that user.

Chapter 6
Examples of Using the Oracle Data Pump API

6-5

6.4.2 Performing a Simple Schema Export with Oracle Data Pump
See an example of how you can create, start, and monitor an Oracle Data Pump job to
perform a schema export.

The PL/SQL script in this example shows how to use the Data Pump API to perform a
simple schema export of the HR schema. It shows how to create a job, start it, and
monitor it. Additional information about the example is contained in the comments
within the script. To keep the example simple, exceptions from any of the API calls will
not be trapped. However, in a production environment, Oracle recommends that you
define exception handlers and call GET_STATUS to retrieve more detailed error
information when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := DBMS_DATAPUMP.OPEN('EXPORT','SCHEMA',NULL,'EXAMPLE1','LATEST');

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be exported.

 DBMS_DATAPUMP.METADATA_FILTER(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be generated if something is not set up
-- properly.

 DBMS_DATAPUMP.START_JOB(h1);

-- The export job should now be running. In the following loop, the job
-- is monitored until it completes. In the meantime, progress information
is
-- displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,

Chapter 6
Examples of Using the Oracle Data Pump API

6-6

 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or error messages were received for the
job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

6.4.3 Importing a Dump File and Remapping All Schema Objects
See an example of how you can create, start, and monitor an Oracle Data Pump job to
import a dump file.

The script in this example imports the dump file created in the Oracle Data Pump API
example "Performing a Simple Schema Export with Oracle Data Pump" (an export of

Chapter 6
Examples of Using the Oracle Data Pump API

6-7

the hr schema). All schema objects are remapped from the hr schema to the blake
schema. To keep the example simple, exceptions from any of the API calls will not be
trapped. However, in a production environment, Oracle recommends that you define
exception handlers and call GET_STATUS to retrieve more detailed error information
when a failure occurs.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a "full" import (everything
-- in the dump file without filtering).

 h1 := DBMS_DATAPUMP.OPEN('IMPORT','FULL',NULL,'EXAMPLE2');

-- Specify the single dump file for the job (using the handle just
returned)
-- and directory object, which must already be defined and accessible
-- to the user running this procedure. This is the dump file created by
-- the export operation in the first example.

 DBMS_DATAPUMP.ADD_FILE(h1,'example1.dmp','DMPDIR');

-- A metadata remap will map all schema objects from HR to BLAKE.

 DBMS_DATAPUMP.METADATA_REMAP(h1,'REMAP_SCHEMA','HR','BLAKE');

-- If a table already exists in the destination schema, skip it (leave
-- the preexisting table alone). This is the default, but it does not hurt
-- to specify it explicitly.

 DBMS_DATAPUMP.SET_PARAMETER(h1,'TABLE_EXISTS_ACTION','SKIP');

-- Start the job. An exception is returned if something is not set up
properly.

 DBMS_DATAPUMP.START_JOB(h1);

-- The import job should now be running. In the following loop, the job is
-- monitored until it completes. In the meantime, progress information is
-- displayed. Note: this is identical to the export example.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,

Chapter 6
Examples of Using the Oracle Data Pump API

6-8

 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- If any work-in-progress (WIP) or Error messages were received for the
job,
-- display them.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and gracefully detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);
END;
/

6.4.4 Using Exception Handling During a Simple Schema Export
See an example of how you can create, start, and monitor an Oracle Data Pump job to
perform a schema export.

The script in this example shows a simple schema export using the Data Pump API. It
extends the example shown in "Performing a Simple Schema Export with Oracle Data

Chapter 6
Examples of Using the Oracle Data Pump API

6-9

Pump" to show how to use exception handling to catch the SUCCESS_WITH_INFO case,
and how to use the GET_STATUS procedure to retrieve additional information about
errors. To obtain exception information about a DBMS_DATAPUMP.OPEN or
DBMS_DATAPUMP.ATTACH failure, call DBMS_DATAPUMP.GET_STATUS with a
DBMS_DATAPUMP.KU$_STATUS_JOB_ERROR information mask and a NULL job handle to
retrieve the error details.

Connect as user SYSTEM to use this script.

DECLARE
 ind NUMBER; -- Loop index
 spos NUMBER; -- String starting position
 slen NUMBER; -- String length for output
 h1 NUMBER; -- Data Pump job handle
 percent_done NUMBER; -- Percentage of job complete
 job_state VARCHAR2(30); -- To keep track of job state
 le ku$_LogEntry; -- For WIP and error messages
 js ku$_JobStatus; -- The job status from get_status
 jd ku$_JobDesc; -- The job description from get_status
 sts ku$_Status; -- The status object returned by get_status
BEGIN

-- Create a (user-named) Data Pump job to do a schema export.

 h1 := dbms_datapump.open('EXPORT','SCHEMA',NULL,'EXAMPLE3','LATEST');

-- Specify a single dump file for the job (using the handle just returned)
-- and a directory object, which must already be defined and accessible
-- to the user running this procedure.

 dbms_datapump.add_file(h1,'example3.dmp','DMPDIR');

-- A metadata filter is used to specify the schema that will be exported.

 dbms_datapump.metadata_filter(h1,'SCHEMA_EXPR','IN (''HR'')');

-- Start the job. An exception will be returned if something is not set up
-- properly.One possible exception that will be handled differently is the
-- success_with_info exception. success_with_info means the job started
-- successfully, but more information is available through get_status about
-- conditions around the start_job that the user might want to be aware of.

 begin
 dbms_datapump.start_job(h1);
 dbms_output.put_line('Data Pump job started successfully');
 exception
 when others then
 if sqlcode = dbms_datapump.success_with_info_num
 then
 dbms_output.put_line('Data Pump job started with info
available:');
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)

Chapter 6
Examples of Using the Oracle Data Pump API

6-10

 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end if;
 else
 raise;
 end if;
 end;

-- The export job should now be running. In the following loop,
-- the job is monitored until it completes. In the meantime, progress
information -- is displayed.

 percent_done := 0;
 job_state := 'UNDEFINED';
 while (job_state != 'COMPLETED') and (job_state != 'STOPPED') loop
 dbms_datapump.get_status(h1,
 dbms_datapump.ku$_status_job_error +
 dbms_datapump.ku$_status_job_status +
 dbms_datapump.ku$_status_wip,-1,job_state,sts);
 js := sts.job_status;

-- If the percentage done changed, display the new value.

 if js.percent_done != percent_done
 then
 dbms_output.put_line('*** Job percent done = ' ||
 to_char(js.percent_done));
 percent_done := js.percent_done;
 end if;

-- Display any work-in-progress (WIP) or error messages that were received
for
-- the job.

 if (bitand(sts.mask,dbms_datapump.ku$_status_wip) != 0)
 then
 le := sts.wip;
 else
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 else
 le := null;
 end if;
 end if;
 if le is not null
 then

Chapter 6
Examples of Using the Oracle Data Pump API

6-11

 ind := le.FIRST;
 while ind is not null loop
 dbms_output.put_line(le(ind).LogText);
 ind := le.NEXT(ind);
 end loop;
 end if;
 end loop;

-- Indicate that the job finished and detach from it.

 dbms_output.put_line('Job has completed');
 dbms_output.put_line('Final job state = ' || job_state);
 dbms_datapump.detach(h1);

-- Any exceptions that propagated to this point will be captured. The
-- details will be retrieved from get_status and displayed.

 exception
 when others then
 dbms_output.put_line('Exception in Data Pump job');
 dbms_datapump.get_status(h1,dbms_datapump.ku$_status_job_error,0,
 job_state,sts);
 if (bitand(sts.mask,dbms_datapump.ku$_status_job_error) != 0)
 then
 le := sts.error;
 if le is not null
 then
 ind := le.FIRST;
 while ind is not null loop
 spos := 1;
 slen := length(le(ind).LogText);
 if slen > 255
 then
 slen := 255;
 end if;
 while slen > 0 loop
 dbms_output.put_line(substr(le(ind).LogText,spos,slen));
 spos := spos + 255;
 slen := length(le(ind).LogText) + 1 - spos;
 end loop;
 ind := le.NEXT(ind);
 end loop;
 end if;
 end if;
END;
/

6.4.5 Displaying Dump File Information for Oracle Data Pump Jobs
See an example of how you can display information about a Data Pump dump file
outside the context of any Data Pump job.

The PL/SQL script in this example shows how to use the Oracle Data Pump API
procedure DBMS_DATAPUMP.GET_DUMPFILE_INFO to display information about a Data

Chapter 6
Examples of Using the Oracle Data Pump API

6-12

Pump dump file at any point, not just when you are running the job. This example
displays information contained in the dump file example1.dmp dump file created by the
example PL/SQL script in "Performing a Simple Schema Export with Oracle Data
Pump."

You can also use this PL/SQL script to display information for dump files created by
original Export (the exp utility), as well as by the ORACLE_DATAPUMP external tables
access driver.

Connect as user SYSTEM to use this script.

SET VERIFY OFF
SET FEEDBACK OFF

DECLARE
 ind NUMBER;
 fileType NUMBER;
 value VARCHAR2(2048);
 infoTab KU$_DUMPFILE_INFO := KU$_DUMPFILE_INFO();

BEGIN
 --
 -- Get the information about the dump file into the infoTab.
 --
 BEGIN

DBMS_DATAPUMP.GET_DUMPFILE_INFO('example1.dmp','DMPDIR',infoTab,fileType);
 DBMS_OUTPUT.PUT_LINE('---');
 DBMS_OUTPUT.PUT_LINE('Information for file: example1.dmp');

 --
 -- Determine what type of file is being looked at.
 --
 CASE fileType
 WHEN 1 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is a Data Pump dump file');
 WHEN 2 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is an Original Export dump
file');
 WHEN 3 THEN
 DBMS_OUTPUT.PUT_LINE('example1.dmp is an External Table dump
file');
 ELSE
 DBMS_OUTPUT.PUT_LINE('example1.dmp is not a dump file');

DBMS_OUTPUT.PUT_LINE('---');
 END CASE;

 EXCEPTION
 WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE('---');
 DBMS_OUTPUT.PUT_LINE('Error retrieving information for file: ' ||
 'example1.dmp');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);

Chapter 6
Examples of Using the Oracle Data Pump API

6-13

DBMS_OUTPUT.PUT_LINE('---');
 fileType := 0;
 END;

 --
 -- If a valid file type was returned, then loop through the infoTab and
 -- display each item code and value returned.
 --
 IF fileType > 0
 THEN
 DBMS_OUTPUT.PUT_LINE('The information table has ' ||
 TO_CHAR(infoTab.COUNT) || ' entries');
 DBMS_OUTPUT.PUT_LINE('---');

 ind := infoTab.FIRST;
 WHILE ind IS NOT NULL
 LOOP
 --
 -- The following item codes return boolean values in the form
 -- of a '1' or a '0'. Display them as 'Yes' or 'No'.
 --
 value := NVL(infoTab(ind).value, 'NULL');
 IF infoTab(ind).item_code IN
 (DBMS_DATAPUMP.KU$_DFHDR_MASTER_PRESENT,
 DBMS_DATAPUMP.KU$_DFHDR_DIRPATH,
 DBMS_DATAPUMP.KU$_DFHDR_METADATA_COMPRESSED,
 DBMS_DATAPUMP.KU$_DFHDR_DATA_COMPRESSED,
 DBMS_DATAPUMP.KU$_DFHDR_METADATA_ENCRYPTED,
 DBMS_DATAPUMP.KU$_DFHDR_DATA_ENCRYPTED,
 DBMS_DATAPUMP.KU$_DFHDR_COLUMNS_ENCRYPTED)
 THEN
 CASE value
 WHEN '1' THEN value := 'Yes';
 WHEN '0' THEN value := 'No';
 END CASE;
 END IF;

 --
 -- Display each item code with an appropriate name followed by
 -- its value.
 --
 CASE infoTab(ind).item_code
 --
 -- The following item codes have been available since Oracle
 -- Database 10g, Release 10.2.
 --
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FILE_VERSION THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Version: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PRESENT THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Present: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_GUID THEN
 DBMS_OUTPUT.PUT_LINE('Job Guid: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FILE_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Number: ' || value);

Chapter 6
Examples of Using the Oracle Data Pump API

6-14

 WHEN DBMS_DATAPUMP.KU$_DFHDR_CHARSET_ID THEN
 DBMS_OUTPUT.PUT_LINE('Character Set ID: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CREATION_DATE THEN
 DBMS_OUTPUT.PUT_LINE('Creation Date: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_FLAGS THEN
 DBMS_OUTPUT.PUT_LINE('Internal Dump Flags: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_JOB_NAME THEN
 DBMS_OUTPUT.PUT_LINE('Job Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_PLATFORM THEN
 DBMS_OUTPUT.PUT_LINE('Platform Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_INSTANCE THEN
 DBMS_OUTPUT.PUT_LINE('Instance Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_LANGUAGE THEN
 DBMS_OUTPUT.PUT_LINE('Language Name: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_BLOCKSIZE THEN
 DBMS_OUTPUT.PUT_LINE('Dump File Block Size: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DIRPATH THEN
 DBMS_OUTPUT.PUT_LINE('Direct Path Mode: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_METADATA_COMPRESSED THEN
 DBMS_OUTPUT.PUT_LINE('Metadata Compressed: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DB_VERSION THEN
 DBMS_OUTPUT.PUT_LINE('Database Version: ' || value);

 --
 -- The following item codes were introduced in Oracle Database 11g
 -- Release 11.1
 --

 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PIECE_COUNT THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Piece Count: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_MASTER_PIECE_NUMBER THEN
 DBMS_OUTPUT.PUT_LINE('Master Table Piece Number: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DATA_COMPRESSED THEN
 DBMS_OUTPUT.PUT_LINE('Table Data Compressed: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_METADATA_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('Metadata Encrypted: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_DATA_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('Table Data Encrypted: ' || value);
 WHEN DBMS_DATAPUMP.KU$_DFHDR_COLUMNS_ENCRYPTED THEN
 DBMS_OUTPUT.PUT_LINE('TDE Columns Encrypted: ' || value);

 --
 -- For the DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE item code a
 -- numeric value is returned. So examine that numeric value
 -- and display an appropriate name value for it.
 --
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCRYPTION_MODE THEN
 CASE TO_NUMBER(value)
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_NONE THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: None');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_PASSWORD THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Password');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_DUAL THEN
 DBMS_OUTPUT.PUT_LINE('Encryption Mode: Dual');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_ENCMODE_TRANS THEN

Chapter 6
Examples of Using the Oracle Data Pump API

6-15

 DBMS_OUTPUT.PUT_LINE('Encryption Mode:
Transparent');
 END CASE;

 --
 -- The following item codes were introduced in Oracle Database 12c
 -- Release 12.1
 --

 --
 -- For the DBMS_DATAPUMP.KU$_DFHDR_COMPRESSION_ALG item code a
 -- numeric value is returned. So examine that numeric value and
 -- display an appropriate name value for it.
 --
 WHEN DBMS_DATAPUMP.KU$_DFHDR_COMPRESSION_ALG THEN
 CASE TO_NUMBER(value)
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_NONE THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: None');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_BASIC THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: Basic');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_LOW THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: Low');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_MEDIUM THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: Medium');
 WHEN DBMS_DATAPUMP.KU$_DFHDR_CMPALG_HIGH THEN
 DBMS_OUTPUT.PUT_LINE('Compression Algorithm: High');
 END CASE;
 ELSE NULL; -- Ignore other, unrecognized dump file attributes.
 END CASE;
 ind := infoTab.NEXT(ind);
 END LOOP;
 END IF;
END;
/

Chapter 6
Examples of Using the Oracle Data Pump API

6-16

Part II
SQL*Loader

Learn about SQL*Loader and its features, as well as data loading concepts, including
object support.

• Understanding How to Use SQL*Loader
Learn about the basic concepts you should understand before loading data into an
Oracle Database using SQL*Loader.

• SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language
(DDL) instructions for a SQL*Loader job.

• SQL*Loader Field List Reference
The field-list portion of a SQL*Loader control file provides information about fields
being loaded, such as position, data type, conditions, and delimiters.

• Loading Objects, LOBs, and Collections with SQL*Loader
You can use SQL*Loader to load column objects in various formats and to load
object tables, REF columns, LOBs, and collections.

• Conventional and Direct Path Loads
SQL*Loader provides the option to load data using a conventional path load
method, and a direct path load method.

• SQL*Loader Express
SQL*Loader express mode allows you to quickly and easily use SQL*Loader to
load simple data types.

7
Understanding How to Use SQL*Loader

Learn about the basic concepts you should understand before loading data into an
Oracle Database using SQL*Loader.

• SQL*Loader Features
SQL*Loader loads data from external files into Oracle Database tables.

• SQL*Loader Parameters
SQL*Loader is started either when you specify the sqlldr command, or when you
specify parameters that establish various characteristics of the load operation.

• SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.

• Input Data and Data Fields in SQL*Loader
Learn how SQL*Loader loads data and identifies record fields.

• LOBFILEs and Secondary Data Files (SDFs)
Large Object (LOB) data can be lengthy enough that it makes sense to load it from
a LOBFILE.

• Data Conversion and Data Type Specification
During a conventional path load, data fields in the data file are converted into
columns in the database (direct path loads are conceptually similar, but the
implementation is different).

• SQL*Loader Discarded and Rejected Records
SQL*Loader can reject or discard some records read from the input file, either
because of issues with the files, or because you have selected to filter the records
out of the load.

• Log File and Logging Information
When SQL*Loader begins execution, it creates a log file.

• Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides several methods to load data.

• Loading Objects, Collections, and LOBs with SQL*Loader
You can bulk-load the column, row, LOB, and JSON database objects that you
need to model real-world entities, such as customers and purchase orders.

• Partitioned Object Support in SQL*Loader
Partitioned database objects enable you to manage sections of data, either
collectively or individually. SQL*Loader supports loading partitioned objects.

• Application Development: Direct Path Load API
Direct path loads enable you to load data from external files into tables and
partitions.Oracle provides a direct path load API for application developers.

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

7-1

7.1 SQL*Loader Features
SQL*Loader loads data from external files into Oracle Database tables.

SQL*Loader has a powerful data parsing engine that puts few limitations on the format
of the data in the data file. You can use SQL*Loader to do the following:

• Load data across a network, if your data files are on a different system than the
database.

• Load data from multiple data files during the same load session.

• Load data into multiple tables during the same load session.

• Specify the character set of the data.

• Selectively load data (you can load records based on the records' values).

• Manipulate the data before loading it, using SQL functions.

• Generate unique sequential key values in specified columns.

• Use the operating system's file system to access the data files.

• Load data from disk, tape, or named pipe.

• Generate sophisticated error reports, which greatly aid troubleshooting.

• Load arbitrarily complex object-relational data.

• Use secondary data files for loading Large Objects (LOBs) and collections.

• Use conventional, direct path, or external table loads.

LOBs are used to hold large amounts of data inside Oracle Database. SQL*Loader
and external tables use LOBFILEs. Data for a LOB can be very large, and not fit in line
in a SQL*Loader data file. Also, if the file contains binary data, then it can’t be in line.
Instead, the data file has the name of a file containing the data for the LOB field. In
that case, SQL*Loader and the external table code open the LOBFILE, and load the
contents into the LOB column for the current row. The data is then passed to the
server, just as with data for any other column type.

JSON columns can be loaded using the same methods used to load scalars and LOBs

You can use SQL*Loader in two ways: with or without a control file. A control file
controls the behavior of SQL*Loader and one or more data files used in the load.
Using a control file gives you more control over the load operation, which might be
desirable for more complicated load situations. But for simple loads, you can use
SQL*Loader without specifying a control file; this is referred to as SQL*Loader express
mode.

The output of SQL*Loader is an Oracle Database database (where the data is loaded),
a log file, a bad file if there are rejected records, and potentially, a discard file.

The following figure shows an example of the flow of a typical SQL*Loader session
that uses a control file.

Chapter 7
SQL*Loader Features

7-2

Figure 7-1 SQL*Loader Overview

Discard

Files

Bad

Files

Database

SQL*Loader

Loader

Control

File

Bad

Files

Log

File

Discard

Files

Bad

FilesInput

Datafiles

TableTableIndexes

TableTableTables

Related Topics

• Conventional Path Loads, Direct Path Loads, and External Table Loads
SQL*Loader provides several methods to load data.

• SQL*Loader Express
SQL*Loader express mode allows you to quickly and easily use SQL*Loader to
load simple data types.

7.2 SQL*Loader Parameters
SQL*Loader is started either when you specify the sqlldr command, or when you
specify parameters that establish various characteristics of the load operation.

In situations where you always use the same parameters for which the values seldom
change, it can be more efficient to specify parameters by using the following methods,
rather than on the command line:

• You can group parameters together in a parameter file. You can then specify the
name of the parameter file on the command line by using the PARFILE parameter.

• You can specify some parameters within the SQL*Loader control file by using the
OPTIONS clause.

Parameters specified on the command line override any parameter values specified in
a parameter file or OPTIONS clause.

Related Topics

• SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

• PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file
that contains commonly used command-line parameters.

Chapter 7
SQL*Loader Parameters

7-3

• OPTIONS Clause
The following command-line parameters can be specified using the OPTIONS
clause.

7.3 SQL*Loader Control File
The control file is a text file written in a language that SQL*Loader understands.

The control file tells SQL*Loader where to find the data, how to parse and interpret the
data, where to insert the data, and more.

In general, the control file has three main sections, in the following order:

• Session-wide information

• Table and field-list information

• Input data (optional section)

Some control file syntax considerations to keep in mind are:

• The syntax is free-format (statements can extend over multiple lines).

• The syntax is case-insensitive; however, strings enclosed in single or double
quotation marks are taken literally, including case.

• In control file syntax, comments extend from the two hyphens (--) that mark the
beginning of the comment to the end of the line. The optional third section of the
control file is interpreted as data rather than as control file syntax; consequently,
comments in this section are not supported.

• The keywords CONSTANT and ZONE have special meaning to SQL*Loader and are
therefore reserved. To avoid potential conflicts, Oracle recommends that you do
not use either CONSTANT or ZONE as a name for any tables or columns.

Related Topics

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language
(DDL) instructions for a SQL*Loader job.

7.4 Input Data and Data Fields in SQL*Loader
Learn how SQL*Loader loads data and identifies record fields.

• How SQL*Loader Reads Input Data and Data Files
SQL*Loader reads data from one or more data files (or operating system
equivalents of files) specified in the control file.

• Fixed Record Format
A file is in fixed record format when all records in a data file are the same byte
length.

• Variable Record Format and SQL*Loader
A file is in variable record format when the length of each record in a character
field is included at the beginning of each record in the data file.

• Stream Record Format and SQL*Loader
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator.

Chapter 7
SQL*Loader Control File

7-4

• Logical Records and SQL*Loader
SQL*Loader organizes input data into physical records, according to the specified
record format. By default, a physical record is a logical record.

• Data Field Setting and SQL*Loader
Learn how SQL*Loader determines the field setting on the logical record after a
logical record is formed.

7.4.1 How SQL*Loader Reads Input Data and Data Files
SQL*Loader reads data from one or more data files (or operating system equivalents
of files) specified in the control file.

From SQL*Loader's perspective, the data in the data file is organized as records. A
particular data file can be in fixed record format, variable record format, or stream
record format. The record format can be specified in the control file with the INFILE
parameter. If no record format is specified, then the default is stream record format.

Note:

If data is specified inside the control file (that is, INFILE * was specified in
the control file), then the data is interpreted in the stream record format with
the default record terminator.

7.4.2 Fixed Record Format
A file is in fixed record format when all records in a data file are the same byte length.

Although the fixed record format is the least flexible format, using it results in better
performance than variable or stream format. Fixed format is also simple to specify. For
example:

INFILE datafile_name "fix n"

This example specifies that SQL*Loader should interpret the particular data file as
being in fixed record format where every record is n bytes long.

The following example shows a control file that specifies a data file (example1.dat) to
be interpreted in the fixed record format. The data file in the example contains five
physical records; each record has fields that contain the number and name of an
employee. Each of the five records is 11 bytes long, including spaces. For the
purposes of explaining this example, periods are used to represent spaces in the
records, but in the actual records there would be no periods. With that in mind, the first
physical record is 396,...ty,. which is exactly eleven bytes (assuming a single-byte
character set). The second record is 4922,beth, followed by the newline character
(\n) which is the eleventh byte, and so on. (Newline characters are not required with
the fixed record format; it is simply used here to illustrate that if used, it counts as a
byte in the record length.)

Chapter 7
Input Data and Data Fields in SQL*Loader

7-5

Example 7-1 Loading Data in Fixed Record Format

Loading data:

load data
infile 'example1.dat' "fix 11"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1, col2)

Contents of example1.dat:

396,...ty,.4922,beth,\n
68773,ben,.
1,.."dave",
5455,mike,.

Note that the length is always interpreted in bytes, even if character-length semantics
are in effect for the file. This is necessary because the file can contain a mix of fields.
Some are processed with character-length semantics, and others are processed with
byte-length semantics.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

7.4.3 Variable Record Format and SQL*Loader
A file is in variable record format when the length of each record in a character field is
included at the beginning of each record in the data file.

This format provides some added flexibility over the fixed record format and a
performance advantage over the stream record format. For example, you can specify
a data file that is to be interpreted as being in variable record format as follows:

INFILE "datafile_name" "var n"

In this example, n specifies the number of bytes in the record length field. If n is not
specified, then SQL*Loader assumes a length of 5 bytes. Specifying n larger than 40
results in an error.

The following example shows a control file specification that tells SQL*Loader to look
for data in the data file example2.dat and to expect variable record format where the
record's first three bytes indicate the length of the field. The example2.dat data file
consists of three physical records. The first is specified to be 009 (9) bytes long, the
second is 010 (10) bytes long (plus a 1-byte newline), and the third is 012 (12) bytes
long (plus a 1-byte newline). Note that newline characters are not required with the
variable record format. This example also assumes a single-byte character set for the
data file. For the purposes of this example, periods in example2.dat represent spaces;
the fields do not contain actual periods.

Chapter 7
Input Data and Data Fields in SQL*Loader

7-6

Example 7-2 Loading Data in Variable Record Format

Loading data:

load data
infile 'example2.dat' "var 3"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

Contents of example2.dat:

009.396,.ty,0104922,beth,01268773,benji,

Note that the lengths are always interpreted in bytes, even if character-length
semantics are in effect for the file. This is necessary because the file can contain a mix
of fields, some processed with character-length semantics and others processed with
byte-length semantics.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

7.4.4 Stream Record Format and SQL*Loader
A file is in stream record format when the records are not specified by size; instead
SQL*Loader forms records by scanning for the record terminator.

Stream record format is the most flexible format, but using it can result in a negative
effect on performance. The specification of a data file to be interpreted as being in
stream record format looks similar to the following:

INFILE datafile_name ["str terminator_string"]

In the preceding example, str indicates that the file is in stream record format. The
terminator_string is specified as either 'char_string' or X'hex_string' where:

• 'char_string' is a string of characters enclosed in single or double quotation
marks

• X'hex_string' is a byte string in hexadecimal format

When the terminator_string contains special (nonprintable) characters, it should be
specified as a X'hex_string' byte string. However, you can specify some
nonprintable characters as ('char_string') by using a backslash. For example:

• \n indicates a line feed

• \t indicates a horizontal tab

• \f indicates a form feed

• \v indicates a vertical tab

Chapter 7
Input Data and Data Fields in SQL*Loader

7-7

• \r indicates a carriage return

If the character set specified with the NLS_LANG initialization parameter for your session
is different from the character set of the data file, then character strings are converted
to the character set of the data file. This is done before SQL*Loader checks for the
default record terminator.

Hexadecimal strings are assumed to be in the character set of the data file, so no
conversion is performed.

On UNIX-based platforms, if no terminator_string is specified, then SQL*Loader
defaults to the line feed character, \n.

On Windows-based platforms, if no terminator_string is specified, then SQL*Loader
uses either \n or \r\n as the record terminator, depending on which one it finds first in
the data file. This means that if you know that one or more records in your data file has
\n embedded in a field, but you want \r\n to be used as the record terminator, then
you must specify it.

The following example illustrates loading data in stream record format where the
terminator string is specified using a character string, '|\n'. The use of the backslash
character allows the character string to specify the nonprintable line feed character.

See Also:

• Oracle Database Globalization Support Guide for information about
using the Language and Character Set File Scanner (LCSSCAN) utility
to determine the language and character set for unknown file text

Example 7-3 Loading Data in Stream Record Format

Loading data:

load data
infile 'example3.dat' "str '|\n'"
into table example
fields terminated by ',' optionally enclosed by '"'
(col1 char(5),
 col2 char(7))

example3.dat

396,ty,|
4922,beth,|

7.4.5 Logical Records and SQL*Loader
SQL*Loader organizes input data into physical records, according to the specified
record format. By default, a physical record is a logical record.

For added flexibility, SQL*Loader can be instructed to combine several physical
records into a logical record.

Chapter 7
Input Data and Data Fields in SQL*Loader

7-8

SQL*Loader can be instructed to follow one of the following logical record-forming
strategies:

• Combine a fixed number of physical records to form each logical record.

• Combine physical records into logical records while a certain condition is true.

Related Topics

• Assembling Logical Records from Physical Records
This section describes assembling logical records from physical records.

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

7.4.6 Data Field Setting and SQL*Loader
Learn how SQL*Loader determines the field setting on the logical record after a logical
record is formed.

Field setting is a process in which SQL*Loader uses control-file field specifications to
determine which parts of logical record data correspond to which control-file fields. It is
possible for two or more field specifications to claim the same data. Also, it is possible
for a logical record to contain data that is not claimed by any control-file field
specification.

Most control-file field specifications claim a particular part of the logical record. This
mapping takes the following forms:

• The byte position of the data field's beginning, end, or both, can be specified. This
specification form is not the most flexible, but it provides high field-setting
performance.

• The strings delimiting (enclosing, terminating, or both) a particular data field can
be specified. A delimited data field is assumed to start where the last data field
ended, unless the byte position of the start of the data field is specified.

• You can specify the byte offset, the length of the data field, or both. This way each
field starts a specified number of bytes from where the last one ended and
continues for a specified length.

• Length-value data types can be used. In this case, the first n number of bytes of
the data field contain information about how long the rest of the data field is.

Related Topics

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

7.5 LOBFILEs and Secondary Data Files (SDFs)
Large Object (LOB) data can be lengthy enough that it makes sense to load it from a
LOBFILE.

With LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value). However, these fields are not organized into records (the
concept of a record does not exist within LOBFILEs). Therefore, the processing

Chapter 7
LOBFILEs and Secondary Data Files (SDFs)

7-9

overhead of dealing with records is avoided. This type of organization of data is ideal
for LOB loading.

For example, suppose you have a table that stores employee names, IDs, and their
resumes. When loading this table, you can read the employee names and IDs from the
main data files and you can read the resumes, which can be quite lengthy, from
LOBFILEs.

You can also use LOBFILEs to facilitate the loading of XML data. You can use XML
columns to hold data that models structured and semistructured data. Such data can
be quite lengthy.

Secondary data files (SDFs) are similar in concept to primary data files. As with
primary data files, SDFs are a collection of records, and each record is made up of
fields. The SDFs are specified as needed for a control file field. Only a
collection_fld_spec can name an SDF as its data source.

You specify SDFs by using the SDF parameter. You can enter a value for the SDF
parameter either by using the file specification string, or by using a FILLER field that is
mapped to a data field containing one or more file specification strings.

Related Topics

• Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

• Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary
data files (SDFs). They are similar in concept to primary data files.

7.6 Data Conversion and Data Type Specification
During a conventional path load, data fields in the data file are converted into columns
in the database (direct path loads are conceptually similar, but the implementation is
different).

There are two conversion steps:

1. SQL*Loader uses the field specifications in the control file to interpret the format of
the data file, parse the input data, and populate the bind arrays that correspond to
a SQL INSERT statement using that data. A bind array is an area in memory where
SQL*Loader stores data that is to be loaded. When the bind array is full, the data
is transmitted to the database. The bind array size is controlled by the SQL*Loader
BINDSIZE and READSIZE parameters.

2. The database accepts the data and executes the INSERT statement to store the
data in the database.

Oracle Database uses the data type of the column to convert the data into its final,
stored form. Keep in mind the distinction between a field in a data file and a column in
the database. Remember also that the field data types defined in a SQL*Loader
control file are not the same as the column data types.

Chapter 7
Data Conversion and Data Type Specification

7-10

See Also:

• BINDSIZE

• READSIZE

7.7 SQL*Loader Discarded and Rejected Records
SQL*Loader can reject or discard some records read from the input file, either
because of issues with the files, or because you have selected to filter the records out
of the load.

Rejected records are placed in a bad file, and discarded records are placed in a
discard file.

• The SQL*Loader Bad File
The bad file contains records that were rejected, either by SQL*Loader or by
Oracle Database.

• The SQL*Loader Discard File
As SQL*Loader runs, it can filter some records out of the load, and create a file
called the discard file.

7.7.1 The SQL*Loader Bad File
The bad file contains records that were rejected, either by SQL*Loader or by Oracle
Database.

If you do not specify a bad file, and there are rejected records, then SQL*Loader
automatically creates one. A rejected record has the same name as the data file, with
a .bad extension. There can be several causes for rejections.

• Records Rejected by SQL*Loader
Data file records are rejected by SQL*Loader when the input format is invalid.

• Records Rejected by Oracle Database During a SQL*Loader Operation
After a data file record is accepted for processing by SQL*Loader, it is sent to the
database for insertion into a table as a row.

7.7.1.1 Records Rejected by SQL*Loader
Data file records are rejected by SQL*Loader when the input format is invalid.

For example, if the second enclosure delimiter is missing, or if a delimited field
exceeds its maximum length, then SQL*Loader rejects the record. Rejected records
are placed in the bad file.

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation
After a data file record is accepted for processing by SQL*Loader, it is sent to the
database for insertion into a table as a row.

If the database determines that the row is valid, then the row is inserted into the table.
If the row is determined to be invalid, then the record is rejected and SQL*Loader puts

Chapter 7
SQL*Loader Discarded and Rejected Records

7-11

it in the bad file. The row may be invalid, for example, because a key is not unique,
because a required field is null, or because the field contains invalid data for the
Oracle data type.

7.7.2 The SQL*Loader Discard File
As SQL*Loader runs, it can filter some records out of the load, and create a file called
the discard file.

A discard file is created only when it is needed, and only if you have specified that a
discard file should be enabled. The discard file contains records that were filtered out
of the load because they did not match any record-selection criteria specified in the
control file.

Because the discard file contains record filtered out of the load, the contents of the
discard file are records that were not inserted into any table in the database. You can
specify the maximum number of such records that the discard file can accept. Data
written to any database table is not written to the discard file.

7.8 Log File and Logging Information
When SQL*Loader begins execution, it creates a log file.

If it cannot create a log file, then execution terminates. The log file contains a detailed
summary of the load, including a description of any errors that occurred during the
load.

7.9 Conventional Path Loads, Direct Path Loads, and
External Table Loads

SQL*Loader provides several methods to load data.

• Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array (an
area in memory where SQL*Loader stores data to be loaded).

• Direct Path Loads
A direct path load parses the input records according to the field specifications,
converts the input field data to the column data type, and builds a column array.

• Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intrasegment parallelism).

• External Table Loads
External tables are defined as tables that do not reside in the database, and can
be in any format for which an access driver is provided.

• Choosing External Tables Versus SQL*Loader
The record parsing of external tables and SQL*Loader is very similar, so normally
there is not a major performance difference for the same record format. However,
due to the different architecture of external tables and SQL*Loader, there are
situations in which one method may be more appropriate than the other.

Chapter 7
Log File and Logging Information

7-12

• Behavior Differences Between SQL*Loader and External Tables
This section describes important differences between loading data with external
tables, using the ORACLE_LOADER access driver, as opposed to loading data with
SQL*Loader conventional and direct path loads.

7.9.1 Conventional Path Loads
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array (an area in
memory where SQL*Loader stores data to be loaded).

When the bind array is full (or no more data is left to read), an array insert operation is
performed.

SQL*Loader stores LOB fields after a bind array insert is done. Thus, if there are any
errors in processing the LOB field (for example, the LOBFILE could not be found), then
the LOB field is left empty. Note also that because LOB data is loaded after the array
insert has been performed, BEFORE and AFTER row triggers may not work as expected
for LOB columns. This is because the triggers fire before SQL*Loader has a chance to
load the LOB contents into the column. For instance, suppose you are loading a LOB
column, C1, with data and you want a BEFORE row trigger to examine the contents of
this LOB column and derive a value to be loaded for some other column, C2, based on
its examination. This is not possible because the LOB contents will not have been
loaded at the time the trigger fires.

See Also:

• Data Loading Methods

• Bind Arrays and Conventional Path Loads

7.9.2 Direct Path Loads
A direct path load parses the input records according to the field specifications,
converts the input field data to the column data type, and builds a column array.

The column array is passed to a block formatter, which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to the
database, bypassing much of the data processing that normally takes place. Direct
path load is much faster than conventional path load, but entails several restrictions.

7.9.3 Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently load
the same data segments (allows intrasegment parallelism).

Parallel direct path is more restrictive than direct path.

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-13

See Also:

Parallel Data Loading Models

Direct Path Load

7.9.4 External Table Loads
External tables are defined as tables that do not reside in the database, and can be in
any format for which an access driver is provided.

Oracle Database provides two access drivers: ORACLE_LOADER and ORACLE_DATAPUMP.
By providing the database with metadata describing an external table, the database is
able to expose the data in the external table as if it were data residing in a regular
database table.

An external table load creates an external table for data that is contained in an
external data file. The load executes INSERT statements to insert the data from the
data file into the target table.

The advantages of using external table loads over conventional path and direct path
loads are as follows:

• If a data file is big enough, then an external table load attempts to load that file in
parallel.

• An external table load allows modification of the data being loaded by using SQL
functions and PL/SQL functions as part of the INSERT statement that is used to
create the external table.

Note:

An external table load is not supported using a named pipe on Windows
operating systems.

See Also:

• The ORACLE_LOADER Access Driver

• The ORACLE_DATAPUMP Access Driver

• Oracle Database Administrator's Guide for information about creating
and managing external tables

7.9.5 Choosing External Tables Versus SQL*Loader
The record parsing of external tables and SQL*Loader is very similar, so normally
there is not a major performance difference for the same record format. However, due

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-14

to the different architecture of external tables and SQL*Loader, there are situations in
which one method may be more appropriate than the other.

Use external tables for the best load performance in the following situations:

• You want to transform the data as it is being loaded into the database

• You want to use transparent parallel processing without having to split the external
data first

Use SQL*Loader for the best load performance in the following situations:

• You want to load data remotely

• Transformations are not required on the data, and the data does not need to be
loaded in parallel

• You want to load data, and additional indexing of the staging table is required

7.9.6 Behavior Differences Between SQL*Loader and External Tables
This section describes important differences between loading data with external
tables, using the ORACLE_LOADER access driver, as opposed to loading data with
SQL*Loader conventional and direct path loads.

This information does not apply to the ORACLE_DATAPUMP access driver.

• Multiple Primary Input Data Files
If there are multiple primary input data files with SQL*Loader loads, then a bad file
and a discard file are created for each input data file.

• Syntax and Data Types
This section provides a description of unsupported syntax and data types with
external table loads.

• Byte-Order Marks
With SQL*Loader, whether the byte-order mark is written depends on the
character set or on the table load.

• Default Character Sets, Date Masks, and Decimal Separator
The display of NLS character sets are controlled by different settings for
SQL*Loader and external tables.

• Use of the Backslash Escape Character
SQL*Loader and external tables use different conventions to identify single
quotation marks as an enclosure character.

7.9.6.1 Multiple Primary Input Data Files
If there are multiple primary input data files with SQL*Loader loads, then a bad file and
a discard file are created for each input data file.

With external table loads, there is only one bad file and one discard file for all input
data files. If parallel access drivers are used for the external table load, then each
access driver has its own bad file and discard file.

7.9.6.2 Syntax and Data Types
This section provides a description of unsupported syntax and data types with external
table loads.

Chapter 7
Conventional Path Loads, Direct Path Loads, and External Table Loads

7-15

• Use of CONTINUEIF or CONCATENATE to combine multiple physical records into a
single logical record.

• Loading of the following SQL*Loader data types: GRAPHIC, GRAPHIC EXTERNAL, and
VARGRAPHIC

• Use of the following database column types: LONG, nested table, VARRAY, REF,
primary key REF, and SID

7.9.6.3 Byte-Order Marks
With SQL*Loader, whether the byte-order mark is written depends on the character set
or on the table load.

If a primary data file uses a Unicode character set (UTF8 or UTF16), and it also contains
a byte-order mark (BOM), then the byte-order mark is written at the beginning of the
corresponding bad and discard files.

With external table loads, the byte-order mark is not written at the beginning of the bad
and discard files.

7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator
The display of NLS character sets are controlled by different settings for SQL*Loader
and external tables.

With SQL*Loader, the default character set, date mask, and decimal separator are
determined by the settings of NLS environment variables on the client.

For fields in external tables, the database settings of the NLS parameters determine
the default character set, date masks, and decimal separator.

7.9.6.5 Use of the Backslash Escape Character
SQL*Loader and external tables use different conventions to identify single quotation
marks as an enclosure character.

With SQL*Loader, to identify a single quotation mark as the enclosure character, you
can use the backslash (\) escape character. For example

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '\''

In external tables, the use of the backslash escape character within a string raises an
error. The workaround is to use double quotation marks to identify a single quotation
mark as the enclosure character. For example:

TERMINATED BY ',' ENCLOSED BY "'"

7.10 Loading Objects, Collections, and LOBs with
SQL*Loader

You can bulk-load the column, row, LOB, and JSON database objects that you need to
model real-world entities, such as customers and purchase orders.

• Supported Object Types
SQL*Loader supports loading of the column and row object types.

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7-16

• Supported Collection Types
SQL*Loader supports loading of nested tables and VARRAY collection types.

• Supported LOB Data Types
SQL*Loader supports multiple large object types (LOBs).

7.10.1 Supported Object Types
SQL*Loader supports loading of the column and row object types.

• column objects
When a column of a table is of some object type, the objects in that column are
referred to as column objects.

• row objects
These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object.

7.10.1.1 column objects
When a column of a table is of some object type, the objects in that column are
referred to as column objects.

Conceptually such objects are stored in their entirety in a single column position in a
row. These objects do not have object identifiers and cannot be referenced.

If the object type of the column object is declared to be nonfinal, then SQL*Loader
allows a derived type (or subtype) to be loaded into the column object.

7.10.1.2 row objects
These objects are stored in tables, known as object tables, that have columns
corresponding to the attributes of the object.

The object tables have an additional system-generated column, called SYS_NC_OID$,
that stores system-generated unique identifiers (OIDs) for each of the objects in the
table. Columns in other tables can refer to these objects by using the OIDs.

If the object type of the object table is declared to be nonfinal, then SQL*Loader allows
a derived type (or subtype) to be loaded into the row object.

See Also:

• Loading Column Objects

• Loading Object Tables

7.10.2 Supported Collection Types
SQL*Loader supports loading of nested tables and VARRAY collection types.

• Nested Tables
A nested table is a table that appears as a column in another table.

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7-17

• VARRAYs
A VARRAY is a variable sized arrays.

7.10.2.1 Nested Tables
A nested table is a table that appears as a column in another table.

All operations that can be performed on other tables can also be performed on nested
tables.

7.10.2.2 VARRAYs
A VARRAY is a variable sized arrays.

An array is an ordered set of built-in types or objects, called elements. Each array
element is of the same type and has an index, which is a number corresponding to the
element's position in the VARRAY.

When you create a VARRAY type, you must specify the maximum size. Once you have
declared a VARRAY type, it can be used as the data type of a column of a relational
table, as an object type attribute, or as a PL/SQL variable.

See Also:

Loading Collections (Nested Tables and VARRAYs) for details on using
SQL*Loader control file data definition language to load these collection
types

7.10.3 Supported LOB Data Types
SQL*Loader supports multiple large object types (LOBs).

This release of SQL*Loader supports loading of four LOB data types:

• BLOB: a LOB containing unstructured binary data

• CLOB: a LOB containing character data

• NCLOB: a LOB containing characters in a database national character set

• BFILE: a BLOB stored outside of the database tablespaces in a server-side
operating system file

LOBs can be column data types, and except for NCLOB, they can be an object's
attribute data types. LOBs can have an actual value, they can be null, or they can be
"empty."

JSON columns can be loaded using the same methods used to load scalars and LOBs

Chapter 7
Loading Objects, Collections, and LOBs with SQL*Loader

7-18

See Also:

Loading LOBs for details on using SQL*Loader control file data definition
language to load these LOB types

7.11 Partitioned Object Support in SQL*Loader
Partitioned database objects enable you to manage sections of data, either collectively
or individually. SQL*Loader supports loading partitioned objects.

A partitioned object in Oracle Database instances is a table or index consisting of
partitions (pieces) that have been grouped, typically by common logical attributes. For
example, sales data for a particular year might be partitioned by month. The data for
each month is stored in a separate partition of the sales table. Each partition is stored
in a separate segment of the database, and can have different physical attributes.

SQL*Loader partitioned object support enables SQL*Loader to load the following:

• A single partition of a partitioned table

• All partitions of a partitioned table

• A nonpartitioned table

7.12 Application Development: Direct Path Load API
Direct path loads enable you to load data from external files into tables and
partitions.Oracle provides a direct path load API for application developers.

Related Topics

• Oracle Call Interface Programmer's Guide

7.13 SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case studies
that Oracle provides.

• How to Access and Use the Oracle SQL*Loader Case Studies
Oracle provides 11 case studies that illustrate features of SQL*Loader

• Case Study Files
Each of the SQL*Loader case study files has a set of files required to use that
case study

• Running the Case Studies
The typical steps for running SQL*Loader case studies is similar for all of the
cases.

• Case Study Log Files
Log files for the case studies are not provided in the $ORACLE_HOME/rdbms/demo
directory.

Chapter 7
Partitioned Object Support in SQL*Loader

7-19

• Checking the Results of a Case Study
To check the results of running a case study, start SQL*Plus and perform a select
operation from the table that was loaded in the case study.

7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies
Oracle provides 11 case studies that illustrate features of SQL*Loader

The case studies are based upon the Oracle demonstration database tables, emp and
dept, owned by the user scott. (In some case studies, additional columns have been
added.) The case studies are numbered 1 through 11, starting with the simplest
scenario and progressing in complexity.

Note:

Files for use in the case studies are located in the $ORACLE_HOME/rdbms/demo
directory. These files are installed when you install the Oracle Database
Examples (formerly Companion) media.

The following is a summary of the case studies:

• Case Study 1: Loading Variable-Length Data - Loads stream format records in
which the fields are terminated by commas and may be enclosed by quotation
marks. The data is found at the end of the control file.

• Case Study 2: Loading Fixed-Format Fields - Loads data from a separate data file.

• Case Study 3: Loading a Delimited, Free-Format File - Loads data from stream
format records with delimited fields and sequence numbers. The data is found at
the end of the control file.

• Case Study 4: Loading Combined Physical Records - Combines multiple physical
records into one logical record corresponding to one database row.

• Case Study 5: Loading Data into Multiple Tables - Loads data into multiple tables
in one run.

• Case Study 6: Loading Data Using the Direct Path Load Method - Loads data
using the direct path load method.

• Case Study 7: Extracting Data from a Formatted Report - Extracts data from a
formatted report.

• Case Study 8: Loading Partitioned Tables - Loads partitioned tables.

• Case Study 9: Loading LOBFILEs (CLOBs) - Adds a CLOB column called resume to
the table emp, uses a FILLER field (res_file), and loads multiple LOBFILEs into
the emp table.

• Case Study 10: REF Fields and VARRAYs - Loads a customer table that has a
primary key as its OID and stores order items in a VARRAY. Loads an order table
that has a reference to the customer table and the order items in a VARRAY.

• Case Study 11: Loading Data in the Unicode Character Set - Loads data in the
Unicode character set, UTF16, in little-endian byte order. This case study uses
character-length semantics.

Chapter 7
SQL*Loader Case Studies

7-20

7.13.2 Case Study Files
Each of the SQL*Loader case study files has a set of files required to use that case
study

Usage Notes

Generally, each case study is comprised of the following types of files:

• Control files (for example, ulcase5.ctl)

• Data files (for example, ulcase5.dat)

• Setup files (for example, ulcase5.sql)

These files are installed when you install the Oracle Database Examples (formerly
Companion) media. They are installed in the directory $ORACLE_HOME/rdbms/demo.

If the example data for the case study is contained within the control file, then there is
no .dat file for that case.

Case study 2 does not require any special set up, so there is no .sql script for that
case. Case study 7 requires that you run both a starting (setup) script and an ending
(cleanup) script.

The following table lists the files associated with each case:

Table 7-1 Case Studies and Their Related Files

Case .ctl .dat .sql

1 ulcase1.ctl N/A ulcase1.sql

2 ulcase2.ctl ulcase2.dat N/A

3 ulcase3.ctl N/A ulcase3.sql

4 ulcase4.ctl ulcase4.dat ulcase4.sql

5 ulcase5.ctl ulcase5.dat ulcase5.sql

6 ulcase6.ctl ulcase6.dat ulcase6.sql

7 ulcase7.ctl ulcase7.dat ulcase7s.sql

ulcase7e.sql

8 ulcase8.ctl ulcase8.dat ulcase8.sql

9 ulcase9.ctl ulcase9.dat ulcase9.sql

10 ulcase10.ctl N/A ulcase10.sql

11 ulcase11.ctl ulcase11.dat ulcase11.sql

7.13.3 Running the Case Studies
The typical steps for running SQL*Loader case studies is similar for all of the cases.

Be sure you are in the $ORACLE_HOME/rdbms/demo directory, which is where the case
study files are located.

Also, be sure to read the control file for each case study before you run it. The
beginning of the control file contains information about what is being demonstrated in

Chapter 7
SQL*Loader Case Studies

7-21

the case study, and any other special information you need to know. For example,
case study 6 requires that you add DIRECT=TRUE to the SQL*Loader command line.

1. At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the
user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

2. At the SQL prompt, execute the SQL script for the case study. :

For example, to execute the SQL script for case study 1, enter the following
command:

SQL> @ulcase1

This command prepares and populates tables for the case study and then returns
you to the system prompt.

3. At the system prompt, start SQL*Loader and run the case study.

For example, to run case 1, enter the following command:

sqlldr USERID=scott CONTROL=ulcase1.ctl LOG=ulcase1.log

Substitute the appropriate control file name and log file name for the CONTROL and
LOG parameters, and press Enter. When you are prompted for a password, type
tiger and then press Enter.

7.13.4 Case Study Log Files
Log files for the case studies are not provided in the $ORACLE_HOME/rdbms/demo
directory.

This is because the log file for each case study is produced when you execute the
case study, provided that you use the LOG parameter. If you do not want to produce a
log file, then omit the LOG parameter from the command line.

7.13.5 Checking the Results of a Case Study
To check the results of running a case study, start SQL*Plus and perform a select
operation from the table that was loaded in the case study.

1. At the system prompt, type sqlplus and press Enter to start SQL*Plus. At the
user-name prompt, enter scott. At the password prompt, enter tiger.

The SQL prompt is displayed.

2. At the SQL prompt, use the SELECT statement to select all rows from the table that
the case study loaded.

For example, if you load the table emp, then enter the following statement:

SQL> SELECT * FROM emp;

The contents of each row in the emp table are displayed.

Chapter 7
SQL*Loader Case Studies

7-22

8
SQL*Loader Command-Line Reference

To start regular SQL*Loader, use the command-line parameters.

Note:

Regular SQL*Loader and SQL*Loader Express mode share some of the
same parameters, but the behavior of these parameters can be different for
each utility. The parameter descriptions described here are for regular
SQL*Loader. For SQL*Loader Express options, refer to the SQL*Loader
Express parameters.

• Starting SQL*Loader
Learn how to start SQL*Loader, and how to specify parameters that manage how
the load is run.

• Command-Line Parameters for SQL*Loader
Manage SQL*Loader by using the command-line parameters.

• Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion.

8.1 Starting SQL*Loader
Learn how to start SQL*Loader, and how to specify parameters that manage how the
load is run.

To display a help screen that lists all SQL*Loader parameters, enter sqlldr at the
prompt. and press Enter. The output shows each parameter, including default values
for parameters, and a brief description of each parameter.

• Specifying Parameters on the Command Line
When you start SQL*Loader, you specify parameters to establish various
characteristics of the load operation.

• Alternative Ways to Specify SQL*Loader Parameters
If the length of the command line exceeds the maximum line size for your system,
then you can put certain command-line parameters in the control file by using the
OPTIONS clause.

• Using SQL*Loader to Load Data Across a Network
To use SQL*Loader to load data across a network connection, you can specify a
connect identifier in the connect string when you start the SQL*Loader utility.

8-1

8.1.1 Specifying Parameters on the Command Line
When you start SQL*Loader, you specify parameters to establish various
characteristics of the load operation.

To see how to specify SQL*Loader parameters, refer to the following examples:

You can separate the parameters by commas. However, it is not required to delimit
parameters by commas:

> sqlldr CONTROL=ulcase1.ctl LOG=ulcase1.log
Username: scott
Password: password

Specifying by position means that you enter a value, but not the parameter name. In
the following example, the username scott is provided, and then the name of the
control file, ulcase1.ctl. You are prompted for the password:

> sqlldr scott ulcase1.ctl
Password: password

After a parameter name is used, you must supply parameter names for all subsequent
specifications. No further positional specification is allowed. For example, in the
following command, the CONTROL parameter is used to specify the control file name,
but then the log file name is supplied without the LOG parameter, even though the LOG
parameter was previously specified. Submitting this command now results in an error,
even though the position of ulcase1.log is correct:

> sqlldr scott CONTROL=ulcase1.ctl ulcase1.log

For the command to run, you must enter the command with the LOG parameter
specifically specified:

> sqlldr scott CONTROL=ulcase1.ctl LOG=ulcase1.log

8.1.2 Alternative Ways to Specify SQL*Loader Parameters
If the length of the command line exceeds the maximum line size for your system, then
you can put certain command-line parameters in the control file by using the OPTIONS
clause.

You can also group parameters together in a parameter file. You specify the name of
this file on the command line using the PARFILE parameter when you start
SQL*Loader.

These alternative ways of specifying parameters are useful when you often use the
same parameters with the same values.

Parameter values specified on the command line override parameter values specified
in either a parameter file or in the OPTIONS clause.

Chapter 8
Starting SQL*Loader

8-2

See Also:

• OPTIONS Clause

• PARFILE

8.1.3 Using SQL*Loader to Load Data Across a Network
To use SQL*Loader to load data across a network connection, you can specify a
connect identifier in the connect string when you start the SQL*Loader utility.

This identifier can specify a database instance that is different from the current
instance identified by the setting of the ORACLE_SID environment variable for the
current user. The connect identifier can be an Oracle Net connect descriptor or a net
service name (usually defined in the tnsnames.ora file) that maps to a connect
descriptor. Use of a connect identifier requires that you have Oracle Net Listener
running (to start the default listener, enter lsnrctl start). The following example
starts SQL*Loader for user scott using the connect identifier inst1:

> sqlldr CONTROL=ulcase1.ctl
Username: scott@inst1
Password: password

The local SQL*Loader client connects to the database instance defined by the connect
identifier inst1 (a net service name), and loads the data, as specified in the
ulcase1.ctl control file.

Note:

To load data into a pluggable database (PDB), simply specify its connect
identifier on the connect string when you start SQL*Loader.

See Also:

• Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

• Oracle Database Concepts for more information about PDBs

8.2 Command-Line Parameters for SQL*Loader
Manage SQL*Loader by using the command-line parameters.

Chapter 8
Command-Line Parameters for SQL*Loader

8-3

The defaults and maximum values listed for these parameters are for Linux and Unix-
based systems. They can be different on your operating system. Refer to your
operating system documentation for more information.

• BAD
The BAD command-line parameter for SQL*Loader specifies the name or location,
or both, of the bad file associated with the first data file specification.

• BINDSIZE
The BINDSIZE command-line parameter for SQL*Loader specifies the maximum
size (in bytes) of the bind array.

• COLUMNARRAYROWS
The COLUMNARRAYROWS command-line parameter for SQL*Loader specifies the
number of rows to allocate for direct path column arrays.

• CONTROL
The CONTROL command-line parameter for SQL*Loader specifies the name of the
SQL*Loader control file that describes how to load the data.

• CREDENTIAL
The CREDENTIAL command-line parameter for SQL*Loader enables reading data
stored in object stores.

• DATA
The DATA command-line parameter for SQL*Loader specifies the names of the
data files containing the data that you want to load.

• DATE_CACHE
The DATE_CACHE command-line parameter for SQL*Loader specifies the date
cache size (in entries).

• DEFAULTS
The DEFAULTS command-line parameter for SQL*Loader controls evaluation and
loading of default expressions.

• DEGREE_OF_PARALLELISM
The DEGREE_OF_PARALLELISM command-line parameter for SQL*Loader specifies
the degree of parallelism to use during the load operation.

• DIRECT
The DIRECT command-line parameter for SQL*Loader specifies the load method to
use, either conventional path or direct path.

• DIRECT_PATH_LOCK_WAIT
The DIRECT_PATH_LOCK_WAIT command-line parameter for SQL*Loader
controls direct path load behavior when waiting for table locks.

• DISCARD
The DISCARD command-line parameter for SQL*Loader lets you optionally specify
a discard file to store records that are neither inserted into a table nor rejected.

• DISCARDMAX
The DISCARDMAX command-line parameter for SQL*Loader specifies the number of
discard records to allow before data loading is terminated.

• DNFS_ENABLE
The DNFS_ENABLE SQL*Loader command-line parameter lets you enable and
disable use of the Direct NFS Client on input data files during a SQL*Loader
operation.

Chapter 8
Command-Line Parameters for SQL*Loader

8-4

• DNFS_READBUFFERS
The DNFS_READBUFFERS SQL*Loader command-line parameter lets you control the
number of read buffers used by the Direct NFS Client.

• EMPTY_LOBS_ARE_NULL
The EMPTY_LOBS_ARE_NULL SQL*Loader command-line parameter specifies that
any LOB column for which there is no data available is set to NULL, rather than to
an empty LOB.

• ERRORS
The ERRORS SQL*Loader command line parameter specifies the maximum
number of allowed insert errors.

• EXTERNAL_TABLE
The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using
the external tables option.

• FILE
The FILE SQL*Loader command-line parameter specifies the database file from
which the extents are allocated.

• HELP
The HELP SQL*Loader command-line parameter displays online help for the
SQL*Loader utility.

• LOAD
The LOAD SQL*Loader command-line parameter specifies the maximum number of
records to load.

• LOG
The LOG SQL*Loader command-line parameter specifies a directory path, or file
name, or both for the log file where SQL*Loader stores logging information about
the loading process.

• MULTITHREADING
The MULTITHREADING SQL*Loader command-line parameter enables stream
building on the client system to be done in parallel with stream loading on the
server system.

• NO_INDEX_ERRORS
The NO_INDEX_ERRORS SQL*Loader command-line parameter specifies whether
indexing errors are tolerated during a direct path load.

• PARALLEL
The SQL*Loader PARALLEL parameter specifies whether loads that use direct path
or external tables can operate in multiple concurrent sessions to load data into the
same table.

• PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file
that contains commonly used command-line parameters.

• PARTITION_MEMORY
The PARFILE SQL*Loader command-line parameter specifies the amount of
memory that you want to have used when you are loading many partitions.

• READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size
of the read buffer, if you choose not to use the default.

Chapter 8
Command-Line Parameters for SQL*Loader

8-5

• RESUMABLE
The RESUMABLE SQL*Loader command-line parameter enables and disables
resumable space allocation.

• RESUMABLE_NAME
The RESUMABLE_NAME SQL*Loader command-line parameter identifies a statement
that is resumable.

• RESUMABLE_TIMEOUT
The RESUMABLE_TIMEOUT SQL*Loader command-line parameter specifies the time
period, in seconds, during which an error must be fixed.

• ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter
specifies the number of rows in the bind array.

• SDF_PREFIX
The SDF_PREFIX SQL*Loader command-line parameter specifies a directory prefix,
which is added to file names of LOBFILEs and secondary data files (SDFs) that
are opened as part of a load operation.

• SILENT
The SILENT SQL*Loader command-line parameter suppresses some of the
content that is written to the screen during a SQL*Loader operation.

• SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical
records from the beginning of the file that should not be loaded.

• SKIP_INDEX_MAINTENANCE
The SKIP_INDEX_MAINTENANCE SQL*Loader command-line parameter specifies
whether to stop index maintenance for direct path loads.

• SKIP_UNUSABLE_INDEXES
The SKIP_UNUSABLE_INDEXES SQL*Loader command-line parameter specifies
whether to skip an index encountered in an Index Unusable state and continue the
load operation.

• STREAMSIZE
The STREAMSIZE SQL*Loader command-line parameter specifies the size (in
bytes) of the data stream sent from the client to the server.

• TRIM
The TRIM SQL*Loader command-line parameter specifies whether you want
spaces trimmed from the beginning of a text field, the end of a text field, both, or
neither.

• USERID
The USERID SQL*Loader command-line parameter provides your Oracle username
and password for SQL*Loader.

8.2.1 BAD
The BAD command-line parameter for SQL*Loader specifies the name or location, or
both, of the bad file associated with the first data file specification.

Default

The name of the data file, with an extension of .bad.

Chapter 8
Command-Line Parameters for SQL*Loader

8-6

Purpose

Specifies the name or location, or both, of the bad file associated with the first data file
specification.

Syntax and Description

BAD=[directory/][filename]

The bad file stores records that cause errors during insert, or that are improperly
formatted. If you specify the BAD parameter, then you must supply either a directory, or
file name, or both. If there are rejected records, and you have not specified a name for
the bad file, then the name defaults to the name of the data file with an extension or
file type of .bad.

The value you provide for directory specifies the directory where you want the bad
file to be written. The specification can include the name of a device or network node.
The value of directory is determined as follows:

• If the BAD parameter is not specified at all, and a bad file is needed, then the
default directory is the one in which the SQL*Loader control file resides.

• If the BAD parameter is specified with a file name, but without a directory, then the
directory defaults to the current directory.

• If the BAD parameter is specified with a directory, but without a file name, then the
specified directory is used, and the name defaults to the name of the data file, with
an extension or file type of .bad.

The value you provide for filename specifies a file name that is recognized as valid on
your platform. You must specify only a name (and extension, if you want to use one
other than .bad). Any spaces or punctuation marks in the file name must be enclosed
within single quotation marks.

A bad file specified on the command line becomes the bad file associated with the first
INFILE statement (if there is one) in the control file. You can also specify the of the bad
file in the SQL*Loader control file by using the BADFILE clause. If the bad file is
specified in both the control file and by command line, then the command-line value is
used. If a bad file with that name already exists, then it is either overwritten, or a new
version is created, depending on your operating system.

Example

The following specification creates a bad file named emp1.bad in the current directory:

BAD=emp1

Related Topics

• Understanding and Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file, or reject file, in
which it places records that were rejected because of formatting errors or because
they caused Oracle errors.

Chapter 8
Command-Line Parameters for SQL*Loader

8-7

8.2.2 BINDSIZE
The BINDSIZE command-line parameter for SQL*Loader specifies the maximum size
(in bytes) of the bind array.

Default

256000

Purpose

Specifies the maximum size (in bytes) of the bind array.

Syntax and Description

BINDSIZE=n

A bind array is an area in memory where SQL*Loader stores data that is to be
loaded. When the bind array is full, the data is transmitted to the database. The bind
array size is controlled by the parameters BINDSIZE and READSIZE.

The size of the bind array given by BINDSIZE overrides the default size (which is
system dependent) and any size determined by ROWS.

Restrictions

• The BINDSIZE parameter is used only for conventional path loads.

Example

The following BINDSIZE specification limits the maximum size of the bind array to
356,000 bytes.

BINDSIZE=356000

Related Topics

• Differences Between Bind Arrays and Conventional Path Loads
With bind arrays, you can use SQL*Loader to load an entire array of records in
one operation.

• READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size
of the read buffer, if you choose not to use the default.

• ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter
specifies the number of rows in the bind array.

Chapter 8
Command-Line Parameters for SQL*Loader

8-8

8.2.3 COLUMNARRAYROWS
The COLUMNARRAYROWS command-line parameter for SQL*Loader specifies the number
of rows to allocate for direct path column arrays.

Default

5000

Purpose

Specifies the number of rows that you want to allocate for direct path column arrays.

Syntax and Description

COLUMNARRARYROWS=n

The value for this parameter is not calculated by SQL*Loader. You must either specify
it or accept the default.

Example

The following example specifies that you want to allocate 1000 rows for direct path
column arrays.

COLUMNARRAYROWS=1000

Related Topics

• Using CONCATENATE to Assemble Logical Records
Use CONCATENATE when you want SQL*Loader to always combine the same
number of physical records to form one logical record.

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before
the stream buffer is built. T

8.2.4 CONTROL
The CONTROL command-line parameter for SQL*Loader specifies the name of the
SQL*Loader control file that describes how to load the data.

Default

There is no default.

Purpose

Specifies the name of the SQL*Loader control file that describes how to load the data.

Syntax and Description

CONTROL=control_file_name

Chapter 8
Command-Line Parameters for SQL*Loader

8-9

If you do not specify a file extension or file type, then it defaults to .ctl. If the CONTROL
parameter is not specified, then SQL*Loader prompts you for it.

If the name of your SQL*Loader control file contains special characters, then your
operating system can require that you enter the control file name preceded by an
escape character. Also, if your operating system uses backslashes in its file system
paths, then you can be required to use multiple escape characters, or you can be
required to enclose the path in quotation marks. Refer to your operating system
documentation for more information about how to use special characters.

Example

The following example specifies a control file named emp1. It is automatically given the
default extension of .ctl.

CONTROL=emp1

Related Topics

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language
(DDL) instructions for a SQL*Loader job.

8.2.5 CREDENTIAL
The CREDENTIAL command-line parameter for SQL*Loader enables reading data
stored in object stores.

Default

none.

Purpose

Enables SQL*Loader to read object stores. For a data file, you can specify the URI for
the data file that you want to read on the object store. The CREDENTIAL values specify
credentials granted to the user running SQL*Loader. These permissions enable
SQL*Loader to access the object store.

Syntax and Description

In the following syntax, the variable user-credential is the user credential (user
name or password) that you specify SQL*Loader to use:

oracle.sqlldr.credential.user-credential.username
oracle.sqlldr.credential.user-credential.password

Usage Notes

If you specify the CREDENTIAL parameter, then SQL*Loader uses the values you
provide for the keys as the username and password for the object store. Before you
use CREDENTIAL, you must previously have created a valid credential by using the
mkstore command.

Chapter 8
Command-Line Parameters for SQL*Loader

8-10

Restrictions

If you specify CREDENTIAL, and one of the following conditions are true, then you
receive an error:

• One or both keys cannot be found in the Oracle Wallet

• The files specified for the DATA parameter are not a URI.

• The files specified for the INFILE clause in the control file are not URIs.

If a URI is specified for a data file, and the CREDENTIAL parameter is not specified, then
you receive an error.

Example

To use the CREDENTAL parameter with SQL*Loader, you create a wallet, and define an
access credential for the wallet for the target where you want to load data. Then you
identify that credential with a user for whom you want to grant permissions to load
data. After that task is complete, you can use the wallet credential to load data into the
target database.

For example:

1. Where your wallet path is /u01/app/oracle/product/wallets, and the password
is cloud-pw-example use the orapki utility to create a wallet:

% orapki wallet create -wallet /u01/app/oracle/product/wallets -pwd
cloud-pw-example -auto_login
Oracle PKI Tool Release 20.0.0.0.0 - Production

Version 21.0.0.0.0

Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.

Operation is successfully completed.

Note:

For an actual password, always ensure that you follow industry-standard
practices for secure passwords.

2. Create the SQL*Loader credential "obm_scott" user. To do this, use the mkstore
utility to define the database connection string
(oracle.sqlldr.credential.obm_scott that can be used with the user ID
some_user, with the password some_password:

% mkstore -wrl /u01/app/oracle/product/wallets -createEntry \
oracle.sqlldr.credential.obm_scott.username some_username

% mkstore -wrl wallet_location_directory -createEntry
oracle.sqlldr.credential.obm_scott.password \
some_password

Chapter 8
Command-Line Parameters for SQL*Loader

8-11

Note:

For each credential, there can be only one user and password pair.

For both the mkstore commands, you are prompted to provide the password for
the externally stored obm_scott credential, which in this example is cloud-pw-
example.

3. Finally, you use SQL*Loader to load the data into the database, using the
credential that you have created. For example:

% sqlldr sqlldr/cdb1_pdb6 dept.ctl credential=obm_scott log=dept.log \
external_table=not_used proxy=https://www.example.com:80

You then load data, which in this example is dept.csv:

LOAD DATA
INFILE 'https://publickeyinfrastorage.example.com/v1/pkistore/dept.csv'
truncate
INTO TABLE DEPTOS
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(DEPTNO, DNAME, LOC)

8.2.6 DATA
The DATA command-line parameter for SQL*Loader specifies the names of the data
files containing the data that you want to load.

Default

The same name as the control file, but with an extension of .dat.

Purpose

The DATA parameter specifies the name of the data file containing the data that you
want to load.

Syntax and Description

DATA=data_file_name

If you do not specify a file extension, then the default is .dat.

The file specification can contain wildcards (only in the file name and file extension,
not in a device or directory name). An asterisk (*) represents multiple characters and a
question mark (?) represents a single character. For example:

DATA='emp*.dat'

DATA='m?emp.dat'

Chapter 8
Command-Line Parameters for SQL*Loader

8-12

To list multiple data file specifications (each of which can contain wild cards), the file
names must be separated by commas.

If the file name contains any special characters (for example, spaces, *, ?,), then the
entire name must be enclosed within single quotation marks.

The following are three examples of possible valid uses of the DATA parameter (the
single quotation marks would only be necessary if the file name contained special
characters):

DATA='file1','file2','file3','file4','file5','file6'
DATA='file1','file2'
DATA='file3,'file4','file5'
DATA='file6'

Caution:

If multiple data files are being loaded and you are also specifying the BAD
parameter, it is recommended that you specify only a directory for the bad
file, not a file name. If you specify a file name, and a file with that name
already exists, then it is either overwritten or a new version is created,
depending on your operating system.

If you specify data files on the command line with the DATA parameter and also specify
data files in the control file with the INFILE clause, then the first INFILE specification in
the control file is ignored. All other data files specified on the command line and in the
control file are processed.

If you specify a file processing option along with the DATA parameter when loading data
from the control file, then a warning message is issued.

Example

The following example specifies that a data file named employees.dat is to be loaded.
The .dat extension is assumed as the default because no extension is provided.

DATA=employees

8.2.7 DATE_CACHE
The DATE_CACHE command-line parameter for SQL*Loader specifies the date cache
size (in entries).

Default

Enabled (for 1000 elements). To completely disable the date cache feature, set it to 0
(zero).

Purpose

Specifies the date cache size (in entries).

Chapter 8
Command-Line Parameters for SQL*Loader

8-13

The date cache is used to store the results of conversions from text strings to internal
date format. The cache is useful, because the cost of looking up dates is much less
than converting from text format to date format. If the same dates occur repeatedly in
the date file, then using the date cache can improve the speed of a direct path load.

Syntax and Description

DATE_CACHE=n

Every table has its own date cache, if one is needed. A date cache is created only if at
least one date or timestamp value is loaded that requires data type conversion before
it can be stored in the table.

The date cache feature is enabled by default. The default date cache size is 1000
elements. If the default size is used, and if the number of unique input values loaded
exceeds 1000, then the date cache feature is automatically disabled for that table.
However, if you override the default, and you specify a nonzero date cache size, and
that size is exceeded, then the cache is not disabled.

To tune the size of the cache for future similar loads, use the date cache statistics
(entries, hits, and misses) contained in the log file.

Restrictions

• The date cache feature is only available for direct path and external tables loads.

Example

The following specification completely disables the date cache feature.

DATE_CACHE=0

Related Topics

• Specifying a Value for DATE_CACHE
If you are performing a direct path load in which the same date or timestamp
values are loaded many times, then a large percentage of total load time can end
up being used for converting date and timestamp data.

8.2.8 DEFAULTS
The DEFAULTS command-line parameter for SQL*Loader controls evaluation and
loading of default expressions.

Default

EVALUATE_ONCE, unless a sequence is involved. If a sequence is involved, then the
default is EVALUATE_EVERY_ROW.

Purpose

Controls evaluation and loading of default expressions.

The DEFAULTS parameter is only applicable to direct path loads.

Chapter 8
Command-Line Parameters for SQL*Loader

8-14

Syntax and Description

DEFAULTS={IGNORE | IGNORE_UNSUPPORTED_EVALUATE_ONCE |
IGNORE_UNSUPPORTED_EVALUATE_EVERY_ROW |
EVALUATE_ONCE | EVALUATE_EVERY_ROW}

The behavior of each of the options is as follows:

• IGNORE: Default clauses on columns are ignored.

• IGNORE_UNSUPPORTED_EVALUATE_ONCE: Evaluate default expressions once at the
start of the load. Unsupported default expressions are ignored. If the DEFAULTS
parameter is not used, then default expressions are evaluated once, unless the
default expression references a sequence, in which case every row is evaluated.

• IGNORE_UNSUPPORTED_EVALUATE_EVERY_ROW: Evaluate default expressions in every
row, ignoring unsupported default clauses.

• EVALUATE_ONCE: Evaluate default expressions once at the start of the load. If the
DEFAULTS parameter is not used, then default expressions are evaluated once,
unless the default references a sequence, in which case every row is evaluated.
An error is issued for unsupported default expression clauses. (This is the default
option for this parameter.)

• EVALUATE_EVERY_ROW: Evaluate default expressions in every row, and issue an
error for unsupported defaults.

Example

This example shows that a table is created with the name test, and a SQL*Loader
control file named test.ctl:

create table test
(
 c0 varchar2(10),
 c1 number default '100'
)
;

test.ctl:

load data
infile *
truncate
into table test
fields terminated by ','
trailing nullcols
(
 c0 char
)
begindata
1,

Chapter 8
Command-Line Parameters for SQL*Loader

8-15

To then load a NULL into c1, issue the following statement:

sqlldr scott/password t.ctl direct=true defaults=ignore

To load the default value of 100 into c1, issue the following statement:

sqlldr scott/password t.ctl direct=true

8.2.9 DEGREE_OF_PARALLELISM
The DEGREE_OF_PARALLELISM command-line parameter for SQL*Loader specifies the
degree of parallelism to use during the load operation.

Default

NONE

Purpose

The DEGREE_OF_PARALLELISM parameter specifies the degree of parallelism to use
during the load operation.

Syntax and Description

DEGREE_OF_PARALLELISM=[degree-num|DEFAULT|AUTO|NONE]

If a degree-num is specified, then it must be a whole number value from 1 to n.

If DEFAULT is specified, then the default parallelism of the database (not the default
parameter value of AUTO) is used.

If AUTO is used, then the Oracle database automatically sets the degree of parallelism
for the load.

If NONE is specified, then the load is not performed in parallel.

See Also:

• Oracle Database VLDB and Partitioning Guide for more information
about parallel execution

Restrictions

• The DEGREE_OF_PARALLELISM parameter is valid only when the external table load
method is used.

Chapter 8
Command-Line Parameters for SQL*Loader

8-16

Example

The following example sets the degree of parallelism for the load to 3.

DEGREE_OF_PARALLELISM=3

8.2.10 DIRECT
The DIRECT command-line parameter for SQL*Loader specifies the load method to
use, either conventional path or direct path.

Default

FALSE

Purpose

The DIRECT parameter specifies the load method to use, either conventional path or
direct path.

Syntax and Description

DIRECT=[TRUE | FALSE]

A value of TRUE specifies a direct path load. A value of FALSE specifies a conventional
path load.

See Also:

Conventional and Direct Path Loads

Example

The following example specifies that the load be performed using conventional path
mode.

DIRECT=FALSE

8.2.11 DIRECT_PATH_LOCK_WAIT
The DIRECT_PATH_LOCK_WAIT command-line parameter for SQL*Loader controls
direct path load behavior when waiting for table locks.

Default

FALSE

Chapter 8
Command-Line Parameters for SQL*Loader

8-17

Purpose

Controls direct path load behavior when waiting for table locks. Direct path loads must
lock the table before the load can proceed. The DIRECT_PATH_LOCK_WAIT command
controls the direct path API behavior while waiting for a lock.

Syntax and Description

DIRECT_PATH_LOCK_WAIT = {TRUE | FALSE}

• TRUE: Direct path waits until it can get a lock on the table before proceeding with
the load.

• FALSE: (Default). When set to FALSE, the direct path API tries to lock the table
multiple times and waits one second between attempts. The maximum number of
attempts made is 30. If the table cannot be locked after 30 attempts, then the
direct path API returns the error that was generated when trying to lock the table.

8.2.12 DISCARD
The DISCARD command-line parameter for SQL*Loader lets you optionally specify a
discard file to store records that are neither inserted into a table nor rejected.

Default

The same file name as the data file, but with an extension of .dsc.

Purpose

The DISCARD parameter lets you optionally specify a discard file to store records that
are neither inserted into a table nor rejected. They are not bad records, they simply did
not match any record-selection criteria specified in the control file, such as a WHEN
clause for example.

Syntax and Description

DISCARD=[directory/][filename]

If you specify the DISCARD parameter, then you must supply either a directory or file
name, or both.

The directory parameter specifies a directory to which the discard file will be written.
The specification can include the name of a device or network node. The value of
directory is determined as follows:

• If the DISCARD parameter is not specified at all, but the DISCARDMAX parameter is,
then the default directory is the one in which the SQL*Loader control file resides.

• If the DISCARD parameter is specified with a file name but no directory, then the
directory defaults to the current directory.

• If the DISCARD parameter is specified with a directory but no file name, then the
specified directory is used and the default is used for the name and the extension.

The filename parameter specifies a file name recognized as valid on your platform.
You must specify only a name (and extension, if one other than .dsc is desired). Any

Chapter 8
Command-Line Parameters for SQL*Loader

8-18

spaces or punctuation marks in the file name must be enclosed in single quotation
marks.

If neither the DISCARD parameter nor the DISCARDMAX parameter is specified, then a
discard file is not created even if there are discarded records.

If the DISCARD parameter is not specified, but the DISCARDMAX parameter is, and there
are discarded records, then the discard file is created using the default name and the
file is written to the same directory in which the SQL*Loader control file resides.

Caution:

If multiple data files are being loaded and you are also specifying the
DISCARD parameter, it is recommended that you specify only a directory for
the discard file, not a file name. If you specify a file name, and a file with that
name already exists, then it is either overwritten or a new version is created,
depending on your operating system.

A discard file specified on the command line becomes the discard file associated with
the first INFILE statement (if there is one) in the control file. If the discard file is also
specified in the control file, then the command-line value overrides it. If a discard file
with that name already exists, then it is either overwritten or a new version is created,
depending on your operating system.

See Also:

Discarded and Rejected Records for information about the format of discard
files

Example

Assume that you are loading a data file named employees.dat. The following example
supplies only a directory name so the name of the discard file will be employees.dsc
and it will be created in the mydir directory.

DISCARD=mydir/

8.2.13 DISCARDMAX
The DISCARDMAX command-line parameter for SQL*Loader specifies the number of
discard records to allow before data loading is terminated.

Default

ALL

Purpose

The DISCARDMAX parameter specifies the number of discard records to allow before
data loading is terminated.

Chapter 8
Command-Line Parameters for SQL*Loader

8-19

Syntax and Description

DISCARDMAX=n

To stop on the first discarded record, specify a value of 0.

If DISCARDMAX is specified, but the DISCARD parameter is not, then the name of the
discard file is the name of the data file with an extension of .dsc.

Example

The following example allows 25 records to be discarded during the load before it is
terminated.

DISCARDMAX=25

8.2.14 DNFS_ENABLE
The DNFS_ENABLE SQL*Loader command-line parameter lets you enable and disable
use of the Direct NFS Client on input data files during a SQL*Loader operation.

Default

TRUE

Purpose

The DNFS_ENABLE parameter lets you enable and disable use of the Direct NFS Client
on input data files during a SQL*Loader operation.

Syntax and Description

DNFS_ENABLE=[TRUE|FALSE]

The Direct NFS Client is an API that can be implemented by file servers to allow
improved performance when an Oracle database accesses files on those servers.

SQL*Loader uses the Direct NFS Client interfaces by default when it reads data files
over 1 GB. For smaller files, the operating system input/output (I/O) interfaces are
used. To use the Direct NFS Client on all input data files, use DNFS_ENABLE=TRUE.

To disable use of the Direct NFS Client for all data files, specify DNFS_ENABLE=FALSE.

The DNFS_READBUFFERS parameter can be used to specify the number of read buffers
used by the Direct NFS Client; the default is 4.

See Also:

• Oracle Grid Infrastructure Installation Guide for your platform for more
information about enabling the Direct NFS Client

Chapter 8
Command-Line Parameters for SQL*Loader

8-20

Example

The following example disables use of the Direct NFS Client on input data files during
the load.

DNFS_ENABLE=FALSE

8.2.15 DNFS_READBUFFERS
The DNFS_READBUFFERS SQL*Loader command-line parameter lets you control the
number of read buffers used by the Direct NFS Client.

Default

4

Purpose

The DNFS_READBUFFERS parameter lets you control the number of read buffers used by
the Direct NFS Client. The Direct NFS Client is an API that can be implemented by file
servers to allow improved performance when an Oracle database accesses files on
those servers.

Syntax and Description

DNFS_READBUFFERS=n

The value for n is the number of read buffers you specify. It is possible that you can
compensate for inconsistent input/output (I/O) from the Direct NFS Client file server by
increasing the number of read buffers. However, using larger values can result in
increased memory usage.

Restrictions

• To use this parameter without also specifying the DNFS_ENABLE parameter, the
input file must be larger than 1 GB.

Example

The following example specifies 10 read buffers for use by the Direct NFS Client.

DNFS_READBUFFERS=10

Related Topics

• Oracle Grid Infrastructure Installation Guide for your platform

Chapter 8
Command-Line Parameters for SQL*Loader

8-21

8.2.16 EMPTY_LOBS_ARE_NULL
The EMPTY_LOBS_ARE_NULL SQL*Loader command-line parameter specifies that any
LOB column for which there is no data available is set to NULL, rather than to an
empty LOB.

Default

FALSE

Purpose

If the SQL*Loader EMPTY_LOBS_ARE_NULL parameter is specified, then any Large
Object (LOB) columns for which there is no data available are set to NULL, rather than
to an empty LOB. Setting LOB columns for which there is no data available to NULL
negates the need to make that change through post-processing after the data is
loaded.

Syntax and Description

EMPTY_LOBS_ARE_NULL = {TRUE | FALSE}

You can specify the EMPTY_LOBS_ARE_NULL parameter on the SQL*Loader command
line, and also on the OPTIONS clause in a SQL*Loader control file.

Restrictions

None.

Example

In the following example, as a result of setting empty_lobs_are_null=true, the LOB
columns in c1 are set to NULL instead of to an empty LOB.

create table t
(
 c0 varchar2(10),
 c1 clob
)
;

sqlldr control file:

options (empty_lobs_are_null=true)
load data
infile *
truncate
into table t
fields terminated by ','
trailing nullcols
(
 c0 char,
 c1 char
)

Chapter 8
Command-Line Parameters for SQL*Loader

8-22

begindata
1,,

8.2.17 ERRORS
The ERRORS SQL*Loader command line parameter specifies the maximum number
of allowed insert errors.

Default

50

Purpose

The ERRORS parameter specifies the maximum number of insert errors to allow.

Syntax and Description

ERRORS=n

If the number of errors exceeds the value specified for ERRORS, then SQL*Loader
terminates the load. Any data inserted up to that point is committed.

To permit no errors at all, set ERRORS=0. To specify that all errors be allowed, use a
very high number.

SQL*Loader maintains the consistency of records across all tables. Therefore,
multitable loads do not terminate immediately if errors exceed the error limit. When
SQL*Loader encounters the maximum number of errors for a multitable load, it
continues to load rows to ensure that valid rows previously loaded into tables are
loaded into all tables and rejected rows are filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

Example

The following example specifies a maximum of 25 insert errors for the load. After that,
the load is terminated.

ERRORS=25

8.2.18 EXTERNAL_TABLE
The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using the
external tables option.

Default

NOT_USED

Syntax and Description

EXTERNAL_TABLE=[NOT_USED | GENERATE_ONLY | EXECUTE]

Chapter 8
Command-Line Parameters for SQL*Loader

8-23

The possible values are as follows:

• NOT_USED - the default value. It means the load is performed using either
conventional or direct path mode.

• GENERATE_ONLY - places all the SQL statements needed to do the load using
external tables, as described in the control file, in the SQL*Loader log file. These
SQL statements can be edited and customized. The actual load can be done later
without the use of SQL*Loader by executing these statements in SQL*Plus.

• EXECUTE - attempts to execute the SQL statements that are needed to do the load
using external tables. However, if any of the SQL statements returns an error, then
the attempt to load stops. Statements are placed in the log file as they are
executed. This means that if a SQL statement returns an error, then the remaining
SQL statements required for the load will not be placed in the log file.

If you use EXTERNAL_TABLE=EXECUTE and also use the SEQUENCE parameter in your
SQL*Loader control file, then SQL*Loader creates a database sequence, loads
the table using that sequence, and then deletes the sequence. The results of
doing the load this way will be different than if the load were done with
conventional or direct path. (For more information about creating sequences, see
CREATE SEQUENCE in Oracle Database SQL Language Reference.)

Note:

When the EXTERNAL_TABLE parameter is specified, any datetime data types
(for example, TIMESTAMP) in a SQL*Loader control file are automatically
converted to a CHAR data type and use the external tables date_format_spec
clause. See date_format_spec.

Note that the external table option uses directory objects in the database to indicate
where all input data files are stored and to indicate where output files, such as bad
files and discard files, are created. You must have READ access to the directory objects
containing the data files, and you must have WRITE access to the directory objects
where the output files are created. If there are no existing directory objects for the
location of a data file or output file, then SQL*Loader will generate the SQL statement
to create one. Therefore, when the EXECUTE option is specified, you must have the
CREATE ANY DIRECTORY privilege. If you want the directory object to be deleted at the
end of the load, then you must also have the DROP ANY DIRECCTORY privilege.

Chapter 8
Command-Line Parameters for SQL*Loader

8-24

Note:

The EXTERNAL_TABLE=EXECUTE qualifier tells SQL*Loader to create an
external table that can be used to load data and then executes the INSERT
statement to load the data. All files in the external table must be identified as
being in a directory object. SQL*Loader attempts to use directory objects that
already exist and that you have privileges to access. However, if
SQL*Loader does not find the matching directory object, then it attempts to
create a temporary directory object. If you do not have privileges to create
new directory objects, then the operation fails.

To work around this, use EXTERNAL_TABLE=GENERATE_ONLY to create the SQL
statements that SQL*Loader would try to execute. Extract those SQL
statements and change references to directory objects to be the directory
object that you have privileges to access. Then, execute those SQL
statements.

When using a multi-table load, SQL*Loader does the following:

1. Creates a table in the database that describes all fields in the input data file that
will be loaded into any table.

2. Creates an INSERT statement to load this table from an external table description
of the data.

3. Executes one INSERT statement for every table in the control file.

To see an example of this, run case study 5, but add the
EXTERNAL_TABLE=GENERATE_ONLY parameter. To guarantee unique names in the
external table, SQL*Loader uses generated names for all fields. This is because the
field names may not be unique across the different tables in the control file.

See Also:

• "SQL*Loader Case Studies" for information on how to access case
studies

• External Tables Concepts

• The ORACLE_LOADER Access Driver

Restrictions

• Julian dates cannot be used when you insert data into a database table from an
external table through SQL*Loader. To work around this, use TO_DATE and
TO_CHAR to convert the Julian date format, as shown in the following example:

TO_CHAR(TO_DATE(:COL1, 'MM-DD-YYYY'), 'J')

• Built-in functions and SQL strings cannot be used for object elements when you
insert data into a database table from an external table.

Chapter 8
Command-Line Parameters for SQL*Loader

8-25

Example

EXTERNAL_TABLE=EXECUTE

8.2.19 FILE
The FILE SQL*Loader command-line parameter specifies the database file from which
the extents are allocated.

Default

There is no default.

Purpose

The FILE parameter specifies the database file from which the extents are allocated.

See Also:

Parallel Data Loading Models

Syntax and Description

FILE=tablespace_file

By varying the value of the FILE parameter for different SQL*Loader processes, data
can be loaded onto a system with minimal disk contention.

Restrictions

• The FILE parameter is used only for direct path parallel loads.

8.2.20 HELP
The HELP SQL*Loader command-line parameter displays online help for the
SQL*Loader utility.

Default

FALSE

Syntax and Description

HELP = [TRUE | FALSE]

If HELP=TRUE is specified, then SQL*Loader displays a summary of all SQL*Loader
command-line parameters.

You can also display a summary of all SQL*Loader command-line parameters by
entering sqlldr -help on the command line.

Chapter 8
Command-Line Parameters for SQL*Loader

8-26

8.2.21 LOAD
The LOAD SQL*Loader command-line parameter specifies the maximum number of
records to load.

Default

All records are loaded.

Purpose

Specifies the maximum number of records to load.

Syntax and Description

LOAD=n

To test that all parameters you have specified for the load are set correctly, use the
LOAD parameter to specify a limited number of records rather than loading all records.
No error occurs if fewer than the maximum number of records are found.

Example

The following example specifies that a maximum of 10 records be loaded.

LOAD=10

For external tables method loads, only successfully loaded records are counted toward
the total. So if there are 15 records in the input data file and records 2 and 4 are bad,
then the following records are loaded into the table, for a total of 10 records: 1, 3, 5, 6,
7, 8, 9, 10, 11, and 12.

For conventional and direct path loads, both successful and unsuccessful load
attempts are counted toward the total. So if there are 15 records in the input data file,
and records 2 and 4 are bad, then only the following 8 records are actually loaded into
the table: 1, 3, 5, 6, 7, 8, 9, and 10.

8.2.22 LOG
The LOG SQL*Loader command-line parameter specifies a directory path, or file name,
or both for the log file where SQL*Loader stores logging information about the loading
process.

Default

The current directory, if no value is specified.

Purpose

Specifies a directory path, or file name, or both for the log file that SQL*Loader uses to
store logging information about the loading process.

Chapter 8
Command-Line Parameters for SQL*Loader

8-27

Syntax and Description

LOG=[[directory/][log_file_name]]

If you specify the LOG parameter, then you must supply a directory name, or a file
name, or both.

If no directory name is specified, it defaults to the current directory.

If a directory name is specified without a file name, then the default log file name is
used.

Example

The following example creates a log file named emp1.log in the current directory. The
extension .log is used even though it is not specified, because it is the default.

LOG=emp1

8.2.23 MULTITHREADING
The MULTITHREADING SQL*Loader command-line parameter enables stream building
on the client system to be done in parallel with stream loading on the server system.

Default

TRUE on multiple-CPU systems, FALSE on single-CPU systems

Syntax and Description

MULTITHREADING=[TRUE | FALSE]

By default, the multithreading option is always enabled (set to TRUE) on multiple-CPU
systems. In this case, the definition of a multiple-CPU system is a single system that
has more than one CPU.

On single-CPU systems, multithreading is set to FALSE by default. To use
multithreading between two single-CPU systems, you must enable multithreading; it
will not be on by default.

Restrictions

• The MULTITHREADING parameter is available only for direct path loads.

• Multithreading functionality is operating system-dependent. Not all operating
systems support multithreading.

Example

The following example enables multithreading on a single-CPU system. On a multiple-
CPU system it is enabled by default.

MULTITHREADING=TRUE

Chapter 8
Command-Line Parameters for SQL*Loader

8-28

Related Topics

• Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then
SQL*Loader uses multithreading by default. A multiple-CPU system in this case is
defined as a single system that has two or more CPUs.

8.2.24 NO_INDEX_ERRORS
The NO_INDEX_ERRORS SQL*Loader command-line parameter specifies whether
indexing errors are tolerated during a direct path load.

Default

FALSE

Syntax and Description

NO_INDEX_ERRORS=[TRUE | FALSE]

A setting of NO_INDEX_ERRORS=FALSE means that if a direct path load results in an
index becoming unusable then the rows are loaded and the index is left in an unusable
state. This is the default behavior.

A setting of NO_INDEX_ERRORS=TRUE means that if a direct path load results in any
indexing errors, then the load is aborted. No rows are loaded and the indexes are left
as they were.

Restrictions

• The NO_INDEX_ERRORS parameter is valid only for direct path loads. If it is specified
for conventional path loads, then it is ignored.

Example

NO_INDEX_ERRORS=TRUE

8.2.25 PARALLEL
The SQL*Loader PARALLEL parameter specifies whether loads that use direct path or
external tables can operate in multiple concurrent sessions to load data into the same
table.

the current directory
FALSE

Purpose

Specifies whether loads that use direct path or external tables can operate in multiple
concurrent sessions to load data into the same table.

Syntax and Description

PARALLEL=[TRUE | FALSE]

Chapter 8
Command-Line Parameters for SQL*Loader

8-29

Restrictions

• The PARALLEL parameter is not valid in conventional path loads.

Example

The following example specifies that the load will be performed in parallel.

PARALLEL=TRUE

Related Topics

• About SQL*Loader Parallel Data Loading Models
There are three basic models of concurrency that you can use to minimize the
elapsed time required for data loading.

8.2.26 PARFILE
The PARFILE SQL*Loader command-line parameter specifies the name of a file that
contains commonly used command-line parameters.

Default

There is no default.

Syntax and Description

PARFILE=file_name

Instead of specifying each parameter on the command line, you can simply specify the
name of the parameter file. For example, a parameter file named daily_report.par
might have the following contents:

USERID=scott
CONTROL=daily_report.ctl
ERRORS=9999
LOG=daily_report.log

For security reasons, do not include your USERID password in a parameter file. After
you specify the parameter file at the command line, SQL*Loader prompts you for the
password. For example:

sqlldr PARFILE=daily_report.par
Password: password

Restrictions

• On some systems it can be necessary to have no spaces around the equal sign
(=) in the parameter specifications.

Example

See the example in the Syntax and Description section.

Chapter 8
Command-Line Parameters for SQL*Loader

8-30

8.2.27 PARTITION_MEMORY
The PARFILE SQL*Loader command-line parameter specifies the amount of memory
that you want to have used when you are loading many partitions.

Default

0 (zero) This setting limits memory use based on the value of the
PGA_AGGREGATE_TARGET initialization parameter. When memory use approaches that
value, loading of some partitions is delayed.

Purpose

Specifies the amount of memory that you want to have used when you are loading
many partitions. This parameter is helpful in situations in which the number of
partitions you are loading use up large amounts of memory, perhaps even exceeding
available memory. (This scenario can occur, especially when the data is compressed).

After the specified limit is reached, loading of some partition rows is delayed until
memory use falls below the limit.

Syntax and Description

PARTITION_MEMORY=n

The parameter value n is in kilobytes.

If n is set to 0 (the default), then SQL*Loader uses a value that is a function of the
PGA_AGGREGATE_TARGET initialization parameter.

If n is set to -1 (minus 1), then SQL*Loader makes no attempt to use less memory
when loading many partitions.

Restrictions

• This parameter is only valid for direct path loads.

• This parameter is available only in Oracle Database 12c Release 1 (12.1.0.2) and
later releases.

Example

The following example limits memory use to 1 GB.

> sqlldr hr CONTROL=t.ctl DIRECT=true PARTITION_MEMORY=1000000

8.2.28 READSIZE
The READSIZE SQL*Loader command-line parameter specifies (in bytes) the size of the
read buffer, if you choose not to use the default.

Default

1048576

Chapter 8
Command-Line Parameters for SQL*Loader

8-31

Syntax and Description

READSIZE=n

In the conventional path method, the bind array is limited by the size of the read buffer.
Therefore, the advantage of a larger read buffer is that more data can be read before a
commit operation is required.

For example, setting READSIZE to 1000000 enables SQL*Loader to perform reads from
the data file in chunks of 1,000,000 bytes before a commit is required.

Note:

If the READSIZE value specified is smaller than the BINDSIZE value, then the
READSIZE value is increased.

Restrictions

• The READSIZE parameter is used only when reading data from data files. When
reading records from a control file, a value of 64 kilobytes (KB) is always used as
the READSIZE.

• The READSIZE parameter has no effect on Large Objects (LOBs). The size of the
LOB read buffer is fixed at 64 kilobytes (KB).

• The maximum size allowed is platform-dependent.

Example

The following example sets the size of the read buffer to 500,000 bytes, which means
that commit operations will be required more often than if the default or a value larger
than the default were used.

READSIZE=500000

Related Topics

• BINDSIZE

8.2.29 RESUMABLE
The RESUMABLE SQL*Loader command-line parameter enables and disables
resumable space allocation.

Default

FALSE

Purpose

Enables and disables resumable space allocation.

Chapter 8
Command-Line Parameters for SQL*Loader

8-32

Syntax and Description

RESUMABLE=[TRUE | FALSE]

See Also:

Oracle Database Administrator's Guide for more information about
resumable space allocation.

Restrictions

• Because this parameter is disabled by default, you must set RESUMABLE=TRUE to
use its associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

Example

The following example enables resumable space allocation:

RESUMABLE=TRUE

8.2.30 RESUMABLE_NAME
The RESUMABLE_NAME SQL*Loader command-line parameter identifies a statement that
is resumable.

Default

'User USERNAME(USERID), Session SESSIONID, Instance INSTANCEID'

Syntax and Description

RESUMABLE_NAME='text_string'

This value is a user-defined text string that is inserted in either the USER_RESUMABLE or
DBA_RESUMABLE view to help you identify a specific resumable statement that has been
suspended.

Restrictions

• This parameter is ignored unless the RESUMABLE parameter is set to TRUE to enable
resumable space allocation.

Example

RESUMABLE_NAME='my resumable sql'

Chapter 8
Command-Line Parameters for SQL*Loader

8-33

8.2.31 RESUMABLE_TIMEOUT
The RESUMABLE_TIMEOUT SQL*Loader command-line parameter specifies the time
period, in seconds, during which an error must be fixed.

Default

7200 seconds (2 hours)

Syntax and Description

RESUMABLE_TIMEOUT=n

If the error is not fixed within the timeout period, then execution of the statement is
terminated, without finishing.

Restrictions

• This parameter is ignored unless the RESUMABLE parameter is set to TRUE to enable
resumable space allocation.

Example

The following example specifies that errors must be fixed within ten minutes (600
seconds).

RESUMABLE_TIMEOUT=600

8.2.32 ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter specifies
the number of rows in the bind array.

Default

Specifies the number of rows in the bind array. The Conventional path default is 64.
Direct path default is all rows.

Purpose

For direct path loads, the ROWS parameter specifies the number of rows to read from
the data files before a data save.

Syntax

ROWS=n

Conventional Path Loads Description

In conventional path loads only, the ROWS parameter specifies the number of rows in
the bind array. The maximum number of rows is 65534.

Chapter 8
Command-Line Parameters for SQL*Loader

8-34

Direct Path Loads Description

In direct path loads only, the ROWS parameter identifies the number of rows that you
want to read from the data file before a data save. The default is to read all rows and
save data once at the end of the load. The actual number of rows loaded into a table
on a save is approximately the value of ROWS minus the number of discarded and
rejected records since the last save.

Note:

If you specify a low value for ROWS, and then attempt to compress data using
table compression, then the compression ratio probably will be degraded.
When compressing the data, Oracle recommends that you either specify a
high value, or accept the default value.

Restrictions

• The ROWS parameter is ignored for direct path loads when data is loaded into an
Index Organized Table (IOT), or into a table containing VARRAY types, XML
columns, or Large Objects (LOBs). This means that the load still takes place, but
no save points are done.

Example

In a conventional path load, the following example would result in an error because the
specified value exceeds the allowable maximum of 65534 rows.

ROWS=65900

Related Topics

• Using Data Saves to Protect Against Data Loss
You can use data saves to protect against loss of data due to instance failure.

8.2.33 SDF_PREFIX
The SDF_PREFIX SQL*Loader command-line parameter specifies a directory prefix,
which is added to file names of LOBFILEs and secondary data files (SDFs) that are
opened as part of a load operation.

Default

There is no default.

Purpose

Specifies a directory prefix, which is added to file names of LOBFILEs and secondary
data files (SDFs) that are opened as part of a load operation.

Chapter 8
Command-Line Parameters for SQL*Loader

8-35

Note:

The SDF_PREFIX parameter can also be specified in the OPTIONS clause in the
SQL Loader control file.

Syntax and Description

SDF_PREFIX=string

If SDF_PREFIX is specified, then the string value must be specified as well. There is no
validation or verification of the string. The value of SDF_PREFIX is prepended to the
filenames used for all LOBFILEs and SDFs opened during the load. If the resulting
string is not the name of as valid file, then the attempt to open that file fails and an
error is reported.

If SDF_PREFIX is not specified, then file names for LOBFILEs and SDFs are assumed
to be relative to the current working directory. Using SDF_PREFIX allows those files
names to be relative to a different directory.

Quotation marks are only required around the string if it contains characters that would
confuse the command line parser (for example, a space).

The file names that are built by prepending SDF_PREFIX to the file names found in the
record are passed to the operating system to open the file. The prefix can be relative
to the current working directory from which SQL*Loader is being executed or it can be
the start of an absolute path.

Restrictions

• The SDF_PREFIX parameter should not be used if the file specifications for the
LOBFILEs or SDFs contain full file names.

Example

The following SQL*Loader command looks for LOB files in the lobdir subdirectory of
the current directory

sqlldr control=picts.ctl log=picts.log sdf_prefix=lobdir/

8.2.34 SILENT
The SILENT SQL*Loader command-line parameter suppresses some of the content
that is written to the screen during a SQL*Loader operation.

Default

There is no default.

Syntax and Description

SILENT=[HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL]

Chapter 8
Command-Line Parameters for SQL*Loader

8-36

Use the appropriate values to suppress one or more of the following (if more than one
option is specified, they must be separated by commas):

• HEADER: Suppresses the SQL*Loader header messages that normally appear on
the screen. Header messages still appear in the log file.

• FEEDBACK: Suppresses the "commit point reached" messages and the status
messages for the load that normally appear on the screen. But "XX Rows
successfully loaded." even prints on the screen.

• ERRORS: Suppresses the data error messages in the log file that occur when a
record generates an Oracle error that causes it to be written to the bad file. A
count of rejected records still appears.

• DISCARDS: Suppresses the messages in the log file for each record written to the
discard file.

• PARTITIONS: Disables writing the per-partition statistics to the log file during a
direct load of a partitioned table.

• ALL: Implements all of the suppression values: HEADER, FEEDBACK, ERRORS,
DISCARDS, and PARTITIONS. But "XX Rows successfully loaded." even prints
on the screen.

Example

You can suppress the header and feedback messages that normally appear on the
screen with the following command-line argument:

SILENT=HEADER, FEEDBACK

But "XX Rows successfully loaded." even prints on the screen.

8.2.35 SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical
records from the beginning of the file that should not be loaded.

Default

0 (No records are skipped.)

Purpose

Specifies the number of logical records from the beginning of the file that should not be
loaded. Using this specification enables you to continue loads that have been
interrupted for some reason, without loading records that have already been
processed.

Syntax and Description

SKIP=n

You can use the SKIP parameter for all conventional loads, for single-table direct path
loads, and for multiple-table direct path loads when the same number of records was
loaded into each table. You cannot use SKIP for multiple-table direct path loads when
a different number of records was loaded into each table.

Chapter 8
Command-Line Parameters for SQL*Loader

8-37

If a WHEN clause is also present, and the load involves secondary data, then the
secondary data is skipped only if the WHEN clause succeeds for the record in the
primary data file.

Restrictions

• The SKIP parameter cannot be used for external table loads.

Example

The following example skips the first 500 logical records in the data files before
proceeding with the load:

SKIP=500

Related Topics

• Interrupted SQL*Loader Loads
Learn about common scenarios in which SQL*Loader loads are interrupted or
discontinued, and what you can do to correct these issues.

8.2.36 SKIP_INDEX_MAINTENANCE
The SKIP_INDEX_MAINTENANCE SQL*Loader command-line parameter specifies
whether to stop index maintenance for direct path loads.

Default

FALSE

Purpose

Specifies whether to stop index maintenance for direct path loads.

Syntax and Description

SKIP_INDEX_MAINTENANCE=[TRUE | FALSE]

If set to TRUE, this parameter causes the index partitions that would have had index
keys added to them to instead be marked Index Unusable because the index segment
is inconsistent with respect to the data it indexes. Index segments that are unaffected
by the load retain the state they had before the load.

The SKIP_INDEX_MAINTENANCE parameter:

• Applies to both local and global indexes

• Can be used (with the PARALLEL parameter) to perform parallel loads on an object
that has indexes

• Can be used (with the PARTITION parameter on the INTO TABLE clause) to do a
single partition load to a table that has global indexes

• Records a list (in the SQL*Loader log file) of the indexes and index partitions that
the load set to an Index Unusable state

Chapter 8
Command-Line Parameters for SQL*Loader

8-38

Restrictions

• The SKIP_INDEX_MAINTENANCE parameter does not apply to conventional path
loads.

• Indexes that are unique and marked Unusable are not allowed to skip index
maintenance. This rule is enforced by DML operations, and enforced by the direct
path load to be consistent with DML.

Example

The following example stops index maintenance from taking place during a direct path
load operation:

SKIP_INDEX_MAINTENANCE=TRUE

8.2.37 SKIP_UNUSABLE_INDEXES
The SKIP_UNUSABLE_INDEXES SQL*Loader command-line parameter specifies whether
to skip an index encountered in an Index Unusable state and continue the load
operation.

Default

The value of the Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES,
as specified in the initialization parameter file. The default database setting is TRUE.

Purpose

Specifies whether to skip an index encountered in an Index Unusable state and
continue the load operation.

Syntax and Description

SKIP_UNUSABLE_INDEXES=[TRUE | FALSE]

A value of TRUE for SKIP_UNUSABLE_INDEXES means that if an index in an Index
Unusable state is encountered, it is skipped and the load operation continues. This
allows SQL*Loader to load a table with indexes that are in an Unusable state before
the beginning of the load. Indexes that are not in an Unusable state at load time will be
maintained by SQL*Loader. Indexes that are in an Unusable state at load time will not
be maintained, but instead will remain in an Unusable state at load completion.

Both SQL*Loader and Oracle Database provide a SKIP_UNUSABLE_INDEXES parameter.
The SQL*Loader SKIP_UNUSABLE_INDEXES parameter is specified at the SQL*Loader
command line. The Oracle Database SKIP_UNUSABLE_INDEXES parameter is specified
as a configuration parameter in the initialization parameter file. It is important to
understand how they affect each other.

If you specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command line,
then it overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter in
the initialization parameter file.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the SQL*Loader command
line, then SQL*Loader uses the Oracle Database setting for the

Chapter 8
Command-Line Parameters for SQL*Loader

8-39

SKIP_UNUSABLE_INDEXES configuration parameter, as specified in the initialization
parameter file. If the initialization parameter file does not specify a setting for
SKIP_UNUSABLE_INDEXES, then the default setting is TRUE.

The SKIP_UNUSABLE_INDEXES parameter applies to both conventional and direct path
loads.

Restrictions

• Indexes that are unique and marked Unusable are not allowed to skip index
maintenance. This rule is enforced by DML operations, and enforced by the direct
path load to be consistent with DML.

Example

If the Oracle Database initialization parameter has a value of
SKIP_UNUSABLE_INDEXES=FALSE, then setting SKIP_UNUSABLE_INDEXES=TRUE on the
SQL*Loader command line overrides it. Therefore, if an index in an Index Unusable
state is encountered after this parameter is set, then it is skipped, and the load
operation continues.

SKIP_UNUSABLE_INDEXES=TRUE

8.2.38 STREAMSIZE
The STREAMSIZE SQL*Loader command-line parameter specifies the size (in bytes) of
the data stream sent from the client to the server.

Default

256000

Purpose

Specifies the size (in bytes) of the data stream sent from the client to the server.

Syntax and Description

STREAMSIZE=n

The STREAMSIZE parameter specifies the size of the direct path stream buffer. The
number of column array rows (specified with the COLUMNARRAYROWS parameter)
determines the number of rows loaded before the stream buffer is built. The optimal
values for these parameters vary, depending on the system, input data types, and
Oracle column data types used. When you are using optimal values for your particular
configuration, the elapsed time in the SQL*Loader log file should go down.

Restrictions

• The STREAMSIZE parameter applies only to direct path loads.

• The minimum value for STREAMSIZE is 65536. If a value lower than 65536 is
specified, then 65536 is used instead.

Chapter 8
Command-Line Parameters for SQL*Loader

8-40

Example

The following example specifies a direct path stream buffer size of 300,000 bytes.

STREAMSIZE=300000

Related Topics

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before
the stream buffer is built. T

8.2.39 TRIM
The TRIM SQL*Loader command-line parameter specifies whether you want spaces
trimmed from the beginning of a text field, the end of a text field, both, or neither.

Default

LDRTRIM

Purpose

Specifies that spaces should be trimmed from the beginning of a text field, the end of a
text field, both, or neither. Spaces include blanks and other nonprinting characters,
such as tabs, line feeds, and carriage returns.

Syntax and Description

TRIM=[LRTRIM | NOTRIM | LTRIM | RTRIM | LDRTRIM]

The valid values for the TRIM parameter are as follows:

• NOTRIM indicates that you want no characters trimmed from the field. This setting
generally yields the fastest performance.

• LRTRIM indicates that you want both leading and trailing spaces trimmed from the
field.

• LTRIM indicates that you want leading spaces trimmed from the field

• RTRIM indicates that you want trailing spaces trimmed from the field.

• LDRTRIM is the same as NOTRIM except in the following cases:

– If the field is not a delimited field, then spaces are trimmed from the right.

– If the field is a delimited field with OPTIONALLY ENCLOSED BY specified, and the
optional enclosures are missing for a particular instance, then spaces are
trimmed from the left.

Chapter 8
Command-Line Parameters for SQL*Loader

8-41

Note:

If trimming is specified for a field that consists only of spaces, then the field is
set to NULL.

Restrictions

• The TRIM parameter is valid only when the external table load method is used.

Example

The following example specifies a load operation for which no characters are trimmed
from any fields:

TRIM=NOTRIM

8.2.40 USERID
The USERID SQL*Loader command-line parameter provides your Oracle username
and password for SQL*Loader.

Default

There is no default.

Purpose

Provides your Oracle user name and password for SQL*Loader, so that you are not
prompted to provide them. If it is omitted, then you are prompted for them. If you
provide as the value a slash (/), then USERID defaults to your operating system login.

Syntax and Description

USERID=[username | / | SYS]

Specify a user name. For security reasons, Oracle recommends that you specify only
the user name on the command line. SQL*Loader then prompts you for a password.

If you do not specify the USERID parameter, then you are prompted for it. If you use a
forward slash (virgule), then USERID defaults to your operating system login.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.

Restrictions

• Because the string AS SYSDBA, contains a blank, some operating systems can
require that you place the entire connect string inside quotation marks, or marked
as a literal by some other method. Some operating systems also require that
quotation marks on the command line are preceded by an escape character, such
as backslashes.

Refer to your operating system-specific documentation for information about
special and reserved characters on your system.

Chapter 8
Command-Line Parameters for SQL*Loader

8-42

Example

The following example specifies a user name of hr. SQL*Loader then prompts for a
password. Because it is the first and only parameter specified, you do not need to
include the parameter name USERID:

> sqlldr hr
Password:

Related Topics

• Specifying Parameters on the Command Line
When you start SQL*Loader, you specify parameters to establish various
characteristics of the load operation.

8.3 Exit Codes for Inspection and Display
Oracle SQL*Loader provides the results of a SQL*Loader run immediately upon
completion.

Usage Notes

In addition to recording the results in a log file, SQL*Loader may also report the
outcome in a process exit code. This Oracle SQL*Loader functionality allows for
checking the outcome of a SQL*Loader invocation from the command line or a script.
The following table shows the exit codes for various results:

Table 8-1 Exit Codes for SQL*Loader

Result Exit Code

All rows loaded successfully EX_SUCC

All or some rows rejected EX_WARN

All or some rows discarded EX_WARN

Discontinued load EX_WARN

Command-line or syntax errors EX_FAIL

Oracle errors nonrecoverable for SQL*Loader EX_FAIL

Operating system errors (such as file open/close and malloc) EX_FTL

Examples

For Linux and Unix operating systems, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 3

Chapter 8
Exit Codes for Inspection and Display

8-43

For Windows operating systems, the exit codes are as follows:

EX_SUCC 0
EX_FAIL 1
EX_WARN 2
EX_FTL 4

If SQL*Loader returns any exit code other than zero, then consult your system log files
and SQL*Loader log files for more detailed diagnostic information.

On Unix platforms, you can check the exit code from the shell to determine the
outcome of a load.

Chapter 8
Exit Codes for Inspection and Display

8-44

9
SQL*Loader Control File Reference

The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions for a SQL*Loader job.

Successfully using a SQL*Loader control file requires an understanding of the
following topics:

Note:

You can also use SQL*Loader without a control file; this is known as
SQL*Loader express mode. See SQL*Loader Express for more information.

• Control File Contents
The SQL*Loader control file is a text file that contains data definition language
(DDL) instructions.

• Comments in the Control File
Comments can appear anywhere in the parameter section of the file, but they
should not appear within the data.

• Specifying Command-Line Parameters in the Control File
You can specify command-line parameters in the SQL*Loader control file using
the OPTIONS clause.

• Specifying File Names and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names).

• Identifying XMLType Tables
You can identify and select XML type tables to load by using the XMLTYPE clause in
a SQL*Loader control file.

• Specifying Field Order
You can use the FIELD NAMES clause in the SQL*Loader control file to specify field
order.

• Specifying Data Files
Learn how you can use the SQL*Loader control file to specify how data files are
loaded.

• Specifying CSV Format Files
To direct SQL*Loader to access the data files as comma-separated-values format
files, use the CSV clause.

• Identifying Data in the Control File with BEGINDATA
Specify the BEGINDATA statement before the first data record.

9-1

• Specifying Data File Format and Buffering
When configuring SQL*Loader, you can specify an operating system-dependent
file processing options string (os_file_proc_clause) in the control file to specify
file format and buffering.

• Specifying the Bad File
Learn what SQL*Loader bad files are, and how to specify them.

• Specifying the Discard File
Learn what SQL*Loader discard files are, what they contain, and how to specify
them.

• Specifying a NULLIF Clause At the Table Level
To load a table character field as NULL when it contains certain character strings
or hex strings, you can use a NULLIF clause at the table level with SQL*Loader.

• Specifying Datetime Formats At the Table Level
You can specify certain datetime formats at the table level in a SQL*Loader control
file.

• Handling Different Character Encoding Schemes
SQL*Loader supports different character encoding schemes (called character
sets, or code pages).

• Interrupted SQL*Loader Loads
Learn about common scenarios in which SQL*Loader loads are interrupted or
discontinued, and what you can do to correct these issues.

• Assembling Logical Records from Physical Records
This section describes assembling logical records from physical records.

• Loading Logical Records into Tables
Learn about the different methods and available to you to load logical records into
tables with SQL*Loader.

• Index Options
To control how SQL*Loader creates index entries, you can set SORTED INDEXES
and SINGLEROW clauses.

• Benefits of Using Multiple INTO TABLE Clauses
Learn from examples how you can use multiple INTO TABLE clauses for specific
SQL*Loader use cases

• Bind Arrays and Conventional Path Loads
With the SQL*Loader array-interface option, multiple table rows are read at one
time, and stored in a bind array.

9.1 Control File Contents
The SQL*Loader control file is a text file that contains data definition language (DDL)
instructions.

DDL is used to control the following aspects of a SQL*Loader session:

• Where SQL*Loader will find the data to load

• How SQL*Loader expects that data to be formatted

• How SQL*Loader will be configured (memory management, rejecting records,
interrupted load handling, and so on) as it loads the data

• How SQL*Loader will manipulate the data being loaded

Chapter 9
Control File Contents

9-2

See SQL*Loader Syntax Diagrams for syntax diagrams of the SQL*Loader DDL.

To create the SQL*Loader control file, use a text editor such as vi or xemacs.

In general, the control file has three main sections, in the following order:

• Session-wide information

• Table and field-list information

• Input data (optional section)

Example 9-1 shows a sample control file.

Example 9-1 Sample Control File

1 -- This is a sample control file
2 LOAD DATA
3 INFILE 'sample.dat'
4 BADFILE 'sample.bad'
5 DISCARDFILE 'sample.dsc'
6 APPEND
7 INTO TABLE emp
8 WHEN (57) = '.'
9 TRAILING NULLCOLS
10 (hiredate SYSDATE,
 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,'$99,999.99')",
 comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
 ":comm * 100"
)

In this sample control file, the numbers that appear to the left would not appear in a
real control file. They are keyed in this sample to the explanatory notes in the following
list:

1. This is how comments are entered in a control file. See Comments in the Control
File.

2. The LOAD DATA statement tells SQL*Loader that this is the beginning of a new data
load. See SQL*Loader Syntax Diagrams for syntax information.

3. The INFILE clause specifies the name of a data file containing the data you want
to load. See Specifying Data Files.

4. The BADFILE clause specifies the name of a file into which rejected records are
placed. See Specifying the Bad File.

5. The DISCARDFILE clause specifies the name of a file into which discarded records
are placed. See Specifying the Discard File.

6. The APPEND clause is one of the options you can use when loading data into a
table that is not empty. See Loading Data into Nonempty Tables.

Chapter 9
Control File Contents

9-3

To load data into a table that is empty, you would use the INSERT clause. See
Loading Data into Empty Tables.

7. The INTO TABLE clause enables you to identify tables, fields, and data types. It
defines the relationship between records in the data file and tables in the
database. See Specifying Table Names.

8. The WHEN clause specifies one or more field conditions. SQL*Loader decides
whether to load the data based on these field conditions. See Loading Records
Based on a Condition.

9. The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned
columns that are not present in the record as null columns. See Handling Short
Records with Missing Data.

10. The remainder of the control file contains the field list, which provides information
about column formats in the table being loaded. See SQL*Loader Field List
Reference for information about that section of the control file.

9.2 Comments in the Control File
Comments can appear anywhere in the parameter section of the file, but they should
not appear within the data.

Precede any comment with two hyphens, for example:

--This is a comment

All text to the right of the double hyphen is ignored, until the end of the line.

9.3 Specifying Command-Line Parameters in the Control
File

You can specify command-line parameters in the SQL*Loader control file using the
OPTIONS clause.

This can be useful if you often use a control file with the same set of options. The
OPTIONS clause precedes the LOAD DATA statement.

• OPTIONS Clause
The following command-line parameters can be specified using the OPTIONS
clause.

• Specifying the Number of Default Expressions to Be Evaluated At One Time
Use the SQL*Loader DEFAULT EXPRESSION CACHE n clause to specify how many
default expressions are evaluated at a time by the direct path load. The default
value is 100.

9.3.1 OPTIONS Clause
The following command-line parameters can be specified using the OPTIONS clause.

These parameters are described in greater detail in SQL*Loader Command-Line
Reference.

BINDSIZE = n
COLUMNARRAYROWS = n

Chapter 9
Comments in the Control File

9-4

DATE_CACHE = n
DEGREE_OF_PARALLELISM= {degree-num|DEFAULT|AUTO|NONE}
DIRECT = {TRUE | FALSE}
EMPTY_LOBS_ARE_NULL = {TRUE | FALSE}
ERRORS = n
EXTERNAL_TABLE = {NOT_USED | GENERATE_ONLY | EXECUTE}
FILE = tablespace file
LOAD = n
MULTITHREADING = {TRUE | FALSE}
PARALLEL = {TRUE | FALSE}
READSIZE = n
RESUMABLE = {TRUE | FALSE}
RESUMABLE_NAME = 'text string'
RESUMABLE_TIMEOUT = n
ROWS = n
SDF_PREFIX = string
SILENT = {HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL}
SKIP = n
SKIP_INDEX_MAINTENANCE = {TRUE | FALSE}
SKIP_UNUSABLE_INDEXES = {TRUE | FALSE}
STREAMSIZE = n
TRIM= {LRTRIM|NOTRIM|LTRIM|RTRIM|LDRTRIM}

The following is an example use of the OPTIONS clause that you could use in a
SQL*Loader control file:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Note:

Parameter values specified on the command line override parameter values
specified in the control file OPTIONS clause.

9.3.2 Specifying the Number of Default Expressions to Be Evaluated
At One Time

Use the SQL*Loader DEFAULT EXPRESSION CACHE n clause to specify how many
default expressions are evaluated at a time by the direct path load. The default value
is 100.

Using the DEFAULT EXPRESSION CACHE clause can significantly improve performance
when default column expressions that include sequences are evaluated.

At the end of the load there may be sequence numbers left in the cache that never get
used. This can happen when the number of rows to load is not a multiple of n. If you
require no loss of sequence numbers, then specify a value of 1 for this clause.

9.4 Specifying File Names and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names).

Chapter 9
Specifying File Names and Object Names

9-5

• File Names That Conflict with SQL and SQL*Loader Reserved Words
SQL and SQL*Loader reserved words must be specified within double quotation
marks.

• Specifying SQL Strings in the SQL*Loader Control File
When you apply SQL operators to field data with the SQL string, you must specify
SQL strings within double quotation marks.

• Operating Systems and SQL Loader Control File Characters
The characters that you use in control files are affected by operating system
reserved characters, escape characters, and special characters.

9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved
Words

SQL and SQL*Loader reserved words must be specified within double quotation
marks.

The only SQL*Loader reserved word is CONSTANT.

You must use double quotation marks if the object name contains special characters
other than those recognized by SQL ($, #, _), or if the name is case sensitive.

See Also:

Oracle Database SQL Language Reference

9.4.2 Specifying SQL Strings in the SQL*Loader Control File
When you apply SQL operators to field data with the SQL string, you must specify
SQL strings within double quotation marks.

See Also:

Applying SQL Operators to Fields

9.4.3 Operating Systems and SQL Loader Control File Characters
The characters that you use in control files are affected by operating system reserved
characters, escape characters, and special characters.

Learn how the the operating system that you are using affects the characters you can
use in your SQL*Loader Control file.

• Specifying a Complete Path
Specifying the path name within single quotation marks prevents errors.

Chapter 9
Specifying File Names and Object Names

9-6

• Backslash Escape Character
In DDL syntax, you can place a double quotation mark inside a string delimited by
double quotation marks by preceding it with the backslash escape character (\), if
the escape character is allowed on your operating system.

• Nonportable Strings
There are two kinds of character strings in a SQL*Loader control file that are not
portable between operating systems: filename and file processing option strings.

• Using the Backslash as an Escape Character
Use the backslash character to separate directories in a path name.

• Escape Character Is Sometimes Disallowed
Your operating system can disallow the use of escape characters for nonportable
strings in Oracle Database.

9.4.3.1 Specifying a Complete Path
Specifying the path name within single quotation marks prevents errors.

If you encounter problems when trying to specify a complete path name, it may be due
to an operating system-specific incompatibility caused by special characters in the
specification.

9.4.3.2 Backslash Escape Character
In DDL syntax, you can place a double quotation mark inside a string delimited by
double quotation marks by preceding it with the backslash escape character (\), if the
escape character is allowed on your operating system.

The same rule applies when single quotation marks are required in a string delimited
by single quotation marks.

For example, homedir\data"norm\mydata contains a double quotation mark.
Preceding the double quotation mark with a backslash indicates that the double
quotation mark is to be taken literally:

INFILE 'homedir\data\"norm\mydata'

You can also put the escape character itself into a string by entering it twice.

For example:

"so'\"far" or 'so\'"far' is parsed as so'"far
"'so\\far'" or '\'so\\far\'' is parsed as 'so\far'
"so\\\\far" or 'so\\\\far' is parsed as so\\far

Note:

A double quotation mark in the initial position cannot be preceded by an
escape character. Therefore, you should avoid creating strings with an initial
quotation mark.

Chapter 9
Specifying File Names and Object Names

9-7

9.4.3.3 Nonportable Strings
There are two kinds of character strings in a SQL*Loader control file that are not
portable between operating systems: filename and file processing option strings.

When you convert to a different operating system, you will probably need to modify
these strings. All other strings in a SQL*Loader control file should be portable between
operating systems.

9.4.3.4 Using the Backslash as an Escape Character
Use the backslash character to separate directories in a path name.

If your operating system uses the backslash character to separate directories in a path
name, and if the release of the Oracle database running on your operating system
implements the backslash escape character for file names and other nonportable
strings, then you must specify double backslashes in your path names and use single
quotation marks.

9.4.3.5 Escape Character Is Sometimes Disallowed
Your operating system can disallow the use of escape characters for nonportable
strings in Oracle Database.

When the operating sytem disallows the use of the backslash character (\) as an
escape character, a backslash is treated as a normal character, rather than as an
escape character. The backslash character is still usable in all other strings. As a
result of this operating system restriction, path names such as the following can be
specified normally:

INFILE 'topdir\mydir\myfile'

Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within single
quotation marks cannot be embedded inside another string delimited by single
quotation marks. This rule also applies to the use of double quotation marks. A string
within double quotation marks cannot be embedded inside another string delimited by
double quotation marks.

9.5 Identifying XMLType Tables
You can identify and select XML type tables to load by using the XMLTYPE clause in a
SQL*Loader control file.

As of Oracle Database 10g, the XMLTYPE clause is available for use in a SQL*Loader
control file. This clause is of the format XMLTYPE(field name). You can use this clause
to identify XMLType tables, so that the correct SQL statement can be constructed. You
can use the XMLTYPE clause in a SQL*Loader control file to load data into a schema-
based XMLType table.

Chapter 9
Identifying XMLType Tables

9-8

Example 9-2 Identifying XMLType Tables in the SQL*Loader Control File

The XML schema definition is as follows. It registers the XML schema, xdb_user.xsd,
in the Oracle XML DB, and then creates the table, xdb_tab5.

begin dbms_xmlschema.registerSchema('xdb_user.xsd',
'<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:element name = "Employee"
 xdb:defaultTable="EMP31B_TAB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "EmployeeId" type = "xs:positiveInteger"/>
 <xs:element name = "Name" type = "xs:string"/>
 <xs:element name = "Salary" type = "xs:positiveInteger"/>
 <xs:element name = "DeptId" type = "xs:positiveInteger"
 xdb:SQLName="DEPTID"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>',
TRUE, TRUE, FALSE); end;
/

The table is defined as follows:

CREATE TABLE xdb_tab5 OF XMLTYPE XMLSCHEMA "xdb_user.xsd" ELEMENT
"Employee";

In this next example, the control file used to load data into the table, xdb_tab5, loads
XMLType data by using the registered XML schema, xdb_user.xsd. The XMLTYPE
clause is used to identify this table as an XMLType table. To load the data into the table,
you can use either direct path mode, or conventional mode.

LOAD DATA
INFILE *
INTO TABLE xdb_tab5 TRUNCATE
xmltype(xmldata)
(
 xmldata char(4000)
)
BEGINDATA
<Employee> <EmployeeId>111</EmployeeId> <Name>Ravi</Name>
<Salary>100000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>112</EmployeeId> <Name>John</Name>
<Salary>150000</Sal
ary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>113</EmployeeId> <Name>Michael</Name>
<Salary>75000</S
alary> <DeptId>12</DeptId></Employee>
<Employee> <EmployeeId>114</EmployeeId> <Name>Mark</Name>
<Salary>125000</Sal
ary> <DeptId>16</DeptId></Employee>

Chapter 9
Identifying XMLType Tables

9-9

<Employee> <EmployeeId>115</EmployeeId> <Name>Aaron</Name>
<Salary>600000</Sa
lary> <DeptId>16</DeptId></Employee>

Related Topics

• Identifying XMLType Tables
You can identify and select XML type tables to load by using the XMLTYPE clause in
a SQL*Loader control file.

9.6 Specifying Field Order
You can use the FIELD NAMES clause in the SQL*Loader control file to specify field
order.

The syntax is as follows:

FIELD NAMES {FIRST FILE|FIRST FILE IGNORE|ALL FILES|ALL FILES IGNORE|NONE}

The FIELD NAMES options are:

• FIRST FILE: Indicates that the first data file contains a list of field names for the
data in the first record. This list uses the same delimiter as the data in the data file.
The record is read for setting up the mapping between the fields in the data file
and the columns in the target table. The record is skipped when the data is
processed. This can be useful if the order of the fields in the data file is different
from the order of the columns in the table, or if the number of fields in the data file
is different from the number of columns in the target table

• FIRST FILE IGNORE: Indicates that the first data file contains a list of field names for
the data in the first record, but that the information should be ignored. The record
will be skipped when the data is processed, but it will not be used for setting up the
fields.

• ALL FILES: Indicates that all data files contain a list of field names for the data in
the first record. The first record is skipped in each data file when the data is
processed. The fields can be in a different order in each data file. SQL*Loader
sets up the load based on the order of the fields in each data file.

• ALL FILES IGNORE: Indicates that all data files contain a list of field names for the
data in the first record, but that the information should be ignored. The record is
skipped when the data is processed in every data file, but it will not be used for
setting up the fields.

• NONE: Indicates that the data file contains normal data in the first record. This is the
default.

The FIELD NAMES clause cannot be used for complex column types such as column
objects, nested tables, or VARRAYs.

9.7 Specifying Data Files
Learn how you can use the SQL*Loader control file to specify how data files are
loaded.

Chapter 9
Specifying Field Order

9-10

• Understanding How to Specify Data Files
To load data files with SQL*Loader, you can specify data files in the control file
using the INFILE keyword.

• Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax.

• Specifying Multiple Data Files
To load data from multiple data files in one SQL*Loader run, use an INFILE clause
for each data file.

9.7.1 Understanding How to Specify Data Files
To load data files with SQL*Loader, you can specify data files in the control file using
the INFILE keyword.

To specify a data file that contains the data that you want to load, use the INFILE
keyword, followed by the file name, and the optional file processing options string.

You can specify multiple single files by using multiple INFILE keywords. You can also
use wildcards in the file names (an asterisk (*) for multiple characters and a question
mark (?) for a single character).

Note:

You can also specify the data file from the command line by using the DATA
parameter. Refer to the available command-line parameters for SQL*Loader.
A file name specified on the command line overrides the first INFILE clause
in the control file.

If no file name is specified, then the file name defaults to the control file name with an
extension or file type of .dat.

If the control file itself contains the data that you want loaded, then specify an asterisk
(*). This specification is described in the topic "Identifying Data in the Control File with
BEGINDATA. .

Note:

The information in this section applies only to primary data files. It does not
apply to LOBFILEs or SDFs.

The syntax for INFILE is as follows:

INFILE
*

input_filename

os_file_proc_clause

The following table describes the parameters for the INFILE keyword.

Chapter 9
Specifying Data Files

9-11

Table 9-1 Parameters for the INFILE Keyword

Parameter Description

INFILE Specifies that a data file specification follows.

input_filename Name of the file containing the data. The file name can contain
wildcards. An asterisk (*) represents multiple characters, and a
question mark (?) represents a single character. For example:

INFILE 'emp*.dat'
INFILE 'm?emp.dat'

Any spaces or punctuation marks in the file name must be
enclosed within single quotation marks.

* If your data is in the control file itself, then use an asterisk instead
of the file name. If you have data in the control file and in data
files, then for the data to be read, you must specify the asterisk
first.

os_file_proc_clause This is the file-processing options string. It specifies the data file
format. It also optimizes data file reads. The syntax used for this
string is specific to your operating system.

Related Topics

• Identifying Data in the Control File with BEGINDATA
Specify the BEGINDATA statement before the first data record.

• Specifying File Names and Object Names
In general, SQL*Loader follows the SQL standard for specifying object names (for
example, table and column names).

• Specifying Data File Format and Buffering
When configuring SQL*Loader, you can specify an operating system-dependent
file processing options string (os_file_proc_clause) in the control file to specify
file format and buffering.

9.7.2 Examples of INFILE Syntax
The following list shows different ways you can specify INFILE syntax.

• Data contained in the control file itself:

INFILE *

• Data contained in a file named sample with a default extension of .dat:

INFILE sample

• Data contained in a file named datafile.dat with a full path specified:

INFILE 'c:/topdir/subdir/datafile.dat'

Chapter 9
Specifying Data Files

9-12

Note:

File names that include spaces or punctuation marks must be enclosed
in single quotation marks.

• Data contained in any file of type .dat whose name begins with emp:

INFILE 'emp*.dat'

• Data contained in any file of type .dat whose name begins with m, followed by any
other single character, and ending in emp. For example, a file named myemp.dat
would be included in the following:

INFILE 'm?emp.dat'

9.7.3 Specifying Multiple Data Files
To load data from multiple data files in one SQL*Loader run, use an INFILE clause for
each data file.

Data files need not have the same file processing options, although the layout of the
records must be identical. For example, two files could be specified with completely
different file processing options strings, and a third could consist of data in the control
file.

You can also specify a separate discard file and bad file for each data file. In such a
case, the separate bad files and discard files must be declared immediately after each
data file name. For example, the following excerpt from a control file specifies four
data files with separate bad and discard files:

INFILE mydat1.dat BADFILE mydat1.bad DISCARDFILE mydat1.dis
INFILE mydat2.dat
INFILE mydat3.dat DISCARDFILE mydat3.dis
INFILE mydat4.dat DISCARDMAX 10 0

• For mydat1.dat, both a bad file and discard file are explicitly specified. Therefore
both files are created, as needed.

• For mydat2.dat, neither a bad file nor a discard file is specified. Therefore, only
the bad file is created, as needed. If created, the bad file has the default file name
and extension mydat2.bad. The discard file is not created, even if rows are
discarded.

• For mydat3.dat, the default bad file is created, if needed. A discard file with the
specified name (mydat3.dis) is created, as needed.

• For mydat4.dat, the default bad file is created, if needed. Because the
DISCARDMAX option is used, SQL*Loader assumes that a discard file is required
and creates it with the default name mydat4.dsc.

9.8 Specifying CSV Format Files
To direct SQL*Loader to access the data files as comma-separated-values format
files, use the CSV clause.

This assumes that the file is a stream record format file with the normal carriage return
string (for example, \n on UNIX or Linux operating systems and either \n or \r\n on

Chapter 9
Specifying CSV Format Files

9-13

Windows operating systems). Record terminators can be included (embedded) in data
values. The syntax for the CSV clause is as follows:

FIELDS CSV [WITH EMBEDDED|WITHOUT EMBEDDED] [FIELDS TERMINATED BY ','] [OPTIONALLY
ENCLOSED BY '"']

The following are key points regarding the FIELDS CSV clause:

• The SQL*Loader default is to not use the FIELDS CSV clause.

• The WITH EMBEDDED and WITHOUT EMBEDDED options specify whether record
terminators are included (embedded) within any fields in the data.

• If WITH EMBEDDED is used, then embedded record terminators must be enclosed,
and intra-datafile parallelism is disabled for external table loads.

• The TERMINATED BY ',' and OPTIONALLY ENCLOSED BY '"' options are the
defaults and do not have to be specified. You can override them with different
termination and enclosure characters.

• When the CSV clause is used, only delimitable data types are allowed as control
file fields. Delimitable data types include CHAR, datetime, interval, and numeric
EXTERNAL.

• The TERMINATED BY and ENCLOSED BY clauses cannot be used at the field level
when the CSV clause is specified.

• When the CSV clause is specified, normal SQL*Loader blank trimming is done by
default. You can specify PRESERVE BLANKS to avoid trimming of spaces. Or, you can
use the SQL functions LTRIM and RTRIM in the field specification to remove left
and/or right spaces.

• When the CSV clause is specified, the INFILE * clause in not allowed. This means
that there cannot be any data included in the SQL*Loader control file.

The following sample SQL*Loader control file uses the FIELDS CSV clause with the
default delimiters:

LOAD DATA
INFILE "mydata.dat"
TRUNCATE
INTO TABLE mytable
FIELDS CSV WITH EMBEDDED
TRAILING NULLCOLS
(
 c0 char,
 c1 char,
 c2 char,
)

9.9 Identifying Data in the Control File with BEGINDATA
Specify the BEGINDATA statement before the first data record.

If the data is included in the control file itself, then the INFILE clause is followed by an
asterisk rather than a file name. The actual data is placed in the control file after the
load configuration specifications.

The syntax is:

Chapter 9
Identifying Data in the Control File with BEGINDATA

9-14

BEGINDATA
first_data_record

Keep the following points in mind when using the BEGINDATA statement:

• If you omit the BEGINDATA statement but include data in the control file, then
SQL*Loader tries to interpret your data as control information and issues an error
message. If your data is in a separate file, then do not use the BEGINDATA
statement.

• Do not use spaces or other characters on the same line as the BEGINDATA
statement, or the line containing BEGINDATA will be interpreted as the first line of
data.

• Do not put comments after BEGINDATA, or they will also be interpreted as data.

See Also:

– Specifying Data Files for an explanation of using INFILE

– Case study 1, Loading Variable-Length Data (see SQL*Loader Case
Studies for information on how to access case studies)

9.10 Specifying Data File Format and Buffering
When configuring SQL*Loader, you can specify an operating system-dependent file
processing options string (os_file_proc_clause) in the control file to specify file
format and buffering.

For example, suppose that your operating system has the following option-string
syntax:

RECSIZE integer BUFFERS integer

In this syntax, RECSIZE is the size of a fixed-length record, and BUFFERS is the number
of buffers to use for asynchronous I/O.

To declare a file named mydata.dat as a file that contains 80-byte records and instruct
SQL*Loader to use 8 I/O buffers, you would use the following control file entry:

INFILE 'mydata.dat' "RECSIZE 80 BUFFERS 8"

Note:

This example uses the recommended convention of single quotation marks
for file names and double quotation marks for everything else.

Chapter 9
Specifying Data File Format and Buffering

9-15

See Also:

Oracle Database Platform Guide for Microsoft Windows for information about
using the os_file_proc_clause on Windows systems.

9.11 Specifying the Bad File
Learn what SQL*Loader bad files are, and how to specify them.

• Understanding and Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file, or reject file, in
which it places records that were rejected because of formatting errors or because
they caused Oracle errors.

• Examples of Specifying a Bad File Name
Using the bad file in an example.

• How Bad Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a bad file when there are rejected
rows.

• Criteria for Rejected Records
This section explains the criteria for rejecting records.

9.11.1 Understanding and Specifying the Bad File
When SQL*Loader executes, it can create a file called a bad file, or reject file, in which
it places records that were rejected because of formatting errors or because they
caused Oracle errors.

If you have specified that you want a bad file to be created, then the following
processes occur:

• If one or more records are rejected, then the bad file is created and the rejected
records are logged.

• If no records are rejected, then the bad file is not created.

• If the bad file is created, then it overwrites any existing file with the same name;
ensure that you do not overwrite a file you want to retain.

Note:

On some systems, a new version of the file can be created if a file with
the same name already exists.

To specify the name of the bad file, use the BADFILE clause. You can also specify the
bad file from the command line by using the BAD parameter.

A file name specified on the command line is associated with the first INFILE clause in
the control file. If present, then this association overrides any bad file previously
specified as part of that clause.

Chapter 9
Specifying the Bad File

9-16

The bad file is created in the same record and file format as the data file, so that you
can reload the data after you correct it. For data files in stream record format, the
record terminator that is found in the data file is also used in the bad file.

The syntax for the BADFILE clause is as follows:

BADFILE

directory_path filename

The BADFILE clause specifies that a directory path or file name, or both, for the bad file
follows. If you specify BADFILE, then you must supply either a directory path or a file
name, or both.

The directory parameter specifies a directory path to which the bad file will be
written.

The filename parameter specifies a valid file name specification for your platform. Any
spaces or punctuation marks in the file name must be enclosed in single quotation
marks. If you do not specify a name for the bad file, then the name defaults to the
name of the data file with an extension or file type of .bad.

Related Topics

• Command-Line Parameters for SQL*Loader
Manage SQL*Loader by using the command-line parameters.

9.11.2 Examples of Specifying a Bad File Name
Using the bad file in an example.

To specify a bad file with file name sample and default file extension or file type
of .bad, enter the following in the control file:

BADFILE sample

To specify only a directory name, enter the following in the control file:

BADFILE '/mydisk/bad_dir/'

To specify a bad file with file name bad0001 and file extension or file type of .rej, enter
either of the following lines in the control file:

BADFILE bad0001.rej
BADFILE '/REJECT_DIR/bad0001.rej'

9.11.3 How Bad Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a bad file when there are rejected
rows.

If there is an error loading a LOB, then the row is not rejected. Rather, the LOB column
is left empty (not null with a length of zero (0) bytes). However, when the LOBFILE is
being used to load an XML column and there is an error loading this LOB data, then the
XML column is left as null.

Chapter 9
Specifying the Bad File

9-17

9.11.4 Criteria for Rejected Records
This section explains the criteria for rejecting records.

A record can be rejected for the following reasons:

1. Upon insertion, the record causes an Oracle error (such as invalid data for a given
data type).

2. The record is formatted incorrectly so that SQL*Loader cannot find field
boundaries.

3. The record violates a constraint or tries to make a unique index non-unique.

If the data can be evaluated according to the WHEN clause criteria (even with
unbalanced delimiters), then it is either inserted or rejected.

Neither a conventional path nor a direct path load will write a row to any table if it is
rejected because of reason number 2 in the previous list.

A conventional path load will not write a row to any tables if reason number 1 or 3 in
the previous list is violated for any one table. The row is rejected for that table and
written to the reject file.

In a conventional path load, if the data file has a record that is being loaded into
multiple tables and that record is rejected from at least one of the tables, then that
record is not loaded into any of the tables.

The log file indicates the Oracle error for each rejected record. Case study 4
demonstrates rejected records. (See SQL*Loader Case Studies for information on how
to access case studies.)

9.12 Specifying the Discard File
Learn what SQL*Loader discard files are, what they contain, and how to specify them.

• Understanding and Specifying the Discard File
During execution, SQL*Loader can create a discard file for records that do not
meet any of the loading criteria.

• Specifying the Discard File in the Control File
To specify the name of the file, use the DISCARDFILE clause, followed by a
directory path and/or file name.

• Limiting the Number of Discard Records
You can limit the number of records to be discarded for each data file by
specifying an integer for either the DISCARDS or DISCARDMAX keyword.

• Examples of Specifying a Discard File Name
The list shows different ways that you can specify a name for the discard file from
within the control file.

• Criteria for Discarded Records
If there is no INTO TABLE clause specified for a record, then the record is
discarded.

Chapter 9
Specifying the Discard File

9-18

• How Discard Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a discard file when there are
discarded rows.

• Specifying the Discard File from the Command Line
This section explains how to specify a discard file from the command line.

9.12.1 Understanding and Specifying the Discard File
During execution, SQL*Loader can create a discard file for records that do not meet
any of the loading criteria.

The records contained in this file are called discarded records. Discarded records do
not satisfy any of the WHEN clauses specified in the control file. These records differ
from rejected records. Discarded records do not necessarily have any bad data. No
insert is attempted on a discarded record.

A discard file is created according to the following rules:

• You have specified a discard file name and one or more records fail to satisfy all of
the WHEN clauses specified in the control file. (Be aware that if the discard file is
created, then it overwrites any existing file with the same name.)

• If no records are discarded, then a discard file is not created.

You can specify the discard file from within the control file either by specifying its
directory, or name, or both, or by specifying the maximum number of discards. Any of
the following clauses result in a discard file being created, if necessary:

• DISCARDFILE=[[directory/][filename]]

• DISCARDS

• DISCARDMAX

The discard file is created in the same record and file format as the data file. For data
files in stream record format, the same record terminator that is found in the data file is
also used in the discard file.

You can also create a discard file from the command line by specifying either the
DISCARD or DISCARDMAX parameter.

If no discard clauses are included in the control file or on the command line, then a
discard file is not created even if there are discarded records (that is, records that fail
to satisfy all of the WHEN clauses specified in the control file).

Related Topics

• SQL*Loader Command-Line Reference
To start regular SQL*Loader, use the command-line parameters.

9.12.2 Specifying the Discard File in the Control File
To specify the name of the file, use the DISCARDFILE clause, followed by a directory
path and/or file name.

DISCARDFILE

directory_path filename
DISCARDS

DISCARDMAX
integer

Chapter 9
Specifying the Discard File

9-19

The DISCARDFILE clause specifies that a discard directory path and/or file name
follows. Neither the directory_path nor the filename is required. However, you must
specify at least one.

The directory parameter specifies a directory to which the discard file will be written.

The filename parameter specifies a valid file name specification for your platform. Any
spaces or punctuation marks in the file name must be enclosed in single quotation
marks.

The default file name is the name of the data file, and the default file extension or file
type is .dsc. A discard file name specified on the command line overrides one
specified in the control file. If a discard file with that name already exists, then it is
either overwritten or a new version is created, depending on your operating system.

9.12.3 Limiting the Number of Discard Records
You can limit the number of records to be discarded for each data file by specifying an
integer for either the DISCARDS or DISCARDMAX keyword.

You can specify a different number of discards for each data file. Or, if you specify the
number of discards only once, then the maximum number of discards specified applies
to all files.

When the discard limit is reached, processing of the data file terminates and continues
with the next data file, if one exists.

If you specify a maximum number of discards, but no discard file name, then
SQL*Loader creates a discard file with the default file name and file extension or file
type.

9.12.4 Examples of Specifying a Discard File Name
The list shows different ways that you can specify a name for the discard file from
within the control file.

• To specify a discard file with file name circular and default file extension or file
type of .dsc:

DISCARDFILE circular

• To specify a discard file named notappl with the file extension or file type of .may:

DISCARDFILE notappl.may

• To specify a full path to the discard file forget.me:

DISCARDFILE '/discard_dir/forget.me'

9.12.5 Criteria for Discarded Records
If there is no INTO TABLE clause specified for a record, then the record is discarded.

This situation occurs when every INTO TABLE clause in the SQL*Loader control file has
a WHEN clause and, either the record fails to match any of them, or all fields are null.

No records are discarded if an INTO TABLE clause is specified without a WHEN clause.
An attempt is made to insert every record into such a table. Therefore, records may be
rejected, but none are discarded.

Chapter 9
Specifying the Discard File

9-20

Case study 7, Extracting Data from a Formatted Report, provides an example of using
a discard file. (See SQL*Loader Case Studies for information on how to access case
studies.)

9.12.6 How Discard Files Are Handled with LOBFILEs and SDFs
Data from LOBFILEs and SDFs is not written to a discard file when there are
discarded rows.

9.12.7 Specifying the Discard File from the Command Line
This section explains how to specify a discard file from the command line.

See DISCARD for information about how to specify a discard file from the command
line.

A file name specified on the command line overrides any discard file that you may
have specified in the control file.

9.13 Specifying a NULLIF Clause At the Table Level
To load a table character field as NULL when it contains certain character strings or
hex strings, you can use a NULLIF clause at the table level with SQL*Loader.

The NULLIF syntax in the SQL*Loader control file is as follows:

NULLIF {=|!=}{"char_string"|x'hex_string'|BLANKS}

The char_string and hex_string values must be enclosed in either single quotation
marks or double quotation marks.

This specification is used for each mapped character field unless a NULLIF clause is
specified at the field level. A NULLIF clause specified at the field level overrides a
NULLIF clause specified at the table level.

SQL*Loader checks the specified value against the value of the field in the record. If
there is a match using the equal or not equal specification, then the field is set to NULL
for that row. Any field that has a length of 0 after blank trimming is also set to NULL.

If you do not want the default NULLIF or any other NULLIF clause applied to a field,
then you can specify NO NULLIF at the field level.

Related Topics

• Using the WHEN, NULLIF, and DEFAULTIF Clauses
This section describes using the WHEN, NULLIF, andDEFAULTIF clauses.

9.14 Specifying Datetime Formats At the Table Level
You can specify certain datetime formats at the table level in a SQL*Loader control
file.

The syntax for each is as follows:

Chapter 9
Specifying a NULLIF Clause At the Table Level

9-21

DATE FORMAT mask
TIMESTAMP FORMAT mask
TIMESTAMP WITH TIME ZONE mask
TIMESTAMP WITH LOCAL TIME ZONE mask

This specification is used for every date or timestamp field unless a different mask is
specified at the field level. A mask specified at the field level overrides a mask
specified at the table level.

The following is an example of using the DATE FORMAT clause in a SQL*Loader control
file. The DATE FORMAT clause is overridden by DATE at the field level for the hiredate and
entrydate fields:

LOAD DATA
 INFILE myfile.dat
 APPEND
 INTO TABLE EMP
 FIELDS TERMINATED BY ","
 DATE FORMAT "DD-Month-YYYY"
 (empno,
 ename,
 job,
 mgr,
 hiredate DATE,
 sal,
 comm,
 deptno,
 entrydate DATE)

See Also:

• Datetime and Interval Data Types for information about specifying
datetime data types at the field level

9.15 Handling Different Character Encoding Schemes
SQL*Loader supports different character encoding schemes (called character sets, or
code pages).

SQL*Loader uses features of Oracle's globalization support technology to handle the
various single-byte and multibyte character encoding schemes available today.

See Also:

Oracle Database Globalization Support Guide

The following sections provide a brief introduction to some of the supported character
encoding schemes.

• Multibyte (Asian) Character Sets
Multibyte character sets support Asian languages.

Chapter 9
Handling Different Character Encoding Schemes

9-22

• Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

• Database Character Sets
The character sets that you can use with Oracle Database to store data in SQL
must meet specific specifications.

• Data File Character Sets
By default, the data file is in the character set defined by the NLS_LANG parameter.

• Input Character Conversion with SQL*Loader
When you import data files, you can use the default character set, or you can
change the character set.

• Shift-sensitive Character Data
In general, loading shift-sensitive character data can be much slower than loading
simple ASCII or EBCDIC data.

9.15.1 Multibyte (Asian) Character Sets
Multibyte character sets support Asian languages.

Data can be loaded in multibyte format, and database object names (fields, tables, and
so on) can be specified with multibyte characters. In the control file, comments and
object names can also use multibyte characters.

9.15.2 Unicode Character Sets
SQL*Loader supports loading data that is in a Unicode character set.

Unicode is a universal encoded character set that supports storage of information from
most languages in a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language. There are two
different encodings for Unicode, UTF-16 and UTF-8.

Chapter 9
Handling Different Character Encoding Schemes

9-23

Note:

• In this manual, you will see the terms UTF-16 and UTF16 both used. The
term UTF-16 is a general reference to UTF-16 encoding for Unicode.
The term UTF16 (no hyphen) is the specific name of the character set
and is what you should specify for the CHARACTERSET parameter when
you want to use UTF-16 encoding. This also applies to UTF-8 and UTF8.

The UTF-16 Unicode encoding is a fixed-width multibyte encoding in
which the character codes 0x0000 through 0x007F have the same
meaning as the single-byte ASCII codes 0x00 through 0x7F.

The UTF-8 Unicode encoding is a variable-width multibyte encoding in
which the character codes 0x00 through 0x7F have the same meaning
as ASCII. A character in UTF-8 can be 1 byte, 2 bytes, or 3 bytes long.

• Oracle recommends using AL32UTF8 as the database character set.
AL32UTF8 is the proper implementation of the Unicode encoding UTF-8.
Starting with Oracle Database 12c Release 2, AL32UTF8 is used as the
default database character set while creating a database using Oracle
Universal Installer (OUI) as well as Oracle Database Configuration
Assistant (DBCA).

• Do not use UTF8 as the database character set as it is not a proper
implementation of the Unicode encoding UTF-8. If the UTF8 character
set is used where UTF-8 processing is expected, then data loss and
security issues may occur. This is especially true for Web related data,
such as XML and URL addresses.

• AL32UTF8 and UTF8 character sets are not compatible with each other
as they have different maximum character widths (four versus three
bytes per character).

See Also:

• Case study 11, Loading Data in the Unicode Character Set (see
SQL*Loader Case Studies for information on how to access case
studies)

• Oracle Database Globalization Support Guide for more information about
Unicode encoding

9.15.3 Database Character Sets
The character sets that you can use with Oracle Database to store data in SQL must
meet specific specifications.

Oracle Database uses the database character set for data stored in SQL CHAR data
types (CHAR, VARCHAR2, CLOB, and LONG), for identifiers such as table names, and for
SQL statements and PL/SQL source code.

Chapter 9
Handling Different Character Encoding Schemes

9-24

Only single-byte character sets and varying-width character sets that include either
ASCII or EBCDIC characters are supported as database character sets. Multibyte
fixed-width character sets (for example, AL16UTF16) are not supported as the
database character set.

An alternative character set can be used in the database for data stored in SQL NCHAR
data types (NCHAR, NVARCHAR2, and NCLOB). This alternative character set is called the
database national character set. Only Unicode character sets are supported as the
database national character set.

9.15.4 Data File Character Sets
By default, the data file is in the character set defined by the NLS_LANG parameter.

The data file character sets supported with NLS_LANG are the same as those supported
as database character sets. SQL*Loader supports all Oracle-supported character sets
in the data file (even those not supported as database character sets).

For example, SQL*Loader supports multibyte fixed-width character sets (such as
AL16UTF16 and JA16EUCFIXED) in the data file. SQL*Loader also supports UTF-16
encoding with little-endian byte ordering. However, the Oracle database supports only
UTF-16 encoding with big-endian byte ordering (AL16UTF16) and only as a database
national character set, not as a database character set.

The character set of the data file can be set up by using the NLS_LANG parameter or by
specifying a SQL*Loader CHARACTERSET parameter.

9.15.5 Input Character Conversion with SQL*Loader
When you import data files, you can use the default character set, or you can change
the character set.

• Options for Converting Character Sets Using SQL*Loader
When you load data into another database with SQL*Loader, you can change the
data character set.

• Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
This section describes the considerations that you should take when loading data
into VARRAYs or into a primary-key-based REFs.

• CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the
input data file.

• Control File Character Set
The SQL*Loader control file itself is assumed to be in the character set specified
for your session by the NLS_LANG parameter.

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

9.15.5.1 Options for Converting Character Sets Using SQL*Loader
When you load data into another database with SQL*Loader, you can change the data
character set.

Chapter 9
Handling Different Character Encoding Schemes

9-25

If you don't specify a character set using the CHARACTERSET parameter, then the default
character set for all data files is the session character set defined by the NLS_LANG
parameter. However, you can chose to change the character set used in input data
files by specifying the CHARACTERSET parameter.

If the input data file character set is different from the data file character set and the
database character set or the database national character set, then SQL*Loader can
automatically convert the data file character set.

When you require data character set conversion, the target character set should be a
superset of the source data file character set. Otherwise, characters that have no
equivalent in the target character set are converted to replacement characters, often a
default character such as a question mark (?). This conversion to replacement
characters causes loss of data.

You can specify sizes of the database character types CHAR and VARCHAR2, either in
bytes (byte-length semantics), or in characters (character-length semantics). If they
are specified in bytes, and data character set conversion is required, then the
converted values can require more bytes than the source values if the target character
set uses more bytes than the source character set for any character that is converted.
This conversion results in the following error message being reported if the larger
target value exceeds the size of the database column:

ORA-01401: inserted value too large for column

You can avoid this problem by specifying the database column size in characters, and
also by using character sizes in the control file to describe the data. Another way to
avoid this problem is to ensure that the maximum column size is large enough, in
bytes, to hold the converted value.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

• Oracle Database Globalization Support Guide

9.15.5.2 Considerations When Loading Data into VARRAYs or Primary-Key-
Based REFs

This section describes the considerations that you should take when loading data into
VARRAYs or into a primary-key-based REFs.

If you use SQL*Loader conventional path or the Oracle Call Interface (OCI) to load
data into VARRAYs or into primary-key-based REFs, and the data being loaded is in a
different character set than the database character set, then problems such as the
following might occur:

• Rows might be rejected because a field is too large for the database column, but
in reality the field is not too large.

• A load might be abnormally terminated without any rows being loaded, when only
the field that really was too large should have been rejected.

• Rows might be reported as loaded correctly, but the primary-key-based REF
columns are returned as blank when they are selected with SQL*Plus.

Chapter 9
Handling Different Character Encoding Schemes

9-26

To avoid these problems, set the client character set (using the NLS_LANG environment
variable) to the database character set before you load the data.

9.15.5.3 CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the input
data file.

The default character set for all data files, if the CHARACTERSET parameter is not
specified, is the session character set defined by the NLS_LANG parameter. Only
character data (fields in the SQL*Loader data types CHAR, VARCHAR, VARCHARC,
numeric EXTERNAL, and the datetime and interval data types) is affected by the
character set of the data file.

The CHARACTERSET syntax is as follows:

CHARACTERSET char_set_name

The char_set_name variable specifies the character set name. Normally, the specified
name must be the name of an Oracle-supported character set.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16.
AL16UTF16, which is the supported Oracle character set name for UTF-16 encoded
data, is only for UTF-16 data that is in big-endian byte order. However, because you
are allowed to set up data using the byte order of the system where you create the
data file, the data in the data file can be either big-endian or little-endian. Therefore, a
different character set name (UTF16) is used. The character set name AL16UTF16 is
also supported. But if you specify AL16UTF16 for a data file that has little-endian byte
order, then SQL*Loader issues a warning message and processes the data file as
little-endian.

The CHARACTERSET parameter can be specified for primary data files and also for
LOBFILEs and SDFs. All primary data files are assumed to be in the same character
set. A CHARACTERSET parameter specified before the INFILE parameter applies to the
entire list of primary data files. If the CHARACTERSET parameter is specified for primary
data files, then the specified value will also be used as the default for LOBFILEs and
SDFs. This default setting can be overridden by specifying the CHARACTERSET
parameter with the LOBFILE or SDF specification.

The character set specified with the CHARACTERSET parameter does not apply to data
specified with the INFILE clause in the control file. The control file is always processed
using the character set specified for your session by the NLS_LANG parameter.
Therefore, to load data in a character set other than the one specified for your session
by the NLS_LANG parameter, you must place the data in a separate data file.

Chapter 9
Handling Different Character Encoding Schemes

9-27

See Also:

• Byte Ordering

• Oracle Database Globalization Support Guide for more information about
the names of the supported character sets

• Control File Character Set

• Case study 11, Loading Data in the Unicode Character Set, for an
example of loading a data file that contains little-endian UTF-16 encoded
data. (See SQL*Loader Case Studies for information on how to access
case studies.)

9.15.5.4 Control File Character Set
The SQL*Loader control file itself is assumed to be in the character set specified for
your session by the NLS_LANG parameter.

If the control file character set is different from the data file character set, then keep
the following issue in mind. Delimiters and comparison clause values specified in the
SQL*Loader control file as character strings are converted from the control file
character set to the data file character set before any comparisons are made. To
ensure that the specifications are correct, you may prefer to specify hexadecimal
strings, rather than character string values.

If hexadecimal strings are used with a data file in the UTF-16 Unicode encoding, then
the byte order is different on a big-endian versus a little-endian system. For example,
"," (comma) in UTF-16 on a big-endian system is X'002c'. On a little-endian system it is
X'2c00'. SQL*Loader requires that you always specify hexadecimal strings in big-
endian format. If necessary, SQL*Loader swaps the bytes before making
comparisons. This allows the same syntax to be used in the control file on both a big-
endian and a little-endian system.

Record terminators for data files that are in stream format in the UTF-16 Unicode
encoding default to "\n" in UTF-16 (that is, 0x000A on a big-endian system and
0x0A00 on a little-endian system). You can override these default settings by using the
"STR 'char_str'" or the "STR x'hex_str'" specification on the INFILE line. For
example, you could use either of the following to specify that 'ab' is to be used as the
record terminator, instead of '\n'.

INFILE myfile.dat "STR 'ab'"

INFILE myfile.dat "STR x'00410042'"

Any data included after the BEGINDATA statement is also assumed to be in the
character set specified for your session by the NLS_LANG parameter.

For the SQL*Loader data types (CHAR, VARCHAR, VARCHARC, DATE, and EXTERNAL
numerics), SQL*Loader supports lengths of character fields that are specified in either
bytes (byte-length semantics) or characters (character-length semantics). For
example, the specification CHAR(10) in the control file can mean 10 bytes or 10
characters. These are equivalent if the data file uses a single-byte character set.
However, they are often different if the data file uses a multibyte character set.

Chapter 9
Handling Different Character Encoding Schemes

9-28

To avoid insertion errors caused by expansion of character strings during character set
conversion, use character-length semantics in both the data file and the target
database columns.

9.15.5.5 Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the UTF16
character set (which uses character-length semantics by default).

To override the default you can specify CHAR or CHARACTER, as shown in the following
syntax:

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER

The LENGTH parameter is placed after the CHARACTERSET parameter in the SQL*Loader
control file. The LENGTH parameter applies to the syntax specification for primary data
files and also to LOBFILEs and secondary data files (SDFs). A LENGTH specification
before the INFILE parameters applies to the entire list of primary data files. The LENGTH
specification specified for the primary data file is used as the default for LOBFILEs and
SDFs. You can override that default by specifying LENGTH with the LOBFILE or SDF
specification. Unlike the CHARACTERSET parameter, the LENGTH parameter can also
apply to data contained within the control file itself (that is, INFILE * syntax).

You can specify CHARACTER instead of CHAR for the LENGTH parameter.

If character-length semantics are being used for a SQL*Loader data file, then the
following SQL*Loader data types will use character-length semantics:

• CHAR

• VARCHAR

• VARCHARC

• DATE

• EXTERNAL numerics (INTEGER, FLOAT, DECIMAL, and ZONED)

For the VARCHAR data type, the length subfield is still a binary SMALLINT length subfield,
but its value indicates the length of the character string in characters.

The following data types use byte-length semantics even if character-length semantics
are being used for the data file, because the data is binary, or is in a special binary-
encoded form in the case of ZONED and DECIMAL:

• INTEGER

• SMALLINT

• FLOAT

• DOUBLE

• BYTEINT

Chapter 9
Handling Different Character Encoding Schemes

9-29

• ZONED

• DECIMAL

• RAW

• VARRAW

• VARRAWC

• GRAPHIC

• GRAPHIC EXTERNAL

• VARGRAPHIC

The start and end arguments to the POSITION parameter are interpreted in bytes, even
if character-length semantics are in use in a data file. This is necessary to handle data
files that have a mix of data of different data types, some of which use character-
length semantics, and some of which use byte-length semantics. It is also needed to
handle position with the VARCHAR data type, which has a SMALLINT length field and then
the character data. The SMALLINT length field takes up a certain number of bytes
depending on the system (usually 2 bytes), but its value indicates the length of the
character string in characters.

Character-length semantics in the data file can be used independent of whether
character-length semantics are used for the database columns. Therefore, the data file
and the database columns can use either the same or different length semantics.

9.15.6 Shift-sensitive Character Data
In general, loading shift-sensitive character data can be much slower than loading
simple ASCII or EBCDIC data.

The fastest way to load shift-sensitive character data is to use fixed-position fields
without delimiters. To improve performance, remember the following points:

• The field data must have an equal number of shift-out/shift-in bytes.

• The field must start and end in single-byte mode.

• It is acceptable for the first byte to be shift-out and the last byte to be shift-in.

• The first and last characters cannot be multibyte.

• If blanks are not preserved and multibyte-blank-checking is required, then a slower
path is used. This can happen when the shift-in byte is the last byte of a field after
single-byte blank stripping is performed.

9.16 Interrupted SQL*Loader Loads
Learn about common scenarios in which SQL*Loader loads are interrupted or
discontinued, and what you can do to correct these issues.

• Understanding Causes of Interrupted SQL*Loader Loads
A load can be interrupted due to space errors, or other errors related to loading
data into the target Oracle Database.

• Discontinued Conventional Path Loads
In conventional path loads, if only part of the data is loaded before the data is
discontinued, then only data processed up to the time of the last commit is loaded.

Chapter 9
Interrupted SQL*Loader Loads

9-30

• Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the
reason the load was discontinued.

• Status of Tables and Indexes After an Interrupted Load
When a load is discontinued, any data already loaded remains in the tables, and
the tables are left in a valid state.

• Using the Log File to Determine Load Status
The SQL*Loader log file tells you the state of the tables and indexes and the
number of logical records already read from the input data file.

• Continuing Single-Table Loads
To continue a discontinued SQL*Loader load, you can use the SKIP parameter.

9.16.1 Understanding Causes of Interrupted SQL*Loader Loads
A load can be interrupted due to space errors, or other errors related to loading data
into the target Oracle Database.

Space errors are a primary reason for database load errors. In space errors,
SQL*Loader runs out of space for data rows or index entries. A load also can be
discontinued because the maximum number of errors was exceeded, an unexpected
error was returned to SQL*Loader from the server, a record was too long in the data
file, or a Ctrl+C was executed.

The behavior of SQL*Loader when a load is discontinued varies depending on
whether it is a conventional path load or a direct path load, and on the reason the load
was interrupted. Additionally, when an interrupted load is continued, the use and value
of the SKIP parameter can vary depending on the particular case.

Related Topics

• SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical
records from the beginning of the file that should not be loaded.

9.16.2 Discontinued Conventional Path Loads
In conventional path loads, if only part of the data is loaded before the data is
discontinued, then only data processed up to the time of the last commit is loaded.

In a conventional path load, data is committed after all data in the bind array is loaded
into all tables.

If the load is discontinued, then only the rows that were processed up to the time of the
last commit operation are loaded. There is no partial commit of data.

9.16.3 Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the
reason the load was discontinued.

These sections describe the reasons why a load was discontinued:

• Load Discontinued Because of Space Errors
If a load is discontinued because of space errors, then the behavior of
SQL*Loader depends on whether you are loading data into multiple subpartitions.

Chapter 9
Interrupted SQL*Loader Loads

9-31

• Load Discontinued Because Maximum Number of Errors Exceeded
If the maximum number of errors is exceeded, then SQL*Loader stops loading
records into any table and the work done to that point is committed.

• Load Discontinued Because of Fatal Errors
If a fatal error is encountered, then the load is stopped and no data is saved
unless ROWS was specified at the beginning of the load.

• Load Discontinued Because a Ctrl+C Was Issued
If SQL*Loader is in the middle of saving data when a Ctrl+C is issued, then it
continues to do the save and then stops the load after the save completes.

9.16.3.1 Load Discontinued Because of Space Errors
If a load is discontinued because of space errors, then the behavior of SQL*Loader
depends on whether you are loading data into multiple subpartitions.

• Space errors when loading data into multiple subpartitions (that is, loading
into a partitioned table, a composite partitioned table, or one partition of a
composite partitioned table):

If space errors occur when loading into multiple subpartitions, then the load is
discontinued and no data is saved unless ROWS has been specified (in which case,
all data that was previously committed will be saved). The reason for this behavior
is that it is possible rows might be loaded out of order. This is because each row is
assigned (not necessarily in order) to a partition and each partition is loaded
separately. If the load discontinues before all rows assigned to partitions are
loaded, then the row for record "n" may have been loaded, but not the row for
record "n-1". Therefore, the load cannot be continued by simply using SKIP=N.

• Space errors when loading data into an unpartitioned table, one partition of
a partitioned table, or one subpartition of a composite partitioned table:

If there is one INTO TABLE statement in the control file, then SQL*Loader commits
as many rows as were loaded before the error occurred.

If there are multiple INTO TABLE statements in the control file, then SQL*Loader
loads data already read from the data file into other tables and then commits the
data.

In either case, this behavior is independent of whether the ROWS parameter was
specified. When you continue the load, you can use the SKIP parameter to skip
rows that have already been loaded. In the case of multiple INTO TABLE
statements, a different number of rows could have been loaded into each table, so
to continue the load you would need to specify a different value for the SKIP
parameter for every table. SQL*Loader only reports the value for the SKIP
parameter if it is the same for all tables.

9.16.3.2 Load Discontinued Because Maximum Number of Errors Exceeded
If the maximum number of errors is exceeded, then SQL*Loader stops loading records
into any table and the work done to that point is committed.

This means that when you continue the load, the value you specify for the SKIP
parameter may be different for different tables. SQL*Loader reports the value for the
SKIP parameter only if it is the same for all tables.

Chapter 9
Interrupted SQL*Loader Loads

9-32

9.16.3.3 Load Discontinued Because of Fatal Errors
If a fatal error is encountered, then the load is stopped and no data is saved unless
ROWS was specified at the beginning of the load.

In that case, all data that was previously committed is saved. SQL*Loader reports the
value for the SKIP parameter only if it is the same for all tables.

9.16.3.4 Load Discontinued Because a Ctrl+C Was Issued
If SQL*Loader is in the middle of saving data when a Ctrl+C is issued, then it
continues to do the save and then stops the load after the save completes.

Otherwise, SQL*Loader stops the load without committing any work that was not
committed already. This means that the value of the SKIP parameter will be the same
for all tables.

9.16.4 Status of Tables and Indexes After an Interrupted Load
When a load is discontinued, any data already loaded remains in the tables, and the
tables are left in a valid state.

If the conventional path is used, then all indexes are left in a valid state.

If the direct path load method is used, then any indexes on the table are left in an
unusable state. You can either rebuild or re-create the indexes before continuing, or
after the load is restarted and completes.

Other indexes are valid if no other errors occurred. See Indexes Left in an Unusable
State for other reasons why an index might be left in an unusable state.

9.16.5 Using the Log File to Determine Load Status
The SQL*Loader log file tells you the state of the tables and indexes and the number
of logical records already read from the input data file.

Use this information to resume the load where it left off.

9.16.6 Continuing Single-Table Loads
To continue a discontinued SQL*Loader load, you can use the SKIP parameter.

When SQL*Loader must discontinue a direct path or conventional path load before it is
finished, some rows probably already are committed, or marked with savepoints.

To continue the discontinued load, use the SKIP parameter to specify the number of
logical records that have already been processed by the previous load. At the time the
load is discontinued, the value for SKIP is written to the log file in a message similar to
the following:

Specify SKIP=1001 when continuing the load.

This message specifying the value of the SKIP parameter is preceded by a message
indicating why the load was discontinued.

Chapter 9
Interrupted SQL*Loader Loads

9-33

Note that for multiple-table loads, the value of the SKIP parameter is displayed only if it
is the same for all tables.

Related Topics

• SKIP
The SKIP SQL*Loader command-line parameter specifies the number of logical
records from the beginning of the file that should not be loaded.

9.17 Assembling Logical Records from Physical Records
This section describes assembling logical records from physical records.

To combine multiple physical records into one logical record, you can use one of the
following clauses, depending on your data:

• CONCATENATE

• CONTINUEIF

• Using CONCATENATE to Assemble Logical Records
Use CONCATENATE when you want SQL*Loader to always combine the same
number of physical records to form one logical record.

• Using CONTINUEIF to Assemble Logical Records
Use CONTINUEIF if the number of physical records to be combined varies.

9.17.1 Using CONCATENATE to Assemble Logical Records
Use CONCATENATE when you want SQL*Loader to always combine the same number of
physical records to form one logical record.

In the following example, integer specifies the number of physical records to
combine.

CONCATENATE integer

The integer value specified for CONCATENATE determines the number of physical
record structures that SQL*Loader allocates for each row in the column array. In direct
path loads, the default value for COLUMNARRAYROWS is large, so if you also specify a
large value for CONCATENATE, then excessive memory allocation can occur. If this
happens, you can improve performance by reducing the value of the COLUMNARRAYROWS
parameter to lower the number of rows in a column array.

See Also:

• COLUMNARRAYROWS

• Specifying the Number of Column Array Rows and Size of Stream
Buffers

Chapter 9
Assembling Logical Records from Physical Records

9-34

9.17.2 Using CONTINUEIF to Assemble Logical Records
Use CONTINUEIF if the number of physical records to be combined varies.

The CONTINUEIF clause is followed by a condition that is evaluated for each physical
record, as it is read. For example, two records might be combined if a pound sign (#)
were in byte position 80 of the first record. If any other character were there, then the
second record would not be added to the first.

The full syntax for CONTINUEIF adds even more flexibility:

CONTINUEIF

THIS

NEXT PRESERVE (

pos_spec

LAST

PRESERVE (operator
str

X’hex_str’

)

Table 9-2 describes the parameters for the CONTINUEIF clause.

Table 9-2 Parameters for the CONTINUEIF Clause

Parameter Description

THIS If the condition is true in the current record, then the next physical
record is read and concatenated to the current physical record,
continuing until the condition is false. If the condition is false, then
the current physical record becomes the last physical record of the
current logical record. THIS is the default.

NEXT If the condition is true in the next record, then the current physical
record is concatenated to the current logical record, continuing until
the condition is false.

operator The supported operators are equal (=) and not equal (!= or <>).

For the equal operator, the field and comparison string must match
exactly for the condition to be true. For the not equal operator, they
can differ in any character.

LAST This test is similar to THIS, but the test is always against the last
nonblank character. If the last nonblank character in the current
physical record meets the test, then the next physical record is read
and concatenated to the current physical record, continuing until the
condition is false. If the condition is false in the current record, then
the current physical record is the last physical record of the current
logical record.

LAST allows only a single character-continuation field (as opposed
to THIS and NEXT, which allow multiple character-continuation
fields).

Chapter 9
Assembling Logical Records from Physical Records

9-35

Table 9-2 (Cont.) Parameters for the CONTINUEIF Clause

Parameter Description

pos_spec Specifies the starting and ending column numbers in the physical
record.

Column numbers start with 1. Either a hyphen or a colon is
acceptable (start-end or start:end).

If you omit end, then the length of the continuation field is the length
of the byte string or character string. If you use end, and the length
of the resulting continuation field is not the same as that of the byte
string or the character string, then the shorter one is padded.
Character strings are padded with blanks, hexadecimal strings with
zeros.

str A string of characters to be compared to the continuation field
defined by start and end, according to the operator. The string must
be enclosed in double or single quotation marks. The comparison is
made character by character, blank padding on the right if
necessary.

X'hex-str' A string of bytes in hexadecimal format used in the same way as
str.X'1FB033' would represent the three bytes with values 1F,
B0, and 33 (hexadecimal).

PRESERVE Includes 'char_string' or X'hex_string' in the logical record.
The default is to exclude them.

The positions in the CONTINUEIF clause refer to positions in each physical record. This
is the only time you refer to positions in physical records. All other references are to
logical records.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is not specified,
then the continuation field is removed from all physical records when the logical record
is assembled. That is, data values are allowed to span the records with no extra
characters (continuation characters) in the middle. For example, if CONTINUEIF
THIS(3:5)='***' is specified, then positions 3 through 5 are removed from all records.
This means that the continuation characters are removed if they are in positions 3
through 5 of the record. It also means that the characters in positions 3 through 5 are
removed from the record even if the continuation characters are not in positions 3
through 5.

For CONTINUEIF THIS and CONTINUEIF LAST, if the PRESERVE parameter is used, then
the continuation field is kept in all physical records when the logical record is
assembled.

CONTINUEIF LAST differs from CONTINUEIF THIS and CONTINUEIF NEXT. For CONTINUEIF
LAST, where the positions of the continuation field vary from record to record, the
continuation field is never removed, even if PRESERVE is not specified.

Example 9-3 through Example 9-6 show the use of CONTINUEIF THIS and CONTINUEIF
NEXT, with and without the PRESERVE parameter.

Example 9-3 CONTINUEIF THIS Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a
space:

Chapter 9
Assembling Logical Records from Physical Records

9-36

 %%aaaaaaaa....
 %%bbbbbbbb....
 ..cccccccc....
 %%dddddddddd..
 %%eeeeeeeeee..
 ..ffffffffff..

In this example, the CONTINUEIF THIS clause does not use the PRESERVE parameter:

CONTINUEIF THIS (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Note that columns 1 and 2 (for example, %% in physical record 1) are removed from
the physical records when the logical records are assembled.

Example 9-4 CONTINUEIF THIS with the PRESERVE Parameter

Assume that you have the same physical records as in Example 9-3.

In this example, the CONTINUEIF THIS clause uses the PRESERVE parameter:

CONTINUEIF THIS PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 %%aaaaaaaa....%%bbbbbbbb......cccccccc....
 %%dddddddddd..%%eeeeeeeeee....ffffffffff..

Note that columns 1 and 2 are not removed from the physical records when the logical
records are assembled.

Example 9-5 CONTINUEIF NEXT Without the PRESERVE Parameter

Assume that you have physical records 14 bytes long and that a period represents a
space:

 ..aaaaaaaa....
 %%bbbbbbbb....
 %%cccccccc....
 ..dddddddddd..
 %%eeeeeeeeee..
 %%ffffffffff..

In this example, the CONTINUEIF NEXT clause does not use the PRESERVE parameter:

CONTINUEIF NEXT (1:2) = '%%'

Therefore, the logical records are assembled as follows (the same results as for
Example 9-3).

 aaaaaaaa....bbbbbbbb....cccccccc....
 dddddddddd..eeeeeeeeee..ffffffffff..

Example 9-6 CONTINUEIF NEXT with the PRESERVE Parameter

Assume that you have the same physical records as in Example 9-5.

In this example, the CONTINUEIF NEXT clause uses the PRESERVE parameter:

Chapter 9
Assembling Logical Records from Physical Records

9-37

CONTINUEIF NEXT PRESERVE (1:2) = '%%'

Therefore, the logical records are assembled as follows:

 ..aaaaaaaa....%%bbbbbbbb....%%cccccccc....
 ..dddddddddd..%%eeeeeeeeee..%%ffffffffff..

See Also:

Case study 4, Loading Combined Physical Records, for an example of the
CONTINUEIF clause. (See SQL*Loader Case Studies for information on how
to access case studies.)

9.18 Loading Logical Records into Tables
Learn about the different methods and available to you to load logical records into
tables with SQL*Loader.

You can use SQL*Loader options to choose from a variety of methods to control:

• Which tables you want to load

• Which records you want to load into tables

• What are the default data delimiters for records

• What options you can use to handle short records with missing data

• Specifying Table Names
The INTO TABLE clause of the LOAD DATA statement enables you to identify tables,
fields, and data types.

• INTO TABLE Clause
Among its many functions, the SQL*Loader INTO TABLE clause enables you to
specify the table into which you load data.

• Table-Specific Loading Method
When you are loading a table, you can use the INTO TABLE clause to specify a
table-specific loading method (INSERT, APPEND, REPLACE, or TRUNCATE) that applies
only to that table.

• Loading Data into Empty Tables with INSERT
To load data into empty tables, use the INSERT option.

• Loading Data into Nonempty Tables
When you use SQL*Loader to load data into nonempty tables, you can append to,
replace, or truncate the existing table.

• Table-Specific OPTIONS Parameter
The OPTIONS parameter can be specified for individual tables in a parallel load. (It
is valid only for a parallel load.)

• Loading Records Based on a Condition
You can choose to load or discard a logical record by using the WHEN clause to test
a condition in the record.

Chapter 9
Loading Logical Records into Tables

9-38

• Using the WHEN Clause with LOBFILEs and SDFs
This section describes using the WHEN clause with LOBFILEs and SDFs.

• Specifying Default Data Delimiters
If all data fields are terminated similarly in the data file, then you can use the
FIELDS clause to indicate the default termination and enclosure delimiters.

• Handling Records with Missing Specified Fields
When records are loaded that are missing fields specified in the SQL*Loader
control file, SQL*Loader can either specify those fields as null, or report an error.

9.18.1 Specifying Table Names
The INTO TABLE clause of the LOAD DATA statement enables you to identify tables,
fields, and data types.

It defines the relationship between records in the data file and tables in the database.
The specification of fields and data types is described in later sections.

9.18.2 INTO TABLE Clause
Among its many functions, the SQL*Loader INTO TABLE clause enables you to specify
the table into which you load data.

Purpose

Specifies the table into which you load data, and controls how that data is loaded.

To load multiple tables, you include one INTO TABLE clause for each table you want to
load.

To begin an INTO TABLE clause, use the keywords INTO TABLE followed by the name
of the Oracle Database table that you want to receive the data.

Syntax

The syntax is as follows:

Usage Notes

If data already exists in the table, then SQL*Loader appends the new rows to it. If data
does not already exist, then the new rows are simply loaded.

To use the APPEND option, you must have the SELECT privilege.

INSERT is the default method for SQL*Loader to load data into tables. To use this
method, the table must be empty before loading. If you run SQL*Loader to load a table
for which you have the INSERT privilege, but for which you do not have the SELECT

Chapter 9
Loading Logical Records into Tables

9-39

privilege, then INSERT mode fails with the error ORA-1031: Insufficient Privileges
While Connecting As SYSDBA. However, using APPEND mode will succeed..

Restrictions

The table that you specify as the table into which you want to load data must already
exist. If the table name is the same as any SQL or SQL*Loader reserved keyword, or if
it contains any special characters, or if it is case sensitive, then you should enclose the
table name in double quotation marks. For example:

INTO TABLE scott."CONSTANT"
INTO TABLE scott."Constant"
INTO TABLE scott."-CONSTANT"

The user must have INSERT privileges for the table being loaded. If the table is not in
the user's schema, then the user must either use a synonym to reference the table, or
include the schema name as part of the table name (for example, scott.emp refers to
the table emp in the scott schema).

Note:

SQL*Loader considers the default schema to be whatever schema is current
after your connection to the database is complete. This means that if there
are logon triggers present that are run during connection to a database, then
the default schema to which you are connected is not necessarily the
schema that you specified in the connect string.

If you have a logon trigger that changes your current schema to a different
one when you connect to a certain database, then SQL*Loader uses that
new schema as the default.

9.18.3 Table-Specific Loading Method
When you are loading a table, you can use the INTO TABLE clause to specify a table-
specific loading method (INSERT, APPEND, REPLACE, or TRUNCATE) that applies only to
that table.

That method overrides the global table-loading method. The global table-loading
method is INSERT, by default, unless a different method was specified before any INTO
TABLE clauses. The following sections discuss using these options to load data into
empty and nonempty tables.

9.18.4 Loading Data into Empty Tables with INSERT
To load data into empty tables, use the INSERT option.

If the tables you are loading into are empty, then use the INSERT option. The INSERT
option is the default method for SQL*Loader. To use INSERT, the table into which you
want to load data must be empty before you load it. If the table into which you attempt
to load data contains rows, then SQL*Loader terminates with an error. Case study 1,
Loading Variable-Length Data, provides an example. (See SQL*Loader Case Studies
for information on how to access case studies.)

Chapter 9
Loading Logical Records into Tables

9-40

SQL*Loader checks the table into which you insert data to ensure that it is empty. For
this reason, the user with which you run INSERT must be granted both the SELECT and
the INSERT privilege.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

9.18.5 Loading Data into Nonempty Tables
When you use SQL*Loader to load data into nonempty tables, you can append to,
replace, or truncate the existing table.

If the tables you are loading into already contain data, then you have three options:

• APPEND

• REPLACE

• TRUNCATE

Note:

When you specify REPLACE or TRUNCATE, the entire table is replaced, not
just individual rows. After the rows are successfully deleted, a COMMIT
statement is issued. You cannot recover the data that was in the table
before the load, unless it was saved with Export, or a comparable utility.

• APPEND

• REPLACE

• Updating Existing Rows

• TRUNCATE

9.18.5.1 APPEND
If data already exists in the table, then SQL*Loader appends the new rows to it. If data
does not already exist, then the new rows are simply loaded. You must have SELECT
privilege to use the APPEND option. Case study 3, Loading a Delimited Free-Format
File, provides an example. (See SQL*Loader Case Studies for information on how to
access case studies.)

9.18.5.2 REPLACE
The REPLACE option executes a SQL DELETE FROM TABLE statement. All rows in the
table are deleted and the new data is loaded. The table must be in your schema, or
you must have DELETE privilege on the table. Case study 4, Loading Combined
Physical Records, provides an example. (See SQL*Loader Case Studies for
information on how to access case studies.)

Chapter 9
Loading Logical Records into Tables

9-41

The row deletes cause any delete triggers defined on the table to fire. If DELETE
CASCADE has been specified for the table, then the cascaded deletes are carried out.
For more information about cascaded deletes, see Oracle Database Concepts.

9.18.5.3 Updating Existing Rows
The REPLACE method is a table replacement, not a replacement of individual rows.
SQL*Loader does not update existing records, even if they have null columns. To
update existing rows, use the following procedure:

1. Load your data into a work table.

2. Use the SQL UPDATE statement with correlated subqueries.

3. Drop the work table.

9.18.5.4 TRUNCATE
The TRUNCATE option executes a SQL TRUNCATE TABLE table_name REUSE STORAGE
statement, which means that the table's extents will be reused. The TRUNCATE option
quickly and efficiently deletes all rows from a table or cluster, to achieve the best
possible performance. For the TRUNCATE statement to operate, the table's referential
integrity constraints must first be disabled. If they have not been disabled, then
SQL*Loader returns an error.

Once the integrity constraints have been disabled, DELETE CASCADE is no longer
defined for the table. If the DELETE CASCADE functionality is needed, then the contents
of the table must be manually deleted before the load begins.

The table must be in your schema, or you must have the DROP ANY TABLE privilege.

9.18.6 Table-Specific OPTIONS Parameter
The OPTIONS parameter can be specified for individual tables in a parallel load. (It is
valid only for a parallel load.)

The syntax for the OPTIONS parameter is as follows:

OPTIONS (FILE=database_filename)

See Also:

Parameters for Parallel Direct Path Loads

9.18.7 Loading Records Based on a Condition
You can choose to load or discard a logical record by using the WHEN clause to test a
condition in the record.

Chapter 9
Loading Logical Records into Tables

9-42

The WHEN clause appears after the table name and is followed by one or more field
conditions. The syntax for field_condition is as follows:

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

For example, the following clause indicates that any record with the value "q" in the
fifth column position should be loaded:

WHEN (5) = 'q'

A WHEN clause can contain several comparisons, provided each is preceded by AND.
Parentheses are optional, but should be used for clarity with multiple comparisons
joined by AND. For example:

WHEN (deptno = '10') AND (job = 'SALES')

See Also:

• Using the WHEN_ NULLIF_ and DEFAULTIF Clauses for information
about how SQL*Loader evaluates WHEN clauses, as opposed to NULLIF
and DEFAULTIF clauses

• Case study 5, Loading Data into Multiple Tables, for an example of using
the WHEN clause (see "SQL*Loader Case Studies" for information on how
to access case studies)

9.18.8 Using the WHEN Clause with LOBFILEs and SDFs
This section describes using the WHEN clause with LOBFILEs and SDFs.

If a record with a LOBFILE or SDF is discarded, then SQL*Loader skips the
corresponding data in that LOBFILE or SDF.

9.18.9 Specifying Default Data Delimiters
If all data fields are terminated similarly in the data file, then you can use the FIELDS
clause to indicate the default termination and enclosure delimiters.

• fields_spec
Use fields_spec to specify fields for default termination and enclosure delimiters.

• termination_spec
Use termination_spec to specify default termination and enclosure delimiters.

• enclosure_spec
Use enclosure_spec to specify default enclosure delimiters.

Chapter 9
Loading Logical Records into Tables

9-43

9.18.9.1 fields_spec
Use fields_spec to specify fields for default termination and enclosure delimiters.

fields_spec Syntax

FIELDS

csv_clause
enclosure_spec

termination_spec

OPTIONALLY

enclosure_spec

Related Topics

• Specifying CSV Format Files
To direct SQL*Loader to access the data files as comma-separated-values format
files, use the CSV clause.

9.18.9.2 termination_spec
Use termination_spec to specify default termination and enclosure delimiters.

termination_spec Syntax

TERMINATED

BY

WHITESPACE

X’hexstr’

’string’

EOF

Note:

Terminator strings can contain one or more characters. Also, TERMINATED BY
EOF applies only to loading LOBs from a LOBFILE.

9.18.9.3 enclosure_spec
Use enclosure_spec to specify default enclosure delimiters.

enclosure_spec Syntax

ENCLOSED

BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

Chapter 9
Loading Logical Records into Tables

9-44

Note:

Enclosure strings can contain one or more characters.

You can override the delimiter for any given column by specifying it after the column
name. You can see an example of this usage in Case study 3, Loading a Delimited
Free-Format File. See the topic See "SQL*Loader Case Studies" for information about
how to load and use case studies.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

• Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

9.18.10 Handling Records with Missing Specified Fields
When records are loaded that are missing fields specified in the SQL*Loader control
file, SQL*Loader can either specify those fields as null, or report an error.

• SQL*Loader Management of Short Records with Missing Data
Learn how SQL*Loader handles cases where the control file defines more fields
for a record than are present in the record.

• TRAILING NULLCOLS Clause
You can use the TRAILING NULLCOLS clause to configure SQL*Loader to treat
missing columns as null columns.

9.18.10.1 SQL*Loader Management of Short Records with Missing Data
Learn how SQL*Loader handles cases where the control file defines more fields for a
record than are present in the record.

When the control file definition specifies more fields for a record than are present in
the record, SQL*Loader must determine if the remaining (specified) columns should be
considered null, or if it should generate an error.

If the control file definition explicitly states that a field's starting position is beyond the
end of the logical record, then SQL*Loader always defines the field as null. If a field is
defined with a relative position (such as dname and loc in the following example), and
the record ends before the field is found, then SQL*Loader can either treat the field as
null, or generate an error. SQL*Loader uses the presence or absence of the TRAILING
NULLCOLS clause (shown in the following syntax diagram) to determine the course of
action.

Chapter 9
Loading Logical Records into Tables

9-45

OID_spec

SID_spec FIELDS

delim_spec

TRAILING

NULLCOLS

TREAT AS typename

9.18.10.2 TRAILING NULLCOLS Clause
You can use the TRAILING NULLCOLS clause to configure SQL*Loader to treat missing
columns as null columns.

The TRAILING NULLCOLS clause tells SQL*Loader to treat any relatively positioned
columns that are not present in the record as null columns.

For example, consider the following data:

10 Accounting

Assume that the preceding data is read with the following control file and the record
ends after dname:

INTO TABLE dept
 TRAILING NULLCOLS
(deptno CHAR TERMINATED BY " ",
 dname CHAR TERMINATED BY WHITESPACE,
 loc CHAR TERMINATED BY WHITESPACE
)

In this case, the remaining loc field is set to null. Without the TRAILING NULLCOLS
clause, an error would be generated due to missing data.

See Also:

Case study 7, Extracting Data from a Formatted Report, for an example of
using TRAILING NULLCOLS (see SQL*Loader Case Studies for information on
how to access case studies)

9.19 Index Options
To control how SQL*Loader creates index entries, you can set SORTED INDEXES and
SINGLEROW clauses.

• Understanding the SORTED INDEXES Parameter
To optimize performance with SQL*Loader direct path loads, consider using the
SORTED INDEX control file parameter.

Chapter 9
Index Options

9-46

• Understanding the SINGLEROW Parameter
When using SQL*Loader for direct path loads for small loads, or on systems with
limited memory, consider using the SINGLEROW control file parameter.

9.19.1 Understanding the SORTED INDEXES Parameter
To optimize performance with SQL*Loader direct path loads, consider using the
SORTED INDEX control file parameter.

The SORTED INDEX clause applies to direct path loads. It tells SQL*Loader that the
incoming data has already been sorted on the specified indexes. Specifying sorted
indexes enables SQL*Loader to optimize performance.

Related Topics

• SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

9.19.2 Understanding the SINGLEROW Parameter
When using SQL*Loader for direct path loads for small loads, or on systems with
limited memory, consider using the SINGLEROW control file parameter.

The SINGLEROW option is intended for use during a direct path load with APPEND on
systems with limited memory, or when loading a small number of records into a large
table. This option inserts each index entry directly into the index, one record at a time.

By default, SQL*Loader does not use SINGLEROW to append records to a table. Instead,
index entries are put into a separate, temporary storage area, and merged with the
original index at the end of the load. This method achieves better performance and
produces an optimal index, but it requires extra storage space. During the merge
operation, the original index, the new index, and the space for new entries all
simultaneously occupy storage space.

With the SINGLEROW option, storage space is not required for new index entries or for a
new index. It is possible that the index that results is not as optimal as a freshly sorted
one. However, this index takes less space to produce. It also takes more time to
produce, because additional UNDO information is generated for each index insert.
Oracle recommends that you consider using this option when either of the following
situations exists:

• Available storage is limited.

• The number of records that you want to load is small compared to the size of the
table. Oracle recommends this option when the number of records compared to
the size of the table is a ratio of 1:20 or less.

9.20 Benefits of Using Multiple INTO TABLE Clauses
Learn from examples how you can use multiple INTO TABLE clauses for specific
SQL*Loader use cases

• Understanding the SQL*Loader INTO TABLE Clause
Among other uses, the INTO TABLE control file parameter is useful for loading
multiple tables, loading data into more than one table, and extracting multiple
logical records.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-47

• Distinguishing Different Input Record Formats
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader INTO TABLE clause to distinguish between formats.

• Relative Positioning Based on the POSITION Parameter
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader POSITION parameter with the INTO TABLE clause to load the records
as delimited data.

• Distinguishing Different Input Row Object Subtypes
A single data file may contain records made up of row objects inherited from the
same base row object type.

• Loading Data into Multiple Tables
By using the POSITION parameter with multiple INTO TABLE clauses, data from a
single record can be loaded into multiple normalized tables.

• Summary of Using Multiple INTO TABLE Clauses
Multiple INTO TABLE clauses allow you to extract multiple logical records from a
single input record and recognize different record formats in the same file.

• Extracting Multiple Logical Records
When the data records are short, you can use SQL*Loader INTO TABLE claus to
store more than one data record in a single, physical record to use the storage
space efficiently.

9.20.1 Understanding the SQL*Loader INTO TABLE Clause
Among other uses, the INTO TABLE control file parameter is useful for loading multiple
tables, loading data into more than one table, and extracting multiple logical records.

Multiple INTO TABLE clauses enable you to:

• Load data into different tables

• Extract multiple logical records from a single input record

• Distinguish different input record formats

• Distinguish different input row object subtypes

In the first case, it is common for the INTO TABLE clauses to refer to the same table. To
learn about the different ways that you can use multiple INTO TABLE clauses, and how
to use the POSITION parameter, refer to the examples.

Note:

A key point when using multiple INTO TABLE clauses is that field scanning
continues from where it left off when a new INTO TABLE clause is processed.
Refer to the examples to understand some of the details about how you can
to make use of this behavior. Also learn how you can use alternative ways of
using fixed field locations, or the POSITION parameter.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-48

9.20.2 Distinguishing Different Input Record Formats
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader INTO TABLE clause to distinguish between formats.

Consider the following data, in which emp and dept records are intermixed:

1 50 Manufacturing — DEPT record
2 1119 Smith 50 — EMP record
2 1120 Snyder 50
1 60 Shipping
2 1121 Stevens 60

A record ID field distinguishes between the two formats. Department records have a 1
in the first column, while employee records have a 2. The following control file uses
exact positioning to load this data:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 deptno POSITION(3:4) INTEGER EXTERNAL,
 dname POSITION(8:21) CHAR)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 empno POSITION(3:6) INTEGER EXTERNAL,
 ename POSITION(8:17) CHAR,
 deptno POSITION(19:20) INTEGER EXTERNAL)

9.20.3 Relative Positioning Based on the POSITION Parameter
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader POSITION parameter with the INTO TABLE clause to load the records as
delimited data.

Again, consider data, in which emp and dept records are intermixed. In this case,
however, we can use the POSITION parameter to load the data into delimited records,
as shown in this control file example:

INTO TABLE dept
 WHEN recid = 1
 (recid FILLER INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
 dname CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1) INTEGER EXTERNAL TERMINATED BY ' ',
 empno INTEGER EXTERNAL TERMINATED BY ' '
 ename CHAR TERMINATED BY WHITESPACE,
 deptno INTEGER EXTERNAL TERMINATED BY ' ')

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-49

To load this data correctly, the POSITION parameter in the second INTO TABLE clause
is necessary. It causes field scanning to start over at column 1 when checking for data
that matches the second format. Without the POSITION parameter, SQL*Loader
would look for the recid field after dname.

9.20.4 Distinguishing Different Input Row Object Subtypes
A single data file may contain records made up of row objects inherited from the same
base row object type.

For example, consider the following simple object type and object table definitions, in
which a nonfinal base object type is defined along with two object subtypes that inherit
their row objects from the base type:

CREATE TYPE person_t AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3)) not final;

CREATE TYPE employee_t UNDER person_t
 (empid NUMBER(5),
 deptno NUMBER(4),
 dept VARCHAR2(30)) not final;

CREATE TYPE student_t UNDER person_t
 (stdid NUMBER(5),
 major VARCHAR2(20)) not final;

CREATE TABLE persons OF person_t;

The following input data file contains a mixture of these row objects subtypes. A type
ID field distinguishes between the three subtypes. person_t objects have a P in the
first column, employee_t objects have an E, and student_t objects have an S.

P,James,31,
P,Thomas,22,
E,Pat,38,93645,1122,Engineering,
P,Bill,19,
P,Scott,55,
S,Judy,45,27316,English,
S,Karen,34,80356,History,
E,Karen,61,90056,1323,Manufacturing,
S,Pat,29,98625,Spanish,
S,Cody,22,99743,Math,
P,Ted,43,
E,Judy,44,87616,1544,Accounting,
E,Bob,50,63421,1314,Shipping,
S,Bob,32,67420,Psychology,
E,Cody,33,25143,1002,Human Resources,

The following control file uses relative positioning based on the POSITION parameter to
load this data. Note the use of the TREAT AS clause with a specific object type name.
This informs SQL*Loader that all input row objects for the object table will conform to
the definition of the named object type.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-50

Note:

Multiple subtypes cannot be loaded with the same INTO TABLE statement.
Instead, you must use multiple INTO TABLE statements and have each one
load a different subtype.

INTO TABLE persons
REPLACE
WHEN typid = 'P' TREAT AS person_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'E' TREAT AS employee_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 empid CHAR,
 deptno CHAR,
 dept CHAR)

INTO TABLE persons
REPLACE
WHEN typid = 'S' TREAT AS student_t
FIELDS TERMINATED BY ","
 (typid FILLER POSITION(1) CHAR,
 name CHAR,
 age CHAR,
 stdid CHAR,
 major CHAR)

See Also:

Loading Column Objects for more information about loading object types

9.20.5 Loading Data into Multiple Tables
By using the POSITION parameter with multiple INTO TABLE clauses, data from a single
record can be loaded into multiple normalized tables.

See case study 5, Loading Data into Multiple Tables, for an example. (See
SQL*Loader Case Studies for information about how to access case studies.).

9.20.6 Summary of Using Multiple INTO TABLE Clauses
Multiple INTO TABLE clauses allow you to extract multiple logical records from a single
input record and recognize different record formats in the same file.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-51

For delimited data, proper use of the POSITION parameter is essential for achieving the
expected results.

When the POSITION parameter is not used, multiple INTO TABLE clauses process
different parts of the same (delimited data) input record, allowing multiple tables to be
loaded from one record. When the POSITION parameter is used, multiple INTO TABLE
clauses can process the same record in different ways, allowing multiple formats to be
recognized in one input file.

9.20.7 Extracting Multiple Logical Records
When the data records are short, you can use SQL*Loader INTO TABLE claus to
store more than one data record in a single, physical record to use the storage space
efficiently.

• Example of Extracting Multiple Logical Records From a Physical Record
In this example, you create two logical records from a single physical record using
the SQL*Loader INTO TABLE clause in the control file.

• Example of Relative Positioning Based on Delimiters
In this example, you load the same record using relative positioning with the
SQL*Loader INTO TABLE clause in the control file.

9.20.7.1 Example of Extracting Multiple Logical Records From a Physical
Record

In this example, you create two logical records from a single physical record using the
SQL*Loader INTO TABLE clause in the control file.

Some data storage and transfer media have fixed-length physical records.

In this example, SQL*Loader treats a single physical record in the input file as two
logical records and uses two INTO TABLE clauses to load the data into the emp table.
For example, assume the data is as follows:

1119 Smith 1120 Yvonne
1121 Albert 1130 Thomas

The following control file extracts the logical records:

INTO TABLE emp
 (empno POSITION(1:4) INTEGER EXTERNAL,
 ename POSITION(6:15) CHAR)
INTO TABLE emp
 (empno POSITION(17:20) INTEGER EXTERNAL,
 ename POSITION(21:30) CHAR)

9.20.7.2 Example of Relative Positioning Based on Delimiters
In this example, you load the same record using relative positioning with the
SQL*Loader INTO TABLE clause in the control file.

Chapter 9
Benefits of Using Multiple INTO TABLE Clauses

9-52

The following control file uses relative positioning instead of fixed positioning. It
specifies that each field is delimited by a single blank (" ") or with an undetermined
number of blanks and tabs (WHITESPACE):

INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR TERMINATED BY WHITESPACE)
INTO TABLE emp
 (empno INTEGER EXTERNAL TERMINATED BY " ",
 ename CHAR) TERMINATED BY WHITESPACE)

The important point in this example is that the second empno field is found immediately
after the first ename, although it is in a separate INTO TABLE clause. Field scanning
does not start over from the beginning of the record for a new INTO TABLE clause.
Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION
parameter.

Related Topics

• Distinguishing Different Input Record Formats
If you have a variety of formats of data in a single data file, you can use the
SQL*Loader INTO TABLE clause to distinguish between formats.

• Loading Data into Multiple Tables
By using the POSITION parameter with multiple INTO TABLE clauses, data from a
single record can be loaded into multiple normalized tables.

9.21 Bind Arrays and Conventional Path Loads
With the SQL*Loader array-interface option, multiple table rows are read at one time,
and stored in a bind array.

• Differences Between Bind Arrays and Conventional Path Loads
With bind arrays, you can use SQL*Loader to load an entire array of records in
one operation.

• Size Requirements for Bind Arrays
When you use a bind array with SQL*Loader, the bind array must be large enough
to contain a single row.

• Performance Implications of Bind Arrays
Large bind arrays minimize the number of calls to the Oracle database and
maximize performance.

• Specifying Number of Rows Versus Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE
or the OPTIONS clause in the control file, you impose an upper limit on the bind
array.

• Setting Up SQL*Loader Bind Arrays
To set up bind arrays, you calculate the array size you need, determine the size of
the length indicator, and calculate the size of the field buffers.

Chapter 9
Bind Arrays and Conventional Path Loads

9-53

• Minimizing Memory Requirements for Bind Arrays
Pay particular attention to the default sizes allocated for VARCHAR, VARGRAPHIC, and
the delimited forms of CHAR, DATE, and numeric EXTERNAL fields.

• Calculating Bind Array Size for Multiple INTO TABLE Clauses
When calculating a bind array size for a control file that has multiple INTO TABLE
clauses, calculate as if the INTO TABLE clauses were not present.

9.21.1 Differences Between Bind Arrays and Conventional Path Loads
With bind arrays, you can use SQL*Loader to load an entire array of records in one
operation.

When you use bind arrays, SQL*Loader uses the SQL array-interface option to
transfer data to the database. When SQL*Loader sends the Oracle database an
INSERT command, the entire array is inserted at one time. After the rows in the bind
array are inserted, a COMMIT statement is issued.

The determination of bind array size pertains to SQL*Loader's conventional path
option. In general, it does not apply to the direct path load method, because a direct
path load uses the direct path API. However, the bind array can be used for special
cases of direct path load where data conversion is necessary. Refer to "Direct Path
Load Interface" for more information about how direct path loading operates.

Related Topics

• Direct Path Load Interface

9.21.2 Size Requirements for Bind Arrays
When you use a bind array with SQL*Loader, the bind array must be large enough to
contain a single row.

If the maximum row length exceeds the size of the bind array, as specified by the
BINDSIZE parameter, then SQL*Loader generates an error. Otherwise, the bind array
contains as many rows as can fit within it, up to the limit set by the value of the ROWS
parameter. (The maximum value for ROWS in a conventional path load is 65534.)

Although the entire bind array need not be in contiguous memory, the buffer for each
field in the bind array must occupy contiguous memory. If the operating system cannot
supply enough contiguous memory to store a field, then SQL*Loader generates an
error.

Related Topics

• BINDSIZE
The BINDSIZE command-line parameter for SQL*Loader specifies the maximum
size (in bytes) of the bind array.

• ROWS
For conventional path loads, the ROWS SQL*Loader command-line parameter
specifies the number of rows in the bind array.

9.21.3 Performance Implications of Bind Arrays
Large bind arrays minimize the number of calls to the Oracle database and maximize
performance.

Chapter 9
Bind Arrays and Conventional Path Loads

9-54

In general, you gain large improvements in performance with each increase in the bind
array size up to 100 rows. Increasing the bind array size to be greater than 100 rows
generally delivers more modest improvements in performance. The size (in bytes) of
100 rows is typically a good value to use.

In general, any reasonably large size permits SQL*Loader to operate effectively. It is
not usually necessary to perform the detailed calculations described in this section.
Read this section when you need maximum performance or an explanation of memory
usage.

9.21.4 Specifying Number of Rows Versus Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE or
the OPTIONS clause in the control file, you impose an upper limit on the bind array.

The bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the size in bytes required to load a
single row. If that size is too large to fit within the specified maximum, then the load
terminates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether that
value was specified with the command-line parameter ROWS or the OPTIONS clause in
the control file.

If that size fits within the bind array maximum, then the load continues - SQL*Loader
does not try to expand the number of rows to reach the maximum bind array size. If
the number of rows and the maximum bind array size are both specified, then
SQL*Loader always uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of rows,
then SQL*Loader uses a smaller number of rows that fits within the maximum.

9.21.5 Setting Up SQL*Loader Bind Arrays
To set up bind arrays, you calculate the array size you need, determine the size of the
length indicator, and calculate the size of the field buffers.

• Calculations to Determine Bind Array Size
The bind array's size is equivalent to the number of rows it contains times the
maximum length of each row.

• Determining the Size of the Length Indicator
When you set up a bind array, use the SQL*Loader control file to determine the
size of the length indicator.

• Calculating the Size of Field Buffers
Use these tables to determine the field size buffers for each SQL*Loader data
type, from fixed-length fields, nongraphic fields and graphic fields, through variable
length fields.

Chapter 9
Bind Arrays and Conventional Path Loads

9-55

9.21.5.1 Calculations to Determine Bind Array Size
The bind array's size is equivalent to the number of rows it contains times the
maximum length of each row.

To determine the size of a bind array, the maximum length of a row equals the sum of
the maximum field lengths, plus overhead.

Example 9-7 Determining Bind Array Size

bind array size =
 (number of rows) * (SUM(fixed field lengths)
 + SUM(maximum varying field lengths)
 + ((number of varying length fields)
 * (size of length indicator))
)

Example 9-8 Differences Between Fixed Length and Variable Fields

Many fields do not vary in size. These fixed-length fields are the same for each loaded
row. For these fields, the maximum length of the field is the field size, in bytes. There
is no overhead for these fields.

The fields that can vary in size from row to row are:

• CHAR

• DATE

• INTERVAL DAY TO SECOND

• INTERVAL DAY TO YEAR

• LONG VARRAW

• numeric EXTERNAL

• TIME

• TIMESTAMP

• TIME WITH TIME ZONE

• TIMESTAMP WITH TIME ZONE

• VARCHAR

• VARCHARC

• VARGRAPHIC

• VARRAW

• VARRAWC

The maximum lengths of variable data types describe the number of bytes that the
fields can occupy in the input data record. That length also describes the amount of
storage that each field occupies in the bind array, but the bind array includes additional
overhead for fields that can vary in size.

When the character data types (CHAR, DATE, and numeric EXTERNAL) are specified with
delimiters, any lengths specified for these fields are maximum lengths. When specified

Chapter 9
Bind Arrays and Conventional Path Loads

9-56

without delimiters, the size in the record is fixed, but the size of the inserted field may
still vary, due to whitespace trimming. So internally, these data types are always
treated as varying-length fields—even when they are fixed-length fields.

A length indicator is included for each of these fields in the bind array. The space
reserved for the field in the bind array is large enough to hold the longest possible
value of the field. The length indicator gives the actual length of the field for each row.

Note:

In conventional path loads, LOBFILEs are not included when allocating the
size of a bind array.

For information about both fixed and variable data types, refere to "SQL*Loader Data
Types."

Related Topics

• SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

9.21.5.2 Determining the Size of the Length Indicator
When you set up a bind array, use the SQL*Loader control file to determine the size of
the length indicator.

On most systems, the size of the length indicator is 2 bytes. On a few systems, it is 3
bytes.

Example 9-9 Determining the Length Indicator Size

The following example shows how to determine a length indicator size with a
SQL*Loader control file:

OPTIONS (ROWS=1)
LOAD DATA
INFILE *
APPEND
INTO TABLE DEPT
(deptno POSITION(1:1) CHAR(1))
BEGINDATA
a

This control file loads a 1-byte CHAR using a 1-row bind array. In this example, no data
is actually loaded, because a conversion error occurs when the character a is loaded
into a numeric column (deptno). The bind array size shown in the log file, minus one
(the length of the character field) is the value of the length indicator.

Chapter 9
Bind Arrays and Conventional Path Loads

9-57

Note:

You can use a similar technique to determine bind array size without doing
any calculations. To determine the memory requirements for a single row of
data, run your control file without any data, and with ROWS=1. Then determine
the bind array size by multiplying by the number of rows that you want in the
bind array.

9.21.5.3 Calculating the Size of Field Buffers
Use these tables to determine the field size buffers for each SQL*Loader data type,
from fixed-length fields, nongraphic fields and graphic fields, through variable length
fields.

How to Use These Tables

Each table summarizes the memory requirements for each data type. "L" is the length
specified in the control file. "P" is precision. "S" is the size of the length indicator. For
more information about these values, refer to "SQL*Loader Data Types."

Table 9-3 Fixed-Length Fields

Data Type Size in Bytes (Operating System-Dependent)

INTEGER The size of the INT data type, in C

INTEGER(N) N bytes

SMALLINT The size of SHORT INT data type, in C

FLOAT The size of the FLOAT data type, in C

DOUBLE The size of the DOUBLE data type, in C

BYTEINT The size of UNSIGNED CHAR, in C

VARRAW The size of UNSIGNED SHORT, plus 4096 bytes or whatever is
specified as max_length

LONG VARRAW The size of UNSIGNED INT, plus 4096 bytes or whatever is
specified as max_length

VARCHARC Composed of 2 numbers. The first specifies length, and the
second (which is optional) specifies max_length (default is 4096
bytes).

VARRAWC This data type is for RAW data. It is composed of 2 numbers. The
first specifies length, and the second (which is optional) specifies
max_length (default is 4096 bytes).

Table 9-4 Nongraphic Fields

Data Type Default Size Specified Size

(packed) DECIMAL None (N+1)/2, rounded up

ZONED None P

RAW None L

Chapter 9
Bind Arrays and Conventional Path Loads

9-58

Table 9-4 (Cont.) Nongraphic Fields

Data Type Default Size Specified Size

CHAR (no delimiters) 1 L + S

datetime and interval (no delimiters) None L + S

numeric EXTERNAL (no delimiters) None L + S

Table 9-5 Graphic Fields

Data Type Default Size Length Specified with
POSITION

Length Specified with
DATA TYPE

GRAPHIC None L 2*L

GRAPHIC EXTERNAL None L - 2 2*(L-2)

VARGRAPHIC 4KB*2 L+S (2*L)+S

Table 9-6 Variable-Length Fields

Data Type Default Size Maximum Length Specified
(L)

VARCHAR 4 KB L+S

CHAR (delimited) 255 L+S

datetime and interval (delimited) 255 L+S

numeric EXTERNAL (delimited) 255 L+S

Related Topics

• SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

9.21.6 Minimizing Memory Requirements for Bind Arrays
Pay particular attention to the default sizes allocated for VARCHAR, VARGRAPHIC, and the
delimited forms of CHAR, DATE, and numeric EXTERNAL fields.

They can consume enormous amounts of memory - especially when multiplied by the
number of rows in the bind array. It is best to specify the smallest possible maximum
length for these fields. Consider the following example:

CHAR(10) TERMINATED BY ","

With byte-length semantics, this example uses (10 + 2) * 64 = 768 bytes in the bind
array, assuming that the length indicator is 2 bytes long and that 64 rows are loaded at
a time.

With character-length semantics, the same example uses ((10 * s) + 2) * 64 bytes in
the bind array, where "s" is the maximum size in bytes of a character in the data file
character set.

Now consider the following example:

Chapter 9
Bind Arrays and Conventional Path Loads

9-59

CHAR TERMINATED BY ","

Regardless of whether byte-length semantics or character-length semantics are used,
this example uses (255 + 2) * 64 = 16,448 bytes, because the default maximum size
for a delimited field is 255 bytes. This can make a considerable difference in the
number of rows that fit into the bind array.

9.21.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses
When calculating a bind array size for a control file that has multiple INTO TABLE
clauses, calculate as if the INTO TABLE clauses were not present.

Imagine all of the fields listed in the control file as one, long data structure—that is, the
format of a single row in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLE clauses, then
additional space in the bind array is required each time it is mentioned. It is especially
important to minimize the buffer allocations for such fields.

Note:

Generated data is produced by the SQL*Loader functions CONSTANT,
EXPRESSION, RECNUM, SYSDATE, and SEQUENCE. Such generated data does not
require any space in the bind array.

Chapter 9
Bind Arrays and Conventional Path Loads

9-60

10
SQL*Loader Field List Reference

The field-list portion of a SQL*Loader control file provides information about fields
being loaded, such as position, data type, conditions, and delimiters.

• Field List Contents
The field-list portion of a SQL*Loader control file provides information about fields
being loaded.

• Specifying the Position of a Data Field.
Learn how to specify positions in a logical data field by using the SQL*Loader
POSITION clause.

• Specifying Columns and Fields
Learn how to specify columns and fields in SQL*Loader specifications.

• SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

• Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as
true or false.

• Using the WHEN, NULLIF, and DEFAULTIF Clauses
This section describes using the WHEN, NULLIF, andDEFAULTIF clauses.

• Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
These examples explain results for different situations in which you can use the
WHEN, NULLIF, and DEFAULTIF clauses.

• Loading Data Across Different Platforms
When a data file created on one platform is to be loaded on a different platform,
the data must be written in a form that the target system can read.

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

• Loading All-Blank Fields
Fields that are totally blank cause the record to be rejected. To load one of these
fields as NULL, use the NULLIF clause with the BLANKS parameter.

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line
feeds) constitute whitespace.

• How the PRESERVE BLANKS Option Affects Whitespace Trimming
To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields,
you specify PRESERVE BLANKS as part of the LOAD statement in the control file.

• How [NO] PRESERVE BLANKS Works with Delimiter Clauses
The PRESERVE BLANKS option is affected by the presence of delimiter clauses

• Applying SQL Operators to Fields
This section describes applying SQL operators to fields.

10-1

• Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to
generate the data stored in the database record, rather than reading it from a data
file.

10.1 Field List Contents
The field-list portion of a SQL*Loader control file provides information about fields
being loaded.

The field-list control file fields are position, data type, conditions, and delimiters.

The following example shows the field list section of the example control file that was
introduced in the topic SQL*Loader Control File Reference

Example 10-1 Field List Section of Sample Control File

.

.

.
1 (hiredate SYSDATE,
2 deptno POSITION(1:2) INTEGER EXTERNAL(2)
 NULLIF deptno=BLANKS,
3 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
 NULLIF job=BLANKS "UPPER(:job)",
 mgr POSITION(28:31) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE "UPPER(:ename)",
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE
 "TO_NUMBER(:sal,'$99,999.99')",
4 comm INTEGER EXTERNAL ENCLOSED BY '(' AND '%'
 ":comm * 100"
)

In this example control file, the numbers that appear to the left would not appear in a
real control file. They are callouts that correspond to the following notes:

1. SYSDATE sets the column to the current system date. See Setting a Column to the
Current Date .

2. POSITION specifies the position of a data field.

INTEGER EXTERNAL is the data type for the field. See Specifying the Data Type of a
Data Field and Numeric EXTERNAL.

The NULLIF clause is one of the clauses that you can use to specify field
conditions. See Using the WHEN_ NULLIF_ and DEFAULTIF Clauses.

In this sample, the field is being compared to blanks, using the BLANKS parameter.
See Comparing Fields to BLANKS.

3. The TERMINATED BY WHITESPACE clause is one of the delimiters you can specify for
a field. See Specifying Delimiters.

Chapter 10
Field List Contents

10-2

4. The ENCLOSED BY clause is another possible field delimiter. See Specifying
Delimiters.

10.2 Specifying the Position of a Data Field.
Learn how to specify positions in a logical data field by using the SQL*Loader
POSITION clause.

• POSITION
To load data from the data file, SQL*Loader must know the length and location of
the field. The POSITION parametete defines this information.

• Using POSITION with Data Containing Tabs
When you are determining field positions, be alert for tabs in the data file.

• Using POSITION with Multiple Table Loads
This section describes using POSITION with multiple table loads.

• Examples of Using POSITION in SQL*Loader Specifications
See examples of using POSITION with a simple column specification, and with a
more complex column specification.

10.2.1 POSITION
To load data from the data file, SQL*Loader must know the length and location of the
field. The POSITION parametete defines this information.

Purpose

To specify the position of a field in the logical record, use the POSITION clause in the
column specification. You cn either state the position explicitly or state it relative to the
preceding field. Arguments to POSITION must be enclosed in parentheses. The start,
end, and integer values are always in bytes, even if character-length semantics are
used for a data file.

You can omit POSITION entirely. If you do omit POSITION, then the position specification
for the data field is the same as if POSITION(*) had been used.

Syntax

The syntax for the position specification (pos_spec) clause is as follows:

(

start

*

+integer

:

–
end

)

Parameters

The following table describes the parameters for the position specification clause.

Chapter 10
Specifying the Position of a Data Field.

10-3

Table 10-1 Parameters for the Position Specification Clause

Parameter Description

start The starting column of the data field in the logical record. The first
byte position in a logical record is 1.

end The ending position of the data field in the logical record. Either
start-end or start:end is acceptable. If you omit end, then the
length of the field is derived from the data type in the data file.
Note that CHAR data specified without start or end, and without a
length specification (CHAR(n)), is assumed to have a length of 1.
If it is impossible to derive a length from the data type, then an
error message is issued.

* Specifies that the data field follows immediately after the previous
field. If you use * for the first data field in the control file, then that
field is assumed to be at the beginning of the logical record.
When you use * to specify position, the length of the field is
derived from the data type.

+integer You can use an offset, specified as +integer, to offset the
current field from the next position after the end of the previous
field. A number of bytes, as specified by +integer, are skipped
before reading the value for the current field.

10.2.2 Using POSITION with Data Containing Tabs
When you are determining field positions, be alert for tabs in the data file.

Suppose you use the SQL*Loader advanced SQL string capabilities to load data from
a formatted report. You would probably first look at a printed copy of the report,
carefully measure all character positions, and then create your control file. In such a
situation, it is highly likely that when you attempt to load the data, the load will fail with
multiple "invalid number" and "missing field" errors.

These kinds of errors occur when the data contains tabs. When printed, each tab
expands to consume several columns on the paper. In the data file, however, each tab
is still only one character. As a result, when SQL*Loader reads the data file, the
POSITION specifications are wrong.

To fix the problem, inspect the data file for tabs and adjust the POSITION specifications,
or else use delimited fields.

Related Topics

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

10.2.3 Using POSITION with Multiple Table Loads
This section describes using POSITION with multiple table loads.

In a multiple table load, you specify multiple INTO TABLE clauses. When you specify
POSITION(*) for the first column of the first table, the position is calculated relative to
the beginning of the logical record. When you specify POSITION(*) for the first column

Chapter 10
Specifying the Position of a Data Field.

10-4

of subsequent tables, the position is calculated relative to the last column of the last
table loaded.

Thus, when a subsequent INTO TABLE clause begins, the position is not set to the
beginning of the logical record automatically. This allows multiple INTO TABLE clauses
to process different parts of the same physical record. For an example, see Extracting
Multiple Logical Records.

A logical record might contain data for one of two tables, but not both. In this case, you
would reset POSITION. Instead of omitting the position specification or using
POSITION(*+n) for the first field in the INTO TABLE clause, use POSITION(1) or
POSITION(n).

10.2.4 Examples of Using POSITION in SQL*Loader Specifications
See examples of using POSITION with a simple column specification, and with a more
complex column specification.

The following example shows two column specifications using POSITION:

siteid POSITION (*) SMALLINT
siteloc POSITION (*) INTEGER

Suppose that these are the first two column specifications. In that case, siteid begins
in column 1, and siteloc begins in the column immediately following.

Now, consider these column specifications:

ename POSITION (1:20) CHAR
empno POSITION (22-26) INTEGER EXTERNAL
allow POSITION (*+2) INTEGER EXTERNAL TERMINATED BY "/"

Column ename is character data in positions 1 through 20, followed by column empno,
which is presumably numeric data in columns 22 through 26. Column allow is offset
from the next position (27) after the end of empno by +2, so it starts in column 29 and
continues until a slash is encountered.

10.3 Specifying Columns and Fields
Learn how to specify columns and fields in SQL*Loader specifications.

• Options for Column and Field Specification
When you specify columns and fields for SQL*Loader, be aware of the restrictions
and practices to follow.

• Specifying Filler Fields
A filler field, specified by BOUNDFILLER or FILLER is a data file mapped field that
does not correspond to a database column.

• Specifying the Data Type of a Data Field
The data type specification of a field tells SQL*Loader how to interpret the data in
the field.

Chapter 10
Specifying Columns and Fields

10-5

10.3.1 Options for Column and Field Specification
When you specify columns and fields for SQL*Loader, be aware of the restrictions and
practices to follow.

You can load any number of a table's columns. Columns defined in the database, but
not specified in the control file, are assigned null values.

A column specification is the name of the column, followed by a specification for the
value to be put in that column. The list of columns is enclosed by parentheses and
separated with commas as follows:

(columnspec,columnspec, ...)

Each column name (unless it is marked FILLER) must correspond to a column of the
table named in the INTO TABLE clause. If a column name uses a SQL or SQL*Loader
reserved word, or contains special characters, or is case-sensitive, then the name
must be enclosed in quotation marks.

If SQL*Loader generates the column value, then the specification includes the RECNUM,
SEQUENCE, or CONSTANT parameter. Refer to "Using SQL*Loader to Generate Data for
Input."

If the column's value is read from the data file, then the data field that contains the
column's value is specified. In this case, the column specification includes a column
name that identifies a column in the database table, and a field specification that
describes a field in a data record. The field specification includes position, data type,
null restrictions, and defaults.

It is not necessary to specify all attributes when loading column objects. Any missing
attributes will be set to NULL.

Related Topics

• Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to
generate the data stored in the database record, rather than reading it from a data
file.

10.3.2 Specifying Filler Fields
A filler field, specified by BOUNDFILLER or FILLER is a data file mapped field that does
not correspond to a database column.

Filler fields are assigned values from the data fields to which they are mapped.

Keep the following in mind regarding filler fields:

• The syntax for a filler field is same as that for a column-based field, except that a
filler field's name is followed by FILLER.

• Filler fields have names but they are not loaded into the table.

• Filler fields can be used as arguments to init_specs (for example, NULLIF and
DEFAULTIF).

Chapter 10
Specifying Columns and Fields

10-6

• Filler fields can be used as arguments to directives (for example, SID, OID, REF,
and BFILE).

To avoid ambiguity, if a Filler field is referenced in a directive, such as BFILE, and
that field is declared in the control file inside of a column object, then the field
name must be qualified with the name of the column object. This is illustrated in
the following example:

LOAD DATA
INFILE *
INTO TABLE BFILE1O_TBL REPLACE
FIELDS TERMINATED BY ','
(
 emp_number char,
 emp_info_b column object
 (
 bfile_name FILLER char(12),
 emp_b BFILE(constant "SQLOP_DIR", emp_info_b.bfile_name) NULLIF
 emp_info_b.bfile_name = 'NULL'
)
)
BEGINDATA
00001,bfile1.dat,
00002,bfile2.dat,
00003,bfile3.dat,

• Filler fields can be used in field condition specifications in NULLIF, DEFAULTIF, and
WHEN clauses. However, they cannot be used in SQL strings.

• Filler field specifications cannot contain a NULLIF or DEFAULTIF clause.

• Filler fields are initialized to NULL if TRAILING NULLCOLS is specified and applicable.
If another field references a nullified filler field, then an error is generated.

• Filler fields can occur anyplace in the data file, including inside the field list for an
object or inside the definition of a VARRAY.

• SQL strings cannot be specified as part of a filler field specification, because no
space is allocated for fillers in the bind array.

Note:

The information in this section also applies to specifying bound fillers by
using BOUNDFILLER. The only exception is that with bound fillers, SQL
strings can be specified as part of the field, because space is allocated
for them in the bind array.

A sample filler field specification looks as follows:

 field_1_count FILLER char,
 field_1 varray count(field_1_count)
 (
 filler_field1 char(2),
 field_1 column object
 (
 attr1 char(2),
 filler_field2 char(2),
 attr2 char(2),
)

Chapter 10
Specifying Columns and Fields

10-7

 filler_field3 char(3),
)
 filler_field4 char(6)

10.3.3 Specifying the Data Type of a Data Field
The data type specification of a field tells SQL*Loader how to interpret the data in the
field.

For example, a data type of INTEGER specifies binary data, while INTEGER EXTERNAL
specifies character data that represents a number. A CHAR field can contain any
character data.

Only one data type can be specified for each field; if a data type is not specified, then
CHAR is assumed.

SQL*Loader Data Types describes how SQL*Loader data types are converted into
Oracle data types and gives detailed information about each SQL*Loader data type.

Before you specify the data type, you must specify the position of the field.

10.4 SQL*Loader Data Types
SQL*Loader data types can be grouped into portable and nonportable data types.

• Portable and Nonportable Data Type Differences
In SQL*Loader, portable data types are platform-independent. Nonportable data
types can have several different dependencies that affect portability.

• Nonportable Data Types
Use this reference to understand how to use the nonportable data types with
SQL*Loader.

• Portable Data Types
Use this reference to understand how to use the portable data types with
SQL*Loader.

• Data Type Conversions
SQL*Loader can perform most data type conversions automatically, but to avoid
errors, you need to understand conversion rules.

• Data Type Conversions for Datetime and Interval Data Types
Learn which conversions between Oracle Database data types and SQL*Loader
control file datetime and interval data types are supported, and which are not.

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

• How Delimited Data Is Processed
To specify delimiters, field definitions can use various combinations of the
TERMINATED BY, ENCLOSED BY, and OPTIONALLY ENCLOSED BY clauses.

• Conflicting Field Lengths for Character Data Types
A control file can specify multiple lengths for the character-data fields CHAR, DATE,
and numeric EXTERNAL.

Chapter 10
SQL*Loader Data Types

10-8

10.4.1 Portable and Nonportable Data Type Differences
In SQL*Loader, portable data types are platform-independent. Nonportable data types
can have several different dependencies that affect portability.

For each SQL*Loader data tupe, the data types are subgrouped into value data types
and length-value data types.

The terms portable data type and nonportable data type refer to whether the data
type is platform-dependent. Platform dependency can exist for several reasons,
including differences in the byte ordering schemes of different platforms (big-endian
versus little-endian), differences in the number of bits in a platform (16-bit, 32-bit, 64-
bit), differences in signed number representation schemes (2's complement versus 1's
complement), and so on. In some cases, such as with byte-ordering schemes and
platform word length, SQL*Loader provides mechanisms to help overcome platform
dependencies. These mechanisms are discussed in the descriptions of the appropriate
data types.

Both portable and nonportable data types can be values or length-values. Value data
types assume that a data field has a single part. Length-value data types require that
the data field consist of two subfields where the length subfield specifies how long the
value subfield can be.

Note:

With Oracle Database 12c Release 1 (12.1) and later releases, the maximum
size of the Oracle Database VARCHAR2, NVARCHAR2, and RAW data types is 32
KB. To obtain this size, the COMPATIBLE initialization parameter must be set
to 12.0 or later, and the MAX_STRING_SIZE initialization parameter must be set
to EXTENDED. SQL*Loader supports this maximum size.

10.4.2 Nonportable Data Types
Use this reference to understand how to use the nonportable data types with
SQL*Loader.

• Categories of Nonportable Data Types
Nonportable data types are grouped into two categories: value data types, and
length-value data types.

• INTEGER(n)
The SQL*Loader nonportable value data type INTEGER(n) is a length-specific
integer field.

• SMALLINT
The SQL*Loader nonportable value data type SMALLINT is a half-word binary
integer.

• FLOAT
The SQL*Loader nonportable value data type FLOAT is a single-precision, floating-
point, binary number

Chapter 10
SQL*Loader Data Types

10-9

• DOUBLE
The SQL*Loader nonportable value data type DOUBLE is a double-precision
floating-point binary number.

• BYTEINT
The SQL*Loader nonportable value data type BYTEINT loads the decimal value of
the binary representation of the byte.

• ZONED
The SQL*Loader nonportable value data type ZONED is in zoned decimal format.

• DECIMAL
The SQL*Loader nonportable value data type DECIMAL is in packed decimal
format.

• VARGRAPHIC
The SQL*Loader nonportable length-value data type VARGRAPHIC is a varying-
length, double-byte character set (DBCS).

• VARCHAR
The SQL*Loader nonportable length-value data type VARCHAR is a binary length
subfield followed by a character string of the specified length.

• VARRAW
The SQL*Loader nonportable length-value data type VARROW is a 2-byte binary
length subfield, and a RAW string value subfield.

• LONG VARRAW
The SQL*Loader nonportable length-value data type LONG VARRAW is a VARRAW with
a 4-byte length subfield.

10.4.2.1 Categories of Nonportable Data Types
Nonportable data types are grouped into two categories: value data types, and
length-value data types.

The nonportable value data types are:

• INTEGER(n)

• SMALLINT

• FLOAT

• DOUBLE

• BYTEINT

• ZONED

• (packed) DECIMAL

The nonportable length-value data types are:

• VARGRAPHIC

• VARCHAR

• VARRAW

• LONG VARRAW

To better understand the syntax for nonportable data types, refer to the syntax
diagram for datatype_spec.

Chapter 10
SQL*Loader Data Types

10-10

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

10.4.2.2 INTEGER(n)
The SQL*Loader nonportable value data type INTEGER(n) is a length-specific integer
field.

Definition

The data is a full-word binary integer, where n is an optionally supplied length of 1, 2,
4, or 8. If no length specification is given, then the length, in bytes, is based on the size
of a LONG INT in the C programming language on your particular platform.

Usage Notes

INTEGERs are not portable because their byte size, their byte order, and the
representation of signed values can be different between systems. However, if the
representation of signed values is the same between systems, then it is possible that
SQL*Loader can access INTEGER data with correct results. If INTEGER is specified with
a length specification (n), and the appropriate technique is used (if necessary) to
indicate the byte order of the data, then SQL*Loader can access the data with correct
results between systems. If INTEGER is specified without a length specification, then
SQL*Loader can access the data with correct results only if the size of a LONG INT in
the C programming language is the same length in bytes on both systems. In that
case, the appropriate technique must still be used (if necessary) to indicate the byte
order of the data.

Specifying an explicit length for binary integers is useful in situations where the input
data was created on a platform whose word length differs from that on which
SQL*Loader is running. For instance, input data containing binary integers might be
created on a 64-bit platform and loaded into a database using SQL*Loader on a 32-bit
platform. In this case, use INTEGER(8) to instruct SQL*Loader to process the integers
as 8-byte quantities, not as 4-byte quantities.

By default, INTEGER is treated as a SIGNED quantity. If you want SQL*Loader to treat it
as an unsigned quantity, then specify UNSIGNED. To return to the default behavior,
specify SIGNED.

Related Topics

• Loading Data Across Different Platforms
When a data file created on one platform is to be loaded on a different platform,
the data must be written in a form that the target system can read.

10.4.2.3 SMALLINT
The SQL*Loader nonportable value data type SMALLINT is a half-word binary integer.

Definition

The length of a SMALLINT field is the length of a half-word integer on your system.

Chapter 10
SQL*Loader Data Types

10-11

Usage Notes

By default, SMALLINT data is treated as a SIGNED quantity. If you want SQL*Loader to
treat it as an unsigned quantity, then specify UNSIGNED. To return to the default
behavior, specify SIGNED.

You can load SMALLINT data with correct results only between systems where a SHORT
INT has the same length in bytes. If the byte order is different between the systems,
then use the appropriate technique to indicate the byte order of the data.

Note:

This is the SHORT INT data type in the C programming language. One way to
determine its length is to make a small control file with no data, and look at
the resulting log file. This length cannot be overridden in the control file.

Related Topics

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.2.4 FLOAT
The SQL*Loader nonportable value data type FLOAT is a single-precision, floating-
point, binary number

Definition

With FLOAT data, the length of the field is the length of a single-precision, floating-
point binary number on your system. (The data type is FLOAT in C.) This length cannot
be overridden in the control file. If you specify end in the POSITION clause, then end is
ignored.

Usage Notes

You can load FLOAT with correct results only between systems where the
representation of FLOAT is compatible, and of the same length. If the byte order is
different between the two systems, then use the appropriate technique to indicate the
byte order of the data.

Related Topics

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

Chapter 10
SQL*Loader Data Types

10-12

10.4.2.5 DOUBLE
The SQL*Loader nonportable value data type DOUBLE is a double-precision floating-
point binary number.

Definition

The length of the DOUBLE field is the length of a double-precision, floating-point binary
number on your system. (The data type is DOUBLE or LONG FLOAT in C.) This length
cannot be overridden in the control file. If you specify end in the POSITION clause, then
end is ignored.

Usage Notes

You can load DOUBLE with correct results only between systems where the
representation of DOUBLE is compatible and of the same length. If the byte order is
different between the two systems, then use the appropriate technique to indicate the
byte order of the data.

Related Topics

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.2.6 BYTEINT
The SQL*Loader nonportable value data type BYTEINT loads the decimal value of the
binary representation of the byte.

Definition

The decimal value of the binary representation of the byte is loaded. For example, the
input character x"1C" is loaded as 28. The length of a BYTEINT field is always 1 byte. If
you specify POSITION (start:end) then end is ignored. (The data type is UNSIGNED
CHAR in C.)

Example

An example of the syntax for this data type is:

(column1 position(1) BYTEINT,
column2 BYTEINT,
...
)

Chapter 10
SQL*Loader Data Types

10-13

10.4.2.7 ZONED
The SQL*Loader nonportable value data type ZONED is in zoned decimal format.

Definition

ZONED data is in zoned decimal format: a string of decimal digits, one per byte, with the
sign included in the last byte. (In COBOL, this is a SIGN TRAILING field.) The length of
this field equals the precision (number of digits) that you specify.

Syntax

The syntax for the ZONED data type is as follows:

ZONED (precision

, scale

)

In this syntax, precision is the number of digits in the number, and scale (if given) is
the number of digits to the right of the (implied) decimal point.

Example

The following example specifies an 8-digit integer starting at position 32:

sal POSITION(32) ZONED(8),

When the zoned data is generated on an ASCII-based platform, Oracle Database uses
the VAX/VMS zoned decimal format. It is also possible to load zoned decimal data that
is generated on an EBCDIC-based platform. In this case, Oracle Database uses the
IBM format,as specified in the manual ESA/390 Principles of Operations, version 8.1.
The format that is used depends on the character set encoding of the input data file.

Related Topics

• CHARACTERSET Parameter
Specifying the CHARACTERSET parameter tells SQL*Loader the character set of the
input data file.

10.4.2.8 DECIMAL
The SQL*Loader nonportable value data type DECIMAL is in packed decimal format.

Definition

DECIMAL data is in packed decimal format: two digits per byte, except for the last byte,
which contains a digit and sign. DECIMAL fields allow the specification of an implied
decimal point, so fractional values can be represented.

Syntax

The syntax for the DECIMAL data type is as follows:

Chapter 10
SQL*Loader Data Types

10-14

DECIMAL (precision

, scale

)

The precision parameter is the number of digits in a value. The length of the field in
bytes, as computed from digits, is (N+1)/2 rounded up.

The scale parameter is the scaling factor, or number of digits to the right of the
decimal point. The default is zero (indicating an integer). The scaling factor can be
greater than the number of digits but cannot be negative.

Example

The following example loads a number equivalent to +12345.67

sal DECIMAL (7,2)

In the data record, this field would take up 4 bytes. (The byte length of a DECIMAL field
is equivalent to (N+1)/2, rounded up, where N is the number of digits in the value, and
1 is added for the sign.)

10.4.2.9 VARGRAPHIC
The SQL*Loader nonportable length-value data type VARGRAPHIC is a varying-
length, double-byte character set (DBCS).

Definition

VARGRAPHIC data consists of a length subfield followed by a string of double-byte
characters. Oracle Database does not support double-byte character sets; however,
SQL*Loader reads them as single bytes, and loads them as RAW data. As with RAW
data, VARGRAPHIC fields are stored without modification in whichever column you
specify.

Note:

The size of the length subfield is the size of the SQL*Loader SMALLINT data
type on your system (C type SHORT INT).

Syntax

The syntax for the VARGRAPHIC data type is:

VARGRAPHIC

(max_length)

Usage Notes

You can load VARGRAPHIC data with correct results only between systems where a
SHORT INT has the same length in bytes. If the byte order is different between the

Chapter 10
SQL*Loader Data Types

10-15

systems, then use the appropriate technique to indicate the byte order of the length
subfield.

The length of the current field is given in the first 2 bytes. A maximum length specified
for the VARGRAPHIC data type does not include the size of the length subfield. The
maximum length specifies the number of graphic (double-byte) characters. It is
multiplied by 2 to determine the maximum length of the field in bytes.

The default maximum field length is 2 KB graphic characters, or 4 KB (2 times 2KB).
To minimize memory requirements, specify a maximum length for such fields
whenever possible.

If a position specification is specified (using pos_spec) before the VARGRAPHIC
statement, then it provides the location of the length subfield, not of the first graphic
character. If you specify pos_spec(start:end), then the end location determines a
maximum length for the field. Both start and end identify single-character (byte)
positions in the file. Start is subtracted from (end + 1) to give the length of the field in
bytes. If a maximum length is specified, then it overrides any maximum length
calculated from the position specification.

If a VARGRAPHIC field is truncated by the end of the logical record before its full length is
read, then a warning is issued. Because the length of a VARGRAPHIC field is embedded
in every occurrence of the input data for that field, it is assumed to be accurate.

VARGRAPHIC data cannot be delimited.

Related Topics

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.2.10 VARCHAR
The SQL*Loader nonportable length-value data type VARCHAR is a binary length
subfield followed by a character string of the specified length.

Definition

A VARCHAR field is a length-value data type. It consists of a binary length subfield
followed by a character string of the specified length. The length is in bytes unless
character-length semantics are used for the data file. In that case, the length is in
characters.

Note:

The size of the length subfield is the size of the SQL*Loader SMALLINT data
type on your system (C type SHORT INT).

Syntax

The syntax for the VARCHAR data type is:

Chapter 10
SQL*Loader Data Types

10-16

VARCHAR

(max_length)

Usage Notes

VARCHAR fields can be loaded with correct results only between systems where a SHORT
data field INT has the same length in bytes. If the byte order is different between the
systems, or if the VARCHAR field contains data in the UTF16 character set, then use the
appropriate technique to indicate the byte order of the length subfield and of the data.
The byte order of the data is only an issue for the UTF16 character set.

A maximum length specified in the control file does not include the size of the length
subfield. If you specify the optional maximum length for a VARCHAR data type, then a
buffer of that size, in bytes, is allocated for these fields. However, if character-length
semantics are used for the data file, then the buffer size in bytes is the max_length
times the size in bytes of the largest possible character in the character set.

The default maximum size is 4 KB. Specifying the smallest maximum length that is
needed to load your data can minimize SQL*Loader's memory requirements,
especially if you have many VARCHAR fields.

The POSITION clause, if used, gives the location, in bytes, of the length subfield, not of
the first text character. If you specify POSITION(start:end), then the end location
determines a maximum length for the field. Start is subtracted from (end + 1) to give
the length of the field in bytes. If a maximum length is specified, then it overrides any
length calculated from POSITION.

If a VARCHAR field is truncated by the end of the logical record before its full length is
read, then a warning is issued. Because the length of a VARCHAR field is embedded in
every occurrence of the input data for that field, it is assumed to be accurate.

VARCHAR data cannot be delimited.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.2.11 VARRAW
The SQL*Loader nonportable length-value data type VARROW is a 2-byte binary length
subfield, and a RAW string value subfield.

Definition

VARRAW is made up of a 2-byte binary length subfield followed by a RAW string value
subfield.

VARRAW results in a VARRAW with a 2-byte length subfield and a maximum size of 4 KB
(that is, the default). VARRAW(65000) results in a VARRAW with a length subfield of 2
bytes and a maximum size of 65000 bytes.

Chapter 10
SQL*Loader Data Types

10-17

Usage Notes

You can load VARRAW fields between systems with different byte orders if the
appropriate technique is used to indicate the byte order of the length subfield.

Related Topics

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.2.12 LONG VARRAW
The SQL*Loader nonportable length-value data type LONG VARRAW is a VARRAW with a
4-byte length subfield.

Definition

LONG VARRAW is a VARRAW with a 4-byte length subfield, instead of a 2-byte length
subfield.

LONG VARRAW results in a VARRAW with 4-byte length subfield and a maximum size of 4
KB (that is, the default). LONG VARRAW(300000) results in a VARRAW with a length
subfield of 4 bytes and a maximum size of 300000 bytes.

Usage Notes

LONG VARRAW fields can be loaded between systems with different byte orders if the
appropriate technique is used to indicate the byte order of the length subfield.

Related Topics

• Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose
byte ordering is different from the byte ordering on the system where SQL*Loader
is running, even if the data file contains certain nonportable data types.

10.4.3 Portable Data Types
Use this reference to understand how to use the portable data types with SQL*Loader.

The portable data types are grouped into value data types and length-value data
types. The portable value data types are CHAR, Datetime and Interval, GRAPHIC,
GRAPHIC EXTERNAL, Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, ZONE), and RAW.

The portable length-value data types are VARCHARC and VARRAWC.

The syntax for these data types is shown in the diagram for datatype_spec.

• Categories of Portable Data Types
Portable data types are grouped into value data types, length-value data types,
and character data types.

• CHAR
The SQL*Loader portable value data type CHAR contains character data.

Chapter 10
SQL*Loader Data Types

10-18

• Datetime and Interval Data Types
To specify dates and time intervals with SQL*Loader, use the datetime and
interval data types.

• GRAPHIC
The SQL*Loader portable value data type GRAPHIC has the data in the form of a
double-byte character set (DBCS).

• GRAPHIC EXTERNAL
The SQL*Loader portable value data type GRAPHIC EXTERNAL specifies graphic
data loaded from external tables.

• Numeric EXTERNAL
The SQL*Loader portable value numeric EXTERNAL data types are human-
readable, character form data.

• RAW
The SQL*Loader portable value RAW specifies a load of raw binary data.

• VARCHARC
The portable length-value data type VARCHARC specifies character string lengths
and sizes

• VARRAWC
The portable length-value data type VARRAWC consists of a RAW string value
subfield.

• Conflicting Native Data Type Field Lengths
If you are loading different data types, then learn what rules SQL*Loader follows to
manage conflicts in field length specifications.

• Field Lengths for Length-Value Data Types
The field lengths for length-value SQL*Loader portable data types such as
VARCHAR, VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC is in bytes or characters.

10.4.3.1 Categories of Portable Data Types
Portable data types are grouped into value data types, length-value data types, and
character data types.

The portable value data types are:

• CHAR

• Datetime and Interval

• GRAPHIC

• GRAPHIC EXTERNAL

• Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, ZONE)

• RAW

The portable length-value data types are:

• VARCHARC

• VARRAWC

The character data types are:

• CHAR

Chapter 10
SQL*Loader Data Types

10-19

• DATE

• numeric EXTERNAL

These fields can be delimited, and can have lengths (or maximum lengths) specified in
the control file.

To better understand the syntax for nonportable data types, refer to the syntax
diagram for datatype_spec.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

10.4.3.2 CHAR
The SQL*Loader portable value data type CHAR contains character data.

Definition

The data field contains character data. The length, which is optional, is a maximum
length. Note the following regarding length:

Syntax

The syntax for the CHAR data type is:

CHAR

(length) delim–spec

Usage Notes

• If you do not specify a CHAR field length, then the CHAR field length is derived from
the POSITION specification.

• If you specify a CHAR field length, then it overrides the length in the POSITION
specification.

• If you neither specify a CHAR field length, nor have a POSITION specification, then
CHAR data is assumed to have a length of 1, unless the field is delimited:

– For a delimited CHAR field, if a length is specified, then that length is used as a
maximum.

– For a delimited CHAR field for which no length is specified, the default is 255
bytes.

– For a delimited CHAR field that is greater than 255 bytes, you must specify a
maximum length. Otherwise you will receive an error stating that the field in
the data file exceeds maximum length.

Related Topics

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

Chapter 10
SQL*Loader Data Types

10-20

10.4.3.3 Datetime and Interval Data Types
To specify dates and time intervals with SQL*Loader, use the datetime and interval
data types.

• Categories of Datetime and Interval Data Types
The SQL*Loader portable value datetime and interval data types (datetimes) are
fields that record dates and time intervals.

• DATE
The SQL*Loader datetime data type DATE field contains character data defining a
specified date.

• TIME
The SQL*Loader datetime data type TIME stores hour, minute, and second values.

• TIME WITH TIME ZONE
The SQL*Loader datetime data type TIME WITH TIME ZONE is a variant of TIME
that includes a time zone displacement in its value.

• TIMESTAMP
The SQL*Loader datetime data type TIMESTAMP is an extension of the DATE data
type.

• TIMESTAMP WITH TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone displacement in its value.

• TIMESTAMP WITH LOCAL TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH LOCAL TIME ZONEis another
variant of TIMESTAMP that includes a time zone offset in its value.

• INTERVAL YEAR TO MONTH
The SQL*Loader interval data type INTERVAL YEAR TO MONTH stores a period of
time.

• INTERVAL DAY TO SECOND
The SQL*Loader interval data type INTERVAL DAY TO SECOND stores a period of
time using the DAY and SECOND datetime fields.

10.4.3.3.1 Categories of Datetime and Interval Data Types
The SQL*Loader portable value datetime and interval data types (datetimes) are fields
that record dates and time intervals.

Definition

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type.

The datetime data types are:

• DATE

• TIME

• TIME WITH TIME ZONE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

Chapter 10
SQL*Loader Data Types

10-21

• TIMESTAMP WITH LOCAL TIME ZONE

The interval data types are:

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

Usage Notes

Values of datetime data types are sometimes called datetimes. Except for DATE, you
are allowed to optionally specify a value for fractional_second_precision. The
fractional_second_precision specifies the number of digits stored in the fractional
part of the SECOND datetime field. When you create a column of this data type, the
value can be a number in the range 0 to 9. The default is 6.

Values of interval data types are sometimes called intervals. The INTERVAL YEAR TO
MONTH data type lets you optionally specify a value for year_precision. The
year_precision value is the number of digits in the YEAR datetime field. The default
value is 2.

The INTERVAL DAY TO SECOND data type lets you optionally specify values for
day_precision and fractional_second_precision. The day_precision is the
number of digits in the DAY datetime field. Accepted values are 0 to 9. The default is 2.
The fractional_second_precision specifies the number of digits stored in the
fractional part of the SECOND datetime field. When you create a column of this data
type, the value can be a number in the range 0 to 9. The default is 6.

Related Topics

• Specifying Datetime Formats At the Table Level
You can specify certain datetime formats at the table level in a SQL*Loader control
file.

• Numeric Precedence

10.4.3.3.2 DATE
The SQL*Loader datetime data type DATE field contains character data defining a
specified date.

Syntax

DATE

(length) mask delim_spec

Usage Notes

The DATE field contains character data that should be converted to an Oracle date
using the specified date mask.

The length specification is optional, unless a varying-length date mask is specified.
The length is in bytes unless character-length semantics are used for the data file. In
that case, the length is in characters.

If an explicit length is not specified, then it can be derived from the POSITION clause.
Oracle recommends that you specify the length whenever you use a mask, unless you

Chapter 10
SQL*Loader Data Types

10-22

are absolutely sure that the length of the data is less than, or equal to, the length of the
mask.

An explicit length specification, if present, overrides the length in the POSITION clause.
Either of these specifications overrides the length derived from the mask. The mask
can be any valid Oracle date mask. If you omit the mask, then the default Oracle date
mask of "dd-mon-yy" is used.

The length must be enclosed in parentheses, and the mask in quotation marks.

You can also specify a field of data type DATE using delimiters.

Example

LOAD DATA
INTO TABLE dates (col_a POSITION (1:15) DATE "DD-Mon-YYYY")
BEGINDATA
1-Jan-2012
1-Apr-2012 28-Feb-2012

Unless delimiters are present, whitespace is ignored and dates are parsed from left to
right. (A DATE field that consists entirely of whitespace is loaded as a NULL field.)

In the preceding example, the date mask, "DD-Mon-YYYY" contains 11 bytes, with byte-
length semantics. Therefore, SQL*Loader expects a maximum of 11 bytes in the field,
so the specification works properly. But, suppose a specification such as the following
is given:

DATE "Month dd, YYYY"

In this case, the date mask contains 14 bytes. If a value with a length longer than 14
bytes is specified, such as "September 30, 2012", then a length must be specified.

Similarly, a length is required for any Julian dates (date mask "J"). A field length is
required any time the length of the date string could exceed the length of the mask
(that is, the count of bytes in the mask).

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

• Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

10.4.3.3.3 TIME
The SQL*Loader datetime data type TIME stores hour, minute, and second values.

Syntax

TIME [(fractional_second_precision)]

Chapter 10
SQL*Loader Data Types

10-23

10.4.3.3.4 TIME WITH TIME ZONE
The SQL*Loader datetime data type TIME WITH TIME ZONE is a variant of TIME that
includes a time zone displacement in its value.

Definition

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (coordinated universal time, formerly Greenwich mean time).

Syntax

TIME [(fractional_second_precision)] WITH [LOCAL] TIME ZONE

If the LOCAL option is specified, then data stored in the database is normalized to the
database time zone, and time zone displacement is not stored as part of the column
data. When the data is retrieved, it is returned in the user's local session time zone.

10.4.3.3.5 TIMESTAMP
The SQL*Loader datetime data type TIMESTAMP is an extension of the DATE data type.

Definition

It stores the year, month, and day of the DATE data type, plus the hour, minute, and
second values of the TIME data type.

Syntax

TIMESTAMP [(fractional_second_precision)]

If you specify a date value without a time component, then the default time is 12:00:00
a.m. (midnight).

10.4.3.3.6 TIMESTAMP WITH TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone displacement in its value.

Definition

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (coordinated universal time, formerly Greenwich mean time).

Syntax

TIMESTAMP [(fractional_second_precision)] WITH TIME ZONE

Chapter 10
SQL*Loader Data Types

10-24

10.4.3.3.7 TIMESTAMP WITH LOCAL TIME ZONE
The SQL*Loader datetime data type TIMESTAMP WITH LOCAL TIME ZONEis another
variant of TIMESTAMP that includes a time zone offset in its value.

Definition

Data stored in the database is normalized to the database time zone, and time zone
displacement is not stored as part of the column data. When the data is retrieved, it is
returned in the user's local session time zone.

Syntax

It is specified as follows:

TIMESTAMP [(fractional_second_precision)] WITH LOCAL TIME ZONE

10.4.3.3.8 INTERVAL YEAR TO MONTH
The SQL*Loader interval data type INTERVAL YEAR TO MONTH stores a period of time.

Definintion

INTERVAL YEAR TO MONTH stores a period of time by using the YEAR and MONTH
datetime fields.

Syntax

INTERVAL YEAR [(year_precision)] TO MONTH

10.4.3.3.9 INTERVAL DAY TO SECOND
The SQL*Loader interval data type INTERVAL DAY TO SECOND stores a period of time
using the DAY and SECOND datetime fields.

Definition

The INTERVAL DAY TO SECOND data type stores a period of time using the DAY and
SECOND datetime fields.

Syntax

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_second_precision)]

10.4.3.4 GRAPHIC
The SQL*Loader portable value data type GRAPHIC has the data in the form of a
double-byte character set (DBCS).

Definition

the GRAPHIC data type specifies graphic data:

Chapter 10
SQL*Loader Data Types

10-25

GRAPHIC

(graphic_char_length)

Usage Notes

The data in GRAPHIC is in the form of a double-byte character set (DBCS). Oracle
Database does not support double-byte character sets; however, SQL*Loader reads
them as single bytes. As with RAW data, GRAPHIC fields are stored without modification
in whichever column you specify.

For GRAPHIC and GRAPHIC EXTERNAL, specifying POSITION (start:end) gives the
exact location of the field in the logical record.

If you specify a length for the GRAPHIC (EXTERNAL) data type, however, then you give
the number of double-byte graphic characters. That value is multiplied by 2 to find the
length of the field in bytes. If the number of graphic characters is specified, then any
length derived from POSITION is ignored. No delimited data field specification is
allowed with GRAPHIC data type specification.

10.4.3.5 GRAPHIC EXTERNAL
The SQL*Loader portable value data type GRAPHIC EXTERNAL specifies graphic data
loaded from external tables.

Description

GRAPHIC indicates that the data is double-byte characters (DBCA). EXTERNAL indicates
that the first and last characters are ignored.

If the DBCS field is surrounded by shift-in and shift-out characters, then use GRAPHIC
EXTERNAL. This is identical to GRAPHIC, except that the first and last characters (the
shift-in and shift-out) are not loaded.

Syntax

GRAPHIC_EXTERNAL

(graphic_char_length)

GRAPHIC indicates that the data is double-byte characters. EXTERNAL indicates that the
first and last characters are ignored. The graphic_char_length value specifies the
length in DBCS.

Example

To see how GRAPHIC EXTERNAL works, let [] represent shift-in and shift-out
characters, and let # represent any double-byte character.

To describe ####, use POSITION(1:4) GRAPHIC or POSITION(1) GRAPHIC(2).

To describe [####], use POSITION(1:6) GRAPHIC EXTERNAL or POSITION(1) GRAPHIC
EXTERNAL(2).

Chapter 10
SQL*Loader Data Types

10-26

Related Topics

• GRAPHIC
The SQL*Loader portable value data type GRAPHIC has the data in the form of a
double-byte character set (DBCS).

10.4.3.6 Numeric EXTERNAL
The SQL*Loader portable value numeric EXTERNAL data types are human-readable,
character form data.

Definition

The numeric EXTERNAL data types are the numeric data types (INTEGER, FLOAT,
DECIMAL, and ZONED) specified as EXTERNAL, with optional length and delimiter
specifications. The length is in bytes unless character-length semantics are used for
the data file. In that case, the length is in characters.

These data types are the human-readable, character form of numeric data. The same
rules that apply to CHAR data regarding length, position, and delimiters apply to numeric
EXTERNAL data. Refer to CHAR for a complete description of these rules.

The syntax for the numeric EXTERNAL data types is shown as part of the
datatype_spec SQL*Loader data syntax.

FLOAT EXTERNAL data can be given in either scientific or regular notation. Both "5.33"
and "533E-2" are valid representations of the same value.

Note:

The data is a number in character form, not binary representation. Therefore,
these data types are identical to CHAR and are treated identically, except for
the use of DEFAULTIF. If you want the default to be null, then use CHAR; if you
want it to be zero, then use EXTERNAL.

See Using the WHEN_ NULLIF_ and DEFAULTIF Clauses.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

• CHAR
The SQL*Loader portable value data type CHAR contains character data.

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

Chapter 10
SQL*Loader Data Types

10-27

10.4.3.7 RAW
The SQL*Loader portable value RAW specifies a load of raw binary data.

Description

When raw, binary data is loaded "as is" into a RAW database column, it is not converted
when it is place into Oracle Database files.
If the data is loaded into a CHAR column, then Oracle Database converts it to
hexadecimal. It cannot be loaded into a DATE or number column.

Syntax

RAW

(length)

The length of this field is the number of bytes specified in the control file. This length is
limited only by the length of the target column in the database and by memory
resources. The length is always in bytes, even if character-length semantics are used
for the data file. RAW data fields cannot be delimited.

10.4.3.8 VARCHARC
The portable length-value data type VARCHARC specifies character string lengths and
sizes

Description

The SQL*Loader data type VARCHARC consists of a character length subfield followed
by a character string value-subfield.

Syntax

VARCHARC(character_length,character_string)

Usage Notes

The declaration for VARCHARC specifies the length of the length subfield, optionally
followed by the maximum size of any string. If byte-length semantics are in use for the
data file, then the length and the maximum size are both in bytes. If character-length
semantics are in use for the data file, then the length and maximum size are in
characters. If a maximum size is not specified, then 4 KB is the default regardless of
whether byte-length semantics or character-length semantics are in use.

For example:

• VARCHARC results in an error because you must at least specify a value for the
length subfield.

• VARCHARC(7) results in a VARCHARC whose length subfield is 7 bytes long and
whose maximum size is 4 KB (the default) if byte-length semantics are used for
the data file. If character-length semantics are used, then it results in a VARCHARC
with a length subfield that is 7 characters long and a maximum size of 4 KB (the

Chapter 10
SQL*Loader Data Types

10-28

default). Remember that when a maximum size is not specified, the default of 4
KB is always used, regardless of whether byte-length or character-length
semantics are in use.

• VARCHARC(3,500) results in a VARCHARC whose length subfield is 3 bytes long and
whose maximum size is 500 bytes if byte-length semantics are used for the data
file. If character-length semantics are used, then it results in a VARCHARC with a
length subfield that is 3 characters long and a maximum size of 500 characters.

Example

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('info.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

Related Topics

• VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

10.4.3.9 VARRAWC
The portable length-value data type VARRAWC consists of a RAW string value subfield.

Description

The VARRAWC data type has a character count field, followed by binary data.

Syntax

VARRAWC(character_length,binary_data)

Usage Notes

• VARRAWC results in an error.

• VARRAWC(7) results in a VARRAWC whose length subfield is 7 bytes long and whose
maximum size is 4 KB (that is, the default).

Chapter 10
SQL*Loader Data Types

10-29

• VARRAWC(3,500) results in a VARRAWC whose length subfield is 3 bytes long and
whose maximum size is 500 bytes.

Example

In the following example, VARRAWC. The length of the picture field is 0, which means
the field is set to NULL.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('info.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

Related Topics

• VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

10.4.3.10 Conflicting Native Data Type Field Lengths
If you are loading different data types, then learn what rules SQL*Loader follows to
manage conflicts in field length specifications.

There are several ways to specify a length for a field. If multiple lengths are specified
and they conflict, then one of the lengths takes precedence. A warning is issued when
a conflict exists. The following rules determine which field length is used:

1. The size of SMALLINT, FLOAT, and DOUBLE data is fixed, regardless of the number of
bytes specified in the POSITION clause.

2. If the length (or precision) specified for a DECIMAL, INTEGER, ZONED, GRAPHIC,
GRAPHIC EXTERNAL, or RAW field conflicts with the size calculated from a
POSITION(start:end) specification, then the specified length (or precision) is
used.

3. If the maximum size specified for a character or VARGRAPHIC field conflicts with the
size calculated from a POSITION(start:end) specification, then the specified
maximum is used.

For example, assume that the native data type INTEGER is 4 bytes long and the
following field specification is given:

column1 POSITION(1:6) INTEGER

Chapter 10
SQL*Loader Data Types

10-30

In this case, a warning is issued, and the proper length (4) is used. The log file shows
the actual length used under the heading "Len" in the column table:

Column Name Position Len Term Encl Data Type
----------------------- --------- ----- ---- ---- ---------
COLUMN1 1:6 4 INTEGER

10.4.3.11 Field Lengths for Length-Value Data Types
The field lengths for length-value SQL*Loader portable data types such as VARCHAR,
VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC is in bytes or characters.

A control file can specify a maximum length for the following length-value data types:
VARCHAR, VARCHARC, VARGRAPHIC, VARRAW, and VARRAWC. The specified maximum length
is in bytes if byte-length semantics are used for the field, and in characters if
character-length semantics are used for the field. If no length is specified, then the
maximum length defaults to 4096 bytes. If the length of the field exceeds the maximum
length, then the record is rejected with the following error:

Variable length field exceed maximum length

10.4.4 Data Type Conversions
SQL*Loader can perform most data type conversions automatically, but to avoid
errors, you need to understand conversion rules.

The data type specifications in the control file tell SQL*Loader how to interpret the
information in the data file. The server defines the data types for the columns in the
database. The link between these two is the column name specified in the control file.

SQL*Loader extracts data from a field in the input file, guided by the data type
specification in the control file. SQL*Loader then sends the field to the server to be
stored in the appropriate column (as part of an array of row inserts).

SQL*Loader or the server does any necessary data conversion to store the data in the
proper internal format. This includes converting data from the data file character set to
the database character set when they differ.

Note:

When you use SQL*Loader conventional path to load character data from
the data file into a LONG RAW column, the character data is interpreted has a
HEX string. SQL converts the HEX string into its binary representation. Be
aware that any string longer than 4000 bytes exceeds the byte limit for the
SQL HEXTORAW conversion operator. If a string is longer than the byte limit,
then an error is returned. SQL*Loader rejects the row with an error, and
continues loading.

The data type of the data in the file does not need to be the same as the data type of
the column in the Oracle Database table. Oracle Database automatically performs
conversions. However, you need to ensure that the conversion makes sense, and

Chapter 10
SQL*Loader Data Types

10-31

does not generate errors. For instance, when a data file field with data type CHAR is
loaded into a database column with data type NUMBER, you must ensure that the
contents of the character field represent a valid number.

Note:

SQL*Loader does not contain data type specifications for Oracle internal
data types, such as NUMBER or VARCHAR2. The SQL*Loader data types
describe data that can be produced with text editors (character data types)
and with standard programming languages (native data types). However,
although SQL*Loader does not recognize data types such as NUMBER and
VARCHAR2, any data that Oracle Database can convert can be loaded into
these or other database columns.

10.4.5 Data Type Conversions for Datetime and Interval Data Types
Learn which conversions between Oracle Database data types and SQL*Loader
control file datetime and interval data types are supported, and which are not.

How to Read the Data Type Conversions for Datetime and Interval Data Types

In the table, the abbreviations for the Oracle Database data types are as follows:

• N = NUMBER

• C = CHAR or VARCHAR2

• D = DATE

• T = TIME and TIME WITH TIME ZONE

• TS = TIMESTAMP and TIMESTAMP WITH TIME ZONE

• YM = INTERVAL YEAR TO MONTH

• DS = INTERVAL DAY TO SECOND

For the SQL*Loader data types, the definitions for the abbreviations in the table are
the same for D, T, TS, YM, and DS. SQL*Loader does not contain data type
specifications for Oracle Database internal data types, such as NUMBER, CHAR, and
VARCHAR2. However, any data that Oracle database can convert can be loaded into
these or into other database columns.

For an example of how to read this table, look at the row for the SQL*Loader data type
DATE (abbreviated as D). Reading across the row, you can see that data type
conversion is supported for the Oracle database data types of CHAR, VARCHAR2, DATE,
TIMESTAMP, and TIMESTAMP WITH TIME ZONE data types. However, conversion is not
supported for the Oracle Database data types NUMBER, TIME, TIME WITH TIME ZONE,
INTERVAL YEAR TO MONTH, or INTERVAL DAY TO SECOND data types.

Table 10-2 Data Type Conversions for Datetime and Interval Data Types

SQL*Loader Data Type Oracle Database Data Type (Conversion Support)

N N (Yes), C (Yes), D (No), T (No), TS (No), YM (No), DS (No)

Chapter 10
SQL*Loader Data Types

10-32

Table 10-2 (Cont.) Data Type Conversions for Datetime and Interval Data Types

SQL*Loader Data Type Oracle Database Data Type (Conversion Support)

C N (Yes), C (Yes), D (Yes), T (Yes), TS (Yes), YM (Yes), DS (Yes)

D N (No), C (Yes), D (Yes), T (No), TS (Yes), YM (No), DS (No)

T N (No), C (Yes), D (No), T (Yes), TS (Yes), YM (No), DS (No)

TS N (No), C (Yes), D (Yes), T (Yes), TS (Yes), YM (No), DS (No)

YM N (No), C (Yes), D (No), T (No), TS (No), YM (Yes), DS (No)

DS N (No), C (Yes), D (No), T (No), TS (No), YM (No), DS (Yes)

10.4.6 Specifying Delimiters
The boundaries of CHAR, datetime, interval, or numeric EXTERNAL fields can also be
marked by delimiter characters contained in the input data record.

The delimiter characters are specified using various combinations of the TERMINATED
BY, ENCLOSED BY, and OPTIONALLY ENCLOSED BY clauses (the TERMINATED BY clause, if
used, must come first). The delimiter specification comes after the data type
specification.

For a description of how data is processed when various combinations of delimiter
clauses are used, see How Delimited Data Is Processed.

Note:

The RAW data type can also be marked by delimiters, but only if it is in an
input LOBFILE, and only if the delimiter is TERMINATED BY EOF (end of file).

• Syntax for Termination and Enclosure Specification
The syntax for termination and enclosure specifications is described here.

• Delimiter Marks in the Data
Sometimes the punctuation mark that is a delimiter must also be included in the
data.

• Maximum Length of Delimited Data
Delimited fields can require significant amounts of storage for the bind array.

• Loading Trailing Blanks with Delimiters
Trailing blanks are not loaded with nondelimited data types unless you specify
PRESERVE BLANKS.

10.4.6.1 Syntax for Termination and Enclosure Specification
The syntax for termination and enclosure specifications is described here.

Syntax

The following diagram shows the syntax for termination_spec.

Chapter 10
SQL*Loader Data Types

10-33

TERMINATED

BY

WHITESPACE

X’hexstr’

’string’

EOF

The following diagram shows the syntax for enclosure_spec.

ENCLOSED

BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

The following table describes the syntax for the termination and enclosure
specifications used to specify delimiters.

Table 10-3 Parameters Used for Specifying Delimiters

Parameter Description

TERMINATED Data is read until the first occurrence of a delimiter.

BY An optional word to increase readability.

WHITESPACE Delimiter is any whitespace character including spaces, tabs,
blanks, line feeds, form feeds, or carriage returns. (Only used
with TERMINATED, not with ENCLOSED.)

OPTIONALLY Data can be enclosed by the specified character. If SQL*Loader
finds a first occurrence of the character, then it reads the data
value until it finds the second occurrence. If the data is not
enclosed, then the data is read as a terminated field. If you
specify an optional enclosure, then you must specify a
TERMINATED BY clause (either locally in the field definition or
globally in the FIELDS clause).

ENCLOSED The data is enclosed between two delimiters.

string The delimiter is a string.

X'hexstr' The delimiter is a string that has the value specified by
X'hexstr' in the character encoding scheme, such as X'1F'
(equivalent to 31 decimal). "X" can be either lowercase or
uppercase.

AND Specifies a trailing enclosure delimiter that may be different from
the initial enclosure delimiter. If AND is not present, then the initial
and trailing delimiters are assumed to be the same.

EOF Indicates that the entire file has been loaded into the LOB. This is
valid only when data is loaded from a LOB file. Fields terminated
by EOF cannot be enclosed.

Chapter 10
SQL*Loader Data Types

10-34

Examples

The following is a set of examples of terminations and enclosures, with examples of
the data that they describe:

TERMINATED BY ',' a data string,
ENCLOSED BY '"' "a data string"
TERMINATED BY ',' ENCLOSED BY '"' "a data string",
ENCLOSED BY '(' AND ')' (a data string)

10.4.6.2 Delimiter Marks in the Data
Sometimes the punctuation mark that is a delimiter must also be included in the data.

To make that possible, two adjacent delimiter characters are interpreted as a single
occurrence of the character, and this character is included in the data. For example,
this data:

(The delimiters are left parentheses, (, and right parentheses,)).)

with this field specification:

ENCLOSED BY "(" AND ")"

puts the following string into the database:

The delimiters are left parentheses, (, and right parentheses,).

For this reason, problems can arise when adjacent fields use the same delimiters. For
example, with the following specification:

field1 TERMINATED BY "/"
field2 ENCLOSED by "/"

the following data will be interpreted properly:

This is the first string/ /This is the second string/

But if field1 and field2 were adjacent, then the results would be incorrect, because

This is the first string//This is the second string/

would be interpreted as a single character string with a "/" in the middle, and that string
would belong to field1.

10.4.6.3 Maximum Length of Delimited Data
Delimited fields can require significant amounts of storage for the bind array.

The default maximum length of delimited data is 255 bytes. Therefore, delimited fields
can require significant amounts of storage for the bind array. A good policy is to
specify the smallest possible maximum value if the fields are shorter than 255 bytes. If
the fields are longer than 255 bytes, then you must specify a maximum length for the
field, either with a length specifier or with the POSITION clause.

For example, if you have a string literal that is longer than 255 bytes, then in addition
to using SUBSTR(), use CHAR() to specify the longest string in any record for the field.

Chapter 10
SQL*Loader Data Types

10-35

An example of how this would look is as follows, assuming that 600 bytes is the
longest string in any record for field1:

field1 CHAR(600) SUBSTR(:field, 1, 240)

10.4.6.4 Loading Trailing Blanks with Delimiters
Trailing blanks are not loaded with nondelimited data types unless you specify
PRESERVE BLANKS.

If a data field is 9 characters long and contains the value DANIELbbb, where bbb is
three blanks, then it is loaded into the Oracle database as "DANIEL" if declared as
CHAR(9).

To include the trailing blanks, declare it as CHAR(9) TERMINATED BY ':', and add a
colon to the data file so that the field is DANIELbbb:. The field is loaded as "DANIEL ",
with the trailing blanks included. The same results are possible if you specify PRESERVE
BLANKS without the TERMINATED BY clause..

See Also:

• Trimming Whitespace

• How the PRESERVE BLANKS Option Affects Whitespace Trimming

10.4.7 How Delimited Data Is Processed
To specify delimiters, field definitions can use various combinations of the TERMINATED
BY, ENCLOSED BY, and OPTIONALLY ENCLOSED BY clauses.

These topics describe the processing that takes place in each case.

• Fields Using Only TERMINATED BY
This section describes fields that use only TERMINATED BY.

• Fields Using ENCLOSED BY Without TERMINATED BY
This section describes fields using ENCLOSED BY without TERMINATED BY.

• Fields Using ENCLOSED BY With TERMINATED BY
This section describes fields that use ENCLOSED BY with TERMINATED BY.

• Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY
This section describes fields that use OPTIONALLY ENCLOSED BY with TERMINATED
BY.

10.4.7.1 Fields Using Only TERMINATED BY
This section describes fields that use only TERMINATED BY.

If TERMINATED BY is specified for a field without ENCLOSED BY, then the data for the field
is read from the starting position of the field up to, but not including, the first
occurrence of the TERMINATED BY delimiter. If the terminator delimiter is found in the
first column position of a field, then the field is null. If the end of the record is found

Chapter 10
SQL*Loader Data Types

10-36

before the TERMINATED BY delimiter, then all data up to the end of the record is
considered part of the field.

If TERMINATED BY WHITESPACE is specified, then data is read until the first occurrence
of a whitespace character (spaces, tabs, blanks, line feeds, form feeds, or carriage
returns). Then the current position is advanced until no more adjacent whitespace
characters are found. This allows field values to be delimited by varying amounts of
whitespace. However, unlike non-whitespace terminators, if the first column position of
a field is known and a whitespace terminator is found there, then the field is not treated
as null and can result in record rejection or fields loaded into incorrect columns.

10.4.7.2 Fields Using ENCLOSED BY Without TERMINATED BY
This section describes fields using ENCLOSED BY without TERMINATED BY.

The following steps take place when a field uses an ENCLOSED BY clause without also
using a TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The first non-whitespace character found must be the start of a string that matches
the first ENCLOSED BY delimiter. If it is not, then the row is rejected.

3. If the first ENCLOSED BY delimiter is found, then the search for the second ENCLOSED
BY delimiter begins.

4. If two of the second ENCLOSED BY delimiters are found adjacent to each other, then
they are interpreted as a single occurrence of the delimiter and included as part of
the data for the field. The search then continues for another instance of the second
ENCLOSED BY delimiter.

5. If the end of the record is found before the second ENCLOSED BY delimiter is found,
then the row is rejected.

10.4.7.3 Fields Using ENCLOSED BY With TERMINATED BY
This section describes fields that use ENCLOSED BY with TERMINATED BY.

The following steps take place when a field uses an ENCLOSED BY clause and also uses
a TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The first non-whitespace character found must be the start of a string that matches
the first ENCLOSED BY delimiter. If it is not, then the row is rejected.

3. If the first ENCLOSED BY delimiter is found, then the search for the second ENCLOSED
BY delimiter begins.

4. If two of the second ENCLOSED BY delimiters are found adjacent to each other, then
they are interpreted as a single occurrence of the delimiter and included as part of
the data for the field. The search then continues for the second instance of the
ENCLOSED BY delimiter.

5. If the end of the record is found before the second ENCLOSED BY delimiter is found,
then the row is rejected.

6. If the second ENCLOSED BY delimiter is found, then the parser looks for the
TERMINATED BY delimiter. If the TERMINATED BY delimiter is anything other than

Chapter 10
SQL*Loader Data Types

10-37

WHITESPACE, then whitespace found between the end of the second ENCLOSED BY
delimiter and the TERMINATED BY delimiter is skipped over.

Note:

Only WHITESPACE is allowed between the second ENCLOSED BY delimiter
and the TERMINATED BY delimiter. Any other characters will cause an
error.

7. The row is not rejected if the end of the record is found before the TERMINATED BY
delimiter is found.

10.4.7.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY
This section describes fields that use OPTIONALLY ENCLOSED BY with TERMINATED BY.

The following steps take place when a field uses an OPTIONALLY ENCLOSED BY clause
and a TERMINATED BY clause.

1. Any whitespace at the beginning of the field is skipped.

2. The parser checks to see if the first non-whitespace character found is the start of
a string that matches the first OPTIONALLY ENCLOSED BY delimiter. If it is not, and
the OPTIONALLY ENCLOSED BY delimiters are not present in the data, then the data
for the field is read from the current position of the field up to, but not including, the
first occurrence of the TERMINATED BY delimiter. If the TERMINATED BY delimiter is
found in the first column position, then the field is null. If the end of the record is
found before the TERMINATED BY delimiter, then all data up to the end of the record
is considered part of the field.

3. If the first OPTIONALLY ENCLOSED BY delimiter is found, then the search for the
second OPTIONALLY ENCLOSED BY delimiter begins.

4. If two of the second OPTIONALLY ENCLOSED BY delimiters are found adjacent to
each other, then they are interpreted as a single occurrence of the delimiter and
included as part of the data for the field. The search then continues for the second
OPTIONALLY ENCLOSED BY delimiter.

5. If the end of the record is found before the second OPTIONALLY ENCLOSED BY
delimiter is found, then the row is rejected.

6. If the OPTIONALLY ENCLOSED BY delimiter is present in the data, then the parser
looks for the TERMINATED BY delimiter. If the TERMINATED BY delimiter is anything
other than WHITESPACE, then whitespace found between the end of the second
OPTIONALLY ENCLOSED BY delimiter and the TERMINATED BY delimiter is skipped
over.

7. The row is not rejected if the end of record is found before the TERMINATED BY
delimiter is found.

Chapter 10
SQL*Loader Data Types

10-38

Caution:

Be careful when you specify whitespace characters as the TERMINATED BY
delimiter and are also using OPTIONALLY ENCLOSED BY. SQL*Loader strips off
leading whitespace when looking for an OPTIONALLY ENCLOSED BY delimiter.
If the data contains two adjacent TERMINATED BY delimiters in the middle of a
record (usually done to set a field in the record to NULL), then the
whitespace for the first TERMINATED BY delimiter will be used to terminate a
field, but the remaining whitespace will be considered as leading whitespace
for the next field rather than the TERMINATED BY delimiter for the next field. To
load a NULL value, you must include the ENCLOSED BY delimiters in the data.

10.4.8 Conflicting Field Lengths for Character Data Types
A control file can specify multiple lengths for the character-data fields CHAR, DATE, and
numeric EXTERNAL.

If conflicting lengths are specified, then one of the lengths takes precedence. A
warning is also issued when a conflict exists. This section explains which length is
used.

• Predetermined Size Fields
This section describes predetermined field size.

• Delimited Fields
This section describes delimited fields.

• Date Field Masks
The length of a date field depends on the mask, if a mask is specified.

10.4.8.1 Predetermined Size Fields
This section describes predetermined field size.

If you specify a starting position and ending position for one of these fields, then the
length of the field is determined by these specifications. If you specify a length as part
of the data type and do not give an ending position, the field has the given length. If
starting position, ending position, and length are all specified, and the lengths differ,
then the length given as part of the data type specification is used for the length of the
field, as follows:

POSITION(1:10) CHAR(15)

In this example, the length of the field is 15.

10.4.8.2 Delimited Fields
This section describes delimited fields.

If a delimited field is specified with a length, or if a length can be calculated from the
starting and ending positions, then that length is the maximum length of the field. The
specified maximum length is in bytes if byte-length semantics are used for the field,
and in characters if character-length semantics are used for the field. If no length is
specified or can be calculated from the start and end positions, then the maximum

Chapter 10
SQL*Loader Data Types

10-39

length defaults to 255 bytes. The actual length can vary up to that maximum, based on
the presence of the delimiter.

If delimiters and also starting and ending positions are specified for the field, then only
the position specification has any effect. Any enclosure or termination delimiters are
ignored.

If the expected delimiter is absent, then the end of record terminates the field. If
TRAILING NULLCOLS is specified, then remaining fields are null. If either the delimiter or
the end of record produces a field that is longer than the maximum, then SQL*Loader
rejects the record and returns an error.

10.4.8.3 Date Field Masks
The length of a date field depends on the mask, if a mask is specified.

The mask provides a format pattern, telling SQL*Loader how to interpret the data in
the record. For example, assume the mask is specified as follows:

"Month dd, yyyy"

Then "May 3, 2012" would occupy 11 bytes in the record (with byte-length semantics),
while "January 31, 2012" would occupy 16.

If starting and ending positions are specified, however, then the length calculated from
the position specification overrides a length derived from the mask. A specified length
such as DATE(12) overrides either of those. If the date field is also specified with
terminating or enclosing delimiters, then the length specified in the control file is
interpreted as a maximum length for the field.

See Also:

Datetime and Interval Data Types for more information about the DATE field

10.5 Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as true
or false.

It is used in the WHEN, NULLIF, and DEFAULTIF clauses.

Note:

If a field used in a clause evaluation has a NULL value, then that clause will
always evaluate to FALSE.

A field condition is similar to the condition in the CONTINUEIF clause, with two important
differences. First, positions in the field condition refer to the logical record, not to the
physical record. Second, you can specify either a position in the logical record or the
name of a field in the data file (including filler fields).

Chapter 10
Specifying Field Conditions

10-40

Note:

A field condition cannot be based on fields in a secondary data file (SDF).

The syntax for the field_condition clause is as follows:

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

The syntax for the pos_spec clause is as follows:

(

start

*

+integer

:

–
end

)

The following table describes the parameters used for the field condition clause..

Table 10-4 Parameters for the Field Condition Clause

Parameter Description

pos_spec Specifies the starting and ending position of the comparison field
in the logical record. It must be surrounded by parentheses.
Either start-end or start:end is acceptable.

The starting location can be specified as a column number, or as
* (next column), or as *+n (next column plus an offset).

If you omit an ending position, then the length of the field is
determined by the length of the comparison string. If the lengths
are different, then the shorter field is padded. Character strings
are padded with blanks, hexadecimal strings with zeros.

start Specifies the starting position of the comparison field in the
logical record.

end Specifies the ending position of the comparison field in the logical
record.

full_fieldname full_fieldname is the full name of a field specified using dot
notation. If the field col2 is an attribute of a column object col1,
then when referring to col2 in one of the directives, you must
use the notation col1.col2. The column name and the field
name referencing or naming the same entity can be different,
because the column name never includes the full name of the
entity (no dot notation).

Chapter 10
Specifying Field Conditions

10-41

Table 10-4 (Cont.) Parameters for the Field Condition Clause

Parameter Description

operator A comparison operator for either equal or not equal.

char_string A string of characters enclosed in single or double quotation
marks that is compared to the comparison field. If the comparison
is true, then the current record is inserted into the table.

X'hex_string' A string of hexadecimal digits, where each pair of digits
corresponds to one byte in the field. It is enclosed in single or
double quotation marks. If the comparison is true, then the
current record is inserted into the table.

BLANKS Enables you to test a field to see if it consists entirely of blanks.
BLANKS is required when you are loading delimited data and you
cannot predict the length of the field, or when you use a multibyte
character set that has multiple blanks.

• Comparing Fields to BLANKS
The BLANKS parameter makes it possible to determine if a field of unknown length
is blank.

• Comparing Fields to Literals
This section describes comparing fields to literals.

10.5.1 Comparing Fields to BLANKS
The BLANKS parameter makes it possible to determine if a field of unknown length is
blank.

For example, use the following clause to load a blank field as null:

full_fieldname ... NULLIF column_name=BLANKS

The BLANKS parameter recognizes only blanks, not tabs. It can be used in place of a
literal string in any field comparison. The condition is true whenever the column is
entirely blank.

The BLANKS parameter also works for fixed-length fields. Using it is the same as
specifying an appropriately sized literal string of blanks. For example, the following
specifications are equivalent:

fixed_field CHAR(2) NULLIF fixed_field=BLANKS
fixed_field CHAR(2) NULLIF fixed_field=" "

There can be more than one blank in a multibyte character set. It is a good idea to use
the BLANKS parameter with these character sets instead of specifying a string of blank
characters.

The character string will match only a specific sequence of blank characters, while the
BLANKS parameter will match combinations of different blank characters. For more
information about multibyte character sets, see Multibyte (Asian) Character Sets.

10.5.2 Comparing Fields to Literals
This section describes comparing fields to literals.

Chapter 10
Specifying Field Conditions

10-42

When a data field is compared to a literal string that is shorter than the data field, the
string is padded. Character strings are padded with blanks, for example:

NULLIF (1:4)=" "

This example compares the data in position 1:4 with 4 blanks. If position 1:4 contains 4
blanks, then the clause evaluates as true.

Hexadecimal strings are padded with hexadecimal zeros, as in the following clause:

NULLIF (1:4)=X'FF'

This clause compares position 1:4 to hexadecimal 'FF000000'.

10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses
This section describes using the WHEN, NULLIF, andDEFAULTIF clauses.

The following information applies to scalar fields. For nonscalar fields (column objects,
LOBs, and collections), the WHEN, NULLIF, and DEFAULTIF clauses are processed
differently because nonscalar fields are more complex.

The results of a WHEN, NULLIF, or DEFAULTIF clause can be different depending on
whether the clause specifies a field name or a position.

• If the WHEN, NULLIF, or DEFAULTIF clause specifies a field name, then SQL*Loader
compares the clause to the evaluated value of the field. The evaluated value takes
trimmed whitespace into consideration. See Trimming Whitespace for information
about trimming blanks and tabs.

• If the WHEN, NULLIF, or DEFAULTIF clause specifies a position, then SQL*Loader
compares the clause to the original logical record in the data file. No whitespace
trimming is done on the logical record in that case.

Different results are more likely if the field has whitespace that is trimmed, or if the
WHEN, NULLIF, or DEFAULTIF clause contains blanks or tabs or uses the BLANKS
parameter. If you require the same results for a field specified by name and for the
same field specified by position, then use the PRESERVE BLANKS option. The PRESERVE
BLANKS option instructs SQL*Loader not to trim whitespace when it evaluates the
values of the fields.

The results of a WHEN, NULLIF, or DEFAULTIF clause are also affected by the order in
which SQL*Loader operates, as described in the following steps. SQL*Loader
performs these steps in order, but it does not always perform all of them. Once a field
is set, any remaining steps in the process are ignored. For example, if the field is set in
Step 5, then SQL*Loader does not move on to Step 6.

1. SQL*Loader evaluates the value of each field for the input record and trims any
whitespace that should be trimmed (according to existing guidelines for trimming
blanks and tabs).

2. For each record, SQL*Loader evaluates any WHEN clauses for the table.

3. If the record satisfies the WHEN clauses for the table, or no WHEN clauses are
specified, then SQL*Loader checks each field for a NULLIF clause.

4. If a NULLIF clause exists, then SQL*Loader evaluates it.

5. If the NULLIF clause is satisfied, then SQL*Loader sets the field to NULL.

Chapter 10
Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-43

6. If the NULLIF clause is not satisfied, or if there is no NULLIF clause, then
SQL*Loader checks the length of the field from field evaluation. If the field has a
length of 0 from field evaluation (for example, it was a null field, or whitespace
trimming resulted in a null field), then SQL*Loader sets the field to NULL. In this
case, any DEFAULTIF clause specified for the field is not evaluated.

7. If any specified NULLIF clause is false or there is no NULLIF clause, and if the field
does not have a length of 0 from field evaluation, then SQL*Loader checks the
field for a DEFAULTIF clause.

8. If a DEFAULTIF clause exists, then SQL*Loader evaluates it.

9. If the DEFAULTIF clause is satisfied, then the field is set to 0 if the field in the data
file is a numeric field. It is set to NULL if the field is not a numeric field. The
following fields are numeric fields and will be set to 0 if they satisfy the DEFAULTIF
clause:

• BYTEINT

• SMALLINT

• INTEGER

• FLOAT

• DOUBLE

• ZONED

• (packed) DECIMAL

• Numeric EXTERNAL (INTEGER, FLOAT, DECIMAL, and ZONED)

10. If the DEFAULTIF clause is not satisfied, or if there is no DEFAULTIF clause, then
SQL*Loader sets the field with the evaluated value from Step 1.

The order in which SQL*Loader operates could cause results that you do not expect.
For example, the DEFAULTIF clause may look like it is setting a numeric field to NULL
rather than to 0.

Note:

As demonstrated in these steps, the presence of NULLIF and DEFAULTIF
clauses results in extra processing that SQL*Loader must perform. This can
affect performance. Note that during Step 1, SQL*Loader will set a field to
NULL if its evaluated length is zero. To improve performance, consider
whether it might be possible for you to change your data to take advantage
of this. The detection of NULLs as part of Step 1 occurs much more quickly
than the processing of a NULLIF or DEFAULTIF clause.

For example, a CHAR(5) will have zero length if it falls off the end of the
logical record or if it contains all blanks and blank trimming is in effect. A
delimited field will have zero length if there are no characters between the
start of the field and the terminator.

Also, for character fields, NULLIF is usually faster to process than DEFAULTIF
(the default for character fields is NULL).

Chapter 10
Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-44

See Also:

• Specifying a NULLIF Clause At the Table Level

10.7 Examples of Using the WHEN, NULLIF, and
DEFAULTIF Clauses

These examples explain results for different situations in which you can use the WHEN,
NULLIF, and DEFAULTIF clauses.

In the examples, a blank or space is indicated with a period (.). Assume that col1 and
col2 are VARCHAR2(5) columns in the database.

Example 10-2 DEFAULTIF Clause Is Not Evaluated

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) CHAR INTEGER EXTERNAL DEFAULTIF col1 = 'aname')

The data file contains:

aname...

In this example, col1 for the row evaluates to aname. col2 evaluates to NULL with a
length of 0 (it is ... but the trailing blanks are trimmed for a positional field).

When SQL*Loader determines the final loaded value for col2, it finds no WHEN clause
and no NULLIF clause. It then checks the length of the field, which is 0 from field
evaluation. Therefore, SQL*Loader sets the final value for col2 to NULL. The
DEFAULTIF clause is not evaluated, and the row is loaded as aname for col1 and NULL
for col2.

Example 10-3 DEFAULTIF Clause Is Evaluated

The control file specifies:

.

.

.
PRESERVE BLANKS
.
.
.
(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF col1 = 'aname'

The data file contains:

aname...

In this example, col1 for the row again evaluates to aname. col2 evaluates to '...'
because trailing blanks are not trimmed when PRESERVE BLANKS is specified.

Chapter 10
Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-45

When SQL*Loader determines the final loaded value for col2, it finds no WHEN clause
and no NULLIF clause. It then checks the length of the field from field evaluation, which
is 3, not 0.

Then SQL*Loader evaluates the DEFAULTIF clause, which evaluates to true because
col1 is aname, which is the same as aname.

Because col2 is a numeric field, SQL*Loader sets the final value for col2 to 0. The
row is loaded as aname for col1 and as 0 for col2.

Example 10-4 DEFAULTIF Clause Specifies a Position

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION (6:8) INTEGER EXTERNAL DEFAULTIF (1:5) = BLANKS)

The data file contains:

.....123

In this example, col1 for the row evaluates to NULL with a length of 0 (it is but
the trailing blanks are trimmed). col2 evaluates to 123.

When SQL*Loader sets the final loaded value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field from field evaluation, which is 3,
not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. It compares (1:5) which is
to BLANKS, which evaluates to true. Therefore, because col2 is a numeric field
(integer EXTERNAL is numeric), SQL*Loader sets the final value for col2 to 0. The row
is loaded as NULL for col1 and 0 for col2.

Example 10-5 DEFAULTIF Clause Specifies a Field Name

The control file specifies:

(col1 POSITION (1:5),
 col2 POSITION(6:8) INTEGER EXTERNAL DEFAULTIF col1 = BLANKS)

The data file contains:

.....123

In this example, col1 for the row evaluates to NULL with a length of 0 (it is but
the trailing blanks are trimmed). col2 evaluates to 123.

When SQL*Loader determines the final value for col2, it finds no WHEN clause and no
NULLIF clause. It then checks the length of the field from field evaluation, which is 3,
not 0.

Then SQL*Loader evaluates the DEFAULTIF clause. As part of the evaluation, it checks
to see that col1 is NULL from field evaluation. It is NULL, so the DEFAULTIF clause
evaluates to false. Therefore, SQL*Loader sets the final value for col2 to 123, its
original value from field evaluation. The row is loaded as NULL for col1 and 123 for
col2.

Chapter 10
Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses

10-46

10.8 Loading Data Across Different Platforms
When a data file created on one platform is to be loaded on a different platform, the
data must be written in a form that the target system can read.

For example, if the source system has a native, floating-point representation that uses
16 bytes, and the target system's floating-point numbers are 12 bytes, then the target
system cannot directly read data generated on the source system.

The best solution is to load data across an Oracle Net database link, taking advantage
of the automatic conversion of data types. This is the recommended approach,
whenever feasible, and means that SQL*Loader must be run on the source system.

Problems with interplatform loads typically occur with native data types. In some
situations, it is possible to avoid problems by lengthening a field by padding it with
zeros, or to read only part of the field to shorten it (for example, when an 8-byte integer
is to be read on a system that uses 4-byte integers, or the reverse). Note, however,
that incompatible data type implementation may prevent this.

If you cannot use an Oracle Net database link and the data file must be accessed by
SQL*Loader running on the target system, then it is advisable to use only the portable
SQL*Loader data types (for example, CHAR, DATE, VARCHARC, and numeric EXTERNAL).
Data files written using these data types may be longer than those written with native
data types. They may take more time to load, but they transport more readily across
platforms.

If you know in advance that the byte ordering schemes or native integer lengths differ
between the platform on which the input data will be created and the platform on which
SQL*loader will be run, then investigate the possible use of the appropriate technique
to indicate the byte order of the data or the length of the native integer. Possible
techniques for indicating the byte order are to use the BYTEORDER parameter or to place
a byte-order mark (BOM) in the file. Both methods are described in Byte Ordering. It
may then be possible to eliminate the incompatibilities and achieve a successful cross-
platform data load. If the byte order is different from the SQL*Loader default, then you
must indicate a byte order.

10.9 Byte Ordering
SQL*Loader can load data from a data file that was created on a system whose byte
ordering is different from the byte ordering on the system where SQL*Loader is
running, even if the data file contains certain nonportable data types.

Note:

The information in this section is only applicable if you are planning to create
input data on a system that has a different byte-ordering scheme than the
system on which SQL*Loader will be run. Otherwise, you can skip this
section.

By default, SQL*Loader uses the byte order of the system where it is running as the
byte order for all data files. For example, on a Sun Solaris system, SQL*Loader uses

Chapter 10
Loading Data Across Different Platforms

10-47

big-endian byte order. On an Intel or an Intel-compatible PC, SQL*Loader uses little-
endian byte order.

Byte order affects the results when data is written and read an even number of bytes
at a time (typically 2 bytes, 4 bytes, or 8 bytes). The following are some examples of
this:

• The 2-byte integer value 1 is written as 0x0001 on a big-endian system and as
0x0100 on a little-endian system.

• The 4-byte integer 66051 is written as 0x00010203 on a big-endian system and as
0x03020100 on a little-endian system.

Byte order also affects character data in the UTF16 character set if it is written and
read as 2-byte entities. For example, the character 'a' (0x61 in ASCII) is written as
0x0061 in UTF16 on a big-endian system, but as 0x6100 on a little-endian system.

All Oracle-supported character sets, except UTF16, are written one byte at a time. So,
even for multibyte character sets such as UTF8, the characters are written and read
the same way on all systems, regardless of the byte order of the system. Therefore,
data in the UTF16 character set is nonportable because it is byte-order dependent.
Data in all other Oracle-supported character sets is portable.

Byte order in a data file is only an issue if the data file that contains the byte-order-
dependent data is created on a system that has a different byte order from the system
on which SQL*Loader is running. If SQL*Loader knows the byte order of the data, then
it swaps the bytes as necessary to ensure that the data is loaded correctly in the target
database. Byte swapping means that data in big-endian format is converted to little-
endian format, or the reverse.

To indicate byte order of the data to SQL*Loader, you can use the BYTEORDER
parameter, or you can place a byte-order mark (BOM) in the file. If you do not use one
of these techniques, then SQL*Loader will not correctly load the data into the data file.

• Specifying Byte Order
This section describes specifying the byte order.

• Using Byte Order Marks (BOMs)
This section describes using byte order marks.

See Also:

Case study 11, Loading Data in the Unicode Character Set, for an example
of how SQL*Loader handles byte swapping. (See SQL*Loader Case Studies
for information on how to access case studies.)

10.9.1 Specifying Byte Order
This section describes specifying the byte order.

To specify the byte order of data in the input data files, use the following syntax in the
SQL*Loader control file:

Chapter 10
Byte Ordering

10-48

BYTEORDER

BIG

LITTLE

ENDIAN

The BYTEORDER parameter has the following characteristics:

• BYTEORDER is placed after the LENGTH parameter in the SQL*Loader control file.

• It is possible to specify a different byte order for different data files. However, the
BYTEORDER specification before the INFILE parameters applies to the entire list of
primary data files.

• The BYTEORDER specification for the primary data files is also used as the default
for LOBFILEs and SDFs. To override this default, specify BYTEORDER with the
LOBFILE or SDF specification.

• The BYTEORDER parameter is not applicable to data contained within the control file
itself.

• The BYTEORDER parameter applies to the following:

– Binary INTEGER and SMALLINT data

– Binary lengths in varying-length fields (that is, for the VARCHAR, VARGRAPHIC,
VARRAW, and LONG VARRAW data types)

– Character data for data files in the UTF16 character set

– FLOAT and DOUBLE data types, if the system where the data was written has a
compatible floating-point representation with that on the system where
SQL*Loader is running

• The BYTEORDER parameter does not apply to any of the following:

– Raw data types (RAW, VARRAW, or VARRAWC)

– Graphic data types (GRAPHIC, VARGRAPHIC, or GRAPHIC EXTERNAL)

– Character data for data files in any character set other than UTF16

– ZONED or (packed) DECIMAL data types

10.9.2 Using Byte Order Marks (BOMs)
This section describes using byte order marks.

Data files that use a Unicode encoding (UTF-16 or UTF-8) may contain a byte-order
mark (BOM) in the first few bytes of the file. For a data file that uses the character set
UTF16, the values {0xFE,0xFF} in the first two bytes of the file are the BOM indicating
that the file contains big-endian data. The values {0xFF,0xFE} are the BOM indicating
that the file contains little-endian data.

If the first primary data file uses the UTF16 character set and it also begins with a
BOM, then that mark is read and interpreted to determine the byte order for all primary
data files. SQL*Loader reads and interprets the BOM, skips it, and begins processing
data with the byte immediately after the BOM. The BOM setting overrides any
BYTEORDER specification for the first primary data file. BOMs in data files other than the
first primary data file are read and used for checking for byte-order conflicts only. They
do not change the byte-order setting that SQL*Loader uses in processing the data file.

Chapter 10
Byte Ordering

10-49

In summary, the precedence of the byte-order indicators for the first primary data file is
as follows:

• BOM in the first primary data file, if the data file uses a Unicode character set that
is byte-order dependent (UTF16) and a BOM is present

• BYTEORDER parameter value, if specified before the INFILE parameters

• The byte order of the system where SQL*Loader is running

For a data file that uses a UTF8 character set, a BOM of {0xEF,0xBB,0xBF} in the first
3 bytes indicates that the file contains UTF8 data. It does not indicate the byte order of
the data, because data in UTF8 is not byte-order dependent. If SQL*Loader detects a
UTF8 BOM, then it skips it but does not change any byte-order settings for processing
the data files.

SQL*Loader first establishes a byte-order setting for the first primary data file using the
precedence order just defined. This byte-order setting is used for all primary data files.
If another primary data file uses the character set UTF16 and also contains a BOM,
then the BOM value is compared to the byte-order setting established for the first
primary data file. If the BOM value matches the byte-order setting of the first primary
data file, then SQL*Loader skips the BOM, and uses that byte-order setting to begin
processing data with the byte immediately after the BOM. If the BOM value does not
match the byte-order setting established for the first primary data file, then
SQL*Loader issues an error message and stops processing.

If any LOBFILEs or secondary data files are specified in the control file, then
SQL*Loader establishes a byte-order setting for each LOBFILE and secondary data
file (SDF) when it is ready to process the file. The default byte-order setting for
LOBFILEs and SDFs is the byte-order setting established for the first primary data file.
This is overridden if the BYTEORDER parameter is specified with a LOBFILE or SDF. In
either case, if the LOBFILE or SDF uses the UTF16 character set and contains a
BOM, the BOM value is compared to the byte-order setting for the file. If the BOM
value matches the byte-order setting for the file, then SQL*Loader skips the BOM, and
uses that byte-order setting to begin processing data with the byte immediately after
the BOM. If the BOM value does not match, then SQL*Loader issues an error
message and stops processing.

In summary, the precedence of the byte-order indicators for LOBFILEs and SDFs is as
follows:

• BYTEORDER parameter value specified with the LOBFILE or SDF

• The byte-order setting established for the first primary data file

Note:

If the character set of your data file is a unicode character set and there
is a byte-order mark in the first few bytes of the file, then do not use the
SKIP parameter. If you do, then the byte-order mark will not be read and
interpreted as a byte-order mark.

• Suppressing Checks for BOMs
This section describes suppressing checks for BOMs.

Chapter 10
Byte Ordering

10-50

10.9.2.1 Suppressing Checks for BOMs
This section describes suppressing checks for BOMs.

A data file in a Unicode character set may contain binary data that matches the BOM
in the first bytes of the file. For example the integer(2) value 0xFEFF = 65279 decimal
matches the big-endian BOM in UTF16. In that case, you can tell SQL*Loader to read
the first bytes of the data file as data and not check for a BOM by specifying the
BYTEORDERMARK parameter with the value NOCHECK. The syntax for the BYTEORDERMARK
parameter is:

BYTEORDERMARK

CHECK

NOCHECK

BYTEORDERMARK NOCHECK indicates that SQL*Loader should not check for a BOM and
should read all the data in the data file as data.

BYTEORDERMARK CHECK tells SQL*Loader to check for a BOM. This is the default
behavior for a data file in a Unicode character set. But this specification may be used
in the control file for clarification. It is an error to specify BYTEORDERMARK CHECK for a
data file that uses a non-Unicode character set.

The BYTEORDERMARK parameter has the following characteristics:

• It is placed after the optional BYTEORDER parameter in the SQL*Loader control file.

• It applies to the syntax specification for primary data files, and also to LOBFILEs
and secondary data files (SDFs).

• It is possible to specify a different BYTEORDERMARK value for different data files;
however, the BYTEORDERMARK specification before the INFILE parameters applies to
the entire list of primary data files.

• The BYTEORDERMARK specification for the primary data files is also used as the
default for LOBFILEs and SDFs, except that the value CHECK is ignored in this case
if the LOBFILE or SDF uses a non-Unicode character set. This default setting for
LOBFILEs and secondary data files can be overridden by specifying
BYTEORDERMARK with the LOBFILE or SDF specification.

10.10 Loading All-Blank Fields
Fields that are totally blank cause the record to be rejected. To load one of these fields
as NULL, use the NULLIF clause with the BLANKS parameter.

If an all-blank CHAR field is surrounded by enclosure delimiters, then the blanks within
the enclosures are loaded. Otherwise, the field is loaded as NULL.

A DATE or numeric field that consists entirely of blanks is loaded as a NULL field.

Chapter 10
Loading All-Blank Fields

10-51

See Also:

• Case study 6, Loading Data Using the Direct Path Load Method, for an
example of how to load all-blank fields as NULL with the NULLIF clause.
(See SQL*Loader Case Studies for information on how to access case
studies.)

• Trimming Whitespace

• How the PRESERVE BLANKS Option Affects Whitespace Trimming

10.11 Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line
feeds) constitute whitespace.

Leading whitespace occurs at the beginning of a field. Trailing whitespace occurs at
the end of a field. Depending on how the field is specified, whitespace may or may not
be included when the field is inserted into the database. This is illustrated in the figure
"Example of Field Conversion, where two CHAR fields are defined for a data record.

The field specifications are contained in the control file. The control file CHAR
specification is not the same as the database CHAR specification. A data field defined
as CHAR in the control file simply tells SQL*Loader how to create the row insert. The
data could then be inserted into a CHAR, VARCHAR2, NCHAR, NVARCHAR2, or even a NUMBER
or DATE column in the database, with the Oracle database handling any necessary
conversions.

By default, SQL*Loader removes trailing spaces from CHAR data before passing it to
the database. So, in the figure "Example of Field Conversion,” both Field 1 and Field 2
are passed to the database as 3-byte fields. However, when the data is inserted into
the table, there is a difference.

Chapter 10
Trimming Whitespace

10-52

Figure 10-1 Example of Field Conversion

DATAFILE

ROW

INSERT

DATABASE

SQL*Loader

SERVER

Field 1

aaa bbb

Column 1 Column 2

Table

CHAR (5) VARCHAR (5)Column Datatypes

CHAR (5) CHAR (5)Control File Specifications

a a a _ _ b b b

a a a

 b b b

Field 2

Column 1 is defined in the database as a fixed-length CHAR column of length 5. So the
data (aaa) is left-justified in that column, which remains 5 bytes wide. The extra space
on the right is padded with blanks. Column 2, however, is defined as a varying-length
field with a maximum length of 5 bytes. The data for that column (bbb) is left-justified
as well, but the length remains 3 bytes.

The table "Behavior Summary for Trimming Whitespace" summarizes when and how
whitespace is removed from input data fields when PRESERVE BLANKS is not specified.
See How the PRESERVE BLANKS Option Affects Whitespace Trimming for details
about how to prevent whitespace trimming.

Table 10-5 Behavior Summary for Trimming Whitespace

Specification Data Result Leading
Whitespace
Present (When
an all-blank field
is trimmed, its
value is NULL.

Trailing
Whitespace
Present (When an
all-blank field is
trimmed, its value
is NULL.)

Predetermined size __aa__ __aa Yes No

Terminated __aa__, __aa__ Yes Yes, except for fields
that are terminated
by whitespace.

Enclosed "__aa__" __aa__ Yes Yes

Terminated and
enclosed

"__aa__"
,

__aa__ Yes Yes

Chapter 10
Trimming Whitespace

10-53

Table 10-5 (Cont.) Behavior Summary for Trimming Whitespace

Specification Data Result Leading
Whitespace
Present (When
an all-blank field
is trimmed, its
value is NULL.

Trailing
Whitespace
Present (When an
all-blank field is
trimmed, its value
is NULL.)

Optional enclosure
(present)

"__aa__"
,

__aa__ Yes Yes

Optional enclosure
(absent)

__aa__, aa__ No Yes

Previous field
terminated by
whitespace

__aa__ aa (Presence of
trailing whitespace
depends on the
current field's
specification, as
shown by the other
entries in the table.)

No Presence of trailing
whitespace depends
on the current field's
specification, as
shown by the other
entries in the table.

The rest of this section discusses the following topics with regard to trimming
whitespace:

• Data Types for Which Whitespace Can Be Trimmed
The information in this section applies only to fields specified with one of the
character-data data types.

• Specifying Field Length for Data Types for Which Whitespace Can Be Trimmed
This section describes specifying field length.

• Relative Positioning of Fields
This section describes the relative positioning of fields.

• Leading Whitespace
This section describes leading whitespace.

• Trimming Trailing Whitespace
Trailing whitespace is always trimmed from character-data fields that have a
predetermined size.

• Trimming Enclosed Fields
This section describes trimming enclosed fields.

10.11.1 Data Types for Which Whitespace Can Be Trimmed
The information in this section applies only to fields specified with one of the character-
data data types.

• CHAR data type

• Datetime and interval data types

• Numeric EXTERNAL data types:

– INTEGER EXTERNAL

– FLOAT EXTERNAL

– (packed) DECIMAL EXTERNAL

Chapter 10
Trimming Whitespace

10-54

– ZONED (decimal) EXTERNAL

Note:

Although VARCHAR and VARCHARC fields also contain character data,
these fields are never trimmed. These fields include all whitespace
that is part of the field in the data file.

10.11.2 Specifying Field Length for Data Types for Which Whitespace
Can Be Trimmed

This section describes specifying field length.

There are two ways to specify field length. If a field has a constant length that is
defined in the control file with a position specification or the data type and length, then
it has a predetermined size. If a field's length is not known in advance, but depends on
indicators in the record, then the field is delimited, using either enclosure or
termination delimiters.

If a position specification with start and end values is defined for a field that also has
enclosure or termination delimiters defined, then only the position specification has
any effect. The enclosure and termination delimiters are ignored.

• Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and
ending position, or with a length.

• Delimited Fields
Delimiters are characters that demarcate field boundaries.

10.11.2.1 Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and ending
position, or with a length.

For example:

loc POSITION(19:31)
loc CHAR(14)

In the second case, even though the exact position of the field is not specified, the
length of the field is predetermined.

10.11.2.2 Delimited Fields
Delimiters are characters that demarcate field boundaries.

Enclosure delimiters surround a field, like the quotation marks in the following
example, where "__" represents blanks or tabs:

"__aa__"

Termination delimiters signal the end of a field, like the comma in the following
example:

Chapter 10
Trimming Whitespace

10-55

__aa__,

Delimiters are specified with the control clauses TERMINATED BY and ENCLOSED BY, as
shown in the following example:

loc TERMINATED BY "." OPTIONALLY ENCLOSED BY '|'

10.11.3 Relative Positioning of Fields
This section describes the relative positioning of fields.

SQL*Loader determines the starting position of a field in the following situations:

• No Start Position Specified for a Field
When a starting position is not specified for a field, it begins immediately after the
end of the previous field.

• Previous Field Terminated by a Delimiter
If the previous field (Field 1) is terminated by a delimiter, then the next field begins
immediately after the delimiter.

• Previous Field Has Both Enclosure and Termination Delimiters
When a field is specified with both enclosure delimiters and a termination delimiter,
then the next field starts after the termination delimiter.

10.11.3.1 No Start Position Specified for a Field
When a starting position is not specified for a field, it begins immediately after the end
of the previous field.

The following figure illustrates this situation when the previous field (Field 1) has a
predetermined size.

Figure 10-2 Relative Positioning After a Fixed Field

Field 1 CHAR(9)

 a a a a

 b b b b ,

Field 2 TERMINATED BY ","

10.11.3.2 Previous Field Terminated by a Delimiter
If the previous field (Field 1) is terminated by a delimiter, then the next field begins
immediately after the delimiter.

For example:Figure 10-3.

Figure 10-3 Relative Positioning After a Delimited Field

 a a a a ,

 b b b b ,

Field 2 TERMINATED BY ","Field 1 TERMINATED BY ","

Chapter 10
Trimming Whitespace

10-56

10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters
When a field is specified with both enclosure delimiters and a termination delimiter,
then the next field starts after the termination delimiter.

For example:Figure 10-4. If a nonwhitespace character is found after the enclosure
delimiter, but before the terminator, then SQL*Loader generates an error.

Figure 10-4 Relative Positioning After Enclosure Delimiters

 "

 a a a a "

,
 b b b b ,

Field 2 TERMINATED BY ","

Field 1 TERMINATED BY ","

ENCLOSED BY ' " '

10.11.4 Leading Whitespace
This section describes leading whitespace.

In Figure 10-4, both fields are stored with leading whitespace. Fields do not include
leading whitespace in the following cases:

• When the previous field is terminated by whitespace, and no starting position is
specified for the current field

• When optional enclosure delimiters are specified for the field, and the enclosure
delimiters are not present

These cases are illustrated in the following sections.

• Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all whitespace after the
field acts as the delimiter.

• Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure
delimiters are specified but not present.

10.11.4.1 Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all whitespace after the field
acts as the delimiter.

The next field starts at the next nonwhitespace character. Figure 10-5 illustrates this
case.

Figure 10-5 Fields Terminated by Whitespace

 a a a a

 b b b b

Field 2 TERMINATED

BY WHITESPACE

Field 1 TERMINATED

BY WHITESPACE

Chapter 10
Trimming Whitespace

10-57

This situation occurs when the previous field is explicitly specified with the TERMINATED
BY WHITESPACE clause, as shown in the example. It also occurs when you use the
global FIELDS TERMINATED BY WHITESPACE clause.

10.11.4.2 Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure delimiters
are specified but not present.

Whenever optional enclosure delimiters are specified, SQL*Loader scans forward,
looking for the first enclosure delimiter. If an enclosure delimiter is not found, then
SQL*Loader skips over whitespace, eliminating it from the field. The first
nonwhitespace character signals the start of the field. This situation is shown in Field 2
in Figure 10-6. (In Field 1 the whitespace is included because SQL*Loader found
enclosure delimiters for the field.)

Figure 10-6 Fields Terminated by Optional Enclosure Delimiters

 "

 a a a a " ,

 b b b b ,

Field 2 TERMINATED BY " , "

OPTIONALLY ENCLOSED BY ' " '

Field 1 TERMINATED BY " , "

OPTIONALLY ENCLOSED BY ' " '

Unlike the case when the previous field is TERMINATED BY WHITESPACE, this
specification removes leading whitespace even when a starting position is specified for
the current field.

Note:

If enclosure delimiters are present, then leading whitespace after the initial
enclosure delimiter is kept, but whitespace before this delimiter is discarded.
See the first quotation mark in Field 1, Figure 10-6.

10.11.5 Trimming Trailing Whitespace
Trailing whitespace is always trimmed from character-data fields that have a
predetermined size.

These are the only fields for which trailing whitespace is always trimmed.

10.11.6 Trimming Enclosed Fields
This section describes trimming enclosed fields.

If a field is enclosed, or terminated and enclosed, like the first field shown in
Figure 10-6, then any whitespace outside the enclosure delimiters is not part of the
field. Any whitespace between the enclosure delimiters belongs to the field, whether it
is leading or trailing whitespace.

Chapter 10
Trimming Whitespace

10-58

10.12 How the PRESERVE BLANKS Option Affects
Whitespace Trimming

To prevent whitespace trimming in all CHAR, DATE, and numeric EXTERNAL fields, you
specify PRESERVE BLANKS as part of the LOAD statement in the control file.

However, there may be times when you do not want to preserve blanks for all CHAR,
DATE, and numeric EXTERNAL fields. Therefore, SQL*Loader also enables you to specify
PRESERVE BLANKS as part of the data type specification for individual fields, rather than
specifying it globally as part of the LOAD statement.

In the following example, assume that PRESERVE BLANKS has not been specified as part
of the LOAD statement, but you want the c1 field to default to zero when blanks are
present. You can achieve this by specifying PRESERVE BLANKS on the individual field.
Only that field is affected; blanks will still be removed on other fields.

c1 INTEGER EXTERNAL(10) PRESERVE BLANKS DEFAULTIF c1=BLANKS

In this example, if PRESERVE BLANKS were not specified for the field, then it would result
in the field being improperly loaded as NULL (instead of as 0).

There may be times when you want to specify PRESERVE BLANKS as an option to the
LOAD statement and have it apply to most CHAR, DATE, and numeric EXTERNAL fields.
You can override it for an individual field by specifying NO PRESERVE BLANKS as part of
the data type specification for that field, as follows:

c1 INTEGER EXTERNAL(10) NO PRESERVE BLANKS

10.13 How [NO] PRESERVE BLANKS Works with Delimiter
Clauses

The PRESERVE BLANKS option is affected by the presence of delimiter clauses

Delimiter clauses affect PRESERVE BLANKS in the following cases:

• Leading whitespace is left intact when optional enclosure delimiters are not
present

• Trailing whitespace is left intact when fields are specified with a predetermined
size

For example, consider the following field, where underscores represent blanks:

__aa__,

Suppose this field is loaded with the following delimiter clause:

TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

In such a case, if PRESERVE BLANKS is specified, then both the leading whitespace and
the trailing whitespace are retained. If PRESERVE BLANKS is not specified, then the
leading whitespace is trimmed.

Now suppose the field is loaded with the following clause:

Chapter 10
How the PRESERVE BLANKS Option Affects Whitespace Trimming

10-59

TERMINATED BY WHITESPACE

In such a case, if PRESERVE BLANKS is specified, then it does not retain the space at the
beginning of the next field, unless that field is specified with a POSITION clause that
includes some of the whitespace. Otherwise, SQL*Loader scans past all whitespace at
the end of the previous field until it finds a nonblank, nontab character.

Related Topics

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line
feeds) constitute whitespace.

10.14 Applying SQL Operators to Fields
This section describes applying SQL operators to fields.

A wide variety of SQL operators can be applied to field data with the SQL string. This
string can contain any combination of SQL expressions that are recognized by the
Oracle database as valid for the VALUES clause of an INSERT statement. In general, any
SQL function that returns a single value that is compatible with the target column's
data type can be used. SQL strings can be applied to simple scalar column types and
also to user-defined complex types such as column objects and collections.

The column name and the name of the column in a SQL string bind variable must, with
the interpretation of SQL identifier rules, correspond to the same column. But the two
names do not necessarily have to be written exactly the same way, as in the following
example:

LOAD DATA
INFILE *
APPEND INTO TABLE XXX
("Last" position(1:7) char "UPPER(:\"Last\")"
 first position(8:15) char "UPPER(:first || :FIRST || :\"FIRST\")"
)
BEGINDATA
Grant Phil
Taylor Jason

Note the following about the preceding example:

• If, during table creation, a column identifier is declared using double quotation
marks because it contains lowercase and/or special-case letters (as in the column
named "Last" above), then the column name in the bind variable must exactly
match the column name used in the CREATE TABLE statement.

• If a column identifier is declared without double quotation marks during table
creation (as in the column name first above), then because first, FIRST, and
"FIRST" all resolve to FIRST after upper casing is done, any of these written
formats in a SQL string bind variable would be acceptable.

Note the following when you are using SQL strings:

• The execution of SQL strings is not considered to be part of field setting. Rather,
when the SQL string is executed it uses the result of any field setting and NULLIF
or DEFAULTIF clauses. So, the evaluation order is as follows (steps 1 and 2 are a
summary of the steps described in Using the WHEN_ NULLIF_ and DEFAULTIF
Clauses):

Chapter 10
Applying SQL Operators to Fields

10-60

1. Field setting is done.

2. Any NULLIF or DEFAULTIF clauses are applied (and that may change the field
setting results for the fields that have such clauses). When NULLIF and
DEFAULTIF clauses are used with a SQL expression, they affect the field
setting results, not the final column results.

3. Any SQL expressions are evaluated using the field results obtained after
completion of Steps 1 and 2. The results are assigned to the corresponding
columns that have the SQL expressions. (If there is no SQL expression
present, then the result obtained from Steps 1 and 2 is assigned to the
column.)

• If your control file specifies character input that has an associated SQL string, then
SQL*Loader makes no attempt to modify the data. This is because SQL*Loader
assumes that character input data that is modified using a SQL operator will yield
results that are correct for database insertion.

• The SQL string must appear after any other specifications for a given column.

• The SQL string must be enclosed in double quotation marks.

• To enclose a column name in quotation marks within a SQL string, you must use
escape characters.

In the preceding example, Last is enclosed in double quotation marks to preserve
the mixed case, and the double quotation marks necessitate the use of the
backslash (escape) character.

• If a SQL string contains a column name that references a column object attribute,
then the full object attribute name must be used in the bind variable. Each attribute
name in the full name is an individual identifier. Each identifier is subject to the
SQL identifier quoting rules, independent of the other identifiers in the full name.
For example, suppose you have a column object named CHILD with an attribute
name of "HEIGHT_%TILE". (Note that the attribute name is in double quotation
marks.) To use the full object attribute name in a bind variable, any one of the
following formats would work:

– :CHILD.\"HEIGHT_%TILE\"

– :child.\"HEIGHT_%TILE\"

Enclosing the full name (:\"CHILD.HEIGHT_%TILE\") generates a warning
message that the quoting rule on an object attribute name used in a bind variable
has changed. The warning is only to suggest that the bind variable be written
correctly; it will not cause the load to abort. The quoting rule was changed
because enclosing the full name in quotation marks would have caused SQL to
interpret the name as one identifier rather than a full column object attribute name
consisting of multiple identifiers.

• The SQL string is evaluated after any NULLIF or DEFAULTIF clauses, but before a
date mask.

• If the Oracle database does not recognize the string, then the load terminates in
error. If the string is recognized, but causes a database error, then the row that
caused the error is rejected.

• SQL strings are required when using the EXPRESSION parameter in a field
specification.

• The SQL string cannot reference fields that are loaded using OID, SID, REF, or
BFILE. Also, it cannot reference filler fields or other fields which use SQL strings.

Chapter 10
Applying SQL Operators to Fields

10-61

• In direct path mode, a SQL string cannot reference a VARRAY, nested table, or LOB
column. This also includes a VARRAY, nested table, or LOB column that is an
attribute of a column object.

• The SQL string cannot be used on RECNUM, SEQUENCE, CONSTANT, or SYSDATE fields.

• The SQL string cannot be used on LOBs, BFILEs, XML columns, or a file that is an
element of a collection.

• In direct path mode, the final result that is returned after evaluation of the
expression in the SQL string must be a scalar data type. That is, the expression
may not return an object or collection data type when performing a direct path
load.

• Referencing Fields
To refer to fields in the record, precede the field name with a colon (:).

• Common Uses of SQL Operators in Field Specifications
This section describes the common uses of SQL operators in field specifications.

• Combinations of SQL Operators
This section describes combining SQL operators.

• Using SQL Strings with a Date Mask
When a SQL string is used with a date mask, the date mask is evaluated after the
SQL string.

• Interpreting Formatted Fields
It is possible to use the TO_CHAR operator to store formatted dates and numbers.

• Using SQL Strings to Load the ANYDATA Database Type
The ANYDATA database type can contain data of different types.

10.14.1 Referencing Fields
To refer to fields in the record, precede the field name with a colon (:).

Field values from the current record are substituted. A field name preceded by a colon
(:) in a SQL string is also referred to as a bind variable. Note that bind variables
enclosed in single quotation marks are treated as text literals, not as bind variables.

The following example illustrates how a reference is made to both the current field and
to other fields in the control file. It also illustrates how enclosing bind variables in single
quotation marks causes them to be treated as text literals. Be sure to read the notes
following this example to help you fully understand the concepts it illustrates.

LOAD DATA
INFILE *
APPEND INTO TABLE YYY
(
 field1 POSITION(1:6) CHAR "LOWER(:field1)"
 field2 CHAR TERMINATED BY ','
 NULLIF ((1) = 'a') DEFAULTIF ((1)= 'b')
 "RTRIM(:field2)",
 field3 CHAR(7) "TRANSLATE(:field3, ':field1', ':1')",
 field4 COLUMN OBJECT
 (
 attr1 CHAR(3) NULLIF field4.attr2='ZZ' "UPPER(:field4.attr3)",
 attr2 CHAR(2),
 attr3 CHAR(3) ":field4.attr1 + 1"
),

Chapter 10
Applying SQL Operators to Fields

10-62

 field5 EXPRESSION "MYFUNC(:FIELD4, SYSDATE)"
)
BEGINDATA
ABCDEF1234511 ,:field1500YYabc
abcDEF67890 ,:field2600ZZghl

Notes About This Example:

• In the following line, :field1 is not enclosed in single quotation marks and is
therefore interpreted as a bind variable:

field1 POSITION(1:6) CHAR "LOWER(:field1)"

• In the following line, ':field1' and ':1' are enclosed in single quotation marks
and are therefore treated as text literals and passed unchanged to the TRANSLATE
function:

field3 CHAR(7) "TRANSLATE(:field3, ':field1', ':1')"

For more information about the use of quotation marks inside quoted strings, see
Specifying File Names and Object Names.

• For each input record read, the value of the field referenced by the bind variable
will be substituted for the bind variable. For example, the value ABCDEF in the first
record is mapped to the first field :field1. This value is then passed as an
argument to the LOWER function.

• A bind variable in a SQL string need not reference the current field. In the
preceding example, the bind variable in the SQL string for the field4.attr1 field
references the field4.attr3 field. The field4.attr1 field is still mapped to the
values 500 and NULL (because the NULLIF field4.attr2='ZZ' clause is TRUE for
the second record) in the input records, but the final values stored in its
corresponding columns are ABC and GHL.

The field4.attr3 field is mapped to the values ABC and GHL in the input
records, but the final values stored in its corresponding columns are 500 + 1 = 501
and NULL because the SQL expression references field4.attr1. (Adding 1 to a
NULL field still results in a NULL field.)

• The field5 field is not mapped to any field in the input record. The value that is
stored in the target column is the result of executing the MYFUNC PL/SQL function,
which takes two arguments. The use of the EXPRESSION parameter requires that a
SQL string be used to compute the final value of the column because no input
data is mapped to the field.

10.14.2 Common Uses of SQL Operators in Field Specifications
This section describes the common uses of SQL operators in field specifications.

SQL operators are commonly used for the following tasks:

• Loading external data with an implied decimal point:

 field1 POSITION(1:9) DECIMAL EXTERNAL(8) ":field1/1000"

• Truncating fields that could be too long:

 field1 CHAR TERMINATED BY "," "SUBSTR(:field1, 1, 10)"

Chapter 10
Applying SQL Operators to Fields

10-63

10.14.3 Combinations of SQL Operators
This section describes combining SQL operators.

Multiple operators can also be combined, as in the following examples:

field1 POSITION(*+3) INTEGER EXTERNAL
 "TRUNC(RPAD(:field1,6,'0'), -2)"
field1 POSITION(1:8) INTEGER EXTERNAL
 "TRANSLATE(RTRIM(:field1),'N/A', '0')"
field1 CHAR(10)
 "NVL(LTRIM(RTRIM(:field1)), 'unknown')"

10.14.4 Using SQL Strings with a Date Mask
When a SQL string is used with a date mask, the date mask is evaluated after the SQL
string.

Consider a field specified as follows:

field1 DATE "dd-mon-yy" "RTRIM(:field1)"

SQL*Loader internally generates and inserts the following:

TO_DATE(RTRIM(<field1_value>), 'dd-mon-yyyy')

Note that when using the DATE field data type with a SQL string, a date mask is
required. This is because SQL*Loader assumes that the first quoted string it finds after
the DATE parameter is a date mask. For instance, the following field specification would
result in an error (ORA-01821: date format not recognized):

field1 DATE "RTRIM(TO_DATE(:field1, 'dd-mon-yyyy'))"

In this case, a simple workaround is to use the CHAR data type.

10.14.5 Interpreting Formatted Fields
It is possible to use the TO_CHAR operator to store formatted dates and numbers.

For example:

field1 ... "TO_CHAR(:field1, '$09999.99')"

This example could store numeric input data in formatted form, where field1 is a
character column in the database. This field would be stored with the formatting
characters (dollar sign, period, and so on) already in place.

You have even more flexibility, however, if you store such values as numeric quantities
or dates. You can then apply arithmetic functions to the values in the database, and
still select formatted values for your reports.

An example of using the SQL string to load data from a formatted report is shown in
case study 7, Extracting Data from a Formatted Report. (See SQL*Loader Case
Studies for information on how to access case studies.)

Chapter 10
Applying SQL Operators to Fields

10-64

10.14.6 Using SQL Strings to Load the ANYDATA Database Type
The ANYDATA database type can contain data of different types.

To load the ANYDATA type using SQL*loader, it must be explicitly constructed by using
a function call. The function is called using support for SQL strings as has been
described in this section.

For example, suppose you have a table with a column named miscellaneous which is
of type ANYDATA. You could load the column by doing the following, which would create
an ANYDATA type containing a number.

LOAD DATA
INFILE *
APPEND INTO TABLE ORDERS
(
miscellaneous CHAR "SYS.ANYDATA.CONVERTNUMBER(:miscellaneous)"
)
BEGINDATA
4

There can also be more complex situations in which you create an ANYDATA type that
contains a different type depending upon the values in the record. To do this, you
could write your own PL/SQL function that would determine what type should be in the
ANYDATA type, based on the value in the record, and then call the appropriate
ANYDATA.Convert*() function to create it.

See Also:

• Oracle Database SQL Language Reference for more information about
the ANYDATA database type

• Oracle Database PL/SQL Packages and Types Reference for more
information about using ANYDATA with PL/SQL

10.15 Using SQL*Loader to Generate Data for Input
The parameters described in this section provide the means for SQL*Loader to
generate the data stored in the database record, rather than reading it from a data file.

The following parameters are described:

• Loading Data Without Files
This section describes loading data without files.

• Setting a Column to a Constant Value
Setting a column to a constant value is the simplest form of generated data.

• Setting a Column to an Expression Value
Use the EXPRESSION parameter after a column name to set that column to the
value returned by a SQL operator or specially written PL/SQL function.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-65

• Setting a Column to the Data File Record Number
Use the RECNUM parameter after a column name to set that column to the number
of the logical record from which that record was loaded.

• Setting a Column to the Current Date
A column specified with SYSDATE gets the current system date, as defined by the
SQL language SYSDATE parameter.

• Setting a Column to a Unique Sequence Number
The SEQUENCE parameter ensures a unique value for a particular column. SEQUENCE
increments for each record that is loaded or rejected.

• Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record,
rather than for each table insert, the same sequence number can be used when
inserting data into multiple tables.

10.15.1 Loading Data Without Files
This section describes loading data without files.

It is possible to use SQL*Loader to generate data by specifying only sequences,
record numbers, system dates, constants, and SQL string expressions as field
specifications.

SQL*Loader inserts as many records as are specified by the LOAD statement. The SKIP
parameter is not permitted in this situation.

SQL*Loader is optimized for this case. Whenever SQL*Loader detects that only
generated specifications are used, it ignores any specified data file—no read I/O is
performed.

In addition, no memory is required for a bind array. If there are any WHEN clauses in the
control file, then SQL*Loader assumes that data evaluation is necessary, and input
records are read.

10.15.2 Setting a Column to a Constant Value
Setting a column to a constant value is the simplest form of generated data.

It does not vary during the load or between loads.

• CONSTANT Parameter

10.15.2.1 CONSTANT Parameter
To set a column to a constant value, use CONSTANT followed by a value:

CONSTANT value

CONSTANT data is interpreted by SQL*Loader as character input. It is converted, as
necessary, to the database column type.

You may enclose the value within quotation marks, and you must do so if it contains
whitespace or reserved words. Be sure to specify a legal value for the target column. If
the value is bad, then every record is rejected.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-66

Numeric values larger than 2^32 - 1 (4,294,967,295) must be enclosed in quotation
marks.

Note:

Do not use the CONSTANT parameter to set a column to null. To set a column
to null, do not specify that column at all. Oracle automatically sets that
column to null when loading the record. The combination of CONSTANT and a
value is a complete column specification.

10.15.3 Setting a Column to an Expression Value
Use the EXPRESSION parameter after a column name to set that column to the value
returned by a SQL operator or specially written PL/SQL function.

The operator or function is indicated in a SQL string that follows the EXPRESSION
parameter. Any arbitrary expression may be used in this context provided that any
parameters required for the operator or function are correctly specified and that the
result returned by the operator or function is compatible with the data type of the
column being loaded.

• EXPRESSION Parameter

10.15.3.1 EXPRESSION Parameter
The combination of column name, EXPRESSION parameter, and a SQL string is a
complete field specification:

column_name EXPRESSION "SQL string"

In both conventional path mode and direct path mode, the EXPRESSION parameter can
be used to load the default value into column_name:

column_name EXPRESSION "DEFAULT"

Note that if DEFAULT is used and the mode is direct path, then use of a sequence as a
default will not work.

10.15.4 Setting a Column to the Data File Record Number
Use the RECNUM parameter after a column name to set that column to the number of
the logical record from which that record was loaded.

Records are counted sequentially from the beginning of the first data file, starting with
record 1. RECNUM is incremented as each logical record is assembled. Thus it
increments for records that are discarded, skipped, rejected, or loaded. If you use the
option SKIP=10, then the first record loaded has a RECNUM of 11.

• RECNUM Parameter
The combination of column name and RECNUM is a complete column specification.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-67

10.15.4.1 RECNUM Parameter
The combination of column name and RECNUM is a complete column specification.

For example:

column_name RECNUM

10.15.5 Setting a Column to the Current Date
A column specified with SYSDATE gets the current system date, as defined by the SQL
language SYSDATE parameter.

See the section on the DATE data type in Oracle Database SQL Language Reference.

• SYSDATE Parameter
The combination of column name and the SYSDATE parameter is a complete
column specification.

10.15.5.1 SYSDATE Parameter
The combination of column name and the SYSDATE parameter is a complete column
specification.

For example:

column_name SYSDATE

The database column must be of type CHAR or DATE. If the column is of type CHAR, then
the date is loaded in the form 'dd-mon-yy.' After the load, it can be loaded only in that
form. If the system date is loaded into a DATE column, then it can be loaded in a variety
of forms that include the time and the date.

A new system date/time is used for each array of records inserted in a conventional
path load and for each block of records loaded during a direct path load.

10.15.6 Setting a Column to a Unique Sequence Number
The SEQUENCE parameter ensures a unique value for a particular column. SEQUENCE
increments for each record that is loaded or rejected.

It does not increment for records that are discarded or skipped.

• SEQUENCE Parameter

10.15.6.1 SEQUENCE Parameter
The combination of column name and the SEQUENCE parameter is a complete column
specification.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-68

column_name SEQUENCE (

COUNT

MAX

integer

, incr

)

Table 10-6 describes the parameters used for column specification.

Table 10-6 Parameters Used for Column Specification

Parameter Description

column_name The name of the column in the database to which to assign the
sequence.

SEQUENCE Use the SEQUENCE parameter to specify the value for a column.

COUNT The sequence starts with the number of records already in the
table plus the increment.

MAX The sequence starts with the current maximum value for the
column plus the increment.

integer Specifies the specific sequence number to begin with.

incr The value that the sequence number is to increment after a
record is loaded or rejected. This is optional. The default is 1.

If a record is rejected (that is, it has a format error or causes an Oracle error), then the
generated sequence numbers are not reshuffled to mask this. If four rows are
assigned sequence numbers 10, 12, 14, and 16 in a particular column, and the row
with 12 is rejected, then the three rows inserted are numbered 10, 14, and 16, not 10,
12, and 14. This allows the sequence of inserts to be preserved despite data errors.
When you correct the rejected data and reinsert it, you can manually set the columns
to agree with the sequence.

Case study 3, Loading a Delimited Free-Format File, provides an example of using the
SEQUENCE parameter. (See SQL*Loader Case Studies for information on how to access
case studies.)

10.15.7 Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record, rather
than for each table insert, the same sequence number can be used when inserting
data into multiple tables.

This is frequently useful.

Sometimes, however, you might want to generate different sequence numbers for
each INTO TABLE clause. For example, your data format might define three logical
records in every input record. In that case, you can use three INTO TABLE clauses,
each of which inserts a different part of the record into the same table. When you use
SEQUENCE(MAX), SQL*Loader will use the maximum from each table, which can lead to
inconsistencies in sequence numbers.

To generate sequence numbers for these records, you must generate unique numbers
for each of the three inserts. Use the number of table-inserts per record as the

Chapter 10
Using SQL*Loader to Generate Data for Input

10-69

sequence increment, and start the sequence numbers for each insert with successive
numbers.

• Example: Generating Different Sequence Numbers for Each Insert

10.15.7.1 Example: Generating Different Sequence Numbers for Each Insert
Suppose you want to load the following department names into the dept table. Each
input record contains three department names, and you want to generate the
department numbers automatically.

Accounting Personnel Manufacturing
Shipping Purchasing Maintenance
...

You could use the following control file entries to generate unique department
numbers:

INTO TABLE dept
(deptno SEQUENCE(1, 3),
 dname POSITION(1:14) CHAR)
INTO TABLE dept
(deptno SEQUENCE(2, 3),
 dname POSITION(16:29) CHAR)
INTO TABLE dept
(deptno SEQUENCE(3, 3),
 dname POSITION(31:44) CHAR)

The first INTO TABLE clause generates department number 1, the second number 2,
and the third number 3. They all use 3 as the sequence increment (the number of
department names in each record). This control file loads Accounting as department
number 1, Personnel as 2, and Manufacturing as 3.

The sequence numbers are then incremented for the next record, so Shipping loads
as 4, Purchasing as 5, and so on.

Chapter 10
Using SQL*Loader to Generate Data for Input

10-70

11
Loading Objects, LOBs, and Collections
with SQL*Loader

You can use SQL*Loader to load column objects in various formats and to load object
tables, REF columns, LOBs, and collections.

• Loading Column Objects
You can use SQL*Loader to load obects of a specific object type. An object
column is a column that is based on an object type.

• Loading Object Tables with SQL*Loader
Learn how to load and manage object tables in Oracle Database instances using
object identifiers (OIDs).

• Loading REF Columns with SQL*Loader
SQL*Loader can load system-generated OID REF columns, primary-key-based REF
columns, and unscoped REF columns that allow primary keys.

• Loading LOBs with SQL*Loader
Find out which large object types (LOBs) SQL*Loader can load, and see examples
of how to load LOB Data.

• Loading BFILE Columns with SQL*Loader
The BFILE data type stores unstructured binary data in operating system files
outside the database.

• Loading Collections (Nested Tables and VARRAYs)
With collections, you can load a set of nested tables, or a VARRAY with an ordered
set of elements using SQL*Loader.

• Choosing Dynamic or Static SDF Specifications
With SQL*Loader, you can specify SDFs either statically (specifying the actual
name of the file), or dynamically (using a FILLER field as the source of the file
name).

• Loading a Parent Table Separately from Its Child Table
When you load a table that contains a nested table column, it may be possible to
load the parent table separately from the child table.

11.1 Loading Column Objects
You can use SQL*Loader to load obects of a specific object type. An object column is
a column that is based on an object type.

• Understanding Column Object Attributes
Column objects in the SQL*Loader control file are described in terms of their
attributes. An object type can have many attributes.

• Loading Column Objects in Stream Record Format
With stream record formats, you can use SQL*Loader to load records with multi-
line fields by specifying a delimitor on column objects.

11-1

• Loading Column Objects in Variable Record Format
You can load column objects in variable record format.

• Loading Nested Column Objects
You can load nested column objects.

• Loading Column Objects with a Derived Subtype
You can load column objects with a derived subtype.

• Specifying Null Values for Objects
You can specify null values for objects.

• Loading Column Objects with User-Defined Constructors
You can load column objects with user-defined constructors.

11.1.1 Understanding Column Object Attributes
Column objects in the SQL*Loader control file are described in terms of their
attributes. An object type can have many attributes.

If you declare that the object type on which the column object is based is nonfinal, then
the column object in the control file can be described in terms of the attributes, both
derived and declared, of any subtype derived from the base object type. In the data
file, the data corresponding to each of the attributes of a column object is in a data
field similar to that corresponding to a simple relational column.

Note:

With SQL*Loader support for complex data types such as column objects,
the possibility arises that two identical field names could exist in the control
file, one corresponding to a column, the other corresponding to a column
object's attribute. Certain clauses can refer to fields (for example, WHEN,
NULLIF, DEFAULTIF, SID, OID, REF, BFILE, and so on), which can cause a
naming conflict if identically named fields exist in the control file.

Therefore, if you use clauses that refer to fields, then you must specify the
full name. For example, if field fld1 is specified to be a COLUMN OBJECT, and
it contains field fld2, then when you specify fld2 in a clause such as
NULLIF, you must use the full field name fld1.fld2.

11.1.2 Loading Column Objects in Stream Record Format
With stream record formats, you can use SQL*Loader to load records with multi-line
fields by specifying a delimitor on column objects.

In stream record format, SQL*Loader forms records by scanning for the record
terminator. To show how to use stream record formats, consider the following
example, in which the data is in predetermined size fields. The newline character
marks the end of a physical record. You can also mark the end of a physical record by
using a custom record separator in the operating system file-processing clause
(os_file_proc_clause).

Chapter 11
Loading Column Objects

11-2

Example 11-1 Loading Column Objects in Stream Record Format

Control File Contents

LOAD DATA
INFILE 'example.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR,
1 dept_mgr COLUMN OBJECT
 (name POSITION(17:33) CHAR,
 age POSITION(35:37) INTEGER EXTERNAL,
 emp_id POSITION(40:46) INTEGER EXTERNAL))

Data File (example.dat)

101 Mathematics Johnny Quest 30 1024
237 Physics Albert Einstein 65 0000

In the example, note the callout 1 at dept_mgr COLUMN OBJECT. You can apply this type
of column object specification recursively to describe nested column objects.

11.1.3 Loading Column Objects in Variable Record Format
You can load column objects in variable record format.

Example 11-2 shows a case in which the data is in delimited fields.

Example 11-2 Loading Column Objects in Variable Record Format

Control File Contents

LOAD DATA
1 INFILE 'sample.dat' "var 6"
INTO TABLE departments
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
2 (dept_no
 dept_name,
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(5),
 emp_id INTEGER EXTERNAL(5)))

Data File (sample.dat)

3 000034101,Mathematics,Johny Q.,30,1024,
 000039237,Physics,"Albert Einstein",65,0000,

Chapter 11
Loading Column Objects

11-3

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The "var" string includes the number of bytes in the length field at the
beginning of each record (in this example, the number is 6). If no value is
specified, then the default is 5 bytes. The maximum size of a variable
record is 2^32-1. Specifying larger values will result in an error.

2. Although no positional specifications are given, the general syntax
remains the same (the column object's name followed by the list of its
attributes enclosed in parentheses). Also note that an omitted type
specification defaults to CHAR of length 255.

3. The first 6 bytes (italicized) specify the length of the forthcoming record.
These length specifications include the newline characters, which are
ignored thanks to the terminators after the emp_id field.

11.1.4 Loading Nested Column Objects
You can load nested column objects.

Example 11-3 shows a control file describing nested column objects (one column
object nested in another column object).

Example 11-3 Loading Nested Column Objects

Control File Contents

LOAD DATA
INFILE `sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr COLUMN OBJECT
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(7),
1 em_contact COLUMN OBJECT
 (name CHAR(30),
 phone_num CHAR(20))))

Data File (sample.dat)

101,Mathematics,Johny Q.,30,1024,"Barbie",650-251-0010,
237,Physics,"Albert Einstein",65,0000,Wife Einstein,654-3210,

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. This entry specifies a column object nested within a column object.

Chapter 11
Loading Column Objects

11-4

11.1.5 Loading Column Objects with a Derived Subtype
You can load column objects with a derived subtype.

Example 11-4 shows a case in which a nonfinal base object type has been extended
to create a new derived subtype. Although the column object in the table definition is
declared to be of the base object type, SQL*Loader allows any subtype to be loaded
into the column object, provided that the subtype is derived from the base object type.

Example 11-4 Loading Column Objects with a Subtype

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5));

CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 person person_type);

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE personnel
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
1 person COLUMN OBJECT TREAT AS employee_type
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
2 empid INTEGER EXTERNAL(5)))

Data File (sample.dat)

101,Mathematics,Johny Q.,301189453,10249,
237,Physics,"Albert Einstein",128606590,10030,

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The TREAT AS clause indicates that SQL*Loader should treat the column
object person as if it were declared to be of the derived type
employee_type, instead of its actual declared type, person_type.

2. The empid attribute is allowed here because it is an attribute of the
employee_type. If the TREAT AS clause had not been specified, then this
attribute would have resulted in an error, because it is not an attribute of
the column's declared type.

Chapter 11
Loading Column Objects

11-5

11.1.6 Specifying Null Values for Objects
You can specify null values for objects.

Specifying null values for nonscalar data types is somewhat more complex than for
scalar data types. An object can have a subset of its attributes be null, it can have all
of its attributes be null (an attributively null object), or it can be null itself (an atomically
null object).

• Specifying Attribute Nulls
You can specify attribute nulls.

• Specifying Atomic Nulls
You can specify atomic nulls.

11.1.6.1 Specifying Attribute Nulls
You can specify attribute nulls.

In fields corresponding to column objects, you can use the NULLIF clause to specify
the field conditions under which a particular attribute should be initialized to NULL.
Example 11-5 demonstrates this.

Example 11-5 Specifying Attribute Nulls Using the NULLIF Clause

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments
 (dept_no POSITION(01:03) CHAR,
 dept_name POSITION(05:15) CHAR NULLIF dept_name=BLANKS,
 dept_mgr COLUMN OBJECT
1 (name POSITION(17:33) CHAR NULLIF dept_mgr.name=BLANKS,
1 age POSITION(35:37) INTEGER EXTERNAL NULLIF dept_mgr.age=BLANKS,
1 emp_id POSITION(40:46) INTEGER EXTERNAL NULLIF dept_mgr.empid=BLANKS))

Data File (sample.dat)

2 101 Johny Quest 1024
 237 Physics Albert Einstein 65 0000

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The NULLIF clause corresponding to each attribute states the condition
under which the attribute value should be NULL

2. The age attribute of the dept_mgr value is null. The dept_name value is
also null.

Chapter 11
Loading Column Objects

11-6

11.1.6.2 Specifying Atomic Nulls
You can specify atomic nulls.

To specify in the control file the condition under which a particular object should take a
null value (atomic null), you must follow that object's name with a NULLIF clause based
on a logical combination of any of the mapped fields (for example, in Example 11-5,
the named mapped fields would be dept_no, dept_name, name, age, emp_id, but
dept_mgr would not be a named mapped field because it does not correspond (is not
mapped) to any field in the data file).

Although the preceding is workable, it is not ideal when the condition under which an
object should take the value of null is independent of any of the mapped fields. In such
situations, you can use filler fields.

You can map a filler field to the field in the data file (indicating if a particular object is
atomically null or not) and use the filler field in the field condition of the NULLIF clause
of the particular object. This is shown in Example 11-6.

Example 11-6 Loading Data Using Filler Fields

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 is_null FILLER CHAR,
2 dept_mgr COLUMN OBJECT NULLIF is_null=BLANKS
 (name CHAR(30) NULLIF dept_mgr.name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF dept_mgr.age=BLANKS,
 emp_id INTEGER EXTERNAL(7)
 NULLIF dept_mgr.emp_id=BLANKS,
 em_contact COLUMN OBJECT NULLIF is_null2=BLANKS
 (name CHAR(30)
 NULLIF dept_mgr.em_contact.name=BLANKS,
 phone_num CHAR(20)
 NULLIF dept_mgr.em_contact.phone_num=BLANKS)),
1 is_null2 FILLER CHAR)

Data File (sample.dat)

101,Mathematics,n,Johny Q.,,1024,"Barbie",608-251-0010,,
237,Physics,,"Albert Einstein",65,0000,,650-654-3210,n,

Chapter 11
Loading Column Objects

11-7

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The filler field (data file mapped; no corresponding column) is of type
CHAR (because it is a delimited field, the CHAR defaults to CHAR(255)).
Note that the NULLIF clause is not applicable to the filler field itself

2. Gets the value of null (atomic null) if the is_null field is blank.

11.1.7 Loading Column Objects with User-Defined Constructors
You can load column objects with user-defined constructors.

The Oracle database automatically supplies a default constructor for every object type.
This constructor requires that all attributes of the type be specified as arguments in a
call to the constructor. When a new instance of the object is created, its attributes take
on the corresponding values in the argument list. This constructor is known as the
attribute-value constructor. SQL*Loader uses the attribute-value constructor by default
when loading column objects.

It is possible to override the attribute-value constructor by creating one or more user-
defined constructors. When you create a user-defined constructor, you must supply a
type body that performs the user-defined logic whenever a new instance of the object
is created. A user-defined constructor may have the same argument list as the
attribute-value constructor but differ in the logic that its type body implements.

When the argument list of a user-defined constructor function matches the argument
list of the attribute-value constructor, there is a difference in behavior between
conventional and direct path SQL*Loader. Conventional path mode results in a call to
the user-defined constructor. Direct path mode results in a call to the attribute-value
constructor. Example 11-7 illustrates this difference.

Example 11-7 Loading a Column Object with Constructors That Match

Object Type Definitions

CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),
 -- User-defined constructor that looks like an attribute-value constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER, empid NUMBER)
 RETURN SELF AS RESULT AS
 --User-defined constructor makes sure that the name attribute is uppercase.
 BEGIN
 SELF.name := UPPER(name);
 SELF.ssn := ssn;

Chapter 11
Loading Column Objects

11-8

 SELF.empid := empid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

Control File Contents

LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 employee COLUMN OBJECT
 (name CHAR,
 ssn INTEGER EXTERNAL(9),
 empid INTEGER EXTERNAL(5)))

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,10249,
 237,Physics,"Albert Einstein",128606590,10030,

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. When this control file is run in conventional path mode, the name fields,
Johny Q. and Albert Einstein, are both loaded in uppercase. This is
because the user-defined constructor is called in this mode. In contrast,
when this control file is run in direct path mode, the name fields are
loaded exactly as they appear in the input data. This is because the
attribute-value constructor is called in this mode.

It is possible to create a user-defined constructor whose argument list does
not match that of the attribute-value constructor. In this case, both
conventional and direct path modes will result in a call to the attribute-value
constructor. Consider the definitions in Example 11-8.

Example 11-8 Loading a Column Object with Constructors That Do Not Match

Object Type Definitions

CREATE SEQUENCE employee_ids
 START WITH 1000
 INCREMENT BY 1;

 CREATE TYPE person_type AS OBJECT
 (name VARCHAR(30),
 ssn NUMBER(9)) not final;

 CREATE TYPE employee_type UNDER person_type
 (empid NUMBER(5),

Chapter 11
Loading Column Objects

11-9

 -- User-defined constructor that does not look like an attribute-value
 -- constructor
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT);

 CREATE TYPE BODY employee_type AS
 CONSTRUCTOR FUNCTION
 employee_type (name VARCHAR2, ssn NUMBER)
 RETURN SELF AS RESULT AS
 -- This user-defined constructor makes sure that the name attribute is in
 -- lowercase and assigns the employee identifier based on a sequence.
 nextid NUMBER;
 stmt VARCHAR2(64);
 BEGIN

 stmt := 'SELECT employee_ids.nextval FROM DUAL';
 EXECUTE IMMEDIATE stmt INTO nextid;

 SELF.name := LOWER(name);
 SELF.ssn := ssn;
 SELF.empid := nextid;
 RETURN;
 END;

 CREATE TABLE personnel
 (deptno NUMBER(3),
 deptname VARCHAR(30),
 employee employee_type);

If the control file described in Example 11-7 is used with these definitions, then the
name fields are loaded exactly as they appear in the input data (that is, in mixed case).
This is because the attribute-value constructor is called in both conventional and direct
path modes.

It is still possible to load this table using conventional path mode by explicitly making
reference to the user-defined constructor in a SQL expression. Example 11-9 shows
how this can be done.

Example 11-9 Using SQL to Load Column Objects When Constructors Do Not
Match

Control File Contents

LOAD DATA
 INFILE *
 REPLACE
 INTO TABLE personnel
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (deptno INTEGER EXTERNAL(3),
 deptname CHAR,
 name BOUNDFILLER CHAR,
 ssn BOUNDFILLER INTEGER EXTERNAL(9),
1 employee EXPRESSION "employee_type(:NAME, :SSN)")

 BEGINDATA
1 101,Mathematics,Johny Q.,301189453,
 237,Physics,"Albert Einstein",128606590,

Chapter 11
Loading Column Objects

11-10

Note:

The callouts, in bold, to the left of the example correspond to the following
note:

1. When this control file is run in conventional path mode, the name fields,
Johny Q. and Albert Einstein, are both loaded in uppercase. This is
because the user-defined constructor is called in this mode. In contrast,
when this control file is run in direct path mode, the name fields are
loaded exactly as they appear in the input data. This is because the
attribute-value constructor is called in this mode.

If the control file in Example 11-9 is used in direct path mode, then the following error
is reported:

SQL*Loader-951: Error calling once/load initialization
ORA-26052: Unsupported type 121 for SQL expression on column EMPLOYEE.

11.2 Loading Object Tables with SQL*Loader
Learn how to load and manage object tables in Oracle Database instances using
object identifiers (OIDs).

• Examples of Loading Object Tables with SQL*Loader
See how you can load object tables with primary-key-based object identifiers
(OIDs) and row-baesd OIDs.

• Loading Object Tables with Subtypes
If an object table's row object is based on a nonfinal type, then SQL*Loader allows
for any derived subtype to be loaded into the object table.

11.2.1 Examples of Loading Object Tables with SQL*Loader
See how you can load object tables with primary-key-based object identifiers (OIDs)
and row-baesd OIDs.

The control file syntax required to load an object table is nearly identical to that used to
load a typical relational table.

Example 11-10 Loading an Object Table with Primary Key OIDs

The following examples show the control file and data file used for a primary key OID
load, and demonstrates loading an object table with primary-key-based object
identifiers (OIDs).

Control File Contents

LOAD DATA
INFILE 'sample.dat'
DISCARDFILE 'sample.dsc'
BADFILE 'sample.bad'
REPLACE
INTO TABLE employees
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

Chapter 11
Loading Object Tables with SQL*Loader

11-11

 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5))

Data File (sample.dat)

Johny Quest, 18, 007,
Speed Racer, 16, 000,

By looking only at the preceding control file, it can be difficult to determine if the table
being loaded was an object table with system-generated OIDs, an object table with
primary-key-based OIDs, or a relational table.

If you want to load data that already contains system-generated OIDs, and to specify
that instead of generating new OIDs, then use the existing OIDs in the data file. To use
the existing OIDs, you add the OID clause after the INTO TABLE clause. For example:

OID (fieldname)

In this clause, fieldname is the name of one of the fields (typically a filler field) from
the field specification list that is mapped to a data field that contains the system-
generated OIDs. The SQL*Loader processing assumes that the OIDs provided are in
the correct format, and that they preserve OID global uniqueness. Therefore, to ensure
uniqueness, Oracle recommends that you use the Oracle OID generator to generate
the OIDs that you want to load.

Note:

You can only use he OID clause for system-generated OIDs, not primary-key-
based OIDs.

Example 11-11 Loading OIDs

In this example, the control file and data file demonstrate how to load system-
generated OIDs with the row objects. Note the callouts in bold:

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE employees_v2
1 OID (s_oid)
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (name CHAR(30) NULLIF name=BLANKS,
 age INTEGER EXTERNAL(3) NULLIF age=BLANKS,
 emp_id INTEGER EXTERNAL(5),
2 s_oid FILLER CHAR(32))

Chapter 11
Loading Object Tables with SQL*Loader

11-12

Data File (sample.dat)

3 Johny Quest, 18, 007, 21E978406D3E41FCE03400400B403BC3,
 Speed Racer, 16, 000, 21E978406D4441FCE03400400B403BC3,

Note:

The callouts in bold, to the left of the example, correspond to the following
notes:

1. The OID clause specifies that the s_oid loader field contains the OID.
The parentheses are required.

2. If s_oid does not contain a valid hexadecimal number, then the particular
record is rejected.

3. The OID in the data file is a character string. This string is interpreted as
a 32-digit hexadecimal number. The 32-digit hexadecimal number is later
converted into a 16-byte RAW OID, and stored in the object table.

11.2.2 Loading Object Tables with Subtypes
If an object table's row object is based on a nonfinal type, then SQL*Loader allows for
any derived subtype to be loaded into the object table.

The syntax required to load an object table with a derived subtype is almost identical
to that used for a typical relational table. However, in this case, the actual subtype to
be used must be named, so that SQL*Loader can determine if it is a valid subtype for
the object table. Use these examples to understand the differences.

Example 11-12 Loading an Object Table with a Subtype

Review the object type definitions, and review the callouts (in bold) to understand how
the control file is configured.

Object Type Definitions

CREATE TYPE employees_type AS OBJECT
 (name VARCHAR2(30),
 age NUMBER(3),
 emp_id NUMBER(5)) not final;

CREATE TYPE hourly_emps_type UNDER employees_type
 (hours NUMBER(3));

CREATE TABLE employees_v3 of employees_type;

Control File Contents

 LOAD DATA

 INFILE 'sample.dat'
 INTO TABLE employees_v3

Chapter 11
Loading Object Tables with SQL*Loader

11-13

1 TREAT AS hourly_emps_type
 FIELDS TERMINATED BY ','
 (name CHAR(30),
 age INTEGER EXTERNAL(3),
 emp_id INTEGER EXTERNAL(5),
2 hours INTEGER EXTERNAL(2))

Data File (sample.dat)

 Johny Quest, 18, 007, 32,
 Speed Racer, 16, 000, 20,

Note:

The callouts in bold, to the left of the example, correspond to the following
notes:

1. The TREAT AS clause directs SQL*Loader to treat the object table as if it
was declared to be of type hourly_emps_type, instead of its actual
declared type, employee_type.

2. The hours attribute is allowed here, because it is an attribute of the
hourly_emps_type. If the TREAT AS clause is not specified, then using
this attribute results in an error, because it is not an attribute of the object
table's declared type.

11.3 Loading REF Columns with SQL*Loader
SQL*Loader can load system-generated OID REF columns, primary-key-based REF
columns, and unscoped REF columns that allow primary keys.

A REF is an Oracle built-in data type that is a logical "pointer" to an object in an object
table. For each of these types of REF columns, you must specify table names correctly
for the type.

• Specifying Table Names in a REF Clause
Use these examples to see how to describe REF clauses in the SQL*Loader
control file, and understand case sensitivity.

• System-Generated OID REF Columns
When you load system-generated REF columns, SQL*Loader assumes that the
actual OIDs from which the REF columns are constructed are in the data file, with
the data.

• Primary Key REF Columns
To load a primary key REF column, the SQL*Loader control-file field description
must provide the column name followed by a REF clause.

• Unscoped REF Columns That Allow Primary Keys
An unscoped REF column that allows primary keys can reference both system-
generated and primary key REFs.

Chapter 11
Loading REF Columns with SQL*Loader

11-14

11.3.1 Specifying Table Names in a REF Clause
Use these examples to see how to describe REF clauses in the SQL*Loader control
file, and understand case sensitivity.

Note:

The information in this section applies only to environments in which the
release of both SQL*Loader and Oracle Database are 11g release 1 (11.1)
or later. It does not apply to environments in which either SQL*Loader,
Oracle Database, or both, are at an earlier release.

Example 11-13 REF Clause descriptions in the SQL*Loader Control file

In the SQL*Loader control file, the description of the field corresponding to a REF
column consists of the column name, followed by a REF clause. The REF clause
takes as arguments the table name and any attributes applicable to the type of REF
column being loaded. The table names can either be specified dynamically (using filler
fields), or as constants. The table name can also be specified with or without the
schema name.

Whether you specify the table name in the REF clause as a constant, or you specify it
by using a filler field, SQL*Loader interprets this specification as interpreted as case-
sensitive. If you do not keep this in mind, then the following issues can occur:

• If user SCOTT creates a table named table2 in lowercase without quotation marks
around the table name, then it can be used in a REF clause in any of the following
ways:

– REF(constant 'TABLE2', ...)

– REF(constant '"TABLE2"', ...)

– REF(constant 'SCOTT.TABLE2', ...)

• If user SCOTT creates a table named "Table2" using quotation marks around a
mixed-case name, then it can be used in a REF clause in any of the following
ways:

– REF(constant 'Table2', ...)

– REF(constant '"Table2"', ...)

– REF(constant 'SCOTT.Table2', ...)

In both of those situations, if constant is replaced with a filler field, then the same
values as shown in the examples will also work if they are placed in the data section.

11.3.2 System-Generated OID REF Columns
When you load system-generated REF columns, SQL*Loader assumes that the actual
OIDs from which the REF columns are constructed are in the data file, with the data.

The description of the field corresponding to a REF column consists of the column
name followed by the REF clause.

Chapter 11
Loading REF Columns with SQL*Loader

11-15

The REF clause takes as arguments the table name and an OID. Note that the
arguments can be specified either as constants or dynamically (using filler fields).
Refer to the ref_spec SQL*Loader syntax for details.

Example 11-14 Loading System-Generated REF Columns

The following example shows how to load system-generated OID REF columns; note
the callouts in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt_v2
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
1 dept_mgr REF(t_name, s_oid),
 s_oid FILLER CHAR(32),
 t_name FILLER CHAR(30))

Data File (sample.dat)

22345, QuestWorld, 21E978406D3E41FCE03400400B403BC3, EMPLOYEES_V2,
23423, Geography, 21E978406D4441FCE03400400B403BC3, EMPLOYEES_V2,

Note:

The callout in bold, to the left of the example, corresponds to the following
note:

1. If the specified table does not exist, then the record is rejected. The
dept_mgr field itself does not map to any field in the data file.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

11.3.3 Primary Key REF Columns
To load a primary key REF column, the SQL*Loader control-file field description must
provide the column name followed by a REF clause.

The REF clause takes for arguments a comma-delimited list of field names and
constant values. The first argument is the table name, followed by arguments that
specify the primary key OID on which the REF column to be loaded is based. Refer to
the SQL*Loader syntax for ref_spec for details.

SQL*Loader assumes that the ordering of the arguments matches the relative ordering
of the columns making up the primary key OID in the referenced table.

Chapter 11
Loading REF Columns with SQL*Loader

11-16

Example 11-15 Loading Primary Key REF Columns

The following example demonstrates loading primary key REF columns:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE departments_alt
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (dept_no CHAR(5),
 dept_name CHAR(30),
 dept_mgr REF(CONSTANT 'EMPLOYEES', emp_id),
 emp_id FILLER CHAR(32))

Data File (sample.dat)

22345, QuestWorld, 007,
23423, Geography, 000,

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

11.3.4 Unscoped REF Columns That Allow Primary Keys
An unscoped REF column that allows primary keys can reference both system-
generated and primary key REFs.

The syntax for loading data into an unscoped REF column is the same syntax you use
when loading data into a system-generated OID REF column, or into a primary-key-
based REF column.

The following restrictions apply when loading into an unscoped REF column that allows
primary keys:

• Only one type of REF can be referenced by this column during a single-table load,
either system-generated or primary key, but not both. If you try to reference both
types, then the data row will be rejected with an error message indicating that the
referenced table name is invalid.

• If you are loading unscoped primary key REFs to this column, then only one object
table can be referenced during a single-table load. That is, to load unscoped
primary key REFs, some pointing to object table X and some pointing to object
table Y, you must do one of the following:

– Perform two single-table loads.

– Perform a single load using multiple INTO TABLE clauses for which the WHEN
clause keys off some aspect of the data, such as the object table name for the
unscoped primary key REF.

If you do not use either of these methods, then the data row is rejected with an
error message indicating that the referenced table name is invalid.

Chapter 11
Loading REF Columns with SQL*Loader

11-17

• SQL*Loader does not support unscoped primary key REFs in collections.

• If you are loading system-generated REFs into this REF column, then any limitations
that apply to system-generated OID REF columns also apply.

• If you are loading primary key REFs into this REF column, then any limitations that
apply to primary key REF columns also apply.

Note:

For an unscoped REF column that allows primary keys, SQL*Loader
takes the first valid object table parsed (either from the REF directive or
from the data rows). SQL*Loader then uses that object table's OID type
to determine the REF type that can be referenced in that single-table
load.

Example 11-16 Single Load Using Multiple INTO TABLE Clause Method

In this example, the WHEN clauses key off the "CUSTOMERS_PK" data specified by object
table names for the unscoped primary key REF tables cust_tbl and cust_no:

LOAD DATA
INFILE 'data.dat'

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

INTO TABLE orders_apk
APPEND
when CUST_TBL = "CUSTOMERS_PK2"
fields terminated by ","
(
 order_no position(1) char,
 cust_tbl FILLER char,
 cust_no FILLER char,
 cust REF (cust_tbl, cust_no) NULLIF order_no='0'
)

11.4 Loading LOBs with SQL*Loader
Find out which large object types (LOBs) SQL*Loader can load, and see examples of
how to load LOB Data.

Chapter 11
Loading LOBs with SQL*Loader

11-18

• Overview of Loading LOBs with SQL*Loader
Learn what formats of large object types (LOBs) you can load with SQL*Loader,
and what restrictions apply.

• Loading LOB Data from a Primary Data File
You can load internal LOBs (BLOBs, CLOBs, NCLOBs) or XML columns from a
primary data file.

• Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

• Loading Data Files that Contain LLS Fields
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate
this by using the LLS clause.

11.4.1 Overview of Loading LOBs with SQL*Loader
Learn what formats of large object types (LOBs) you can load with SQL*Loader, and
what restrictions apply.

A LOB is a large object type. SQL*Loader supports the following types of LOBs:

• BLOB: an internal LOB containing unstructured binary data

• CLOB: an internal LOB containing character data

• NCLOB: an internal LOB containing characters from a national character set

• BFILE: a BLOB stored outside of the database tablespaces in a server-side
operating system file

LOBs can be column data types, and except for NCLOB, they can be an object's
attribute data types. LOBs can have actual values, they can be null, or they can be
empty. SQL*Loader creates an empty LOB when there is a 0-length field to store in
the LOB. (Note that this is different than other data types where SQL*Loader sets the
column to NULL for any 0-length string.) This means that the only way to load NULL
values into a LOB column is to use the NULLIF clause.

XML columns are columns declared to be of type SYS.XMLTYPE. SQL*Loader treats XML
columns as if they were CLOBs. All of the methods for loading LOB data from the
primary data file or from LOBFILEs are applicable to loading XML columns.

Note:

You cannot specify a SQL string for LOB fields. This is true even if you
specify LOBFILE_spec.

Because LOBs can be quite large, SQL*Loader can load LOB data from either a
primary data file (in line with the rest of the data), or from LOBFILEs.

Related Topics

• Large Object (LOB) Data Types

Chapter 11
Loading LOBs with SQL*Loader

11-19

11.4.2 Loading LOB Data from a Primary Data File
You can load internal LOBs (BLOBs, CLOBs, NCLOBs) or XML columns from a primary
data file.

To load internal LOBs or XML columns from a primary data file, you can use the
following standard SQL*Loader formats:

• Predetermined size fields

• Delimited fields

• Length-value pair fields

• LOB Data in Predetermined Size Fields
See how loading LOBs into predetermined size fields is a very fast and
conceptually simple format in which to load LOBs.

• LOB Data in Delimited Fields
Consider using delimited fields when you want to load LOBs of different sizes
within the same column (data file field) with SQL*Loader.

• LOB Data in Length-Value Pair Fields
To load LOB data organized in length-value pair fields, you can use VARCHAR,
VARCHARC, or VARRAW data types.

11.4.2.1 LOB Data in Predetermined Size Fields
See how loading LOBs into predetermined size fields is a very fast and conceptually
simple format in which to load LOBs.

Note:

Because the LOBs you are loading can be of different sizes, you can use
whitespace to pad the LOB data to make the LOBs all of equal length within
a particular data field.

To load LOBs using predetermined size fields, you should use either CHAR or RAW as
the loading data type.

Example 11-17 Loading LOB Data in Predetermined Size Fields

bold
Control File Contents

LOAD DATA
INFILE 'sample.dat' "fix 501"
INTO TABLE person_table
 (name POSITION(01:21) CHAR,
1 "RESUME" POSITION(23:500) CHAR DEFAULTIF "RESUME"=BLANKS)

Chapter 11
Loading LOBs with SQL*Loader

11-20

Data File (sample.dat)

Julia Nayer Julia Nayer
 500 Example Parkway
 jnayer@us.example.com ...

Note:

The callout in bold, to the left of the example, corresponds to the following
note:

1. Because the DEFAULTIF clause is used, if the data field containing the
resume is empty, then the result is an empty LOB rather than a null LOB.
However, if a NULLIF clause had been used instead of DEFAULTIF, then
the empty data field would be null.

You can use SQL*Loader data types other than CHAR to load LOBs. For
example, when loading BLOBs, you would probably want to use the RAW
data type.

11.4.2.2 LOB Data in Delimited Fields
Consider using delimited fields when you want to load LOBs of different sizes within
the same column (data file field) with SQL*Loader.

The delimited field format handles LOBs of different sizes within the same column
(data file field) without a problem. However, this added flexibility can affect
performance, because SQL*Loader must scan through the data, looking for the
delimiter string.

As with single-character delimiters, when you specify string delimiters, you should
consider the character set of the data file. When the character set of the data file is
different than that of the control file, you can specify the delimiters in hexadecimal
notation (that is, X'hexadecimal string'). If the delimiters are specified in
hexadecimal notation, then the specification must consist of characters that are valid in
the character set of the input data file. In contrast, if hexadecimal notation is not used,
then the delimiter specification is considered to be in the client's (that is, the control
file's) character set. In this case, the delimiter is converted into the data file's character
set before SQL*Loader searches for the delimiter in the data file.

Note the following:

• Stutter syntax is supported with string delimiters (that is, the closing enclosure
delimiter can be stuttered).

• Leading whitespaces in the initial multicharacter enclosure delimiter are not
allowed.

• If a field is terminated by WHITESPACE, then the leading whitespaces are trimmed.

Chapter 11
Loading LOBs with SQL*Loader

11-21

Note:

SQL*Loader defaults to 255 bytes when moving CLOB data, but a value of
up to 2 gigabytes can be specified. For a delimited field, if a length is
specified, then that length is used as a maximum. If no maximum is
specified, then it defaults to 255 bytes. For a CHAR field that is delimited
and is also greater than 255 bytes, you must specify a maximum length.
See CHAR for more information about the CHAR data type.

Example 11-18 Loading LOB Data in Delimited Fields

Review this example to see how to load LOB data in delimited fields. Note the callouts
in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat' "str '|'"
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(25),
1 "RESUME" CHAR(507) ENCLOSED BY '<startlob>' AND '<endlob>')

Data File (sample.dat)

Julia Nayer,<startlob> Julia Nayer
 500 Example Parkway
 jnayer@example.com ... <endlob>
2 |Bruce Ernst,

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. <startlob> and <endlob> are the enclosure strings. With the default
byte-length semantics, the maximum length for a LOB that can be read
using CHAR(507) is 507 bytes. If character-length semantics were used,
then the maximum would be 507 characters. For more information, refer
to character-length semantics.

2. If the record separator '|' had been placed right after <endlob> and
followed with the newline character, then the newline would have been
interpreted as part of the next record. An alternative would be to make
the newline part of the record separator (for example, '|\n' or, in
hexadecimal notation, X'7C0A').

Chapter 11
Loading LOBs with SQL*Loader

11-22

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

11.4.2.3 LOB Data in Length-Value Pair Fields
To load LOB data organized in length-value pair fields, you can use VARCHAR,
VARCHARC, or VARRAW data types.

Loading data with length-value pair fields provides better performance than using
delimited fields. However, this method can reduce flexibility (for example, you must
know the LOB length for each LOB before loading).

Example 11-19 Loading LOB Data in Length-Value Pair Fields

bold
Control File Contents

 LOAD DATA
1 INFILE 'sample.dat' "str '<endrec>\n'"
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(25),
2 "RESUME" VARCHARC(3,500))

Data File (sample.dat)

 Julia Nayer,479 Julia Nayer
 500 Example Parkway
 jnayer@us.example.com
 ... <endrec>
3 Bruce Ernst,000<endrec>

Note:

The callouts in bold, to the left of the example, correspond to the following
notes:

1. If the backslash escape character is not supported, then the string used
as a record separator in the example could be expressed in hexadecimal
notation.

2. "RESUME" is a field that corresponds to a CLOB column. In the control file,
it is a VARCHARC, whose length field is 3 bytes long and whose maximum
size is 500 bytes (with byte-length semantics). If character-length
semantics were used, then the length would be 3 characters and the
maximum size would be 500 characters. See Character-Length
Semantics.

3. The length subfield of the VARCHARC is 0 (the value subfield is empty).
Consequently, the LOB instance is initialized to empty.

Chapter 11
Loading LOBs with SQL*Loader

11-23

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

11.4.3 Loading LOB Data from LOBFILEs
To load large LOB data files, consider using a LOBFILE with SQL*Loader.

• Overview of Loading LOB Data from LOBFILEs
Large object type (LOB) data can be lengthy enough so that it makes sense to
load it from a LOBFILE instead of from a primary data file.

• Dynamic Versus Static LOBFILE Specifications
You can specify LOBFILEs either statically (the name of the file is specified in the
control file) or dynamically (a FILLER field is used as the source of the file name).

• Examples of Loading LOB Data from LOBFILEs
This section contains examples of loading data from different types of fields in
LOBFILEs.

• Considerations When Loading LOBs from LOBFILEs
Be aware of the restrictions and guidelines that apply when you load large object
types (LOBs) from LOBFILES with SQL*Loader.

11.4.3.1 Overview of Loading LOB Data from LOBFILEs
Large object type (LOB) data can be lengthy enough so that it makes sense to load it
from a LOBFILE instead of from a primary data file.

In LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value), but these fields are not organized into records (the
concept of a record does not exist within LOBFILEs). Therefore, the processing
overhead of dealing with records is avoided. This type of organization of data is ideal
for LOB loading.

There is no requirement that a LOB from a LOBFILE fits in memory. SQL*Loader
reads LOBFILEs in 64 KB chunks.

In LOBFILEs, the data can be in any of the following types of fields:

• A single LOB field, into which the entire contents of a file can be read

• Predetermined size fields (fixed-length fields)

• Delimited fields (that is, fields delimited with TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a

LOBFILE

.

• Length-value pair fields (variable-length fields)

To load data from this type of field, use the VARRAW, VARCHAR, or VARCHARC
SQL*Loader data types.

Refer to lobfile_spec for LOBFILE syntax.

Chapter 11
Loading LOBs with SQL*Loader

11-24

See lobfile_spec for informatio about LOBFILE syntax in SQL*Loader.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

11.4.3.2 Dynamic Versus Static LOBFILE Specifications
You can specify LOBFILEs either statically (the name of the file is specified in the
control file) or dynamically (a FILLER field is used as the source of the file name).

In either case, if the LOBFILE is not terminated by EOF, then when the end of the
LOBFILE is reached, the file is closed and further attempts to read data from that file
produce results equivalent to reading data from an empty field.

However, if you have a LOBFILE that is terminated by EOF, then the entire file is
always returned on each attempt to read data from that file.

You should not specify the same LOBFILE as the source of two different fields. If you
do, then the two fields typically read the data independently.

11.4.3.3 Examples of Loading LOB Data from LOBFILEs
This section contains examples of loading data from different types of fields in
LOBFILEs.

• One LOB for Each File
When you load large object type (LOB) data, each LOBFILE is the source of a
single LOB.

• Predetermined Size LOBs
With predetermined size large object types (LOBs), the SQL*Loader parser can
perform optimally.

• Delimited LOBs
When you have different sized large object types (LOBs), so you can't use
predetermined size LOBs, consider using delimited LOBs with SQL*Loader.

• Length-Value Pair Specified LOBs
You can obtain better performance by loading large object types (LOBs) with
length-value pair specification, but you lose some flexibility.

11.4.3.3.1 One LOB for Each File
When you load large object type (LOB) data, each LOBFILE is the source of a single
LOB.

Use this example to see how you can load LOB data that is organized so that each
LOBFILE is the source of a single LOB.

Example 11-20 Loading LOB Data with One LOB per LOBFILE

In this example, note that the column or field name is followed by the LOBFILE data
type specifications. Note the callouts in bold:

Chapter 11
Loading LOBs with SQL*Loader

11-25

Control File Contents

LOAD DATA
INFILE 'sample.dat'
 INTO TABLE person_table
 FIELDS TERMINATED BY ','
 (name CHAR(20),
1 ext_fname FILLER CHAR(40),
2 "RESUME" LOBFILE(ext_fname) TERMINATED BY EOF)

Data File (sample.dat)

Johny Quest,jqresume.txt,
Speed Racer,'/private/sracer/srresume.txt',

Secondary Data File (jqresume.txt)

Johny Quest 500 Oracle Parkway ...
Secondary Data File (srresume.txt)

 Speed Racer
 400 Oracle Parkway
 ...

Note:

The callouts in bold, to the left of the example, correspond to the following
notes:

1. The filler field is mapped to the 40-byte data field, which is read using the
SQL*Loader CHAR data type. This assumes the use of default byte-length
semantics. If character-length semantics were used, then the field would
be mapped to a 40-character data field

2. SQL*Loader gets the LOBFILE name from the ext_fname filler field. It
then loads the data from the LOBFILE (using the CHAR data type) from
the first byte to the EOF character. If no existing LOBFILE is specified,
then the "RESUME" field is initialized to empty.

11.4.3.3.2 Predetermined Size LOBs
With predetermined size large object types (LOBs), the SQL*Loader parser can
perform optimally.

When you load LOB data using predetermined size LOBs, you specify the size of the
LOBs to be loaded into a particular column in the control file. During the load,
SQL*Loader assumes that any LOB data loaded into that particular column is of the
specified size. The predetermined size of the fields allows the data-parser to perform
optimally. However, it is often difficult to guarantee that all LOBs are the same size.

Example 11-21 Loading LOB Data Using Predetermined Size LOBs

In this example, note the callouts in bold:

Chapter 11
Loading LOBs with SQL*Loader

11-26

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT '/usr/private/jquest/jqresume.txt')
 CHAR(2000))

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ...
 Speed Racer
 400 Oracle Parkway
 ...

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. This entry specifies that SQL*Loader load 2000 bytes of data from the
jqresume.txt LOBFILE, using the CHAR data type, starting with the byte
following the byte loaded last during the current loading session. This
assumes the use of the default byte-length semantics. If you use
character-length semantics, then SQL*Loader loads 2000 characters of
data, starting from the first character after the last-loaded character.

Related Topics

• Character-Length Semantics
Byte-length semantics are the default for all data files except those that use the
UTF16 character set (which uses character-length semantics by default).

11.4.3.3.3 Delimited LOBs
When you have different sized large object types (LOBs), so you can't use
predetermined size LOBs, consider using delimited LOBs with SQL*Loader.

When you load LOB data instances that are delimited, loading different size LOBs into
the same column is not a problem. However, this added flexibility can affect
performance, because SQL*Loader must scan through the data, looking for the
delimiter string.

Chapter 11
Loading LOBs with SQL*Loader

11-27

Example 11-22 Loading LOB Data Using Delimited LOBs

In this example, note the callouts in bold:

Control File Contents

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') CHAR(2000)
 TERMINATED BY "<endlob>\n")

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

 Johny Quest
 500 Oracle Parkway
 ... <endlob>
 Speed Racer
 400 Oracle Parkway
 ... <endlob>

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. Because a maximum length of 2000 is specified for CHAR, SQL*Loader
knows what to expect as the maximum length of the field, which can
result in memory usage optimization. If you choose to specify a
maximum length, then you should be sure not to underestimate its value.
The TERMINATED BY clause specifies the string that terminates the LOBs.
Alternatively, you can use the ENCLOSED BY clause. The ENCLOSED BY
clause allows a bit more flexibility with the relative positioning of the
LOBs in the LOBFILE, because the LOBs in the LOBFILE do not need to
be sequential.

11.4.3.3.4 Length-Value Pair Specified LOBs
You can obtain better performance by loading large object types (LOBs) with length-
value pair specification, but you lose some flexibility.

With length-value pair specified LOBs, each LOB in the LOBFILE is preceded by its
length. To load LOB data organized in this way, you can use VARCHAR, VARCHARC, or
VARRAW data types.

Chapter 11
Loading LOBs with SQL*Loader

11-28

This method of loading can provide better performance over delimited LOBs, but at the
expense of some flexibility (for example, you must know the LOB length for each LOB
before loading).

Example 11-23 Loading LOB Data Using Length-Value Pair Specified LOBs

Control File Contents

In the following example, note the callouts in bold:

LOAD DATA
INFILE 'sample.dat'
INTO TABLE person_table
FIELDS TERMINATED BY ','
 (name CHAR(20),
1 "RESUME" LOBFILE(CONSTANT 'jqresume') VARCHARC(4,2000))

Data File (sample.dat)

Johny Quest,
Speed Racer,

Secondary Data File (jqresume.txt)

2 0501Johny Quest
 500 Oracle Parkway
 ...
3 0000

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The entry VARCHARC(4,2000) tells SQL*Loader that the LOBs in the
LOBFILE are in length-value pair format and that the first 4 bytes should
be interpreted as the length. The value of 2000 tells SQL*Loader that the
maximum size of the field is 2000 bytes. This assumes the use of the
default byte-length semantics. If character-length semantics were used,
then the first 4 characters would be interpreted as the length in
characters. The maximum size of the field would be 2000 characters.
See Character-Length Semantics.

2. The entry 0501 preceding Johny Quest tells SQL*Loader that the LOB
consists of the next 501 characters.

3. This entry specifies an empty (not null) LOB.

11.4.3.4 Considerations When Loading LOBs from LOBFILEs
Be aware of the restrictions and guidelines that apply when you load large object types
(LOBs) from LOBFILES with SQL*Loader.

Chapter 11
Loading LOBs with SQL*Loader

11-29

When you load data using LOBFILEs, be aware of the following:

• Only LOBs and XML columns can be loaded from LOBFILEs.

• The failure to load a particular LOB does not result in the rejection of the record
containing that LOB. Instead, the result is a record that contains an empty LOB. In
the case of an XML column, if there is a failure loading the LOB. then a null value is
inserted.

• It is not necessary to specify the maximum length of a field corresponding to a
LOB column. If a maximum length is specified, then SQL*Loader uses it as a hint
to optimize memory usage. Therefore, it is important that the maximum length
specification does not understate the true maximum length.

• You cannot supply a position specification (pos_spec) when loading data from a
LOBFILE.

• NULLIF or DEFAULTIF field conditions cannot be based on fields read from
LOBFILEs.

• If a nonexistent LOBFILE is specified as a data source for a particular field, then
that field is initialized to empty. If the concept of empty does not apply to the
particular field type, then the field is initialized to null.

• Table-level delimiters are not inherited by fields that are read from a LOBFILE.

• When loading an XML column or referencing a LOB column in a SQL expression in
conventional path mode, SQL*Loader must process the LOB data as a temporary
LOB. To ensure the best load performance possible in these cases, refer to the
guidelines for temporary LOB performance.

Related Topics

• Temporary LOB Performance Guidelines

11.4.4 Loading Data Files that Contain LLS Fields
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this
by using the LLS clause.

Purpose

An LLS field contains the file name, offset, and length of the LOB data in the data file.
SQL*Loader uses this information to read data for the LOB column.

Syntax

The syntax for the LLS clause is as follows:

lob_column_name

init_spec

LLS

" sql_string "

Usage Notes

The LOB can be loaded in part or in whole and it can start from an arbitrary position
and for an arbitrary length. SQL Loader expects the expects the contents of the LLS
field to be filename.ext.nnn.mmm/ where each element is defined as follows:

Chapter 11
Loading LOBs with SQL*Loader

11-30

• filename.ext is the name of the file that contains the LOB.

• nnn is the offset in bytes of the LOB within the file.

• mmm is the length of the LOB in bytes. A value of -1 means the LOB is NULL. A
value of 0 means the LOB exists, but is empty.

• The forward slash (/) terminates the field

If the SQL*Loader parameter, SDF_PREFIX, is specified, then SQL*Loader looks for the
files in the directory specified by SDF_PREFIX. Otherwise, SQL*Loader looks in the
same directory as the data file.

An error is reported and the row is rejected if any of the following are true:

• The file name contains a relative or absolute path specification.

• The file is not found, the offset is invalid, or the length extends beyond the end of
the file.

• The contents of the field do not match the expected format.

• The data type for the column associated with an LLS field is not a CLOB, BLOB, or
NCLOB.

Restrictions

• If an LLS field is referenced by a clause for any other field (for example a NULLIF
clause) in the control file, then the value used for evaluating the clause is the string
in the data file, not the data in the file pointed to by that string.

• The character set for the data in the file pointed to by the LLS clause is assumed to
be the same character set as the data file.

• The user running SQL*Loader must have read access to the data files.

Example Specification of an LLS Clause

The following is an example of a SQL*Loader control file that contains an LLS clause.
Note that a data type is not needed on the column specification because the column
must be of type LOB.

LOAD DATA
INFILE *
TRUNCATE
INTO TABLE tklglls
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' TRAILING NULLCOLS
(col1 , col2 NULLIF col1 = '1' LLS)
BEGINDATA
1,"tklglls1.dat.1.11/"

11.5 Loading BFILE Columns with SQL*Loader
The BFILE data type stores unstructured binary data in operating system files outside
the database.

The Oracle BFILE data type is an Oracle LOB data type that contains a reference to
binary data with a maximum size of 4 gigabytes.

Chapter 11
Loading BFILE Columns with SQL*Loader

11-31

A BFILE column or attribute stores a file locator that points to the external file
containing the data. The file that you want to load as a BFILE does not have to exist at
the time of loading; it can be created later. To use BFILEs, you must peform some
database administration tasks. There are also restrictions on directory objects and
BFILE objects. These restrictions include requirements for how you configure the
operating system file, and the operating system directory path. With Oracle Database
18c and later releases, symbolic links are not allowed in directory object path names
used with BFILE data types. SQL*Loader assumes that the necessary directory
objects are already created (a logical alias name for a physical directory on the
server's file system).

A control file field corresponding to a BFILE column consists of a column name,
followed by the BFILE clause. The BFILE clause takes as arguments a directory object
(the server_directory alias) name, followed by a BFILE name. You can provide both
arguments as string constants, or these arguments can be dynamically loaded through
some other field.

In the following examples of loading BFILEs, the first example has only the file name
specified dynamically, while the second example demonstrates specifying both the
BFILE and the directory object dynamically:

Example 11-24 Loading Data Using BFILEs: Only File Name Specified
Dynamically

The following are the control file contents. The directory name, scott_dir1, is in
quotation marks; therefore, the string is used as is, and is not capitalized.

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ','
 (pl_id CHAR(3),
 pl_name CHAR(20),
 fname FILLER CHAR(30),
 pl_pict BFILE(CONSTANT "scott_dir1", fname))

The following are the contents of the data file, sample.dat.

1,Mercury,mercury.jpeg,
2,Venus,venus.jpeg,
3,Earth,earth.jpeg,

Example 11-25 Loading Data Using BFILEs: File Name and Directory Specified
Dynamically

The following are the control file contents. Note that dname is mapped to the data file
field containing the directory name that corresponds to the file being loaded.

LOAD DATA
INFILE sample.dat
INTO TABLE planets
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (pl_id NUMBER(4),
 pl_name CHAR(20),
 fname FILLER CHAR(30),

Chapter 11
Loading BFILE Columns with SQL*Loader

11-32

 dname FILLER CHAR(20),
 pl_pict BFILE(dname, fname))

The following are the contents of the data file, sample.dat.

1, Mercury, mercury.jpeg, scott_dir1,
2, Venus, venus.jpeg, scott_dir1,
3, Earth, earth.jpeg, scott_dir2,

Related Topics

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Database SQL Language Reference

11.6 Loading Collections (Nested Tables and VARRAYs)
With collections, you can load a set of nested tables, or a VARRAY with an ordered set
of elements using SQL*Loader.

• Overview of Loading Collections (Nested Tables and VARRAYS)
Review methods for identifying when the data belonging to a particular collection
instance has ended, and how to specify collections in SQL*Loader control files.

• Restrictions in Nested Tables and VARRAYs
There are restrictions for nested tables and VARRAYs.

• Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary
data files (SDFs). They are similar in concept to primary data files.

11.6.1 Overview of Loading Collections (Nested Tables and
VARRAYS)

Review methods for identifying when the data belonging to a particular collection
instance has ended, and how to specify collections in SQL*Loader control files.

As with large object types (LOBs), you can load collections either from a primary data
file (data inline), or from secondary data files (data out of line).

When you load collection data, a mechanism must exist by which SQL*Loader can tell
when the data belonging to a particular collection instance has ended. You can
achieve this in two ways:

• To specify the number of rows or elements that are to be loaded into each nested
table or VARRAY instance, use the DDL COUNT function. The value specified for
COUNT must either be a number or a character string containing a number, and it
must be previously described in the control file before the COUNT clause itself. This
positional dependency is specific to the COUNT clause. COUNT(0) or
COUNT(cnt_field), where cnt_field is 0 for the current row, results in a empty
collection (not null), unless overridden by a NULLIF clause. Refer to the
SQL*Loader count_spec syntax.

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-33

If the COUNT clause specifies a field in a control file and if that field is set to null for
the current row, then the collection that uses that count will be set to empty for the
current row as well.

• Use the TERMINATED BY and ENCLOSED BY clauses to specify a unique collection
delimiter. Note that if you use an SDF clause, then you can't use this method.

In the control file, collections are described similarly to column objects. There are
some differences:

• Collection descriptions employ the two mechanisms discussed in the preceding
list.

• Collection descriptions can include a secondary data file (SDF) specification.

• A NULLIF or DEFAULTIF clause cannot refer to a field in an SDF unless the clause
is on a field in the same SDF.

• Clauses that take field names as arguments cannot use a field name that is in a
collection unless the DDL specification is for a field in the same collection.

• The field list must contain only one nonfiller field and any number of filler fields. If
the VARRAY is a VARRAY of column objects, then the attributes of each column object
will be in a nested field list.

Related Topics

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

• Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary
data files (SDFs). They are similar in concept to primary data files.

• Understanding Column Object Attributes
Column objects in the SQL*Loader control file are described in terms of their
attributes. An object type can have many attributes.

11.6.2 Restrictions in Nested Tables and VARRAYs
There are restrictions for nested tables and VARRAYs.

The following restrictions exist for nested tables and VARRAYs:

• A field_list cannot contain a collection_fld_spec.

• A col_obj_spec nested within a VARRAY cannot contain a collection_fld_spec.

• The column_name specified as part of the field_list must be the same as the
column_name preceding the VARRAY parameter.

Also, be aware that if you are loading into a table containing nested tables, then
SQL*Loader will not automatically split the load into multiple loads and generate a set
ID.

Example 11-26 demonstrates loading a VARRAY and a nested table.

Example 11-26 Loading a VARRAY and a Nested Table

Control File Contents

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-34

 LOAD DATA
 INFILE 'sample.dat' "str '\n' "
 INTO TABLE dept
 REPLACE
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (
 dept_no CHAR(3),
 dname CHAR(25) NULLIF dname=BLANKS,
1 emps VARRAY TERMINATED BY ':'
 (
 emps COLUMN OBJECT
 (
 name CHAR(30),
 age INTEGER EXTERNAL(3),
2 emp_id CHAR(7) NULLIF emps.emps.emp_id=BLANKS
)
),
3 proj_cnt FILLER CHAR(3),
4 projects NESTED TABLE SDF (CONSTANT "pr.txt" "fix 57") COUNT (proj_cnt)
 (
 projects COLUMN OBJECT
 (
 project_id POSITION (1:5) INTEGER EXTERNAL(5),
 project_name POSITION (7:30) CHAR
 NULLIF projects.projects.project_name = BLANKS
)
)
)

Data File (sample.dat)

 101,MATH,"Napier",28,2828,"Euclid", 123,9999:0
 210,"Topological Transforms",:2

Secondary Data File (SDF) (pr.txt)

21034 Topological Transforms
77777 Impossible Proof

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-35

Note:

The callouts, in bold, to the left of the example correspond to the following
notes:

1. The TERMINATED BY clause specifies the VARRAY instance terminator (note
that no COUNT clause is used).

2. Full name field references (using dot notation) resolve the field name
conflict created by the presence of this filler field.

3. proj_cnt is a filler field used as an argument to the COUNT clause.

4. This entry specifies the following:

• An SDF called pr.txt as the source of data. It also specifies a fixed-
record format within the SDF.

• If COUNT is 0, then the collection is initialized to empty. Another way
to initialize a collection to empty is to use a DEFAULTIF clause. The
main field name corresponding to the nested table field description is
the same as the field name of its nested nonfiller-field, specifically,
the name of the column object field description.

11.6.3 Secondary Data Files (SDFs)
When you need to load large nested tables and VARRAYs, you can use secondary data
files (SDFs). They are similar in concept to primary data files.

As with primary data files, SDFs are a collection of records, and each record is made
up of fields. The SDFs are specified on a per control-file-field basis. They are useful
when you load large nested tables and VARRAYs.

Note:

Only a collection_fld_spec can name an SDF as its data source.

SDFs are specified using the SDF parameter. The SDF parameter can be followed by
either the file specification string, or a FILLER field that is mapped to a data field
containing one or more file specification strings.

As for a primary data file, the following can be specified for each SDF:

• The record format (fixed, stream, or variable). Also, if stream record format is
used, then you can specify the record separator.

• The record size.

• The character set for an SDF can be specified using the CHARACTERSET clause (see
Handling Different Character Encoding Schemes).

• A default delimiter (using the delimiter specification) for the fields that inherit a
particular SDF specification (all member fields or attributes of the collection that
contain the SDF specification, with exception of the fields containing their own
LOBFILE specification).

Chapter 11
Loading Collections (Nested Tables and VARRAYs)

11-36

Also note the following regarding SDFs:

• If a nonexistent SDF is specified as a data source for a particular field, then that
field is initialized to empty. If the concept of empty does not apply to the particular
field type, then the field is initialized to null.

• Table-level delimiters are not inherited by fields that are read from an SDF.

• To load SDFs larger than 64 KB, you must use the READSIZE parameter to specify
a larger physical record size. You can specify the READSIZE parameter either from
the command line or as part of an OPTIONS clause.

See Also:

– READSIZE

– OPTIONS Clause

– sdf_spec

11.7 Choosing Dynamic or Static SDF Specifications
With SQL*Loader, you can specify SDFs either statically (specifying the actual name
of the file), or dynamically (using a FILLER field as the source of the file name).

With either dynamic or static SDF specification, when the end-of-file (EOF) of an SDF
is reached, the file is closed. Further attempts to reading data from that particular file
produce results equivalent to reading data from an empty field.

In a dynamic secondary file specification, this behavior is slightly different. When the
specification changes to reference a new file, the old file is closed, and the data is read
from the beginning of the newly referenced file.

Fynamic switching of the data source files has a resetting effect. For example, when
SQL*Loader switches from the current file to a previously opened file, the previously
opened file is reopened, and the data is read from the beginning of the file.

You should not specify the same SDF as the source of two different fields. If you do,
then the two fields typically read the data independently.

11.8 Loading a Parent Table Separately from Its Child Table
When you load a table that contains a nested table column, it may be possible to load
the parent table separately from the child table.

You can load the parent and child tables independently if the SIDs (system-generated
or user-defined) are already known at the time of the load (that is, the SIDs are in the
data file with the data).

The following examples illustrate how to load parent and child tables with user-
provided SIDs.

Example 11-27 Loading a Parent Table with User-Provided SIDs

Control File Contents

Chapter 11
Choosing Dynamic or Static SDF Specifications

11-37

 LOAD DATA
 INFILE 'sample.dat' "str '|\n' "
 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (dept_no CHAR(3),
 dname CHAR(20) NULLIF dname=BLANKS ,
 mysid FILLER CHAR(32),
1 projects SID(mysid))

Data File (sample.dat)

101,Math,21E978407D4441FCE03400400B403BC3,|
210,"Topology",21E978408D4441FCE03400400B403BC3,|

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. mysid is a filler field that is mapped to a data file field containing the
actual set IDs and is supplied as an argument to the SID clause.

Example 11-28 Loading a Child Table with User-Provided SIDs

Control File Contents

 LOAD DATA
 INFILE 'sample.dat'
 INTO TABLE dept
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
1 SID(sidsrc)
 (project_id INTEGER EXTERNAL(5),
 project_name CHAR(20) NULLIF project_name=BLANKS,
 sidsrc FILLER CHAR(32))

Data File (sample.dat)

21034, "Topological Transforms", 21E978407D4441FCE03400400B403BC3,
77777, "Impossible Proof", 21E978408D4441FCE03400400B403BC3,

Note:

The callout, in bold, to the left of the example corresponds to the following
note:

1. The table-level SID clause tells SQL*Loader that it is loading the storage
table for nested tables. sidsrc is the filler field name that is the source of
the real set IDs.

• Memory Issues When Loading VARRAY Columns
There are some memory issues when you load VARRAY columns.

Chapter 11
Loading a Parent Table Separately from Its Child Table

11-38

11.8.1 Memory Issues When Loading VARRAY Columns
There are some memory issues when you load VARRAY columns.

The following list describes some issues to keep in mind when you load VARRAY
columns:

• VARRAYs are created in the client's memory before they are loaded into the
database. Each element of a VARRAY requires 4 bytes of client memory before it
can be loaded into the database. Therefore, when you load a VARRAY with a
thousand elements, you will require at least 4000 bytes of client memory for each
VARRAY instance before you can load the VARRAYs into the database. In many
cases, SQL*Loader requires two to three times that amount of memory to
successfully construct and load a VARRAY.

• The BINDSIZE parameter specifies the amount of memory allocated by
SQL*Loader for loading records. Given the value specified for BINDSIZE,
SQL*Loader takes into consideration the size of each field being loaded, and
determines the number of rows it can load in one transaction. The larger the
number of rows, the fewer transactions, resulting in better performance. But if the
amount of memory on your system is limited, then at the expense of performance,
you can specify a lower value for ROWS than SQL*Loader calculated.

• Loading very large VARRAYs or a large number of smaller VARRAYs could cause you
to run out of memory during the load. If this happens, then specify a smaller value
for BINDSIZE or ROWS and retry the load.

Chapter 11
Loading a Parent Table Separately from Its Child Table

11-39

12
Conventional and Direct Path Loads

SQL*Loader provides the option to load data using a conventional path load method,
and a direct path load method.

• Data Loading Methods
SQL*Loader can load data using either a convention path load or a direct path
load.

• Loading ROWID Columns
In both conventional path and direct path, you can specify a text value for a ROWID
column.

• Conventional Path Loads
Learn what a SQL*Loader conventional path load is, when and how to use it to
pass data, and what restrictions apply to this feature.

• Direct Path Loads
Learn what a SQL*Loader direct path load is, when and how to use it to pass data,
and what restrictions apply to this feature.

• Optimizing Performance of Direct Path Loads
Learn how to enable your SQL*Loader direct path loads to run faster, and to use
less space.

• Using Direct Path Load
Learn how you can use the SQL*Loader direct path load method for loading data.

• Optimizing Direct Path Loads on Multiple-CPU Systems
If you are performing direct path loads on a multiple-CPU system, then
SQL*Loader uses multithreading by default. A multiple-CPU system in this case is
defined as a single system that has two or more CPUs.

• Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all
existing indexes for a table.

• Direct Path Loads, Integrity Constraints, and Triggers
With the conventional path load method, arrays of rows are inserted with standard
SQL INSERT statements; integrity constraints and insert triggers are automatically
applied.

• Optimizing Performance of Direct Path Loads
Learn how to enable your SQL*Loader direct path loads to run faster, and to use
less space.

• General Performance Improvement Hints
This topic describes hints for general performance improvements.

Related Topics

• SQL*Loader Case Studies
To learn how you can use SQL*Loader features, you can run a variety of case
studies that Oracle provides.

12-1

12.1 Data Loading Methods
SQL*Loader can load data using either a convention path load or a direct path load.

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle database. A direct path load eliminates much of the Oracle database overhead
by formatting Oracle data blocks and writing the data blocks directly to the database
files. A direct load does not compete with other users for database resources, so it can
usually load data at near disk speed.

The tables to be loaded must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:

• You must have INSERT privileges on the table to be loaded.

• You must have DELETE privileges on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty old data from the table before loading the
new data in its place.

See Also:

Conventional Path Load

Direct Path Load

12.2 Loading ROWID Columns
In both conventional path and direct path, you can specify a text value for a ROWID
column.

This is the same text you get when you perform a SELECT ROWID FROM table_name
operation. The character string interpretation of the ROWID is converted into the ROWID
type for a column in a table.

12.3 Conventional Path Loads
Learn what a SQL*Loader conventional path load is, when and how to use it to pass
data, and what restrictions apply to this feature.

• Conventional Path Load
With conventional path load (the default), SQL*Loader uses the SQL INSERT
statement and a bind array buffer to load data into database tables.

• When to Use a Conventional Path Load
How to determine when you should use conventional path load instead of direct
path load.

• Conventional Path Load of a Single Partition
SQL*Loader uses the partition-extended syntax of the INSERT statement.

Chapter 12
Data Loading Methods

12-2

12.3.1 Conventional Path Load
With conventional path load (the default), SQL*Loader uses the SQL INSERT statement
and a bind array buffer to load data into database tables.

When SQL*Loader performs a conventional path load, it competes equally with all
other processes for buffer resources. Using this method can slow the load significantly.
Extra overhead is added as SQL statements are generated, passed to Oracle
Database, and executed.

Oracle Database looks for partially filled blocks and attempts to fill them on each
insert. Although appropriate during normal use, this method can slow bulk loads
dramatically.

Related Topics

• Discontinued Conventional Path Loads
In conventional path loads, if only part of the data is loaded before the data is
discontinued, then only data processed up to the time of the last commit is loaded.

12.3.2 When to Use a Conventional Path Load
How to determine when you should use conventional path load instead of direct path
load.

If load speed is most important to you, then you should use direct path load because it
is faster than conventional path load. However, certain restrictions on direct path loads
may require you to use a conventional path load. You should use a conventional path
load in the following situations:

• When accessing an indexed table concurrently with the load, or when applying
inserts or updates to a nonindexed table concurrently with the load

To use a direct path load (except for parallel loads), SQL*Loader must have
exclusive write access to the table and exclusive read/write access to any indexes.

• When loading data into a clustered table

A direct path load does not support loading of clustered tables.

• When loading a relatively small number of rows into a large indexed table

During a direct path load, the existing index is copied when it is merged with the
new index keys. If the existing index is very large and the number of new keys is
very small, then the index copy time can offset the time saved by a direct path
load.

• When loading a relatively small number of rows into a large table with referential
and column-check integrity constraints

Because these constraints cannot be applied to rows loaded on the direct path,
they are disabled for the duration of the load. Then they are applied to the whole
table when the load completes. The costs could outweigh the savings for a very
large table and a small number of new rows.

• When loading records and you want to ensure that a record is rejected under any
of the following circumstances:

– If the record, upon insertion, causes an Oracle error

Chapter 12
Conventional Path Loads

12-3

– If the record is formatted incorrectly, so that SQL*Loader cannot find field
boundaries

– If the record violates a constraint or tries to make a unique index non-unique

12.3.3 Conventional Path Load of a Single Partition
SQL*Loader uses the partition-extended syntax of the INSERT statement.

By definition, a conventional path load uses SQL INSERT statements. During a
conventional path load of a single partition, SQL*Loader uses the partition-extended
syntax of the INSERT statement, which has the following form:

INSERT INTO TABLE T PARTITION (P) VALUES ...

The SQL layer of the Oracle kernel determines if the row being inserted maps to the
specified partition. If the row does not map to the partition, then the row is rejected,
and the SQL*Loader log file records an appropriate error message.

12.4 Direct Path Loads
Learn what a SQL*Loader direct path load is, when and how to use it to pass data,
and what restrictions apply to this feature.

• About SQL*Loader Direct Path Load
The SQL*Loader direct path load option uses the direct path API to pass the data
to be loaded to the load engine in the server.

• Loading into Synonyms
You can load data into a synonym for a table during a direct path load, but the
synonym must point directly to either a table or a view on a simple table.

• Field Defaults on the Direct Path
Default column specifications defined in the database are not available when you
use direct path loading.

• Integrity Constraints
All integrity constraints are enforced during direct path loads, although not
necessarily at the same time.

• When to Use a Direct Path Load
Learn under what circumstances you should run SQL*Loader with direct path load.

• Restrictions on a Direct Path Load of a Single Partition
There are restrictions on a direct path load of a single partition.

• Restrictions on Using Direct Path Loads
There are restrictions on using direct path loads.

• Advantages of a Direct Path Load
This topic describes the advantages of using a direct path load.

• Direct Path Load of a Single Partition or Subpartition
During a direct path load of a single partition, SQL*Loader uses the partition-
extended syntax of the LOAD statement.

• Direct Path Load of a Partitioned or Subpartitioned Table
When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows
and maintains indexes (which can also be partitioned).

Chapter 12
Direct Path Loads

12-4

• Data Conversion During Direct Path Loads
During a direct path load, data conversion occurs on the client side rather than on
the server side.

12.4.1 About SQL*Loader Direct Path Load
The SQL*Loader direct path load option uses the direct path API to pass the data to
be loaded to the load engine in the server.

When you use the direct path load feature of SQL*Loader, then istead of filling a bind
array buffer and passing it to the Oracle database with a SQL INSERT statement, a
direct path load uses the direct path API to pass the data to be loaded to the load
engine in the server. The load engine builds a column array structure from the data
passed to it.

The direct path load engine uses the column array structure to format Oracle
Database data blocks, and to build index keys. The newly formatted database blocks
are written directly to the database (multiple blocks per I/O request using
asynchronous writes if the host platform supports asynchronous I/O).

Internally, multiple buffers are used for the formatted blocks. While one buffer is being
filled, one or more buffers are being written if asynchronous I/O is available on the host
platform. Overlapping computation with I/O increases load performance.

Related Topics

• Discontinued Direct Path Loads
In a direct path load, the behavior of a discontinued load varies depending on the
reason the load was discontinued.

12.4.2 Loading into Synonyms
You can load data into a synonym for a table during a direct path load, but the
synonym must point directly to either a table or a view on a simple table.

Note the following restrictions:

• Direct path mode cannot be used if the view is on a table that has user-defined
types or XML data.

• In direct path mode, a view cannot be loaded using a SQL*Loader control file that
contains SQL expressions.

12.4.3 Field Defaults on the Direct Path
Default column specifications defined in the database are not available when you use
direct path loading.

Fields for which default values are desired must be specified with the DEFAULTIF
clause. If a DEFAULTIF clause is not specified and the field is NULL, then a null value is
inserted into the database.

12.4.4 Integrity Constraints
All integrity constraints are enforced during direct path loads, although not necessarily
at the same time.

Chapter 12
Direct Path Loads

12-5

NOT NULL constraints are enforced during the load. Records that fail these constraints
are rejected.

UNIQUE constraints are enforced both during and after the load. A record that violates a
UNIQUE constraint is not rejected (the record is not available in memory when the
constraint violation is detected).

Integrity constraints that depend on other rows or tables, such as referential
constraints, are disabled before the direct path load and must be reenabled
afterwards. If REENABLE is specified, then SQL*Loader can reenable them automatically
at the end of the load. When the constraints are reenabled, the entire table is checked.
Any rows that fail this check are reported in the specified error log. See Direct Path
Loads_ Integrity Constraints_ and Triggers.

12.4.5 When to Use a Direct Path Load
Learn under what circumstances you should run SQL*Loader with direct path load.

If you are not restricted by views, field defaults, or integrity constraints, then then you
should use a direct path load in the following circumstances:

• You have a large amount of data to load quickly. A direct path load can quickly
load and index large amounts of data. It can also load data into either an empty or
nonempty table.

• You want to load data in parallel for maximum performance.

12.4.6 Restrictions on a Direct Path Load of a Single Partition
There are restrictions on a direct path load of a single partition.

In addition to the previously listed restrictions, loading a single partition has the
following restrictions:

• The table that the partition is a member of cannot have any global indexes defined
on it.

• Enabled referential and check constraints on the table that the partition is a
member of are not allowed.

• Enabled triggers are not allowed.

12.4.7 Restrictions on Using Direct Path Loads
There are restrictions on using direct path loads.

The following conditions must be satisfied for you to use the direct path load method:

• Tables to be loaded cannot be clustered.

• Tables to be loaded cannot have Oracle Virtual Private Database (VPD) policies
active on INSERT.

• Segments to be loaded cannot have any active transactions pending.

To check for this condition, use the Oracle Enterprise Manager command MONITOR
TABLE to find the object ID for the tables you want to load. Then use the command
MONITOR LOCK to see if there are any locks on the tables.

Chapter 12
Direct Path Loads

12-6

• For releases of the database earlier than Oracle9i, you can perform a SQL*Loader
direct path load only when the client and server are the same release. This also
means that you cannot perform a direct path load of Oracle9i data into a database
of an earlier release. For example, you cannot use direct path load to load data
from a release 9.0.1 database into a release 8.1.7 database.

Beginning with Oracle9i, you can perform a SQL*Loader direct path load when the
client and server are different releases. However, both releases must be at least
release 9.0.1 and the client release must be the same as or lower than the server
release. For example, you can perform a direct path load from a release 9.0.1
database into a release 9.2 database. However, you cannot use direct path load to
load data from a release 10.0.0 database into a release 9.2 database.

The following features are not available with direct path load:

• Loading BFILE columns

• Use of CREATE SEQUENCE during the load. This is because in direct path loads there
is no SQL being generated to fetch the next value since direct path does not
generate INSERT statements.

12.4.8 Advantages of a Direct Path Load
This topic describes the advantages of using a direct path load.

A direct path load is faster than the conventional path for the following reasons:

• Partial blocks are not used, so no reads are needed to find them, and fewer writes
are performed.

• SQL*Loader need not execute any SQL INSERT statements; therefore, the
processing load on the Oracle database is reduced.

• A direct path load calls on Oracle to lock tables and indexes at the start of the load
and releases them when the load is finished. A conventional path load calls Oracle
once for each array of rows to process a SQL INSERT statement.

• A direct path load uses multiblock asynchronous I/O for writes to the database
files.

• During a direct path load, processes perform their own write I/O, instead of using
Oracle's buffer cache. This minimizes contention with other Oracle users.

• The sorted indexes option available during direct path loads enables you to presort
data using high-performance sort routines that are native to your system or
installation.

• When a table to be loaded is empty, the presorting option eliminates the sort and
merge phases of index-building. The index is filled in as data arrives.

• Protection against instance failure does not require redo log file entries during
direct path loads. Therefore, no time is required to log the load when:

– The Oracle database has the SQL NOARCHIVELOG parameter enabled

– The SQL*Loader UNRECOVERABLE clause is enabled

– The object being loaded has the SQL NOLOGGING parameter set

See Instance Recovery and Direct Path Loads.

Chapter 12
Direct Path Loads

12-7

12.4.9 Direct Path Load of a Single Partition or Subpartition
During a direct path load of a single partition, SQL*Loader uses the partition-extended
syntax of the LOAD statement.

When loading a single partition of a partitioned or subpartitioned table, SQL*Loader
partitions the rows and rejects any rows that do not map to the partition or subpartition
specified in the SQL*Loader control file. Local index partitions that correspond to the
data partition or subpartition being loaded are maintained by SQL*Loader. Global
indexes are not maintained on single partition or subpartition direct path loads. During
a direct path load of a single partition, SQL*Loader uses the partition-extended syntax
of the LOAD statement, which has either of the following forms:

LOAD INTO TABLE T PARTITION (P) VALUES ...

LOAD INTO TABLE T SUBPARTITION (P) VALUES ...

While you are loading a partition of a partitioned or subpartitioned table, you are also
allowed to perform DML operations on, and direct path loads of, other partitions in the
table.

Although a direct path load minimizes database processing, several calls to the Oracle
database are required at the beginning and end of the load to initialize and finish the
load, respectively. Also, certain DML locks are required during load initialization and
are released when the load completes. The following operations occur during the load:
index keys are built and put into a sort, and space management routines are used to
get new extents when needed and to adjust the upper boundary (high-water mark) for
a data savepoint. See Using Data Saves to Protect Against Data Loss for information
about adjusting the upper boundary.

12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table
When loading a partitioned or subpartitioned table, SQL*Loader partitions the rows
and maintains indexes (which can also be partitioned).

Note that a direct path load of a partitioned or subpartitioned table can be quite
resource-intensive for tables with many partitions or subpartitions.

Note:

If you are performing a direct path load into multiple partitions and a space
error occurs, then the load is rolled back to the last commit point. If there was
no commit point, then the entire load is rolled back. This ensures that no data
encountered after the space error is written out to a different partition.

You can use the ROWS parameter to specify the frequency of the commit
points. If the ROWS parameter is not specified, then the entire load is rolled
back.

Chapter 12
Direct Path Loads

12-8

12.4.11 Data Conversion During Direct Path Loads
During a direct path load, data conversion occurs on the client side rather than on the
server side.

This means that NLS parameters in the initialization parameter file (server-side
language handle) will not be used. To override this behavior, you can specify a format
mask in the SQL*Loader control file that is equivalent to the setting of the NLS
parameter in the initialization parameter file, or set the appropriate environment
variable. For example, to specify a date format for a field, you can either set the date
format in the SQL*Loader control file as shown in Example 12-1 or set an
NLS_DATE_FORMAT environment variable as shown in Example 12-2.

Example 12-1 Setting the Date Format in the SQL*Loader Control File

LOAD DATA
INFILE 'data.dat'
INSERT INTO TABLE emp
FIELDS TERMINATED BY "|"
(
EMPNO NUMBER(4) NOT NULL,
ENAME CHAR(10),
JOB CHAR(9),
MGR NUMBER(4),
HIREDATE DATE 'YYYYMMDD',
SAL NUMBER(7,2),
COMM NUMBER(7,2),
DEPTNO NUMBER(2)
)

Example 12-2 Setting an NLS_DATE_FORMAT Environment Variable

On UNIX Bourne or Korn shell:

% NLS_DATE_FORMAT='YYYYMMDD'
% export NLS_DATE_FORMAT

On UNIX csh:

%setenv NLS_DATE_FORMAT='YYYYMMDD'

12.5 Optimizing Performance of Direct Path Loads
Learn how to enable your SQL*Loader direct path loads to run faster, and to use less
space.

• Minimizing Time and Space Required for Direct Path Loads
You can control the time and temporary storage used during direct path loads.

• Preallocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process
takes time. For faster loads into a new table, allocate the required extents when
the table is created.

• Presorting Data for Faster Indexing
You can improve the performance of SQL*Loader direct path loads by presorting
your data on indexed columns.

Chapter 12
Optimizing Performance of Direct Path Loads

12-9

• Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the
performance of a direct path load.

• Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log.

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before
the stream buffer is built. T

• Specifying a Value for DATE_CACHE
If you are performing a direct path load in which the same date or timestamp
values are loaded many times, then a large percentage of total load time can end
up being used for converting date and timestamp data.

12.5.1 Minimizing Time and Space Required for Direct Path Loads
You can control the time and temporary storage used during direct path loads.

To minimize time:

• Preallocate storage space

• Presort the data

• Perform infrequent data saves

• Minimize use of the redo log

• Specify the number of column array rows and the size of the stream buffer

• Specify a date cache value

• Set DB_UNRECOVERABLE_SCN_TRACKING=FALSE. Unrecoverable (nologging) direct
writes are tracked in the control file by periodically storing the SCN and Time of
the last direct write. If these updates to the control file are adversely affecting
performance, then setting the DB_UNRECOVERABLE_SCN_TRACKING parameter to
FALSE may improve performance.

To minimize space:

• When sorting data before the load, sort data on the index that requires the most
temporary storage space

• Avoid index maintenance during the load

12.5.2 Preallocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process
takes time. For faster loads into a new table, allocate the required extents when the
table is created.

To calculate the space required by a table, see the information about managing
database files in the Oracle Database Administrator's Guide. Then use the INITIAL or
MINEXTENTS clause in the SQL CREATE TABLE statement to allocate the required space.

Another approach is to size extents large enough so that extent allocation is
infrequent.

Chapter 12
Optimizing Performance of Direct Path Loads

12-10

12.5.3 Presorting Data for Faster Indexing
You can improve the performance of SQL*Loader direct path loads by presorting your
data on indexed columns.

• Advantages of Presorting Data
Learn about how presorting enables you to increase load performance with
SQL*Loader

• SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

• Unsorted Data
If you specify an index in the SORTED INDEXES clause, and the data is not sorted for
that index, then the index is left in an Index Unusable state at the end of the load.

• Multiple-Column Indexes
If you specify a multiple-column index in the SORTED INDEXES clause, then the data
should be sorted so that it is ordered first on the first column in the index, next on
the second column in the index, and so on.

• Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data
based on the index that requires the most temporary segment space.

12.5.3.1 Advantages of Presorting Data
Learn about how presorting enables you to increase load performance with
SQL*Loader

Presorting minimizes temporary storage requirements during the load. Presorting also
enables you to take advantage of high-performance sorting routines that are optimized
for your operating system or application.

If the data is presorted, and the existing index is not empty, then presorting minimizes
the amount of temporary segment space needed for the new keys. The sort routine
appends each new key to the key list. Instead of requiring extra space for sorting, only
space for the keys is needed. To calculate the amount of storage needed, use a sort
factor of 1.0 instead of 1.3. For more information about estimating storage
requirements, refer to "Temporary Segment Storage Requirements."

If presorting is specified, and the existing index is empty, then maximum efficiency is
achieved. The new keys are simply inserted into the index. Instead of having a
temporary segment and new index existing simultaneously with the empty, old index,
only the new index exists. As a result, temporary storage is not required during the
load, and time is saved.

Related Topics

• Temporary Segment Storage Requirements
Estimating the amount of temporary segment storage requirements.

12.5.3.2 SORTED INDEXES Clause
The SORTED INDEXES clause identifies the indexes on which the data is presorted.

Chapter 12
Optimizing Performance of Direct Path Loads

12-11

This clause is allowed only for direct path loads. See case study 6, Loading Data
Using the Direct Path Load Method, for an example. (See SQL*Loader Case Studies
for information on how to access case studies.)

Generally, you specify only one index in the SORTED INDEXES clause, because data that
is sorted for one index is not usually in the right order for another index. When the data
is in the same order for multiple indexes, however, all indexes can be specified at
once.

All indexes listed in the SORTED INDEXES clause must be created before you start the
direct path load.

12.5.3.3 Unsorted Data
If you specify an index in the SORTED INDEXES clause, and the data is not sorted for that
index, then the index is left in an Index Unusable state at the end of the load.

The data is present, but any attempt to use the index results in an error. Any index that
is left in an Index Unusable state must be rebuilt after the load.

12.5.3.4 Multiple-Column Indexes
If you specify a multiple-column index in the SORTED INDEXES clause, then the data
should be sorted so that it is ordered first on the first column in the index, next on the
second column in the index, and so on.

For example, if the first column of the index is city, and the second column is last
name; then the data should be ordered by name within each city, as in the following
list:

Albuquerque Adams
Albuquerque Hartstein
Albuquerque Klein
... ...
Boston Andrews
Boston Bobrowski
Boston Heigham
... ...

12.5.3.5 Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data
based on the index that requires the most temporary segment space.

For example, if the primary key is one numeric column, and the secondary key
consists of three text columns, then you can minimize both sort time and storage
requirements by presorting on the secondary key.

To determine the index that requires the most storage space, use the following
procedure:

1. For each index, add up the widths of all columns in that index.

2. For a single-table load, pick the index with the largest overall width.

3. For each table in a multiple-table load, identify the index with the largest overall
width. If the same number of rows are to be loaded into each table, then again pick
the index with the largest overall width. Usually, the same number of rows are
loaded into each table.

Chapter 12
Optimizing Performance of Direct Path Loads

12-12

4. If a different number of rows are to be loaded into the indexed tables in a multiple-
table load, then multiply the width of each index identified in Step 3 by the number
of rows that are to be loaded into that index, and pick the index with the largest
result.

12.5.4 Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the
performance of a direct path load.

A small ROWS value can also result in wasted data block space because the last data
block is not written to after a save, even if the data block is not full.

Because direct path loads can be many times faster than conventional loads, the value
of ROWS should be considerably higher for a direct load than it would be for a
conventional load.

During a data save, loading stops until all of SQL*Loader's buffers are successfully
written. You should select the largest value for ROWS that is consistent with safety. It is
a good idea to determine the average time to load a row by loading a few thousand
rows. Then you can use that value to select a good value for ROWS.

For example, if you can load 20,000 rows per minute, and you do not want to repeat
more than 10 minutes of work after an interruption, then set ROWS to be 200,000
(20,000 rows/minute * 10 minutes).

12.5.5 Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log.

There are three ways to do this. You can disable archiving, you can specify that the
load is unrecoverable, or you can set the SQL NOLOGGING parameter for the objects
being loaded. This section discusses all methods.

• Disabling Archiving
If archiving is disabled, then direct path loads do not generate full image redo.

• Specifying the SQL*Loader UNRECOVERABLE Clause
To save time and space in the redo log file, use the SQL*Loader UNRECOVERABLE
clause in the control file when you load data.

• Setting the SQL NOLOGGING Parameter
If a data or index segment has the SQL NOLOGGING parameter set, then full image
redo logging is disabled for that segment (invalidation redo is generated).

12.5.5.1 Disabling Archiving
If archiving is disabled, then direct path loads do not generate full image redo.

Use the SQL ARCHIVELOG and NOARCHIVELOG parameters to set the archiving mode.
See the Oracle Database Administrator's Guide for more information about archiving.

12.5.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause
To save time and space in the redo log file, use the SQL*Loader UNRECOVERABLE
clause in the control file when you load data.

Chapter 12
Optimizing Performance of Direct Path Loads

12-13

An unrecoverable load does not record loaded data in the redo log file; instead, it
generates invalidation redo.

The UNRECOVERABLE clause applies to all objects loaded during the load session (both
data and index segments). Therefore, media recovery is disabled for the loaded table,
although database changes by other users may continue to be logged.

Note:

Because the data load is not logged, you may want to make a backup of the
data after loading.

If media recovery becomes necessary on data that was loaded with the
UNRECOVERABLE clause, then the data blocks that were loaded are marked as logically
corrupted.

To recover the data, drop and re-create the data. It is a good idea to do backups
immediately after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE.

The following is an example of specifying the UNRECOVERABLE clause in the control file:

UNRECOVERABLE
LOAD DATA
INFILE 'sample.dat'
INTO TABLE emp
(ename VARCHAR2(10), empno NUMBER(4));

12.5.5.3 Setting the SQL NOLOGGING Parameter
If a data or index segment has the SQL NOLOGGING parameter set, then full image redo
logging is disabled for that segment (invalidation redo is generated).

Use of the NOLOGGING parameter allows a finer degree of control over the objects that
are not logged.

12.5.6 Specifying the Number of Column Array Rows and Size of
Stream Buffers

The number of column array rows determines the number of rows loaded before the
stream buffer is built. T

he STREAMSIZE parameter specifies the size (in bytes) of the data stream sent from the
client to the server.

Use the COLUMNARRAYROWS parameter to specify a value for the number of column array
rows. Note that when VARRAYs are loaded using direct path, the COLUMNARRAYROWS
parameter defaults to 100 to avoid client object cache thrashing.

Use the STREAMSIZE parameter to specify the size for direct path stream buffers.

The optimal values for these parameters vary, depending on the system, input data
types, and Oracle column data types used. When you are using optimal values for

Chapter 12
Optimizing Performance of Direct Path Loads

12-14

your particular configuration, the elapsed time in the SQL*Loader log file should go
down.

Note:

You should monitor process paging activity, because if paging becomes
excessive, then performance can be significantly degraded. You may need to
lower the values for READSIZE, STREAMSIZE, and COLUMNARRAYROWS to avoid
excessive paging.

It can be particularly useful to specify the number of column array rows and size of the
stream buffer when you perform direct path loads on multiple-CPU systems.

See Also:

• Optimizing Direct Path Loads on Multiple-CPU Systems

• COLUMNARRAYROWS

• STREAMSIZE

12.5.7 Specifying a Value for DATE_CACHE
If you are performing a direct path load in which the same date or timestamp values
are loaded many times, then a large percentage of total load time can end up being
used for converting date and timestamp data.

This is especially true if multiple date columns are being loaded. In such a case, it may
be possible to improve performance by using the SQL*Loader date cache.

The date cache reduces the number of date conversions done when many duplicate
values are present in the input data. It enables you to specify the number of unique
dates anticipated during the load.

The date cache is enabled by default. To completely disable the date cache, set it to 0.

The default date cache size is 1000 elements. If the default is used and the number of
unique input values loaded exceeds 1000, then the date cache is automatically
disabled for that table. This prevents excessive and unnecessary lookup times that
could affect performance. However, if instead of using the default, you specify a
nonzero value for the date cache and it is exceeded, then the date cache is not
disabled. Instead, any input data that exceeded the maximum is explicitly converted
using the appropriate conversion routines.

The date cache can be associated with only one table. No date cache sharing can
take place across tables. A date cache is created for a table only if all of the following
conditions are true:

• The DATE_CACHE parameter is not set to 0

• One or more date values, timestamp values, or both are being loaded that require
data type conversion in order to be stored in the table

Chapter 12
Optimizing Performance of Direct Path Loads

12-15

• The load is a direct path load

Date cache statistics are written to the log file. You can use those statistics to improve
direct path load performance as follows:

• If the number of cache entries is less than the cache size and there are no cache
misses, then the cache size could safely be set to a smaller value.

• If the number of cache hits (entries for which there are duplicate values) is small
and the number of cache misses is large, then the cache size should be
increased. Be aware that if the cache size is increased too much, then it may
cause other problems, such as excessive paging or too much memory usage.

• If most of the input date values are unique, then the date cache will not enhance
performance and therefore should not be used.

Note:

Date cache statistics are not written to the SQL*Loader log file if the
cache was active by default and disabled because the maximum was
exceeded.

If increasing the cache size does not improve performance, then revert to the default
behavior or set the cache size to 0. The overall performance improvement also
depends on the data types of the other columns being loaded. Improvement will be
greater for cases in which the total number of date columns loaded is large compared
to other types of data loaded.

See Also:

DATE_CACHE

12.6 Using Direct Path Load
Learn how you can use the SQL*Loader direct path load method for loading data.

• Setting Up for Direct Path Loads
To prepare the database for direct path loads, you must run the setup script,
catldr.sql, to create the necessary views.

• Specifying a Direct Path Load
To start SQL*Loader in direct path load mode, set the DIRECT parameter to TRUE
on the command line or in the parameter file.

• Building Indexes
You can improve performance of direct path loads by using temporary storage.
After each block is formatted, the new index keys are put in a sort (temporary)
segment.

• Indexes Left in an Unusable State
SQL*Loader leaves indexes in an Index Unusable state when the data segment
being loaded becomes more up-to-date than the index segments that index it.

Chapter 12
Using Direct Path Load

12-16

• Using Data Saves to Protect Against Data Loss
You can use data saves to protect against loss of data due to instance failure.

• Data Recovery During Direct Path Loads
SQL*Loader provides full support for data recovery when using the direct path
load method.

• Loading Long Data Fields
You can load data that is longer than SQL*Loader's maximum buffer size can load
on the direct path by using large object types (LOBs).

• Loading Data As PIECED
The PIECED parameter can be used to load data in sections, if the data is in the
last column of the logical record.

• Auditing SQL*Loader Operations That Use Direct Path Mode
You can perform auditing on SQL*Loader direct path loads to monitor and record
selected user database actions.

12.6.1 Setting Up for Direct Path Loads
To prepare the database for direct path loads, you must run the setup script,
catldr.sql, to create the necessary views.

You need only run this script once for each database you plan to do direct loads to.
You can run this script during database installation if you know then that you will be
doing direct loads.

12.6.2 Specifying a Direct Path Load
To start SQL*Loader in direct path load mode, set the DIRECT parameter to TRUE on
the command line or in the parameter file.

For example, in the format:

DIRECT=TRUE

See Also:

• Optimizing Performance of Direct Path Loads for information about
parameters you can use to optimize performance of direct path loads

• Optimizing Direct Path Loads on Multiple-CPU Systems if you are doing
a direct path load on a multiple-CPU system or across systems

12.6.3 Building Indexes
You can improve performance of direct path loads by using temporary storage. After
each block is formatted, the new index keys are put in a sort (temporary) segment.

The old index and the new keys are merged at load finish time to create the new
index. The old index, sort (temporary) segment, and new index segment all require

Chapter 12
Using Direct Path Load

12-17

storage until the merge is complete. Then the old index and temporary segment are
removed.

During a conventional path load, every time a row is inserted the index is updated.
This method does not require temporary storage space, but it does add processing
time.

• Improving Performance
To improve performance on systems with limited memory, use the SINGLEROW
parameter.

• Temporary Segment Storage Requirements
Estimating the amount of temporary segment storage requirements.

12.6.3.1 Improving Performance
To improve performance on systems with limited memory, use the SINGLEROW
parameter.

For more information, see SINGLEROW Option.

Note:

If, during a direct load, you have specified that the data is to be presorted
and the existing index is empty, then a temporary segment is not required,
and no merge occurs—the keys are put directly into the index. See
Optimizing Performance of Direct Path Loads for more information.

When multiple indexes are built, the temporary segments corresponding to each index
exist simultaneously, in addition to the old indexes. The new keys are then merged
with the old indexes, one index at a time. As each new index is created, the old index
and the corresponding temporary segment are removed.

See Also:

Oracle Database Administrator's Guide for information about how to estimate
index size and set storage parameters

12.6.3.2 Temporary Segment Storage Requirements
Estimating the amount of temporary segment storage requirements.

To estimate the amount of temporary segment space needed for storing the new index
keys (in bytes), use the following formula:

1.3 * key_storage

In this formula, key storage is defined as follows:

key_storage = (number_of_rows) *
 (10 + sum_of_column_sizes + number_of_columns)

Chapter 12
Using Direct Path Load

12-18

The columns included in this formula are the columns in the index. There is one length
byte per column, and 10 bytes per row are used for a ROWID and additional overhead.

The constant 1.3 reflects the average amount of extra space needed for sorting. This
value is appropriate for most randomly ordered data. If the data arrives in exactly
opposite order, then twice the key-storage space is required for sorting, and the value
of this constant would be 2.0. That is the worst case.

If the data is fully sorted, then only enough space to store the index entries is required,
and the value of this constant would be 1.0. See Presorting Data for Faster Indexing
for more information.

12.6.4 Indexes Left in an Unusable State
SQL*Loader leaves indexes in an Index Unusable state when the data segment being
loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in an Index Unusable state returns
an error. The following conditions cause a direct path load to leave an index or a
partition of a partitioned index in an Index Unusable state:

• SQL*Loader runs out of space for the index and cannot update the index.

• The data is not in the order specified by the SORTED INDEXES clause.

• There is an instance failure, or the Oracle shadow process fails while building the
index.

• There are duplicate keys in a unique index.

• Data savepoints are being used, and the load fails or is terminated by a keyboard
interrupt after a data savepoint occurred.

To determine if an index is in an Index Unusable state, you can execute a simple
query:

SELECT INDEX_NAME, STATUS
 FROM USER_INDEXES
 WHERE TABLE_NAME = 'tablename';

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES instead
of USER_INDEXES.

To determine if an index partition is in an unusable state, you can execute the
following query:

SELECT INDEX_NAME,
 PARTITION_NAME,
 STATUS FROM USER_IND_PARTITIONS
 WHERE STATUS != 'VALID';

If you are not the owner of the table, then search ALL_IND_PARTITIONS and
DBA_IND_PARTITIONS instead of USER_IND_PARTITIONS.

12.6.5 Using Data Saves to Protect Against Data Loss
You can use data saves to protect against loss of data due to instance failure.

All data loaded up to the last savepoint is protected against instance failure. To
continue the load after an instance failure, determine how many rows from the input

Chapter 12
Using Direct Path Load

12-19

file were processed before the failure, then use the SKIP parameter to skip those
processed rows.

If there are any indexes on the table, drop them before continuing the load, and then
re-create them after the load. See Data Recovery During Direct Path Loads for more
information about media and instance recovery.

Note:

Indexes are not protected by a data save, because SQL*Loader does not
build indexes until after data loading completes. (The only time indexes are
built during the load is when presorted data is loaded into an empty table, but
these indexes are also unprotected.)

• Using the ROWS Parameter
The ROWS parameter determines when data saves occur during a direct path load.

• Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit
operation. A direct load data save is similar to a conventional load commit, but it is
not identical.

12.6.5.1 Using the ROWS Parameter
The ROWS parameter determines when data saves occur during a direct path load.

The value you specify for ROWS is the number of rows you want SQL*Loader to read
from the input file before saving inserts in the database.

A data save is an expensive operation. The value for ROWS should be set high enough
so that a data save occurs once every 15 minutes or longer. The intent is to provide an
upper boundary (high-water mark) on the amount of work that is lost when an instance
failure occurs during a long-running direct path load. Setting the value of ROWS to a
small number adversely affects performance and data block space utilization.

12.6.5.2 Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit operation.
A direct load data save is similar to a conventional load commit, but it is not identical.

The similarities are as follows:

• A data save will make the rows visible to other users.

• Rows cannot be rolled back after a data save.

The major difference is that in a direct path load data save, the indexes will be
unusable (in Index Unusable state) until the load completes.

12.6.6 Data Recovery During Direct Path Loads
SQL*Loader provides full support for data recovery when using the direct path load
method.

There are two main types of recovery:

Chapter 12
Using Direct Path Load

12-20

• Media - recovery from the loss of a database file. You must be operating in
ARCHIVELOG mode to recover after you lose a database file.

• Instance - recovery from a system failure in which in-memory data was changed
but lost due to the failure before it was written to disk. The Oracle database can
always recover from instance failures, even when redo logs are not archived.

• Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode), then
SQL*Loader logs loaded data when using the direct path, making media recovery
possible.

• Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to
the last data save will automatically be present in the database files if the instance
is restarted.

12.6.6.1 Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode), then
SQL*Loader logs loaded data when using the direct path, making media recovery
possible.

If redo log archiving is not enabled (you are operating in NOARCHIVELOG mode), then
media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same
method that you use to recover data loaded with the conventional path:

1. Restore the most recent backup of the affected database file.

2. Recover the tablespace using the RMAN RECOVER command.

See Also:

Oracle Database Backup and Recovery User's Guide for more
information about using RMAN to recover a tablespace

12.6.6.2 Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to the
last data save will automatically be present in the database files if the instance is
restarted.

Changes do not need to be recorded in the redo log file to make instance recovery
possible.

If an instance failure occurs, then the indexes being built may be left in an Index
Unusable state. Indexes that are Unusable must be rebuilt before you can use the
table or partition. See Indexes Left in an Unusable State for information about how to
determine if an index has been left in Index Unusable state.

Chapter 12
Using Direct Path Load

12-21

12.6.7 Loading Long Data Fields
You can load data that is longer than SQL*Loader's maximum buffer size can load on
the direct path by using large object types (LOBs).

In considering how to load long data fields, note the following:

• To improve performance for loading long data fields as LOBs, Oracle recommends
that you use a large STREAMSIZE value.

• As an alternative to LOBs, you can also load data that is longer than the maximum
buffer size by using the PIECED parameter. However, for this scenario, Oracle
highly recommends that you use LOBs instad of PIECED.

Related Topics

• Loading LOBs with SQL*Loader
Find out which large object types (LOBs) SQL*Loader can load, and see examples
of how to load LOB Data.

• Specifying the Number of Column Array Rows and Size of Stream Buffers
The number of column array rows determines the number of rows loaded before
the stream buffer is built. T

12.6.8 Loading Data As PIECED
The PIECED parameter can be used to load data in sections, if the data is in the last
column of the logical record.

Declaring a column as PIECED informs the direct path loader that a LONG field might be
split across multiple physical records (pieces). In such cases, SQL*Loader processes
each piece of the LONG field as it is found in the physical record. All the pieces are read
before the record is processed. SQL*Loader makes no attempt to materialize the LONG
field before storing it; however, all the pieces are read before the record is processed.

The following restrictions apply when you declare a column as PIECED:

• This option is only valid on the direct path.

• Only one field per table may be PIECED.

• The PIECED field must be the last field in the logical record.

• The PIECED field may not be used in any WHEN, NULLIF, or DEFAULTIF clauses.

• The PIECED field's region in the logical record must not overlap with any other
field's region.

• The PIECED corresponding database column may not be part of the index.

• It may not be possible to load a rejected record from the bad file if it contains a
PIECED field.

For example, a PIECED field could span three records. SQL*Loader loads the piece
from the first record and then reuses the buffer for the second buffer. After loading
the second piece, the buffer is reused for the third record. If an error is discovered,
then only the third record is placed in the bad file because the first two records no
longer exist in the buffer. As a result, the record in the bad file would not be valid.

Chapter 12
Using Direct Path Load

12-22

12.6.9 Auditing SQL*Loader Operations That Use Direct Path Mode
You can perform auditing on SQL*Loader direct path loads to monitor and record
selected user database actions.

SQL*Loader uses unified auditing, in which all audit records are centralized in one
place.

To set up unified auditing you create a unified audit policy or alter an existing policy.
An audit policy is a named group of audit settings that enable you to audit a particular
aspect of user behavior in the database. To create the policy, use the SQL CREATE
AUDIT POLICY statement.

After creating the audit policy, use the AUDIT and NOAUDIT SQL statements to,
respectively, enable and disable the policy.

See Also:

• Oracle Database SQL Language Reference for more information about
the SQL CREATE AUDIT POLICY, ALTER AUDIT POLICY,AUDIT, and
NOAUDIT statements

• Oracle Database Security Guide for more information about using
auditing in an Oracle database

12.7 Optimizing Direct Path Loads on Multiple-CPU
Systems

If you are performing direct path loads on a multiple-CPU system, then SQL*Loader
uses multithreading by default. A multiple-CPU system in this case is defined as a
single system that has two or more CPUs.

Multithreaded loading means that, when possible, conversion of the column arrays to
stream buffers and stream buffer loading are performed in parallel. This optimization
works best when:

• Column arrays are large enough to generate multiple direct path stream buffers for
loads

• Data conversions are required from input field data types to Oracle column data
types

The conversions are performed in parallel with stream buffer loading.

The status of this process is recorded in the SQL*Loader log file, as shown in the
following sample portion of a log:

Total stream buffers loaded by SQL*Loader main thread: 47
Total stream buffers loaded by SQL*Loader load thread: 180
Column array rows: 1000
Stream buffer bytes: 256000

Chapter 12
Optimizing Direct Path Loads on Multiple-CPU Systems

12-23

In this example, the SQL*Loader load thread has offloaded the SQL*Loader main
thread, allowing the main thread to build the next stream buffer while the load thread
loads the current stream on the server.

The goal is to have the load thread perform as many stream buffer loads as possible.
This can be accomplished by increasing the number of column array rows, decreasing
the stream buffer size, or both. You can monitor the elapsed time in the SQL*Loader
log file to determine whether your changes are having the desired effect. See
Specifying the Number of Column Array Rows and Size of Stream Buffers for more
information.

On single-CPU systems, optimization is turned off by default. When the server is on
another system, performance may improve if you manually turn on multithreading.

To turn the multithreading option on or off, use the MULTITHREADING parameter at the
SQL*Loader command line or specify it in your SQL*Loader control file.

See Also:

Oracle Call Interface Programmer's Guide for more information about the
concepts of direct path loading

12.8 Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all existing
indexes for a table.

To avoid index maintenance, use one of the following methods:

• Drop the indexes before beginning of the load.

• Mark selected indexes or index partitions as Index Unusable before beginning the
load and use the SKIP_UNUSABLE_INDEXES parameter.

• Use the SKIP_INDEX_MAINTENANCE parameter (direct path only, use with caution).

By avoiding index maintenance, you minimize the amount of space required during a
direct path load, in the following ways:

• You can build indexes one at a time, reducing the amount of sort (temporary)
segment space that would otherwise be needed for each index.

• Only one index segment exists when an index is built, instead of the three
segments that temporarily exist when the new keys are merged into the old index
to make the new index.

Avoiding index maintenance is quite reasonable when the number of rows to be
loaded is large compared to the size of the table. But if relatively few rows are added
to a large table, then the time required to resort the indexes may be excessive. In such
cases, it is usually better to use the conventional path load method, or to use the
SINGLEROW parameter of SQL*Loader. For more information, see SINGLEROW Option.

Chapter 12
Avoiding Index Maintenance

12-24

12.9 Direct Path Loads, Integrity Constraints, and Triggers
With the conventional path load method, arrays of rows are inserted with standard
SQL INSERT statements; integrity constraints and insert triggers are automatically
applied.

But when you load data with the direct path, SQL*Loader disables some integrity
constraints and all database triggers. This section discusses the implications of using
direct path loads with respect to these features.

• Integrity Constraints
During a direct path load, some integrity constraints are automatically disabled.

• Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins.

• Permanently Disabled Triggers and Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable
triggers and constraints.

• Increasing Performance with Concurrent Conventional Path Loads
If triggers or integrity constraints pose a problem, but you want faster loading, then
you should consider using concurrent conventional path loads.

12.9.1 Integrity Constraints
During a direct path load, some integrity constraints are automatically disabled.

Others are not. For a description of the constraints, see the information about
maintaining data integrity in the Oracle Database Development Guide.

• Enabled Constraints
During direct path load, some constraints remain enabled.

• Disabled Constraints
During a direct path load, some constraints are disabled.

• Reenable Constraints
When the load completes, the integrity constraints will be reenabled automatically
if the REENABLE clause is specified.

12.9.1.1 Enabled Constraints
During direct path load, some constraints remain enabled.

During a direct path load, the constraints that remain enabled are as follows:

• NOT NULL

• UNIQUE

• PRIMARY KEY (unique-constraints on not-null columns)

NOT NULL constraints are checked at column array build time. Any row that violates the
NOT NULL constraint is rejected.

Even though UNIQUE constraints remain enabled during direct path loads, any rows
that violate those constraints are loaded anyway (this is different than in conventional
path in which such rows would be rejected). When indexes are rebuilt at the end of the

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-25

direct path load, UNIQUE constraints are verified and if a violation is detected, then the
index will be left in an Index Unusable state. See Indexes Left in an Unusable State.

12.9.1.2 Disabled Constraints
During a direct path load, some constraints are disabled.

During a direct path load, the following constraints are automatically disabled by
default:

• CHECK constraints

• Referential constraints (FOREIGN KEY)

You can override the automatic disabling of CHECK constraints by specifying the
EVALUATE CHECK_CONSTRAINTS clause. SQL*Loader will then evaluate CHECK
constraints during a direct path load. Any row that violates the CHECK constraint is
rejected. The following example shows the use of the EVALUATE CHECK_CONSTRAINTS
clause in a SQL*Loader control file:

LOAD DATA
INFILE *
APPEND
INTO TABLE emp
EVALUATE CHECK_CONSTRAINTS
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(c1 CHAR(10) ,c2)
BEGINDATA
Jones,10
Smith,20
Brown,30
Taylor,40

12.9.1.3 Reenable Constraints
When the load completes, the integrity constraints will be reenabled automatically if
the REENABLE clause is specified.

The syntax for the REENABLE clause is as follows:

EVALUATE CHECK_CONSTRAINTS REENABLE DISABLED_CONSTRAINTS

EXCEPTIONS table WHEN field_condition

The optional parameter DISABLED_CONSTRAINTS is provided for readability. If the
EXCEPTIONS clause is included, then the table must already exist and you must be able
to insert into it. This table contains the ROWIDs of all rows that violated one of the
integrity constraints. It also contains the name of the constraint that was violated. See
Oracle Database SQL Language Reference for instructions on how to create an
exceptions table.

The SQL*Loader log file describes the constraints that were disabled, the ones that
were reenabled, and what error, if any, prevented reenabling or validating of each

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-26

constraint. It also contains the name of the exceptions table specified for each loaded
table.

If the REENABLE clause is not used, then the constraints must be reenabled manually,
at which time all rows in the table are verified. If the Oracle database finds any errors
in the new data, then error messages are produced. The names of violated constraints
and the ROWIDs of the bad data are placed in an exceptions table, if one is specified.

If the REENABLE clause is used, then SQL*Loader automatically reenables the
constraint and verifies all new rows. If no errors are found in the new data, then
SQL*Loader automatically marks the constraint as validated. If any errors are found in
the new data, then error messages are written to the log file and SQL*Loader marks
the status of the constraint as ENABLE NOVALIDATE. The names of violated constraints
and the ROWIDs of the bad data are placed in an exceptions table, if one is specified.

Note:

Normally, when a table constraint is left in an ENABLE NOVALIDATE state, new
data can be inserted into the table but no new invalid data may be inserted.
However, SQL*Loader direct path load does not enforce this rule. Thus, if
subsequent direct path loads are performed with invalid data, then the invalid
data will be inserted but the same error reporting and exception table
processing as described previously will take place. In this scenario the
exception table may contain duplicate entries if it is not cleared out before
each load. Duplicate entries can easily be filtered out by performing a query
such as the following:

SELECT UNIQUE * FROM exceptions_table;

Note:

Because referential integrity must be reverified for the entire table,
performance may be improved by using the conventional path, instead of the
direct path, when a small number of rows are to be loaded into a very large
table.

12.9.2 Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins.

After the rows are loaded and indexes rebuilt, any triggers that were disabled are
automatically reenabled. The log file lists all triggers that were disabled for the load.
There should not be any errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table when
they are enabled. As a result, insert triggers do not fire for any rows loaded on the
direct path. When using the direct path, the application must ensure that any behavior
associated with insert triggers is carried out for the new rows.

• Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints.

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-27

• When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle's automatic integrity
constraints.

• Preparation
Before either method can be used, the table must be prepared.

• Using an Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an
insert trigger.

• Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate
its effects.

• Using a Stored Procedure
This topic describes using a stored procedure.

12.9.2.1 Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints.

Most of the triggers that these application insert are simple enough that they can be
replaced with Oracle's automatic integrity constraints.

12.9.2.2 When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle's automatic integrity
constraints.

For example, if an integrity check is implemented with a table lookup in an insert
trigger, then automatic check constraints cannot be used, because the automatic
constraints can only reference constants and columns in the current row. This section
describes two methods for duplicating the effects of such a trigger.

12.9.2.3 Preparation
Before either method can be used, the table must be prepared.

Use the following general guidelines to prepare the table:

1. Before the load, add a 1-byte or 1-character column to the table that marks rows
as "old data" or "new data."

2. Let the value of null for this column signify "old data" because null columns do not
take up space.

3. When loading, flag all loaded rows as "new data" with SQL*Loader's CONSTANT
parameter.

After following this procedure, all newly loaded rows are identified, making it possible
to operate on the new data without affecting the old rows.

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-28

12.9.2.4 Using an Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an insert
trigger.

This method is the simplest. It can be used whenever the insert trigger does not raise
any exceptions.

1. Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of "new.column_name" to
"old.column_name".

2. Replace the current update trigger, if it exists, with the new one.

3. Update the table, changing the "new data" flag to null, thereby firing the update
trigger.

4. Restore the original update trigger, if there was one.

Depending on the behavior of the trigger, it may be necessary to have exclusive
update access to the table during this operation, so that other users do not
inadvertently apply the trigger to rows they modify.

12.9.2.5 Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate its
effects.

Raising an exception would prevent the row from being inserted into the table. To
duplicate that effect with an update trigger, it is necessary to mark the loaded row for
deletion.

The "new data" column cannot be used as a delete flag, because an update trigger
cannot modify the columns that caused it to fire. So another column must be added to
the table. This column marks the row for deletion. A null value means the row is valid.
Whenever the insert trigger would raise an exception, the update trigger can mark the
row as invalid by setting a flag in the additional column.

In summary, when an insert trigger can raise an exception condition, its effects can be
duplicated by an update trigger, provided:

• Two columns (which are usually null) are added to the table

• The table can be updated exclusively (if necessary)

12.9.2.6 Using a Stored Procedure
This topic describes using a stored procedure.

The following procedure always works, but it is more complex to implement. It can be
used when the insert trigger raises exceptions. It does not require a second additional
column; and, because it does not replace the update trigger, it can be used without
exclusive access to the table.

1. Do the following to create a stored procedure that duplicates the effects of the
insert trigger:

a. Declare a cursor for the table, selecting all new rows.

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-29

b. Open the cursor and fetch rows, one at a time, in a processing loop.

c. Perform the operations contained in the insert trigger.

d. If the operations succeed, then change the "new data" flag to null.

e. If the operations fail, then change the "new data" flag to "bad data."

2. Execute the stored procedure using an administration tool such as SQL*Plus.

3. After running the procedure, check the table for any rows marked "bad data."

4. Update or remove the bad rows.

5. Reenable the insert trigger.

12.9.3 Permanently Disabled Triggers and Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable
triggers and constraints.

If a competing process is enabling triggers or constraints at the same time that
SQL*Loader is trying to disable them for that table, then SQL*Loader may not be able
to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts to
reenable disabled triggers and constraints before exiting. However, the same table-
locking problem that made it impossible for SQL*Loader to continue may also have
made it impossible for SQL*Loader to finish enabling triggers and constraints. In such
cases, triggers and constraints will remain disabled until they are manually enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to
ensure that no applications are running that could enable triggers or constraints for the
table while the direct load is in progress.

If a direct load is terminated due to failure to acquire the proper locks, then carefully
check the log. It will show every trigger and constraint that was disabled, and each
attempt to reenable them. Any triggers or constraints that were not reenabled by
SQL*Loader should be manually enabled with the ENABLE clause of the ALTER TABLE
statement described in Oracle Database SQL Language Reference.

12.9.4 Increasing Performance with Concurrent Conventional Path
Loads

If triggers or integrity constraints pose a problem, but you want faster loading, then you
should consider using concurrent conventional path loads.

That is, use multiple load sessions executing concurrently on a multiple-CPU system.
Split the input data files into separate files on logical record boundaries, and then load
each such input data file with a conventional path load session. The resulting load has
the following attributes:

• It is faster than a single conventional load on a multiple-CPU system, but probably
not as fast as a direct load.

• Triggers fire, integrity constraints are applied to the loaded rows, and indexes are
maintained using the standard DML execution logic.

Chapter 12
Direct Path Loads, Integrity Constraints, and Triggers

12-30

12.10 Optimizing Performance of Direct Path Loads
Learn how to enable your SQL*Loader direct path loads to run faster, and to use less
space.

• About SQL*Loader Parallel Data Loading Models
There are three basic models of concurrency that you can use to minimize the
elapsed time required for data loading.

• Concurrent Conventional Path Loads
This topic describes using concurrent conventional path loads.

• Intersegment Concurrency with Direct Path
Intersegment concurrency can be used for concurrent loading of different objects.

• Intrasegment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load
into the same table, or into the same partition of a partitioned table.

• Restrictions on Parallel Direct Path Loads
Restrictions are enforced on parallel direct path loads.

• Initiating Multiple SQL*Loader Sessions
Each SQL*Loader session takes a different data file as input. In all sessions
executing a direct load on the same table, you must set PARALLEL to TRUE.

• Parameters for Parallel Direct Path Loads
When you perform parallel direct path loads, there are options available for
specifying attributes of the temporary segment to be allocated by the loader.

• Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is
complete.

• PRIMARY KEY and UNIQUE KEY Constraints
This topic describes using the PRIMARY KEY and UNIQUE KEY constraints.

12.10.1 About SQL*Loader Parallel Data Loading Models
There are three basic models of concurrency that you can use to minimize the elapsed
time required for data loading.

The concurrency models are:

• Concurrent conventional path loads

• Intersegment concurrency with the direct path load method

• Intrasegment concurrency with the direct path load method

12.10.2 Concurrent Conventional Path Loads
This topic describes using concurrent conventional path loads.

Using multiple conventional path load sessions executing concurrently is discussed in
Increasing Performance with Concurrent Conventional Path Loads, you can use this
technique to load the same or different objects concurrently with no restrictions.

Chapter 12
Optimizing Performance of Direct Path Loads

12-31

12.10.3 Intersegment Concurrency with Direct Path
Intersegment concurrency can be used for concurrent loading of different objects.

You can apply this technique to concurrent direct path loading of different tables, or to
concurrent direct path loading of different partitions of the same table.

When you direct path load a single partition, consider the following items:

• Local indexes can be maintained by the load.

• Global indexes cannot be maintained by the load.

• Referential integrity and CHECK constraints must be disabled.

• Triggers must be disabled.

• The input data should be partitioned (otherwise many records will be rejected,
which adversely affects performance).

12.10.4 Intrasegment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load into
the same table, or into the same partition of a partitioned table.

Multiple SQL*Loader sessions improve the performance of a direct path load given the
available resources on your system.

This method of data loading is enabled by setting both the DIRECT and the PARALLEL
parameters to TRUE, and is often referred to as a parallel direct path load.

It is important to realize that parallelism is user managed. Setting the PARALLEL
parameter to TRUE only allows multiple concurrent direct path load sessions.

12.10.5 Restrictions on Parallel Direct Path Loads
Restrictions are enforced on parallel direct path loads.

The following restrictions are enforced on parallel direct path loads:

• Neither local nor global indexes can be maintained by the load.

• Rows can only be appended. REPLACE, TRUNCATE, and INSERT cannot be used (this
is due to the individual loads not being coordinated). If you must truncate a table
before a parallel load, then you must do it manually.

Additionally, the following objects must be disabled on parallel direct path loads. You
do not have to take any action to disable them. SQL*Loader disables them before the
load begins and re-enables them after the load completes:

• Referential integrity constraints

• Triggers

• CHECK constraints, unless the ENABLE_CHECK_CONSTRAINTS control file option is
used

If a parallel direct path load is being applied to a single partition, then you should
partition the data first (otherwise, the overhead of record rejection due to a partition
mismatch slows down the load).

Chapter 12
Optimizing Performance of Direct Path Loads

12-32

12.10.6 Initiating Multiple SQL*Loader Sessions
Each SQL*Loader session takes a different data file as input. In all sessions executing
a direct load on the same table, you must set PARALLEL to TRUE.

The syntax is:

PARALLEL =

TRUE

FALSE

PARALLEL can be specified on the command line or in a parameter file. It can also be
specified in the control file with the OPTIONS clause.

For example, to start three SQL*Loader direct path load sessions on the same table,
you would execute each of the following commands at the operating system prompt.
After entering each command, you will be prompted for a password.

sqlldr USERID=scott CONTROL=load1.ctl DIRECT=TRUE PARALLEL=TRUE
sqlldr USERID=scott CONTROL=load2.ctl DIRECT=TRUE PARALLEL=TRUE
sqlldr USERID=scott CONTROL=load3.ctl DIRECT=TRUE PARALLEL=TRUE

The previous commands must be executed in separate sessions, or if permitted on
your operating system, as separate background jobs. Note the use of multiple control
files. This enables you to be flexible in specifying the files to use for the direct path
load.

Note:

Indexes are not maintained during a parallel load. Any indexes must be
created or re-created manually after the load completes. You can use the
parallel index creation or parallel index rebuild feature to speed the building
of large indexes after a parallel load.

When you perform a parallel load, SQL*Loader creates temporary segments for each
concurrent session and then merges the segments upon completion. The segment
created from the merge is then added to the existing segment in the database above
the segment's high-water mark. The last extent used of each segment for each loader
session is trimmed of any free space before being combined with the other extents of
the SQL*Loader session.

12.10.7 Parameters for Parallel Direct Path Loads
When you perform parallel direct path loads, there are options available for specifying
attributes of the temporary segment to be allocated by the loader.

These options are specified with the FILE and STORAGE parameters. These parameters
are valid only for parallel loads.

Chapter 12
Optimizing Performance of Direct Path Loads

12-33

• Using the FILE Parameter to Specify Temporary Segments
To allow for maximum I/O throughput, Oracle recommends that each concurrent
direct path load session use files located on different disks.

12.10.7.1 Using the FILE Parameter to Specify Temporary Segments
To allow for maximum I/O throughput, Oracle recommends that each concurrent direct
path load session use files located on different disks.

In the SQL*Loader control file, use the FILE parameter of the OPTIONS clause to
specify the file name of any valid data file in the tablespace of the object (table or
partition) being loaded.

For example:

LOAD DATA
INFILE 'load1.dat'
INSERT INTO TABLE emp
OPTIONS(FILE='/dat/data1.dat')
(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS
...

You could also specify the FILE parameter on the command line of each concurrent
SQL*Loader session, but then it would apply globally to all objects being loaded with
that session.

• Using the FILE Parameter
This topic describes using the FILE parameter.

• Using the STORAGE Parameter
You can use the STORAGE parameter to specify the storage attributes of the
temporary segments allocated for a parallel direct path load.

12.10.7.1.1 Using the FILE Parameter
This topic describes using the FILE parameter.

The FILE parameter in the Oracle database has the following restrictions for parallel
direct path loads:

• For nonpartitioned tables: The specified file must be in the tablespace of the
table being loaded.

• For partitioned tables, single-partition load: The specified file must be in the
tablespace of the partition being loaded.

• For partitioned tables, full-table load: The specified file must be in the
tablespace of all partitions being loaded; that is, all partitions must be in the same
tablespace.

12.10.7.1.2 Using the STORAGE Parameter
You can use the STORAGE parameter to specify the storage attributes of the temporary
segments allocated for a parallel direct path load.

If the STORAGE parameter is not used, then the storage attributes of the segment
containing the object (table, partition) being loaded are used. Also, when the STORAGE
parameter is not specified, SQL*Loader uses a default of 2 KB for EXTENTS.

Chapter 12
Optimizing Performance of Direct Path Loads

12-34

For example, the following OPTIONS clause could be used to specify STORAGE
parameters:

OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

You can use the STORAGE parameter only in the SQL*Loader control file, and not on the
command line. Use of the STORAGE parameter to specify anything other than
PCTINCREASE of 0, and INITIAL or NEXT values is strongly discouraged and may be
silently ignored.

12.10.8 Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is complete.

Because each SQL*Loader session can attempt to reenable constraints on a table
after a direct path load, there is a danger that one session may attempt to reenable a
constraint before another session is finished loading data. In this case, the first session
to complete the load will be unable to enable the constraint because the remaining
sessions possess share locks on the table.

Because there is a danger that some constraints might not be reenabled after a direct
path load, you should check the status of the constraint after completing the load to
ensure that it was enabled properly.

12.10.9 PRIMARY KEY and UNIQUE KEY Constraints
This topic describes using the PRIMARY KEY and UNIQUE KEY constraints.

PRIMARY KEY and UNIQUE KEY constraints create indexes on a table when they are
enabled, and subsequently can take a significantly long time to enable after a direct
path loading session if the table is very large. You should consider enabling these
constraints manually after a load (and not specifying the automatic enable feature).
This enables you to manually create the required indexes in parallel to save time
before enabling the constraint.

12.11 General Performance Improvement Hints
This topic describes hints for general performance improvements.

If you have control over the format of the data to be loaded, then you can use the
following hints to improve load performance:

• Make logical record processing efficient.

– Use one-to-one mapping of physical records to logical records (avoid using
CONTINUEIF and CONCATENATE).

– Make it easy for the software to identify physical record boundaries. Use the
file processing option string "FIX nnn" or "VAR". If you use the default (stream
mode), then on most platforms (for example, UNIX and NT) the loader must
scan each physical record for the record terminator (newline character).

• Make field setting efficient. Field setting is the process of mapping fields in the
data file to their corresponding columns in the table being loaded. The mapping
function is controlled by the description of the fields in the control file. Field setting
(along with data conversion) is the biggest consumer of CPU cycles for most
loads.

Chapter 12
General Performance Improvement Hints

12-35

– Avoid delimited fields; use positional fields. If you use delimited fields, then the
loader must scan the input data to find the delimiters. If you use positional
fields, then field setting becomes simple pointer arithmetic (very fast).

– Do not trim whitespace if you do not need to (use PRESERVE BLANKS).

• Make conversions efficient. SQL*Loader performs character set conversion and
data type conversion for you. Of course, the quickest conversion is no conversion.

– Use single-byte character sets if you can.

– Avoid character set conversions if you can. SQL*Loader supports four
character sets:

* Client character set (NLS_LANG of the client sqlldr process)

* Data file character set (usually the same as the client character set)

* Database character set

* Database national character set

Performance is optimized if all character sets are the same. For direct path
loads, it is best if the data file character set and the database character set are
the same. If the character sets are the same, then character set conversion
buffers are not allocated.

• Use direct path loads.

• Use the SORTED INDEXES clause.

• Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be
evaluated on each column that has a clause associated with it for every row
loaded.

• Use parallel direct path loads and parallel index creation when you can.

• Be aware of the effect on performance when you have large values for both the
CONCATENATE clause and the COLUMNARRAYROWS clause. See Using
CONCATENATE to Assemble Logical Records.

Chapter 12
General Performance Improvement Hints

12-36

13
SQL*Loader Express

SQL*Loader express mode allows you to quickly and easily use SQL*Loader to load
simple data types.

• What is SQL*Loader Express Mode?
SQL*Loader express mode lets you quickly perform a load by specifying only a
table name when the table columns are all character, number, or datetime data
types, and the input data files contain only delimited character data.

• Using SQL*Loader Express Mode
Learn how to start and manage SQL*Loader using the express mode feature.

• SQL*Loader Express Mode Parameter Reference
This section provides descriptions of the parameters available in SQL*Loader
express mode.

• SQL*Loader Express Mode Syntax Diagrams
To understand SQL*Loader express mode options, refer to these graphic form
syntax guides (sometimes called railroad diagrams or DDL diagrams).

13.1 What is SQL*Loader Express Mode?
SQL*Loader express mode lets you quickly perform a load by specifying only a table
name when the table columns are all character, number, or datetime data types, and
the input data files contain only delimited character data.

In express mode, a SQL*Loader control file is not used. Instead, SQL*Loader uses the
table column definitions found in the ALL_TAB_COLUMNS view to determine the input field
order and data types. For most other settings, it assumes default values which you can
override with command-line parameters.

Note:

The only valid parameters for use with SQL*Loader express mode are those
described in this chapter. Any other parameters will be ignored or may result
in an error.

13.2 Using SQL*Loader Express Mode
Learn how to start and manage SQL*Loader using the express mode feature.

• Starting SQL*Loader in Express Mode
To activate SQL*Loader express mode, you can simply specify your user name
and a table name.

13-1

• Default Values Used by SQL*Loader Express Mode
Learn how SQL*Loader express loads tables, what defaults it uses, and under
what conditions the defaults are changed.

• How SQL*Loader Express Mode Handles Byte Order
The type of character set used with your data file affects the byte order used with
SQL*Loader express.

13.2.1 Starting SQL*Loader in Express Mode
To activate SQL*Loader express mode, you can simply specify your user name and a
table name.

SQL*Loader prompts you for a password. For example:

Example 13-1 Starting SQL Loader in Express Mode

> sqlldr username TABLE=employees
Password:
.
.
.

SQL*Loader: Release 20.0.0.0.0 - Production on Mon Oct 16 127:19:39 2017
Version 20.1.0.0.0

Copyright (c) 1982, 2020, Oracle and/or its affiliates. All rights
reserved.

Express Mode Load, Table: EMPLOYEES
.
.
.

If you activate SQL*Loader express mode by specifying only the TABLE parameter,
then SQL*Loader uses default settings for a number of other parameters. You can
override most of the default values by specifying additional parameters on the
command line.

SQL*Loader express mode generates a log file that includes a SQL*Loader control
file. The log file also contains SQL scripts for creating the external table and
performing the load using a SQL INSERT AS SELECT statement. Neither the control file
nor the SQL scripts are used by SQL*Loader express mode. They are made available
to you in case you want to use them as a starting point to perform operations using
regular SQL*Loader or standalone external tables; the control file is for use with
SQL*Loader, whereas the SQL scripts are for use with standalone external tables
operations.

Related Topics

• SQL*Loader Control File Reference
The SQL*Loader control file is a text file that contains data definition language
(DDL) instructions for a SQL*Loader job.

Chapter 13
Using SQL*Loader Express Mode

13-2

13.2.2 Default Values Used by SQL*Loader Express Mode
Learn how SQL*Loader express loads tables, what defaults it uses, and under what
conditions the defaults are changed.

By default, a load done using SQL*Loader express mode assumes the following,
unless you specify otherwise:

• If no data file is specified, then it looks for a file named table-name.dat in the
current directory.

• By default, SQL*Loader express uses the external tables load method. However,
for some errors, SQL*Loader express mode automatically switches from the
default external tables load method to direct path load. An example of when this
can occur is if a privilege violation caused the CREATE DIRECTORY SQL command
to fail.

• SQL*Loader express fields are set up as follows:

– Names, from table column names (the order of the fields matches the table
column order)

– Types, based on table column types

– Newline, as the record delimiter

– Commas, as field delimiters

– No enclosure

– Left-right trimming

• The DEGREE_OF_PARALLELISM parameter is set to AUTO.

• Date and timestamp format use the NLS settings.

• The NLS client character set is used.

• If a table already has data in it, then new data is appended to the table.

• If you do not specify a data file, then the data, log, and bad files take the following
default names (note the %p is replaced with the process ID of the Oracle Database
slave process.):

– table-name.dat for the data file

– table-name.log for the SQL*Loader log file

– table-name_%p.log_xt for Oracle Database log files (for example,
emp_17228.log_xt)

– table-name_%p.bad for bad files

• If you specify one or more data files, using the DATA parameter, then the log and
bad files take the following default names (note the %p is replaced with the process
ID of the server slave process.):

– table-name.log for the SQL*Loader log file

– table-name_%p.log_xt for the Oracle Database log files

– first-data-file_%p.bad for the bad files

Chapter 13
Using SQL*Loader Express Mode

13-3

Related Topics

• DATA
The SQL*Loader express mode DATA parameter specifies names of data files
containing the data that you want to load.

13.2.3 How SQL*Loader Express Mode Handles Byte Order
The type of character set used with your data file affects the byte order used with
SQL*Loader express.

In general, SQL*Loader express mode handles byte order marks in the same way that
a load performed using a SQL*Loader control file does.

In summary:

• For data files with a unicode character set, SQL*Loader express mode checks for
a byte order mark at the beginning of the file.

• For a UTF16 data file, if a byte order mark is found, the byte order mark sets the
byte order for the data file. If no byte order mark is found, the byte order of the
system where SQL*Loader is executing is used for the data file.

• A UTF16 data file can be loaded regardless of whether or not the byte order
(endianness) is the same byte order as the system on which SQL*Loader express
is running.

• For UTF8 data files, any byte order marks found are skipped.

• A load is terminated if multiple data files are involved and they use different byte
ordering.

See Also:

• Byte Ordering for more information about how SQL*Loader handles byte
order in data files

13.3 SQL*Loader Express Mode Parameter Reference
This section provides descriptions of the parameters available in SQL*Loader express
mode.

Some of the parameter names are the same as parameters used by regular
SQL*Loader, but there may be behavior differences. Be sure to read the descriptions
so you know what behavior to expect.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-4

Note:

If parameter values include quotation marks, then it is recommended that
you specify them in a parameter file. See "Use of Quotation Marks on the
Data Pump Command Line” in Parameters Available in Data Pump Export
Command-Line Mode - the issues discussed there are also pertinent to
SQL*Loader express mode.

• BAD
The SQL*Loader express mode BAD parameter specifies the location and name
of the bad file.

• CHARACTERSET
The SQL*Loader express mode CHARACTERSET parameter specifies a character set
you want to use for the load.

• CSV
The SQL*Loader express mode CSV parameter lets you you specify if CSV format
files contain fields with embedded record terminators.

• DATA
The SQL*Loader express mode DATA parameter specifies names of data files
containing the data that you want to load.

• DATE_FORMAT
The SQL*Loader express mode DATE_FORMAT parameter specifies a date format
that overrides the default value for all date fields.

• DEGREE_OF_PARALLELISM
The SQL*Loader express mode DEGREE_OF_PARALLELISM parameter specifies the
degree of parallelism to use for the load.

• DIRECT
The SQL*Loader express mode DIRECT parameter specifies the load method to
use, either conventional path or direct path.

• DNFS_ENABLE
The SQL*Loader express mode DNFS_ENABLE parameter lets you enable and
disable use of the Direct NFS Client on input data files during a SQL*Loader
operation.

• DNFS_READBUFFERS
The SQL*Loader express mode DNFS_READBUFFERS parameter lets you control the
number of read buffers used by the Direct NFS Client.

• ENCLOSED_BY
The SQL*Loader express mode ENCLOSED_BY parameter specifies a field enclosure
string.

• EXTERNAL_TABLE
The SQL*Loader express mode EXTERNAL_TABLE parameter determines whether to
load data using the external tables option.

• FIELD_NAMES
The SQL*Loader express mode FIELD_NAMES parameter overrides the fields being
in the order of the columns in the database table.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-5

• LOAD
The SQL*Loader express mode LOAD specifies the number of records that you
want to be loaded.

• NULLIF
The SQL*Loader express mode NULLIF parameter specifies a value that is used to
determine whether a field is loaded as a NULL column.

• OPTIONALLY_ENCLOSED_BY
The SQL*Loader express mode OPTIONALLY_ENCLOSED_BY specifies an optional
field enclosure string.

• PARFILE
The SQL*Loader express mode PARFILE parameter specifies the name of a file
that contains commonly used command-line parameters.

• SILENT
The SQL*Loader express mode SILENT parameter suppresses some content that
is written to the screen during a SQL*Loader operation.

• TABLE
The SQL*Loader express mode TABLE parameter activates SQL*Loader express
mode.

• TERMINATED_BY
The SQL*Loader express mode TERMINATED_BY specifies a field terminator that
overrides the default.

• TIMESTAMP_FORMAT
The TIMESTAMP_FORMAT parameter specifies a timestamp format that you want to
use for the load.

• TRIM
The SQL*Loader express mode TRIM parameter specifies the type of field trimming
that you want to use during the load.

• USERID
The SQL*Loader express mode USERID enables you to provide provide your
Oracle username and password, so that you are not prompted for it.

13.3.1 BAD
The SQL*Loader express mode BAD parameter specifies the location and name of the
bad file.

Default

The default depends on whether any data files are specified, using the DATA
parameter.

Purpose

The BAD parameter specifies the location and name of the bad file.

Syntax

BAD=[directory/][filename]

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-6

Usage Notes

The bad file stores records that cause errors during insert or that are improperly
formatted. If you specify the BAD parameter, then you must supply either a directory or
file name, or both. If you do not specify the BAD parameter, and there are rejected
records, then the default file name is used.

The directory variable specifies a directory to which the bad file is written. The
specification can include the name of a device or a network node.

The filename variable specifies a file name recognized as valid on your platform. You
must specify only a name (and extension, if you want to use one other than .bad). Any
spaces or punctuation marks in the file name must be enclosed in single quotation
marks.

The values of directory and filename are determined as follows:

• If you specify the BAD parameter with a file name, but no directory, then the
directory defaults to the current directory.

• If you specify the BAD parameter with a directory, but no file name, then the
specified directory is used, and the default is used for the file name and the
extension.

The BAD parameter applies to all the files that match the specified DATA parameter, if
you specify the DATA parameter. If you do not specify the DATA parameter, then the
BAD parameter applies to the one data file (table-name.dat)

Caution:

• If the file name (either the default or one you specify) already exists, then
that file name either is overwritten, or a new version is created,
depending on your operating system.

• If multiple data files are being loaded, then Oracle recommends that you
either not specify the BAD parameter, or that you specify it with only a
directory for the bad file.

Example

The following specification creates a bad file named emp1.bad in the current directory:

> sqlldr hr TABLE=employees BAD=emp1

13.3.2 CHARACTERSET
The SQL*Loader express mode CHARACTERSET parameter specifies a character set you
want to use for the load.

Default

The NLS client character set as specified in the NLS_LANG environment variable

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-7

Purpose

The CHARACTERSET parameter specifies a character set, other than the default, to use
for the load.

Syntax

CHARACTERSET=character_set_name

The character_set_name variable specifies the character set name. Normally, the
specified name must be the name of a character set that is supported by Oracle
Database.

Usage Notes

The CHARACTERSET parameter specifies the character set of the SQL*Loader input data
files. If the CHARACTERSET parameter is not specified, then the default character set for
all data files is the session character set, which is defined by the NLS_LANG
environment variable. Only character data (fields of the SQL*Loader data types CHAR,
VARCHAR, VARCHARC, numeric EXTERNAL, and the datetime and interval data types) is
affected by the character set of the data file.

For UTF-16 Unicode encoding, use the name UTF16 rather than AL16UTF16.
AL16UTF16, which is the supported character set name for UTF-16 encoded data, is
only for UTF-16 data that is in big-endian byte order. However, because you are
allowed to set up data using the byte order of the system where you create the data
file, the data in the data file can be either big-endian or little-endian. Therefore, a
different character set name (UTF16) is used. The character set name AL16UTF16 is
also supported. But if you specify AL16UTF16 for a data file that has little-endian byte
order, then SQL*Loader issues a warning message and processes the data file as
little-endian.

The CHARACTERSET parameter value is assumed to the be same for all data files.

Note:

The term UTF-16 is a general reference to UTF-16 encoding for Unicode.
The term UTF16 (no hyphen) is the specific name of the character set and is
what you should specify for the CHARACTERSET parameter when you want to
use UTF-16 encoding. This also applies to UTF-8 and UTF8.

Restrictions

None.

Example

The following example specifies the UTF-8 character set:

> sqlldr hr TABLE=employees CHARACTERSETNAME=utf8

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-8

13.3.3 CSV
The SQL*Loader express mode CSV parameter lets you you specify if CSV format files
contain fields with embedded record terminators.

Default

If the CSV parameter is not specified on the command line, then SQL*Loader express
assumes that the CSV file being loaded contains data that has no embedded
characters and no enclosures.

If CSV=WITHOUT_EMBEDDED is specified on the command line, then SQL*Loader express
assumes that the CSV file being loaded contains data that has no embedded
characters and that is optionally enclosed by '"'.

Purpose

The CSV parameter provides options that let you specify whether the comma-separated
value (CSV) format file being loaded contains fields in which record terminators are
embedded.

Syntax

CSV=[WITH_EMBEDDED | WITHOUT_EMBEDDED]

• WITH_EMBEDDED — This option means that there can be record terminators
included (embedded) in a field in the record. The record terminator is newline. The
default delimiters are TERMINTATED by "," and OPTIONALLY_ENCLOSED_BY '"'.
Embedded record terminators must be enclosed.

• WITHOUT_EMBEDDED — This option means that there are no record terminators
included (embedded) in a field in the record. The record terminator is newline. The
default delimiters are TERMINATED BY "," and OPTIONALLY_ENCLOSED_BY ' " '.

Usage Notes

If the CSV file contains many embedded record terminators, then it is possible that
performance can be adversely affected by this parameter.

Restrictions

• Normally a file can be processed in parallel (split up and processed by more than
one execution server at a time). But in the case of CSV format files with embedded
record terminators, the file must be processed by only one execution server.
Therefore, parallel processing within a data file is disabled when you set the CSV
parameter to CSV=WITH_EMBEDDED.

Example

The following example processes the data files as CSV format files with embedded
record terminators.

> sqlldr hr TABLE=employees CSV=WITH_EMBEDDED

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-9

13.3.4 DATA
The SQL*Loader express mode DATA parameter specifies names of data files
containing the data that you want to load.

Default

The same name as the table name, but with an extension of .dat.

Purpose

The DATA parameter specifies names of data files containing the data that you want to
load.

Syntax

DATA=data-file-name

If you do not specify a file extension, then the default is .dat.

Usage Notes

The file specification can contain wildcards, but only in the file name and file extension,
not in a device or directory name. An asterisk (*) represents multiple characters. A
question mark (?) represents a single character. For example:

DATA='emp*.dat'

DATA='m?emp.dat'

To list multiple data file specifications (each of which can contain wild cards), you must
separate the file names by commas.

If the file name contains any special characters (for example, spaces, *, or ?), then the
entire name must be enclosed within single quotation marks.

The following are three examples of possible valid uses of the DATA parameter (the
single quotation marks would only be necessary if the file name contained special
characters):

DATA='file1','file2','file3','file4','file5','file6'

DATA='file1','file2'
DATA='file3,'file4','file5'
DATA='file6'

DATA='file1'
DATA='file2'
DATA='file3'
DATA='file4'

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-10

DATA='file5'
DATA='file6'

Caution:

If multiple data files are being loaded, and you also specify the BAD
parameter, then Oracle recommends that you specify only a directory for the
bad file, not a file name. If you specify a file name, and a file with that name
already exists, then that file either is overwritten, or a new version is created,
depending on your operating system.

Example

Assume that the current directory contains data files with the names emp1.dat,
emp2.dat, m1emp.dat, and m2emp.dat and you issue the following command:

> sqlldr hr TABLE=employees DATA='emp*','m1emp'

The command loads the emp1.dat, emp2.dat, and m1emp.dat files. The m2emp.dat file
is not loaded because it did not match any of the wildcard criteria.

13.3.5 DATE_FORMAT
The SQL*Loader express mode DATE_FORMAT parameter specifies a date format that
overrides the default value for all date fields.

Default

If the DATE_FORMAT parameter is not specified, then the NLS_DATE_FORMAT,
NLS_LANGUAGE, or NLS_DATE_LANGUAGE environment variable settings (if defined for the
SQL*Loader session) are used. If the NLS_DATE_FORMAT is not defined, then dates are
assumed to be in the default format defined by the NLS_TERRITORY setting.

Purpose

The DATE_FORMAT parameter specifies a date format that overrides the default value for
all date fields.

Syntax

DATE_FORMAT=mask

The mask is a date format mask, which normally is enclosed in double quotation
marks.

Example

If the date in the data file was June 25, 2019, then the date format would be specified
in the following format:

> sqlldr hr TABLE=employees DATE_FORMAT="DD-Month-YYYY"

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-11

13.3.6 DEGREE_OF_PARALLELISM
The SQL*Loader express mode DEGREE_OF_PARALLELISM parameter specifies the
degree of parallelism to use for the load.

Default

AUTO

Purpose

The DEGREE_OF_PARALLELISM parameter specifies the degree of parallelism to use for
the load.

Syntax

DEGREE_OF_PARALLELISM=[degree-num|DEFAULT|AUTO|NONE]

Options:

• degree-num specifies degree of parallelism. It must be a whole number value from
1 to n.

• DEFAULT specifies that you want to use the default parallelism of the database (not
the default parameter value of AUTO).

• AUTO specifies that Oracle Database automatically sets the degree of parallelism
for the load. If the DEGREE_OF_PARALLELISM parameter is not specified,. then this is
the default option for parallelism.

• NONE specifies that you do not want the load performed in parallel. A value of NONE
is the same as a value of 1.

Restrictions

• The DEGREE_OF_PARALLELISM parameter is ignored if you force the load method to
be conventional or direct path (the NONE option is used). Any time you specify the
DEGREE_OF_PARALLELISM parameter, for any value, you receive a message
reminding you of this.

• If the load is a default external tables load and an error occurs that causes
SQL*Loader express mode to use direct path load instead, then the job is not
performed in parallel, even if you had specified a degree of parallelism or had
accepted the external tables default of AUTO. A message is displayed alerting you
to this change.

Example

The following example loads the data without using parallelism:

> sqlldr hr TABLE=employees DEGREE_OF_PARALLELISM=NONE

Related Topics

• Parallel Execution Concepts

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-12

13.3.7 DIRECT
The SQL*Loader express mode DIRECT parameter specifies the load method to use,
either conventional path or direct path.

Default

No default.

Purpose

The DIRECT parameter specifies the load method to use, either conventional path or
direct path.

Syntax

DIRECT=[TRUE|FALSE]

A value of TRUE specifies a direct path load. A value of FALSE specifies a conventional
path load.

Usage Notes

This parameter overrides the SQL*Loader express mode default load method of
external tables.

For some errors, SQL*Loader express mode automatically switches from the default
external tables load method to direct path load. An example of when this can occur is if
a privilege violation caused the CREATE DIRECTORY SQL command to fail.

If you use the DIRECT parameter to specify a conventional or direct path load, then the
following regular SQL*Loader parameters are valid to use in express mode:

• BINDSIZE

• COLUMNARRAYROWS (direct path loads only)

• DATE_CACHE

• ERRORS

• MULTITHREADING (direct path loads only)

• NO_INDEX_ERRORS (direct path loads only)

• RESUMABLE

• RESUMABLE_NAME

• RESUMABLE_TIMEOUT

• ROWS

• SKIP

• STREAMSIZE

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-13

Example

In the following example, SQL*Loader uses the direct path load method for the load
instead of external tables:

> sqlldr hr TABLE=employees DIRECT=TRUE

13.3.8 DNFS_ENABLE
The SQL*Loader express mode DNFS_ENABLE parameter lets you enable and disable
use of the Direct NFS Client on input data files during a SQL*Loader operation.

Default

TRUE

Purpose

The DNFS_ENABLE parameter lets you enable and disable use of the Direct NFS Client
on input data files during a SQL*Loader operation.

The Direct NFS Client is an API that can be implemented by file servers to allow
improved performance when Oracle accesses files on those servers.

Syntax

The syntax is as follows:

DNFS_ENABLE=[TRUE|FALSE]

Usage Notes

SQL*Loader uses the Direct NFS Client interfaces by default when it reads data files
over 1 GB. For smaller files, the operating system's I/O interfaces are used. To use the
Direct NFS Client on all input data files, use DNFS_ENABLE=TRUE.

To disable use of the Direct NFS Client for all data files, specify DNFS_ENABLE=FALSE.

The DNFS_ENABLE parameter can be used in conjunction with the DNFS_READBUFFERS
parameter, which can specify the number of read buffers used by the Direct NFS
Client.

13.3.9 DNFS_READBUFFERS
The SQL*Loader express mode DNFS_READBUFFERS parameter lets you control the
number of read buffers used by the Direct NFS Client.

Default

4

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-14

Purpose

The DNFS_READBUFFERS parameter lets you control the number of read buffers used by
the Direct NFS Client. The Direct NFS Client is an API that can be implemented by file
servers to allow improved performance when Oracle accesses files on those servers.

Syntax

The syntax is as follows:

DNFS_READBUFFERS = n

Usage Notes

Using values larger than the default can compensate for inconsistent I/O from the
Direct NFS Client file server, but using larger values can also result in increased
memory usage.

To use this parameter without also specifying the DNFS_ENABLE parameter, the input
file must be larger than 1 GB.

13.3.10 ENCLOSED_BY
The SQL*Loader express mode ENCLOSED_BY parameter specifies a field enclosure
string.

Default

The default is that there is no enclosure character.

Purpose

The ENCLOSED_BY parameter specifies a field enclosure string.

Syntax

ENCLOSED_BY=['string'|x'hex-string']

The enclosure character must be a string or a hexadecimal string.

Usage Notes

The same string must be used to signify both the beginning and the ending of the
enclosure.

Example

In the following example, the field data is enclosed by the '/' character (forward slash).

> sqlldr hr TABLE=employees ENCLOSED_BY='/'

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-15

13.3.11 EXTERNAL_TABLE
The SQL*Loader express mode EXTERNAL_TABLE parameter determines whether to
load data using the external tables option.

Default

EXECUTE

Purpose

The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using the
external tables option.

Syntax

EXTERNAL_TABLE=[NOT_USED | GENERATE_ONLY | EXECUTE]

There are three possible values:

• NOT_USED — It means the load is performed using either conventional or direct
path mode.

• GENERATE_ONLY — places all the SQL statements needed to do the load using
external tables in the SQL*Loader log file. These SQL statements can be edited
and customized. The actual load can be done later without the use of SQL*Loader
by executing these statements in SQL*Plus.

• EXECUTE — the default value in SQL*Loader express mode. Attempts to execute
the SQL statements that are needed to do the load using external tables.
However, if any of the SQL statements returns an error, then the attempt to load
stops. Statements are placed in the log file as they are executed. This means that
if a SQL statement returns an error, then the remaining SQL statements required
for the load will not be placed in the log file.

Usage Notes

The external table option uses directory objects in the database to indicate where all
data files are stored, and to indicate where output files, such as bad files and discard
files, are created. You must have READ access to the directory objects containing the
data files, and you must have WRITE access to the directory objects where the output
files are created. If there are no existing directory objects for the location of a data file
or output file, then SQL*Loader will generate the SQL statement to create one.
Therefore, when the EXECUTE option is specified, you must have the CREATE ANY
DIRECTORY privilege. If you want the directory object to be deleted at the end of the
load, then you must also have the DROP ANY DIRECTORY privilege.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-16

Note:

The EXTERNAL_TABLE=EXECUTE qualifier tells SQL*Loader to create an
external table that can be used to load data, and then execute the INSERT
statement to load the data. All files in the external table must be identified as
being in a directory object. SQL*Loader attempts to use directory objects that
already exist, and that you have privileges to access. However, if
SQL*Loader does not find the matching directory object, then it attempts to
create a temporary directory object. If you do not have privileges to create
new directory objects, then the operation fails.

To work around this issue, use EXTERNAL_TABLE=GENERATE_ONLY to create the
SQL statements that SQL*Loader would try to execute. Extract those SQL
statements and change references to directory objects to be the directory
object that you have privileges to access. Then, execute those SQL
statements.

Example

sqlldr hr TABLE=employees EXTERNAL_TABLE=NOT_USED

13.3.12 FIELD_NAMES
The SQL*Loader express mode FIELD_NAMES parameter overrides the fields being in
the order of the columns in the database table.

Default

NONE

Purpose

The FIELD_NAMES parameter is used to override the fields being in the order of the
columns in the database table. (By default, SQL*Loader Express uses the table
column definitions found in the ALL_TAB_COLUMNS view to determine the input field
order and data types.)

An example of when this parameter could be useful is when the data in the input file is
not in the same order as the columns in the table. In such a case, you can include a
field name record (similar to a column header row for a table) in the data file and use
the FIELD_NAMES parameter to notify SQL*Loader to process the field names in the first
record to determine the order of the fields.

Syntax

FIELD_NAMES=[ALL | ALL_IGNORE | FIRST | FIRST_IGNORE | NONE]

The valid options for this parameter are as follows:

• ALL — The field name record is processed for every data file.

• ALL_IGNORE — Ignore the first (field names) record in all the data files and process
the data records normally.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-17

• FIRST — In the first data file, process the first (field names) record. For all other
data files, there is no field names record, so the data file is processed normally.

• FIRST_IGNORE — In the first data file, ignore the first (field names) record and use
table column order for the field order.

• NONE — There are no field names records in any data file, so the data files are
processed normally. This is the default.

Usage Notes

• If any field name has mixed case or special characters (for example, spaces), then
you must use either the OPTIONALLY_ENCLOSED_BY parameter, or the ENCLOSED_BY
parameter to indicate that case should be preserved, and that special characters
should be included as part of the field name.

Example

If you are loading a CSV file that contains column headers into a table, and the fields
in each row in the input file are in the same order as the columns in the table, then you
could use the following:

> sqlldr hr TABLE=employees CSV=WITHOUT_EMBEDDED FIELD_NAMES=FIRST_IGNORE

13.3.13 LOAD
The SQL*Loader express mode LOAD specifies the number of records that you want to
be loaded.

Default

All records are loaded.

Purpose

The LOAD parameter specifies the number of records that you want to be loaded.

Syntax

LOAD=n

Usage Notes

To test that all parameters you have specified for the load are set correctly, use the
LOAD parameter to specify a limited number of records rather than loading all records.
No error occurs if fewer than the maximum number of records are found.

Example

The following example specifies that a maximum of 10 records be loaded:

> sqlldr hr TABLE=employees LOAD=10

For external tables method loads (the default load method for express mode), only
successfully loaded records are counted toward the total. So if there are 15 records in

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-18

the file and records 2 and 4 are bad, then the following records are loaded into the
table, for a total of 10 records - 1, 3, 5, 6, 7, 8, 9, 10, 11, and 12.

For conventional and direct path loads, both successful and unsuccessful load
attempts are counted toward the total. So if there are 15 records in the file and records
2 and 4 are bad, then only the following 8 records are actually loaded into the table - 1,
3, 5, 6, 7, 8, 9, and 10.

13.3.14 NULLIF
The SQL*Loader express mode NULLIF parameter specifies a value that is used to
determine whether a field is loaded as a NULL column.

Default

The default is that no NULLIF checking is done.

Syntax

NULLIF = "string"

Or:

NULLIF != "string"

Usage Notes

SQL*Loader checks the specified value against the value of the field in the record. If
there is a match using the equal (=) or not equal (!=) specification, then the field is set
to NULL for that row. Any field that has a length of 0 after blank trimming is also set to
NULL.

Example

In the following example, if there are any fields whose value is a period, then those
fields are set to NULL in their respective rows.

> sqlldr hr TABLE=employees NULLIF="."

13.3.15 OPTIONALLY_ENCLOSED_BY
The SQL*Loader express mode OPTIONALLY_ENCLOSED_BY specifies an optional field
enclosure string.

Default

The default is that there is no optional field enclosure character.

Purpose

The OPTIONALLY_ENCLOSED_BY parameter specifies an optional field enclosure string.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-19

Syntax

OPTIONALLY_ENCLOSED_BY=['string'| x'hex-string']

The enclosure character is a string or a hexadecimal string.

Usage Notes

You must use the same string to signify both the beginning and the ending of the
enclosure.

Examples

The following example specifies the optional enclosure character as a double
quotation mark ("):

> sqlldr hr TABLE=employees OPTIONALLY_ENCLOSED_BY='"'

The following example specifies the optional enclosure character in hexadecimal
format:

> sqlldr hr TABLE=employees OPTIONALLY_ENCLOSED_BY=x'22'

13.3.16 PARFILE
The SQL*Loader express mode PARFILE parameter specifies the name of a file that
contains commonly used command-line parameters.

Default

There is no default

Syntax

PARFILE=parameter_file_name

Usage Notes

If any parameter values contain quotation marks, then Oracle recommends that you
use a parameter file.

Note:

Although it is not usually important, on some systems it can be necessary to
have no spaces around the equal sign (=) in the parameter specifications.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-20

Restrictions

• For security reasons, Oracle recommends that you do not include your USERID
password in a parameter file. After you specify the parameter file at the command
line, SQL*Loader prompts you for the password. For example:

> sqlldr hr TABLE=employees PARFILE=daily_report.par
Password:

Example

Suppose you have the following parameter file, test.par:

table=employees
data='mydata*.dat'
enclosed_by='"'

When you run the following command, any fields enclosed by double quotation marks,
in any data files that match mydata*.dat, are loaded into table employees:

> sqlldr hr PARFILE=test.par
Password:

13.3.17 SILENT
The SQL*Loader express mode SILENT parameter suppresses some content that is
written to the screen during a SQL*Loader operation.

Default

\\If this parameter is not specified, then no content is suppressed.

Purpose

The SILENT parameter suppresses some of the content that is written to the screen
during a SQL*Loader operation.

Syntax

The syntax is as follows:

SILENT={HEADER | FEEDBACK | ERRORS | DISCARDS | PARTITIONS | ALL}
Use the appropriate values to suppress one or more of the following (if more than one
option is specified, they must be separated by commas):

• HEADER — Suppresses the SQL*Loader header messages that normally appear on
the screen. Header messages still appear in the log file.

• FEEDBACK — Suppresses the "commit point reached" messages and the status
messages for the load that normally appear on the screen.

• ERRORS — Suppresses the data error messages in the log file that occur when a
record generates an Oracle error that causes it to be written to the bad file. A
count of rejected records still appears.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-21

• DISCARDS — Suppresses the messages in the log file for each record written to the
discard file. This option is ignored in express mode.

• PARTITIONS — Disables writing the per-partition statistics to the log file during a
direct load of a partitioned table. This option is meaningful only in a forced direct
path operation.

• ALL — Implements all of the suppression options.

Example

For example, you can suppress the header and feedback messages that normally
appear on the screen with the following command-line argument:

> sqlldr hr TABLE=employees SILENT=HEADER, FEEDBACK

13.3.18 TABLE
The SQL*Loader express mode TABLE parameter activates SQL*Loader express
mode.

Default

There is no default.

Syntax

TABLE=[schema-name.]table-name

Usage Notes

If the schema name or table name includes lower case characters, spaces, or other
special characters, then the names must be enclosed in double quotation marks and
that entire string enclosed within single quotation marks. For example:

TABLE='"hr.Employees"'

Restrictions

The TABLE parameter is valid only in SQL*Loader express mode.

Example

The following example loads the table employees in express mode:

> sqlldr hr TABLE=employees

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-22

13.3.19 TERMINATED_BY
The SQL*Loader express mode TERMINATED_BY specifies a field terminator that
overrides the default.

Default

By default, comma is the field terminator.

Purpose

The TERMINATED_BY parameter specifies a field terminator that overrides the default.

Syntax

TERMINATED_BY=['string'| x'hex-string' | WHITESPACE]

The field terminator must be a string or a hexadecimal string.

Usage Notes

If you specify TERMINATED_BY=WHITESPACE, then data is read until the first occurrence
of a whitespace character (spaces, tabs, blanks, line feeds, form feeds, or carriage
returns). Then the current position is advanced until no more adjacent whitespace
characters are found. This method allows field values to be delimited by varying
amounts of whitespace.

If you specify TERMINATED_BY=WHITESPACE, then null fields cannot contain just blanks or
other whitespace, because the blanks and whitespace are skipped, which can result in
an error being reported. With this option, if you have null fields in the data, then
consider using another string to indicate the null field, and use the NULLIF parameter to
indicate the NULLIF string. For example, you can use the string "NoData" to indicate a
null field, and then insert the string "NoData" in the data to indicate a null field. Specify
NULLIF="NoData" to tell SQL*Loader to set fields with the string "NoData" to NULL.

Example

In the following example, fields are terminated by the | character.

> sqlldr hr TABLE=employees TERMINATED_BY="|"

13.3.20 TIMESTAMP_FORMAT
The TIMESTAMP_FORMAT parameter specifies a timestamp format that you want to use
for the load.

Default

The default is taken from the value of the NLS_TIMESTAMP_FORMAT environment
variable. If NLS_TIMESTAMP_FORMAT is not set up, then timestamps use the default
format defined in the NLS_TERRITORY environment variable, with 6 digits of fractional
precision.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-23

Syntax

TIMESTAMP_FORMAT="timestamp_format"

Example

The following is an example of specifying a timestamp format:

> sqlldr hr TABLE=employees TIMESTAMP_FORMAT="MON-DD-YYYY HH:MI:SSXFF AM"

13.3.21 TRIM
The SQL*Loader express mode TRIM parameter specifies the type of field trimming
that you want to use during the load.

Default

The default for conventional and direct path loads is LDRTRIM. The default for external
tables loads is LRTRIM.

Purpose

The TRIM parameter specifies the type of field trimming that you want to use during the
load. Use TRIM to specify that you want spaces trimmed from the beginning of a text
field, or the end of a text field, or both. Spaces include blanks and other nonprinting
characters, such as tabs, line feeds, and carriage returns.

Syntax

TRIM=[LRTRIM | NOTRIM | LTRIM | RTRIM |LDRTRIM]

Options:

• LRTRIM specifies that you want both leading and trailing spaces trimmed.

• NOTRIM specifies that you want no characters trimmed from the field. This setting
generally yields the fastest performance.

• LTRIM specifies that you want leading spaces trimmed.

• RTRIM specifies that you want trailing spaces trimmed.

• LDRTRIM is the same as NOTRIMunless the field is a delimited field with
OPTIONALLY_ENCLOSED_BY specified, and the optional enclosures are missing for a
particular instance. In that case spaces are trimmed from the left.

Usage Notes

If you specify trimming for a field that is all spaces, then the field is set to NULL.

Restrictions

• Only LDRTRIM is supported for forced conventional path and forced direct path
loads. Any time you specify the TRIM parameter, for any value, you receive a
message reminding you of this.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-24

• If the load is a default external tables load and an error occurs that causes
SQL*Loader express mode to use direct path load instead, then LDRTRM is used as
the trimming method, even if you specified a different method or had accepted the
external tables default of LRTRIM. A message is displayed alerting you to this
change.

To use NOTRIM, use a control file with the PRESERVE BLANKS clause.

Example

The following example reads the fields, trimming all spaces on the right (trailing
spaces).

> sqlldr hr TABLE=employees TRIM=RTRIM

13.3.22 USERID
The SQL*Loader express mode USERID enables you to provide provide your Oracle
username and password, so that you are not prompted for it.

Default

None.

Purpose

The USERID parameter enables you to to provide your Oracle username and password.

Syntax

USERID = [username | / | SYS]

Usage Notes

If you do not specify the USERID parameter, then you are prompted for it. If only a slash
is used, then USERID defaults to your operating system login.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.

Restrictions

• Because the string, AS SYSDBA, contains a blank, some operating systems can
require that you place the entire connect string in quotation marks, or marked as a
literal by some other method. Some operating systems also require that you
precede quotation marks on the command line using an escape character, such as
backslashes.

Refer to your operating system documentation for information about special and
reserved characters on your system.

Chapter 13
SQL*Loader Express Mode Parameter Reference

13-25

Example

The following example starts the job for user hr:

> sqlldr USERID=hr TABLE=employees
 Password:

13.4 SQL*Loader Express Mode Syntax Diagrams
To understand SQL*Loader express mode options, refer to these graphic form syntax
guides (sometimes called railroad diagrams or DDL diagrams).

Undersanding Graphic Syntax Notation

For information about the syntax notation used, see:

How to Read Syntax Diagrams

express_init

sqlldr USERID TABLE = tablename

PARFILE = filename express_options

The following syntax diagrams show the parameters included in express_options in
the previous syntax diagram. SQL*Loader express mode parameters shown in the
following syntax diagrams are all optional and can appear in any order on the
SQL*Loader command line. Therefore, they are presented in simple alphabetical
order.

Chapter 13
SQL*Loader Express Mode Syntax Diagrams

13-26

express_options

BAD = filename

CHARACTERSET = character_set_name

CSV =
WITH_EMBEDDED

WITHOUT_EMBEDDED

DATA = filename

,

DATE_FORMAT = mask

DEGREE_OF_PARALLELISM =

degree_num

DEFAULT

AUTO

NONE

DIRECT =
TRUE

FALSE

DNFS_ENABLE =
TRUE

FALSE

DNFS_READBUFFERS =
TRUE

FALSE

ENCLOSED_BY =
’char’

X’hex–char’

EXTERNAL_TABLE =

NOT_USED

GENERATE_ONLY

EXECUTE

FIELD_NAMES =

ALL

ALL_IGNORE

FIRST

FIRST_IGNORE

NONE

Chapter 13
SQL*Loader Express Mode Syntax Diagrams

13-27

express_options_cont

NULLIF

=

!=

" char_string "

X’hexstr’

BLANKS

OPTIONALLY_ENCLOSED_BY =
’char’

X’hex–char’

SILENT =

HEADER

FEEDBACK

ERRORS

DISCARDS

PARTITIONS

ALL

,

TERMINATED_BY =

WHITESPACE

X’hex–char’

’char’

TIMESTAMP_FORMAT = timestamp_format

TRIM =

LRTRIM

NOTRIM

LTRIM

RTRIM

LDRTRIM

Chapter 13
SQL*Loader Express Mode Syntax Diagrams

13-28

Part III
External Tables

To use external tables successfully, find out about external table concepts, and see
examples of what options are available to you to use external tables with Oracle
Database.

• External Tables Concepts
The external tables feature is a complement to existing SQL*Loader functionality.
It enables you to access data in external sources as if it were in a table in the
database.

• The ORACLE_LOADER Access Driver
Learn how to control the way external tables are accessed by using the
ORACLE_LOADER access driver parameters to modify the default behavior of the
access driver.

• The ORACLE_DATAPUMP Access Driver
The ORACLE_DATAPUMP access driver provides a set of access parameters that are
unique to external tables of the type ORACLE_DATAPUMP.

• ORACLE_HDFS and ORACLE_HIVE Access Drivers
With external tables, you can access data stored in HDFS and Hive tables on
Hadoop and Hive clients as if that data was stored in tables in an Oracle
Database.

• External Tables Examples
Learn from these examples how to use the ORACLE_LOADER,
ORACLE_DATAPUMP,ORACLE_HDFS, and ORACLE_HIVE access drivers to query data in
Oracle Database and Big Data.

14
External Tables Concepts

The external tables feature is a complement to existing SQL*Loader functionality. It
enables you to access data in external sources as if it were in a table in the database.

• How Are External Tables Created?
External tables are created using the SQL CREATE TABLE...ORGANIZATION
EXTERNAL statement.

• Location of Data Files and Output Files
Data files and output files must be located on the server. You must have a
directory object that specifies the location from which to read and write files.

• Access Parameters for External Tables
To modify the default behavior of the access driver for external tables, specify
access parameters.

• Data Type Conversion During External Table Use
Conversion errors can occur when external tables are read from and when they
are written to.

14.1 How Are External Tables Created?
External tables are created using the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement.

Note that SQL*Loader may be the better choice in data loading situations that require
additional indexing of the staging table. See Behavior Differences Between
SQL*Loader and External Tables for more information about how load behavior differs
between SQL*Loader and external tables.

As of Oracle Database 12c Release 2 (12.2.0.1), you can partition data contained in
external tables, which allows you to take advantage of the same performance
improvements provided when you partition tables stored in a database (for example,
partition pruning).

See Also:

Oracle Database Administrator’s Guide for additional information about
creating and managing external tables, and about partitioning them.

14-1

Note:

External tables can be used as inline external tables in SQL statements, thus
eliminating the need to create an external table as a persistent database
object in the data dictionary. For additional information, see Oracle Database
SQL Language Reference.

When you create an external table, you specify the following attributes:

• TYPE — specifies the type of external table. Each type of external table is
supported by its own access driver.

– ORACLE_LOADER — this is the default access driver. It loads data from external
tables to internal tables. The data must come from text data files. (The
ORACLE_LOADER access driver cannot perform unloads; that is, it cannot move
data from an internal table to an external table.)

– ORACLE_DATAPUMP — this access driver can perform both loads and unloads.
The data must come from binary dump files. Loads to internal tables from
external tables are done by fetching from the binary dump files. Unloads from
internal tables to external tables are done by populating the binary dump files
of the external table. The ORACLE_DATAPUMP access driver can write dump files
only as part of creating an external table with the SQL CREATE TABLE AS
SELECT statement. Once the dump file is created, it can be read any number of
times, but it cannot be modified (that is, no DML operations can be
performed).

– ORACLE_HDFS — extracts data stored in a Hadoop Distributed File System
(HDFS).

– ORACLE_HIVE — extracts data stored in Apache HIVE.

• DEFAULT DIRECTORY — specifies the default directory to use for all input and output
files that do not explicitly name a directory object. The location is specified with a
directory object, not a directory path. You must create the directory object before
you create the external table; otherwise, an error is generated. See Location of
Data Files and Output Files for more information.

• ACCESS PARAMETERS — describe the external data source and implement the type
of external table that was specified. Each type of external table has its own access
driver that provides access parameters unique to that type of external table.
Access parameters are optional. See Access Parameters.

• LOCATION — specifies the data files for the external table.

– For ORACLE_LOADER and ORACLE_DATAPUMP, the files are named in the form
directory:file. The directory portion is optional. If it is missing, then the
default directory is used as the directory for the file. If you are using the
ORACLE_LOADER access driver, then you can use wildcards in the file name: an
asterisk (*) signifies multiple characters, a question mark (?) signifies a single
character.

– For ORACLE_HDFS, the LOCATION clause is a list of Uniform Resource Identifiers
(URIs) for a directory or for a file. There is no directory object associated with
a URI.

Chapter 14
How Are External Tables Created?

14-2

– For ORACLE_HIVE, the LOCATION clause is not used. Instead, the Hadoop
HCatalog table is read to obtain information about the location of the data
source (which could be a file or another database).

The following examples briefly show the use of attributes for each of the access
drivers.

Example 14-1 Specifying Attributes for the ORACLE_LOADER Access Driver

The following example uses the ORACLE_LOADER access driver to show the use of each
of these attributes (it assumes that the default directory def_dir1 already exists):

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE)
 8 ORGANIZATION EXTERNAL
 9 (TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY def_dir1
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 FIELDS (employee_number CHAR(2),
 14 employee_dob CHAR(20),
 15 employee_last_name CHAR(18),
 16 employee_first_name CHAR(11),
 17 employee_middle_name CHAR(11),
 18 employee_hire_date CHAR(10) date_format DATE mask
"mm/dd/yyyy"
 19)
 20)
 21 LOCATION ('info.dat')
 22);

Table created.

The information you provide through the access driver ensures that data from the data
source is processed so that it matches the definition of the external table. The fields
listed after CREATE TABLE emp_load are actually defining the metadata for the data in
the info.dat source file.

Example 14-2 Specifying Attributes for the ORACLE_DATAPUMP Access
Driver

This example creates an external table named inventories_xt and populates the
dump file for the external table with the data from table inventories in the oe sample
schema.

SQL> CREATE TABLE inventories_xt
2 ORGANIZATION EXTERNAL
3 (
4 TYPE ORACLE_DATAPUMP
5 DEFAULT DIRECTORY def_dir1
6 LOCATION ('inv_xt.dmp')

Chapter 14
How Are External Tables Created?

14-3

7)
8 AS SELECT * FROM inventories;
Table created.

Example 14-3 Specifying Attributes for the ORACLE_HDFS Access Driver

CREATE TABLE sales_external
(time_id DATE NOT NULL, …
 amount_sold NUMBER(10,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_HDFS
 ACCESS PARAMETERS (com.oracle.bigdata.cluster=hadoop1)
 LOCATION (“hdfs:/usr/sales_1.csv”, “hdfs:/usr/my_sales_*.csv”)
)

Example 14-4 Specifying Attributes for the ORACLE_HIVE Access Driver

CREATE TABLE sales_external
(time_id DATE NOT NULL, …
 amount_sold NUMBER(10,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_HIVE
 ACCESS PARAMETERS (com.oracle.bigdata.cluster=hadoop1

com.oracle.bigdata.tablename=default.ratings_hive_table)
);

14.2 Location of Data Files and Output Files
Data files and output files must be located on the server. You must have a directory
object that specifies the location from which to read and write files.

Note:

The information in this section about directory objects does not apply to data
files for the ORACLE_HDFS access driver or ORACLE_HIVE access driver. With
the ORACLE_HDFS driver, the location of data is specified with a list of URIs for
a directory or for a file, and there is no directory object associated with a URI.
The ORACLE_HIVE driver does not specify a data source location; it reads the
Hive metastore table to get that information, so no directory object is needed.

The access driver runs inside the database server. This behavior is different from
SQL*Loader, which is a client program that sends the data to be loaded over to the
server. This difference has the following implications:

• The server requires access to files that the access driver can load.

Chapter 14
Location of Data Files and Output Files

14-4

• The server must create and write the output files created by the access driver: the
log file, bad file, discard file, and also any dump files created by the
ORACLE_DATAPUMP access driver.

To specify the location from which to read and write files, the access driver requires
that you use a directory object. A directory object maps a name to a directory name on
the file system. For example, the following statement creates a directory object named
ext_tab_dir that is mapped to a directory located at /usr/apps/datafiles.

CREATE DIRECTORY ext_tab_dir AS '/usr/apps/datafiles';

DBAs or any user can create directory objects with the CREATE ANY DIRECTORY
privilege.

Note:

To use external tables in an Oracle Real Applications Cluster (Oracle RAC)
configuration, you must ensure that the directory object path is on a cluster-
wide file system.

After a directory is created, the user creating the directory object must grant READ and
WRITE privileges on the directory to other users. These privileges must be explicitly
granted, rather than assigned by using roles. For example, to allow the server to read
files on behalf of user scott in the directory named by ext_tab_dir, the user who
created the directory object must execute the following command:

GRANT READ ON DIRECTORY ext_tab_dir TO scott;

The SYS user is the only user that can own directory objects, but the SYS user can grant
other users the privilege to create directory objects.READ or WRITE permission to a
directory object means only that Oracle Database reads or writes that file on your
behalf. You are not given direct access to those files outside of the Oracle database
unless you have the appropriate operating system privileges. Similarly, the Oracle
database requires permission from the operating system to read and write files in the
directories.

14.3 Access Parameters for External Tables
To modify the default behavior of the access driver for external tables, specify access
parameters.

When you create an external table of a particular type, you can specify access
parameters to modify the default behavior of the access driver. Each access driver has
its own syntax for access parameters. Oracle provides the following access drivers for
use with external tables: ORACLE_LOADER , ORACLE_DATAPUMP, ORACLE_HDFS, and
ORACLE_HIVE.

Chapter 14
Access Parameters for External Tables

14-5

Note:

These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement. The ACCESS parameter clause allows SQL comments.

See Also:

• The ORACLE_LOADER Access Driver

• The ORACLE_DATAPUMP Access Driver

• ORACLE_HDFS and ORACLE_HIVE Access Drivers

• Oracle Database SQL Language Reference for information about
specifying opaque_format_spec when using the SQL CREATE TABLE
statement

14.4 Data Type Conversion During External Table Use
Conversion errors can occur when external tables are read from and when they are
written to.

Conversion Errors When Reading External Tables

When you select rows from an external table, the access driver performs any
transformations necessary to make the data from the data source match the data type
of the corresponding column in the external table. Depending on the data and the
types of transformations required, the transformation can encounter errors.

To illustrate the types of data conversion problems that can occur when reading from
an external table, suppose you create the following external table KV_TAB_XT with two
columns: KEY whose data type is VARCHAR2(4) and VAL whose data type is NUMBER.

SQL> CREATE TABLE KV_TAB_XT (KEY, VARCHAR2(4), VAL NUMBER)
2 ORGANIZATION EXTERNAL
3 (DEFAULT DIRECTORY DEF_DIR1 LOCATION (‘key_val.csv’));

The external table KV_TAB_XT uses default values for the access parameters, which
means:

• Records are delimited by new lines.

• The data file and the database have the same character set.

• The fields in the data file have the same name and are in the same order as the
columns in the external table.

• The data type of the field is CHAR(255).

• Data for each field is terminated by a comma.

Chapter 14
Data Type Conversion During External Table Use

14-6

The records in the data file for the KV_TAB_XT external table should be:

• A string, up to 4 bytes long. If the string is empty, then the value for the field is
NULL.

• A terminating comma.

• A string of numeric characters. If the string is empty, then the value for this field is
NULL.

• An optional terminating comma.

When the access driver reads a record from the data file, it verifies that the length of
the value of the KEY field in the data file is less than or equal to 4, and it attempts to
convert the value of the VAL field in the data file to an Oracle number.

If the length of the value of the KEY field is greater than 4 or if there is a non-numeric
character in the value for VAL, then the ORACLE_LOADER access driver rejects the row
which results in a copy of the row being written to the bad file and an error message
being written to the log file.

All access drivers have to handle conversion from the data type of fields in the source
for the external table and the data type for the columns of the external tables. The
following are some examples of the types of conversions and checks that access
drivers perform:

• Convert character data from character set used by the source data to the
character set used by the database.

• Convert from character data to numeric data.

• Convert from numeric data to character data.

• Convert from character data to a date or timestamp.

• Convert from a date or timestamp to character data.

• Convert from character data to an interval data type.

• Convert from an interval data type to a character data.

• Verify that the length of data value for a character column does not exceed the
length limits of that column.

When the access driver encounters an error doing the required conversion or
verification, it can decide how to handle the error. When the ORACLE_LOADER and
ORACLE_DATAPUMP access drivers encounter errors, they reject the record and write an
error message to the log file. It is as if that record were not in the data source. When
the ORACLE_HDFS and ORACLE_HIVE access drivers encounter errors, the value of the
field in which the error is encountered is set to NULL. This is in keeping with the
behavior of how Hive handles errors in Hadoop.

Even after the access driver has converted the data from the data source to match the
data type of the external table columns, the SQL statement that is accessing the
external table could require additional data type conversions. If any of these additional
conversions encounter an error, then the entire statement fails. (The exception to this
is if you use the DML error logging feature in the SQL statement to handle these
errors.) These conversions are the same as any that might normally be required when
executing a SQL statement. For example, suppose you change the definition of the
KV_TAB_XT external table to only have columns with character data types, and then you

Chapter 14
Data Type Conversion During External Table Use

14-7

execute an INSERT statement to load data from the external table into another table
that has a NUMBER data type for column VAL:

SQL> CREATE TABLE KV_TAB_XT (KEY VARCHAR2(20), VAL VARCHAR2(20))
2 ORGANIZATION EXTERNAL
3 (DEFAULT DIRECTORY DEF_DIR1 LOCATION (‘key_val.csv’));
4 CREATE TABLE KV_TAB (KEY VARCHAR2(4), VAL NUMBER);
5 INSERT INTO KV_TAB SELECT * FROM KV_TAB_XT;

In this example, the access driver will not reject a record if the data for VAL contains a
non-numeric character because the data type of VAL in the external table is now
VARCHAR2 (instead of NUMBER). However, SQL execution now needs to handle the
conversion from character data type in KV_TAB_XT to number data type in KV_TAB. If
there is a non-numeric character in the value for VAL in the external table, then SQL
raises a conversion error and rolls back any rows that were inserted. To avoid
conversion errors in SQL execution, try to make the data types of the columns in the
external table match the data types expected by other tables or functions that will be
using the values of those columns.

Conversion Errors When Writing to External Tables

The ORACLE_DATAPUMP access driver allows you to use a CREATE TABLE AS SELECT
statement to unload data into an external table. Data conversion occurs if the data
type of a column in the SELECT expression does not match the data type of the column
in the external table. If SQL encounters an error converting the data type, then SQL
aborts the statement and the data file will not be readable.

To avoid problems with conversion errors that cause the operation to fail, the data type
of the column in the external table should match the data type of the column in the
source table or expression used to write to the external table. This is not always
possible because external tables do not support all data types. In these cases, the
unsupported data types in the source table must be converted into a data type that the
external table can support. The following CREATE TABLE statement shows an example
of this:

CREATE TABLE LONG_TAB_XT (LONG_COL CLOB)
ORGANIZATION EXTERNAL...SELECT TO_LOB(LONG_COL) FROM LONG_TAB;

The source table named LONG_TAB has a LONG column, therefore the corresponding
column in the external table being created, LONG_TAB_XT, must be a CLOB and the
SELECT subquery that is used to populate the external table must use the TO_LOB
operator to load the column.

Chapter 14
Data Type Conversion During External Table Use

14-8

15
The ORACLE_LOADER Access Driver

Learn how to control the way external tables are accessed by using the
ORACLE_LOADER access driver parameters to modify the default behavior of the
access driver.

• About the ORACLE_LOADER Access Driver
The ORACLE_LOADER access driver provides a set of access parameters unique to
external tables of the type ORACLE_LOADER.

• access_parameters Clause
The access_parameters clause contains comments, record formatting, and field
formatting information.

• record_format_info Clause
Learn how to parse, label and manage record information with the
record_format_info clause and its subclauses.

• field_definitions Clause
Learn how to name the fields in the data file and specify how to find them in
records using the field_definitions clause.

• column_transforms Clause
The optional COLUMN TRANSFORMS clause provides transforms that you can use to
describe how to load columns in the external table that do not map directly to
columns in the data file.

• Parallel Loading Considerations for the ORACLE_LOADER Access Driver
The ORACLE_LOADER access driver attempts to divide large data files into chunks
that can be processed separately.

• Performance Hints When Using the ORACLE_LOADER Access Driver
This topic describes some performance hints when using the ORACLE_LOADER
access driver.

• Restrictions When Using the ORACLE_LOADER Access Driver
This section lists restrictions to be aware of when you use the ORACLE_LOADER
access driver.

• Reserved Words for the ORACLE_LOADER Access Driver
When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by
the access parameter parser.

15.1 About the ORACLE_LOADER Access Driver
The ORACLE_LOADER access driver provides a set of access parameters unique to
external tables of the type ORACLE_LOADER.

You can use the access parameters to modify the default behavior of the access
driver. The information you provide through the access driver ensures that data from
the data source is processed so that it matches the definition of the external table.

15-1

To use the external table management features that the ORACLE_LOADER access
parameters provide, you must have some knowledge of the file format and record
format (including character sets and field data types) of the data files on your platform.
You must also know enough about SQL to be able to create an external table, and to
perform queries against it.

You can find it helpful to use the EXTERNAL_TABLE=GENERATE_ONLY parameter in
SQL*Loader to obtain the proper access parameters for a given SQL*Loader control
file. When you specify GENERATE_ONLY, all the SQL statements needed to do the load
using external tables, as described in the control file, are placed in the SQL*Loader log
file. You can edit and customize these SQL statements. You can perform the actual
load later without the use of SQL*Loader by executing these statements in SQL*Plus.

Note:

• It is sometimes difficult to understand ORACLE_LOADER access driver
parameter syntax without reference to other ORACLE_LOADER access
driver parameters. If you have difficulty understanding the syntax of a
particular parameter, then refer to it in context with other referenced
parameters.

• Be aware that in ORACLE_LOADER access driver parameter examples
that show a CREATE TABLE...ORGANIZATION EXTERNAL statement,
followed by an example of contents of the data file for the external table,
the contents of the data file in the example are not part of the CREATE
TABLE statement. They are present in the example only to help complete
the example.

• When identifiers (for example, column or table names) are specified in
the external table access parameters, certain values are considered to
be reserved words by the access parameter parser. If a reserved word is
used as an identifier, then it must be enclosed in double quotation
marks.

Related Topics

• EXTERNAL_TABLE
The EXTERNAL_TABLE parameter instructs SQL*Loader whether to load data using
the external tables option.

• Reserved Words for the ORACLE_LOADER Access Driver
When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by
the access parameter parser.

• Oracle Database Administrator’s Guide

15.2 access_parameters Clause
The access_parameters clause contains comments, record formatting, and field
formatting information.

The description of the data in the data source is separate from the definition of the
external table. This means that:

Chapter 15
access_parameters Clause

15-2

• The source file can contain more or fewer fields than there are columns in the
external table

• The data types for fields in the data source can be different from the columns in
the external table

The access driver ensures that data from the data source is processed so that it
matches the definition of the external table.

The syntax for the access_parameters clause is as follows:

comments record_format_info field_definitions column_transforms

Note:

These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement.

See Also:

• Oracle Database SQL Language Reference for information about
specifying opaque_format_spec when using the SQL CREATE
TABLE...ORGANIZATION EXTERNAL statement

comments

Comments are lines that begin with two hyphens followed by text. Comments must be
placed before any access parameters, for example:

--This is a comment.
--This is another comment.
RECORDS DELIMITED BY NEWLINE

All text to the right of the double hyphen is ignored, until the end of the line.

record_format_info

The record_format_info clause is an optional clause that contains information about
the record, such as its format, the character set of the data, and what rules are used to
exclude records from being loaded. For a full description of the syntax, see
record_format_info Clause.

field_definitions

The field_definitions clause is used to describe the fields in the data file. If a data
file field has the same name as a column in the external table, then the data from the
field is used for that column. For a full description of the syntax, see field_definitions
Clause.

Chapter 15
access_parameters Clause

15-3

column_transforms

The column_transforms clause is an optional clause used to describe how to load
columns in the external table that do not map directly to columns in the data file. This
is done using the following transforms: NULL, CONSTANT, CONCAT, and LOBFILE. For a full
description of the syntax, see column_transforms Clause.

15.3 record_format_info Clause
Learn how to parse, label and manage record information with the
record_format_info clause and its subclauses.

• Overview of record_format_info Clause
The record_format_info clause contains information about the record, such as its
format, the character set of the data, and what rules are used to exclude records
from being loaded.

• FIXED Length
Use the record_format_info FIXED clause to identify the records in external
tables as all having a fixed size of length bytes.

• VARIABLE size
Use the record_format_info FIXED clause to indicate that the records have a
variable length

• DELIMITED BY
Use the record_format_info DELIMITED BY clause to delimit the end-of-record
character.

• XMLTAG
Use the record_format_info XMLTAG clause to specify XML tags that are used to
load subdocuments from an XML document.

• CHARACTERSET
Use the record_format_info CHARACTERSET clause to specify the character set of
the data file.

• EXTERNAL VARIABLE DATA
To load dump files into the Oracle SQL Connector for HDFS that are generated
with the ORACLE_DATAPUMP access driver, use the EXTERNAL VARIABLE DATA clause.

• PREPROCESSOR
To specify your own preprocessor program that you want to run for every data file,
use the record_format_info PREPROCESSOR clause.

• LANGUAGE
The LANGUAGE clause allows you to specify a language name (for example,
FRENCH), from which locale-sensitive information about the data can be derived.

• TERRITORY
The TERRITORY clause allows you to specify a territory name to further determine
input data characteristics.

• DATA IS...ENDIAN
The DATA IS...ENDIAN clause indicates the endianness of data whose byte order
may vary, depending on the platform that generated the data file.

• BYTEORDERMARK (CHECK | NOCHECK)

Chapter 15
record_format_info Clause

15-4

• STRING SIZES ARE IN

• LOAD WHEN

• BADFILE | NOBADFILE

• DISCARDFILE | NODISCARDFILE

• LOGFILE | NOLOGFILE

• SKIP
The SKIP clause skips the specified number of records in the data file before
loading.

• FIELD NAMES

• READSIZE
The READSIZE parameter specifies the size of the read buffer used to process
records.

• DATE_CACHE

• string
A string is a quoted series of characters or hexadecimal digits.

• condition_spec
The condition_spec specifies one or more conditions that are joined by Boolean
operators.

• [directory object name:] [filename]
The [directory object name:] [filename] clause is used to specify the name
of an output file (BADFILE, DISCARDFILE, or LOGFILE).

• condition
To compare a range of bytes or a field from the record against a constant string,
you can use the ORACLE_LOADER condition clause

• IO_OPTIONS clause
To specify whether the operating system uses direct input/output to read data files
from disk, or uses a cache for reading the data files, use the ORACLE_LOADER
records clause IO_OPTIONS.

• DNFS_DISABLE | DNFS_ENABLE
To disable and enable use of the Direct NFS Client on input data files during an
external tables operation, use DNFS_DISABLE or DNFS_ENABLE.

• DNFS_READBUFFERS
The DNFS_READBUFFERS parameter of the record_format_info clause is used to
control the number of read buffers used by the Direct NFS Client.

15.3.1 Overview of record_format_info Clause
The record_format_info clause contains information about the record, such as its
format, the character set of the data, and what rules are used to exclude records from
being loaded.

The PREPROCESSOR clause allows you to optionally specify the name of a user-supplied
program that will run and modify the contents of a data file so that the ORACLE_LOADER
access driver can parse it.

The record_format_info clause is optional. The syntax for the record_format_info
clause is as follows:

Chapter 15
record_format_info Clause

15-5

RECORDS

FIXED

VARIABLE
integer

DELIMITED BY

DETECTED

NEWLINE

string

XMLTAG string

et_record_spec_options

The et_record_spec_options clause allows you to optionally specify additional
formatting information. You can specify as many of the formatting options as you want,
in any order. The syntax of the options is as follows:

CHARACTERSET string

PREPROCESSOR

directory_spec :

file_spec

LANGUAGE

TERRITORY
string

DATA IS
LITTLE

BIG
ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

STRING SIZES ARE IN
BYTES

CHARACTERS

LOAD WHEN condition_spec

et_output_files

READSIZE integer

DISABLE_DIRECTORY_LINK_CHECK

DATE_CACHE

SKIP
integer

FIELD_NAMES

FIRST FILE

IGNORE

ALL FILES

IGNORE

NONE

IO_OPTIONS (
DIRECTIO

NODIRECTIO
)

DNFS_ENABLE

DNFS_DISABLE

DNFS_READBUFFERS integer

Chapter 15
record_format_info Clause

15-6

The following et_output_files diagram shows the options for specifying the bad,
discard, and log files. For each of these clauses, you must supply either a directory
object name or a file name, or both.

NOBADFILE

BADFILE

directory object name : filename

NODISCARDFILE

DISCARDFILE

directory object name : filename

NOLOGFILE

LOGFILE

directory object name : filename

15.3.2 FIXED Length
Use the record_format_info FIXED clause to identify the records in external tables as
all having a fixed size of length bytes.

Default

None.

Purpose

Enables you to identify the records in external tables as all having a fixed size of
length bytes.

Usage Notes

The size specified for FIXED records must include any record termination characters,
such as newlines. Compared to other record types, fixed-length fields in fixed-length
records are the easiest field and record formats for the access driver to process.

Example

The following is an example of using FIXED records. In this example, we assume that
there is a 1-byte newline character at the end of each record in the data file. After the
create table command using FIXED, you see an example of the data file that you can
load with it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS FIXED 20 FIELDS (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

Alvin Tolliver1976

Chapter 15
record_format_info Clause

15-7

KennethBaer 1963
Mary Dube 1973

15.3.3 VARIABLE size
Use the record_format_info FIXED clause to indicate that the records have a variable
length

Default

None.

Purpose

Use the VARIABLE clause to indicate that the records have a variable length, and that
each record is preceded by a character string containing a number with the count of
bytes for the record. The length of the character string containing the count field is the
size argument that follows the VARIABLE parameter. Note that size indicates a count of
bytes, not characters. The count at the beginning of the record must include any
record termination characters, but it does not include the size of the count field itself.
The number of bytes in the record termination characters can vary depending on how
the file is created and on what platform it is created.

Example

In the following example of using VARIABLE records, there is a 1-byte newline character
at the end of each record in the data file. After the SQL example, you see an example
of a data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS VARIABLE 2 FIELDS TERMINATED BY ','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

21Alvin,Tolliver,1976,
19Kenneth,Baer,1963,
16Mary,Dube,1973,

15.3.4 DELIMITED BY
Use the record_format_info DELIMITED BY clause to delimit the end-of-record
character.

Default

None

Purpose

The DELIMITED BY clause is used to indicate the character that identifies the end of a
record.

Chapter 15
record_format_info Clause

15-8

If you specify DELIMITED BY NEWLINE then the actual value used is platform-specific.
On Unix or Linux operating systems, NEWLINE is assumed to be '\n'. On Microsoft
Windows operating systems, NEWLINE is assumed to be '\r\n'.

If you are unsure what record delimiter was used when a data file was created, then
running an external table query with DELIMITED BY NEWLINE can result in files that are
incorrectly loaded. The query can be run without identifying what record delimiter was
used when the data file was created. For example, you can work on a Unix or Linux
operating system and use a file that was created in Windows format. If you specify
RECORDS DELIMITED BY NEWLINE on the UNIX or Linux operating system, the delimiter
is automatically assumed to be '\n'. However, because the file was created in
Windows format, in which the records are delimited by '\r\n', the file is incorrectly
uploaded to the UNIX or Linux operating system.

To resolve problems of different record delimiters, use this syntax:

RECORDS DELIMITED BY DETECTED NEWLINE

With this syntax, the ORACLE_LOADER access driver scans the data looking first for a
Windows delimiter ('\r\n'). If a Windows delimiter is not found, then the access driver
looks for a Unix or Linux delimiter ('\n'). The first delimiter found is the one used as the
record delimiter.

After a record delimiter is found, the access driver identifies that delimiter as the end of
the record. For this reason, if the data contains an embedded delimiter character in a
field before the end of the record, then you cannot use the DETECTED keyword. This is
because the ORACLE_LOADER access driver incorrectly assumes that the delimiter in the
field denotes the end of the record. As a result, the current and all subsequent records
in the file cannot parse correctly.

You cannot mix newline delimiters in the same file. When the ORACLE_LOADER access
driver finds the first delimiter, then that is the delimiter that it identifies for the records
in the file. The access driver then processes all subsequent records in the file by using
the same newline character as the delimiter..

If you specify DELIMITED BY string, then string can be either text or a series of
hexadecimal digits enclosed within quotation marks and prefixed by OX or X. If the
string is text, then the text is converted to the character set of the data file, and the
result is used for identifying record boundaries.

If the following conditions are true, then you must use hexadecimal digits to identify the
delimiter:

• The character set of the access parameters is different from the character set of
the data file.

• Some characters in the delimiter string cannot be translated into the character set
of the data file.

The hexadecimal digits are converted into bytes, and there is no character set
translation performed on the hexadecimal string.

If the end of the file is found before the record terminator, then the access driver
proceeds as if a terminator was found, and all unprocessed data up to the end of the
file is considered part of the record.

Chapter 15
record_format_info Clause

15-9

Note:

Do not include any binary data, including binary counts for VARCHAR and
VARRAW, in a record that has delimiters. Doing so could cause errors or
corruption, because the binary data will be interpreted as characters during
the search for the delimiter.

Example

The following is an example of using DELIMITED BY records.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (RECORDS DELIMITED BY '|' FIELDS TERMINATED BY
','
 (first_name CHAR(7),
 last_name CHAR(8),
 year_of_birth CHAR(4)))
 LOCATION ('info.dat'));

Alvin,Tolliver,1976|Kenneth,Baer,1963|Mary,Dube,1973

Related Topics

• string
A string is a quoted series of characters or hexadecimal digits.

15.3.5 XMLTAG
Use the record_format_info XMLTAG clause to specify XML tags that are used to load
subdocuments from an XML document.

Default

None

Purpose

You can use the XMLTAG clause of the ORACLE_LOADER access driver to specify XML
tags that are used to load subdocuments from an XML document. The access driver
searches the data file for documents enclosed by the tags you identify with the clause,
and loads those documents as separate rows in the external table.

The XMLTAG clause accepts a list of one or more strings. The strings are used to build
tags that ORACLE_LOADER uses to search for subdocuments in the data file. The tags
specified in the access parameters do not include the "<" and ">" delimiters.

The ORACLE_LOADER access driver starts at the beginning of the file, and looks for the
first occurrence of any of the tags listed in the XMLTAG clause. When it finds a match, it
then searches for the corresponding closing tag. For example, if the tag is
"ORDER_ITEM”, then ORACLE_LOADER looks for the text string “<ORDER_ITEM>”, starting at
the beginning of the file. When it finds an occurrence of “<ORDER_ITEM>” it then looks
for “</ORDER_ITEM>”. Everything found between the <ORDER_ITEM> and </

Chapter 15
record_format_info Clause

15-10

ORDER_ITEM> tags is part of the document loaded for the row. ORACLE_LOADER then
searches for the next occurrence of any of the tags, starting from the first character
after the closing tag.

The ORACLE_LOADER access driver is not parsing the XML document to the elements
that match the tag names; it is only doing a string search through a text file. If the
external table is being accessed in parallel, then ORACLE_LOADER splits large files up so
that different sections are read independently. When it starts reading a section of the
data file, it starts looking for one of the tags specified by XMLTAG. If it reaches the end
of a section and is still looking for a matching end tag, then ORACLE_LOADER continues
reading into the next section until the matching end tag is found.

Restrictions When Using XMLTAG

• The XMLTAG clause cannot be used to load data files that have elements nested
inside of documents of the same element. For example, if a data file being loaded
with XMLTAG(‘FOO’) contains the following data:

<FOO><BAR><FOO></FOO></BAR></FOO>

then ORACLE_LOADER extracts everything between the first <FOO> and the first </
FOO> as a document, which does not constitute a valid document.

Similarly, if XMLTAG(“FOO”,”BAR”) is specified and the data file contains the
following:

<FOO><BAR></BAR></FOO>

then <BAR> and </BAR> are loaded, but as the document for "FOO".

• The limit on how large an extracted sub-document can be is determined by the
READSIZE access parameter. If the ORACLE_LOADER access driver sees a
subdocument larger than READSIZE, then it returns an error.

Example Use of the XMLTAG Clause

Suppose you create an external table T_XT as follows:

CREATE TABLE "T_XT"
(
 "C0" VARCHAR2(2000)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY DMPDIR
 ACCESS PARAMETERS
 (
 RECORDS
 XMLTAG ("home address", "work address"," home phone ")
 READSIZE 1024
 SKIP 0
 FIELDS NOTRIM
 MISSING FIELD VALUES ARE NULL
 (

Chapter 15
record_format_info Clause

15-11

 "C0" (1:2000) CHAR(2000)
)
)
 location
 (
 't.dat'
)
)REJECT LIMIT UNLIMITED
/
exit;

Assume the contents of the data file are as follows:

<first name>Lionel</first name><home address>23 Oak St, Tripoli, CT</home
address><last name>Rice</last name>

You could then perform the following SQL query:

SQL> SELECT C0 FROM T_XT;

C0
--
<home address>23 Oak St, Tripoli, CT</home address>

15.3.6 CHARACTERSET
Use the record_format_info CHARACTERSET clause to specify the character set of the
data file.

Default

None.

Purpose

The CHARACTERSET string clause identifies the character set of the data file. If a
character set is not specified, then the data is assumed to be in the default character
set for the database.

Note:

The settings of NLS environment variables on the client have no effect on the
character set used for the database.

Related Topics

• string
A string is a quoted series of characters or hexadecimal digits.

• Oracle Database Globalization Support Guide

Chapter 15
record_format_info Clause

15-12

15.3.7 EXTERNAL VARIABLE DATA
To load dump files into the Oracle SQL Connector for HDFS that are generated with
the ORACLE_DATAPUMP access driver, use the EXTERNAL VARIABLE DATA clause.

Default

None.

Purpose

When you specify the EXTERNAL VARIABLE DATA clause, the ORACLE_LOADER access
driver is used to load dump files that were generated with the ORACLE_DATAPUMP access
driver.

Note:

The EXTERNAL VARIABLE DATA clause is valid only for use with the Oracle
SQL Connector for Hadoop Distributed File System (HDFS). See Oracle Big
Data Connectors User's Guide for more information about the Oracle SQL
Connector for HDFS.

Syntax and Description

EXTERNAL VARIABLE DATA

LOGFILE

NOLOGFILE

READSIZE

PREPROCESSOR

You can only use the following access parameters with the EXTERNAL VARIABLE DATA
clause:

• LOGFILE | NOLOGFILE

• READSIZE

• PREPROCESSOR

Note:

The parameter DISABLE_DIRECTORY_LINK_CHECK is desupported.

Chapter 15
record_format_info Clause

15-13

Example

In the following example of using the EXTERNAL VARIABLE DATA clause, the following
scenario is true:

• The deptxt1.dmp dump file was previously generated by the ORACLE_DATAPUMP
access driver.

• The tkexcat program specified by the PREPROCESSOR parameter is a user-supplied
program used to manipulate the input data.

CREATE TABLE deptxt1
(
 deptno number(2),
 dname varchar2(14),
 loc varchar2(13)
)
ORGANIZATION EXTERNAL
(
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY dpump_dir
 ACCESS PARAMETERS
 (
 EXTERNAL VARIABLE DATA
 LOGFILE 'deptxt1.log'
 READSIZE=10000
 PREPROCESSOR tkexcat
)
 LOCATION ('deptxt1.dmp')
)
REJECT LIMIT UNLIMITED
;

Related Topics

• LOGFILE | NOLOGFILE

• READSIZE
The READSIZE parameter specifies the size of the read buffer used to process
records.

• PREPROCESSOR
To specify your own preprocessor program that you want to run for every data file,
use the record_format_info PREPROCESSOR clause.

15.3.8 PREPROCESSOR
To specify your own preprocessor program that you want to run for every data file, use
the record_format_info PREPROCESSOR clause.

Default

None.

Chapter 15
record_format_info Clause

15-14

Purpose

Caution:

There are security implications to consider when using the PREPROCESSOR
clause.

If the file you want to load contains data records that are not in a format supported by
the ORACLE_LOADER access driver, then use the PREPROCESSOR clause to specify a user-
supplied preprocessor program that will execute for every data file. Note that the
program specification must be enclosed in a shell script if it uses arguments (see the
description of file_spec).

The preprocessor program converts the data to a record format supported by the
access driver and then writes the converted record data to standard output (stdout),
which the access driver reads as input.

Syntax

The syntax of the PREPROCESSOR clause is as follows:

PREPROCESSOR

directory_spec :

file_spec

directory_spec

Specifies the directory object containing the name of the preprocessor program to
execute for every data file. The user accessing the external table must have the
EXECUTE privilege for the directory object that is used. If directory_spec is omitted,
then the default directory specified for the external table is used.

Caution:

For security reasons, to store preprocessor programs, Oracle strongly
recommends that you use a separate directory. Do not use the default
directory. Do not store any other files in the directory in which preprocessor
programs are stored.

To maintain security, the preprocessor program must reside in a directory object, so
that access to it can be controlled . Your operating system administrator must create a
directory corresponding to the directory object, and and must verify that the operating
system Oracle user for the database has access to that directory. Database
administrators then must ensure that only approved users are granted permissions to
the directory object associated with the directory path. Although multiple database
users can have access to a directory object, only those with the EXECUTE privilege can
run a preprocessor in that directory. No existing database user with read-write
privileges to a directory object will be able to use the preprocessing feature. As a DBA,
you can prevent preprocessors from ever being used by never granting the EXECUTE

Chapter 15
record_format_info Clause

15-15

privilege to anyone for a directory object. Refer to Oracle Database SQL Language
Reference for information about how to grant the EXECUTE privilege.

file_spec

The name of the preprocessor program. It is appended to the path name associated
with the directory object that is being used (either the directory_spec or the default
directory for the external table). The file_spec cannot contain an absolute or relative
directory path.

If the preprocessor program requires any arguments (for example, gunzip -c), then
you must specify the program name and its arguments in an executable shell script (or
on Windows operating systems, in a batch (.bat) file). Shell scripts and batch files have
certain requirements, as discussed in the following sections.

It is important to verify that the correct version of the preprocessor program is in the
operating system directory.

The following is an example of specifying the PREPROCESSOR clause without using a
shell or batch file:

SQL> CREATE TABLE xtab (recno varchar2(2000))
 2 ORGANIZATION EXTERNAL (
 3 TYPE ORACLE_LOADER
 4 DEFAULT DIRECTORY data_dir
 5 ACCESS PARAMETERS (
 6 RECORDS DELIMITED BY NEWLINE
 7 PREPROCESSOR execdir:'zcat'
 8 FIELDS (recno char(2000)))
 9 LOCATION ('foo.dat.gz'))
 10 REJECT LIMIT UNLIMITED;
Table created.

Using Shell Scripts With the PREPROCESSOR Clause on Linux Operating
Systems

To use shell scripts on Linux, the following conditions must be true:

• The shell script must reside in directory_spec.

• The full path name must be specified for system commands such as gunzip.

• The preprocessor shell script must have EXECUTE permissions.

• The data file listed in the external table LOCATION clause should be referred to
by $1.

The following example shows how to specify a shell script on the PREPROCESSOR clause
when creating an external table.

SQL> CREATE TABLE xtab (recno varchar2(2000))
 2 ORGANIZATION EXTERNAL (
 3 TYPE ORACLE_LOADER
 4 DEFAULT DIRECTORY data_dir
 5 ACCESS PARAMETERS (
 6 RECORDS DELIMITED BY NEWLINE
 7 PREPROCESSOR execdir:'uncompress.sh'
 8 FIELDS (recno char(2000)))

Chapter 15
record_format_info Clause

15-16

 9 LOCATION ('foo.dat.gz'))
 10 REJECT LIMIT UNLIMITED;
Table created.

Using Batch Files With The PREPROCESSOR Clause on Windows Operating
Systems

To use shell scripts on Microsoft Windows, the following conditions must be true:

• The batch file must reside in directory_spec.

• The full path name must be specified for system commands such as gunzip.

• The preprocessor batch file must have EXECUTE permissions.

• The first line of the batch file should contain @echo off. The reason for this
requirement is that when the batch file is run, the default is to display the
commands being executed, which has the unintended side-effect of the echoed
commands being treated as input to the external table access driver.

• To represent the input from the location clause, %1 should be used. (Note that this
differs from Unix and Linux-style shell scripts where the location clause is
referenced by $1.)

• A full path should be specified to any executables in the batch file (sed.exe in the
following example). Note also that the MKS Toolkit may not exist on all Windows
installations so commands such as sed.exe may not be available.

The batch file used on Windows must have either a .bat or .cmd extension.
Failure to do so (for example, trying to specify the preprocessor script as sed.sh)
results in the following error:

SQL> select * from foo ;
select * from foo
*
ERROR at line 1:

ORA-29913: error in executing ODCIEXTTABLEFETCH callout
ORA-29400: data cartridge error
KUP-04095: preprocessor command
C:/Temp\sed.sh encountered error
"CreateProcess Failure for Preprocessor:
C:/Temp\sed.sh, errorcode: 193

The following is a simple example of using a batch file with the external table
PREPROCESSOR option on Windows. In this example a batch file uses the stream editor
(sed.exe) utility to perform a simple transformation of the input data.

SQL> create table deptXT (deptno char(2),
 2 dname char(14),
 3 loc char(13)
 4)
 5 organization external
 6 (
 7 type ORACLE_LOADER
 8 default directory def_dir1
 9 access parameters

Chapter 15
record_format_info Clause

15-17

 10 (
 11 records delimited by newline
 12 badfile 'deptXT.bad'
 13 logfile 'deptXT.log'
 14 preprocessor exec_dir:'sed.bat'
 15 fields terminated by ','
 16 missing field values are null
 17)
 18 location ('deptXT.dat')
 19)
 20 reject limit unlimited ;

Table created.

select * from deptxt ;

Where deptxt.dat contains:

20,RESEARCH,DALLAS
30,SALES,CHICAGO
40,OPERATIONS,BOSTON
51,OPERATIONS,BOSTON

The preprocessor program sed.bat has the following content:

@echo off
c:/mksnt/mksnt/sed.exe -e 's/BOSTON/CALIFORNIA/' %1

The PREPROCESSOR option passes the input data (deptxt.dat) to sed.bat. If you then
select from the deptxt table, the results show that the LOC column in the last two rows,
which used to be BOSTON, is now CALIFORNIA.

SQL> select * from deptxt ;

DE DNAME LOC
-- -------------- -------------
20 RESEARCH, DALLAS
30 SALES CHICAGO
40 OPERATIONS CALIFORNIA
51 OPERATIONS CALIFORNIA

4 rows selected.

Usage Notes for Parallel Processing with the PREPROCESSOR Clause

External tables treat each data file specified on the LOCATION clause as a single
granule. To make the best use of parallel processing with the PREPROCESSOR clause,
Oracle recommends that the data that you want to load is split into multiple files
(granules). Note that external tables limits the degree of parallelism to the number of
data files present. For example, if you specify a degree of parallelism of 16, but have
only 10 data files, then in effect the degree of parallelism is 10; this is because 10
slave processes are busy, and 6 are idle. To process data more efficiently, avoid idle
slave processes. If you do specify a degree of parallelism, then try to ensure that the

Chapter 15
record_format_info Clause

15-18

degree of parallelism you specify is no larger than the number of data files, so that all
slave processes are kept busy. Refer to Oracle Database VLDB and Partitioning
Guide for more information about granules of parallelism.

Also note that you cannot use the same preprocessor script that you use for file
system files to process object store data. If you want to use the preprocessor for object
store data, then you must write a preprocessor script that can access the object store
data, and modify the data. For example, on Linux or Unix systems, in this case, $1
represents a source such as https://www.yoururl.example.com/yourdata:

@echo off
#!/bin/sh/
your_script_or_plsql_function_to_display_objectstore_contents($1) | sed -e
's/BOSTON/CALIFORNIA/'

With this syntax, the preprocessor obtains your data, and sends it to stdout, and pipes
it for the access driver to read.

Restrictions When Using the PREPROCESSOR Clause

• The PREPROCESSOR clause is not available on databases that use the Oracle
Database Vault feature.

• The PREPROCESSOR clause does not work in conjunction with the COLUMN
TRANSFORMS clause.

Related Topics

• Oracle Database Security Guide

• Oracle Database SQL Language Reference

15.3.9 LANGUAGE
The LANGUAGE clause allows you to specify a language name (for example, FRENCH),
from which locale-sensitive information about the data can be derived.

The following are some examples of the type of information that can be derived from
the language name:

• Day and month names and their abbreviations

• Symbols for equivalent expressions for A.M., P.M., A.D., and B.C.

• Default sorting sequence for character data when the ORDER BY SQL clause is
specified

• Writing direction (right to left or left to right)

• Affirmative and negative response strings (for example, YES and NO)

See Also:

Oracle Database Globalization Support Guide for a listing of Oracle-
supported languages

Chapter 15
record_format_info Clause

15-19

15.3.10 TERRITORY
The TERRITORY clause allows you to specify a territory name to further determine input
data characteristics.

For example, in some countries a decimal point is used in numbers rather than a
comma (for example, 531.298 instead of 531,298).

See Also:

Oracle Database Globalization Support Guide for a listing of Oracle-
supported territories

15.3.11 DATA IS...ENDIAN
The DATA IS...ENDIAN clause indicates the endianness of data whose byte order may
vary, depending on the platform that generated the data file.

Purpose

Indicates the endianness of data whose byte order may vary depending on the
platform that generated the data file.

Usage Notes

Fields of the following types are affected by this clause:

• INTEGER

• UNSIGNED INTEGER

• FLOAT

• BINARY_FLOAT

• DOUBLE

• BINARY_DOUBLE

• VARCHAR (numeric count only)

• VARRAW (numeric count only)

• Any character data type in the UTF16 character set

• Any string specified by RECORDS DELIMITED BY string, and in the UTF16
character set

Microsoft Windows-based platforms generate little-endian data. Big-endian platforms
include Oracle Solaris and IBM zSeries Based Linux. If the DATA IS...ENDIAN clause
is not specified, then the data is assumed to have the same endianness as the
platform where the access driver is running. UTF-16 data files can have a mark at the
beginning of the file indicating the endianness of the data. If present, then this mark
overrides the DATA IS...ENDIAN clause.

Chapter 15
record_format_info Clause

15-20

15.3.12 BYTEORDERMARK (CHECK | NOCHECK)
The BYTEORDERMARK clause is used to specify whether the data file should be checked
for the presence of a byte-order mark (BOM). This clause is meaningful only when the
character set is Unicode.

BYTEORDERMARK NOCHECK indicates that the data file should not be checked for a BOM
and that all the data in the data file should be read as data.

BYTEORDERMARK CHECK indicates that the data file should be checked for a BOM. This is
the default behavior for a data file in a Unicode character set.

The following are examples of some possible scenarios:

• If the data is specified as being little or big-endian and CHECK is specified and it is
determined that the specified endianness does not match the data file, then an
error is returned. For example, suppose you specify the following:

DATA IS LITTLE ENDIAN
BYTEORDERMARK CHECK

If the BOM is checked in the Unicode data file and the data is actually big-endian,
then an error is returned because you specified little-endian.

• If a BOM is not found and no endianness is specified with the DATA IS...ENDIAN
parameter, then the endianness of the platform is used.

• If BYTEORDERMARK NOCHECK is specified and the DATA IS...ENDIAN parameter
specified an endianness, then that value is used. Otherwise, the endianness of the
platform is used.

See Also:

Byte Ordering

15.3.13 STRING SIZES ARE IN
The STRING SIZES ARE IN clause is used to indicate whether the lengths specified for
character strings are in bytes or characters. If this clause is not specified, then the
access driver uses the mode that the database uses. Character types with embedded
lengths (such as VARCHAR) are also affected by this clause. If this clause is specified,
then the embedded lengths are a character count, not a byte count. Specifying STRING
SIZES ARE IN CHARACTERS is needed only when loading multibyte character sets, such
as UTF16.

15.3.14 LOAD WHEN
The LOAD WHEN condition_spec clause is used to identify the records that should be
passed to the database. The evaluation method varies:

• If the condition_spec references a field in the record, then the clause is evaluated
only after all fields have been parsed from the record, but before any NULLIF or
DEFAULTIF clauses have been evaluated.

Chapter 15
record_format_info Clause

15-21

• If the condition specification references only ranges (and no field names), then the
clause is evaluated before the fields are parsed. This is useful for cases where the
records in the file that are not to be loaded cannot be parsed into the current
record definition without errors.

See condition_spec.

The following are some examples of using LOAD WHEN:

LOAD WHEN (empid != BLANKS)
LOAD WHEN ((dept_id = "SPORTING GOODS" OR dept_id = "SHOES") AND total_sales != 0)

15.3.15 BADFILE | NOBADFILE
The BADFILE clause names the file to which records are written when they cannot be
loaded because of errors. For example, a record would be written to the bad file if a
field in the data file could not be converted to the data type of a column in the external
table. The purpose of the bad file is to have one file where all rejected data can be
examined and fixed so that it can be loaded. If you do not intend to fix the data, then
you can use the NOBADFILE option to prevent creation of a bad file, even if there are
bad records.

If you specify the BADFILE clause, then you must supply either a directory object name
or file name, or both. See [directory object name:] [filename].

If neither BADFILE nor NOBADFILE is specified, then the default is to create a bad file if
at least one record is rejected. The name of the file is the table name followed by _%p,
where %p is replaced with the PID of the process creating the file. The file is given an
extension of .bad. If the table name contains any characters that could be interpreted
as directory navigation (for example, %, /, or *), then those characters are not included
in the output file name.

Records that fail the LOAD WHEN clause are not written to the bad file but are written to
the discard file instead. Also, any errors in using a record from an external table (such
as a constraint violation when using INSERT INTO...AS SELECT... from an external
table) will not cause the record to be written to the bad file.

15.3.16 DISCARDFILE | NODISCARDFILE
The DISCARDFILE clause names the file to which records are written that fail the
condition in the LOAD WHEN clause. The discard file is created when the first record to be
discarded is encountered. If the same external table is accessed multiple times, then
the discard file is rewritten each time. If there is no need to save the discarded records
in a separate file, then use NODISCARDFILE.

If you specify DISCARDFILE, then you must supply either a directory object name or file
name, or both. See [directory object name:] [filename].

If neither DISCARDFILE nor NODISCARDFILE is specified, then the default is to create a
discard file if at least one record fails the LOAD WHEN clause. The name of the file is the
table name followed by _%p, where %p is replaced with the PID of the process creating
the file. The file is given an extension of .dcs. If the table name contains any
characters that could be interpreted as directory navigation (for example, %, /, or *),
then those characters are not included in the file name.

Chapter 15
record_format_info Clause

15-22

15.3.17 LOGFILE | NOLOGFILE
The LOGFILE clause names the file that contains messages generated by the external
tables utility while it was accessing data in the data file. If a log file already exists by
the same name, then the access driver reopens that log file and appends new log
information to the end. This is different from bad files and discard files, which overwrite
any existing file. The NOLOGFILE clause is used to prevent creation of a log file.

If you specify LOGFILE, then you must supply either a directory object name or file
name, or both. See [directory object name:] [filename].

If neither LOGFILE nor NOLOGFILE is specified, then the default is to create a log file.
The name of the file is the table name followed by _%p, where %p is replaced with the
PID of the process creating the file. The file is given an extension of .log. If the table
name contains any characters that could be interpreted as directory navigation (for
example, %, /, or *), then those characters are not included in the file name.

15.3.18 SKIP
The SKIP clause skips the specified number of records in the data file before loading.

Purpose

The SKIP clause skips the specified number of records in the data file before loading.
You can specify this clause only when nonparallel access is being made to the data. If
there is more than one data file in the same location for the same table, then the SKIP
clause causes the ORACLE_LOADER driver to skip the specified number of records in the
first data file only.

15.3.19 FIELD NAMES
You can use the FIELD NAMES clause to specify field order. The syntax is as follows:

FIELD NAMES {FIRST FILE | FIRST IGNORE | ALL FILES | ALL IGNORE| NONE}

The FIELD NAMES options are:

• FIRST FILE — Indicates that the first data file contains a list of field names for the
data in the first record. This list uses the same delimiter as the data in the data file.
This record is read and used to set up the mapping between the fields in the data
file and the columns in the target table. This record is skipped when the data is
processed. This can be useful if the order of the fields in the data file is different
from the order of the columns in the table, or if the number of fields in the data file
is different from the number of columns in the target table.

• FIRST IGNORE — Indicates that the first data file contains a list of field names for
the data in the first record, but that the information should be ignored. This record
is skipped when the data is processed, but is not used for setting up the fields.

• ALL FILES — Indicates that all data files contain the list of column names for the
data in the first record. The first record is skipped in each data file when the data is
processed. It is assumed that the list is the same in each data file. If that is not the
case, then the load terminates when a mismatch is found on a data file.

• ALL IGNORE — Indicates that all data files contain a list of field names for the data
in the first record, but that the information should be ignored. This record is

Chapter 15
record_format_info Clause

15-23

skipped when the data is processed in every data file, but it is not used for setting
up the fields.

• NONE — Indicates that the data file contains normal data in the first record. This is
the default option.

15.3.20 READSIZE
The READSIZE parameter specifies the size of the read buffer used to process records.

The size of the read buffer must be at least as big as the largest input record the
access driver will encounter. The size is specified with an integer indicating the
number of bytes. The default value is 512 KB (524288 bytes). You must specify a
larger value if any of the records in the data file are larger than 512 KB. There is no
limit on how large READSIZE can be, but practically, it is limited by the largest amount of
memory that can be allocated by the access driver.

The amount of memory available for allocation is another limit because additional
buffers might be allocated. The additional buffer is used to correctly complete the
processing of any records that may have been split (either in the data; at the delimiter;
or if multi character/byte delimiters are used, in the delimiter itself).

15.3.21 DATE_CACHE
By default, the date cache feature is enabled (for 1000 elements). To completely
disable the date cache feature, set it to 0.

DATE_CACHE specifies the date cache size (in entries). For example, DATE_CACHE=5000
specifies that each date cache created can contain a maximum of 5000 unique date
entries. Every table has its own date cache, if one is needed. A date cache is created
only if at least one date or timestamp value is loaded that requires data type
conversion in order to be stored in the table.

The date cache feature is enabled by default. The default date cache size is 1000
elements. If the default size is used and the number of unique input values loaded
exceeds 1000, then the date cache feature is automatically disabled for that table.
However, if you override the default and specify a nonzero date cache size and that
size is exceeded, then the cache is not disabled.

You can use the date cache statistics (entries, hits, and misses) contained in the log
file to tune the size of the cache for future similar loads.

See Also:

Specifying a Value for the Date Cache

15.3.22 string
A string is a quoted series of characters or hexadecimal digits.

If it is a series of characters, then those characters will be converted into the character
set of the data file. If it is a series of hexadecimal digits, then there must be an even
number of hexadecimal digits. The hexadecimal digits are converted into their binary

Chapter 15
record_format_info Clause

15-24

translation, and the translation is treated as a character string in the character set of
the data file. This means that once the hexadecimal digits have been converted into
their binary translation, there is no other character set translation that occurs. The
syntax for a string is as follows:

" text "

’ text ’

X

0X

" hex digit hex digit "

’ hex digit hex digit ’

15.3.23 condition_spec
The condition_spec specifies one or more conditions that are joined by Boolean
operators.

This clause is an expression that evaluates to either true or false. The conditions and
Boolean operators are evaluated from left to right. (Boolean operators are applied after
the conditions are evaluated.) To override the default order of evaluation of Boolean
operators, you can use parentheses. The evaluation of condition_spec clauses slows
record processing, so these clauses should be used sparingly. The syntax for
condition_spec is as follows:

condition

condition_spec
AND

OR
condition_spec

(

condition

condition_spec
AND

OR
condition_spec

)

Note that if the condition specification contains any conditions that reference field
names, then the condition specifications are evaluated only after all fields have been
found in the record, and after blank trimming has been done. It is not useful to
compare a field to BLANKS if blanks have been trimmed from the field.

The following are some examples of using condition_spec:

empid = BLANKS OR last_name = BLANKS
(dept_id = SPORTING GOODS OR dept_id = SHOES) AND total_sales != 0

See Also:

condition

Chapter 15
record_format_info Clause

15-25

15.3.24 [directory object name:] [filename]
The [directory object name:] [filename] clause is used to specify the name of an
output file (BADFILE, DISCARDFILE, or LOGFILE).

Syntax

[directory object name:] [filename]

• directory object name: The alias for the operating system directory on the
database server for reading and writing files.

• filename: The name of the file that you want to create in the directory object.

To help make file names unique in parallel loads, the access driver does some symbol
substitution. The symbol substitutions supported for the Linux, Unix, and Microsoft
Windows operating systems are as follows (other platforms can have different
symbols):

• %p is replaced by the process ID of the current process.

For example, if the process ID of the access driver is 12345, then a filename
specified as exttab_%p.log becomes exttab_12345.log.

• %a is replaced by the agent number of the current process. The agent number is
the unique number assigned to each parallel process accessing the external table.
This number is padded to the left with zeros to fill three characters.

For example, if the third parallel agent is creating a file and you specify bad_data_
%a.bad as the file name, then the agent creates a file named bad_data_003.bad.

• %% is replaced by %. If there is a need to have a percent sign in the file name, then
this symbol substitution is used.

If the % character is encountered followed by anything other than one of the
preceding characters, then an error is returned.

Purpose

Specifies the name of an output file (BADFILE, DISCARDFILE, or LOGFILE).

Usage Notes

To use this clause, you must supply either a directory object name or file name, or
both. The directory object name is the name of a directory object where the user
accessing the external table has privileges to write. If the directory object name is
omitted, then the value specified for the DEFAULT DIRECTORY clause in the CREATE
TABLE...ORGANIZATION EXTERNAL statement is used.

If %p or %a is not used to create unique file names for output files, and an external table
is being accessed in parallel, then it is possible that output files can be corrupted, or
that agents may be unable to write to the files.

If you do not specify BADFILE (or DISCARDFILE or LOGFILE), then the SQL_LOADER
access driver uses the name of the table, followed by _%p as the name of the file. If no
extension is supplied for the file, then a default extension is used. For bad files, the
default extension is .bad; for discard files, the default is .dsc; and for log files, the
default is .log.

Chapter 15
record_format_info Clause

15-26

15.3.25 condition
To compare a range of bytes or a field from the record against a constant string, you
can use the ORACLE_LOADER condition clause

Purpose

Compares a range of bytes or a field from the record against a constant string. The
source of the comparison can be either a field in the record, or a byte range in the
record. The comparison is done on a byte-by-byte basis. If a string is specified as the
target of the comparison, then it is translated into the character set of the data file. If
the field has a noncharacter data type, then no data type conversion is performed on
either the field value, or the string.

Syntax

• range start : range end
The (range start:range end) clause of condition describes a range of bytes or
characters in the record, which you want to use for a condition.

15.3.25.1 range start : range end
The (range start:range end) clause of condition describes a range of bytes or
characters in the record, which you want to use for a condition.

Purpose

Describes a range of bytes or characters in the record that you want to want to use to
create a condition.

Syntax

(range start:range end)

• range start: The starting byte or character offsets into the record.

• range end: The ending byte or character offsets into the record.

Usage Notes

The value that you enter for the STRING SIZES ARE clause determines whether the
range refers to bytes, or refers to characters.

The value that you provide for range start must be less than or equal to the value for
range end. Finding ranges of characters is faster for data in fixed-width character sets
than it is for data in varying-width character sets. If the range refers to parts of the

Chapter 15
record_format_info Clause

15-27

record that do not exist, then the record is rejected when an attempt is made to
reference the range. The range start:range end clause must be enclosed in
parentheses. For example: (10:13).

Note:

In your data file, Oracle recommends that you do not mix binary data
(including data types with binary counts, such as VARCHAR) and character
data that is in a varying-width character set, or more than one byte wide.
When binary and character data with these characteristics are mixed, it is
possible that the access driver may not find the correct start for the field,
because it treats the binary data as character data when trying to find the
start.

The following is an example of using condition with a range clause:

LOAD WHEN empid != BLANKS
LOAD WHEN (10:13) = 0x'00000830'
LOAD WHEN PRODUCT_COUNT = "MISSING"

15.3.26 IO_OPTIONS clause
To specify whether the operating system uses direct input/output to read data files
from disk, or uses a cache for reading the data files, use the ORACLE_LOADER records
clause IO_OPTIONS.

Default

If not otherwise specified, then the default IO_OPTIONS setting is DIRECTIO.

Purpose

Enables you to specify the input and output (I/O) options that the operating system
uses for reading the data files, either by reading files directly from storage, or by
reading data files from cache. The only options available for specification are DIRECTIO
(the default), and NODIRECTIO.

Syntax

io_options (directio|nodirectio)

Usage Notes

When set to DIRECTIO, an attempt is made to open the data file and read it directly
from storage. If successful, then the operating system and NFS server (if the file is on
an NFS server) do not cache the data read from the file. Accessing data without
cacheing it can improve the read performance for the data file, especially if the file is
large. If direct I/O is not supported for the data file being read, then the file is opened
and read, but the DIRECTIO option is ignored.

Chapter 15
record_format_info Clause

15-28

If the IO_OPTIONS clause is specified with the NODIRECTIO option, then direct I/O is not
used to read the data files, and instead Oracle Database reads files from the operating
system cache.

If the IO_OPTIONS clause is not specified at all, then the default DIRECTIO option is
used.

The following is an example of specifying that the operating system should use direct
input/output writes to storage:

(
records delimited by newline io_options (directio)
logfile
.
.
.)

Related Topics

• When to Separate Files

15.3.27 DNFS_DISABLE | DNFS_ENABLE
To disable and enable use of the Direct NFS Client on input data files during an
external tables operation, use DNFS_DISABLE or DNFS_ENABLE.

Purpose

Use these parameters to enable and disable use of the Direct NFS Client on input data
files during an external tables operation.

Usage Notes

The Direct NFS Client is an API that can be implemented by file servers to enable
improved performance when Oracle Database accesses files on those servers.

By default, external tables use the Direct NFS Client interfaces when they read data
files over 1 gigabyte in size. For smaller files, the operating system I/O interfaces are
used. To use the Direct NFS Client on all input data files, specify DNFS_ENABLE.

To disable use of the Direct NFS Client for all data files, specify DNFS_DISABLE.

15.3.28 DNFS_READBUFFERS
The DNFS_READBUFFERS parameter of the record_format_info clause is used to
control the number of read buffers used by the Direct NFS Client.

Default

The default value for DNFS_READBUFFERS is 4.

Purpose

Controls the number of read buffers used by the Direct NFS Client.

The Direct NFS Client is an API that can be implemented by file servers to allow
improved performance when Oracle accesses files on those servers.

Chapter 15
record_format_info Clause

15-29

Usage Notes

It is possible that using larger values for DNFS_READBUFFERS can compensate for
inconsistent input and output from the Direct NFS Client file server. However, using
larger values can result in increased memory usage.

15.4 field_definitions Clause
Learn how to name the fields in the data file and specify how to find them in records
using the field_definitions clause.

• Overview of field_definitions Clause
In the field_definitions clause, you use the FIELDS parameter to name the
fields in the data file, and specify how to find fields in records.

• delim_spec
The delim_spec clause is used to find the end (and if ENCLOSED BY is specified, the
start) of a field.

• trim_spec
The trim_spec clause is used to specify that spaces should be trimmed from the
beginning of a text field, the end of a text field, or both.

• MISSING FIELD VALUES ARE NULL
The effect of MISSING FIELD VALUES ARE NULL depends on whether POSITION is
used to explicitly state field positions.

• field_list

• pos_spec Clause
The ORACLE_LOADER pos_spec clause indicates the position of the column within
the record.

• datatype_spec Clause
The ORACLE_LOADER datatype_spec clause describes the data type of a field in the
data file if the data type is different than the default.

• init_spec Clause

• LLS Clause

15.4.1 Overview of field_definitions Clause
In the field_definitions clause, you use the FIELDS parameter to name the fields in
the data file, and specify how to find fields in records.

Default

If the field_definitions clause is omitted, then the following is assumed:

• The fields are delimited by ','

• The fields are of data type CHAR

• The maximum length of the field is 255

• The order of the fields in the data file is the order in which the fields were defined
in the external table

Chapter 15
field_definitions Clause

15-30

• No blanks are trimmed from the field

Syntax

The syntax for the field_definitions clause is as follows:

FIELDS

IGNORE_CHARS_AFTER_EOR

CSV

WITH

WITHOUT
EMBEDDED

delim_spec

trim_spec

ALL FIELDS OVERRIDE THESE FIELDS

MISSING FIELD VALUES ARE NULL

REJECT ROWS WITH ALL NULL FIELDS

DATE_FORMAT

DATE

TIMESTAMP

MASK string

NULLIF

NONULLIF

field_list

Example 15-1 External Table Created Without Access Parameters (Default)

In this example, an external table is created without any access parameters. It is
followed by a sample data file, info.dat, that can be used to load the table.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir LOCATION
('info.dat'));

Alvin,Tolliver,1976
Kenneth,Baer,1963

Parameters to Specify Fields with field_definition

The sections that follow provide an overview of the field definitions that you can
specify with the field_definition clause, and some examples of how to use these
clauses.

IGNORE_CHARS_AFTER_EOR

This optional parameter specifies that if extraneous characters are found after the last
end-of-record, but before the end of the file that do not satisfy the record definition,
then they are ignored.

Error messages are written to the external tables log file if all four of the following
conditions apply:

• The IGNORE_CHARS_AFTER_EOR parameter is set, or the field allows free formatting.
(Free formatting means either that the field is variable length, or the field is
specified by a delimiter or enclosure characters, and is also variable length).

Chapter 15
field_definitions Clause

15-31

• Characters remain after the last end-of-record in the file.

• The access parameter MISSING FIELD VALUES ARE NULL is not set.

• The field does not have absolute positioning.

The error messages that are written to the external tables log file are as follows:

KUP-04021: field formatting error for field Col1
KUP-04023: field start is after end of record
KUP-04101: record 2 rejected in file /home/oracle/datafiles/example.dat

CSV

To direct external tables to access the data files as comma-separated-values format
files, use the FIELDS CSV clause. To use this clause, the file should be a stream record
format file with the normal carriage return string (for example, \n on Unix or Linux
operating systems, and either \n or \r\n on Microsoft Windows operating systems).
Record terminators can be included (embedded) in data values. The syntax for the
FIELDS CSV clause is as follows:

FIELDS CSV [WITH EMBEDDED | WITHOUT EMBEDDED] [TERMINATED BY ',']
[OPTIONALLY ENCLOSED BY '"']

When using the FIELDS CSV clause, note the following:

• The default is to not use the FIELDS CSV clause.

• The WITH EMBEDDED and WITHOUT EMBEDDED options specify whether record
terminators are included (embedded) in the data. The WITH EMBEDDED option is the
default.

• If WITH EMBEDDED is used, then embedded record terminators must be enclosed,
and intra-datafile parallelism is disabled for external table loads.

• The TERMINATED BY ',' and OPTIONALLY ENCLOSED BY '"' options are the
defaults. They do not have to be specified. You can override them with different
termination and enclosure characters.

• When the CSV clause is used, a delimiter specification is not allowed at the field
level and only delimitable data types are allowed. Delimitable data types include
CHAR, datetime, interval, and numeric EXTERNAL.

• The TERMINATED BY and ENCLOSED BY clauses cannot be used at the field level
when the CSV clause is specified.

• When the CSV clause is specified, the default trimming behavior is LDRTRIM. You
can override this default by specifying one of the other external table trim options
(NOTRIM, LRTRIM, LTRIM, or RTRIM).

• The CSV clause must be specified after the IGNORE_CHARS_AFTER_EOR clause, and
before the delim_spec clause.

delim_spec Clause

The delim_spec clause is used to identify how all fields are terminated in the record.
The delim_spec specified for all fields can be overridden for a particular field as part of
the field_list clause. For a full description of the syntax, refer to the delim_spec
clause description.

Chapter 15
field_definitions Clause

15-32

trim_spec Clause

The trim_spec clause specifies the type of whitespace trimming to be performed by
default on all character fields. The trim_spec clause specified for all fields can be
overridden for individual fields by specifying a trim_spec clause for those fields. For a
full description of the syntax, refer to the trim_spec clause description.

ALL FIELDS OVERRIDE

The ALL FIELDS OVERRIDE clause specifies to the access driver that all fields are
present, and that they are in the same order as the columns in the external table. You
only need to specify fields that have a special definition. This clause must be specified
after the optional trim_spec clause, and before the optional MISSING FIELD VALUES
ARE NULL clause.

The following is a sample use of the ALL FIELDS OVERRIDE clause. The only field in
this example that requires specification is HIREDATE, which requires data format mask.
All the other fields take default values.

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
ALL FIELDS OVERRIDE
REJECT ROWS WITH ALL NULL FIELDS
(
 HIREDATE CHAR(20) DATE_FORMAT DATE MASK "DD-Month-YYYY"
)

MISSING FIELD VALUES ARE NULL

MISSING FIELD VALUES ARE NULL sets to null any fields for which position is not
explicitly stated and there is not enough data to fill them. For a full description the
description for MISSING FIELD VALUES ARE NULL.

REJECT ROWS WITH ALL NULL FIELDS

REJECT ROWS WITH ALL NULL FIELDS indicates that a row will not be loaded into the
external table if all referenced fields in the row are null. If this parameter is not
specified, then the default value is to accept rows with all null fields. The setting of this
parameter is written to the log file either as "reject rows with all null fields" or as "rows
with all null fields are accepted."

DATE_FORMAT

The DATE_FORMAT clause enables you to specify a datetime format mask once at the
fields level, and then have that format apply to all fields of that type that do not have
their own mask specified. The datetime format mask must be specified after the
optional REJECT ROWS WITH ALL NULL FIELDS clause, and before the fields_list
clause.

The DATE_FORMAT can be specified for the following datetime types:

• DATE

• TIME

• TIME

• WITH TIME ZONE

Chapter 15
field_definitions Clause

15-33

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

The following example shows a sample use of the DATE_FORMAT clause that applies a
date mask of DD-Month-YYYY to any DATE type fields:

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
REJECT ROWS WITH ALL NULL FIELDS
DATE_FORMAT DATE MASK "DD-Month-YYYY"

 (
 EMPNO,
 ENAME,
 JOB,
 MGR,
 HIREDATE CHAR(20),
 SAL,
 COMM,
 DEPTNO,
 PROJNO,
 ENTRYDATE CHAR(20)
)

NULLIF | NO NULLIF

The NULLIF clause applies to all character fields (for example, CHAR, VARCHAR,
VARCHARC, external NUMBER, and datetime).

The syntax is as follows:

NULLIF {=|!=}{"char_string"|x'hex_string'|BLANKS}

If there is a match using the equal or not equal specification for a field, then the field is
set to NULL for that row.

The char_string and hex_string must be enclosed in single- or double-quotation
marks.

If a NULLIF specification is specified at the field level, then it overrides this NULLIF
clause.

If there is a field to which you do not want the NULLIF clause to apply, then you can
specify NO NULLIF at the field level.

The NULLIF clause must be specified after the optional REJECT ROWS WITH ALL NULL
FIELDS clause and before the fields_list clause.

The following is an example of using the NULLIF clause in which you specify a field to
which you do not want the NULLIF clause to apply. The MGR field is set to NO NULLIF,
which means that the NULLIF="NONE" clause does not apply to that field.

FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
REJECT ROWS WITH ALL NULL FIELDS
NULLIF = "NONE"
(

Chapter 15
field_definitions Clause

15-34

 EMPNO,
 ENAME,
 JOB,
 MGR
)

field_list Clause

The field_list clause identifies the fields in the data file and their data types. For a
full description of the syntax, see the description of the field_list clause.

15.4.2 delim_spec
The delim_spec clause is used to find the end (and if ENCLOSED BY is specified, the
start) of a field.

Syntax

ENCLOSED BY string

AND string

TERMINATED BY
string

WHITESPACE

OPTIONALLY

ENCLOSED BY string

AND string

Usage Notes

If you specify ENCLOSED BY, then the ORACLE_LOADER access driver starts at the current
position in the record, and skips over all whitespace looking for the first delimiter. All
whitespace between the current position and the first delimiter is ignored. Next, the
access driver looks for the second enclosure delimiter (or looks for the first one again if
a second one is not specified). Everything between those two delimiters is considered
part of the field.

If TERMINATED BY string is specified with the ENCLOSED BY clause, then the terminator
string must immediately follow the second enclosure delimiter. Any whitespace
between the second enclosure delimiter and the terminating delimiter is skipped. If
anything other than whitespace is found between the two delimiters, then the row is
rejected for being incorrectly formatted.

If TERMINATED BY is specified without the ENCLOSED BY clause, then everything
between the current position in the record and the next occurrence of the termination
string is considered part of the field.

If OPTIONALLY is specified, then TERMINATED BY must also be specified. The
OPTIONALLY parameter means the ENCLOSED BY delimiters can either both be present
or both be absent. The terminating delimiter must be present, regardless of whether
the ENCLOSED BY delimiters are present. If OPTIONALLY is specified, then the access
driver skips over all whitespace, looking for the first non-blank character. After the first
non-blank character is found, the access driver checks to see if the current position
contains the first enclosure delimiter. If it does, then the access driver finds the second
enclosure string. Everything between the first and second enclosure delimiters is
considered part of the field. The terminating delimiter must immediately follow the
second enclosure delimiter (with optional whitespace allowed between the second
enclosure delimiter and the terminating delimiter). If the first enclosure string is not

Chapter 15
field_definitions Clause

15-35

found at the first non-blank character, then the access driver looks for the terminating
delimiter. In this case, leading blanks are trimmed.

After the delimiters have been found, the current position in the record is set to the
spot after the last delimiter for the field. If TERMINATED BY WHITESPACE was specified,
then the current position in the record is set to after all whitespace following the field.

To find out more about the access driver's default trimming behavior, refer to
"Trimming Whitespace." You can override this behavior by using with LTRIM and
RTRIM.

A missing terminator for the last field in the record is not an error. The access driver
proceeds as if the terminator was found. It is an error if the second enclosure delimiter
is missing.

The string used for the second enclosure can be included in the data field by including
the second enclosure twice. For example, if a field is enclosed by single quotation
marks, then it could contain a single quotation mark by specifying two single quotation
marks in a row, as shown in the word don't in the following example:

'I don''t like green eggs and ham'

There is no way to quote a terminator string in the field data without using enclosing
delimiters. Because the field parser does not look for the terminating delimiter until
after it has found the enclosing delimiters, the field can contain the terminating
delimiter.

In general, specifying single characters for the strings is faster than multiple
characters. Also, searching data in fixed-width character sets is usually faster than
searching data in varying-width character sets.

Note:

The use of the backslash character (\) within strings is not supported in
external tables.

• Example: External Table with Terminating Delimiters

• Example: External Table with Enclosure and Terminator Delimiters

• Example: External Table with Optional Enclosure Delimiters

Related Topics

• Trimming Whitespace
Blanks, tabs, and other nonprinting characters (such as carriage returns and line
feeds) constitute whitespace.

15.4.2.1 Example: External Table with Terminating Delimiters
The following is an example of an external table that uses terminating delimiters. It is
followed by a sample of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY WHITESPACE)

Chapter 15
field_definitions Clause

15-36

 LOCATION ('info.dat'));

Alvin Tolliver 1976
Kenneth Baer 1963
Mary Dube 1973

15.4.2.2 Example: External Table with Enclosure and Terminator Delimiters
The following is an example of an external table that uses both enclosure and
terminator delimiters. Remember that all whitespace between a terminating string and
the first enclosure string is ignored, as is all whitespace between a second enclosing
delimiter and the terminator. The example is followed by a sample of the data file that
can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY "," ENCLOSED BY "(" AND ")")
 LOCATION ('info.dat'));

(Alvin) , (Tolliver),(1976)
(Kenneth), (Baer) ,(1963)
(Mary),(Dube) , (1973)

15.4.2.3 Example: External Table with Optional Enclosure Delimiters
The following is an example of an external table that uses optional enclosure
delimiters. Note that LRTRIM is used to trim leading and trailing blanks from fields. The
example is followed by a sample of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ','
 OPTIONALLY ENCLOSED BY '(' and ')'
 LRTRIM)
 LOCATION ('info.dat'));

Alvin , Tolliver , 1976
(Kenneth), (Baer), (1963)
(Mary), Dube , (1973)

15.4.3 trim_spec
The trim_spec clause is used to specify that spaces should be trimmed from the
beginning of a text field, the end of a text field, or both.

Description

Directs the ORACLE_LOADER access driver to trim spaces from the beginning of a text
field, the end of a text field, or both. Spaces include blanks and other non-printing
characters, such as tabs, line feeds, and carriage returns.

Default

The default is LDRTRIM. Specifying NOTRIM yields the fastest performance.

Chapter 15
field_definitions Clause

15-37

Syntax

LRTRIM

NOTRIM

LTRIM

RTRIM

LDRTRIM

Options

• NOTRIM Indicates that you want no characters trimmed from the field.

• LRTRIM Indicates that you want both leading and trailing spaces trimmed.

• LTRIM Indicates that you want leading spaces trimmed.

• RTRIM Indicates that you want trailing spaces trimmed.

• LDRTRIM Provides compatibility with SQL*Loader trim features. It is the same as
NOTRIM except in the following cases:

– If the field is not a delimited field, then spaces will be trimmed from the right.

– If the field is a delimited field with OPTIONALLY ENCLOSED BY specified, and the
optional enclosures are missing for a particular instance, then spaces are
trimmed from the left.

Usage Notes

The trim_spec clause can be specified before the field list to set the default trimming
for all fields. If trim_spec is omitted before the field list, then LDRTRIM is the default trim
setting. The default trimming can be overridden for an individual field as part of the
datatype_spec.

If trimming is specified for a field that is all spaces, then the field will be set to NULL.

In the following example, all data is fixed-length; however, the character data will not
be loaded with leading spaces. The example is followed by a sample of the data file
that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20),
year_of_birth CHAR(4))
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS LTRIM)
 LOCATION ('info.dat'));

Alvin, Tolliver,1976
Kenneth, Baer, 1963
Mary, Dube, 1973

Chapter 15
field_definitions Clause

15-38

15.4.4 MISSING FIELD VALUES ARE NULL
The effect of MISSING FIELD VALUES ARE NULL depends on whether POSITION is used
to explicitly state field positions.

For example:

• The default behavior is that if field position is not explicitly stated and there is not
enough data in a record for all fields, then the record is rejected. You can override
this behavior by using MISSING FIELD VALUES ARE NULL to define as NULL any
fields for which there is no data available.

• If field position is explicitly stated, then fields for which there are no values are
always defined as NULL, regardless of whether MISSING FIELD VALUES ARE NULL
is used.

In the following example, the second record is stored with a NULL set for the
year_of_birth column, even though the data for the year of birth is missing from the
data file. If the MISSING FIELD VALUES ARE NULL clause were omitted from the access
parameters, then the second row would be rejected because it did not have a value for
the year_of_birth column. The example is followed by a sample of the data file that
can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS (FIELDS TERMINATED BY ","
 MISSING FIELD VALUES ARE NULL)
 LOCATION ('info.dat'));

Alvin,Tolliver,1976
Baer,Kenneth
Mary,Dube,1973

15.4.5 field_list
The field_list clause identifies the fields in the data file and their data types.
Evaluation criteria for the field_list clause are as follows:

• If no data type is specified for a field, then it is assumed to be CHAR(1) for a
nondelimited field, and CHAR(255)for a delimited field.

• If no field list is specified, then the fields in the data file are assumed to be in the
same order as the fields in the external table. The data type for all fields is
CHAR(255) unless the column in the database is CHAR or VARCHAR. If the column in
the database is CHAR or VARCHAR, then the data type for the field is still CHAR but the
length is either 255 or the length of the column, whichever is greater.

• If no field list is specified and no delim_spec clause is specified, then the fields in
the data file are assumed to be in the same order as fields in the external table. All
fields are assumed to be CHAR(255) and terminated by a comma.

This example shows the definition for an external table with no field_list and a
delim_spec. It is followed by a sample of the data file that can be used to load it.

CREATE TABLE emp_load (first_name CHAR(15), last_name CHAR(20), year_of_birth INT)
 ORGANIZATION EXTERNAL (TYPE ORACLE_LOADER DEFAULT DIRECTORY ext_tab_dir

Chapter 15
field_definitions Clause

15-39

 ACCESS PARAMETERS (FIELDS TERMINATED BY "|")
 LOCATION ('info.dat'));

Alvin|Tolliver|1976
Kenneth|Baer|1963
Mary|Dube|1973

The syntax for the field_list clause is as follows:

(field_name

pos_spec datatype_spec init_spec LLS_clause

,

)

field_name

The field_name is a string identifying the name of a field in the data file. If the string is
not within quotation marks, then the name is uppercased when matching field names
with column names in the external table.

If field_name matches the name of a column in the external table that is referenced in
the query, then the field value is used for the value of that external table column. If the
name does not match any referenced name in the external table, then the field is not
loaded but can be used for clause evaluation (for example WHEN or NULLIF).

pos_spec

The pos_spec clause indicates the position of the column within the record. For a full
description of the syntax, see pos_spec Clause.

datatype_spec

The datatype_spec clause indicates the data type of the field. If datatype_spec is
omitted, then the access driver assumes the data type is CHAR(255). For a full
description of the syntax, see datatype_spec Clause.

init_spec

The init_spec clause indicates when a field is NULL or has a default value. For a full
description of the syntax, see init_spec Clause.

LLS Clause

When LLS is specified for a field, ORACLE_LOADER does not load the value of the field
into the corresponding column. Instead, it use the information in the value to determine
where to find the value of the field. See LLS Clause.

15.4.6 pos_spec Clause
The ORACLE_LOADER pos_spec clause indicates the position of the column within the
record.

The setting of the STRING SIZES ARE IN clause determines whether pos_spec refers to
byte positions or character positions. Using character positions with varying-width
character sets takes significantly longer than using character positions with fixed-width
character sets. Binary and multibyte character data should not be present in the same

Chapter 15
field_definitions Clause

15-40

data file when pos_spec is used for character positions. If they are, then the results are
unpredictable.

• pos_spec Clause Syntax
The syntax for the ORACLE_LOADER pos_spec clause is as follows.

• start
The pos_spec clause start parameter indicates the number of bytes or characters
from the beginning of the record to where the field begins.

• *
The pos_spec clause * parameter indicates that the field begins at the first byte or
character after the end of the previous field.

• increment
The pos_spec clause increment parameter positions the start of the field is a fixed
number of bytes or characters from the end of the previous field.

• end
The pos_spec clause end parameter indicates the absolute byte or character offset
into the record for the last byte of the field.

• length
The pos_spec clause length parameter value indicates that the end of the field is
a fixed number of bytes or characters from the start.

15.4.6.1 pos_spec Clause Syntax
The syntax for the ORACLE_LOADER pos_spec clause is as follows.

POSITION

(

start

*

+

–
increment

:

–

end

length
)

15.4.6.2 start
The pos_spec clause start parameter indicates the number of bytes or characters
from the beginning of the record to where the field begins.

The start parameter enables you to position the start of the field at an absolute spot
in the record, rather than relative to the position of the previous field.

15.4.6.3 *
The pos_spec clause * parameter indicates that the field begins at the first byte or
character after the end of the previous field.

The * parameter is useful if you have a varying-length field followed by a fixed-length
field. This option cannot be used for the first field in the record.

Chapter 15
field_definitions Clause

15-41

15.4.6.4 increment
The pos_spec clause increment parameter positions the start of the field is a fixed
number of bytes or characters from the end of the previous field.

The increment parameter positions the start of the field at a fixed number of bytes or
characters from the end of the previous field. Use *-increment to indicate that the
start of the field starts before the current position in the record (this is a costly
operation for multibyte character sets). Use *+increment to move the start after the
current position.

15.4.6.5 end
The pos_spec clause end parameter indicates the absolute byte or character offset into
the record for the last byte of the field.

Use the end parameter to set the absolute byte or character offset into the record for
the last byte of the field. If start is specified along with end, then end cannot be less
than start. If * or increment is specified along with end, and the start evaluates to
an offset larger than the end for a particular record, then that record will be rejected.

15.4.6.6 length
The pos_spec clause length parameter value indicates that the end of the field is a
fixed number of bytes or characters from the start.

Use the length parameter when you want to set fixed-length fields when the start is
specified with *. The following example shows various ways of using pos_spec. It is
followed by an example of a data file that you can use to load it.

CREATE TABLE emp_load (first_name CHAR(15),
 last_name CHAR(20),
 year_of_birth INT,
 phone CHAR(12),
 area_code CHAR(3),
 exchange CHAR(3),
 extension CHAR(4))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS RTRIM
 (first_name (1:15) CHAR(15),
 last_name (*:+20),
 year_of_birth (36:39),
 phone (40:52),
 area_code (*-12: +3),
 exchange (*+1: +3),
 extension (*+1: +4)))
 LOCATION ('info.dat'));

Alvin Tolliver 1976415-922-1982

Chapter 15
field_definitions Clause

15-42

Kenneth Baer 1963212-341-7912
Mary Dube 1973309-672-2341

15.4.7 datatype_spec Clause
The ORACLE_LOADER datatype_spec clause describes the data type of a field in the
data file if the data type is different than the default.

The data type of the field can be different than the data type of a corresponding
column in the external table. The access driver handles the necessary conversions.

• datatype_spec Clause Syntax
The syntax for the ORACLE_LOADER datatype_spec clause is as follows:

• [UNSIGNED] INTEGER [EXTERNAL] [(len)]
The datatype_spec clause [UNSIGNED] INTEGER [EXTERNAL] [(len)] defines a
field as an integer.

• DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
The DECIMAL clause is used to indicate that the field is a packed decimal number.
The ZONED clause is used to indicate that the field is a zoned decimal number.

• ORACLE_DATE
ORACLE_DATE is a field containing a date in the Oracle binary date format.

• ORACLE_NUMBER
ORACLE_NUMBER is a field containing a number in the Oracle number format.

• Floating-Point Numbers
The following four data types, DOUBLE, FLOAT, BINARY_DOUBLE, and BINARY_FLOAT
are floating-point numbers.

• DOUBLE
The DOUBLE clause indicates that the field is the same format as the C language
DOUBLE data type on the platform where the access driver is executing.

• FLOAT [EXTERNAL]
The FLOAT clause indicates that the field is the same format as the C language
FLOAT data type on the platform where the access driver is executing.

• BINARY_DOUBLE
The datatype_spec clause value BINARY_DOUBLE is a 64-bit, double-precision,
floating-point number data type.

• BINARY_FLOAT
The datatype_spec clause value BINARY_FLOAT is a 32-bit, single-precision,
floating-point number data type.

• RAW
The RAW clause is used to indicate that the source data is binary data.

• CHAR
The datatype_spec clause data type CHAR clause is used to indicate that a field is a
character data type.

• date_format_spec
The date_format_spec clause is used to indicate that a character string field
contains date data, time data, or both, in a specific format.

Chapter 15
field_definitions Clause

15-43

• VARCHAR and VARRAW
The datatype_spec clause VARCHAR data type defines character data, and the
VARRAW data type defines binary data.

• VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

15.4.7.1 datatype_spec Clause Syntax
The syntax for the ORACLE_LOADER datatype_spec clause is as follows:

UNSIGNED

INTEGER

EXTERNAL (len) delim_spec

DECIMAL

ZONED

EXTERNAL

(len) delim_spec

(precision

, scale

)

ORACLE_DATE

ORACLE_NUMBER

COUNTED

FLOAT

EXTERNAL (len) delim_spec

DOUBLE

BINARY_FLOAT

EXTERNAL (len) delim_spec

BINARY_DOUBLE

RAW

(len)

CHAR

(len) delim_spec trim_spec date_format_spec

VARCHAR

VARRAW

VARCHARC

VARRAWC

(

length_of_length ,

max_len)

If the number of bytes or characters in any field is 0, then the field is assumed to be
NULL. The optional DEFAULTIF clause specifies when the field is set to its default value.
Also, the optional NULLIF clause specifies other conditions for when the column
associated with the field is set to NULL. If the DEFAULTIF or NULLIF clause is TRUE, then
the actions of those clauses override whatever values are read from the data file.

Chapter 15
field_definitions Clause

15-44

Related Topics

• init_spec Clause

• Oracle Database SQL Language Reference

15.4.7.2 [UNSIGNED] INTEGER [EXTERNAL] [(len)]
The datatype_spec clause [UNSIGNED] INTEGER [EXTERNAL] [(len)] defines a field
as an integer.

This clause defines a field as an integer. If EXTERNAL is specified, then the number is a
character string. If EXTERNAL is not specified, then the number is a binary field. The
valid values for len in binary integer fields are 1, 2, 4, and 8. If len is omitted for binary
integers, then the default value is whatever the value of sizeof(int) is on the platform
where the access driver is running. Use of the DATA IS {BIG|LITTLE} ENDIAN clause
may cause the data to be byte-swapped before it is stored.

If EXTERNAL is specified, then the value of len is the number of bytes or characters in
the number (depending on the setting of the STRING SIZES ARE IN BYTES or
CHARACTERS clause). If no length is specified, then the default value is 255.

The default value of the [UNSIGNED] INTEGER [EXTERNAL] [(len)] data type is
determined as follows:

• If no length specified, then the default length is 1.

• If no length is specified and the field is delimited with a DELIMITED BY NEWLINE
clause, then the default length is 1.

• If no length is specified and the field is delimited with a DELIMITED BY clause, then
the default length is 255 (unless the delimiter is NEWLINE, as stated above).

15.4.7.3 DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
The DECIMAL clause is used to indicate that the field is a packed decimal number. The
ZONED clause is used to indicate that the field is a zoned decimal number.

The precision field indicates the number of digits in the number. The scale field is
used to specify the location of the decimal point in the number. It is the number of
digits to the right of the decimal point. If scale is omitted, then a value of 0 is assumed.

Note that there are different encoding formats of zoned decimal numbers depending
on whether the character set being used is EBCDIC-based or ASCII-based. If the
language of the source data is EBCDIC, then the zoned decimal numbers in that file
must match the EBCDIC encoding. If the language is ASCII-based, then the numbers
must match the ASCII encoding.

If the EXTERNAL parameter is specified, then the data field is a character string whose
length matches the precision of the field.

15.4.7.4 ORACLE_DATE
ORACLE_DATE is a field containing a date in the Oracle binary date format.

This is the format used by the DTYDAT data type in Oracle Call Interface (OCI)
programs. The field is a fixed length of 7.

Chapter 15
field_definitions Clause

15-45

15.4.7.5 ORACLE_NUMBER
ORACLE_NUMBER is a field containing a number in the Oracle number format.

The field is a fixed length (the maximum size of an Oracle number field) unless
COUNTED is specified, in which case the first byte of the field contains the number of
bytes in the rest of the field.

ORACLE_NUMBER is a fixed-length 22-byte field. The length of an ORACLE_NUMBER
COUNTED field is one for the count byte, plus the number of bytes specified in the count
byte.

15.4.7.6 Floating-Point Numbers
The following four data types, DOUBLE, FLOAT, BINARY_DOUBLE, and BINARY_FLOAT are
floating-point numbers.

The following four data types, DOUBLE, FLOAT, BINARY_DOUBLE, and BINARY_FLOAT are
floating-point numbers.

DOUBLE and FLOAT are the floating-point formats used natively on the platform in use.
They are the same data types used by default for the DOUBLE and FLOAT data types in a
C program on that platform. BINARY_FLOAT and BINARY_DOUBLE are floating-point
numbers that conform substantially with the Institute for Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard
754-1985. Because most platforms use the IEEE standard as their native floating-point
format, FLOAT and BINARY_FLOAT are the same on those platforms and DOUBLE and
BINARY_DOUBLE are also the same.

Note:

See Oracle Database SQL Language Reference for more information about
floating-point numbers

15.4.7.7 DOUBLE
The DOUBLE clause indicates that the field is the same format as the C language
DOUBLE data type on the platform where the access driver is executing.

Use of the DATA IS {BIG | LITTLE} ENDIAN clause may cause the data to be byte-
swapped before it is stored. This data type may not be portable between certain
platforms.

15.4.7.8 FLOAT [EXTERNAL]
The FLOAT clause indicates that the field is the same format as the C language FLOAT
data type on the platform where the access driver is executing.

The FLOAT clause indicates that the field is the same format as the C language FLOAT
data type on the platform where the access driver is executing. Use of the DATA IS
{BIG | LITTLE} ENDIAN clause may cause the data to be byte-swapped before it is
stored. This data type may not be portable between certain platforms.

Chapter 15
field_definitions Clause

15-46

If the EXTERNAL parameter is specified, then the field is a character string whose
maximum length is 255.

15.4.7.9 BINARY_DOUBLE
The datatype_spec clause value BINARY_DOUBLE is a 64-bit, double-precision, floating-
point number data type.

Each BINARY_DOUBLE value requires 9 bytes, including a length byte. See the
information in the note provided for the FLOAT data type for more details about floating-
point numbers.

15.4.7.10 BINARY_FLOAT
The datatype_spec clause value BINARY_FLOAT is a 32-bit, single-precision, floating-
point number data type.

Each BINARY_FLOAT value requires 5 bytes, including a length byte. See the
information in the note provided for the FLOAT data type for more details about floating-
point numbers.

15.4.7.11 RAW
The RAW clause is used to indicate that the source data is binary data.

The len for RAW fields is always in number of bytes. When a RAW field is loaded in a
character column, the data that is written into the column is the hexadecimal
representation of the bytes in the RAW field.

15.4.7.12 CHAR
The datatype_spec clause data type CHAR clause is used to indicate that a field is a
character data type.

The length (len) for CHAR fields specifies the largest number of bytes or characters in
the field. The len is in bytes or characters, depending on the setting of the STRING
SIZES ARE IN clause.

If no length is specified for a field of data type CHAR, then the size of the field is
assumed to be 1, unless the field is delimited:

• For a delimited CHAR field, if a length is specified, then that length is used as a
maximum.

• For a delimited CHAR field for which no length is specified, the default is 255 bytes.

• For a delimited CHAR field that is greater than 255 bytes, you must specify a
maximum length. Otherwise, you receive an error stating that the field in the data
file exceeds maximum length.

The following example shows the use of the CHAR clause.

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),

Chapter 15
field_definitions Clause

15-47

 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE)
 8 ORGANIZATION EXTERNAL
 9 (TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY def_dir1
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 FIELDS (employee_number CHAR(2),
 14 employee_dob CHAR(20),
 15 employee_last_name CHAR(18),
 16 employee_first_name CHAR(11),
 17 employee_middle_name CHAR(11),
 18 employee_hire_date CHAR(10) date_format DATE mask
"mm/dd/yyyy"
 19)
 20)
 21 LOCATION ('info.dat')
 22);

Table created.

15.4.7.13 date_format_spec
The date_format_spec clause is used to indicate that a character string field contains
date data, time data, or both, in a specific format.

This information is used only when a character field is converted to a date or time data
type and only when a character string field is mapped into a date column.

The syntax for the date_format_spec clause is as follows:

DATE_FORMAT

DATE

TIMESTAMP

WITH

LOCAL

TIME ZONE

MASK " date/time mask "

INTERVAL

YEAR_TO_MONTH

DAY_TO_SECOND

For detailed information about the correct way to specify date and time formats, see
Oracle Database SQL Reference.

• DATE
The DATE clause indicates that the string contains a date.

• MASK
The MASK clause is used to override the default globalization format mask for the
data type.

• TIMESTAMP
The TIMESTAMP clause indicates that a field contains a formatted timestamp.

• INTERVAL
The INTERVAL clause indicates that a field contains a formatted interval.

Chapter 15
field_definitions Clause

15-48

Related Topics

• Oracle Database SQL Language Reference

15.4.7.13.1 DATE
The DATE clause indicates that the string contains a date.

15.4.7.13.2 MASK
The MASK clause is used to override the default globalization format mask for the data
type.

If a date mask is not specified, then the settings of NLS parameters for the database
(not the session settings) for the appropriate globalization parameter for the data type
are used. The NLS_DATABASE_PARAMETERS view shows these settings.

• NLS_DATE_FORMAT for DATE data types

• NLS_TIMESTAMP_FORMAT for TIMESTAMP data types

• NLS_TIMESTAMP_TZ_FORMAT for TIMESTAMP WITH TIME ZONE data types

Note the following:

• The database setting for the NLS_NUMERIC_CHARACTERS initialization parameter
(that is, from the NLS_DATABASE_PARAMETERS view) governs the decimal separator
for implicit conversion from character to numeric data types.

• A group separator is not allowed in the default format.

15.4.7.13.3 TIMESTAMP
The TIMESTAMP clause indicates that a field contains a formatted timestamp.

15.4.7.13.4 INTERVAL
The INTERVAL clause indicates that a field contains a formatted interval.

The INTERVAL clause indicates that a field contains a formatted interval. The type of
interval can be either YEAR TO MONTH or DAY TO SECOND.

The following example shows a sample use of a complex DATE character string and a
TIMESTAMP character string. It is followed by a sample of the data file that can be used
to load it.

SQL> CREATE TABLE emp_load
 2 (employee_number CHAR(5),
 3 employee_dob CHAR(20),
 4 employee_last_name CHAR(20),
 5 employee_first_name CHAR(15),
 6 employee_middle_name CHAR(15),
 7 employee_hire_date DATE,
 8 rec_creation_date TIMESTAMP WITH TIME ZONE)
 9 ORGANIZATION EXTERNAL
 10 (TYPE ORACLE_LOADER
 11 DEFAULT DIRECTORY def_dir1
 12 ACCESS PARAMETERS

Chapter 15
field_definitions Clause

15-49

unilink:SQLRF00200

 13 (RECORDS DELIMITED BY NEWLINE
 14 FIELDS (employee_number CHAR(2),
 15 employee_dob CHAR(20),
 16 employee_last_name CHAR(18),
 17 employee_first_name CHAR(11),
 18 employee_middle_name CHAR(11),
 19 employee_hire_date CHAR(22) date_format DATE mask "mm/dd/yyyy
hh:mi:ss AM",
 20 rec_creation_date CHAR(35) date_format TIMESTAMP WITH TIME ZONE mask
"DD-MON-RR HH.MI.SSXFF AM TZH:TZM"
 21)
 22)
 23 LOCATION ('infoc.dat')
 24);

Table created.

SQL> SELECT * FROM emp_load;

EMPLO EMPLOYEE_DOB EMPLOYEE_LAST_NAME EMPLOYEE_FIRST_ EMPLOYEE_MIDDLE
----- -------------------- -------------------- --------------- ---------------
EMPLOYEE_

REC_CREATION_DATE

56 november, 15, 1980 baker mary alice
01-SEP-04
01-DEC-04 11.22.03.034567 AM -08:00

87 december, 20, 1970 roper lisa marie
01-JAN-02
01-DEC-02 02.03.00.678573 AM -08:00

2 rows selected.

The info.dat file looks like the following. Note that this is 2 long records. There is one
space between the data fields (09/01/2004, 01/01/2002) and the time field that
follows.

56november, 15, 1980 baker mary alice 09/01/2004 08:23:01 AM01-
DEC-04 11.22.03.034567 AM -08:00
87december, 20, 1970 roper lisa marie 01/01/2002 02:44:55 PM01-
DEC-02 02.03.00.678573 AM -08:00

15.4.7.14 VARCHAR and VARRAW
The datatype_spec clause VARCHAR data type defines character data, and the VARRAW
data type defines binary data.

The VARCHAR data type has a binary count field followed by character data. The value
in the binary count field is either the number of bytes in the field or the number of

Chapter 15
field_definitions Clause

15-50

characters. See STRING SIZES ARE IN for information about how to specify whether
the count is interpreted as a count of characters or count of bytes.

The VARRAW data type has a binary count field followed by binary data. The value in the
binary count field is the number of bytes of binary data. The data in the VARRAW field is
not affected by the DATA IS...ENDIANclause.

The VARIABLE 2 clause in the ACCESS PARAMETERS clause specifies the size of the
binary field that contains the length.

The optional length_of_length field in the specification is the number of bytes in the
count field. Valid values for length_of_length for VARCHAR are 1, 2, 4, and 8. If
length_of_length is not specified, then a value of 2 is used. The count field has the
same endianness as specified by the DATA IS...ENDIAN clause.

The max_len field is used to indicate the largest size of any instance of the field in the
data file. For VARRAW fields, max_len is number of bytes. For VARCHAR fields, max_len is
either number of characters, or number of bytes, depending on the STRING SIZES ARE
IN clause.

The following example shows various uses of VARCHAR and VARRAW. The content of the
data file, info.dat, is shown following the example.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW(2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (RECORDS
 VARIABLE 2
 DATA IS BIG ENDIAN
 CHARACTERSET US7ASCII
 FIELDS (first_name VARCHAR(2,12),
 last_name VARCHAR(2,20),
 resume VARCHAR(4,10000),
 picture VARRAW(4,100000)))
 LOCATION ('info.dat'));

Contents of info.dat Data File

The contents of the data file used in the example are as follows:.

0005Alvin0008Tolliver0000001DAlvin Tolliver's Resume etc.
0000001013f4690a30bc29d7e40023ab4599ffff

It is important to understand that, for the purposes of readable documentation, the
binary values for the count bytes and the values for the raw data are shown in the data
file in italics, with 2 characters per binary byte. The values in an actual data file would
be in binary format, not ASCII. Therefore, if you attempt to use this example by cutting
and pasting, then you will receive an error.

Chapter 15
field_definitions Clause

15-51

Related Topics

• STRING SIZES ARE IN

15.4.7.15 VARCHARC and VARRAWC
The datatype_spec clause VARCHARC data type defines character data, and the
VARRAWC data type defines binary data.

The VARCHARC data type has a character count field followed by character data. The
value in the count field is either the number of bytes in the field or the number of
characters. See STRING SIZES ARE IN for information about how to specify whether
the count is interpreted as a count of characters, or acount of bytes. The optional
length_of_length is either the number of bytes, or the number of characters in the
count field for VARCHARC, depending on whether lengths are being interpreted as
characters or bytes.

The maximum value for length_of_lengths for VARCHARC is 10 if string sizes are in
characters, and 20 if string sizes are in bytes. The default value for length_of_length
is 5.

The VARRAWC data type has a character count field followed by binary data. The value
in the count field is the number of bytes of binary data. The length_of_length is the
number of bytes in the count field.

The max_len field is used to indicate the largest size of any instance of the field in the
data file. For VARRAWC fields, max_len is number of bytes. For VARCHARC fields, max_len
is either number of characters or number of bytes depending on the STRING SIZES ARE
IN clause.

The following example shows various uses of VARCHARC and VARRAWC. The length of the
picture field is 0, which means the field is set to NULL.

CREATE TABLE emp_load
 (first_name CHAR(15),
 last_name CHAR(20),
 resume CHAR(2000),
 picture RAW (2000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY ext_tab_dir
 ACCESS PARAMETERS
 (FIELDS (first_name VARCHARC(5,12),
 last_name VARCHARC(2,20),
 resume VARCHARC(4,10000),
 picture VARRAWC(4,100000)))
 LOCATION ('info.dat'));

00007William05Ricca0035Resume for William Ricca is missing0000

Related Topics

• STRING SIZES ARE IN

15.4.8 init_spec Clause
The init_spec clause is used to specify when a field should be set to NULL or when it
should be set to a default value. The syntax for the init_spec clause is as follows:

Chapter 15
field_definitions Clause

15-52

DEFAULTIF

NULLIF

condition_spec

Only one NULLIF clause and only one DEFAULTIF clause can be specified for any field.
These clauses behave as follows:

• If NULLIF condition_spec is specified and it evaluates to TRUE, then the field is set
to NULL.

• If DEFAULTIF condition_spec is specified and it evaluates to TRUE, then the value
of the field is set to a default value. The default value depends on the data type of
the field, as follows:

– For a character data type, the default value is an empty string.

– For a numeric data type, the default value is a 0.

– For a date data type, the default value is NULL.

• If a NULLIF clause and a DEFAULTIF clause are both specified for a field, then the
NULLIF clause is evaluated first and the DEFAULTIF clause is evaluated only if the
NULLIF clause evaluates to FALSE.

15.4.9 LLS Clause
If a field in a data file is a LOB location Specifier (LLS) field, then you can indicate this
by using the LLS clause. An LLS field contains the file name, offset, and length of the
LOB data in the data file. SQL*Loader uses this information to read data for the LOB
column. The LLS clause for ORACLE_LOADER has the following syntax:

LLS

directory object name

When the LLS clause is used, ORACLE_LOADER does not load the value of the field into
the corresponding column. Instead, it uses the information in the value to determine
where to find the value of the field. The LOB can be loaded in part or in whole and it
can start from an arbitrary position and for an arbitrary length. ORACLE_LOADER expects
the contents of the field to be filename.ext.nnn.mmm/ where each element is defined
as follows:

• filename.ext is the name of the file that contains the LOB

• nnn is the offset in bytes of the LOB within the file

• mmm is the length of the LOB in bytes A value of -1 means the LOB is NULL. A
value of 0 means the lob exists, but is empty.

• The forward slash (/) terminates the field

The LLS clause has an optional DIRECTORY clause which specifies an Oracle directory
object:

• If DIRECTORY is specified, then the file must exist there and you must have READ
access to that directory object.

Chapter 15
field_definitions Clause

15-53

• If DIRECTORY is not specified, then the file must exist in the same directory as the
data file.

An error is returned and the row rejected if any of the following are true:

• The file name contains a relative or absolute path specification.

• The file is not found, the offset is invalid, or the length extends beyond the end of
the file.

• The contents of the field do not match the expected format.

• The data type for the column associated with an LLS field is not a CLOB, BLOB or
NCLOB.

If an LLS field is referenced by a clause for any other field (for example a NULLIF
clause), then in the access parameters, the value used for evaluating the clause is the
string in the data file, not the data in the file pointed to by that string.

The character set for the data in the file pointed to by the LLS clause is assumed to be
the same character set as the data file.

15.5 column_transforms Clause
The optional COLUMN TRANSFORMS clause provides transforms that you can use to
describe how to load columns in the external table that do not map directly to columns
in the data file.

The syntax for the column_transforms clause is as follows:

COLUMN TRANSFORMS (transform

,

)

Note:

The COLUMN TRANSFORMS clause does not work in conjunction with the
PREPROCESSOR clause.

• transform
Each transform specified in the transform clause identifies a column in the
external table and then a specifies how to calculate the value of the column.

15.5.1 transform
Each transform specified in the transform clause identifies a column in the external
table and then a specifies how to calculate the value of the column.

The syntax is as follows:

Chapter 15
column_transforms Clause

15-54

column_name FROM

NULL

CONSTANT string

CONCAT (
field_name

CONSTANT string

,

)

LOBFILE (
fieldname

CONSTANT string :

,

)

lobfile_attr_list

STARTOF source_field (length)

The NULL transform is used to set the external table column to NULL in every row. The
CONSTANT transform is used to set the external table column to the same value in every
row. The CONCAT transform is used to set the external table column to the
concatenation of constant strings and/or fields in the current record from the data file.
The LOBFILE transform is used to load data into a field for a record from another data
file. Each of these transforms is explained further in the following sections.

• column_name FROM

• NULL
When the NULL transform is specified, every value of the field is set to NULL for
every record.

• CONSTANT

• CONCAT

• LOBFILE
The LOBFILE transform is used to identify a file whose contents are to be used as
the value for a column in the external table.

• lobfile_attr_list
The lobfile_attr_list lists additional attributes of the LOBFILE.

• STARTOF source_field (length)
The STARTOF keyword allows you to create an external table in which a column can
be a substring of the data in the source field.

15.5.1.1 column_name FROM
The column_name uniquely identifies a column in the external table to be loaded. Note
that if the name of a column is mentioned in the transform clause, then that name
cannot be specified in the FIELDS clause as a field in the data file.

15.5.1.2 NULL
When the NULL transform is specified, every value of the field is set to NULL for every
record.

Chapter 15
column_transforms Clause

15-55

15.5.1.3 CONSTANT
The CONSTANT transform uses the value of the string specified as the value of the
column in the record. If the column in the external table is not a character string type,
then the constant string will be converted to the data type of the column. This
conversion will be done for every row.

The character set of the string used for data type conversions is the character set of
the database.

15.5.1.4 CONCAT
The CONCAT transform concatenates constant strings and fields in the data file together
to form one string. Only fields that are character data types and that are listed in the
fields clause can be used as part of the concatenation. Other column transforms
cannot be specified as part of the concatenation.

15.5.1.5 LOBFILE
The LOBFILE transform is used to identify a file whose contents are to be used as the
value for a column in the external table.

All LOBFILEs are identified by an optional directory object and a file name in the form
directory object:filename. The following rules apply to use of the LOBFILE
transform:

• Both the directory object and the file name can be either a constant string or the
name of a field in the field clause.

• If a constant string is specified, then that string is used to find the LOBFILE for
every row in the table.

• If a field name is specified, then the value of that field in the data file is used to find
the LOBFILE.

• If a field name is specified for either the directory object or the file name and if the
value of that field is NULL, then the column being loaded by the LOBFILE is also set
to NULL.

• If the directory object is not specified, then the default directory specified for the
external table is used.

• If a field name is specified for the directory object, then the FROM clause also needs
to be specified.

Note that the entire file is used as the value of the LOB column. If the same file is
referenced in multiple rows, then that file is reopened and reread in order to populate
each column.

15.5.1.6 lobfile_attr_list
The lobfile_attr_list lists additional attributes of the LOBFILE.

The syntax is as follows:

Chapter 15
column_transforms Clause

15-56

FROM (directory object name

,

)

CLOB

BLOB

CHARACTERSET = character set name

The FROM clause lists the names of all directory objects that will be used for LOBFILEs.
It is used only when a field name is specified for the directory object of the name of the
LOBFILE. The purpose of the FROM clause is to determine the type of access allowed to
the named directory objects during initialization. If directory object in the value of field
is not a directory object in this list, then the row will be rejected.

The CLOB attribute indicates that the data in the LOBFILE is character data (as opposed
to RAW data). Character data may need to be translated into the character set used to
store the LOB in the database.

The CHARACTERSET attribute contains the name of the character set for the data in the
LOBFILEs.

The BLOB attribute indicates that the data in the LOBFILE is raw data.

If neither CLOB nor BLOB is specified, then CLOB is assumed. If no character set is
specified for character LOBFILEs, then the character set of the data file is assumed.

15.5.1.7 STARTOF source_field (length)
The STARTOF keyword allows you to create an external table in which a column can be
a substring of the data in the source field.

The length is the length of the substring, beginning with the first byte. It is assumed
that length refers to a byte count and that the external table column(s) being
transformed use byte length and not character length semantics. (Character length
semantics might give unexpected results.)

Only complete character encodings are moved; characters are never split. So if a
substring ends in the middle of a multibyte character, then the resulting string will be
shortened. For example, if a length of 10 is specified, but the 10th byte is the first byte
of a multibyte character, then only the first 9 bytes are returned.

The following example shows how you could use the STARTOF keyword if you only
wanted the first 4 bytes of the department name (dname) field:

SQL> CREATE TABLE dept (deptno NUMBER(2),
 2 dname VARCHAR2(14),
 3 loc VARCHAR2(13)
 4)
 5 ORGANIZATION EXTERNAL
 6 (
 7 DEFAULT DIRECTORY def_dir1
 8 ACCESS PARAMETERS
 9 (
 10 RECORDS DELIMITED BY NEWLINE

Chapter 15
column_transforms Clause

15-57

 11 FIELDS TERMINATED BY ','
 12 (
 13 deptno CHAR(2),
 14 dname_source CHAR(14),
 15 loc CHAR(13)
 16)
 17 column transforms
 18 (
 19 dname FROM STARTOF dname_source (4)
 20)
 21)
 22 LOCATION ('dept.dat')
 23);

Table created.

If you now perform a SELECT operation from the dept table, only the first four bytes of
the dname field are returned:

SQL> SELECT * FROM dept;

 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCO NEW YORK
 20 RESE DALLAS
 30 SALE CHICAGO
 40 OPER BOSTON

4 rows selected.

15.6 Parallel Loading Considerations for the
ORACLE_LOADER Access Driver

The ORACLE_LOADER access driver attempts to divide large data files into chunks that
can be processed separately.

The following file, record, and data characteristics make it impossible for a file to be
processed in parallel:

• Sequential data sources (such as a tape drive or pipe)

• Data in any multibyte character set whose character boundaries cannot be
determined starting at an arbitrary byte in the middle of a string

This restriction does not apply to any data file with a fixed number of bytes per
record.

• Records with the VAR format

Specifying a PARALLEL clause is of value only when large amounts of data are
involved.

Chapter 15
Parallel Loading Considerations for the ORACLE_LOADER Access Driver

15-58

15.7 Performance Hints When Using the
ORACLE_LOADER Access Driver

This topic describes some performance hints when using the ORACLE_LOADER access
driver.

When you monitor performance, the most important measurement is the elapsed time
for a load. Other important measurements are CPU usage, memory usage, and I/O
rates.

You can alter performance by increasing or decreasing the degree of parallelism. The
degree of parallelism indicates the number of access drivers that can be started to
process the data files. The degree of parallelism enables you to choose on a scale
between slower load with little resource usage and faster load with all resources
utilized. The access driver cannot automatically tune itself, because it cannot
determine how many resources you want to dedicate to the access driver.

An additional consideration is that the access drivers use large I/O buffers for better
performance (you can use the READSIZE clause in the access parameters to specify
the size of the buffers). On databases with shared servers, all memory used by the
access drivers comes out of the system global area (SGA). For this reason, you
should be careful when using external tables on shared servers.

Performance can also sometimes be increased with use of date cache functionality. By
using the date cache to specify the number of unique dates anticipated during the
load, you can reduce the number of date conversions done when many duplicate date
or timestamp values are present in the input data. The date cache functionality
provided by external tables is identical to the date cache functionality provided by
SQL*Loader. See DATE_CACHE for a detailed description.

In addition to changing the degree of parallelism and using the date cache to improve
performance, consider the following information:

• Fixed-length records are processed faster than records terminated by a string.

• Fixed-length fields are processed faster than delimited fields.

• Single-byte character sets are the fastest to process.

• Fixed-width character sets are faster to process than varying-width character sets.

• Byte-length semantics for varying-width character sets are faster to process than
character-length semantics.

• Single-character delimiters for record terminators and field delimiters are faster to
process than multicharacter delimiters.

• Having the character set in the data file match the character set of the database is
faster than a character set conversion.

• Having data types in the data file match the data types in the database is faster
than data type conversion.

• Not writing rejected rows to a reject file is faster because of the reduced overhead.

• Condition clauses (including WHEN, NULLIF, and DEFAULTIF) slow down processing.

• The access driver takes advantage of multithreading to streamline the work as
much as possible.

Chapter 15
Performance Hints When Using the ORACLE_LOADER Access Driver

15-59

15.8 Restrictions When Using the ORACLE_LOADER
Access Driver

This section lists restrictions to be aware of when you use the ORACLE_LOADER access
driver.

Specifically:

• Exporting and importing of external tables with encrypted columns is not
supported.

• Column processing: By default, the external tables feature fetches all columns
defined for an external table. This guarantees a consistent result set for all
queries. However, for performance reasons you can decide to process only the
referenced columns of an external table, thus minimizing the amount of data
conversion and data handling required to execute a query. In this case, a row that
is rejected because a column in the row causes a data type conversion error will
not get rejected in a different query if the query does not reference that column.
You can change this column-processing behavior with the ALTER TABLE command.

• An external table cannot load data into a LONG column.

• SQL strings cannot be specified in access parameters for the ORACLE_LOADER
access driver. As a workaround, you can use the DECODE clause in the SELECT
clause of the statement that is reading the external table. Alternatively, you can
create a view of the external table that uses the DECODE clause and select from that
view rather than the external table.

• The use of the backslash character (\) within strings is not supported in external
tables. See Use of the Backslash Escape Character.

• When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by
the access parameter parser. If a reserved word is used as an identifier, then it
must be enclosed in double quotation marks.

15.9 Reserved Words for the ORACLE_LOADER Access
Driver

When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by the
access parameter parser.

If a reserved word is used as an identifier, then it must be enclosed in double quotation
marks. The following are the reserved words for the ORACLE_LOADER access driver:

• ALL

• AND

• ARE

• ASTERISK

• AT

Chapter 15
Restrictions When Using the ORACLE_LOADER Access Driver

15-60

• ATSIGN

• BADFILE

• BADFILENAME

• BACKSLASH

• BENDIAN

• BIG

• BLANKS

• BY

• BYTES

• BYTESTR

• CHAR

• CHARACTERS

• CHARACTERSET

• CHARSET

• CHARSTR

• CHECK

• CLOB

• COLLENGTH

• COLON

• COLUMN

• COMMA

• CONCAT

• CONSTANT

• COUNTED

• DATA

• DATE

• DATE_CACHE

• DATE_FORMAT

• DATEMASK

• DAY

• DEBUG

• DECIMAL

• DEFAULTIF

• DELIMITBY

• DELIMITED

• DISCARDFILE

• DNFS_ENABLE

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-61

• DNFS_DISABLE

• DNFS_READBUFFERS

• DOT

• DOUBLE

• DOUBLETYPE

• DQSTRING

• DQUOTE

• DSCFILENAME

• ENCLOSED

• ENDIAN

• ENDPOS

• EOF

• EQUAL

• EXIT

• EXTENDED_IO_PARAMETERS

• EXTERNAL

• EXTERNALKW

• EXTPARM

• FIELD

• FIELDS

• FILE

• FILEDIR

• FILENAME

• FIXED

• FLOAT

• FLOATTYPE

• FOR

• FROM

• HASH

• HEXPREFIX

• IN

• INTEGER

• INTERVAL

• LANGUAGE

• IS

• LEFTCB

• LEFTTXTDELIM

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-62

• LEFTP

• LENDIAN

• LDRTRIM

• LITTLE

• LOAD

• LOBFILE

• LOBPC

• LOBPCCONST

• LOCAL

• LOCALTZONE

• LOGFILE

• LOGFILENAME

• LRTRIM

• LTRIM

• MAKE_REF

• MASK

• MINUSSIGN

• MISSING

• MISSINGFLD

• MONTH

• NEWLINE

• NO

• NOCHECK

• NOT

• NOBADFILE

• NODISCARDFILE

• NOLOGFILE

• NOTEQUAL

• NOTERMBY

• NOTRIM

• NULL

• NULLIF

• OID

• OPTENCLOSE

• OPTIONALLY

• OPTIONS

• OR

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-63

• ORACLE_DATE

• ORACLE_NUMBER

• PLUSSIGN

• POSITION

• PROCESSING

• QUOTE

• RAW

• READSIZE

• RECNUM

• RECORDS

• REJECT

• RIGHTCB

• RIGHTTXTDELIM

• RIGHTP

• ROW

• ROWS

• RTRIM

• SCALE

• SECOND

• SEMI

• SETID

• SIGN

• SIZES

• SKIP

• STRING

• TERMBY

• TERMEOF

• TERMINATED

• TERMWS

• TERRITORY

• TIME

• TIMESTAMP

• TIMEZONE

• TO

• TRANSFORMS

• UNDERSCORE

• UINTEGER

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-64

• UNSIGNED

• VALUES

• VARCHAR

• VARCHARC

• VARIABLE

• VARRAW

• VARRAWC

• VLENELN

• VMAXLEN

• WHEN

• WHITESPACE

• WITH

• YEAR

• ZONED

Chapter 15
Reserved Words for the ORACLE_LOADER Access Driver

15-65

16
The ORACLE_DATAPUMP Access Driver

The ORACLE_DATAPUMP access driver provides a set of access parameters that are
unique to external tables of the type ORACLE_DATAPUMP.

• Using the ORACLE_DATAPUMP Access Driver
To modify the default behavior of the access driver, use ORACLE_DATAPUMP access
parameters.

• access_parameters Clause
When you create the ORACLE_DATAPUMP access driver external table, you can
specify certain parameters in an access_parameters clause.

• Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
As part of creating an external table with a SQL CREATE TABLE AS SELECT
statement, the ORACLE_DATAPUMP access driver can write data to a dump file.

• Supported Data Types
This topic describes supported data types.

• Unsupported Data Types
This topic describes unsupported data types.

• Performance Hints When Using the ORACLE_DATAPUMP Access Driver
This topic describes performance hints when using the ORACLE_DATAPUMP access
driver.

• Restrictions When Using the ORACLE_DATAPUMP Access Driver
This topic describes the restrictions of the ORACLE_DATAPUMP access driver.

• Reserved Words for the ORACLE_DATAPUMP Access Driver
This topic describes the reserved words for the ORACLE_DATAPUMP access driver.

16.1 Using the ORACLE_DATAPUMP Access Driver
To modify the default behavior of the access driver, use ORACLE_DATAPUMP access
parameters.

The information that you provide through the ORACLE_DATAPUMP access driver ensures
that data from the data source is processed, so that it matches the definition of the
external table.

To use the ORACLE_DATAPUMP access driver successfully, you must know a little about
the file format and record format of the data files on your platform, including character
sets and field data types. You must also be able to use SQL to create an external
table, and to perform queries against the table that you create.

16-1

Note:

• It is sometimes difficult to describe syntax without using other syntax that
is documented in other topics. If it is not clear what some syntax is
supposed to do, then read about that particular element by checking the
topic navigation tree.

• When identifiers (for example, column or table names) are specified in
the external table access parameters, certain values are considered to
be reserved words by the access parameter parser. If a reserved word is
used as an identifier, then it must be enclosed in double quotation
marks.

• Starting with Oracle Database 20c, the ORACLE_DATAPUMP access driver
in SQL mode can write Object Storage URIs.

Related Topics

• Reserved Words for the ORACLE_DATAPUMP Access Driver
This topic describes the reserved words for the ORACLE_DATAPUMP access driver.

16.2 access_parameters Clause
When you create the ORACLE_DATAPUMP access driver external table, you can specify
certain parameters in an access_parameters clause.

This clause is optional, as are its individual parameters. For example, you can specify
LOGFILE, but not VERSION, or vice versa. The syntax for the access_parameters clause
is as follows.

Note:

These access parameters are collectively referred to as the
opaque_format_spec in the SQL CREATE TABLE...ORGANIZATION EXTERNAL
statement.

Chapter 16
access_parameters Clause

16-2

comments

ENCRYPTION
ENABLED

DISABLED

NOLOGFILE

LOGFILE

directory object name :

file name

COMPRESSION

ENABLED

BASIC

LOW

MEDIUM

HIGH

DISABLED

HADOOP_TRAILERS
ENABLED

DISABLED

VERSION

COMPATIBLE

LATEST

version number

• Comments

• ENCRYPTION

• LOGFILE | NOLOGFILE

• COMPRESSION

• VERSION Clause
The VERSION clause is used to specify the minimum release of Oracle Database
that will be reading the dump file.

• HADOOP_TRAILERS Clause
The ORACLE_DATAPUMP access driver provides a HADOOP_TRAILERS clause, which
can be set to ENABLED or DISABLED (the default).

• Effects of Using the SQL ENCRYPT Clause

Related Topics

• CREATE TABLE

See Also:

Oracle Database SQL Language Reference CREATE TABLE for information
about specifying opaque_format_spec when using the SQL CREATE
TABLE...ORGANIZATION EXTERNAL statement.

Chapter 16
access_parameters Clause

16-3

16.2.1 Comments

Comments are lines that begin with two hyphens followed by text. Comments
must be placed before any access parameters. For example:

--This is a comment.
--This is another comment.
NOLOG

All text to the right of the double hyphen is ignored, until the end of the line.

16.2.2 ENCRYPTION
Default

DISABLED

Purpose

Specifies whether to encrypt data before it is written to the dump file set.

Syntax and Description

ENCRYPTION [ENABLED | DISABLED]

If ENABLED is specified, then all data is written to the dump file set in encrypted format.

If DISABLED is specified, then no data is written to the dump file set in encrypted format.

Restrictions

This parameter is used only for export operations.

Example

In the following example, the ENCRYPTION parameter is set to ENABLED. Therefore, all
data written to the dept.dmp file will be in encrypted format.

CREATE TABLE deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (ENCRYPTION ENABLED) LOCATION ('dept.dmp'));

16.2.3 LOGFILE | NOLOGFILE
Default: If LOGFILE is not specified, then a log file is created in the default directory and
the name of the log file is generated from the table name and the process ID with an
extension of .log. If a log file already exists by the same name, then the access driver
reopens that log file and appends the new log information to the end.

Chapter 16
access_parameters Clause

16-4

Purpose

LOGFILE specifies the name of the log file that contains any messages generated while
the dump file was being accessed. NOLOGFILE prevents the creation of a log file.

Syntax and Description

NOLOGFILE

or

LOGFILE [directory_object:]logfile_name

If a directory object is not specified as part of the log file name, then the directory
object specified by the DEFAULT DIRECTORY attribute is used. If a directory object is not
specified and no default directory was specified, then an error is returned. See File
Names for LOGFILE for information about using substitution variables to create unique
file names during parallel loads or unloads.

Example

In the following example, the dump file, dept_dmp, is in the directory identified by the
directory object, load_dir, but the log file, deptxt.log, is in the directory identified by
the directory object, log_dir.

CREATE TABLE dept_xt (dept_no INT, dept_name CHAR(20), location CHAR(20))
ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY load_dir
ACCESS PARAMETERS (LOGFILE log_dir:deptxt) LOCATION ('dept_dmp'));

• Log File Naming in Parallel Loads

16.2.3.1 Log File Naming in Parallel Loads
The access driver does some symbol substitution to help make file names unique in
the case of parallel loads. The symbol substitutions supported are as follows:

• %p is replaced by the process ID of the current process. For example, if the
process ID of the access driver is 12345, then exttab_%p.log becomes
exttab_12345.log.

• %a is replaced by the agent number of the current process. The agent number is
the unique number assigned to each parallel process accessing the external table.
This number is padded to the left with zeros to fill three characters. For example, if
the third parallel agent is creating a file and exttab_%a.log was specified as the
file name, then the agent would create a file named exttab_003.log.

• %% is replaced by %. If there is a need to have a percent sign in the file name, then
this symbol substitution must be used.

If the % character is followed by anything other than one of the characters in the
preceding list, then an error is returned.

If %p or %a is not used to create unique file names for output files and an external table
is being accessed in parallel, then output files may be corrupted or agents may be
unable to write to the files.

Chapter 16
access_parameters Clause

16-5

If no extension is supplied for the file, then a default extension of .log is used. If the
name generated is not a valid file name, then an error is returned and no data is
loaded or unloaded.

16.2.4 COMPRESSION
Default: DISABLED

Purpose

Specifies whether to compress data (and optionally, which compression algorithm to
use) before the data is written to the dump file set.

Syntax and Description

COMPRESSION [ENABLED {BASIC | LOW| MEDIUM | HIGH} | DISABLED]

• If ENABLED is specified, then all data is compressed for the entire unload operation.
You can additionally specify one of the following compression options:

– BASIC - Offers a good combination of compression ratios and speed; the
algorithm used is the same as in previous versions of Oracle Data Pump.

– LOW - Least impact on unload throughput and suited for environments where
CPU resources are the limiting factor.

– MEDIUM - Recommended for most environments. This option, like the BASIC
option, provides a good combination of compression ratios and speed, but it
uses a different algorithm than BASIC.

– HIGH - Best suited for unloads over slower networks where the limiting factor is
network speed.

Note:

To use these compression algorithms, the COMPATIBLE initialization
parameter must be set to at least 12.0.0. This feature requires that the
Oracle Advanced Compression option be enabled.

The performance of a compression algorithm is characterized by its CPU usage
and by the compression ratio (the size of the compressed output as a percentage
of the uncompressed input). These measures vary on the size and type of inputs
as well as the speed of the compression algorithms used. The compression ratio
generally increases from low to high, with a trade-off of potentially consuming
more CPU resources.

It is recommended that you run tests with the different compression levels on the
data in your environment. Choosing a compression level based on your
environment, workload characteristics, and size and type of data is the only way to
ensure that the exported dump file set compression level meets your performance
and storage requirements.

• If DISABLED is specified, then no data is compressed for the upload operation.

Chapter 16
access_parameters Clause

16-6

Example

In the following example, the COMPRESSION parameter is set to ENABLED. Therefore, all
data written to the dept.dmp dump file will be in compressed format.

CREATE TABLE deptXTec3
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (COMPRESSION ENABLED) LOCATION ('dept.dmp'));

16.2.5 VERSION Clause
The VERSION clause is used to specify the minimum release of Oracle Database that
will be reading the dump file.

For example, if you specify 11.1, then both Oracle Database 11g release 1 (11.1 and
11.2) databases can read the dump file. If you specify 11.2, then only Oracle
Database 11g release 2 (11.2) databases can read the dump file.

The default value is COMPATIBLE.

16.2.6 HADOOP_TRAILERS Clause
The ORACLE_DATAPUMP access driver provides a HADOOP_TRAILERS clause, which can be
set to ENABLED or DISABLED (the default).

When the HADOOP_TRAILERS clause is enabled, Hadoop trailers are written to the dump
file. Hadoop trailers include information about locations and sizes of different parts of
the file. The information is written in a dump trailer block at the end of the file, and at
the end of the stream data, instead of at the beginning.

16.2.7 Effects of Using the SQL ENCRYPT Clause
If you specify the SQL ENCRYPT clause when you create an external table, then keep
the following in mind:

• The columns for which you specify the ENCRYPT clause will be encrypted before
being written into the dump file.

• If you move the dump file to another database, then the same encryption
password must be used for both the encrypted columns in the dump file and for
the external table used to read the dump file.

• If you do not specify a password for the correct encrypted columns in the external
table on the second database, then an error is returned. If you do not specify the
correct password, then garbage data is written to the dump file.

• The dump file that is produced must be at release 10.2 or higher. Otherwise, an
error is returned.

See Also:

Oracle Database SQL Language Reference for more information about using
the ENCRYPT clause on a CREATE TABLE statement

Chapter 16
access_parameters Clause

16-7

16.3 Unloading and Loading Data with the
ORACLE_DATAPUMP Access Driver

As part of creating an external table with a SQL CREATE TABLE AS SELECT statement,
the ORACLE_DATAPUMP access driver can write data to a dump file.

The data in the file is written in a binary format that can only be read by the
ORACLE_DATAPUMP access driver. Once the dump file is created, it cannot be modified
(that is, no data manipulation language (DML) operations can be performed on it).
However, the file can be read any number of times and used as the dump file for
another external table in the same database or in a different database.

The following steps use the sample schema, oe, to show an extended example of how
you can use the ORACLE_DATAPUMP access driver to unload and load data. (The
example assumes that the directory object def_dir1 already exists, and that user oe
has read and write access to it.)

1. An external table will populate a file with data only as part of creating the external
table with the AS SELECT clause. The following example creates an external table
named inventories_xt and populates the dump file for the external table with the
data from table inventories in the oe schema.

SQL> CREATE TABLE inventories_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt.dmp')
 7)
 8 AS SELECT * FROM inventories;

Table created.

2. Describe both inventories and the new external table, as follows. They should
both match.

SQL> DESCRIBE inventories
 Name Null? Type
 -- --------- ----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

SQL> DESCRIBE inventories_xt
 Name Null? Type
 --- -------- -----------------
 PRODUCT_ID NOT NULL NUMBER(6)
 WAREHOUSE_ID NOT NULL NUMBER(3)
 QUANTITY_ON_HAND NOT NULL NUMBER(8)

3. Now that the external table is created, it can be queried just like any other table.
For example, select the count of records in the external table, as follows:

SQL> SELECT COUNT(*) FROM inventories_xt;

 COUNT(*)

 1112

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-8

4. Compare the data in the external table against the data in inventories. There
should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt;

no rows selected

5. After an external table has been created and the dump file populated by the
CREATE TABLE AS SELECT statement, no rows may be added, updated, or deleted
from the external table. Any attempt to modify the data in the external table will fail
with an error.

The following example shows an attempt to use data manipulation language
(DML) on an existing external table. This will return an error, as shown.

SQL> DELETE FROM inventories_xt WHERE warehouse_id = 5;
DELETE FROM inventories_xt WHERE warehouse_id = 5
 *
ERROR at line 1:
ORA-30657: operation not supported on external organized table

6. The dump file created for the external table can now be moved and used as the
dump file for another external table in the same database or different database.
Note that when you create an external table that uses an existing file, there is no
AS SELECT clause for the CREATE TABLE statement.

SQL> CREATE TABLE inventories_xt2
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_xt.dmp')
 12);

Table created.

7. Compare the data for the new external table against the data in the inventories
table. The product_id field will be converted to a compatible data type before the
comparison is done. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt2;

no rows selected

8. Create an external table with three dump files and with a degree of parallelism of
three.

SQL> CREATE TABLE inventories_xt3
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM inventories;

Table created.

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-9

9. Compare the data unload against inventories. There should be no differences.

SQL> SELECT * FROM inventories MINUS SELECT * FROM inventories_xt3;

no rows selected

10. Create an external table containing some rows from table inventories.

SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id < 5;

Table created.

11. Create another external table containing the rest of the rows from inventories.

SQL> drop table inv_part_xt;

Table dropped.

SQL>
SQL> CREATE TABLE inv_part_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM inventories WHERE warehouse_id >= 5;

Table created.

12. Create an external table that uses the two dump files created in Steps 10 and 11.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 product_id NUMBER(6),
 4 warehouse_id NUMBER(3),
 5 quantity_on_hand NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Table created.

13. Compare the new external table to the inventories table. There should be no
differences. This is because the two dump files used to create the external table
have the same metadata (for example, the same table name inv_part_xt and the
same column information).

SQL> SELECT * FROM inventories MINUS SELECT * FROM inv_part_all_xt;

no rows selected

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-10

• Parallel Loading and Unloading
This topic describes parallel loading and unloading.

• Combining Dump Files
Dump files populated by different external tables can all be specified in the
LOCATION clause of another external table.

16.3.1 Parallel Loading and Unloading
This topic describes parallel loading and unloading.

The dump file must be on a disk big enough to hold all the data being written. If there
is insufficient space for all of the data, then an error is returned for the CREATE TABLE AS
SELECT statement. One way to alleviate the problem is to create multiple files in
multiple directory objects (assuming those directories are on different disks) when
executing the CREATE TABLE AS SELECT statement. Multiple files can be created by
specifying multiple locations in the form directory:file in the LOCATION clause and
by specifying the PARALLEL clause. Each parallel I/O server process that is created to
populate the external table writes to its own file. The number of files in the LOCATION
clause should match the degree of parallelization because each I/O server process
requires its own files. Any extra files that are specified will be ignored. If there are not
enough files for the degree of parallelization specified, then the degree of
parallelization is lowered to match the number of files in the LOCATION clause.

Here is an example of unloading the inventories table into three files.

SQL> CREATE TABLE inventories_XT_3
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_xt1.dmp', 'inv_xt2.dmp', 'inv_xt3.dmp')
 7)
 8 PARALLEL 3
 9 AS SELECT * FROM oe.inventories;

Table created.

When the ORACLE_DATAPUMP access driver is used to load data, parallel processes can
read multiple dump files or even chunks of the same dump file concurrently. Thus,
data can be loaded in parallel even if there is only one dump file, as long as that file is
large enough to contain multiple file offsets. The degree of parallelization is not tied to
the number of files in the LOCATION clause when reading from ORACLE_DATAPUMP
external tables.

16.3.2 Combining Dump Files
Dump files populated by different external tables can all be specified in the LOCATION
clause of another external table.

For example, data from different production databases can be unloaded into separate
files, and then those files can all be included in an external table defined in a data
warehouse. This provides an easy way of aggregating data from multiple sources. The
only restriction is that the metadata for all of the external tables be exactly the same.
This means that the character set, time zone, schema name, table name, and column
names must all match. Also, the columns must be defined in the same order, and their
data types must be exactly alike. This means that after you create the first external

Chapter 16
Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver

16-11

table you must drop it so that you can use the same table name for the second
external table. This ensures that the metadata listed in the two dump files is the same
and they can be used together to create the same external table.

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_p1_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id < 5;

Table created.

SQL> DROP TABLE inv_part_1_xt;

SQL> CREATE TABLE inv_part_1_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT directory def_dir1
 6 LOCATION ('inv_p2_xt.dmp')
 7)
 8 AS SELECT * FROM oe.inventories WHERE warehouse_id >= 5;

Table created.

SQL> CREATE TABLE inv_part_all_xt
 2 (
 3 PRODUCT_ID NUMBER(6),
 4 WAREHOUSE_ID NUMBER(3),
 5 QUANTITY_ON_HAND NUMBER(8)
 6)
 7 ORGANIZATION EXTERNAL
 8 (
 9 TYPE ORACLE_DATAPUMP
 10 DEFAULT DIRECTORY def_dir1
 11 LOCATION ('inv_p1_xt.dmp','inv_p2_xt.dmp')
 12);

Table created.

SQL> SELECT * FROM inv_part_all_xt MINUS SELECT * FROM oe.inventories;

no rows selected

16.4 Supported Data Types
This topic describes supported data types.

You may encounter the following situations when you use external tables to move data
between databases:

• The database character set and the database national character set may be
different between the two platforms.

• The endianness of the platforms for the two databases may be different.

The ORACLE_DATAPUMP access driver automatically resolves some of these situations.

Chapter 16
Supported Data Types

16-12

The following data types are automatically converted during loads and unloads:

• Character (CHAR, NCHAR, VARCHAR2, NVARCHAR2)

• RAW

• NUMBER

• Date/Time

• BLOB

• CLOB and NCLOB

• ROWID and UROWID

If you attempt to use a data type that is not supported for external tables, then you
receive an error. This is demonstrated in the following example, in which the
unsupported data type, LONG, is used:

SQL> CREATE TABLE bad_datatype_xt
 2 (
 3 product_id NUMBER(6),
 4 language_id VARCHAR2(3),
 5 translated_name NVARCHAR2(50),
 6 translated_description LONG
 7)
 8 ORGANIZATION EXTERNAL
 9 (
 10 TYPE ORACLE_DATAPUMP
 11 DEFAULT DIRECTORY def_dir1
 12 LOCATION ('proddesc.dmp')
 13);
 translated_description LONG
 *
ERROR at line 6:
ORA-30656: column type not supported on external organized table

See Also:

Unsupported Data Types

16.5 Unsupported Data Types
This topic describes unsupported data types.

An external table supports a subset of all possible data types for columns. In
particular, it supports character data types (except LONG), the RAW data type, all
numeric data types, and all date, timestamp, and interval data types.

This section describes how you can use the ORACLE_DATAPUMP access driver to unload
and reload data for some of the unsupported data types, specifically:

• BFILE

• LONG and LONG RAW

• Final object types

Chapter 16
Unsupported Data Types

16-13

• Tables of final object types

• Unloading and Loading BFILE Data Types
The BFILE data type has two pieces of information stored in it: the directory object
for the file and the name of the file within that directory object.

• Unloading LONG and LONG RAW Data Types
The ORACLE_DATAPUMP access driver can be used to unload LONG and LONG RAW
columns, but that data can only be loaded back into LOB fields.

• Unloading and Loading Columns Containing Final Object Types
Final column objects are populated into an external table by moving each attribute
in the object type into a column in the external table.

• Tables of Final Object Types
Object tables have an object identifier that uniquely identifies every row in the
table.

16.5.1 Unloading and Loading BFILE Data Types
The BFILE data type has two pieces of information stored in it: the directory object for
the file and the name of the file within that directory object.

You can unload BFILE columns using the ORACLE_DATAPUMP access driver by storing
the directory object name and the file name in two columns in the external table. The
procedure DBMS_LOB.FILEGETNAME will return both parts of the name. However,
because this is a procedure, it cannot be used in a SELECT statement. Instead, two
functions are needed. The first will return the name of the directory object, and the
second will return the name of the file.

The steps in the following extended example demonstrate the unloading and loading
of BFILE data types.

1. Create a function to extract the directory object for a BFILE column. Note that if
the column is NULL, then NULL is returned.

SQL> CREATE FUNCTION get_dir_name (bf BFILE) RETURN VARCHAR2 IS
 2 DIR_ALIAS VARCHAR2(255);
 3 FILE_NAME VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;
 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN dir_alias;
 11 END IF;
 12 END;
 13 /

Function created.

2. Create a function to extract the file name for a BFILE column.

SQL> CREATE FUNCTION get_file_name (bf BFILE) RETURN VARCHAR2 is
 2 dir_alias VARCHAR2(255);
 3 file_name VARCHAR2(255);
 4 BEGIN
 5 IF bf is NULL
 6 THEN
 7 RETURN NULL;

Chapter 16
Unsupported Data Types

16-14

 8 ELSE
 9 DBMS_LOB.FILEGETNAME (bf, dir_alias, file_name);
 10 RETURN file_name;
 11 END IF;
 12 END;
 13 /

Function created.

3. You can then add a row with a NULL value for the BFILE column, as follows:

SQL> INSERT INTO PRINT_MEDIA (product_id, ad_id, ad_graphic)
 2 VALUES (3515, 12001, NULL);

1 row created.

You can use the newly created functions to populate an external table. Note that
the functions should set columns ad_graphic_dir and ad_graphic_file to NULL if
the BFILE column is NULL.

4. Create an external table to contain the data from the print_media table. Use the
get_dir_name and get_file_name functions to get the components of the BFILE
column.

SQL> CREATE TABLE print_media_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE oracle_datapump
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('pm_xt.dmp')
 7) AS
 8 SELECT product_id, ad_id,
 9 get_dir_name (ad_graphic) ad_graphic_dir,
 10 get_file_name(ad_graphic) ad_graphic_file
 11 FROM print_media;

Table created.

5. Create a function to load a BFILE column from the data that is in the external table.
This function will return NULL if the ad_graphic_dir column in the external table is
NULL.

SQL> CREATE FUNCTION get_bfile (dir VARCHAR2, file VARCHAR2) RETURN
BFILE is
 2 bf BFILE;
 3 BEGIN
 4 IF dir IS NULL
 5 THEN
 6 RETURN NULL;
 7 ELSE
 8 RETURN BFILENAME(dir,file);
 9 END IF;
 10 END;
 11 /

Function created.

6. The get_bfile function can be used to populate a new table containing a BFILE
column.

SQL> CREATE TABLE print_media_int AS
 2 SELECT product_id, ad_id,
 3 get_bfile (ad_graphic_dir, ad_graphic_file) ad_graphic

Chapter 16
Unsupported Data Types

16-15

 4 FROM print_media_xt;

Table created.

7. The data in the columns of the newly loaded table should match the data in the
columns of the print_media table.

SQL> SELECT product_id, ad_id,
 2 get_dir_name(ad_graphic),
 3 get_file_name(ad_graphic)
 4 FROM print_media_int
 5 MINUS
 6 SELECT product_id, ad_id,
 7 get_dir_name(ad_graphic),
 8 get_file_name(ad_graphic)
 9 FROM print_media;

no rows selected

16.5.2 Unloading LONG and LONG RAW Data Types
The ORACLE_DATAPUMP access driver can be used to unload LONG and LONG RAW
columns, but that data can only be loaded back into LOB fields.

The steps in the following extended example demonstrate the unloading of LONG and
LONG RAW data types.

1. If a table to be unloaded contains a LONG or LONG RAW column, then define the
corresponding columns in the external table as CLOB for LONG columns or BLOB for
LONG RAW columns.

SQL> CREATE TABLE long_tab
 2 (
 3 key SMALLINT,
 4 description LONG
 5);

Table created.

SQL> INSERT INTO long_tab VALUES (1, 'Description Text');

1 row created.

2. Now, an external table can be created that contains a CLOB column to contain the
data from the LONG column. Note that when loading the external table, the TO_LOB
operator is used to convert the LONG column into a CLOB.

SQL> CREATE TABLE long_tab_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('long_tab_xt.dmp')
 7)
 8 AS SELECT key, TO_LOB(description) description FROM long_tab;

Table created.

3. The data in the external table can be used to create another table exactly like the
one that was unloaded except the new table will contain a LOB column instead of
a LONG column.

Chapter 16
Unsupported Data Types

16-16

SQL> CREATE TABLE lob_tab
 2 AS SELECT * from long_tab_xt;

Table created.

4. Verify that the table was created correctly.

SQL> SELECT * FROM lob_tab;

 KEY DESCRIPTION
--
 1 Description Text

16.5.3 Unloading and Loading Columns Containing Final Object Types
Final column objects are populated into an external table by moving each attribute in
the object type into a column in the external table.

In addition, the external table needs a new column to track whether the column object
is atomically NULL. The following steps demonstrate the unloading and loading of
columns containing final object types.

1. In the following example, the warehouse column in the external table is used to
track whether the warehouse column in the source table is atomically NULL.

SQL> CREATE TABLE inventories_obj_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('inv_obj_xt.dmp')
 7)
 8 AS
 9 SELECT oi.product_id,
 10 DECODE (oi.warehouse, NULL, 0, 1) warehouse,
 11 oi.warehouse.location_id location_id,
 12 oi.warehouse.warehouse_id warehouse_id,
 13 oi.warehouse.warehouse_name warehouse_name,
 14 oi.quantity_on_hand
 15 FROM oc_inventories oi;

Table created.

The columns in the external table containing the attributes of the object type can
now be used as arguments to the type constructor function when loading a column
of that type. Note that the warehouse column in the external table is used to
determine whether to call the constructor function for the object or set the column
to NULL.

2. Load a new internal table that looks exactly like the oc_inventories view. (The
use of the WHERE 1=0 clause creates a new table that looks exactly like the old
table but does not copy any data from the old table into the new table.)

SQL> CREATE TABLE oc_inventories_2 AS SELECT * FROM oc_inventories
WHERE 1 = 0;

Table created.

SQL> INSERT INTO oc_inventories_2
 2 SELECT product_id,
 3 DECODE (warehouse, 0, NULL,

Chapter 16
Unsupported Data Types

16-17

 4 warehouse_typ(warehouse_id, warehouse_name,
 5 location_id)), quantity_on_hand
 6 FROM inventories_obj_xt;

1112 rows created.

16.5.4 Tables of Final Object Types
Object tables have an object identifier that uniquely identifies every row in the table.

The following situations can occur:

• If there is no need to unload and reload the object identifier, then the external table
only needs to contain fields for the attributes of the type for the object table.

• If the object identifier (OID) needs to be unloaded and reloaded and the OID for
the table is one or more fields in the table, (also known as primary-key-based
OIDs), then the external table has one column for every attribute of the type for the
table.

• If the OID needs to be unloaded and the OID for the table is system-generated,
then the procedure is more complicated. In addition to the attributes of the type,
another column needs to be created to hold the system-generated OID.

The steps in the following example demonstrate this last situation.

1. Create a table of a type with system-generated OIDs:

SQL> CREATE TYPE person AS OBJECT (name varchar2(20)) NOT FINAL
 2 /

Type created.

SQL> CREATE TABLE people OF person;

Table created.

SQL> INSERT INTO people VALUES ('Euclid');

1 row created.

2. Create an external table in which the column OID is used to hold the column
containing the system-generated OID.

SQL> CREATE TABLE people_xt
 2 ORGANIZATION EXTERNAL
 3 (
 4 TYPE ORACLE_DATAPUMP
 5 DEFAULT DIRECTORY def_dir1
 6 LOCATION ('people.dmp')
 7)
 8 AS SELECT SYS_NC_OID$ oid, name FROM people;

Table created.

3. Create another table of the same type with system-generated OIDs. Then, execute
an INSERT statement to load the new table with data unloaded from the old table.

SQL> CREATE TABLE people2 OF person;

Table created.

Chapter 16
Unsupported Data Types

16-18

SQL>
SQL> INSERT INTO people2 (SYS_NC_OID$, SYS_NC_ROWINFO$)
 2 SELECT oid, person(name) FROM people_xt;

1 row created.

SQL>
SQL> SELECT SYS_NC_OID$, name FROM people
 2 MINUS
 3 SELECT SYS_NC_OID$, name FROM people2;

no rows selected

16.6 Performance Hints When Using the
ORACLE_DATAPUMP Access Driver

This topic describes performance hints when using the ORACLE_DATAPUMP access
driver.

When you monitor performance, the most important measurement is the elapsed time
for a load. Other important measurements are CPU usage, memory usage, and I/O
rates.

You can alter performance by increasing or decreasing the degree of parallelism. The
degree of parallelism indicates the number of access drivers that can be started to
process the data files. The degree of parallelism enables you to choose on a scale
between slower load with little resource usage and faster load with all resources
utilized. The access driver cannot automatically tune itself, because it cannot
determine how many resources you want to dedicate to the access driver.

An additional consideration is that the access drivers use large I/O buffers for better
performance. On databases with shared servers, all memory used by the access
drivers comes out of the system global area (SGA). For this reason, you should be
careful when using external tables on shared servers.

16.7 Restrictions When Using the ORACLE_DATAPUMP
Access Driver

This topic describes the restrictions of the ORACLE_DATAPUMP access driver.

Specifically:

• Exporting and importing of external tables with encrypted columns is not
supported.

• Column processing: By default, the external tables feature fetches all columns
defined for an external table. This guarantees a consistent result set for all
queries. However, for performance reasons you can decide to process only the
referenced columns of an external table, thus minimizing the amount of data
conversion and data handling required to execute a query. In this case, a row that
is rejected because a column in the row causes a data type conversion error will
not get rejected in a different query if the query does not reference that column.
You can change this column-processing behavior with the ALTER TABLE command.

• An external table cannot load data into a LONG column.

Chapter 16
Performance Hints When Using the ORACLE_DATAPUMP Access Driver

16-19

• Handling of byte-order marks during a load: In an external table load for which the
data file character set is UTF8 or UTF16, it is not possible to suppress checking
for byte-order marks. Suppression of byte-order mark checking is necessary only if
the beginning of the data file contains binary data that matches the byte-order
mark encoding. (It is possible to suppress byte-order mark checking with
SQL*Loader loads.) Note that checking for a byte-order mark does not mean that
a byte-order mark must be present in the data file. If no byte-order mark is present,
then the byte order of the server platform is used.

• The external tables feature does not support the use of the backslash (\) escape
character within strings. See Use of the Backslash Escape Character.

• When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by
the access parameter parser. If a reserved word is used as an identifier, then it
must be enclosed in double quotation marks.

16.8 Reserved Words for the ORACLE_DATAPUMP Access
Driver

This topic describes the reserved words for the ORACLE_DATAPUMP access driver.

When identifiers (for example, column or table names) are specified in the external
table access parameters, certain values are considered to be reserved words by the
access parameter parser. If a reserved word is used as an identifier, then it must be
enclosed in double quotation marks. The following are the reserved words for the
ORACLE_DATAPUMP access driver:

• BADFILE

• COMPATIBLE

• COMPRESSION

• DATAPUMP

• DEBUG

• ENCRYPTION

• INTERNAL

• JOB

• LATEST

• LOGFILE

• NOBADFILE

• NOLOGFILE

• PARALLEL

• TABLE

• VERSION

• WORKERID

Chapter 16
Reserved Words for the ORACLE_DATAPUMP Access Driver

16-20

17
ORACLE_HDFS and ORACLE_HIVE
Access Drivers

With external tables, you can access data stored in HDFS and Hive tables on Hadoop
and Hive clients as if that data was stored in tables in an Oracle Database.

The properties used to create an external table that uses the ORACLE_HDFS or
ORACLE_HIVE access drivers are specified in a SQL CREATE TABLE ORGANIZATION
EXTERNAL statement, in the opaque_format_spec clause of ACCESS PARAMETERS.

• Syntax Rules for Specifying Properties
The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files.

• ORACLE_HDFS Access Parameters
The access parameters for the ORACLE_HDFS access driver provide the metadata
needed to locate the data in HDFS and generate a Hive table over it.

• ORACLE_HIVE Access Parameters
ORACLE_HIVE retrieves metadata about external data sources from the Hive
catalog.

• Descriptions of com.oracle.bigdata Parameters
This topic provides descriptions of the com.oracle.bigdata parameters used by
the ORACLE_HIVE and ORACLE_HDFS access drivers.

Related Topics

• External Tables Examples
Learn from these examples how to use the ORACLE_LOADER,
ORACLE_DATAPUMP,ORACLE_HDFS, and ORACLE_HIVE access drivers to query data in
Oracle Database and Big Data.

17.1 Syntax Rules for Specifying Properties
The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files.

The syntax must obey these rules:

• The format of each keyword-value pair is a keyword, a colon or equal sign, and a
value. The following are valid keyword-value pairs:

keyword=value
keyword:value

The value is everything from the first non-whitespace character after the separator
to the end of the line. Whitespace between the separator and the value is ignored.
Trailing whitespace for the value is retained.

• A property definition can be on one line or multiple lines.

17-1

• A line terminator is a line feed, a carriage return, or a carriage return followed by
line feeds.

• When a property definition spans multiple lines, then precede the line terminators
with a backslash (escape character), except on the last line. In this example, the
value of the Keyword1 property is Value part 1 Value part 2 Value part 3.

Keyword1= Value part 1 \
 Value part 2 \
 Value part 3

• You can create a logical line by stripping each physical line of leading whitespace
and concatenating the lines. The parser extracts the property names and values
from the logical line.

• You can embed special characters in a property name or property value by
preceding a character with a backslash (escape character), indicating the
substitution. Table 17-1 describes the special characters.

Table 17-1 Special Characters in Properties

Escape Sequence Character

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Line feed (\u000a)

\f Form feed (\u000c)

\r Carriage return (\u000d)

\" Double quote (\u0022)

\' Single quote (\u0027)

\\ Backslash (\u005c)

When multiple backslashes are at the end of the line, the parser
continues the value to the next line only for an odd number of
backslashes.

\uxxxx 2-byte, big-endian, Unicode code point.

When a character requires two code points (4 bytes), the parser expects
\u for the second code point.

17.2 ORACLE_HDFS Access Parameters
The access parameters for the ORACLE_HDFS access driver provide the metadata
needed to locate the data in HDFS and generate a Hive table over it.

• Default Parameter Settings for ORACLE_HDFS
Describes default parameter settings for ORACLE_HDFS.

• Optional Parameter Settings for ORACLE_HDFS
ORACLE_HDFS supports optional com.oracle.bigdata parameters, which you can
specify in the opaque_format_spec clause.

17.2.1 Default Parameter Settings for ORACLE_HDFS
Describes default parameter settings for ORACLE_HDFS.

Chapter 17
ORACLE_HDFS Access Parameters

17-2

If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HDFS
uses the following default values:

com.oracle.bigdata.rowformat=DELIMITED
com.oracle.bigdata.fileformat=TEXTFILE
com.oracle.bigdata.overflow={"action":"error"}
com.oracle.bigdata.erroropt={"action":"setnull"}

17.2.2 Optional Parameter Settings for ORACLE_HDFS
ORACLE_HDFS supports optional com.oracle.bigdata parameters, which you can
specify in the opaque_format_spec clause.

Specifically:

• com.oracle.bigdata.colmap

• com.oracle.bigdata.erroropt

• com.oracle.bigdata.fields

• com.oracle.bigdata.fileformat

• com.oracle.bigdata.log.exec

• com.oracle.bigdata.log.qc

• com.oracle.bigdata.overflow

• com.oracle.bigdata.rowformat

The following example shows a CREATE TABLE statement in which multiple access
parameters are set.

Example 17-1 Setting Multiple Access Parameters for ORACLE_HDFS

CREATE TABLE ORDER (CUST_NUM VARCHAR2(10),
 ORDER_NUM VARCHAR2(20),
 ORDER_DATE DATE,
 ITEM_CNT NUMBER,
 DESCRIPTION VARCHAR2(100),
 ORDER_TOTAL (NUMBER8,2)) ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS
 ACCESS PARAMETERS (
 com.oracle.bigdata.fields: (CUST_NUM, \
 ORDER_NUM, \
 ORDER_DATE, \
 ORDER_LINE_ITEM_COUNT, \
 DESCRIPTION, \
 ORDER_TOTAL)
 com.oracle.bigdata.colMap: {"col":"item_cnt", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INVALID NUM", \
 "col":["CUST_NUM","ORDER_NUM"]} , \
 {"action":"reject", \
 "col":"ORDER_TOTAL}]
)
 LOCATION ("hdfs:/usr/cust/summary/*"));

Chapter 17
ORACLE_HDFS Access Parameters

17-3

17.3 ORACLE_HIVE Access Parameters
ORACLE_HIVE retrieves metadata about external data sources from the Hive catalog.

The default mapping of Hive data to columns in the external table are usually
appropriate. However, some circumstances require special parameter settings, or you
might want to override the default values for reasons of your own.

• Default Parameter Settings for ORACLE_HIVE
Describes the default parameter settings for ORACLE_HIVE.

• Optional Parameter Settings for ORACLE_HIVE
ORACLE_HIVE supports optional com.oracle.bigdata parameters, which you can
specify in the opaque_format_spec clause.

17.3.1 Default Parameter Settings for ORACLE_HIVE
Describes the default parameter settings for ORACLE_HIVE.

If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HIVE
uses the following default values:

com.oracle.bigdata.tablename=name of external table
com.oracle.bigdata.overflow={"action":"error"}
com.oracle.bigdata.erroropt={"action":"setnull"}

17.3.2 Optional Parameter Settings for ORACLE_HIVE
ORACLE_HIVE supports optional com.oracle.bigdata parameters, which you can
specify in the opaque_format_spec clause.

Specifically:

• com.oracle.bigdata.colmap

• com.oracle.bigdata.erroropt

• com.oracle.bigdata.log.exec

• com.oracle.bigdata.log.qc

• com.oracle.bigdata.overflow

• com.oracle.bigdata.tablename

The following example shows a CREATE TABLE statement in which multiple access
parameters are set.

Example 17-2 Setting Multiple Access Parameters for ORACLE_HIVE

CREATE TABLE ORDER (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),
 order_total (NUMBER8,2)) ORGANIZATION EXTERNAL
(TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.tableName: order_db.order_summary

Chapter 17
ORACLE_HIVE Access Parameters

17-4

 com.oracle.bigdata.colMap: {"col":"ITEM_CNT", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"ERROR", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INV_NUM" , \
 "col":["CUST_NUM","ORDER_NUM"]} ,\
 {"action":"reject", \
 "col":"ORDER_TOTAL}]
));

17.4 Descriptions of com.oracle.bigdata Parameters
This topic provides descriptions of the com.oracle.bigdata parameters used by the
ORACLE_HIVE and ORACLE_HDFS access drivers.

• com.oracle.bigdata.colmap

• com.oracle.bigdata.datamode

• com.oracle.bigdata.erroropt

• com.oracle.bigdata.fields

• com.oracle.bigdata.fileformat

• com.oracle.bigdata.log.exec

• com.oracle.bigdata.log.qc
Specifies how the access driver generates log files for a query.

• com.oracle.bigdata.overflow

• com.oracle.bigdata.rowformat

• com.oracle.bigdata.tablename
The Hive parameter com.oracle.bigdata.tablename identifies the Hive table that
contains the source data.

17.4.1 com.oracle.bigdata.colmap
Maps a column in the source data to a column in the Oracle external table. You can
define one or multiple pairs of column mappings. Use this property when the source
field names exceed the maximum length of Oracle column names, or when you want
to use different column names in the external table.

Default Value

A column in the external table with the same name as the Hive column

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

colmap:

com.oracle.bigdata.colmap
=

:

colmap_entry

[colmap_entry

,

]

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-5

colmap_entry:

{ "col" : name , "field" : name }

Semantics

"col":name

"col": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a column in the Oracle external table. It is case sensitive and must
be enclosed in quotation marks.

"field":name

"field": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a field in the data source. It is not case sensitive, but it must be
enclosed in quotation marks. See Syntax Rules for Specifying Properties.

Examples

This example maps a Hive column named ORDER_LINE_ITEM_COUNT to an Oracle
column named ITEM_CNT:

com.oracle.bigdata.colMap={"col":"ITEM_CNT", \
 "field":"order_line_item_count"}

The following example shows the mapping of multiple columns.

com.oracle.bigdata.colmap:[{"col":"KOL1", "field":"PROJECT_NAME"},
{ "col":"KOL2","field":"wsdl_name"},{"col":"KOL3", "field":"method"}]

17.4.2 com.oracle.bigdata.datamode
Specifies the method that SmartScan uses to scan a Hadoop data source. The
method can make a significant difference in performance.

Default Value

automatic

Syntax

A JSON document with the keyword-value pairs shown in the following diagram:

datamode:

com.oracle.bigdata.datamode
=

:

c

java

automatic

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-6

Semantics

automatic

Automatically selects the appropriate mode, based on the metadata. It selects c mode
if possible, or java mode if the data contains formats that are not supported by c
mode.

c

Uses Java to read the file buffers, but C code to process the data and convert it to
Oracle format. Specify this mode for delimited data.

If the data contains formats that the C code does not support, then it returns an error.

java

Uses the Java SerDes and InputFormats to process the data and convert it to Oracle
format. Specify this mode for Parquet, RCFile, and other data formats that require a
SerDe.

17.4.3 com.oracle.bigdata.erroropt
Describes how to handle errors that occur while the value of a column is calculated.

Default Value

{"action":"setnull"}

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

erroropt:

com.oracle.bigdata.erroropt
=

:

error_element

[error_element

,

]

error_element:

{ "action" :

"reject"

"setnull"

"replace" , "value" : string

, "col" :

name

[name

,

]

}

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-7

Semantics

The "action", "reject", "setnull", "replace", "value", and "col" keywords must
be lowercase and enclosed in quotation marks. See Syntax Rules for Specifying
Properties.

"action":value

value: One of these keywords:

• "reject": Does not load any rows.

• "setnull": Sets the column to NULL.

• "replace": Sets the column to the specified value.

"value":string

string: Replaces a bad value in the external table. It must be enclosed in quotation
marks.

"col":name

name: Identifies a column in an external table. The column name is case sensitive,
must be enclosed in quotation marks, and can be listed only once.

Example

This example sets the value of the CUST_NUM or ORDER_NUM columns to INVALID if the
Hive value causes an error. For any other columns, an error just causes the Hive value
to be rejected.

com.oracle.bigdata.errorOpt: {"action":"replace",\
 "value":"INVALID", \
 "col":["CUST_NUM","ORDER_NUM"]

17.4.4 com.oracle.bigdata.fields
Lists the field names and data types of the data source.

Default Value

Not defined

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

fields:

com.oracle.bigdata.fields
=

:
(field_name data_type

COMMENT col_comment

,

)

data_type:

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-8

primitive_type

ARRAY < data_type >

MAP < primitive_type , data_type >

STRUCT < field_name data_type

COMMENT col_comment

,

>

UNIONTYPE < data_type

,

>

primitive_type:

TINYINT

SMALLINT

INT

BIGINT

BOOLEAN

FLOAT

DOUBLE

STRING

BINARY

TIMESTAMP

DECIMAL

Semantics

The syntax is the same as a field list for a Hive table. If you split the field list across
multiple lines, you must use a backslash to escape the new line characters.

field_name

The name of the Hive field. Use only alphanumeric characters and underscores (_).
The maximum length is 128 characters. Field names are case-insensitive.

data_type

The data type of the Hive field. Optional; the default is STRING. The character set must
be UTF8.

The data type can be complex or primitive:

Hive Complex Data Types

• ARRAY: Indexable list

• MAP: Key-value tuples

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-9

• STRUCT: List of elements

• UNIONTYPE: Multiple data types

Hive Primitive Data Types

• INT: 4 byte integer

• BIGINT: 8 byte integer

• SMALLINT: 2 byte integer

• TINYINT: 1 byte integer

• BOOLEAN: TRUE or FALSE

• FLOAT: single precision

• DOUBLE: double precision

• STRING: character sequence

See Also:

"Data Types" in the Apache Hive Language Manual at

https://cwiki.apache.org/confluence/display/Hive/LanguageManual
+Types

COMMENT col_comment

A string literal enclosed in single quotation marks, which is stored as metadata for the
Hive table (comment property of TBLPROPERTIES).

17.4.5 com.oracle.bigdata.fileformat
Describes the row format of the data source, based on the ROW FORMAT clause for a
Hive table generated by ORACLE_HDFS.

Default Value

TEXTFILE

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram.

fileformat:

com.oracle.bigdata.fileformat
=

:

SEQUENCEFILE

TEXTFILE

RCFILE

ORC

PARQUET

INPUTFORMAT input_class OUTPUTFORMAT output_class

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-10

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

Semantics

ORC

Optimized row columnar file format

PARQUET

Column-oriented, binary file format

RCFILE

Record columnar file format

SEQUENCEFILE

Compressed file format

TEXTFILE

Plain text file format

INPUTFORMAT

Identifies a Java class that can extract records from the data file.

OUTPUTFORMAT

Identifies a Java class that can format the output records in the desired format

17.4.6 com.oracle.bigdata.log.exec
Specifies how the access driver generates log files generated by the C code for a
query, when it is running as parallel processes on CDH.

The access driver does not create or write log files when executing on a Hadoop
cluster node; the parallel query processes write them. The log files from the Java code
are controlled by log4j properties, which are specified in the configuration file or the
access parameters.

Default Value

Not defined (no logging)

Syntax

[directory_object:]file_name_template

Semantics

directory_object

The Oracle directory object for the HDFS path on the Hadoop cluster where the log file
is created.

file_name_template

A string used to generate file names. The following table describes the optional
variables that you can use in the template.

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-11

Table 17-2 Variables for com.oracle.bigdata.log.exec

Variable Value

%p Operating system process identifier (PID)

%a A number that uniquely identifies the process

%% A percent sign (%)

Example

The following example generates log file names that include the PID and a unique
number, such as xtlogp_hive14_3413_57:

com.oracle.bigdata.log.exec= xtlogp_hive14_%p_%a

17.4.7 com.oracle.bigdata.log.qc
Specifies how the access driver generates log files for a query.

Default Value

Not defined (no logging)

Syntax

[directory_object:]file_name_template

Semantics

directory_object

Name of an Oracle directory object that points to the path where the log files are
written. If this value is omitted, then the logs are written to the default directory for the
external table.

file_name_template

A string used to generate file names. Table 17-3 describes the optional variables that
you can use in the string.

Table 17-3 Variables for com.oracle.bigdata.log.qc

Variable Value

%p Operating system process identifier (PID)

%% A percent sign (%)

Example

This example creates log file names that include the PID and a percent sign, such as
xtlogp_hive213459_%:

com.oracle.bigdata.log.qc= xtlogp_hive21%p_%%

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-12

17.4.8 com.oracle.bigdata.overflow
Describes how to handle string data that is too long for the columns in the external
table. The data source can be character or binary. For Hive, the data source can also
be STRUCT, UNIONTYPES, MAP, or ARRAY.

Default Value

{"action":"error"}

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram:

overflow ::=

com.oracle.bigdata.overflow
=

:

overflow_element

[overflow_element

,

]

overflow_element ::=

{ "action" :

"truncate"

"error"

, "col" :

name

[name

,

]

}

Semantics

The "action", "truncate", "error", and "col" tags must be lowercase and enclosed
in quotation marks. See Syntax Rules for Specifying Properties.

"action":value

The value of "action" can be one of the following keywords:

• truncate: Shortens the data to fit the column.

• error: Throws an error. The com.oracle.bigdata.erroropt property controls the result of
the error.

"col":name

name: Identifies a column in the external table. The name is case sensitive and must be
enclosed in quotation marks.

Example

This example truncates the source data for the DESCRIPTION column, if it exceeds the
column width:

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-13

com.oracle.bigdata.overflow={"action":"truncate", \
 "col":"DESCRIPTION"}

17.4.9 com.oracle.bigdata.rowformat
Provides the information the access driver needs to extract fields from the records in a
file.

Important:

The com.oracle.bigdata.rowformat is unrelated to the access parameter
syntax of traditional external tables that use "type ORACLE_LOADER."
There are keywords such as FIELDS, TERMINATED, and others that appear in
both clauses, but the commonality in naming is coincidental and does not
imply common functionality. The com.oracle.bigdata.rowformat access
parameter is passed without change to the default Hive serde. The Hive
serde to extract columns from rows is deliberately limited. Complex cases
are handled by specialized serdes.

Default Value

DELIMITED

Syntax

A JSON document with the keyword-value pairs is shown in the following diagram.

rowformat:

DELIMITED

FIELDS TERMINATED BY char

ESCAPED BY char

COLLECTION ITEMS TERMINATED BY char

MAP KEYS TERMINATED BY char

LINES TERMINATED BY char

NULL DEFINED AS char

SERDE serde_name

WITH SERDEPROPERTIES (prop_list)

Semantics

DELIMITED

Describes the characters used to delimit the fields in a record:

• FIELDS TERMINATED BY: The character that delimits every field in the record. The
optional ESCAPED BY character precedes the delimit character when it appears
within a field value.

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-14

• COLLECTION ITEMS TERMINATED BY: The character that marks the end of an array
element. Used when a column is a collection or a nested record. In this case the
resulting value will be a JSON array.

• MAP KEYS TERMINATED BY: The character that marks the end of an entry in a MAP
field. Used when a column is a collection or a nested record. The resulting value is
a JSON object.

• LINES TERMINATED BY: The character that marks the end of a record.

• NULL DEFINED AS: The character that indicates a null value.

SERDE

Identifies a SerDe that can parse the data and any properties of the SerDe that the
access driver might need.

Example

This example specifies a SerDe for an Avro container file:

com.oracle.bigdata.rowformat:
 SERDE'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

The next example specifies a SerDe for a file containing regular expressions:

com.oracle.bigdata.rowformat=\
 SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' \
 WITH SERDEPROPERTIES \
 ("input.regex" = "(\\\\d{6}) (\\\\d{5}) (.{29}) .*")

17.4.10 com.oracle.bigdata.tablename
The Hive parameter com.oracle.bigdata.tablename identifies the Hive table that
contains the source data.

Default Value

DEFAULT.external_table_name

Syntax

[hive_database_name.]table_name

Semantics

The maximum length of hive_database_name and table_name is 128 UTF-8
characters (512 bytes).

hive_database_name: The Hive database where the source data resides. DEFAULT is
the name of the initial Hive database.

table_name: The Hive table with the data. If you omit table_name, then ORACLE_HIVE
searches for a Hive table with the same name as the external table. Table names are
case-insensitive.

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-15

Example

This setting indicates that the source data is in a table named ORDER_SUMMARY in the
Hive ORDER_DB database:

com.oracle.bigdata.tablename ORDER_DB.ORDER_SUMMARY

Chapter 17
Descriptions of com.oracle.bigdata Parameters

17-16

18
External Tables Examples

Learn from these examples how to use the ORACLE_LOADER,
ORACLE_DATAPUMP,ORACLE_HDFS, and ORACLE_HIVE access drivers to query data in
Oracle Database and Big Data.

• Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables
This topic describes using the ORACLE_LOADER access driver to create partitioned
external tables.

• Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables
This topic describes using the ORACLE_LOADER access driver to create partitioned
hybrid tables.

• Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External
Tables
The example in this section shows how to create a subpartitioned external table.

• Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables
The example provided in this section shows how to create a partitioned external
table using the ORACLE_HDFS access driver.

• Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables
To create a partitioned external table for an ORACLE_HIVE table, you need a
partitioned Hive external table.

• Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned
External Tables
To confirm if a row in a partitioned external table is in the correct partition, use the
ORA_PARTITION_VALIDATION function.

• Loading LOBs From External Tables
External tables are particularly useful for loading large numbers of records from a
single file, so that each record appears in its own row in the table.

• Loading CSV Files From External Tables
This topic provides examples of how to load CSV files from external tables under
various conditions.

18.1 Using the ORACLE_LOADER Access Driver to Create
Partitioned External Tables

This topic describes using the ORACLE_LOADER access driver to create partitioned
external tables.

Example 18-1 Using ORACLE_LOADER to Create a Partitioned External Table

This example assumes there are four data files with the following content:

p1a.dat:
1, AAAAA Plumbing,01372,
28, Sparkly Laundry,78907,

18-1

13, Andi's Doughnuts,54570,

p1b.dat:
51, DIY Supplies,61614,
87, Fast Frames,22201,
89, Friendly Pharmacy,89901,

p2.dat:
121, Pleasant Pets,33893,
130, Bailey the Bookmonger,99915,
105, Le Bistrot du Chat Noir,94114,

p3.dat:
210, The Electric Eel Diner,07101,
222, Everyt'ing General Store,80118,
231, Big Rocket Market,01754,

There are three fields in the data file: CUSTOMER_NUMBER, CUSTOMER_NAME and
POSTAL_CODE. The external table uses range partitioning on CUSTOMER_NUMBER to
create three partitions.

• Partition 1 is for customer_number less than 100

• Partition 2 is for customer_number less than 200

• Partition 3 is for customer_number less than 300

Note that the first partition has two data files while the other partitions only have
one. The following is the output from SQLPlus for creating the file.

SQL> create table customer_list_xt
 2 (CUSTOMER_NUMBER number, CUSTOMER_NAME VARCHAR2(50), POSTAL_CODE
CHAR(5))
 3 organization external
 4 (type oracle_loader default directory def_dir1)
 5 partition by range(CUSTOMER_NUMBER)
 6 (
 7 partition p1 values less than (100) location('p1a.dat', 'p1b.dat'),
 8 partition p2 values less than (200) location('p2.dat'),
 9 partition p3 values less than (300) location('p3.dat')
 10);

Table created.
SQL>

The following is the output from SELECT * for the entire table:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_xt
 3 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 54570

Chapter 18
Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables

18-2

 28 Sparkly Laundry 78907
 51 DIY Supplies 61614
 87 Fast Frames 22201
 89 Friendly Pharmacy 89901
 105 Le Bistrot du Chat Noir 94114
 121 Pleasant Pets 33893
 130 Bailey the Bookmonger 99915
 210 The Electric Eel Diner 07101
 222 Everyt'ing General Store 80118
 231 Big Rocket Market 01754

12 rows selected.

SQL>

The following query should only read records from the first partition:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_xt
 3 where customer_number < 20
 4 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 54570

2 rows selected.

SQL>

The following query specifies the partition to read as part of the SELECT statement.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_xt partition (p1)
 3 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 54570
 28 Sparkly Laundry 78907
 51 DIY Supplies 61614
 87 Fast Frames 22201
 89 Friendly Pharmacy 89901

6 rows selected.

SQL>

Chapter 18
Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables

18-3

18.2 Using the ORACLE_LOADER Access Driver to Create
Partitioned Hybrid Tables

This topic describes using the ORACLE_LOADER access driver to create partitioned
hybrid tables.

Hybrid Partitioned Tables is a feature that extends Oracle Partitioning by allowing
some partitions to reside in database segments and some partitions in external files or
sources. This significantly enhances functionality of partitioning for Big Data SQL
where large portions of a table can reside in external partitions.

Example 18-2 Example

Here is an example of a statement for creating a partitioned hybrid l table:

CREATE TABLE hybrid_pt (time_id date, customer number)
 TABLESPACE TS1
 EXTERNAL PARTITION ATTRIBUTES (TYPE ORACLE_LOADER
 DEFAULT DIRECTORY data_dir0
 ACCESS PARAMETERS(FIELDS TERMINATED BY
',')
 REJECT LIMIT UNLIMITED)
PARTITION by range (time_id)
(
 PARTITION century_18 VALUES LESS THAN ('01-01-1800')
 EXTERNAL, <-- empty
external partition
 PARTITION century_19 VALUES LESS THAN ('01-01-1900')
 EXTERNAL DEFAULT DIRECTORY data_dir1 LOCATION (‘century19_data.txt'),
 PARTITION century_20 VALUES LESS THAN ('01-01-2000')
 EXTERNAL LOCATION (‘century20_data.txt'),
 PARTITION year_2000 VALUES LESS THAN ('01-01-2001') TABLESPACE TS2,
 PARTITION pmax VALUES LESS THAN (MAXVALUE)
);

In this example, the table contains both internal and external partitions. The default
tablespace for internal partitions in the table is TS1. An EXTERNAL PARTITION
ATTRIBUTES clause is added for specifying parameters that apply, at the table level, to
the external partitions in the table. The clause is mandatory for hybrid partitioned
tables. In this case, external partitions are accessed through the ORACLE_LOADER
access driver, and the parameters required by the access driver are specified in the
clause. At the partition level, an EXTERNAL clause is specified in each external partition,
along with any external parameters applied to the partition.

In this example, century_18, century_19, and century_20 are external partitions.
century_18 is an empty partition since it does not contain a location. The default
directory for partition century_19 isdata_dir1, overriding the table level default
directory. The partition has a location data_dir1:century19_data.txt.
Partitioncentury_20 has location data_dir0:century20_data.txt, since the table
level default directory is applied to a location when a default directory is not specified
in a partition. Partitions year_2000 and pmax are internal partitions. Partition

Chapter 18
Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables

18-4

year_2000has a tablespace TS2. When a partition has noEXTERNAL clause or external
parameters specified in it, it is assumed to be an internal partition by default.

18.3 Using the ORACLE_DATAPUMP Access Driver to
Create Partitioned External Tables

The example in this section shows how to create a subpartitioned external table.

It also shows how to use a virtual column to partition the table.

Example 18-3 Using the ORACLE_DATAPUMP Access Driver to Create
Partitioned External Tables

In this example, the dump files used are the same as those created in the previous
example using the ORACLE_LOADER access driver. However, in this example, in addition
to partitioning the data using customer_number, the data is subpartitioned using
postal_code. For every partition, there is a subpartition where the postal_code is
less than 50000 and another subpartition for all other values of postal_code. With
three partitions, each containing two subpartitions, a total of six files is required. To
create the files, use the SQL CREATE TABLE AS SELECT statement to select the correct
rows for the partition and then write those rows into the file for the ORACLE_DATAPUMP
driver.

The following statement creates a file with data for the first subpartition (postal_code
less than 50000) of partition p1 (customer_number less than 100).

SQL> create table customer_list_dp_p1_sp1_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p1_sp1.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p1)
 7 where to_number(postal_code) < 50000;

Table created.

SQL>

This statement creates a file with data for the second subpartition (all other values for
postal_code) of partition p1 (customer_number less than 100).

SQL> create table customer_list_dp_p1_sp2_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p1_sp2.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p1)
 7 where to_number(postal_code) >= 50000;

Table created.

Chapter 18
Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

18-5

The files for other partitions are created in a similar fashion, as follows:

SQL> create table customer_list_dp_p2_sp1_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p2_sp1.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p2)
 7 where to_number(postal_code) < 50000;

Table created.

SQL>
SQL> create table customer_list_dp_p2_sp2_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p2_sp2.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p2)
 7 where to_number(postal_code) >= 50000;

Table created.

SQL>
SQL> create table customer_list_dp_p3_sp1_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p3_sp1.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p3)
 7 where to_number(postal_code) < 50000;

Table created.

SQL>
SQL> create table customer_list_dp_p3_sp2_xt
 2 organization external
 3 (type oracle_datapump default directory def_dir1
location('p3_sp2.dmp'))
 4 as
 5 select customer_number, customer_name, postal_code
 6 from customer_list_xt partition (p3)
 7 where to_number(postal_code) >= 50000;

Table created.

SQL>

You can select from each of these external tables to verify that it has the data you
intended to write out. After you have executed the SQL CREATE TABLE AS SELECT
statement, you can drop these external tables.

Chapter 18
Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

18-6

To use a virtual column to partition the table, create the partitioned ORACLE_DATAPUMP
table. Again, the table is partitioned on the customer_number column and
subpartitioned on the postal_code column. The postal_code column is a character
field that contains numbers, but this example partitions it based on the numeric value,
not a character string. In order to do this, create a virtual column, postal_code_num,
whose value is the postal_code field converted to a NUMBER data type. The
SUBPARTITION clause uses the virtual column to determine the subpartition for the row.

SQL> create table customer_list_dp_xt
 2 (customer_number number,
 3 CUSTOMER_NAME VARCHAR2(50),
 4 postal_code CHAR(5),
 5 postal_code_NUM as (to_number(postal_code)))
 6 organization external
 7 (type oracle_datapump default directory def_dir1)
 8 partition by range(customer_number)
 9 subpartition by range(postal_code_NUM)
 10 (
 11 partition p1 values less than (100)
 12 (subpartition p1_sp1 values less than (50000)
location('p1_sp1.dmp'),
 13 subpartition p1_sp2 values less than (MAXVALUE)
location('p1_sp2.dmp')),
 14 partition p2 values less than (200)
 15 (subpartition p2_sp1 values less than (50000)
location('p2_sp1.dmp'),
 16 subpartition p2_sp2 values less than (MAXVALUE)
location('p2_sp2.dmp')),
 17 partition p3 values less than (300)
 18 (subpartition p3_sp1 values less than (50000)
location('p3_sp1.dmp'),
 19 subpartition p3_sp2 values less than (MAXVALUE)
location('p3_sp2.dmp'))
 20);

Table created.

SQL>

If you select all rows, then the data returned is the same as was returned in the
previous example using the ORACLE_LOADER access driver.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_dp_xt
 3 order by customer_number;

customer_number CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 54570
 28 Sparkly Laundry 78907
 51 DIY Supplies 61614
 87 Fast Frames 22201
 89 Friendly Pharmacy 89901

Chapter 18
Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

18-7

 105 Le Bistrot du Chat Noir 94114
 121 Pleasant Pets 33893
 130 Bailey the Bookmonger 99915
 210 The Electric Eel Diner 07101
 222 Everyt'ing General Store 80118
 231 Big Rocket Market 01754

12 rows selected.

SQL>

The WHERE clause can limit the rows read to a subpartition. The following query should
only read the first subpartition of the first partition.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_dp_xt
 3 where customer_number < 20 and postal_code_NUM < 39998
 4 order by customer_number;

customer_number CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372

1 row selected.

SQL>

You could also specify a specific subpartition in the query, as follows:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_dp_xt subpartition (p2_sp2) order by
customer_number;

customer_number CUSTOMER_NAME POSTA
--------------- -- -----
 105 Le Bistrot du Chat Noir 94114
 130 Bailey the Bookmonger 99915

2 rows selected.

SQL>

18.4 Using the ORACLE_HDFS Access Driver to Create
Partitioned External Tables

The example provided in this section shows how to create a partitioned external table
using the ORACLE_HDFS access driver.

Chapter 18
Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables

18-8

Example 18-4 Using the ORACLE_HDFS Access Driver to Create Partitioned
External Tables

In this example there are four data files stored in HDFS directory path "hdfs_pet/".

p1a.dat
1, AAAAA Plumbing,01372,
28, Sparkly Laundry,07101,
13, Andi'''s Doughnuts,01372,

p1b.dat
51, DIY Supplies,07101,
87, Fast Frames,01754,
89, Friendly Pharmacy,01372,

p2.dat
121, Pleasant Pets,01754,
130, Bailey the Bookmonger,01754,
105, Le Bistrot du Chat Noir,01754,

p3.dat
210, The Electric Eel Diner,07101,
222, Everyt'ing General Store,01372,
231, Big Rocket Market,01754,

For the purposes of this example, the data files are written to the HDFS directory using
the following:

hadoop dfs -mkdir hdfs_pet
hadoop dfs -put p1a.dat hdfs_pet/p1a.dat
hadoop dfs -put p1b.dat hdfs_pet/p1b.dat
hadoop dfs -put p2.dat hdfs_pet/p2.dat
hadoop dfs -put p3.dat hdfs_pet/p3.dat

The following is the CREATE TABLE command to create the partitioned external table:

create table customer_list_hdfs
 (CUSTOMER_NUMBER number, CUSTOMER_NAME VARCHAR2(50), POSTAL_CODE CHAR(5))
organization external
 (type oracle_hdfs
 default directory def_dir1
 access parameters
 (com.oracle.bigdata.cluster = hadoop_cl_1
 com.oracle.bigdata.rowformat = delimited fields terminated by ','))
partition by range(CUSTOMER_NUMBER)
(
 partition p1 values less than (100) location('hdfs_pet/p1a.dat',
'hdfs_pet/p1b.dat'),
 partition p2 values less than (200) location('hdfs_pet/p2.dat'),
 partition p3 values less than (300) location('hdfs_pet/p3.dat')
);

Chapter 18
Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables

18-9

The following query shows a SELECT operation from the external table:

SQL> select * from customer_list_hdfs order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 01372
 28 Sparkly Laundry 07101
 51 DIY Supplies 07101
 87 Fast Frames 01754
 89 Friendly Pharmacy 01372
 105 Le Bistrot du Chat Noir 01754
 121 Pleasant Pets 01754
 130 Bailey the Bookmonger 01754
 210 The Electric Eel Diner 07101
 222 Everyt'ing General Store 01372
 231 Big Rocket Market 01754

12 rows selected.

SQL>

You can also execute queries with a WHERE clause that excludes partitions that cannot
match the conditions in the WHERE clause from being read, as follows:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_hdfs
 3 where customer_number < 20
 4 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 1 AAAAA Plumbing 01372
 13 Andi's Doughnuts 01372

2 rows selected.

SQL>

You could also specify the partition you want to read as part of the FROM clause, as
shown in the following:

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_hdfs partition (p3)
 3 order by customer_number;

CUSTOMER_NUMBER CUSTOMER_NAME POSTA
--------------- -- -----
 210 The Electric Eel Diner 07101
 222 Everyt'ing General Store 01372
 231 Big Rocket Market 01754

Chapter 18
Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables

18-10

3 rows selected.

SQL>

18.5 Using the ORACLE_HIVE Access Driver to Create
Partitioned External Tables

To create a partitioned external table for an ORACLE_HIVE table, you need a partitioned
Hive external table.

Then you need to use the PL/SQL procedure
DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE(). Additionally, this example creates the
partitioned Hive table from the HDFS files used in the previous example. Before the
partitioned Hive table can be created, you must create an HDFS directory in which to
store the data.

Example 18-5 Using the ORACLE_HIVE Access Driver to Create Partitioned
External Tables

This examples creates the Hive table using the data files from the previous example
showing how to use ORACLE_HDFS to create partitioned external tables.. The following
commands are all performed inside of the Hive CLI so they use Hive syntax.

First, use Hive to create a Hive external table on top of the HDFS data files, as follows:

create external table customer_list_no_part (customer_number int,
 customer_name string,
 postal_code string)
 row format delimited fields terminated by ','
 stored as textfile
 location '/user/doc/hdfs_pet'

Then execute the following commands to tell Hive to create the partitions dynamically:

set hive.exec.dynamic.partition=true
set hive.exec.dynamic.partition.mode=nonstrict

Create the partitioned Hive table:

create table customer_list(CUSTOMER_NUMBER int,
 CUSTOMER_NAME string)
 partitioned by (postal_code string)
 row format delimited
 fields terminated by '\t'
 location '/user/doc/doc_pet'

Populate the hive table with data from table customer_list_no_part. This should
create the files for each partition with the correct rows.

insert overwrite table customer_list partition (postal_code) select * from
customer_list_no_part

Chapter 18
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

18-11

The Hive customer_list table is populated with the rows. as shown in the following
query:

select * from customer_list order by customer_number
1 AAAAA Plumbing 01372
13 Andi's Doughnuts 01372
28 Sparkly Laundry 07101
51 DIY Supplies 07101
87 Fast Frames 01754
89 Friendly Pharmacy 01372
105 Le Bistrot du Chat Noir 01754
121 Pleasant Pets 01754
130 Bailey the Bookmonger 01754
210 The Electric Eel Diner 07101
222 Everyt'ing General Store 01372
231 Big Rocket Market 01754

Now you can go back to SQL*Plus to create the partitioned external table inside the
Oracle database. First, use PL/SQL function
DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE() to create the external table. The arguments
are as follows:

1. the name of the Hadoop cluster

2. the name of the Hive user that owns the table

3. the name of the partitioned Hive table

4. a boolean value indicating whether you want the partition columns in the Hive
table to be included as columns in the external table

5. the name of the partitioned ORACLE_HIVE table that is created

6. a boolean value indicating whether the CREATE DDL is executed

7. a CLOB contains the CREATE DDL string

This example gets the CLOB for the CREATE DDL string and uses the
DBMS_OUTPUT.PUT_LINE() procedure to write it. Setting SERVEROUTPUT ON tells
SQL*Plus to display the data from the DBMS_OUTPUT.PUT_LINE() procedure. Setting
LINESIZE to 132 makes sure there are no line breaks at odd places when displaying
the data from the DBMS_OUTPUT.PUT_LINE() procedure.

SQL> SET LINESIZE 132
SQL> SET SERVEROUTPUT ON
SQL>
SQL> DECLARE
 2 DDLtxt clob;
 3 BEGIN
 4 dbms_hadoop.create_extddl_for_hive
 5 ('hadoop_cl_1', 'default', 'customer_list',
 6 TRUE, 'CUSTOMER_LIST_HIVE', TRUE, DDLtxt);
 7 dbms_output.put_line('DDL Text is : ' || DDLtxt);
 8 END;
 9 /
External table successfully created.
DDL Text is : CREATE TABLE "DOC"."CUSTOMER_LIST_HIVE" (customer_number
NUMBER, customer_name VARCHAR2(4000), postal_code

Chapter 18
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

18-12

VARCHAR2(4000)) ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
(
com.oracle.bigdata.cluster=hadoop_cl_1
com.oracle.bigdata.tablename=default.customer_list)
) REJECT LIMIT UNLIMITED
PARTITION BY
LIST (postal_code)
(
PARTITION "P_293620257" VALUES ('01372'),
PARTITION "P_292175793" VALUES ('01754'),
PARTITION "P_717839126"
VALUES ('07101')
)

Because Hive does not specify a maximum character count for STRING columns, the
column definition for the external table is VARCHAR2(4000). If you want a smaller
length for some columns, you can call the DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE()
procedure and specify that you do not want to execute the CREATE DDL. Then, you
can edit the CREATE statement returned in the CLOB to set the length of the VARCHAR2
columns to a more appropriate value.

Also, note that the numbers in the partition name can vary.

Now that the table is created, executing a SELECT * statement returns all of the rows.
Note that the SET LINESIZE executed above means that SQL*Plus uses 132 character
for customer_name and postal_code.

SQL> select * from customer_list_hive order by customer_number;

CUSTOMER_NUMBER

CUSTOMER_NAME

---POSTAL_CODE

--- 1
 AAAAA Plumbing
01372

 13
 Andi's Doughnuts
01372

 28
 Sparkly Laundry
07101

 51
 DIY Supplies
07101

 87

Chapter 18
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

18-13

 Fast Frames
01754

 89
 Friendly Pharmacy
01372

 105
 Le Bistrot du Chat Noir
01754

 121
 Pleasant Pets
01754

 130
 Bailey the Bookmonger
01754

 210
 The Electric Eel Diner
07101

 222
 Everyt'ing General Store
01372

 231
 Big Rocket Market
01754

12 rows selected.

SQL>

SQL execution uses the partition information to prune partitions that do not match the
criteria in the WHERE clause.

SQL> select customer_number, customer_name, postal_code
 2 from customer_list_hive
 3 where postal_code = '01754'
 4 order by customer_number;

CUSTOMER_NUMBER

CUSTOMER_NAME

---POSTAL_CODE

--- 87
 Fast Frames
01754

Chapter 18
Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

18-14

 105
 Le Bistrot du Chat Noir
01754

 121
 Pleasant Pets
01754

 130
 Bailey the Bookmonger
01754

 231
 Big Rocket Market
01754

5 rows selected.

SQL>

18.6 Using the ORA_PARTITION_VALIDATION Function to
Validate Partitioned External Tables

To confirm if a row in a partitioned external table is in the correct partition, use the
ORA_PARTITION_VALIDATION function.

When you use partitioned external tables, Oracle Database cannot enforce data
placement in a partition with the correct partition key definition. Using
ORA_PARTITION_VALIDATION can help you to correct data placement errors.

Example 18-6 Using ORA_PARTITION_VALIDATION for Partition Testing

When you use the ORA_PARTITION_VALIDATION function, you can obtain a list of
external table partition rows that are placed in the wrong partition. To demonstrate this
feature, this example shows a partition created with the wrong department set followed
by an example using the ORA_PARTITION_VALIDATION function to identify data in the
incorrect partition:

create or replace directory def_dir1 as '/tmp';

REM create the exact same data in files locally
REM
set feedback 1
spool /tmp/xp1_15.txt
select '12#dept_12#xp1_15#' from dual;
spool off

spool /tmp/xp2_30.txt
select '29#dept_29#xp2_30#' from dual;
spool off

spool /tmp/xp2_wrong.txt
select '99#dept_99#xp2_wrong#' from dual;

Chapter 18
Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External Tables

18-15

spool off

drop table ept purge;
create table ept(deptno number,dname char(14),loc char(13))
organization external
(type oracle_loader
 default directory def_dir1
 access parameters(
 records delimited by newline
 fields terminated by '#')
)
reject limit unlimited
partition by range (deptno)
(
 partition ep1 values less than (10),
 partition ep2 values less than (20) location ('xp1_15.txt'),
 partition epwrong values less than (30) location ('xp2_wrong.txt')
)
;

select pt.*, ora_partition_validation(rowid) from pt;

18.7 Loading LOBs From External Tables
External tables are particularly useful for loading large numbers of records from a
single file, so that each record appears in its own row in the table.

The following example shows how to perform such a load.

Example 18-7 Loading LOBs From External Tables

Suppose you define an external table, my_ext_table, as follows:

CREATE TABLE my_ext_table (id NUMBER, author VARCHAR2(30), created DATE,
text CLOB)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY MY_DIRECTORY
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY 0x'0A'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (id CHAR(10),
 author CHAR(30),
 created DATE "YYYY-MM-DD",
 text CHAR(131071)
)
)
 LOCATION (
 MY_DIRECTORY:'external.dmp'
)
);

Chapter 18
Loading LOBs From External Tables

18-16

The contents of the external.dmp file are as follows:

1,Roger,2015-08-08,The quick brown fox jumps over the lazy dog
2,John,2012-01-01,"The angry aligator, acting alone, ate the antelope"

The second line in the dump file requires quotation marks around the full text string;
otherwise the field would be terminated at the comma.

Note:

Although not a problem in the dump file being used in this example, if
something in the full text string contained quotation marks, then you would
enclose it in another set of quotation marks, as follows for the word alone:

2,John,2012-01-01,"The angry aligator, acting ""alone"", ate the
antelope"

If the full text might contain the record delimiter character (0x'0A', or newline), you can
specify a separate file for each document. External tables do not support filler fields,
so instead you must use a COLUMN TRANSFORMS clause to specify that the fname field
contains the name of the external file:

DROP TABLE my_ext_table2;

CREATE TABLE my_ext_table2 (id NUMBER, author VARCHAR2(30), created DATE,
text CLOB)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY MY_DIRECTORY
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY 0x'0A'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 (id CHAR(10),
 author CHAR(30),
 created DATE "YYYY-MM-DD",
 fname char(100)
)
 COLUMN TRANSFORMS (text FROM LOBFILE(fname) FROM (MY_DIRECTORY))
)
 LOCATION (
 'loader.txt'
)
);

Chapter 18
Loading LOBs From External Tables

18-17

Note:

The FROM (MY_DIRECTORY) clause is not actually necessary since it has
already been specified as the default directory. However it is being shown
here for example purposes because if the loader.txt file and the individual
CLOB files were in different locations, it would be needed.

Once the data is in an external table, you can either leave it there and perform normal
table operations (DML and most DDL) on the external table, or you can use the
external table as a staging table to get the data into a normal table. To create a new
normal (non-external) table, you could use the following SQL statement:

CREATE TABLE normaltable AS SELECT * FROM externaltable;

You can similarly use the following SQL statement to insert data into the new normal
table:

INSERT INTO normaltable AS SELECT * FROM externaltable;

18.8 Loading CSV Files From External Tables
This topic provides examples of how to load CSV files from external tables under
various conditions.

Some of the examples build on previous examples.

Example 18-8 Loading Data From CSV Files With No Access Parameters

This example requires the following conditions:

• The order of the columns in the table must match the order of fields in the data file.

• The records in the data file must be terminated by newline.

• The field in the records in the data file must be separated by commas (if field
values are enclosed in quotation marks, then the quotation marks are not removed
from the field).

• There cannot be any newline characters in the middle of a field.

The data for the external table is as follows:

events_all.csv
Winter Games,10-JAN-2010,10,
Hockey Tournament,18-MAR-2009,3,
Baseball Expo,28-APR-2009,2,
International Football Meeting,2-MAY-2009,14,
Track and Field Finale,12-MAY-2010,3,
Mid-summer Swim Meet,5-JUL-2010,4,
Rugby Kickoff,28-SEP-2009,6,

Chapter 18
Loading CSV Files From External Tables

18-18

The definition of the external table is as follows:

SQL> CREATE TABLE EVENTS_XT_1
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1 location ('events_all.csv'));

Table created.

The following shows a SELECT operation on the external table EVENTS_XT_1:

SQL> select START_DATE, EVENT, LENGTH
 2 from EVENTS_XT_1
 3 order by START_DATE;

START_DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10
12-MAY-10 Track and Field Finale 3
05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

SQL>

Example 18-9 Default Date Mask For the Session Does Not Match the Format of
Data Fields in the Data File

This example is the same as the previous example, except that the default date mask
for the session does not match the format of date fields in the data file. In the example
below, the session format for dates is DD-Mon-YYYY whereas the format of dates in the
data file is MM/DD/YYYY. If the external table definition does not have a date mask, then
the ORACLE_LOADER access driver uses the session date mask to attempt to convert the
character data in the data file to a date data type. ou specify an access parameter for
the date mask to use for all fields in the data file that are used to load date columns in
the external table.

The following is the contents of the data file for the external table:

events_all_date_fmt.csv
Winter Games,1/10/2010,10
Hockey Tournament,3/18/2009,3
Baseball Expo,4/28/2009,2
International Football Meeting,5/2/2009,14
Track and Field Finale,5/12/2009,3
Mid-summer Swim Meet,7/5/2010,4
Rugby Kickoff,9/28/2009,6

Chapter 18
Loading CSV Files From External Tables

18-19

The definition of the external table is as follows:

SQL> CREATE TABLE EVENTS_XT_2
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (fields date_format date mask "mm/dd/yyyy")
 8 location ('events_all_date_fmt.csv'));

Table created.

SQL>

The following shows a SELECT operation on the external table EVENTS_XT_2:

SQL> select START_DATE, EVENT, LENGTH
 2 from EVENTS_XT_2
 3 order by START_DATE;

START_DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14
12-MAY-09 Track and Field Finale 3
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10
05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

Example 18-10 Data is Split Across Two Data Files

This example is that same as the first example in this section except for the following:

• The data is split across two data files.

• Each data file has a row containing the names of the fields.

• Some fields in the data file are enclosed by quotation marks.

The FIELD NAMES ALL FILES tells the access driver that the first row in each file
contains a row with names of the fields in the file. The access driver matches the
names of the fields to the names of the columns in the table. This means the order of
the fields in the file can be different than the order of the columns in the table. If a field
name in the first row is not enclosed in quotation marks, then the access driver
uppercases the name before trying to find the matching column name in the table. If
the field name is enclosed in quotation marks, then it does not change the case of the
names before looking for a matching name.

Because the fields are enclosed in quotation marks, the access parameter requires the
CSV WITHOUT EMBEDDED RECORD TERMINATORS clause. This clause states the following:

• Fields in the data file are separated by commas.

Chapter 18
Loading CSV Files From External Tables

18-20

• If the fields are enclosed in double quotation marks, then the access driver
removes them from the field value.

• There are no new lines embedded in the field values (this option allows the access
driver to skip some checks that can slow the performance of SELECT operations on
the external table).

The two data files are as follows:

events_1.csv

"EVENT","START DATE","LENGTH",
"Winter Games", "10-JAN-2010", "10"
"Hockey Tournament", "18-MAR-2009", "3"
"Baseball Expo", "28-APR-2009", "2"
"International Football Meeting", "2-MAY-2009", "14"

events_2.csv

Event,Start date,Length,
Track and Field Finale, 12-MAY-2009, 3
Mid-summer Swim Meet, 5-JUL-2010, 4
Rugby Kickoff, 28-SEP-2009, 6

The external table definition is as follows:

SQL> CREATE TABLE EVENTS_XT_3
 2 ("START DATE" date,
 3 EVENT varchar2(30),
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (records field names all files
 8 fields csv without embedded record terminators)
 9 location ('events_1.csv', 'events_2.csv'));

Table created.

The following shows the result of a SELECT operation on the EVENTS_XT_3 external
table:

SQL> select "START DATE", EVENT, LENGTH
 2 from EVENTS_XT_3
 3 order by "START DATE";

START DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14
12-MAY-09 Track and Field Finale 3
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10

Chapter 18
Loading CSV Files From External Tables

18-21

05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

Example 18-11 Data Is Split Across Two Files and Only the First File Has a
Row of Field Names

This example is the same as example 3 except that only the 1st file has a row of field
names. The first row of the second file has real data. The RECORDS clause changes
to "field names first file".

The two data files are as follows:

events_1.csv (same as for example 3)

"EVENT","START DATE","LENGTH",
"Winter Games", "10-JAN-2010", "10"
"Hockey Tournament", "18-MAR-2009", "3"
"Baseball Expo", "28-APR-2009", "2"
"International Football Meeting", "2-MAY-2009", "14"

events_2_no_header_row.csv

Track and Field Finale, 12-MAY-2009, 3
Mid-summer Swim Meet, 5-JUL-2010, 4
Rugby Kickoff, 28-SEP-2009, 6

The external table definition is as follows:

SQL> CREATE TABLE EVENTS_XT_4
 2 ("START DATE" date,
 3 EVENT varchar2(30),
 4 LENGTH number)
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (records field names first file
 8 fields csv without embedded record terminators)
 9 location ('events_1.csv', 'events_2_no_header_row.csv'));

Table created.

The following shows a SELECT operation on the EVENTS_XT_4 external table:

SQL> select "START DATE", EVENT, LENGTH
 2 from EVENTS_XT_4
 3 order by "START DATE";

START DAT EVENT LENGTH
--------- ------------------------------ ----------
18-MAR-09 Hockey Tournament 3
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14

Chapter 18
Loading CSV Files From External Tables

18-22

12-MAY-09 Track and Field Finale 3
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10
05-JUL-10 Mid-summer Swim Meet 4

7 rows selected.

Example 18-12 The Order of the Fields in the File Match the Order of the
Columns in the Table

This example has the following conditions:

• The order of the fields in the file match the order of the columns in the table.

• Fields are separated by newlines and are optionally enclosed in double quotation
marks.

• There are fields that have embedded newlines in their value and those fields are
enclosed in double quotation marks.

The contents of the data files are as follows:

event_contacts_1.csv

Winter Games, 10-JAN-2010, Ana Davis,
Hockey Tournament, 18-MAR-2009, "Daniel Dube
Michel Gagnon",
Baseball Expo, 28-APR-2009, "Robert Brown"
Internation Football Meeting, 2-MAY-2009,"Pete Perez
Randall Barnes
Melissa Gray",

event_contacts_2.csv

Track and Field Finale, 12-MAY-2009, John Taylor,
Mid-summer Swim Meet, 5-JUL-2010, "Louise Stewart
Cindy Sanders"
Rugby Kickoff, 28-SEP-2009, "Don Nguyen
Ray Lavoie"

The table definition is as follows. The CSV WITH EMBEDDED RECORD TERMINATORS
clause tells the access driver how to handle fields enclosed by double quotation marks
that also have embedded new lines.

SQL> CREATE TABLE EVENTS_CONTACTS_1
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 CONTACT varchar2(120))
 5 ORGANIZATION EXTERNAL
 6 (default directory def_dir1
 7 access parameters (fields CSV with embedded record terminators)
 8 location ('event_contacts_1.csv', 'event_contacts_2.csv'));

Table created.

Chapter 18
Loading CSV Files From External Tables

18-23

The following shows the result of a SELECT operation on the EVENT_CONTACTS_1
external table:

SQL> column contact format a30
SQL> select START_DATE, EVENT, CONTACT
 2 from EVENTS_CONTACTS_1
 3 order by START_DATE;

START_DAT EVENT CONTACT
--------- ------------------------------ ------------------------------
18-MAR-09 Hockey Tournament Daniel Dube
 Michel Gagnon

28-APR-09 Baseball Expo Robert Brown
02-MAY-09 Internation Football Meeting Pete Perez
 Randall Barnes
 Melissa Gray

12-MAY-09 Track and Field Finale John Taylor
28-SEP-09 Rugby Kickoff Don Nguyen
 Ray Lavoie

10-JAN-10 Winter Games Ana Davis
05-JUL-10 Mid-summer Swim Meet Louise Stewart
 Cindy Sanders

7 rows selected.

Example 18-13 Not All Fields in the Data File Use Default Settings for the
Access Parameters

This example shows what to do when most field in the data file use default settings for
the access parameters but a few do not. Instead of listing the setting for all fields, this
example shows how you can set attributes for just the fields that are different from the
default. The differences are as follows:

• there are two date fields, one of which uses the session format, but
registration_deadline uses a different format

• registration_deadline also uses a value of NONE to indicate a null value.

The content of the data file is as follows:

events_reg.csv

Winter Games,10-JAN-2010,10,12/1/2009,
Hockey Tournament,18-MAR-2009,3,3/11/2009,
Baseball Expo,28-APR-2009,2,NONE
International Football Meeting,2-MAY-2009,14,3/1/2009
Track and Field Finale,12-MAY-2010,3,5/10/010
Mid-summer Swim Meet,5-JUL-2010,4,6/20/2010
Rugby Kickoff,28-SEP-2009,6,NONE

The table definition is as follows. The ALL FIELDS OVERRIDE clause allows you to
specify information for that field while using defaults for the remaining fields. The

Chapter 18
Loading CSV Files From External Tables

18-24

remaining fields have a data type of CHAR(255) and the field data is terminated by a
comma with a trimming option of LDRTRIM.

SQL> CREATE TABLE EVENT_REGISTRATION_1
 2 (EVENT varchar2(30),
 3 START_DATE date,
 4 LENGTH number,
 5 REGISTRATION_DEADLINE date)
 6 ORGANIZATION EXTERNAL
 7 (default directory def_dir1
 8 access parameters
 9 (fields all fields override
 10 (REGISTRATION_DEADLINE CHAR (10) DATE_FORMAT DATE MASK "mm/dd/yyyy"
 11 NULLIF REGISTRATION_DEADLINE = 'NONE'))
 12 location ('events_reg.csv'));

Table created.

The following shows the result of a SELECT operation on the EVENT_REGISTRATION_1
external table:

SQL> select START_DATE, EVENT, LENGTH, REGISTRATION_DEADLINE
 2 from EVENT_REGISTRATION_1
 3 order by START_DATE;

START_DAT EVENT LENGTH REGISTRAT
--------- ------------------------------ ---------- ---------
18-MAR-09 Hockey Tournament 3 11-MAR-09
28-APR-09 Baseball Expo 2
02-MAY-09 International Football Meeting 14 01-MAR-09
28-SEP-09 Rugby Kickoff 6
10-JAN-10 Winter Games 10 01-DEC-09
12-MAY-10 Track and Field Finale 3 10-MAY-10
05-JUL-10 Mid-summer Swim Meet 4 20-JUN-10

7 rows selected.

Chapter 18
Loading CSV Files From External Tables

18-25

Part IV
Other Utilities

Other Oracle data management utilities include the ADR Command Interpreter,
DBVERIFY, Oracle LogMiner, the DBMS_METADATA API, and the legacy data movement
utilities.

• ADRCI: ADR Command Interpreter
The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility is a
command-line tool that you use to manage Oracle Database diagnostic data.

• DBVERIFY: Offline Database Verification Utility
DBVERIFY is an external command-line utility that performs a physical data
structure integrity check.

• DBNEWID Utility
DBNEWID is a database utility that can change the internal database identifier
(DBID) and the database name (DBNAME) for an operational database.

• Using LogMiner to Analyze Redo Log Files
Oracle LogMiner, which is part of Oracle Database, enables you to query online
and archived redo log files through a SQL interface.

• Using the Metadata APIs
The DBMS_METADATA APIs enable you to check and update object metadata.

• Original Export
The original Export utility (exp) writes data from an Oracle database into an
operating system file in binary format.

• Original Import
The original Import utility (imp) imports dump files that were created using the
original Export utility.

19
ADRCI: ADR Command Interpreter

The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility is a
command-line tool that you use to manage Oracle Database diagnostic data.

Note:

Do not use UIDRVCI.exe file as it is used to access diagnostic data.

• About the ADR Command Interpreter (ADRCI) Utility
ADRCI is a command-line tool that is part of the fault diagnosability infrastructure
introduced in Oracle Database 11g.

• Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of
terms that Oracle uses for the ADRCI, and the Oracle Database fault
diagnosability infrastructure.

• Starting ADRCI and Getting Help
You can use ADRCI in interactive mode or batch mode.

• Setting the ADRCI Homepath Before Using ADRCI Commands
When diagnosing a problem, you may want to work with diagnostic data from
multiple database instances or components, or you may want to focus on
diagnostic data from one instance or component.

• Viewing the Alert Log
The alert log is written as both an XML-formatted file and as a text file. You can
view either format of the file with any text editor, or you can run an ADRCI
command to view the XML-formatted alert log with the XML tags omitted.

• Finding Trace Files
ADRCI enables you to view the names of trace files that are currently in the
automatic diagnostic repository (ADR).

• Viewing Incidents
The ADRCI SHOW INCIDENT command displays information about open incidents.

• Packaging Incidents
You can use ADRCI commands to package one or more incidents for transmission
to Oracle Support for analysis.

• ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository
Command Interpreter (ADRCI).

• Troubleshooting ADRCI
Describes some common ADRCI error messages.

19-1

19.1 About the ADR Command Interpreter (ADRCI) Utility
ADRCI is a command-line tool that is part of the fault diagnosability infrastructure
introduced in Oracle Database 11g.

ADRCI enables you to:

• View diagnostic data within the Automatic Diagnostic Repository (ADR).

• View Health Monitor reports.

• Package incident and problem information into a zip file for transmission to Oracle
Support.

Diagnostic data includes incident and problem descriptions, trace files, dumps, health
monitor reports, alert log entries, and more.

ADR data is secured by operating system permissions on the ADR directories, hence
there is no need to log in to ADRCI.

ADRCI has a rich command set, and can be used in interactive mode or within scripts.

Note:

The easier and recommended way to manage diagnostic data is with the
Oracle Enterprise Manager Support Workbench (Support Workbench).
ADRCI provides a command-line alternative to most of the functionality of the
Support Workbench, and adds capabilities such as listing and querying trace
files.

See Oracle Database Administrator's Guide for complete information about
the Support Workbench.

19.2 Definitions for Oracle Database ADRC
To understand how to diagnose Oracle Database problems, learn the definitions of
terms that Oracle uses for the ADRCI, and the Oracle Database fault diagnosability
infrastructure.

The following terms are associated with the Oracle Database automatic diagnostic
repository incident fault diagnosability infrastructure (ADRCI), and the Oracle
Database fault diagnosability infrastructure:

Automatic Diagnostic Repository (ADR)

The Automatic Diagnostic Repository (ADR) is a file-based repository for database
diagnostic data such as traces, dumps, the alert log, health monitor reports, and more.
It has a unified directory structure across multiple instances and multiple products.
Beginning with Oracle Database 11g and later releases, Oracle Automatic Storage
Management (Oracle ASM), and other Oracle Database products or components store
all diagnostic data in the ADR. Each instance of each product stores diagnostic data
underneath its own ADR home directory. For example, in an Oracle Real Application
Clusters (Oracle RAC) environment with shared storage and Oracle ASM, each
database instance and each Oracle ASM instance has a home directory within the

Chapter 19
About the ADR Command Interpreter (ADRCI) Utility

19-2

ADR. The ADR's unified directory structure enables customers and Oracle Support to
correlate and analyze diagnostic data across multiple instances and multiple products.

Problem

A problem is a critical error in the database. Critical errors include internal errors,
such as ORA-00600 and other severe errors, such as ORA-07445 (operating system
exception) or ORA-04031 (out of memory in the shared pool). Problems are tracked in
the ADR. Each problem has a problem key and a unique problem ID.

Incident

An incident is a single occurrence of a problem. When a problem occurs multiple
times, an incident is created for each occurrence. Incidents are tracked in the ADR.
Each incident is identified by a numeric incident ID, which is unique within the ADR.
When an incident occurs, the database makes an entry in the alert log, sends an
incident alert to Oracle Enterprise Manager, gathers diagnostic data about the
incident in the form of dump files (incident dumps), tags the incident dumps with the
incident ID, and stores the incident dumps in an ADR subdirectory created for that
incident.

Diagnosis and resolution of a critical error usually starts with an incident alert. You can
obtain a list of all incidents in the ADR with an ADRCI command. Each incident is
mapped to a single problem only.

Incidents are flood-controlled, so that a single problem does not generate too many
incidents and incident dumps.

Problem Key

Every problem has a problem key, which is a text string that includes an error code
(such as ORA-600) and in some cases, one or more error parameters. Two incidents
are considered to have the same root cause if their problem keys match.

Incident Package

An incident package (Package) is a collection of data about incidents for one or more
problems. Before sending incident data to Oracle Support, you must collect the date
into a package, using the Incident Packaging Service (IPS). After a package is
created, you can add external files to the package, remove selected files from the
package, or scrub (edit) selected files in the package to remove sensitive data.

A package is a logical construct only, until you create a physical file from the package
contents. That is, an incident package starts out as a collection of metadata in the
ADR. As you add and remove package contents, only the metadata is modified. When
you are ready to upload the data to Oracle Support, you create a physical package by
using ADRCI, which saves the data into a zip file. You can then upload the zip file to
Oracle Support.

Finalizing

Before ADRCI can generate a physical package from a logical package, the package
must be finalized. This means that other components are called to add any correlated
diagnostic data files to the incidents already in this package. Finalizing also adds
recent trace files, alert log entries, Health Monitor reports, SQL test cases, and
configuration information. This step is run automatically when a physical package is
generated, and can also be run manually using the ADRCI utility. After manually

Chapter 19
Definitions for Oracle Database ADRC

19-3

finalizing a package, you can review the files that were added and then remove or edit
any that contain sensitive information.

ADR Home

An ADR home is the root directory for all diagnostic data—traces, dumps, alert log,
and so on—for a particular instance of a particular Oracle product or component. For
example, in an Oracle RAC environment with Oracle ASM, each database instance
and each Oracle ASM instance has an ADR home. All ADR homes share the same
hierarchical directory structure. Some of the standard subdirectories in each ADR
home include alert (for the alert log), trace (for trace files), and incident (for incident
information). All ADR homes are located within the ADR base directory.

Some ADRCI commands can work with multiple ADR homes simultaneously. The
current ADRCI homepath determines the ADR homes that are searched for
diagnostic data when an ADRCI command is issued.

ADR Base

To permit correlation of diagnostic data across multiple ADR homes, ADR homes are
grouped together under the same root directory called the ADR base. For example, in
an Oracle RAC environment, the ADR base could be on a shared disk, and the ADR
home for each Oracle RAC instance could be located under this ADR base.

The location of the ADR base for a database instance is set by the DIAGNOSTIC_DEST
initialization parameter. If this parameter is omitted or is null, the database sets it to a
default value.

When multiple database instances share an Oracle home, whether they are multiple
single instances or the instances of an Oracle RAC database, and when one or more
of these instances set ADR base in different locations, the last instance to start up
determines the default ADR base for ADRCI.

Homepath

All ADRCI commands operate on diagnostic data in the current ADR homes. More
than one ADR home can be current at any one time. Some ADRCI commands (such
as SHOW INCIDENT) search for and display diagnostic data from all current ADR homes,
while other commands require that only one ADR home be current, and display an
error message if more than one are current.

The ADRCI homepath determines the ADR homes that are current. It does so by
pointing to a directory within the ADR base hierarchy. If it points to a single ADR home
directory, that ADR home is the only current ADR home. If the homepath points to a
directory that is above the ADR home directory level in the hierarchy, all ADR homes
that are below the directory that is pointed to become current.

The homepath is null by default when ADRCI starts. This means that all ADR homes
under ADR base are current.

The SHOW HOME and SHOW HOMEPATH commands display a list of the ADR homes that
are current, and the SET HOMEPATH command sets the homepath.

Related Topics

• Oracle Database Administrator’s Guide About Incidents and Problems

• Oracle Database Administrator’s GuideAbout Correlated Diagnostic Data in
Incident Packages

Chapter 19
Definitions for Oracle Database ADRC

19-4

19.3 Starting ADRCI and Getting Help
You can use ADRCI in interactive mode or batch mode.

Details are provided in the following sections:

• Using ADRCI in Interactive Mode
ADRCI interactive mode prompts you to enter individual commands one at a time.

• Getting Help
Getting help with ADRCI.

• Using ADRCI in Batch Mode
Batch mode enables you to run a series of ADRCI commands at once, without
being prompted for input.

19.3.1 Using ADRCI in Interactive Mode
ADRCI interactive mode prompts you to enter individual commands one at a time.

To use ADRCI in interactive mode:

1. Ensure that the ORACLE_HOME and PATH environment variables are set properly.

On the Windows platform, these environment variables are set in the Windows
registry automatically upon installation. On other platforms, you must set and
check environment variables with operating system commands.

The PATH environment variable must include ORACLE_HOME/bin.

2. Enter the following command at the operating system command prompt:

ADRCI

The utility starts and displays the following prompt:

adrci>

3. Enter ADRCI commands, following each with the Enter key.

4. Enter one of the following commands to exit ADRCI:

EXIT
QUIT

19.3.2 Getting Help
Getting help with ADRCI.

With the ADRCI help system, you can:

• View a list of ADR commands.

• View help for an individual command.

• View a list of ADRCI command line options.

To view a list of ADRCI commands:

1. Start ADRCI in interactive mode.

See Using ADRCI in Interactive Mode for instructions.

Chapter 19
Starting ADRCI and Getting Help

19-5

2. At the ADRCI prompt, enter the following command:

HELP

To get help for a specific ADRCI command:

1. Start ADRCI in interactive mode.

See Using ADRCI in Interactive Mode for instructions.

2. At the ADRCI prompt, enter the following command:

HELP command

For example, to get help on the SHOW TRACEFILE command, enter the following:

HELP SHOW TRACEFILE

To view a list of command line options:

• Enter the following command at the operating system command prompt:

ADRCI -HELP

The utility displays output similar to the following:

Syntax:
 adrci [-help] [script=script_filename] [exec="command [;command;...]"]

Options Description (Default)

script script file name (None)
help help on the command options (None)
exec exec a set of commands (None)

19.3.3 Using ADRCI in Batch Mode
Batch mode enables you to run a series of ADRCI commands at once, without being
prompted for input.

To use batch mode, you add a command line parameter to the ADRCI command when
you start ADRCI. Batch mode enables you to include ADRCI commands in shell
scripts or Windows batch files. Like interactive mode, the ORACLE_HOME and PATH
environment variables must be set before starting ADRCI.

The following command line parameters are available for batch operation:

Table 19-1 ADRCI Command Line Parameters for Batch Operation

Parameter Description

EXEC Enables you to submit one or more ADRCI commands on the operating
system command line that starts ADRCI. Commands are separated by
semicolons (;).

SCRIPT Enables you to run a script containing ADRCI commands.

To submit ADRCI commands on the command line:

• Enter the following command at the operating system command prompt:

ADRCI EXEC="COMMAND[; COMMAND]..."

Chapter 19
Starting ADRCI and Getting Help

19-6

For example, to run the SHOW HOMES command in batch mode, enter the following
command at the operating system command prompt:

ADRCI EXEC="SHOW HOMES"

To run the SHOW HOMES command followed by the SHOW INCIDENT command, enter
the following:

ADRCI EXEC="SHOW HOMES; SHOW INCIDENT"

To run ADRCI scripts:

• Enter the following command at the operating system command prompt:

• ADRCI SCRIPT=SCRIPT_FILE_NAME

For example, to run a script file named adrci_script.txt, enter the following
command at the operating system command prompt:

ADRCI SCRIPT=adrci_script.txt

A script file contains a series of commands separated by semicolons (;) or line
breaks, such as:

• SET HOMEPATH diag/rdbms/orcl/orcl; SHOW ALERT -term

19.4 Setting the ADRCI Homepath Before Using ADRCI
Commands

When diagnosing a problem, you may want to work with diagnostic data from multiple
database instances or components, or you may want to focus on diagnostic data from
one instance or component.

To work with diagnostic data from multiple instances or components, you must ensure
that the ADR homes for all of these instances or components are current. To work with
diagnostic data from only one instance or component, you must ensure that only the
ADR home for that instance or component is current. You control the ADR homes that
are current by setting the ADRCI homepath.

If multiple homes are current, this means that the homepath points to a directory in the
ADR directory structure that contains multiple ADR home directories underneath it. To
focus on a single ADR home, you must set the homepath to point lower in the directory
hierarchy, to a single ADR home directory.

For example, if the Oracle RAC database with database name orclbi has two
instances, where the instances have SIDs orclbi1 and orclbi2, and Oracle RAC is
using a shared Oracle home, the following two ADR homes exist:

/diag/rdbms/orclbi/orclbi1/
/diag/rdbms/orclbi/orclbi2/

In all ADRCI commands and output, ADR home directory paths (ADR homes) are
always expressed relative to ADR base. So if ADR base is currently /u01/app/oracle,
the absolute paths of these two ADR homes are the following:

/u01/app/oracle/diag/rdbms/orclbi/orclbi1/
/u01/app/oracle/diag/rdbms/orclbi/orclbi2/

Chapter 19
Setting the ADRCI Homepath Before Using ADRCI Commands

19-7

You use the SET HOMEPATH command to set one or more ADR homes to be current. If
ADR base is /u01/app/oracle and you want to set the homepath to /u01/app/oracle/
diag/rdbms/orclbi/orclbi2/, you use this command:

adrci> set homepath diag/rdbms/orclbi/orclbi2

When ADRCI starts, the homepath is null by default, which means that all ADR homes
under ADR base are current. In the previously cited example, therefore, the ADR
homes for both Oracle RAC instances would be current.

adrci> show homes
ADR Homes:
diag/rdbms/orclbi/orclbi1
diag/rdbms/orclbi/orclbi2

In this case, any ADRCI command that you run, assuming that the command supports
more than one current ADR home, works with diagnostic data from both ADR homes.
If you were to set the homepath to /diag/rdbms/orclbi/orclbi2, only the ADR home for
the instance with SID orclbi2 would be current.

adrci> set homepath diag/rdbms/orclbi/orclbi2
adrci> show homes
ADR Homes:
diag/rdbms/orclbi/orclbi2

In this case, any ADRCI command that you run would work with diagnostic data from
this single ADR home only.

See Also:

• Oracle Database Administrator's Guide for more information about the
structure of ADR homes

• ADR Base

• ADR Home

• Homepath

• SET HOMEPATH

• SHOW HOMES

19.5 Viewing the Alert Log
The alert log is written as both an XML-formatted file and as a text file. You can view
either format of the file with any text editor, or you can run an ADRCI command to view
the XML-formatted alert log with the XML tags omitted.

By default, ADRCI displays the alert log in your default editor. You can use the SET
EDITOR command to change your default editor.

To view the alert log with ADRCI:

1. Start ADRCI in interactive mode.

See Starting ADRCI and Getting Help for instructions.

Chapter 19
Viewing the Alert Log

19-8

2. (Optional) Use the SET HOMEPATH command to select (make current) a single ADR
home.

You can use the SHOW HOMES command first to see a list of current ADR homes.
See Homepath and Setting the ADRCI Homepath Before Using ADRCI
Commands for more information.

3. At the ADRCI prompt, enter the following command:

SHOW ALERT

If more than one ADR home is current, you are prompted to select a single ADR
home from a list. The alert log is displayed, with XML tags omitted, in your default
editor.

4. Exit the editor to return to the ADRCI command prompt.

The following are variations on the SHOW ALERT command:

SHOW ALERT -TAIL

This displays the last portion of the alert log (the last 10 entries) in your terminal
session.

SHOW ALERT -TAIL 50

This displays the last 50 entries in the alert log in your terminal session.

SHOW ALERT -TAIL -F

This displays the last 10 entries in the alert log, and then waits for more messages to
arrive in the alert log. As each message arrives, it is appended to the display. This
command enables you to perform live monitoring of the alert log. Press CTRL+C to
stop waiting and return to the ADRCI prompt.

SPOOL /home/steve/MYALERT.LOG
SHOW ALERT -TERM
SPOOL OFF

This outputs the alert log, without XML tags, to the file /home/steve/MYALERT.LOG.

SHOW ALERT -P "MESSAGE_TEXT LIKE '%ORA-600%'"

This displays only alert log messages that contain the string 'ORA-600'. The output
looks something like this:

ADR Home = /u01/app/oracle/product/11.1.0/db_1/log/diag/rdbms/orclbi/orclbi:
**
01-SEP-06 09.17.44.849000000 PM -07:00
AlertMsg1: ORA-600 dbgris01, addr=0xa9876541

Chapter 19
Viewing the Alert Log

19-9

See Also:

• SHOW ALERT

• SET EDITOR

• Oracle Database Administrator's Guide for instructions for viewing the
alert log with Oracle Enterprise Manager or with a text editor

19.6 Finding Trace Files
ADRCI enables you to view the names of trace files that are currently in the automatic
diagnostic repository (ADR).

You can view the names of all trace files in the ADR, or you can apply filters to view a
subset of names. For example, ADRCI has commands that enable you to:

• Obtain a list of trace files whose file name matches a search string.

• Obtain a list of trace files in a particular directory.

• Obtain a list of trace files that pertain to a particular incident.

You can combine filtering functions by using the proper command line parameters.

The SHOW TRACEFILE command displays a list of the trace files that are present in the
trace directory and in all incident directories under the current ADR home. When
multiple ADR homes are current, the traces file lists from all ADR homes are output
one after another.

The following statement lists the names of all trace files in the current ADR homes,
without any filtering:

SHOW TRACEFILE

The following statement lists the name of every trace file that has the string mmon in its
file name. The percent sign (%) is used as a wildcard character, and the search string
is case sensitive.

SHOW TRACEFILE %mmon%

This statement lists the name of every trace file that is located in the /home/steve/temp
directory and that has the string mmon in its file name:

SHOW TRACEFILE %mmon% -PATH /home/steve/temp

This statement lists the names of trace files in reverse order of last modified time. That
is, the most recently modified trace files are listed first.

SHOW TRACEFILE -RT

This statement lists the names of all trace files related to incident number 1681:

SHOW TRACEFILE -I 1681

Chapter 19
Finding Trace Files

19-10

See Also:

• SHOW TRACEFILE

• Oracle Database Administrator's Guide for information about the
directory structure of the ADR

19.7 Viewing Incidents
The ADRCI SHOW INCIDENT command displays information about open incidents.

For each incident, the incident ID, problem key, and incident creation time are shown.
If the ADRCI homepath is set so that there are multiple current ADR homes, the report
includes incidents from all of them.

To view a report of all open incidents:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See Starting ADRCI and Getting Help and Homepath for details.

2. At the ADRCI prompt, enter the following command:

SHOW INCIDENT

ADRCI generates output similar to the following:

ADR Home = /u01/app/oracle/product/11.1.0/db_1/log/diag/rdbms/orclbi/orclbi:

INCIDENT_ID PROBLEM_KEY CREATE_TIME
----------------- ------------------------- ---------------------------------
3808 ORA 603 2010-06-18 21:35:49.322161 -07:00
3807 ORA 600 [4137] 2010-06-18 21:35:47.862114 -07:00
3805 ORA 600 [4136] 2010-06-18 21:35:25.012579 -07:00
3804 ORA 1578 2010-06-18 21:35:08.483156 -07:00
4 rows fetched

The following are variations on the SHOW INCIDENT command:

SHOW INCIDENT -MODE BRIEF
SHOW INCIDENT -MODE DETAIL

These commands produce more detailed versions of the incident report.

SHOW INCIDENT -MODE DETAIL -P "INCIDENT_ID=1681"

This shows a detailed incident report for incident 1681 only.

See Also:

ADRCI Command Reference

Chapter 19
Viewing Incidents

19-11

19.8 Packaging Incidents
You can use ADRCI commands to package one or more incidents for transmission to
Oracle Support for analysis.

Background information and instructions are presented in the following topics:

• About Packaging Incidents
Packaging incidents is a three-step process.

• Creating Incident Packages
The following topics describe creating incident packages.

19.8.1 About Packaging Incidents
Packaging incidents is a three-step process.

Step 1: Create a logical incident package.

The incident package (package) is denoted as logical because it exists only as
metadata in the automatic diagnostic repository (ADR). It has no content until you
generate a physical package from the logical package. The logical package is
assigned a package number, and you refer to it by that number in subsequent
commands.

You can create the logical package as an empty package, or as a package based on
an incident number, a problem number, a problem key, or a time interval. If you create
the package as an empty package, you can add diagnostic information to it in step 2.

Creating a package based on an incident means including diagnostic data—dumps,
health monitor reports, and so on—for that incident. Creating a package based on a
problem number or problem key means including in the package diagnostic data for
incidents that reference that problem number or problem key. Creating a package
based on a time interval means including diagnostic data on incidents that occurred in
the time interval.

Step 2: Add diagnostic information to the incident package

If you created a logical package based on an incident number, a problem number, a
problem key, or a time interval, this step is optional. You can add additional incidents
to the package or you can add any file within the ADR to the package. If you created
an empty package, you must use ADRCI commands to add incidents or files to the
package.

Step 3: Generate the physical incident package

When you submit the command to generate the physical package, ADRCI gathers all
required diagnostic files and adds them to a zip file in a designated directory. You can
generate a complete zip file or an incremental zip file. An incremental file contains all
the diagnostic files that were added or changed since the last zip file was created for
the same logical package. You can create incremental files only after you create a
complete file, and you can create as many incremental files as you want. Each zip file
is assigned a sequence number so that the files can be analyzed in the correct order.

Zip files are named according to the following scheme:

Chapter 19
Packaging Incidents

19-12

packageName_mode_sequence.zip

where:

• packageName consists of a portion of the problem key followed by a timestamp

• mode is either COM or INC, for complete or incremental

• sequence is an integer

For example, if you generate a complete zip file for a logical package that was created
on September 6, 2006 at 4:53 p.m., and then generate an incremental zip file for the
same logical package, you would create files with names similar to the following:

ORA603_20060906165316_COM_1.zip
ORA603_20060906165316_INC_2.zip

19.8.2 Creating Incident Packages
The following topics describe creating incident packages.

The ADRCI commands that you use to create a logical incident package (package)
and generate a physical package are:

• Creating a Logical Incident Package
You use variants of the IPS CREATE PACKAGE command to create a logical package
(package).

• Adding Diagnostic Information to a Logical Incident Package
You can add diagnostic information to an existing logical package (package).

• Generating a Physical Incident Package
When you generate a package, you create a physical package (a zip file) for an
existing logical package.

See Also:

About Packaging Incidents

19.8.2.1 Creating a Logical Incident Package
You use variants of the IPS CREATE PACKAGE command to create a logical package
(package).

To create a package based on an incident:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See Starting ADRCI and Getting Help and Homepath for details.

2. At the ADRCI prompt, enter the following command:

IPS CREATE PACKAGE INCIDENT incident_number

For example, the following command creates a package based on incident 3:

IPS CREATE PACKAGE INCIDENT 3

Chapter 19
Packaging Incidents

19-13

ADRCI generates output similar to the following:

Created package 10 based on incident id 3, correlation level typical

The package number assigned to this logical package is 10.

The following are variations on the IPS CREATE PACKAGE command:

IPS CREATE PACKAGE

This creates an empty package. You must use the IPS ADD INCIDENT or IPS ADD FILE
commands to add diagnostic data to the package before generating it.

IPS CREATE PACKAGE PROBLEM problem_ID

This creates a package and includes diagnostic information for incidents that reference
the specified problem ID. (Problem IDs are integers.) You can obtain the problem ID
for an incident from the report displayed by the SHOW INCIDENT -MODE BRIEF command.
Because there can be many incidents with the same problem ID, ADRCI adds to the
package the diagnostic information for the first three incidents (early incidents) that
occurred and last three incidents (late incidents) that occurred with this problem ID,
excluding any incidents that are older than 90 days.

Note:

The number of early and late incidents, and the 90-day age limit are defaults
that can be changed. See IPS SET CONFIGURATION.

ADRCI may also add other incidents that correlate closely in time or in other criteria
with the already added incidents.

IPS CREATE PACKAGE PROBLEMKEY "problem_key"

This creates a package and includes diagnostic information for incidents that reference
the specified problem key. You can obtain problem keys from the report displayed by
the SHOW INCIDENT command. Because there can be many incidents with the same
problem key, ADRCI adds to the package only the diagnostic information for the first
three early incidents and last three late incidents with this problem key, excluding
incidents that are older than 90 days.

Note:

The number of early and late incidents, and the 90-day age limit are defaults
that can be changed. See IPS SET CONFIGURATION.

ADRCI may also add other incidents that correlate closely in time or in other criteria
with the already added incidents.

The problem key must be enclosed in single quotation marks (') or double quotation
marks (") if it contains spaces or quotation marks.

IPS CREATE PACKAGE SECONDS sec

Chapter 19
Packaging Incidents

19-14

This creates a package and includes diagnostic information for all incidents that
occurred from sec seconds ago until now. sec must be an integer.

IPS CREATE PACKAGE TIME 'start_time' TO 'end_time'

This creates a package and includes diagnostic information for all incidents that
occurred within the specified time range. start_time and end_time must be in the
format 'YYYY-MM-DD HH24:MI:SS.FF TZR'. This is a valid format string for the
NLS_TIMESTAMP_TZ_FORMAT initialization parameter. The fraction (FF) portion of the time
is optional, and the HH24:MI:SS delimiters can be colons or periods.

For example, the following command creates a package with incidents that occurred
between July 24th and July 30th of 2010:

IPS CREATE PACKAGE TIME '2010-07-24 00:00:00 -07:00' to '2010-07-30 23.59.59 -07:00'

See Also:

IPS CREATE PACKAGE

19.8.2.2 Adding Diagnostic Information to a Logical Incident Package
You can add diagnostic information to an existing logical package (package).

For example:

• All diagnostic information for a particular incident

• A named file within the ADR

To add an incident to an existing package:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See Starting ADRCI and Getting Help and Homepath for details.

2. At the ADRCI prompt, enter the following command:

IPS ADD INCIDENT incident_number PACKAGE package_number

To add a file in the ADR to an existing package:

• At the ADRCI prompt, enter the following command:

IPS ADD FILE filespec PACKAGE package_number

filespec must be a fully qualified file name (with path). Only files that are within
the ADR base directory hierarchy may be added.

See Also:

ADRCI Command Reference

Chapter 19
Packaging Incidents

19-15

19.8.2.3 Generating a Physical Incident Package
When you generate a package, you create a physical package (a zip file) for an
existing logical package.

To generate a physical incident package:

1. Start ADRCI in interactive mode, and ensure that the homepath points to the
correct directory within the ADR base directory hierarchy.

See Starting ADRCI and Getting Help and Homepath for details.

2. At the ADRCI prompt, enter the following command:

IPS GENERATE PACKAGE package_number IN path

This generates a complete physical package (zip file) in the designated path. For
example, the following command creates a complete physical package in the
directory /home/steve/diagnostics from logical package number 2:

IPS GENERATE PACKAGE 2 IN /home/steve/diagnostics

You can also generate an incremental package containing only the incidents that have
occurred since the last package generation.

To generate an incremental physical incident package:

• At the ADRCI prompt, enter the following command:

IPS GENERATE PACKAGE package_number IN path INCREMENTAL

See Also:

• ADRCI Command Reference

• About Packaging Incidents

19.9 ADRCI Command Reference
Learn about the commands you can use with the Automatic Diagnostic Repository
Command Interpreter (ADRCI).

There are four command types in ADRCI:

• Commands that work with one or more current ADR homes

• Commands that work with only one current ADR home, and that issue an error
message if there is more than one current ADR home

• Commands that prompt you to select an ADR home when there are multiple
current ADR homes

• Commands that do not need a current ADR home

All ADRCI commands support the case where there is a single current ADR home.

Chapter 19
ADRCI Command Reference

19-16

Note:

Unless otherwise specified, all commands work with multiple current ADR
homes.

• CREATE REPORT
The CREATE REPORT ADRCI utility command creates a report for the specified
report type and run ID, and stores the report in the ADR.

• ECHO
The ECHO ADRCI utility command prints the input string.

• EXIT
The EXIT command exits the ADRCI utility.

• HOST
The HOST command of ADRCI utility executes operating system commands without
leaving ADRCI.

• IPS

• PURGE

• QUIT
QUIT is a synonym for the EXIT command.

• RUN
Runs an ADR Command Interpreter (ADRCI) script.

• SELECT

• SET BASE
Sets the ADR base to use in the current ADRCI session.

• SET BROWSER
Sets the default browser for displaying reports.

• SET CONTROL
Sets purging policies for Automatic Diagnostic Repository (ADR) contents.

• SET ECHO
Turns command output on or off. This command only affects output being
displayed in a script or using the spool mode.

• SET EDITOR
Sets the editor for displaying the alert log and the contents of trace files.

• SET HOMEPATH
Makes one or more ADR homes current. Many ADR commands work with the
current ADR homes only.

• SET TERMOUT
Turns output to the terminal on or off.

• SHOW ALERT

• SHOW BASE
Shows the current ADR base.

Chapter 19
ADRCI Command Reference

19-17

• SHOW CONTROL
Displays information about the Automatic Diagnostic Repository (ADR), including
the purging policy.

• SHOW HM_RUN
The SHOW HM_RUN ADRCI utility command shows all information for Health Monitor
runs..

• SHOW HOMEPATH
The SHOW HOMEPATH command is identical to the SHOW HOMES command.

• SHOW HOMES
Show the ADR homes in the current ADRCI session.

• SHOW INCDIR

• SHOW INCIDENT

• SHOW LOG
Show diagnostic log messages.

• SHOW PROBLEM

• SHOW REPORT
Shows a report for the specified report type and run name.

• SHOW TRACEFILE

• SPOOL
Directs ADRCI output to a file.

19.9.1 CREATE REPORT
The CREATE REPORT ADRCI utility command creates a report for the specified report
type and run ID, and stores the report in the ADR.

Purpose

Creates a report for the specified report type and run ID, and stores the report in the
ADR. Currently, only the hm_run (Health Monitor) report type is supported.

Note:

Results of Health Monitor runs are stored in the ADR in an internal format.
To view these results, you must create a Health Monitor report from them
and then view the report. You need create the report only once. You can
then view it multiple times.

Syntax and Description

create report report_type run_name

The variable report_type must be hm_run. run_name is a Health Monitor run name.
Obtain run names by using the command SHOW HM_RUN.

If the report already exists, then it is overwritten. To view the report, use the command
SHOW REPORT.

Chapter 19
ADRCI Command Reference

19-18

This command does not support multiple ADR homes.

Example

This example creates a report for the Health Monitor run with run name hm_run_1421:

create report hm_run hm_run_1421

Note:

CREATE REPORT REPORT does not work when multiple ADR homes are set. To
set a single ADR home as the target of the command, set the ADRCI home
path before using the command.

Related Topics

• SHOW HM_RUN
The SHOW HM_RUN ADRCI utility command shows all information for Health Monitor
runs..

• SHOW REPORT
Shows a report for the specified report type and run name.

• Setting the ADRCI Homepath Before Using ADRCI Commands
When diagnosing a problem, you may want to work with diagnostic data from
multiple database instances or components, or you may want to focus on
diagnostic data from one instance or component.

19.9.2 ECHO
The ECHO ADRCI utility command prints the input string.

Purpose

Prints the input string. You can use this command to print custom text from ADRCI
scripts.

Syntax and Description

ECHO quoted_string

The string must be enclosed in single or double quotation marks.

This command does not require an ADR home to be set before you can use it.

Example

These examples print the string "Hello, world!":

ECHO "Hello, world!"

ECHO 'Hello, world!'

Chapter 19
ADRCI Command Reference

19-19

19.9.3 EXIT
The EXIT command exits the ADRCI utility.

Purpose

Exits the ADRCI utility.

Syntax and Description

exit

EXIT is a synonym for the QUIT command.

This command does not require an ADR home to be set before you can use it.

19.9.4 HOST
The HOST command of ADRCI utility executes operating system commands without
leaving ADRCI.

Purpose

Executes operating system commands without leaving ADRCI.

Syntax and Description

host ["host_command_string"]

Use host by itself to enter an operating system shell, which allows you to enter
multiple operating system commands. Enter EXIT to leave the shell and return to
ADRCI.

You can also specify the command on the same line (host_command_string) enclosed
in double quotation marks.

This command does not require an ADR home to be set before you can use it.

Examples

host

host "ls -l *.pl"

19.9.5 IPS
Purpose

Invokes the Incident Packaging Service (IPS). The IPS command provides options for
creating logical incident packages (packages), adding diagnostic data to packages,
and generating physical packages for transmission to Oracle Support.

Chapter 19
ADRCI Command Reference

19-20

Note:

IPS commands do not work when multiple ADR homes are set. For
information about setting a single ADR home, see Setting the ADRCI
Homepath Before Using ADRCI Commands.

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
The IPS command set provides shortcuts for referencing the current ADR home
and ADR base directories.

• IPS ADD

• IPS ADD FILE
Adds a file to an existing package.

• IPS ADD NEW INCIDENTS
Find and add new incidents for all of the problems in the specified package.

• IPS COPY IN FILE
Copies a file into the ADR from the external file system.

• IPS COPY OUT FILE
Copies a file from the ADR to the external file system.

• IPS CREATE PACKAGE

• IPS DELETE PACKAGE
Drops a package and its contents from the ADR.

• IPS FINALIZE
Finalizes a package before uploading.

• IPS GENERATE PACKAGE
Creates a physical package (a zip file) in target directory.

• IPS GET MANIFEST
Extracts the manifest from a package zip file and displays it.

• IPS GET METADATA
Extracts ADR-related metadata from a package file and displays it.

• IPS PACK

• IPS REMOVE

• IPS REMOVE FILE
Removes a file from an existing package.

• IPS SET CONFIGURATION
Changes the value of an IPS configuration parameter.

• IPS SHOW CONFIGURATION
Displays a list of IPS configuration parameters and their values.

• IPS SHOW FILES
Lists files included in the specified package.

• IPS SHOW INCIDENTS
Lists incidents included in the specified package.

Chapter 19
ADRCI Command Reference

19-21

• IPS SHOW PACKAGE
Displays information about the specified package.

• IPS UNPACK FILE
Unpackages a physical package file into the specified path.

See Also:

Packaging Incidents for more information about packaging

19.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands

The IPS command set provides shortcuts for referencing the current ADR home and
ADR base directories.

To access the current ADR home directory, use the <ADR_HOME> variable as follows:

ips add file <ADR_HOME>/trace/orcl_ora_13579.trc package 12

Use the <ADR_BASE> variable to access the ADR base directory as follows:

ips add file <ADR_BASE>/diag/rdbms/orcl/orcl/trace/orcl_ora_13579.trc
package 12

Note:

Type the angle brackets (< >) as shown.

19.9.5.2 IPS ADD

Purpose

Adds incidents to a package.

Syntax and Description

ips add {incident first [n] | incident inc_id | incident last [n] |
 problem first [n] | problem prob_id | problem last [n] |
 problemkey pr_key | seconds secs | time start_time to end_time}
 package package_id

Table 19-2 describes the arguments of IPS ADD.

Chapter 19
ADRCI Command Reference

19-22

Table 19-2 Arguments of IPS ADD command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
first five incidents are added. If n is omitted, then the
default is 1, and the first incident is added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
last five incidents are added. If n is omitted, then the
default is 1, and the last incident is added.

problem first [n] Adds the incidents for the first n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the first five problems
are added. If n is omitted, then the default is 1, and the
incidents for the first problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problem prob_id Adds all incidents with problem ID prob_id to the
package. Adds only the first three early incidents and
last three late incidents for the problem, excluding any
older than 90 days. (Note: These limits are defaults and
can be changed. See "IPS SET CONFIGURATION".)

problem last [n] Adds the incidents for the last n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the last five problems
are added. If n is omitted, then the default is 1, and the
incidents for the last problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problemkey pr_key Adds incidents with problem key pr_key to the package.
Adds only the first three early incidents and last three
late incidents for the problem key, excluding any older
than 90 days. (Note: These limits are defaults and can
be changed.)

seconds secs Adds all incidents that have occurred within secs
seconds of the present time.

time start_time to end_time Adds all incidents between start_time and end_time
to the package. Time format is 'YYYY-MM-YY
HH24:MI:SS.FF TZR'. Fractional part (FF) is optional.

package package_id Specifies the package to which to add incidents.

Examples

This example adds incident 22 to package 12:

ips add incident 22 package 12

Chapter 19
ADRCI Command Reference

19-23

This example adds the first three early incidents and the last three late incidents with
problem ID 6 to package 2, exuding any incidents older than 90 days:

ips add problem 6 package 2

This example adds all incidents taking place during the last minute to package 5:

ips add seconds 60 package 5

This example adds all incidents taking place between 10:00 a.m. and 11:00 p.m. on
May 1, 2010:

ips add time '2010-05-01 10:00:00.00 -07:00' to '2010-05-01 23:00:00.00 -07:00'

19.9.5.3 IPS ADD FILE
Adds a file to an existing package.

Syntax and Description

ips add file file_name package package_id

file_name is the full path name of the file. You can use the <ADR_HOME> and
<ADR_BASE> variables if desired. The file must be under the same ADR base as the
package.

package_id is the package ID.

Example

This example adds a trace file to package 12:

ips add file <ADR_HOME>/trace/orcl_ora_13579.trc package 12

See Also:

See Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands for information about the <ADR_HOME> directory syntax

19.9.5.4 IPS ADD NEW INCIDENTS
Find and add new incidents for all of the problems in the specified package.

Syntax and Description

ips add new incidents package package_id

package_id is the ID of the package to update. Only new incidents of the problems in
the package are added.

Chapter 19
ADRCI Command Reference

19-24

Example

This example adds up to three of the new late incidents for the problems in package
12:

ips add new incidents package 12

Note:

The number of late incidents added is a default that can be changed. See
IPS SET CONFIGURATION.

19.9.5.5 IPS COPY IN FILE
Copies a file into the ADR from the external file system.

Purpose

To edit a file in a package, you must copy the file out to a designated directory, edit the
file, and copy it back into the package. You may want to do this to delete sensitive
data in the file before sending the package to Oracle Support.

Syntax and Description

ips copy in file filename [to new_name][overwrite] package package_id
 [incident incid]

Copies an external file, filename (specified with full path name) into the ADR,
associating it with an existing package, package_id, and optionally an incident, incid.
Use the to new_name option to give the copied file a new file name within the ADR. Use
the overwrite option to overwrite a file that exists already.

Example

This example copies a trace file from the file system into the ADR, associating it with
package 2 and incident 4:

ips copy in file /home/nick/trace/orcl_ora_13579.trc to <ADR_HOME>/trace/
orcl_ora_13579.trc package 2 incident 4

See Also:

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands for information about the <ADR_HOME> variable

• IPS SHOW FILES for information about listing files in a package

Chapter 19
ADRCI Command Reference

19-25

19.9.5.6 IPS COPY OUT FILE
Copies a file from the ADR to the external file system.

Purpose

To edit a file in a package, you must copy the file out to a designated directory, edit the
file, and copy it back into the package. You may want to do this to delete sensitive
data in the file before sending the package to Oracle Support.

Syntax and Description

ips copy out file source to target [overwrite]

Copies a file, source, to a location outside the ADR, target (specified with full path
name). Use the overwrite option to overwrite the file that exists already.

Example

This example copies the file orcl_ora_13579.trc, in the trace subdirectory of the current
ADR home, to a local folder.

ips copy out file <ADR_HOME>/trace/orcl_ora_13579.trc to /home/nick/trace/
orcl_ora_13579.trc

See Also:

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands for information about the <ADR_HOME> directory syntax

• IPS SHOW FILES for information about listing files in a package

19.9.5.7 IPS CREATE PACKAGE

Purpose

Creates a new package. ADRCI automatically assigns the package number for the
new package.

Syntax and Description

ips create package {incident first [n] | incident inc_id |
 incident last [n] | problem first [n] | problem prob_id |
 problem last [n] | problemkey prob_key | seconds secs |
 time start_time to end_time} [correlate {basic |typical | all}]

Optionally, you can add incidents to the new package using the provided options.

Table 19-3 describes the arguments for IPS CREATE PACKAGE.

Chapter 19
ADRCI Command Reference

19-26

Table 19-3 Arguments of IPS CREATE PACKAGE command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
first five incidents are added. If n is omitted, then the
default is 1, and the first incident is added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
last five incidents are added. If n is omitted, then the
default is 1, and the last incident is added.

problem first [n] Adds the incidents for the first n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the first five problems
are added. If n is omitted, then the default is 1, and the
incidents for the first problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problem prob_id Adds all incidents with problem ID prob_id to the
package. Adds only the first three early incidents and
last three late incidents for the problem, excluding any
older than 90 days. (Note: These limits are defaults and
can be changed. See "IPS SET CONFIGURATION".)

problem last [n] Adds the incidents for the last n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the last five problems
are added. If n is omitted, then the default is 1, and the
incidents for the last problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problemkey pr_key Adds all incidents with problem key pr_key to the
package. Adds only the first three early incidents and
last three late incidents for the problem key, excluding
any older than 90 days. (Note: These limits are defaults
and can be changed.)

seconds secs Adds all incidents that have occurred within secs
seconds of the present time.

time start_time to end_time Adds all incidents taking place between start_time
and end_time to the package. Time format is 'YYYY-
MM-YY HH24:MI:SS.FF TZR'. Fractional part (FF) is
optional.

Chapter 19
ADRCI Command Reference

19-27

Table 19-3 (Cont.) Arguments of IPS CREATE PACKAGE command

Argument Description

correlate {basic |typical |
all}

Selects a method of including correlated incidents in the
package. There are three options for this argument:

• correlate basic includes incident dumps and
incident process trace files.

• correlate typical includes incident dumps and
any trace files that were modified within five minutes
of each incident. You can alter the time interval by
modifying the INCIDENT_TIME_WINDOW
configuration parameter.

• correlate all includes the incident dumps, and
all trace files that were modified between the time of
the first selected incident and the last selected
incident.

The default value is correlate typical.

Examples

This example creates a package with no incidents:

ips create package

Output:

Created package 5 without any contents, correlation level typical

This example creates a package containing all incidents between 10 AM and 11 PM
on the given day:

ips create package time '2010-05-01 10:00:00.00 -07:00' to '2010-05-01 23:00:00.00
-07:00'

Output:

Created package 6 based on time range 2010-05-01 10:00:00.00 -07:00 to 2010-05-01
23:00:00.00 -07:00, correlation level typical

This example creates a package and adds the first three early incidents and the last
three late incidents with problem ID 3, excluding incidents that are older than 90 days:

ips create package problem 3

Output:

Created package 7 based on problem id 3, correlation level typical

Note:

The number of early and late incidents added, and the 90-day age limit are
defaults that can be changed. See "IPS SET CONFIGURATION".

Chapter 19
ADRCI Command Reference

19-28

See Also:

"Creating Incident Packages"

19.9.5.8 IPS DELETE PACKAGE
Drops a package and its contents from the ADR.

Syntax and Description

ips delete package package_id

package_id is the package to delete.

Example

ips delete package 12

19.9.5.9 IPS FINALIZE
Finalizes a package before uploading.

Syntax and Description

ips finalize package package_id

package_id is the package ID to finalize.

Example

ips finalize package 12

See Also:

Oracle Database Administrator's Guide for more information about finalizing
packages

19.9.5.10 IPS GENERATE PACKAGE
Creates a physical package (a zip file) in target directory.

Syntax and Description

ips generate package package_id [in path] [complete | incremental]

Chapter 19
ADRCI Command Reference

19-29

package_id is the ID of the package to generate. Optionally, you can save the file in
the directory path. Otherwise, the package is generated in the current working
directory.

The complete option means the package forces ADRCI to include all package files.
This is the default behavior.

The incremental option includes only files that have been added or changed since the
last time that this package was generated. With the incremental option, the command
finishes more quickly.

Example

This example generates a physical package file in path /home/steve:

ips generate package 12 in /home/steve

This example generates a physical package from files added or changed since the last
generation:

ips generate package 14 incremental

See Also:

Generating a Physical Incident Package

19.9.5.11 IPS GET MANIFEST
Extracts the manifest from a package zip file and displays it.

Syntax and Description

ips get manifest from file filename

filename is a package zip file. The manifest is an XML-formatted set of metadata for
the package file, including information about ADR configuration, correlated files,
incidents, and how the package was generated.

This command does not require an ADR home to be set before you can use it.

Example

ips get manifest from file /home/steve/ORA603_20060906165316_COM_1.zip

Chapter 19
ADRCI Command Reference

19-30

19.9.5.12 IPS GET METADATA
Extracts ADR-related metadata from a package file and displays it.

Syntax and Description

ips get metadata {from file filename | from adr}

filename is a package zip file. The metadata in a package file (stored in the file
metadata.xml) contains information about the ADR home, ADR base, and product.

Use the from adr option to get the metadata from a package zip file that has been
unpacked into an ADR home using IPS UNPACK.

The from adr option requires an ADR home to be set.

Example

This example displays metadata from a package file:

ips get metadata from file /home/steve/ORA603_20060906165316_COM_1.zip

This next example displays metadata from a package file that was unpacked into the
directory /scratch/oracle/package1:

set base /scratch/oracle/package1
ips get metadata from adr

In this previous example, upon receiving the SET BASE command, ADRCI automatically
adds to the homepath the ADR home that was created in /scratch/oracle/package1 by
the IPS UNPACK FILE command.

See Also:

IPS UNPACK FILE for more information about unpacking package files

19.9.5.13 IPS PACK

Purpose

Creates a package and generates the physical package immediately.

Syntax and Description

ips pack [incident first [n] | incident inc_id | incident last [n] |
 problem first [n] | problem prob_id | problem last [n] |
 problemkey prob_key | seconds secs | time start_time to end_time]
 [correlate {basic |typical | all}] [in path]

ADRCI automatically generates the package number for the new package. IPS PACK
creates an empty package if no package contents are specified.

Chapter 19
ADRCI Command Reference

19-31

Table 19-4 describes the arguments for IPS PACK.

Table 19-4 Arguments of IPS PACK command

Argument Description

incident first [n] Adds the first n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
first five incidents are added. If n is omitted, then the
default is 1, and the first incident is added.

incident inc_id Adds an incident with ID inc_id to the package.

incident last [n] Adds the last n incidents to the package, where n is a
positive integer. For example, if n is set to 5, then the
last five incidents are added. If n is omitted, then the
default is 1, and the last incident is added.

problem first [n] Adds the incidents for the first n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the first five problems
are added. If n is omitted, then the default is 1, and the
incidents for the first problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problem prob_id Adds all incidents with problem ID prob_id to the
package. Adds only the first three early incidents and
last three late incidents for the problem, excluding any
older than 90 days. (Note: These limits are defaults and
can be changed. See "IPS SET CONFIGURATION".)

problem last [n] Adds the incidents for the last n problems to the
package, where n is a positive integer. For example, if n
is set to 5, then the incidents for the last five problems
are added. If n is omitted, then the default is 1, and the
incidents for the last problem is added.

Adds only the first three early incidents and last three
late incidents for each problem, excluding any older than
90 days. (Note: These limits are defaults and can be
changed. See "IPS SET CONFIGURATION".)

problemkey pr_key Adds incidents with problem key pr_key to the package.
Adds only the first three early incidents and last three
late incidents for the problem key, excluding any older
than 90 days. (Note: These limits are defaults and can
be changed.)

seconds secs Adds all incidents that have occurred within secs
seconds of the present time.

time start_time to end_time Adds all incidents taking place between start_time
and end_time to the package. Time format is 'YYYY-
MM-YY HH24:MI:SS.FF TZR'. Fractional part (FF) is
optional.

Chapter 19
ADRCI Command Reference

19-32

Table 19-4 (Cont.) Arguments of IPS PACK command

Argument Description

correlate {basic |typical |
all}

Selects a method of including correlated incidents in the
package. There are three options for this argument:

• correlate basic includes incident dumps and
incident process trace files.

• correlate typical includes incident dumps and
any trace files that were modified within five minutes
of each incident. You can alter the time interval by
modifying the INCIDENT_TIME_WINDOW
configuration parameter.

• correlate all includes the incident dumps, and
all trace files that were modified between the time of
the first selected incident and the last selected
incident.

The default value is correlate typical.

in path Saves the physical package to directory path.

Example

This example creates an empty package:

ips pack

This example creates a physical package containing all information for incident 861:

ips pack incident 861

This example creates a physical package for all incidents in the last minute, fully
correlated:

ips pack seconds 60 correlate all

See Also:

"IPS SET CONFIGURATION" for more information about setting
configuration parameters.

19.9.5.14 IPS REMOVE

Purpose

Removes incidents from an existing package.

Syntax and Description

ips remove {incident inc_id | problem prob_id | problemkey prob_key}
 package package_id

Chapter 19
ADRCI Command Reference

19-33

After removing incidents from a package, the incidents continue to be tracked within
the package metadata to prevent ADRCI from automatically including them later (such
as with ADD NEW INCIDENTS).

Table 19-5 describes the arguments of IPS REMOVE.

Table 19-5 Arguments of IPS REMOVE command

Argument Description

incident inc_id Removes the incident with ID inc_id from the package

problem prob_id Removes all incidents with problem ID prob_id from the
package

problemkey pr_key Removes all incidents with problem key pr_key from the
package

package package_id Removes incidents from the package with ID
package_id.

Example

This example removes incident 22 from package 12:

ips remove incident 22 package 12

See Also:

"IPS GET MANIFEST" for information about package metadata

19.9.5.15 IPS REMOVE FILE
Removes a file from an existing package.

Syntax and Description

ips remove file file_name package package_id

file_name is the file to remove from package package_id. The complete path of the
file must be specified. (You can use the <ADR_HOME> and <ADR_BASE> variables if
desired.)

After removal, the file continues to be tracked within the package metadata to prevent
ADRCI from automatically including it later (such as with ADD NEW INCIDENTS).
Removing a file, therefore, only sets the EXCLUDE flag for the file to Explicitly
excluded.

Example

This example removes a trace file from package 12:

ips remove file <ADR_HOME>/trace/orcl_ora_13579.trc package 12
Removed file <ADR_HOME>/trace/orcl_ora_13579.trc from package 12

Chapter 19
ADRCI Command Reference

19-34

ips show files package 12

.

.

.
FILE_ID 4
FILE_LOCATION <ADR_HOME>/trace
FILE_NAME orcl_ora_13579.trc
LAST_SEQUENCE 0
EXCLUDE Explicitly excluded
.
.
.

See Also:

• IPS GET MANIFEST for information about package metadata

• Using the <ADR_HOME> and <ADR_BASE> Variables in IPS
Commands for information about the <ADR_BASE> directory syntax

• IPS SHOW FILES

19.9.5.16 IPS SET CONFIGURATION
Changes the value of an IPS configuration parameter.

Syntax and Description

ips set configuration {parameter_id | parameter_name} value

parameter_id is the ID of the parameter to change, and parameter_name is the name
of the parameter to change. value is the new value. For a list of the configuration
parameters and their IDs, use IPS SHOW CONFIGURATION.

Example

ips set configuration 3 10

19.9.5.17 IPS SHOW CONFIGURATION
Displays a list of IPS configuration parameters and their values.

Purpose

These parameters control various thresholds for IPS data, such as timeouts and
incident inclusion intervals.

Chapter 19
ADRCI Command Reference

19-35

Syntax and Description

ips show configuration {parameter_id | parameter_name}]

IPS SHOW CONFIGURATION lists the following information for each configuration
parameter:

• Parameter ID

• Name

• Description

• Unit used by parameter (such as days or hours)

• Value

• Default value

• Minimum Value

• Maximum Value

• Flags

Optionally, you can get information about a specific parameter by supplying a
parameter_id or a parameter_name.

Example

This command describes all IPS configuration parameters:

ips show configuration

Output:

PARAMETER INFORMATION:
 PARAMETER_ID 1
 NAME CUTOFF_TIME
 DESCRIPTION Maximum age for an incident to be considered for
 inclusion
 UNIT Days
 VALUE 90
 DEFAULT_VALUE 90
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 2
 NAME NUM_EARLY_INCIDENTS
 DESCRIPTION How many incidents to get in the early part of
the range
 UNIT Number
 VALUE 3
 DEFAULT_VALUE 3
 MINIMUM 1
 MAXIMUM 4294967295

Chapter 19
ADRCI Command Reference

19-36

 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 3
 NAME NUM_LATE_INCIDENTS
 DESCRIPTION How many incidents to get in the late part of
the range
 UNIT Number
 VALUE 3
 DEFAULT_VALUE 3
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 4
 NAME INCIDENT_TIME_WINDOW
 DESCRIPTION Incidents this close to each other are
considered
 correlated
 UNIT Minutes
 VALUE 5
 DEFAULT_VALUE 5
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 5
 NAME PACKAGE_TIME_WINDOW
 DESCRIPTION Time window for content inclusion is from x
hours
 before first included incident to x hours after
last
 incident
 UNIT Hours
 VALUE 24
 DEFAULT_VALUE 24
 MINIMUM 1
 MAXIMUM 4294967295
 FLAGS 0

PARAMETER INFORMATION:
 PARAMETER_ID 6
 NAME DEFAULT_CORRELATION_LEVEL
 DESCRIPTION Default correlation level for packages
 UNIT Number
 VALUE 2
 DEFAULT_VALUE 2
 MINIMUM 1
 MAXIMUM 4
 FLAGS 0

Chapter 19
ADRCI Command Reference

19-37

Examples

This command describes configuration parameter NUM_EARLY_INCIDENTS:

ips show configuration num_early_incidents

This command describes configuration parameter 3:

ips show configuration 3

Configuration Parameter Descriptions

Table 19-6 describes the IPS configuration parameters in detail.

Table 19-6 IPS Configuration Parameters

Parameter ID Description

CUTOFF_TIME 1 Maximum age, in days, for an incident to be
considered for inclusion.

NUM_EARLY_INCIDENTS 2 Number of incidents to include in the early part of the
range when creating a package based on a problem.
By default, ADRCI adds the three earliest incidents
and three most recent incidents to the package.

NUM_LATE_INCIDENTS 3 Number of incidents to include in the late part of the
range when creating a package based on a problem.
By default, ADRCI adds the three earliest incidents
and three most recent incidents to the package.

INCIDENT_TIME_WINDOW 4 Number of minutes between two incidents in order for
them to be considered correlated.

PACKAGE_TIME_WINDOW 5 Number of hours to use as a time window for
including incidents in a package. For example, a
value of 5 includes incidents five hours before the
earliest incident in the package, and five hours after
the most recent incident in the package.

DEFAULT_CORRELATION_LEVE
L

6 The default correlation level to use for correlating
incidents in a package. The correlation levels are:

• 1 (basic): includes incident dumps and incident
process trace files.

• 2 (typical): includes incident dumps and any
trace files that were modified within the time
window specified by INCIDENT_TIME_WINDOW
(see above).

• 4 (all): includes the incident dumps, and all trace
files that were modified between the first
selected incident and the last selected incident.
Additional incidents can be included
automatically if they occurred in the same time
range.

Chapter 19
ADRCI Command Reference

19-38

See Also:

IPS SET CONFIGURATION

19.9.5.18 IPS SHOW FILES
Lists files included in the specified package.

Purpose

Lists files included in the specified package.

Syntax and Description

ips show files package package_id

package_id is the package ID to display.

Example

This example shows all files associated with package 1:

ips show files package 1

Output:

 FILE_ID 1
 FILE_LOCATION <ADR_HOME>/alert
 FILE_NAME log.xml
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 2
 FILE_LOCATION <ADR_HOME>/trace
 FILE_NAME alert_adcdb.log
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 27
 FILE_LOCATION <ADR_HOME>/incident/incdir_4937
 FILE_NAME adcdb_ora_692_i4937.trm
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 28
 FILE_LOCATION <ADR_HOME>/incident/incdir_4937
 FILE_NAME adcdb_ora_692_i4937.trc
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 29
 FILE_LOCATION <ADR_HOME>/trace

Chapter 19
ADRCI Command Reference

19-39

 FILE_NAME adcdb_ora_692.trc
 LAST_SEQUENCE 1
 EXCLUDE Included

 FILE_ID 30
 FILE_LOCATION <ADR_HOME>/trace
 FILE_NAME adcdb_ora_692.trm
 LAST_SEQUENCE 1
 EXCLUDE Included
.
.
.

19.9.5.19 IPS SHOW INCIDENTS
Lists incidents included in the specified package.

Syntax and Description

ips show incidents package package_id

package_id is the package ID to display.

Example

This example lists the incidents in package 1:

ips show incidents package 1

Output:

MAIN INCIDENTS FOR PACKAGE 1:
 INCIDENT_ID 4985
 PROBLEM_ID 1
 EXCLUDE Included

CORRELATED INCIDENTS FOR PACKAGE 1:

19.9.5.20 IPS SHOW PACKAGE
Displays information about the specified package.

Syntax and Description

ips show package package_id {basic | brief | detail}

package_id is the ID of the package to display.

Use the basic option to display a minimal amount of information. It is the default when
no package_id is specified.

Chapter 19
ADRCI Command Reference

19-40

Use the brief option to display more information about the package than the basic
option. It is the default when a package_id is specified.

Use the detail option to show the information displayed by the brief option, as well
as some package history and information about the included incidents and files.

Example

ips show package 12

ips show package 12 brief

19.9.5.21 IPS UNPACK FILE
Unpackages a physical package file into the specified path.

Syntax and Description

ips unpack file file_name [into path]

file_name is the full path name of the physical package (zip file) to unpack. Optionally,
you can unpack the file into directory path, which must exist and be writable. If you
omit the path, the current working directory is used. The destination directory is treated
as an ADR base, and the entire ADR base directory hierarchy is created, including a
valid ADR home.

This command does not require an ADR home to be set before you can use it.

Example

ips unpack file /tmp/ORA603_20060906165316_COM_1.zip into /tmp/newadr

19.9.6 PURGE
Purpose

Purges diagnostic data in the current ADR home, according to current purging policies.
Only ADR contents that are due to be purged are purged.

Diagnostic data in the ADR has a default lifecycle. For example, information about
incidents and problems is subject to purging after one year, whereas the associated
dump files (dumps) are subject to purging after only 30 days.

Some Oracle products, such as Oracle Database, automatically purge diagnostic data
at the end of its life cycle. Other products and components require you to purge
diagnostic data manually with this command. You can also use this command to purge
data that is due to be automatically purged.

The SHOW CONTROL command displays the default purging policies for short-lived
ADR contents and long-lived ADR contents.

Chapter 19
ADRCI Command Reference

19-41

Syntax and Description

purge [-i {id | start_id end_id} |
 -age mins [-type {ALERT|INCIDENT|TRACE|CDUMP|HM|UTSCDMP}]]

Table 19-7 describes the flags for PURGE.

Table 19-7 Flags for the PURGE command

Flag Description

-i {id1 | start_id end_id} Purges either a specific incident ID (id) or
a range of incident IDs (start_id and
end_id)

-age mins Purges only data older than mins minutes.

-type {ALERT|INCIDENT|TRACE|CDUMP|HM|
UTSCDMP}

Specifies the type of diagnostic data to
purge. Used with the -age clause.

The following types can be specified:

• ALERT - Alert logs
• INCIDENT - Incident data
• TRACE - Trace files (including dumps)
• CDUMP - Core dump files
• HM - Health Monitor run data and

reports
• UTSCDMP - Dumps of in-memory traces

for each session

The UTSCDMP data is stored in
directories under the trace directory.
Each of these directories is named
cdmp_timestamp. In response to a
critical error (such as an ORA-600 or
ORA-7445 error), a background
process creates such a directory and
writes each session's in-memory
tracing data into a trace file. This data
might be useful in determining what the
instance was doing in the seconds
leading up to the failure.

Examples

This example purges all diagnostic data in the current ADR home based on the default
purging policies:

purge

This example purges all diagnostic data for all incidents between 123 and 456:

purge -i 123 456

This example purges all incident data from before the last hour:

purge -age 60 -type incident

Chapter 19
ADRCI Command Reference

19-42

Note:

PURGE does not work when multiple ADR homes are set. For information
about setting a single ADR home, see "Setting the ADRCI Homepath Before
Using ADRCI Commands".

19.9.7 QUIT
QUIT is a synonym for the EXIT command.

Related Topics

• EXIT
The EXIT command exits the ADRCI utility.

19.9.8 RUN
Runs an ADR Command Interpreter (ADRCI) script.

Syntax and Description

run script_name

@ script_name

@@ script_name

The variable script_name is the file containing the ADRCI commands that you want to
run. ADRCI looks for the script in the current directory, unless a full path name is
supplied. If the file name is given without a file extension, then ADRCI uses the default
extension .adi.

The run and @ commands are synonyms. The @@ command is similar to run and @.
However, when used inside a script, @@ uses the path of the calling script to locate
script_name, rather than the current directory.

You are not required to have an ADR home set before you can use the run command.

Example

run my_script

@my_script

19.9.9 SELECT
Purpose

Retrieves qualified records for the specified incident or problem.

Syntax and Description

select {*|[field1, [field2, ...]} FROM {incident|problem}
 [WHERE predicate_string]

Chapter 19
ADRCI Command Reference

19-43

 [ORDER BY field1 [, field2, ...] [ASC|DSC|DESC]]
 [GROUP BY field1 [, field2, ...]]
 [HAVING having_predicate_string]

Table 19-8 Flags for the SELECT command

Flag Description

field1, field2, ... Lists the fields to retrieve. If * is specified, then all fields are
retrieved.

incident|problem Indicates whether to query incidents or problems.

WHERE
"predicate_string"

Uses a SQL-like predicate string to show only the incident or
problem for which the predicate is true. The predicate string
must be enclosed in double quotation marks.

Table 19-13 lists the fields that can be used in the predicate
string incidents.

Table 19-17 lists the fields that can be used in the predicate
string for problems.

ORDER BY field1,
field2, ... [ASC|DSC|
DESC]

Show results sorted by field in the given order, as well as in
ascending (ASC) and descending order (DSC or DESC). When the
ORDER BY clause is specified, results are shown in ascending
order by default.

GROUP BY field1,
field2, ...

Show results grouped by the specified fields.

The GROUP BY flag groups rows but does not guarantee the order
of the result set. To order the groupings, use the ORDER BY flag.

HAVING
"having_predicate_stri
ng"

Restrict the groups of returned rows to those groups for which
the having predicate is true. The HAVING flag must be used in
combination with the GROUP BY flag.

Note:

The WHERE, ORDER BY, GROUP BY, and HAVING flags are similar to the clauses
with the same names in a SELECT SQL statement. See Oracle Database SQL
Language Reference for more information about the clauses in a SELECT
SQL statement.

Restrictions

The following restrictions apply when you use the SELECT command:

• The command cannot join more than two tables.

• The command cannot use table aliases.

• The command can use only a limited set of functions, which are listed in this
section.

• The command cannot use column wildcard ("*") when joining tables or when
using the GROUP BY clause.

• Statements must be on a single line.

• Statement cannot have subqueries.

Chapter 19
ADRCI Command Reference

19-44

• Statement cannot have a WITH clause.

• A limited set of pseudocolumns are allowed. For example, ROWNUM is allowed, but
ROWID is not allowed.

Examples

This example retrieves the incident_id and create_time for incidents with an
incident_id greater than 1:

select incident_id, create_time from incident where incident_id > 1

The following is sample output for this query:

INCIDENT_ID CREATE_TIME
-------------------- --
4801 2011-05-27 10:10:26.541656 -07:00
4802 2011-05-27 10:11:02.456066 -07:00
4803 2011-05-27 10:11:04.759654 -07:00

This example retrieves the problem_id and first_incident for each problem with a
problem_key that includes 600:

select problem_id, first_incident from problem where problem_key like '%600%'

The following is sample output for this query:

PROBLEM_ID FIRST_INCIDENT
-------------------- --------------------
1 4801
2 4802
3 4803

Functions

This section describes functions that you can use with the SELECT command.

The purpose and syntax of these functions are similar to the corresponding SQL
functions, but there are some differences. This section notes the differences between
the functions used with the ADRCI utility and the SQL functions.

The following restrictions apply to all of the functions:

• The expressions must be simple expressions. See Oracle Database SQL
Language Reference for information about simple expressions.

• You cannot combine function calls. For example, the following combination of
function calls is not supported:

sum(length(column_name))

• No functions are overloaded.

• All function arguments are mandatory.

• The functions cannot be used with other ADRCI Utility commands.

• AVG

• CONCAT

• COUNT

Chapter 19
ADRCI Command Reference

19-45

• DECODE
The DECODE function compares an expression to each search value one by one. If
the expression is equal to a search, then Oracle Database returns the
corresponding result. If no match is found, then Oracle returns the specified
default value.

• LENGTH
Returns the length of a character string using as defined by the input character
set.

• MAX
Returns the maximum value of an expression.

• MIN
Returns the minimum value of an expression.

• NVL
Replaces null (returned as a blank) with character data in the results of a query.

• REGEXP_LIKE
Returns rows that match a specified pattern in a specified regular expression.

• SUBSTR
Returns a portion of character data.

• SUM
Returns the sum of values of an expression.

• TIMESTAMP_TO_CHAR
Converts a value of TIMESTAMP data type to a value of VARCHAR2 data type in a
specified format.

• TOLOWER
Returns character data, with all letters lowercase.

• TOUPPER
Returns character data, with all letters uppercase.

19.9.9.1 AVG
Returns the average value of an expression.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the AVG function in the SELECT
command:

• The expression must be a numeric column or a positive numeric constant.

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

Chapter 19
ADRCI Command Reference

19-46

19.9.9.2 CONCAT
Returns a concatenation of two character strings. The character data can be of the
data types CHAR and VARCHAR2. The return value is the same data type as the character
data.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the CONCAT function in the SELECT
command:

• The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

• The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

19.9.9.3 COUNT
Returns the number of rows returned by the query.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the COUNT function in the SELECT
command:

• The expression must be a column, a numeric constant, or a string constant.

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

• The function always counts all rows for the query, including duplicates and nulls.

Examples

This example returns the number of incidents for which flood_controlled is 0 (zero):

select count(*) from incident where flood_controlled = 0;

This example returns the number of problems for which problem_key includes
ORA-600:

select count(*) from problem where problem_key like '%ORA-600%';

Chapter 19
ADRCI Command Reference

19-47

19.9.9.4 DECODE
The DECODE function compares an expression to each search value one by one. If the
expression is equal to a search, then Oracle Database returns the corresponding
result. If no match is found, then Oracle returns the specified default value.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the DECODE function in the SELECT
command:

• The search arguments must be character data.

• A default value must be specified.

Example

This example shows each incident_id and whether or not the incident is flood-
controlled. The example uses the DECODE function to display text instead of numbers
for the flood_controlled field.

select incident_id, decode(flood_controlled, 0, \
 "Not flood-controlled", "Flood-controlled") from incident;

19.9.9.5 LENGTH
Returns the length of a character string using as defined by the input character set.

Purpose

The character string can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The return value is of data type NUMBER. If the character sting has data
type CHAR, then the length includes all trailing blanks. If the character string is null, then
this function returns 0 (zero).

Note:

The SQL function returns null if the character string is null.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The SELECT command does not support the following functions: LENGTHB, LENGTHC,
LENGTH2, and LENGTH4.

Chapter 19
ADRCI Command Reference

19-48

Example

This example shows the problem_id and the length of the problem_key for each
problem.

select problem_id, length(problem_key) from problem;

19.9.9.6 MAX
Returns the maximum value of an expression.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the MAX function in the SELECT
command:

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

Example

This example shows the maximum last_incident value for all of the recorded
problems.

select max(last_incident) from problem;

19.9.9.7 MIN
Returns the minimum value of an expression.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the MIN function in the SELECT
command:

• The function does not support the DISTINCT or ALL keywords.

• The function does not support the OVER clause.

Example

This example shows the minimum first_incident value for all of the recorded
problems.

select min(first_incident) from problem;

Chapter 19
ADRCI Command Reference

19-49

19.9.9.8 NVL
Replaces null (returned as a blank) with character data in the results of a query.

Purpose

If the first expression specified is null, then NVL returns second expression specified. If
first expression specified is not null, then NVL returns the value of the first expression.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the NVL function in the SELECT
command:

• The replacement value (second expression) must be specified as character data.

• The function does not support data conversions.

Example

This example replaces NULL in the output for signalling_component with the text "No
component."

select nvl(signalling_component, 'No component') from incident;

19.9.9.9 REGEXP_LIKE
Returns rows that match a specified pattern in a specified regular expression.

Purpose

In SQL, REGEXP_LIKE is a condition instead of a function.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the REGEXP_LIKE function in the SELECT
command:

• The pattern match is always case-sensitive.

• The function does not support the match_param argument.

Chapter 19
ADRCI Command Reference

19-50

Example

This example shows the problem_id and problem_key for all problems where the
problem_key ends with a number.

select problem_id, problem_key from problem \
 where regexp_like(problem_key, '[0-9]$') = true

19.9.9.10 SUBSTR
Returns a portion of character data.

Purpose

The portion of data returned begins at the specified position and is the specified
substring length characters long. SUBSTR calculates lengths using characters as
defined by the input character set.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the SUBSTR function in the SELECT
command:

• The function supports only positive integers. It does not support negative values or
floating-point numbers.

• The SELECT command does not support the following functions: SUBSTRB, SUBSTRC,
SUBSTR2, and SUBSTR4.

Example

This example shows each problem_key starting with the fifth character in the key.

select substr(problem_key, 5) from problem;

19.9.9.11 SUM
Returns the sum of values of an expression.

Syntax

See Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the SUM function in the SELECT
command:

• The expression must be a numeric column or a numeric constant.

• The function does not support the DISTINCT or ALL keywords.

Chapter 19
ADRCI Command Reference

19-51

• The function does not support the OVER clause.

19.9.9.12 TIMESTAMP_TO_CHAR
Converts a value of TIMESTAMP data type to a value of VARCHAR2 data type in a
specified format.

Purpose

If you do not specify a format, then the function converts values to the default
timestamp format.

Syntax

See the syntax of the TO_CHAR function in Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the TIMESTAMP_TO_CHAR function in the
SELECT command:

• The function converts only TIMESTAMP data type. TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE, and other data types are not supported.

• The function does not support the nlsparm argument. The function uses the
default language for your session.

Example

This example converts the create_time for each incident from a TIMESTAMP data type to
a VARCHAR2 data type in the DD-MON-YYYY format.

select timestamp_to_char(create_time, 'DD-MON-YYYY') from incident;

19.9.9.13 TOLOWER
Returns character data, with all letters lowercase.

Purpose

The character data can be of the data types CHAR and VARCHAR2. The return value is
the same data type as the character data. The database sets the case of the
characters based on the binary mapping defined for the underlying character set.

Syntax

See the syntax of the LOWER function in Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the TOLOWER function in the SELECT
command:

• The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

Chapter 19
ADRCI Command Reference

19-52

• The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

Example

This example shows each problem_key in all lowercase letters.

select tolower(problem_key) from problem;

19.9.9.14 TOUPPER
Returns character data, with all letters uppercase.

Purpose

The character data can be of the data types CHAR and VARCHAR2. The return value is
the same data type as the character data. The database sets the case of the
characters based on the binary mapping defined for the underlying character set.

Syntax

See the syntax of the UPPER function in Oracle Database SQL Language Reference.

Restrictions

The following restrictions apply when you use the TOUPPER function in the SELECT
command:

• The function does not support LOB data types, including BLOB, CLOB, NCLOB, and
BFILE data types.

• The function does not support national character set data types, including NCHAR,
NVARCHAR2, and NCLOB data types.

Example

This example shows each problem_key in all uppercase letters.

select toupper(problem_key) from problem;

19.9.10 SET BASE
Sets the ADR base to use in the current ADRCI session.

Syntax and Description

set base base_str

base_str is a full path to a directory. The format for base_str depends on the
operating system. If there are valid ADR homes under the base directory, these homes
are added to the homepath of the current ADRCI session.

This command does not require an ADR home to be set before you can use it.

Chapter 19
ADRCI Command Reference

19-53

Example

set base /u01/app/oracle

See Also:

ADR Base

19.9.11 SET BROWSER
Sets the default browser for displaying reports.

Note:

This command is reserved for future use. At this time ADRCI does not
support HTML-formatted reports in a browser.

Syntax and Description

set browser browser_program

browser_program is the browser program name (it is assumed the browser can be
started from the current ADR working directory). If no browser is set, ADRCI will
display reports to the terminal or spool file.

This command does not require an ADR home to be set before you can use it.

Example

set browser mozilla

See Also:

• SHOW REPORT for more information about showing reports

• SPOOL for more information about spooling

19.9.12 SET CONTROL
Sets purging policies for Automatic Diagnostic Repository (ADR) contents.

Syntax and Description

set control (purge_policy = value purge_policy = value, ...)

Chapter 19
ADRCI Command Reference

19-54

In the preceding syntax, the variable purge_policy can be SHORTP_POLICY,
LONGP_POLICY, or SIZEP_POLICY.

For SHORTP_POLICY and LONGP_POLICY, value is the number of hours after which the
ADR contents become eligible for purging. The controls SHORTP_POLICY and
LONGP_POLICY are not mutually exclusive. Each policy controls different types of
content.

For SIZEP_POLICY, value is the size limit that you want to set for the ADR home. If you
do not set a value, then the ADR home is purged every 24 hours. If you set a value for
SIZEP_POLICY, then a MMON task is set that checks the current status of that limit
every four hours. When the ADR home size reaches that limit, the ADR home is
purged.

This command works with a single ADR home only.

Example

set control (SHORTP_POLICY = 360 SIZEP_POLICY = 18G)

19.9.13 SET ECHO
Turns command output on or off. This command only affects output being displayed in
a script or using the spool mode.

Syntax and Description

SET ECHO ON | OFF

This command does not require an ADR home to be set before you can use it.

Example

SET ECHO OFF

See Also:

SPOOL for more information about spooling

19.9.14 SET EDITOR
Sets the editor for displaying the alert log and the contents of trace files.

Syntax and Description

SET EDITOR editor_program

editor_program is the editor program name. If no editor is set, ADRCI uses the editor
specified by the operating system environment variable EDITOR. If EDITOR is not set,
ADRCI uses vi as the default editor.

Chapter 19
ADRCI Command Reference

19-55

This command does not require an ADR home to be set before you can use it.

Example

SET EDITOR xemacs

19.9.15 SET HOMEPATH
Makes one or more ADR homes current. Many ADR commands work with the current
ADR homes only.

Syntax and Description

SET HOMEPAGH homepagh_str1 homepath_str2 ...

The homepath_strn strings are the paths of the ADR homes relative to the current
ADR base. The diag directory name can be omitted from the path. If the specified path
contains multiple ADR homes, all of the homes are added to the homepath.

If a desired new ADR home is not within the current ADR base, use SET BASE to set a
new ADR base and then use SET HOMEPATH.

This command does not require an ADR home to be set before you can use it.

Example

SET HOMEPATH diag/rdbms/orcldw/orcldw1 diag/rdbms/orcldw/orcldw2

The following command sets the same homepath as the previous example:

SET HOMEPATH rdbms/orcldw/orcldw1 rdbms/orcldw/orcldw2

See Also:

Homepath

19.9.16 SET TERMOUT
Turns output to the terminal on or off.

Syntax and Description

SET TERMOUT ON | OFF

This setting is independent of spooling. That is, the output can be directed to both
terminal and a file at the same time.

This command does not require an ADR home to be set before you can use it.

Chapter 19
ADRCI Command Reference

19-56

See Also:

SPOOL for more information about spooling

Example

SET TERMOUT ON

19.9.17 SHOW ALERT
Purpose

Shows the contents of the alert log in the default editor.

Syntax and Description

show alert [-p "predicate_string"] [-tail [num] [-f]] [-term]
 [-file alert_file_name]

Except when using the -term flag, this command works with only a single current ADR
home. If more than one ADR home is set, ADRCI prompts you to choose the ADR
home to use.

Table 19-9 Flags for the SHOW ALERT command

Flag Description

-p "predicate_string" Uses a SQL-like predicate string to show only the alert log
entries for which the predicate is true. The predicate string must
be enclosed in double quotation marks.

Table 19-10 lists the fields that can be used in the predicate
string.

-tail [num] [-f] Displays the most recent entries in the alert log.

Use the num option to display the last num entries in the alert log.
If num is omitted, the last 10 entries are displayed.

If the -f option is given, after displaying the requested
messages, the command does not return. Instead, it remains
active and continuously displays new alert log entries to the
terminal as they arrive in the alert log. You can use this
command to perform live monitoring of the alert log. To terminate
the command, press CTRL+C.

-term Directs results to the terminal. Outputs the entire alert logs from
all current ADR homes, one after another. If this option is not
given, the results are displayed in the default editor.

-file alert_file_name Enables you to specify an alert file outside the ADR.
alert_file_name must be specified with a full path name. Note
that this option cannot be used with the -tail option.

Chapter 19
ADRCI Command Reference

19-57

Table 19-10 Alert Fields for SHOW ALERT

Field Type

ORIGINATING_TIMESTAMP timestamp

NORMALIZED_TIMESTAMP timestamp

ORGANIZATION_ID text(65)

COMPONENT_ID text(65)

HOST_ID text(65)

HOST_ADDRESS text(17)

MESSAGE_TYPE number

MESSAGE_LEVEL number

MESSAGE_ID text(65)

MESSAGE_GROUP text(65)

CLIENT_ID text(65)

MODULE_ID text(65)

PROCESS_ID text(33)

THREAD_ID text(65)

USER_ID text(65)

INSTANCE_ID text(65)

DETAILED_LOCATION text(161)

UPSTREAM_COMP_ID text(101)

DOWNSTREAM_COMP_ID text(101)

EXECUTION_CONTEXT_ID text(101)

EXECUTION_CONTEXT_SEQUENCE number

ERROR_INSTANCE_ID number

ERROR_INSTANCE_SEQUENCE number

MESSAGE_TEXT text(2049)

MESSAGE_ARGUMENTS text(129)

SUPPLEMENTAL_ATTRIBUTES text(129)

SUPPLEMENTAL_DETAILS text(4000)

PROBLEM_KEY text(65)

Examples

This example shows all alert messages for the current ADR home in the default editor:

show alert

This example shows all alert messages for the current ADR home and directs the
output to the terminal instead of the default editor:

show alert -term

Chapter 19
ADRCI Command Reference

19-58

This example shows all alert messages for the current ADR home with message text
describing an incident:

show alert -p "message_text like '%incident%'"

This example shows the last twenty alert messages, and then keeps the alert log
open, displaying new alert log entries as they arrive:

show alert -tail 20 -f

This example shows all alert messages for a single ADR home in the default editor
when multiple ADR homes have been set:

show alert

Choose the alert log from the following homes to view:

1: diag/tnslsnr/dbhost1/listener
2: diag/asm/+asm/+ASM
3: diag/rdbms/orcl/orcl
4: diag/clients/user_oracle/host_9999999999_11
Q: to quit

Please select option:
3

See Also:

"SET EDITOR"

19.9.18 SHOW BASE
Shows the current ADR base.

Syntax and Description

SHOW BASE [-product product_name]

Optionally, you can show the product's ADR base location for a specific product. The
products currently supported are CLIENT and ADRCI.

This command does not require an ADR home to be set before you can use it.

Example

This example shows the current ADR base:

SHOW BASE

Output:

ADR base is "/u01/app/oracle"

Chapter 19
ADRCI Command Reference

19-59

This example shows the current ADR base for Oracle Database clients:

SHOW BASE -product client

19.9.19 SHOW CONTROL
Displays information about the Automatic Diagnostic Repository (ADR), including the
purging policy.

Syntax and Description

SHOW CONTROL

Displays various attributes of the ADR, including the following purging policy attributes:

Attribute Name Description

SHORTP_POLICY Number of hours after which to purge ADR contents that have a short
life. Default is 720 (30 days).

A setting of 0 (zero) means that all contents that have a short life can
be purged. The maximum setting is 35791394. If a value greater than
35791394 is specified, then this attribute is set to 0 (zero).

The ADR contents that have a short life include the following:

• Trace files, including those files stored in the cdmp_timestamp
subdirectories

• Core dump files
• Packaging information

LONGP_POLICY Number of hours after which to purge ADR contents that have a long
life. Default is 8760 (365 days).

A setting of 0 (zero) means that all contents that have a long life can
be purged. The maximum setting is 35791394. If a value greater than
35791394 is specified, then this attribute is set to 0 (zero).

The ADR contents that have a long life include the following:

• Incident information
• Incident dumps
• Alert logs

SIZEP_POLICY (Optional) Defines the size limit for an ADR home. For example:

In Oracle Database 12c Release 2 (12.2) and later releases, ADR
supports size-based purging.

The MMON background process collects statistics for the Automatic
Workload Repository (AWR). By default, the ADR home is purged
every 24 hours. If this purge time frame is inadequate, then use
sizep_policy to define a size limit for an ADR home. By setting a
sizeb_policy value to limit the size of an ADR home, MMON
checks the current status of that limit every four hours. If the size limit
is reached, then ADR purges the ADR repository.

Note:

The SHORTP_POLICY and LONGP_POLICY attributes are not mutually exclusive.
Each policy controls different types of content.

Chapter 19
ADRCI Command Reference

19-60

19.9.20 SHOW HM_RUN
The SHOW HM_RUN ADRCI utility command shows all information for Health Monitor
runs..

Purpose

Shows all information for Health Monitor runs.

Syntax and Description

show hm_run [-p "predicate_string]

predicate_string is a SQL-like predicate that specifies the field names that you want
to select. The following table displays the list of field names you can use:

Table 19-11 Fields for Health Monitor Runs

Field Type

RUN_ID number

RUN_NAME text(31)

CHECK_NAME text(31)

NAME_ID number

MODE number

START_TIME timestamp

RESUME_TIME timestamp

END_TIME timestamp

MODIFIED_TIME timestamp

TIMEOUT number

FLAGS number

STATUS number

SRC_INCIDENT_ID number

NUM_INCIDENTS number

ERR_NUMBER number

REPORT_FILE bfile

Examples

This example displays data for all Health Monitor runs:

show hm_run

This example displays data for the Health Monitor run with ID 123:

show hm_run -p "run_id=123"

Chapter 19
ADRCI Command Reference

19-61

Related Topics

• About Health Monitor

19.9.21 SHOW HOMEPATH
The SHOW HOMEPATH command is identical to the SHOW HOMES command.

Syntax and Description

SHOW HOMEPATH | SHOW HOMES | SHOW HOME

This command does not require an ADR home to be set before you can use it.

Example

SHOW HOMEPATH

Output:

ADR Homes:
diag/tnslsnr/dbhost1/listener
diag/asm/+asm/+ASM
diag/rdbms/orcl/orcl
diag/clients/user_oracle/host_9999999999_11

See Also:

SET HOMEPATH for information about how to set the homepath

19.9.22 SHOW HOMES
Show the ADR homes in the current ADRCI session.

Syntax and Description

SHOW HOMES | SHOW HOME | SHOW HOMEPATH

This command does not require an ADR home to be set before you can use it.

Example

SHOW HOMES

Output:

ADR Homes:
diag/tnslsnr/dbhost1/listener
diag/asm/+asm/+ASM

Chapter 19
ADRCI Command Reference

19-62

diag/rdbms/orcl/orcl
diag/clients/user_oracle/host_9999999999_11

19.9.23 SHOW INCDIR
Purpose

Shows trace files for the specified incident.

Syntax and Description

show incdir [id | id_low id_high]

You can provide a single incident ID (id) or a range of incidents (id_low to id_high). If
no incident ID is given, trace files for all incidents are listed.

Examples

This example shows all trace files for all incidents:

show incdir

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_ora_23604_i3801.trc
diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_m000_23649_i3801_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3802/emdb_ora_23604_i3802.trc
diag/rdbms/emdb/emdb/incident/incdir_3803/emdb_ora_23604_i3803.trc
diag/rdbms/emdb/emdb/incident/incdir_3804/emdb_ora_23604_i3804.trc
diag/rdbms/emdb/emdb/incident/incdir_3805/emdb_ora_23716_i3805.trc
diag/rdbms/emdb/emdb/incident/incdir_3805/emdb_m000_23767_i3805_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3806/emdb_ora_23716_i3806.trc
diag/rdbms/emdb/emdb/incident/incdir_3633/emdb_pmon_28970_i3633.trc
diag/rdbms/emdb/emdb/incident/incdir_3633/emdb_m000_23778_i3633_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_smon_28994_i3713.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_m000_23797_i3713_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3807/emdb_ora_23783_i3807.trc
diag/rdbms/emdb/emdb/incident/incdir_3807/emdb_m000_23803_i3807_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3808/emdb_ora_23783_i3808.trc

This example shows all trace files for incident 3713:

show incdir 3713

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_smon_28994_i3713.trc
diag/rdbms/emdb/emdb/incident/incdir_3713/emdb_m000_23797_i3713_a.trc

This example shows all tracefiles for incidents between 3801 and 3804:

show incdir 3801 3804

Output:

Chapter 19
ADRCI Command Reference

19-63

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_ora_23604_i3801.trc
diag/rdbms/emdb/emdb/incident/incdir_3801/emdb_m000_23649_i3801_a.trc
diag/rdbms/emdb/emdb/incident/incdir_3802/emdb_ora_23604_i3802.trc
diag/rdbms/emdb/emdb/incident/incdir_3803/emdb_ora_23604_i3803.trc
diag/rdbms/emdb/emdb/incident/incdir_3804/emdb_ora_23604_i3804.trc

19.9.24 SHOW INCIDENT
Purpose

Lists all of the incidents associated with the current ADR home. Includes both open
and closed incidents.

Syntax and Description

show incident [-p "predicate_string"] [-mode {BASIC|BRIEF|DETAIL}] [-
orderby field1, field2, ... [ASC|DSC]]

Table 19-12 describes the flags for SHOW INCIDENT.

Table 19-12 Flags for SHOW INCIDENT command

Flag Description

-p "predicate_string" Use a predicate string to show only the incidents for
which the predicate is true. The predicate string
must be enclosed in double quotation marks.

Table 19-13 lists the fields that can be used in the
predicate string.

-mode {BASIC|BRIEF|DETAIL} Choose an output mode for incidents. BASIC is the
default.

• BASIC displays only basic incident information
(the INCIDENT_ID, PROBLEM_ID, and
CREATE_TIME fields). It does not display flood-
controlled incidents.

• BRIEF displays all information related to the
incidents, as given by the fields in Table 19-13.
It includes flood-controlled incidents.

• DETAIL displays all information for the incidents
(as with BRIEF mode) as well as information
about incident dumps. It includes flood-
controlled incidents.

-orderby field1, field2, ...
[ASC|DSC]

Show results sorted by field in the given order, as
well as in ascending (ASC) and descending order
(DSC). By default, results are shown in ascending
order.

Table 19-13 Incident Fields for SHOW INCIDENT

Field Type Description

INCIDENT_ID number ID of the incident

Chapter 19
ADRCI Command Reference

19-64

Table 19-13 (Cont.) Incident Fields for SHOW INCIDENT

Field Type Description

PROBLEM_ID number ID of the problem to which the
incident belongs

CREATE_TIME timestamp Time when the incident was created

CLOSE_TIME timestamp Time when the incident was closed

STATUS number Status of this incident

FLAGS number Flags for internal use

FLOOD_CONTROLLED number (decoded to a
text status by ADRCI)

Encodes the flood control status for
the incident

ERROR_FACILITY text(10) Error facility for the error that caused
the incident

ERROR_NUMBER number Error number for the error that
caused the incident

ERROR_ARG1 text(64) First argument for the error that
caused the incident

Error arguments provide additional
information about the error, such as
the code location that issued the
error.

ERROR_ARG2 text(64) Second argument for the error that
caused the incident

ERROR_ARG3 text(64) Third argument for the error that
caused the incident

ERROR_ARG4 text(64) Fourth argument for the error that
caused the incident

ERROR_ARG5 text(64) Fifth argument for the error that
caused the incident

ERROR_ARG6 text(64) Sixth argument for the error that
caused the incident

ERROR_ARG7 text(64) Seventh argument for the error that
caused the incident

ERROR_ARG8 text(64) Eighth argument for the error that
caused the incident

SIGNALLING_COMPONENT text(64) Component that signaled the error
that caused the incident

SIGNALLING_SUBCOMPONENT text(64) Subcomponent that signaled the error
that caused the incident

SUSPECT_COMPONENT text(64) Component that has been
automatically identified as possibly
causing the incident

SUSPECT_SUBCOMPONENT text(64) Subcomponent that has been
automatically identified as possibly
causing the incident

ECID text(64) Execution Context ID

IMPACT number Encodes the impact of the incident

Chapter 19
ADRCI Command Reference

19-65

Table 19-13 (Cont.) Incident Fields for SHOW INCIDENT

Field Type Description

ERROR_ARG9 text(64) Ninth argument for the error that
caused the incident

ERROR_ARG10 text(64) Tenth argument for the error that
caused the incident

ERROR_ARG11 text(64) Eleventh argument for the error that
caused the incident

ERROR_ARG12 text(64) Twelfth argument for the error that
caused the incident

Examples

This example shows all incidents for this ADR home:

show incident

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

INCIDENT_ID PROBLEM_KEY CREATE_TIME
-------------------- -- ----------------------------
3808 ORA 603 2010-06-18 21:35:49.322161 -07:00
3807 ORA 600 [4137] 2010-06-18 21:35:47.862114 -07:00
3806 ORA 603 2010-06-18 21:35:26.666485 -07:00
3805 ORA 600 [4136] 2010-06-18 21:35:25.012579 -07:00
3804 ORA 1578 2010-06-18 21:35:08.483156 -07:00
3713 ORA 600 [4136] 2010-06-18 21:35:44.754442 -07:00
3633 ORA 600 [4136] 2010-06-18 21:35:35.776151 -07:00
7 rows fetched

This example shows the detail view for incident 3805:

adrci> show incident -mode DETAIL -p "incident_id=3805"

Output:

ADR Home = /u01/app/oracle/log/diag/rdbms/emdb/emdb:

**
INCIDENT INFO RECORD 1
**
 INCIDENT_ID 3805
 STATUS closed
 CREATE_TIME 2010-06-18 21:35:25.012579 -07:00
 PROBLEM_ID 2
 CLOSE_TIME 2010-06-18 22:26:54.143537 -07:00
 FLOOD_CONTROLLED none
 ERROR_FACILITY ORA
 ERROR_NUMBER 600
 ERROR_ARG1 4136
 ERROR_ARG2 2
 ERROR_ARG3 18.0.628
 ERROR_ARG4 <NULL>

Chapter 19
ADRCI Command Reference

19-66

 ERROR_ARG5 <NULL>
 ERROR_ARG6 <NULL>
 ERROR_ARG7 <NULL>
 ERROR_ARG8 <NULL>
 SIGNALLING_COMPONENT <NULL>
 SIGNALLING_SUBCOMPONENT <NULL>
 SUSPECT_COMPONENT <NULL>
 SUSPECT_SUBCOMPONENT <NULL>
 ECID <NULL>
 IMPACTS 0
 PROBLEM_KEY ORA 600 [4136]
 FIRST_INCIDENT 3805
 FIRSTINC_TIME 2010-06-18 21:35:25.012579 -07:00
 LAST_INCIDENT 3713
 LASTINC_TIME 2010-06-18 21:35:44.754442 -07:00
 IMPACT1 0
 IMPACT2 0
 IMPACT3 0
 IMPACT4 0
 KEY_NAME Client ProcId
 KEY_VALUE oracle@dbhost1 (TNS V1-V3).23716_3083142848
 KEY_NAME SID
 KEY_VALUE 127.52237
 KEY_NAME ProcId
 KEY_VALUE 23.90
 KEY_NAME PQ
 KEY_VALUE (0, 1182227717)
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/incident/incdir_3805/emdb_ora_23716_i3805.trc
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/trace/emdb_ora_23716.trc
 OWNER_ID 1
 INCIDENT_FILE /.../emdb/emdb/incident/incdir_3805/emdb_m000_23767_i3805_a.trc
1 rows fetched

19.9.25 SHOW LOG
Show diagnostic log messages.

Syntax and Description

SHOW LOG [-l log_name] [-p "predicate_string"] [-term] [[-tail [num] [-
f]]]

Table 19-14 describes the flags for SHOW LOG.

Table 19-14 Flags for SHOW LOG command

Flag Description

-l log_name Name of the log to show.

If no log name is specified, then this command displays all
messages from all diagnostic logs under the current ADR Home.

Chapter 19
ADRCI Command Reference

19-67

Table 19-14 (Cont.) Flags for SHOW LOG command

Flag Description

-p "predicate_string" Use a SQL-like predicate string to show only the log entries for
which the predicate is true. The predicate string must be
enclosed in double quotation marks.

Table 19-15 lists the fields that can be used in the predicate
string.

-term Direct results to the terminal.

If this option is not specified, then this command opens the
results in an editor. By default, it opens the results in emacs, but
you can use the SET EDITOR command to open the results in
other editors.

-tail [num] [-f] Displays the most recent entries in the log.

Use the num option to display the last num entries in the log. If
num is omitted, the last 10 entries are displayed.

If the -f option is given, after displaying the requested
messages, the command does not return. Instead, it remains
active and continuously displays new log entries to the terminal
as they arrive in the log. You can use this command to perform
live monitoring of the log. To terminate the command, press
CTRL+C.

Table 19-15 Log Fields for SHOW LOG

Field Type

ORIGINATING_TIMESTAMP timestamp

NORMALIZED_TIMESTAMP timestamp

ORGANIZATION_ID text(65)

COMPONENT_ID text(65)

HOST_ID text(65)

HOST_ADDRESS text(17)

MESSAGE_TYPE number

MESSAGE_LEVEL number

MESSAGE_ID text(65)

MESSAGE_GROUP text(65)

CLIENT_ID text(65)

MODULE_ID text(65)

PROCESS_ID text(33)

THREAD_ID text(65)

USER_ID text(65)

INSTANCE_ID text(65)

DETAILED_LOCATION text(161)

UPSTREAM_COMP_ID text(101)

DOWNSTREAM_COMP_ID text(101)

Chapter 19
ADRCI Command Reference

19-68

Table 19-15 (Cont.) Log Fields for SHOW LOG

Field Type

EXECUTION_CONTEXT_ID text(101)

EXECUTION_CONTEXT_SEQUENCE number

ERROR_INSTANCE_ID number

ERROR_INSTANCE_SEQUENCE number

MESSAGE_TEXT text(2049)

MESSAGE_ARGUMENTS text(129)

SUPPLEMENTAL_ATTRIBUTES text(129)

SUPPLEMENTAL_DETAILS text(4000)

PROBLEM_KEY text(65)

19.9.26 SHOW PROBLEM
Purpose

Show problem information for the current ADR home.

Syntax and Description

show problem [-p "predicate_string"] [-last num | -all]
 [-orderby field1, field2, ... [ASC|DSC]]

The following table describes the flags for SHOW PROBLEM.

Table 19-16 Flags for SHOW PROBLEM command

Flag Description

-p "predicate_string" Use a SQL-like predicate string to show only the incidents for
which the predicate is true. The predicate string must be
enclosed in double quotation marks.

The table "Problem Fields for SHOW PROBLEM" lists the fields
that can be used in the predicate string.

-last num | -all Shows the last num problems, or lists all the problems. By
default, SHOW PROBLEM lists the most recent 50 problems.

-orderby field1,
field2, ... [ASC|DSC]

Show results sorted by field in the given order (field1,
field2, ...), as well as in ascending (ASC) and descending order
(DSC). By default, results are shown in ascending order.

Table 19-17 Problem Fields for SHOW PROBLEM

Field Type Description

PROBLEM_ID number ID of the problem

PROBLEM_KEY text(550) Problem key for the problem

FIRST_INCIDENT number Incident ID of the first incident for the problem

Chapter 19
ADRCI Command Reference

19-69

Table 19-17 (Cont.) Problem Fields for SHOW PROBLEM

Field Type Description

FIRSTINC_TIME timestamp Creation time of the first incident for the
problem

LAST_INCIDENT number Incident ID of the last incident for the problem

LASTINC_TIME timestamp Creation time of the last incident for the
problem

IMPACT1 number Encodes an impact of this problem

IMPACT2 number Encodes an impact of this problem

IMPACT3 number Encodes an impact of this problem

IMPACT4 number Encodes an impact of this problem

SERVICE_REQUEST text(64) Service request for the problem (entered
through Support Workbench)

BUG_NUMBER text(64) Bug number for the problem (entered through
Support Workbench)

Example

This example lists all the problems in the current ADR home:

show problem -all

This example shows the problem with ID 4:

show problem -p "problem_id=4"

19.9.27 SHOW REPORT
Shows a report for the specified report type and run name.

Purpose

Currently, only the hm_run (Health Monitor) report type is supported, and only in XML
formatting. To view HTML-formatted Health Monitor reports, use Oracle Enterprise
Manager or the DBMS_HM PL/SQL package. See Oracle Database Administrator's
Guide for more information.

Syntax and Description

SHOW REPORT report_type run_name

report_type must be hm_run. run_name is the Health Monitor run name from which
you created the report. You must first create the report using the CREATE REPORT
command.

This command does not require an ADR home to be set before you can use it.

Chapter 19
ADRCI Command Reference

19-70

Example

SHOW REPORT hm_run hm_run_1421

See Also:

• CREATE REPORT

• SHOW HM_RUN

19.9.28 SHOW TRACEFILE
Purpose

List trace files.

Syntax and Description

show tracefile [file1 file2 ...] [-rt | -t]
 [-i inc1 inc2 ...] [-path path1 path2 ...]

This command searches for one or more files under the trace directory and all incident
directories of the current ADR homes, unless the -i or -path flags are given.

This command does not require an ADR home to be set unless using the -i option.

Table 19-18 describes the arguments of SHOW TRACEFILE.

Table 19-18 Arguments for SHOW TRACEFILE Command

Argument Description

file1 file2 ... Filter results by file name. The % symbol is a wildcard character.

Table 19-19 Flags for SHOW TRACEFILE Command

Flag Description

-rt | -t Order the trace file names by timestamp. -t sorts the file names
in ascending order by timestamp, and -rt sorts them in reverse
order. Note that file names are only ordered relative to their
directory. Listing multiple directories of trace files applies a
separate ordering to each directory.

Timestamps are listed next to each file name when using this
option.

-i inc1 inc2 ... Select only the trace files produced for the given incident IDs.

-path path1 path2 ... Query only the trace files under the given path names.

Chapter 19
ADRCI Command Reference

19-71

Examples

This example shows all the trace files under the current ADR home:

show tracefile

This example shows all the mmon trace files, sorted by timestamp in reverse order:

show tracefile %mmon% -rt

This example shows all trace files for incidents 1 and 4, under the path /home/steve/
temp:

show tracefile -i 1 4 -path /home/steve/temp

19.9.29 SPOOL
Directs ADRCI output to a file.

Syntax and Description

SPOOL filename [[APPEND] | [OFF]]

filename is the file name where the output is to be directed. If a full path name is not
given, the file is created in the current ADRCI working directory. If no file extension is
given, the default extension .ado is used. APPEND causes the output to be appended to
the end of the file. Otherwise, the file is overwritten. Use OFF to turn off spooling.

This command does not require an ADR home to be set before you can use it.

Example

SPOOL myfile

SPOOL myfile.ado APPEND

SPOOL OFF

SPOOL

19.10 Troubleshooting ADRCI
Describes some common ADRCI error messages.

The following are some common ADRCI error messages, with their possible causes
and remedies:

No ADR base is set

Cause: You may have started ADRCI with a null or invalid value for the ORACLE_HOME
environment variable.

Chapter 19
Troubleshooting ADRCI

19-72

Action: Exit ADRCI, set the ORACLE_HOME environment variable, and restart ADRCI. See
"ADR Base" for more information.

DIA-48323: Specified pathname string must be inside current ADR home

Cause: A file outside of the ADR home is not allowed as an incident file for this
command.

Action: Retry using an incident file inside the ADR home.

DIA-48400: ADRCI initialization failed

Cause: The ADR Base directory does not exist.

Action: Check the value of the DIAGNOSTIC_DEST initialization parameter, and ensure
that it points to an ADR base directory that contains at least one ADR home. If
DIAGNOSTIC_DEST is missing or null, check for a valid ADR base directory hierarchy in
ORACLE_HOME/log.

DIA-48431: Must specify at least one ADR home path

Cause: The command requires at least one ADR home to be current.

Action: Use the SET HOMEPATH command to make one or more ADR homes current.

DIA-48432: The ADR home path string is not valid

Cause: The supplied ADR home is not valid, possibly because the path does not exist.

Action: Check if the supplied ADR home path exists.

DIA-48447: The input path [path] does not contain any ADR homes

Cause: When using SET HOMEPATH to set an ADR home, you must supply a path
relative to the current ADR base.

Action: If the new desired ADR home is not within the current ADR base, first set ADR
base with SET BASE, and then use SHOW HOMES to check the ADR homes under the new
ADR base. Next, use SET HOMEPATH to set a new ADR home if necessary.

DIA-48448: This command does not support multiple ADR homes

Cause: There are multiple current ADR homes in the current ADRCI session.

Action: Use the SET HOMEPATH command to make a single ADR home current.

Chapter 19
Troubleshooting ADRCI

19-73

20
DBVERIFY: Offline Database Verification
Utility

DBVERIFY is an external command-line utility that performs a physical data structure
integrity check.

DBVERIFY can be used on offline or online databases, as well on backup files. You
use DBVERIFY primarily when you need to ensure that a backup database (or data
file) is valid before it is restored, or as a diagnostic aid when you have encountered
data corruption problems. Because DBVERIFY can be run against an offline database,
integrity checks are significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks).
Because DBVERIFY is only for use with data files, it does not work against control files
or redo logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you
specify disk blocks of a single data file for checking. With the second interface, you
specify a segment for checking. Both interfaces are started with the dbv command.
The following sections provide descriptions of these interfaces:

• Using DBVERIFY to Validate Disk Blocks of a Single Data File
In this mode, DBVERIFY scans one or more disk blocks of a single data file and
performs page checks.

• Using DBVERIFY to Validate a Segment
In this mode, DBVERIFY enables you to specify a table segment or index segment
for verification.

20.1 Using DBVERIFY to Validate Disk Blocks of a Single
Data File

In this mode, DBVERIFY scans one or more disk blocks of a single data file and
performs page checks.

If the file you are verifying is an Oracle Automatic Storage Management (Oracle ASM)
file, then you must supply a USERID. This is because DBVERIFY needs to connect to
an Oracle instance to access Oracle ASM files.

• DBVERIFY Syntax When Validating Blocks of a Single File
Using DBVERIFY to validate blocks of a single file.

• DBVERIFY Parameters When Validating Blocks of a Single File
Describes the DBVERIFY parameters used to validate blocks of a single file.

• Sample DBVERIFY Output For a Single Data File
Sample verification for a single data file.

20-1

20.1.1 DBVERIFY Syntax When Validating Blocks of a Single File
Using DBVERIFY to validate blocks of a single file.

The syntax for DBVERIFY when you want to validate disk blocks of a single data file is
as follows:

dbv

USERID = username/password

FILE = filename

START

END
= block_address

BLOCKSIZE = integer

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename

HIGH_SCN = integer

20.1.2 DBVERIFY Parameters When Validating Blocks of a Single File
Describes the DBVERIFY parameters used to validate blocks of a single file.

For example:

Parameter Description

USERID Specifies your username and password.

This parameter is only necessary when the files being verified are
Oracle ASM files.

If you do specify this parameter, both a username and a password
must be entered; otherwise a DBV-00112: USERID
incorrectly specified error is returned.

FILE The name of the database file to verify.

START The starting block address to verify. Specify block addresses in
Oracle blocks (as opposed to operating system blocks). If you do
not specify START, then DBVERIFY defaults to the first block in the
file.

END The ending block address to verify. If you do not specify END, then
DBVERIFY defaults to the last block in the file.

Chapter 20
Using DBVERIFY to Validate Disk Blocks of a Single Data File

20-2

Parameter Description

BLOCKSIZE BLOCKSIZE is required only if the file to be verified does not have a
block size of 2 KB. If the file does not have block size of 2 KB and
you do not specify BLOCKSIZE, then you will receive the error
DBV-00103.

HIGH_SCN When a value is specified for HIGH_SCN, DBVERIFY writes
diagnostic messages for each block whose block-level SCN
exceeds the value specified.

This parameter is optional. There is no default.

LOGFILE Specifies the file to which logging information should be written.
The default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in
the form of a single period (.) for n number of pages verified during
the DBVERIFY run. If n = 0, then there is no progress display.

HELP Provides online help.

PARFILE Specifies the name of the parameter file to use. You can store
various values for DBVERIFY parameters in flat files. This enables
you to customize parameter files to handle different types of data
files and to perform specific types of integrity checks on data files.

20.1.3 Sample DBVERIFY Output For a Single Data File
Sample verification for a single data file.

The following is a sample verification of the file t_db1.dbf.The feedback parameter
has been given the value 100 to display one period (.) for every 100 pages processed.
A portion of the resulting output is also shown.

% dbv FILE=t_db1.dbf FEEDBACK=100
.
.
.
DBVERIFY - Verification starting : FILE = t_db1.dbf

..

DBVERIFY - Verification complete

Total Pages Examined : 9216
Total Pages Processed (Data) : 2044
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 733
Total Pages Failing (Index): 0
Total Pages Empty : 5686
Total Pages Marked Corrupt : 0

Total Pages Influx : 0

Notes:

• Pages = Blocks

• Total Pages Examined = number of blocks in the file

Chapter 20
Using DBVERIFY to Validate Disk Blocks of a Single Data File

20-3

• Total Pages Processed = number of blocks that were verified (formatted blocks)

• Total Pages Failing (Data) = number of blocks that failed the data block checking
routine

• Total Pages Failing (Index) = number of blocks that failed the index block checking
routine

• Total Pages Marked Corrupt = number of blocks for which the cache header is
invalid, thereby making it impossible for DBVERIFY to identify the block type

• Total Pages Influx = number of blocks that are being read and written to at the
same time. If the database is open when DBVERIFY is run, then DBVERIFY reads
blocks multiple times to get a consistent image. But because the database is open,
there may be blocks that are being read and written to at the same time (INFLUX).
DBVERIFY cannot get a consistent image of pages that are in flux.

20.2 Using DBVERIFY to Validate a Segment
In this mode, DBVERIFY enables you to specify a table segment or index segment for
verification.

It checks to ensure that a row chain pointer is within the segment being verified.

This mode requires that you specify a segment (data or index) to be validated. It also
requires that you log on to the database with SYSDBA privileges, because information
about the segment must be retrieved from the database.

During this mode, the segment is locked. If the specified segment is an index, then the
parent table is locked. Note that some indexes, such as IOTs, do not have parent
tables.

• DBVERIFY Syntax When Validating a Segment
Using DBVERIFY to validate a segment.

• DBVERIFY Parameters When Validating a Single Segment
Describes the DBVERIFY parameters used to validate a single segment.

• Sample DBVERIFY Output For a Validated Segment
Sample verification for a validated segment.

20.2.1 DBVERIFY Syntax When Validating a Segment
Using DBVERIFY to validate a segment.

The syntax for DBVERIFY when you want to validate a segment is as follows:

Chapter 20
Using DBVERIFY to Validate a Segment

20-4

dbv

USERID = username/password

SEGMENT_ID = tsn.segfile.segblock

LOGFILE = filename

FEEDBACK = integer

HELP =
Y

N

PARFILE = filename

HIGH_SCN = integer

20.2.2 DBVERIFY Parameters When Validating a Single Segment
Describes the DBVERIFY parameters used to validate a single segment.

For example:

Parameter Description

USERID Specifies your username and password. If you do not enter both a
username and a password, the error DBV-00112: USERID
incorrectly specified is returned.

If you are connecting to a container database (CDB), you would
enter username@cdbname/password.

SEGMENT_ID Specifies the segment to verify. It is composed of the tablespace
ID number (tsn), segment header file number (segfile), and
segment header block number (segblock). You can get this
information from SYS_USER_SEGS. The relevant columns are
TABLESPACE_ID, HEADER_FILE, and HEADER_BLOCK. You must
have SYSDBA privileges to query SYS_USER_SEGS.

HIGH_SCN When a value is specified for HIGH_SCN, DBVERIFY writes
diagnostic messages for each block whose block-level SCN
exceeds the value specified.

This parameter is optional. There is no default.

LOGFILE Specifies the file to which logging information should be written.
The default sends output to the terminal display.

FEEDBACK Causes DBVERIFY to send a progress display to the terminal in
the form of a single period (.) for n number of pages verified during
the DBVERIFY run. If n = 0, then there is no progress display.

HELP Provides online help.

PARFILE Specifies the name of the parameter file to use. You can store
various values for DBVERIFY parameters in flat files. This enables
you to customize parameter files to handle different types of data
files and to perform specific types of integrity checks on data files.

20.2.3 Sample DBVERIFY Output For a Validated Segment
Sample verification for a validated segment.

Chapter 20
Using DBVERIFY to Validate a Segment

20-5

The following is a sample of the output that would be shown for a DBVERIFY
operation to validate SEGMENT_ID 1.2.67.

DBVERIFY - Verification starting : SEGMENT_ID = 1.2.67

DBVERIFY - Verification complete

Total Pages Examined : 8
Total Pages Processed (Data) : 0
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 1
Total Pages Failing (Index): 0
Total Pages Processed (Other): 2
Total Pages Processed (Seg) : 1
Total Pages Failing (Seg) : 0
Total Pages Empty : 4
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Highest block SCN : 7358 (0.7358)

Chapter 20
Using DBVERIFY to Validate a Segment

20-6

21
DBNEWID Utility

DBNEWID is a database utility that can change the internal database identifier (DBID)
and the database name (DBNAME) for an operational database.

See the following topics:

• What Is the DBNEWID Utility?
Describes what is new in the DBNEWID utility.

• Ramifications of Changing the DBID and DBNAME
Describes the ramifications of changing the DBID and DBNAME of a database.

• DBNEWID Considerations for CDBs and PDBs
The DBNEWID parameter PDB allows you to change the DBID on pluggable
databases (PDBs).

• Changing the DBID and DBNAME of a Database
This section contains these topics:

• DBNEWID Syntax
Describes DBNEWID syntax.

21.1 What Is the DBNEWID Utility?
Describes what is new in the DBNEWID utility.

Before the introduction of the DBNEWID utility, you could manually create a copy of a
database and give it a new database name (DBNAME) by re-creating the control file.
However, you could not give the database a new identifier (DBID). The DBID is an
internal, unique identifier for a database. Because Recovery Manager (RMAN)
distinguishes databases by DBID, you could not register a seed database and a
manually copied database together in the same RMAN repository. The DBNEWID
utility solves this problem by allowing you to change any of the following:

• Only the DBID of a database

• Only the DBNAME of a database

• Both the DBNAME and DBID of a database

21.2 Ramifications of Changing the DBID and DBNAME
Describes the ramifications of changing the DBID and DBNAME of a database.

Changing the DBID of a database is a serious procedure. When the DBID of a
database is changed, all previous backups and archived logs of the database become
unusable. This is similar to creating a database except that the data is already in the
data files. After you change the DBID, backups and archive logs that were created
before the change can no longer be used because they still have the original DBID,
which does not match the current DBID. You must open the database with the
RESETLOGS option, which re-creates the online redo logs and resets their sequence to

21-1

1. Consequently, you should make a backup of the whole database immediately after
changing the DBID.

Changing the DBNAME without changing the DBID does not require you to open with
the RESETLOGS option, so database backups and archived logs are not invalidated.
However, changing the DBNAME does have consequences. You must change the
DB_NAME initialization parameter after a database name change to reflect the new
name. Also, you may have to re-create the Oracle password file. If you restore an old
backup of the control file (before the name change), then you should use the
initialization parameter file and password file from before the database name change.

Note:

Do not change the DBID or DBNAME of a database if you are using a
capture process to capture changes to the database.

• Considerations for Global Database Names
If you are dealing with a database in a distributed database system, then each
database should have a unique global database name.

21.2.1 Considerations for Global Database Names
If you are dealing with a database in a distributed database system, then each
database should have a unique global database name.

The DBNEWID utility does not change global database names. This can only be done
with the SQL ALTER DATABASE statement, for which the syntax is as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO newname.domain;

The global database name is made up of a database name and a domain, which are
determined by the DB_NAME and DB_DOMAIN initialization parameters when the database
is first created.

The following example changes the database name to sales in the domain
us.example.com:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.us.example.com

You would do this after you finished using DBNEWID to change the database name.

See Also:

Oracle Database Administrator's Guide for more information about global
database names

21.3 DBNEWID Considerations for CDBs and PDBs
The DBNEWID parameter PDB allows you to change the DBID on pluggable databases
(PDBs).

Chapter 21
DBNEWID Considerations for CDBs and PDBs

21-2

By default, when you run the DBNEWID utility on a container database (CDB) it
changes the DBID of only the CDB; the DBIDs of the pluggable databases (PDBs)
comprising the CDB remain the same. This could cause problems with duplicate
DBIDs for PDBs in some cases, such as when a CDB is cloned.

As of Oracle Database 12c Release 2 (12.2), you can change the DBID on the PDBs
by using the new DBNEWID PDB parameter. You cannot specify a particular PDB;
either all of them or none of them will have new DBIDs. The PDB parameter is
applicable only in a CDB environment. It has the following format:

PDB=[ALL | NONE]

• If you specify ALL, then in addition to the DBID for the CDB changing, the DBIDs
for all PDBs comprising the CDB are also changed.

• Specifying NONE (the default) leaves the PDB DBIDs the same, even if the CDB
DBID is changed.

Oracle recommends that you use PDB=ALL, but PDB=NONE is the default for backward
compatibility reasons.

21.4 Changing the DBID and DBNAME of a Database
This section contains these topics:

• Changing the DBID and Database Name
Describes how to change the DBID of a database.

• Changing Only the Database ID
Describes changing the database ID without changing the database name.

• Changing Only the Database Name
Describe how to change the database name without changing the DBID.

• Troubleshooting DBNEWID
Describes troubleshooting hints for the DBNEWID utility.

21.4.1 Changing the DBID and Database Name
Describes how to change the DBID of a database.

The following steps describe how to change the DBID of a database. Optionally, you
can change the database name as well.

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut
down consistently before mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Start the DBNEWID utility on the command line, specifying a valid user (TARGET)
that has the SYSDBA privilege (you will be prompted for a password):

% nid TARGET=SYS

Chapter 21
Changing the DBID and DBNAME of a Database

21-3

To change the database name in addition to the DBID, also specify the DBNAME
parameter on the command line (you will be prompted for a password). The
following example changes the database name to test_db:

% nid TARGET=SYS DBNAME=test_db

The DBNEWID utility performs validations in the headers of the data files and
control files before attempting I/O to the files. If validation is successful, then
DBNEWID prompts you to confirm the operation (unless you specify a log file, in
which case it does not prompt), changes the DBID (and the DBNAME, if specified,
as in this example) for each data file, including offline normal and read-only data
files, shuts down the database, and then exits. The following is an example of
what the output for this would look like:

.

.

.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 1250654267
Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - dbid changed, wrote new name
 Datafile /oracle/TEST_DB/data/temp1.dbf - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf1.dbf - dbid changed, wrote new name
 Control File /oracle/TEST_DB/data/cf2.dbf - dbid changed, wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250654267.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Successfully changed database name and ID.
DBNEWID - Completed successfully.

Chapter 21
Changing the DBID and DBNAME of a Database

21-4

If validation is not successful, then DBNEWID terminates and leaves the target
database intact, as shown in the following sample output. You can open the
database, fix the error, and then either resume the DBNEWID operation or
continue using the database without changing its DBID.

.

.

.
Connected to database PROD (DBID=86997811)
.
.
.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

The following datafiles are offline immediate:
 /oracle/TEST_DB/data/tbs_71.dbf (25)
 /oracle/TEST_DB/data/tbs_72.dbf (26)

NID-00122: Database should have no offline immediate datafiles

Change of database name failed during validation - database is intact.
DBNEWID - Completed with validation errors.

4. Mount the database. For example:

STARTUP MOUNT

5. Open the database in RESETLOGS mode and resume normal use. For example:

ALTER DATABASE OPEN RESETLOGS;

Make a new database backup. Because you reset the online redo logs, the old
backups and archived logs are no longer usable in the current incarnation of the
database.

21.4.2 Changing Only the Database ID
Describes changing the database ID without changing the database name.

Follow the steps in Changing the DBID and Database Name, but in Step 3 do not
specify the optional database name (DBNAME). The following is an example of the
type of output that is generated when only the database ID is changed.

.

.

.
Connected to database PROD (DBID=86997811)

Chapter 21
Changing the DBID and DBNAME of a Database

21-5

.

.

.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database ID from 86997811 to 4004383693
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - dbid changed
 Datafile /oracle/TEST_DB/data/temp1.dbf - dbid changed
 Control File /oracle/TEST_DB/data/cf1.dbf - dbid changed
 Control File /oracle/TEST_DB/data/cf2.dbf - dbid changed
 Instance shut down

Database ID for database TEST_DB changed to 4004383693.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open database with RESETLOGS option.
Succesfully changed database ID.
DBNEWID - Completed succesfully.

21.4.3 Changing Only the Database Name
Describe how to change the database name without changing the DBID.

Execute the following steps:

1. Ensure that you have a recoverable whole database backup.

2. Ensure that the target database is mounted but not open, and that it was shut
down consistently before mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT

3. Start the utility on the command line, specifying a valid user with the SYSDBA
privilege (you will be prompted for a password). You must specify both the DBNAME
and SETNAME parameters. This example changes the name to test_db:

% nid TARGET=SYS DBNAME=test_db SETNAME=YES

DBNEWID performs validations in the headers of the control files (not the data
files) before attempting I/O to the files. If validation is successful, then DBNEWID
prompts for confirmation, changes the database name in the control files, shuts

Chapter 21
Changing the DBID and DBNAME of a Database

21-6

down the database and exits. The following is an example of what the output for
this would look like:

.

.

.
Control Files in database:
 /oracle/TEST_DB/data/cf1.dbf
 /oracle/TEST_DB/data/cf2.dbf

The following datafiles are offline clean:
 /oracle/TEST_DB/data/tbs_61.dbf (23)
 /oracle/TEST_DB/data/tbs_62.dbf (24)
 /oracle/TEST_DB/data/temp3.dbf (3)
These files must be writable by this utility.

The following datafiles are read-only:
 /oracle/TEST_DB/data/tbs_51.dbf (15)
 /oracle/TEST_DB/data/tbs_52.dbf (16)
 /oracle/TEST_DB/data/tbs_53.dbf (22)
These files must be writable by this utility.

Changing database name from PROD to TEST_DB
 Control File /oracle/TEST_DB/data/cf1.dbf - modified
 Control File /oracle/TEST_DB/data/cf2.dbf - modified
 Datafile /oracle/TEST_DB/data/tbs_01.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_ax1.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_02.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_11.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/tbs_12.dbf - wrote new name
 Datafile /oracle/TEST_DB/data/temp1.dbf - wrote new name
 Control File /oracle/TEST_DB/data/cf1.dbf - wrote new name
 Control File /oracle/TEST_DB/data/cf2.dbf - wrote new name
 Instance shut down

Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
DBNEWID - Completed successfully.

If validation is not successful, then DBNEWID terminates and leaves the target
database intact. You can open the database, fix the error, and then either resume
the DBNEWID operation or continue using the database without changing the
database name. (For an example of what the output looks like for an unsuccessful
validation, see Step 3 in Changing the DBID and Database Name.)

4. Set the DB_NAME initialization parameter in the initialization parameter file (PFILE)
to the new database name.

Note:

The DBNEWID utility does not change the server parameter file
(SPFILE). Therefore, if you use SPFILE to start your Oracle database,
then you must re-create the initialization parameter file from the server
parameter file, remove the server parameter file, change the DB_NAME in
the initialization parameter file, and then re-create the server parameter
file.

Chapter 21
Changing the DBID and DBNAME of a Database

21-7

5. Create a new password file.

6. Start up the database and resume normal use. For example:

STARTUP

Because you have changed only the database name, and not the database ID, it is
not necessary to use the RESETLOGS option when you open the database. This
means that all previous backups are still usable.

21.4.4 Troubleshooting DBNEWID
Describes troubleshooting hints for the DBNEWID utility.

If the DBNEWID utility succeeds in its validation stage but detects an error while
performing the requested change, then the utility stops and leaves the database in the
middle of the change. In this case, you cannot open the database until the DBNEWID
operation is either completed or reverted. DBNEWID displays messages indicating the
status of the operation.

Before continuing or reverting, fix the underlying cause of the error. Sometimes the
only solution is to restore the whole database from a recent backup and perform
recovery to the point in time before DBNEWID was started. This underscores the
importance of having a recent backup available before running DBNEWID.

If you choose to continue with the change, then re-execute your original command.
The DBNEWID utility resumes and attempts to continue the change until all data files
and control files have the new value or values. At this point, the database is shut
down. You should mount it before opening it with the RESETLOGS option.

If you choose to revert a DBNEWID operation, and if the reversion succeeds, then
DBNEWID reverts all performed changes and leaves the database in a mounted state.

If DBNEWID is run against a release 10.1 or later Oracle database, then a summary of
the operation is written to the alert file. For example, for a change of database name
and database ID, you might see something similar to the following:

*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 1250452230 for
database PROD
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Setting recovery target incarnation to 1
Datafile conversion complete
Database name changed to TEST_DB.
Modify parameter file and generate a new password file before restarting.
Database ID for database TEST_DB changed to 1250452230.
All previous backups and archived redo logs for this database are unusable.
Database has been shutdown, open with RESETLOGS option.
Successfully changed database name and ID.
*** DBNEWID utility finished successfully ***

For a change of just the database name, the alert file might show something similar to
the following:

*** DBNEWID utility started ***
DBNAME will be changed from PROD to new DBNAME of TEST_DB
Starting datafile conversion
Datafile conversion complete
Database name changed to TEST_DB.

Chapter 21
Changing the DBID and DBNAME of a Database

21-8

Modify parameter file and generate a new password file before restarting.
Successfully changed database name.
*** DBNEWID utility finished successfully ***

In case of failure during DBNEWID the alert will also log the failure:
*** DBNEWID utility started ***
DBID will be changed from 86997811 to new DBID of 86966847 for database
AV3
Change of database ID failed.
Must finish change or REVERT changes before attempting any database
operation.
*** DBNEWID utility finished with errors ***

21.5 DBNEWID Syntax
Describes DBNEWID syntax.

The following diagrams show the syntax for the DBNEWID utility.

nid TARGET =

username

/

password @ service_name

REVERT =
YES

NO

DBNAME = new_db_name

SETNAME =
YES

NO

PDB =
ALL

NONE

LOGFILE = logfile

APPEND =
YES

NO HELP =
YES

NO

• DBNEWID Parameters
Describes the parameters for DBNEWID.

• Restrictions and Usage Notes
Describes restrictions for the DBNEWID utility.

• Additional Restrictions for Releases Earlier Than Oracle Database 10g
Describes additional restrictions if the DBNEWID utility is run against an Oracle
Database release earlier than 10.1.

Chapter 21
DBNEWID Syntax

21-9

21.5.1 DBNEWID Parameters
Describes the parameters for DBNEWID.

The following table describes the parameters in the DBNEWID syntax.

Table 21-1 Parameters for the DBNEWID Utility

Parameter Description

TARGET Specifies the username and password used to connect to the database. The user
must have the SYSDBA privilege. If you are using operating system authentication,
then you can connect with the slash (/). If the $ORACLE_HOME and $ORACLE_SID
variables are not set correctly in the environment, then you can specify a secure (IPC
or BEQ) service to connect to the target database. A target database must be
specified in all invocations of the DBNEWID utility.

REVERT Specify YES to indicate that a failed change of DBID should be reverted (default is
NO). The utility signals an error if no change DBID operation is in progress on the
target database. A successfully completed change of DBID cannot be reverted.
REVERT=YES is valid only when a DBID change failed.

DBNAME=new_db_name Changes the database name of the database. You can change the DBID and the
DBNAME of a database at the same time. To change only the DBNAME, also specify
the SETNAME parameter.

SETNAME Specify YES to indicate that DBNEWID should change the database name of the
database but should not change the DBID (default is NO). When you specify
SETNAME=YES, the utility writes only to the target database control files.

PDB Changes the DBID on either all or none of the pluggable databases (PDBs) in a
multitenant container database (CDB). (By default, when you run the DBNEWID
utility on a container database (CDB) it changes the DBID of only the CDB; the
DBIDs of the pluggable databases (PDBs) comprising the CDB remain the same.)
The PDB parameter is applicable only in a CDB environment.

LOGFILE=logfile Specifies that DBNEWID should write its messages to the specified file. By default
the utility overwrites the previous log. If you specify a log file, then DBNEWID does
not prompt for confirmation.

APPEND Specify YES to append log output to the existing log file (default is NO).

HELP Specify YES to print a list of the DBNEWID syntax options (default is NO).

21.5.2 Restrictions and Usage Notes
Describes restrictions for the DBNEWID utility.

For example:

• To change the DBID of a database, the database must be mounted and must have
been shut down consistently before mounting. In the case of an Oracle Real
Application Clusters database, the database must be mounted in NOPARALLEL
mode.

• You must open the database with the RESETLOGS option after changing the DBID.
However, you do not have to open with the RESETLOGS option after changing only
the database name.

Chapter 21
DBNEWID Syntax

21-10

• No other process should be running against the database when DBNEWID is
executing. If another session shuts down and starts the database, then DBNEWID
terminates unsuccessfully.

• All online data files should be consistent without needing recovery.

• Normal offline data files should be accessible and writable. If this is not the case,
then you must drop these files before invoking the DBNEWID utility.

• All read-only tablespaces must be accessible and made writable at the operating
system level before invoking DBNEWID. If these tablespaces cannot be made
writable (for example, they are on a CD-ROM), then you must unplug the
tablespaces using the transportable tablespace feature and then plug them back in
the database before invoking the DBNEWID utility.

• The DBNEWID utility does not change global database names. See
Considerations for Global Database Names.

21.5.3 Additional Restrictions for Releases Earlier Than Oracle
Database 10g

Describes additional restrictions if the DBNEWID utility is run against an Oracle
Database release earlier than 10.1.

For example:

• The nid executable file should be owned and run by the Oracle owner because it
needs direct access to the data files and control files. If another user runs the
utility, then set the user ID to the owner of the data files and control files.

• The DBNEWID utility must access the data files of the database directly through a
local connection. Although DBNEWID can accept a net service name, it cannot
change the DBID of a nonlocal database.

Chapter 21
DBNEWID Syntax

21-11

22
Using LogMiner to Analyze Redo Log Files

Oracle LogMiner, which is part of Oracle Database, enables you to query online and
archived redo log files through a SQL interface.

Redo log files contain information about the history of activity on a database.

See the following topics:

You can use LogMiner from a command line or you can access it through the Oracle
LogMiner Viewer graphical user interface. Oracle LogMiner Viewer is a part of Oracle
Enterprise Manager. See the Oracle Enterprise Manager online Help for more
information about Oracle LogMiner Viewer.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr package is
desupported in Oracle Database 19c (19.1), and is no longer available.

• LogMiner Benefits
All changes made to user data or to the database dictionary are recorded in the
Oracle redo log files so that database recovery operations can be performed.

• Introduction to LogMiner
These topics provide a brief introduction to LogMiner, including the following
topics.

• Using LogMiner in a CDB
You can use LogMiner in a multitenant container database (CDB).

• How to Configure Supplemental Logging for Oracle GoldenGate
Oracle Database 20c, provides support to enable logical replication and
supplemental logging of individual tables.

• LogMiner Dictionary Files and Redo Log Files
Before you begin using LogMiner, it is important to understand how LogMiner
works with the LogMiner dictionary file (or files) and redo log files. This will help
you to get accurate results and to plan the use of your system resources.

• Starting LogMiner
Call the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner.

• Querying V$LOGMNR_CONTENTS for Redo Data of Interest
You access the redo data of interest by querying the V$LOGMNR_CONTENTS view.

• Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
Learn how to use V$LOGMNR_CONTENTS view filtering and formatting features to
manage what data appears, how it is displayed, and control the speed at which it
is returned.

22-1

• Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS
Some DDL statements that you issue cause Oracle to internally execute one or
more other DDL statements.

• Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
Even after you have successfully called DBMS_LOGMNR.START_LOGMNR and selected
from the V$LOGMNR_CONTENTS view, you can call DBMS_LOGMNR.START_LOGMNR again
without ending the current LogMiner session and specify different options and time
or SCN ranges.

• Supplemental Logging
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

• Accessing LogMiner Operational Information in Views
LogMiner operational information (as opposed to redo data) is contained in views.

• Steps in a Typical LogMiner Session
Learn about the typical ways you can use LogMiner to extract and mine data.

• Examples Using LogMiner
To see how you can use LogMiner for data mining, review the provided examples.

• Supported Data Types, Storage Attributes, and Database and Redo Log File
Versions
Describes information about data type and storage attribute support and the
releases of the database and redo log files that are supported.

22.1 LogMiner Benefits
All changes made to user data or to the database dictionary are recorded in the Oracle
redo log files so that database recovery operations can be performed.

Because LogMiner provides a well-defined, easy-to-use, and comprehensive relational
interface to redo log files, it can be used as a powerful data auditing tool, and also as a
sophisticated data analysis tool. The following list describes some key capabilities of
LogMiner:

• Pinpointing when a logical corruption to a database, such as errors made at the
application level, may have begun. These might include errors such as those
where the wrong rows were deleted because of incorrect values in a WHERE clause,
rows were updated with incorrect values, the wrong index was dropped, and so
forth. For example, a user application could mistakenly update a database to give
all employees 100 percent salary increases rather than 10 percent increases, or a
database administrator (DBA) could accidently delete a critical system table. It is
important to know exactly when an error was made so that you know when to
initiate time-based or change-based recovery. This enables you to restore the
database to the state it was in just before corruption. See Querying
V$LOGMNR_CONTENTS Based on Column Values for details about how you can
use LogMiner to accomplish this.

• Determining what actions you would have to take to perform fine-grained recovery
at the transaction level. If you fully understand and take into account existing
dependencies, then it may be possible to perform a table-specific undo operation
to return the table to its original state. This is achieved by applying table-specific
reconstructed SQL statements that LogMiner provides in the reverse order from
which they were originally issued. See Scenario 1: Using LogMiner to Track
Changes Made by a Specific User for an example.

Chapter 22
LogMiner Benefits

22-2

Normally you would have to restore the table to its previous state, and then apply
an archived redo log file to roll it forward.

• Performance tuning and capacity planning through trend analysis. You can
determine which tables get the most updates and inserts. That information
provides a historical perspective on disk access statistics, which can be used for
tuning purposes. See Scenario 2: Using LogMiner to Calculate Table Access
Statistics for an example.

• Performing postauditing. LogMiner can be used to track any data manipulation
language (DML) and data definition language (DDL) statements executed on the
database, the order in which they were executed, and who executed them.
(However, to use LogMiner for such a purpose, you need to have an idea when
the event occurred so that you can specify the appropriate logs for analysis;
otherwise you might have to mine a large number of redo log files, which can take
a long time. Consider using LogMiner as a complementary activity to auditing
database use. See the Oracle Database Administrator's Guide for information
about database auditing.)

22.2 Introduction to LogMiner
These topics provide a brief introduction to LogMiner, including the following topics.

• LogMiner Configuration
Learn about the objects that LogMiner analyzes, and see examples of
configuration files.

• Directing LogMiner Operations and Retrieving Data of Interest
You direct LogMiner operations using the DBMS_LOGMNR and DBMS_LOGMNR_D
PL/SQL packages, and retrieve data of interest using the V$LOGMNR_CONTENTS
view.

22.2.1 LogMiner Configuration
Learn about the objects that LogMiner analyzes, and see examples of configuration
files.

• Objects in LogMiner Configuration Files
DataMiner Configuration files have four objects: he source database, the mining
database, the LogMiner dictionary, and the redo log files containing the data of
interest.

• LogMiner Configuration Example
This example shows how you can generate redo logs on one Oracle Database
release in one location, and send them to another Oracle Database of a different
release in another location.

• DataMiner Requirements
Learn about the requirements for the source and mining database, the data
dictionary, and the redo log files that you want LogMiner to mine.

22.2.1.1 Objects in LogMiner Configuration Files
DataMiner Configuration files have four objects: he source database, the mining
database, the LogMiner dictionary, and the redo log files containing the data of
interest.

Chapter 22
Introduction to LogMiner

22-3

• The source database is the database that produces all the redo log files that you
want LogMiner to analyze.

• The mining database is the database that LogMiner uses when it performs the
analysis.

• The LogMiner dictionary enables LogMiner to provide table and column names,
instead of internal object IDs, when it presents the redo log data that you request.

LogMiner uses the dictionary to translate internal object identifiers and data types
to object names and external data formats. Without a dictionary, LogMiner returns
internal object IDs, and presents data as binary data.

For example, consider the following SQL statement:

INSERT INTO HR.JOBS(JOB_ID, JOB_TITLE, MIN_SALARY, MAX_SALARY)
VALUES('IT_WT','Technical Writer', 4000, 11000);
When LogMiner delivers results without the LogMiner dictionary, LogMiner
displays the following output:

insert into "UNKNOWN"."OBJ# 45522"("COL 1","COL 2","COL 3","COL 4")
values
(HEXTORAW('45465f4748'),HEXTORAW('546563686e6963616c20577269746572'),
HEXTORAW('c229'),HEXTORAW('c3020b'));

• The redo log files contain the changes made to the database, or to the database
dictionary.

22.2.1.2 LogMiner Configuration Example
This example shows how you can generate redo logs on one Oracle Database release
in one location, and send them to another Oracle Database of a different release in
another location.

In the following figure, you can see an example of a LogMiner configuration, in which
the Source database is in Boston, and the Target database is in San Francisco.

The Source database in Boston generates redo log files that are archived and shipped
to the database in San Francisco. A LogMiner dictionary has been extracted to these
redo log files. The mining database, where LogMiner actually analyzes the redo log
files, is in San Francisco. The Boston database is running Oracle Database 12g and
the San Francisco database is running Oracle Database 19c.

Figure 22-1 Example LogMiner Database Configuration

Source

Database
Mining

Database

Boston San Francisco

Archived Redo Log Files

containing LogMiner dictionary

This example shows just one valid LogMiner configuration. Other valid configurations
are those that use the same database for both the source and mining database, or use
another method for providing the data dictionary.

Chapter 22
Introduction to LogMiner

22-4

Related Topics

• LogMiner Dictionary Options
LogMiner requires a dictionary to translate object IDs into object names when it
returns redo data to you.

22.2.1.3 DataMiner Requirements
Learn about the requirements for the source and mining database, the data dictionary,
and the redo log files that you want LogMiner to mine.

LogMiner requires the following objects:

• A Source database and a Mining database

– Both the Source database and the Mining database must be running on the
same hardware platform.

– The Mining database can be the same as, or completely separate from, the
Source database.

– The Mining database must run using either the same release or a later release
of the Oracle Database software as the Source database.

– The Mining database must use the same character set (or a superset of the
character set) that is used by the source database.

• LogMiner dictionary

– The dictionary must be produced by the same Source database that generates
the redo log files that you want LogMiner to analyze.

• All redo log files, with the following characteristics:

– The redo log files must be produced by the same source database.

– The redo log files must be associated with the same database RESETLOGS SCN.

– The redo log files must be from a release 8.0 or later Oracle Database.
However, several of the LogMiner features introduced as of release 9.0.1 work
only with redo log files produced on an Oracle9i or later database. See .

LogMiner does not allow you to mix redo log files from different databases, or to use a
dictionary from a different database than the one that generated the redo log files that
you want to analyze.

Chapter 22
Introduction to LogMiner

22-5

Note:

You must enable supplemental logging before generating log files that will be
analyzed by LogMiner.

When you enable supplemental logging, additional information is recorded in
the redo stream that is needed to make the information in the redo log files
useful to you. Therefore, at the very least, you must enable minimal
supplemental logging, as the following SQL statement shows:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

To determine whether supplemental logging is enabled, query the
V$DATABASE view, as the following SQL statement shows:

SELECT SUPPLEMENTAL_LOG_DATA_MIN FROM V$DATABASE;

If the query returns a value of YES or IMPLICIT, then minimal supplemental
logging is enabled.

Related Topics

• Supported Databases and Redo Log File Versions
The Oracle Database release that created a redo log file can affect the operations
you are able to perform on it.

• Supplemental Logging
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

22.2.2 Directing LogMiner Operations and Retrieving Data of Interest
You direct LogMiner operations using the DBMS_LOGMNR and DBMS_LOGMNR_D PL/SQL
packages, and retrieve data of interest using the V$LOGMNR_CONTENTS view.

For example:

1. Specify a LogMiner dictionary.

Use the DBMS_LOGMNR_D.BUILD procedure or specify the dictionary when you start
LogMiner (in Step 3), or both, depending on the type of dictionary you plan to use.

2. Specify a list of redo log files for analysis.

Use the DBMS_LOGMNR.ADD_LOGFILE procedure, or direct LogMiner to create a list
of log files for analysis automatically when you start LogMiner (in Step 3).

3. Start LogMiner.

Use the DBMS_LOGMNR.START_LOGMNR procedure.

4. Request the redo data of interest.

Query the V$LOGMNR_CONTENTS view.

5. End the LogMiner session.

Chapter 22
Introduction to LogMiner

22-6

Use the DBMS_LOGMNR.END_LOGMNR procedure.

You must have the EXECUTE_CATALOG_ROLE role and the LOGMINING privilege to query
the V$LOGMNR_CONTENTS view and to use the LogMiner PL/SQL packages.

Note:

When mining a specified time or SCN range of interest within archived logs
generated by an Oracle RAC database, you must ensure that you have
specified all archived logs from all redo threads that were active during that
time or SCN range. If you fail to do this, then any queries of
V$LOGMNR_CONTENTS return only partial results (based on the archived logs
specified to LogMiner through the DBMS_LOGMNR.ADD_LOGFILE procedure).

The CONTINUOUS_MINE option for the dbms_logmnr.start_logmnr package is
desupported in Oracle Database 19c (19.1), and is no longer available.

See Also:

Steps in a Typical LogMiner Session for an example of using LogMiner

22.3 Using LogMiner in a CDB
You can use LogMiner in a multitenant container database (CDB).

LogMiner supports CDBs that have PDBs of different character sets provided the root
container has a character set that is a superset of all the PDBs.

To administer a multitenant environment you must have the CDB_DBA role.

Note:

Starting with Oracle Database 20c, installation of non-CDB Oracle Database
architecture is no longer supported.

The non-CDB architecture was deprecated in Oracle Database 12c. It is
desupported in Oracle Database 20c. Oracle Universal Installer can no
longer be used to create non-CDB Oracle Database instances.

• LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions
running in the system contain an additional column named CON_ID.

• The V$LOGMNR_CONTENTS View in a CDB
In a CDB, the V$LOGMNR_CONTENTS view and its associated functions are restricted
to the root database. Several new columns exist in V$LOGMNR_CONTENTS in support
of CDBs.

Chapter 22
Using LogMiner in a CDB

22-7

• Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental
logging is the ALTER DATABASE command.

• Using a Flat File Dictionary in a CDB
You cannot take a dictionary snapshot for an entire CDB in a single flat file. You
must be connected to a distinct PDB, and can take a snapshot of only that PDB in
a flat file.

Related Topics

• LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions
running in the system contain an additional column named CON_ID.

• The V$LOGMNR_CONTENTS View in a CDB
In a CDB, the V$LOGMNR_CONTENTS view and its associated functions are restricted
to the root database. Several new columns exist in V$LOGMNR_CONTENTS in support
of CDBs.

• Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental
logging is the ALTER DATABASE command.

• Using a Flat File Dictionary in a CDB
You cannot take a dictionary snapshot for an entire CDB in a single flat file. You
must be connected to a distinct PDB, and can take a snapshot of only that PDB in
a flat file.

22.3.1 LogMiner V$ Views and DBA Views in a CDB
In a CDB, views used by LogMiner to show information about LogMiner sessions
running in the system contain an additional column named CON_ID.

The CON_ID column identifies the container ID associated with the session for which
information is being displayed. When you query the view from a pluggable database
(PDB), only information associated with the database is displayed. The following views
are affected by this new behavior:

• V$LOGMNR_DICTIONARY_LOAD

• V$LOGMNR_LATCH

• V$LOGMNR_PROCESS

• V$LOGMNR_SESSION

• V$LOGMNR_STATS

Note:

To support CDBs, the V$LOGMNR_CONTENTS view has several other new
columns in addition to CON_ID.

The following DBA views have analogous CDB views whose names begin with CDB.

Chapter 22
Using LogMiner in a CDB

22-8

Type of Log View DBA View CDB View

LogMiner Log Views DBA_LOGMNR_LOG CDB_LOGMNR_LOG

LogMiner Purged Log Views DBA_LOGMNR_PURGED_LOG CDB_LOGMNR_PURGED_LOG

LogMiner Session Log Views DBA_LOGMNR_SESSION CDB_LOGMNR_SESSION

The DBA views show only information related to sessions defined in the container in
which they are queried.

The CDB views contain an additional CON_ID column, which identifies the container
whose data a given row represents. When CDB views are queried from the root, they
can be used to see information about all containers.

22.3.2 The V$LOGMNR_CONTENTS View in a CDB
In a CDB, the V$LOGMNR_CONTENTS view and its associated functions are restricted to
the root database. Several new columns exist in V$LOGMNR_CONTENTS in support of
CDBs.

• CON_ID — contains the ID associated with the container from which the query is
executed. Because V$LOGMNR_CONTENTS is restricted to the root database, this
column returns a value of 1 when a query is done on a CDB.

• SRC_CON_NAME — the PDB name. This information is available only when mining is
performed with a LogMiner dictionary.

• SRC_CON_ID — the container ID of the PDB that generated the redo record. This
information is available only when mining is performed with a LogMiner dictionary.

• SRC_CON_DBID — the PDB identifier. This information is available only when mining
is performed with a current LogMiner dictionary.

• SRC_CON_GUID — contains the GUID associated with the PDB. This information is
available only when mining is performed with a current LogMiner dictionary.

22.3.3 Enabling Supplemental Logging in a CDB
In a CDB, the syntax for enabling and disabling database-wide supplemental logging is
the ALTER DATABASE command.

For example, when you want to add or drop supplemental log data, use the following
syntax:

ALTER DATABASE [ADD|DROP] SUPPLEMENTAL LOG DATA ...

Note the following:

• In a CDB, supplemental logging levels that are enabled from CDB$ROOT are
enabled across the CDB.

• If at least minimal supplemental logging is enabled in CDB$ROOT, then you can
enable additional supplemental logging levels at the PDB level.

• Supplemental logging levels enabled at the CDB level from CDB$ROOT cannot be
disabled at the PDB level.

Chapter 22
Using LogMiner in a CDB

22-9

• Dropping all supplemental logging from CDB$ROOT disables all supplemental
logging across the CDB, regardless of previous PDB level settings.

Supplemental logging operations started with CREATE TABLE and ALTER TABLE
statements can be executed from either the CDB root, or from a PDB. They affect only
the table to which they are applied.

22.3.4 Using a Flat File Dictionary in a CDB
You cannot take a dictionary snapshot for an entire CDB in a single flat file. You must
be connected to a distinct PDB, and can take a snapshot of only that PDB in a flat file.

Thus, when using a flat file dictionary, you can only mine the redo logs for the changes
associated with the PDB whose data dictionary is contained within the flat file.

22.4 How to Configure Supplemental Logging for Oracle
GoldenGate

Oracle Database 20c, provides support to enable logical replication and supplemental
logging of individual tables.

• Oracle GoldenGate Integration with Oracle Database for Fine-Grained
Supplemental Logging
You can enable or disable logical replication at the table level by using fine-
grained supplemental logging.

• Logical Replication of Tables with LogMiner and Oracle GoldenGate
You can obtain logical replication (autocapture) at table level when you use
LogMiner and enable Oracle GoldenGate RDBMS services

• Views that Show Tables Enabled for Oracle GoldenGate Automatic Capture
To find out which tables are enabled for automatic capture
(ENABLE_AUTO_CAPTURE), use the views SYS.DBA_OGG_AUTO_CAPTURED_TABLES and
SYS.USER_OGG_AUTO_CAPTURED_TABLES.

22.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-
Grained Supplemental Logging

You can enable or disable logical replication at the table level by using fine-grained
supplemental logging.

Table Level Replication Setting Integration in ADD TRANDATA and DELETE
TRANDATA

The table level replication setting (enable or disable table level supplemental logging)
is integrated to ADD TRANDATA, DELETE TRANDATA, and INFO TRANDATA commands. You
issue these commands either through the Oracle GoldenGate Software Command
Interface (GGSCI), or through the Oracle GoldenGate command line interface (Admin
Client). The syntax of these commands remains the same, but the underlying behavior
is slightly changed:

• ADD TRANDATA: This command enables logical replication for the table.

Chapter 22
How to Configure Supplemental Logging for Oracle GoldenGate

22-10

• DELETE TRANDATA: This command deletes table-level supplemental log settings. If
all the table level supplemental log settings are deleted, then it will also disable
logical replication for this table.

• INFO TRANDATA command will show if logical replication is disabled or enabled for
the table.

Logical Replication and the Fine-Grained Supplemental Log Setting

The fine-grained table supplemental log setting is dependent on whether logical
replication is enabled. There are three options for the setting:

1. If logical replication is enabled, then the table supplemental log setting is
determined by database level, schema level, and the table level supplemental log
data.

2. If logical replication is disabled for a table, then the table supplemental log setting
is only determined by database level supplemental log data. Schema level
supplemental log data is ignored.

3. If a table is created without enabling or disabling the logical replication clause,
then by default, logical replication is enabled for the table.

22.4.2 Logical Replication of Tables with LogMiner and Oracle
GoldenGate

You can obtain logical replication (autocapture) at table level when you use LogMiner
and enable Oracle GoldenGate RDBMS services

Starting with Oracle Database 20c, you can configure tables for automatic capture
(autocapture) using Oracle GoldenGate.

Note:

To use this feature, you must have Oracle GoldenGate enabled, and you
must configure Table level replication setting (enable or disable table level
supplemental logging) using the ADD TRANDATA or ADD SCHEMATRANDATA in the
Oracle GoldenGate logging property commands.

Logical Replication (Autocapture) with Oracle GoldenGate

When you enable supplemental logging in Oracle Database, you can enable it at the
table, schema, or database level. If you enable logical replication for tables, then
supplemental logging of all levels is performed for the table.

If you disable logical replication for a table, then only the database supplemental
logging is honored for the table. That means that schema or table-level supplemental
logging is ignored.

Tables and Oracle GoldenGate Logical Replication

Supplemental logging capabilities for tables depends on how the Oracle GoldenGate
LOGICAL_REPLICATION clause is configured:

Chapter 22
How to Configure Supplemental Logging for Oracle GoldenGate

22-11

• When a table is created without setting the LOGICAL_REPLICATION clause, or when
a table is created or altered with ENABLE LOGICAL REPLICATION clause: Logical
replication is not disabled, and supplemental logging of all levels is performed.
There is no additional supplemental logging data implicitly added for the table.

• When a table is created or altered with ENABLE LOGICAL REPLICATION ALL KEYS
clause: Supplemental logging for logical replication is enabled for Oracle
GoldenGate automatic capture, using the (ENABLE_AUTO_CAPTURE) parameter.
Supplemental logging (primary key, unique index, foreign key and allkeys) is
added implicitly for the table.

• When a table is created or altered with ENABLE LOGICAL REPLICATION ALLOW
NOVALIDATE KEYS clause: Supplemental logging for logical replication is enabled
for Oracle GoldenGate automatic capture, using the (ENABLE-AUTO_CAPTURE)
parameter, and non-validated primary keys can be used as a unique identifier.
Supplemental logging (primary key, unique index, foreign key and allkeys with
non-validated primary key) is added implicitly for the table.

• When a table is created or altered with the DISABLE LOGICAL REPLICATION clause,
Logical replication is disabled for the table. Table and schema-level supplemental
logging is not performed.

22.4.3 Views that Show Tables Enabled for Oracle GoldenGate
Automatic Capture

To find out which tables are enabled for automatic capture (ENABLE_AUTO_CAPTURE),
use the views SYS.DBA_OGG_AUTO_CAPTURED_TABLES and
SYS.USER_OGG_AUTO_CAPTURED_TABLES.

Oracle GoldenGate manages logical replication with the ENABLE_AUTO_CAPTURE
parameter. You can use views to determine which tables are enabled for Oracle
GoldenGate to capture automatically.

The user account that you use to query the DBA_OGG_AUTO_CAPTURED_TABLES view
must have the SELECT_CATALOG_ROLE privilege.

Example 22-1 SYS.DBA_AUTO_CAPTURED_TABLES

To describe the view for all of the tables designated for logical replication, enter
DESCRIBE SYS.DBA_AUTO_CAPTURED_TABLES. You can see the owner name, table
name, and table logical replication status for all the tables that are enabled for Oracle
GoldenGate automatic capture (ENABLE_AUTO_CAPTURE).

SQL> DESCRIBE SYS.DBA_AUTO_CAPTURED_TABLES

Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 NAME NOT NULL VARCHAR2(128)
 ALLOW_NOVALIDATE_PK VARCHAR2(3)

In the view:

• OWNER: Owner of the table enabled for Oracle GoldenGate ENABLE_AUTO_CAPTURE

Chapter 22
How to Configure Supplemental Logging for Oracle GoldenGate

22-12

• NAME: Name of the table enabled for Oracle GoldenGate ENABLE_AUTO_CAPTURE

• ALLOW_NOVALIDATE_PK[YES|NO]: A non-validated primary key is allowed for key
supplemental logging, where YES equals yes, and NO equals no. If the result is NO,
then only unique or primary keys that are validated are used.

The Oracle GoldenGate view DBA_OGG_AUTO_CAPTURED_TABLES is a synonym for the
SYS.DBA_AUTO_CAPTURED_TABLES view.

Example 22-2 SYS.USER_OGG_AUTO_CAPTURED_TABLES

To describe the view for all tables of the user that are enabled for Oracle GoldenGate
automatic capture, enter DESCRIBE SYS.USER_OGG_AUTO_CAPTURED_TABLES:

SQL> DESCRIBE SYS.USER_OGG_AUTO_CAPTURED_TABLES
Name Null? Type
 --- --------

 NAME NOT NULL VARCHAR2(128)
 ALLOW_NOVALIDATE_PK VARCHAR2(3)

The Oracle GoldenGate view USER_OGG_AUTO_CAPTURED_TABLES is a synonym for the
SYS.USER_OGG_AUTO_CAPTURED_TABLES view.

22.5 LogMiner Dictionary Files and Redo Log Files
Before you begin using LogMiner, it is important to understand how LogMiner works
with the LogMiner dictionary file (or files) and redo log files. This will help you to get
accurate results and to plan the use of your system resources.

The following concepts are discussed in this section:

• LogMiner Dictionary Options
LogMiner requires a dictionary to translate object IDs into object names when it
returns redo data to you.

• Specifying Redo Log Files for Data Mining
To mine data in the redo log files, LogMiner needs information about which redo
log files to mine.

22.5.1 LogMiner Dictionary Options
LogMiner requires a dictionary to translate object IDs into object names when it returns
redo data to you.

LogMiner gives you three options for supplying the dictionary:

• Using the Online Catalog

Oracle recommends that you use this option when you will have access to the
source database from which the redo log files were created and when no changes
to the column definitions in the tables of interest are anticipated. This is the most
efficient and easy-to-use option.

• Extracting a LogMiner Dictionary to the Redo Log Files

Oracle recommends that you use this option when you do not expect to have
access to the source database from which the redo log files were created, or if you

Chapter 22
LogMiner Dictionary Files and Redo Log Files

22-13

anticipate that changes will be made to the column definitions in the tables of
interest.

• Extracting the LogMiner Dictionary to a Flat File

This option is maintained for backward compatibility with previous releases. This
option does not guarantee transactional consistency. Oracle recommends that you
use either the online catalog or extract the dictionary to redo log files instead.

Figure 22-2 shows a decision tree to help you select a LogMiner dictionary, depending
on your situation.

Figure 22-2 Decision Tree for Choosing a LogMiner Dictionary

Yes

Yes

No

No

Will

have access to
the source
database?

LogMiner

Use the dictionary
in the online catalog.

Will

definitions be

unchanged?

column

Will

the database

be open?No

Will
the database
be open for

write
access?

Yes

No

Yes

Use the dictionary
in the redo log files.

Use the dictionary
extracted to a flat file.

No

Might

definitions
change?

column

Yes

Will
the instance
be started?

Yes

The following sections provide instructions on how to specify each of the available
dictionary options.

• Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify
the online catalog as your dictionary source when you start LogMiner.

• Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open
and in ARCHIVELOG mode and archiving must be enabled.

Chapter 22
LogMiner Dictionary Files and Redo Log Files

22-14

• Extracting the LogMiner Dictionary to a Flat File
When the LogMiner dictionary is in a flat file, fewer system resources are used
than when it is contained in the redo log files. Oracle recommends that you
regularly back up the dictionary extract to ensure correct analysis of older redo log
files.

22.5.1.1 Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify the
online catalog as your dictionary source when you start LogMiner.

For example:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

In addition to using the online catalog to analyze online redo log files, you can use it to
analyze archived redo log files, if you are on the same system that generated the
archived redo log files.

The online catalog contains the latest information about the database and may be the
fastest way to start your analysis. Because DDL operations that change important
tables are somewhat rare, the online catalog generally contains the information you
need for your analysis.

Remember, however, that the online catalog can only reconstruct SQL statements that
are executed on the latest version of a table. As soon as a table is altered, the online
catalog no longer reflects the previous version of the table. This means that LogMiner
will not be able to reconstruct any SQL statements that were executed on the previous
version of the table. Instead, LogMiner generates nonexecutable SQL (including
hexadecimal-to-raw formatting of binary values) in the SQL_REDO column of the
V$LOGMNR_CONTENTS view similar to the following example:

insert into HR.EMPLOYEES(col#1, col#2) values (hextoraw('4a6f686e20446f65'),
hextoraw('c306'));"

The online catalog option requires that the database be open.

The online catalog option is not valid with the DDL_DICT_TRACKING option of
DBMS_LOGMNR.START_LOGMNR.

22.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open and
in ARCHIVELOG mode and archiving must be enabled.

While the dictionary is being extracted to the redo log stream, no DDL statements can
be executed. Therefore, the dictionary extracted to the redo log files is guaranteed to
be consistent (whereas the dictionary extracted to a flat file is not).

To extract dictionary information to the redo log files, execute the PL/SQL
DBMS_LOGMNR_D.BUILD procedure with the STORE_IN_REDO_LOGS option. Do not specify
a file name or location.

EXECUTE DBMS_LOGMNR_D.BUILD(-
 OPTIONS=> DBMS_LOGMNR_D.STORE_IN_REDO_LOGS);

Chapter 22
LogMiner Dictionary Files and Redo Log Files

22-15

See Also:

• Oracle Database Administrator's Guide for more information about
ARCHIVELOG mode

• Oracle Database PL/SQL Packages and Types Reference for a
complete description of DBMS_LOGMNR_D.BUILD

The process of extracting the dictionary to the redo log files does consume database
resources, but if you limit the extraction to off-peak hours, then this should not be a
problem, and it is faster than extracting to a flat file. Depending on the size of the
dictionary, it may be contained in multiple redo log files. If the relevant redo log files
have been archived, then you can find out which redo log files contain the start and
end of an extracted dictionary. To do so, query the V$ARCHIVED_LOG view, as follows:

SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_BEGIN='YES';
SELECT NAME FROM V$ARCHIVED_LOG WHERE DICTIONARY_END='YES';

Specify the names of the start and end redo log files, and other redo logs in between
them, with the ADD_LOGFILE procedure when you are preparing to begin a LogMiner
session.

Oracle recommends that you periodically back up the redo log files so that the
information is saved and available at a later date. Ideally, this will not involve any extra
steps because if your database is being properly managed, then there should already
be a process in place for backing up and restoring archived redo log files. Again,
because of the time required, it is good practice to do this during off-peak hours.

22.5.1.3 Extracting the LogMiner Dictionary to a Flat File
When the LogMiner dictionary is in a flat file, fewer system resources are used than
when it is contained in the redo log files. Oracle recommends that you regularly back
up the dictionary extract to ensure correct analysis of older redo log files.

To extract database dictionary information to a flat file, use the DBMS_LOGMNR_D.BUILD
procedure with the STORE_IN_FLAT_FILE option.

The following steps describe how to extract a dictionary to a flat file. Steps 1 and 2 are
preparation steps. You only need to do them once, and then you can extract a
dictionary to a flat file as many times as you want to.

1. The DBMS_LOGMNR_D.BUILD procedure requires access to a directory where it can
place the dictionary file. Because PL/SQL procedures do not normally access user
directories, you must specify a directory location or the procedure will fail. The
directory location must be a directory object. The following is an example of using
the SQL CREATE DIRECTORY statement to create a directory object named
my_dictionary_dir for the path /oracle/database.

SQL> CREATE DIRECTORY "my_dictionary_dir" AS '/oracle/database';

Chapter 22
LogMiner Dictionary Files and Redo Log Files

22-16

Note:

Prior to Oracle Database 12c release 2 (12.2), you used the
UTL_FILE_DIR initialization parameter to specify a directory location.
However, as of Oracle Database 18c , the UTL_FILE_DIR initialization
parameter is desupported. It is still supported for backward compatibility,
but Oracle strongly recommends that you instead use directory objects.

2. If the database is closed, then use SQL*Plus to mount and open the database
whose redo log files you want to analyze. For example, entering the SQL STARTUP
command mounts and opens the database:

SQL> STARTUP

3. Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. The following example
extracts the LogMiner dictionary file to a flat file named dictionary.ora in the
directory object my_dictionary_dir that was created in step 1.

SQL> EXECUTE dbms_logmnr_d.build(dictionary_location=>'my_dictionary_dir', -
 dictionary_filename=>'dictionary.ora', -
 options => dbms_logmnr_d.store_in_flat_file);

You could also specify a file name and location without specifying the
STORE_IN_FLAT_FILE option. The result would be the same.

22.5.2 Specifying Redo Log Files for Data Mining
To mine data in the redo log files, LogMiner needs information about which redo log
files to mine.

Changes made to the database that are found in these redo log files are delivered to
you through the V$LOGMNR_CONTENTS view.

You must explicitly specify a list of redo log files for LogMiner to analyze, as follows:

Use the DBMS_LOGMNR.ADD_LOGFILE procedure to create a list of redo log files manually
before you start LogMiner. After the first redo log file is added to the list, each
subsequently added redo log file must be from the same database, and associated
with the same database RESETLOGS SCN. When using this method, LogMiner need not
be connected to the source database.

For example, to start a new list of redo log files, specify the NEW option of the
DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure to signal that this is the beginning of a
new list. For example, enter the following to specify /oracle/logs/log1.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

Chapter 22
LogMiner Dictionary Files and Redo Log Files

22-17

If desired, you can add more redo log files by specifying the ADDFILE option of the
PL/SQL DBMS_LOGMNR.ADD_LOGFILE procedure. For example, enter the following to
add /oracle/logs/log2.f:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

To determine which redo log files are being analyzed in the current LogMiner session,
you can query the V$LOGMNR_LOGS view, which contains one row for each redo log file.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr package is
desupported starting with Oracle Database 19c (19.1), and is no longer
available.

22.6 Starting LogMiner
Call the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner.

Because the options available with the DBMS_LOGMNR.START_LOGMNR procedure allow
you to control output to the V$LOGMNR_CONTENTS view, you must call
DBMS_LOGMNR.START_LOGMNR before querying the V$LOGMNR_CONTENTS view.

When you start LogMiner, you can:

• Specify how LogMiner should filter data it returns (for example, by starting and
ending time or SCN value)

• Specify options for formatting the data returned by LogMiner

• Specify the LogMiner dictionary to use

The following list is a summary of LogMiner settings that you can specify with the
OPTIONS parameter to DBMS_LOGMNR.START_LOGMNR and where to find more information
about them.

• DICT_FROM_ONLINE_CATALOG

• DICT_FROM_REDO_LOGS

• COMMITTED_DATA_ONLY

• SKIP_CORRUPTION

• NO_SQL_DELIMITER

• PRINT_PRETTY_SQL

• NO_ROWID_IN_STMT

• DDL_DICT_TRACKING

When you execute the DBMS_LOGMNR.START_LOGMNR procedure, LogMiner checks to
ensure that the combination of options and parameters that you have specified is valid
and that the dictionary and redo log files that you have specified are available.
However, the V$LOGMNR_CONTENTS view is not populated until you query the view.

Chapter 22
Starting LogMiner

22-18

Note that parameters and options are not persistent across calls to
DBMS_LOGMNR.START_LOGMNR. You must specify all desired parameters and options
(including SCN and time ranges) each time you call DBMS_LOGMNR.START_LOGMNR.

22.7 Querying V$LOGMNR_CONTENTS for Redo Data of
Interest

You access the redo data of interest by querying the V$LOGMNR_CONTENTS view.

• How to Use V$LOGMNR_CONTENTS to Find Redo Data
You use V$LOGMNR_CONTENTS to find historical information about changes made to
the Oracle Database.

• How the V$LOGMNR_CONTENTS View Is Populated
The V$LOGMNR_CONTENTS fixed view is unlike other views in that it is not a selective
presentation of data stored in a table. Instead, it is a relational presentation of the
data that you request from the redo log files.

• Querying V$LOGMNR_CONTENTS Based on Column Values
You can query column values by using the Oracle Database LogMiner view
V$LOGMNR_CONTENTS.

• Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables
LogMiner supports redo generated for XMLType columns. XMLType data stored as
CLOB is supported when redo is generated at a compatibility setting of 11.0.0.0 or
higher.

22.7.1 How to Use V$LOGMNR_CONTENTS to Find Redo Data
You use V$LOGMNR_CONTENTS to find historical information about changes made to the
Oracle Database.

To query the V$LOGMNR_CONTENTS view, you must have either the SYSDBA or
LOGMINING privilege. Historical information that you can find with
V$LOGMNR_CONTENTS includes (but is not limited to) the following:

• The type of change made to the database: INSERT, UPDATE, DELETE, or DDL
(OPERATION column).

• The SCN at which a change was made (SCN column).

• The SCN at which a change was committed (COMMIT_SCN column).

• The transaction to which a change belongs (XIDUSN, XIDSLT, and XIDSQN columns).

• The table and schema name of the modified object (SEG_NAME and SEG_OWNER
columns).

• The name of the user who issued the DDL or DML statement to make the change
(USERNAME column).

• If the change was due to a SQL DML statement, the reconstructed SQL
statements showing SQL DML that is equivalent (but not necessarily identical) to
the SQL DML used to generate the redo records (SQL_REDO column).

• If a password is part of the statement in a SQL_REDO column, then the password is
encrypted. SQL_REDO column values that correspond to DDL statements are always
identical to the SQL DDL used to generate the redo records.

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-19

• If the change was due to a SQL DML change, the reconstructed SQL statements
showing the SQL DML statements needed to undo the change (SQL_UNDO column).

SQL_UNDO columns that correspond to DDL statements are always NULL. The
SQL_UNDO column may be NULL also for some data types and for rolled back
operations.

Note:

LogMiner supports Transparent Data Encryption (TDE), in that
V$LOGMNR_CONTENTS shows DML operations performed on tables with
encrypted columns (including the encrypted columns being updated),
provided the LogMiner data dictionary contains the metadata for the object in
question and provided the appropriate master key is in the Oracle wallet. The
wallet must be open or V$LOGMNR_CONTENTS cannot interpret the associated
redo records. TDE support is not available if the database is not open (either
read-only or read-write).

Example of Querying V$LOGMNR_CONTENTS

To find any delete operations that a user named Ron performed on the oe.orders
table, issue a SQL query similar to the following:

SELECT OPERATION, SQL_REDO, SQL_UNDO
 FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'OE' AND SEG_NAME = 'ORDERS' AND
 OPERATION = 'DELETE' AND USERNAME = 'RON';

The following output is produced by the query. The formatting may be different on your
display than that shown here.

OPERATION SQL_REDO SQL_UNDO

DELETE delete from "OE"."ORDERS" insert into
"OE"."ORDERS"
 where "ORDER_ID" = '2413' ("ORDER_ID","ORDER_MODE",
 and "ORDER_MODE" = 'direct' "CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101' "ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '5' "PROMOTION_ID")
 and "ORDER_TOTAL" = '48552' values ('2413','direct','101',
 and "SALES_REP_ID" = '161' '5','48552','161',NULL);
 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAN';

DELETE delete from "OE"."ORDERS" insert into "OE"."ORDERS"
 where "ORDER_ID" = '2430' ("ORDER_ID","ORDER_MODE",
 and "ORDER_MODE" = 'direct' "CUSTOMER_ID","ORDER_STATUS",
 and "CUSTOMER_ID" = '101' "ORDER_TOTAL","SALES_REP_ID",
 and "ORDER_STATUS" = '8' "PROMOTION_ID")
 and "ORDER_TOTAL" = '29669.9' values('2430','direct','101',
 and "SALES_REP_ID" = '159' '8','29669.9','159',NULL);

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-20

 and "PROMOTION_ID" IS NULL
 and ROWID = 'AAAHTCAABAAAZAPAAe';

This output shows that user Ron deleted two rows from the oe.orders table. The
reconstructed SQL statements are equivalent, but not necessarily identical, to the
actual statement that Ron issued. The reason for this difference is that the original
WHERE clause is not logged in the redo log files, so LogMiner can only show deleted (or
updated or inserted) rows individually.

Therefore, even though a single DELETE statement may be responsible for the deletion
of both rows, the output in V$LOGMNR_CONTENTS does not reflect that fact. The actual
DELETE statement may have been DELETE FROM OE.ORDERS WHERE CUSTOMER_ID
='101' or it may have been DELETE FROM OE.ORDERS WHERE PROMOTION_ID = NULL.

Related Topics

• Oracle Database Security Guide

22.7.2 How the V$LOGMNR_CONTENTS View Is Populated
The V$LOGMNR_CONTENTS fixed view is unlike other views in that it is not a selective
presentation of data stored in a table. Instead, it is a relational presentation of the data
that you request from the redo log files.

LogMiner populates the view only in response to a query against it. You must
successfully start LogMiner before you can query V$LOGMNR_CONTENTS.

When a SQL select operation is executed against the V$LOGMNR_CONTENTS view, the
redo log files are read sequentially. Translated information from the redo log files is
returned as rows in the V$LOGMNR_CONTENTS view. This continues until either the filter
criteria specified at startup are met or the end of the redo log file is reached.

In some cases, certain columns in V$LOGMNR_CONTENTS may not be populated. For
example:

• The TABLE_SPACE column is not populated for rows where the value of the
OPERATION column is DDL. This is because a DDL may operate on more than one
tablespace. For example, a table can be created with multiple partitions spanning
multiple table spaces; hence it would not be accurate to populate the column.

• LogMiner does not generate SQL redo or SQL undo for temporary tables. The
SQL_REDO column will contain the string "/* No SQL_REDO for temporary tables
/" and the SQL_UNDO column will contain the string "/ No SQL_UNDO for
temporary tables */".

LogMiner returns all the rows in SCN order unless you have used the
COMMITTED_DATA_ONLY option to specify that only committed transactions should be
retrieved. SCN order is the order normally applied in media recovery.

See Also:

Showing Only Committed Transactions for more information about the
COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-21

Note:

Because LogMiner populates the V$LOGMNR_CONTENTS view only in response
to a query and does not store the requested data in the database, the
following is true:

• Every time you query V$LOGMNR_CONTENTS, LogMiner analyzes the redo
log files for the data you request.

• The amount of memory consumed by the query is not dependent on the
number of rows that must be returned to satisfy a query.

• The time it takes to return the requested data is dependent on the
amount and type of redo log data that must be mined to find that data.

For the reasons stated in the previous note, Oracle recommends that you create a
table to temporarily hold the results from a query of V$LOGMNR_CONTENTS if you need to
maintain the data for further analysis, particularly if the amount of data returned by a
query is small in comparison to the amount of redo data that LogMiner must analyze to
provide that data.

22.7.3 Querying V$LOGMNR_CONTENTS Based on Column Values
You can query column values by using the Oracle Database LogMiner view
V$LOGMNR_CONTENTS.

• Example of Querying V$LOGMNR_CONTENTS Column Values
Learn about ways you can perform column value-based data mining with the
LOGMINER_CONTENTS view.

• The Meaning of NULL Values Returned by the MINE_VALUE Function
Describes the meaning of NULL values returned by the MINE_VALUE function.

• Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions
Describes the usage rules that apply to the MINE_VALUE and COLUMN_PRESENT
functions.

• Restrictions When Using the MINE_VALUE Function To Get an NCHAR Value
Describes restrictions when using the MINE_VALUE function.

22.7.3.1 Example of Querying V$LOGMNR_CONTENTS Column Values
Learn about ways you can perform column value-based data mining with the
LOGMINER_CONTENTS view.

There are a variety of column-based queries you could perform to mine data from your
Oracle Database redo log files. For example, you can perform a query to show all
updates to the hr.employees table that increase salary more than a certain amount.
You can use data such as this to analyze system behavior, and to perform auditing
tasks.

LogMiner data extraction from redo log files is performed by using two mine functions:
DBMS_LOGMNR.MINE_VALUE, and DBMS_LOGMNR.COLUMN_PRESENT. Support for these mine
functions is provided by the REDO_VALUE and UNDO_VALUE columns in the
V$LOGMNR_CONTENTS view.

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-22

The following is an example of how you could use the MINE_VALUE function to select all
updates to hr.employees that increased the salary column to more than twice its
original value:

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE
 SEG_NAME = 'EMPLOYEES' AND
 SEG_OWNER = 'HR' AND
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') >
 2*DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY');

As shown in this example, the MINE_VALUE function takes two arguments:

• The first argument specifies whether to mine the redo (REDO_VALUE) or undo
(UNDO_VALUE) portion of the data. The redo portion of the data is the data that is in
the column after an insert, update, or delete operation. The undo portion of the
data is the data that was in the column before an insert, update, or delete
operation. Another way of seeing this is to think of the REDO_VALUE as the new
value, and the UNDO_VALUE as the old value.

• The second argument is a string that specifies the fully qualified name of the
column that you want to mine (in this case, hr.employees.salary). The
MINE_VALUE function always returns a string that can be converted back to the
original data type.

22.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE Function
Describes the meaning of NULL values returned by the MINE_VALUE function.

If the MINE_VALUE function returns a NULL value, then it can mean either:

• The specified column is not present in the redo or undo portion of the data.

• The specified column is present and has a null value.

To distinguish between these two cases, use the DBMS_LOGMNR.COLUMN_PRESENT
function which returns a 1 if the column is present in the redo or undo portion of the
data. Otherwise, it returns a 0. For example, suppose you wanted to find out the
increment by which the values in the salary column were modified and the
corresponding transaction identifier. You could issue the following SQL query:

SELECT
 (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 (DBMS_LOGMNR.MINE_VALUE(REDO_VALUE, 'HR.EMPLOYEES.SALARY') -
 DBMS_LOGMNR.MINE_VALUE(UNDO_VALUE, 'HR.EMPLOYEES.SALARY')) AS INCR_SAL
 FROM V$LOGMNR_CONTENTS
 WHERE
 OPERATION = 'UPDATE' AND
 DBMS_LOGMNR.COLUMN_PRESENT(REDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1 AND
 DBMS_LOGMNR.COLUMN_PRESENT(UNDO_VALUE, 'HR.EMPLOYEES.SALARY') = 1;

22.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT
Functions

Describes the usage rules that apply to the MINE_VALUE and COLUMN_PRESENT functions.

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-23

Specifically:

• They can only be used within a LogMiner session.

• They must be started in the context of a select operation from the
V$LOGMNR_CONTENTS view.

• They do not support LONG, LONG RAW, CLOB, BLOB, NCLOB, ADT, or COLLECTION data
types.

22.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an
NCHAR Value

Describes restrictions when using the MINE_VALUE function.

If the DBMS_LOGMNR.MINE_VALUE function is used to get an NCHAR value that includes
characters not found in the database character set, then those characters are returned
as the replacement character (for example, an inverted question mark) of the database
character set.

22.7.4 Querying V$LOGMNR_CONTENTS Based on XMLType
Columns and Tables

LogMiner supports redo generated for XMLType columns. XMLType data stored as CLOB
is supported when redo is generated at a compatibility setting of 11.0.0.0 or higher.

XMLType data stored as object-relational and binary XML is supported for redo
generated at a compatibility setting of 11.2.0.3 and higher.

LogMiner presents the SQL_REDO in V$LOGMNR_CONTENTS in different ways depending on
the XMLType storage. In all cases, the contents of the SQL_REDO column, in combination
with the STATUS column, require careful scrutiny, and usually require reassembly
before a SQL or PL/SQL statement can be generated to redo the change. There may
be cases when it is not possible to use the SQL_REDO data to construct such a change.
The examples in the following subsections are based on XMLType stored as CLOB which
is generally the simplest to use for reconstruction of the complete row change.

Note:

XMLType data stored as CLOB is deprecated as of Oracle Database 12c
Release 1 (12.1).

Querying V$LOGMNR_CONTENTS For Changes to Tables With XMLType
Columns

The example in this section is for a table named XML_CLOB_COL_TAB that has the
following columns:

• f1 NUMBER

• f2 VARCHAR2(100)

• f3 XMLTYPE

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-24

• f4 XMLTYPE

• f5 VARCHAR2(10)

Assume that a LogMiner session has been started with the logs and with the
COMMITED_DATA_ONLY option. The following query is executed against
V$LOGMNR_CONTENTS for changes to the XML_CLOB_COL_TAB table.

SELECT OPERATION, STATUS, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER = 'SCOTT' AND TABLE_NAME = 'XML_CLOB_COL_TAB';

The query output looks similar to the following:

OPERATION STATUS SQL_REDO

INSERT 0 insert into "SCOTT"."XML_CLOB_COL_TAB"("F1","F2","F5") values
 ('5010','Aho40431','PETER')

XML DOC BEGIN 5 update "SCOTT"."XML_CLOB_COL_TAB" a set a."F3" = XMLType(:1)
 where a."F1" = '5010' and a."F2" = 'Aho40431' and a."F5" = 'PETER'

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC WRITE 5 XML Data

XML DOC END 5

In the SQL_REDO columns for the XML DOC WRITE operations there will be actual data for
the XML document. It will not be the string 'XML Data'.

This output shows that the general model for an insert into a table with an XMLType
column is the following:

1. An initial insert with all of the scalar columns.

2. An XML DOC BEGIN operation with an update statement that sets the value for one
XMLType column using a bind variable.

3. One or more XML DOC WRITE operations with the data for the XML document.

4. An XML DOC END operation to indicate that all of the data for that XML document
has been seen.

5. If there is more than one XMLType column in the table, then steps 2 through 4 will
be repeated for each XMLType column that is modified by the original DML.

If the XML document is not stored as an out-of-line column, then there will be no XML
DOC BEGIN, XML DOC WRITE, or XML DOC END operations for that column. The document
will be included in an update statement similar to the following:

OPERATION STATUS SQL_REDO

UPDATE 0 update "SCOTT"."XML_CLOB_COL_TAB" a
 set a."F3" = XMLType('<?xml version="1.0"?>
 <PO pono="1">
 <PNAME>Po_99</PNAME>
 <CUSTNAME>Dave Davids</CUSTNAME>
 </PO>')
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-25

Querying V$LOGMNR_CONTENTS For Changes to XMLType Tables

DMLs to XMLType tables are slightly different from DMLs to XMLType columns. The XML
document represents the value for the row in the XMLType table. Unlike the XMLType
column case, an initial insert cannot be done which is then followed by an update
containing the XML document. Rather, the whole document must be assembled before
anything can be inserted into the table.

Another difference for XMLType tables is the presence of the OBJECT_ID column. An
object identifier is used to uniquely identify every object in an object table. For XMLType
tables, this value is generated by Oracle Database when the row is inserted into the
table. The OBJECT_ID value cannot be directly inserted into the table using SQL.
Therefore, LogMiner cannot generate SQL_REDO which is executable that includes this
value.

The V$LOGMNR_CONTENTS view has a new OBJECT_ID column which is populated for
changes to XMLType tables. This value is the object identifier from the original table.
However, even if this same XML document is inserted into the same XMLType table, a
new object identifier will be generated. The SQL_REDO for subsequent DMLs, such as
updates and deletes, on the XMLType table will include the object identifier in the WHERE
clause to uniquely identify the row from the original table.

• Restrictions When Using LogMiner With XMLType Data
Describes restrictions when using LogMiner with XMLType data.

• Example of a PL/SQL Procedure for Assembling XMLType Data
Example showing a procedure that can be used to mine and assemble XML redo
for tables that contain out of line XML data.

22.7.4.1 Restrictions When Using LogMiner With XMLType Data
Describes restrictions when using LogMiner with XMLType data.

Mining XMLType data should only be done when using the
DBMS_LOGMNR.COMMITTED_DATA_ONLY option. Otherwise, incomplete changes could be
displayed or changes which should be displayed as XML might be displayed as CLOB
changes due to missing parts of the row change. This can lead to incomplete and
invalid SQL_REDO for these SQL DML statements.

The SQL_UNDO column is not populated for changes to XMLType data.

22.7.4.2 Example of a PL/SQL Procedure for Assembling XMLType Data
Example showing a procedure that can be used to mine and assemble XML redo for
tables that contain out of line XML data.

This shows how to assemble the XML data using a temporary LOB. Once the XML
document is assembled, it can be used in a meaningful way. This example queries the
assembled document for the EmployeeName element and then stores the returned
name, the XML document and the SQL_REDO for the original DML in the
EMPLOYEE_XML_DOCS table.

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-26

Note:

This procedure is an example only and is simplified. It is only intended to
illustrate that DMLs to tables with XMLType data can be mined and assembled
using LogMiner.

Before calling this procedure, all of the relevant logs must be added to a LogMiner
session and DBMS_LOGMNR.START_LOGMNR() must be called with the
COMMITTED_DATA_ONLY option. The MINE_AND_ASSEMBLE() procedure can then be called
with the schema and table name of the table that has XML data to be mined.

-- table to store assembled XML documents
create table employee_xml_docs (
 employee_name varchar2(100),
 sql_stmt varchar2(4000),
 xml_doc SYS.XMLType);

-- procedure to assemble the XML documents
create or replace procedure mine_and_assemble(
 schemaname in varchar2,
 tablename in varchar2)
AS
 loc_c CLOB;
 row_op VARCHAR2(100);
 row_status NUMBER;
 stmt VARCHAR2(4000);
 row_redo VARCHAR2(4000);
 xml_data VARCHAR2(32767 CHAR);
 data_len NUMBER;
 xml_lob clob;
 xml_doc XMLType;
BEGIN

-- Look for the rows in V$LOGMNR_CONTENTS that are for the appropriate schema
-- and table name but limit it to those that are valid sql or that need assembly
-- because they are XML documents.

 For item in (SELECT operation, status, sql_redo FROM v$logmnr_contents
 where seg_owner = schemaname and table_name = tablename
 and status IN (DBMS_LOGMNR.VALID_SQL, DBMS_LOGMNR.ASSEMBLY_REQUIRED_SQL))
 LOOP
 row_op := item.operation;
 row_status := item.status;
 row_redo := item.sql_redo;

 CASE row_op

 WHEN 'XML DOC BEGIN' THEN
 BEGIN
 -- save statement and begin assembling XML data
 stmt := row_redo;
 xml_data := '';
 data_len := 0;
 DBMS_LOB.CreateTemporary(xml_lob, TRUE);
 END;

 WHEN 'XML DOC WRITE' THEN

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-27

 BEGIN
 -- Continue to assemble XML data
 xml_data := xml_data || row_redo;
 data_len := data_len + length(row_redo);
 DBMS_LOB.WriteAppend(xml_lob, length(row_redo), row_redo);
 END;

 WHEN 'XML DOC END' THEN
 BEGIN
 -- Now that assembly is complete, we can use the XML document
 xml_doc := XMLType.createXML(xml_lob);
 insert into employee_xml_docs values
 (extractvalue(xml_doc, '/EMPLOYEE/NAME'), stmt, xml_doc);
 commit;

 -- reset
 xml_data := '';
 data_len := 0;
 xml_lob := NULL;
 END;

 WHEN 'INSERT' THEN
 BEGIN
 stmt := row_redo;
 END;

 WHEN 'UPDATE' THEN
 BEGIN
 stmt := row_redo;
 END;

 WHEN 'INTERNAL' THEN
 DBMS_OUTPUT.PUT_LINE('Skip rows marked INTERNAL');

 ELSE
 BEGIN
 stmt := row_redo;
 DBMS_OUTPUT.PUT_LINE('Other - ' || stmt);
 IF row_status != DBMS_LOGMNR.VALID_SQL then
 DBMS_OUTPUT.PUT_LINE('Skip rows marked non-executable');
 ELSE
 dbms_output.put_line('Status : ' || row_status);
 END IF;
 END;

 END CASE;

 End LOOP;

End;
/

show errors;

This procedure can then be called to mine the changes to the SCOTT.XML_DATA_TAB
and apply the DMLs.

EXECUTE MINE_AND_ASSEMBLE ('SCOTT', 'XML_DATA_TAB');

As a result of this procedure, the EMPLOYEE_XML_DOCS table will have a row for each
out-of-line XML column that was changed. The EMPLOYEE_NAME column will have the

Chapter 22
Querying V$LOGMNR_CONTENTS for Redo Data of Interest

22-28

value extracted from the XML document and the SQL_STMT column and the XML_DOC
column reflect the original row change.

The following is an example query to the resulting table that displays only the
employee name and SQL statement:

SELECT EMPLOYEE_NAME, SQL_STMT FROM EMPLOYEE_XML_DOCS;

EMPLOYEE_NAME
SQL_STMT

Scott Davis update "SCOTT"."XML_DATA_TAB" a set a."F3" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Richard Harry update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5000' and a."F2" = 'Chen' and a."F5" = 'JJJ'

Margaret Sally update "SCOTT"."XML_DATA_TAB" a set a."F4" = XMLType(:1)
 where a."F1" = '5006' and a."F2" = 'Janosik' and a."F5" = 'MMM'

22.8 Filtering and Formatting Data Returned to
V$LOGMNR_CONTENTS

Learn how to use V$LOGMNR_CONTENTS view filtering and formatting features to manage
what data appears, how it is displayed, and control the speed at which it is returned.

When you extract data from Oracle Database redo logs, LogMiner can potentially deal
with large amounts of information. Learning how to filter and format that data is helpful
to assist with your data mining project. You request each of these filtering and
formatting features by using parameters or options to the DBMS_LOGMNR.START_LOGMNR
procedure.

• Showing Only Committed Transactions
When using the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR, only
rows belonging to committed transactions are shown in the V$LOGMNR_CONTENTS
view.

• Skipping Redo Corruptions
When you use the SKIP_CORRUPTION option to DBMS_LOGMNR.START_LOGMNR, any
corruptions in the redo log files are skipped during select operations from the
V$LOGMNR_CONTENTS view.

• Filtering Data by Time
To filter data by time, set the STARTTIME and ENDTIME parameters in the
DBMS_LOGMNR.START_LOGMNR procedure.

• Filtering Data by SCN
To filter data by SCN (system change number), use the STARTSCN and ENDSCN
parameters to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure.

• Formatting Reconstructed SQL Statements for Re-execution
By default, a ROWID clause is included in the reconstructed SQL_REDO and SQL_UNDO
statements and the statements are ended with a semicolon.

• Formatting the Appearance of Returned Data for Readability
LogMiner provides the PRINT_PRETTY_SQL option that formats the appearance of
returned data for readability.

Chapter 22
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

22-29

22.8.1 Showing Only Committed Transactions
When using the COMMITTED_DATA_ONLY option to DBMS_LOGMNR.START_LOGMNR, only
rows belonging to committed transactions are shown in the V$LOGMNR_CONTENTS view.

This enables you to filter out rolled back transactions, transactions that are in
progress, and internal operations.

To enable this option, specify it when you start LogMiner, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

When you specify the COMMITTED_DATA_ONLY option, LogMiner groups together all DML
operations that belong to the same transaction. Transactions are returned in the order
in which they were committed.

Note:

If the COMMITTED_DATA_ONLY option is specified and you issue a query, then
LogMiner stages all redo records within a single transaction in memory until
LogMiner finds the commit record for that transaction. Therefore, it is
possible to exhaust memory, in which case an "Out of Memory" error will be
returned. If this occurs, then you must restart LogMiner without the
COMMITTED_DATA_ONLY option specified and reissue the query.

The default is for LogMiner to show rows corresponding to all transactions and to
return them in the order in which they are encountered in the redo log files.

For example, suppose you start LogMiner without specifying the COMMITTED_DATA_ONLY
option and you execute the following query:

SELECT (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 USERNAME, SQL_REDO FROM V$LOGMNR_CONTENTS WHERE USERNAME != 'SYS'
 AND SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM');

The output is as follows. Both committed and uncommitted transactions are returned
and rows from different transactions are interwoven.

XID USERNAME SQL_REDO

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.9.3041 RAJIV set transaction read write;
1.9.3041 RAJIV insert into "OE"."CUSTOMERS"("CUSTOMER_ID",

Chapter 22
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

22-30

 "CUST_FIRST_NAME","CUST_LAST_NAME","CUST_ADDRESS",
 "PHONE_NUMBERS","NLS_LANGUAGE","NLS_TERRITORY",
 "CREDIT_LIMIT","CUST_EMAIL","ACCOUNT_MGR_ID")
 values ('9499','Rodney','Emerson',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.15.3045 RON commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON commit;

Now suppose you start LogMiner, but this time you specify the COMMITTED_DATA_ONLY
option. If you execute the previous query again, then the output is as follows:

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.15.3045 RON commit;
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.8.3054 RON commit;

Because the COMMIT statement for the 1.15.3045 transaction was issued before the
COMMIT statement for the 1.18.3046 transaction, the entire 1.15.3045 transaction is
returned first. This is true even though the 1.18.3046 transaction started before the
1.15.3045 transaction. None of the 1.9.3041 transaction is returned because a COMMIT
statement was never issued for it.

Chapter 22
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

22-31

See Also:

See Examples Using LogMiner for a complete example that uses the
COMMITTED_DATA_ONLY option

22.8.2 Skipping Redo Corruptions
When you use the SKIP_CORRUPTION option to DBMS_LOGMNR.START_LOGMNR, any
corruptions in the redo log files are skipped during select operations from the
V$LOGMNR_CONTENTS view.

For every corrupt redo record encountered, a row is returned that contains the value
CORRUPTED_BLOCKS in the OPERATION column, 1343 in the STATUS column, and the
number of blocks skipped in the INFO column.

Be aware that the skipped records may include changes to ongoing transactions in the
corrupted blocks; such changes will not be reflected in the data returned from the
V$LOGMNR_CONTENTS view.

The default is for the select operation to terminate at the first corruption it encounters
in the redo log file.

The following SQL example shows how this option works:

-- Add redo log files of interest.
--
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 logfilename => '/usr/oracle/data/db1arch_1_16_482701534.log' -
 options => DBMS_LOGMNR.NEW);

-- Start LogMiner
--
EXECUTE DBMS_LOGMNR.START_LOGMNR();

-- Select from the V$LOGMNR_CONTENTS view. This example shows corruptions are -- in
the redo log files.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

ERROR at line 3:
ORA-00368: checksum error in redo log block
ORA-00353: log corruption near block 6 change 73528 time 11/06/2011 11:30:23
ORA-00334: archived log: /usr/oracle/data/dbarch1_16_482701534.log

-- Restart LogMiner. This time, specify the SKIP_CORRUPTION option.
--
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 options => DBMS_LOGMNR.SKIP_CORRUPTION);

-- Select from the V$LOGMNR_CONTENTS view again. The output indicates that
-- corrupted blocks were skipped: CORRUPTED_BLOCKS is in the OPERATION
-- column, 1343 is in the STATUS column, and the number of corrupt blocks
-- skipped is in the INFO column.
--
SELECT rbasqn, rbablk, rbabyte, operation, status, info
 FROM V$LOGMNR_CONTENTS;

Chapter 22
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

22-32

RBASQN RBABLK RBABYTE OPERATION STATUS INFO
13 2 76 START 0
13 2 76 DELETE 0
13 3 100 INTERNAL 0
13 3 380 DELETE 0
13 0 0 CORRUPTED_BLOCKS 1343 corrupt blocks 4 to 19 skipped
13 20 116 UPDATE 0

22.8.3 Filtering Data by Time
To filter data by time, set the STARTTIME and ENDTIME parameters in the
DBMS_LOGMNR.START_LOGMNR procedure.

To avoid the need to specify the date format in the call to the PL/SQL
DBMS_LOGMNR.START_LOGMNR procedure, you can use the SQL ALTER SESSION SET
NLS_DATE_FORMAT statement first, as shown in the following example.

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => '/oracle/database/dictionary.ora', -
 STARTTIME => '01-Jan-2019 08:30:00', -
 ENDTIME => '01-Jan-2019 08:45:00'-
);

The timestamps should not be used to infer ordering of redo records. You can infer the
order of redo records by using the SCN.

Note:

You must add log files before filtering. Continuous logging is no longer
supported. If logfiles have not been added that match the time or the SCN
that you provide, then DBMS_LOGMNR.START_LOGMNR fails with the error 1291
ORA-01291: missing logfile.

22.8.4 Filtering Data by SCN
To filter data by SCN (system change number), use the STARTSCN and ENDSCN
parameters to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure.

For example:

 EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTSCN => 621047, -
 ENDSCN => 625695, -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
);

The STARTSCN and ENDSCN parameters override the STARTTIME and ENDTIME
parameters in situations where all are specified.

Chapter 22
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

22-33

Note:

You must add log files before filtering. Continuous logging is no longer
supported. If logfiles have not been added that match the time or the SCN
that you provide, then DBMS_LOGMNR.START_LOGMNR fails with the error 1291
ORA-01291: missing logfile.

22.8.5 Formatting Reconstructed SQL Statements for Re-execution
By default, a ROWID clause is included in the reconstructed SQL_REDO and SQL_UNDO
statements and the statements are ended with a semicolon.

However, you can override the default settings, as follows:

• Specify the NO_ROWID_IN_STMT option when you start LogMiner.

This excludes the ROWID clause from the reconstructed statements. Because row
IDs are not consistent between databases, if you intend to re-execute the
SQL_REDO or SQL_UNDO statements against a different database than the one
against which they were originally executed, then specify the NO_ROWID_IN_STMT
option when you start LogMiner.

• Specify the NO_SQL_DELIMITER option when you start LogMiner.

This suppresses the semicolon from the reconstructed statements. This is helpful
for applications that open a cursor and then execute the reconstructed statements.

Note that if the STATUS field of the V$LOGMNR_CONTENTS view contains the value 2
(invalid sql), then the associated SQL statement cannot be executed.

22.8.6 Formatting the Appearance of Returned Data for Readability
LogMiner provides the PRINT_PRETTY_SQL option that formats the appearance of
returned data for readability.

Sometimes a query can result in a large number of columns containing reconstructed
SQL statements, which can be visually busy and hard to read. LogMiner provides the
PRINT_PRETTY_SQL option to address this problem. The PRINT_PRETTY_SQL option to
the DBMS_LOGMNR.START_LOGMNR procedure formats the reconstructed SQL statements
as follows, which makes them easier to read:

insert into "HR"."JOBS"
 values
 "JOB_ID" = '9782',
 "JOB_TITLE" = 'HR_ENTRY',
 "MIN_SALARY" IS NULL,
 "MAX_SALARY" IS NULL;
 update "HR"."JOBS"
 set
 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

update "HR"."JOBS"
 set

Chapter 22
Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS

22-34

 "JOB_TITLE" = 'FI_ENTRY'
 where
 "JOB_TITLE" = 'HR_ENTRY' and
 ROWID = 'AAAHSeAABAAAY+CAAX';

delete from "HR"."JOBS"
 where
 "JOB_ID" = '9782' and
 "JOB_TITLE" = 'FI_ENTRY' and
 "MIN_SALARY" IS NULL and
 "MAX_SALARY" IS NULL and
 ROWID = 'AAAHSeAABAAAY+CAAX';

SQL statements that are reconstructed when the PRINT_PRETTY_SQL option is enabled
are not executable, because they do not use standard SQL syntax.

See Also:

Examples Using LogMiner for a complete example of using the
PRINT_PRETTY_SQL option

22.9 Reapplying DDL Statements Returned to
V$LOGMNR_CONTENTS

Some DDL statements that you issue cause Oracle to internally execute one or more
other DDL statements.

To reapply SQL DDL from the SQL_REDO or SQL_UNDO columns of the
V$LOGMNR_CONTENTS view as it was originally applied to the database, do not execute
statements that were executed internally by Oracle Database.

Caution:

If you execute DML statements that were executed internally by Oracle
Database, then you can corrupt your database.

To differentiate between DDL statements that were issued by a user from those that
were issued internally by Oracle Database, query the INFO column of
V$LOGMNR_CONTENTS. The value of the INFO column indicates whether the DDL was
executed by a user or by Oracle Database.

To reapply SQL DDL as it was originally applied, re-execute the DDL SQL contained in
the SQL_REDO or SQL_UNDO column of V$LOGMNR_CONTENTS only if the INFO column
contains the value USER_DDL.

Related Topics

• Example 4: Using the LogMiner Dictionary in the Redo Log Files
Learn how to use the dictionary that has been extracted to the redo log files.

Chapter 22
Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS

22-35

22.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple
Times

Even after you have successfully called DBMS_LOGMNR.START_LOGMNR and selected from
the V$LOGMNR_CONTENTS view, you can call DBMS_LOGMNR.START_LOGMNR again without
ending the current LogMiner session and specify different options and time or SCN
ranges.

The following list presents reasons why you might want to do this:

• You want to limit the amount of redo data that LogMiner has to analyze.

• You want to specify different options. For example, you might decide to specify the
PRINT_PRETTY_SQL option or that you only want to see committed transactions (so
you specify the COMMITTED_DATA_ONLY option).

• You want to change the time or SCN range to be analyzed.

Examples: Calling DBMS_LOGMNR.START_LOGMNR Multiple Times

The following are some examples of when it could be useful to call
DBMS_LOGMNR.START_LOGMNR multiple times.

Example 1: Mining Only a Subset of the Data in the Redo Log Files

Suppose the list of redo log files that LogMiner has to mine include those generated
for an entire week. However, you want to analyze only what happened from 12:00 to
1:00 each day. You could do this most efficiently by:

1. Calling DBMS_LOGMNR.START_LOGMNR with this time range for Monday.

2. Selecting changes from the V$LOGMNR_CONTENTS view.

3. Repeating Steps 1 and 2 for each day of the week.

If the total amount of redo data is large for the week, then this method would make the
whole analysis much faster, because only a small subset of each redo log file in the list
would be read by LogMiner.

Example 2: Adjusting the Time Range or SCN Range

Suppose you specify a redo log file list and specify a time (or SCN) range when you
start LogMiner. When you query the V$LOGMNR_CONTENTS view, you find that only part
of the data of interest is included in the time range you specified. You can call
DBMS_LOGMNR.START_LOGMNR again to expand the time range by an hour (or adjust the
SCN range).

Example 3: Analyzing Redo Log Files As They Arrive at a Remote Database

Suppose you have written an application to analyze changes or to replicate changes
from one database to another database. The source database sends its redo log files
to the mining database and drops them into an operating system directory. Your
application:

1. Adds all redo log files currently in the directory to the redo log file list

2. Calls DBMS_LOGMNR.START_LOGMNR with appropriate settings and selects from the
V$LOGMNR_CONTENTS view

Chapter 22
Calling DBMS_LOGMNR.START_LOGMNR Multiple Times

22-36

3. Adds additional redo log files that have newly arrived in the directory

4. Repeats Steps 2 and 3, indefinitely

22.11 Supplemental Logging
Supplemental logging is the process of adding additional columns in redo log files to
facilitate data mining.

Oracle Database redo log files are generally used for instance recovery and media
recovery. The data needed for such operations is automatically recorded in the redo
log files. However, a redo-based application can require that additional columns are
logged in the redo log files. The process of logging these additional columns is called
supplemental logging.

By default, Oracle Database does not provide any supplemental logging, which means
that by default LogMiner is not usable. Therefore, you must enable at least minimal
supplemental logging before generating log files that you can analyze with LogMiner.

Use Case Examples for Supplemental Logging

The following is a list of some examples in which you can decide that you need to
have additional redo log file columns available to your applications:

• An application that applies reconstructed SQL statements to a different database
must identify the update statement by a set of columns that uniquely identify the
row (for example, a primary key), not by the ROWID shown in the reconstructed
SQL returned by the V$LOGMNR_CONTENTS view, because the ROWID of one
database will be different and therefore meaningless in another database.

• An application can require that the before-image of the whole row is logged, not
just the modified columns, so that tracking of row changes is more efficient.

Supplemental Log Groups

A supplemental log group is the set of additional columns that you want to be logged
when supplemental logging is enabled. There are two types of supplemental log
groups that determine when columns in the log group are logged:

• Unconditional supplemental log groups: The before-images of specified
columns are logged any time a row is updated, regardless of whether the update
affected any of the specified columns. This is sometimes referred to as an
ALWAYS log group.

• Conditional supplemental log groups: The before-images of all specified
columns are logged only if at least one of the columns in the log group is updated.

Supplemental log groups can be system-generated, or user-defined.

In addition to the two types of supplemental logging, there are two levels of
supplemental logging, which you can query.

• Database-Level Supplemental Logging
LogMiner provides different types of database-level supplemental logging: minimal
supplemental logging, identification key logging, and procedural supplemental
logging, as described in these sections.

Chapter 22
Supplemental Logging

22-37

• Disabling Database-Level Supplemental Logging
Disable database-level supplemental logging using the SQL ALTER DATABASE
statement with the DROP SUPPLEMENTAL LOGGING clause.

• Table-Level Supplemental Logging
Table-level supplemental logging specifies, at the table level, which columns are to
be supplementally logged.

• Tracking DDL Statements in the LogMiner Dictionary
LogMiner automatically builds its own internal dictionary from the LogMiner
dictionary that you specify when you start LogMiner (either an online catalog, a
dictionary in the redo log files, or a flat file).

• DDL_DICT_TRACKING and Supplemental Logging Settings
Describes interactions that occur when various settings of dictionary tracking and
supplemental logging are combined.

• DDL_DICT_TRACKING and Specified Time or SCN Ranges
Because LogMiner must not miss a DDL statement if it is to ensure the
consistency of its dictionary, LogMiner may start reading redo log files before your
requested starting time or SCN (as specified with DBMS_LOGMNR.START_LOGMNR)
when the DDL_DICT_TRACKING option is enabled.

Related Topics

• Querying Views for Supplemental Logging Settings
Describes how to query several views to determine the current settings for
supplemental logging.

22.11.1 Database-Level Supplemental Logging
LogMiner provides different types of database-level supplemental logging: minimal
supplemental logging, identification key logging, and procedural supplemental logging,
as described in these sections.

Minimal supplemental logging does not impose significant overhead on the database
generating the redo log files. However, enabling database-wide identification key
logging can impose overhead on the database generating the redo log files. Oracle
recommends that you at least enable minimal supplemental logging for LogMiner.

• Minimal Supplemental Logging
Minimal supplemental logging logs the minimal amount of information needed for
LogMiner to identify, group, and merge the redo operations associated with DML
changes.

• Database-Level Identification Key Logging
Identification key logging is necessary when redo log files will not be mined at the
source database instance, for example, when the redo log files will be mined at a
logical standby database.

• Procedural Supplemental Logging
Procedural supplemental logging causes LogMiner to log certain procedural
invocations to redo, so that they can be replicated by rolling upgrades or Oracle
GoldenGate.

Chapter 22
Supplemental Logging

22-38

22.11.1.1 Minimal Supplemental Logging
Minimal supplemental logging logs the minimal amount of information needed for
LogMiner to identify, group, and merge the redo operations associated with DML
changes.

It ensures that LogMiner (and any product building on LogMiner technology) has
sufficient information to support chained rows and various storage arrangements, such
as cluster tables and index-organized tables. To enable minimal supplemental logging,
execute the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

22.11.1.2 Database-Level Identification Key Logging
Identification key logging is necessary when redo log files will not be mined at the
source database instance, for example, when the redo log files will be mined at a
logical standby database.

Using database identification key logging, you can enable database-wide before-
image logging for all updates by specifying one or more of the following options to the
SQL ALTER DATABASE ADD SUPPLEMENTAL LOG statement:

• ALL system-generated unconditional supplemental log group

This option specifies that when a row is updated, all columns of that row (except
for LOBs, LONGS, and ADTs) are placed in the redo log file.

To enable all column logging at the database level, execute the following
statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

• PRIMARY KEY system-generated unconditional supplemental log group

This option causes the database to place all columns of a row's primary key in the
redo log file whenever a row containing a primary key is updated (even if no value
in the primary key has changed).

If a table does not have a primary key, but has one or more non-null unique index
key constraints or index keys, then one of the unique index keys is chosen for
logging as a means of uniquely identifying the row being updated.

If the table has neither a primary key nor a non-null unique index key, then all
columns except LONG and LOB are supplementally logged; this is equivalent to
specifying ALL supplemental logging for that row. Therefore, Oracle recommends
that when you use database-level primary key supplemental logging, all or most
tables be defined to have primary or unique index keys.

To enable primary key logging at the database level, execute the following
statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

• UNIQUE system-generated conditional supplemental log group

This option causes the database to place all columns of a row's composite unique
key or bitmap index in the redo log file if any column belonging to the composite
unique key or bitmap index is modified. The unique key can be due to either a
unique constraint or a unique index.

Chapter 22
Supplemental Logging

22-39

To enable unique index key and bitmap index logging at the database level,
execute the following statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

• FOREIGN KEY system-generated conditional supplemental log group

This option causes the database to place all columns of a row's foreign key in the
redo log file if any column belonging to the foreign key is modified.

To enable foreign key logging at the database level, execute the following SQL
statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (FOREIGN KEY) COLUMNS;

Note:

Regardless of whether identification key logging is enabled, the SQL
statements returned by LogMiner always contain the ROWID clause. You
can filter out the ROWID clause by using the NO_ROWID_IN_STMT option to
the DBMS_LOGMNR.START_LOGMNR procedure call. See Formatting
Reconstructed SQL Statements for Re-execution for details.

Keep the following in mind when you use identification key logging:

• If the database is open when you enable identification key logging, then all DML
cursors in the cursor cache are invalidated. This can affect performance until the
cursor cache is repopulated.

• When you enable identification key logging at the database level, minimal
supplemental logging is enabled implicitly.

• Supplemental logging statements are cumulative. If you issue the following SQL
statements, then both primary key and unique key supplemental logging is
enabled:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

22.11.1.3 Procedural Supplemental Logging
Procedural supplemental logging causes LogMiner to log certain procedural
invocations to redo, so that they can be replicated by rolling upgrades or Oracle
GoldenGate.

Procedural supplemental logging must be enabled for rolling upgrades and Oracle
GoldenGate to support replication of AQ queue tables, hierarchy-enabled tables, and
tables with SDO_TOPO_GEOMETRY or SDO_GEORASTER columns. Use the following SQL
statement to enable procedural supplemental logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA FOR PROCEDURAL REPLICATION END
SUBHEADING

If procedural supplemental logging is enabled, then minimal supplemental logging
cannot be dropped unless procedural supplemental logging is dropped first.

Chapter 22
Supplemental Logging

22-40

22.11.2 Disabling Database-Level Supplemental Logging
Disable database-level supplemental logging using the SQL ALTER DATABASE
statement with the DROP SUPPLEMENTAL LOGGING clause.

You can drop supplemental logging attributes incrementally. For example, suppose
you issued the following SQL statements, in the following order:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

The statements would have the following effects:

• After the first statement, primary key supplemental logging is enabled.

• After the second statement, primary key and unique key supplemental logging are
enabled.

• After the third statement, only unique key supplemental logging is enabled.

• After the fourth statement, all supplemental logging is not disabled. The following
error is returned: ORA-32589: unable to drop minimal supplemental logging.

To disable all database supplemental logging, you must first disable any identification
key logging that has been enabled, then disable minimal supplemental logging. The
following example shows the correct order:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;
ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Dropping minimal supplemental log data is allowed only if no other variant of
database-level supplemental logging is enabled.

22.11.3 Table-Level Supplemental Logging
Table-level supplemental logging specifies, at the table level, which columns are to be
supplementally logged.

You can use identification key logging or user-defined conditional and unconditional
supplemental log groups to log supplemental information, as described in the following
sections.

• Table-Level Identification Key Logging
Identification key logging at the table level offers the same options as those
provided at the database level: all, primary key, foreign key, and unique key.

• Table-Level User-Defined Supplemental Log Groups
In addition to table-level identification key logging, Oracle supports user-defined
supplemental log groups.

• Usage Notes for User-Defined Supplemental Log Groups
Hints for using user-defined supplemental log groups.

Chapter 22
Supplemental Logging

22-41

22.11.3.1 Table-Level Identification Key Logging
Identification key logging at the table level offers the same options as those provided
at the database level: all, primary key, foreign key, and unique key.

However, when you specify identification key logging at the table level, only the
specified table is affected. For example, if you enter the following SQL statement
(specifying database-level supplemental logging), then whenever a column in any
database table is changed, the entire row containing that column (except columns for
LOBs, LONGs, and ADTs) will be placed in the redo log file:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

However, if you enter the following SQL statement (specifying table-level supplemental
logging) instead, then only when a column in the employees table is changed will the
entire row (except for LOB, LONGs, and ADTs) of the table be placed in the redo log file.
If a column changes in the departments table, then only the changed column will be
placed in the redo log file.

ALTER TABLE HR.EMPLOYEES ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Keep the following in mind when you use table-level identification key logging:

• If the database is open when you enable identification key logging on a table, then
all DML cursors for that table in the cursor cache are invalidated. This can affect
performance until the cursor cache is repopulated.

• Supplemental logging statements are cumulative. If you issue the following SQL
statements, then both primary key and unique index key table-level supplemental
logging is enabled:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;
ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG DATA (UNIQUE) COLUMNS;

See Database-Level Identification Key Logging for a description of each of the
identification key logging options.

22.11.3.2 Table-Level User-Defined Supplemental Log Groups
In addition to table-level identification key logging, Oracle supports user-defined
supplemental log groups.

With user-defined supplemental log groups, you can specify which columns are
supplementally logged. You can specify conditional or unconditional log groups, as
follows:

• User-defined unconditional log groups

To enable supplemental logging that uses user-defined unconditional log groups,
use the ALWAYS clause as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID) ALWAYS;

This creates a log group named emp_parttime on the hr.employees table that
consists of the columns employee_id, last_name, and department_id. These

Chapter 22
Supplemental Logging

22-42

columns are logged every time an UPDATE statement is executed on the
hr.employees table, regardless of whether the update affected these columns. (To
have the entire row image logged any time an update is made, use table-level ALL
identification key logging, as described previously).

Note:

LOB, LONG, and ADT columns cannot be supplementally logged.

• User-defined conditional supplemental log groups

To enable supplemental logging that uses user-defined conditional log groups,
omit the ALWAYS clause from the SQL ALTER TABLE statement, as shown in the
following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_fulltime (EMPLOYEE_ID, LAST_NAME,
 DEPARTMENT_ID);

This creates a log group named emp_fulltime on table hr.employees. As in the
previous example, it consists of the columns employee_id, last_name, and
department_id. But because the ALWAYS clause was omitted, before-images of the
columns are logged only if at least one of the columns is updated.

For both unconditional and conditional user-defined supplemental log groups, you can
explicitly specify that a column in the log group be excluded from supplemental logging
by specifying the NO LOG option. When you specify a log group and use the NO LOG
option, you must specify at least one column in the log group without the NO LOG
option, as shown in the following example:

ALTER TABLE HR.EMPLOYEES
 ADD SUPPLEMENTAL LOG GROUP emp_parttime(
 DEPARTMENT_ID NO LOG, EMPLOYEE_ID);

This enables you to associate this column with other columns in the named
supplemental log group such that any modification to the NO LOG column causes the
other columns in the supplemental log group to be placed in the redo log file. This
might be useful, for example, for logging certain columns in a group if a LONG column
changes. You cannot supplementally log the LONG column itself; however, you can use
changes to that column to trigger supplemental logging of other columns in the same
row.

22.11.3.3 Usage Notes for User-Defined Supplemental Log Groups
Hints for using user-defined supplemental log groups.

Keep the following in mind when you specify user-defined supplemental log groups:

• A column can belong to more than one supplemental log group. However, the
before-image of the columns gets logged only once.

• If you specify the same columns to be logged both conditionally and
unconditionally, then the columns are logged unconditionally.

Chapter 22
Supplemental Logging

22-43

22.11.4 Tracking DDL Statements in the LogMiner Dictionary
LogMiner automatically builds its own internal dictionary from the LogMiner dictionary
that you specify when you start LogMiner (either an online catalog, a dictionary in the
redo log files, or a flat file).

This dictionary provides a snapshot of the database objects and their definitions.

If your LogMiner dictionary is in the redo log files or is a flat file, then you can use the
DDL_DICT_TRACKING option to the PL/SQL DBMS_LOGMNR.START_LOGMNR procedure to
direct LogMiner to track data definition language (DDL) statements. DDL tracking
enables LogMiner to successfully track structural changes made to a database object,
such as adding or dropping columns from a table. For example:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DDL_DICT_TRACKING + DBMS_LOGMNR.DICT_FROM_REDO_LOGS);

See Example 5: Tracking DDL Statements in the Internal Dictionary for a complete
example.

With this option set, LogMiner applies any DDL statements seen in the redo log files to
its internal dictionary.

Note:

In general, it is a good idea to keep supplemental logging and the DDL
tracking feature enabled, because if they are not enabled and a DDL event
occurs, then LogMiner returns some of the redo data as binary data. Also, a
metadata version mismatch could occur.

When you enable DDL_DICT_TRACKING, data manipulation language (DML) operations
performed on tables created after the LogMiner dictionary was extracted can be shown
correctly.

For example, if a table employees is updated through two successive DDL operations
such that column gender is added in one operation, and column commission_pct is
dropped in the next, then LogMiner will keep versioned information for employees for
each of these changes. This means that LogMiner can successfully mine redo log files
that are from before and after these DDL changes, and no binary data will be
presented for the SQL_REDO or SQL_UNDO columns.

Because LogMiner automatically assigns versions to the database metadata, it will
detect and notify you of any mismatch between its internal dictionary and the
dictionary in the redo log files. If LogMiner detects a mismatch, then it generates
binary data in the SQL_REDO column of the V$LOGMNR_CONTENTS view, the INFO column
contains the string "Dictionary Version Mismatch", and the STATUS column will contain
the value 2.

Chapter 22
Supplemental Logging

22-44

Note:

It is important to understand that the LogMiner internal dictionary is not the
same as the LogMiner dictionary contained in a flat file, in redo log files, or in
the online catalog. LogMiner does update its internal dictionary, but it does
not update the dictionary that is contained in a flat file, in redo log files, or in
the online catalog.

The following list describes the requirements for specifying the DDL_DICT_TRACKING
option with the DBMS_LOGMNR.START_LOGMNR procedure.

• The DDL_DICT_TRACKING option is not valid with the DICT_FROM_ONLINE_CATALOG
option.

• The DDL_DICT_TRACKING option requires that the database be open.

• Supplemental logging must be enabled database-wide, or log groups must have
been created for the tables of interest.

22.11.5 DDL_DICT_TRACKING and Supplemental Logging Settings
Describes interactions that occur when various settings of dictionary tracking and
supplemental logging are combined.

Note the following:

• If DDL_DICT_TRACKING is enabled, but supplemental logging is not enabled and:

– A DDL transaction is encountered in the redo log file, then a query of
V$LOGMNR_CONTENTS will terminate with the ORA-01347 error.

– A DML transaction is encountered in the redo log file, then LogMiner will not
assume that the current version of the table (underlying the DML) in its
dictionary is correct, and columns in V$LOGMNR_CONTENTS will be set as follows:

* The SQL_REDO column will contain binary data.

* The STATUS column will contain a value of 2 (which indicates that the SQL
is not valid).

* The INFO column will contain the string 'Dictionary Mismatch'.

• If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled, and
the columns referenced in a DML operation match the columns in the LogMiner
dictionary, then LogMiner assumes that the latest version in its dictionary is
correct, and columns in V$LOGMNR_CONTENTS will be set as follows:

– LogMiner will use the definition of the object in its dictionary to generate values
for the SQL_REDO and SQL_UNDO columns.

– The status column will contain a value of 3 (which indicates that the SQL is not
guaranteed to be accurate).

– The INFO column will contain the string 'no supplemental log data found'.

• If DDL_DICT_TRACKING is not enabled and supplemental logging is not enabled and
there are more modified columns in the redo log file for a table than the LogMiner
dictionary definition for the table defines, then:

Chapter 22
Supplemental Logging

22-45

– The SQL_REDO and SQL_UNDO columns will contain the string 'Dictionary Version
Mismatch'.

– The STATUS column will contain a value of 2 (which indicates that the SQL is
not valid).

– The INFO column will contain the string 'Dictionary Mismatch'.

Also be aware that it is possible to get unpredictable behavior if the dictionary
definition of a column indicates one type but the column is really another type.

22.11.6 DDL_DICT_TRACKING and Specified Time or SCN Ranges
Because LogMiner must not miss a DDL statement if it is to ensure the consistency of
its dictionary, LogMiner may start reading redo log files before your requested starting
time or SCN (as specified with DBMS_LOGMNR.START_LOGMNR) when the
DDL_DICT_TRACKING option is enabled.

The actual time or SCN at which LogMiner starts reading redo log files is referred to as
the required starting time or the required starting SCN.

No missing redo log files (based on sequence numbers) are allowed from the required
starting time or the required starting SCN.

LogMiner determines where it will start reading redo log data as follows:

• After the dictionary is loaded, the first time that you call
DBMS_LOGMNR.START_LOGMNR, LogMiner begins reading as determined by one of
the following, whichever causes it to begin earlier:

– Your requested starting time or SCN value

– The commit SCN of the dictionary dump

• On subsequent calls to DBMS_LOGMNR.START_LOGMNR, LogMiner begins reading as
determined for one of the following, whichever causes it to begin earliest:

– Your requested starting time or SCN value

– The start of the earliest DDL transaction where the COMMIT statement has not
yet been read by LogMiner

– The highest SCN read by LogMiner

The following scenario helps illustrate this:

Suppose you create a redo log file list containing five redo log files. Assume that a
dictionary is contained in the first redo file, and the changes that you have indicated
you want to see (using DBMS_LOGMNR.START_LOGMNR) are recorded in the third redo log
file. You then do the following:

1. Call DBMS_LOGMNR.START_LOGMNR. LogMiner will read:

a. The first log file to load the dictionary

b. The second redo log file to pick up any possible DDLs contained within it

c. The third log file to retrieve the data of interest

2. Call DBMS_LOGMNR.START_LOGMNR again with the same requested range.

LogMiner will begin with redo log file 3; it no longer needs to read redo log file 2,
because it has already processed any DDL statements contained within it.

Chapter 22
Supplemental Logging

22-46

3. Call DBMS_LOGMNR.START_LOGMNR again, this time specifying parameters that
require data to be read from redo log file 5.

LogMiner will start reading from redo log file 4 to pick up any DDL statements that
may be contained within it.

Query the REQUIRED_START_DATE or the REQUIRED_START_SCN columns of the
V$LOGMNR_PARAMETERS view to see where LogMiner will actually start reading.
Regardless of where LogMiner starts reading, only rows in your requested range will
be returned from the V$LOGMNR_CONTENTS view.

22.12 Accessing LogMiner Operational Information in Views
LogMiner operational information (as opposed to redo data) is contained in views.

You can use SQL to query them as you would any other view.

• V$LOGMNR_DICTIONARY

Shows information about a LogMiner dictionary file that was created using the
STORE_IN_FLAT_FILE option to DBMS_LOGMNR.START_LOGMNR. The information
shown includes information about the database from which the LogMiner
dictionary was created.

• V$LOGMNR_LOGS

Shows information about specified redo log files, as described in Querying
V$LOGMNR_LOGS.

• V$LOGMNR_PARAMETERS

Shows information about optional LogMiner parameters, including starting and
ending system change numbers (SCNs) and starting and ending times.

• V$DATABASE, DBA_LOG_GROUPS, ALL_LOG_GROUPS, USER_LOG_GROUPS,
DBA_LOG_GROUP_COLUMNS, ALL_LOG_GROUP_COLUMNS, USER_LOG_GROUP_COLUMNS

Shows information about the current settings for supplemental logging, as
described in Querying Views for Supplemental Logging Settings.

• Querying V$LOGMNR_LOGS
You can query the V$LOGMNR_LOGS view to determine which redo log files have
been manually or automatically added to the list of redo log files for LogMiner to
analyze.

• Querying Views for Supplemental Logging Settings
Describes how to query several views to determine the current settings for
supplemental logging.

22.12.1 Querying V$LOGMNR_LOGS
You can query the V$LOGMNR_LOGS view to determine which redo log files have been
manually or automatically added to the list of redo log files for LogMiner to analyze.

This view contains one row for each redo log file. It provides valuable information
about each of the redo log files, including file name, SCN and time ranges, and
whether it contains all or part of the LogMiner dictionary.

After a successful call to DBMS_LOGMNR.START_LOGMNR, the STATUS column of the
V$LOGMNR_LOGS view contains one of the following values:

Chapter 22
Accessing LogMiner Operational Information in Views

22-47

• 0

Indicates that the redo log file will be processed during a query of the
V$LOGMNR_CONTENTS view.

• 1

Indicates that this will be the first redo log file to be processed by LogMiner during
a select operation against the V$LOGMNR_CONTENTS view.

• 2

Indicates that the redo log file has been pruned and therefore will not be
processed by LogMiner during a query of the V$LOGMNR_CONTENTS view. It has
been pruned because it is not needed to satisfy your requested time or SCN
range.

• 4

Indicates that a redo log file (based on sequence number) is missing from the
LogMiner redo log file list.

The V$LOGMNR_LOGS view contains a row for each redo log file that is missing from the
list, as follows:

• The FILENAME column will contain the consecutive range of sequence numbers
and total SCN range gap.

For example: 'Missing log file(s) for thread number 1, sequence number(s) 100 to
102'.

• The INFO column will contain the string 'MISSING_LOGFILE'.

Information about files missing from the redo log file list can be useful for the following
reasons:

• The DDL_DICT_TRACKING option that can be specified when you call
DBMS_LOGMNR.START_LOGMNR will not allow redo log files to be missing from the
LogMiner redo log file list for the requested time or SCN range. If a call to
DBMS_LOGMNR.START_LOGMNR fails, then you can query the STATUS column in the
V$LOGMNR_LOGS view to determine which redo log files are missing from the list.
You can then find and manually add these redo log files and attempt to call
DBMS_LOGMNR.START_LOGMNR again.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr
package is desupported in Oracle Database 19c (19.1), and is no longer
available.

• Although all other options that can be specified when you call
DBMS_LOGMNR.START_LOGMNR allow files to be missing from the LogMiner redo log
file list, you may not want to have missing files. You can query the V$LOGMNR_LOGS
view before querying the V$LOGMNR_CONTENTS view to ensure that all required files
are in the list. If the list is left with missing files and you query the
V$LOGMNR_CONTENTS view, then a row is returned in V$LOGMNR_CONTENTS with the
following column values:

– In the OPERATION column, a value of 'MISSING_SCN'

Chapter 22
Accessing LogMiner Operational Information in Views

22-48

– In the STATUS column, a value of 1291

– In the INFO column, a string indicating the missing SCN range (for example,
'Missing SCN 100 - 200')

22.12.2 Querying Views for Supplemental Logging Settings
Describes how to query several views to determine the current settings for
supplemental logging.

Specificallyt:

• V$DATABASE view

– SUPPLEMENTAL_LOG_DATA_FK column

This column contains one of the following values:

* NO - if database-level identification key logging with the FOREIGN KEY
option is not enabled

* YES - if database-level identification key logging with the FOREIGN KEY
option is enabled

– SUPPLEMENTAL_LOG_DATA_ALL column

This column contains one of the following values:

* NO - if database-level identification key logging with the ALL option is not
enabled

* YES - if database-level identification key logging with the ALL option is
enabled

– SUPPLEMENTAL_LOG_DATA_UI column

* NO - if database-level identification key logging with the UNIQUE option is
not enabled

* YES - if database-level identification key logging with the UNIQUE option is
enabled

– SUPPLEMENTAL_LOG_DATA_MIN column

This column contains one of the following values:

* NO - if no database-level supplemental logging is enabled

* IMPLICIT - if minimal supplemental logging is enabled because database-
level identification key logging options is enabled

* YES - if minimal supplemental logging is enabled because the SQL ALTER
DATABASE ADD SUPPLEMENTAL LOG DATA statement was issued

• DBA_LOG_GROUPS, ALL_LOG_GROUPS, and USER_LOG_GROUPS views

– ALWAYS column

This column contains one of the following values:

* ALWAYS - indicates that the columns in this log group will be supplementally
logged if any column in the associated row is updated

* CONDITIONAL - indicates that the columns in this group will be
supplementally logged only if a column in the log group is updated

Chapter 22
Accessing LogMiner Operational Information in Views

22-49

– GENERATED column

This column contains one of the following values:

* GENERATED NAME - if the LOG_GROUP name was system-generated

* USER NAME - if the LOG_GROUP name was user-defined

– LOG_GROUP_TYPE column

This column contains one of the following values to indicate the type of logging
defined for this log group. USER LOG GROUP indicates that the log group was
user-defined (as opposed to system-generated).

* ALL COLUMN LOGGING

* FOREIGN KEY LOGGING

* PRIMARY KEY LOGGING

* UNIQUE KEY LOGGING

* USER LOG GROUP

• DBA_LOG_GROUP_COLUMNS, ALL_LOG_GROUP_COLUMNS, and USER_LOG_GROUP_COLUMNS
views

– The LOGGING_PROPERTY column

This column contains one of the following values:

* LOG - indicates that this column in the log group will be supplementally
logged

* NO LOG - indicates that this column in the log group will not be
supplementally logged

22.13 Steps in a Typical LogMiner Session
Learn about the typical ways you can use LogMiner to extract and mine data.

• Understanding How to Run LogMiner Sessions
You run LogMiner by using a PL/SQL package that is owned by SYS. To use
LogMiner, there are requirements for the user account that you use with LogMiner.

• Typical LogMiner Session Task 1: Enable Supplemental Logging
To be able to use LogMiner with redo log files, you must enable supplemental
logging.

• Typical LogMiner Session Task 2: Extract a LogMiner Dictionary
To use LogMiner, you must select an option to supply LogMiner with a database
dictionary.

• Typical LogMiner Session Task 3: Specify Redo Log Files for Analysis
You must specify the redo log files that you want to analyze with
DBMS_LOGMNR_ADD_LOGFILE before starting LogMiner.

• Start LogMiner
See how to start LogMiner, and what options you can use to analyze redo log files,
filter criteria, and other session characteristics.

Chapter 22
Steps in a Typical LogMiner Session

22-50

• Query V$LOGMNR_CONTENTS
After you start LogMiner, you can query the Oracle Database V$LOGMNR_CONTENTS
view.

• Typical LogMiner Session Task 6: End the LogMiner Session
Ending the LogMiner session.

22.13.1 Understanding How to Run LogMiner Sessions
You run LogMiner by using a PL/SQL package that is owned by SYS. To use LogMiner,
there are requirements for the user account that you use with LogMiner.

To run LogMiner, you use the DBMS_LOGMNR PL/SQL package. Additionally, if you
choose to extract a LogMiner dictionary rather than use the online catalog, then you
can also use the DBMS_LOGMNR_D package.

The DBMS_LOGMNR package contains the procedures used to initialize and run
LogMiner, including interfaces to specify names of redo log files, filter criteria, and
session characteristics. The DBMS_LOGMNR_D package queries the database dictionary
tables of the current database to create a LogMiner dictionary file.

Requirements for Running LogMiner When Not Connected As SYS

The LogMiner PL/SQL packages are owned by the SYS schema. Therefore, if you are
not connected as user SYS, then:

• You must include SYS in your call. For example:

EXECUTE SYS.DBMS_LOGMNR.END_LOGMNR;

• You must have been granted the EXECUTE_CATALOG_ROLE role.

Related Topics

• DBMS_LOGMNR

• Overview of PL/SQL Packages

22.13.2 Typical LogMiner Session Task 1: Enable Supplemental
Logging

To be able to use LogMiner with redo log files, you must enable supplemental logging.

Redo-based applications can require that additional columns are logged in the redo
log files. The process of logging these additional columns is called supplemental
logging. By default, Oracle Database does not have supplemental logging enabled. At
the very least, to use LogMiner, you must enable minimal supplemental logging.

Example 22-3 Enabling Minimal Supplemental Logging

To enable supplemental logging, enter the following statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Chapter 22
Steps in a Typical LogMiner Session

22-51

Related Topics

• Supplemental Logging
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

22.13.3 Typical LogMiner Session Task 2: Extract a LogMiner
Dictionary

To use LogMiner, you must select an option to supply LogMiner with a database
dictionary.

Choose one of the following options:

• Specify use of the online catalog by using the DICT_FROM_ONLINE_CATALOG option
when you start LogMiner.

• Extract the database dictionary information to the redo log files.

• Extract database dictionary information to a flat file.

Related Topics

• Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify
the online catalog as your dictionary source when you start LogMiner.

• Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open
and in ARCHIVELOG mode and archiving must be enabled.

• Extracting the LogMiner Dictionary to a Flat File
When the LogMiner dictionary is in a flat file, fewer system resources are used
than when it is contained in the redo log files. Oracle recommends that you
regularly back up the dictionary extract to ensure correct analysis of older redo log
files.

22.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for
Analysis

You must specify the redo log files that you want to analyze with
DBMS_LOGMNR_ADD_LOGFILE before starting LogMiner.

Before you can start LogMiner, you must specify the redo log files that you want to
analyze. To specify log files, run the DBMS_LOGMNR.ADD_LOGFILE procedure, as
demonstrated in the following steps. You can add and remove redo log files in any
order.

1. Use SQL*Plus to start an Oracle Database instance, with the database either
mounted or unmounted. For example, enter the STARTUP statement at the SQL
prompt:

STARTUP

2. Create a list of redo log files. Specify the NEW option of the
DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure to signal that this is the beginning

Chapter 22
Steps in a Typical LogMiner Session

22-52

of a new list. For example, enter the following to specify the /oracle/logs/log1.f
redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log1.f', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. If desired, add more redo log files by specifying the ADDFILE option of the
DBMS_LOGMNR.ADD_LOGFILE PL/SQL procedure. For example, enter the following to
add the /oracle/logs/log2.f redo log file:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

The OPTIONS parameter is optional when you are adding additional redo log files.
For example, you can simply enter the following:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME=>'/oracle/logs/log2.f');

4. If desired, remove redo log files by using the DBMS_LOGMNR.REMOVE_LOGFILE
PL/SQL procedure. For example, enter the following to remove the /oracle/logs/
log2.f redo log file:

EXECUTE DBMS_LOGMNR.REMOVE_LOGFILE(-
 LOGFILENAME => '/oracle/logs/log2.f');

22.13.5 Start LogMiner
See how to start LogMiner, and what options you can use to analyze redo log files,
filter criteria, and other session characteristics.

After you have created a LogMiner dictionary file and specified which redo log files to
analyze, you can start LogMiner and analyze your Oracle Database transactions.

1. To start LogMiner, execute the DBMS_LOGMNR.START_LOGMNR procedure.

Oracle recommends that you specify a LogMiner dictionary option. If you do not
specify a dictionary option, then LogMiner cannot translate internal object
identifiers and data types to object names and external data formats. As a result,
LogMiner returns internal object IDs and present data as binary data. Additionally,
you cannot use the MINE_VALUE and COLUMN_PRESENT functions without a
dictionary.

If you are specifying the name of a flat file LogMiner dictionary, then you must
supply a fully qualified file name for the dictionary file. For example, to start
LogMiner using /oracle/database/dictionary.ora, issue the following
statement:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME =>'/oracle/database/dictionary.ora');

Chapter 22
Steps in a Typical LogMiner Session

22-53

If you are not specifying a flat file dictionary name, then use the OPTIONS
parameter to specify either the DICT_FROM_REDO_LOGS or
DICT_FROM_ONLINE_CATALOG option.

If you specify DICT_FROM_REDO_LOGS, then LogMiner expects to find a dictionary in
the redo log files that you specified with the DBMS_LOGMNR.ADD_LOGFILE procedure.
To determine which redo log files contain a dictionary, look at the V$ARCHIVED_LOG
view. To see an example of this task, refer to "Extracting a LogMiner Dictionary to
the Redo Log Files."

Note:

If you add additional redo log files after LogMiner has been started, then
you must restart LogMiner. LogMiner does not retain options included in
the previous call to DBMS_LOGMNR.START_LOGMNR; you must respecify the
options that you want to use. However, if you do not specify a dictionary
in the current call to DBMS_LOGMNR.START_LOGMNR, then LogMiner does
retain the dictionary specification from the previous call.

2. Optionally, you can filter or format your query, or use the OPTIONS parameter to
specify additional characteristics of your LogMiner session. For example, you
might decide to use the online catalog as your LogMiner dictionary and to have
only committed transactions shown in the V$LOGMNR_CONTENTS view, as follows:

EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY);

You can execute the DBMS_LOGMNR.START_LOGMNR procedure multiple times,
specifying different options each time. For example, if you did not obtain the
desired results from a query of V$LOGMNR_CONTENTS, you can restart LogMiner with
different options. Unless you need to respecify the LogMiner dictionary, you do not
need to add redo log files if they were already added with a previous call to
DBMS_LOGMNR.START_LOGMNR.

Related Topics

• Extracting a LogMiner Dictionary to the Redo Log Files
To extract a LogMiner dictionary to the redo log files, the database must be open
and in ARCHIVELOG mode and archiving must be enabled.

• Using the Online Catalog
To direct LogMiner to use the dictionary currently in use for the database, specify
the online catalog as your dictionary source when you start LogMiner.

22.13.6 Query V$LOGMNR_CONTENTS
After you start LogMiner, you can query the Oracle Database V$LOGMNR_CONTENTS
view.

For example:

SELECT (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 USERNAME, SQL_REDO FROM V$LOGMNR_CONTENTS WHERE USERNAME != 'SYS'
 AND SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM');

Chapter 22
Steps in a Typical LogMiner Session

22-54

XID USERNAME SQL_REDO

1.15.3045 RON set transaction read write;
1.15.3045 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9782',
 'HR_ENTRY',NULL,NULL);
1.18.3046 JANE set transaction read write;
1.18.3046 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('9839','Edgar',
 'Cummings',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.9.3041 RAJIV set transaction read write;
1.9.3041 RAJIV insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME","CUST_ADDRESS",
 "PHONE_NUMBERS","NLS_LANGUAGE","NLS_TERRITORY",
 "CREDIT_LIMIT","CUST_EMAIL","ACCOUNT_MGR_ID")
 values
('9499','Rodney','Emerson',NULL,NULL,NULL,NULL,
 NULL,NULL,NULL);
1.15.3045 RON commit;
1.8.3054 RON set transaction read write;
1.8.3054 RON insert into "HR"."JOBS"("JOB_ID","JOB_TITLE",
 "MIN_SALARY","MAX_SALARY") values ('9566',
 'FI_ENTRY',NULL,NULL);
1.18.3046 JANE commit;
1.11.3047 JANE set transaction read write;
1.11.3047 JANE insert into "OE"."CUSTOMERS"("CUSTOMER_ID",
 "CUST_FIRST_NAME","CUST_LAST_NAME",
 "CUST_ADDRESS","PHONE_NUMBERS","NLS_LANGUAGE",
 "NLS_TERRITORY","CREDIT_LIMIT","CUST_EMAIL",
 "ACCOUNT_MGR_ID") values ('8933','Ronald',
 'Frost',NULL,NULL,NULL,NULL,NULL,NULL,NULL);
1.11.3047 JANE commit;
1.8.3054 RON commit;

To see more examples, refer to "Filtering an Formatting Data Returned to
V$LOGMNR_CONTENTS.

Related Topics

• Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
Learn how to use V$LOGMNR_CONTENTS view filtering and formatting features to
manage what data appears, how it is displayed, and control the speed at which it
is returned.

Chapter 22
Steps in a Typical LogMiner Session

22-55

22.13.7 Typical LogMiner Session Task 6: End the LogMiner Session
Ending the LogMiner session.

To properly end a LogMiner session, use the DBMS_LOGMNR.END_LOGMNR PL/SQL
procedure, as follows:

EXECUTE DBMS_LOGMNR.END_LOGMNR;

This procedure closes all the redo log files and allows all the database and system
resources allocated by LogMiner to be released.

If this procedure is not executed, then LogMiner retains all its allocated resources until
the end of the Oracle session in which it was called. It is particularly important to use
this procedure to end the LogMiner session if either the DDL_DICT_TRACKING option or
the DICT_FROM_REDO_LOGS option was used.

22.14 Examples Using LogMiner
To see how you can use LogMiner for data mining, review the provided examples.

Note:

All examples in this section assume that minimal supplemental logging has
been enabled:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

All examples, except the LogMiner Use Case Scenario examples, assume
that the NLS_DATE_FORMAT parameter has been set as follows:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'dd-mon-yyyy hh24:mi:ss';

Because LogMiner displays date data using the setting for the
NLS_DATE_FORMAT parameter that is active for the user session, this step is
optional. However, setting the parameter explicitly lets you predict the date
format.

• Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
Use examples to see how to specify redo log files.

• LogMiner Use Case Scenarios
See typical examples of how you can perform data mining tasks with LogMiner.

Related Topics

• Supplemental Logging
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

Chapter 22
Examples Using LogMiner

22-56

22.14.1 Examples of Mining by Explicitly Specifying the Redo Log
Files of Interest

Use examples to see how to specify redo log files.

These examples demonstrate how to use LogMiner when you know which redo log
files contain the data of interest. These examples are best read sequentially, because
each example builds on the example or examples that precede it.

The SQL output formatting can be different on your display than that shown in these
examples.

Note:

The continuous_mine option for the dbms_logmnr.start_logmnr package is
desupported in Oracle Database 19c (19.1), and is no longer available. You
must specify log files manually

• Example 1: Finding All Modifications in the Last Archived Redo Log File
LogMiner displays all modifications it finds in the redo log files that it analyzes by
default, regardless of whether the transaction has been committed or not.

• Example 2: Grouping DML Statements into Committed Transactions
Learn how to use LogMiner to group redo log transactions.

• Example 3: Formatting the Reconstructed SQL
To make visual inspection easy, you can run LogMiner with the PRINT_PRETTY_SQL
option.

• Example 4: Using the LogMiner Dictionary in the Redo Log Files
Learn how to use the dictionary that has been extracted to the redo log files.

• Example 5: Tracking DDL Statements in the Internal Dictionary
Learn how to use the DBMS_LOGMNR.DDL_DICT_TRACKING option to update the
LogMiner internal dictionary with the DDL statements encountered in the redo log
files.

• Example 6: Filtering Output by Time Range
To filter a set of redo logs by time, learn about the different ways you can return
log files by specifying a time range.

22.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo Log
File

LogMiner displays all modifications it finds in the redo log files that it analyzes by
default, regardless of whether the transaction has been committed or not.

The easiest way to examine the modification history of a database is to mine at the
source database and use the online catalog to translate the redo log files. This
example shows how to do the simplest analysis using LogMiner.

This example assumes that you know you want to mine the redo log file that was most
recently archived. It finds all modifications that are contained in the last archived redo

Chapter 22
Examples Using LogMiner

22-57

log generated by the database (assuming that the database is not an Oracle Real
Application Clusters (Oracle RAC) database).

1. Determine which redo log file was most recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

2. Specify the list of redo log files to be analyzed. In this case, it is the redo log file
that was returned by the query in Step 1.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. Start LogMiner and specify the dictionary to use.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG);

4. Query the V$LOGMNR_CONTENTS view.

Note that there are four transactions (two of them were committed within the redo
log file being analyzed, and two were not). The output shows the DML statements
in the order in which they were executed; thus transactions interleave among
themselves.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,
 SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');

USR XID SQL_REDO SQL_UNDO
---- --------- --
HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'
 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-
JAN-2012
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy
hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2012 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

OE 1.1.1484 set transaction read write;

Chapter 22
Examples Using LogMiner

22-58

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and
 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-
jan-2012
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy
hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and
"DEPARTMENT_ID"
 TO_DATE('10-jan-2012 13:41:03', = '50' and ROWID =
'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

OE 1.1.1484 commit;

HR 1.15.1481 set transaction read write;

HR 1.15.1481 delete from "HR"."EMPLOYEES" insert into "HR"."EMPLOYEES"(
 where "EMPLOYEE_ID" = '205' and "EMPLOYEE_ID","FIRST_NAME",
 "FIRST_NAME" = 'Shelley' and "LAST_NAME","EMAIL","PHONE_NUMBER",
 "LAST_NAME" = 'Higgins' and "HIRE_DATE", "JOB_ID","SALARY",
 "EMAIL" = 'SHIGGINS' and "COMMISSION_PCT","MANAGER_ID",
 "PHONE_NUMBER" = '515.123.8080' "DEPARTMENT_ID") values
 and "HIRE_DATE" = TO_DATE(('205','Shelley','Higgins',
 '07-jun-1994 10:05:01', and 'SHIGGINS','515.123.8080',
 'dd-mon-yyyy hh24:mi:ss') TO_DATE('07-jun-1994 10:05:01',
 and "JOB_ID" = 'AC_MGR' 'dd-mon-yyyy hh24:mi:ss'),
 and "SALARY"= '12000' 'AC_MGR','12000',NULL,'101','110');
 and "COMMISSION_PCT" IS NULL
 and "MANAGER_ID"
 = '101' and "DEPARTMENT_ID" =
 '110' and ROWID =
 'AAAHSkAABAAAY6rAAM';

Chapter 22
Examples Using LogMiner

22-59

OE 1.8.1484 set transaction read write;

OE 1.8.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+12-06') where TO_YMINTERVAL('+20-00') where
 "PRODUCT_ID" = '2350' and "PRODUCT_ID" = '2350' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+20-00') and TO_YMINTERVAL('+20-00') and
 ROWID = 'AAAHTKAABAAAY9tAAD'; ROWID ='AAAHTKAABAAAY9tAAD';

HR 1.11.1476 commit;

5. End the LogMiner session.

SQL> EXECUTE DBMS_LOGMNR.END_LOGMNR();

22.14.1.2 Example 2: Grouping DML Statements into Committed Transactions
Learn how to use LogMiner to group redo log transactions.

As shown in Example 1, LogMiner displays all modifications it finds in the redo log files
that it analyzes by default, regardless of whether the transaction has been committed
or not. In addition, LogMiner shows modifications in the same order in which they were
executed. Because DML statements that belong to the same transaction are not
grouped together, visual inspection of the output can be difficult. Although you can use
SQL to group transactions, LogMiner provides an easier way. In this example, the
latest archived redo log file will again be analyzed, but it will return only committed
transactions.

1. Determine which redo log file was most recently archived by the database.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

2. Specify the redo log file that was returned by the query in Step 1. The list will
consist of one redo log file.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY
option.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

4. Query the V$LOGMNR_CONTENTS view.

Although transaction 1.11.1476 was started before transaction 1.1.1484 (as
revealed in Step 1), it committed after transaction 1.1.1484 committed. In this
example, therefore, transaction 1.1.1484 is shown in its entirety before transaction

Chapter 22
Examples Using LogMiner

22-60

1.11.1476. The two transactions that did not commit within the redo log file being
analyzed are not returned.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO,
 SQL_UNDO FROM V$LOGMNR_CONTENTS WHERE username IN ('HR', 'OE');
;
USR XID SQL_REDO SQL_UNDO
---- --------- ------------------------------- ---------------------------------

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1799' and "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB'; ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION" update "OE"."PRODUCT_INFORMATION"
 set "WARRANTY_PERIOD" = set "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+05-00') where TO_YMINTERVAL('+01-00') where
 "PRODUCT_ID" = '1801' and "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = "WARRANTY_PERIOD" =
 TO_YMINTERVAL('+01-00') and TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC'; ROWID ='AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", where "EMPLOYEE_ID" = '306'
 "LAST_NAME","EMAIL", and "FIRST_NAME" = 'Nandini'
 "PHONE_NUMBER","HIRE_DATE", and "LAST_NAME" = 'Shastry'
 "JOB_ID","SALARY", and "EMAIL" = 'NSHASTRY'
 "COMMISSION_PCT","MANAGER_ID", and "PHONE_NUMBER" = '1234567890'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-JAN-2012
 ('306','Nandini','Shastry', 13:34:43', 'dd-mon-yyyy hh24:mi:ss')
 'NSHASTRY', '1234567890', and "JOB_ID" = 'HR_REP' and
 TO_DATE('10-jan-2012 13:34:43', "SALARY" = '120000' and
 'dd-mon-yyy hh24:mi:ss'), "COMMISSION_PCT" = '.05' and
 'HR_REP','120000', '.05', "DEPARTMENT_ID" = '10' and
 '105','10'); ROWID = 'AAAHSkAABAAAY6rAAO';

HR 1.11.1476 insert into "HR"."EMPLOYEES"(delete from "HR"."EMPLOYEES"
 "EMPLOYEE_ID","FIRST_NAME", "EMPLOYEE_ID" = '307' and
 "LAST_NAME","EMAIL", "FIRST_NAME" = 'John' and
 "PHONE_NUMBER","HIRE_DATE", "LAST_NAME" = 'Silver' and
 "JOB_ID","SALARY", "EMAIL" = 'JSILVER' and
 "COMMISSION_PCT","MANAGER_ID", "PHONE_NUMBER" = '5551112222'
 "DEPARTMENT_ID") values and "HIRE_DATE" = TO_DATE('10-jan-2012
 ('307','John','Silver', 13:41:03', 'dd-mon-yyyy hh24:mi:ss')
 'JSILVER', '5551112222', and "JOB_ID" ='105' and "DEPARTMENT_ID"
 TO_DATE('10-jan-2012 13:41:03', = '50' and ROWID = 'AAAHSkAABAAAY6rAAP';
 'dd-mon-yyyy hh24:mi:ss'),
 'SH_CLERK','110000', '.05',
 '105','50');

HR 1.11.1476 commit;

5. End the LogMiner session.

Chapter 22
Examples Using LogMiner

22-61

EXECUTE DBMS_LOGMNR.END_LOGMNR();

22.14.1.3 Example 3: Formatting the Reconstructed SQL
To make visual inspection easy, you can run LogMiner with the PRINT_PRETTY_SQL
option.

As shown in Example 2, using the COMMITTED_DATA_ONLY option with the dictionary in
the online redo log file is an easy way to focus on committed transactions. However,
one aspect remains that makes visual inspection difficult: the association between the
column names and their respective values in an INSERT statement are not apparent.
This can be addressed by specifying the PRINT_PRETTY_SQL option. Note that
specifying this option will make some of the reconstructed SQL statements
nonexecutable.

1. Determine which redo log file was most recently archived.

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME

/usr/oracle/data/db1arch_1_16_482701534.dbf

2. Specify the redo log file that was returned by the query in Step 1.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_16_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);

3. Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY
and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

The DBMS_LOGMNR.PRINT_PRETTY_SQL option changes only the format of the
reconstructed SQL, and therefore is useful for generating reports for visual
inspection.

4. Query the V$LOGMNR_CONTENTS view for SQL_REDO statements.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_REDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_REDO
---- --------- ---

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')

Chapter 22
Examples Using LogMiner

22-62

 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 306,
 "FIRST_NAME" = 'Nandini',
 "LAST_NAME" = 'Shastry',
 "EMAIL" = 'NSHASTRY',
 "PHONE_NUMBER" = '1234567890',
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:34:43',
 'dd-mon-yyyy hh24:mi:ss',
 "JOB_ID" = 'HR_REP',
 "SALARY" = 120000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 10;

HR 1.11.1476 insert into "HR"."EMPLOYEES"
 values
 "EMPLOYEE_ID" = 307,
 "FIRST_NAME" = 'John',
 "LAST_NAME" = 'Silver',
 "EMAIL" = 'JSILVER',
 "PHONE_NUMBER" = '5551112222',
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:41:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "JOB_ID" = 'SH_CLERK',
 "SALARY" = 110000,
 "COMMISSION_PCT" = .05,
 "MANAGER_ID" = 105,
 "DEPARTMENT_ID" = 50;
HR 1.11.1476 commit;

5. Query the V$LOGMNR_CONTENTS view for reconstructed SQL_UNDO statements.

SELECT username AS USR, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID, SQL_UNDO
 FROM V$LOGMNR_CONTENTS;

USR XID SQL_UNDO
---- --------- ---

Chapter 22
Examples Using LogMiner

22-63

OE 1.1.1484 set transaction read write;

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1799' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAB';

OE 1.1.1484 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+01-00')
 where
 "PRODUCT_ID" = '1801' and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 ROWID = 'AAAHTKAABAAAY9mAAC';

OE 1.1.1484 commit;

HR 1.11.1476 set transaction read write;

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 306 and
 "FIRST_NAME" = 'Nandini' and
 "LAST_NAME" = 'Shastry' and
 "EMAIL" = 'NSHASTRY' and
 "PHONE_NUMBER" = '1234567890' and
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:34:43',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'HR_REP' and
 "SALARY" = 120000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 10 and
 ROWID = 'AAAHSkAABAAAY6rAAO';

HR 1.11.1476 delete from "HR"."EMPLOYEES"
 where
 "EMPLOYEE_ID" = 307 and
 "FIRST_NAME" = 'John' and
 "LAST_NAME" = 'Silver' and
 "EMAIL" = 'JSILVER' and
 "PHONE_NUMBER" = '555122122' and
 "HIRE_DATE" = TO_DATE('10-jan-2012 13:41:03',
 'dd-mon-yyyy hh24:mi:ss') and
 "JOB_ID" = 'SH_CLERK' and
 "SALARY" = 110000 and
 "COMMISSION_PCT" = .05 and
 "MANAGER_ID" = 105 and
 "DEPARTMENT_ID" = 50 and

Chapter 22
Examples Using LogMiner

22-64

 ROWID = 'AAAHSkAABAAAY6rAAP';
HR 1.11.1476 commit;

6. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

22.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log Files
Learn how to use the dictionary that has been extracted to the redo log files.

When you use the dictionary in the online catalog, you must mine the redo log files in
the same database that generated them. Using the dictionary contained in the redo log
files enables you to mine redo log files in a different database.

When you use the dictionary in the online catalog, you must mine the redo log files in
the same database that generated them. Using the dictionary contained in the redo log
files enables you to mine redo log files in a different database.

1. Determine which redo log file was most recently archived by the database.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

2. The dictionary may be contained in more than one redo log file. Therefore, you
need to determine which redo log files contain the start and end of the dictionary.
Query the V$ARCHIVED_LOG view, as follows:

a. Find a redo log file that contains the end of the dictionary extract. This redo log
file must have been created before the redo log file that you want to analyze,
but should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# <= 210);

NAME SEQUENCE# D_BEG
D_END
-- ---------- -----

/usr/oracle/data/db1arch_1_208_482701534.dbf 208 NO
YES

b. Find the redo log file that contains the start of the data dictionary extract that
matches the end of the dictionary found in the previous step:

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

Chapter 22
Examples Using LogMiner

22-65

NAME SEQUENCE# D_BEG
D_END
-- ---------- -----

/usr/oracle/data/db1arch_1_207_482701534.dbf 207 YES
NO

c. Specify the list of the redo log files of interest. Add the redo log files that
contain the start and end of the dictionary and the redo log file that you want to
analyze. You can add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -
 OPTIONS => DBMS_LOGMNR.NEW);
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

d. Query the V$LOGMNR_LOGS view to display the list of redo log files to be
analyzed, including their timestamps.

In the output, LogMiner flags a missing redo log file. LogMiner lets you
proceed with mining, provided that you do not specify an option that requires
the missing redo log file for proper functioning.

3. Start LogMiner by specifying the dictionary to use and the COMMITTED_DATA_ONLY
and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

4. Query the V$LOGMNR_CONTENTS view.

To reduce the number of rows returned by the query, exclude from the query all
DML statements done in the SYS or SYSTEM schemas. (This query specifies a
timestamp to exclude transactions that were involved in the dictionary extraction.)

The output shows three transactions: two DDL transactions and one DML
transaction. The DDL transactions, 1.2.1594 and 1.18.1602, create the table
oe.product_tracking and create a trigger on table oe.product_information,
respectively. In both transactions, the DML statements done to the system tables
(tables owned by SYS) are filtered out because of the query predicate.

The DML transaction, 1.9.1598, updates the oe.product_information table. The
update operation in this transaction is fully translated. However, the query output
also contains some untranslated reconstructed SQL statements. Most likely, these
statements were done on the oe.product_tracking table that was created after
the data dictionary was extracted to the redo log files.

Chapter 22
Examples Using LogMiner

22-66

(The next example shows how to run LogMiner with the DDL_DICT_TRACKING option
so that all SQL statements are fully translated; no binary data is returned.)

SELECT USERNAME AS usr, SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2012 15:59:53';

USR XID SQL_REDO
--- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not
null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger
 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c2121e'),
 "COL 2" = HEXTORAW('7867010d110804'),
 "COL 3" = HEXTORAW('c151'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and

Chapter 22
Examples Using LogMiner

22-67

 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "UNKNOWN"."OBJ# 33415"
 values
 "COL 1" = HEXTORAW('c21829'),
 "COL 2" = HEXTORAW('7867010d110808'),
 "COL 3" = HEXTORAW('c149'),
 "COL 4" = HEXTORAW('800000053c');

OE 1.9.1598 commit;

5. Issue additional queries, if desired.

Display all the DML statements that were executed as part of the CREATE TABLE
DDL statement. This includes statements executed by users and internally by
Oracle.

Note:

If you choose to reapply statements displayed by a query such as the
one shown here, then reapply DDL statements only. Do not reapply DML
statements that were executed internally by Oracle, or you risk
corrupting your database. In the following output, the only statement that
you should use in a reapply operation is the CREATE TABLE
OE.PRODUCT_TRACKING statement.

SELECT SQL_REDO FROM V$LOGMNR_CONTENTS
 WHERE XIDUSN = 1 and XIDSLT = 2 and XIDSQN = 1594;

SQL_REDO
--

set transaction read write;

insert into "SYS"."OBJ$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,
 "OWNER#" = 37,
 "NAME" = 'PRODUCT_TRACKING',
 "NAMESPACE" = 1,
 "SUBNAME" IS NULL,
 "TYPE#" = 2,
 "CTIME" = TO_DATE('13-jan-2012 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "MTIME" = TO_DATE('13-jan-2012 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STIME" = TO_DATE('13-jan-2012 14:01:03', 'dd-mon-yyyy hh24:mi:ss'),
 "STATUS" = 1,
 "REMOTEOWNER" IS NULL,
 "LINKNAME" IS NULL,
 "FLAGS" = 0,
 "OID$" IS NULL,

Chapter 22
Examples Using LogMiner

22-68

 "SPARE1" = 6,
 "SPARE2" = 1,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."TAB$"
 values
 "OBJ#" = 33415,
 "DATAOBJ#" = 33415,
 "TS#" = 0,
 "FILE#" = 1,
 "BLOCK#" = 121034,
 "BOBJ#" IS NULL,
 "TAB#" IS NULL,
 "COLS" = 5,
 "CLUCOLS" IS NULL,
 "PCTFREE$" = 10,
 "PCTUSED$" = 40,
 "INITRANS" = 1,
 "MAXTRANS" = 255,
 "FLAGS" = 1,
 "AUDIT$" = '--------------------------------------',
 "ROWCNT" IS NULL,
 "BLKCNT" IS NULL,
 "EMPCNT" IS NULL,
 "AVGSPC" IS NULL,
 "CHNCNT" IS NULL,
 "AVGRLN" IS NULL,
 "AVGSPC_FLB" IS NULL,
 "FLBCNT" IS NULL,
 "ANALYZETIME" IS NULL,
 "SAMPLESIZE" IS NULL,
 "DEGREE" IS NULL,
 "INSTANCES" IS NULL,
 "INTCOLS" = 5,
 "KERNELCOLS" = 5,
 "PROPERTY" = 536870912,
 "TRIGFLAG" = 0,
 "SPARE1" = 178,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" = TO_DATE('13-jan-2012 14:01:05', 'dd-mon-yyyy
hh24:mi:ss'),

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 1,
 "SEGCOL#" = 1,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,

Chapter 22
Examples Using LogMiner

22-69

 "NAME" = 'PRODUCT_ID',
 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 1,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 1,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 2,
 "SEGCOL#" = 2,
 "SEGCOLLENGTH" = 7,
 "OFFSET" = 0,
 "NAME" = 'MODIFIED_TIME',
 "TYPE#" = 12,
 "LENGTH" = 7,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" IS NULL,
 "SCALE" IS NULL,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 2,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 3,
 "SEGCOL#" = 3,
 "SEGCOLLENGTH" = 22,
 "OFFSET" = 0,
 "NAME" = 'OLD_LIST_PRICE',

Chapter 22
Examples Using LogMiner

22-70

 "TYPE#" = 2,
 "LENGTH" = 22,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 8,
 "SCALE" = 2,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 3,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 0,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."COL$"
 values
 "OBJ#" = 33415,
 "COL#" = 4,
 "SEGCOL#" = 4,
 "SEGCOLLENGTH" = 5,
 "OFFSET" = 0,
 "NAME" = 'OLD_WARRANTY_PERIOD',
 "TYPE#" = 182,
 "LENGTH" = 5,
 "FIXEDSTORAGE" = 0,
 "PRECISION#" = 2,
 "SCALE" = 0,
 "NULL$" = 0,
 "DEFLENGTH" IS NULL,
 "SPARE6" IS NULL,
 "INTCOL#" = 4,
 "PROPERTY" = 0,
 "CHARSETID" = 0,
 "CHARSETFORM" = 0,
 "SPARE1" = 0,
 "SPARE2" = 2,
 "SPARE3" = 0,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "DEFAULT$" IS NULL;

insert into "SYS"."CCOL$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COL#" = 1,
 "POS#" IS NULL,
 "INTCOL#" = 1,
 "SPARE1" = 0,
 "SPARE2" IS NULL,

Chapter 22
Examples Using LogMiner

22-71

 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

insert into "SYS"."CDEF$"
 values
 "OBJ#" = 33415,
 "CON#" = 2090,
 "COLS" = 1,
 "TYPE#" = 7,
 "ROBJ#" IS NULL,
 "RCON#" IS NULL,
 "RRULES" IS NULL,
 "MATCH#" IS NULL,
 "REFACT" IS NULL,
 "ENABLED" = 1,
 "CONDLENGTH" = 24,
 "SPARE6" IS NULL,
 "INTCOLS" = 1,
 "MTIME" = TO_DATE('13-jan-2012 14:01:08', 'dd-mon-yyyy hh24:mi:ss'),
 "DEFER" = 12,
 "SPARE1" = 6,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "CONDITION" = '"PRODUCT_ID" IS NOT NULL';

create table oe.product_tracking (product_id number not null,
 modified_time date,
 old_product_description varchar2(2000),
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);

update "SYS"."SEG$"
 set
 "TYPE#" = 5,
 "BLOCKS" = 5,
 "EXTENTS" = 1,
 "INIEXTS" = 5,
 "MINEXTS" = 1,
 "MAXEXTS" = 121,
 "EXTSIZE" = 5,
 "EXTPCT" = 50,
 "USER#" = 37,
 "LISTS" = 0,
 "GROUPS" = 0,
 "CACHEHINT" = 0,
 "HWMINCR" = 33415,
 "SPARE1" = 1024
 where
 "TS#" = 0 and
 "FILE#" = 1 and
 "BLOCK#" = 121034 and

Chapter 22
Examples Using LogMiner

22-72

 "TYPE#" = 3 and
 "BLOCKS" = 5 and
 "EXTENTS" = 1 and
 "INIEXTS" = 5 and
 "MINEXTS" = 1 and
 "MAXEXTS" = 121 and
 "EXTSIZE" = 5 and
 "EXTPCT" = 50 and
 "USER#" = 37 and
 "LISTS" = 0 and
 "GROUPS" = 0 and
 "BITMAPRANGES" = 0 and
 "CACHEHINT" = 0 and
 "SCANHINT" = 0 and
 "HWMINCR" = 33415 and
 "SPARE1" = 1024 and
 "SPARE2" IS NULL and
 ROWID = 'AAAAAIAABAAAdMOAAB';

insert into "SYS"."CON$"
 values
 "OWNER#" = 37,
 "NAME" = 'SYS_C002090',
 "CON#" = 2090,
 "SPARE1" IS NULL,
 "SPARE2" IS NULL,
 "SPARE3" IS NULL,
 "SPARE4" IS NULL,
 "SPARE5" IS NULL,
 "SPARE6" IS NULL;

commit;

6. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

22.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary
Learn how to use the DBMS_LOGMNR.DDL_DICT_TRACKING option to update the LogMiner
internal dictionary with the DDL statements encountered in the redo log files.

1. Determine which redo log file was most recently archived by the database.

SELECT NAME, SEQUENCE# FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME = (SELECT MAX(FIRST_TIME) FROM V$ARCHIVED_LOG);

NAME SEQUENCE#
-- --------------
/usr/oracle/data/db1arch_1_210_482701534.dbf 210

2. Because the dictionary can be contained in more than one redo log file, determine
which redo log files contain the start and end of the data dictionary. To do this,
query the V$ARCHIVED_LOG view, as follows:

Chapter 22
Examples Using LogMiner

22-73

a. Find a redo log that contains the end of the data dictionary extract. This redo
log file must have been created before the redo log files that you want to
analyze, but should be as recent as possible.

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_END = 'YES' and SEQUENCE# < 210);

NAME SEQUENCE# D_BEG
D_END
-- ---------- -----

/usr/oracle/data/db1arch_1_208_482701534.dbf 208 NO
YES

b. Find the redo log file that contains the start of the data dictionary extract that
matches the end of the dictionary found by the previous SQL statement:

SELECT NAME, SEQUENCE#, DICTIONARY_BEGIN d_beg, DICTIONARY_END d_end
 FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# = (SELECT MAX (SEQUENCE#) FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES' and SEQUENCE# <= 208);

NAME SEQUENCE# D_BEG
D_END
-- ---------- -----

/usr/oracle/data/db1arch_1_208_482701534.dbf 207 YES
NO

3. Ensure that you have a complete list of redo log files.

To successfully apply DDL statements encountered in the redo log files, ensure
that all files are included in the list of redo log files to mine. The missing log file
corresponding to sequence# 209 must be included in the list. Determine the
names of the redo log files that you need to add to the list by issuing the following
query:

SELECT NAME FROM V$ARCHIVED_LOG
 WHERE SEQUENCE# >= 207 AND SEQUENCE# <= 210
 ORDER BY SEQUENCE# ASC;

NAME
--
/usr/oracle/data/db1arch_1_207_482701534.dbf
/usr/oracle/data/db1arch_1_208_482701534.dbf
/usr/oracle/data/db1arch_1_209_482701534.dbf
/usr/oracle/data/db1arch_1_210_482701534.dbf

4. Specify the list of the redo log files of interest.

Chapter 22
Examples Using LogMiner

22-74

Include the redo log files that contain the beginning and end of the dictionary, the
redo log file that you want to mine, and any redo log files required to create a list
without gaps. You can add the redo log files in any order.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_210_482701534.dbf', -

 OPTIONS => DBMS_LOGMNR.NEW);

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_209_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_208_482701534.dbf');
EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => '/usr/oracle/data/db1arch_1_207_482701534.dbf');

5. Start LogMiner by specifying the dictionary to use and the DDL_DICT_TRACKING,
COMMITTED_DATA_ONLY, and PRINT_PRETTY_SQL options.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 OPTIONS => DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 DBMS_LOGMNR.DDL_DICT_TRACKING + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

6. Query the V$LOGMNR_CONTENTS view.

To reduce the number of rows returned, exclude from the query all DML
statements done in the SYS or SYSTEM schemas. (This query specifies a timestamp
to exclude transactions that were involved in the dictionary extraction.)

The query returns all the reconstructed SQL statements correctly translated and
the insert operations on the oe.product_tracking table that occurred because of
the trigger execution.

SELECT USERNAME AS usr,(XIDUSN || '.' || XIDSLT || '.' || XIDSQN) as XID, SQL_REDO
FROM
 V$LOGMNR_CONTENTS
 WHERE SEG_OWNER IS NULL OR SEG_OWNER NOT IN ('SYS', 'SYSTEM') AND
 TIMESTAMP > '10-jan-2012 15:59:53';

USR XID SQL_REDO
----------- -------- -----------------------------------
SYS 1.2.1594 set transaction read write;
SYS 1.2.1594 create table oe.product_tracking (product_id number not
null,
 modified_time date,
 old_list_price number(8,2),
 old_warranty_period interval year(2) to month);
SYS 1.2.1594 commit;

SYS 1.18.1602 set transaction read write;
SYS 1.18.1602 create or replace trigger oe.product_tracking_trigger

Chapter 22
Examples Using LogMiner

22-75

 before update on oe.product_information
 for each row
 when (new.list_price <> old.list_price or
 new.warranty_period <> old.warranty_period)
 declare
 begin
 insert into oe.product_tracking values
 (:old.product_id, sysdate,
 :old.list_price, :old.warranty_period);
 end;
SYS 1.18.1602 commit;

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 100
 where
 "PRODUCT_ID" = 1729 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 80 and
 ROWID = 'AAAHTKAABAAAY9yAAA';
OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1729,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 16:07:03',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 80,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+08-00'),
 "LIST_PRICE" = 92
 where
 "PRODUCT_ID" = 2340 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00') and
 "LIST_PRICE" = 72 and
 ROWID = 'AAAHTKAABAAAY9zAAA';

OE 1.9.1598 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 2340,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 16:07:07',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 72,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00');

OE 1.9.1598 commit;

7. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

Chapter 22
Examples Using LogMiner

22-76

22.14.1.6 Example 6: Filtering Output by Time Range
To filter a set of redo logs by time, learn about the different ways you can return log
files by specifying a time range.

In Example 4 and Example 5, you saw how to filter rows by specifying a timestamp-
based predicate (timestamp > '10-jan-2012 15:59:53') in the query. However, a
more efficient way to filter out redo records based on timestamp values is by
specifying the time range in the DBMS_LOGMNR.START_LOGMNR procedure call, as shown
in this example.

1. Create a list of redo log files to mine.

Suppose you want to mine redo log files generated since a given time. The
following procedure creates a list of redo log files based on a specified time. The
subsequent SQL EXECUTE statement calls the procedure and specifies the starting
time as 2 P.M. on Jan-13-2012.

--
-- my_add_logfiles
-- Add all archived logs generated after a specified start_time.
--
CREATE OR REPLACE PROCEDURE my_add_logfiles (in_start_time IN DATE) AS
 CURSOR c_log IS
 SELECT NAME FROM V$ARCHIVED_LOG
 WHERE FIRST_TIME >= in_start_time;

count pls_integer := 0;
my_option pls_integer := DBMS_LOGMNR.NEW;

BEGIN
 FOR c_log_rec IN c_log
 LOOP
 DBMS_LOGMNR.ADD_LOGFILE(LOGFILENAME => c_log_rec.name,
 OPTIONS => my_option);
 my_option := DBMS_LOGMNR.ADDFILE;
 DBMS_OUTPUT.PUT_LINE('Added logfile ' || c_log_rec.name);
 END LOOP;
END;
/

EXECUTE my_add_logfiles(in_start_time => '13-jan-2012 14:00:00');

2. To see the list of redo log files, query the V$LOGMNR_LOGS view.

This example includes the size of the redo log files in the output.

SELECT FILENAME name, LOW_TIME start_time, FILESIZE bytes
 FROM V$LOGMNR_LOGS;

NAME START_TIME BYTES
----------------------------------- --------------------

/usr/orcl/arch1_310_482932022.dbf 13-jan-2012 14:02:35 23683584
/usr/orcl/arch1_311_482932022.dbf 13-jan-2012 14:56:35 2564096

Chapter 22
Examples Using LogMiner

22-77

/usr/orcl/arch1_312_482932022.dbf 13-jan-2012 15:10:43 23683584
/usr/orcl/arch1_313_482932022.dbf 13-jan-2012 15:17:52 23683584
/usr/orcl/arch1_314_482932022.dbf 13-jan-2012 15:23:10 23683584
/usr/orcl/arch1_315_482932022.dbf 13-jan-2012 15:43:22 23683584
/usr/orcl/arch1_316_482932022.dbf 13-jan-2012 16:03:10 23683584
/usr/orcl/arch1_317_482932022.dbf 13-jan-2012 16:33:43 23683584
/usr/orcl/arch1_318_482932022.dbf 13-jan-2012 17:23:10 23683584

3. Adjust the list of redo log files.

Suppose you realize that you want to mine just the redo log files generated
between 3 P.M. and 4 P.M.

You can use the query predicate (timestamp > '13-jan-2012 15:00:00' and
timestamp < '13-jan-2012 16:00:00') to accomplish this goal. However, the
query predicate is evaluated on each row returned by LogMiner, and the internal
mining engine does not filter rows based on the query predicate. Thus, although
you only wanted to get rows out of redo log files arch1_311_482932022.dbf to
arch1_315_482932022.dbf, your query would result in mining all redo log files
registered to the LogMiner session.

Furthermore, although you could use the query predicate and manually remove
the redo log files that do not fall inside the time range of interest, the simplest
solution is to specify the time range of interest in the DBMS_LOGMNR.START_LOGMNR
procedure call.

Although this does not change the list of redo log files, LogMiner will mine only
those redo log files that fall in the time range specified.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => '13-jan-2012 15:00:00', -
 ENDTIME => '13-jan-2012 16:00:00', -
 OPTIONS => DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG + -
 DBMS_LOGMNR.COMMITTED_DATA_ONLY + -
 DBMS_LOGMNR.PRINT_PRETTY_SQL);

4. Query the V$LOGMNR_CONTENTS view.

SELECT TIMESTAMP, (XIDUSN || '.' || XIDSLT || '.' || XIDSQN) AS XID,

 SQL_REDO FROM V$LOGMNR_CONTENTS WHERE SEG_OWNER = 'OE';

TIMESTAMP XID SQL_REDO
--------------------- ----------- --------------------------------
13-jan-2012 15:29:31 1.17.2376 update "OE"."PRODUCT_INFORMATION"
 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 3399 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9TAAE';
13-jan-2012 15:29:34 1.17.2376 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 3399,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 15:29:34',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 815,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

13-jan-2012 15:52:43 1.15.1756 update "OE"."PRODUCT_INFORMATION"

Chapter 22
Examples Using LogMiner

22-78

 set
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+05-00')
 where
 "PRODUCT_ID" = 1768 and
 "WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00') and
 ROWID = 'AAAHTKAABAAAY9UAAB';

13-jan-2012 15:52:43 1.15.1756 insert into "OE"."PRODUCT_TRACKING"
 values
 "PRODUCT_ID" = 1768,
 "MODIFIED_TIME" = TO_DATE('13-jan-2012 16:52:43',
 'dd-mon-yyyy hh24:mi:ss'),
 "OLD_LIST_PRICE" = 715,
 "OLD_WARRANTY_PERIOD" = TO_YMINTERVAL('+02-00');

5. End the LogMiner session.

EXECUTE DBMS_LOGMNR.END_LOGMNR();

22.14.2 LogMiner Use Case Scenarios
See typical examples of how you can perform data mining tasks with LogMiner.

• Using LogMiner to Track Changes Made by a Specific User
Learn how to use LogMiner to identify all changes made to the database in a
specific time range by a single user.

• Using LogMiner to Calculate Table Access Statistics
Learn how to use LogMiner to calculate table access statistics over a given time
range.

22.14.2.1 Using LogMiner to Track Changes Made by a Specific User
Learn how to use LogMiner to identify all changes made to the database in a specific
time range by a single user.

Suppose you want to determine all the changes that the user joedevo has made to the
database in a specific time range. To perform this task, you can use LogMiner:

1. Connect to the database.

2. Create the LogMiner dictionary file.

To use LogMiner to analyze joedevo's data, you must either create a LogMiner
dictionary file before any table definition changes are made to tables that joedevo
uses, or use the online catalog at LogMiner startup. This example uses a
LogMiner dictionary that has been extracted to the redo log files.

3. Add redo log files.

Assume that joedevo has made some changes to the database. You can now
specify the names of the redo log files that you want to analyze, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log1orc1.ora', -
 OPTIONS => DBMS_LOGMNR.NEW);

Chapter 22
Examples Using LogMiner

22-79

If desired, add additional redo log files, as follows:

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 LOGFILENAME => 'log2orc1.ora', -
 OPTIONS => DBMS_LOGMNR.ADDFILE);

4. Start LogMiner and limit the search to the specified time range:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 DICTFILENAME => 'orcldict.ora', -
 STARTTIME => TO_DATE('01-Jan-1998 08:30:00','DD-MON-YYYY HH:MI:SS'),
-
 ENDTIME => TO_DATE('01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI:SS'));

5. Query the V$LOGMNR_CONTENTS view.

At this point, the V$LOGMNR_CONTENTS view is available for queries. You decide to
find all of the changes made by user joedevo to the salary table. Execute the
following SELECT statement:

SELECT SQL_REDO, SQL_UNDO FROM V$LOGMNR_CONTENTS
 WHERE USERNAME = 'joedevo' AND SEG_NAME = 'salary';

For both the SQL_REDO and SQL_UNDO columns, two rows are returned (the format
of the data display will be different on your screen). You discover that joedevo
requested two operations: he deleted his old salary and then inserted a new,
higher salary. You now have the data necessary to undo this operation.

SQL_REDO SQL_UNDO
-------- --------
delete from SALARY insert into SALARY(NAME, EMPNO,
SAL)
where EMPNO = 12345 values ('JOEDEVO', 12345, 500)
and NAME='JOEDEVO'
and SAL=500;

insert into SALARY(NAME, EMPNO, SAL) delete from SALARY
values('JOEDEVO',12345, 2500) where EMPNO = 12345
 and NAME = 'JOEDEVO'
2 rows selected and SAL = 2500;

6. End the LogMiner session.

Use the DBMS_LOGMNR.END_LOGMNR procedure to finish the LogMiner session
properly:

DBMS_LOGMNR.END_LOGMNR();

Chapter 22
Examples Using LogMiner

22-80

22.14.2.2 Using LogMiner to Calculate Table Access Statistics
Learn how to use LogMiner to calculate table access statistics over a given time
range.

In this example, assume you manage a direct marketing database, and you want to
determine how productive the customer contacts have been in generating revenue for
a 2-week period in January. In this case, we assume that you have already created the
LogMiner dictionary, and added the redo log files that you want to search. To identify
those contacts, search your logs by the time range in January, as follows:

1. Start LogMiner and specify a range of times:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
 STARTTIME => TO_DATE('07-Jan-2012 08:30:00','DD-MON-YYYY HH:MI:SS'),
-
 ENDTIME => TO_DATE('21-Jan-2012 08:45:00','DD-MON-YYYY HH:MI:SS'), -
 DICTFILENAME => '/usr/local/dict.ora');

2. Query the

V$LOGMNR_CONTENTS

view to determine which tables were modified in the time range you specified, as
shown in the following example. (This query filters out system tables that
traditionally have a

$

in their name.)

SELECT SEG_OWNER, SEG_NAME, COUNT(*) AS Hits FROM
 V$LOGMNR_CONTENTS WHERE SEG_NAME NOT LIKE '%$' GROUP BY
 SEG_OWNER, SEG_NAME ORDER BY Hits DESC;

3. The following data is displayed. (The format of your display can be different.)

SEG_OWNER SEG_NAME Hits
--------- -------- ----
CUST ACCOUNT 384
UNIV EXECDONOR 325
UNIV DONOR 234
UNIV MEGADONOR 32
HR EMPLOYEES 12
SYS DONOR 12

The values in the

Hits

Chapter 22
Examples Using LogMiner

22-81

column show the number of times that the named table had an insert, delete, or
update operation performed on it during the 2-week period specified in the query.
In this example, the

cust.account

table was modified the most during the specified 2-week period, and the

hr.employees

and

sys.donor

tables were modified the least during the same time period.

4. End the LogMiner session.

Use the

DBMS_LOGMNR.END_LOGMNR

procedure to finish the LogMiner session properly:

DBMS_LOGMNR.END_LOGMNR();

22.15 Supported Data Types, Storage Attributes, and
Database and Redo Log File Versions

Describes information about data type and storage attribute support and the releases
of the database and redo log files that are supported.

• Supported Data Types and Table Storage Attributes
Describes supported data types and table storage attributes.

• Database Compatibility Requirements for LogMiner
LogMiner support for certain data types and table storage attributes depends on
Oracle Database release compatibility requirements.

• Unsupported Data Types and Table Storage Attributes
Describes unsupported data types and table storage attributes.

• Supported Databases and Redo Log File Versions
The Oracle Database release that created a redo log file can affect the operations
you are able to perform on it.

• SecureFiles LOB Considerations
SecureFiles LOBs are supported when database compatibility is set to 11.2 or
later.

Chapter 22
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

22-82

22.15.1 Supported Data Types and Table Storage Attributes
Describes supported data types and table storage attributes.

Database Compatibility and Data Type Release Changes

Be aware that some data types are supported only in certain releases.

In Oracle Database 12c Release 1 (12.1) and later releases, the maximum size of the
VARCHAR2, NVARCHAR2, and RAW data types was increased to 32 KB when the
COMPATIBLE initialization parameter is set to 12.0 or higher, and the MAX_STRING_SIZE
initialization parameter is set to EXTENDED.

For supplemental logging, LogMiner treats 32 KB columns as LOBs.

A 32 KB column cannot be part of an ALWAYS supplemental logging group.

Supported Data Types Using LogMiner

LogMiner supports the following data types:

• BINARY_DOUBLE

• BINARY_FLOAT

• BLOB

• CHAR

• CLOB and NCLOB

• DATE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• LOBs stored as SecureFiles (requires that the database be run at a compatibility
of 11.2 or higher.

• LONG

• LONG RAW

• NCHAR

• NUMBER

• NVARCHAR2

• Objects stored as VARRAYs

• Objects (Simple and Nested ADTs without Collections)

Object support (including Oracle-supplied types such as SDO_GEOMETRY, ORDIMAGE,
and so on) requires that the database be running Oracle Database 12c Release 1
(12.1) or higher with a redo compatibility setting of 12.0.0.0 or higher. The contents
of the SQL_REDO column for the XML data-related operations is never valid SQL or
PL/SQL.

• Oracle Text

• RAW

Chapter 22
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

22-83

• TIMESTAMP

• TIMESTAMP WITH TIMEZONE

• TIMESTAMP WITH LOCAL TIMEZONE

• VARCHAR and VARCHAR2

• XDB

• XMLType data for all storage models, assuming the following primary database
compatibility requirements:

– XMLType stored in CLOB format requires that you run Oracle Database with a
compatibility setting of 11.0 or higher. Using XMLType stored as CLOB is
deprecated as of Oracle Database 12c Release 1 (12.1).

– XMLType stored in object-relational format or as binary XML requires that you
run Oracle Database with a compatibility setting of 11.2.0.3 or higher, and with
a redo compatibility setting of 11.2.0.3 or higher. The contents of the SQL_REDO
column for the XML data-related operations is never valid SQL or PL/SQL.

Supported Table Storage Types Using LogMiner

LogMiner supports the following table storage attributes:

• Cluster tables (including index clusters and heap clusters).

• Index-organized tables (IOTs) (partitioned and nonpartitioned, including overflow
segments).

• Heap-organized tables (partitioned and nonpartitioned).

• Advanced row compression and basic table compression. Both of these options
require a database compatibility setting of 11.1.0 or higher.

• Tables containing LOB columns stored as SecureFiles, when Oracle Database
compatibility is set to 11.2 or higher.

• Tables using Hybrid Columnar Compression, when Oracle Database compatibility
is set to 11.2.0.2 or higher.

Related Topics

• Hybrid Columnar Compression

22.15.2 Database Compatibility Requirements for LogMiner
LogMiner support for certain data types and table storage attributes depends on
Oracle Database release compatibility requirements.

Data Types and Database Compatibility Requirements

• Multibyte CLOB support requires the database to run at a compatibility of 10.1 or
higher.

• IOT support without LOBs and Overflows requires the database to run at a
compatibility of 10.1 or higher.

• IOT support with LOB and Overflow requires the database to run at a compatibility
of 10.2 or higher.

• TDE and TSE support require the database to run at a compatibility of 11.1 or
higher.

Chapter 22
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

22-84

• Basic compression and advanced row compression require the database to run at
a compatibility of 11.1 or higher.

• Hybrid Columnar Compression support is dependent on the underlying storage
system and requires the database to run at a compatibility of 11.2 or higher.

Related Topics

• Hybrid Columnar Compression

22.15.3 Unsupported Data Types and Table Storage Attributes
Describes unsupported data types and table storage attributes.

LogMiner does not support the following data types and table storage attributes. If a
table contains columns having any of these unsupported data types, then the entire
table is ignored by LogMiner.

• BFILE

• Nested tables

• Objects with nested tables

• Tables with identity columns

• Temporal validity columns

• PKREF columns

• PKOID columns

• Nested table attributes and stand-alone nested table columns

22.15.4 Supported Databases and Redo Log File Versions
The Oracle Database release that created a redo log file can affect the operations you
are able to perform on it.

LogMiner runs only on Oracle Database 8 release 8.1 or later. You can use LogMiner
to analyze redo log files as early as Oracle Database 8. However, the information that
LogMiner is able to retrieve from a redo log file created with an earlier Oracle
Database release depends on the release version of the log, not the release of the
Oracle Database using the log. For example, you can augment redo log files for
Oracle9i to capture additional information by enabling supplemental logging.
Augmenting redo log files allows LogMiner functionality to be used to its fullest
advantage. Redo log files created with older releases of Oracle Database can be
missing information that was only enabled with later Oracle Database release redo log
files. This missing information can place limitations on the operations and data types
that LogMiner is able to support with an earlier Oracle Database redo log file.

Related Topics

• Understanding How to Run LogMiner Sessions
You run LogMiner by using a PL/SQL package that is owned by SYS. To use
LogMiner, there are requirements for the user account that you use with LogMiner.

• Supplemental Logging
Supplemental logging is the process of adding additional columns in redo log files
to facilitate data mining.

Chapter 22
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

22-85

22.15.5 SecureFiles LOB Considerations
SecureFiles LOBs are supported when database compatibility is set to 11.2 or later.

Only SQL_REDO columns can be filled in for SecureFiles LOB columns; SQL_UNDO
columns are not filled in.

Transparent Data Encryption (TDE) and data compression can be enabled on
SecureFiles LOB columns at the primary database.

Deduplication of SecureFiles LOB columns is fully supported. Fragment operations are
not supported.

If LogMiner encounters redo generated by unsupported operations, then it generates
rows with the OPERATION column set to UNSUPPORTED. No SQL_REDO or SQL_UNDO
will be generated for these redo records.

Chapter 22
Supported Data Types, Storage Attributes, and Database and Redo Log File Versions

22-86

23
Using the Metadata APIs

The DBMS_METADATA APIs enable you to check and update object metadata.

The DBMS_METADATA API enables you to do the following:

• Retrieve an object's metadata as XML

• Transform the XML in a variety of ways, including transforming it into SQL DDL

• Submit the XML to re-create the object extracted by the retrieval

The DBMS_METADATA_DIFF API lets you compare objects between databases to identify
metadata changes over time in objects of the same type.

• Why Use the DBMS_METADATA API?
The DBMS_METADATA API eliminates the need for you to write and maintain your
own code for metadata extraction.

• Overview of the DBMS_METADATA API
Learn how to take advantage of the DBMS_METADATA API features.

• Using the DBMS_METADATA API to Retrieve an Object's Metadata
The retrieval interface of the DBMS_METADATA API lets you specify the kind of object
to be retrieved.

• Using the DBMS_METADATA API to Recreate a Retrieved Object
When you fetch metadata for an object, you can choose to use it to recreate the
object in a different database or schema.

• Using the DBMS_METADATA API to Retrieve Collections of Different Object
Types
To retrieve collections of objects in which the objects are of different types, but
comprise a logical unit, you can use the heterogeneous object types in the
DBMS_METADATA API.

• Filtering the Return of Heterogeneous Object Types
Description and example of filtering the return of heterogeneous object types.

• Using the DBMS_METADATA_DIFF API to Compare Object Metadata
Description and example that uses the retrieval, comparison, and submit
interfaces of DBMS_METADATA and DBMS_METADATA_DIFF to fetch metadata for two
tables, compare the metadata, and generate ALTER statements which make one
table like the other.

• Performance Tips for the Programmatic Interface of the DBMS_METADATA API
Describes how to enhance performance when using the programmatic interface of
the DBMS_METADATA API.

• Example Usage of the DBMS_METADATA API
Example of how the DBMS_METADATA API could be used.

• Summary of DBMS_METADATA Procedures
Provides brief descriptions of the procedures provided by the DBMS_METADATA API.

23-1

• Summary of DBMS_METADATA_DIFF Procedures
Provides brief descriptions of the procedures and functions provided by the
DBMS_METADATA_DIFF API.

23.1 Why Use the DBMS_METADATA API?
The DBMS_METADATA API eliminates the need for you to write and maintain your own
code for metadata extraction.

If you have developed your own code for Oracle Database for extracting metadata
from the dictionary, or for manipulating the metadata (adding columns, changing
column data types, and so on), and converting the metadata to DDL so that you could
recreate the object on the same or another database, then maintenance is an issue.
Keeping that code updated to support new dictionary features has probably proven to
be challenging.

Oracle Database provides a centralized facility for the extraction, manipulation, and
recreation of dictionary metadata. Oracle Database also supports all dictionary objects
at their most current level.

Although the DBMS_METADATA API can dramatically decrease the amount of custom
code you are writing and maintaining, it does not involve any changes to your normal
database procedures. You can install the DBMS_METADATA API in the same way as data
dictionary views, by running catproc.sql to run a SQL script at database installation
time. After you have installed DBMS_METADATA, it is available whenever the instance is
operational, even in restricted mode.

When you change database releases using the DBMS_METADATA API, you are not
required to make any source code changes. The DBMS_METADATA API enables the
code to be upwardly compatible across different Oracle Database releases. XML
documents retrieved by one release can be processed by the submit interface on the
same or later releases. For example, XML documents retrieved by an Oracle
Database 10g Release 2 (10.2) database can be submitted to Oracle Database 12c.

23.2 Overview of the DBMS_METADATA API
Learn how to take advantage of the DBMS_METADATA API features.

For the purposes of the DBMS_METADATA API, every entity in the database is modeled
as an object that belongs to an object type. For example, the table scott.emp is an
object. Its object type is TABLE. When you fetch an object's metadata, you must specify
the object type.

Using Filters to Search for Objects By Object Type

To fetch a particular object or set of objects within an object type, you specify a filter.
Different filters are defined for each object type. For example, two of the filters defined
for the TABLE object type are SCHEMA and NAME. These filters enable you to say, for
example, that you want the table whose schema is scott, and whose name is emp.

The DBMS_METADATA API makes use of XML (Extensible Markup Language) and XSLT
(Extensible Stylesheet Language Transformation). The DBMS_METADATA API represents
object metadata as XML, because it is a universal format that can be easily parsed
and transformed. The DBMS_METADATA API uses XSLT to transform XML documents
either into other XML documents, or into SQL DDL.

Chapter 23
Why Use the DBMS_METADATA API?

23-2

You can use the DBMS_METADATA API to specify one or more transforms (XSLT scripts)
to be applied to the XML when the metadata is fetched (or when it is resubmitted). The
API provides some predefined transforms, including one named DDL, which
transforms the XML document into SQL creation DDL.

You can then specify conditions on the transform by using transform parameters. You
can also specify optional parse items to access specific attributes of an object's
metadata.

Using Views to Determine Valid DBMS_METADATA Options

You can use the following views to determine which DBMS_METADATA transforms are
allowed for each object type transformation, the parameters for each transform, and
their parse items.

• DBMS_METADATA_TRANSFORMS - documents all valid Oracle-supplied transforms that
are used with the DBMS_METADATA package.

• DBMS_METADATA_TRANSFORM_PARAMS - documents the valid transform parameters for
each transform.

• DBMS_METADATA_PARSE_ITEMS - documents the valid parse items.

For example, suppose that you want to know which transforms are allowed for INDEX
objects. The following query returns the transforms that are valid for INDEX objects, the
required input types, and the resulting output types:

SQL> SELECT transform, output_type, input_type, description
2 FROM dbms_metadata_transforms
3 WHERE object_type='INDEX';

TRANSFORM OUTPUT_TYP INPUT_TYPE DESCRIPTION
---------- ---------- --------------------
--
ALTERXML ALTER_XML SXML difference doc Generate ALTER_XML from SXML
difference document
SXMLDDL DDL SXML Convert SXML to DDL
MODIFY XML XML Modify XML document according
to transform parameters
SXML SXML XML Convert XML to SXML
DDL DDL XML Convert XML to SQL to create
the object
ALTERDDL ALTER_DDL ALTER_XML Convert ALTER_XML to ALTER_DDL
MODIFYSXML SXML SXML Modify SXML document

If you want to know which transform parameters are valid for the DDL transform, then
you can run this query:

SQL> SELECT param, datatype, default_val, description
2 FROM dbms_metadata_transform_params
3 WHERE object_type='INDEX' and transform='DDL'
4 ORDER BY param;

PARAM DATATYPE DEFAULT_VA DESCRIPTION

Chapter 23
Overview of the DBMS_METADATA API

23-3

------------------------- ---------- ----------
--
INCLUDE_PARTITIONS TEXT Include generated
interval and list partitions in DDL
 transformation
INDEX_COMPRESSION_CLAUSE TEXT "" Text of user-specified
index compression clause
PARTITIONING BOOLEAN TRUE Include partitioning
clauses in transformation
PARTITION_NAME TEXT "" Name of partition
selected for the transformation
PCTSPACE NUMBER "" Percentage by which space
allocation is to be modified
SEGMENT_ATTRIBUTES BOOLEAN TRUE Include segment attribute
clauses (physical attributes, storage
 attribues,
tablespace, logging) in transformation
STORAGE BOOLEAN TRUE Include storage clauses
in transformation
SUBPARTITION_NAME TEXT "" Name of subpartition
selected for the transformation
TABLESPACE BOOLEAN TRUE Include tablespace
clauses in transformation

You can also perform the following query which returns specific metadata about the
INDEX object type:

SQL> SELECT parse_item, description
2 FROM dbms_metadata_parse_items
3 WHERE object_type='INDEX' and convert='Y';

PARSE_ITEM DESCRIPTION

--
OBJECT_TYPE Object type
TABLESPACE Object tablespace (default tablespace for partitioned
objects)
BASE_OBJECT_SCHEMA Schema of the base object
SCHEMA Object schema, if any
NAME Object name
BASE_OBJECT_NAME Name of the base object
BASE_OBJECT_TYPE Object type of the base object
SYSTEM_GENERATED Y = system-generated object; N = not system-generated

Related Topics

• DBMS_METADATA_TRANSFORMS

• DBMS_METADATA_TRANSFORM_PARAMS

• DBMS_METADATA_PARSE_ITEMS

Chapter 23
Overview of the DBMS_METADATA API

23-4

23.3 Using the DBMS_METADATA API to Retrieve an
Object's Metadata

The retrieval interface of the DBMS_METADATA API lets you specify the kind of object to
be retrieved.

• How to Use the DBMS_METADATA API to Retrieve Object Metadata
Learn about the kinds of Oracle Database objects that you can query, and decide
what interface you want to use for the query.

• Typical Steps Used for Basic Metadata Retrieval
When you retrieve metadata, you use the DBMS_METADATA PL/SQL API.

• Retrieving Multiple Objects
Description and example of retrieving multiple objects.

• Placing Conditions on Transforms
To specify conditions on the transforms that you add with DBMS_METADATA, you can
use transform parameters.

• Accessing Specific Metadata Attributes
See how you can access specific metadata attributes of an object's metadata with
the DBMS_METADATA API.

23.3.1 How to Use the DBMS_METADATA API to Retrieve Object
Metadata

Learn about the kinds of Oracle Database objects that you can query, and decide what
interface you want to use for the query.

This can be either a particular object type (such as a table, index, or procedure) or a
heterogeneous collection of object types that form a logical unit (such as a database
export or schema export). By default, metadata that you fetch is returned in an XML
document.

Note:

To access objects that are not in your own schema, you must have the
SELECT_CATALOG_ROLE role. However, roles are disabled within many PL/SQL
objects (stored procedures, functions, definer's rights APIs). Therefore, if you
are writing a PL/SQL program that will access objects in another schema (or,
in general, any objects for which you need the SELECT_CATALOG_ROLE role),
then you must put the code in an invoker's rights API.

You can use the programmatic interface for casual browsing, or you can use it to
develop applications. You can use the browsing interface if you simply want to make
quick queries of the system metadata. You can use the programmatic interface when
you want to extract dictionary metadata as part of an application. In such cases, you
can choose to use the procedures provided by the DBMS_METADATA API, instead of
using SQL scripts or customized code that you may be currently using to do the same
thing.

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-5

23.3.2 Typical Steps Used for Basic Metadata Retrieval
When you retrieve metadata, you use the DBMS_METADATA PL/SQL API.

The following examples illustrate the programmatic and browsing interfaces.

The DBMS_METADATA programmatic interface example provides a basic demonstration
of using the DBMS_METADATA programmatic interface to retrieve metadata for one table.
It creates a DBMS_METADATA program that creates a function named get_table_md. This
function returns metadata for one table.

The DBMS_METADATA browsing interface example demonstrates how you can use the
browsing interface to obtain the same results.

Example 23-1 Using the DBMS_METADATA Programmatic Interface to Retrieve
Data

1. Create a DBMS_METADATA program that creates a function named get_table_md,
which will return the metadata for one table, timecards, in the hr schema. The
content of such a program looks as follows. (For this example, name the program
metadata_program.sql.)

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

 -- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

2. Connect as user hr.

3. Run the program to create the get_table_md function:

SQL> @metadata_program

4. Use the newly created get_table_md function in a select operation. To generate
complete, uninterrupted output, set the PAGESIZE to 0 and set LONG to some large
number, as shown, before executing your query:

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-6

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT get_table_md FROM dual;

5. The output, which shows the metadata for the timecards table in the hr schema,
looks similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "EXAMPLE"

Example 23-2 Using the DBMS_METADATA Browsing Interface to Retrieve
Data

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000
SQL> SELECT DBMS_METADATA.GET_DDL('TABLE','TIMECARDS','HR') FROM dual;

The results of this query are same as shown in step 5 in the DBMS_METADATA
programmatic interface example.

23.3.3 Retrieving Multiple Objects
Description and example of retrieving multiple objects.

In the previous example “Using the DBMS_METADATA Programmatic Interface to Retrieve
Data,” the FETCH_CLOB procedure was called only once, because it was known that
there was only one object. However, you can also retrieve multiple objects, for
example, all the tables in schema scott. To do this, you need to use the following
construct:

 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);
 --
 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 --
 EXIT WHEN doc IS NULL;
 END LOOP;

The following example demonstrates use of this construct and retrieving multiple
objects. Connect as user scott for this example. The password is tiger.

Example 23-3 Retrieving Multiple Objects

1. Create a table named my_metadata and a procedure named get_tables_md, as
follows. Because not all objects can be returned, they are stored in a table and
queried at the end.

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md clob);
CREATE OR REPLACE PROCEDURE get_tables_md IS
-- Define local variables
h NUMBER; -- handle returned by 'OPEN'

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-7

th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in a table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_tables_md;

3. Query the my_metadata table to see what was retrieved:

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

23.3.4 Placing Conditions on Transforms
To specify conditions on the transforms that you add with DBMS_METADATA, you can use
transform parameters.

To use transform parameters, you use the SET_TRANSFORM_PARAM procedure. For
example, if you have added the DDL transform for a TABLE object, then you can specify
the SEGMENT_ATTRIBUTES transform parameter to indicate that you do not want
segment attributes (physical, storage, logging, and so on) to appear in the DDL. The
default is that segment attributes do appear in the DDL.

Example 23-4 Placing Conditions on Transforms

This example shows how to use the SET_TRANSFORM_PARAM procedure.

1. Create a function named get_table_md, as follows:

CREATE OR REPLACE FUNCTION get_table_md RETURN CLOB IS
 -- Define local variables.
 h NUMBER; -- handle returned by 'OPEN'
 th NUMBER; -- handle returned by 'ADD_TRANSFORM'

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-8

 doc CLOB;
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('TABLE');

 -- Use filters to specify the particular object desired.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
 DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

 -- Request that the metadata be transformed into creation DDL.
 th := dbms_metadata.add_transform(h,'DDL');

 -- Specify that segment attributes are not to be returned.
 -- Note that this call uses the TRANSFORM handle, not the OPEN handle.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

 -- Fetch the object.
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- Release resources.
 DBMS_METADATA.CLOSE(h);

 RETURN doc;
END;
/

2. Perform the following query:

SQL> SELECT get_table_md FROM dual;

The output looks similar to the following:

 CREATE TABLE "HR"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "HR"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

The examples shown up to this point have used a single transform, the DDL transform.
The DBMS_METADATA API also enables you to specify multiple transforms, with the
output of the first being the input to the next and so on.

Oracle supplies a transform called MODIFY that modifies an XML document. You can
do things like change schema names or tablespace names. To do this, you use remap
parameters and the SET_REMAP_PARAM procedure.

Example 23-5 Modifying an XML Document

This example shows how you can use the SET_REMAP_PARAM procedure. It first adds
the MODIFY transform and specifies remap parameters to change the schema name
from hr to scott. It then adds the DDL transform. The output of the MODIFY transform is

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-9

an XML document that becomes the input to the DDL transform. The end result is the
creation DDL for the timecards table with all instances of schema hr changed to
scott.

1. Create a function named remap_schema:

CREATE OR REPLACE FUNCTION remap_schema RETURN CLOB IS
-- Define local variables.
h NUMBER; --handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB;
BEGIN

-- Specify the object type.
h := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the particular object desired.
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','TIMECARDS');

-- Request that the schema name be modified.
th := DBMS_METADATA.ADD_TRANSFORM(h,'MODIFY');
DBMS_METADATA.SET_REMAP_PARAM(th,'REMAP_SCHEMA','HR','SCOTT');

-- Request that the metadata be transformed into creation DDL.
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

-- Specify that segment attributes are not to be returned.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false);

-- Fetch the object.
doc := DBMS_METADATA.FETCH_CLOB(h);

-- Release resources.
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

2. Perform the following query:

SELECT remap_schema FROM dual;

The output looks similar to the following:

 CREATE TABLE "SCOTT"."TIMECARDS"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" VARCHAR2(10),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("EMPLOYEE_ID")
 REFERENCES "SCOTT"."EMPLOYEES" ("EMPLOYEE_ID") ENABLE
)

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-10

If you are familiar with XSLT, then you can add your own user-written transforms
to process the XML.

23.3.5 Accessing Specific Metadata Attributes
See how you can access specific metadata attributes of an object's metadata with the
DBMS_METADATA API.

It is often desirable to access specific attributes of an object's metadata, for example,
its name or schema. You could get this information by parsing the returned metadata,
but the DBMS_METADATA API provides another mechanism; you can specify parse items,
specific attributes that will be parsed out of the metadata and returned in a separate
data structure. To do this, you use the SET_PARSE_ITEM procedure.

Example 23-6 Using Parse Items to Access Specific Metadata Attributes

This example shows how to check all tables in a schema. For each table, a parse item
is used to obtain its name. The name is then used to obtain all indexes on the table. In
this example, you can see how to use the FETCH_DDL function, which returns metadata
in a sys.ku$_ddls object.

In this example, we assume that you are connected to a schema that contains some
tables and indexes. The outcome of this series of steps creates a table named
my_metadata.

1. Create a table named my_metadata and a procedure named
get_tables_and_indexes, as follows:

DROP TABLE my_metadata;
CREATE TABLE my_metadata (
 object_type VARCHAR2(30),
 name VARCHAR2(30),
 md CLOB);
CREATE OR REPLACE PROCEDURE get_tables_and_indexes IS
-- Define local variables.
h1 NUMBER; -- handle returned by OPEN for tables
h2 NUMBER; -- handle returned by OPEN for indexes
th1 NUMBER; -- handle returned by ADD_TRANSFORM for tables
th2 NUMBER; -- handle returned by ADD_TRANSFORM for indexes
doc sys.ku$_ddls; -- metadata is returned in sys.ku$_ddls,
 -- a nested table of sys.ku$_ddl objects
ddl CLOB; -- creation DDL for an object
pi sys.ku$_parsed_items; -- parse items are returned in this object
 -- which is contained in sys.ku$_ddl
objname VARCHAR2(30); -- the parsed object name
idxddls sys.ku$_ddls; -- metadata is returned in sys.ku$_ddls,
 -- a nested table of sys.ku$_ddl objects
idxname VARCHAR2(30); -- the parsed index name
BEGIN
 -- This procedure has an outer loop that fetches tables,
 -- and an inner loop that fetches indexes.

 -- Specify the object type: TABLE.
 h1 := DBMS_METADATA.OPEN('TABLE');

 -- Request that the table name be returned as a parse item.
 DBMS_METADATA.SET_PARSE_ITEM(h1,'NAME');

 -- Request that the metadata be transformed into creation DDL.
 th1 := DBMS_METADATA.ADD_TRANSFORM(h1,'DDL');

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-11

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th1,'SEGMENT_ATTRIBUTES',false);

 -- Set up the outer loop: fetch the TABLE objects.
 LOOP
 doc := dbms_metadata.fetch_ddl(h1);

-- When there are no more objects to be retrieved, FETCH_DDL returns NULL.
 EXIT WHEN doc IS NULL;

-- Loop through the rows of the ku$_ddls nested table.
 FOR i IN doc.FIRST..doc.LAST LOOP
 ddl := doc(i).ddlText;
 pi := doc(i).parsedItems;
 -- Loop through the returned parse items.
 IF pi IS NOT NULL AND pi.COUNT > 0 THEN
 FOR j IN pi.FIRST..pi.LAST LOOP
 IF pi(j).item='NAME' THEN
 objname := pi(j).value;
 END IF;
 END LOOP;
 END IF;
 -- Insert information about this object into our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('TABLE',objname,ddl);
 COMMIT;
 END LOOP;

 -- Now fetch indexes using the parsed table name as
 -- a BASE_OBJECT_NAME filter.

 -- Specify the object type.
 h2 := DBMS_METADATA.OPEN('INDEX');

 -- The base object is the table retrieved in the outer loop.
 DBMS_METADATA.SET_FILTER(h2,'BASE_OBJECT_NAME',objname);

 -- Exclude system-generated indexes.
 DBMS_METADATA.SET_FILTER(h2,'SYSTEM_GENERATED',false);

 -- Request that the index name be returned as a parse item.
 DBMS_METADATA.SET_PARSE_ITEM(h2,'NAME');

 -- Request that the metadata be transformed into creation DDL.
 th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

 -- Specify that segment attributes are not to be returned.
 DBMS_METADATA.SET_TRANSFORM_PARAM(th2,'SEGMENT_ATTRIBUTES',false);

 LOOP
 idxddls := dbms_metadata.fetch_ddl(h2);

 -- When there are no more objects to be retrieved, FETCH_DDL returns NULL.
 EXIT WHEN idxddls IS NULL;

 FOR i in idxddls.FIRST..idxddls.LAST LOOP
 ddl := idxddls(i).ddlText;
 pi := idxddls(i).parsedItems;
 -- Loop through the returned parse items.

Chapter 23
Using the DBMS_METADATA API to Retrieve an Object's Metadata

23-12

 IF pi IS NOT NULL AND pi.COUNT > 0 THEN
 FOR j IN pi.FIRST..pi.LAST LOOP
 IF pi(j).item='NAME' THEN
 idxname := pi(j).value;
 END IF;
 END LOOP;
 END IF;

 -- Store the metadata in our table.
 INSERT INTO my_metadata(object_type, name, md)
 VALUES ('INDEX',idxname,ddl);
 COMMIT;
 END LOOP; -- for loop
 END LOOP;
 DBMS_METADATA.CLOSE(h2);
 END LOOP;
 DBMS_METADATA.CLOSE(h1);
END;
/

2. Execute the procedure:

EXECUTE get_tables_and_indexes;

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGES 0
SELECT * FROM my_metadata;

23.4 Using the DBMS_METADATA API to Recreate a
Retrieved Object

When you fetch metadata for an object, you can choose to use it to recreate the object
in a different database or schema.

When you fetch metadata, suppose that you are not ready to make remapping
decisions, and you want to defer these decisions until later. To defer your decision
about remapping, you can fetch the metadata as XML, and store it in a file or table.
Later, you can use that file or table with the submit interface to recreate the object.

The submit interface is similar in form to the retrieval interface. It has an OPENW
procedure, in which you specify the object type of the object that you want to create.
You can specify transforms, transform parameters, and parse items. You can call the
CONVERT function to convert the XML to DDL, or you can call the PUT function to both
convert XML to DDL, and to submit the DDL to create the object.

Example 23-7 Using the Submit Interface to Re-Create a Retrieved Object

This example shows how to fetch the XML for a table in one schema, and then use the
submit interface to recreate the table in another schema.

1. Connect as a privileged user:

CONNECT system
Enter password: password

Chapter 23
Using the DBMS_METADATA API to Recreate a Retrieved Object

23-13

2. Because access to objects in another schema requires the SELECT_CATALOG_ROLE
role, create an invoker's rights package to hold the procedure. In a definer's rights
PL/SQL object (such as a procedure or function), roles are disabled.

CREATE OR REPLACE PACKAGE example_pkg AUTHID current_user IS
 PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2);
END example_pkg;
/
CREATE OR REPLACE PACKAGE BODY example_pkg IS
PROCEDURE move_table(
 table_name in VARCHAR2,
 from_schema in VARCHAR2,
 to_schema in VARCHAR2) IS

-- Define local variables.
h1 NUMBER; -- handle returned by OPEN
h2 NUMBER; -- handle returned by OPENW
th1 NUMBER; -- handle returned by ADD_TRANSFORM for MODIFY
th2 NUMBER; -- handle returned by ADD_TRANSFORM for DDL
xml CLOB; -- XML document
errs sys.ku$_SubmitResults := sys.ku$_SubmitResults();
err sys.ku$_SubmitResult;
result BOOLEAN;
BEGIN

-- Specify the object type.
h1 := DBMS_METADATA.OPEN('TABLE');

-- Use filters to specify the name and schema of the table.
DBMS_METADATA.SET_FILTER(h1,'NAME',table_name);
DBMS_METADATA.SET_FILTER(h1,'SCHEMA',from_schema);

-- Fetch the XML.
xml := DBMS_METADATA.FETCH_CLOB(h1);
IF xml IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('Table ' || from_schema || '.' || table_name
|| ' not found');
 RETURN;
 END IF;

-- Release resources.
DBMS_METADATA.CLOSE(h1);

-- Use the submit interface to re-create the object in another schema.

-- Specify the object type using OPENW (instead of OPEN).
h2 := DBMS_METADATA.OPENW('TABLE');

-- First, add the MODIFY transform.
th1 := DBMS_METADATA.ADD_TRANSFORM(h2,'MODIFY');

-- Specify the desired modification: remap the schema name.

Chapter 23
Using the DBMS_METADATA API to Recreate a Retrieved Object

23-14

DBMS_METADATA.SET_REMAP_PARAM(th1,'REMAP_SCHEMA',from_schema,to_schema);

-- Now add the DDL transform so that the modified XML can be
-- transformed into creation DDL.
th2 := DBMS_METADATA.ADD_TRANSFORM(h2,'DDL');

-- Call PUT to re-create the object.
result := DBMS_METADATA.PUT(h2,xml,0,errs);

DBMS_METADATA.CLOSE(h2);
 IF NOT result THEN
 -- Process the error information.
 FOR i IN errs.FIRST..errs.LAST LOOP
 err := errs(i);
 FOR j IN err.errorLines.FIRST..err.errorLines.LAST LOOP
 dbms_output.put_line(err.errorLines(j).errorText);
 END LOOP;
 END LOOP;
 END IF;
END;
END example_pkg;
/

3. Next, create a table named my_example in the schema SCOTT:

CONNECT scott
Enter password:
-- The password is tiger.

DROP TABLE my_example;
CREATE TABLE my_example (a NUMBER, b VARCHAR2(30));

CONNECT system
Enter password: password

SET LONG 9000000
SET PAGESIZE 0
SET SERVEROUTPUT ON SIZE 100000

4. Copy the my_example table to the SYSTEM schema:

DROP TABLE my_example;
EXECUTE example_pkg.move_table('MY_EXAMPLE','SCOTT','SYSTEM');

5. Perform the following query to verify that it worked:

SELECT DBMS_METADATA.GET_DDL('TABLE','MY_EXAMPLE') FROM dual;

Chapter 23
Using the DBMS_METADATA API to Recreate a Retrieved Object

23-15

23.5 Using the DBMS_METADATA API to Retrieve
Collections of Different Object Types

To retrieve collections of objects in which the objects are of different types, but
comprise a logical unit, you can use the heterogeneous object types in the
DBMS_METADATA API.

There can be times when you need to retrieve collections of Oracle Database objects
in which the objects are of different types, but comprise a logical unit. For example,
you might need to retrieve all the objects in a database or a schema, or a table and all
its dependent indexes, constraints, grants, audits, and so on. To make such a retrieval
possible, the DBMS_METADATA API provides several heterogeneous object types. A
heterogeneous object type is an ordered set of object types.

Oracle supplies the following heterogeneous object types:

• TABLE_EXPORT - a table and its dependent objects

• SCHEMA_EXPORT - a schema and its contents

• DATABASE_EXPORT - the objects in the database

These object types were developed for use by the Oracle Data Pump Export utility, but
you can use them in your own applications.

You can use only the programmatic retrieval interface (OPEN, FETCH, CLOSE) with these
types, not the browsing interface or the submit interface.

You can specify filters for heterogeneous object types, just as you do for the
homogeneous types. For example, you can specify the SCHEMA and NAME filters for
TABLE_EXPORT, or the SCHEMA filter for SCHEMA_EXPORT.

Example 23-8 Retrieving Heterogeneous Object Types

This example shows you how to retrieve the object types in the user scott schema.
Connect as user scott. The password is tiger.

1. Create a table to store the retrieved objects:

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md IS

-- Define local variables.
h NUMBER; -- handle returned by OPEN
th NUMBER; -- handle returned by ADD_TRANSFORM
doc CLOB; -- metadata is returned in a CLOB
BEGIN

-- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Request that the metadata be transformed into creation DDL.

Chapter 23
Using the DBMS_METADATA API to Retrieve Collections of Different Object Types

23-16

 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Fetch the objects.
 LOOP
 doc := DBMS_METADATA.FETCH_CLOB(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB
returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_schema_md;

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

In this example, objects are returned ordered by object type; for example, all tables are
returned, then all grants on tables, then all indexes on tables, and so on. The order is,
generally speaking, a valid creation order. Thus, if you take the objects in the order in
which they were returned and use the submit interface to recreate them in the same
order in another schema or database, then there usually should be no errors. (The
exceptions usually involve circular references; for example, if package A contains a
call to package B, and package B contains a call to package A, then one of the
packages must be recompiled a second time.)

23.6 Filtering the Return of Heterogeneous Object Types
Description and example of filtering the return of heterogeneous object types.

For finer control of the objects returned, use the SET_FILTER procedure and specify
that the filter apply only to a specific member type. You do this by specifying the path
name of the member type as the fourth parameter to SET_FILTER. In addition, you can
use the EXCLUDE_PATH_EXPR filter to exclude all objects of an object type. For a list of
valid path names, see the TABLE_EXPORT_OBJECTS catalog view.

Example 23-9 shows how you can use SET_FILTER to specify finer control on the
objects returned. Connect as user scott. The password is tiger.

Chapter 23
Filtering the Return of Heterogeneous Object Types

23-17

Example 23-9 Filtering the Return of Heterogeneous Object Types

1. Create a table, my_metadata, to store the retrieved objects. And create a
procedure, get_schema_md2.

DROP TABLE my_metadata;
CREATE TABLE my_metadata (md CLOB);
CREATE OR REPLACE PROCEDURE get_schema_md2 IS

-- Define local variables.
h NUMBER; -- handle returned by 'OPEN'
th NUMBER; -- handle returned by 'ADD_TRANSFORM'
doc CLOB; -- metadata is returned in a CLOB
BEGIN

 -- Specify the object type.
 h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');

 -- Use filters to specify the schema.
 DBMS_METADATA.SET_FILTER(h,'SCHEMA','SCOTT');

 -- Use the fourth parameter to SET_FILTER to specify a filter
 -- that applies to a specific member object type.
 DBMS_METADATA.SET_FILTER(h,'NAME_EXPR','!=''MY_METADATA''','TABLE');

 -- Use the EXCLUDE_PATH_EXPR filter to exclude procedures.
 DBMS_METADATA.SET_FILTER(h,'EXCLUDE_PATH_EXPR','=''PROCEDURE''');

 -- Request that the metadata be transformed into creation DDL.
 th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');

 -- Use the fourth parameter to SET_TRANSFORM_PARAM to specify a parameter
 -- that applies to a specific member object type.
DBMS_METADATA.SET_TRANSFORM_PARAM(th,'SEGMENT_ATTRIBUTES',false,'TABLE');

 -- Fetch the objects.
 LOOP
 doc := dbms_metadata.fetch_clob(h);

 -- When there are no more objects to be retrieved, FETCH_CLOB returns NULL.
 EXIT WHEN doc IS NULL;

 -- Store the metadata in the table.
 INSERT INTO my_metadata(md) VALUES (doc);
 COMMIT;
 END LOOP;

 -- Release resources.
 DBMS_METADATA.CLOSE(h);
END;
/

2. Execute the procedure:

EXECUTE get_schema_md2;

3. Perform the following query to see what was retrieved:

SET LONG 9000000
SET PAGESIZE 0
SELECT * FROM my_metadata;

Chapter 23
Filtering the Return of Heterogeneous Object Types

23-18

23.7 Using the DBMS_METADATA_DIFF API to Compare
Object Metadata

Description and example that uses the retrieval, comparison, and submit interfaces of
DBMS_METADATA and DBMS_METADATA_DIFF to fetch metadata for two tables, compare
the metadata, and generate ALTER statements which make one table like the other.

For simplicity, function variants are used throughout the example.

Example 23-10 Comparing Object Metadata

1. Create two tables, TAB1 and TAB2:

SQL> CREATE TABLE TAB1
 2 ("EMPNO" NUMBER(4,0),
 3 "ENAME" VARCHAR2(10),
 4 "JOB" VARCHAR2(9),
 5 "DEPTNO" NUMBER(2,0)
 6) ;

Table created.

SQL> CREATE TABLE TAB2
 2 ("EMPNO" NUMBER(4,0) PRIMARY KEY ENABLE,
 3 "ENAME" VARCHAR2(20),
 4 "MGR" NUMBER(4,0),
 5 "DEPTNO" NUMBER(2,0)
 6) ;

Table created.

Note the differences between TAB1 and TAB2:

• The table names are different

• TAB2 has a primary key constraint; TAB1 does not

• The length of the ENAME column is different in each table

• TAB1 has a JOB column; TAB2 does not

• TAB2 has a MGR column; TAB1 does not

2. Create a function to return the table metadata in SXML format. The following are
some key points to keep in mind about SXML when you are using the
DBMS_METADATA_DIFF API:

• SXML is an XML representation of object metadata.

• The SXML returned is not the same as the XML returned by
DBMS_METADATA.GET_XML, which is complex and opaque and contains binary
values, instance-specific values, and so on.

• SXML looks like a direct translation of SQL creation DDL into XML. The tag
names and structure correspond to names in the Oracle Database SQL
Language Reference.

• SXML is designed to support editing and comparison.

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-19

To keep this example simple, a transform parameter is used to suppress physical
properties:

SQL> CREATE OR REPLACE FUNCTION get_table_sxml(name IN VARCHAR2) RETURN CLOB IS
 2 open_handle NUMBER;
 3 transform_handle NUMBER;
 4 doc CLOB;
 5 BEGIN
 6 open_handle := DBMS_METADATA.OPEN('TABLE');
 7 DBMS_METADATA.SET_FILTER(open_handle,'NAME',name);
 8 --
 9 -- Use the 'SXML' transform to convert XML to SXML
 10 --
 11 transform_handle := DBMS_METADATA.ADD_TRANSFORM(open_handle,'SXML');
 12 --
 13 -- Use this transform parameter to suppress physical properties
 14 --
 15 DBMS_METADATA.SET_TRANSFORM_PARAM(transform_handle,'PHYSICAL_PROPERTIES',
 16 FALSE);
 17 doc := DBMS_METADATA.FETCH_CLOB(open_handle);
 18 DBMS_METADATA.CLOSE(open_handle);
 19 RETURN doc;
 20 END;
 21 /

Function created.

3. Use the get_table_sxml function to fetch the table SXML for the two tables:

SQL> SELECT get_table_sxml('TAB1') FROM dual;

 <TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB1</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>10</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>JOB</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>9</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 </RELATIONAL_TABLE>
</TABLE>

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-20

1 row selected.

SQL> SELECT get_table_sxml('TAB2') FROM dual;

 <TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB2</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>20</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>MGR</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 </COL_LIST_ITEM>
 </COL_LIST>
 </PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 </PRIMARY_KEY_CONSTRAINT_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

4. Compare the results using the DBMS_METADATA browsing APIs:

SQL> SELECT dbms_metadata.get_sxml('TABLE','TAB1') FROM dual;
SQL> SELECT dbms_metadata.get_sxml('TABLE','TAB2') FROM dual;

5. Create a function using the DBMS_METADATA_DIFF API to compare the metadata for
the two tables. In this function, the get_table_sxml function that was just defined
in step 2 is used.

SQL> CREATE OR REPLACE FUNCTION compare_table_sxml(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB IS
 3 doc1 CLOB;
 4 doc2 CLOB;

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-21

 5 diffdoc CLOB;
 6 openc_handle NUMBER;
 7 BEGIN
 8 --
 9 -- Fetch the SXML for the two tables
 10 --
 11 doc1 := get_table_sxml(name1);
 12 doc2 := get_table_sxml(name2);
 13 --
 14 -- Specify the object type in the OPENC call
 15 --
 16 openc_handle := DBMS_METADATA_DIFF.OPENC('TABLE');
 17 --
 18 -- Add each document
 19 --
 20 DBMS_METADATA_DIFF.ADD_DOCUMENT(openc_handle,doc1);
 21 DBMS_METADATA_DIFF.ADD_DOCUMENT(openc_handle,doc2);
 22 --
 23 -- Fetch the SXML difference document
 24 --
 25 diffdoc := DBMS_METADATA_DIFF.FETCH_CLOB(openc_handle);
 26 DBMS_METADATA_DIFF.CLOSE(openc_handle);
 27 RETURN diffdoc;
 28 END;
 29 /

Function created.

6. Use the function to fetch the SXML difference document for the two tables:

SQL> SELECT compare_table_sxml('TAB1','TAB2') FROM dual;

<TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <SCHEMA>SCOTT</SCHEMA>
 <NAME value1="TAB1">TAB2</NAME>
 <RELATIONAL_TABLE>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>ENAME</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH value1="10">20</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM src="1">
 <NAME>JOB</NAME>
 <DATATYPE>VARCHAR2</DATATYPE>
 <LENGTH>9</LENGTH>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM>
 <NAME>DEPTNO</NAME>
 <DATATYPE>NUMBER</DATATYPE>
 <PRECISION>2</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 <COL_LIST_ITEM src="2">
 <NAME>MGR</NAME>
 <DATATYPE>NUMBER</DATATYPE>

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-22

 <PRECISION>4</PRECISION>
 <SCALE>0</SCALE>
 </COL_LIST_ITEM>
 </COL_LIST>
 <PRIMARY_KEY_CONSTRAINT_LIST src="2">
 <PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 <COL_LIST>
 <COL_LIST_ITEM>
 <NAME>EMPNO</NAME>
 </COL_LIST_ITEM>
 </COL_LIST>
 </PRIMARY_KEY_CONSTRAINT_LIST_ITEM>
 </PRIMARY_KEY_CONSTRAINT_LIST>
 </RELATIONAL_TABLE>
</TABLE>

1 row selected.

The SXML difference document shows the union of the two SXML documents,
with the XML attributes value1 and src identifying the differences. When an
element exists in only one document it is marked with src. Thus, <COL_LIST_ITEM
src="1"> means that this element is in the first document (TAB1) but not in the
second. When an element is present in both documents but with different values,
the element's value is the value in the second document and the value1 gives its
value in the first. For example, <LENGTH value1="10">20</LENGTH> means that the
length is 10 in TAB1 (the first document) and 20 in TAB2.

7. Compare the result using the DBMS_METADATA_DIFF browsing APIs:

SQL> SELECT dbms_metadata_diff.compare_sxml('TABLE','TAB1','TAB2') FROM dual;

8. Create a function using the DBMS_METADATA.CONVERT API to generate an
ALTERXML document. This is an XML document containing ALTER statements to
make one object like another. You can also use parse items to get information
about the individual ALTER statements. (This example uses the functions defined
thus far.)

SQL> CREATE OR REPLACE FUNCTION get_table_alterxml(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB IS
 3 diffdoc CLOB;
 4 openw_handle NUMBER;
 5 transform_handle NUMBER;
 6 alterxml CLOB;
 7 BEGIN
 8 --
 9 -- Use the function just defined to get the difference document
 10 --
 11 diffdoc := compare_table_sxml(name1,name2);
 12 --
 13 -- Specify the object type in the OPENW call
 14 --
 15 openw_handle := DBMS_METADATA.OPENW('TABLE');
 16 --
 17 -- Use the ALTERXML transform to generate the ALTER_XML document
 18 --
 19 transform_handle := DBMS_METADATA.ADD_TRANSFORM(openw_handle,'ALTERXML');
 20 --
 21 -- Request parse items
 22 --
 23 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'CLAUSE_TYPE');

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-23

 24 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'NAME');
 25 DBMS_METADATA.SET_PARSE_ITEM(openw_handle,'COLUMN_ATTRIBUTE');
 26 --
 27 -- Create a temporary LOB
 28 --
 29 DBMS_LOB.CREATETEMPORARY(alterxml, TRUE);
 30 --
 31 -- Call CONVERT to do the transform
 32 --
 33 DBMS_METADATA.CONVERT(openw_handle,diffdoc,alterxml);
 34 --
 35 -- Close context and return the result
 36 --
 37 DBMS_METADATA.CLOSE(openw_handle);
 38 RETURN alterxml;
 39 END;
 40 /

Function created.

9. Use the function to fetch the ALTER_XML document:

SQL> SELECT get_table_alterxml('TAB1','TAB2') FROM dual;

<ALTER_XML xmlns="http://xmlns.oracle.com/ku" version="1.0">
 <OBJECT_TYPE>TABLE</OBJECT_TYPE>
 <OBJECT1>
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB1</NAME>
 </OBJECT1>
 <OBJECT2>
 <SCHEMA>SCOTT</SCHEMA>
 <NAME>TAB2</NAME>
 </OBJECT2>
 <ALTER_LIST>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>MGR</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>ADD_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>JOB</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>DROP_COLUMN</VALUE>
 </PARSE_LIST_ITEM>

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-24

 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>ENAME</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>MODIFY_COLUMN</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>COLUMN_ATTRIBUTE</ITEM>
 <VALUE> SIZE_INCREASE</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" MODIFY
 ("ENAME" VARCHAR2(20))
 </TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>ADD_CONSTRAINT</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY
 ("EMPNO") ENABLE
 </TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>
 </ALTER_LIST_ITEM>
 <ALTER_LIST_ITEM>
 <PARSE_LIST>
 <PARSE_LIST_ITEM>
 <ITEM>NAME</ITEM>
 <VALUE>TAB1</VALUE>
 </PARSE_LIST_ITEM>
 <PARSE_LIST_ITEM>
 <ITEM>CLAUSE_TYPE</ITEM>
 <VALUE>RENAME_TABLE</VALUE>
 </PARSE_LIST_ITEM>
 </PARSE_LIST>
 <SQL_LIST>
 <SQL_LIST_ITEM>
 <TEXT>ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"</TEXT>
 </SQL_LIST_ITEM>
 </SQL_LIST>

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-25

 </ALTER_LIST_ITEM>
 </ALTER_LIST>
</ALTER_XML>

1 row selected.

10. Compare the result using the DBMS_METADATA_DIFF browsing API:

SQL> SELECT dbms_metadata_diff.compare_alter_xml('TABLE','TAB1','TAB2') FROM
dual;

11. The ALTER_XML document contains an ALTER_LIST of each of the alters. Each
ALTER_LIST_ITEM has a PARSE_LIST containing the parse items as name-
value pairs and a SQL_LIST containing the SQL for the particular alter. You can
parse this document and decide which of the SQL statements to execute, using
the information in the PARSE_LIST. (Note, for example, that in this case one of
the alters is a DROP_COLUMN, and you might choose not to execute that.)

12. Create one last function that uses the DBMS_METADATA.CONVERT API and the ALTER
DDL transform to convert the ALTER_XML document into SQL DDL:

SQL> CREATE OR REPLACE FUNCTION get_table_alterddl(name1 IN VARCHAR2,
 2 name2 IN VARCHAR2) RETURN CLOB IS
 3 alterxml CLOB;
 4 openw_handle NUMBER;
 5 transform_handle NUMBER;
 6 alterddl CLOB;
 7 BEGIN
 8 --
 9 -- Use the function just defined to get the ALTER_XML document
 10 --
 11 alterxml := get_table_alterxml(name1,name2);
 12 --
 13 -- Specify the object type in the OPENW call
 14 --
 15 openw_handle := DBMS_METADATA.OPENW('TABLE');
 16 --
 17 -- Use ALTERDDL transform to convert the ALTER_XML document to SQL DDL
 18 --
 19 transform_handle := DBMS_METADATA.ADD_TRANSFORM(openw_handle,'ALTERDDL');
 20 --
 21 -- Use the SQLTERMINATOR transform parameter to append a terminator
 22 -- to each SQL statement
 23 --
 24 DBMS_METADATA.SET_TRANSFORM_PARAM(transform_handle,'SQLTERMINATOR',true);
 25 --
 26 -- Create a temporary lob
 27 --
 28 DBMS_LOB.CREATETEMPORARY(alterddl, TRUE);
 29 --
 30 -- Call CONVERT to do the transform
 31 --
 32 DBMS_METADATA.CONVERT(openw_handle,alterxml,alterddl);
 33 --
 34 -- Close context and return the result
 35 --
 36 DBMS_METADATA.CLOSE(openw_handle);
 37 RETURN alterddl;
 38 END;
 39 /

Chapter 23
Using the DBMS_METADATA_DIFF API to Compare Object Metadata

23-26

Function created.

13. Use the function to fetch the SQL ALTER statements:

SQL> SELECT get_table_alterddl('TAB1','TAB2') FROM dual;
ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))
/
 ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")
/
 ALTER TABLE "SCOTT"."TAB1" MODIFY ("ENAME" VARCHAR2(20))
/
 ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY ("EMPNO") ENABLE
/
 ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"
/

1 row selected.

14. Compare the results using the DBMS_METADATA_DIFF browsing API:

SQL> SELECT dbms_metadata_diff.compare_alter('TABLE','TAB1','TAB2') FROM dual;
ALTER TABLE "SCOTT"."TAB1" ADD ("MGR" NUMBER(4,0))
 ALTER TABLE "SCOTT"."TAB1" DROP ("JOB")
 ALTER TABLE "SCOTT"."TAB1" MODIFY ("ENAME" VARCHAR2(20))
 ALTER TABLE "SCOTT"."TAB1" ADD PRIMARY KEY ("EMPNO") USING INDEX
 PCTFREE 10 INITRANS 2 STORAGE (INITIAL 16384 NEXT 16384 MINEXTENTS 1
 MAXEXTENTS 505 PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL
 DEFAULT) ENABLE ALTER TABLE "SCOTT"."TAB1" RENAME TO "TAB2"

1 row selected.

23.8 Performance Tips for the Programmatic Interface of the
DBMS_METADATA API

Describes how to enhance performance when using the programmatic interface of the
DBMS_METADATA API.

Specifically:

1. Fetch all of one type of object before fetching the next. For example, if you are
retrieving the definitions of all objects in your schema, first fetch all tables, then all
indexes, then all triggers, and so on. This will be much faster than nesting OPEN
contexts; that is, fetch one table then all of its indexes, grants, and triggers, then
the next table and all of its indexes, grants, and triggers, and so on. Example
Usage of the DBMS_METADATA API reflects this second, less efficient means,
but its purpose is to demonstrate most of the programmatic calls, which are best
shown by this method.

2. Use the SET_COUNT procedure to retrieve more than one object at a time. This
minimizes server round trips and eliminates many redundant function calls.

3. When writing a PL/SQL package that calls the DBMS_METADATA API, declare LOB
variables and objects that contain LOBs (such as SYS.KU$_DDLS) at package scope
rather than within individual functions. This eliminates the creation and deletion of
LOB duration structures upon function entrance and exit, which are very expensive
operations.

Chapter 23
Performance Tips for the Programmatic Interface of the DBMS_METADATA API

23-27

23.9 Example Usage of the DBMS_METADATA API
Example of how the DBMS_METADATA API could be used.

A script is provided that automatically runs the demo for you by performing the
following actions:

• Establishes a schema (MDDEMO) and some payroll users.

• Creates three payroll-like tables within the schema and any associated indexes,
triggers, and grants.

• Creates a package, PAYROLL_DEMO, that uses the DBMS_METADATA API. The
PAYROLL_DEMO package contains a procedure, GET_PAYROLL_TABLES, that retrieves
the DDL for the two tables in the MDDEMO schema that start with PAYROLL. For each
table, it retrieves the DDL for the table's associated dependent objects; indexes,
grants, and triggers. All the DDL is written to a table named MDDEMO.DDL.

To execute the example, do the following:

1. Start SQL*Plus as user system. You will be prompted for a password.

sqlplus system

2. Install the demo, which is located in the file mddemo.sql in rdbms/demo:

SQL> @mddemo

For an explanation of what happens during this step, see What Does the
DBMS_METADATA Example Do?.

3. Connect as user mddemo. You will be prompted for a password, which is also
mddemo.

SQL> CONNECT mddemo
Enter password:

4. Set the following parameters so that query output will be complete and readable:

SQL> SET PAGESIZE 0
SQL> SET LONG 1000000

5. Execute the GET_PAYROLL_TABLES procedure, as follows:

SQL> CALL payroll_demo.get_payroll_tables();

6. Execute the following SQL query:

SQL> SELECT ddl FROM DDL ORDER BY SEQNO;

The output generated is the result of the execution of the GET_PAYROLL_TABLES
procedure. It shows all the DDL that was performed in Step 2 when the demo was
installed. See Output Generated from the GET_PAYROLL_TABLES Procedure for
a listing of the actual output.

• What Does the DBMS_METADATA Example Do?
Explanation of the DBMS_METADATA example.

• Output Generated from the GET_PAYROLL_TABLES Procedure
Explanation of the output generated from the GET_PAYROLL_TABLES procedure.

Chapter 23
Example Usage of the DBMS_METADATA API

23-28

23.9.1 What Does the DBMS_METADATA Example Do?
Explanation of the DBMS_METADATA example.

When the mddemo script is run, the following steps take place. You can adapt these
steps to your own situation.

1. Drops users as follows, if they exist. This will ensure that you are starting out with
fresh data. If the users do not exist, then a message to that effect is displayed, no
harm is done, and the demo continues to execute.

CONNECT system
Enter password: password
SQL> DROP USER mddemo CASCADE;
SQL> DROP USER mddemo_clerk CASCADE;
SQL> DROP USER mddemo_mgr CASCADE;

2. Creates user mddemo, identified by mddemo:

SQL> CREATE USER mddemo IDENTIFIED BY mddemo;
SQL> GRANT resource, connect, create session,
 1 create table,
 2 create procedure,
 3 create sequence,
 4 create trigger,
 5 create view,
 6 create synonym,
 7 alter session,
 8 TO mddemo;

3. Creates user mddemo_clerk, identified by clerk:

CREATE USER mddemo_clerk IDENTIFIED BY clerk;

4. Creates user mddemo_mgr, identified by mgr:

CREATE USER mddemo_mgr IDENTIFIED BY mgr;

5. Connect to SQL*Plus as mddemo (the password is also mddemo):

CONNECT mddemo
Enter password:

6. Creates some payroll-type tables:

SQL> CREATE TABLE payroll_emps
 2 (lastname VARCHAR2(60) NOT NULL,
 3 firstname VARCHAR2(20) NOT NULL,
 4 mi VARCHAR2(2),
 5 suffix VARCHAR2(10),
 6 dob DATE NOT NULL,
 7 badge_no NUMBER(6) PRIMARY KEY,
 8 exempt VARCHAR(1) NOT NULL,
 9 salary NUMBER (9,2),
 10 hourly_rate NUMBER (7,2))
 11 /

SQL> CREATE TABLE payroll_timecards
 2 (badge_no NUMBER(6) REFERENCES payroll_emps (badge_no),
 3 week NUMBER(2),
 4 job_id NUMBER(5),
 5 hours_worked NUMBER(4,2))
 6 /

Chapter 23
Example Usage of the DBMS_METADATA API

23-29

7. Creates a dummy table, audit_trail. This table is used to show that tables that
do not start with payroll are not retrieved by the GET_PAYROLL_TABLES procedure.

SQL> CREATE TABLE audit_trail
 2 (action_time DATE,
 3 lastname VARCHAR2(60),
 4 action LONG)
 5 /

8. Creates some grants on the tables just created:

SQL> GRANT UPDATE (salary,hourly_rate) ON payroll_emps TO mddemo_clerk;
SQL> GRANT ALL ON payroll_emps TO mddemo_mgr WITH GRANT OPTION;

SQL> GRANT INSERT,UPDATE ON payroll_timecards TO mddemo_clerk;
SQL> GRANT ALL ON payroll_timecards TO mddemo_mgr WITH GRANT OPTION;

9. Creates some indexes on the tables just created:

SQL> CREATE INDEX i_payroll_emps_name ON payroll_emps(lastname);
SQL> CREATE INDEX i_payroll_emps_dob ON payroll_emps(dob);
SQL> CREATE INDEX i_payroll_timecards_badge ON payroll_timecards(badge_no);

10. Creates some triggers on the tables just created:

SQL> CREATE OR REPLACE PROCEDURE check_sal(salary in number) AS BEGIN
 2 RETURN;
 3 END;
 4 /

Note that the security is kept fairly loose to keep the example simple.

SQL> CREATE OR REPLACE TRIGGER salary_trigger BEFORE INSERT OR UPDATE OF salary
ON payroll_emps
FOR EACH ROW WHEN (new.salary > 150000)
CALL check_sal(:new.salary)
/

SQL> CREATE OR REPLACE TRIGGER hourly_trigger BEFORE UPDATE OF hourly_rate ON
payroll_emps
FOR EACH ROW
BEGIN :new.hourly_rate:=:old.hourly_rate;END;
/

11. Sets up a table to hold the generated DDL:

CREATE TABLE ddl (ddl CLOB, seqno NUMBER);

12. Creates the PAYROLL_DEMO package, which provides examples of how
DBMS_METADATA procedures can be used.

SQL> CREATE OR REPLACE PACKAGE payroll_demo AS PROCEDURE get_payroll_tables;
END;
/

Note:

To see the entire script for this example, including the contents of the
PAYROLL_DEMO package, see the file mddemo.sql located in
your $ORACLE_HOME/rdbms/demo directory.

Chapter 23
Example Usage of the DBMS_METADATA API

23-30

23.9.2 Output Generated from the GET_PAYROLL_TABLES
Procedure

Explanation of the output generated from the GET_PAYROLL_TABLES procedure.

After you execute the mddemo.payroll_demo.get_payroll_tables procedure, you
can execute the following query:

SQL> SELECT ddl FROM ddl ORDER BY seqno;

The results are as follows, which reflect all the DDL executed by the script as
described in the previous section.

CREATE TABLE "MDDEMO"."PAYROLL_EMPS"
 ("LASTNAME" VARCHAR2(60) NOT NULL ENABLE,
 "FIRSTNAME" VARCHAR2(20) NOT NULL ENABLE,
 "MI" VARCHAR2(2),
 "SUFFIX" VARCHAR2(10),
 "DOB" DATE NOT NULL ENABLE,
 "BADGE_NO" NUMBER(6,0),
 "EXEMPT" VARCHAR2(1) NOT NULL ENABLE,
 "SALARY" NUMBER(9,2),
 "HOURLY_RATE" NUMBER(7,2),
 PRIMARY KEY ("BADGE_NO") ENABLE
) ;

 GRANT UPDATE ("SALARY") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT UPDATE ("HOURLY_RATE") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_DOB" ON "MDDEMO"."PAYROLL_EMPS" ("DOB")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_NAME" ON "MDDEMO"."PAYROLL_EMPS" ("LASTNAME")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

 CREATE OR REPLACE TRIGGER hourly_trigger before update of hourly_rate on payroll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/
ALTER TRIGGER "MDDEMO"."HOURLY_TRIGGER" ENABLE;

 CREATE OR REPLACE TRIGGER salary_trigger before insert or update of salary on payroll_emps
for each row
WHEN (new.salary > 150000) CALL check_sal(:new.salary)

Chapter 23
Example Usage of the DBMS_METADATA API

23-31

/
ALTER TRIGGER "MDDEMO"."SALARY_TRIGGER" ENABLE;

CREATE TABLE "MDDEMO"."PAYROLL_TIMECARDS"
 ("BADGE_NO" NUMBER(6,0),
 "WEEK" NUMBER(2,0),
 "JOB_ID" NUMBER(5,0),
 "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("BADGE_NO")
 REFERENCES "MDDEMO"."PAYROLL_EMPS" ("BADGE_NO") ENABLE
) ;

 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
 GRANT ALTER ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT DELETE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INDEX ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT SELECT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT REFERENCES ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
 GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;

 CREATE INDEX "MDDEMO"."I_PAYROLL_TIMECARDS_BADGE" ON "MDDEMO"."PAYROLL_TIMECARDS" ("BADGE_NO")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

23.10 Summary of DBMS_METADATA Procedures
Provides brief descriptions of the procedures provided by the DBMS_METADATA API.

For detailed descriptions of these procedures, see Oracle Database PL/SQL
Packages and Types Reference.

The following table provides a brief description of the procedures provided by the
DBMS_METADATA programmatic interface for retrieving multiple objects.

Table 23-1 DBMS_METADATA Procedures Used for Retrieving Multiple Objects

PL/SQL Procedure Name Description

DBMS_METADATA.OPEN()
Specifies the type of object to be retrieved, the version of its
metadata, and the object model.

DBMS_METADATA.SET_FILTER()
Specifies restrictions on the objects to be retrieved, for example,
the object name or schema.

DBMS_METADATA.SET_COUNT()
Specifies the maximum number of objects to be retrieved in a
single FETCH_xxx call.

DBMS_METADATA.GET_QUERY() Returns the text of the queries that are used by FETCH_xxx. You
can use this as a debugging aid.

DBMS_METADATA.SET_PARSE_ITEM()
Enables output parsing by specifying an object attribute to be
parsed and returned. You can query the
DBMS_METADATA_PARSE_ITEMS to see all valid parse items.

Chapter 23
Summary of DBMS_METADATA Procedures

23-32

Table 23-1 (Cont.) DBMS_METADATA Procedures Used for Retrieving Multiple Objects

PL/SQL Procedure Name Description

DBMS_METADATA.ADD_TRANSFORM() Specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects. You can query the
DBMS_METADATA_TRANSFORMS view to see all valid Oracle-supplied
transforms.

DBMS_METADATA.SET_TRANSFORM_PARAM()
Specifies parameters to the XSLT stylesheet identified by
transform_handle. You can query the
DBMS_METADATA_TRANSFORM_PARAMS view to see all the valid
transform parameters for each transform.

DBMS_METADATA.SET_REMAP_PARAM()
Specifies parameters to the XSLT stylesheet identified by
transform_handle.

DBMS_METADATA.FETCH_xxx()
Returns metadata for objects meeting the criteria established by
OPEN, SET_FILTER, SET_COUNT, ADD_TRANSFORM, and so on.

DBMS_METADATA.CLOSE() Invalidates the handle returned by OPEN and cleans up the
associated state.

The following table lists the procedures provided by the DBMS_METADATA browsing
interface and provides a brief description of each one. These functions return
metadata for one or more dependent or granted objects. These procedures do not
support heterogeneous object types.

Table 23-2 DBMS_METADATA Procedures Used for the Browsing Interface

PL/SQL Procedure
Name

Description

DBMS_METADATA.GET_xx
x()

Provides a way to return metadata for a single object. Each GET_xxx
call consists of an OPEN procedure, one or two SET_FILTER calls,
optionally an ADD_TRANSFORM procedure, a FETCH_xxx call, and a
CLOSE procedure.

The object_type parameter has the same semantics as in the OPEN
procedure. schema and name are used for filtering.

If a transform is specified, then session-level transform flags are
inherited.

DBMS_METADATA.GET_DE
PENDENT_xxx()

Returns the metadata for one or more dependent objects, specified as
XML or DDL.

DBMS_METADATA.GET_GR
ANTED_xxx()

Returns the metadata for one or more granted objects, specified as
XML or DDL.

The following table provides a brief description of the DBMS_METADATA procedures and
functions used for XML submission.

Chapter 23
Summary of DBMS_METADATA Procedures

23-33

Table 23-3 DBMS_METADATA Procedures and Functions for Submitting XML
Data

PL/SQL Name Description

DBMS_METADATA.OPENW()
Opens a write context.

DBMS_METADATA.ADD_TRANSFORM()
Specifies a transform for the XML documents

DBMS_METADATA.SET_TRANSFORM_P
ARAM() and
DBMS_METADATA.SET_REMAP_PARA
M()

SET_TRANSFORM_PARAM specifies a parameter to a
transform.

SET_REMAP_PARAM specifies a remapping for a transform.

DBMS_METADATA.SET_PARSE_ITEM(
)

Specifies an object attribute to be parsed.

DBMS_METADATA.CONVERT()
Converts an XML document to DDL.

DBMS_METADATA.PUT()
Submits an XML document to the database.

DBMS_METADATA.CLOSE() Closes the context opened with OPENW.

23.11 Summary of DBMS_METADATA_DIFF Procedures
Provides brief descriptions of the procedures and functions provided by the
DBMS_METADATA_DIFF API.

For detailed descriptions of these procedures, see Oracle Database PL/SQL
Packages and Types Reference.

Table 23-4 DBMS_METADATA_DIFF Procedures and Functions

PL/SQL Procedure Name Description

OPENC function Specifies the type of objects to be compared.

ADD_DOCUMENT procedure Specifies an SXML document to be compared.

FETCH_CLOB functions and procedures Returns a CLOB showing the differences between the two
documents specified by ADD_DOCUMENT.

CLOSE procedure Invalidates the handle returned by OPENC and cleans up associated
state.

Chapter 23
Summary of DBMS_METADATA_DIFF Procedures

23-34

24
Original Export

The original Export utility (exp) writes data from an Oracle database into an operating
system file in binary format.

This file is stored outside the database, and it can be read into another Oracle
database using the original Import utility.

Note:

Original Export is desupported for general use as of Oracle Database 11g.
The only supported use of original Export in Oracle Database 11g is
backward migration of XMLType data to Oracle Database 10g release 2 (10.2)
or earlier. Therefore, Oracle recommends that you use the new Data Pump
Export and Import utilities, except in the following situations which require
original Export and Import:

• You want to import files that were created using the original Export utility
(exp).

• You want to export files that will be imported using the original Import
utility (imp). An example of this would be exporting data from Oracle
Database 10g and then importing it into an earlier database release.

• What is the Export Utility?
The original Export utility (exp) provides a simple way for you to transfer data
objects between Oracle Database instances, regardless of hardware or software
configurations.

• Before Using Export
Before you use the original Export (exp) utility, review the preparation checklist,
and complete tasks as necessary on your server or Oracle Database instances.

• Invoking Export
You can start Export and specify parameters by using one of three different
methods.

• Export Modes
The Export utility supports four modes of operation.

• Export Parameters
This section describes the origial Oracle Export utility command-line parameters.

• Example Export Sessions
Examples of the types of Export sessions.

• Warning, Error, and Completion Messages
These sections describes the different types of messages issued by Export and
how to save them in a log file.

24-1

• Exit Codes for Inspection and Display
Export provides the results of an operation immediately upon completion.
Depending on the platform, the outcome may be reported in a process exit code
and the results recorded in the log file.

• Conventional Path Export Versus Direct Path Export
Export provides two methods for exporting table data.

• Starting a Direct Path Export
To use direct path Export, specify the DIRECT=y parameter on the command line or
in the parameter file.

• Network Considerations for Original Oracle Data Pump Export
When you use original Export (exp) across a network, review protocols and
connection qualifier strings.

• Character Set and Globalization Support Considerations
These sections describe the globalization support behavior of Export with respect
to character set conversion of user data and data definition language (DDL).

• Using Instance Affinity with Export and Import
You can use instance affinity to associate jobs with instances in databases you
plan to export and import.

• Considerations When Exporting Database Objects
These sections describe points that you should consider when you export
particular database objects.

• Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces
from one Oracle database to another.

• Exporting From a Read-Only Database
Describes exporting from a read-only database.

• Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may
be more efficient to partition the migration into multiple export and import jobs.

• Using Different Releases of Export and Import
Describes compatibility issues that relate to using different releases of Export and
the Oracle database.

24.1 What is the Export Utility?
The original Export utility (exp) provides a simple way for you to transfer data objects
between Oracle Database instances, regardless of hardware or software
configurations.

When you run Export against an Oracle Database instance, objects (such as tables)
are extracted, followed by their related objects (such as indexes, comments, and
grants), if any.

An Export file is an Oracle binary-format dump file that is typically located on disk or
tape. You can transfer the dump files by using FTP, or by physically transported (for
example, in the case of tape) to a different site. The files can then be used with the
Import utility to transfer data between databases that are on systems not connected
through a network, even if the databases reside on platforms with different hardware
and software configurations. The files can also be used as backups, in addition to
normal backup procedures.

Chapter 24
What is the Export Utility?

24-2

Export dump files can only be read by the Oracle Import utility. The version of the
Import utility cannot be earlier than the version of the Export utility that was used to
create the dump file.

You can also display the contents of an export file without actually performing an
import. To display the contents, use the Import SHOW parameter. To load data from
ASCII fixed-format or delimited files, use the SQL*Loader utility.

Related Topics

• SHOW
Lists the contents of the export file before importing.

24.2 Before Using Export
Before you use the original Export (exp) utility, review the preparation checklist, and
complete tasks as necessary on your server or Oracle Database instances.

• Preparation Checklist for Using Export
Before you begin using the original Export utility (exp), perform these checks.

• Running catexp.sql or catalog.sql
To use Export, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer release.

• Ensuring Sufficient Disk Space for Export Operations
Before you run Export, ensure that there is sufficient disk or tape storage space to
write the export file.

• Verifying Access Privileges for Export and Import Operations
To use Export, you must have the CREATE SESSION privilege on an Oracle
database.

24.2.1 Preparation Checklist for Using Export
Before you begin using the original Export utility (exp), perform these checks.

To avoid issues, ensure that each of the following conditions is true:

• If you created your database manually, ensure that the catexp.sql or
catalog.sql script has been run. If you created your database using the Database
Configuration Assistant (DBCA), it is not necessary to run these scripts.

• Ensure there is sufficient disk or tape storage to write the export file

• Verify that you have the required access privileges

24.2.2 Running catexp.sql or catalog.sql
To use Export, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer release.

The catexp.sql or catalog.sql script needs to be run only once on a database. The
script performs the following tasks to prepare the database for export and import
operations:

• Creates the necessary export and import views in the data dictionary

• Creates the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles

Chapter 24
Before Using Export

24-3

• Assigns all necessary privileges to the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles

• Assigns EXP_FULL_DATABASE and IMP_FULL_DATABASE to the DBA role

• Records the version of catexp.sql that has been installed

The EXP_FULL_DATABASE and IMP_FULL_DATABASE roles are powerful. Database
administrators should use caution when granting these roles to users.

24.2.3 Ensuring Sufficient Disk Space for Export Operations
Before you run Export, ensure that there is sufficient disk or tape storage space to
write the export file.

If there is not enough space, then Export terminates with a write-failure error.

You can use table sizes to estimate the maximum space needed. You can find table
sizes in the USER_SEGMENTS view of the Oracle data dictionary. The following query
displays disk usage for all tables:

SELECT SUM(BYTES) FROM USER_SEGMENTS WHERE SEGMENT_TYPE='TABLE';

The result of the query does not include disk space used for data stored in LOB (large
object) or VARRAY columns or in partitioned tables.

See Also:

Oracle Database Reference for more information about dictionary views

24.2.4 Verifying Access Privileges for Export and Import Operations
To use Export, you must have the CREATE SESSION privilege on an Oracle database.

This privilege belongs to the CONNECT role established during database creation. To
export tables owned by another user, you must have the EXP_FULL_DATABASE role
enabled. This role is granted to all database administrators (DBAs).

If you do not have the system privileges contained in the EXP_FULL_DATABASE role,
then you cannot export objects contained in another user's schema. For example, you
cannot export a table in another user's schema, even if you created a synonym for it.

Several system schemas cannot be exported because they are not user schemas;
they contain Oracle-managed data and metadata. Examples of schemas that are not
exported include SYS, ORDSYS, and MDSYS.

24.3 Invoking Export
You can start Export and specify parameters by using one of three different methods.

Before you use one of these methods, be sure to read the descriptions of the available
parameters. See Export Parameters .

Chapter 24
Invoking Export

24-4

• Invoking Export as SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the
same as for generalized users.

• Command-Line Entries
You can specify all valid parameters and their values from the command line.

• Parameter Files
You can specify all valid parameters and their values in a parameter file.

• Interactive Mode
If you prefer to be prompted for the value of each parameter, then specify exp at
the command line.

• Getting Online Help
Export provides online help. Enter exp help=y on the command line to display
Export help.

24.3.1 Invoking Export as SYSDBA
SYSDBA is used internally and has specialized functions; its behavior is not the same as
for generalized users.

Therefore, you should not typically need to start Export as SYSDBA except in the
following situations:

• At the request of Oracle technical support

• When importing a transportable tablespace set

24.3.2 Command-Line Entries
You can specify all valid parameters and their values from the command line.

Use the following syntax (you will be prompted for a username and password):

exp PARAMETER=value

or

exp PARAMETER=(value1,value2,...,valuen)

The number of parameters cannot exceed the maximum length of a command line on
the system.

24.3.3 Parameter Files
You can specify all valid parameters and their values in a parameter file.

Storing the parameters in a file allows them to be easily modified or reused, and is the
recommended method for invoking Export. If you use different parameters for different
databases, then you can have multiple parameter files.

Create the parameter file using any flat file text editor. The command-line option
PARFILE=filename tells Export to read the parameters from the specified file rather
than from the command line. For example:

The syntax for parameter file specifications is one of the following:

Chapter 24
Invoking Export

24-5

PARAMETER=value
PARAMETER=(value)
PARAMETER=(value1, value2, ...)

The following example shows a partial parameter file listing:

FULL=y
FILE=dba.dmp
GRANTS=y
INDEXES=y
CONSISTENT=y

Note:

The maximum size of the parameter file may be limited by the operating
system. The name of the parameter file is subject to the file-naming
conventions of the operating system.

You can add comments to the parameter file by preceding them with the pound (#)
sign. Export ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters on
the command line. In fact, you can specify the same parameter in both places. The
position of the PARFILE parameter and other parameters on the command line
determines which parameters take precedence. For example, assume the parameter
file params.dat contains the parameter INDEXES=y and Export is started with the
following line:

exp PARFILE=params.dat INDEXES=n

In this case, because INDEXES=n occurs after PARFILE=params.dat, INDEXES=n
overrides the value of the INDEXES parameter in the parameter file.

24.3.4 Interactive Mode
If you prefer to be prompted for the value of each parameter, then specify exp at the
command line.

After you enter your username and password at the prompts, commonly used
parameters are displayed.

You can accept the default parameter value, if one is provided, or enter a different
value. The command-line interactive method does not provide prompts for all
functionality and is provided only for backward compatibility. If you want to use an
interactive interface, then Oracle recommends that you use the Oracle Enterprise
Manager Export Wizard.

• Restrictions When Using Export's Interactive Method
Describes restrictions when using the Export interactive method.

24.3.4.1 Restrictions When Using Export's Interactive Method
Describes restrictions when using the Export interactive method.

Keep in mind the following points when you use the interactive method:

Chapter 24
Invoking Export

24-6

• In user mode, Export prompts for all usernames to be included in the export before
exporting any data. To indicate the end of the user list and begin the current
Export session, press Enter.

• In table mode, if you do not specify a schema prefix, then Export defaults to the
exporter's schema or the schema containing the last table exported in the current
session.

For example, if beth is a privileged user exporting in table mode, then Export
assumes that all tables are in the beth schema until another schema is specified.
Only a privileged user (someone with the EXP_FULL_DATABASE role) can export
tables in another user's schema.

• If you specify a null table list to the prompt "Table to be exported," then the Export
utility exits.

24.3.5 Getting Online Help
Export provides online help. Enter exp help=y on the command line to display Export
help.

24.4 Export Modes
The Export utility supports four modes of operation.

Specifically:

• Full: Exports a full database. Only users with the EXP_FULL_DATABASE role can use
this mode. Use the FULL parameter to specify this mode.

• Tablespace: Enables a privileged user to move a set of tablespaces from one
Oracle database to another. Use the TRANSPORT_TABLESPACE parameter to specify
this mode.

• User: Enables you to export all objects that belong to you (such as tables, grants,
indexes, and procedures). A privileged user importing in user mode can import all
objects in the schemas of a specified set of users. Use the OWNER parameter to
specify this mode in Export.

• Table: Enables you to export specific tables and partitions. A privileged user can
qualify the tables by specifying the schema that contains them. For any table for
which a schema name is not specified, Export defaults to the exporter's schema
name. Use the TABLES parameter to specify this mode.

See Table 24-1 for a list of objects that are exported and imported in each mode.

Chapter 24
Export Modes

24-7

Note:

The original Export utility does not export any table that was created with
deferred segment creation and has not had a segment created for it. The
most common way for a segment to be created is to store a row into the
table, though other operations such as ALTER TABLE ALLOCATE EXTENTS will
also create a segment. If a segment does exist for the table and the table is
exported, then the SEGMENT CREATION DEFERRED clause is not included in the
CREATE TABLE statement that is executed by the original Import utility.

You can use conventional path Export or direct path Export to export in any mode
except tablespace mode.The differences between conventional path Export and direct
path Export are described in Conventional Path Export Versus Direct Path Export.

Table 24-1 Objects Exported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

Analyze cluster No Yes Yes No

Analyze tables/statistics Yes Yes Yes Yes

Application contexts No No Yes No

Auditing information Yes Yes Yes No

B-tree, bitmap, domain
function-based indexes

Yes1 Yes Yes Yes

Cluster definitions No Yes Yes Yes

Column and table
comments

Yes Yes Yes Yes

Database links No Yes Yes No

Default roles No No Yes No

Dimensions No Yes Yes No

Directory aliases No No Yes No

External tables (without
data)

Yes Yes Yes No

Foreign function libraries No Yes Yes No

Indexes owned by users
other than table owner

Yes (Privileged
users only)

Yes Yes Yes

Index types No Yes Yes No

Java resources and
classes

No Yes Yes No

Job queues No Yes Yes No

Nested table data Yes Yes Yes Yes

Object grants Yes (Only for
tables and
indexes)

Yes Yes Yes

Object type definitions
used by table

Yes Yes Yes Yes

Chapter 24
Export Modes

24-8

Table 24-1 (Cont.) Objects Exported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

Object types No Yes Yes No

Operators No Yes Yes No

Password history No No Yes No

Postinstance actions and
objects

No No Yes No

Postschema procedural
actions and objects

No Yes Yes No

Posttable actions Yes Yes Yes Yes

Posttable procedural
actions and objects

Yes Yes Yes Yes

Preschema procedural
objects and actions

No Yes Yes No

Pretable actions Yes Yes Yes Yes

Pretable procedural
actions

Yes Yes Yes Yes

Private synonyms No Yes Yes No

Procedural objects No Yes Yes No

Profiles No No Yes No

Public synonyms No No Yes No

Referential integrity
constraints

Yes Yes Yes No

Refresh groups No Yes Yes No

Resource costs No No Yes No

Role grants No No Yes No

Roles No No Yes No

Rollback segment
definitions

No No Yes No

Security policies for table Yes Yes Yes Yes

Sequence numbers No Yes Yes No

Snapshot logs No Yes Yes No

Snapshots and
materialized views

No Yes Yes No

System privilege grants No No Yes No

Table constraints
(primary, unique, check)

Yes Yes Yes Yes

Table data Yes Yes Yes Yes

Table definitions Yes Yes Yes Yes

Tablespace definitions No No Yes No

Tablespace quotas No No Yes No

Triggers Yes Yes2 Yes3 Yes

Chapter 24
Export Modes

24-9

Table 24-1 (Cont.) Objects Exported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

Triggers owned by other
users

Yes (Privileged
users only)

No No No

User definitions No No Yes No

User proxies No No Yes No

User views No Yes Yes No

User-stored procedures,
packages, and functions

No Yes Yes No

1 Nonprivileged users can export and import only indexes they own on tables they own. They cannot export
indexes they own that are on tables owned by other users, nor can they export indexes owned by other
users on their own tables. Privileged users can export and import indexes on the specified users' tables,
even if the indexes are owned by other users. Indexes owned by the specified user on other users' tables
are not included, unless those other users are included in the list of users to export.

2 Nonprivileged and privileged users can export and import all triggers owned by the user, even if they are
on tables owned by other users.

3 A full export does not export triggers owned by schema SYS. You must manually re-create SYS triggers
either before or after the full import. Oracle recommends that you re-create them after the import in case
they define actions that would impede progress of the import.

• Table-Level and Partition-Level Export
You can export tables, partitions, and subpartitions.

24.4.1 Table-Level and Partition-Level Export
You can export tables, partitions, and subpartitions.

In all modes, partitioned data is exported in a format such that partitions or
subpartitions can be imported selectively.

• Table-Level Export
Exports all data from the specified tables.

• Partition-Level Export
Exports only data from the specified source partitions or subpartitions.

24.4.1.1 Table-Level Export
Exports all data from the specified tables.

In table-level Export, you can export an entire table (partitioned or nonpartitioned)
along with its indexes and other table-dependent objects. If the table is partitioned,
then all of its partitions and subpartitions are also exported. This applies to both direct
path Export and conventional path Export. You can perform a table-level export in any
Export mode.

24.4.1.2 Partition-Level Export
Exports only data from the specified source partitions or subpartitions.

In partition-level Export, you can export one or more specified partitions or
subpartitions of a table. You can only perform a partition-level export in table mode.

Chapter 24
Export Modes

24-10

For information about how to specify table-level and partition-level Exports, see
TABLES.

24.5 Export Parameters
This section describes the origial Oracle Export utility command-line parameters.

• BUFFER
The original Export command-line parameter BUFFER specifies the size, in bytes, of
the buffer used to fetch rows.

• COMPRESS

• CONSISTENT

• CONSTRAINTS

• DIRECT
The DIRECT parameter for the Export utility specifies the use of direct path Export.

• FEEDBACK
The FEEDBACK Export utility parameter specifies that Export should display a
progress meter in the form of a period for n number of rows exported.

• FILE
The FILE Export utility parameter specifies the names of the export dump files.

• FILESIZE
The FILESIZE Export utility parameter specifies the size of the dump file.

• FLASHBACK_SCN
The FLASHBACK_SCN Export utility parameter specifies the system change
number (SCN) that Export is going to use to enable flashback.

• FLASHBACK_TIME
The FLASHBACK_TIME Export utility parameter enables you to specify a timestamp.
Export finds the SCN that most closely matches the specified timestamp. This
SCN is used to enable flashback.

• FULL
The FULL Export parameter indicates that the export is a full database mode export
(that is, it exports the entire database).

• GRANTS
The GRANTS Export utility parameter specifies whether the Export utility exports
object grants.

• HELP
The HELP parameter of Export utility displays a description of the Export
parameters.

• INDEXES
INDEXES Export parameter specifies whether the Export utility exports indexes.

• LOG
Specifies a file name (for example, export.log) to receive informational and error
messages.

• OBJECT_CONSISTENT
Specifies whether the Export utility uses the SET TRANSACTION READ ONLY
statement to ensure that the data exported is consistent to a single point in time
and does not change during the export.

Chapter 24
Export Parameters

24-11

• OWNER
Indicates that the export is a user-mode export and lists the users whose objects
will be exported.

• PARFILE
Specifies a file name for a file that contains a list of Export parameters.

• QUERY
This parameter enables you to select a subset of rows from a set of tables when
doing a table mode export.

• RECORDLENGTH
Specifies the length, in bytes, of the file record.

• RESUMABLE
The RESUMABLE parameter is used to enable and disable resumable space
allocation.

• RESUMABLE_NAME
The value for the RESUMABLE_NAME parameter identifies the statement that is
resumable.

• RESUMABLE_TIMEOUT
The value of the RESUMABLE_TIMEOUT parameter specifies the time period during
which an error must be fixed.

• ROWS
Specifies whether the rows of table data are exported.

• STATISTICS
Specifies the type of database optimizer statistics to generate when the exported
data is imported. Options are ESTIMATE, COMPUTE, and NONE.

• TABLES
The original Export command-line mode TABLES parameter specifies that the
export is a table-mode export, and lists the table names and partition and
subpartition names that you specified for export.

• TABLESPACES
The TABLESPACES parameter specifies that all tables in the specified tablespace be
exported to the Export dump file.

• TRANSPORT_TABLESPACE
When specified as y, this parameter enables the export of transportable
tablespace metadata.

• TRIGGERS
Specifies whether the Export utility exports triggers.

• TTS_FULL_CHECK
When TTS_FULL_CHECK is set to y, Export verifies that a recovery set (set of
tablespaces to be recovered) has no dependencies (specifically, IN pointers) on
objects outside the recovery set, and the reverse.

• USERID (username/password)
Specifies the username, password, and optional connect string of the user
performing the export.

• VOLSIZE
Specifies the maximum number of bytes in an export file on each volume of tape.

Chapter 24
Export Parameters

24-12

24.5.1 BUFFER
The original Export command-line parameter BUFFER specifies the size, in bytes, of the
buffer used to fetch rows.

Default

Operating system-dependent. See your Oracle Database operating system-specific
documentation to determine the default value for this parameter.

Purpose

Specifies the size, in bytes, of the buffer used to fetch rows. As a result, this parameter
determines the maximum number of rows in an array fetched by Export. Use the
following formula to calculate the buffer size:

buffer_size = rows_in_array * maximum_row_size

Usage Notes

If you specify a value of zero, then the Export utility fetches only one row at a time.

Tables with columns of type LOBs, LONG, BFILE, REF, ROWID, LOGICAL ROWID, or DATE
are fetched one row at a time.

Note:

The BUFFER parameter applies only to conventional path Export. It has no
effect on a direct path Export. For direct path Exports, use the RECORDLENGTH
parameter to specify the size of the buffer that Export uses for writing to the
export file.

Example

The following example shows how to calculate buffer size.

Consider the following table creation statement:

CREATE TABLE sample (name varchar(30), weight number);

The maximum size of the name column is 30, plus 2 bytes for the indicator. The
maximum size of the weight column is 22 (the size of the internal representation for
Oracle Database numbers), plus 2 bytes for the indicator.

Therefore, the maximum row size is 56 (30+2+22+2).

To perform array operations for 100 rows, you should specify a buffer size of at least
5600.

24.5.2 COMPRESS
Default: y

Chapter 24
Export Parameters

24-13

Specifies how Export and Import manage the initial extent for table data.

The default, COMPRESS=y, causes Export to flag table data for consolidation into one
initial extent upon import. If extent sizes are large (for example, because of the
PCTINCREASE parameter), then the allocated space will be larger than the space
required to hold the data.

If you specify COMPRESS=n, then Export uses the current storage parameters, including
the values of initial extent size and next extent size. The values of the parameters may
be the values specified in the CREATE TABLE or ALTER TABLE statements or the values
modified by the database system. For example, the NEXT extent size value may be
modified if the table grows and if the PCTINCREASE parameter is nonzero.

The COMPRESS parameter does not work with bitmapped tablespaces.

Note:

Although the actual consolidation is performed upon import, you can specify
the COMPRESS parameter only when you export, not when you import. The
Export utility, not the Import utility, generates the data definitions, including
the storage parameter definitions. Therefore, if you specify COMPRESS=y when
you export, then you can import the data in consolidated form only.

Note:

Neither LOB data nor subpartition data is compressed. Rather, values of
initial extent size and next extent size at the time of export are used.

24.5.3 CONSISTENT
Default: n

Specifies whether Export uses the SET TRANSACTION READ ONLY statement to ensure
that the data seen by Export is consistent to a single point in time and does not
change during the execution of the exp command. You should specify CONSISTENT=y
when you anticipate that other applications will be updating the target data after an
export has started.

If you use CONSISTENT=n, then each table is usually exported in a single transaction.
However, if a table contains nested tables, then the outer table and each inner table
are exported as separate transactions. If a table is partitioned, then each partition is
exported as a separate transaction.

Therefore, if nested tables and partitioned tables are being updated by other
applications, then the data that is exported could be inconsistent. To minimize this
possibility, export those tables at a time when updates are not being done.

Table 24-2 shows a sequence of events by two users: user1 exports partitions in a
table and user2 updates data in that table.

Chapter 24
Export Parameters

24-14

Table 24-2 Sequence of Events During Updates by Two Users

TIme Sequence user1 user2

1 Begins export of TAB:P1 No activity

2 No activity Updates TAB:P2 Updates TAB:P1
Commits transaction

3 Ends export of TAB:P1 No activity

4 Exports TAB:P2 No activity

If the export uses CONSISTENT=y, then none of the updates by user2 are written to the
export file.

If the export uses CONSISTENT=n, then the updates to TAB:P1 are not written to the
export file. However, the updates to TAB:P2 are written to the export file, because the
update transaction is committed before the export of TAB:P2 begins. As a result, the
user2 transaction is only partially recorded in the export file, making it inconsistent.

If you use CONSISTENT=y and the volume of updates is large, then the rollback segment
usage will be large. In addition, the export of each table will be slower, because the
rollback segment must be scanned for uncommitted transactions.

Keep in mind the following points about using CONSISTENT=y:

• CONSISTENT=y is unsupported for exports that are performed when you are
connected as user SYS or you are using AS SYSDBA, or both.

• Export of certain metadata may require the use of the SYS schema within recursive
SQL. In such situations, the use of CONSISTENT=y will be ignored. Oracle
recommends that you avoid making metadata changes during an export process
in which CONSISTENT=y is selected.

• To minimize the time and space required for such exports, you should export
tables that need to remain consistent separately from those that do not. For
example, export the emp and dept tables together in a consistent export, and then
export the remainder of the database in a second pass.

• A "snapshot too old" error occurs when rollback space is used up, and space
taken up by committed transactions is reused for new transactions. Reusing space
in the rollback segment allows database integrity to be preserved with minimum
space requirements, but it imposes a limit on the amount of time that a read-
consistent image can be preserved.

If a committed transaction has been overwritten and the information is needed for
a read-consistent view of the database, then a "snapshot too old" error results.

To avoid this error, you should minimize the time taken by a read-consistent
export. (Do this by restricting the number of objects exported and, if possible, by
reducing the database transaction rate.) Also, make the rollback segment as large
as possible.

Chapter 24
Export Parameters

24-15

Note:

Rollback segments will be deprecated in a future Oracle database
release. Oracle recommends that you use automatic undo management
instead.

See Also:

"OBJECT_CONSISTENT"

24.5.4 CONSTRAINTS
Default: y

Specifies whether the Export utility exports table constraints.

24.5.5 DIRECT
The DIRECT parameter for the Export utility specifies the use of direct path Export.

Default

n

Syntax and Procedure

DIRECT=[Y|N]

Specifying DIRECT=y causes Export to extract data by reading the data directly,
bypassing the SQL command-processing layer (evaluating buffer). This method can
be much faster than a conventional path Export.

There are security and performance considerations for Export procedures. Review the
relevant topic.

Related Topics

• Starting a Direct Path Export
To use direct path Export, specify the DIRECT=y parameter on the command line or
in the parameter file.

24.5.6 FEEDBACK
The FEEDBACK Export utility parameter specifies that Export should display a progress
meter in the form of a period for n number of rows exported.

Default: 0 (zero)

Specifies that Export should display a progress meter in the form of a period for n
number of rows exported. For example, if you specify FEEDBACK=10, then Export

Chapter 24
Export Parameters

24-16

displays a period each time 10 rows are exported. The FEEDBACK value applies to all
tables being exported; it cannot be set individually for each table.

24.5.7 FILE
The FILE Export utility parameter specifies the names of the export dump files.

Default: expdat.dmp

Specifies the names of the export dump files. The default extension is .dmp, but you
can specify any extension. Because Export supports multiple export files, you can
specify multiple file names to be used. For example:

exp scott FILE = dat1.dmp, dat2.dmp, dat3.dmp FILESIZE=2048

When Export reaches the value you have specified for the maximum FILESIZE, Export
stops writing to the current file, opens another export file with the next name specified
by the FILE parameter, and continues until complete or the maximum value of
FILESIZE is again reached. If you do not specify sufficient export file names to
complete the export, then Export prompts you to provide additional file names.

24.5.8 FILESIZE
The FILESIZE Export utility parameter specifies the size of the dump file.

Default: Data is written to one file until the maximum size, as specified in Table 24-3, is
reached.

Export supports writing to multiple export files, and Import can read from multiple
export files. If you specify a value (byte limit) for the FILESIZE parameter, then Export
will write only the number of bytes you specify to each dump file.

When the amount of data Export must write exceeds the maximum value you specified
for FILESIZE, it will get the name of the next export file from the FILE parameter or, if it
has used all the names specified in the FILE parameter, then it prompts you to provide
a new export file name. If you do not specify a value for FILESIZE (note that a value of
0 is equivalent to not specifying FILESIZE), then Export will write to only one file,
regardless of the number of files specified in the FILE parameter.

Note:

If the space requirements of your export file exceed the available disk space,
then Export will terminate, and you will have to repeat the Export after
making sufficient disk space available.

The FILESIZE parameter has a maximum value equal to the maximum value that can
be stored in 64 bits.

Table 24-3 shows that the maximum size for dump files depends on the operating
system you are using and on the release of the Oracle database that you are using.

Chapter 24
Export Parameters

24-17

Table 24-3 Maximum Size for Dump Files

Operating System Release of Oracle Database Maximum Size

Any Before 8.1.5 2 gigabytes

32-bit 8.1.5 2 gigabytes

64-bit 8.1.5 and later Unlimited

32-bit with 32-bit files Any 2 gigabytes

32-bit with 64-bit files 8.1.6 and later Unlimited

The maximum value that can be stored in a file is dependent on your operating
system. You should verify this maximum value in your Oracle operating system-
specific documentation before specifying FILESIZE. You should also ensure that the
file size you specify for Export is supported on the system on which Import will run.

The FILESIZE value can also be specified as a number followed by KB (number of
kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048. Similarly, MB
specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B remains
the shorthand for bytes; the number is not multiplied to obtain the final file size
(FILESIZE=2048B is the same as FILESIZE=2048).

24.5.9 FLASHBACK_SCN
The FLASHBACK_SCN Export utility parameter specifies the system change number
(SCN) that Export is going to use to enable flashback.

Default: none

Specifies the system change number (SCN) that Export is going to use to enable
flashback. The export operation is performed with data consistent as of this specified
SCN.

See Also:

• Oracle Database Backup and Recovery User's Guide for more
information about performing flashback recovery

The following is an example of specifying an SCN. When the export is performed, the
data will be consistent as of SCN 3482971.

> exp FILE=exp.dmp FLASHBACK_SCN=3482971

24.5.10 FLASHBACK_TIME
The FLASHBACK_TIME Export utility parameter enables you to specify a timestamp.
Export finds the SCN that most closely matches the specified timestamp. This SCN is
used to enable flashback.

Default: none

Chapter 24
Export Parameters

24-18

Enables you to specify a timestamp. Export finds the SCN that most closely matches
the specified timestamp. This SCN is used to enable flashback. The export operation
is performed with data consistent as of this SCN.

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME
procedure accepts. This means that you can specify it in either of the following ways:

> exp FILE=exp.dmp FLASHBACK_TIME="TIMESTAMP '2006-05-01 11:00:00'"

> exp FILE=exp.dmp FLASHBACK_TIME="TO_TIMESTAMP('12-02-2005 14:35:00', 'DD-MM-YYYY
HH24:MI:SS')"

Also, the old format, as shown in the following example, will continue to be accepted to
ensure backward compatibility:

> exp FILE=exp.dmp FLASHBACK_TIME="'2006-05-01 11:00:00'"

See Also:

• Oracle Database Backup and Recovery User's Guide for more
information about performing flashback recovery

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_FLASHBACK PL/SQL package

24.5.11 FULL
The FULL Export parameter indicates that the export is a full database mode export
(that is, it exports the entire database).

Default: n

Indicates that the export is a full database mode export (that is, it exports the entire
database). Specify FULL=y to export in full database mode. You need to have the
EXP_FULL_DATABASE role to export in this mode.

• Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a
database.

24.5.11.1 Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a
database.

However, to avoid problems be sure to keep the following points in mind:

• A full export does not export triggers owned by schema SYS. You must manually
re-create SYS triggers either before or after the full import. Oracle recommends that
you re-create them after the import in case they define actions that would impede
progress of the import.

Chapter 24
Export Parameters

24-19

• A full export also does not export the default profile. If you have modified the
default profile in the source database (for example, by adding a password
verification function owned by schema SYS), then you must manually pre-create
the function and modify the default profile in the target database after the import
completes.

• If possible, before beginning, make a physical copy of the exported database and
the database into which you intend to import. This ensures that any mistakes are
reversible.

• Before you begin the export, it is advisable to produce a report that includes the
following information:

– A list of tablespaces and data files

– A list of rollback segments

– A count, by user, of each object type such as tables, indexes, and so on

This information lets you ensure that tablespaces have already been created and
that the import was successful.

• If you are creating a completely new database from an export, then remember to
create an extra rollback segment in SYSTEM and to make it available in your
initialization parameter file (init.ora)before proceeding with the import.

• When you perform the import, ensure you are pointing at the correct instance. This
is very important because on some UNIX systems, just the act of entering a
subshell can change the database against which an import operation was
performed.

• Do not perform a full import on a system that has more than one database unless
you are certain that all tablespaces have already been created. A full import
creates any undefined tablespaces using the same data file names as the
exported database. This can result in problems in the following situations:

– If the data files belong to any other database, then they will become corrupted.
This is especially true if the exported database is on the same system,
because its data files will be reused by the database into which you are
importing.

– If the data files have names that conflict with existing operating system files.

24.5.12 GRANTS
The GRANTS Export utility parameter specifies whether the Export utility exports
object grants.

Default: y

Specifies whether the Export utility exports object grants. The object grants that are
exported depend on whether you use full database mode or user mode. In full
database mode, all grants on a table are exported. In user mode, only those granted
by the owner of the table are exported. System privilege grants are always exported.

24.5.13 HELP
The HELP parameter of Export utility displays a description of the Export parameters.

Default: none

Chapter 24
Export Parameters

24-20

Displays a description of the Export parameters. Enter exp help=y on the command
line to display the help content.

24.5.14 INDEXES
INDEXES Export parameter specifies whether the Export utility exports indexes.

Default: y

Specifies whether the Export utility exports indexes.

24.5.15 LOG
Specifies a file name (for example, export.log) to receive informational and error
messages.

Default: none

If you specify this parameter, then messages are logged in the log file and displayed to
the terminal display.

24.5.16 OBJECT_CONSISTENT
Specifies whether the Export utility uses the SET TRANSACTION READ ONLY statement to
ensure that the data exported is consistent to a single point in time and does not
change during the export.

Default: n

If OBJECT_CONSISTENT is set to y, then each object is exported in its own read-only
transaction, even if it is partitioned. In contrast, if you use the CONSISTENT parameter,
then there is only one read-only transaction.

See Also:

CONSISTENT

24.5.17 OWNER
Indicates that the export is a user-mode export and lists the users whose objects will
be exported.

Default: none

If the user initiating the export is the database administrator (DBA), then multiple users
can be listed.

User-mode exports can be used to back up one or more database users. For example,
a DBA may want to back up the tables of deleted users for a period of time. User
mode is also appropriate for users who want to back up their own data or who want to
move objects from one owner to another.

Chapter 24
Export Parameters

24-21

24.5.18 PARFILE
Specifies a file name for a file that contains a list of Export parameters.

Default: none

For more information about using a parameter file, see Invoking Export.

24.5.19 QUERY
This parameter enables you to select a subset of rows from a set of tables when doing
a table mode export.

Default

None.

Purpose

The value of the query parameter is a string that contains a WHERE clause for a SQL
SELECT statement that will be applied to all tables (or table partitions) listed in the
TABLES parameter.

For example, if user scott wants to export only those employees whose job title is
SALESMAN and whose salary is less than 1600, then he could do the following (this
example is UNIX-based):

exp scott TABLES=emp QUERY=\"WHERE job=\'SALESMAN\' and sal \<1600\"

Note:

Because the value of the QUERY parameter contains blanks, most operating
systems require that the entire string WHERE job=\'SALESMAN\' and sal
\<1600 be placed in double quotation marks or marked as a literal by some
method. Operating system reserved characters also need to be preceded by
an escape character. See your Oracle operating system-specific
documentation for information about special and reserved characters on your
system.

When executing this query, Export builds a SQL SELECT statement similar to the
following:

SELECT * FROM emp WHERE job='SALESMAN' and sal <1600;

Chapter 24
Export Parameters

24-22

The values specified for the QUERY parameter are applied to all tables (or table
partitions) listed in the TABLES parameter. For example, the following statement will
unload rows in both emp and bonus that match the query:

exp scott TABLES=emp,bonus QUERY=\"WHERE job=\'SALESMAN\' and sal\<1600\"

Again, the SQL statements that Export executes are similar to the following:

SELECT * FROM emp WHERE job='SALESMAN' and sal <1600;
SELECT * FROM bonus WHERE job='SALESMAN' and sal <1600;

If a table is missing the columns specified in the QUERY clause, then an error message
will be produced, and no rows will be exported for the offending table.

• Restrictions When Using the QUERY Parameter
Describes restrictions when using the QUERY parameter.

24.5.19.1 Restrictions When Using the QUERY Parameter
Describes restrictions when using the QUERY parameter.

• The QUERY parameter cannot be specified for full, user, or tablespace-mode
exports.

• The QUERY parameter must be applicable to all specified tables.

• The QUERY parameter cannot be specified in a direct path Export (DIRECT=y)

• The QUERY parameter cannot be specified for tables with inner nested tables.

• You cannot determine from the contents of the export file whether the data is the
result of a QUERY export.

24.5.20 RECORDLENGTH
Specifies the length, in bytes, of the file record.

Default

Operating system-dependent.

Purpose

The RECORDLENGTH parameter is necessary when you must transfer the export file to
another operating system that uses a different default value.

If you do not define this parameter, then it defaults to your platform-dependent value
for buffer size.

You can set RECORDLENGTH to any value equal to or greater than your system's buffer
size. (The highest value is 64 KB.) Changing the RECORDLENGTH parameter affects only
the size of data that accumulates before writing to the disk. It does not affect the
operating system file block size.

Chapter 24
Export Parameters

24-23

Note:

You can use this parameter to specify the size of the Export I/O buffer.

24.5.21 RESUMABLE
The RESUMABLE parameter is used to enable and disable resumable space allocation.

Default

n

Purpose

Because this parameter is disabled by default, you must set RESUMABLE=y to use its
associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

See Also:

Oracle Database Administrator's Guide for more information about
resumable space allocation.

24.5.22 RESUMABLE_NAME
The value for the RESUMABLE_NAME parameter identifies the statement that is
resumable.

Default

'User USERNAME (USERID), Session SESSIONID, Instance INSTANCEID'

Purpose

This value is a user-defined text string that is inserted in either the USER_RESUMABLE or
DBA_RESUMABLE view to help you identify a specific resumable statement that has been
suspended.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

24.5.23 RESUMABLE_TIMEOUT
The value of the RESUMABLE_TIMEOUT parameter specifies the time period during which
an error must be fixed.

Default

7200 seconds (2 hours)

Chapter 24
Export Parameters

24-24

Purpose

If the error is not fixed within the timeout period, then execution of the statement is
terminated.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

24.5.24 ROWS
Specifies whether the rows of table data are exported.

Default

y

24.5.25 STATISTICS
Specifies the type of database optimizer statistics to generate when the exported data
is imported. Options are ESTIMATE, COMPUTE, and NONE.

Default: ESTIMATE

In some cases, Export will place the precalculated statistics in the export file, and also
the ANALYZE statements to regenerate the statistics.

However, the precalculated optimizer statistics will not be used at export time if a table
has columns with system-generated names.

The precalculated optimizer statistics are flagged as questionable at export time if:

• There are row errors while exporting

• The client character set or NCHAR character set does not match the server
character set or NCHAR character set

• A QUERY clause is specified

• Only certain partitions or subpartitions are exported

Note:

Specifying ROWS=n does not preclude saving the precalculated statistics
in the export file. This enables you to tune plan generation for queries in
a nonproduction database using statistics from a production database.

24.5.26 TABLES
The original Export command-line mode TABLES parameter specifies that the export
is a table-mode export, and lists the table names and partition and subpartition names
that you specified for export.

Default

None.

Chapter 24
Export Parameters

24-25

Purpose

Specifies that the export is a table-mode export and lists the table names and partition
and subpartition names that you specified to export.

Syntax

The syntax you use to specify the preceding is in the form:

schemaname.tablename:partition_name
schemaname.tablename:subpartition_name

• schemaname specifies the name of the user's schema from which to export the
table or partition. If a schema name is not specified, then the exporter's schema is
used as the default. System schema names such as ORDSYS, MDSYS, CTXSYS,
LBACSYS, and ORDPLUGINS are reserved by Export.

• tablename specifies the name of the table or tables that you want to export. Table-
level export lets you export entire partitioned or nonpartitioned tables. If a table in
the list is partitioned,and you do not specify a partition name, then all of its
partitions and subpartitions are exported.

The table name can contain any number of '%' pattern-matching characters,
which can each match zero or more characters in the table name against the table
objects in the database. All of the tables in the relevant schema that match the
specified pattern are selected for export, as if the respective table names were
explicitly specified in the parameter.

• partition_name indicates that the export is a partition-level Export. Partition-level
Export enables you to export one or more specified partitions or subpartitions
within a table.

Usage Notes

If you use tablename:partition_name, then the specified table must be partitioned,
and partition_name must be the name of one of its partitions or subpartitions. If the
specified table is not partitioned, then the partition_name is ignored and the entire
table is exported.

Restrictions

The following restrictions apply to table names:

• By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for
the table name, then you must enclose the name in quotation marks. The name
must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how case-
sensitivity can be preserved in the different Export modes.

– In command-line mode:

TABLES='\"Emp\"'

Chapter 24
Export Parameters

24-26

– In interactive mode:

Table(T) to be exported: "Emp"

– In parameter file mode:

TABLES='"Emp"'

• Table names specified on the command line cannot include a pound (#) sign,
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound (#) sign, then the Export utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation
marks.

For example, if the parameter file contains the following line, then Export interprets
everything on the line after emp# as a comment and does not export the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Export utility exports all three tables,
because emp# is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

Note:

Some operating systems require single quotation marks rather than
double quotation marks, or the reverse. Different operating systems also
have other restrictions on table naming.

Related Topics

• Example Export Session Using Partition-Level Export

24.5.27 TABLESPACES
The TABLESPACES parameter specifies that all tables in the specified tablespace be
exported to the Export dump file.

Default: none

This includes all tables contained in the list of tablespaces and all tables that have a
partition located in the list of tablespaces. Indexes are exported with their tables,
regardless of where the index is stored.

You must have the EXP_FULL_DATABASE role to use TABLESPACES to export all tables in
the tablespace.

When TABLESPACES is used in conjunction with TRANSPORT_TABLESPACE=y, you can
specify a limited list of tablespaces to be exported from the database to the export file.

Chapter 24
Export Parameters

24-27

24.5.28 TRANSPORT_TABLESPACE
When specified as y, this parameter enables the export of transportable tablespace
metadata.

Default: n

Encrypted columns are not supported in transportable tablespace mode.

Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

See Also:

• Transportable Tablespaces

• Oracle Database Administrator's Guide for more information about
transportable tablespaces

24.5.29 TRIGGERS
Specifies whether the Export utility exports triggers.

Default: y

24.5.30 TTS_FULL_CHECK
When TTS_FULL_CHECK is set to y, Export verifies that a recovery set (set of
tablespaces to be recovered) has no dependencies (specifically, IN pointers) on
objects outside the recovery set, and the reverse.

Default: n

24.5.31 USERID (username/password)
Specifies the username, password, and optional connect string of the user performing
the export.

Default: none

If you omit the password, then Export will prompt you for it.

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.
Your operating system may require you to treat AS SYSDBA as a special string, in which
case the entire string would be enclosed in quotation marks.

Chapter 24
Export Parameters

24-28

See Also:

The user's guide for your Oracle Net protocol for information about specifying
a connect string for Oracle Net.

24.5.32 VOLSIZE
Specifies the maximum number of bytes in an export file on each volume of tape.

Default: none

The VOLSIZE parameter has a maximum value equal to the maximum value that can
be stored in 64 bits on your platform.

The VOLSIZE value can be specified as a number followed by KB (number of
kilobytes). For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly, MB
specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B remains
the shorthand for bytes; the number is not multiplied to get the final file size
(VOLSIZE=2048B is the same as VOLSIZE=2048).

24.6 Example Export Sessions
Examples of the types of Export sessions.

In each example, you are shown how to use both the command-line method and the
parameter file method. Some examples use vertical ellipses to indicate sections of
example output that were too long to include.

• Example Export Session in Full Database Mode

• Example Export Session in User Mode

• Example Export Sessions in Table Mode

• Example Export Session Using Partition-Level Export

24.6.1 Example Export Session in Full Database Mode
Only users with the DBA role or the EXP_FULL_DATABASE role can export in full database
mode. In this example, an entire database is exported to the file dba.dmp with all
GRANTS and all data.

Parameter File Method

> exp PARFILE=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
GRANTS=y
FULL=y
ROWS=y

Command-Line Method

> exp FULL=y FILE=dba.dmp GRANTS=y ROWS=y

Chapter 24
Example Export Sessions

24-29

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Status messages are written out as the
entire database is exported. A final completion message is returned when the export
completes successfully, without warnings.

24.6.2 Example Export Session in User Mode
User-mode exports can be used to back up one or more database users. For example,
a DBA may want to back up the tables of deleted users for a period of time. User
mode is also appropriate for users who want to back up their own data or who want to
move objects from one owner to another. In this example, user scott is exporting his
own tables.

Parameter File Method

> exp scott PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
OWNER=scott
GRANTS=y
ROWS=y
COMPRESS=y

Command-Line Method

> exp scott FILE=scott.dmp OWNER=scott GRANTS=y ROWS=y COMPRESS=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

. about to export SCOTT's tables via Conventional Path ...

. . exporting table BONUS 0 rows exported

. . exporting table DEPT 4 rows exported

. . exporting table EMP 14 rows exported

. . exporting table SALGRADE 5 rows exported

.

.

.
Export terminated successfully without warnings.

24.6.3 Example Export Sessions in Table Mode
In table mode, you can export table data or the table definitions. (If no rows are
exported, then the CREATE TABLE statement is placed in the export file, with grants and
indexes, if they are specified.)

A user with the EXP_FULL_DATABASE role can use table mode to export tables from any
user's schema by specifying TABLES=schemaname.tablename.

Chapter 24
Example Export Sessions

24-30

If schemaname is not specified, then Export defaults to the exporter's schema name. In
the following example, Export defaults to the SYSTEM schema for table a and table c:

> exp TABLES=(a, scott.b, c, mary.d)

A user with the EXP_FULL_DATABASE role can also export dependent objects that are
owned by other users. A nonprivileged user can export only dependent objects for the
specified tables that the user owns.

Exports in table mode do not include cluster definitions. As a result, the data is
exported as unclustered tables. Thus, you can use table mode to uncluster tables.

• Example 1: DBA Exporting Tables for Two Users

• Example 2: User Exports Tables That He Owns

• Example 3: Using Pattern Matching to Export Various Tables

24.6.3.1 Example 1: DBA Exporting Tables for Two Users
In this example, a DBA exports specified tables for two users.

Parameter File Method

> exp PARFILE=params.dat

The params.dat file contains the following information:

FILE=expdat.dmp
TABLES=(scott.emp,blake.dept)
GRANTS=y
INDEXES=y

Command-Line Method

> exp FILE=expdat.dmp TABLES=(scott.emp,blake.dept) GRANTS=y INDEXES=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table EMP 14 rows exported
Current user changed to BLAKE
. . exporting table DEPT 8 rows exported
Export terminated successfully without warnings.

24.6.3.2 Example 2: User Exports Tables That He Owns
In this example, user blake exports selected tables that he owns.

Parameter File Method

> exp blake PARFILE=params.dat

Chapter 24
Example Export Sessions

24-31

The params.dat file contains the following information:

FILE=blake.dmp
TABLES=(dept,manager)
ROWS=y
COMPRESS=y

Command-Line Method

> exp blake FILE=blake.dmp TABLES=(dept, manager) ROWS=y COMPRESS=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.

About to export specified tables via Conventional Path ...
. . exporting table DEPT 8 rows exported
. . exporting table MANAGER 4 rows exported
Export terminated successfully without warnings.

24.6.3.3 Example 3: Using Pattern Matching to Export Various Tables
In this example, pattern matching is used to export various tables for users scott and
blake.

Parameter File Method

> exp PARFILE=params.dat

The params.dat file contains the following information:

FILE=misc.dmp
TABLES=(scott.%P%,blake.%,scott.%S%)

Command-Line Method

> exp FILE=misc.dmp TABLES=(scott.%P%,blake.%,scott.%S%)

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table DEPT 4 rows exported
. . exporting table EMP 14 rows exported
Current user changed to BLAKE
. . exporting table DEPT 8 rows exported
. . exporting table MANAGER 4 rows exported
Current user changed to SCOTT

Chapter 24
Example Export Sessions

24-32

. . exporting table BONUS 0 rows exported

. . exporting table SALGRADE 5 rows exported
Export terminated successfully without warnings.

24.6.4 Example Export Session Using Partition-Level Export
In partition-level Export, you can specify the partitions and subpartitions of a table that
you want to export.

• Example 1: Exporting a Table Without Specifying a Partition

• Example 2: Exporting a Table with a Specified Partition

• Example 3: Exporting a Composite Partition

24.6.4.1 Example 1: Exporting a Table Without Specifying a Partition
Assume emp is a table that is partitioned on employee name. There are two partitions,
m and z. As this example shows, if you export the table without specifying a partition,
then all of the partitions are exported.

Parameter File Method

> exp scott PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp)
ROWS=y

Command-Line Method

> exp scott TABLES=emp rows=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition M 8 rows exported
. . exporting partition Z 6 rows exported
Export terminated successfully without warnings.

24.6.4.2 Example 2: Exporting a Table with a Specified Partition
Assume emp is a table that is partitioned on employee name. There are two partitions,
m and z. As this example shows, if you export the table and specify a partition, then
only the specified partition is exported.

Parameter File Method

 > exp scott PARFILE=params.dat

Chapter 24
Example Export Sessions

24-33

The params.dat file contains the following:

TABLES=(emp:m)
ROWS=y

Command-Line Method

> exp scott TABLES=emp:m rows=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition M 8 rows exported
Export terminated successfully without warnings.

24.6.4.3 Example 3: Exporting a Composite Partition
Assume emp is a partitioned table with two partitions, m and z. Table emp is partitioned
using the composite method. Partition m has subpartitions sp1 and sp2, and partition z
has subpartitions sp3 and sp4. As the example shows, if you export the composite
partition m, then all its subpartitions (sp1 and sp2) will be exported. If you export the
table and specify a subpartition (sp4), then only the specified subpartition is exported.

Parameter File Method

> exp scott PARFILE=params.dat

The params.dat file contains the following:

TABLES=(emp:m,emp:sp4)
ROWS=y

Command-Line Method

> exp scott TABLES=(emp:m, emp:sp4) ROWS=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting composite partition M
. . exporting subpartition SP1 1 rows exported
. . exporting subpartition SP2 3 rows exported
. . exporting composite partition Z

Chapter 24
Example Export Sessions

24-34

. . exporting subpartition SP4 1 rows exported
Export terminated successfully without warnings.

24.7 Warning, Error, and Completion Messages
These sections describes the different types of messages issued by Export and how to
save them in a log file.

• Log File
You can capture all Export messages in a log file, either by using the LOG
parameter or, for those systems that permit it, by redirecting the output to a file.

• Warning Messages
Export does not terminate after recoverable errors. These recoverable errors are
known as warnings.

• Nonrecoverable Error Messages
Some errors are nonrecoverable and terminate the Export session.

• Completion Messages
When an export completes without errors, a message to that effect is displayed.

24.7.1 Log File
You can capture all Export messages in a log file, either by using the LOG parameter
or, for those systems that permit it, by redirecting the output to a file.

A log of detailed information is written about successful unloads and any errors that
may have occurred.

24.7.2 Warning Messages
Export does not terminate after recoverable errors. These recoverable errors are
known as warnings.

For example, if an error occurs while exporting a table, then Export displays (or logs)
an error message, skips to the next table, and continues processing.

Export also issues warnings when invalid objects are encountered.

For example, if a nonexistent table is specified as part of a table-mode Export, then
the Export utility exports all other tables. Then it issues a warning and terminates
successfully.

24.7.3 Nonrecoverable Error Messages
Some errors are nonrecoverable and terminate the Export session.

These errors typically occur because of an internal problem or because a resource,
such as memory, is not available or has been exhausted. For example, if the
catexp.sql script is not executed, then Export issues the following nonrecoverable
error message:

EXP-00024: Export views not installed, please notify your DBA

Chapter 24
Warning, Error, and Completion Messages

24-35

24.7.4 Completion Messages
When an export completes without errors, a message to that effect is displayed.

For example:

Export terminated successfully without warnings

If one or more recoverable errors occurs but the job continues to completion, then a
message similar to the following is displayed:

Export terminated successfully with warnings

If a nonrecoverable error occurs, then the job terminates immediately and displays a
message stating so, for example:

Export terminated unsuccessfully

24.8 Exit Codes for Inspection and Display
Export provides the results of an operation immediately upon completion. Depending
on the platform, the outcome may be reported in a process exit code and the results
recorded in the log file.

This enables you to check the outcome from the command line or script. Table 24-4
shows the exit codes that get returned for various results.

Table 24-4 Exit Codes for Export

Result Exit Code

Export terminated successfully without
warnings

EX_SUCC

Export terminated successfully with warnings EX_OKWARN

Export terminated unsuccessfully EX_FAIL

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FAIL 1

24.9 Conventional Path Export Versus Direct Path Export
Export provides two methods for exporting table data.

Specifically:

• Conventional path Export

• Direct path Export

Conventional path Export uses the SQL SELECT statement to extract data from tables.
Data is read from disk into a buffer cache, and rows are transferred to the evaluating
buffer. The data, after passing expression evaluation, is transferred to the Export
client, which then writes the data into the export file.

Chapter 24
Exit Codes for Inspection and Display

24-36

Direct path Export is much faster than conventional path Export because data is read
from disk into the buffer cache and rows are transferred directly to the Export client.
The evaluating buffer (that is, the SQL command-processing layer) is bypassed. The
data is already in the format that Export expects, thus avoiding unnecessary data
conversion. The data is transferred to the Export client, which then writes the data into
the export file.

24.10 Starting a Direct Path Export
To use direct path Export, specify the DIRECT=y parameter on the command line or in
the parameter file.

The default is DIRECT=n, which extracts the table data using the conventional path.
Review the security, performance, and restrictions for direct path Export operations:

• Security Considerations for Direct Path Exports
Oracle Virtual Private Database (VPD) and Oracle Label Security are not enforced
during direct path Exports.

• Performance Considerations for Direct Path Exports
Improving performance by increasing the value of the RECORDLENGTH parameter
when you start a direct path Export.

• Restrictions for Direct Path Exports
Restrictions for using direct path mode.

24.10.1 Security Considerations for Direct Path Exports
Oracle Virtual Private Database (VPD) and Oracle Label Security are not enforced
during direct path Exports.

The following users are exempt from Virtual Private Database and Oracle Label
Security enforcement regardless of the export mode, application, or utility used to
extract data from the database:

• The database user SYS

• Database users granted the EXEMPT ACCESS POLICY privilege, either directly or
through a database role

This means that any user who is granted the EXEMPT ACCESS POLICY privilege is
completely exempt from enforcement of VPD and Oracle Label Security. This is a
powerful privilege and should be carefully managed. This privilege does not affect the
enforcement of traditional object privileges such as SELECT, INSERT, UPDATE, and
DELETE. These privileges are enforced even if a user has been granted the EXEMPT
ACCESS POLICY privilege.

Chapter 24
Starting a Direct Path Export

24-37

See Also:

• Support for Fine-Grained Access Control

• Oracle Label Security Administrator's Guide

• Oracle Database Security Guide for more information about using VPD
to control data access

24.10.2 Performance Considerations for Direct Path Exports
Improving performance by increasing the value of the RECORDLENGTH parameter when
you start a direct path Export.

Your exact performance gain depends upon the following factors:

• DB_BLOCK_SIZE

• The types of columns in your table

• Your I/O layout (The drive receiving the export file should be separate from the
disk drive where the database files reside.)

The following values are generally recommended for RECORDLENGTH:

• Multiples of the file system I/O block size

• Multiples of DB_BLOCK_SIZE

An export file that is created using direct path Export will take the same amount of time
to import as an export file created using conventional path Export.

24.10.3 Restrictions for Direct Path Exports
Restrictions for using direct path mode.

Specifically :

• To start a direct path Export, you must use either the command-line method or a
parameter file. You cannot start a direct path Export using the interactive method.

• The Export parameter BUFFER applies only to conventional path Exports. For direct
path Export, use the RECORDLENGTH parameter to specify the size of the buffer that
Export uses for writing to the export file.

• You cannot use direct path when exporting in tablespace mode
(TRANSPORT_TABLESPACES=Y).

• The QUERY parameter cannot be specified in a direct path Export.

• A direct path Export can only export data when the NLS_LANG environment variable
of the session invoking the export equals the database character set. If NLS_LANG
is not set or if it is different than the database character set, then a warning is
displayed and the export is discontinued. The default value for the NLS_LANG
environment variable is AMERICAN_AMERICA.US7ASCII.

Chapter 24
Starting a Direct Path Export

24-38

24.11 Network Considerations for Original Oracle Data
Pump Export

When you use original Export (exp) across a network, review protocols and connection
qualifier strings.

• Transporting Export Files Across a Network
Because the export file is in binary format, use a protocol that supports binary
transfers to prevent corruption of the file when you transfer it across a network.

• Exporting with Oracle Net
With Oracle Net, you can perform exports over a network.

24.11.1 Transporting Export Files Across a Network
Because the export file is in binary format, use a protocol that supports binary
transfers to prevent corruption of the file when you transfer it across a network.

For example, use FTP or a similar file transfer protocol to transmit the file in binary
mode. Transmitting export files in character mode causes errors when the file is
imported.

24.11.2 Exporting with Oracle Net
With Oracle Net, you can perform exports over a network.

For example, if you run Export locally, then you can write data from a remote Oracle
database into a local export file.

To use Export with Oracle Net, include the connection qualifier string @connect_string
when entering the username and password in the exp command. For the exact syntax
of this clause, see the user's guide for your Oracle Net protocol.

See Also:

• Oracle Database Net Services Administrator's Guide

24.12 Character Set and Globalization Support
Considerations

These sections describe the globalization support behavior of Export with respect to
character set conversion of user data and data definition language (DDL).

• User Data
The Export utility always exports user data, including Unicode data, in the
character sets of the Export server. (Character sets are specified at database
creation.)

Chapter 24
Network Considerations for Original Oracle Data Pump Export

24-39

• Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language
(DDL) during an export/import operation.

• Single-Byte Character Sets and Export and Import
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when
you import an 8-bit character set export file.

• Multibyte Character Sets and Export and Import
During character set conversion, any characters in the export file that have no
equivalent in the target character set are replaced with a default character. (The
default character is defined by the target character set.)

24.12.1 User Data
The Export utility always exports user data, including Unicode data, in the character
sets of the Export server. (Character sets are specified at database creation.)

If the character sets of the source database are different than the character sets of the
import database, then a single conversion is performed to automatically convert the
data to the character sets of the Import server.

• Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character
set, then tables that are partitioned on character columns may yield unpredictable
results.

24.12.1.1 Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character set,
then tables that are partitioned on character columns may yield unpredictable results.

For example, consider the following table definition, which is produced on a database
having an ASCII character set:

CREATE TABLE partlist
 (
 part VARCHAR2(10),
 partno NUMBER(2)
)
PARTITION BY RANGE (part)
 (
 PARTITION part_low VALUES LESS THAN ('Z')
 TABLESPACE tbs_1,
 PARTITION part_mid VALUES LESS THAN ('z')
 TABLESPACE tbs_2,
 PARTITION part_high VALUES LESS THAN (MAXVALUE)
 TABLESPACE tbs_3
);

This partitioning scheme makes sense because z comes after Z in ASCII character
sets.

When this table is imported into a database based upon an EBCDIC character set, all
of the rows in the part_mid partition will migrate to the part_low partition because z
comes before Z in EBCDIC character sets. To obtain the desired results, the owner of
partlist must repartition the table following the import.

Chapter 24
Character Set and Globalization Support Considerations

24-40

See Also:

Oracle Database Globalization Support Guide for more information about
character sets

24.12.2 Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language
(DDL) during an export/import operation.

Specifically:

1. Export writes export files using the character set specified in the NLS_LANG
environment variable for the user session. A character set conversion is performed
if the value of NLS_LANG differs from the database character set.

2. If the export file's character set is different than the import user session character
set, then Import converts the character set to its user session character set. Import
can only perform this conversion for single-byte character sets. This means that
for multibyte character sets, the import file's character set must be identical to the
export file's character set.

3. A final character set conversion may be performed if the target database's
character set is different from the character set used by the import user session.

To minimize data loss due to character set conversions, ensure that the export
database, the export user session, the import user session, and the import database
all use the same character set.

24.12.3 Single-Byte Character Sets and Export and Import
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file.

This occurs if the system on which the import occurs has a native 7-bit character set,
or the NLS_LANG operating system environment variable is set to a 7-bit character set.
Most often, this is apparent when accented characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system
environment variable to be that of the export file character set.

24.12.4 Multibyte Character Sets and Export and Import
During character set conversion, any characters in the export file that have no
equivalent in the target character set are replaced with a default character. (The
default character is defined by the target character set.)

To guarantee 100% conversion, the target character set must be a superset (or
equivalent) of the source character set.

Chapter 24
Character Set and Globalization Support Considerations

24-41

Note:

When the character set width differs between the Export server and the
Import server, truncation of data can occur if conversion causes expansion of
data. If truncation occurs, then Import displays a warning message.

24.13 Using Instance Affinity with Export and Import
You can use instance affinity to associate jobs with instances in databases you plan to
export and import.

Be aware that there may be some compatibility issues if you are using a combination
of releases.

See Also:

• Oracle Database Administrator's Guide for more information about
affinity

24.14 Considerations When Exporting Database Objects
These sections describe points that you should consider when you export particular
database objects.

• Exporting Sequences
If transactions continue to access sequence numbers during an export, then
sequence numbers might be skipped.

• Exporting LONG and LOB Data Types
Describes exporting LONG and LOB data types.

• Exporting Foreign Function Libraries
Describes exporting foreign function libraries.

• Exporting Offline Locally-Managed Tablespaces
Describes exporting offline locally-managed tablespaces.

• Exporting Directory Aliases
Describes exporting directory alias definitions.

• Exporting BFILE Columns and Attributes
Describes exporting BFILE columns and attributes.

• Exporting External Tables
Describes exporting external tables.

• Exporting Object Type Definitions
Describes exporting object type definitions.

• Exporting Nested Tables
Describes exporting nested tables.

Chapter 24
Using Instance Affinity with Export and Import

24-42

• Exporting Advanced Queue (AQ) Tables
Describes exporting Advanced Queue (AQ) tables.

• Exporting Synonyms
Describes exporting synonyms.

• Possible Export Errors Related to Java Synonyms
Describes possible export errors related to Java synonyms.

• Support for Fine-Grained Access Control
Describes support for fine-grained access control policies.

24.14.1 Exporting Sequences
If transactions continue to access sequence numbers during an export, then sequence
numbers might be skipped.

The best way to ensure that sequence numbers are not skipped is to ensure that the
sequences are not accessed during the export.

Sequence numbers can be skipped only when cached sequence numbers are in use.
When a cache of sequence numbers has been allocated, they are available for use in
the current database. The exported value is the next sequence number (after the
cached values). Sequence numbers that are cached, but unused, are lost when the
sequence is imported.

24.14.2 Exporting LONG and LOB Data Types
Describes exporting LONG and LOB data types.

On export, LONG data types are fetched in sections. However, enough memory must be
available to hold all of the contents of each row, including the LONG data.

LONG columns can be up to 2 gigabytes in length.

All data in a LOB column does not need to be held in memory at the same time. LOB
data is loaded and unloaded in sections.

Note:

Oracle also recommends that you convert existing LONG columns to LOB
columns. LOB columns are subject to far fewer restrictions than LONG
columns. Further, LOB functionality is enhanced in every release, whereas
LONG functionality has been static for several releases.

24.14.3 Exporting Foreign Function Libraries
Describes exporting foreign function libraries.

The contents of foreign function libraries are not included in the export file. Instead,
only the library specification (name, location) is included in full database mode and
user-mode export. You must move the library's executable files and update the library
specification if the database is moved to a new location.

Chapter 24
Considerations When Exporting Database Objects

24-43

24.14.4 Exporting Offline Locally-Managed Tablespaces
Describes exporting offline locally-managed tablespaces.

If the data you are exporting contains offline locally-managed tablespaces, then Export
will not be able to export the complete tablespace definition and will display an error
message. You can still import the data; however, you must create the offline locally-
managed tablespaces before importing to prevent DDL commands that may reference
the missing tablespaces from failing.

24.14.5 Exporting Directory Aliases
Describes exporting directory alias definitions.

Directory alias definitions are included only in a full database mode export. To move a
database to a new location, the database administrator must update the directory
aliases to point to the new location.

Directory aliases are not included in user-mode or table-mode export. Therefore, you
must ensure that the directory alias has been created on the target system before the
directory alias is used.

24.14.6 Exporting BFILE Columns and Attributes
Describes exporting BFILE columns and attributes.

The export file does not hold the contents of external files referenced by BFILE
columns or attributes. Instead, only the names and directory aliases for files are copied
on Export and restored on Import. If you move the database to a location where the
old directories cannot be used to access the included files, then the database
administrator (DBA) must move the directories containing the specified files to a new
location where they can be accessed.

24.14.7 Exporting External Tables
Describes exporting external tables.

The contents of external tables are not included in the export file. Instead, only the
table specification (name, location) is included in full database mode and user-mode
export. You must manually move the external data and update the table specification if
the database is moved to a new location.

24.14.8 Exporting Object Type Definitions
Describes exporting object type definitions.

In all Export modes, the Export utility includes information about object type definitions
used by the tables being exported. The information, including object name, object
identifier, and object geometry, is needed to verify that the object type on the target
system is consistent with the object instances contained in the export file. This ensures
that the object types needed by a table are created with the same object identifier at
import time.

Chapter 24
Considerations When Exporting Database Objects

24-44

Note, however, that in table mode, user mode, and tablespace mode, the export file
does not include a full object type definition needed by a table if the user running
Export does not have execute access to the object type. In this case, only enough
information is written to verify that the type exists, with the same object identifier and
the same geometry, on the Import target system.

The user must ensure that the proper type definitions exist on the target system, either
by working with the DBA to create them, or by importing them from full database mode
or user-mode exports performed by the DBA.

It is important to perform a full database mode export regularly to preserve all object
type definitions. Alternatively, if object type definitions from different schemas are
used, then the DBA should perform a user mode export of the appropriate set of users.
For example, if table1 belonging to user scott contains a column on blake's type
type1, then the DBA should perform a user mode export of both blake and scott to
preserve the type definitions needed by the table.

24.14.9 Exporting Nested Tables
Describes exporting nested tables.

Inner nested table data is exported whenever the outer containing table is exported.
Although inner nested tables can be named, they cannot be exported individually.

24.14.10 Exporting Advanced Queue (AQ) Tables
Describes exporting Advanced Queue (AQ) tables.

Queues are implemented on tables. The export and import of queues constitutes the
export and import of the underlying queue tables and related dictionary tables. You
can export and import queues only at queue table granularity.

When you export a queue table, both the table definition information and queue data
are exported. Because the queue table data and the table definition is exported, the
user is responsible for maintaining application-level data integrity when queue table
data is imported.

See Also:

Oracle Database Advanced Queuing User's Guide

24.14.11 Exporting Synonyms
Describes exporting synonyms.

You should be cautious when exporting compiled objects that reference a name used
as a synonym and as another object. Exporting and importing these objects will force a
recompilation that could result in changes to the object definitions.

The following example helps to illustrate this problem:

CREATE PUBLIC SYNONYM emp FOR scott.emp;

Chapter 24
Considerations When Exporting Database Objects

24-45

CONNECT blake/paper;
CREATE TRIGGER t_emp BEFORE INSERT ON emp BEGIN NULL; END;
CREATE VIEW emp AS SELECT * FROM dual;

If the database in the preceding example were exported, then the reference to emp in
the trigger would refer to blake's view rather than to scott's table. This would cause
an error when Import tried to reestablish the t_emp trigger.

24.14.12 Possible Export Errors Related to Java Synonyms
Describes possible export errors related to Java synonyms.

If an export operation attempts to export a synonym named DBMS_JAVA when there is
no corresponding DBMS_JAVA package or when Java is either not loaded or loaded
incorrectly, then the export will terminate unsuccessfully. The error messages that are
generated include, but are not limited to, the following: EXP-00008, ORA-00904, and
ORA-29516.

If Java is enabled, then ensure that both the DBMS_JAVA synonym and DBMS_JAVA
package are created and valid before rerunning the export.

If Java is not enabled, then remove Java-related objects before rerunning the export.

24.14.13 Support for Fine-Grained Access Control
Describes support for fine-grained access control policies.

You can export tables with fine-grained access control policies enabled. When doing
so, consider the following:

• The user who imports from an export file containing such tables must have the
appropriate privileges (specifically, the EXECUTE privilege on the DBMS_RLS package
so that the tables' security policies can be reinstated). If a user without the correct
privileges attempts to export a table with fine-grained access policies enabled,
then only those rows that the exporter is privileged to read will be exported.

• If fine-grained access control is enabled on a SELECT statement, then conventional
path Export may not export the entire table because fine-grained access may
rewrite the query.

• Only user SYS, or a user with the EXP_FULL_DATABASE role enabled or who has
been granted EXEMPT ACCESS POLICY, can perform direct path Exports on tables
having fine-grained access control.

24.15 Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from
one Oracle database to another.

You cannot export transportable tablespaces and then import them into a database at
a lower release level. The target database must be at the same or later release level
as the source database.

To move or copy a set of tablespaces, you must make the tablespaces read-only, copy
the data files of these tablespaces, and use Export and Import to move the database
information (metadata) stored in the data dictionary. Both the data files and the
metadata export file must be copied to the target database. The transport of these files

Chapter 24
Transportable Tablespaces

24-46

can be done using any facility for copying flat binary files, such as the operating
system copying facility, binary-mode FTP, or publishing on CD-ROMs.

After copying the data files and exporting the metadata, you can optionally put the
tablespaces in read/write mode.

Export and Import provide the following parameters to enable movement of
transportable tablespace metadata.

• TABLESPACES

• TRANSPORT_TABLESPACE

See TABLESPACES and TRANSPORT_TABLESPACE for more information about
using these parameters during an export operation.

See Also:

• Oracle Database Administrator's Guide for details about managing
transportable tablespaces

24.16 Exporting From a Read-Only Database
Describes exporting from a read-only database.

To extract metadata from a source database, Export uses queries that contain
ordering clauses (sort operations). For these queries to succeed, the user performing
the export must be able to allocate sort segments. For these sort segments to be
allocated in a read-only database, the user's temporary tablespace should be set to
point at a temporary, locally managed tablespace.

24.17 Using Export and Import to Partition a Database
Migration

When you use the Export and Import utilities to migrate a large database, it may be
more efficient to partition the migration into multiple export and import jobs.

If you decide to partition the migration, then be aware of the following advantages and
disadvantages.

• Advantages of Partitioning a Migration
Describes the advantages of partitioning a migration.

• Disadvantages of Partitioning a Migration
Describes the disadvantages of partitioning a migration.

• How to Use Export and Import to Partition a Database Migration
Describes how to partition a database migration using Export and Import.

24.17.1 Advantages of Partitioning a Migration
Describes the advantages of partitioning a migration.

Chapter 24
Exporting From a Read-Only Database

24-47

Partitioning a migration has the following advantages:

• Time required for the migration may be reduced, because many of the subjobs can
be run in parallel.

• The import can start as soon as the first export subjob completes, rather than
waiting for the entire export to complete.

24.17.2 Disadvantages of Partitioning a Migration
Describes the disadvantages of partitioning a migration.

Partitioning a migration has the following disadvantages:

• The export and import processes become more complex.

• Support of cross-schema references for certain types of objects may be
compromised. For example, if a schema contains a table with a foreign key
constraint against a table in a different schema, then you may not have the
required parent records when you import the table into the dependent schema.

24.17.3 How to Use Export and Import to Partition a Database
Migration

Describes how to partition a database migration using Export and Import.

To perform a database migration in a partitioned manner, take the following steps:

1. For all top-level metadata in the database, issue the following commands:

a. exp FILE=full FULL=y CONSTRAINTS=n TRIGGERS=n ROWS=n INDEXES=n

b. imp FILE=full FULL=y

2. For each scheman in the database, issue the following commands:

a. exp OWNER=scheman FILE=scheman

b. imp FILE=scheman FROMUSER=scheman TOUSER=scheman IGNORE=y

All exports can be done in parallel. When the import of full.dmp completes, all
remaining imports can also be done in parallel.

24.18 Using Different Releases of Export and Import
Describes compatibility issues that relate to using different releases of Export and the
Oracle database.

Whenever you are moving data between different releases of the Oracle database, the
following basic rules apply:

• The Import utility and the database to which data is being imported (the target
database) must be the same release. For example, if you try to use the Import
utility 9.2.0.7 to import into a 9.2.0.8 database, then you may encounter errors.

• The version of the Export utility must be equal to the release of either the source
or target database, whichever is earlier.

For example, to create an export file for an import into a later release database,
use a version of the Export utility that equals the source database. Conversely, to

Chapter 24
Using Different Releases of Export and Import

24-48

create an export file for an import into an earlier release database, use a version of
the Export utility that equals the release of the target database.

– In general, you can use the Export utility from any Oracle8 release to export
from an Oracle9i server and create an Oracle8 export file.

• Restrictions When Using Different Releases of Export and Import
Describes restrictions that apply when you are using different releases of Export
and Import.

• Examples of Using Different Releases of Export and Import
Shows examples of using different releases of Export and Import.

24.18.1 Restrictions When Using Different Releases of Export and
Import

Describes restrictions that apply when you are using different releases of Export and
Import.

Specifically:

• Export dump files can be read only by the Import utility because they are stored in
a special binary format.

• Any export dump file can be imported into a later release of the Oracle database.

• The Import utility cannot read export dump files created by the Export utility of a
later maintenance release. For example, a release 9.2 export dump file cannot be
imported by a release 9.0.1 Import utility.

• Whenever a lower version of the Export utility runs with a later release of the
Oracle database, categories of database objects that did not exist in the earlier
release are excluded from the export.

• Export files generated by Oracle9i Export, either direct path or conventional path,
are incompatible with earlier releases of Import and can be imported only with
Oracle9i Import. When backward compatibility is an issue, use the earlier release
or version of the Export utility against the Oracle9i database.

24.18.2 Examples of Using Different Releases of Export and Import
Shows examples of using different releases of Export and Import.

Table 24-5 shows some examples of which Export and Import releases to use when
moving data between different releases of the Oracle database.

Table 24-5 Using Different Releases of Export and Import

Export from->Import to Use Export Release Use Import Release

8.1.6 -> 8.1.6 8.1.6 8.1.6

8.1.5 -> 8.0.6 8.0.6 8.0.6

8.1.7 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 9.0.2 9.0.1 9.0.2

9.0.2 -> 10.1.0 9.0.2 10.1.0

Chapter 24
Using Different Releases of Export and Import

24-49

Table 24-5 (Cont.) Using Different Releases of Export and Import

Export from->Import to Use Export Release Use Import Release

10.1.0 -> 9.0.2 9.0.2 9.0.2

Table 24-5 covers moving data only between the original Export and Import utilities.
For Oracle Database 10g release 1 (10.1) or later, Oracle recommends the Data
Pump Export and Import utilities in most cases because these utilities provide greatly
enhanced performance compared to the original Export and Import utilities.

See Also:

Oracle Database Upgrade Guide for more information about exporting and
importing data between different releases, including releases later than 10.1

Chapter 24
Using Different Releases of Export and Import

24-50

25
Original Import

The original Import utility (imp) imports dump files that were created using the original
Export utility.

• What Is the Import Utility?
The Import utility reads object definitions and table data from dump files created by
the original Export utility.

• Table Objects: Order of Import
Table objects are imported as they are read from the export dump file.

• Before Using Import
Learn what you should do before using the original import tool.

• Importing into Existing Tables
These sections describe factors to consider when you import data into existing
tables.

• Effect of Schema and Database Triggers on Import Operations
Triggers that are defined to trigger on DDL events for a specific schema or on
DDL-related events for the database, are system triggers.

• Invoking Import
To start the original Import utility and specify parameters, use one of three different
methods.

• Import Modes
The Import utility supports four modes of operation.

• Import Parameters
These sections contain descriptions of the Import command-line parameters.

• Example Import Sessions
These sections give some examples of import sessions that show you how to use
the parameter file and command-line methods.

• Exit Codes for Inspection and Display
Import provides the results of an operation immediately upon completion.
Depending on the platform, the outcome may be reported in a process exit code
and the results recorded in the log file.

• Error Handling During an Import
These sections describe errors that can occur when you import database objects.

• Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions.

• Controlling Index Creation and Maintenance
These sections describe the behavior of Import with respect to index creation and
maintenance.

• Network Considerations for Using Oracle Net with Original Import
To perform imports over a network, you can use the Oracle Data Pump original
Import utility (imp) with Oracle Net.

25-1

• Character Set and Globalization Support Considerations
These sections describe the globalization support behavior of Import with respect
to character set conversion of user data and data definition language (DDL).

• Using Instance Affinity
You can use instance affinity to associate jobs with instances in databases you
plan to export and import.

• Considerations When Importing Database Objects
These sections describe restrictions and points you should consider when you
import particular database objects.

• Support for Fine-Grained Access Control
To restore the fine-grained access control policies, the user who imports from an
export file containing such tables must have the EXECUTE privilege on the DBMS_RLS
package, so that the security policies on the tables can be reinstated.

• Snapshots and Snapshot Logs
In certain situations, particularly those involving data warehousing, snapshots may
be referred to as materialized views. These sections retain the term snapshot.

• Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces
from one Oracle database to another.

• Storage Parameters
By default, a table is imported into its original tablespace.

• Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not
already exist in the target database, then the tablespace is created as a read/write
tablespace.

• Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces
before the import. You can then issue the imp command and specify IGNORE=y.

• Reorganizing Tablespaces
If a user's quota allows it, the user's tables are imported into the same tablespace
from which they were exported.

• Importing Statistics
If statistics are requested at export time and analyzer statistics are available for a
table, then Export will include the ANALYZE statement used to recalculate the
statistics for the table into the dump file.

• Using Export and Import to Partition a Database Migration
When you use the Export and Import utilities to migrate a large database, it may
be more efficient to partition the migration into multiple export and import jobs.

• Tuning Considerations for Import Operations
These sections discuss some ways to improve the performance of an import
operation.

• Using Different Releases of Export and Import
These sections describe compatibility issues that relate to using different releases
of Export and the Oracle database.

Chapter 25

25-2

25.1 What Is the Import Utility?
The Import utility reads object definitions and table data from dump files created by the
original Export utility.

The dump file is in an Oracle binary-format that can be read only by original Import.

The version of the Import utility cannot be earlier than the version of the Export utility
used to create the dump file.

25.2 Table Objects: Order of Import
Table objects are imported as they are read from the export dump file.

The dump file contains objects in the following order:

1. Type definitions

2. Table definitions

3. Table data

4. Table indexes

5. Integrity constraints, views, procedures, and triggers

6. Bitmap, function-based, and domain indexes

The order of import is as follows: new tables are created, data is imported and indexes
are built, triggers are imported, integrity constraints are enabled on the new tables,
and any bitmap, function-based, and/or domain indexes are built. This sequence
prevents data from being rejected due to the order in which tables are imported. This
sequence also prevents redundant triggers from firing twice on the same data (once
when it is originally inserted and again during the import).

25.3 Before Using Import
Learn what you should do before using the original import tool.

• Overview of Import Preparation
To prepare for the import, check to make sure you have run scripts as required,
and have access privileges

• Running catexp.sql or catalog.sql
To use Import, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer version.

• Verifying Access Privileges for Import Operations
To use Import, you must have the CREATE SESSION privilege on an Oracle
database. This privilege belongs to the CONNECT role established during database
creation.

• Processing Restrictions
Restrictions apply when you process data with the Import utility.

Chapter 25
What Is the Import Utility?

25-3

25.3.1 Overview of Import Preparation
To prepare for the import, check to make sure you have run scripts as required, and
have access privileges

Before you begin using Import, be sure you take care of the following items

• If you created your database manually, ensure that the catexp.sql or
catalog.sql script has been run. If you created your database using the Database
Configuration Assistant (DBCA), it is not necessary to run these scripts.

• Verify that you have the required access privileges.

25.3.2 Running catexp.sql or catalog.sql
To use Import, you must run the script catexp.sql or catalog.sql (which runs
catexp.sql) after the database has been created or migrated to a newer version.

The catexp.sql or catalog.sql script needs to be run only once on a database. The
script performs the following tasks to prepare the database for export and import
operations:

• Creates the necessary import views in the data dictionary

• Creates the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles

• Assigns all necessary privileges to the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles

• Assigns EXP_FULL_DATABASE and IMP_FULL_DATABASE to the DBA role

• Records the version of catexp.sql that has been installed

25.3.3 Verifying Access Privileges for Import Operations
To use Import, you must have the CREATE SESSION privilege on an Oracle database.
This privilege belongs to the CONNECT role established during database creation.

You can perform an import operation even if you did not create the export file.
However, keep in mind that if the export file was created by a user with the
EXP_FULL_DATABASE role, then you must have the IMP_FULL_DATABASE role to import it.
Both of these roles are typically assigned to database administrators (DBAs).

• Importing Objects Into Your Own Schema
To import objects into your own schema, check the privileges required for each
object.

• Importing Grants
To import the privileges that a user has granted to others, the user initiating the
import must either own the objects, or have object privileges with the option WITH
GRANT OPTION.

• Importing Objects Into Other Schemas
To import objects into another user's schema, you must have the
IMP_FULL_DATABASE role enabled.

Chapter 25
Before Using Import

25-4

• Importing System Objects
To import system objects from a full database export file, the IMP_FULL_DATABASE
role must be enabled.

25.3.3.1 Importing Objects Into Your Own Schema
To import objects into your own schema, check the privileges required for each object.

The following table lists the privileges required to import objects into your own schema.
All of these privileges initially belong to the RESOURCE role.

Table 25-1 Privileges Required to Import Objects into Your Own Schema

Object Required Privilege (Privilege Type, If Applicable)

Clusters CREATE CLUSTER (System) or UNLIMITED TABLESPACE
(System). The user must also be assigned a tablespace quota.

Database links CREATE DATABASE LINK (System) and CREATE SESSION
(System) on remote database

Triggers on tables CREATE TRIGGER (System)

Triggers on schemas CREATE ANY TRIGGER (System)

Indexes CREATE INDEX (System) or UNLIMITED TABLESPACE (System).
The user must also be assigned a tablespace quota.

Integrity constraints ALTER TABLE (Object)

Libraries CREATE ANY LIBRARY (System)

Packages CREATE PROCEDURE (System)

Private synonyms CREATE SYNONYM (System)

Sequences CREATE SEQUENCE (System)

Snapshots CREATE SNAPSHOT (System)

Stored functions CREATE PROCEDURE (System)

Stored procedures CREATE PROCEDURE (System)

Table data INSERT TABLE (Object)

Table definitions (including
comments and audit
options)

CREATE TABLE (System) or UNLIMITED TABLESPACE (System).
The user must also be assigned a tablespace quota.

Views CREATE VIEW (System) and SELECT (Object) on the base table,
or SELECT ANY TABLE (System)

Object types CREATE TYPE (System)

Foreign function libraries CREATE LIBRARY (System)

Dimensions CREATE DIMENSION (System)

Operators CREATE OPERATOR (System)

Indextypes CREATE INDEXTYPE (System)

25.3.3.2 Importing Grants
To import the privileges that a user has granted to others, the user initiating the import
must either own the objects, or have object privileges with the option WITH GRANT
OPTION.

Chapter 25
Before Using Import

25-5

The following table shows the required conditions for the authorizations to be valid on
the target system.

Table 25-2 Privileges Required to Import Grants

Grant Conditions

Object privileges Either the object must exist in the user's schema, or

the user must have the object privileges with the WITH GRANT
OPTION or,

the user must have the IMP_FULL_DATABASE role enabled.

System privileges Users must have the SYSTEM privilege and also the WITH ADMIN
OPTION.

25.3.3.3 Importing Objects Into Other Schemas
To import objects into another user's schema, you must have the IMP_FULL_DATABASE
role enabled.

25.3.3.4 Importing System Objects
To import system objects from a full database export file, the IMP_FULL_DATABASE role
must be enabled.

The parameter FULL specifies that the following system objects are included in the
import:

• Profiles

• Public database links

• Public synonyms

• Roles

• Rollback segment definitions

• Resource costs

• Foreign function libraries

• Context objects

• System procedural objects

• System audit options

• System privileges

• Tablespace definitions

• Tablespace quotas

• User definitions

• Directory aliases

• System event triggers

Chapter 25
Before Using Import

25-6

25.3.4 Processing Restrictions
Restrictions apply when you process data with the Import utility.

Specifically:

• When a type definition has evolved and data referencing that evolved type is
exported, the type definition on the import system must have evolved in the same
manner.

• The table compression attribute of tables and partitions is preserved during export
and import. However, the import process does not use the direct path API, hence
the data will not be stored in the compressed format when imported.

25.4 Importing into Existing Tables
These sections describe factors to consider when you import data into existing tables.

• Manually Creating Tables Before Importing Data
You can manually create tables before importing data.

• Disabling Referential Constraints
Describes how to disable referential constraints.

• Manually Ordering the Import
Describes manually ordering the import.

25.4.1 Manually Creating Tables Before Importing Data
You can manually create tables before importing data.

When you choose to create tables manually before importing data into them from an
export file, you should use either the same table definition previously used or a
compatible format. For example, although you can increase the width of columns and
change their order, you cannot do the following:

• Add NOT NULL columns

• Change the data type of a column to an incompatible data type (LONG to NUMBER,
for example)

• Change the definition of object types used in a table

• Change DEFAULT column values

Note:

When tables are manually created before data is imported, the CREATE
TABLE statement in the export dump file will fail because the table already
exists. To avoid this failure and continue loading data into the table, set
the Import parameter IGNORE=y. Otherwise, no data will be loaded into
the table because of the table creation error.

Chapter 25
Importing into Existing Tables

25-7

25.4.2 Disabling Referential Constraints
Describes how to disable referential constraints.

In the normal import order, referential constraints are imported only after all tables are
imported. This sequence prevents errors that could occur if a referential integrity
constraint exists for data that has not yet been imported.

These errors can still occur when data is loaded into existing tables. For example, if
table emp has a referential integrity constraint on the mgr column that verifies that the
manager number exists in emp, then a legitimate employee row might fail the
referential integrity constraint if the manager's row has not yet been imported.

When such an error occurs, Import generates an error message, bypasses the failed
row, and continues importing other rows in the table. You can disable constraints
manually to avoid this.

Referential constraints between tables can also cause problems. For example, if the
emp table appears before the dept table in the export dump file, but a referential check
exists from the emp table into the dept table, then some of the rows from the emp table
may not be imported due to a referential constraint violation.

To prevent errors like these, you should disable referential integrity constraints when
importing data into existing tables.

25.4.3 Manually Ordering the Import
Describes manually ordering the import.

When the constraints are reenabled after importing, the entire table is checked, which
may take a long time for a large table. If the time required for that check is too long,
then it may be beneficial to order the import manually.

To do so, perform several imports from an export file instead of one. First, import
tables that are the targets of referential checks. Then, import the tables that reference
them. This option works if tables do not reference each other in a circular fashion, and
if a table does not reference itself.

25.5 Effect of Schema and Database Triggers on Import
Operations

Triggers that are defined to trigger on DDL events for a specific schema or on DDL-
related events for the database, are system triggers.

These triggers can have detrimental effects on certain import operations. For example,
they can prevent successful re-creation of database objects, such as tables. This
causes errors to be returned that give no indication that a trigger caused the problem.

Database administrators and anyone creating system triggers should verify that such
triggers do not prevent users from performing database operations for which they are
authorized. To test a system trigger, take the following steps:

1. Define the trigger.

2. Create some database objects.

Chapter 25
Effect of Schema and Database Triggers on Import Operations

25-8

3. Export the objects in table or user mode.

4. Delete the objects.

5. Import the objects.

6. Verify that the objects have been successfully re-created.

Note:

A full export does not export triggers owned by schema SYS. You must
manually re-create SYS triggers either before or after the full import.
Oracle recommends that you re-create them after the import in case they
define actions that would impede progress of the import.

25.6 Invoking Import
To start the original Import utility and specify parameters, use one of three different
methods.

The three methods you have to start the original Import utility are:

• Command-line entries

• Parameter files

• Interactive mode

Before you use one of these methods, be sure to read the descriptions of the available
parameters.

• Command-Line Entries
You can specify all valid parameters and their values from the command line.

• Parameter Files
You can specify all valid parameters and their values in a parameter file.

• Interactive Mode
If you prefer to be prompted for the value of each parameter, then you can simply
specify imp at the command line.

• Invoking Import As SYSDBA
Starting the original Import utility as SYSDBA is a specialized procedure, which
should only be done under specific scenarios.

• Getting Online Help
Import provides online help. Enter imp help=y to display Import help.

Related Topics

• Import Parameters
These sections contain descriptions of the Import command-line parameters.

25.6.1 Command-Line Entries
You can specify all valid parameters and their values from the command line.

Use the following syntax (you will then be prompted for a username and password):

Chapter 25
Invoking Import

25-9

imp PARAMETER=value

or

imp PARAMETER=(value1,value2,...,valuen)

The number of parameters cannot exceed the maximum length of a command line on
the system.

25.6.2 Parameter Files
You can specify all valid parameters and their values in a parameter file.

Storing the parameters in a file allows them to be easily modified or reused. If you use
different parameters for different databases, then you can have multiple parameter
files.

Create the parameter file using any flat file text editor. The command-line option
PARFILE=filename tells Import to read the parameters from the specified file rather
than from the command line. For example:

The syntax for parameter file specifications can be any of the following:

PARAMETER=value
PARAMETER=(value)
PARAMETER=(value1, value2, ...)

The following example shows a partial parameter file listing:

FULL=y
FILE=dba.dmp
GRANTS=y
INDEXES=y
CONSISTENT=y

Note:

The maximum size of the parameter file may be limited by the operating
system. The name of the parameter file is subject to the file-naming
conventions of the operating system.

You can add comments to the parameter file by preceding them with the pound (#)
sign. Import ignores all characters to the right of the pound (#) sign.

You can specify a parameter file at the same time that you are entering parameters on
the command line. In fact, you can specify the same parameter in both places. The
position of the PARFILE parameter and other parameters on the command line
determines which parameters take precedence. For example, assume the parameter
file params.dat contains the parameter INDEXES=y and Import is started with the
following line:

imp PARFILE=params.dat INDEXES=n

In this case, because INDEXES=n occurs after PARFILE=params.dat, INDEXES=n
overrides the value of the INDEXES parameter in the parameter file.

Chapter 25
Invoking Import

25-10

See Also:

• Import Parameters

• Network Considerations for information about how to specify an export
from a remote database

25.6.3 Interactive Mode
If you prefer to be prompted for the value of each parameter, then you can simply
specify imp at the command line.

You will be prompted for a username and password.

Commonly used parameters are then displayed. You can accept the default value, if
one is provided, or enter a different value. The command-line interactive method does
not provide prompts for all functionality and is provided only for backward compatibility.

25.6.4 Invoking Import As SYSDBA
Starting the original Import utility as SYSDBA is a specialized procedure, which should
only be done under specific scenarios.

SYSDBA is used internally, and has specialized functions; its behavior is not the same
as for generalized users. For this reason, you should not typically need to start Import
as SYSDBA, except in the following situations:

• At the request of Oracle technical support

• When importing a transportable tablespace set

25.6.5 Getting Online Help
Import provides online help. Enter imp help=y to display Import help.

25.7 Import Modes
The Import utility supports four modes of operation.

Specifically:

• Full: Imports a full database. Only users with the IMP_FULL_DATABASE role can use
this mode. Use the FULL parameter to specify this mode.

• Tablespace: Enables a privileged user to move a set of tablespaces from one
Oracle database to another. Use the TRANSPORT_TABLESPACE parameter to specify
this mode.

• User: Enables you to import all objects that belong to you (such as tables, grants,
indexes, and procedures). A privileged user importing in user mode can import all
objects in the schemas of a specified set of users. Use the FROMUSER parameter to
specify this mode.

Chapter 25
Import Modes

25-11

• Table: Enables you to import specific tables and partitions. A privileged user can
qualify the tables by specifying the schema that contains them. Use the TABLES
parameter to specify this mode.

Note:

When you use table mode to import tables that have columns of type
ANYDATA, you may receive the following error:

ORA-22370: Incorrect usage of method. Nonexistent type.

This indicates that the ANYDATA column depends on other types that are
not present in the database. You must manually create dependent types
in the target database before you use table mode to import tables that
use the ANYDATA type.

A user with the IMP_FULL_DATABASE role must specify one of these modes. Otherwise,
an error results. If a user without the IMP_FULL_DATABASE role fails to specify one of
these modes, then a user-level Import is performed.

Note:

As of Oracle Database 12c release 2 (12.2) the import utility (imp), for
security reasons, will no longer import objects as user SYS. If a dump file
contains objects that need to be re-created as user SYS, then the imp utility
tries to re-create them as user SYSTEM instead. If the object cannot be re-
created by user SYSTEM, then you must manually re-create the object yourself
after the import is completed.

If the import job is run by a user with the DBA role, and not all objects can be
re-created by user SYSTEM, then the following warning message is written to
the log file:

IMP-00403:
Warning: This import generated a separate SQL file
"logfilename_sys" which contains DDL that failed due to a
privilege issue.

The SQL file that is generated contains the failed DDL of objects that could
not be re-created by user SYSTEM. To re-create those objects, you must
manually execute the failed DDL after the import finishes.

The SQL file is automatically named by appending '_sys.sql' to the file name
specified for the LOG parameter. For example, if the log file name was
JulyImport, then the SQL file name would be JulyImport_sys.sql.

If no log file was specified, then the default name of the SQL file is
import_sys.sql.

Note: Not all import jobs generate a SQL file; only those jobs run as user
DBA.

Chapter 25
Import Modes

25-12

The following table lists the objects that are imported in each mode.

Table 25-3 Objects Imported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

Analyze cluster No Yes Yes No

Analyze tables/statistics Yes Yes Yes Yes

Application contexts No No Yes No

Auditing information Yes Yes Yes No

B-tree, bitmap, domain
function-based indexes

Yes1 Yes Yes Yes

Cluster definitions No Yes Yes Yes

Column and table
comments

Yes Yes Yes Yes

Database links No Yes Yes No

Default roles No No Yes No

Dimensions No Yes Yes No

Directory aliases No No Yes No

External tables (without
data)

Yes Yes Yes No

Foreign function libraries No Yes Yes No

Indexes owned by users
other than table owner

Yes (Privileged
users only)

Yes Yes Yes

Index types No Yes Yes No

Java resources and
classes

No Yes Yes No

Job queues No Yes Yes No

Nested table data Yes Yes Yes Yes

Object grants Yes (Only for
tables and
indexes)

Yes Yes Yes

Object type definitions
used by table

Yes Yes Yes Yes

Object types No Yes Yes No

Operators No Yes Yes No

Password history No No Yes No

Postinstance actions and
objects

No No Yes No

Postschema procedural
actions and objects

No Yes Yes No

Posttable actions Yes Yes Yes Yes

Posttable procedural
actions and objects

Yes Yes Yes Yes

Preschema procedural
objects and actions

No Yes Yes No

Chapter 25
Import Modes

25-13

Table 25-3 (Cont.) Objects Imported in Each Mode

Object Table Mode User Mode Full Database
Mode

Tablespace
Mode

Pretable actions Yes Yes Yes Yes

Pretable procedural
actions

Yes Yes Yes Yes

Private synonyms No Yes Yes No

Procedural objects No Yes Yes No

Profiles No No Yes No

Public synonyms No No Yes No

Referential integrity
constraints

Yes Yes Yes No

Refresh groups No Yes Yes No

Resource costs No No Yes No

Role grants No No Yes No

Roles No No Yes No

Rollback segment
definitions

No No Yes No

Security policies for table Yes Yes Yes Yes

Sequence numbers No Yes Yes No

Snapshot logs No Yes Yes No

Snapshots and
materialized views

No Yes Yes No

System privilege grants No No Yes No

Table constraints
(primary, unique, check)

Yes Yes Yes Yes

Table data Yes Yes Yes Yes

Table definitions Yes Yes Yes Yes

Tablespace definitions No No Yes No

Tablespace quotas No No Yes No

Triggers Yes Yes2 Yes3 Yes

Triggers owned by other
users

Yes (Privileged
users only)

No No No

User definitions No No Yes No

User proxies No No Yes No

User views No Yes Yes No

User-stored procedures,
packages, and functions

No Yes Yes No

1 Nonprivileged users can export and import only indexes they own on tables they own. They cannot export
indexes they own that are on tables owned by other users, nor can they export indexes owned by other
users on their own tables. Privileged users can export and import indexes on the specified users' tables,
even if the indexes are owned by other users. Indexes owned by the specified user on other users' tables
are not included, unless those other users are included in the list of users to export.

2 Nonprivileged and privileged users can export and import all triggers owned by the user, even if they are
on tables owned by other users.

Chapter 25
Import Modes

25-14

3 A full export does not export triggers owned by schema SYS. You must manually re-create SYS triggers
either before or after the full import. Oracle recommends that you re-create them after the import in case
they define actions that would impede progress of the import.

25.8 Import Parameters
These sections contain descriptions of the Import command-line parameters.

• BUFFER
The BUFFER import parameter defines the size, in bytes, of the buffer through
which data rows are transferred

• COMMIT
The COMMIT import parameter specifies whether Import performs a commit after
each array insert

• COMPILE
The COMPILE Import parameter specifies whether Import compiles packages,
procedures, and functions as they are created.

• CONSTRAINTS
The CONSTRAINTS Import parameter specifies whether table constraints are
imported.

• DATA_ONLY
The DATA_ONLY Import parameter imports only data from a dump file.

• DATAFILES
The DATAFILES Import parameter lists the data files that you want to transport into
the database.

• DESTROY
The DESTROY Import parameter specifies whether the existing data files making up
the database should be reused.

• FEEDBACK
The FEEDBACK Import utility parameter specifies that Import should display a
progress meter in the form of a period for n number of rows imported.

• FILE
The FILE Import utility parameter specifies the names of the export files to import.

• FILESIZE
The FILESIZE Import utility parameter lets you specify the same maximum dump
file size that you specified on export.

• FROMUSER
The FROMUSER parameter of the Import utility enables you to import a subset of
schemas from an export file containing multiple schemas.

• FULL
The FULL Import utility parameter specifies whether to import the entire export
dump file.

• GRANTS
Specifies whether to import object grants.

• HELP
The HELP parameter of Import utility displays a description of the Import
parameters.

Chapter 25
Import Parameters

25-15

• IGNORE
The IGNORE Import utility parameter specifies how object creation errors should
be handled.

• INDEXES
Indexes import parameter specifies whether to import indexes.

• INDEXFILE
INDEXFILE parameter of Import utility specifies a file to receive index-creation
statements.

• LOG
Specifies a file (for example, import.log) to receive informational and error
messages.

• PARFILE
Specifies a file name for a file that contains a list of Import parameters.

• RECORDLENGTH
Specifies the length, in bytes, of the file record.

• RESUMABLE
The RESUMABLE parameter is used to enable and disable resumable space
allocation.

• RESUMABLE_NAME
The value for the RESUMABLE_NAME parameter identifies the statement that is
resumable.

• RESUMABLE_TIMEOUT
The value of the RESUMABLE_TIMEOUT parameter specifies the time period during
which an error must be fixed.

• ROWS
Specifies whether to import the rows of table data.

• SHOW
Lists the contents of the export file before importing.

• SKIP_UNUSABLE_INDEXES
Both Import and the Oracle database provide a SKIP_UNUSABLE_INDEXES
parameter.

• STATISTICS
Specifies what is done with the database optimizer statistics at import time.

• STREAMS_CONFIGURATION
Specifies whether to import any general GoldenGate Replication metadata that
may be present in the export dump file.

• STREAMS_INSTANTIATION
Specifies whether to import Streams instantiation metadata that may be present in
the export dump file.

• TABLES

• TABLESPACES
The TABLESPACES parameter for the Import utility.

• TOID_NOVALIDATE
Use the TOID_NOVALIDATE parameter to specify types to exclude from TOID
comparison.

Chapter 25
Import Parameters

25-16

• TOUSER
Specifies a list of user names whose schemas will be targets for Import.

• TRANSPORT_TABLESPACE
When specified as y, instructs Import to import transportable tablespace metadata
from an export file.

• TTS_OWNERS
When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the users
who own the data in the transportable tablespace set.

• USERID (username/password)
Specifies the username, password, and an optional connect string of the user
performing the import.

• VOLSIZE
Specifies the maximum number of bytes in a dump file on each volume of tape.

25.8.1 BUFFER
The BUFFER import parameter defines the size, in bytes, of the buffer through which
data rows are transferred

Default

operating system-dependent

Description

The integer specified for BUFFER is the size, in bytes, of the buffer through which data
rows are transferred.

BUFFER determines the number of rows in the array inserted by Import. The following
formula gives an approximation of the buffer size that inserts a given array of rows:

buffer_size = rows_in_array * maximum_row_size

For tables containing LOBs, LONG, BFILE, REF, ROWID, UROWID, or TIMESTAMP columns,
rows are inserted individually. The size of the buffer must be large enough to contain
the entire row, except for LOB and LONG columns. If the buffer cannot hold the longest
row in a table, then Import attempts to allocate a larger buffer.

For DATE columns, two or more rows are inserted at once if the buffer is large enough.

Note:

See your Oracle operating system-specific documentation to determine the
default value for this parameter.

Chapter 25
Import Parameters

25-17

25.8.2 COMMIT
The COMMIT import parameter specifies whether Import performs a commit after each
array insert

Default

n

Purpose

Specifies whether Import should commit after each array insert. By default, Import
commits only after loading each table, and Import performs a rollback when an error
occurs, before continuing with the next object.

If a table has nested table columns or attributes, then the contents of the nested tables
are imported as separate tables. Therefore, the contents of the nested tables are
always committed in a transaction distinct from the transaction used to commit the
outer table.

If COMMIT=n and a table is partitioned, then each partition and subpartition in the Export
file is imported in a separate transaction.

For tables containing LOBs, LONG, BFILE, REF, ROWID, UROWID, or TIMESTAMP columns,
array inserts are not done. If COMMIT=y, then Import commits these tables after each
row.

25.8.3 COMPILE
The COMPILE Import parameter specifies whether Import compiles packages,
procedures, and functions as they are created.

Default

y

Purpose

Specifies whether Import compiles packages, procedures, and functions as they are
created.

If COMPILE=n, then these units are compiled on their first use. For example, packages
that are used to build domain indexes are compiled when the domain indexes are
created.

Related Topics

• Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or ton.

Chapter 25
Import Parameters

25-18

25.8.4 CONSTRAINTS
The CONSTRAINTS Import parameter specifies whether table constraints are imported.

Default

y

Purpose

Specifies whether table constraints are imported. The default is to import constraints
(y). If you do not want constraints to be imported, then you must set the parameter
value to n.

Note that primary key constraints for index-organized tables (IOTs) and object tables
are always imported.

25.8.5 DATA_ONLY
The DATA_ONLY Import parameter imports only data from a dump file.

Default

n

Purpose

To import only data (no metadata) from a dump file, specify DATA_ONLY=y.

When you specify DATA_ONLY=y, any import parameters related to metadata that are
entered on the command line (or in a parameter file) become invalid. This means that
no metadata from the dump file will be imported.

The metadata-related parameters are the following: COMPILE, CONSTRAINTS, DATAFILES,
DESTROY, GRANTS, IGNORE, INDEXES, INDEXFILE, ROWS=n, SHOW, SKIP_UNUSABLE_INDEXES,
STATISTICS, STREAMS_CONFIGURATION, STREAMS_INSTANTIATION, TABLESPACES,
TOID_NOVALIDATE, TRANSPORT_TABLESPACE, TTS_OWNERS.

25.8.6 DATAFILES
The DATAFILES Import parameter lists the data files that you want to transport into the
database.

Default

None.

Purpose

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the data files
that you want to be transported into the database.

Chapter 25
Import Parameters

25-19

Related Topics

• TRANSPORT_TABLESPACE
When specified as y, instructs Import to import transportable tablespace metadata
from an export file.

25.8.7 DESTROY
The DESTROY Import parameter specifies whether the existing data files making up the
database should be reused.

Default

n

Specifies whether the existing data files making up the database should be reused.
That is, specifying DESTROY=y causes Import to include the REUSE option in the data file
clause of the SQL CREATE TABLESPACE statement, which causes Import to reuse the
original database's data files after deleting their contents.

Note that the export file contains the data file names used in each tablespace. If you
specify DESTROY=y and attempt to create a second database on the same system (for
testing or other purposes), then the Import utility will overwrite the first database's data
files when it creates the tablespace. In this situation you should use the default,
DESTROY=n, so that an error occurs if the data files already exist when the tablespace
is created. Also, when you need to import into the original database, you will need to
specify IGNORE=y to add to the existing data files without replacing them.

Note:

If data files are stored on a raw device, then DESTROY=n does not prevent files
from being overwritten.

25.8.8 FEEDBACK
The FEEDBACK Import utility parameter specifies that Import should display a progress
meter in the form of a period for n number of rows imported.

Default: 0 (zero)

Specifies that Import should display a progress meter in the form of a period for n
number of rows imported. For example, if you specify FEEDBACK=10, then Import
displays a period each time 10 rows have been imported. The FEEDBACK value applies
to all tables being imported; it cannot be individually set for each table.

25.8.9 FILE
The FILE Import utility parameter specifies the names of the export files to import.

Default: expdat.dmp

Chapter 25
Import Parameters

25-20

Description

Specifies the names of the export files to import. The default extension is .dmp.
Because Export supports multiple export files, it can be necessary to specify multiple
file names that you want to be imported.

You do not need to be the user that exported the export files. However, you must have
read access to the files. If you did not export the files under your user ID, then you
must also have the IMP_FULL_DATABASE role granted to you.

Example

imp scott IGNORE=y FILE = dat1.dmp, dat2.dmp, dat3.dmp FILESIZE=2048

25.8.10 FILESIZE
The FILESIZE Import utility parameter lets you specify the same maximum dump file
size that you specified on export.

Default: operating system-dependent

Lets you specify the same maximum dump file size that you specified on export.

Note:

The maximum size allowed is operating system-dependent. You should
verify this maximum value in your Oracle operating system-specific
documentation before specifying FILESIZE.

The FILESIZE value can be specified as a number followed by KB (number of
kilobytes). For example, FILESIZE=2KB is the same as FILESIZE=2048. Similarly, MB
specifies megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). B remains
the shorthand for bytes; the number is not multiplied to obtain the final file size
(FILESIZE=2048B is the same as FILESIZE=2048).

25.8.11 FROMUSER
The FROMUSER parameter of the Import utility enables you to import a subset of
schemas from an export file containing multiple schemas.

Default: none

A comma-delimited list of schemas to import. This parameter is relevant only to users
with the IMP_FULL_DATABASE role. The parameter enables you to import a subset of
schemas from an export file containing multiple schemas (for example, a full export
dump file or a multischema, user-mode export dump file).

Schema names that appear inside function-based indexes, functions, procedures,
triggers, type bodies, views, and so on, are not affected by FROMUSER or TOUSER
processing. Only the name of the object is affected. After the import has completed,

Chapter 25
Import Parameters

25-21

items in any TOUSER schema should be manually checked for references to old
(FROMUSER) schemas, and corrected if necessary.

You will typically use FROMUSER in conjunction with the Import parameter TOUSER, which
you use to specify a list of usernames whose schemas will be targets for import. The
user that you specify with TOUSER must exist in the target database before the import
operation; otherwise an error is returned.

If you do not specify TOUSER, then Import will do the following:

• Import objects into the FROMUSER schema if the export file is a full dump or a
multischema, user-mode export dump file

• Create objects in the importer's schema (regardless of the presence of or absence
of the FROMUSER schema on import) if the export file is a single-schema, user-mode
export dump file created by an unprivileged user

Note:

Specifying FROMUSER=SYSTEM causes only schema objects belonging to
user SYSTEM to be imported; it does not cause system objects to be
imported.

25.8.12 FULL
The FULL Import utility parameter specifies whether to import the entire export dump
file.

Default: y

Specifies whether to import the entire export dump file.

• Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a
database.

25.8.12.1 Points to Consider for Full Database Exports and Imports
A full database export and import can be a good way to replicate or clean up a
database.

However, to avoid problems be sure to keep the following points in mind:

• A full export does not export triggers owned by schema SYS. You must manually
re-create SYS triggers either before or after the full import. Oracle recommends that
you re-create them after the import in case they define actions that would impede
progress of the import.

• A full export also does not export the default profile. If you have modified the
default profile in the source database (for example, by adding a password
verification function owned by schema SYS), then you must manually pre-create
the function and modify the default profile in the target database after the import
completes.

Chapter 25
Import Parameters

25-22

• If possible, before beginning, make a physical copy of the exported database and
the database into which you intend to import. This ensures that any mistakes are
reversible.

• Before you begin the export, it is advisable to produce a report that includes the
following information:

– A list of tablespaces and data files

– A list of rollback segments

– A count, by user, of each object type such as tables, indexes, and so on

This information lets you ensure that tablespaces have already been created and
that the import was successful.

• If you are creating a completely new database from an export, then remember to
create an extra rollback segment in SYSTEM and to make it available in your
initialization parameter file (init.ora)before proceeding with the import.

• When you perform the import, ensure you are pointing at the correct instance. This
is very important because on some UNIX systems, just the act of entering a
subshell can change the database against which an import operation was
performed.

• Do not perform a full import on a system that has more than one database unless
you are certain that all tablespaces have already been created. A full import
creates any undefined tablespaces using the same data file names as the
exported database. This can result in problems in the following situations:

– If the data files belong to any other database, then they will become corrupted.
This is especially true if the exported database is on the same system,
because its data files will be reused by the database into which you are
importing.

– If the data files have names that conflict with existing operating system files.

25.8.13 GRANTS
Specifies whether to import object grants.

Default: y

By default, the Import utility imports any object grants that were exported. If the export
was a user-mode export, then the export file contains only first-level object grants
(those granted by the owner).

If the export was a full database mode export, then the export file contains all object
grants, including lower-level grants (those granted by users given a privilege with the
WITH GRANT OPTION). If you specify GRANTS=n, then the Import utility does not import
object grants. (Note that system grants are imported even if GRANTS=n.)

Note:

Export does not export grants on data dictionary views for security reasons
that affect Import. If such grants were exported, then access privileges would
be changed and the importer would not be aware of this.

Chapter 25
Import Parameters

25-23

25.8.14 HELP
The HELP parameter of Import utility displays a description of the Import parameters.

Default: none

Displays a description of the Import parameters. Enter imp HELP=y on the command
line to display the help content.

25.8.15 IGNORE
The IGNORE Import utility parameter specifies how object creation errors should be
handled.

Default: n

Specifies how object creation errors should be handled. If you accept the default,
IGNORE=n, then Import logs or displays object creation errors before continuing.

If you specify IGNORE=y, then Import overlooks object creation errors when it attempts
to create database objects, and continues without reporting the errors.

Note that only object creation errors are ignored; other errors, such as operating
system, database, and SQL errors, are not ignored and may cause processing to stop.

In situations where multiple refreshes from a single export file are done with IGNORE=y,
certain objects can be created multiple times (although they will have unique system-
defined names). You can prevent this for certain objects (for example, constraints) by
doing an import with CONSTRAINTS=n. If you do a full import with CONSTRAINTS=n, then
no constraints for any tables are imported.

If a table already exists and IGNORE=y, then rows are imported into existing tables
without any errors or messages being given. You might want to import data into tables
that already exist in order to use new storage parameters or because you have
already created the table in a cluster.

If a table already exists and IGNORE=n, then errors are reported and the table is
skipped with no rows inserted. Also, objects dependent on tables, such as indexes,
grants, and constraints, will not be created.

Note:

When you import into existing tables, if no column in the table is uniquely
indexed, rows could be duplicated.

25.8.16 INDEXES
Indexes import parameter specifies whether to import indexes.

Default: y

Specifies whether to import indexes. System-generated indexes such as LOB indexes,
OID indexes, or unique constraint indexes are re-created by Import regardless of the
setting of this parameter.

Chapter 25
Import Parameters

25-24

You can postpone all user-generated index creation until after Import completes, by
specifying INDEXES=n.

If indexes for the target table already exist at the time of the import, then Import
performs index maintenance when data is inserted into the table.

25.8.17 INDEXFILE
INDEXFILE parameter of Import utility specifies a file to receive index-creation
statements.

Default: none

Specifies a file to receive index-creation statements.

When this parameter is specified, index-creation statements for the requested mode
are extracted and written to the specified file, rather than used to create indexes in the
database. No database objects are imported.

If the Import parameter CONSTRAINTS is set to y, then Import also writes table
constraints to the index file.

The file can then be edited (for example, to change storage parameters) and used as
a SQL script to create the indexes.

To make it easier to identify the indexes defined in the file, the export file's CREATE
TABLE statements and CREATE CLUSTER statements are included as comments.

Perform the following steps to use this feature:

1. Import using the INDEXFILE parameter to create a file of index-creation
statements.

2. Edit the file, making certain to add a valid password to the connect strings.

3. Rerun Import, specifying INDEXES=n.

(This step imports the database objects while preventing Import from using the
index definitions stored in the export file.)

4. Execute the file of index-creation statements as a SQL script to create the index.

The INDEXFILE parameter can be used only with the FULL=y, FROMUSER, TOUSER, or
TABLES parameters.

25.8.18 LOG
Specifies a file (for example, import.log) to receive informational and error messages.

Default: none

If you specify a log file, then the Import utility writes all information to the log in addition
to the terminal display.

25.8.19 PARFILE
Specifies a file name for a file that contains a list of Import parameters.

Default: none

Chapter 25
Import Parameters

25-25

For more information about using a parameter file, see Parameter Files.

25.8.20 RECORDLENGTH
Specifies the length, in bytes, of the file record.

Default

Operating system-dependent.

Purpose

The RECORDLENGTH parameter is necessary when you must transfer the export file to
another operating system that uses a different default value.

If you do not define this parameter, then it defaults to your platform-dependent value
for BUFSIZ.

You can set RECORDLENGTH to any value equal to or greater than your system's BUFSIZ.
(The highest value is 64 KB.) Changing the RECORDLENGTH parameter affects only the
size of data that accumulates before writing to the database. It does not affect the
operating system file block size.

You can also use this parameter to specify the size of the Import I/O buffer.

25.8.21 RESUMABLE
The RESUMABLE parameter is used to enable and disable resumable space allocation.

Default

n

Purpose

Because this parameter is disabled by default, you must set RESUMABLE=y to use its
associated parameters, RESUMABLE_NAME and RESUMABLE_TIMEOUT.

See Also:

Oracle Database Administrator's Guide for more information about
resumable space allocation.

25.8.22 RESUMABLE_NAME
The value for the RESUMABLE_NAME parameter identifies the statement that is
resumable.

Default

'User USERNAME (USERID), Session SESSIONID, Instance INSTANCEID'

Chapter 25
Import Parameters

25-26

Purpose

This value is a user-defined text string that is inserted in either the USER_RESUMABLE or
DBA_RESUMABLE view to help you identify a specific resumable statement that has been
suspended.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

25.8.23 RESUMABLE_TIMEOUT
The value of the RESUMABLE_TIMEOUT parameter specifies the time period during which
an error must be fixed.

Default

7200 seconds (2 hours)

Purpose

If the error is not fixed within the timeout period, then execution of the statement is
terminated.

This parameter is ignored unless the RESUMABLE parameter is set to y to enable
resumable space allocation.

25.8.24 ROWS
Specifies whether to import the rows of table data.

Default

y

Purpose

If ROWS=n, then statistics for all imported tables will be locked after the import operation
is finished.

25.8.25 SHOW
Lists the contents of the export file before importing.

Default

n

Syntax and Description

When SHOW=y, the contents of the export dump file are listed to the display and not
imported. The SQL statements contained in the export are displayed in the order in
which Import will execute them.

The SHOW parameter can be used only with the FULL=y, FROMUSER, TOUSER, or TABLES
parameter.

Chapter 25
Import Parameters

25-27

25.8.26 SKIP_UNUSABLE_INDEXES
Both Import and the Oracle database provide a SKIP_UNUSABLE_INDEXES parameter.

Default: the value of the Oracle database configuration parameter,
SKIP_UNUSABLE_INDEXES, as specified in the initialization parameter file.

The Import SKIP_UNUSABLE_INDEXES parameter is specified at the Import command
line. The Oracle database SKIP_UNUSABLE_INDEXES parameter is specified as a
configuration parameter in the initialization parameter file. It is important to understand
how they affect each other.

If you do not specify a value for SKIP_UNUSABLE_INDEXES at the Import command line,
then Import uses the database setting for the SKIP_UNUSABLE_INDEXES configuration
parameter, as specified in the initialization parameter file.

If you do specify a value for SKIP_UNUSABLE_INDEXES at the Import command line, then
it overrides the value of the SKIP_UNUSABLE_INDEXES configuration parameter in the
initialization parameter file.

A value of y means that Import will skip building indexes that were set to the Index
Unusable state (by either system or user). Other indexes (not previously set to Index
Unusable) continue to be updated as rows are inserted.

This parameter enables you to postpone index maintenance on selected index
partitions until after row data has been inserted. You then have the responsibility to
rebuild the affected index partitions after the Import.

Note:

Indexes that are unique and marked Unusable are not allowed to skip index
maintenance. Therefore, the SKIP_UNUSABLE_INDEXES parameter has no
effect on unique indexes.

You can use the INDEXFILE parameter in conjunction with INDEXES=n to provide the
SQL scripts for re-creating the index. If the SKIP_UNUSABLE_INDEXES parameter is not
specified, then row insertions that attempt to update unusable indexes will fail.

See Also:

The ALTER SESSION statement in the Oracle Database SQL Language
Reference

25.8.27 STATISTICS
Specifies what is done with the database optimizer statistics at import time.

Default: ALWAYS

The options are:

Chapter 25
Import Parameters

25-28

• ALWAYS

Always import database optimizer statistics regardless of whether they are
questionable.

• NONE

Do not import or recalculate the database optimizer statistics.

• SAFE

Import database optimizer statistics only if they are not questionable. If they are
questionable, then recalculate the optimizer statistics.

• RECALCULATE

Do not import the database optimizer statistics. Instead, recalculate them on
import. This requires that the original export operation that created the dump file
must have generated the necessary ANALYZE statements (that is, the export was
not performed with STATISTICS=NONE). These ANALYZE statements are included in
the dump file and used by the import operation for recalculation of the table's
statistics.

See Also:

– Oracle Database Concepts for more information about the optimizer
and the statistics it uses

– Importing Statistics

25.8.28 STREAMS_CONFIGURATION
Specifies whether to import any general GoldenGate Replication metadata that may
be present in the export dump file.

Default: y

25.8.29 STREAMS_INSTANTIATION
Specifies whether to import Streams instantiation metadata that may be present in the
export dump file.

Default: n

Specify y if the import is part of an instantiation in a Streams environment.

25.8.30 TABLES
Default: none

Specifies that the import is a table-mode import and lists the table names and partition
and subpartition names to import. Table-mode import lets you import entire partitioned
or nonpartitioned tables. The TABLES parameter restricts the import to the specified
tables and their associated objects, as listed in Import Modes. You can specify the
following values for the TABLES parameter:

Chapter 25
Import Parameters

25-29

• tablename specifies the name of the table or tables to be imported. If a table in the
list is partitioned and you do not specify a partition name, then all its partitions and
subpartitions are imported. To import all the exported tables, specify an asterisk (*)
as the only table name parameter.

tablename can contain any number of '%' pattern matching characters, which can
each match zero or more characters in the table names in the export file. All the
tables whose names match all the specified patterns of a specific table name in
the list are selected for import. A table name in the list that consists of all pattern
matching characters and no partition name results in all exported tables being
imported.

• partition_name and subpartition_name let you restrict the import to one or more
specified partitions or subpartitions within a partitioned table.

The syntax you use to specify the preceding is in the form:

tablename:partition_name

tablename:subpartition_name

If you use tablename:partition_name, then the specified table must be partitioned,
and partition_name must be the name of one of its partitions or subpartitions. If the
specified table is not partitioned, then the partition_name is ignored and the entire
table is imported.

The number of tables that can be specified at the same time is dependent on
command-line limits.

As the export file is processed, each table name in the export file is compared against
each table name in the list, in the order in which the table names were specified in the
parameter. To avoid ambiguity and excessive processing time, specific table names
should appear at the beginning of the list, and more general table names (those with
patterns) should appear at the end of the list.

Although you can qualify table names with schema names (as in scott.emp) when
exporting, you cannot do so when importing. In the following example, the TABLES
parameter is specified incorrectly:

imp TABLES=(jones.accts, scott.emp, scott.dept)

The valid specification to import these tables is as follows:

imp FROMUSER=jones TABLES=(accts)
imp FROMUSER=scott TABLES=(emp,dept)

For a more detailed example, see "Example Import Using Pattern Matching to Import
Various Tables".

Note:

Some operating systems, such as UNIX, require that you use escape
characters before special characters, such as a parenthesis, so that the
character is not treated as a special character. On UNIX, use a backslash (\)
as the escape character, as shown in the following example:

TABLES=\(emp,dept\)

Chapter 25
Import Parameters

25-30

• Table Name Restrictions
This is an explanation of table name restrictions for Import utility.

25.8.30.1 Table Name Restrictions
This is an explanation of table name restrictions for Import utility.

The following restrictions apply to table names:

• By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for
the table name, then you must enclose the name in quotation marks. The name
must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line be
preceded by an escape character. The following are examples of how case-
sensitivity can be preserved in the different Import modes.

– In command-line mode:

tables='\"Emp\"'

– In interactive mode:

Table(T) to be exported: "Exp"

– In parameter file mode:

tables='"Emp"'

• Table names specified on the command line cannot include a pound (#) sign,
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound (#) sign, then the Import utility interprets the
rest of the line as a comment, unless the table name is enclosed in quotation
marks.

For example, if the parameter file contains the following line, then Import interprets
everything on the line after emp# as a comment and does not import the tables
dept and mydata:

TABLES=(emp#, dept, mydata)

However, given the following line, the Import utility imports all three tables because
emp# is enclosed in quotation marks:

TABLES=("emp#", dept, mydata)

Chapter 25
Import Parameters

25-31

Note:

Some operating systems require single quotation marks rather than
double quotation marks, or the reverse; see your Oracle operating
system-specific documentation. Different operating systems also have
other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a dollar
sign ($) or pound sign (#) (or certain other special characters). You must
use escape characters to get such characters in the name past the shell
and into Import.

25.8.31 TABLESPACES
The TABLESPACES parameter for the Import utility.

Default: none

When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the
tablespaces to be transported into the database. If there is more than one tablespace
in the export file, then you must specify all of them as part of the import operation.

See TRANSPORT_TABLESPACE for more information.

25.8.32 TOID_NOVALIDATE
Use the TOID_NOVALIDATE parameter to specify types to exclude from TOID
comparison.

Default: none

When you import a table that references a type, but a type of that name already exists
in the database, Import attempts to verify that the preexisting type is, in fact, the type
used by the table (rather than a different type that just happens to have the same
name).

To do this, Import compares the type's unique identifier (TOID) with the identifier
stored in the export file. Import will not import the table rows if the TOIDs do not match.

In some situations, you may not want this validation to occur on specified types (for
example, if the types were created by a cartridge installation). You can use the
TOID_NOVALIDATE parameter to specify types to exclude from TOID comparison.

The syntax is as follows:

TOID_NOVALIDATE=([schemaname.]typename [, ...])

For example:

imp scott TABLES=jobs TOID_NOVALIDATE=typ1
imp scott TABLES=salaries TOID_NOVALIDATE=(fred.typ0,sally.typ2,typ3)

Chapter 25
Import Parameters

25-32

If you do not specify a schema name for the type, then it defaults to the schema of the
importing user. For example, in the first preceding example, the type typ1 defaults to
scott.typ1 and in the second example, the type typ3 defaults to scott.typ3.

Note that TOID_NOVALIDATE deals only with table column types. It has no effect on
table types.

The output of a typical import with excluded types would contain entries similar to the
following:

[...]
. importing IMP3's objects into IMP3
. . skipping TOID validation on type IMP2.TOIDTYP0
. . importing table "TOIDTAB3"
[...]

Note:

When you inhibit validation of the type identifier, it is your responsibility to
ensure that the attribute list of the imported type matches the attribute list of
the existing type. If these attribute lists do not match, then results are
unpredictable.

25.8.33 TOUSER
Specifies a list of user names whose schemas will be targets for Import.

Default: none

The user names must exist before the import operation; otherwise an error is returned.
The IMP_FULL_DATABASE role is required to use this parameter. To import to a different
schema than the one that originally contained the object, specify TOUSER. For
example:

imp FROMUSER=scott TOUSER=joe TABLES=emp

If multiple schemas are specified, then the schema names are paired. The following
example imports scott's objects into joe's schema, and fred's objects into ted's
schema:

imp FROMUSER=scott,fred TOUSER=joe,ted

If the FROMUSER list is longer than the TOUSER list, then the remaining schemas will be
imported into either the FROMUSER schema, or into the importer's schema, based on
normal defaulting rules. You can use the following syntax to ensure that any extra
objects go into the TOUSER schema:

imp FROMUSER=scott,adams TOUSER=ted,ted

Note that user ted is listed twice.

Chapter 25
Import Parameters

25-33

See Also:

FROMUSER for information about restrictions when using FROMUSER and
TOUSER

25.8.34 TRANSPORT_TABLESPACE
When specified as y, instructs Import to import transportable tablespace metadata
from an export file.

Default: n

Encrypted columns are not supported in transportable tablespace mode.

Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

25.8.35 TTS_OWNERS
When TRANSPORT_TABLESPACE is specified as y, use this parameter to list the users
who own the data in the transportable tablespace set.

Default: none

See TRANSPORT_TABLESPACE.

25.8.36 USERID (username/password)
Specifies the username, password, and an optional connect string of the user
performing the import.

Default: none

If you connect as user SYS, then you must also specify AS SYSDBA in the connect string.
Your operating system may require you to treat AS SYSDBA as a special string, in which
case the entire string would be enclosed in quotation marks.

See Also:

The user's guide for your Oracle Net protocol for information about specifying
a connect string for Oracle Net.

Chapter 25
Import Parameters

25-34

25.8.37 VOLSIZE
Specifies the maximum number of bytes in a dump file on each volume of tape.

Default: none

The VOLSIZE parameter has a maximum value equal to the maximum value that can
be stored in 64 bits on your platform.

The VOLSIZE value can be specified as number followed by KB (number of kilobytes).
For example, VOLSIZE=2KB is the same as VOLSIZE=2048. Similarly, MB specifies
megabytes (1024 * 1024) and GB specifies gigabytes (1024**3). The shorthand for
bytes remains B; the number is not multiplied to get the final file size (VOLSIZE=2048B
is the same as VOLSIZE=2048).

25.9 Example Import Sessions
These sections give some examples of import sessions that show you how to use the
parameter file and command-line methods.

• Example Import of Selected Tables for a Specific User

• Example Import of Tables Exported by Another User

• Example Import of Tables from One User to Another

• Example Import Session Using Partition-Level Import

• Example Import Using Pattern Matching to Import Various Tables

25.9.1 Example Import of Selected Tables for a Specific User
In this example, using a full database export file, an administrator imports the dept and
emp tables into the scott schema.

Parameter File Method

> imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
SHOW=n
IGNORE=n
GRANTS=y
FROMUSER=scott
TABLES=(dept,emp)

Command-Line Method

> imp FILE=dba.dmp FROMUSER=scott TABLES=(dept,emp)

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

Chapter 25
Example Import Sessions

25-35

25.9.2 Example Import of Tables Exported by Another User
This example illustrates importing the unit and manager tables from a file exported by
blake into the scott schema.

Parameter File Method

> imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
SHOW=n
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=blake
TOUSER=scott
TABLES=(unit,manager)

Command-Line Method

> imp FROMUSER=blake TOUSER=scott FILE=blake.dmp TABLES=(unit,manager)

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

25.9.3 Example Import of Tables from One User to Another
In this example, a database administrator (DBA) imports all tables belonging to scott
into user blake's account.

Parameter File Method

 > imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
FROMUSER=scott
TOUSER=blake
TABLES=(*)

Command-Line Method

> imp FILE=scott.dmp FROMUSER=scott TOUSER=blake TABLES=(*)

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.

Chapter 25
Example Import Sessions

25-36

Warning: the objects were exported by SCOTT, not by you

import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT's objects into BLAKE
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported
. . importing table "EMP" 14 rows imported
. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.

25.9.4 Example Import Session Using Partition-Level Import
This section describes an import of a table with multiple partitions, a table with
partitions and subpartitions, and repartitioning a table on different columns.

• Example 1: A Partition-Level Import

• Example 2: A Partition-Level Import of a Composite Partitioned Table

• Example 3: Repartitioning a Table on a Different Column

25.9.4.1 Example 1: A Partition-Level Import
In this example, emp is a partitioned table with three partitions: P1, P2, and P3.

A table-level export file was created using the following command:

> exp scott TABLES=emp FILE=exmpexp.dat ROWS=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition P1 7 rows exported
. . exporting partition P2 12 rows exported
. . exporting partition P3 3 rows exported
Export terminated successfully without warnings.

In a partition-level Import you can specify the specific partitions of an exported table
that you want to import. In this example, these are P1 and P3 of table emp:

> imp scott TABLES=(emp:p1,emp:p3) FILE=exmpexp.dat ROWS=y

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Status messages are also displayed.

25.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned Table
This example demonstrates that the partitions and subpartitions of a composite
partitioned table are imported. emp is a partitioned table with two composite partitions:

Chapter 25
Example Import Sessions

25-37

P1 and P2. Partition P1 has three subpartitions: P1_SP1, P1_SP2, and P1_SP3. Partition
P2 has two subpartitions: P2_SP1 and P2_SP2.

A table-level export file was created using the following command:

> exp scott TABLES=emp FILE=exmpexp.dat ROWS=y

Export Messages

Information is displayed about the release of Export you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

When the command executes, the following Export messages are displayed:

.

.

.
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting composite partition P1
. . exporting subpartition P1_SP1 2 rows exported
. . exporting subpartition P1_SP2 10 rows exported
. . exporting subpartition P1_SP3 7 rows exported
. . exporting composite partition P2
. . exporting subpartition P2_SP1 4 rows exported
. . exporting subpartition P2_SP2 2 rows exported
Export terminated successfully without warnings.

The following Import command results in the importing of subpartition P1_SP2 and
P1_SP3 of composite partition P1 in table emp and all subpartitions of composite
partition P2 in table emp.

> imp scott TABLES=(emp:p1_sp2,emp:p1_sp3,emp:p2) FILE=exmpexp.dat ROWS=y

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.

. importing SCOTT's objects into SCOTT

. . importing subpartition "EMP":"P1_SP2" 10 rows imported

. . importing subpartition "EMP":"P1_SP3" 7 rows imported

. . importing subpartition "EMP":"P2_SP1" 4 rows imported

. . importing subpartition "EMP":"P2_SP2" 2 rows imported
Import terminated successfully without warnings.

25.9.4.3 Example 3: Repartitioning a Table on a Different Column
This example assumes the emp table has two partitions based on the empno column.
This example repartitions the emp table on the deptno column.

Perform the following steps to repartition a table on a different column:

1. Export the table to save the data.

2. Drop the table from the database.

Chapter 25
Example Import Sessions

25-38

3. Create the table again with the new partitions.

4. Import the table data.

The following example illustrates these steps.

> exp scott table=emp file=empexp.dat
.
.
.

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition EMP_LOW 4 rows exported
. . exporting partition EMP_HIGH 10 rows exported
Export terminated successfully without warnings.

SQL> connect scott
Connected.
SQL> drop table emp cascade constraints;
Statement processed.
SQL> create table emp
 2 (
 3 empno number(4) not null,
 4 ename varchar2(10),
 5 job varchar2(9),
 6 mgr number(4),
 7 hiredate date,
 8 sal number(7,2),
 9 comm number(7,2),
 10 deptno number(2)
 11)
 12 partition by range (deptno)
 13 (
 14 partition dept_low values less than (15)
 15 tablespace tbs_1,
 16 partition dept_mid values less than (25)
 17 tablespace tbs_2,
 18 partition dept_high values less than (35)
 19 tablespace tbs_3
 20);
Statement processed.
SQL> exit

> imp scott tables=emp file=empexp.dat ignore=y
.
.
.
import done in WE8DEC character set and AL16UTF16 NCHAR character set
. importing SCOTT's objects into SCOTT
. . importing partition "EMP":"EMP_LOW" 4 rows imported
. . importing partition "EMP":"EMP_HIGH" 10 rows imported
Import terminated successfully without warnings.

The following SQL SELECT statements show that the data is partitioned on the deptno
column:

SQL> connect scott
Connected.
SQL> select empno, deptno from emp partition (dept_low);
EMPNO DEPTNO
---------- ----------

Chapter 25
Example Import Sessions

25-39

 7782 10
 7839 10
 7934 10
3 rows selected.
SQL> select empno, deptno from emp partition (dept_mid);
EMPNO DEPTNO
---------- ----------
 7369 20
 7566 20
 7788 20
 7876 20
 7902 20
5 rows selected.
SQL> select empno, deptno from emp partition (dept_high);
EMPNO DEPTNO
---------- ----------
 7499 30
 7521 30
 7654 30
 7698 30
 7844 30
 7900 30
6 rows selected.
SQL> exit;

25.9.5 Example Import Using Pattern Matching to Import Various
Tables

In this example, pattern matching is used to import various tables for user scott.

Parameter File Method

imp PARFILE=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=scott
TABLES=(%d%,b%s)

Command-Line Method

imp FROMUSER=scott FILE=scott.dmp TABLES=(%d%,b%s)

Import Messages

Information is displayed about the release of Import you are using and the release of
Oracle Database that you are connected to. Then, status messages similar to the
following are shown:

.

.

.
import done in US7ASCII character set and AL16UTF16 NCHAR character set
import server uses JA16SJIS character set (possible charset conversion)
. importing SCOTT's objects into SCOTT

Chapter 25
Example Import Sessions

25-40

. . importing table "BONUS" 0 rows imported

. . importing table "DEPT" 4 rows imported

. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.

25.10 Exit Codes for Inspection and Display
Import provides the results of an operation immediately upon completion. Depending
on the platform, the outcome may be reported in a process exit code and the results
recorded in the log file.

This enables you to check the outcome from the command line or script. Table 25-4
shows the exit codes that get returned for various results.

Table 25-4 Exit Codes for Import

Result Exit Code

Import terminated successfully without
warnings

EX_SUCC

Import terminated successfully with warnings EX_OKWARN

Import terminated unsuccessfully EX_FAIL

For UNIX, the exit codes are as follows:

EX_SUCC 0
EX_OKWARN 0
EX_FAIL 1

25.11 Error Handling During an Import
These sections describe errors that can occur when you import database objects.

• Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, then
Import displays a warning message but continues processing the rest of the table.

• Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as
described in these sections.

25.11.1 Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, then Import
displays a warning message but continues processing the rest of the table.

Some errors, such as "tablespace full," apply to all subsequent rows in the table.
These errors cause Import to stop processing the current table and skip to the next
table.

A "tablespace full" error can suspend the import if the RESUMABLE=y parameter is
specified.

Chapter 25
Exit Codes for Inspection and Display

25-41

• Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on
your system.

• Invalid Data
Row errors can also occur when the column definition for a table in a database is
different from the column definition in the export file.

25.11.1.1 Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on
your system.

Including:

• NOT NULL constraints

• Uniqueness constraints

• Primary key (not null and unique) constraints

• Referential integrity constraints

• Check constraints

See Also:

– Oracle Database Development Guide for information about using
integrity constraints in applications

– Oracle Database Concepts for more information about integrity
constraints

25.11.1.2 Invalid Data
Row errors can also occur when the column definition for a table in a database is
different from the column definition in the export file.

The error is caused by data that is too long to fit into a new table's columns, by invalid
data types, or by any other INSERT error.

25.11.2 Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as described in
these sections.

When these errors occur, import of the current database object is discontinued. Import
then attempts to continue with the next database object in the export file.

• Object Already Exists
If a database object to be imported already exists in the database, then an object
creation error occurs.

• Sequences
If sequence numbers need to be reset to the value in an export file as part of an
import, then you should drop sequences.

Chapter 25
Error Handling During an Import

25-42

• Resource Errors
Resource limitations can cause objects to be skipped. When you are importing
tables, for example, resource errors can occur because of internal problems or
when a resource such as memory has been exhausted.

• Domain Index Metadata
Domain indexes can have associated application-specific metadata that is
imported using anonymous PL/SQL blocks.

25.11.2.1 Object Already Exists
If a database object to be imported already exists in the database, then an object
creation error occurs.

What happens next depends on the setting of the IGNORE parameter.

If IGNORE=n (the default), then the error is reported, and Import continues with the next
database object. The current database object is not replaced. For tables, this behavior
means that rows contained in the export file are not imported.

If IGNORE=y, then object creation errors are not reported. The database object is not
replaced. If the object is a table, then rows are imported into it. Note that only object
creation errors are ignored; all other errors (such as operating system, database, and
SQL errors) are reported and processing may stop.

Note:

Specifying IGNORE=y can cause duplicate rows to be entered into a table
unless one or more columns of the table are specified with the UNIQUE
integrity constraint. This could occur, for example, if Import were run twice.

25.11.2.2 Sequences
If sequence numbers need to be reset to the value in an export file as part of an
import, then you should drop sequences.

If a sequence is not dropped before the import, then it is not set to the value captured
in the export file, because Import does not drop and re-create a sequence that already
exists. If the sequence already exists, then the export file's CREATE SEQUENCE
statement fails and the sequence is not imported.

25.11.2.3 Resource Errors
Resource limitations can cause objects to be skipped. When you are importing tables,
for example, resource errors can occur because of internal problems or when a
resource such as memory has been exhausted.

If a resource error occurs while you are importing a row, then Import stops processing
the current table and skips to the next table. If you have specified COMMIT=y, then
Import commits the partial import of the current table. If not, then a rollback of the
current table occurs before Import continues. See the description of COMMIT.

Chapter 25
Error Handling During an Import

25-43

25.11.2.4 Domain Index Metadata
Domain indexes can have associated application-specific metadata that is imported
using anonymous PL/SQL blocks.

These PL/SQL blocks are executed at import time, before the CREATE INDEX statement.
If a PL/SQL block causes an error, then the associated index is not created because
the metadata is considered an integral part of the index.

25.12 Table-Level and Partition-Level Import
You can import tables, partitions, and subpartitions.

Specifically:

• Table-level Import: Imports all data from the specified tables in an export file.

• Partition-level Import: Imports only data from the specified source partitions or
subpartitions.

• Guidelines for Using Table-Level Import
For each specified table, table-level Import imports all rows of the table.

• Guidelines for Using Partition-Level Import
Partition-level Import can only be specified in table mode. It lets you selectively
load data from specified partitions or subpartitions in an export file.

• Migrating Data Across Partitions and Tables
If you specify a partition name for a composite partition, then all subpartitions
within the composite partition are used as the source.

25.12.1 Guidelines for Using Table-Level Import
For each specified table, table-level Import imports all rows of the table.

With table-level Import:

• All tables exported using any Export mode (except TRANSPORT_TABLESPACES) can
be imported.

• Users can import the entire (partitioned or nonpartitioned) table, partitions, or
subpartitions from a table-level export file into a (partitioned or nonpartitioned)
target table with the same name.

If the table does not exist, and if the exported table was partitioned, then table-level
Import creates a partitioned table. If the table creation is successful, then table-level
Import reads all source data from the export file into the target table. After Import, the
target table contains the partition definitions of all partitions and subpartitions
associated with the source table in the export file. This operation ensures that the
physical and logical attributes (including partition bounds) of the source partitions are
maintained on import.

25.12.2 Guidelines for Using Partition-Level Import
Partition-level Import can only be specified in table mode. It lets you selectively load
data from specified partitions or subpartitions in an export file.

Chapter 25
Table-Level and Partition-Level Import

25-44

Keep the following guidelines in mind when using partition-level Import.

• Import always stores the rows according to the partitioning scheme of the target
table.

• Partition-level Import inserts only the row data from the specified source partitions
or subpartitions.

• If the target table is partitioned, then partition-level Import rejects any rows that fall
above the highest partition of the target table.

• Partition-level Import cannot import a nonpartitioned exported table. However, a
partitioned table can be imported from a nonpartitioned exported table using table-
level Import.

• Partition-level Import is legal only if the source table (that is, the table called
tablename at export time) was partitioned and exists in the export file.

• If the partition or subpartition name is not a valid partition in the export file, then
Import generates a warning.

• The partition or subpartition name in the parameter refers to only the partition or
subpartition in the export file, which may not contain all of the data of the table on
the export source system.

• If ROWS=y (default), and the table does not exist in the import target system, then
the table is created and all rows from the source partition or subpartition are
inserted into the partition or subpartition of the target table.

• If ROWS=y (default) and IGNORE=y, but the table already existed before import, then
all rows for the specified partition or subpartition in the table are inserted into the
table. The rows are stored according to the existing partitioning scheme of the
target table.

• If ROWS=n, then Import does not insert data into the target table and continues to
process other objects associated with the specified table and partition or
subpartition in the file.

• If the target table is nonpartitioned, then the partitions and subpartitions are
imported into the entire table. Import requires IGNORE=y to import one or more
partitions or subpartitions from the export file into a nonpartitioned table on the
import target system.

25.12.3 Migrating Data Across Partitions and Tables
If you specify a partition name for a composite partition, then all subpartitions within
the composite partition are used as the source.

In the following example, the partition specified by the partition name is a composite
partition. All of its subpartitions will be imported:

imp SYSTEM FILE=expdat.dmp FROMUSER=scott TABLES=b:py

The following example causes row data of partitions qc and qd of table scott.e to be
imported into the table scott.e:

imp scott FILE=expdat.dmp TABLES=(e:qc, e:qd) IGNORE=y

If table e does not exist in the import target database, then it is created and data is
inserted into the same partitions. If table e existed on the target system before import,

Chapter 25
Table-Level and Partition-Level Import

25-45

then the row data is inserted into the partitions whose range allows insertion. The row
data can end up in partitions of names other than qc and qd.

Note:

With partition-level Import to an existing table, you must set up the target
partitions or subpartitions properly and use IGNORE=y.

25.13 Controlling Index Creation and Maintenance
These sections describe the behavior of Import with respect to index creation and
maintenance.

• Delaying Index Creation
Import provides you with the capability of delaying index creation and maintenance
services until after completion of the import and insertion of exported data.

• Index Creation and Maintenance Controls
Describes index creation and maintenance controls.

25.13.1 Delaying Index Creation
Import provides you with the capability of delaying index creation and maintenance
services until after completion of the import and insertion of exported data.

Performing index creation, re-creation, or maintenance after Import completes is
generally faster than updating the indexes for each row inserted by Import.

Index creation can be time consuming, and therefore can be done more efficiently
after the import of all other objects has completed. You can postpone creation of
indexes until after the import completes by specifying INDEXES=n. (INDEXES=y is the
default.) You can then store the missing index definitions in a SQL script by running
Import while using the INDEXFILE parameter. The index-creation statements that would
otherwise be issued by Import are instead stored in the specified file.

After the import is complete, you must create the indexes, typically by using the
contents of the file (specified with INDEXFILE) as a SQL script after specifying
passwords for the connect statements.

25.13.2 Index Creation and Maintenance Controls
Describes index creation and maintenance controls.

If SKIP_UNUSABLE_INDEXES=y, then the Import utility postpones maintenance on all
indexes that were set to Index Unusable before the Import. Other indexes (not
previously set to Index Unusable) continue to be updated as rows are inserted. This
approach saves on index updates during the import of existing tables.

Delayed index maintenance may cause a violation of an existing unique integrity
constraint supported by the index. The existence of a unique integrity constraint on a
table does not prevent existence of duplicate keys in a table that was imported with
INDEXES=n. The supporting index will be in an UNUSABLE state until the duplicates are
removed and the index is rebuilt.

Chapter 25
Controlling Index Creation and Maintenance

25-46

• Example of Postponing Index Maintenance
Shows an example of postponing index maintenance.

25.13.2.1 Example of Postponing Index Maintenance
Shows an example of postponing index maintenance.

Assume that partitioned table t with partitions p1 and p2 exists on the import target
system. Assume that local indexes p1_ind on partition p1 and p2_ind on partition p2
exist also. Assume that partition p1 contains a much larger amount of data in the
existing table t, compared with the amount of data to be inserted by the export file
(expdat.dmp). Assume that the reverse is true for p2.

Consequently, performing index updates for p1_ind during table data insertion time is
more efficient than at partition index rebuild time. The opposite is true for p2_ind.

Users can postpone local index maintenance for p2_ind during import by using the
following steps:

1. Issue the following SQL statement before import:

ALTER TABLE t MODIFY PARTITION p2 UNUSABLE LOCAL INDEXES;

2. Issue the following Import command:

imp scott FILE=expdat.dmp TABLES = (t:p1, t:p2) IGNORE=y
SKIP_UNUSABLE_INDEXES=y

This example executes the ALTER SESSION SET SKIP_UNUSABLE_INDEXES=y
statement before performing the import.

3. Issue the following SQL statement after import:

ALTER TABLE t MODIFY PARTITION p2 REBUILD UNUSABLE LOCAL INDEXES;

In this example, local index p1_ind on p1 will be updated when table data is inserted
into partition p1 during import. Local index p2_ind on p2 will be updated at index
rebuild time, after import.

25.14 Network Considerations for Using Oracle Net with
Original Import

To perform imports over a network, you can use the Oracle Data Pump original Import
utility (imp) with Oracle Net.

For example, if you run Import locally, then you can read data into a remote Oracle
Database instance.

To use Import with Oracle Net, when you run the imp command and enter the
username and password, include the connection qualifier string @connect_string. For
the exact syntax of this clause, see the user's guide for your Oracle Net protocol.

Related Topics

• Oracle Database Net Services Administrator's Guide

Chapter 25
Network Considerations for Using Oracle Net with Original Import

25-47

25.15 Character Set and Globalization Support
Considerations

These sections describe the globalization support behavior of Import with respect to
character set conversion of user data and data definition language (DDL).

• User Data
The Export utility always exports user data, including Unicode data, in the
character sets of the Export server. (Character sets are specified at database
creation.)

• Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language
(DDL) during an export/import operation.

• Single-Byte Character Sets
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when
you import an 8-bit character set export file.

• Multibyte Character Sets
During character set conversion, any characters in the export file that have no
equivalent in the target character set are replaced with a default character. (The
default character is defined by the target character set.)

25.15.1 User Data
The Export utility always exports user data, including Unicode data, in the character
sets of the Export server. (Character sets are specified at database creation.)

If the character sets of the source database are different than the character sets of the
import database, then a single conversion is performed to automatically convert the
data to the character sets of the Import server.

• Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character
set, then tables that are partitioned on character columns may yield unpredictable
results.

25.15.1.1 Effect of Character Set Sorting Order on Conversions
If the export character set has a different sorting order than the import character set,
then tables that are partitioned on character columns may yield unpredictable results.

For example, consider the following table definition, which is produced on a database
having an ASCII character set:

CREATE TABLE partlist
 (
 part VARCHAR2(10),
 partno NUMBER(2)
)
PARTITION BY RANGE (part)
 (
 PARTITION part_low VALUES LESS THAN ('Z')
 TABLESPACE tbs_1,
 PARTITION part_mid VALUES LESS THAN ('z')

Chapter 25
Character Set and Globalization Support Considerations

25-48

 TABLESPACE tbs_2,
 PARTITION part_high VALUES LESS THAN (MAXVALUE)
 TABLESPACE tbs_3
);

This partitioning scheme makes sense because z comes after Z in ASCII character
sets.

When this table is imported into a database based upon an EBCDIC character set, all
of the rows in the part_mid partition will migrate to the part_low partition because z
comes before Z in EBCDIC character sets. To obtain the desired results, the owner of
partlist must repartition the table following the import.

See Also:

Oracle Database Globalization Support Guide for more information about
character sets

25.15.2 Data Definition Language (DDL)
Up to three character set conversions may be required for data definition language
(DDL) during an export/import operation.

Specifically:

1. Export writes export files using the character set specified in the NLS_LANG
environment variable for the user session. A character set conversion is performed
if the value of NLS_LANG differs from the database character set.

2. If the export file's character set is different than the import user session character
set, then Import converts the character set to its user session character set. Import
can only perform this conversion for single-byte character sets. This means that
for multibyte character sets, the import file's character set must be identical to the
export file's character set.

3. A final character set conversion may be performed if the target database's
character set is different from the character set used by the import user session.

To minimize data loss due to character set conversions, ensure that the export
database, the export user session, the import user session, and the import database
all use the same character set.

25.15.3 Single-Byte Character Sets
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file.

This occurs if the system on which the import occurs has a native 7-bit character set,
or the NLS_LANG operating system environment variable is set to a 7-bit character set.
Most often, this is apparent when accented characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system
environment variable to be that of the export file character set.

Chapter 25
Character Set and Globalization Support Considerations

25-49

25.15.4 Multibyte Character Sets
During character set conversion, any characters in the export file that have no
equivalent in the target character set are replaced with a default character. (The
default character is defined by the target character set.)

To guarantee 100% conversion, the target character set must be a superset (or
equivalent) of the source character set.

Note:

When the character set width differs between the Export server and the
Import server, truncation of data can occur if conversion causes expansion of
data. If truncation occurs, then Import displays a warning message.

25.16 Using Instance Affinity
You can use instance affinity to associate jobs with instances in databases you plan to
export and import.

Be aware that there may be some compatibility issues if you are using a combination
of releases.

See Also:

• Oracle Database Administrator's Guide for more information about
affinity

25.17 Considerations When Importing Database Objects
These sections describe restrictions and points you should consider when you import
particular database objects.

• Importing Object Identifiers

• Importing Existing Object Tables and Tables That Contain Object Types
Importing existing Object Tables and tables that contain Object Types is one of the
considerations when importing database objects. The tables must be created with
the same definitions as were previously used or a compatible format (except for
storage parameters).

• Importing Nested Tables

• Importing REF Data
Importing REF data is one of the considerations when importing database objects.
REF columns and attributes may contain a hidden ROWID that points to the
referenced type instance.

Chapter 25
Using Instance Affinity

25-50

• Importing BFILE Columns and Directory Aliases
Importing BFILE Columns and Directory Aliases is one of the considerations when
importing database objects. When you import table data that contains BFILE
columns, the BFILE locator is imported with the directory alias and file name that
was present at export time.

• Importing Foreign Function Libraries
Importing Foreign Function Libraries is one of the considerations when importing
database objects. Import does not verify that the location referenced by the foreign
function library is correct.

• Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or ton.

• Importing Java Objects
Importing Java Objects is one of the considerations when importing database
objects. When you import Java objects into any schema, the Import utility leaves
the resolver unchanged.

• Importing External Tables
Importing external tables is one of the considerations when importing database
objects. Import does not verify that the location referenced by the external table is
correct.

• Importing Advanced Queue (AQ) Tables
Importing Advanced Queue Tables is a one of the considerations when importing
database objects. Importing a queue table also imports any underlying queues and
the related dictionary information.

• Importing LONG Columns
Importing LONG columns is one of the considerations when importing database
objects. In importing and exporting, the LONG columns must fit into memory with
the rest of each row's data.

• Importing LOB Columns When Triggers Are Present
Importing LOB columns when triggers are present is one of the considerations
when importing database objects. The Import utility automatically changes all
LOBs that were empty at export time to be NULL after they are imported.

• Importing Views
Importing views that contain references to tables in other schemas requires that
the importer have the READ ANY TABLE or SELECT ANY TABLE privilege.

• Importing Partitioned Tables
Importing partitioned tables is one of the considerations when importing database
objects. Import attempts to create a partitioned table with the same partition or
subpartition names as the exported partitioned table, including names of the form
SYS_Pnnn.

25.17.1 Importing Object Identifiers
The Oracle database assigns object identifiers to uniquely identify object types, object
tables, and rows in object tables. These object identifiers are preserved by Import.

When you import a table that references a type, but a type of that name already exists
in the database, Import attempts to verify that the preexisting type is, in fact, the type
used by the table (rather than a different type that just happens to have the same
name).

Chapter 25
Considerations When Importing Database Objects

25-51

To do this, Import compares the types's unique identifier (TOID) with the identifier
stored in the export file. If those match, then Import then compares the type's unique
hashcode with that stored in the export file. Import will not import table rows if the
TOIDs or hashcodes do not match.

In some situations, you may not want this validation to occur on specified types (for
example, if the types were created by a cartridge installation). You can use the
parameter TOID_NOVALIDATE to specify types to exclude from the TOID and hashcode
comparison. See TOID_NOVALIDATE for more information.

Note:

Be very careful about using TOID_NOVALIDATE, because type validation
provides an important capability that helps avoid data corruption. Be sure
you are confident of your knowledge of type validation and how it works
before attempting to perform an import operation with this feature disabled.

Import uses the following criteria to decide how to handle object types, object tables,
and rows in object tables:

• For object types, if IGNORE=y, the object type already exists, and the object
identifiers, hashcodes, and type descriptors match, then no error is reported. If the
object identifiers or hashcodes do not match and the parameter TOID_NOVALIDATE
has not been set to ignore the object type, then an error is reported and any tables
using the object type are not imported.

• For object types, if IGNORE=n and the object type already exists, then an error is
reported. If the object identifiers, hashcodes, or type descriptors do not match and
the parameter TOID_NOVALIDATE has not been set to ignore the object type, then
any tables using the object type are not imported.

• For object tables, if IGNORE=y, then the table already exists, and the object
identifiers, hashcodes, and type descriptors match, no error is reported. Rows are
imported into the object table. Import of rows may fail if rows with the same object
identifier already exist in the object table. If the object identifiers, hashcodes, or
type descriptors do not match, and the parameter TOID_NOVALIDATE has not been
set to ignore the object type, then an error is reported and the table is not
imported.

• For object tables, if IGNORE=n and the table already exists, then an error is
reported and the table is not imported.

Because Import preserves object identifiers of object types and object tables, consider
the following when you import objects from one schema into another schema using the
FROMUSER and TOUSER parameters:

• If the FROMUSER object types and object tables already exist on the target system,
then errors occur because the object identifiers of the TOUSER object types and
object tables are already in use. The FROMUSER object types and object tables must
be dropped from the system before the import is started.

• If an object table was created using the OID AS option to assign it the same object
identifier as another table, then both tables cannot be imported. You can import
one of the tables, but the second table receives an error because the object
identifier is already in use.

Chapter 25
Considerations When Importing Database Objects

25-52

25.17.2 Importing Existing Object Tables and Tables That Contain
Object Types

Importing existing Object Tables and tables that contain Object Types is one of the
considerations when importing database objects. The tables must be created with the
same definitions as were previously used or a compatible format (except for storage
parameters).

Users frequently create tables before importing data to reorganize tablespace usage
or to change a table's storage parameters. The tables must be created with the same
definitions as were previously used or a compatible format (except for storage
parameters). For object tables and tables that contain columns of object types, format
compatibilities are more restrictive.

For object tables and for tables containing columns of objects, each object the table
references has its name, structure, and version information written out to the export
file. Export also includes object type information from different schemas, as needed.

Import verifies the existence of each object type required by a table before importing
the table data. This verification consists of a check of the object type's name followed
by a comparison of the object type's structure and version from the import system with
that found in the export file.

If an object type name is found on the import system, but the structure or version do
not match that from the export file, then an error message is generated and the table
data is not imported.

The Import parameter TOID_NOVALIDATE can be used to disable the verification of the
object type's structure and version for specific objects.

25.17.3 Importing Nested Tables
Inner nested tables are exported separately from the outer table. Therefore, situations
may arise where data in an inner nested table might not be properly imported:

• Suppose a table with an inner nested table is exported and then imported without
dropping the table or removing rows from the table. If the IGNORE=y parameter is
used, then there will be a constraint violation when inserting each row in the outer
table. However, data in the inner nested table may be successfully imported,
resulting in duplicate rows in the inner table.

• If nonrecoverable errors occur inserting data in outer tables, then the rest of the
data in the outer table is skipped, but the corresponding inner table rows are not
skipped. This may result in inner table rows not being referenced by any row in the
outer table.

• If an insert to an inner table fails after a recoverable error, then its outer table row
will already have been inserted in the outer table and data will continue to be
inserted into it and any other inner tables of the containing table. This
circumstance results in a partial logical row.

• If nonrecoverable errors occur inserting data in an inner table, then Import skips
the rest of that inner table's data but does not skip the outer table or other nested
tables.

Chapter 25
Considerations When Importing Database Objects

25-53

You should always carefully examine the log file for errors in outer tables and inner
tables. To be consistent, table data may need to be modified or deleted.

Because inner nested tables are imported separately from the outer table, attempts to
access data from them while importing may produce unexpected results. For example,
if an outer row is accessed before its inner rows are imported, an incomplete row may
be returned to the user.

25.17.4 Importing REF Data
Importing REF data is one of the considerations when importing database objects. REF
columns and attributes may contain a hidden ROWID that points to the referenced type
instance.

REF columns and attributes may contain a hidden ROWID that points to the referenced
type instance. Import does not automatically recompute these ROWIDs for the target
database. You should execute the following statement to reset the ROWIDs to their
proper values:

ANALYZE TABLE [schema.]table VALIDATE REF UPDATE;

See Also:

Oracle Database SQL Language Reference for more information about the
ANALYZE statement

25.17.5 Importing BFILE Columns and Directory Aliases
Importing BFILE Columns and Directory Aliases is one of the considerations when
importing database objects. When you import table data that contains BFILE columns,
the BFILE locator is imported with the directory alias and file name that was present at
export time.

Export and Import do not copy data referenced by BFILE columns and attributes from
the source database to the target database. Export and Import only propagate the
names of the files and the directory aliases referenced by the BFILE columns. It is the
responsibility of the DBA or user to move the actual files referenced through BFILE
columns and attributes.

When you import table data that contains BFILE columns, the BFILE locator is imported
with the directory alias and file name that was present at export time. Import does not
verify that the directory alias or file exists. If the directory alias or file does not exist,
then an error occurs when the user accesses the BFILE data.

For directory aliases, if the operating system directory syntax used in the export
system is not valid on the import system, then no error is reported at import time. The
error occurs when the user seeks subsequent access to the file data. It is the
responsibility of the DBA or user to ensure the directory alias is valid on the import
system.

Chapter 25
Considerations When Importing Database Objects

25-54

25.17.6 Importing Foreign Function Libraries
Importing Foreign Function Libraries is one of the considerations when importing
database objects. Import does not verify that the location referenced by the foreign
function library is correct.

Import does not verify that the location referenced by the foreign function library is
correct. If the formats for directory and file names used in the library's specification on
the export file are invalid on the import system, then no error is reported at import time.
Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the library and ensure the
library's specification is valid on the import system.

25.17.7 Importing Stored Procedures, Functions, and Packages
The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or ton.

The behavior of Import when a local stored procedure, function, or package is
imported depends upon whether the COMPILE parameter is set to y or to n.

When a local stored procedure, function, or package is imported and COMPILE=y, the
procedure, function, or package is recompiled upon import and retains its original
timestamp specification. If the compilation is successful, then it can be accessed by
remote procedures without error.

If COMPILE=n, then the procedure, function, or package is still imported, but the original
timestamp is lost. The compilation takes place the next time the procedure, function, or
package is used.

See Also:

COMPILE

25.17.8 Importing Java Objects
Importing Java Objects is one of the considerations when importing database objects.
When you import Java objects into any schema, the Import utility leaves the resolver
unchanged.

When you import Java objects into any schema, the Import utility leaves the resolver
unchanged. (The resolver is the list of schemas used to resolve Java full names.) This
means that after an import, all user classes are left in an invalid state until they are
either implicitly or explicitly revalidated. An implicit revalidation occurs the first time the
classes are referenced. An explicit revalidation occurs when the SQL statement ALTER
JAVA CLASS...RESOLVE is used. Both methods result in the user classes being
resolved successfully and becoming valid.

Chapter 25
Considerations When Importing Database Objects

25-55

25.17.9 Importing External Tables
Importing external tables is one of the considerations when importing database
objects. Import does not verify that the location referenced by the external table is
correct.

Import does not verify that the location referenced by the external table is correct. If
the formats for directory and file names used in the table's specification on the export
file are invalid on the import system, then no error is reported at import time.
Subsequent usage of the callout functions will result in an error.

It is the responsibility of the DBA or user to manually move the table and ensure the
table's specification is valid on the import system.

25.17.10 Importing Advanced Queue (AQ) Tables
Importing Advanced Queue Tables is a one of the considerations when importing
database objects. Importing a queue table also imports any underlying queues and the
related dictionary information.

Importing a queue table also imports any underlying queues and the related dictionary
information. A queue can be imported only at the granularity level of the queue table.
When a queue table is imported, export pre-table and post-table action procedures
maintain the queue dictionary.

See Also:

Oracle Database Advanced Queuing User's Guide

25.17.11 Importing LONG Columns
Importing LONG columns is one of the considerations when importing database
objects. In importing and exporting, the LONG columns must fit into memory with the
rest of each row's data.

LONG columns can be up to 2 gigabytes in length. In importing and exporting, the LONG
columns must fit into memory with the rest of each row's data. The memory used to
store LONG columns, however, does not need to be contiguous, because LONG data is
loaded in sections.

Import can be used to convert LONG columns to CLOB columns. To do this, first create a
table specifying the new CLOB column. When Import is run, the LONG data is converted
to CLOB format. The same technique can be used to convert LONG RAW columns to BLOB
columns.

Chapter 25
Considerations When Importing Database Objects

25-56

Note:

Oracle recommends that you convert existing LONG columns to LOB columns.
LOB columns are subject to far fewer restrictions than LONG columns.
Further, LOB functionality is enhanced in every release, whereas LONG
functionality has been static for several releases.

25.17.12 Importing LOB Columns When Triggers Are Present
Importing LOB columns when triggers are present is one of the considerations when
importing database objects. The Import utility automatically changes all LOBs that
were empty at export time to be NULL after they are imported.

As of Oracle Database 10g, LOB handling has been improved to ensure that triggers
work properly and that performance remains high when LOBs are being loaded. To
achieve these improvements, the Import utility automatically changes all LOBs that
were empty at export time to be NULL after they are imported.

If you have applications that expect the LOBs to be empty rather than NULL, then after
the import you can issue a SQL UPDATE statement for each LOB column. Depending
on whether the LOB column type was a BLOB or a CLOB, the syntax would be one of the
following:

UPDATE <tablename> SET <lob column> = EMPTY_BLOB() WHERE <lob column> = IS
NULL;
UPDATE <tablename> SET <lob column> = EMPTY_CLOB() WHERE <lob column> = IS
NULL;

It is important to note that once the import is performed, there is no way to distinguish
between LOB columns that are NULL versus those that are empty. Therefore, if that
information is important to the integrity of your data, then be sure you know which LOB
columns are NULL and which are empty before you perform the import.

25.17.13 Importing Views
Importing views that contain references to tables in other schemas requires that the
importer have the READ ANY TABLE or SELECT ANY TABLE privilege.

Views are exported in dependency order. In some cases, Export must determine the
ordering, rather than obtaining the order from the database. In doing so, Export may
not always be able to duplicate the correct ordering, resulting in compilation warnings
when a view is imported, and the failure to import column comments on such views.

In particular, if viewa uses the stored procedure procb, and procb uses the view
viewc, then Export cannot determine the proper ordering of viewa and viewc. If viewa
is exported before viewc, and procb already exists on the import system, then viewa
receives compilation warnings at import time.

Grants on views are imported even if a view has compilation errors. A view could have
compilation errors if an object it depends on, such as a table, procedure, or another
view, does not exist when the view is created. If a base table does not exist, then the
server cannot validate that the grantor has the proper privileges on the base table with

Chapter 25
Considerations When Importing Database Objects

25-57

the GRANT option. Access violations could occur when the view is used if the grantor
does not have the proper privileges after the missing tables are created.

Importing views that contain references to tables in other schemas requires that the
importer have the READ ANY TABLE or SELECT ANY TABLE privilege. If the importer has
not been granted this privilege, then the views will be imported in an uncompiled state.
Note that granting the privilege to a role is insufficient. For the view to be compiled, the
privilege must be granted directly to the importer.

25.17.14 Importing Partitioned Tables
Importing partitioned tables is one of the considerations when importing database
objects. Import attempts to create a partitioned table with the same partition or
subpartition names as the exported partitioned table, including names of the form
SYS_Pnnn.

Import attempts to create a partitioned table with the same partition or subpartition
names as the exported partitioned table, including names of the form SYS_Pnnn. If a
table with the same name already exists, then Import processing depends on the value
of the IGNORE parameter.

Unless SKIP_UNUSABLE_INDEXES=y,inserting the exported data into the target table
fails if Import cannot update a nonpartitioned index or index partition that is marked
Indexes Unusable or is otherwise not suitable.

25.18 Support for Fine-Grained Access Control
To restore the fine-grained access control policies, the user who imports from an
export file containing such tables must have the EXECUTE privilege on the DBMS_RLS
package, so that the security policies on the tables can be reinstated.

If a user without the correct privileges attempts to import from an export file that
contains tables with fine-grained access control policies, then a warning message is
issued.

25.19 Snapshots and Snapshot Logs
In certain situations, particularly those involving data warehousing, snapshots may be
referred to as materialized views. These sections retain the term snapshot.

• Snapshot Log
The snapshot log in a dump file is imported if the master table already exists for
the database to which you are importing and it has a snapshot log.

• Snapshots
A snapshot that has been restored from an export file has reverted to a previous
state.

25.19.1 Snapshot Log
The snapshot log in a dump file is imported if the master table already exists for the
database to which you are importing and it has a snapshot log.

Chapter 25
Support for Fine-Grained Access Control

25-58

When a ROWID snapshot log is exported, ROWIDs stored in the snapshot log have no
meaning upon import. As a result, each ROWID snapshot's first attempt to do a fast
refresh fails, generating an error indicating that a complete refresh is required.

To avoid the refresh error, do a complete refresh after importing a ROWID snapshot log.
After you have done a complete refresh, subsequent fast refreshes will work properly.
In contrast, when a primary key snapshot log is exported, the values of the primary
keys do retain their meaning upon import. Therefore, primary key snapshots can do a
fast refresh after the import.

25.19.2 Snapshots
A snapshot that has been restored from an export file has reverted to a previous state.

On import, the time of the last refresh is imported as part of the snapshot table
definition. The function that calculates the next refresh time is also imported.

Each refresh leaves a signature. A fast refresh uses the log entries that date from the
time of that signature to bring the snapshot up to date. When the fast refresh is
complete, the signature is deleted and a new signature is created. Any log entries that
are not needed to refresh other snapshots are also deleted (all log entries with times
before the earliest remaining signature).

• Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem
under certain circumstances.

• Importing a Snapshot into a Different Schema
Snapshots and related items are exported with the schema name given in the DDL
statements.

25.19.2.1 Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem under
certain circumstances.

Assume that a snapshot is refreshed at time A, exported at time B, and refreshed
again at time C. Then, because of corruption or other problems, the snapshot needs to
be restored by dropping the snapshot and importing it again. The newly imported
version has the last refresh time recorded as time A. However, log entries needed for
a fast refresh may no longer exist. If the log entries do exist (because they are needed
for another snapshot that has yet to be refreshed), then they are used, and the fast
refresh completes successfully. Otherwise, the fast refresh fails, generating an error
that says a complete refresh is required.

25.19.2.2 Importing a Snapshot into a Different Schema
Snapshots and related items are exported with the schema name given in the DDL
statements.

To import them into a different schema, use the FROMUSER and TOUSER parameters.
This does not apply to snapshot logs, which cannot be imported into a different
schema.

Chapter 25
Snapshots and Snapshot Logs

25-59

Note:

Schema names that appear inside function-based indexes, functions,
procedures, triggers, type bodies, views, and so on, are not affected by
FROMUSER or TOUSER processing. Only the name of the object is affected. After
the import has completed, items in any TOUSER schema should be manually
checked for references to old (FROMUSER) schemas, and corrected if
necessary.

25.20 Transportable Tablespaces
The transportable tablespace feature enables you to move a set of tablespaces from
one Oracle database to another.

Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

To move or copy a set of tablespaces, you must make the tablespaces read-only,
manually copy the data files of these tablespaces to the target database, and use
Export and Import to move the database information (metadata) stored in the data
dictionary over to the target database. The transport of the data files can be done
using any facility for copying flat binary files, such as the operating system copying
facility, binary-mode FTP, or publishing on CD-ROMs.

After copying the data files and exporting the metadata, you can optionally put the
tablespaces in read/write mode.

Export and Import provide the following parameters to enable movement of
transportable tablespace metadata.

• TABLESPACES

• TRANSPORT_TABLESPACE

See TABLESPACES and TRANSPORT_TABLESPACE for information about using
these parameters during an import operation.

See Also:

• Oracle Database Administrator's Guide for details about managing
transportable tablespaces

Chapter 25
Transportable Tablespaces

25-60

25.21 Storage Parameters
By default, a table is imported into its original tablespace.

If the tablespace no longer exists, or the user does not have sufficient quota in the
tablespace, then the system uses the default tablespace for that user, unless the table:

• Is partitioned

• Is a type table

• Contains LOB, VARRAY, or OPAQUE type columns

• Has an index-organized table (IOT) overflow segment

If the user does not have sufficient quota in the default tablespace, then the user's
tables are not imported. See Reorganizing Tablespaces to see how you can use this
to your advantage.

• The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during
export and import.

• Storage Parameters for OID Indexes and LOB Columns
Tables are exported with their current storage parameters.

• Overriding Storage Parameters
Before using the Import utility to import data, you may want to create large tables
with different storage parameters.

25.21.1 The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during export
and import.

25.21.2 Storage Parameters for OID Indexes and LOB Columns
Tables are exported with their current storage parameters.

For object tables, the OIDINDEX is created with its current storage parameters and
name, if given. For tables that contain LOB, VARRAY, or OPAQUE type columns, LOB,
VARRAY, or OPAQUE type data is created with their current storage parameters.

If you alter the storage parameters of existing tables before exporting, then the tables
are exported using those altered storage parameters. Note, however, that storage
parameters for LOB data cannot be altered before exporting (for example, chunk size
for a LOB column, whether a LOB column is CACHE or NOCACHE, and so forth).

Note that LOB data might not reside in the same tablespace as the containing table.
The tablespace for that data must be read/write at the time of import or the table will
not be imported.

If LOB data resides in a tablespace that does not exist at the time of import, or the
user does not have the necessary quota in that tablespace, then the table will not be
imported. Because there can be multiple tablespace clauses, including one for the
table, Import cannot determine which tablespace clause caused the error.

Chapter 25
Storage Parameters

25-61

25.21.3 Overriding Storage Parameters
Before using the Import utility to import data, you may want to create large tables with
different storage parameters.

If so, then you must specify IGNORE=y on the command line or in the parameter file.

25.22 Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not already
exist in the target database, then the tablespace is created as a read/write tablespace.

To get read-only functionality, you must manually make the tablespace read-only after
the import.

If the tablespace already exists in the target database and is read-only, then you must
make it read/write before the import.

25.23 Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces
before the import. You can then issue the imp command and specify IGNORE=y.

In many cases, you can drop a tablespace by doing a full database export, then
creating a zero-block tablespace with the same name (before logging off) as the
tablespace you want to drop. During import, with IGNORE=y, the relevant CREATE
TABLESPACE statement will fail and prevent the creation of the unwanted tablespace.

All objects from that tablespace will be imported into their owner's default tablespace
except for partitioned tables, type tables, and tables that contain LOB or VARRAY
columns or index-only tables with overflow segments. Import cannot determine which
tablespace caused the error. Instead, you must first create a table and then import the
table again, specifying IGNORE=y.

Objects are not imported into the default tablespace if the tablespace does not exist, or
you do not have the necessary quotas for your default tablespace.

25.24 Reorganizing Tablespaces
If a user's quota allows it, the user's tables are imported into the same tablespace from
which they were exported.

However, if the tablespace no longer exists or the user does not have the necessary
quota, then the system uses the default tablespace for that user as long as the table is
unpartitioned, contains no LOB or VARRAY columns, is not a type table, and is not an
index-only table with an overflow segment. This scenario can be used to move a user's
tables from one tablespace to another.

For example, you need to move joe's tables from tablespace A to tablespace B after a
full database export. Follow these steps:

1. If joe has the UNLIMITED TABLESPACE privilege, then revoke it. Set joe's quota on
tablespace A to zero. Also revoke all roles that might have such privileges or
quotas.

Chapter 25
Read-Only Tablespaces

25-62

When you revoke a role, it does not have a cascade effect. Therefore, users who
were granted other roles by joe will be unaffected.

2. Export joe's tables.

3. Drop joe's tables from tablespace A.

4. Give joe a quota on tablespace B and make it the default tablespace for joe.

5. Import joe's tables. (By default, Import puts joe's tables into tablespace B.)

25.25 Importing Statistics
If statistics are requested at export time and analyzer statistics are available for a
table, then Export will include the ANALYZE statement used to recalculate the statistics
for the table into the dump file.

In most circumstances, Export will also write the precalculated optimizer statistics for
tables, indexes, and columns to the dump file. See the description of the Import
parameter STATISTICS.

Because of the time it takes to perform an ANALYZE statement, it is usually preferable
for Import to use the precalculated optimizer statistics for a table (and its indexes and
columns) rather than execute the ANALYZE statement saved by Export. By default,
Import will always use the precalculated statistics that are found in the export dump
file.

The Export utility flags certain precalculated statistics as questionable. The importer
might want to import only unquestionable statistics, not precalculated statistics, in the
following situations:

• Character set translations between the dump file and the import client and the
import database could potentially change collating sequences that are implicit in
the precalculated statistics.

• Row errors occurred while importing the table.

• A partition level import is performed (column statistics will no longer be accurate).

Note:

Specifying ROWS=n will not prevent the use of precalculated statistics.
This feature allows plan generation for queries to be tuned in a
nonproduction database using statistics from a production database. In
these cases, the import should specify STATISTICS=SAFE.

In certain situations, the importer might want to always use ANALYZE statements rather
than precalculated statistics. For example, the statistics gathered from a fragmented
database may not be relevant when the data is imported in a compressed form. In
these cases, the importer should specify STATISTICS=RECALCULATE to force the
recalculation of statistics.

If you do not want any statistics to be established by Import, then you should specify
STATISTICS=NONE.

Chapter 25
Importing Statistics

25-63

25.26 Using Export and Import to Partition a Database
Migration

When you use the Export and Import utilities to migrate a large database, it may be
more efficient to partition the migration into multiple export and import jobs.

If you decide to partition the migration, then be aware of the following advantages and
disadvantages.

• Advantages of Partitioning a Migration
Describes the advantages of partitioning a migration.

• Disadvantages of Partitioning a Migration
Describes the disadvantages of partitioning a migration.

• How to Use Export and Import to Partition a Database Migration
Describes how to use Export and Import to partition a migration.

25.26.1 Advantages of Partitioning a Migration
Describes the advantages of partitioning a migration.

Specifically:

• Time required for the migration may be reduced, because many of the subjobs can
be run in parallel.

• The import can start as soon as the first export subjob completes, rather than
waiting for the entire export to complete.

25.26.2 Disadvantages of Partitioning a Migration
Describes the disadvantages of partitioning a migration.

Specifically:

• The export and import processes become more complex.

• Support of cross-schema references for certain types of objects may be
compromised. For example, if a schema contains a table with a foreign key
constraint against a table in a different schema, then you may not have the
required parent records when you import the table into the dependent schema.

25.26.3 How to Use Export and Import to Partition a Database
Migration

Describes how to use Export and Import to partition a migration.

To perform a database migration in a partitioned manner, take the following steps:

1. For all top-level metadata in the database, issue the following commands:

a. exp FILE=full FULL=y CONSTRAINTS=n TRIGGERS=n ROWS=n INDEXES=n

b. imp FILE=full FULL=y

Chapter 25
Using Export and Import to Partition a Database Migration

25-64

2. For each scheman in the database, issue the following commands:

a. exp OWNER=scheman FILE=scheman

b. imp FILE=scheman FROMUSER=scheman TOUSER=scheman IGNORE=y

All exports can be done in parallel. When the import of full.dmp completes, all
remaining imports can also be done in parallel.

25.27 Tuning Considerations for Import Operations
These sections discuss some ways to improve the performance of an import
operation.

• Changing System-Level Options
Describes system-level options that may help improve the performance of an
import operation.

• Changing Initialization Parameters
These suggestions about settings in your initialization parameter file may help
improve performance of an import operation.

• Changing Import Options
These suggestions about the usage of import options may help improve
performance.

• Dealing with Large Amounts of LOB Data
Describes importing large amounts of LOB data.

• Dealing with Large Amounts of LONG Data
Keep in mind that importing a table with a LONG column may cause a higher rate of
I/O and disk usage, resulting in reduced performance of the import operation.

25.27.1 Changing System-Level Options
Describes system-level options that may help improve the performance of an import
operation.

Specifically :

• Create and use one large rollback segment and take all other rollback segments
offline. Generally a rollback segment that is one half the size of the largest table
being imported should be big enough. It can also help if the rollback segment is
created with the minimum number of two extents, of equal size.

Note:

Oracle recommends that you use automatic undo management instead
of rollback segments.

• Put the database in NOARCHIVELOG mode until the import is complete. This will
reduce the overhead of creating and managing archive logs.

• Create several large redo files and take any small redo log files offline. This will
result in fewer log switches being made.

Chapter 25
Tuning Considerations for Import Operations

25-65

• If possible, have the rollback segment, table data, and redo log files all on
separate disks. This will reduce I/O contention and increase throughput.

• If possible, do not run any other jobs at the same time that may compete with the
import operation for system resources.

• Ensure that there are no statistics on dictionary tables.

• Set TRACE_LEVEL_CLIENT=OFF in the sqlnet.ora file.

• If possible, increase the value of DB_BLOCK_SIZE when you re-create the database.
The larger the block size, the smaller the number of I/O cycles needed. This
change is permanent, so be sure to carefully consider all effects it will have before
making it.

25.27.2 Changing Initialization Parameters
These suggestions about settings in your initialization parameter file may help improve
performance of an import operation.

• Set LOG_CHECKPOINT_INTERVAL to a number that is larger than the size of the redo
log files. This number is in operating system blocks (512 on most UNIX systems).
This reduces checkpoints to a minimum (at log switching time).

• Increase the value of SORT_AREA_SIZE. The amount you increase it depends on
other activity taking place on the system and on the amount of free memory
available. (If the system begins swapping and paging, then the value is probably
set too high.)

• Increase the value for DB_BLOCK_BUFFERS and SHARED_POOL_SIZE.

25.27.3 Changing Import Options
These suggestions about the usage of import options may help improve performance.

Be sure to also read the individual descriptions of all the available options in Import
Parameters.

• Set COMMIT=N. This causes Import to commit after each object (table), not after
each buffer. This is why one large rollback segment is needed. (Because rollback
segments will be deprecated in future releases, Oracle recommends that you use
automatic undo management instead.)

• Specify a large value for BUFFER or RECORDLENGTH, depending on system activity,
database size, and so on. A larger size reduces the number of times that the
export file has to be accessed for data. Several megabytes is usually enough. Be
sure to check your system for excessive paging and swapping activity, which can
indicate that the buffer size is too large.

• Consider setting INDEXES=N because indexes can be created at some point after
the import, when time is not a factor. If you choose to do this, then you need to use
the INDEXFILE parameter to extract the DLL for the index creation or to rerun the
import with INDEXES=Y and ROWS=N.

25.27.4 Dealing with Large Amounts of LOB Data
Describes importing large amounts of LOB data.

Specifically:

Chapter 25
Tuning Considerations for Import Operations

25-66

• Eliminating indexes significantly reduces total import time. This is because LOB
data requires special consideration during an import because the LOB locator has
a primary key that cannot be explicitly dropped or ignored during an import.

• Ensure that there is enough space available in large contiguous chunks to
complete the data load.

25.27.5 Dealing with Large Amounts of LONG Data
Keep in mind that importing a table with a LONG column may cause a higher rate of I/O
and disk usage, resulting in reduced performance of the import operation.

There are no specific parameters that will improve performance during an import of
large amounts of LONG data, although some of the more general tuning suggestions
made in this section may help overall performance.

See Also:

Importing LONG Columns

25.28 Using Different Releases of Export and Import
These sections describe compatibility issues that relate to using different releases of
Export and the Oracle database.

Whenever you are moving data between different releases of the Oracle database, the
following basic rules apply:

• The Import utility and the database to which data is being imported (the target
database) must be the same version. For example, if you try to use the Import
utility 9.2.0.7 to import into a 9.2.0.8 database, then you may encounter errors.

• The version of the Export utility must be equal to the version of either the source or
target database, whichever is earlier.

For example, to create an export file for an import into a later release database,
use a version of the Export utility that equals the source database. Conversely, to
create an export file for an import into an earlier release database, use a version of
the Export utility that equals the version of the target database.

– In general, you can use the Export utility from any Oracle8 release to export
from an Oracle9i server and create an Oracle8 export file.

• Restrictions When Using Different Releases of Export and Import
Restrictions apply when you are using different releases of Export and Import.

• Examples of Using Different Releases of Export and Import
Using different releases of Export and Import.

Chapter 25
Using Different Releases of Export and Import

25-67

25.28.1 Restrictions When Using Different Releases of Export and
Import

Restrictions apply when you are using different releases of Export and Import.

Specifically:

• Export dump files can be read only by the Import utility because they are stored in
a special binary format.

• Any export dump file can be imported into a later release of the Oracle database.

• The Import utility cannot read export dump files created by the Export utility of a
later maintenance release or version. For example, a release 9.2 export dump file
cannot be imported by a release 9.0.1 Import utility.

• Whenever a lower version of the Export utility runs with a later version of the
Oracle database, categories of database objects that did not exist in the earlier
version are excluded from the export.

• Export files generated by Oracle9i Export, either direct path or conventional path,
are incompatible with earlier releases of Import and can be imported only with
Oracle9i Import. When backward compatibility is an issue, use the earlier release
or version of the Export utility against the Oracle9i database.

25.28.2 Examples of Using Different Releases of Export and Import
Using different releases of Export and Import.

Table 25-5 shows some examples of which Export and Import releases to use when
moving data between different releases of the Oracle database.

Table 25-5 Using Different Releases of Export and Import

Export from->Import to Use Export Release Use Import Release

8.1.6 -> 8.1.6 8.1.6 8.1.6

8.1.5 -> 8.0.6 8.0.6 8.0.6

8.1.7 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 8.1.6 8.1.6 8.1.6

9.0.1 -> 9.0.2 9.0.1 9.0.2

9.0.2 -> 10.1.0 9.0.2 10.1.0

10.1.0 -> 9.0.2 9.0.2 9.0.2

Table 25-5 covers moving data only between the original Export and Import utilities.
For Oracle Database 10g release 1 (10.1) or later, Oracle recommends the Data
Pump Export and Import utilities in most cases because these utilities provide greatly
enhanced performance compared to the original Export and Import utilities.

Chapter 25
Using Different Releases of Export and Import

25-68

See Also:

Oracle Database Upgrade Guide for more information about exporting and
importing data between different releases, including releases later than 10.1

Chapter 25
Using Different Releases of Export and Import

25-69

Part V
Appendices

Appendixes contain supplemental information to assist you with data migration.

• Instant Client for SQL*Loader, Export, and Import
Oracle Instant Client enables you to run your applications without installing the
standard Oracle Client, or having an Oracle home.

• SQL*Loader Syntax Diagrams
This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

A
Instant Client for SQL*Loader, Export, and
Import

Oracle Instant Client enables you to run your applications without installing the
standard Oracle Client, or having an Oracle home.

• What is the Tools Instant Client?
The Tools Instant Client package is available on platforms that support the Oracle
Call Interface (OCI) Instant Client.

• Choosing Which Instant Client to Install
Before you install the Tools Instant Client Tools package, decide if you want to use
Basic Instant Client, or take advantage of the smaller disk space requirements of
Instant Client Light.

• Installing Instant Client Tools by Downloading from OTN
To install the Oracle Instant Client tools package, select the procedure for your
platform from the Oracle Technical Network (OTN), and download the files.

• Installing Tools Instant Client from the Client Release Media
To install the Tools Instant Client package from the client release media, you copy
files over to a local home.

• List of Oracle Instant Client Tools Files
Learn about the purpose of the files that comprise the Oracle Instant Client Tools.

• Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle
Instant Client, you must set environment variables.

• Connecting to a Database with the Tools Instant Client Package
After the Tools Instant Client package is installed and configured, there are
multiple ways that you can connect to the database using the tools.

• Uninstalling Tools Instant Client Package and Instant Client
You can uninstall the Tools Instant Client package separately, or uninstall the
entire Instant Client.

A.1 What is the Tools Instant Client?
The Tools Instant Client package is available on platforms that support the Oracle Call
Interface (OCI) Instant Client.

The Tools package contains several command-line utilities, including SQL*Loader,
Oracle Data Pump Export, Oracle Data Pump Import, Original (classic) Export, and
Original (classic) Import. Instant Client installations are standalone, with all of the
functionality of the command-line versions of the products. The Instant Client connects
to existing remote Oracle Databases, but does not include its own database. It is easy
to install, and uses significantly less disk space than the full Oracle Database Client
installation required to use the command-line versions of products.

A-1

Overview of Steps Required to use Tools Instant Client

To use the Tools Instant Client, you need two packages:

• Tools Instant Client Package

• Either the Basic OCI Instant Client package, or the OCI Instant Client Light
package.

The basic steps required to use the Tools Instant Client are as follows. Each of these
steps is described in this appendix.

1. Choose which OCI Package (Basic or Light) you want to use, and also select the
directory in which to install the Instant Client files.

2. Copy the Tools Instant Client Package, and the OCI Instant Client package of your
choice, from an installed Oracle instance or download them from OTN.

3. Install (unpack) the Tools Instant Client package and the OCI package. A new
directory instantclient_12_2 is created as part of the installation.

4. Configure the Instant Client.

5. Connect to a remote instance with the utility you want to run.

Both the Tools package and OCI package must be from Oracle Database version
12.2.0.0.0, or higher, and the versions for both must be the same.

See Oracle Call Interface Programmer's Guide for more information about the OCI
Instant Client.

Related Topics

• About Oracle Instant Client

A.2 Choosing Which Instant Client to Install
Before you install the Tools Instant Client Tools package, decide if you want to use
Basic Instant Client, or take advantage of the smaller disk space requirements of
Instant Client Light.

The Tools Instant Client package is fully supported with both of the Oracle Instant
Client options. The primary difference between them is that the Instant Client Light
option includes only error message files in English.

Basic Instant Client

The Tools Instant Client package, when used with Basic Instant Client works with any
NLS_LANG setting supported by Oracle Database. It supports all character sets and
language settings available with Oracle Database.

Instant Client Light

The Instant Client Light (English) version of Instant Client further reduces the disk
space requirements of the client installation. The size of the library has been reduced
by removing error message files for languages other than English and leaving only a
few supported character set definitions out of around 250.

Instant Client Light is geared toward applications that use either US7ASCII, WE8DEC,
WE8ISO8859P1, WE8MSWIN1252, or a Unicode character set. There is no restriction on

Appendix A
Choosing Which Instant Client to Install

A-2

the LANGUAGE and the TERRITORY fields of the NLS_LANG setting, Instant Client Light
operates with any language and territory settings. Because only English error
messages are provided with Instant Client Light, error messages generated on the
client side, such as Net connection errors, are always reported in English. This is true
even if NLS_LANG is set to a language other than AMERICAN. Error messages generated
by the database side, such as syntax errors in SQL statements, are in the selected
language provided the appropriate translated message files are installed in the Oracle
home of the Oracle Database instance.

A.3 Installing Instant Client Tools by Downloading from OTN
To install the Oracle Instant Client tools package, select the procedure for your
platform from the Oracle Technical Network (OTN), and download the files.

The Instant Client tools package provides an easy way to add many Oracle Database
utilities to your Instant Client. The tool package includes Oracle Data Pump,
SQL*Loader and Workload Replay Client.

The OTN downloads for Linux are RPM packages. The OTN downloads for UNIX and
Windows are zip files.

• Installing Instant Client and Instant Client Tools RPM Packages for Linux
Use this procedure to download and install the Linux RPM packages for Oracle
Instant Client, and Oracle Instant Client Tools.

• Installing Instant Client and Instant Client Tools from Unix or Windows Zip Files
Use this procedure to download and install the zip files for Oracle Instant Client,
and Oracle Instant Client Tools.

A.3.1 Installing Instant Client and Instant Client Tools RPM Packages
for Linux

Use this procedure to download and install the Linux RPM packages for Oracle Instant
Client, and Oracle Instant Client Tools.

In this deployment option, you download the Oracle Instant Client RPM and the Instant
Client Tools RPM from the Oracle Technical Network.

Caution:

Set up a separate installation location for Oracle Instant Client. Never install
Oracle Instant Client packages in an Oracle home.

1. Download the Oracle Instant Client and Instant Client Tools RPM packages from
the following URL:

http://www.oracle.com/technetwork/database/database-technologies/instant-client/
overview/index.html

Both packages must be at least release 12.2.0.0.0 or higher, and both packages
must be the same release.

Appendix A
Installing Instant Client Tools by Downloading from OTN

A-3

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

2. Use rpm -i for the initial install of the RPM packages, or rpm -u to upgrade to a
newer version of the packages. Install Oracle Instant Client first before you attempt
to install the Instant Client Tools package.

3. Configure Instant Client.

Related Topics

• Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle
Instant Client, you must set environment variables.

• Oracle Instant Client and Oracle Instant Client Light

A.3.2 Installing Instant Client and Instant Client Tools from Unix or
Windows Zip Files

Use this procedure to download and install the zip files for Oracle Instant Client, and
Oracle Instant Client Tools.

In this deployment option, you download the Oracle Instant Client RPM and the Instant
Client Tools RPM from the Oracle Technical Network.

Caution:

Set up a separate installation location for Oracle Instant Client. Never install
Oracle Instant Client packages in an Oracle home.

1. Download the Oracle Instant Client and Instant Client Tools zip files from the
following URL:

http://www.oracle.com/technetwork/database/database-technologies/instant-client/
overview/index.html

Both zip files must be at least release 12.2.0.0.0 or higher, and both packages
must be the same release.

2. Create a new directory. For example, with an Oracle Instant Client 19c
deployment, on Unix systems create /home/instantclient19c. On Windows,
create c:\instantclient19c on Windows.

3. Unzip the two packages into the new directory. Install the Oracle Instant Client
package first.

4. Configure Instant Client.

Related Topics

• Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle
Instant Client, you must set environment variables.

• Oracle Instant Client and Oracle Instant Client Light

Appendix A
Installing Instant Client Tools by Downloading from OTN

A-4

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

A.4 Installing Tools Instant Client from the Client Release
Media

To install the Tools Instant Client package from the client release media, you copy files
over to a local home.

1. Run the installer on the Oracle Database Client Release media and choose the
Administrator option.

2. Create a new directory. For example, on Unix and Linux, create a directory such
as /home/instantclientrelease, where release is the release number of the
instant client package. For example: /home/instantclient19 On Microsoft
Windows, create a path such as c:\instantclient19.

3. Copy the Tools Instant Client package to the new directory. All files must be
copied from the same Oracle home. Refer to "List of Oracle Instant Client Tools
Files" for a list of the files to copy

After you copy the Instant Client files, you are ready to configure the Tools Instant
Client package on your system.

A.5 List of Oracle Instant Client Tools Files
Learn about the purpose of the files that comprise the Oracle Instant Client Tools.

Oracle Instant Client Tools Files

Refer to the list of files for your platform. Note that, for convenience, the Microsoft
Windows files include symbolic links (symlinks), so that you do not need to create
them. When the zip file is unzipped and restored, the symlinks are also restored.

Table A-1 Instant Client Tools Files for Linux and Unix

File Name Description

exp Original (classic) export executable

expdp Oracle Data Pump export executable

imp Original (classic) import executable

impdp Oracle Data Pump import executable

libnfsodmrelease.so A shared library used by the SQL*Loader Instant Client to use
the Oracle Disk Manager (ODM). The value in the variable
release corresponds to the release of the tools files
contained in the zip. For example, and Oracle Database 19c
tools file set has the shared library libnfsodm19.so

sqlldr SQL*Loader executable

TOOLS_LICENSE License document for the Tools Instant Client package.

TOOLS_README Readme for the Tools Instant Client package

Appendix A
Installing Tools Instant Client from the Client Release Media

A-5

Table A-1 (Cont.) Instant Client Tools Files for Linux and Unix

File Name Description

wrc The Tools Instant Client package contains tools other than
those described in this appendix. The wrc tool is the Workload
Replay Client (wrc) for the Oracle Database Replay feature.
The wrc tool is listed here, but it is not covered by the
information in this appendix.

Table A-2 Oracle Instant Client Tools Files for Microsoft Windows

File Name Description

exp.exe Original (classic) export executable.

exp.sym Symbolic link file for the original (classic) export executable.

expdp.exe Oracle Data Pump export executable.

expdp.sym Symlink for Oracle Data Pump export executable.

imp.exe Original (classic) import executable.

imp.sym Symlink for Original (classic) import executable.

impdp.exe Oracle Data Pump import executable.

impdp.sym Symlink for Oracle Data Pump import executable.

sqlldr.exe SQL*Loader executable.

sqlldr.exe Symlink for SQL*Loader executable.

TOOLS_LICENSE License document for the Tools Instant Client package.

TOOLS_README Read Me document for the Tools Instant Client package.

wrc.exe The Tools Instant Client package contains tools other than
those described in this appendix. The wrc tool is the Workload
Replay Client (wrc) for the Oracle Database Replay feature.
The wrc tool is listed here, but it is not covered by the
information in this appendix.

wrc.sym Symlink for the Workload Replay Client.

A.6 Configuring Tools Instant Client Package
To configure the Tools Instant Client package executable for use with Oracle Instant
Client, you must set environment variables.

With Oracle Instant Client, you do not need to set ORACLE_HOME or ORACLE_SID
environment variables. However, you must set LD_LIBRARY_PATH, and you must set
any globalization environment variables that you require.

Only use the Tools Instant Client package executable that is the same release as the
Oracle Instant Client executable that you intend to use with the Tools package.

Example A-1 Configuring Tools Instant Client Package (from RPMS) on Linux

In this example, you move the RPMs downloaded from OTN install into the /usr file
system, in release-specific subdirectories for the Tools Instant Client package By using

Appendix A
Configuring Tools Instant Client Package

A-6

release-specific folders in the /usr subdirectory, you can have multiple versions of
Instant Client tools available for each release of Oracle Instant Client that you want to
use.

1. Add the name of the directory containing the Oracle Instant Client libraries to
LD_LIBRARY_PATH. Remove any other Oracle directories.

For example, to set LD_LIBRARY_PATH in the Bourne or Korn shells, use the
following syntax:

LD_LIBRARY_PATH=/usr/lib/oracle/19/client/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

Or, to set LD_LIBRARY_PATH in the C shell, use the following syntax:

% setenv LD_LIBRARY_PATH /usr/lib/oracle/19/client/lib:$LD_LIBRARY_PATH

2. Make sure the Tools executables installed from the RPM are the first executables
found in your PATH. For example, to test if the Tools executable is found first, enter
which sqlldr. If the PATH environment variable is configured correctly, then the
response should be /usr/bin/sqlldr. If you do not obtain that response, then
remove any other Oracle directories from PATH, or put /usr/bin before other Tools
executables in PATH, or use an absolute or relative path to start Tools Instant
Client.

For example, to set PATH in the bash shell:

PATH=/usr/bin:${PATH}
export PATH

3. Set Oracle globalization variables required for your locale. For example:

NLS_LANG=AMERICAN_AMERICA.UTF8
export NLS_LANG

If you do not set a globalization value, then the Tools package takes the
globalization values from the default locale.

Example A-2 Configuring Tools Instant Client Package (from Client Media or
Zip File) on Linux and Unix

1. Add the name of the directory containing the Instant Client files to the appropriate
shared library path LD_LIBRARY_PATH, LIBPATH or SHLIB_PATH. Remove any other
Oracle directories.

For example, using Solaris the Bourne or Korn shells on Oracle Solaris, enter the
following command:

LD_LIBRARY_PATH=/home/instantclient19:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

2. Add the directory containing the Instant Client files to the PATH environment
variable. If it is not set, then an absolute or relative path must be used to start the

Appendix A
Configuring Tools Instant Client Package

A-7

utilities provided in the Tools package. Remove any other Oracle directories from
PATH. For example:

PATH=/home/instantclient19:${PATH}
export PATH

3. Set Oracle globalization variables required for your locale. For example:

NLS_LANG=AMERICAN_AMERICA.UTF8
export NLS_LANG

If you do not set a globalization value, then the Tools package takes the
globalization values from the default locale.

Example A-3 Configuring Tools Instant Client Package on Windows

You can configure your Microsoft Windows environment by using the SET commands
in a Windows command prompt. You can make the environment variable permanent
by setting Environment Variables in System Properties.

For example, to set environment variables in Windows Server 2019 using System
Properties, open System from the Control Panel, click the Advanced System
Settings link, and then click Environment Variables.

1. Add the directory containing the Instant Client files to the PATH system environment
variable. Remove any other Oracle directories from PATH.

For example, add c:\instantclient19 to the beginning of PATH.

2. Set Oracle globalization variables required for your locale. A default locale will be
assumed if no variables are set.

For example, to set NLS_LANG for a Japanese environment, create a user
environment variable NLS_LANG set to JAPANESE_JAPAN.JA16EUC.

A.7 Connecting to a Database with the Tools Instant Client
Package

After the Tools Instant Client package is installed and configured, there are multiple
ways that you can connect to the database using the tools.

The utilities supplied in the Tools Instant Client are always remote from any database
server. To use Oracle Instant Client, a server must have an Oracle Database instance
up and running, and it must have the TNS listener running. For the Oracle Data Pump
Export and Import clients, the dump files reside on the remote server; an Oracle
Database directory object on the server must exist, and should have the appropriate
permissions.

Example A-4 Different Ways You Can Connect to a Database Using the Instant
Client Tools

To connect to a database, you must specify the database by using an Oracle Net
connection identifier. The following information uses the SQL*Loader (sqlldr) utility,
but the information applies to other utilities supplied in the Tools Instant Client package
as well.

Appendix A
Connecting to a Database with the Tools Instant Client Package

A-8

For example, you can use an Easy Connection identifier to connect to the HR schema
in the MYDB database running on mymachine is:

sqlldr hr/your_password@\"//mymachine.mydomain:port/MYDB\"

Alternatively you can use a Net Service Name:

sqlldr hr/your_password@MYDB

Your Net Service Names can be stored in a number of places, including LDAP. To
take full advantage of new release Oracle Database features, Oracle recommends that
you use LDAP.

To use Net Service Names configured in a local Oracle Net tnsnames.ora file, set the
environment variable TNS_ADMIN to the directory containing the tnsnames.ora file. For
example, on Unix or Linux systems, if your tnsnames.ora file is in /home/user1 and it
defines the Net Service Name MYDB2, you can use the following commands:

TNS_ADMIN=/home/user1
export TNS_ADMIN
sqlldr hr@MYDB2

If you do not set TNS_ADMIN as an environment variable, then an operating system
dependent set of directories is examined to find tnsnames.ora. This search path
includes looking in the directory specified by the ORACLE_HOME environment variable for
network/admin/tnsnames.ora. Enabling the operating system to find the
tnsnames.ora file is the only reason to set the ORACLE_HOME environment variable for
SQL*Loader Instant Client. If ORACLE_HOME is set when running Instant Client
applications, then you must set it to a directory that exists.

In the following example, we assume that the ORACLE_HOME environment variable is set,
and the $ORACLE_HOME/network/admin/tnsnames.ora or ORACLE_HOME\network\admin
\tnsnames.ora file defines the Net Service Name MYDB3:

sqlldr hr@MYDB3

You can set the environment variable TWO_TASK (on Unix and Linux) or LOCAL (on
Microsoft Windows) to a connection identifier. By setting the environment variable this
way, you can aovid the need to explicitly enter the connection identifier whenever a
connection is made in SQL*Loader or SQL*Loader Instant Client. For example,
suppose you want to connect to a database using a client on a Unix system. The
following example connects to the database called MYDB4:

TNS_ADMIN=/home/user1
export TNS_ADMIN
TWO_TASK=MYDB4
export TWO_TASK
sqlldr hr

On Microsoft Windows, you can set both TNS_ADMIN and LOCAL in the System
Properties.

Appendix A
Connecting to a Database with the Tools Instant Client Package

A-9

A.8 Uninstalling Tools Instant Client Package and Instant
Client

You can uninstall the Tools Instant Client package separately, or uninstall the entire
Instant Client.

After uninstalling the Tools Instant Client package, the remaining Instant Client
libraries still enable custom written OCI programs or third-party database utilities to
connect to a database.

Example A-5 Uninstalling Tools Instant Client

1. For installations on Linux from RPM packages, use rpm -e only on the Tools
Instant Client package
OR

For installations on Unix and Windows, and installations on Linux from the Client
Release media, manually remove any files specific to the Tools Instant Client. The
files that you want to delete should be in the Instant Client directory that you
specified at installation. Do not remove any Oracle home files.

If necessary, reset environment variables and remove tnsnames.ora.

Example A-6 Uninstalling the Complete Instant Client

1. For installations on Linux from RPM packages, choose one of the following
options:

• use rpm -qa to find the Tools Instant Client and Basic Oracle Instant Client
package names. To remove them, run rpm -e

• For installations on UNIX and Windows, and installations on Linux from the
Client Release media, manually delete the directory containing the Tools
executable and Oracle libraries.

2. Reset environment variables, such as PATH, LD_LIBRARY_PATH and TNS_ADMIN.

3. Remove tnsnames.ora if necessary.

Appendix A
Uninstalling Tools Instant Client Package and Instant Client

A-10

B
SQL*Loader Syntax Diagrams

This appendix describes SQL*Loader syntax in graphic form (sometimes called
railroad diagrams or DDL diagrams).

For information about the syntax notation used, see the Oracle Database SQL
Language Reference

The following diagrams are shown with certain clauses collapsed (such as pos_spec).
These diagrams are expanded and explained further along in the appendix.

B-1

Options Clause

OPTIONS (

BINDSIZE = n

COLUMNARRAYROWS = n

DATE_CACHE = n

DEFAULTS =

IGNORE

EVALUATE_ONCE

EVALUATE_EVERY_ROW

IGNORE_UNSUPPORTED_EVALUATE_ONCE

IGNORE_UNSUPPORTED_EVALUATE_EVERY_ROW

DEGREE_OF_PARALLELISM =

degree_num

DEFAULT

AUTO

NONE

DIRECT =
TRUE

FALSE

DIRECT_PATH_LOCK_WAIT =
TRUE

FALSE

EMPTY_LOBS_ARE_NULL =
TRUE

FALSE

ERRORS = n

EXTERNAL_TABLE =

NOT_USED

GENERATE_ONLY

EXECUTE

FILE = tablespace file

LOAD = n

MULTITHREADING =
TRUE

FALSE

PARALLEL =
TRUE

FALSE

)

Appendix B

B-2

Options_Cont

(

READSIZE = n

RESUMABLE =
TRUE

FALSE

RESUMABLE_NAME = ’text string’

RESUMABLE_TIMEOUT = n

ROWS = n

SILENT =

HEADER

FEEDBACK

ERRORS

DISCARDS

PARTITIONS

ALL

SKIP = n

SKIP_INDEX_MAINTENANCE =
TRUE

FALSE

SKIP_UNUSABLE_INDEXES =
TRUE

FALSE

STREAMSIZE = n

TRIM =

LRTRIM

NOTRIM

TRIM

RTRIM

LDRTRIM

)

Appendix B

B-3

Load Statement

UNRECOVERABLE

RECOVERABLE LOAD

CONTINUE_LOAD

DATA DEFAULT EXPRESSION CACHE n

CHARACTERSET char_set_name

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER

BYTEORDER
BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

FIELD NAMES

FIRST FILE

IGNORE

ALL FILES

IGNORE

NONE

infile_clause

,

READSIZE size READBUFFERS integer

INSERT

APPEND

REPLACE

TRUNCATE

concatenate_clause PRESERVE BLANKS

into_table_clause

,
BEGINDATA

Appendix B

B-4

infile_clause

INFILE
*

input_filename

os_file_proc_clause

BADFILE

directory_path filename

DISCARDFILE

directory_path filename

"

var

fix

str

’string’

X’hex_string’

integer

"

Note:

On the BADFILE and DISCARDFILE clauses, you must specify either a
directory path, or a filename, or both.

concatenate_clause

CONCATENATE
integer

(integer)

CONTINUEIF

THIS

NEXT PRESERVE (

pos_spec

LAST

PRESERVE (operator
str

X’hex_str’

)

Appendix B

B-5

into_table_clause

INTO TABLE name

SORTED

INDEXES

(name

,

)

SINGLEROW
(

PARTITION name

SUBPARTITION name
)

RESUME

YES

NO

REPLACE

INSERT

REPLACE

USING
DELETE

TRUNCATE

TRUNCATE

APPEND

OPTIONS (STORAGE=(storage_spec) , FILE=database_filename)

EVALUATE CHECK_CONSTRAINTS into_table_clause_continued

Appendix B

B-6

into_table_clause_continued

REENABLE

DISABLED_CONSTRAINTS EXCEPTIONS table

WHEN field_condition

OID_spec

SID_spec

XMLTYPE_spec

FIELDS

CSV

WITH

WITHOUT
EMBEDDED

delim_spec

TRAILING

NULLCOLS

DATE

TIMESTAMP

FORMAT mask

NULLIF

=

!=

" char_string "

X’hexstr’

BLANKS

SKIP n

field_list

field_condition

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

Appendix B

B-7

delim_spec

enclosure_spec

termination_spec

OPTIONALLY

enclosure_spec

full_fieldname

full_fieldname

termination_spec

TERMINATED

BY

WHITESPACE

X’hexstr’

’string’

EOF

enclosure_spec

ENCLOSED

BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

oid_spec

OID (fieldname)

sid_spec

SID (
fieldname

CONSTANT SID_val
)

Appendix B

B-8

xmltype_spec

XMLTYPE (fieldname)

field_list

(column_name

dgen_fld_spec

scalar_fld_spec

col_obj_fld_spec

collection_fld_spec

filler_fld_spec

,

)

dgen_fld_spec

RECNUM

SYSDATE

CONSTANT val

SEQUENCE (

COUNT

MAX

integer

, incr

)

REF_spec

SID_spec

BFILE_spec

init_spec

EXPRESSION " sql_string "

ref_spec

REF (
fieldname

CONSTANT val

,

)

Appendix B

B-9

init_spec

NULLIF

DEFAULTIF

field_condition

bfile_spec

BFILE (
fieldname

CONSTANT val
,

fieldname

CONSTANT val
)

filler_fld_spec

FILLER

BOUNDFILLER

pos_spec datatype_spec PIECED

scalar_fld_spec

LOBFILE_spec

POSITION pos_spec

datatype_spec PIECED

init_spec " sql_string "

lobfile_spec

LOBFILE (
fieldname

CONSTANT filename

CHARACTERSET name

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

)

Appendix B

B-10

lls_field_spec

lob_column_name

init_spec

LLS

" sql_string "

pos_spec

(

start

*

+integer

:

–
end

)

datatype_spec

delim_spec

INTEGER

(length)

SIGNED

UNSIGNED

EXTERNAL

(length) delim_spec

FLOAT

EXTERNAL

(length) delim_spec

DECIMAL

ZONED

EXTERNAL

(length) delim_spec

(precision

, scale

)

DOUBLE

BYTEINT

SMALLINT

SIGNED

UNSIGNED

RAW

(length)

GRAPHIC

EXTERNAL (graphic_char_length)

VARGRAPHIC

VARCHAR

(max_length)

datatype_spec_cont

Appendix B

B-11

datatype_spec_cont

CHAR

(length) delim_spec

VARCHARC (length_of_length

, max_size_bytes

)

VARRAWC (length_of_length

, max_size_bytes

)

LONG

VARRAW

(max_bytes)

DATE

EXTERNAL (length) "mask" delim_spec

TIME

TIMESTAMP

fractional_second_precision WITH

LOCAL

TIME ZONE "mask"

INTERVAL

YEAR

year_precision

TO MONTH

DAY

day_precision

TO SECOND

fractional_second_precision

col_obj_fld_spec

COLUMN OBJECT

TREAT AS typename init_spec

field_list

sql_string_spec

collection_fld_spec

nested_table_spec

BOUNDFILLER

varray_spec

nested_table_spec

NESTED TABLE

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

Appendix B

B-12

varray_spec

VARRAY

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

sdf_spec

SDF (

field_name

CONSTANT filename os_file_proc_clause READSIZE size

CHARACTERSET name

LENGTH

SEMANTICS
BYTE

CHAR

CHARACTER

BYTEORDER
BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK delim_spec

)

count_spec

COUNT (
fieldname

CONSTANT positive_integer
)

Appendix B

B-13

Index

Symbols
* parameter* parameter

field_definitions Clause, 15-41
pos_spec Clause, 15-41

Numerics
1291 ORA-01291: missing logfile, 22-33

A
ABORT_STEP parameter

Data Pump Export utility, 2-17
Data Pump Import utility, 3-16

ACCESS PARAMETERS clause
special characters, 17-1

access privileges
Export and Import, 24-4

ACCESS_METHOD parameter
Data Pump Export utility, 2-17
Data Pump Import utility, 3-17

ADD_FILE parameter
Data Pump Export utility

interactive-command mode, 2-81
ADR

See automatic diagnostic repository
ADR base

in ADRCI utility, 19-2
ADR home

in ADRCI utility, 19-2
ADRCI

troubleshooting, 19-72
ADRCI utility, 19-1

ADR base, 19-2
ADR home, 19-2
batch mode, 19-6
commands, 19-16
getting help, 19-5
homepath, 19-2
interactive mode, 19-5
starting, 19-5

Advanced Queuing, 24-45
exporting advanced queue tables, 24-45
importing advanced queue tables, 25-56

aliases
directory

exporting, 24-44
importing, 25-54

analyzer statistics, 25-63
analyzing redo log files, 22-1
ANYDATA type

using SQL strings to load, 10-65
APPEND parameter

SQL*Loader utility, 9-47
append to table

SQL*Loader, 9-41
archive logging

disabling in Data Pump jobs, 3-75
enabling in Data Pump jobs, 3-75

archived LOBs
restrictions on export, 2-77

archiving
disabling

effect on direct path loads, 12-13
array overflows, 17-13
arrays

committing after insert, 25-18
atomic null, 11-7
ATTACH parameter

Data Pump Export utility, 2-18
Data Pump Import utility, 3-18

attaching to an existing job
Data Pump Export utility, 2-18

attribute-value constructors
overriding, 11-8

attributes
null, 11-6

auditing Data Pump jobs
unified auditing

Data Pump, 1-28
auditing direct path loads

when using SQL*Loader, 12-23
automatic diagnostic repository, 19-2

B
backslash escape character, 9-7

Index-1

backups
restoring dropped snapshots

Import, 25-59
bad files

specifying for SQL*Loader, 9-16
BAD parameter

SQL*Loader command line, 8-6
SQL*Loader express mode, 13-6

BADFILE parameter
SQL*Loader utility, 9-16

BEGINDATA parameter
SQL*Loader control file, 9-14

BFILEs
in original Export, 24-44
in original Import, 25-54
loading with SQL*Loader, 11-18

big-endian data
external tables, 15-20

binary overflows, 17-13
BINARY_DOUBLE

Floating-Point Numbers, 15-46
BINARY_FLOAT

Floating-Point Numbers, 15-46
bind arrays

determining size of for SQL*Loader, 9-56
minimizing SQL*Loader memory

requirements, 9-59
minimum requirements, 9-54
size with multiple SQL*Loader INTO TABLE

statements, 9-60
specifying maximum size, 8-8
specifying number of rows, 8-34
SQL*Loader performance implications, 9-54

BINDSIZE parameter
SQL*Loader command line, 8-8, 9-55

blanks
loading fields consisting of blanks, 10-51
SQL*Loader BLANKS parameter for field

comparison, 10-42
trailing, 10-36
trimming, 10-52

external tables, 8-41, 13-24, 15-37
whitespace, 10-52

BLANKS parameter
SQL*Loader utility, 10-42

BLOBs
loading with SQL*Loader, 11-18

buffer cache size
and Data Pump operations involving

GoldenGate Replication, 5-4
BUFFER parameter

Export utility, 24-13
Import utility, 25-17

buffers
calculating for export, 24-13

buffers (continued)
specifying with SQL*Loader BINDSIZE

parameter, 9-56
byte order, 10-47

big-endian, 10-47
little-endian, 10-47
specifying in SQL*Loader control file, 10-48

byte order marks, 10-49
precedence

for first primary datafile, 10-49
for LOBFILEs and SDFs, 10-49

suppressing checks for, 10-51
BYTEORDER parameter

SQL*Loader utility, 10-48
BYTEORDERMARK parameter

SQL*Loader utility, 10-51

C
cached sequence numbers

Export, 24-43
catalog.sql script

preparing database for Export and Import,
24-3, 25-4

catexp.sql script
preparing database for Export and Import,

24-3, 25-4
CDBs

Oracle Data Pump support, 1-8
using Data Pump to move data into, 1-9

changing a database ID, 21-3
changing a database name, 21-6
CHAR data type

delimited form and SQL*Loader, 10-33
character fields

delimiters and SQL*Loader, 10-18, 10-33
determining length for SQL*Loader, 10-39
SQL*Loader data types, 10-18

character overflows, 17-13
character sets

conversion
during Export and Import, 24-40, 25-48

eight-bit to seven-bit conversions
Export/Import, 24-41, 25-49

identifying for external tables, 15-12
multibyte

Export/Import, 24-41
SQL*Loader, 9-23

single-byte
Export/Import, 24-41, 25-49

SQL*Loader control file, 9-28
SQL*Loader conversion between, 9-22
Unicode, 9-23

Index

Index-2

character strings
external tables

specifying bytes or characters, 15-21
SQL*Loader, 10-42

character-length semantics, 9-29
CHARACTERSET parameter

SQL*Loader express mode, 13-7
SQL*Loader utility, 9-27, 13-7

check constraints
overriding disabling of, 12-26

CHECKSUM parameter
Data Pump Export utility, 2-19

CHECKSUM_ALGORITHM parameter
Data Pump Export utility, 2-20

CLOBs
loading with SQL*Loader, 11-18

CLUSTER parameter
Data Pump Export utility, 2-21
Data Pump Import utility, 3-19

collection types supported by SQL*Loader, 7-17
collections, 7-16

loading, 11-33
column array rows

specifying number of, 12-14
column mapping, 17-5
column objects

loading, 11-2
with user-defined constructors, 11-8

COLUMNARRAYROWS parameter
SQL*Loader command line, 8-9

columns
exporting LONG data types, 24-43
loading REF columns, 11-14
naming

SQL*Loader, 10-6
objects

loading nested column objects, 11-4
stream record format, 11-2
variable record format, 11-3

reordering before Import, 25-7
setting to a constant value with SQL*Loader,

10-66
setting to a unique sequence number with

SQL*Loader, 10-68
setting to an expression value with

SQL*Loader, 10-67
setting to null with SQL*Loader, 10-66
setting to the current date with SQL*Loader,

10-68
setting to the datafile record number with

SQL*Loader, 10-67
specifying

SQL*Loader, 10-6
specifying as PIECED

SQL*Loader, 12-22

columns (continued)
using SQL*Loader, 10-67

com.oracle.bigdata.colmap, 17-5
com.oracle.bigdata.datamode, 17-6
com.oracle.bigdata.erroropt, 17-7
com.oracle.bigdata.fields, 17-8
com.oracle.bigdata.fileformat, 17-10
com.oracle.bigdata.log.qc, 17-12
com.oracle.bigdata.overflow, 17-13
com.oracle.bigdata.rowformat, 17-14
com.oracle.bigdata.tablename, 17-15
comments

in Export and Import parameter files, 24-5,
25-10

with external tables, 15-2, 16-4
COMMIT parameter

Import utility, 25-18
COMPILE parameter

Import utility, 25-18
completion messages

Export, 24-36
Import, 24-36

COMPRESS parameter
Export utility, 24-13

compression
specifying algorithm in Data Pump jobs, 2-23
specifying for tables in Data Pump jobs, 3-75
specifying level for external tables, 16-6

compression algorithms
specifying in Data Pump jobs, 2-23

COMPRESSION parameter
Data Pump Export utility, 2-22

COMPRESSION_ALGORITHM parameter
Data Pump Export utility, 2-23

CONCATENATE parameter
SQL*Loader utility, 9-34

concurrent conventional path loads, 12-30
configuration

of LogMiner utility, 22-3
CONSISTENT parameter

Export utility, 24-14
nested tables and, 24-14
partitioned table and, 24-14

consolidating
extents, 24-13

CONSTANT parameter
SQL*Loader, 10-66

constraints
automatic integrity and SQL*Loader, 12-28
direct path load, 12-25
disabling referential constraints, 25-8
enabling

after a parallel direct path load, 12-35
enforced on a direct load, 12-25

Index

3

constraints (continued)
failed

Import, 25-42
load method, 12-5

CONSTRAINTS parameter
Export utility, 24-16
Import utility, 25-19

constructors
attribute-value, 11-8

overriding, 11-8
user-defined, 11-8

loading column objects with, 11-8
CONTENT parameter

Data Pump Export utility, 2-24
Data Pump Import utility, 3-18

CONTINUE_CLIENT parameter
Data Pump Export utility

interactive-command mode, 2-82
Data Pump Import utility

interactive-command mode, 3-96
CONTINUEIF parameter

SQL*Loader utility, 9-34
control files

character sets, 9-28
data definition language syntax, 9-2
specifying data, 9-14
specifying SQL*Loader discard file, 9-19
SQL*Loader, 9-2

CONTROL parameter
SQL*Loader command line, 8-9

conventional path Export
compared to direct path, 24-36

conventional path loads
behavior when discontinued, 9-31
compared to direct path loads, 12-6
concurrent, 12-31
of a single partition, 12-3
SQL*Loader bind array, 9-54
when to use, 12-3

conversion of character sets
during Export/Import, 24-40, 25-48
effect of character set sorting on, 24-40,

25-48
conversion of data

during direct path loads, 12-9
conversion of input characters, 9-25
CREATE REPORT command, ADRCI utility,

19-18
CREATE SESSION privilege

Export, 24-4, 25-4
Import, 24-4, 25-4

creating
incident package, 19-13
tables

manually, before import, 25-7

CREDENTIAL parameter
Data Pump Export utility, 2-25
Data Pump Import utility, 3-21
SQL*Loader, 8-10

CSV parameter
SQL*Loader express mode, 13-9

D
data

conversion
direct path load, 12-9

delimiter marks in data and SQL*Loader,
10-35

distinguishing different input formats for
SQL*Loader, 9-48

distinguishing different input row object
subtypes, 9-48, 9-50

exporting, 24-25
generating unique values with SQL*Loader,

10-68
including in control files, 9-14
loading data contained in the SQL*Loader

control file, 10-66
loading in sections

SQL*Loader, 12-22
loading into more than one table

SQL*Loader, 9-48
maximum length of delimited data for

SQL*Loader, 10-35
moving between operating systems using

SQL*Loader, 10-47
recovery

SQL*Loader direct path load, 12-20
saving in a direct path load, 12-19
saving rows

SQL*Loader, 12-13
unsorted

SQL*Loader, 12-12
values optimized for SQL*Loader

performance, 10-66
data fields

specifying the SQL*Loader data type, 10-8
data files

specifying buffering for SQL*Loader, 9-15
specifying for SQL*Loader, 9-11

data mode, 17-6
DATA parameter

SQL*Loader command line, 8-12, 13-10
SQL*Loader express mode, 13-10

Data Pump Export utility
ABORT_STEP parameter, 2-17
ACCESS_METHOD parameter, 2-17
adding additional dump files, 1-19
ATTACH parameter, 2-18

Index

Index-4

Data Pump Export utility (continued)
CHECKSUM parameter, 2-19
CHECKSUM_ALGORITHM parameter, 2-20
CLUSTER parameter, 2-21
command-line mode, 2-15, 3-9
COMPRESSION parameter, 2-22
COMPRESSION_ALGORITHM parameter,

2-23
CONTENT parameter, 2-24
controlling resource consumption, 5-2
CREDENTIAL parameter, 2-25
DATA_OPTIONS parameter, 2-26
DIRECTORY parameter, 2-27
dump file set, 2-1
DUMPFILE parameter, 2-28
encryption of SecureFiles, 2-31
ENCRYPTION parameter, 2-31
ENCRYPTION_ALGORITHM parameter,

2-33
ENCRYPTION_MODE parameter, 2-34
ENCRYPTION_PASSWORD parameter,

2-35
ENCRYPTION_PWD_PROMPT parameter,

2-37
ESTIMATE parameter, 2-38
ESTIMATE_ONLY parameter, 2-39
EXCLUDE parameter, 2-40
excluding objects, 2-40
export modes, 2-3
FILESIZE command

interactive-command mode, 2-83
FILESIZE parameter, 2-42
filtering data that is exported

using EXCLUDE parameter, 2-40
using INCLUDE parameter, 2-47

FLASHBACK_SCN parameter, 2-43
FLASHBACK_TIME parameter, 2-44
FULL parameter, 2-45
HELP parameter

interactive-command mode, 2-83
INCLUDE parameter, 2-47
interactive-command mode, 2-80

ADD_FILE parameter, 2-81
CONTINUE_CLIENT parameter, 2-82
EXIT_CLIENT parameter, 2-82
FILESIZE, 2-83
HELP parameter, 2-83
KILL_JOB parameter, 2-84
PARALLEL parameter, 2-84
START_JOB parameter, 2-85
STATUS parameter, 2-86, 3-99
STOP_JOB parameter, 2-86, 3-100

interfaces, 2-2
invoking

as SYSDBA, 3-2

Data Pump Export utility (continued)
job names

specifying, 2-49
JOB_NAME parameter, 2-49
KEEP_MASTER parameter, 2-49
LOGFILE parameter, 2-50
LOGTIME parameter, 2-51
METRICS parameter, 2-53
NETWORK_LINK parameter, 2-53
NOLOGFILE parameter, 2-55
PARALLEL parameter

command-line mode, 2-56
interactive-command mode, 2-84

PARFILE parameter, 2-57
QUERY parameter, 2-58
REMAP_DATA parameter, 2-60
REUSE_DUMPFILES parameter, 2-62
SAMPLE parameter, 2-62
SCHEMAS parameter, 2-63
SecureFiles LOB considerations, 1-26
SERVICE_NAME parameter, 2-64
SOURCE_EDITION parameter, 2-65
specifying a job name, 2-49
starting

as SYSDBA, 2-2
STATUS parameter, 2-66
syntax diagrams, 2-90
TABLES parameter, 2-67
TABLESPACES parameter, 2-69
transparent data encryption, 2-35
TRANSPORT_FULL_CHECK parameter,

2-71
TRANSPORT_TABLESPACES parameter,

2-73
TRANSPORTABLE parameter, 2-74
TTS_CLOSURE_CHECK parameter, 2-76
VERIFY_CHECKSUM parameter, 3-89
VERIFY_ONLY parameter, 3-90
VERSION parameter, 2-77
versioning, 1-24
VIEWS_AS_TABLES parameter, 2-78

Data Pump Import utility
ABORT_STEP parameter, 3-16
ACCESS_METHOD parameter, 3-17
ATTACH parameter, 3-18
attaching to an existing job, 3-18
changing name of source datafile, 3-56
CLUSTER parameter, 3-19
CONTENT parameter, 3-20
controlling resource consumption, 5-2
CREDENTIAL parameter, 3-21
DATA_OPTIONS parameter, 3-22
DIRECTORY parameter, 3-25
DUMPFILE parameter, 3-26

Index

5

Data Pump Import utility (continued)
ENCRYPTION_PASSWORD parameter,

3-29
ENCRYPTION_PWD_PROMPT parameter,

3-30
ESTIMATE parameter, 3-32
estimating size of job, 3-31
EXCLUDE parameter, 3-32
filtering data that is imported

using EXCLUDE parameter, 3-32
using INCLUDE parameter, 3-39

FLASHBACK_SCN parameter, 3-35
FLASHBACK_TIME parameter, 3-36
full import mode, 3-4
FULL parameter, 3-37
HELP parameter

command-line mode, 3-38
interactive-command mode, 3-97

INCLUDE parameter, 3-39
interactive-command mode, 3-95

CONTINUE_CLIENT parameter, 3-96
EXIT_CLIENT parameter, 3-96
HELP parameter, 3-97
KILL_JOB parameter, 3-97
PARALLEL parameter, 3-98
START_JOB parameter, 3-99
STATUS, 3-99
STOP_JOB parameter, 3-100

interfaces, 3-2
JOB_NAME parameter, 3-41
KEEP_MASTER parameter, 3-41
LOGTIME parameter, 3-43
MASTER_ONLY parameter, 3-44
METRICS parameter, 3-44
NETWORK_LINK parameter, 3-45
NOLOGFILE parameter, 3-47
PARALLEL parameter

command-line mode, 3-47
PARFILE parameter, 3-50
PARTITION_OPTIONS parameter, 3-51
QUERY parameter, 3-52
REMAP_DATA parameter, 3-55
REMAP_DATAFILE parameter, 3-56
REMAP_SCHEMA parameter, 3-58
REMAP_TABLE parameter, 3-60
REMAP_TABLESPACE parameter, 3-61
REUSE_DATAFILES parameter, 3-70
schema mode, 3-5
SCHEMAS parameter, 3-62
SERVICE_NAME parameter, 3-63
SKIP_UNUSABLE_INDEXES parameter,

3-64
SOURCE_EDITION parameter, 3-65
specifying a job name, 3-41

Data Pump Import utility (continued)
specifying credential object name to process,

3-21
specifying dump file set to import, 3-26
SQLFILE parameter, 3-66
STATUS parameter, 3-67
STREAMS_CONFIGURATION parameter,

3-68
syntax diagrams, 3-102
table mode, 3-5
TABLE_EXISTS_ACTION parameter, 3-68
TABLES parameter, 3-71
tablespace mode, 3-6
TABLESPACES parameter, 3-73
TARGET_EDITION parameter, 3-74
TRANSFORM parameter, 3-75
transparent data encryption, 3-29
TRANSPORT_FULL_CHECK parameter,

3-84
TRANSPORT_TABLESPACES parameter,

3-85
TRANSPORTABLE parameter, 3-87
transportable tablespace mode, 3-6
VERSION parameter, 3-90
versioning, 1-24
VIEWS_AS_TABLES parameter (Network

Import), 3-92
VIEWS_AS_TABLES parameter (Non-

Network Import), 3-93
data source name, 17-15
data types

BFILEs
in original Export, 24-44
in original Import, 25-54
loading with SQL*Loader, 11-18

BLOBs
loading with SQL*Loader, 11-18

CLOBs
loading with SQL*Loader, 11-18

converting SQL*Loader, 10-31
describing for external table fields, 15-44
determining character field lengths for

SQL*Loader, 10-39
determining DATE length, 10-40
identifying for external tables, 15-39
native

conflicting length specifications in
SQL*Loader, 10-30

NCLOBs
loading with SQL*Loader, 11-18

nonscalar, 11-6
specifying in SQL*Loader, 10-8
supported by the LogMiner utility, 22-83
types used by SQL*Loader, 10-8
unsupported by LogMiner utility, 22-85

Index

Index-6

data types (HDFS), 17-8
DATA_OPTIONS parameter

Data Pump Export utility, 2-26
Data Pump Import utility, 3-22

database ID (DBID)
changing, 21-3

database identifier
changing, 21-3

database migration
partitioning of, 24-47, 25-64

database name (DBNAME)
changing, 21-6

database objects
exporting LONG columns, 24-43

databases
changing the database ID, 21-3
changing the name, 21-6
exporting entire, 24-19
full import, 25-22
privileges for exporting and importing, 24-4,

25-4
reusing existing datafiles

Import, 25-20
datafiles

preventing overwrite during import, 25-20
reusing during import, 25-20
specifying, 8-12, 13-10
specifying format for SQL*Loader, 9-15

DATAFILES parameter
Import utility, 25-19

DATAPUMP_EXP_FULL_DATABASE role, 1-12
DATAPUMP_IMP_FULL_DATABASE role, 1-12
date cache feature

DATE_CACHE parameter, 8-13
external tables, 15-59
SQL*Loader, 12-15

DATE data type
delimited form and SQL*Loader, 10-33
determining length, 10-40
mask

SQL*Loader, 10-40
DATE_CACHE parameter

SQL*Loader utility, 8-13
DATE_FORMAT parameter

SQL*Loader express mode, 13-11
DBID (database identifier)

changing, 21-3
DBMS_LOGMNR PL/SQL procedure

LogMiner utility and, 22-6
DBMS_LOGMNR_D PL/SQL procedure

LogMiner utility and, 22-6
DBMS_LOGMNR_D.ADD_LOGFILES PL/SQL

procedure
LogMiner utility and, 22-6

DBMS_LOGMNR_D.BUILD PL/SQL procedure
LogMiner utility and, 22-6

DBMS_LOGMNR_D.END_LOGMNR PL/SQL
procedure

LogMiner utility and, 22-6
DBMS_LOGMNR.COLUMN_PRESENT function,

22-22
DBMS_LOGMNR.MINE_VALUE function, 22-22

null values and, 22-23
DBMS_LOGMNR.START_LOGMNR PL/SQL

procedure, 22-18
calling multiple times, 22-36
COMMITTED_DATA_ONLY option, 22-30
LogMiner utility and, 22-6
options for, 22-18
PRINT_PRETTY_SQL option, 22-34
SKIP_CORRUPTION option, 22-32

DBMS_LOGMNR.START_LOGMNR procedure
ENDTIME parameter, 22-33
STARTTIME parameter, 22-33

DBMS_METADATA PL/SQL package, 23-6
DBNAME

changing, 21-6
DBNEWID utility, 21-1

changing a database ID, 21-3
changing a database name, 21-6
effect on global database names, 21-2
restrictions, 21-10
syntax, 21-9
troubleshooting a database ID change, 21-8

DBVERIFY utility
output, 20-3
restrictions, 20-1
syntax, 20-2
validating a segment, 20-4
validating disk blocks, 20-1

default schema
as determined by SQL*Loader, 9-39

DEFAULTIF parameter
SQL*Loader, 10-40

DEGREE_OF_PARALLELISM parameter
SQL*Loader command line, 8-16
SQL*Loader express mode, 13-12

DELETE ANY TABLE privilege
SQL*Loader, 9-42

DELETE CASCADE
effect on loading nonempty tables, 9-42
SQL*Loader, 9-42

DELETE privilege
SQL*Loader, 9-41

delimited data
maximum length for SQL*Loader, 10-35

delimited fields
field length, 10-39

delimited LOBs, 11-27

Index

7

delimited text files, 17-14
delimiters

in external tables, 15-8
loading trailing blanks, 10-36
marks in data and SQL*Loader, 10-35
specifying for external tables, 15-35
specifying for SQL*Loader, 9-43, 10-33
SQL*Loader enclosure, 10-55
SQL*Loader field specifications, 10-55
termination, 10-55

DESTROY parameter
Import utility, 25-20

dictionary
requirements for LogMiner utility, 22-5

dictionary version mismatch, 22-44
Direct NFS Client

using with external tables, 15-29
DIRECT parameter

Export utility, 24-16
SQL*Loader command-line, 8-17
SQL*Loader express mode, 13-13

direct path Export, 24-36, 24-37
compared to conventional path, 24-36
effect of EXEMPT ACCESS POLICY

privilege, 24-37
performance issues, 24-38
restrictions, 24-38
security considerations, 24-37

direct path load
advantages, 12-7
behavior when discontinued, 9-31
choosing sort order

SQL*Loader, 12-12
compared to conventional path load, 12-6
concurrent, 12-32
conditions for use, 12-6
data saves, 12-13, 12-19
dropping indexes, 12-24
effect of disabling archiving, 12-13
effect of PRIMARY KEY constraints, 12-35
effect of UNIQUE KEY constraints, 12-35
field defaults, 12-5
improper sorting

SQL*Loader, 12-12
indexes, 12-17
instance recovery, 12-20
intersegment concurrency, 12-32
intrasegment concurrency, 12-32
location of data conversion, 12-9
media recovery, 12-21
optimizing on multiple-CPU systems, 12-23
partitioned load

SQL*Loader, 12-30
performance, 12-10, 12-17
preallocating storage, 12-10

direct path load (continued)
presorting data, 12-11
recovery, 12-20
ROWS command-line parameter, 12-20
setting up, 12-17
specifying, 12-17
specifying number of rows to be read, 8-34
SQL*Loader data loading method, 7-13
table insert triggers, 12-27
temporary segment storage requirements,

12-18
triggers, 12-25
using, 12-6, 12-16
version requirements, 12-6

directory aliases
exporting, 24-44
importing, 25-54

directory objects
using with Data Pump

effect of Oracle ASM, 1-22
DIRECTORY parameter

Data Pump Export utility, 2-27
Data Pump Import utility, 3-25

disabled unique indexes
loading tables with, 1-3

discard files
SQL*Loader, 9-19

specifying a maximum, 9-21
DISCARD parameter

SQL*Loader command-line, 8-18
discarded SQL*Loader records, 7-11

causes, 9-20
discard file, 9-19
limiting, 9-20

DISCARDMAX parameter
SQL*Loader command-line, 8-19

discontinued loads, 9-30
continuing, 9-33
conventional path behavior, 9-31
direct path behavior, 9-31

DNFS_ENABLE parameter
SQL*Loader command-line, 8-20
SQL*Loader express mode, 13-14

DNFS_READBUFFERS parameter
record_format_info clause, 15-29
SQL*Loader command-line, 8-21
SQL*Loader express mode, 13-14

DOUBLE
Floating-Point Numbers, 15-46

DOUBLE nonportable data type
SQL*Loader data type, 10-13

dropped snapshots
Import, 25-59

dump files
maximum size, 24-17

Index

Index-8

DUMPFILE parameter
Data Pump Export utility, 2-28
Data Pump Import utility, 3-26

E
EBCDIC character set

Import, 24-41, 25-49
ECHO command, ADRCI utility, 19-19
eight-bit character set support, 24-41, 25-49
enclosed fields

whitespace, 10-58
ENCLOSED_BY parameter

SQL*Loader express mode, 13-15
enclosure delimiters, 10-33

SQL*Loader, 10-55
encrypted columns

in external tables, 16-7
ENCRYPTION parameter

Data Pump Export utility, 2-31
encryption password

Data Pump export, 2-37
Data Pump Import, 3-30

ENCRYPTION_ALGORITHM parameter
Data Pump Export utility, 2-33

ENCRYPTION_MODE parameter
Data Pump Export utility, 2-34

ENCRYPTION_PASSWORD parameter
Data Pump Export utility, 2-35
Data Pump Import utility, 3-29

ENCRYPTION_PWD_PROMPT parameter
Data Pump Export utility, 2-37
Data Pump Import utility, 3-30

end parameter
field_definitions Clause, 15-42
pos_spec Clause, 15-42

error handling, 17-7
errors

caused by tab characters in SQL*Loader
data, 10-4

LONG data, 25-42
object creation, 25-43

Import parameter IGNORE, 25-24
resource errors on import, 25-43
writing to export log file, 24-21

ERRORS parameter
SQL*Loader command line, 8-23

escape character
quoted strings and, 9-7
usage in Data Pump Export, 2-15
usage in Data Pump Import, 3-9
usage in Export, 24-25
usage in Import, 25-29

ESTIMATE parameter
Data Pump Export utility, 2-38

ESTIMATE parameter (continued)
Data Pump Import utility, 3-31

ESTIMATE_ONLY parameter
Data Pump Export utility, 2-39

estimating size of job
Data Pump Export utility, 2-38

EVALUATE CHECK_CONSTRAINTS clause,
12-26

EXCLUDE parameter
Data Pump Export utility, 2-40
Data Pump Import utility, 3-32

existing object tables
importing, 25-53

exit codes
Export and Import, 24-36, 25-41
SQL*Loader, 1-27, 8-43

EXIT command, ADRCI utility, 19-20
EXIT_CLIENT parameter

Data Pump Export utility
interactive-command mode, 2-82

Data Pump Import utility
interactive-command mode, 3-96

EXP_FULL_DATABASE role
assigning in Export, 24-3, 25-4

expdat.dmp
Export output file, 24-17

Export
BUFFER parameter, 24-13
character set conversion, 24-40, 25-48
COMPRESS parameter, 24-13
CONSISTENT parameter, 24-14
CONSTRAINTS parameter, 24-16
conventional path, 24-36
creating

necessary privileges, 24-3, 25-4
necessary views, 24-3, 25-4

DIRECT parameter, 24-16
direct path, 24-36
displaying online help, 24-20
example sessions, 24-29

full database mode, 24-29
partition-level, 24-33
table mode, 24-30
user mode, 24-21, 24-30

exit codes, 24-36, 25-41
exporting an entire database, 24-19
exporting indexes, 24-21
exporting sequence numbers, 24-43
exporting synonyms, 24-45
exporting to another operating system,

24-23, 25-26
FEEDBACK parameter, 24-16
FILE parameter, 24-17
FILESIZE parameter, 24-17
FLASHBACK_SCN parameter, 24-18

Index

9

Export (continued)
FLASHBACK_TIME parameter, 24-18
full database mode

example, 24-29
FULL parameter, 24-19
GRANTS parameter, 24-20
HELP parameter, 24-20
INDEXES parameter, 24-21
invoking, 24-4, 25-9
log files

specifying, 24-21
LOG parameter, 24-21
logging error messages, 24-21
LONG columns, 24-43
OBJECT_CONSISTENT parameter, 24-21
online help, 24-7
OWNER parameter, 24-21
parameter file, 24-22

maximum size, 24-5, 25-10
parameter syntax, 24-11
PARFILE parameter, 24-22
partitioning a database migration, 24-47,

25-64
QUERY parameter, 24-22
RECORDLENGTH parameter, 24-23
redirecting output to a log file, 24-35
remote operation, 24-39, 25-47
restrictions based on privileges, 24-4
RESUMABLE parameter, 24-24
RESUMABLE_NAME parameter, 24-24
RESUMABLE_TIMEOUT parameter, 24-24
ROWS parameter, 24-25
sequence numbers, 24-43
storage requirements, 24-4
table mode

example session, 24-30
table name restrictions, 24-25
TABLES parameter, 24-25
TABLESPACES parameter, 24-27
TRANSPORT_TABLESPACE parameter,

24-28
TRIGGERS parameter, 24-28
TTS_FULL_CHECK parameter, 24-28
user access privileges, 24-4, 25-4
user mode

example session, 24-21, 24-30
specifying, 24-21

USERID parameter, 24-28
VOLSIZE parameter, 24-29

export dump file
importing the entire file, 25-22

export file
listing contents before importing, 25-27
specifying, 24-17

exporting
archived LOBs, 2-77

EXPRESSION parameter
SQL*Loader, 10-67

extents
consolidating, 24-13

FLOAT [EXTERNAL] parameter
datatype_spec clause, 15-46

EXTERNAL parameter
SQL*Loader, 10-27

EXTERNAL SQL*Loader data types
numeric

determining len, 10-39
external tables, 14-1

access parameters, 14-5, 15-2, 16-2
and encrypted columns, 16-7
big-endian data, 15-20
cacheing data during reads, 15-28
column_transforms clause, 15-2
data types, 15-44
date cache feature, 15-59
delimiters, 15-8
describing data type of a field, 15-44
field_definitions clause, 15-2, 15-30
fixed-length records, 15-7
identifying character sets, 15-12
identifying data types, 15-39
improving performance when using

date cache feature, 15-59
IO_OPTIONS clause, 15-28
little-endian data, 15-20
opaque_format_spec, 14-5, 15-2, 16-2
preprocessing data, 15-14
record_format_info clause, 15-2, 15-5
reserved words, 15-60, 16-19
restrictions, 15-60
setting a field to a default value, 15-52
setting a field to null, 15-52
skipping records when loading data, 15-23
specifying compression level, 16-6
specifying delimiters, 15-35
specifying load conditions, 15-21
trimming blanks, 8-41, 13-24, 15-37
use of SQL strings, 15-60
using comments, 15-2, 16-4
variable-length records, 15-8

EXTERNAL_TABLE parameter
SQL*Loader command line, 8-23
SQL*Loader express mode, 13-16

F
fatal errors

See nonrecoverable error messages

Index

Index-10

FEEDBACK parameter
Export utility, 24-16
Import utility, 25-20

field conditions
specifying for SQL*Loader, 10-40

field extraction, 17-14
field length

SQL*Loader specifications, 10-55
Field lengths for Length-Value portable data

types
SQL*Loader data type, 10-31

field names, 17-8
field_definitions clause

FLOAT [EXTERNAL], 15-46
FIELD_NAMES parameter

SQL*Loader express mode, 13-17
fields

comparing to literals with SQL*Loader, 10-42
delimited

determining length, 10-39
SQL*Loader, 10-33

loading all blanks, 10-51
predetermined size

length, 10-39
SQL*Loader, 10-55

relative positioning and SQL*Loader, 10-56
specifying default delimiters for SQL*Loader,

9-43
specifying for SQL*Loader, 10-6
SQL*Loader delimited

specifications, 10-55
FIELDS clause

SQL*Loader, 9-43
file allocation in Data Pump

adding dump files, 1-19
default file locations, 1-19
NFS errors, 1-18

file names
quotation marks and, 9-7
specifying multiple SQL*Loader, 9-13
SQL*Loader, 9-5
SQL*Loader bad file, 9-16

FILE parameter
Export utility, 24-17
Import utility, 25-20
SQL*Loader command line, 8-26
SQL*Loader utility, 12-34

FILESIZE parameter
Data Pump Export utility, 2-42
Export utility, 24-17
Import utility, 25-21

FILLER field
using as argument to init_spec, 10-6

filtering data
using Data Pump Export utility, 2-1

filtering data (continued)
using Data Pump Import utility, 3-1

filtering metadata that is imported
Data Pump Import utility, 3-32

finalizing
in ADRCI utility, 19-2

fine-grained access support
Export and Import, 25-58

fixed-format records, 7-5
fixed-length records

external tables, 15-7
FLASHBACK_SCN parameter

Data Pump Export utility, 2-43
Data Pump Import utility, 3-35
Export utility, 24-18

FLASHBACK_TIME parameter
Data Pump Export utility, 2-44
Data Pump Import utility, 3-36
Export utility, 24-18

FLOAT
Floating-Point Numbers, 15-46

Floating-Point Numbers
datatype_spec clause, 15-46

foreign function libraries
exporting, 24-43
importing, 25-55, 25-56

formats
SQL*Loader input records and, 9-49

formatting errors
SQL*Loader, 9-16

FROMUSER parameter
Import utility, 25-21

full database mode
Import, 25-22
specifying with FULL, 24-19

full export mode
Data Pump Export utility, 2-4

FULL parameter
Data Pump Export utility, 2-45
Data Pump Import utility, 3-37
Export utility, 24-19
Import utility, 25-22

full transportable export, 2-4
full transportable import, 3-4

G
globalization

SQL*Loader, 9-22
GoldenGate Replication environment in Data

Pump
setting buffer cache size, 5-4

grants
exporting, 24-20
importing, 25-23

Index

11

GRANTS parameter
Export utility, 24-20
Import utility, 25-23

GRAPHIC, 10-25
GRAPHIC data type, 10-25

H
HELP parameter

Data Pump Export utility
command-line mode, 2-46
interactive-command mode, 2-83

Data Pump Import utility
command-line mode, 3-38
interactive-command mode, 3-97

Export utility, 24-20
Import utility, 25-24

hexadecimal strings
SQL*Loader, 10-42

Hive table sources, 17-15
homepath

in ADRCI utility, 19-2
HOST command, ADRCI utility, 19-20

I
IGNORE parameter

Import utility, 25-24
IMP_FULL_DATABASE role

assigning in Import, 24-3, 25-4
Import

BUFFER parameter, 25-17
character set conversion, 24-40, 24-41,

25-48, 25-49
COMMIT parameter, 25-18
committing after array insert, 25-18
COMPILE parameter, 25-18
CONSTRAINTS parameter, 25-19
creating

necessary privileges, 24-3, 25-4
necessary views, 24-3, 25-4

creating an index-creation SQL script, 25-25
database optimizer statistics, 25-28
DATAFILES parameter, 25-19
DESTROY parameter, 25-20
disabling referential constraints, 25-8
displaying online help, 25-24
dropping a tablespace, 25-62
errors importing database objects, 25-42
example sessions, 25-35

all tables from one user to another, 25-36
selected tables for specific user, 25-35
tables exported by another user, 25-36
using partition-level Import, 25-37

exit codes, 24-36, 25-41

Import (continued)
export file

importing the entire file, 25-22
listing contents before import, 25-27

FEEDBACK parameter, 25-20
FILE parameter, 25-20
FILESIZE parameter, 25-21
FROMUSER parameter, 25-21
FULL parameter, 25-22
grants

specifying for import, 25-23
GRANTS parameter, 25-23
HELP parameter, 25-24
IGNORE parameter, 25-24
importing grants, 25-23
importing objects into other schemas, 25-6
importing tables, 25-29
INDEXFILE parameter, 25-25
INSERT errors, 25-42
invalid data, 25-42
invoking, 24-4, 25-9
LOG parameter, 25-25
LONG columns, 25-56
manually creating tables before import, 25-7
manually ordering tables, 25-8
NLS_LANG environment variable, 24-41,

25-49
object creation errors, 25-24
online help, 24-7
parameter file, 25-25

maximum size, 24-5, 25-10
parameter syntax, 25-15
PARFILE parameter, 25-25
partition-level, 25-44
Partitioned tables, 25-58
pattern matching of table names, 25-29
read-only tablespaces, 25-62
RECORDLENGTH parameter, 25-26
records

specifying length, 25-26
redirecting output to a log file, 24-35
REF data, 25-54
refresh error, 25-58
remote operation, 24-39, 25-47
reorganizing tablespace during, 25-62
resource errors, 25-43
restrictions

importing into own schema, 25-5
RESUMABLE parameter, 25-26
RESUMABLE_NAME parameter, 25-26
RESUMABLE_TIMEOUT parameter, 25-27
reusing existing datafiles, 25-20
schema objects, 25-6
sequences, 25-43
SHOW parameter, 25-27

Index

Index-12

Import (continued)
single-byte character sets, 24-41, 25-49
SKIP_UNUSABLE_INDEXES parameter,

25-28
snapshot master table, 25-58
snapshots, 25-58

restoring dropped, 25-59
specifying by user, 25-21
specifying index creation commands, 25-25
specifying the export file, 25-20
STATISTICS parameter, 25-28
storage parameters

overriding, 25-62
stored functions, 25-55
stored procedures, 25-55
STREAMS_CONFIGURATION parameter,

25-29
STREAMS_INSTANTIATION parameter,

25-29
system objects, 25-6
table name restrictions, 2-67, 3-71, 25-31
table objects

import order, 25-3
table-level, 25-44
TABLES parameter, 25-29
TABLESPACES parameter, 25-32
TOID_NOVALIDATE parameter, 25-32
TOUSER parameter, 25-33
TRANSPORT_TABLESPACE parameter,

25-34
TTS_OWNER parameter, 25-34
tuning considerations, 25-65
user access privileges, 24-4, 25-4
USERID parameter, 25-34
Views, 25-57
VOLSIZE parameter, 25-35

incident
fault diagnosability infrastructure, 19-2
packaging, 19-12

incident package
fault diagnosability infrastructure, 19-2

INCLUDE parameter
Data Pump Export utility, 2-47
Data Pump Import utility, 3-39

increment parameter
field_definitions Clause, 15-42
pos_spec Clause, 15-42

index options
SORTED INDEXES with SQL*Loader, 9-47
SQL*Loader SINGLEROW parameter, 9-47

Index Unusable state
indexes left in Index Unusable state, 9-33,

12-19
indexes

creating manually, 25-25

indexes (continued)
direct path load

left in direct load state, 12-19
dropping

SQL*Loader, 12-24
estimating storage requirements, 12-18
exporting, 24-21
index-creation commands

Import, 25-25
left in unusable state, 9-33, 12-12
multiple-column

SQL*Loader, 12-12
presorting data

SQL*Loader, 12-11
skipping unusable, 8-39
SQL*Loader, 9-46
state after discontinued load, 9-33
unique, 25-24

INDEXES parameter
Export utility, 24-21

INDEXFILE parameter
Import utility, 25-25

INFILE parameter
SQL*Loader utility, 9-11

initialization parameters
MAX_DATAPUMP_JOBS_PER_PDB, 5-5
MAX_DATAPUMP_PARALLEL_PER_JOB,

5-5
insert errors

Import, 25-42
specifying, 8-23

INSERT into table
SQL*Loader, 9-40

instance affinity
Export and Import, 24-42

instance recovery, 12-21
integrity constraints

disabled during direct path load, 12-26
enabled during direct path load, 12-25
failed on Import, 25-42
load method, 12-5

interactive method
Data Pump Export utility, 2-2

internal LOBs
loading, 11-20

interrupted loads, 9-30
INTERVAL clause

date_format_spec, 15-49
INTERVAL DAY TO SECOND

data type, 10-25
INTO TABLE statement

effect on bind array size, 9-60
multiple statements with SQL*Loader, 9-48
SQL*Loader, 9-38

column names, 10-6

Index

13

INTO TABLE statement (continued)
SQL*Loader (continued)
discards, 9-20

invalid data
Import, 25-42

invoking
Export, 24-4, 25-9

at the command line, 24-5, 25-9
direct path, 24-37
interactively, 24-6, 25-11
with a parameter file, 24-5, 25-10

Import, 24-4, 25-9
as SYSDBA, 24-5, 25-11
at the command line, 24-5, 25-9
interactively, 24-6, 25-11
with a parameter file, 24-5, 25-10

IPS command, ADRCI utility, 19-20
IPS SHOW FILES

IPS, 19-39

J
Java Objects

importing, 25-55
JOB_NAME parameter

Data Pump Export utility, 2-49
Data Pump Import utility, 3-41

K
KEEP_MASTER parameter

Data Pump Export utility, 2-49
Data Pump Import utility, 3-41

key values
generating with SQL*Loader, 10-68

KILL_JOB parameter
Data Pump Export utility

interactive-command mode, 2-84
Data Pump Import utility, 3-97

L
leading whitespace

definition, 10-54
trimming and SQL*Loader, 10-57

legacy mode in Oracle Data Pump, 4-1
length indicator

determining size, 9-57
length parameter

field_definitions Clause, 15-42
pos_spec Clause, 15-42

length-value pair specified LOBs, 11-28

libraries
foreign function

exporting, 24-43
importing, 25-55, 25-56

little-endian data
external tables, 15-20

LOAD parameter
SQL*Loader command line, 8-27, 13-18
SQL*Loader express mode, 13-18

loading
collections, 11-33
column objects, 11-2

in variable record format, 11-3
with a derived subtype, 11-5
with user-defined constructors, 11-8

datafiles containing tabs
SQL*Loader, 10-4

external table data
skipping records, 15-23
specifying conditions, 15-20, 15-25

LOBs, 11-18
nested column objects, 11-4
object tables, 11-11
object tables with a subtype, 11-13
REF columns, 11-14
subpartitioned tables, 12-8
tables, 12-8

LOB Columns
importing LOB columns, 25-57

LOB data
in delimited fields, 11-21
in length-value pair fields, 11-23
in predetermined size fields, 11-20
loading with SQL*Loader, 11-18
no compression during export, 24-14
size of read buffer, 8-31
specifying storage in Data Pump, 3-75
types supported by SQL*Loader, 7-18, 11-18

LOB data types, 7-9
LOBFILEs, 7-9, 11-18, 11-24
log files, 17-12

after a discontinued load, 9-33
Export, 24-21, 24-35
Import, 24-35, 25-25
limiting data written to by Data Pump, 3-75
specifying for SQL*Loader, 8-27
SQL*Loader, 7-12

LOG parameter
Export utility, 24-21
Import utility, 25-25
SQL*Loader command line, 8-27

LOGFILE parameter
Data Pump Export utility, 2-50
Data Pump Import utility

LOGFILE parameter, 3-42

Index

Index-14

logical records
consolidating multiple physical records using

SQL*Loader, 9-34
LogMiner utility, 22-37

accessing redo data of interest, 22-19
adjusting redo log file list, 22-36
analyzing output, 22-21
configuration, 22-3
considerations for reapplying DDL

statements, 22-35
current log file list

stored information about, 22-47
DBMS_LOGMNR PL/SQL procedure and,

22-6
DBMS_LOGMNR_D PL/SQL procedure and,

22-6
DBMS_LOGMNR_D.ADD_LOGFILES

PL/SQL procedure and, 22-6
DBMS_LOGMNR_D.BUILD PL/SQL

procedure and, 22-6
DBMS_LOGMNR_D.END_LOGMNR

PL/SQL procedure and, 22-6
DBMS_LOGMNR.START_LOGMNR PL/SQL

procedure and, 22-6
DDL tracking

time or SCN ranges, 22-46
determining redo log files being analyzed,

22-17
dictionary

purpose of, 22-3
dictionary extracted to flat file

stored information about, 22-47
dictionary options, 22-13

flat file and, 22-13
online catalog and, 22-13
redo log files and, 22-13

ending a session, 22-56
executing reconstructed SQL, 22-34
extracting data values from redo logs, 22-22
filtering data by SCN, 22-33
filtering data by time, 22-33
formatting returned data, 22-34
graphical user interface, 22-1
levels of supplemental logging, 22-37
LogMiner dictionary defined, 22-3
mining a subset of data in redo log files,

22-36
mining database definition for, 22-3
operations overview, 22-6
parameters

stored information about, 22-47
redo log files

on a remote database, 22-36
stored information about, 22-47

requirements for dictionary, 22-5

LogMiner utility (continued)
requirements for redo log files, 22-5
requirements for source and mining

databases, 22-5
restrictions with XMLType data, 22-26
sample configuration, 22-4
showing committed transactions only, 22-30
skipping corruptions, 22-32
source database definition for, 22-3
specifying redo log files to mine, 22-17
specifying redo logs for analysis, 22-52
starting, 22-18, 22-53
starting multiple times within a session, 22-36
steps for extracting dictionary to a flat file,

22-16
steps for extracting dictionary to redo log

files, 22-15
steps for using dictionary in online catalog,

22-15
steps in a typical session, 22-51
supplemental log groups, 22-37

conditional, 22-37
unconditional, 22-37

supplemental logging, 22-37
database level, 22-38
database-level identification keys, 22-39
disabling database-level, 22-41
interactions with DDL tracking, 22-45
log groups, 22-37
minimal, 22-39
stored information about, 22-47
table-level identification keys, 22-42
table-level log groups, 22-42
user-defined log groups, 22-43

support for transparent data encryption,
22-19

supported data types, 22-83
supported database versions, 22-85
supported redo log file versions, 22-85
suppressing delimiters in SQL_REDO and

SQL_UNDO, 22-34
table-level supplemental logging, 22-41
tracking DDL statements, 22-44

requirements, 22-44
unsupported data types, 22-85
using in a CDB, 22-7
using the online catalog, 22-15
using to analyze redo log files, 22-1
V$DATABASE view, 22-47
V$LOGMNR_CONTENTS view, 22-6, 22-21,

22-29
V$LOGMNR_LOGS view

querying, 22-47
views, 22-47

LogMiner Viewer, 22-1

Index

15

LOGTIME parameter
Data Pump Export utility, 2-51
Data Pump Import utility, 3-43

LONG data
exporting, 24-43
importing, 25-56

M
master tables

Oracle Data Pump API, 1-14
snapshots

original Import, 25-58
MASTER_ONLY parameter

Data Pump Import utility, 3-44
materialized views, 25-58
MAX_DATAPUMP_JOBS_PER_PDB

initialization parameter, 5-5
MAX_DATAPUMP_PARALLEL_PER_JOB

initialization parameter, 5-5
media recovery

direct path load, 12-21
Metadata API

enhancing performance, 23-27
retrieving collections, 23-16
using to retrieve object metadata, 23-5

METRICS parameter
Data Pump Export utility, 2-53
Data Pump Import utility, 3-44

missing data columns
SQL*Loader, 9-45

multibyte character sets
blanks with SQL*Loader, 10-42
SQL*Loader, 9-23

multiple-column indexes
SQL*Loader, 12-12

multiple-CPU systems
optimizing direct path loads, 12-23

multiple-table load
generating unique sequence numbers using

SQL*Loader, 10-69
SQL*Loader control file specification, 9-48

multitenant architecture, 22-9
multitenant container databases, 1-8, 22-7
multithreading

on multiple-CPU systems, 12-23
MULTITHREADING parameter

SQL*Loader command line, 8-28

N
named pipes

external table loads, 7-14

native data types
conflicting length specifications

SQL*Loader, 10-30
NCLOBs

loading with SQL*Loader, 11-18
nested column objects

loading, 11-4
nested tables

exporting, 24-45
consistency and, 24-14

importing, 25-53
NETWORK_LINK parameter

Data Pump Export utility, 2-53
Data Pump Import utility, 3-45

networks
Export and Import, 24-39, 25-47

NFS errors when using Data Pump, 1-18
NLS_LANG environment variable, 24-41, 25-49

with Export and Import, 24-41, 25-49
NO_INDEX_ERRORS parameter

SQL*Loader command line, 8-29
NOLOGFILE parameter

Data Pump Export utility, 2-55
Data Pump Import utility, 3-47

nonrecoverable error messages, 24-35
Export, 24-35
Import, 24-35

nonscalar data types, 11-6
NOT NULL constraint

load method, 12-5
null data

missing columns at end of record during
load, 9-45

unspecified columns and SQL*Loader, 10-6
NULL values

objects, 11-6
NULLIF

at character field, 9-21
NULLIF clause

SQL*Loader, 10-40, 10-51
NULLIF parameter

SQL*Loader express mode, 13-19
NULLIF...BLANKS clause

SQL*Loader, 10-42
nulls

atomic, 11-7
attribute, 11-6

NUMBER data type
SQL*Loader, 10-31, 10-32

numeric EXTERNAL data types
delimited form and SQL*Loader, 10-33
determining length, 10-39

Index

Index-16

O
object identifiers, 11-11

importing, 25-51
object names

SQL*Loader, 9-5
object tables

loading, 11-11
with a subtype

loading, 11-13
object type definitions

exporting, 24-44
object types supported by SQL*Loader, 7-17
OBJECT_CONSISTENT parameter

Export utility, 24-21
objects, 7-16

creation errors, 25-43
ignoring existing objects during import, 25-24
import creation errors, 25-24
loading nested column objects, 11-4
NULL values, 11-6
stream record format, 11-2
variable record format, 11-3

offline locally-managed tablespaces
exporting, 24-44

OID
See object identifiers

online help
Export and Import, 24-7

opaque_format_spec, 14-5, 15-2, 16-2
operating systems

moving data to different systems using
SQL*Loader, 10-47

OPTIMAL storage parameter
used with Export/Import, 25-61

optimizer statistics, 25-63
optimizing

direct path loads, 12-10
SQL*Loader input file processing, 9-15

OPTIONALLY ENCLOSED BY clause
SQL*Loader, 10-55

OPTIONALLY_ENCLOSED_BY parameter
SQL*Loader express mode, 13-19

OPTIONS parameter
for parallel loads, 9-42
SQL*Loader utility, 9-4

ORA-01401: inserted value too large for column,
9-25, 9-31

ORA-39002:invalid operation, 4-5
ora-39095: dump file space has been exhausted,

2-56
ORA-39173: Encrypted data has been stored

unencrypted in dump file set., 1-28
ORA-39181: Only Partial Data Exported Due to

Fine Grain Access Control, 1-12

ORA-39346, 1-24
ORA-39357: Warning: Oracle Data Pump

operations are not typically needed when
connected to the root or seed of a
container database, 1-9

ORA-65094:invalid local user or role name, 1-12
Oracle Advanced Queuing

See Advanced Queuing
Oracle Automatic Storage Management (ASM)

Data Pump and, 1-22
Oracle Autonomous Database

and DBMS_CLOUD.CREATE_CREDENTIAL(),
3-21

imports, 3-102
Oracle binary JSON (OSON), 12-5
Oracle Data Pump

direct path loads
restrictions, 1-5

master table, 1-14
tuning performance, 5-2

Oracle Data Pump API, 6-1
client interface, 6-1
job states, 6-2
monitoring job progress, 1-17

Oracle Data Pump legacy mode, 4-1
ORACLE_DATAPUMP access driver

effect of SQL ENCRYPT clause on, 16-7
reserved words, 16-1, 16-20

ORACLE_HIVE
access parameters, 17-4

ORACLE_LOADER access driver
DNFS_READBUFFERS parameter, 15-29
reserved words, 15-1, 15-60

ORC files, 17-10
OSON (Orcle binary JSON, 12-5
overflow handling, 17-13
OWNER parameter

Export utility, 24-21

P
packages

creating, 19-13
padding of literal strings

SQL*Loader, 10-42
parallel loads, 12-31

restrictions on direct path, 12-32
when using PREPROCESSOR clause, 15-14

PARALLEL parameter
Data Pump Export utility

command-line interface, 2-56
interactive-command mode, 2-84

Data Pump Import utility
command-line mode, 3-47
interactive-command mode, 3-98

Index

17

PARALLEL parameter (continued)
SQL*Loader command line, 8-29

parameter files
Export, 24-22
Export and Import

comments in, 24-5, 25-10
maximum size, 24-5, 25-10

Import, 25-25
SQL*Loader, 8-30

PARFILE parameter
Data Pump Export utility, 2-57
Data Pump Import utility, 3-50
Export command line, 24-22
Import command line, 25-25
SQL*Loader express mode, 13-20

Parquet files, 17-10
parsing HDFS files, 17-14
PARTITION_MEMORY parameter

SQL*Loader utility, 8-31
PARTITION_OPTIONS parameter

Data Pump Import utility, 3-51
partition-level Export, 24-10

example session, 24-33
partition-level Import, 25-44

specifying, 24-25
partitioned loads

concurrent conventional path loads, 12-30
SQL*Loader, 12-30

partitioned object support in SQL*Loader, 7-19
partitioned tables

export consistency and, 24-14
exporting, 24-10
importing, 25-35, 25-44
loading, 12-8

Partitioned tables
importing, 25-58

partitioning a database migration, 24-47, 25-64
advantages of, 24-47, 25-64
disadvantages of, 24-47, 25-64
procedure during export, 24-48, 25-64

pattern matching
table names during import, 25-29

performance
improving when using integrity constraints,

12-30
optimizing for direct path loads, 12-10
optimizing reading of SQL*Loader data files,

9-15
tuning original Import, 25-65

PIECED parameter
SQL*Loader, 12-22

Portable data type, 10-25
POSITION parameter

using with data containing tabs, 10-4

POSITION parameter (continued)
with multiple SQL*Loader INTO TABLE

clauses, 9-49, 10-4
predetermined size fields

SQL*Loader, 10-55
predetermined size LOBs, 11-26
preprocessing data for external tables, 15-14

effects of parallel processing, 15-14
prerequisites

SQL*Loader, 12-2
PRESERVE parameter, 9-35
preserving

whitespace, 10-59
PRIMARY KEY constraints

effect on direct path load, 12-35
primary key OIDs

example, 11-11
primary key REF columns, 11-16
privileges

EXEMPT ACCESS POLICY
effect on direct path export, 24-37

required for Export and Import, 24-3, 25-4
required for SQL*Loader, 12-2

problem
fault diagnosability infrastructure, 19-2

problem key
fault diagnosability infrastructure, 19-2

PURGE command, ADRCI utility, 19-41

Q
QUERY parameter

Data Pump Export utility, 2-58
Data Pump Import utility, 3-52
Export utility, 24-22

restrictions, 24-23
QUIT command, ADRCI utility, 19-43
quotation marks

escape characters and, 9-7
file names and, 9-7
SQL strings and, 9-6
table names and, 2-67, 3-71, 24-25, 25-31
usage in Data Pump Export, 2-15
usage in Data Pump Import, 3-9
use with database object names, 9-6

R
RC files, 17-10
read-consistent export, 24-14
read-only tablespaces

Import, 25-62
READSIZE parameter

SQL*Loader command line, 8-31
effect on LOBs, 8-31

Index

Index-18

READSIZE parameter (continued)
SQL*Loader command line (continued)
maximum size, 8-31

RECNUM parameter
use with SQL*Loader SKIP parameter, 10-67

RECORDLENGTH parameter
Export utility, 24-23
Import utility, 25-26

records
consolidating into a single logical record

SQL*Loader, 9-34
discarded by SQL*Loader, 7-11, 9-19
distinguishing different formats for

SQL*Loader, 9-49
extracting multiple logical records using

SQL*Loader, 9-48
fixed format, 7-5
missing data columns during load, 9-45
rejected by SQL*Loader, 7-11, 9-16
setting column to record number with

SQL*Loader, 10-67
specifying how to load, 8-27, 13-18
specifying length for export, 24-23
specifying length for import, 25-26
stream record format, 7-7

recovery
direct path load

SQL*Loader, 12-20
replacing rows, 9-41

redo log file
LogMiner utility

versions supported, 22-85
redo log files

analyzing, 22-1
requirements for LogMiner utility, 22-5
specifying for the LogMiner utility, 22-17

redo logs
direct path load, 12-21
instance and media recovery

SQL*Loader, 12-21
minimizing use during direct path loads,

12-13
saving space

direct path load, 12-13
REF columns, 11-14

loading, 11-14
primary key, 11-16
system-generated, 11-15

REF Data
importing, 25-54

referential integrity constraints
disabling for import, 25-8
SQL*Loader, 12-25

refresh error
snapshots

Import, 25-58
reject files

specifying for SQL*Loader, 9-16
rejected records

SQL*Loader, 7-11, 9-16
relative field positioning

where a field starts and SQL*Loader, 10-56
with multiple SQL*Loader INTO TABLE

clauses, 9-52
REMAP_DATA parameter

Data Pump Export utility, 2-60
Data Pump Import utility, 3-55

REMAP_DATAFILE parameter
Data Pump Import utility, 3-56

REMAP_SCHEMA parameter
Data Pump Import utility, 3-58

REMAP_TABLE parameter
Data Pump Import utility, 3-60

REMAP_TABLESPACE parameter
Data Pump Import utility, 3-61

remote operation
Export/Import, 24-39, 25-47

REPLACE table
replacing a table using SQL*Loader, 9-41

reserved words
external tables, 15-60, 16-19
ORACLE_DATAPUMP access driver, 16-1,

16-20
ORACLE_LOADER access driver, 15-1,

15-60
SQL*Loader, 7-4

resource consumption
controlling in Data Pump Export utility, 5-2
controlling in Data Pump Import utility, 5-2

resource errors
Import, 25-43

RESOURCE role, 25-5
resource usage limitations

and Data Pump support, 5-5
restrictions

importing into another user’s schema, 25-6
table names in Export parameter file, 24-25
table names in Import parameter file, 2-67,

3-71, 25-31
RESUMABLE parameter

Export utility, 24-24
Import utility, 25-26
SQL*Loader command line, 8-32

resumable space allocation
enabling and disabling, 8-32, 24-24, 25-26

RESUMABLE_NAME parameter
Export utility, 24-24
Import utility, 25-26

Index

19

RESUMABLE_NAME parameter (continued)
SQL*Loader command line, 8-33

RESUMABLE_TIMEOUT parameter
Export utility, 24-24
Import utility, 25-27
SQL*Loader command line, 8-34

retrieving object metadata
using Metadata API, 23-5

REUSE_DATAFILES parameter
Data Pump Import utility, 3-70

REUSE_DUMPFILES parameter
Data Pump Export utility, 2-62

roles
DATAPUMP_EXP_FULL_DATABASE, 1-12
DATAPUMP_IMP_FULL_DATABASE, 1-12
EXP_FULL_DATABASE, 24-3
IMP_FULL_DATABASE, 25-4
RESOURCE, 25-5

rollback segments
effects of CONSISTENT Export parameter,

24-14
row errors

Import, 25-42
row format description, 17-10
row formats, 17-14
ROWID columns

loading with SQL*Loader, 12-2
rows

choosing which to load using SQL*Loader,
9-42

exporting, 24-25
specifying number to insert before save

SQL*Loader, 12-20
updates to existing rows with SQL*Loader,

9-42
ROWS parameter

Export utility, 24-25
performance issues

SQL*Loader, 12-13
SQL*Loader command line, 8-34
using to specify when data saves occur,

12-20
RUN command, ADRCI utility, 19-43

S
SAMPLE parameter

Data Pump Export utility, 2-62
schema mode export

Data Pump Export utility, 2-5
schemas

specifying for Export, 24-25
SCHEMAS parameter

Data Pump Export utility, 2-63
Data Pump Import utility, 3-62

scientific notation for FLOAT EXTERNAL, 10-27
script files

running before Export and Import, 24-3, 25-4
SDFs

See secondary datafiles
secondary datafiles, 7-9, 11-36
SecureFiles

encryption during Data Pump export, 2-31
SecureFiles LOB

export considerations, 1-26
security considerations

direct path export, 24-37
segments

temporary
FILE parameter in SQL*Loader, 12-34

SELECT command, ADRCI utility, 19-43
functions, 19-43

sequence files, 17-10
sequence numb, 10-68
sequence numbers

cached, 24-43
exporting, 24-43
for multiple tables and SQL*Loader, 10-69
generated by SQL*Loader SEQUENCE

clause, 10-68
generated, not read and SQL*Loader, 10-6

SerDe parsing, 17-14
SERVICE_NAME parameter

Data Pump Export utility, 2-64
Data Pump Import utility, 3-63

SET BASE command, ADRCI utility, 19-53
SET BROWSER command, ADRCI utility, 19-54
SET CONTROL command, ADRCI utility, 19-54
SET ECHO command, ADRCI utility, 19-55
SET EDITOR command, ADRCI utility, 19-55
SET HOMEPATH command, ADRCI utility, 19-56
SET TERMOUT command, ADRCI utility, 19-56
short records with missing data

SQL*Loader, 9-45
SHOW ALERT command, ADRCI utility, 19-57
SHOW BASE command, ADRCI utility, 19-59
SHOW CONTROL command, ADRCI utility,

19-60
SHOW HM_RUN command, ADRCI utility, 19-61
SHOW HOMEPATH command, ADRCI utility,

19-62
SHOW HOMES command, ADRCI utility, 19-62
SHOW INCDIR command, ADRCI utility, 19-63
SHOW INCIDENT command, ADRCI utility,

19-64
SHOW LOG command, ADRCI utility, 19-67
SHOW parameter

Import utility, 25-27
SHOW PROBLEM command, ADRCI utility,

19-69

Index

Index-20

SHOW REPORT command, ADRCI utility, 19-70
SHOW TRACEFILE command, ADRCI utility,

19-71
SILENT parameter

SQL*Loader command line, 13-21
SQL*Loader express mode, 13-21

single-byte character sets
Export and Import, 24-41, 25-49

single-table loads
continuing, 9-33

SINGLEROW parameter, 9-47
SKIP parameter

effect on SQL*Loader RECNUM
specification, 10-67

SQL*Loader command line, 8-37
SKIP_INDEX_MAINTENANCE parameter

SQL*Loader command line, 8-38
SKIP_UNUSABLE_INDEXES parameter

Import utility, 25-28
SQL*Loader command line, 8-39

SKIP_USABLE_INDEXES parameter
Data Pump Import utility, 3-64

skipping unusable indexes, 8-39
SmartScan mode, 17-6
snapshot log

Import, 25-58
snapshots, 25-59

importing, 25-58
master table

Import, 25-58
restoring dropped

Import, 25-59
SORTED INDEXES clause

direct path loads, 9-47
SQL*Loader, 12-11

sorting
multiple-column indexes

SQL*Loader, 12-12
optimum sort order

SQL*Loader, 12-12
presorting in direct path load, 12-11
SORTED INDEXES clause

SQL*Loader, 12-11
source name, 17-15
SOURCE_EDITION parameter

Data Pump Export utility, 2-65
Data Pump Import utility, 3-65

SPOOL command, ADRCI utility, 19-72
SQL operators

applying to fields, 10-60
SQL strings

applying SQL operators to fields, 10-60
quotation marks and, 9-6

SQL*Loader
and OSON, 12-5

SQL*Loader (continued)
appending rows to tables, 9-41
auditing direct path loads, 12-23
BAD command-line parameter, 8-6
bad file, 13-6
bad files, 8-6
BADFILE parameter, 9-16
bind arrays and performance, 9-54
BINDSIZE command-line parameter, 8-8,

9-55
choosing which rows to load, 9-42
COLUMNARRAYROWS command-line

parameter, 8-9
command-line parameters, 8-1
continuing single-table loads, 9-33
CONTROL command-line parameter, 8-9
control file, 9-2
conventional path loads, 7-13, 12-3
CREDENTIAL parameter, 8-10
DATA command-line parameter, 8-12, 13-10
data conversion, 7-10
data definition language

syntax diagrams, B-1
data type specifications, 7-10
DATE_CACHE command-line parameter,

8-13
DEGREE_OF_PARALLELISM command-line

parameter, 8-16
determining default schema, 9-39
DIRECT command-line parameter, 8-17
direct path method, 7-13

auditing, 12-23
using the date cache feature to improve

performance, 12-15
DISCARD command-line parameter, 8-18
discarded records, 7-11
DISCARDFILE parameter, 9-19
DISCARDMAX command-line parameter,

8-19
DISCARDMAX parameter, 9-20
DISCARDS parameter, 9-20
DNFS_ENABLE command-line parameter,

8-20
DNFS_READBUFFERS command-line

parameter, 8-21
DOUBLE nonportable data type, 10-13
errors caused by tabs, 10-4
ERRORS command-line parameter, 8-23
exclusive access, 12-30
express mode, 13-1
external table loads, 7-14
EXTERNAL_TABLE command-line

parameter, 8-23
FILE command-line parameter, 8-26
file names, 9-5

Index

21

SQL*Loader (continued)
globalization technology, 9-22
index options, 9-46
inserting rows into tables, 9-40
INTO TABLE statement, 9-38
Length-Value portable data type, 10-31
LOAD command-line parameter, 8-27, 13-18
load methods, 12-2
loading column objects, 11-2
loading data across different platforms, 10-47
loading data contained in the control file,

10-66
loading object tables, 11-11
LOG command-line parameter, 8-27
log files, 7-12
methods of loading data, 7-12
multiple INTO TABLE statements, 9-48
MULTITHREADING command-line

parameter, 8-28
NO_INDEX_ERRORS command-line

parameter, 8-29
object names, 9-5
PARALLEL command-line parameter, 8-29
parallel data loading, 12-31, 12-32, 12-35
portable data types, 10-18
READSIZE command-line parameter, 8-31

maximum size, 8-31
rejected records, 7-11
replacing rows in tables, 9-41
required privileges, 12-2
RESUMABLE command-line parameter, 8-32
RESUMABLE_NAME command-line

parameter, 8-33
RESUMABLE_TIMEOUT command-line

parameter, 8-34
ROWS command-line parameter, 8-34
SILENT command-line parameter, 13-21
SINGLEROW parameter, 9-47
SKIP command-line parameter, 8-37
SKIP_UNUSABLE_INDEXES command-line

parameter, 8-39
SORTED INDEXES during direct path loads,

9-47
specifying columns, 10-6
specifying data files, 9-11
specifying field conditions, 10-40
specifying fields, 10-6
specifying load method, 8-17
specifying more than one data file, 9-13
STREAMSIZE command-line parameter,

8-40
suppressing messages, 13-21
TRIM command-line parameter, 8-41
USERID command-line parameter, 8-42,

13-25

SQL*Loader control files
guidelines when creating, 7-4

SQL*Loader data type, 10-25
SQL*Loader data types

nonportable, 10-9
SQL*Loader express mode, 13-1

BAD parameter, 13-6
byte-order handling, 13-4
CHARACTERSET parameter, 13-7
CSV parameter, 13-9
DATA parameter, 13-10
DATE_FORMAT parameter, 13-11
default values, 13-3
DEGREE_OF_PARALLELISM parameter,

13-12
DIRECT parameter, 13-13
DNFS_ENABLE parameter, 13-14
DNFS_READBUFFERS parameter, 13-14
ENCLOSED_BY parameter, 13-15
EXTERNAL_TABLE parameter, 13-16
FIELD_NAMES parameter, 13-17
LOAD parameter, 13-18
NULLIF parameter, 13-19
OPTIONALLY_ENCLOSED_BY parameter,

13-19
PARFILE parameter, 13-20
SILENT parameter, 13-21
syntax diagrams, 13-26
TABLE parameter, 13-22
TERMINATED_BY parameter, 13-23
TIMESTAMP_FORMAT parameter, 13-23
TRIM parameter, 13-24
USERID parameter, 13-25

SQL*Loader utility
PARTITION_MEMORY parameter, 8-31

SQLFILE parameter
Data Pump Import utility, 3-66

start parameter
field_definitions Clause, 15-41
pos_spec Clause, 15-41

START_JOB parameter
Data Pump Export utility

interactive-command mode, 2-85
Data Pump Import utility

interactive-command mode, 3-99
starting

LogMiner utility, 22-18
statistics

analyzer, 25-63
optimizer, 25-63
specifying for Import, 25-28

STATISTICS parameter
Import utility, 25-28

Index

Index-22

STATUS parameter
Data Pump Export utility, 2-66

interactive-command mode, 2-86
Data Pump Import utility, 3-67

interactive-command mode, 3-99
STOP_JOB parameter

Data Pump Export utility
interactive-command mode, 2-86

Data Pump Import utility
interactive-command mode, 3-100

storage parameters
estimating export requirements, 24-4
OPTIMAL parameter, 25-61
overriding

Import, 25-62
preallocating

direct path load, 12-10
temporary for a direct path load, 12-18
using with Export/Import, 25-61

stored functions
importing, 25-55

effect of COMPILE parameter, 25-55
stored package, 25-55
stored packages

importing, 25-55
stored procedures

direct path load, 12-29
importing, 25-55

effect of COMPILE parameter, 25-55
stream buffer

specifying size for direct path, 12-14
stream record format, 7-7

loading column objects in, 11-2
STREAMS_CONFIGURATION parameter

Data Pump Import utility, 3-68
Import utility, 25-29

STREAMS_INSTANTIATION parameter
Import utility, 25-29

STREAMSIZE parameter
SQL*Loader command line, 8-40

string comparisons
SQL*Loader, 10-42

struct overflows, 17-13
subpartitioned tables

loading, 12-8
subtypes

loading multiple, 9-50
supplemental logging, 22-37

LogMiner utility, 22-37
database-level identification keys, 22-39
log groups, 22-37
table-level, 22-41
table-level identification keys, 22-42
table-level log groups, 22-42
See also LogMiner utility

synonyms
exporting, 24-45

syntax diagrams
Data Pump Export, 2-90
Data Pump Import, 3-102
SQL*Loader, B-1
SQL*Loader express mode, 13-26

SYSDATE parameter
SQL*Loader, 10-68

system objects
importing, 25-6

system triggers
effect on import, 25-8
testing, 25-8

system-generated OID REF columns, 11-15

T
table compression

specifying type in Data Pump jobs, 3-75
table names

preserving case sensitivity, 24-25
TABLE parameter

SQL*Loader express mode, 13-22
TABLE_EXISTS_ACTION parameter

Data Pump Import utility, 3-68
table-level Export, 24-10
table-level Import, 25-44
table-mode Export

Data Pump Export utility, 2-6
specifying, 24-25

table-mode Import
examples, 25-35

tables
Advanced Queuing

exporting, 24-45
importing, 25-56

appending rows with SQL*Loader, 9-41
containing object types

importing, 25-53
defining before Import, 25-7
definitions

creating before Import, 25-7
exclusive access during direct path loads

SQL*Loader, 12-30
external, 14-1
importing, 25-29
insert triggers

direct path load in SQL*Loader, 12-27
inserting rows using SQL*Loader, 9-40
loading data into more than one table using

SQL*Loader, 9-48
loading object tables, 11-11
maintaining consistency during Export, 24-14
manually ordering for Import, 25-8

Index

23

tables (continued)
master table

Import, 25-58
name restrictions

Export, 24-25
Import, 2-67, 3-71, 25-29, 25-31

nested
exporting, 24-45
importing, 25-53

objects
order of import, 25-3

partitioned, 24-10
replacing rows using SQL*Loader, 9-41
specifying for export, 24-25
specifying table-mode Export, 24-25
SQL*Loader method for individual tables,

9-40
truncating

SQL*Loader, 9-42
updating existing rows using SQL*Loader,

9-42
TABLES parameter

Data Pump Export utility, 2-67
Data Pump Import utility, 3-71
Export utility, 24-25
Import utility, 25-29

tablespace mode Export
Data Pump Export utility, 2-6

tablespaces
dropping during import, 25-62
exporting a set of, 24-46, 25-60
metadata

transporting, 25-34
read-only

Import, 25-62
reorganizing

Import, 25-62
TABLESPACES parameter

Data Pump Export utility, 2-69
Data Pump Import utility, 3-73
Export utility, 24-27
Import utility, 25-32

tabs
loading datafiles containing tabs, 10-4
trimming, 10-52
whitespace, 10-52

TARGET_EDITION parameter
Data Pump Import utility, 3-74

temporary segments, 12-34
FILE parameter

SQL*Loader, 12-34
temporary storage in a direct path load, 12-18
TERMINATED BY clause

with OPTIONALLY ENCLOSED BY, 10-55

terminated fields
specified with a delimiter, 10-55

TERMINATED_BY parameter
SQL*Loader express mode, 13-23

text files, 17-10
text overflows, 17-13
TIMESTAMP_FORMAT parameter

SQL*Loader express mode, 13-23
timestamps

on Data Pump Export operations, 2-51
on Data Pump Import operations, 3-43

TOID_NOVALIDATE parameter
Import utility, 25-32

TOUSER parameter
Import utility, 25-33

trace files
viewing with ADRCI, 19-10

trailing blanks
loading with delimiters, 10-36

TRAILING NULLCOLS parameter
SQL*Loader utility, 9-4, 9-46

trailing whitespace
trimming, 10-58

TRANSFORM parameter
Data Pump Import utility, 3-75

transparent data encryption
as handled by Data Pump Export, 2-35
as handled by Data Pump Import, 3-29
LogMiner support, 22-19

TRANSPORT_DATAFILES parameter
Data Pump Import utility, 3-81

TRANSPORT_FULL_CHECK parameter
Data Pump Export utility, 2-71
Data Pump Import utility, 3-84

TRANSPORT_TABLESPACE parameter
Export utility, 24-28
Import utility, 25-34

TRANSPORT_TABLESPACES parameter
Data Pump Export utility, 2-73
Data Pump Import utility, 3-85

transportable option
used during full-mode export, 2-4
used during full-mode import, 3-4
used during table-mode export, 2-67

TRANSPORTABLE parameter
Data Pump Export utility, 2-74
Data Pump Import utility, 3-87

transportable tablespaces, 24-46, 25-60
transportable-tablespace mode Export

Data Pump Export utility, 2-7
triggers

database insert, 12-27
LOB columns

importing, 25-57

Index

Index-24

triggers (continued)
logon

effect in SQL*Loader, 9-39
permanently disabled, 12-30
replacing with integrity constraints, 12-28
system

testing, 25-8
update

SQL*Loader, 12-29
TRIGGERS parameter

Export utility, 24-28
TRIM parameter

SQL*Loader command line, 8-41
SQL*Loader express mode, 13-24

trimming
summary, 10-52
trailing whitespace

SQL*Loader, 10-58
troubleshooting

ORA-39346, 1-24
TTS_CLOSURE_CHECK parameter

Data Pump Export utility, 2-76
TTS_FULL_CHECK parameter

Export utility, 24-28
TTS_OWNERS parameter

Import utility, 25-34

U
unified auditing

during SQL*Loader operations, 12-23
union overflows, 17-13
UNIQUE KEY constraints

effect on direct path load, 12-35
unique values

generating with SQL*Loader, 10-68
unloading entire database

Data Pump Export utility, 2-4
UNRECOVERABLE clause

SQL*Loader, 12-13
unsorted data

direct path load
SQL*Loader, 12-12

user mode export
specifying, 24-21

USER_SEGMENTS view
Export and, 24-4

user-defined constructors, 11-8
loading column objects with, 11-8

USERID parameter
Export utility, 24-28
Import utility, 25-34
SQL*Loader command line, 8-42, 13-25
SQL*Loader express mode, 13-25

V
V$DATABASE view, 22-47
V$LOGMNR_CONTENTS view, 22-21

formatting information returned to, 22-29
impact of querying, 22-21
information within, 22-19
limiting information returned to, 22-29
LogMiner utility, 22-6
requirements for querying, 22-18, 22-21

V$LOGMNR_LOGS view, 22-17
querying, 22-47

V$SESSION_LONGOPS view
monitoring Data Pump jobs with, 1-17

VARCHAR2 data type
SQL*Loader, 10-31

variable records, 7-6
format, 11-3

variable-length records
external tables, 15-8

VARRAY columns
memory issues when loading, 11-39

VERIFY_CHECKSUM parameter
Data Pump Export utility, 3-89

VERIFY_ONLY parameter
Data Pump Export utility, 3-90

VERSION parameter
Data Pump Export utility, 2-77
Data Pump Import utility, 3-90

viewing
trace files with ADRCI, 19-10

views
exporting as tables, 2-78

Views
importing, 25-57

VIEWS_AS_TABLES
Data Pump Export parameter, 2-78

VIEWS_AS_TABLES (Network Import)
Data Pump Import parameter, 3-92

VIEWS_AS_TABLES (Non-Network Import)
Data Pump Import parameter, 3-93

VIEWS_AS_TABLES parameter
Data Pump Export utility, 2-78

VIEWS_AS_TABLES parameter (Network
Import)

Data Pump Import utility, 3-92
VIEWS_AS_TABLES parameter (Non_Network

Import)
Data Pump Import utility, 3-93

VOLSIZE parameter
Export utility, 24-29
Import utility, 25-35

Index

25

W
warning messages

Export, 24-35
Import, 24-35

WHEN clause
SQL*Loader, 9-42, 10-40
SQL*Loader discards resulting from, 9-20

whitespace
included in a field, 10-57
leading, 10-54
preserving, 10-59
terminating a field, 10-57

whitespace (continued)
trimming, 10-52

X
XML columns

loading with SQL*Loader, 11-18
treatment by SQL*Loader, 11-18

XML type tables
identifying in SQL*Loader, 9-8

XMLTYPE clause
in SQL*Loader control file, 9-8

Index

Index-26

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Syntax Diagrams
	Conventions

	Part I Oracle Data Pump
	1 Overview of Oracle Data Pump
	1.1 Oracle Data Pump Components
	1.2 How Does Oracle Data Pump Move Data?
	1.2.1 Using Data File Copying to Move Data
	1.2.2 Using Direct Path to Move Data
	1.2.3 Using External Tables to Move Data
	1.2.4 Using Conventional Path to Move Data
	1.2.5 Using Network Link Import to Move Data

	1.3 Using Oracle Data Pump With CDBs
	1.3.1 About Using Oracle Data Pump in a Multitenant Environment
	1.3.2 Using Oracle Data Pump to Move Data Into a CDB
	1.3.3 Using Oracle Data Pump to Move PDBs Within or Between CDBs

	1.4 Required Roles for Oracle Data Pump Export and Import Operations
	1.5 What Happens During Execution of an Oracle Data Pump Job?
	1.5.1 Coordination of an Oracle Data Pump Job
	1.5.2 Tracking Progress Within an Oracle Data Pump Job
	1.5.3 Filtering Data and Metadata During an Oracle Data Pump Job
	1.5.4 Transforming Metadata During an Oracle Data Pump Job
	1.5.5 Maximizing Job Performance of Oracle Data Pump
	1.5.6 Loading and Unloading Data with Oracle Data Pump

	1.6 How to Monitor Status of Oracle Data Pump Jobs
	1.7 How to Monitor the Progress of Executing Jobs
	1.8 File Allocation with Oracle Data Pump
	1.8.1 Understanding File Allocation in Oracle Data Pump
	1.8.2 Specifying Files and Adding Additional Dump Files
	1.8.3 Default Locations for Dump, Log, and SQL Files
	1.8.3.1 Understanding Dump, Log, and SQL File Default Locations
	1.8.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC
	1.8.3.3 Using Directory Objects When Oracle Automatic Storage Management Is Enabled
	1.8.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases

	1.8.4 Using Substitution Variables with Oracle Data Pump Exports

	1.9 Exporting and Importing Between Different Oracle Database Releases
	1.10 Exporting and Importing Blockchain Tables with Oracle Data Pump
	1.11 Managing SecureFiles Large Object Exports with Oracle Data Pump
	1.12 Oracle Data Pump Process Exit Codes
	1.13 How to Monitor Oracle Data Pump Jobs with Unified Auditing
	1.14 Encrypted Data Security Warnings for Oracle Data Pump Operations
	1.15 How Does Oracle Data Pump Handle Timestamp Data?
	1.15.1 TIMESTAMP WITH TIMEZONE Restrictions
	1.15.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions
	1.15.1.2 Data Pump Support for TIMESTAMP WITH TIME ZONE Data
	1.15.1.3 Time Zone File Versions on the Source and Target

	1.15.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions

	1.16 Character Set and Globalization Support Considerations
	1.16.1 Data Definition Language (DDL)
	1.16.2 Single-Byte Character Sets and Export and Import
	1.16.3 Multibyte Character Sets and Export and Import

	1.17 Oracle Data Pump Behavior with Data-Bound Collation

	2 Oracle Data Pump Export
	2.1 What Is Oracle Data Pump Export?
	2.2 Starting Oracle Data Pump Export
	2.2.1 Oracle Data Pump Export Interfaces
	2.2.2 Oracle Data Pump Export Modes
	2.2.2.1 Full Mode
	2.2.2.2 Schema Mode
	2.2.2.3 Table Mode
	2.2.2.4 Tablespace Mode
	2.2.2.5 Transportable Tablespace Mode

	2.2.3 Network Considerations for Oracle Data Pump Export

	2.3 Filtering During Export Operations
	2.3.1 Oracle Data Pump Export Data Filters
	2.3.2 Oracle Data Pump Metadata Filters

	2.4 Parameters Available in Data Pump Export Command-Line Mode
	2.4.1 About Data Pump Export Parameters
	2.4.2 ABORT_STEP
	2.4.3 ACCESS_METHOD
	2.4.4 ATTACH
	2.4.5 CHECKSUM
	2.4.6 CHECKSUM_ALGORITM
	2.4.7 CLUSTER
	2.4.8 COMPRESSION
	2.4.9 COMPRESSION_ALGORITHM
	2.4.10 CONTENT
	2.4.11 CREDENTIAL
	2.4.12 DATA_OPTIONS
	2.4.13 DIRECTORY
	2.4.14 DUMPFILE
	2.4.15 ENABLE_SECURE_ROLES
	2.4.16 ENCRYPTION
	2.4.17 ENCRYPTION_ALGORITHM
	2.4.18 ENCRYPTION_MODE
	2.4.19 ENCRYPTION_PASSWORD
	2.4.20 ENCRYPTION_PWD_PROMPT
	2.4.21 ESTIMATE
	2.4.22 ESTIMATE_ONLY
	2.4.23 EXCLUDE
	2.4.24 FILESIZE
	2.4.25 FLASHBACK_SCN
	2.4.26 FLASHBACK_TIME
	2.4.27 FULL
	2.4.28 HELP
	2.4.29 INCLUDE
	2.4.30 JOB_NAME
	2.4.31 KEEP_MASTER
	2.4.32 LOGFILE
	2.4.33 LOGTIME
	2.4.34 METRICS
	2.4.35 NETWORK_LINK
	2.4.36 NOLOGFILE
	2.4.37 PARALLEL
	2.4.38 PARFILE
	2.4.39 QUERY
	2.4.40 REMAP_DATA
	2.4.41 REUSE_DUMPFILES
	2.4.42 SAMPLE
	2.4.43 SCHEMAS
	2.4.44 SERVICE_NAME
	2.4.45 SOURCE_EDITION
	2.4.46 STATUS
	2.4.47 TABLES
	2.4.48 TABLESPACES
	2.4.49 TRANSPORT_DATAFILES_LOG
	2.4.50 TRANSPORT_FULL_CHECK
	2.4.51 TRANSPORT_TABLESPACES
	2.4.52 TRANSPORTABLE
	2.4.53 TTS_CLOSURE_CHECK
	2.4.54 VERSION
	2.4.55 VIEWS_AS_TABLES

	2.5 Commands Available in Data Pump Export Interactive-Command Mode
	2.5.1 About Data Pump Export Interactive Command Mode
	2.5.2 ADD_FILE
	2.5.3 CONTINUE_CLIENT
	2.5.4 EXIT_CLIENT
	2.5.5 FILESIZE
	2.5.6 HELP
	2.5.7 KILL_JOB
	2.5.8 PARALLEL
	2.5.9 START_JOB
	2.5.10 STATUS
	2.5.11 STOP_JOB

	2.6 Examples of Using Oracle Data Pump Export
	2.6.1 Performing a Table-Mode Export
	2.6.2 Data-Only Unload of Selected Tables and Rows
	2.6.3 Estimating Disk Space Needed in a Table-Mode Export
	2.6.4 Performing a Schema-Mode Export
	2.6.5 Performing a Parallel Full Database Export
	2.6.6 Using Interactive Mode to Stop and Reattach to a Job

	2.7 Syntax Diagrams for Oracle Data Pump Export

	3 Oracle Data Pump Import
	3.1 What Is Oracle Data Pump Import?
	3.2 Starting Oracle Data Pump Import
	3.2.1 Data Pump Import Interfaces
	3.2.2 Data Pump Import Modes
	3.2.2.1 About Data Pump Import Modes
	3.2.2.2 Full Import Mode
	3.2.2.3 Schema Mode
	3.2.2.4 Table Mode
	3.2.2.5 Tablespace Mode
	3.2.2.6 Transportable Tablespace Mode

	3.2.3 Network Considerations for Oracle Data Pump Import

	3.3 Filtering During Import Operations
	3.3.1 Oracle Data Pump Import Data Filters
	3.3.2 Oracle Data Pump Import Metadata Filters

	3.4 Parameters Available in Oracle Data Pump Import Command-Line Mode
	3.4.1 About Import Command-Line Mode
	3.4.2 ABORT_STEP
	3.4.3 ACCESS_METHOD
	3.4.4 ATTACH
	3.4.5 CLUSTER
	3.4.6 CONTENT
	3.4.7 CREDENTIAL
	3.4.8 DATA_OPTIONS
	3.4.9 DIRECTORY
	3.4.10 DUMPFILE
	3.4.11 ENABLE_SECURE_ROLES
	3.4.12 ENCRYPTION_PASSWORD
	3.4.13 ENCRYPTION_PWD_PROMPT
	3.4.14 ESTIMATE
	3.4.15 EXCLUDE
	3.4.16 FLASHBACK_SCN
	3.4.17 FLASHBACK_TIME
	3.4.18 FULL
	3.4.19 HELP
	3.4.20 INCLUDE
	3.4.21 JOB_NAME
	3.4.22 KEEP_MASTER
	3.4.23 LOGFILE
	3.4.24 LOGTIME
	3.4.25 MASTER_ONLY
	3.4.26 METRICS
	3.4.27 NETWORK_LINK
	3.4.28 NOLOGFILE
	3.4.29 PARALLEL
	3.4.30 PARFILE
	3.4.31 PARTITION_OPTIONS
	3.4.32 QUERY
	3.4.33 REMAP_DATA
	3.4.34 REMAP_DATAFILE
	3.4.35 REMAP_DIRECTORY
	3.4.36 REMAP_SCHEMA
	3.4.37 REMAP_TABLE
	3.4.38 REMAP_TABLESPACE
	3.4.39 SCHEMAS
	3.4.40 SERVICE_NAME
	3.4.41 SKIP_UNUSABLE_INDEXES
	3.4.42 SOURCE_EDITION
	3.4.43 SQLFILE
	3.4.44 STATUS
	3.4.45 STREAMS_CONFIGURATION
	3.4.46 TABLE_EXISTS_ACTION
	3.4.47 REUSE_DATAFILES
	3.4.48 TABLES
	3.4.49 TABLESPACES
	3.4.50 TARGET_EDITION
	3.4.51 TRANSFORM
	3.4.52 TRANSPORT_DATAFILES
	3.4.53 TRANSPORT_FULL_CHECK
	3.4.54 TRANSPORT_TABLESPACES
	3.4.55 TRANSPORTABLE
	3.4.56 VERIFY_CHECKSUM
	3.4.57 VERIFY_ONLY
	3.4.58 VERSION
	3.4.59 VIEWS_AS_TABLES (Network Import)
	3.4.60 VIEWS_AS_TABLES (Non-Network Import)

	3.5 Commands Available in Oracle Data Pump Import Interactive-Command Mode
	3.5.1 About Oracle Data Pump Import Interactive Command Mode
	3.5.2 CONTINUE_CLIENT
	3.5.3 EXIT_CLIENT
	3.5.4 HELP
	3.5.5 KILL_JOB
	3.5.6 PARALLEL
	3.5.7 START_JOB
	3.5.8 STATUS
	3.5.9 STOP_JOB

	3.6 Examples of Using Oracle Data Pump Import
	3.6.1 Performing a Data-Only Table-Mode Import
	3.6.2 Performing a Schema-Mode Import
	3.6.3 Performing a Network-Mode Import
	3.6.4 Using Wildcards in URL-Based Dumpfile Names

	3.7 Syntax Diagrams for Data Pump Import

	4 Oracle Data Pump Legacy Mode
	4.1 Oracle Data Pump Legacy Mode Use Cases
	4.2 Parameter Mappings
	4.2.1 Using Original Export Parameters with Oracle Data Pump
	4.2.2 Using Original Import Parameters with Oracle Data Pump

	4.3 Management of File Locations in Oracle Data Pump Legacy Mode
	4.4 Adjusting Existing Scripts for Oracle Data Pump Log Files and Errors
	4.4.1 Log Files
	4.4.2 Error Cases
	4.4.3 Exit Status

	5 Oracle Data Pump Performance
	5.1 Data Performance Improvements for Oracle Data Pump Export and Import
	5.2 Tuning Performance
	5.2.1 How To Manage Oracle Data Pump Resource Consumption
	5.2.2 Effect of Compression and Encryption on Performance
	5.2.3 Memory Considerations When Exporting and Importing Statistics

	5.3 Initialization Parameters That Affect Oracle Data Pump Performance
	5.3.1 Performance Guidelines for Oracle Data Pump Parameters
	5.3.2 Setting the Size Of the Buffer Cache In a GoldenGate Replication Environment
	5.3.3 Managing Resource Usage for Multiple User Oracle Data Pump Jobs

	6 Using the Oracle Data Pump API
	6.1 How Does the Oracle Data Pump Client Interface API Work?
	6.2 DBMS_DATAPUMP Job States
	6.3 What Are the Basic Steps in Using the Oracle Data Pump API?
	6.4 Examples of Using the Oracle Data Pump API
	6.4.1 Using the Oracle Data Pump API Examples with Your Database
	6.4.2 Performing a Simple Schema Export with Oracle Data Pump
	6.4.3 Importing a Dump File and Remapping All Schema Objects
	6.4.4 Using Exception Handling During a Simple Schema Export
	6.4.5 Displaying Dump File Information for Oracle Data Pump Jobs

	Part II SQL*Loader
	7 Understanding How to Use SQL*Loader
	7.1 SQL*Loader Features
	7.2 SQL*Loader Parameters
	7.3 SQL*Loader Control File
	7.4 Input Data and Data Fields in SQL*Loader
	7.4.1 How SQL*Loader Reads Input Data and Data Files
	7.4.2 Fixed Record Format
	7.4.3 Variable Record Format and SQL*Loader
	7.4.4 Stream Record Format and SQL*Loader
	7.4.5 Logical Records and SQL*Loader
	7.4.6 Data Field Setting and SQL*Loader

	7.5 LOBFILEs and Secondary Data Files (SDFs)
	7.6 Data Conversion and Data Type Specification
	7.7 SQL*Loader Discarded and Rejected Records
	7.7.1 The SQL*Loader Bad File
	7.7.1.1 Records Rejected by SQL*Loader
	7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader Operation

	7.7.2 The SQL*Loader Discard File

	7.8 Log File and Logging Information
	7.9 Conventional Path Loads, Direct Path Loads, and External Table Loads
	7.9.1 Conventional Path Loads
	7.9.2 Direct Path Loads
	7.9.3 Parallel Direct Path
	7.9.4 External Table Loads
	7.9.5 Choosing External Tables Versus SQL*Loader
	7.9.6 Behavior Differences Between SQL*Loader and External Tables
	7.9.6.1 Multiple Primary Input Data Files
	7.9.6.2 Syntax and Data Types
	7.9.6.3 Byte-Order Marks
	7.9.6.4 Default Character Sets, Date Masks, and Decimal Separator
	7.9.6.5 Use of the Backslash Escape Character

	7.10 Loading Objects, Collections, and LOBs with SQL*Loader
	7.10.1 Supported Object Types
	7.10.1.1 column objects
	7.10.1.2 row objects

	7.10.2 Supported Collection Types
	7.10.2.1 Nested Tables
	7.10.2.2 VARRAYs

	7.10.3 Supported LOB Data Types

	7.11 Partitioned Object Support in SQL*Loader
	7.12 Application Development: Direct Path Load API
	7.13 SQL*Loader Case Studies
	7.13.1 How to Access and Use the Oracle SQL*Loader Case Studies
	7.13.2 Case Study Files
	7.13.3 Running the Case Studies
	7.13.4 Case Study Log Files
	7.13.5 Checking the Results of a Case Study

	8 SQL*Loader Command-Line Reference
	8.1 Starting SQL*Loader
	8.1.1 Specifying Parameters on the Command Line
	8.1.2 Alternative Ways to Specify SQL*Loader Parameters
	8.1.3 Using SQL*Loader to Load Data Across a Network

	8.2 Command-Line Parameters for SQL*Loader
	8.2.1 BAD
	8.2.2 BINDSIZE
	8.2.3 COLUMNARRAYROWS
	8.2.4 CONTROL
	8.2.5 CREDENTIAL
	8.2.6 DATA
	8.2.7 DATE_CACHE
	8.2.8 DEFAULTS
	8.2.9 DEGREE_OF_PARALLELISM
	8.2.10 DIRECT
	8.2.11 DIRECT_PATH_LOCK_WAIT
	8.2.12 DISCARD
	8.2.13 DISCARDMAX
	8.2.14 DNFS_ENABLE
	8.2.15 DNFS_READBUFFERS
	8.2.16 EMPTY_LOBS_ARE_NULL
	8.2.17 ERRORS
	8.2.18 EXTERNAL_TABLE
	8.2.19 FILE
	8.2.20 HELP
	8.2.21 LOAD
	8.2.22 LOG
	8.2.23 MULTITHREADING
	8.2.24 NO_INDEX_ERRORS
	8.2.25 PARALLEL
	8.2.26 PARFILE
	8.2.27 PARTITION_MEMORY
	8.2.28 READSIZE
	8.2.29 RESUMABLE
	8.2.30 RESUMABLE_NAME
	8.2.31 RESUMABLE_TIMEOUT
	8.2.32 ROWS
	8.2.33 SDF_PREFIX
	8.2.34 SILENT
	8.2.35 SKIP
	8.2.36 SKIP_INDEX_MAINTENANCE
	8.2.37 SKIP_UNUSABLE_INDEXES
	8.2.38 STREAMSIZE
	8.2.39 TRIM
	8.2.40 USERID

	8.3 Exit Codes for Inspection and Display

	9 SQL*Loader Control File Reference
	9.1 Control File Contents
	9.2 Comments in the Control File
	9.3 Specifying Command-Line Parameters in the Control File
	9.3.1 OPTIONS Clause
	9.3.2 Specifying the Number of Default Expressions to Be Evaluated At One Time

	9.4 Specifying File Names and Object Names
	9.4.1 File Names That Conflict with SQL and SQL*Loader Reserved Words
	9.4.2 Specifying SQL Strings in the SQL*Loader Control File
	9.4.3 Operating Systems and SQL Loader Control File Characters
	9.4.3.1 Specifying a Complete Path
	9.4.3.2 Backslash Escape Character
	9.4.3.3 Nonportable Strings
	9.4.3.4 Using the Backslash as an Escape Character
	9.4.3.5 Escape Character Is Sometimes Disallowed

	9.5 Identifying XMLType Tables
	9.6 Specifying Field Order
	9.7 Specifying Data Files
	9.7.1 Understanding How to Specify Data Files
	9.7.2 Examples of INFILE Syntax
	9.7.3 Specifying Multiple Data Files

	9.8 Specifying CSV Format Files
	9.9 Identifying Data in the Control File with BEGINDATA
	9.10 Specifying Data File Format and Buffering
	9.11 Specifying the Bad File
	9.11.1 Understanding and Specifying the Bad File
	9.11.2 Examples of Specifying a Bad File Name
	9.11.3 How Bad Files Are Handled with LOBFILEs and SDFs
	9.11.4 Criteria for Rejected Records

	9.12 Specifying the Discard File
	9.12.1 Understanding and Specifying the Discard File
	9.12.2 Specifying the Discard File in the Control File
	9.12.3 Limiting the Number of Discard Records
	9.12.4 Examples of Specifying a Discard File Name
	9.12.5 Criteria for Discarded Records
	9.12.6 How Discard Files Are Handled with LOBFILEs and SDFs
	9.12.7 Specifying the Discard File from the Command Line

	9.13 Specifying a NULLIF Clause At the Table Level
	9.14 Specifying Datetime Formats At the Table Level
	9.15 Handling Different Character Encoding Schemes
	9.15.1 Multibyte (Asian) Character Sets
	9.15.2 Unicode Character Sets
	9.15.3 Database Character Sets
	9.15.4 Data File Character Sets
	9.15.5 Input Character Conversion with SQL*Loader
	9.15.5.1 Options for Converting Character Sets Using SQL*Loader
	9.15.5.2 Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
	9.15.5.3 CHARACTERSET Parameter
	9.15.5.4 Control File Character Set
	9.15.5.5 Character-Length Semantics

	9.15.6 Shift-sensitive Character Data

	9.16 Interrupted SQL*Loader Loads
	9.16.1 Understanding Causes of Interrupted SQL*Loader Loads
	9.16.2 Discontinued Conventional Path Loads
	9.16.3 Discontinued Direct Path Loads
	9.16.3.1 Load Discontinued Because of Space Errors
	9.16.3.2 Load Discontinued Because Maximum Number of Errors Exceeded
	9.16.3.3 Load Discontinued Because of Fatal Errors
	9.16.3.4 Load Discontinued Because a Ctrl+C Was Issued

	9.16.4 Status of Tables and Indexes After an Interrupted Load
	9.16.5 Using the Log File to Determine Load Status
	9.16.6 Continuing Single-Table Loads

	9.17 Assembling Logical Records from Physical Records
	9.17.1 Using CONCATENATE to Assemble Logical Records
	9.17.2 Using CONTINUEIF to Assemble Logical Records

	9.18 Loading Logical Records into Tables
	9.18.1 Specifying Table Names
	9.18.2 INTO TABLE Clause
	9.18.3 Table-Specific Loading Method
	9.18.4 Loading Data into Empty Tables with INSERT
	9.18.5 Loading Data into Nonempty Tables
	9.18.5.1 APPEND
	9.18.5.2 REPLACE
	9.18.5.3 Updating Existing Rows
	9.18.5.4 TRUNCATE

	9.18.6 Table-Specific OPTIONS Parameter
	9.18.7 Loading Records Based on a Condition
	9.18.8 Using the WHEN Clause with LOBFILEs and SDFs
	9.18.9 Specifying Default Data Delimiters
	9.18.9.1 fields_spec
	9.18.9.2 termination_spec
	9.18.9.3 enclosure_spec

	9.18.10 Handling Records with Missing Specified Fields
	9.18.10.1 SQL*Loader Management of Short Records with Missing Data
	9.18.10.2 TRAILING NULLCOLS Clause

	9.19 Index Options
	9.19.1 Understanding the SORTED INDEXES Parameter
	9.19.2 Understanding the SINGLEROW Parameter

	9.20 Benefits of Using Multiple INTO TABLE Clauses
	9.20.1 Understanding the SQL*Loader INTO TABLE Clause
	9.20.2 Distinguishing Different Input Record Formats
	9.20.3 Relative Positioning Based on the POSITION Parameter
	9.20.4 Distinguishing Different Input Row Object Subtypes
	9.20.5 Loading Data into Multiple Tables
	9.20.6 Summary of Using Multiple INTO TABLE Clauses
	9.20.7 Extracting Multiple Logical Records
	9.20.7.1 Example of Extracting Multiple Logical Records From a Physical Record
	9.20.7.2 Example of Relative Positioning Based on Delimiters

	9.21 Bind Arrays and Conventional Path Loads
	9.21.1 Differences Between Bind Arrays and Conventional Path Loads
	9.21.2 Size Requirements for Bind Arrays
	9.21.3 Performance Implications of Bind Arrays
	9.21.4 Specifying Number of Rows Versus Size of Bind Array
	9.21.5 Setting Up SQL*Loader Bind Arrays
	9.21.5.1 Calculations to Determine Bind Array Size
	9.21.5.2 Determining the Size of the Length Indicator
	9.21.5.3 Calculating the Size of Field Buffers

	9.21.6 Minimizing Memory Requirements for Bind Arrays
	9.21.7 Calculating Bind Array Size for Multiple INTO TABLE Clauses

	10 SQL*Loader Field List Reference
	10.1 Field List Contents
	10.2 Specifying the Position of a Data Field.
	10.2.1 POSITION
	10.2.2 Using POSITION with Data Containing Tabs
	10.2.3 Using POSITION with Multiple Table Loads
	10.2.4 Examples of Using POSITION in SQL*Loader Specifications

	10.3 Specifying Columns and Fields
	10.3.1 Options for Column and Field Specification
	10.3.2 Specifying Filler Fields
	10.3.3 Specifying the Data Type of a Data Field

	10.4 SQL*Loader Data Types
	10.4.1 Portable and Nonportable Data Type Differences
	10.4.2 Nonportable Data Types
	10.4.2.1 Categories of Nonportable Data Types
	10.4.2.2 INTEGER(n)
	10.4.2.3 SMALLINT
	10.4.2.4 FLOAT
	10.4.2.5 DOUBLE
	10.4.2.6 BYTEINT
	10.4.2.7 ZONED
	10.4.2.8 DECIMAL
	10.4.2.9 VARGRAPHIC
	10.4.2.10 VARCHAR
	10.4.2.11 VARRAW
	10.4.2.12 LONG VARRAW

	10.4.3 Portable Data Types
	10.4.3.1 Categories of Portable Data Types
	10.4.3.2 CHAR
	10.4.3.3 Datetime and Interval Data Types
	10.4.3.3.1 Categories of Datetime and Interval Data Types
	10.4.3.3.2 DATE
	10.4.3.3.3 TIME
	10.4.3.3.4 TIME WITH TIME ZONE
	10.4.3.3.5 TIMESTAMP
	10.4.3.3.6 TIMESTAMP WITH TIME ZONE
	10.4.3.3.7 TIMESTAMP WITH LOCAL TIME ZONE
	10.4.3.3.8 INTERVAL YEAR TO MONTH
	10.4.3.3.9 INTERVAL DAY TO SECOND

	10.4.3.4 GRAPHIC
	10.4.3.5 GRAPHIC EXTERNAL
	10.4.3.6 Numeric EXTERNAL
	10.4.3.7 RAW
	10.4.3.8 VARCHARC
	10.4.3.9 VARRAWC
	10.4.3.10 Conflicting Native Data Type Field Lengths
	10.4.3.11 Field Lengths for Length-Value Data Types

	10.4.4 Data Type Conversions
	10.4.5 Data Type Conversions for Datetime and Interval Data Types
	10.4.6 Specifying Delimiters
	10.4.6.1 Syntax for Termination and Enclosure Specification
	10.4.6.2 Delimiter Marks in the Data
	10.4.6.3 Maximum Length of Delimited Data
	10.4.6.4 Loading Trailing Blanks with Delimiters

	10.4.7 How Delimited Data Is Processed
	10.4.7.1 Fields Using Only TERMINATED BY
	10.4.7.2 Fields Using ENCLOSED BY Without TERMINATED BY
	10.4.7.3 Fields Using ENCLOSED BY With TERMINATED BY
	10.4.7.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED BY

	10.4.8 Conflicting Field Lengths for Character Data Types
	10.4.8.1 Predetermined Size Fields
	10.4.8.2 Delimited Fields
	10.4.8.3 Date Field Masks

	10.5 Specifying Field Conditions
	10.5.1 Comparing Fields to BLANKS
	10.5.2 Comparing Fields to Literals

	10.6 Using the WHEN, NULLIF, and DEFAULTIF Clauses
	10.7 Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
	10.8 Loading Data Across Different Platforms
	10.9 Byte Ordering
	10.9.1 Specifying Byte Order
	10.9.2 Using Byte Order Marks (BOMs)
	10.9.2.1 Suppressing Checks for BOMs

	10.10 Loading All-Blank Fields
	10.11 Trimming Whitespace
	10.11.1 Data Types for Which Whitespace Can Be Trimmed
	10.11.2 Specifying Field Length for Data Types for Which Whitespace Can Be Trimmed
	10.11.2.1 Predetermined Size Fields
	10.11.2.2 Delimited Fields

	10.11.3 Relative Positioning of Fields
	10.11.3.1 No Start Position Specified for a Field
	10.11.3.2 Previous Field Terminated by a Delimiter
	10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters

	10.11.4 Leading Whitespace
	10.11.4.1 Previous Field Terminated by Whitespace
	10.11.4.2 Optional Enclosure Delimiters

	10.11.5 Trimming Trailing Whitespace
	10.11.6 Trimming Enclosed Fields

	10.12 How the PRESERVE BLANKS Option Affects Whitespace Trimming
	10.13 How [NO] PRESERVE BLANKS Works with Delimiter Clauses
	10.14 Applying SQL Operators to Fields
	10.14.1 Referencing Fields
	10.14.2 Common Uses of SQL Operators in Field Specifications
	10.14.3 Combinations of SQL Operators
	10.14.4 Using SQL Strings with a Date Mask
	10.14.5 Interpreting Formatted Fields
	10.14.6 Using SQL Strings to Load the ANYDATA Database Type

	10.15 Using SQL*Loader to Generate Data for Input
	10.15.1 Loading Data Without Files
	10.15.2 Setting a Column to a Constant Value
	10.15.2.1 CONSTANT Parameter

	10.15.3 Setting a Column to an Expression Value
	10.15.3.1 EXPRESSION Parameter

	10.15.4 Setting a Column to the Data File Record Number
	10.15.4.1 RECNUM Parameter

	10.15.5 Setting a Column to the Current Date
	10.15.5.1 SYSDATE Parameter

	10.15.6 Setting a Column to a Unique Sequence Number
	10.15.6.1 SEQUENCE Parameter

	10.15.7 Generating Sequence Numbers for Multiple Tables
	10.15.7.1 Example: Generating Different Sequence Numbers for Each Insert

	11 Loading Objects, LOBs, and Collections with SQL*Loader
	11.1 Loading Column Objects
	11.1.1 Understanding Column Object Attributes
	11.1.2 Loading Column Objects in Stream Record Format
	11.1.3 Loading Column Objects in Variable Record Format
	11.1.4 Loading Nested Column Objects
	11.1.5 Loading Column Objects with a Derived Subtype
	11.1.6 Specifying Null Values for Objects
	11.1.6.1 Specifying Attribute Nulls
	11.1.6.2 Specifying Atomic Nulls

	11.1.7 Loading Column Objects with User-Defined Constructors

	11.2 Loading Object Tables with SQL*Loader
	11.2.1 Examples of Loading Object Tables with SQL*Loader
	11.2.2 Loading Object Tables with Subtypes

	11.3 Loading REF Columns with SQL*Loader
	11.3.1 Specifying Table Names in a REF Clause
	11.3.2 System-Generated OID REF Columns
	11.3.3 Primary Key REF Columns
	11.3.4 Unscoped REF Columns That Allow Primary Keys

	11.4 Loading LOBs with SQL*Loader
	11.4.1 Overview of Loading LOBs with SQL*Loader
	11.4.2 Loading LOB Data from a Primary Data File
	11.4.2.1 LOB Data in Predetermined Size Fields
	11.4.2.2 LOB Data in Delimited Fields
	11.4.2.3 LOB Data in Length-Value Pair Fields

	11.4.3 Loading LOB Data from LOBFILEs
	11.4.3.1 Overview of Loading LOB Data from LOBFILEs
	11.4.3.2 Dynamic Versus Static LOBFILE Specifications
	11.4.3.3 Examples of Loading LOB Data from LOBFILEs
	11.4.3.3.1 One LOB for Each File
	11.4.3.3.2 Predetermined Size LOBs
	11.4.3.3.3 Delimited LOBs
	11.4.3.3.4 Length-Value Pair Specified LOBs

	11.4.3.4 Considerations When Loading LOBs from LOBFILEs

	11.4.4 Loading Data Files that Contain LLS Fields

	11.5 Loading BFILE Columns with SQL*Loader
	11.6 Loading Collections (Nested Tables and VARRAYs)
	11.6.1 Overview of Loading Collections (Nested Tables and VARRAYS)
	11.6.2 Restrictions in Nested Tables and VARRAYs
	11.6.3 Secondary Data Files (SDFs)

	11.7 Choosing Dynamic or Static SDF Specifications
	11.8 Loading a Parent Table Separately from Its Child Table
	11.8.1 Memory Issues When Loading VARRAY Columns

	12 Conventional and Direct Path Loads
	12.1 Data Loading Methods
	12.2 Loading ROWID Columns
	12.3 Conventional Path Loads
	12.3.1 Conventional Path Load
	12.3.2 When to Use a Conventional Path Load
	12.3.3 Conventional Path Load of a Single Partition

	12.4 Direct Path Loads
	12.4.1 About SQL*Loader Direct Path Load
	12.4.2 Loading into Synonyms
	12.4.3 Field Defaults on the Direct Path
	12.4.4 Integrity Constraints
	12.4.5 When to Use a Direct Path Load
	12.4.6 Restrictions on a Direct Path Load of a Single Partition
	12.4.7 Restrictions on Using Direct Path Loads
	12.4.8 Advantages of a Direct Path Load
	12.4.9 Direct Path Load of a Single Partition or Subpartition
	12.4.10 Direct Path Load of a Partitioned or Subpartitioned Table
	12.4.11 Data Conversion During Direct Path Loads

	12.5 Optimizing Performance of Direct Path Loads
	12.5.1 Minimizing Time and Space Required for Direct Path Loads
	12.5.2 Preallocating Storage for Faster Loading
	12.5.3 Presorting Data for Faster Indexing
	12.5.3.1 Advantages of Presorting Data
	12.5.3.2 SORTED INDEXES Clause
	12.5.3.3 Unsorted Data
	12.5.3.4 Multiple-Column Indexes
	12.5.3.5 Choosing the Best Sort Order

	12.5.4 Infrequent Data Saves
	12.5.5 Minimizing Use of the Redo Log
	12.5.5.1 Disabling Archiving
	12.5.5.2 Specifying the SQL*Loader UNRECOVERABLE Clause
	12.5.5.3 Setting the SQL NOLOGGING Parameter

	12.5.6 Specifying the Number of Column Array Rows and Size of Stream Buffers
	12.5.7 Specifying a Value for DATE_CACHE

	12.6 Using Direct Path Load
	12.6.1 Setting Up for Direct Path Loads
	12.6.2 Specifying a Direct Path Load
	12.6.3 Building Indexes
	12.6.3.1 Improving Performance
	12.6.3.2 Temporary Segment Storage Requirements

	12.6.4 Indexes Left in an Unusable State
	12.6.5 Using Data Saves to Protect Against Data Loss
	12.6.5.1 Using the ROWS Parameter
	12.6.5.2 Data Save Versus Commit

	12.6.6 Data Recovery During Direct Path Loads
	12.6.6.1 Media Recovery and Direct Path Loads
	12.6.6.2 Instance Recovery and Direct Path Loads

	12.6.7 Loading Long Data Fields
	12.6.8 Loading Data As PIECED
	12.6.9 Auditing SQL*Loader Operations That Use Direct Path Mode

	12.7 Optimizing Direct Path Loads on Multiple-CPU Systems
	12.8 Avoiding Index Maintenance
	12.9 Direct Path Loads, Integrity Constraints, and Triggers
	12.9.1 Integrity Constraints
	12.9.1.1 Enabled Constraints
	12.9.1.2 Disabled Constraints
	12.9.1.3 Reenable Constraints

	12.9.2 Database Insert Triggers
	12.9.2.1 Replacing Insert Triggers with Integrity Constraints
	12.9.2.2 When Automatic Constraints Cannot Be Used
	12.9.2.3 Preparation
	12.9.2.4 Using an Update Trigger
	12.9.2.5 Duplicating the Effects of Exception Conditions
	12.9.2.6 Using a Stored Procedure

	12.9.3 Permanently Disabled Triggers and Constraints
	12.9.4 Increasing Performance with Concurrent Conventional Path Loads

	12.10 Optimizing Performance of Direct Path Loads
	12.10.1 About SQL*Loader Parallel Data Loading Models
	12.10.2 Concurrent Conventional Path Loads
	12.10.3 Intersegment Concurrency with Direct Path
	12.10.4 Intrasegment Concurrency with Direct Path
	12.10.5 Restrictions on Parallel Direct Path Loads
	12.10.6 Initiating Multiple SQL*Loader Sessions
	12.10.7 Parameters for Parallel Direct Path Loads
	12.10.7.1 Using the FILE Parameter to Specify Temporary Segments
	12.10.7.1.1 Using the FILE Parameter
	12.10.7.1.2 Using the STORAGE Parameter

	12.10.8 Enabling Constraints After a Parallel Direct Path Load
	12.10.9 PRIMARY KEY and UNIQUE KEY Constraints

	12.11 General Performance Improvement Hints

	13 SQL*Loader Express
	13.1 What is SQL*Loader Express Mode?
	13.2 Using SQL*Loader Express Mode
	13.2.1 Starting SQL*Loader in Express Mode
	13.2.2 Default Values Used by SQL*Loader Express Mode
	13.2.3 How SQL*Loader Express Mode Handles Byte Order

	13.3 SQL*Loader Express Mode Parameter Reference
	13.3.1 BAD
	13.3.2 CHARACTERSET
	13.3.3 CSV
	13.3.4 DATA
	13.3.5 DATE_FORMAT
	13.3.6 DEGREE_OF_PARALLELISM
	13.3.7 DIRECT
	13.3.8 DNFS_ENABLE
	13.3.9 DNFS_READBUFFERS
	13.3.10 ENCLOSED_BY
	13.3.11 EXTERNAL_TABLE
	13.3.12 FIELD_NAMES
	13.3.13 LOAD
	13.3.14 NULLIF
	13.3.15 OPTIONALLY_ENCLOSED_BY
	13.3.16 PARFILE
	13.3.17 SILENT
	13.3.18 TABLE
	13.3.19 TERMINATED_BY
	13.3.20 TIMESTAMP_FORMAT
	13.3.21 TRIM
	13.3.22 USERID

	13.4 SQL*Loader Express Mode Syntax Diagrams

	Part III External Tables
	14 External Tables Concepts
	14.1 How Are External Tables Created?
	14.2 Location of Data Files and Output Files
	14.3 Access Parameters for External Tables
	14.4 Data Type Conversion During External Table Use

	15 The ORACLE_LOADER Access Driver
	15.1 About the ORACLE_LOADER Access Driver
	15.2 access_parameters Clause
	15.3 record_format_info Clause
	15.3.1 Overview of record_format_info Clause
	15.3.2 FIXED Length
	15.3.3 VARIABLE size
	15.3.4 DELIMITED BY
	15.3.5 XMLTAG
	15.3.6 CHARACTERSET
	15.3.7 EXTERNAL VARIABLE DATA
	15.3.8 PREPROCESSOR
	15.3.9 LANGUAGE
	15.3.10 TERRITORY
	15.3.11 DATA IS...ENDIAN
	15.3.12 BYTEORDERMARK (CHECK | NOCHECK)
	15.3.13 STRING SIZES ARE IN
	15.3.14 LOAD WHEN
	15.3.15 BADFILE | NOBADFILE
	15.3.16 DISCARDFILE | NODISCARDFILE
	15.3.17 LOGFILE | NOLOGFILE
	15.3.18 SKIP
	15.3.19 FIELD NAMES
	15.3.20 READSIZE
	15.3.21 DATE_CACHE
	15.3.22 string
	15.3.23 condition_spec
	15.3.24 [directory object name:] [filename]
	15.3.25 condition
	15.3.25.1 range start : range end

	15.3.26 IO_OPTIONS clause
	15.3.27 DNFS_DISABLE | DNFS_ENABLE
	15.3.28 DNFS_READBUFFERS

	15.4 field_definitions Clause
	15.4.1 Overview of field_definitions Clause
	15.4.2 delim_spec
	15.4.2.1 Example: External Table with Terminating Delimiters
	15.4.2.2 Example: External Table with Enclosure and Terminator Delimiters
	15.4.2.3 Example: External Table with Optional Enclosure Delimiters

	15.4.3 trim_spec
	15.4.4 MISSING FIELD VALUES ARE NULL
	15.4.5 field_list
	15.4.6 pos_spec Clause
	15.4.6.1 pos_spec Clause Syntax
	15.4.6.2 start
	15.4.6.3 *
	15.4.6.4 increment
	15.4.6.5 end
	15.4.6.6 length

	15.4.7 datatype_spec Clause
	15.4.7.1 datatype_spec Clause Syntax
	15.4.7.2 [UNSIGNED] INTEGER [EXTERNAL] [(len)]
	15.4.7.3 DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
	15.4.7.4 ORACLE_DATE
	15.4.7.5 ORACLE_NUMBER
	15.4.7.6 Floating-Point Numbers
	15.4.7.7 DOUBLE
	15.4.7.8 FLOAT [EXTERNAL]
	15.4.7.9 BINARY_DOUBLE
	15.4.7.10 BINARY_FLOAT
	15.4.7.11 RAW
	15.4.7.12 CHAR
	15.4.7.13 date_format_spec
	15.4.7.13.1 DATE
	15.4.7.13.2 MASK
	15.4.7.13.3 TIMESTAMP
	15.4.7.13.4 INTERVAL

	15.4.7.14 VARCHAR and VARRAW
	15.4.7.15 VARCHARC and VARRAWC

	15.4.8 init_spec Clause
	15.4.9 LLS Clause

	15.5 column_transforms Clause
	15.5.1 transform
	15.5.1.1 column_name FROM
	15.5.1.2 NULL
	15.5.1.3 CONSTANT
	15.5.1.4 CONCAT
	15.5.1.5 LOBFILE
	15.5.1.6 lobfile_attr_list
	15.5.1.7 STARTOF source_field (length)

	15.6 Parallel Loading Considerations for the ORACLE_LOADER Access Driver
	15.7 Performance Hints When Using the ORACLE_LOADER Access Driver
	15.8 Restrictions When Using the ORACLE_LOADER Access Driver
	15.9 Reserved Words for the ORACLE_LOADER Access Driver

	16 The ORACLE_DATAPUMP Access Driver
	16.1 Using the ORACLE_DATAPUMP Access Driver
	16.2 access_parameters Clause
	16.2.1 Comments
	16.2.2 ENCRYPTION
	16.2.3 LOGFILE | NOLOGFILE
	16.2.3.1 Log File Naming in Parallel Loads

	16.2.4 COMPRESSION
	16.2.5 VERSION Clause
	16.2.6 HADOOP_TRAILERS Clause
	16.2.7 Effects of Using the SQL ENCRYPT Clause

	16.3 Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
	16.3.1 Parallel Loading and Unloading
	16.3.2 Combining Dump Files

	16.4 Supported Data Types
	16.5 Unsupported Data Types
	16.5.1 Unloading and Loading BFILE Data Types
	16.5.2 Unloading LONG and LONG RAW Data Types
	16.5.3 Unloading and Loading Columns Containing Final Object Types
	16.5.4 Tables of Final Object Types

	16.6 Performance Hints When Using the ORACLE_DATAPUMP Access Driver
	16.7 Restrictions When Using the ORACLE_DATAPUMP Access Driver
	16.8 Reserved Words for the ORACLE_DATAPUMP Access Driver

	17 ORACLE_HDFS and ORACLE_HIVE Access Drivers
	17.1 Syntax Rules for Specifying Properties
	17.2 ORACLE_HDFS Access Parameters
	17.2.1 Default Parameter Settings for ORACLE_HDFS
	17.2.2 Optional Parameter Settings for ORACLE_HDFS

	17.3 ORACLE_HIVE Access Parameters
	17.3.1 Default Parameter Settings for ORACLE_HIVE
	17.3.2 Optional Parameter Settings for ORACLE_HIVE

	17.4 Descriptions of com.oracle.bigdata Parameters
	17.4.1 com.oracle.bigdata.colmap
	17.4.2 com.oracle.bigdata.datamode
	17.4.3 com.oracle.bigdata.erroropt
	17.4.4 com.oracle.bigdata.fields
	17.4.5 com.oracle.bigdata.fileformat
	17.4.6 com.oracle.bigdata.log.exec
	17.4.7 com.oracle.bigdata.log.qc
	17.4.8 com.oracle.bigdata.overflow
	17.4.9 com.oracle.bigdata.rowformat
	17.4.10 com.oracle.bigdata.tablename

	18 External Tables Examples
	18.1 Using the ORACLE_LOADER Access Driver to Create Partitioned External Tables
	18.2 Using the ORACLE_LOADER Access Driver to Create Partitioned Hybrid Tables
	18.3 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables
	18.4 Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables
	18.5 Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables
	18.6 Using the ORA_PARTITION_VALIDATION Function to Validate Partitioned External Tables
	18.7 Loading LOBs From External Tables
	18.8 Loading CSV Files From External Tables

	Part IV Other Utilities
	19 ADRCI: ADR Command Interpreter
	19.1 About the ADR Command Interpreter (ADRCI) Utility
	19.2 Definitions for Oracle Database ADRC
	19.3 Starting ADRCI and Getting Help
	19.3.1 Using ADRCI in Interactive Mode
	19.3.2 Getting Help
	19.3.3 Using ADRCI in Batch Mode

	19.4 Setting the ADRCI Homepath Before Using ADRCI Commands
	19.5 Viewing the Alert Log
	19.6 Finding Trace Files
	19.7 Viewing Incidents
	19.8 Packaging Incidents
	19.8.1 About Packaging Incidents
	19.8.2 Creating Incident Packages
	19.8.2.1 Creating a Logical Incident Package
	19.8.2.2 Adding Diagnostic Information to a Logical Incident Package
	19.8.2.3 Generating a Physical Incident Package

	19.9 ADRCI Command Reference
	19.9.1 CREATE REPORT
	19.9.2 ECHO
	19.9.3 EXIT
	19.9.4 HOST
	19.9.5 IPS
	19.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
	19.9.5.2 IPS ADD
	19.9.5.3 IPS ADD FILE
	19.9.5.4 IPS ADD NEW INCIDENTS
	19.9.5.5 IPS COPY IN FILE
	19.9.5.6 IPS COPY OUT FILE
	19.9.5.7 IPS CREATE PACKAGE
	19.9.5.8 IPS DELETE PACKAGE
	19.9.5.9 IPS FINALIZE
	19.9.5.10 IPS GENERATE PACKAGE
	19.9.5.11 IPS GET MANIFEST
	19.9.5.12 IPS GET METADATA
	19.9.5.13 IPS PACK
	19.9.5.14 IPS REMOVE
	19.9.5.15 IPS REMOVE FILE
	19.9.5.16 IPS SET CONFIGURATION
	19.9.5.17 IPS SHOW CONFIGURATION
	19.9.5.18 IPS SHOW FILES
	19.9.5.19 IPS SHOW INCIDENTS
	19.9.5.20 IPS SHOW PACKAGE
	19.9.5.21 IPS UNPACK FILE

	19.9.6 PURGE
	19.9.7 QUIT
	19.9.8 RUN
	19.9.9 SELECT
	19.9.9.1 AVG
	19.9.9.2 CONCAT
	19.9.9.3 COUNT
	19.9.9.4 DECODE
	19.9.9.5 LENGTH
	19.9.9.6 MAX
	19.9.9.7 MIN
	19.9.9.8 NVL
	19.9.9.9 REGEXP_LIKE
	19.9.9.10 SUBSTR
	19.9.9.11 SUM
	19.9.9.12 TIMESTAMP_TO_CHAR
	19.9.9.13 TOLOWER
	19.9.9.14 TOUPPER

	19.9.10 SET BASE
	19.9.11 SET BROWSER
	19.9.12 SET CONTROL
	19.9.13 SET ECHO
	19.9.14 SET EDITOR
	19.9.15 SET HOMEPATH
	19.9.16 SET TERMOUT
	19.9.17 SHOW ALERT
	19.9.18 SHOW BASE
	19.9.19 SHOW CONTROL
	19.9.20 SHOW HM_RUN
	19.9.21 SHOW HOMEPATH
	19.9.22 SHOW HOMES
	19.9.23 SHOW INCDIR
	19.9.24 SHOW INCIDENT
	19.9.25 SHOW LOG
	19.9.26 SHOW PROBLEM
	19.9.27 SHOW REPORT
	19.9.28 SHOW TRACEFILE
	19.9.29 SPOOL

	19.10 Troubleshooting ADRCI

	20 DBVERIFY: Offline Database Verification Utility
	20.1 Using DBVERIFY to Validate Disk Blocks of a Single Data File
	20.1.1 DBVERIFY Syntax When Validating Blocks of a Single File
	20.1.2 DBVERIFY Parameters When Validating Blocks of a Single File
	20.1.3 Sample DBVERIFY Output For a Single Data File

	20.2 Using DBVERIFY to Validate a Segment
	20.2.1 DBVERIFY Syntax When Validating a Segment
	20.2.2 DBVERIFY Parameters When Validating a Single Segment
	20.2.3 Sample DBVERIFY Output For a Validated Segment

	21 DBNEWID Utility
	21.1 What Is the DBNEWID Utility?
	21.2 Ramifications of Changing the DBID and DBNAME
	21.2.1 Considerations for Global Database Names

	21.3 DBNEWID Considerations for CDBs and PDBs
	21.4 Changing the DBID and DBNAME of a Database
	21.4.1 Changing the DBID and Database Name
	21.4.2 Changing Only the Database ID
	21.4.3 Changing Only the Database Name
	21.4.4 Troubleshooting DBNEWID

	21.5 DBNEWID Syntax
	21.5.1 DBNEWID Parameters
	21.5.2 Restrictions and Usage Notes
	21.5.3 Additional Restrictions for Releases Earlier Than Oracle Database 10g

	22 Using LogMiner to Analyze Redo Log Files
	22.1 LogMiner Benefits
	22.2 Introduction to LogMiner
	22.2.1 LogMiner Configuration
	22.2.1.1 Objects in LogMiner Configuration Files
	22.2.1.2 LogMiner Configuration Example
	22.2.1.3 DataMiner Requirements

	22.2.2 Directing LogMiner Operations and Retrieving Data of Interest

	22.3 Using LogMiner in a CDB
	22.3.1 LogMiner V⁠$ Views and DBA Views in a CDB
	22.3.2 The V⁠$LOGMNR_CONTENTS View in a CDB
	22.3.3 Enabling Supplemental Logging in a CDB
	22.3.4 Using a Flat File Dictionary in a CDB

	22.4 How to Configure Supplemental Logging for Oracle GoldenGate
	22.4.1 Oracle GoldenGate Integration with Oracle Database for Fine-Grained Supplemental Logging
	22.4.2 Logical Replication of Tables with LogMiner and Oracle GoldenGate
	22.4.3 Views that Show Tables Enabled for Oracle GoldenGate Automatic Capture

	22.5 LogMiner Dictionary Files and Redo Log Files
	22.5.1 LogMiner Dictionary Options
	22.5.1.1 Using the Online Catalog
	22.5.1.2 Extracting a LogMiner Dictionary to the Redo Log Files
	22.5.1.3 Extracting the LogMiner Dictionary to a Flat File

	22.5.2 Specifying Redo Log Files for Data Mining

	22.6 Starting LogMiner
	22.7 Querying V⁠$LOGMNR_CONTENTS for Redo Data of Interest
	22.7.1 How to Use V⁠$LOGMNR_CONTENTS to Find Redo Data
	22.7.2 How the V⁠$LOGMNR_CONTENTS View Is Populated
	22.7.3 Querying V⁠$LOGMNR_CONTENTS Based on Column Values
	22.7.3.1 Example of Querying V⁠$LOGMNR_CONTENTS Column Values
	22.7.3.2 The Meaning of NULL Values Returned by the MINE_VALUE Function
	22.7.3.3 Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions
	22.7.3.4 Restrictions When Using the MINE_VALUE Function To Get an NCHAR Value

	22.7.4 Querying V⁠$LOGMNR_CONTENTS Based on XMLType Columns and Tables
	22.7.4.1 Restrictions When Using LogMiner With XMLType Data
	22.7.4.2 Example of a PL/SQL Procedure for Assembling XMLType Data

	22.8 Filtering and Formatting Data Returned to V⁠$LOGMNR_CONTENTS
	22.8.1 Showing Only Committed Transactions
	22.8.2 Skipping Redo Corruptions
	22.8.3 Filtering Data by Time
	22.8.4 Filtering Data by SCN
	22.8.5 Formatting Reconstructed SQL Statements for Re-execution
	22.8.6 Formatting the Appearance of Returned Data for Readability

	22.9 Reapplying DDL Statements Returned to V⁠$LOGMNR_CONTENTS
	22.10 Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
	22.11 Supplemental Logging
	22.11.1 Database-Level Supplemental Logging
	22.11.1.1 Minimal Supplemental Logging
	22.11.1.2 Database-Level Identification Key Logging
	22.11.1.3 Procedural Supplemental Logging

	22.11.2 Disabling Database-Level Supplemental Logging
	22.11.3 Table-Level Supplemental Logging
	22.11.3.1 Table-Level Identification Key Logging
	22.11.3.2 Table-Level User-Defined Supplemental Log Groups
	22.11.3.3 Usage Notes for User-Defined Supplemental Log Groups

	22.11.4 Tracking DDL Statements in the LogMiner Dictionary
	22.11.5 DDL_DICT_TRACKING and Supplemental Logging Settings
	22.11.6 DDL_DICT_TRACKING and Specified Time or SCN Ranges

	22.12 Accessing LogMiner Operational Information in Views
	22.12.1 Querying V⁠$LOGMNR_LOGS
	22.12.2 Querying Views for Supplemental Logging Settings

	22.13 Steps in a Typical LogMiner Session
	22.13.1 Understanding How to Run LogMiner Sessions
	22.13.2 Typical LogMiner Session Task 1: Enable Supplemental Logging
	22.13.3 Typical LogMiner Session Task 2: Extract a LogMiner Dictionary
	22.13.4 Typical LogMiner Session Task 3: Specify Redo Log Files for Analysis
	22.13.5 Start LogMiner
	22.13.6 Query V⁠$LOGMNR_CONTENTS
	22.13.7 Typical LogMiner Session Task 6: End the LogMiner Session

	22.14 Examples Using LogMiner
	22.14.1 Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
	22.14.1.1 Example 1: Finding All Modifications in the Last Archived Redo Log File
	22.14.1.2 Example 2: Grouping DML Statements into Committed Transactions
	22.14.1.3 Example 3: Formatting the Reconstructed SQL
	22.14.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log Files
	22.14.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary
	22.14.1.6 Example 6: Filtering Output by Time Range

	22.14.2 LogMiner Use Case Scenarios
	22.14.2.1 Using LogMiner to Track Changes Made by a Specific User
	22.14.2.2 Using LogMiner to Calculate Table Access Statistics

	22.15 Supported Data Types, Storage Attributes, and Database and Redo Log File Versions
	22.15.1 Supported Data Types and Table Storage Attributes
	22.15.2 Database Compatibility Requirements for LogMiner
	22.15.3 Unsupported Data Types and Table Storage Attributes
	22.15.4 Supported Databases and Redo Log File Versions
	22.15.5 SecureFiles LOB Considerations

	23 Using the Metadata APIs
	23.1 Why Use the DBMS_METADATA API?
	23.2 Overview of the DBMS_METADATA API
	23.3 Using the DBMS_METADATA API to Retrieve an Object's Metadata
	23.3.1 How to Use the DBMS_METADATA API to Retrieve Object Metadata
	23.3.2 Typical Steps Used for Basic Metadata Retrieval
	23.3.3 Retrieving Multiple Objects
	23.3.4 Placing Conditions on Transforms
	23.3.5 Accessing Specific Metadata Attributes

	23.4 Using the DBMS_METADATA API to Recreate a Retrieved Object
	23.5 Using the DBMS_METADATA API to Retrieve Collections of Different Object Types
	23.6 Filtering the Return of Heterogeneous Object Types
	23.7 Using the DBMS_METADATA_DIFF API to Compare Object Metadata
	23.8 Performance Tips for the Programmatic Interface of the DBMS_METADATA API
	23.9 Example Usage of the DBMS_METADATA API
	23.9.1 What Does the DBMS_METADATA Example Do?
	23.9.2 Output Generated from the GET_PAYROLL_TABLES Procedure

	23.10 Summary of DBMS_METADATA Procedures
	23.11 Summary of DBMS_METADATA_DIFF Procedures

	24 Original Export
	24.1 What is the Export Utility?
	24.2 Before Using Export
	24.2.1 Preparation Checklist for Using Export
	24.2.2 Running catexp.sql or catalog.sql
	24.2.3 Ensuring Sufficient Disk Space for Export Operations
	24.2.4 Verifying Access Privileges for Export and Import Operations

	24.3 Invoking Export
	24.3.1 Invoking Export as SYSDBA
	24.3.2 Command-Line Entries
	24.3.3 Parameter Files
	24.3.4 Interactive Mode
	24.3.4.1 Restrictions When Using Export's Interactive Method

	24.3.5 Getting Online Help

	24.4 Export Modes
	24.4.1 Table-Level and Partition-Level Export
	24.4.1.1 Table-Level Export
	24.4.1.2 Partition-Level Export

	24.5 Export Parameters
	24.5.1 BUFFER
	24.5.2 COMPRESS
	24.5.3 CONSISTENT
	24.5.4 CONSTRAINTS
	24.5.5 DIRECT
	24.5.6 FEEDBACK
	24.5.7 FILE
	24.5.8 FILESIZE
	24.5.9 FLASHBACK_SCN
	24.5.10 FLASHBACK_TIME
	24.5.11 FULL
	24.5.11.1 Points to Consider for Full Database Exports and Imports

	24.5.12 GRANTS
	24.5.13 HELP
	24.5.14 INDEXES
	24.5.15 LOG
	24.5.16 OBJECT_CONSISTENT
	24.5.17 OWNER
	24.5.18 PARFILE
	24.5.19 QUERY
	24.5.19.1 Restrictions When Using the QUERY Parameter

	24.5.20 RECORDLENGTH
	24.5.21 RESUMABLE
	24.5.22 RESUMABLE_NAME
	24.5.23 RESUMABLE_TIMEOUT
	24.5.24 ROWS
	24.5.25 STATISTICS
	24.5.26 TABLES
	24.5.27 TABLESPACES
	24.5.28 TRANSPORT_TABLESPACE
	24.5.29 TRIGGERS
	24.5.30 TTS_FULL_CHECK
	24.5.31 USERID (username/password)
	24.5.32 VOLSIZE

	24.6 Example Export Sessions
	24.6.1 Example Export Session in Full Database Mode
	24.6.2 Example Export Session in User Mode
	24.6.3 Example Export Sessions in Table Mode
	24.6.3.1 Example 1: DBA Exporting Tables for Two Users
	24.6.3.2 Example 2: User Exports Tables That He Owns
	24.6.3.3 Example 3: Using Pattern Matching to Export Various Tables

	24.6.4 Example Export Session Using Partition-Level Export
	24.6.4.1 Example 1: Exporting a Table Without Specifying a Partition
	24.6.4.2 Example 2: Exporting a Table with a Specified Partition
	24.6.4.3 Example 3: Exporting a Composite Partition

	24.7 Warning, Error, and Completion Messages
	24.7.1 Log File
	24.7.2 Warning Messages
	24.7.3 Nonrecoverable Error Messages
	24.7.4 Completion Messages

	24.8 Exit Codes for Inspection and Display
	24.9 Conventional Path Export Versus Direct Path Export
	24.10 Starting a Direct Path Export
	24.10.1 Security Considerations for Direct Path Exports
	24.10.2 Performance Considerations for Direct Path Exports
	24.10.3 Restrictions for Direct Path Exports

	24.11 Network Considerations for Original Oracle Data Pump Export
	24.11.1 Transporting Export Files Across a Network
	24.11.2 Exporting with Oracle Net

	24.12 Character Set and Globalization Support Considerations
	24.12.1 User Data
	24.12.1.1 Effect of Character Set Sorting Order on Conversions

	24.12.2 Data Definition Language (DDL)
	24.12.3 Single-Byte Character Sets and Export and Import
	24.12.4 Multibyte Character Sets and Export and Import

	24.13 Using Instance Affinity with Export and Import
	24.14 Considerations When Exporting Database Objects
	24.14.1 Exporting Sequences
	24.14.2 Exporting LONG and LOB Data Types
	24.14.3 Exporting Foreign Function Libraries
	24.14.4 Exporting Offline Locally-Managed Tablespaces
	24.14.5 Exporting Directory Aliases
	24.14.6 Exporting BFILE Columns and Attributes
	24.14.7 Exporting External Tables
	24.14.8 Exporting Object Type Definitions
	24.14.9 Exporting Nested Tables
	24.14.10 Exporting Advanced Queue (AQ) Tables
	24.14.11 Exporting Synonyms
	24.14.12 Possible Export Errors Related to Java Synonyms
	24.14.13 Support for Fine-Grained Access Control

	24.15 Transportable Tablespaces
	24.16 Exporting From a Read-Only Database
	24.17 Using Export and Import to Partition a Database Migration
	24.17.1 Advantages of Partitioning a Migration
	24.17.2 Disadvantages of Partitioning a Migration
	24.17.3 How to Use Export and Import to Partition a Database Migration

	24.18 Using Different Releases of Export and Import
	24.18.1 Restrictions When Using Different Releases of Export and Import
	24.18.2 Examples of Using Different Releases of Export and Import

	25 Original Import
	25.1 What Is the Import Utility?
	25.2 Table Objects: Order of Import
	25.3 Before Using Import
	25.3.1 Overview of Import Preparation
	25.3.2 Running catexp.sql or catalog.sql
	25.3.3 Verifying Access Privileges for Import Operations
	25.3.3.1 Importing Objects Into Your Own Schema
	25.3.3.2 Importing Grants
	25.3.3.3 Importing Objects Into Other Schemas
	25.3.3.4 Importing System Objects

	25.3.4 Processing Restrictions

	25.4 Importing into Existing Tables
	25.4.1 Manually Creating Tables Before Importing Data
	25.4.2 Disabling Referential Constraints
	25.4.3 Manually Ordering the Import

	25.5 Effect of Schema and Database Triggers on Import Operations
	25.6 Invoking Import
	25.6.1 Command-Line Entries
	25.6.2 Parameter Files
	25.6.3 Interactive Mode
	25.6.4 Invoking Import As SYSDBA
	25.6.5 Getting Online Help

	25.7 Import Modes
	25.8 Import Parameters
	25.8.1 BUFFER
	25.8.2 COMMIT
	25.8.3 COMPILE
	25.8.4 CONSTRAINTS
	25.8.5 DATA_ONLY
	25.8.6 DATAFILES
	25.8.7 DESTROY
	25.8.8 FEEDBACK
	25.8.9 FILE
	25.8.10 FILESIZE
	25.8.11 FROMUSER
	25.8.12 FULL
	25.8.12.1 Points to Consider for Full Database Exports and Imports

	25.8.13 GRANTS
	25.8.14 HELP
	25.8.15 IGNORE
	25.8.16 INDEXES
	25.8.17 INDEXFILE
	25.8.18 LOG
	25.8.19 PARFILE
	25.8.20 RECORDLENGTH
	25.8.21 RESUMABLE
	25.8.22 RESUMABLE_NAME
	25.8.23 RESUMABLE_TIMEOUT
	25.8.24 ROWS
	25.8.25 SHOW
	25.8.26 SKIP_UNUSABLE_INDEXES
	25.8.27 STATISTICS
	25.8.28 STREAMS_CONFIGURATION
	25.8.29 STREAMS_INSTANTIATION
	25.8.30 TABLES
	25.8.30.1 Table Name Restrictions

	25.8.31 TABLESPACES
	25.8.32 TOID_NOVALIDATE
	25.8.33 TOUSER
	25.8.34 TRANSPORT_TABLESPACE
	25.8.35 TTS_OWNERS
	25.8.36 USERID (username/password)
	25.8.37 VOLSIZE

	25.9 Example Import Sessions
	25.9.1 Example Import of Selected Tables for a Specific User
	25.9.2 Example Import of Tables Exported by Another User
	25.9.3 Example Import of Tables from One User to Another
	25.9.4 Example Import Session Using Partition-Level Import
	25.9.4.1 Example 1: A Partition-Level Import
	25.9.4.2 Example 2: A Partition-Level Import of a Composite Partitioned Table
	25.9.4.3 Example 3: Repartitioning a Table on a Different Column

	25.9.5 Example Import Using Pattern Matching to Import Various Tables

	25.10 Exit Codes for Inspection and Display
	25.11 Error Handling During an Import
	25.11.1 Row Errors
	25.11.1.1 Failed Integrity Constraints
	25.11.1.2 Invalid Data

	25.11.2 Errors Importing Database Objects
	25.11.2.1 Object Already Exists
	25.11.2.2 Sequences
	25.11.2.3 Resource Errors
	25.11.2.4 Domain Index Metadata

	25.12 Table-Level and Partition-Level Import
	25.12.1 Guidelines for Using Table-Level Import
	25.12.2 Guidelines for Using Partition-Level Import
	25.12.3 Migrating Data Across Partitions and Tables

	25.13 Controlling Index Creation and Maintenance
	25.13.1 Delaying Index Creation
	25.13.2 Index Creation and Maintenance Controls
	25.13.2.1 Example of Postponing Index Maintenance

	25.14 Network Considerations for Using Oracle Net with Original Import
	25.15 Character Set and Globalization Support Considerations
	25.15.1 User Data
	25.15.1.1 Effect of Character Set Sorting Order on Conversions

	25.15.2 Data Definition Language (DDL)
	25.15.3 Single-Byte Character Sets
	25.15.4 Multibyte Character Sets

	25.16 Using Instance Affinity
	25.17 Considerations When Importing Database Objects
	25.17.1 Importing Object Identifiers
	25.17.2 Importing Existing Object Tables and Tables That Contain Object Types
	25.17.3 Importing Nested Tables
	25.17.4 Importing REF Data
	25.17.5 Importing BFILE Columns and Directory Aliases
	25.17.6 Importing Foreign Function Libraries
	25.17.7 Importing Stored Procedures, Functions, and Packages
	25.17.8 Importing Java Objects
	25.17.9 Importing External Tables
	25.17.10 Importing Advanced Queue (AQ) Tables
	25.17.11 Importing LONG Columns
	25.17.12 Importing LOB Columns When Triggers Are Present
	25.17.13 Importing Views
	25.17.14 Importing Partitioned Tables

	25.18 Support for Fine-Grained Access Control
	25.19 Snapshots and Snapshot Logs
	25.19.1 Snapshot Log
	25.19.2 Snapshots
	25.19.2.1 Importing a Snapshot
	25.19.2.2 Importing a Snapshot into a Different Schema

	25.20 Transportable Tablespaces
	25.21 Storage Parameters
	25.21.1 The OPTIMAL Parameter
	25.21.2 Storage Parameters for OID Indexes and LOB Columns
	25.21.3 Overriding Storage Parameters

	25.22 Read-Only Tablespaces
	25.23 Dropping a Tablespace
	25.24 Reorganizing Tablespaces
	25.25 Importing Statistics
	25.26 Using Export and Import to Partition a Database Migration
	25.26.1 Advantages of Partitioning a Migration
	25.26.2 Disadvantages of Partitioning a Migration
	25.26.3 How to Use Export and Import to Partition a Database Migration

	25.27 Tuning Considerations for Import Operations
	25.27.1 Changing System-Level Options
	25.27.2 Changing Initialization Parameters
	25.27.3 Changing Import Options
	25.27.4 Dealing with Large Amounts of LOB Data
	25.27.5 Dealing with Large Amounts of LONG Data

	25.28 Using Different Releases of Export and Import
	25.28.1 Restrictions When Using Different Releases of Export and Import
	25.28.2 Examples of Using Different Releases of Export and Import

	Part V Appendices
	A Instant Client for SQL*Loader, Export, and Import
	A.1 What is the Tools Instant Client?
	A.2 Choosing Which Instant Client to Install
	A.3 Installing Instant Client Tools by Downloading from OTN
	A.3.1 Installing Instant Client and Instant Client Tools RPM Packages for Linux
	A.3.2 Installing Instant Client and Instant Client Tools from Unix or Windows Zip Files

	A.4 Installing Tools Instant Client from the Client Release Media
	A.5 List of Oracle Instant Client Tools Files
	A.6 Configuring Tools Instant Client Package
	A.7 Connecting to a Database with the Tools Instant Client Package
	A.8 Uninstalling Tools Instant Client Package and Instant Client

	B SQL*Loader Syntax Diagrams

