
Oracle® Fusion Middleware
Developing CommonJ Applications for Oracle
WebLogic Server

F18336-01
March 2020

Oracle Fusion Middleware Developing CommonJ Applications for Oracle WebLogic Server,

F18336-01

Copyright © 2007, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility v

Conventions v

1 Introduction and Roadmap

Document Scope and Audience 1-1

Guide to This Document 1-1

New and Changed Features in this Release 1-1

2 Using the Timer and Work Manager API

Overview 2-1

Timer API Overview 2-2

TimerManager Interface 2-2

Creating and Configuring a TimerManager 2-2

Suspending a TimerManager 2-2

Stopping a TimerManager 2-2

The TimerListener Interface 2-2

The Timer Interface 2-3

Using the Timer API 2-3

Implementing the Timer API 2-3

Timer Manager Example 2-4

Using the Job Scheduler 2-4

Life Cycle of Timers 2-5

Implementing and Configuring Job Schedulers 2-5

Database Configuration 2-6

Data Source Configuration 2-6

Leasing 2-7

JNDI Access within a Job Scheduler 2-7

Canceling Jobs 2-7

Debugging 2-7

Unsupported Methods and Interfaces 2-8

iii

Work Manager API 2-8

Work Manager Interfaces 2-8

Work Manager Deployment 2-9

Automatic Binding of the Default CommonJ Work Manager 2-10

Work Manager Example 2-10

iv

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing CommonJ Applications for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and audience for this guide—Developing
CommonJ Applications for Oracle WebLogic Server. This guide describes the Timer
and Work Manager API and demonstrates how to implement it within an application.
This chapter includes the following sections:

• Document Scope and Audience

• Guide to This Document

• New and Changed Features in this Release

Document Scope and Audience
This document describes the Timer and Work Manager API. This document is a
resource for system administrators and operators responsible for monitoring and
managing a WebLogic Server installation. It is relevant to all phases of a software
project, from development through test and production phases.

Guide to This Document
This document is organized as follows:

• This chapter, "Introduction and Roadmap," provides a roadmap for this guide and
describes the audience for this guide.

• Using the Timer and Work Manager API, introduces and describes the Timer and
Work Manager API, often referred to as CommonJ.

New and Changed Features in this Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

1-1

2
Using the Timer and Work Manager API

This chapter provides an overview of the Timer and Work Manager API and
demonstrates how to implement it within an application.
This chapter includes the following sections:

• Overview

• Timer API Overview

• Using the Timer API

• Using the Job Scheduler

• Work Manager API

• Work Manager Example

Overview
The Timer and Work Manager API is defined in a specification created jointly by
Oracle and IBM. This API enables concurrent programming of EJBs and Servlets
within a Java EE application. This API is often referred to as CommonJ.

The CommonJ API contains the following components:

• Timer API

The Timer API allows applications to schedule and receive timer notification
callbacks for a specific listener defined within an application. Timers allow you to
schedule and perform work at specific times or intervals. See Timer API Overview.

You implement this API by importing the commonj.timer package.

• Work Manager API

The Work Manager API allows an application to prioritize work within an EJB or
servlet. Applications can programmatically execute multiple work items within a
container. See Work Manager API.

You implement this API by importing the commonj.work package.

In addition to the CommonJ Work Manager API, WebLogic Server includes server-
level Work Managers that provide prioritization and thread management. These
can be configured globally or for a specific module in an application.

Although commonj.timer and commonj.work are part of the same API, each provides
different functionality. Which one you implement depends on the specific needs of your
application. The CommonJ Timer API is ideal for scheduling work at specific intervals;
for example, when you know that a certain job should run at a specific time. The
CommonJ Work API is ideal for handling work based on priority. For example, you
may not be able to predict exactly when a specific job will occur, but when it does you
want it to be given a higher (or lower) priority.

The following sections describe the CommonJ APIs in detail.

2-1

Timer API Overview
The Timer API consist of three interfaces:

• TimerManager

• TimerListener

• Timer

The TimerManager interface provides the framework for creating and using timers
within a managed environment. The TimerListener receives timer notifications. The
TimerManager.schedule method is used to schedule the TimerListener to run at a
specific time or interval.

For a detailed description of how to implement Timers, see Using the Timer API.

TimerManager Interface
The TimerManager interface provides the general scheduling framework within an
application. A managed environment can support multiple TimerManager instances.
Within an application you can have multiple instances of a TimerManager.

Creating and Configuring a TimerManager
A TimerManager is configured during deployment by means of deployment descriptors.
The TimerManager definition may also contain additional implementation-specific
configuration information.

Once a TimerManager is defined in a deployment descriptor, instances of it can be
accessed using a JNDI lookup in the local Java environment. Each invocation of the
JNDI lookup() on a TimerManager returns a new logical instance of a TimerManager.

The TimerManager interface is thread-safe.

For more information about using JNDI, see Developing JNDI Applications for Oracle
WebLogic Server.

Suspending a TimerManager
You can suspend and resume a TimerManager using the suspend and resume
methods. When a TimerManager is suspended, all pending timers are deferred until the
TimerManager is resumed.

Stopping a TimerManager
You can stop a TimerManager using the stop method. After the stop method is
invoked, all active Timers are stopped and the TimerManager instance stops
monitoring all TimerListener instances.

The TimerListener Interface
All applications using the commonj.timers package are required to implement the
TimerListener interface.

Chapter 2
Timer API Overview

2-2

The Timer Interface
Instances of the Timer interface are returned when timers are scheduled through the
TimerManager.

Using the Timer API
This section explains the steps required for using the Timer API within an application.

Before deploying your application, ensure that you have created a deployment
descriptor that contains a resource reference for the Timer Manager.

This allows the TimerManager to be accessed using JNDI. For more information about
JNDI lookup, see Developing JNDI Applications for Oracle WebLogic Server.

Implementing the Timer API
To implement the Timer API, complete the following steps:

1. Import the commonj.timers.* packages.

2. Create an InitialContext that allows the TimerManager to be looked up in JNDI.
For example:

InitialContext inctxt = new InitialContext();

See Developing JNDI Applications for Oracle WebLogic Server for more
information about JNDI lookup.

3. Create a new TimerManager based on the JNDI lookup of the TimerManager. For
example:

TimerManager mgr = (TimerManager)ctx.lookup('java:comp/env/timer/MyTimer');

In this statement, the result of the JNDI lookup is cast to a TimerManager.

4. Implement a TimerListener to receive timer notifications. For example:

TimerListener listener = new StockQuoteTimerListener('abc', 'example');

5. Invoke the TimerManager.schedule method. For example:

mgr.schedule(listener, 0, 1000*60)

The schedule method returns a Timer object.

6. Implement the timerExpired method. For example:

public void timerExpired(Timer timer) {
 //Business logic is executed
 //in this method
}

Implementing the Timer API for cluster-wide timers has additional requirements,
described in Life Cycle of Timers.

Chapter 2
Using the Timer API

2-3

Timer Manager Example
package examples.servlets;
import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import commonj.timers.*;

/**
* TimerServlet demonstrates a simple use of commonj timers
*/
public class TimerServlet extends HttpServlet {

/**
 * A very simple implementation of the service method,
 * which schedules a commonj timer.
 */
 public void service(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 try {
 InitialContext ic = new InitialContext();
 TimerManager tm = (TimerManager)ic.lookup
 ("java:comp/env/tm/default");
 // Execute timer every 10 seconds starting immediately
 tm.schedule (new MyTimerListener(), 0, 10*1000);
 out.println("<h4>Timer scheduled!</h4>");
 } catch (NamingException ne) {
 ne.printStackTrace();
 out.println("<h4>Timer schedule failed!</h4>");
 }
 }

 private static class MyTimerListener implements TimerListener {
 public void timerExpired(Timer timer) {
 System.out.println("timer expired called on " + timer);
 // some useful work here ...
 // let's just cancel the timer
 System.out.println("cancelling timer ...");
 timer.cancel();
 }
 }
}

Using the Job Scheduler
This section explains how to use the Job Scheduler functionality. The Job Scheduler
allows you to implement the commonj.timer API within a clustered environment.

Chapter 2
Using the Job Scheduler

2-4

The Job Scheduler is essentially an implementation of the commonj.timer API
package that can be used within a cluster. In this context, a job is defined as a
commonj.timers.TimerListener instance that is submitted to the Job Scheduler for
execution.

This section includes the following topics:

• Life Cycle of Timers

• Implementing and Configuring Job Schedulers

• Unsupported Methods and Interfaces

Life Cycle of Timers
When you implement the commonj.timer API within an application, you can configure
two possible life cycles for a timer:

• Local timer

A local timer is scheduled within a single server JVM and is handled within this
JVM throughout its life cycle. The timer continues running as long as the JVM is
running and fails when the JVM exits. The application is responsible for
rescheduling the timer after server startup.

This is the basic implementation of the commonj.timers package.

• Cluster-wide timer

A cluster-wide timer is aware of the other JVMs containing each server within the
cluster and is therefore able to perform load balancing and failover. The life cycle
of a cluster-wide timer is not bound to the server that created it, but continues to
function throughout the life cycle of the cluster. If at least one cluster member is
alive, the timer continues to function. This functionality is referred to as the Job
Scheduler.

Implementing the Timer API for a Job Scheduler has the following requirements in
addition to those listed in Implementing the Timer API:

– The Timer Listener class must be serializable.

– The Timer Listener class must be present in the server system classpath.

– The minimum time for recurring execution of a timer is 30 seconds because
Job Schedulers pick up timers for execution every 30 seconds.

Each timer has its own advantages and disadvantages. Local timers can process jobs
with much smaller time intervals between jobs. Due to the persistence requirements
within a cluster, Job Schedulers cannot handle jobs with as much precision. On the
other hand, Job Schedulers are better suited for tasks that must be performed even if
the initial server that created the task has failed.

Implementing and Configuring Job Schedulers
This section describes the basic procedure for implementing Job Schedulers within an
application and for configuring your WebLogic Server environment to utilize them. The
following topics are included:

• Database Configuration

• Data Source Configuration

Chapter 2
Using the Job Scheduler

2-5

• Leasing

• JNDI Access within a Job Scheduler

• Canceling Jobs

• Debugging

Database Configuration
To maintain persistence and make timers cluster-aware, Job Schedulers require a
database connection. The Job Scheduler functionality supports the same databases
that are supported by server migration.

For convenience, you can use the same database used for session persistence,
server migration, and so on. For example, see Configure server migration in a cluster
in the Oracle WebLogic Server Administration Console Online Help for information
about how to create or select a data source for server migration.

In the database, you create a table named WEBLOGIC_TIMERS. Schemas for creating
this table are in the following location:

WL_HOME/server/db/dbname/scheduler.ddl

In the preceding path, dbname represents the name of the database.

Note:

WEBLOGIC_TIMERS table can also be configured by using ClusterMBean
attribute jobSchedulerTableName.

Data Source Configuration
After you create a table with the required schema, you must define a data source that
is referenced from within the cluster configuration. Job Scheduler functionality is
available only if a valid data source is defined in the
ClusterMBean.DataSourceForJobScheduler attribute. For information about how to
use the WebLogic Server Administration Console to configure this attribute, see
Configure a data source for a job scheduler in the Oracle WebLogic Server
Administration Console Online Help.

The following config.xml excerpt shows how this is defined:

<domain>
...
 <cluster>
 <name>Cluster-0</name>
 <multicast-address>239.192.0.0</multicast-address>
 <multicast-port>7466</multicast-port>
 <data-source-for-job-scheduler>JDBC Data Source-0</data-source-for-job-
scheduler>
 </cluster>
...
 <jdbc-system-resource>
 <name>JDBC Data Source-0</name>
 <target>myserver,server-0</target>

Chapter 2
Using the Job Scheduler

2-6

 <descriptor-file-name>jdbc/JDBC_Data_Source-0-3407-jdbc.xml</descriptor-file-name>
 </jdbc-system-resource>
</domain>

Leasing
Leasing must be enabled for Job Schedulers. You can use either high-availability
database leasing or non-database consensus leasing. When using high-availability
database leasing, you must create the leasing table in the database.

Schemas for creating this table are in the following location:

WL_HOME/server/db/dbname/leasing.ddl

In the preceding path, dbname represents the name of the database.

See Leasing in Administering Clusters for Oracle WebLogic Server.

JNDI Access within a Job Scheduler
The procedure for performing JNDI lookup within a clustered timer is different from that
used in the general commonj.timer API. The following code snippet shows how to cast
a JNDI lookup to a TimerManager.

InitialContext ic = new InitialContext();
commonj.timers.TimerManager jobScheduler =(common.timers.TimerManager)ic.lookup
 ("weblogic.JobScheduler");
commonj.timers.TimerListener timerListener = new MySerializableTimerListener();
jobScheduler.schedule(timerListener, 0, 30*1000);
// execute this job every 30 seconds

Canceling Jobs
You can cancel jobs programmatically or by using the WebLogic Server Administration
Console.

To cancel a job programmatically, invoke the cancel method of the job's
corresponding JobRuntimeMBean. You can access a JobRuntimeMBean using either
of the following ways:

• Invoke JobSchedulerRuntimeMBean.getJob(id) with the ID of a scheduled job. To
get the ID, invoke the JobScheduler.schedule method to return a Timer object,
then use the Timer's toString method to return the ID.

• Invoke JobSchedulerRuntimeMBean.getExecutedJobs() to return an array of
JobRunTimes for all jobs that have been executed at least once.

You cannot invoke the cancel method to cancel a scheduled job that has not executed
at least once.

For information about how to use the WebLogic Server Administration Console to
cancel jobs, see Cancel jobs in Oracle WebLogic Server Administration Console
Online Help.

Debugging
The following debugging flags enable more verbose output:

-Dweblogic.debug.DebugSingletonServices=true -Dweblogic.JobScheduler=true

Chapter 2
Using the Job Scheduler

2-7

Unsupported Methods and Interfaces
The following methods and interfaces in the commonj.timer package are not
supported in the Job Scheduler environment:

• CancelTimerListener interface

• StopTimerListener interface

• The following methods of the TimerManager interface:

– suspend

– resume

– scheduleAtFixedRate

– stop

– waitForStop

– waitForSuspend

Work Manager API
The Work Manager API, commonj.work, provides a set of interfaces that allows an
application to execute multiple work items concurrently within a container.

Essentially this API provides a container-managed alternative to the
java.lang.Thread API. The latter should not be used within applications that are
hosted in a managed Java EE environment. In such environments, the Work Manager
API is a better choice because it allows the container to have full visibility and control
over all executing threads.

Note:

The Work Manager API provides no failover or persistence mechanisms. If
the Managed Server environment fails or is shut down, any current work is
lost.

Work Manager Interfaces
This section summarizes the interfaces in the Work Manager API. For details about
using these interfaces, see commonj.work in the Java API Reference for Oracle
WebLogic Server.

The Work Manager API contains the following interfaces:

• WorkManager - Provides a set of scheduling methods that are used to schedule
work for execution.

A WorkManager is defined by system administrators at the server level. A
WorkManager instance is obtained by performing a JNDI lookup. A managed
environment can support multiple WorkManager instances. You configure

Chapter 2
Work Manager API

2-8

WorkManagers during deployment as resource-refs. See Work Manager
Deployment.

At the application level, each instance of WorkManager returns a WorkItem. For
more information about implementing a WorkManager within an application, see
WorkManager in the Java API Reference for Oracle WebLogic Server.

For information about JNDI, see Developing JNDI Applications for Oracle
WebLogic Server.

• Work - Allows you to run application code asynchronously. By creating a class
that implements this interface, you can create blocks of code that can be
scheduled to run at a specific time or at defined intervals. In other words, this is
the "work" that is handled within the Work Manager API.

• WorkItem - Determines the status of a completed Work instance. A WorkItem is
returned by a WorkManager after a Work instance has been submitted to that
WorkManager.

See Work in the Java API Reference for Oracle WebLogic Server.

• WorkListener - Provides communication between the WorkManager and the
scheduled work defined within the Work instance. WorkListener is a callback
interface.

You can use WorkListener to determine the current status of the Work item. See
WorkListener in the Java API Reference for Oracle WebLogic Server.

Note:

WorkListener instances are always executed in the same JVM as the
original thread used to schedule the Work by means of the WorkManager.

• WorkEvent - A WorkEvent is sent to a WorkListener as Work is processed by a
WorkManager.

See WorkEvent in the Java API Reference for Oracle WebLogic Server.

• RemoteWorkItem - The RemoteWorkItem interface is an extension of the WorkItem
interface that allows work to be executed remotely. This interface allows
serializable work to be executed on any member of a cluster.

See RemoteWorkItem in the Java API Reference for Oracle WebLogic Server.

Work Manager Deployment
Work Managers are defined at the server level by means of a resource-ref in the
appropriate deployment descriptor. This can be web.xml or ejb-jar.xml, among
others.

The following deployment descriptor snippet shows the configuration of a
WorkManager:

...
<resource-ref>
 <res-ref-name>wm/MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>

Chapter 2
Work Manager API

2-9

 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
...

Note:

The recommended prefix for the JNDI namespace for WorkManager objects is
java:comp/env/wm.

Automatic Binding of the Default CommonJ Work Manager
Automatic binding of the default CommonJ Work Manager to java:comp/env/wm/
default has been removed in WebLogic Server 12.2.1.

If you have an application that attempts to use the default CommonJ Work Manager,
you can either:

• Add a resource-ref entry for wm/default in a deployment descriptor. For example:

<resource-ref>
 <res-ref-name>wm/default</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

• Have the CommonJ Work Manager injected into the application component. For
example:

@Resource commonj.work.WorkManager myWorkManager;

Work Manager Example
The following example shows using a CommonJ Work Manager within an HTTP
servlet.

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import weblogic.work.ExecuteThread;
import commonj.work.WorkManager;
import commonj.work.Work;
import commonj.work.WorkException;

public class HelloWorldServlet extends HttpServlet {

 public void service(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

Chapter 2
Work Manager Example

2-10

 try {
 InitialContext ic = new InitialContext();
 System.out.println("## [servlet] executing in: " +
 ((ExecuteThread)Thread.currentThread()).getWorkManager()
 .getName());
 WorkManager wm = (WorkManager)ic.lookup
 ("java:comp/env/foo-servlet");
 System.out.println("## got Java EE work manager !!!!");
 wm.schedule(new Work(){
 public void run() {
 ExecuteThread th = (ExecuteThread) Thread.currentThread();
 System.out.println("## [servlet] self-tuning workmanager: " +
 th.getWorkManager().getName());
 }
 public void release() {}

 public boolean isDaemon() {return false;}
 });
}
catch (NamingException ne) {
 ne.printStackTrace();}

catch (WorkException e) {
 e.printStackTrace();
}

out.println("<h4>Hello World!</h4>");
// Do not close the output stream - allow the servlet engine to close it
// to enable better performance.
System.out.println("finished execution");}

}

Chapter 2
Work Manager Example

2-11

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	New and Changed Features in this Release

	2 Using the Timer and Work Manager API
	Overview
	Timer API Overview
	TimerManager Interface
	Creating and Configuring a TimerManager
	Suspending a TimerManager
	Stopping a TimerManager

	The TimerListener Interface
	The Timer Interface

	Using the Timer API
	Implementing the Timer API
	Timer Manager Example

	Using the Job Scheduler
	Life Cycle of Timers
	Implementing and Configuring Job Schedulers
	Database Configuration
	Data Source Configuration
	Leasing
	JNDI Access within a Job Scheduler
	Canceling Jobs
	Debugging

	Unsupported Methods and Interfaces

	Work Manager API
	Work Manager Interfaces
	Work Manager Deployment
	Automatic Binding of the Default CommonJ Work Manager

	Work Manager Example

