
Oracle® Fusion Middleware
Using Oracle WebLogic Server Proxy Plug-
Ins

14c (14.1.1.0.0)
F30439-02
October 2022

Oracle Fusion Middleware Using Oracle WebLogic Server Proxy Plug-Ins, 14c (14.1.1.0.0)

F30439-02

Copyright © 2015, 2022, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vii

Diversity and Inclusion vii

Conventions vii

1 Overview of Oracle WebLogic Server Proxy Plug-Ins

What are Oracle WebLogic Server Proxy Plug-Ins? 1-1

Availability of Oracle WebLogic Server Proxy Plug-Ins 1-1

Features of the 14.1.1.0.0 Proxy Plug-Ins 1-2

Support for HTTP/2 Protocol 1-2

Server Push Functionality 1-2

Security Improvements 1-3

Features Inherited from Previous 12c Releases 1-4

2 Installing the Oracle WebLogic Server Proxy Plug-In for Apache HTTP
Server

Installation Prerequisites 2-1

Obtaining the Proxy Plug-Ins 2-1

Java Requirements 2-2

Apache HTTP Server Installation 2-3

Oracle WebLogic Server Installation 2-3

Setting the Environment Variables for Oracle WebLogic Server Proxy Plug-In 2-4

Installing the Oracle WebLogic Server Proxy Plug-In 2-5

Next Steps After Installing Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-Ins 2-7

Third-Party Software Dependencies 2-8

About HTTP Header Case Handling 2-8

About Federal Information Processing Standards 2-9

Unsupported Use Cases 2-9

Support and Patching 2-9

iii

3 Configuring the Oracle WebLogic Server Proxy Plug-In for Apache HTTP
Server

Configuring the Oracle WebLogic Server Proxy Plug-in 3-1

Configuring the httpd.conf File 3-1

Task 1: Configure MIME Requests 3-2

Task 2: Define Additional Parameters for Oracle WebLogic Server Proxy Plug-In 3-3

Task 3: Enable HTTP Tunneling (Optional) 3-3

Task 4: Enable Web Services Atomic Transaction (Optional) 3-3

Task 5: Verify and Apply Your Configuration 3-4

Placing the WebLogic Properties Inside the Location or VirtualHost Blocks 3-4

Example: Configuring the Oracle WebLogic Server Proxy Plug-In 3-5

Including a weblogic.conf File in the httpd.conf File 3-6

Rules for Creating the weblogic.conf Files 3-6

Sample weblogic.conf Configuration Files 3-7

Template for the Apache HTTP Server httpd.conf File 3-9

About WebSocket Proxy Configurations 3-10

Verifying the Log File 3-10

Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In 3-11

Configuring the DMS Metrics for the Oracle WebLogic Server Proxy Plug-In 3-11

Viewing the Performance Metrics for the Oracle WebLogic Server Proxy Plug-In 3-12

DMS State Metrics 3-12

DMS Event Metrics 3-13

DMS PhaseEvent Metrics 3-14

Common Configuration Tasks 3-15

Configuring IPv6 with Proxy Plug-Ins 3-15

Understanding Connection Errors and Clustering Failover 3-16

Possible Causes of Connection Failures 3-17

Tips for Reducing CONNECTION_REFUSED Errors 3-17

Failover with a Single, Non-Clustered Oracle WebLogic Server 3-17

The Dynamic Server List 3-17

Failover, Cookies, and HTTP Sessions 3-18

Failover Behavior When Using Firewalls and Load Directors 3-19

Tuning Apache HTTP Server for High Throughput for WebSocket Upgrade Requests 3-20

Deprecated Directives for Apache HTTP Server 3-20

4 Configuring Security

Using SSL with Proxy Plug-Ins 4-1

Configuring Libraries for SSL 4-2

Configuring Environment Variables 4-3

iv

Configuring a Proxy Plug-In for One-Way SSL 4-3

Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle WebLogic Server 4-5

Replacing Certificates Signed Using the MD5 Algorithm 4-6

Checking the Certificate Signing Algorithm 4-6

Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm 4-8

Replacing the Existing Certificates with SHA-2 Signed Certificates 4-15

Certificates Signed with MD5 Algorithm Not Supported 4-21

Using Certificates Signed with RSASSA-PSS Signature Algorithm 4-21

Configuring Perimeter Authentication 4-22

5 Parameters for Oracle WebLogic Server Proxy Plug-Ins

General Parameters for Oracle WebLogic Server Proxy Plug-Ins 5-1

ConnectRetrySecs 5-2

ConnectTimeoutSecs 5-2

DebugConfigInfo 5-3

DefaultFileName 5-3

DynamicServerList 5-3

ErrorPage 5-4

FileCaching 5-4

Location of POST Data Files 5-4

Idempotent 5-5

KeepAliveEnabled 5-5

KeepAliveSecs 5-5

MatchExpression 5-5

MaxPostSize 5-7

MaxSkipTime 5-7

PathPrepend 5-7

PathTrim 5-7

QueryFromRequest 5-8

WebLogicCluster 5-8

WebLogicHost 5-9

WebLogicPort 5-9

WLCookieName 5-9

WLDNSRefreshInterval 5-9

WLExcludePathOrMimeType 5-10

WLForwardUriUnparsed 5-10

WLIOTimeoutSecs 5-10

WLLocalIP 5-10

WLMaxWebSocketClients 5-10

WLProtocol 5-11

v

WLProxyPassThrough 5-11

WLProxySSL 5-11

WLProxySSLPassThrough 5-12

WLRetryOnTimeout 5-12

WLRetryAfterDroppedConnection 5-12

WLServerInitiatedFailover 5-12

WLSocketTimeoutSecs 5-12

WLSRequest 5-13

WLTempDir 5-13

SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins 5-13

SecureProxy 5-14

WebLogicSSLCiphers 5-14

WebLogicSSLVersion 5-15

WLSSLCheckCn 5-16

WLSSLWallet 5-16

6 Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations

Oracle WebLogic Server Session Issues 6-1

CONNECTION_REFUSED Errors 6-1

NO_RESOURCES Errors 6-2

POST Data Files Issues 6-2

vi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using Oracle WebLogic Server Proxy Plug-Ins.

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of Oracle WebLogic Server Proxy
Plug-Ins

Oracle provides different proxy plug-ins for use with Oracle WebLogic Server.

This chapter includes the following topics:

• What are Oracle WebLogic Server Proxy Plug-Ins?
The Oracle WebLogic Server Proxy Plug-ins allow requests to be proxied from HTTP
Web Server to Oracle WebLogic Server. In this way, proxy plug-ins enable the HTTP
server to communicate with applications deployed on Oracle WebLogic Server.

• Availability of Oracle WebLogic Server Proxy Plug-Ins

• Features of the 14.1.1.0.0 Proxy Plug-Ins
The Oracle WebLogic Server 14.1.1.0 Proxy Plug-ins add support for HTTP/2 and
support for the use of TLS v1.3 with both HTTP/1.1 and HTTP/2 protocols.

• Features Inherited from Previous 12c Releases
In addition to the new features, Oracle WebLogic Server Proxy Plug-ins have also
inherited features from the previous 12c releases.

What are Oracle WebLogic Server Proxy Plug-Ins?
The Oracle WebLogic Server Proxy Plug-ins allow requests to be proxied from HTTP Web
Server to Oracle WebLogic Server. In this way, proxy plug-ins enable the HTTP server to
communicate with applications deployed on Oracle WebLogic Server.

A proxy plug-in enhances an HTTP server installation by allowing Oracle WebLogic Server to
handle requests that require dynamic functionality. In other words, you typically use a proxy
plug-in where the HTTP server serves static pages such as HTML pages, while Oracle
WebLogic Server serves dynamic pages such as HTTP Servlets and Java Server Pages
(JSPs).

Oracle WebLogic Server may be operating in a different process, possibly on a different host.
To the end user—the browser—the HTTP requests delegated to Oracle WebLogic Server still
appear to be coming from the HTTP server.

Availability of Oracle WebLogic Server Proxy Plug-Ins
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins are available for Apache Web Server
2.4.x on Linux systems. For more information, you can download the Oracle WebLogic
Server (14.1.1.0.0) Certification Matrix from the Oracle Fusion Middleware Supported System
Configurations page.
You can download the proxy plug-ins from the Oracle Web Tier Downloads page or the
Software Delivery Cloud as .zip file containing the necessary binary and helper files.

For example, the following directories are included in the proxy plug-in distribution:

• lib/mod_wl_24.so (Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server)

1-1

https://www.oracle.com/docs/tech/middleware/fmw-141100-certmatrix.xlsx
https://www.oracle.com/docs/tech/middleware/fmw-141100-certmatrix.xlsx
https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/webtier-downloads.html
http://edelivery.oracle.com

• lib/*.so (native libraries)

• bin/orapki (orapki tool)

• jlib/*.jar (Java helper libraries for orapki)

For information about installing and configuring the proxy plug-ins for Apache HTTP
Server, see Installing the Oracle WebLogic Server Proxy Plug-In for Apache HTTP
Server and Configuring the Oracle WebLogic Server Proxy Plug-In for Apache HTTP
Server.

Features of the 14.1.1.0.0 Proxy Plug-Ins
The Oracle WebLogic Server 14.1.1.0 Proxy Plug-ins add support for HTTP/2 and
support for the use of TLS v1.3 with both HTTP/1.1 and HTTP/2 protocols.

This section includes the following topics:

• Support for HTTP/2 Protocol

• Security Improvements

Support for HTTP/2 Protocol
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in for Apache HTTP Server on
Linux supports the HTTP/2 protocol.

The HTTP/2 protocol uses a binary framing mechanism to exchange data between the
client and the server. All HTTP/2 communication is split into smaller messages and
frames, each of which is encoded in a binary format. As a result, both client and server
must use the new binary encoding mechanism to understand each other. An HTTP/1.x
client will not understand an HTTP/2-only server, and vice versa.

The HTTP/2 protocol is supported in the proxy plug-ins from 14.1.1.0.0 onwards.
However, the Oracle WebLogic Server Proxy Plug-ins will continue to support
HTTP/1.1 protocol. HTTP/1.1 is the default protocol supported. To use HTTP/2 for
communication, you must configure a new directive called WLProtocol.

Note:

Websocket is not supported over HTTP/2.

• Server Push Functionality
The server push functionality is one of the key features of the HTTP/2 protocol.

Server Push Functionality
The server push functionality is one of the key features of the HTTP/2 protocol.

Accessing websites follows the request and response pattern. A user sends a request
to a remote server. The server responds with the requested content with some delay.
The initial request to a web server is generally for an HTML document. In this
scenario, the server replies with the requested HTML resource. The HTML is then
parsed by the browser, where references to other assets are discovered, such as style
sheets, scripts, and images. Upon their discovery, the browser makes separate

Chapter 1
Features of the 14.1.1.0.0 Proxy Plug-Ins

1-2

requests for those assets, which are then responded to by the server. The problem with this
mechanism is that it forces the user to wait for the browser to discover and retrieve critical
assets until after an HTML document has been downloaded. This delays rendering time and
increases load time.

The server push functionality is a solution to this problem. It lets the server preemptively push
website assets to the client without the user having explicitly asked for them.

For example, consider a website where all pages rely on styles defined in an external style
sheet named styles.css. When the user requests index.html from the server, the
styles.css is sent to the user just after the server starts sending the response for
index.html. Rather than waiting for the server to send index.html and then waiting for the
browser to request and receive styles.css, the user only has to wait for the server to
respond with both index.html and styles.css on the initial request. This decreases the
rendering time of the page.

To enable the server push functionality, configure the H2Push directive and use link headers
either in the web server configuration file or in the response. For configuring the H2Push
directive, see H2Push Directive in the Apache HTTP Server Documentation.

The Oracle WebLogic Server Proxy Plug-ins support link headers created using the
Link.Builder API.

Example of link header in the web server configuration file:

H2Push on
<Location /xxx.html>
 Header add Link "</xxx.css>;rel=preload"
 Header add Link "</xxx.js>;rel=preload"
</Location>

Example of link header in the response:

</xxx.css>;rel="preload";type="text/css"

To enable the server push functionality, set H2Push to on in the httpd.conf file if link header
is sent in the response, as given below:

-----config section---
H2Push on

Note:

PushBuilder from HTTPServeletRequest, and using 103 early hints along with the
link headers are NOT supported.

Security Improvements
Support for TLSv1.3 Protocol

The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins support the TLSv1.3 protocol.

Chapter 1
Features of the 14.1.1.0.0 Proxy Plug-Ins

1-3

https://httpd.apache.org/docs/2.4/mod/mod_http2.html#h2push

Use the WebLogicSSLVersion directive to specify the SSL protocol version to be used
for communication between the proxy plug-in and Oracle WebLogic Server.

The support for TLSv1.3 protocol includes the following features:

• Support for new TLSv1.3 cipher suites. See WebLogicSSLCiphers.

• Support for certificates signed with the RSASSA-PSS signature algorithm. See
Using Certificates Signed with RSASSA-PSS Signature Algorithm.

Removal of TLSv1.1 Protocol From the Default List

In the 14.1.1.0.0 version of the Oracle WebLogic Server Proxy Plug-ins, the TLSv1.1
protocol is removed from the default list of supported protocols. If you want to use the
TLSv1.1 protocol, it must be explicitly added to the configuration using the
WebLogicSSLVersion directive. A warning message is logged if you configure the
TLSv1.1 protocol.

TLS Ciphers

A few ciphers are deprecated in 14.1.1.0.0 and are removed from the list of supported
ciphers. If you want to use the deprecated ciphers for handshake between the web
server and the Oracle WebLogic Server, you must explicitly add them to the
configuration using the WebLogicSSLCiphers directive. A warning message is
generated if any cipher from the deprecated list is used.

• Default list of ciphers for TLSv1.3:

– TLS_AES_256_GCM_SHA384

– TLS_AES_128_GCM_SHA256

• Default list of ciphers for TLSv1.2:

– ECDHE-RSA-AES256-GCM-SHA384

– ECDHE-RSA-AES128-GCM-SHA256

– ECDHE-ECDSA-AES256-GCM-SHA384

– ECDHE-ECDSA-AES128-GCM-SHA256

• Deprecated list of ciphers in 14.1.1.0.0:

– AES128-GCM-SHA256

– AES256-GCM-SHA384

– AES128-SHA256

– AES256-SHA256

– AES256-SHA

– AES128-SHA

Features Inherited from Previous 12c Releases
In addition to the new features, Oracle WebLogic Server Proxy Plug-ins have also
inherited features from the previous 12c releases.

The inherited features include the following:

Chapter 1
Features Inherited from Previous 12c Releases

1-4

• The Oracle WebLogic Server Proxy Plug-in has removed support for TLS1.0 SSL
protocol. Therefore, the proxy plug-in fails to connect to Oracle WebLogic Server when
you configure TLS1.0 SSL protocol for SSL communication.

• The proxy plug-in considers MD5 signed certificates as insecure. Therefore, these
certificates are disabled by default. If you are using SSL to connect to Oracle WebLogic
Server, and if the wallet contains any certificates signed with MD5, replace them by
SHA-2 signed certificates. Otherwise, the server fails to start. For more information about
MD5 signed certificates, see Replacing Certificates Signed Using the MD5 Algorithm.

• The proxy plug-in supports Apache HTTP Server 2.4.x Web Server through the
mod_wl_24.so proxy plug-in module. So, you will need to load the mod_wl_24.so module
with Apache HTTP Server 2.4.x. This is typically done by editing the Apache HTTP
Server configuration file(s).

• The proxy plug-in does not support Apache HTTP Server 2.2.x through the mod_wl.so
Oracle WebLogic Server module. Hence, this module has been removed from the proxy
plug-in distribution.

• Oracle WebLogic Server 12.1.2 supports deploying WebSocket applications. Oracle
WebLogic Server 12.2.1.x Proxy Plug-in for Apache HTTP Server 2.4.x can now handle
WebSocket connection upgrade requests and effectively proxy to WebSocket
applications hosted within Oracle WebLogic Server 12.1.2 and later. See About
WebSocket Proxy Configurations.

• The proxy plug-in now includes the following Oracle WebLogic Server Proxy Plug-in
configuration parameters:

– WLMaxWebSocketClients: Limits the number of active WebSocket connections at
any instant of time. The default value is Half of MaxClients (or
MaxRequestWorkers).

– WebLogicSSLVersion: Chooses the SSL protocol version to use while
communicating HTTPS requests between Oracle WebLogic Server Proxy Plug-ins
and WebLogic Managed Server(s)/ Cluster(s).

• The proxy plug-in provides support for monitoring the performance of Oracle WebLogic
Server Proxy Plug-in where a request is proxied to the back-end Oracle WebLogic
Server. See Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In .

• The proxy plug-in for Apache HTTP Server Web Server now logs the debug information
to the respective web server error log files. Hence, the proxy plug-in parameters specific
to the debug logs (Debug and WLLogFile) have been deprecated.

• The proxy plug-ins improve performance using a pool of connections from the plug-in to
Oracle WebLogic Server. The proxy plug-in implements HTTP 1.1 keep-alive connections
between the proxy plug-in and Oracle WebLogic Server by reusing the same connection
for subsequent requests from the same proxy plug-ins. If the connection is inactive for
more than 20 seconds, (or a user-defined amount of time), the connection is closed. See
KeepAliveEnabled.

Note:

The web server manages client connections.

• The proxy plug-in proxies requests to Oracle WebLogic Server based on a configuration
that you specify.

Chapter 1
Features Inherited from Previous 12c Releases

1-5

– You can proxy requests based on the URL of the request or a portion of the
URL. This is called proxying by path.

– You can also proxy a request based on the MIME type of the requested file,
which is called proxying by file extension.

You can also enable both methods. If you enable both methods and a request
matches both criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that
define additional behavior of the proxy plug-in.

Chapter 1
Features Inherited from Previous 12c Releases

1-6

2
Installing the Oracle WebLogic Server Proxy
Plug-In for Apache HTTP Server

After you download the Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server, you
can load it as a module in your Apache HTTP Server installation. To download the proxy
plug-in, see Availability of Oracle WebLogic Server Proxy Plug-Ins.
This chapter includes the following topics:

• Installation Prerequisites
Before you install the Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server,
ensure that you meet the necessary prerequisites.

• Installing the Oracle WebLogic Server Proxy Plug-In

• Next Steps After Installing Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-Ins
After installing the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in, you should
complete the configuration of the proxy plug-in to be able to use its new features.

• Support and Patching

Installation Prerequisites
Before you install the Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server,
ensure that you meet the necessary prerequisites.

This section includes the following topics:

• Obtaining the Proxy Plug-Ins

• Java Requirements

• Apache HTTP Server Installation

• Oracle WebLogic Server Installation

• Setting the Environment Variables for Oracle WebLogic Server Proxy Plug-In

Obtaining the Proxy Plug-Ins
To obtain the Oracle WebLogic Server Proxy Plug-ins:

1. Download the Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server, as
described in Availability of Oracle WebLogic Server Proxy Plug-Ins.

2. Extract the proxy plug-ins zip distribution to PLUGINS_HOME. For example, /home/myhome/
weblogic-plugins-14.1.1.0.0/. This is the directory to which the proxy plug-in is
extracted.

Table 2-1 lists the files included in the distribution.

2-1

Table 2-1 Files Included in the Oracle WebLogic Server Proxy Plug-In Zip File
for Linux

(Path)/File Name Description

README.txt The README file for the proxy plug-in.

THIRD_PARTY_LICENSES.t
xt

The file containing the third-party license related information.

bin/orapki The orapki tool for configuring Oracle wallets.

bin/export_wallet The executable file for exporting Oracle wallet to PEM formatted
files.

jlib/*.jar The helper Java libraries for orapki and the export_wallet
program.

lib/mod_wl_24.so The Oracle WebLogic Server Proxy Plug-in for Apache HTTP
Server 2.4.

lib/*.so The helper libraries.

lib/nghttp2/* The HTTP/2 C library for nghttp2.

Java Requirements
Install the required version of Java (JDK). Table 2-2 lists the minimum JDK versions
required for certain features when using the 14.1.1.0.0 proxy plug-ins for Apache
HTTP Server.

Table 2-2 Minimum JDK Requirements

Host on Which JDK
Must be Installed

Feature that
Requires JDK

Minimum JDK
Version Required

Description

Machine on which the
Apache HTTP Server
is installed.

To use for managing
Oracle wallet.

Oracle JDK 8 JDK is required for
using the orapki tool
(located
at $PLUGINS_HOME/
bin) to work with
Oracle wallets
configured for the web
server.
JDK is also required
for export_wallet
program (located
at $PLUGINS_HOME/
bin) that exports the
content of the Oracle
wallets to PEM
formatted files on the
file system.

Chapter 2
Installation Prerequisites

2-2

Table 2-2 (Cont.) Minimum JDK Requirements

Host on Which JDK
Must be Installed

Feature that
Requires JDK

Minimum JDK
Version Required

Description

Machine on which the
back-end Oracle
WebLogic Server is
deployed.

To use TLSv1.3
communication
between the web
server and the back-
end Oracle WebLogic
Server.

Oracle JDK 8u261-
b12

This is the minimum
JDK version that
includes an
implementation of the
Transport Layer
Security (TLS) 1.3
specification (RFC
8446). Therefore, the
back-end Oracle
WebLogic Server must
use this version of
Java to support
TLSv1.3 protocol.

To use HTTP/2
protocol over SSL for
communication
between the web
server and the back-
end Oracle WebLogic
Server.

Oracle JDK 8u261-
b12

The back-end Oracle
WebLogic Server must
use this version of
Java to support
HTTP/2 protocol over
SSL.

Apache HTTP Server Installation
Ensure that you have a supported Apache HTTP Server installation. See Oracle Fusion
Middleware Supported System Configurations.

Ensure that you are using Apache Portable Runtime 1.7.0 (apr-1.7.0). Add the path of
apr-1.7.0 to the LD_LIBRARY_PATH using the following command:

export LD_LIBRARY_PATH=<absolute_path_to_the_directory_containing_apr-1.7.0>/
lib:${LD_LIBRARY_PATH}

Note:

Oracle WebLogic Server 14.1.1.0.0 proxy plug-ins have been tested with Apache
Portable Runtime 1.7.0 (apr-1.7.0). Therefore, it is recommended to use this version
of APR at a minimum. It is not known if using earlier versions of APR with proxy
plug-ins will result in the correct behavior.

You can download APR from https://apr.apache.org/.

Oracle WebLogic Server Installation
Ensure that a supported version of Oracle WebLogic Server is configured and running on a
target system. This server does not need to be running on the system on which you extracted
the proxy plug-in zip distribution.

Chapter 2
Installation Prerequisites

2-3

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://apr.apache.org/

For the list of supported Oracle WebLogic Server versions, see https://
www.oracle.com/technetwork/middleware/ias/downloads/fusion-
certification-100350.html.

For information about configuring Oracle WebLogic Server, see Planning the Oracle
WebLogic Server Installation in Installing and Configuring Oracle WebLogic Server
and Coherence.

Setting the Environment Variables for Oracle WebLogic Server Proxy
Plug-In

Note:

Oracle recommends that you set the environment variables, such as
PLUGINS_HOME, JAVA_HOME, and LD_LIBRARY_PATH.
For example:

PLUGINS_HOME=<absolute_path_to_the_directory_where_plugin_zip_i
s extracted_to>
export PLUGINS_HOME

You can use the variables set at the time of starting the Apache HTTP Server
in the httpd.conf file by using the ${VAR_NAME} syntax. For example:

LoadModule weblogic_module ${PLUGINS_HOME}/lib/mod_wl_24.so

Set the following environment variables:

• Set PLUGINS_HOME to point to the directory where the proxy plug-ins zip file is
extracted to, using the following command:

export
PLUGINS_HOME=<absolute_path_to_the_directory_where_plugin_zip_is
extracted_to>

For example:

export PLUGINS_HOME=/home/myhome/weblogic-plugins-14.1.1.0.0/

• Set JAVA_HOME to point to the JDK present on the host where Apache HTTP Server
is installed, using the following command:

Chapter 2
Installation Prerequisites

2-4

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Note:

Relative path is not allowed for JAVA_HOME.

export JAVA_HOME=<absolute_path_to_the_JDK8_installation_directory>

For example:

export JAVA_HOME=/home/myhome/jdk8

Note:

JAVA_HOME is required only when implementing SSL for managing the Oracle
wallet.

For information about the supported JDK versions, see Table 2-2.

• Ensure that $PLUGINS_HOME/lib appears in the LD_LIBRARY_PATH on UNIX systems. To
add $PLUGINS_HOME/lib to the LD_LIBRARY_PATH, use the command:

export LD_LIBRARY_PATH=$PLUGINS_HOME/lib:$LD_LIBRARY_PATH

• Review the Third-Party Software Dependencies to determine if additional steps are
needed to satisfy the dependency on the nghttp2 library.

Installing the Oracle WebLogic Server Proxy Plug-In
The Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server is distributed as a
shared object (.so) file. You can obtain the proxy plug-in from the Oracle Web Tier
Downloads page or the Software Delivery Cloud.
To install the Oracle WebLogic Server Proxy Plug-in:

1. Verify that the mod_so.c module is enabled.

If you installed Apache HTTP Server using the script supplied by Apache, mod_so.c is
already enabled. Verify that mod_so.c is enabled by executing the following command:

UNIX/Linux:

APACHE_HOME/bin/apachectl -l

(APACHE_HOME is the directory that contains the Apache HTTP Server installation.)

This command lists all enabled modules. If mod_so.c is not listed, you must rebuild your
Apache HTTP Server, ensuring that the following configuration option is specified:

...
--enable-module=so
...

Chapter 2
Installing the Oracle WebLogic Server Proxy Plug-In

2-5

https://www.oracle.com/middleware/technologies/webtier-downloads.html
https://www.oracle.com/middleware/technologies/webtier-downloads.html
http://edelivery.oracle.com

The output appears as follows:

apachectl -l
Compiled in modules:
...
 mod_so.c
...

2. Make a copy of the APACHE_HOME/conf/httpd.conf file for backup.

3. Open the httpd.conf file.

4. Verify the syntax of the httpd.conf file by running the following command:

UNIX/Linux:

> APACHE_HOME/bin/apachectl -t

If the httpd.conf file contains any errors, the output of this command shows the
errors; ensure that you get a clean output before continuing. If there are no errors,
the command returns the following:

Syntax OK

Note:

Ensure that you have resolved all the configuration errors from Steps 1
through 4 before contacting Oracle Support.

5. The Oracle WebLogic Server Proxy Plug-in modules for Apache 2.4.x are shipped
with the 14.1.1.0.0 proxy plug-in distributions. Apache 2.2.x is no longer
supported. Therefore, the Oracle WebLogic Server Proxy Plug-in module for
Apache 2.2.x is no longer supported. Use the Oracle WebLogic Server Proxy
Plug-in module for Apache 2.4.x which continues to be supported.

Note:

If you are using Apache 2.2.x version of the web server, migrate to
Apache 2.4.x version, and then install the Oracle WebLogic Server Proxy
Plug-in module for Apache 2.4.x.

Install the Oracle WebLogic Server Proxy Plug-in module for Apache 2.4.x by
adding the following line:

LoadModule weblogic_module /home/myhome/weblogic-plugins-14.1.1.0.0/lib/
mod_wl_24.so

6. After installing the Oracle WebLogic Server Proxy Plug-in module, verify the
syntax of the httpd.conf file by running the following command:

UNIX/Linux:

> APACHE_HOME/bin/apachectl -t

Chapter 2
Installing the Oracle WebLogic Server Proxy Plug-In

2-6

If the httpd.conf file contains any errors, the output of this command shows the errors.
Contact Oracle Support for resolving the errors. If there are no errors, the command
returns the following:

Syntax OK

Next Steps After Installing Oracle WebLogic Server 14.1.1.0.0
Proxy Plug-Ins

After installing the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in, you should complete
the configuration of the proxy plug-in to be able to use its new features.

1. Review the minimum JDK requirements and install the supported version of JDK. See
Installation Prerequisites.

2. Set the following environment variables:

• JAVA_HOME
• PLUGINS_HOME
• LD_LIBRARY_PATH
See Installation Prerequisites.

To use the new features of the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins, do the
following:

• Configure HTTP/2 by setting the WLProtocol directive.

• Review the following directives, if configured, to enable TLSv1.3:

– WebLogicSSLVersion

– WebLogicSSLCiphers

Note:

When the HTTP/2 protocol is configured, the following directives are ignored:

• KeepAliveEnabled

• KeepAliveSecs

• WLMaxWebSocketClients

This section includes the following topics:

• Third-Party Software Dependencies

• About HTTP Header Case Handling

• About Federal Information Processing Standards

• Unsupported Use Cases

Chapter 2
Next Steps After Installing Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-Ins

2-7

Third-Party Software Dependencies
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins depend on the following third-
party software:

• OpenSSL, version 1.1.1

• nghttp2, version 1.43.0

Libraries from the above third-party software must be available on the system where
the Apache Web Server process (that loads the Oracle WebLogic Server 14.1.1.0.0
Proxy Plug-in module) runs. These libraries are a prerequisite for the Apache Web
Server process to start.

For this reason, Linux Operating systems, which support OpenSSL 1.1.1 by default,
are supported with Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins for Apache Web
Server. For more information, download the Oracle WebLogic Server (14.1.1.0.0)
Certification Matrix from the Oracle Fusion Middleware Supported System
Configurations page. When the Apache Web Server process loads the Oracle
WebLogic Server 14.1.1.0.0 Proxy Plug-in module, the OpenSSL libraries provided by
the Operating system are also loaded into the process address space.

In the case of nghttp2, the following options are available for satisfying the
dependency:

• You may be already be using the Open Source Apache Web Server module,
mod_http2, in your Apache Web Server installation to support H2 protocol on
front-end connections. In this case, you will have a copy of the nghttp2 library
(libnghttp2.so). You can use the same library to satisfy the dependency that
the Oracle WebLogic Server Proxy Plug-ins have on nghttp2. No further action is
required.

• If you are not using the mod_http2 module in your Apache Web Server installation,
the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in zip file provides a copy of
the nghttp2 library under $PLUGINS_HOME/lib/nghttp2. Use this library to
satisfy the dependency that Oracle WebLogic Server Proxy Plug-ins have on
nghttp2. You can use the library by exporting the LD_LIBRARY_PATH
environment variable to the path containing the nghttp2 libraries.
For example:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PLUGINS_HOME/lib/nghttp2

About HTTP Header Case Handling
The Oracle Weblogic Server Proxy Plug-in converts the case of HTTP headers based
on the HTTP protocol version configured for the front-end and the back-end
connections.

Table 2-3 shows how the case of request and response headers are modified based
on the HTTP protocol version configured for the front-end and the back-end
connections.

Chapter 2
Next Steps After Installing Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-Ins

2-8

https://www.oracle.com/docs/tech/middleware/fmw-141100-certmatrix.xlsx
https://www.oracle.com/docs/tech/middleware/fmw-141100-certmatrix.xlsx
https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html
https://httpd.apache.org/docs/2.4/mod/mod_http2.html

Table 2-3 Case of HTTP Request and Response Headers

HTTP Protocol
Version for the Front-
End Connection

HTTP Protocol
Version for the Back-
End Connection

Case of Request
Header Sent to the
Back End by the
Oracle WebLogic
Server Proxy Plug-In

Case of Response
Header Sent to the
Client by the Oracle
WebLogic Server
Proxy Plug-In

HTTP/2 HTTP/2 Lower Case Lower Case

HTTP/1.1 HTTP/2 Lower Case Camel Case

HTTP/2 HTTP/1.1 Camel Case Lower Case

HTTP/1.1 HTTP/1.1 No Conversion No Conversion

About Federal Information Processing Standards
Federal Information Processing Standards (FIPS) is not supported in the Oracle WebLogic
Server 14.1.1.0.0 Proxy Plug-ins.

If FIPS is configured directly at the Oracle WebLogic Server side, and if a request is made
through the Oracle WebLogic Server Proxy Plug-in with a front-end Apache HTTP Server, the
request will fail.

Unsupported Use Cases
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins are loaded in an Apache Web Server
process that loads open source modules such as mod_ssl.so, mod_http2, and so on, so that
they depend on OpenSSL libraries. The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins
also depend on the OpenSSL libraries. The version of OpenSSL that the proxy plug-ins
depend on is OpenSSL 1.1.1.

To ensure the current functioning of the Apache Web Server process, Oracle recommends
that you ensure that the versions of OpenSSL that different modules within an Apache Web
server process use are binary compatible to prevent symbol version conflicts.

If you need to use a version of OpenSSL that is binary incompatible with OpenSSL 1.1.1, you
should take the necessary steps to avoid symbol conflicts. For example, dynamically linking
with the version of OpenSSL library that supports symbol versioning.

The following use cases are not supported because these lead to an incorrect runtime
behavior (process crash) that occurs due to symbol conflicts at runtime:

• Using the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins in an Apache Web Server
process that uses open source Apache modules statically linked with a version of
OpenSSL that is binary incompatible with OpenSSL 1.1.1 (such as OpenSSL 1.0.2).

• Using the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins in an Apache Web Server
process that uses the open source Apache modules dynamically linked with a version of
OpenSSL that is binary incompatible with OpenSSL 1.1.1 and the OpenSSL library does
not support symbol versioning.

Support and Patching
When you encounter issues with a proxy plug-in, always report the version of the proxy plug-
in you are using. You can find this information in the Apache log.

Chapter 2
Support and Patching

2-9

The version information looks like the following snippet:

WebLogic Server Plugin version 14.1.1.0.0
<WLSPLUGINS_XXXX_XXXX_XXXXX.XXXX>

Note:

On the Apache Web Server for Linux, you can also obtain the proxy plug-in
version by issuing the following command:

$ strings ${PLUGINS_HOME}/lib/mod_wl_24.so | grep -i wlsplugins

A patch for a proxy plug-in will typically contain one or more shared objects to be
replaced. Ensure to backup your original files as you replace them with those in the
patch. Validate that the patch has been correctly updated by checking the version
string in the logs.

You can obtain the latest updates for security fixes from the Critical Patch Update
(CPU) Patch Advisor for Oracle Fusion Middleware (Doc ID 2806740.2).

Chapter 2
Support and Patching

2-10

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2806740.2#WLPROXY

3
Configuring the Oracle WebLogic Server
Proxy Plug-In for Apache HTTP Server

To configure the Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server, Oracle
recommends you to read the information included in this section.

This section includes the following topics:

• Configuring the Oracle WebLogic Server Proxy Plug-in
Edit the httpd.conf file to proxy requests by path or by MIME type, to enable HTTP
tunneling and to use the other Oracle WebLogic Server Proxy Plug-in parameters.

• Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In

• Common Configuration Tasks
There are tasks that are common across all the web servers for configuring the proxy
plug-ins provided by Oracle.

• Deprecated Directives for Apache HTTP Server

Configuring the Oracle WebLogic Server Proxy Plug-in
Edit the httpd.conf file to proxy requests by path or by MIME type, to enable HTTP
tunneling and to use the other Oracle WebLogic Server Proxy Plug-in parameters.

This section includes the following topics:

• Configuring the httpd.conf File

• Placing the WebLogic Properties Inside the Location or VirtualHost Blocks

• Example: Configuring the Oracle WebLogic Server Proxy Plug-In

• Including a weblogic.conf File in the httpd.conf File

• About WebSocket Proxy Configurations

• Verifying the Log File

Configuring the httpd.conf File
To configure the Oracle WebLogic Server Proxy Plug-in, edit the httpd.conf file in your
Apache HTTP Server installation. Complete the following tasks:

• Task 1: Configure MIME Requests

• Task 2: Define Additional Parameters for Oracle WebLogic Server Proxy Plug-In

• Task 3: Enable HTTP Tunneling (Optional)

• Task 4: Enable Web Services Atomic Transaction (Optional)

• Task 5: Verify and Apply Your Configuration

3-1

Task 1: Configure MIME Requests
You can proxy requests by MIME type and/or by path. Open the httpd.conf file in a
text editor and complete the following steps:

Note:

If both MIME type and proxying by path are enabled, proxying by path takes
precedence over proxying by MIME type.

• Configuring Proxy Requests by MIME Type

• Configuring Proxy Requests by Path

Configuring Proxy Requests by MIME Type
To configure MIME requests by MIME type in the httpd.conf file, add a
MatchExpression line to the <IfModule> block:

• For a non-clustered Oracle WebLogic Server: Define the WebLogicHost and
WebLogicPort parameters with the MatchExpression directive.
In the example below, a non-clustered Oracle WebLogic Server specifies that all
files with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
</IfModule>

You can use multiple MatchExpression as well. For example:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
 MatchExpression *.xyz
</IfModule>

• For a cluster of Oracle WebLogic Servers: Define the WebLogicCluster
parameter with the MatchExpression directive.
In the example below, a clustered Oracle WebLogic Server specifies that all files
with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 MatchExpression *.jsp
</IfModule>

See MatchExpression.

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-2

Configuring Proxy Requests by Path
To configure MIME requests by path in the httpd.conf file, configure the PathTrim
parameter inside the <Location> tag. The PathTrim parameter specifies a string trimmed
from the beginning of the URL before the request is passed to the Oracle WebLogic Server
instance. See PathTrim.

For example, the following Location block proxies all requests that contain /weblogic in
the URL:

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
</Location>

The <Location> directive limits the scope of the enclosed directives by URL. See Apache
Location Directive.

Task 2: Define Additional Parameters for Oracle WebLogic Server Proxy Plug-In
Define any additional parameters for the Oracle WebLogic Server Proxy Plug-in for Apache
HTTP Server.

The Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server recognizes the
parameters listed in General Parameters for Oracle WebLogic Server Proxy Plug-Ins. To
modify the behavior of your Oracle WebLogic Server Proxy Plug-in for Apache HTTP Server,
define these parameters either:

• In a <Location> block, for parameters that apply to proxying by path, or

• At global or virtual host scope, for parameters that apply to proxying by MIME type.

Task 3: Enable HTTP Tunneling (Optional)
You can enable HTTP tunneling for the T3 protocol by configuring the <Location> blocks.

To enable HTTP tunneling if you are using the T3 protocol and weblogic.jar, add the
following <Location> block to the httpd.conf file:

<Location /bea_wls_internal>
 WLSRequest On
</Location>

Task 4: Enable Web Services Atomic Transaction (Optional)
You can enable Web Services Atomic Transaction (WS-AT) by configuring the
<Location> blocks. The <wls-wsat> parameter applies to proxying by path. You can
optionally define the parameter to modify the behavior of the Oracle WebLogic Server Proxy
Plug-in for Apache HTTP Server.

<Location /wls-wsat>
 WLSRequest On
</Location>

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-3

https://httpd.apache.org/docs/2.4/mod/core.html#location
https://httpd.apache.org/docs/2.4/mod/core.html#location

WebLogic web services enable interoperability with other external transaction
processing systems, such as IBM WebSphere, JBoss, Microsoft .NET. For more
information about Web Services Atomic Transaction (WS-AtomicTransaction), see
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx.

Task 5: Verify and Apply Your Configuration
Follow these steps to verify the httpd.conf configuration and apply it to the Apache
HTTP Server.

1. Verify the syntax of the httpd.conf file by running the following command
(UNIX/Linux):

> APACHE_HOME/bin/apachectl -t

If the httpd.conf file contains any errors, the output of this command shows the
errors; otherwise, the command returns the following:

Syntax OK
2. Start the Apache HTTP Server (for UNIX/Linux):

> APACHE_HOME/bin/apachectl start
3. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the

browser. Validate the response.

Placing the WebLogic Properties Inside the Location or VirtualHost
Blocks

If you choose to not use the <IfModule>, you can instead directly place the WebLogic
properties inside the Location or <VirtualHost> blocks. Consider the following
examples of the <Location> and <VirtualHost> blocks:

<Location /weblogic>
WLSRequest On
WebLogicHost myweblogic.server.com
WebLogicPort 7001
</Location>

<Location /weblogic>
WLSRequest On
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
</Location>

<VirtualHost apachehost:80>
WLSRequest On
WebLogicServer weblogic.server.com
WebLogicPort 7001
</VirtualHost>

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-4

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx

Example: Configuring the Oracle WebLogic Server Proxy Plug-In
This example demonstrates basic instructions for quickly setting up the Oracle WebLogic
Server Proxy Plug-in to proxy requests to a back-end Oracle WebLogic Server.

1. Make a copy of $APACHE_HOME/conf/httpd.conf file.

2. Edit the file to add the following code:

...
LoadModule weblogic_module /home/myhome/weblogic-plugins-12.2.1/lib/mod_wl_24.so

<IfModule mod_weblogic.c>
 WebLogicHost wls-host
 WebLogicPort wls-port
</IfModule>

<Location /mywebapp>
 WLSRequest On
</Location>
...

3. Include $PLUGINS_HOME/lib in the LD_LIBRARY_PATH, using the following command:

$ export LD_LIBRARY_PATH=/home/myhome/weblogic-plugin-14.1.1.0.0/
lib:$LD_LIBRARY_PATH

Note:

You can also update the LD_LIBRARY_PATH by copying the 'lib' contents to
APACHE_HOME/lib or by editing the APACHE_HOME/bin/apachectl to update the
LD_LIBRARY_PATH.

4. Set PLUGINS_HOME to point to the directory where the proxy plug-ins zip file is extracted to,
using the following command:

export PLUGINS_HOME=/home/myhome/weblogic-plugins-14.1.1.0.0/

5. Include the path containing the OpenSSL libraries in the LD_LIBRARY_PATH, using the
following command:

export LD_LIBRARY_PATH=/home/myhome/openssl_installation/
lib:$LD_LIBRARY_PATH

6. At the prompt, start the Apache HTTP Server by entering:

$ ${APACHE_HOME}/bin/apachectl start

7. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the
browser and validate the response

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-5

Including a weblogic.conf File in the httpd.conf File
To keep several separate configuration files, you can define parameters in a separate
configuration file called weblogic.conf, by using the Apache HTTP Server Include
directive in an <IfModule> block in the httpd.conf file.

<IfModule mod_weblogic.c>
 # Config file for Oracle WebLogic Server that defines the parameters
 Include conf/weblogic.conf
</IfModule>

The syntax of weblogic.conf files is the same as that for the httpd.conf file.

The following sections describe how to create the weblogic.conf files, and include
the sample weblogic.conf files:

• Rules for Creating the weblogic.conf Files

• Sample weblogic.conf Configuration Files

• Template for the Apache HTTP Server httpd.conf File

Rules for Creating the weblogic.conf Files
Be aware of the following rules and best practices for constructing a weblogic.conf
file.

• Enter each parameter on a new line. Do not put "=" between a parameter and its
value. For example:

PARAM_1 value1
PARAM_2 value2
PARAM_3 value3

• If a request matches both a MIME type specified in a MatchExpression in an
<IfModule> block and a path specified in a Location block, the behavior specified
by the <Location> block takes precedence.

• If you use an Apache HTTP Server <VirtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host within
the <VirtualHost> block (see Apache Virtual Host documentation at http://
httpd.apache.org/docs/vhosts/).

• You should use the MatchExpression statement instead of the <Files> block.

Here is sample of the weblogic.conf file:

Global configuration:

<IfModule mod_weblogic.c>
 WebLogicCluster johndoe02:8005,johndoe:8006
 WLTempDir "/tmp"
 DebugConfigInfo ON
 KeepAliveEnabled ON
 KeepAliveSecs 15
</IfModule>

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-6

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/

Location configuration:

• All the requests that match /jurl/* will have the POST data files in /tmp/jurl and will
reverse proxy the request to myCluster and port 7001.

<Location /jurl>
 WLSRequest On
 WebLogicCluster myCluster:7001
 WLTempDir "/tmp/jurl"
</Location>

• All the requests that match /web/* will have the POST data files in /tmp/web and will
reverse proxy the request to myhost and port 8001.

<Location /web>
 WLSRequest On
 PathTrim /web
 WebLogicHost myhost
 WebLogicPort 8001
 WLTempDir "/tmp/web"
</Location>

• All the requests that match /foo/* will have the POST data files written to /tmp/foo and
will reverse proxy the request to myhost02 and port 8090.

<Location /foo>
 WLSRequest On
 WebLogicHost myhost02
 WebLogicPort 8090
 WLTempDir "/tmp/foo"
 PathTrim /foo
</Location>

Sample weblogic.conf Configuration Files
These examples of weblogic.conf files may be used as templates that you can modify to suit
your environment and server. Lines beginning with # are comments.

Example 3-1 Using WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 ErrorPage http://myerrorpage.mydomain.com
 MatchExpression *.jsp
</IfModule>
##

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-7

In the example, the MatchExpression parameter syntax for expressing the filename
pattern, the Oracle WebLogic Server host to which HTTP requests should be
forwarded, and various other parameters are as follows:

MatchExpression [filename pattern] [WebLogicHost=host] |
[paramName=value]

The first MatchExpression parameter below specifies the filename pattern *.jsp, and
then names the single WebLogicHost. The paramName=value combinations following
the pipe symbol specify the port at which Oracle WebLogic Server is listening for
connection requests, and also activate the Debug option. The second
MatchExpression specifies the filename pattern *.html and identifies the WebLogic
Cluster hosts and their ports. The paramName=value combination following the pipe
symbol specifies the error page for the cluster.

Example 3-2 Using Multiple WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=7001|Debug=ON
 MatchExpression *.html WebLogicCluster=myHost1:7282,myHost2:7283|
ErrorPage=
 http://www.xyz.com/error.html
</IfModule>

Example 3-3 Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 WebLogicHost myweblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
</IfModule>

Example 3-4 Configuring Multiple Name-Based Virtual Hosts

VirtualHost1 = localhost:80
<VirtualHost 127.0.0.1:80>
DocumentRoot "/test/VirtualHost1"
ServerName localhost:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
</IfModule>
</VirtualHost>

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-8

VirtualHost2 = 127.0.0.2:80
<VirtualHost 127.0.0.2:80>
DocumentRoot "/test/VirtualHost1"
ServerName 127.0.0.2:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
#... WLS parameter ...
</IfModule>
</VirtualHost>

You must define a unique value for ServerName or some proxy plug-in parameters will not
work as expected.

Example 3-5 With HTTP/2 Protocol Configured

LoadModule weblogic_module modules/mod_wl_24.so
Listen 4455
<VirtualHost *:4455>
 ServerName vh1.com
 WLSSLWallet /scratch/user/temp/server
 SecureProxy ON
 WLProtocol http/2
 <Location /myApp>
 SetHandler weblogic-handler
 WebLogicCluster
ns1.example.com:7011,ns2.example.com:7011,ns3.example.com:7011
 </Location>
 <Location /myApp2>
 WebLogicHost example.com
 SetHandler weblogic-handler
 WebLogicPort 7025
 </Location>
</VirtualHost>

Template for the Apache HTTP Server httpd.conf File
This section contains a sample httpd.conf file for Apache HTTP Server. You can use this
sample as a template and modify it to suit your environment and server. Lines beginning with
are comments.

Note:

Apache HTTP Server is not case sensitive.

Sample httpd.conf file for Apache HTTP Server

##
APACHE-HOME/conf/httpd.conf file

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-9

##
LoadModule weblogic_module /home/myhome/weblogic-plugins-12.2.1/lib/mod_wl_24.so

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<Location /servletimages>
 WLSRequest On
 PathTrim /something
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<IfModule mod_weblogic.c>
 MatchExpression *.jsp
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 ErrorPage http://myerrorpage.mydomain.com
</IfModule>

About WebSocket Proxy Configurations
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in for Apache HTTP Server 2.4.x
can handle WebSocket connection upgrade requests and effectively proxy to
WebSocket applications hosted within Oralce WebLogic Server 14c (14.1.1.0.0) and
later.

Review following timeout setting for the WebSocket connection:

• If you use the mod_reqtimeout module within the Apache HTTP Server, then set
the configured client timeout value appropriately to consider for the WebSocket
connections.

• The default timeout value for HTTP requests in the mod_reqtimeout module has
changed between Apache HTTP Server 2.2 and 2.4. This change can cause the
WebSocket connections to break. Therefore, you will need to use an appropriate
client timeout value.

• You should configure appropriate client timeout values for the WebSocket
connections to avoid malicious attacks such as a Denial of Service attack.

Note:

WebSocket is not supported over HTTP/2.

Verifying the Log File

The Oracle WebLogic Server Proxy Plug-in logs are now part of the Apache HTTP
Server error log. You can easily identify the references with the prefix weblogic:

[weblogic:debug] [pid 6571:tid 139894556022528] ApacheProxy.cpp(875): [client
10.184.61.77:53634] <657114316705052> =========New Request: [GET /weblogic/
index.html HTTP/1.1] ======

Chapter 3
Configuring the Oracle WebLogic Server Proxy Plug-in

3-10

To enable the proxy plug-in logs, set the Apache web server directive LogLevel to debug.
The logs are included in the file pointed to by the Apache web server ErrorLog directive.

config file name: httpd.conf
setting: LogLevel debug

Additionally, a new log file named wl_exportwallet_log is created in the same file system
path where the web server's log file exists. In case of the Apache web server process, this file
is located at $SERVER_ROOT/logs/.

The Oracle wallets used in the web server configuration must be exported to PEM formatted
files on the file system to enable OpenSSL APIs to access the key and certificates present in
the Oracle wallet. This is done by forking a separate process called export_wallet from the
main web server process. The export_wallet process writes to the wl_exportwallet_log,
and not to the web server's log.

Understanding the DMS Metrics for Oracle WebLogic Server
Proxy Plug-In

The performance metrics for Oracle WebLogic Server Proxy Plug-in are provided through the
Oracle Dynamic Monitoring Service (DMS). For example, it can fetch the number of requests
proxied, the number of failed requests, and other specific metrics. You can configure and
view the DMS performance metrics for Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in.
The DMS metrics that can be returned are described in DMS State Metrics, DMS Event
Metrics, and DMS PhaseEvent Metrics.

This section includes the following topics:

• Configuring the DMS Metrics for the Oracle WebLogic Server Proxy Plug-In

• Viewing the Performance Metrics for the Oracle WebLogic Server Proxy Plug-In

• DMS State Metrics

• DMS Event Metrics

• DMS PhaseEvent Metrics

Configuring the DMS Metrics for the Oracle WebLogic Server Proxy Plug-In
To configure the DMS metrics for the Oracle WebLogic Server Proxy Plug-in , add the
following code to the httpd.conf file:

Add the following LoadModule only if it is not already present
Use mod_wl_24.so for Apache 2.4
LoadModule weblogic_module $PLUGINS_HOME/mod_wl_24.so

<Location /metrics>
 SetHandler dms-handler
</Location>

Chapter 3
Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In

3-11

Viewing the Performance Metrics for the Oracle WebLogic Server
Proxy Plug-In

You can view the raw metrics using the following URL:

http://apachehost:apacheport/metrics

Where, apachehost is the host name of the Apache server and apacheport is the port
number.

The metrics that are coming from Oracle WebLogic Server Proxy Plug-in can be found
under the /WebLogicProxy [type=WebLogicProxy] section.

DMS State Metrics
A State metric tracks system status information or to track a metric that is not
associated with an event. For a description of the State metrics, see Table 3-1.

Table 3-1 State Metrics for the Oracle WebLogic Server Proxy Plug-In Module

Metric Name Description

totalDeclines The total number of requests declined (not processed by
mod_wl_24). This number indicates the requests that are not
configured, and/or rejected by the proxy plug-in (for example,
custom HTTP methods are always rejected by the proxy plug-in)

totalErrors Number of requests that could not be processed successfully.
See Event Metrics for errors.

totalHandled The total number of requests serviced by the mod_wl_24 proxy
plug-in.

totalRequests The total number of requests received by mod_wl_24. The
number includes all the requests that are targeted to the proxy
plug-in, plus the requests that are not targeted to any module
(not configured).

totalRetries Number of times a request was retried. Requests are generally
retried on failure (depending on configuration). If a request is
ever retried, this metric will increment (once per request,
irrespective of how many times the request was retried).

totalSuccess The number of requests successfully processed. If the requests
are processed successfully (proxied to Oracle WebLogic Server,
and sent the response back to client), then this metric will be
incremented.

websocketActive Number of WebSocket upgrade requests currently active.

websocketClose Number of WebSocket upgrade requests closed. If the
WebSocket session is terminated (for any reason), then this
metric is updated.

Chapter 3
Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In

3-12

Table 3-1 (Cont.) State Metrics for the Oracle WebLogic Server Proxy Plug-In
Module

Metric Name Description

websocketMax Maximum number of simultaneous WebSocket requests that can
be active.

If the WLMaxWebSocketClients parameter is configured, the
value will be the lower of these:

• The configured value, OR
• 0.75 of the value of MaxRequestWorkers (Apache 2.4)

If WLMaxWebSocketClients parameter is not configured, the
value will be 0.5 of the value of MaxRequestWorkers (Apache
2.4).

For more information about the WLMaxWebSocketClients
parameter, see Tuning Apache HTTP Server for High
Throughput for WebSocket Upgrade Requests.

websocketPercent This value is defined by the number of active WebSockets
(websocketActive) divided by the maximum number of
simultaneous WebSocket requests (websocketMax) multiplied
by 100:

(websocketActive/webocketMax)*100.

websocketRequests The number of WebSocket upgrade requests made. If the
request URI is an WebSocket upgrade request, this metric will be
incremented.

websocketSuccess Number of WebSocket upgrade requests completed successfully.
If Oracle WebLogic Server responds to a WebSocket upgrade
request with 101 Switching Protocols, then this metric is
updated.

DMS Event Metrics
A DMS Event metric counts system events. A DMS event tracks system events that have a
short duration, or where the duration of the event is not of interest but the occurrence of the
event is of interest. For a description of the Event metrics, see Table 3-2.

Table 3-2 Event Metrics for the Oracle WebLogic Server Proxy Plug-In Module.

Metric Name Description

errConnRefused The number of CONNECTION_REFUSED errors. Indicates the number of
times the configured WebLogicHost and/or WebLogicPort is either
not reachable or not listening.

errNoResources The number of NO_RESOURCES errors. One scenario where this
exception can occur is when SSL is configured in the proxy plug-in,
but the corresponding SSL configuration is not defined in the
managed server.

errOthers The number of any other errors. For example, POST data size is
greater than the value of MaxPostSize.

Chapter 3
Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In

3-13

Table 3-2 (Cont.) Event Metrics for the Oracle WebLogic Server Proxy Plug-In Module.

Metric Name Description

errReadClient The number of READ_ERROR_FROM_CLIENT errors. Indicates the
number of times that the proxy plug-in could not read from the client
(browser).

errReadServer The number of READ_ERROR_FROM_SERVER errors. Indicates the
number of times a read operation could not be successfully performed
on Oracle WebLogic Server.

errReadTimeout The number of READ_TIMEOUT errors. An example is Oracle
WebLogic Server not responding within WLIOTimeoutSecs.

errWriteClient The number of WRITE_ERROR_TO_CLIENT errors. Indicates the
number of times that the proxy plug-in could not write to client. This
can be seen when the client sends a request but closes the
connection before receiving the response.

errWriteWLS The number of WRITE_ERROR_TO_SERVER errors. Indicates the
number of times that the proxy plug-in could not write to Oracle
WebLogic Server.

wsClientClose Number of WebSocket upgrade requests closed by client. If the client
sends a WebSocket upgrade request, and client closes the
connection, then this metric is updated.

wsErrorClose Number of WebSocket sessions terminated due to error. If there is
any error which causes the WebSocket connection to close, then this
metric is updated.

wsNoUpgrade The number of times the WebSocket upgrade request was rejected.
The response to WebSocket upgrade request is not "101 Switching
Protocols". This can happen when the upgrade request is sent to
Oracle WebLogic Server that does not support WebSockets (Oracle
WebLogic Server version 12.1.2 or earlier).

wsServerClose Number of WebSocket upgrade requests closed by server. If Oracle
WebLogic Server initiates a close of WebSocket communication, then
this metric is updated. For example, timeout or no communication (by
default, 5 minutes) after upgrading the request.

DMS PhaseEvent Metrics
A DMS PhaseEvent metric measures the time spent in a specific section of code that
has a beginning and an end. A PhaseEvent tracks time in a method or in a block of
code. For each phase event, an "active count", "completed count", "total time", "min
time", "max time", and "average time" value is included. For a description of the
PhaseEvent metrics, see Table 3-3.

Table 3-3 PhaseEvent Metrics for the Oracle WebLogic Server Proxy Plug-In
Module

Metric Name Description

websocketPhase WebSocket communication in progress. The phase (time)
between "WebSocket upgrade succeeded" and "WebSocket
connection closed"

Chapter 3
Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In

3-14

Table 3-3 (Cont.) PhaseEvent Metrics for the Oracle WebLogic Server Proxy
Plug-In Module

Metric Name Description

wlsWait The phase (time) between "the request sent to Oracle WebLogic
Server" and "Waiting for response".

Common Configuration Tasks
There are tasks that are common across all the web servers for configuring the proxy plug-ins
provided by Oracle.

This section includes the following topics:

• Configuring IPv6 with Proxy Plug-Ins

• Understanding Connection Errors and Clustering Failover
When the proxy plug-in attempts to connect to Oracle WebLogic Server, the proxy plug-in
uses several configuration parameters to determine how long to wait for connections to
the Oracle WebLogic Server host and, after a connection is established, how long the
proxy plug-in waits for a response.

• Tuning Apache HTTP Server for High Throughput for WebSocket Upgrade Requests
Oracle WebLogic Server 14c (14.1.1.0.0) supports deploying WebSocket applications.
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in for Apache HTTP Server 2.4.x can
now handle such WebSocket connection upgrade requests and effectively proxy to
WebSocket applications hosted within Oracle WebLogic Server 14c (14.1.1.0.0) and later.

Configuring IPv6 with Proxy Plug-Ins
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins support IPv6. Specifically, the
WebLogicHost and WebLogicCluster configuration parameters now support IPv6 addresses.
See WebLogicCluster and WebLogicHost.
For example:

<IfModule mod_weblogic.c>
 WebLogicHost [a:b:c:d:e:f]
 WebLogicPort 7002
 ...
</IfModule>

or

<IfModule mod_weblogic.c>
 WebLogicCluster [a:b:c:d:e:f]:<port>, [g:h:i:j:k:l]:<port>

</IfModule>

You can also use the IPv6 address mapped host name.

For example:

<IfModule mod_weblogic.c>
#hostname1 is mapped to IPv6 address in /etc/hosts file

Chapter 3
Common Configuration Tasks

3-15

 WebLogicHost hostname1
 WebLogicPort 7002
 ...
</IfModule>

Sample entry in the /etc/hosts file:

127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
::1 hostname1

Note:

As of Windows 2008, the DNS server returns the IPv6 address in preference
to the IPv4 address. If you are connecting to a Windows 2008 (or later)
system using IPv4, the link-local IPv6 address format is tried first, which may
result in a noticeable delay and reduced performance. To use the IPv4
address format, configure your system to instead use IP addresses in the
configuration files or add the IPv4 addresses to the etc/hosts file.

In addition, you may find that, setting the DynamicServerList property to OFF
in the configuration file also improves performance with IPv6. When set to
OFF, the proxy plug-in ignores the dynamic cluster list used for load balancing
requests proxied from the proxy plug-in and uses the static list specified with
the WebLogicCluster parameter.

Understanding Connection Errors and Clustering Failover
When the proxy plug-in attempts to connect to Oracle WebLogic Server, the proxy
plug-in uses several configuration parameters to determine how long to wait for
connections to the Oracle WebLogic Server host and, after a connection is
established, how long the proxy plug-in waits for a response.

If the proxy plug-in cannot connect or does not receive a response, the proxy plug-in
attempts to connect and send the request to the other Oracle WebLogic Server
instances in the cluster. If the connection fails or there is no response from any Oracle
WebLogic Server in the cluster, an error message is sent. For an illustration of how the
proxy plug-in handles failover, see Figure 3-1.

This section includes the following topics:

• Possible Causes of Connection Failures

• Tips for Reducing CONNECTION_REFUSED Errors

• Failover with a Single, Non-Clustered Oracle WebLogic Server

• The Dynamic Server List

• Failover, Cookies, and HTTP Sessions

• Failover Behavior When Using Firewalls and Load Directors

Chapter 3
Common Configuration Tasks

3-16

Possible Causes of Connection Failures
Failure of the Oracle WebLogic Server host to respond to a connection request could indicate
the following problems:

• Physical problems with the host machine (such as power outages, hardware malfunction,
operating system crash, and so on).

• Network problems.

• Other server failures.

Failure of a Oracle WebLogic Server instance to respond could indicate the following
problems:

• Oracle WebLogic Server is not running or is unavailable.

• A hung server.

• A database problem.

• An application-specific failure.

Tips for Reducing CONNECTION_REFUSED Errors
Under load, a proxy plug-in may receive CONNECTION_REFUSED errors from a back-end
Oracle WebLogic Server instance. Follow these tuning tips to reduce
CONNECTION_REFUSED errors:

• Increase the AcceptBackLog setting in the configuration of your Oracle WebLogic Server
domain.

• Decrease the time wait interval. This setting varies according to the operating system you
are using. For example, on Linux, set the net.ipv4.tcp_fin_timeout parameter to a
lower value in the /etc/sysctl.conf file.

• Increase the open file descriptor limit on your machine. This limit varies by operating
system. Using the limit (.csh) or ulimit (.sh) directives, you can make a script to increase
the limit.

Failover with a Single, Non-Clustered Oracle WebLogic Server
If you run only a single Oracle WebLogic Server instance, the proxy plug-in only attempts to
connect to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP
503 error message is returned. The proxy plug-in continues trying to connect to that same
Oracle WebLogic Server instance for the maximum number of retries as specified by the ratio
of ConnectTimeoutSecs and ConnectRetrySecs.

The Dynamic Server List
The WebLogicCluster parameter is required to proxy to a list of back-end servers that are
clustered, or to perform load balancing among non-clustered managed server instances.

In the case of proxying to clustered managed servers, when you use the WebLogicCluster
parameter to specify a list of Oracle WebLogic Servers, the proxy plug-in uses that list as a
starting point for load balancing among the members of the cluster. After the first request is
routed to one of these servers, a dynamic server list is returned containing an updated list of
servers in the cluster.

Chapter 3
Common Configuration Tasks

3-17

The updated list adds any new servers in the cluster and deletes any that have been
shut down, or are being suspended, or are no longer part of the cluster or that have
failed to respond to requests. This feature can be controlled by using
DynamicServerList. For example, to disable this feature, set DynamicServerList to
OFF.

DynamicServerList ON is a preferred performance tuning parameter. It is useful, for
example, if a member of a cluster is temporarily down for maintenance or if
administrators decide they want to add another member, and not need to restart the
web server.

Note:

If DynamicServerList is set to ON, and the list of the back-end Oracle
WebLogic Servers specified in WebLogicCluster is not in a cluster, then the
behavior would be undefined.

Failover, Cookies, and HTTP Sessions
When a request contains session information stored in a cookie or in the POST data,
or encoded in a URL, the session ID contains a reference to the specific server
instance in which the session was originally established (called the primary server). A
request containing a cookie attempts to connect to the primary server. If that attempt
fails, the proxy plug-in attempts to make a connection to the next available server in
the list in a round-robin fashion. That server retrieves the session from the original
secondary server and makes itself the new primary server for that same session. See
Figure 3-1.

Note:

If the POST data is larger than 64K, the proxy plug-in will not parse the
POST data to obtain the session ID. Therefore, if you store the session ID in
the POST data, the proxy plug-in cannot route the request to the correct
primary or secondary server, resulting in possible loss of session data.

Chapter 3
Common Configuration Tasks

3-18

Figure 3-1 Connection Failover

In this figure, the Maximum number of retries allowed in the red loop is equal to
ConnectTimeoutSecs/ConnectRetrySecs.

Failover Behavior When Using Firewalls and Load Directors
In some configurations that use combinations of firewalls and load-directors, any one of the
servers (firewall or load-directors) can accept the request and return a successful connection
while the primary instance of Oracle WebLogic Server is unavailable. After attempting to
direct the request to the primary instance of Oracle WebLogic Server (which is unavailable),
the request is returned to the proxy plug-in as "connection reset."

Chapter 3
Common Configuration Tasks

3-19

Requests running through combinations of firewalls (with or without load-directors) are
handled by Oracle WebLogic Server. In other words, responses of connection reset fail
over to a secondary instance of Oracle WebLogic Server. Because responses of
connection reset fail over in these configurations, servlets must be idempotent.
Otherwise duplicate processing of transactions may result.

Tuning Apache HTTP Server for High Throughput for WebSocket
Upgrade Requests

Oracle WebLogic Server 14c (14.1.1.0.0) supports deploying WebSocket applications.
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-in for Apache HTTP Server 2.4.x
can now handle such WebSocket connection upgrade requests and effectively proxy
to WebSocket applications hosted within Oracle WebLogic Server 14c (14.1.1.0.0) and
later.

As a result of adding this support, a new configuration parameter
WLMaxWebSocketClients is introduced.

The WLMaxWebSocketClients parameter limits the number of active WebSocket
connections at any instant of time. The maximum value you can set for this parameter
is 75 percent of ThreadsPerChild (Windows) or 75 percent of
MaxRequestWorkers (non-Windows). Hence, to tune your HTTP Server for
maximum WebSocket connection upgrade requests, set MaxRequestWorkers/
ThreadsPerChild to a value that can accommodate WebSocket connections as
well. Also, ensure that WLMaxWebSocketClients is set to 75 percent of
MaxRequestWorkers/ThreadsPerChild.

Deprecated Directives for Apache HTTP Server
The WLLogFile and Debug directives are deprecated. If the configuration uses these
directives, a note appears during startup.

[Thu May 14 23:22:19 2015] [warn] weblogic: The Debug directive is ignored. The
web server log level is used instead.

For information about log files, see Verifying the Log File.

Chapter 3
Deprecated Directives for Apache HTTP Server

3-20

4
Configuring Security

This chapter describes how to work with security for proxy plug-ins.
This chapter includes the following topics:

• Using SSL with Proxy Plug-Ins
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
the proxy plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality
and integrity to the data passed between the proxy plug-in and Oracle WebLogic Server.

• Configuring Perimeter Authentication
Use perimeter authentication to secure Oracle WebLogic Server applications that are
accessed by using the proxy plug-in.

Using SSL with Proxy Plug-Ins
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between the
proxy plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality and
integrity to the data passed between the proxy plug-in and Oracle WebLogic Server.

The proxy plug-in does not use the transport protocol (HTTP or HTTPS) specified in the
HTTP request (usually by the browser) to determine whether to use SSL to protect the
connection between the proxy plug-in and Oracle WebLogic Server; that is, the proxy plug-in
is in no way dependent on whether the HTTP request (again, usually from the browser) uses
HTTPS (SSL).

Instead, the proxy plug-in uses SSL parameters that you configure for the proxy plug-in, as
described in SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins, to determine when
to use SSL:

• WebLogicSSLVersion - Specifies the SSL protocol version to use for communication
between the proxy plug-in and Oracle WebLogic Server.

• WLSSLWallet - The Oracle WebLogic Server 14.1.1.0 Proxy Plug-ins use Oracle wallets
to store SSL configuration information. Use the WLSSLWallet SSL configuration
parameter to configure the wallets. The orapki utility is provided in the proxy plug-in
distribution for this purpose.
The orapki utility manages public key infrastructure (PKI) elements, such as wallets and
certificate revocation lists, on the command line so the tasks it performs can be
incorporated into scripts. This enables you to automate many of the routine tasks of
maintaining a PKI. See Using the orapki Utility for Certificate Validation and CRL
Management.

• SecureProxy - The SecureProxy parameter determines whether SSL is enabled.

4-1

Note:

For information about configuring earlier versions of SSL/TLS on the Oracle
WebLogic Server side, see Using the weblogic.security.SSL.protocolVersion
System Property in Administering Security for Oracle WebLogic Server.

In the case of two-way SSL, the proxy plug-in (the SSL client) automatically uses two-
way SSL when Oracle WebLogic Server is configured for two-way SSL and requests a
client certificate. For more information about configuring two-way SSL on Oracle
WebLogic Server, see Servers: Configuration: SSL in the Oracle WebLogic Server
Administration Console Online Help.

If a client certificate is not requested, the proxy plug-ins default to one-way SSL.

Note:

If an Oracle WebLogic Server 14.1.1.0 product is installed on the same
system as the Oracle WebLogic Server Proxy Plug-in, the ORACLE_HOME
variable must point to a valid installation; otherwise, the proxy plug-in fails to
initialize SSL.

For example, if ORACLE_HOME is invalid because the product was not cleanly
removed, the proxy plug-in fails to initialize SSL.

This section includes the following topics:

• Configuring Libraries for SSL

• Configuring a Proxy Plug-In for One-Way SSL

• Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle WebLogic
Server

• Replacing Certificates Signed Using the MD5 Algorithm

• Certificates Signed with MD5 Algorithm Not Supported

• Using Certificates Signed with RSASSA-PSS Signature Algorithm

Configuring Libraries for SSL
The Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins for Apache HTTP Server
supports HTTP/2 protocol. HTTP/2 over TLS uses Application Layer Protocol
Negotiation (ALPN) TLS extension to encrypt connections faster. As Oracle's NZ
libraries do not support ALPN extension, proxy plug-ins have been rewritten to use
OpenSSL libraries. Therefore, some minor changes are necessary for the existing
deployments to use SSL for communication with Oracle WebLogic Server as
described in Configuring Environment Variables.

Chapter 4
Using SSL with Proxy Plug-Ins

4-2

Note:

The current implementation of the Oracle WebLogic Server Proxy Plug-in for
Apache HTTP Server does not support the use of multiple certificate files with
Apache SSL.

This section includes the following topics:

• Configuring Environment Variables

Configuring Environment Variables
The Oracle WebLogic Server Proxy Plug-ins use Oracle Wallet to store SSL information such
as private key, user certificate chain, and the list of trusted certificates. OpenSSL APIs cannot
read the content of such wallets. Therefore, it is necessary to export the content of a user-
supplied wallet to a format that OpenSSL APIs can read. The content of the wallet will be
exported as PEM formatted files on the file system. For each user-supplied wallet, three files
may be created in the same file system path where the auto-login wallet is present:

• key.pem: A pass-phrase protected file containing the private key in PEM format, if a
private key is present in the wallet.

• user.crt: User certificate in PEM format, if a user certificate is present in the wallet.

• trusted_certs.crt: Chain of trusted certificates in PEM format.

A new program called export_wallet is supplied in the proxy plug-in zip file to export user
wallet(s) as described above. This program requires the environment variables JAVA_HOME
and PLUGINS_HOME to be set. See Installation Prerequisites.

Configuring a Proxy Plug-In for One-Way SSL
Perform the following steps to configure one-way SSL.

In these steps, you run the keytool commands on the system on which Oracle WebLogic
Server is installed, and you run the orapki commands on the system on which the Oracle
WebLogic Server 14.1.1.0 Proxy Plug-ins are installed.

Note:

The examples in this section use the Oracle WebLogic Server demo CA. If you are
using the proxy plug-in a production environment, ensure that trusted CAs are
properly configured for the proxy plug-in and for Oracle WebLogic Server.

1. Configure Oracle WebLogic Server for SSL. See Configuring SSL in Administering
Security for Oracle WebLogic Server.

2. Create an Oracle Wallet, by using the orapki utility.

orapki wallet create -wallet mywallet -auto_login_only

See Using the orapki Utility for Certificate Validation and CRL Management in the
Administering Oracle Fusion Middleware.

Chapter 4
Using SSL with Proxy Plug-Ins

4-3

Note:

Only the user who creates the wallet (or for Windows, the account
SYSTEM) has access to the wallet.

This is typically sufficient for the Oracle WebLogic Server Proxy Plug-in
for Apache HTTP Server because Apache HTTP Server runs as the
account SYSTEM on Windows, and as the user who creates it on UNIX.

If the user who runs the Oracle WebLogic Server Proxy Plug-in for
Apache HTTP Server is different from the user who creates the wallet (or
for Windows, the account SYSTEM), you need to grant the user access to
the wallet by running the command cacls (Windows) or chmod (UNIX)
after you create the wallet. For example:

cacls <wallet_path>\cwallet.sso /e /g IUSR:R

3. Import the Oracle WebLogic Server trust certificate into the Oracle Wallet.

orapki wallet add -wallet mywallet -trusted_cert -cert <cert_file_name> -
auto_login_only

4. Complete these steps if the version of the Oracle WebLogic Server instances in
the back end is 10.3.4 (or a later release).

a. Log in to the Oracle WebLogic Server Administration Console.

b. In the Domain Structure pane, expand the Environment node.

• If the server instances to which you want to proxy requests from Apache
HTTP Server are in a cluster, select Clusters.

• Otherwise, select Servers.

c. Select the server or cluster to which you want to proxy requests from Apache
HTTP Server.

d. In the Configuration: General tab, scroll down to the Advanced section, then
expand it.

e. Do one of the following:

To... Select...

Enable one-way SSL WebLogic Plug-In
Enabled

Enable two-way SSL where client certificates are used to
authenticate

Client Cert Proxy Enabled

Enable two-way SSL with client certificates. Both

f. If you selected Servers in Step 4b, repeat Step 3 and Step 4 for the other
servers to which you want to proxy requests from Apache HTTP Servers.

g. Click Save.

For the change to take effect, you must restart the server instances.

5. Send a request to http://host:port/mywebapp/my.jsp from the browser and
validate the response.

Chapter 4
Using SSL with Proxy Plug-Ins

4-4

Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle
WebLogic Server

When Oracle WebLogic Server is configured for a two-way SSL, the proxy plug-in forwards
the user certificate to Oracle WebLogic Server. A two-way SSL can be established as long as
Oracle WebLogic Server can validate the user certificate.

In these steps, you run the keytool commands on the system on which Oracle WebLogic
Server is installed. You run the orapki commands on the system on which the 14.1.1.0
proxy plug-ins are installed.

To configure a two-way SSL:

1. Perform the steps described in Configuring a Proxy Plug-In for One-Way SSL.

2. Set the Oracle WebLogic Server SSL configuration options that require the presentation
of client certificates (for two-way SSL). See Configure two-way SSL in Oracle WebLogic
Server Administration Console Online Help.

3. From the Oracle wallet, generate a certificate request:

a. Add the certificate request to the Oracle wallet.

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|
1024|2048

b. Export the certificate request from Oracle wallet:

orapki wallet export -wallet wallet_location -dn
certificate_request_dn -request certificate_request_filename

See Exporting Certificates and Certificate Requests from Oracle Wallets with orapki
in Administering Oracle Fusion Middleware.

4. Use the certificate request exported in Step 3 to create a certificate by using a certificate
authority (CA) or some other mechanism.

5. Import all trusted certificates in the certificate chain of a user certificate before adding a
user certificate. The certificate chain includes the intermediate certificate authorities and
the root certificate authority.

Import the root CA certificate as a trusted certificate by using the following command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
root_certificate_location

Import the intermediate CA certificate as a trusted certificate. If there are more than one
intermediate CA certificate, execute the following command by changing the location for
the -cert option for each intermediate CA.

orapki wallet add -wallet wallet_location -trusted_cert -cert
intermediate_certificate_location

See Adding Certificates and Certificate Requests to Oracle Wallets with orapki in the
Database Security Guide.

Chapter 4
Using SSL with Proxy Plug-Ins

4-5

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlach/taskhelp/security/ConfigureTwowaySSL.html

6. Import the certificate signed by CA as a user certificate to Oracle wallet.

orapki wallet add -wallet wallet_location -user_cert -cert
certificate_location

7. Import the CA certificate as a trusted certificate in the WebLogic trust store. Oracle
WebLogic Server needs to trust the certificate.

keytool -file certificate_location -importcert -trustcacerts -
keystore DemoTrust.jks -storepass <passphrase>

Replacing Certificates Signed Using the MD5 Algorithm
When using SSL to connect to Oracle WebLogic Server, ensure that any certificate
request or certificates signed with MD5 are replaced by SHA-2 signed certificates in
the wallet; otherwise, the server fails to start.

This section includes the following topics:

• Checking the Certificate Signing Algorithm

• Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm

• Replacing the Existing Certificates with SHA-2 Signed Certificates

Checking the Certificate Signing Algorithm
To check the certificate signing algorithm:

1. Use the orapki command to obtain the Distinguished Name (DN) for an SSL
certificate.

${PLUGINS_HOME}/bin/orapki wallet display -wallet <wallet__location>

For example:

• Content of the wallet with a CA-signed user certificate:

${PLUGINS_HOME}/bin/orapki wallet display -wallet /tmp/
test_wallet

Sample output:

Oracle PKI Tool: Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=FOR TESTING ONLY
Subject: CN=root_ca,OU=O,O=FOR TESTING ONLY

In this example, the user certificate is siged with an intermediate CA. Hence,
you see a complete trust chain in the trusted certificate.

Chapter 4
Using SSL with Proxy Plug-Ins

4-6

– The Distinguished Name for user certificates is "CN=localhost,O=FOR TESTING
ONLY"

– The Distinguished Name for intermediate certificates is "CN=im_ca,OU=O,O=FOR
TESTING ONLY"

– The Distinguished Name for root certificates is: "CN=root_ca,OU=O,O=FOR
TESTING ONLY"

• Content of the wallet with a self-signed user certificate:

${PLUGINS_HOME}/bin/orapki wallet display -wallet /tmp/test_wallet

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY

The Distinguished Name for the self-singed user certificates is "CN=localhost,O=FOR
TESTING ONLY"

2. Export the certificates present in the wallet.

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -dn
'DN_string' -cert <certificate_file>

For example:

• Export the user certificate.

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -
dn 'CN=localhost,O=FOR TESTING ONLY' -cert user.crt

For more information about this step, see orapki wallet export in the Database
Security Guide.

• Export the intermediate and root CA certificates.

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -
dn 'CN=im_ca,OU=O,O=FOR TESTING ONLY' -cert im_ca.crt

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -
dn 'CN=root_ca,OU=O,O=FOR TESTING ONLY' -cert root_ca.crt

3. Check the signature algorithm used to sign <certificate_file> using the keytool:

$JAVA_HOME/bin/keytool -printcert -file <certificate_file>

Chapter 4
Using SSL with Proxy Plug-Ins

4-7

For example, if the certificate is signed with MD5, the Signature algorithm name
is set to MD5withRSA, as shown in the following sample command output:

$JAVA_HOME/bin/keytoolkey -printcert -file user.crt

Sample output:

Owner: CN=localhost,OU=O,O=FOR TESTING ONLY
Issuer: CN=localhost,OU=O,O=FOR TESTING ONLY
Serial number: –--
Valid from: –--
Certificate fingerprints:
 MD5: –--
 SHA1: –--
 SHA256: –--
 Signature algorithm name: MD5withRSA
 Version: 1

Note:

If any of the user and trusted certificates in the chain are signed with the
MD5 algorithm, you can either create a new wallet with new certificates
signed with the SHA-2 algorithm or replace the existing certificates with
certificates signed with the SHA-2 signed algorithm.

The list of parameters used in the orapki commands:

Table 4-1 Command Parameters

Parameter Description

-wallet Specifies the wallet location.

-dn Specifies the distinguished name of the
certificate.

-cert Specifies the directory location where the tool
places the exported certificate.

Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm
To create a new wallet:

1. Create a wallet.

${PLUGINS_HOME}/bin/orapki orapki wallet create -wallet
<wallet_location> -auto_login_only

For example:

${PLUGINS_HOME}/bin/orapki wallet create -wallet test_wallet -
auto_login_only

Sample output:

Chapter 4
Using SSL with Proxy Plug-Ins

4-8

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.

Operation is successfully completed.

Check the content of test_wallet:

$ls test_wallet

cwallet.sso

For more information about creating wallets with orapki, see Creating and Viewing
Oracle Wallets with orapki in Administering Oracle Fusion Middleware.

2. Add the user certificate to the wallet. User certificates can be self-signed or CA-signed.
For production, Oracle recommends to use a CA-signed certificate.

a. Add a self-signed user certificate.

i. Run the following command:

${PLUGINS_HOME}/bin/orapki wallet add -wallet <wallet_Location> -
dn 'DN_string' -keysize 512|1024|2048|4096|8192|16384 -sign_alg
sha256 -self_signed -validity 9125 [-pwd <pwd>] | [-
auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -dn
'CN=localhost,O=FOR TESTING ONLY' -keysize 2048 -sign_alg sha256 -
self_signed -validity 9125 -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.

Operation is successfully completed.
ii. List the content of the wallet after adding self-signed certificate to the wallet:

${PLUGINS_HOME}/bin/orapki wallet display -wallet <wallet_location>

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY

Chapter 4
Using SSL with Proxy Plug-Ins

4-9

Trusted Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY

For more information about adding certificates to a wallet, see Adding a
Root Certificate to an Oracle Wallet in Administering Oracle Fusion
Middleware.

b. Add a CA-signed user certificate.

i. Add the certificate request to the Oracle wallet.

orapki wallet add -wallet wallet_location -dn user_dn -
keySize 512|1024|2048 [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
dn "CN=localhost,O=testing_only" -keysize 2048 -
auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Operation is successfully completed

Wallet content after adding certificate request
${PLUGINS_HOME}/bin/orapki wallet display -wallet /scratch/shichoud/
test_wallet
Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:
...

ii. Export the certificate request from Oracle wallet:

orapki wallet export -wallet wallet_location -dn
certificate_request_dn -request certificate_request_filename

For example:

${PLUGINS_HOME}/bin/orapki wallet export -wallet test_wallet
-dn "CN=localhost,O=testing_only" -request user.csr

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Operation is successfully completed.

Chapter 4
Using SSL with Proxy Plug-Ins

4-10

To view the content of the certificate, run the following command:

cat user.csr

Sample output:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICcDCCAVgCAQAwKzEVMBMGA1UECgwMdGVzdGluZ19vbmx5MRIwEAYDVQQDEwls
...
...
WnDd1cweMAH+1/D1C4Gi7Gvhi2Axw18H60lmZcU3JXv2bhu8QxZI9N6sI1DjU2Mg
l6EH2w==

See Exporting Certificates and Certificate Requests from Oracle Wallets with
orapki in Administering Oracle Fusion Middleware.

iii. Use the certificate request exported in Step 3 to create a certificate by using a
certificate authority (CA) or some other mechanism.

iv. Import all the trusted certificates in the certificate chain of a user certificate before
adding a user certificate. The certificate chain includes the intermediate
certificate authorities and the root certificate authority.

• Import the root CA certificate as a trusted certificate by using the following
command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
root_certificate_location [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert Root_CA.crt -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Operation is successfully completed.

• Import the intermediate CA certificate as a trusted certificate. If there are
more than one intermediate CA certificate, execute the following command
by changing the location for the -cert option for each intermediate CA.

orapki wallet add -wallet wallet_location -trusted_cert -cert
intermediate_certificate_location [-pwd <pwd>] | [-
auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert IM_CA.crt -auto_login_only

Sample output:

Chapter 4
Using SSL with Proxy Plug-Ins

4-11

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All
rights reserved.
Operation is successfully completed.

Display the wallet after importing the root CA and the intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

v. Import the certificate signed by CA as a user certificate to the Oracle
wallet.

orapki wallet add -wallet wallet_location -user_cert -cert
certificate_location [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
user_cert -cert user_1.crt -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Operation is successfully completed.

Wallet content after adding the user certificate signed from the
intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:
User Certificates:
Subject: CN=localhost,O=testing_only
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

3. Add the back-end server certificate as a trusted certificate.

Chapter 4
Using SSL with Proxy Plug-Ins

4-12

a. If the back-end server certificate is a self-singed certificate, then import it as a trusted
certificate.

i. View the back-end server certificate:

${PLUGINS_HOME}/bin/orapki cert display -cert
<backend_server_certificate> -complete

For example:

${PLUGINS_HOME}/bin/orapki cert display -cert backend.crt -
complete

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.

{ fingerprint = ... holder = ... CN=Backend_Server,O=testing_only, issuer =
CN=Backend_Server,O=testing_only, ...
]} } }

ii. Import the back-end server certificate as a trusted certificate to the wallet:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet --
trusted_cert -cert <back_end_sever_crt> -auto_login_only

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet --
trusted_cert -cert <back_end_sever_crt> -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.
Operation is successfully completed.

iii. Display the wallet content after adding the back-end server certificate as a
trusted certificate:

${PLUGINS_HOME}/bin/orapki wallet display -wallet <wallet_path>

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Version 12.2.1.4.0

Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.
Requested Certificates:
User Certificates:
...

Chapter 4
Using SSL with Proxy Plug-Ins

4-13

Trusted Certificates:
...
Subject: CN=Backend_Server,O=testing_only

b. If the back-end server certificate is signed with a CA authority, then import the
trust chain:

i. If the back-end server certificate is signed by the intermediate CA, then
import the root CA and the intermediate CA certificates as trusted
certificates to the wallet:

${PLUGINS_HOME}/bin/orapki wallet add -wallet
<wallet_Location> -trusted_cert -cert <CA_certificate> -
auto_login_only

• Example 1:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet
-trusted_cert -cert Root_CA.crt -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All
rights reserved.
Operation is successfully completed.

• Example 2:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet
-trusted_cert -cert IM_CA.crt -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All
rights reserved.
Operation is successfully completed.

ii. Display the wallet content after adding the back-end server trust chain:

${PLUGINS_HOME}/bin/orapki wallet display -wallet
<wallet_location>

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Version 12.2.1.4.0

Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:
User Certificates:
...

Chapter 4
Using SSL with Proxy Plug-Ins

4-14

Trusted Certificates:
...
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

The list of parameters used in the orapki commands:

Table 4-2 Command Parameters

Parameter Description

-wallet Specifies the wallet location.

-dn Specifies the distinguished name of the certificate.

-trusted_cert Specifies that it is a trusted certificate.

-user_cert Specifies that it is a user certificate.

-pwd Specifies the wallet password if the wallet is
password protected.

-auto_login_only Specifies if the wallet is auto_login_only or not.

-request Specifies the location of the certificate request for
the certificate you are creating.

-cert Specifies the directory location of the certificate.

-keysize Specifies the key size for the certificate.

-self_signed Causes the tool to create a root certificate.

-validity Specifies the number of days, starting from the
current date, that the root certificate will be valid.

-sign_alg Specifies the sign algorithm to be used.

Replacing the Existing Certificates with SHA-2 Signed Certificates
If the wallet has a mix of certificates which are signed either with the MD5 or the SHA-2
algorithm, you may want to remove only those certificates which are signed with the MD5
algorithm and keep the certificates that are signed with the SHA-2 algorithm.

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.
Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN
Subject: CN=test_SHA2_signed_cert,OU=O,O=oracle,C=IN

test_wallet contains following certificates signed with MD5 algorithm :
Self-signed user certificate : Subject: CN=localhost,O=FOR TESTING ONLY

Chapter 4
Using SSL with Proxy Plug-Ins

4-15

Trusted certificates :
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

After you have identified the certificate request by which the user and trusted
certificates are signed with MD5, complete the following steps to remove them from
wallet:

1. Remove the CA-signed or the self-signed user certificate:

a. Check whether the certificate is self-signed or CA-signed:

i. Display the wallet content and get the Distinguished Name:

${PLUGINS_HOME}/bin/orapki wallet display -wallet
<wallet_location>

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet
test_wallet

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN
Subject: CN=test_SHA2_singed_cert,OU=O,O=oracle,C=IN

The Distinguished Name for the user certificates is "CN=localhost,O=FOR
TESTING ONLY"

The display -wallet command shows the user certificate and the trusted
certificate present in the wallet.

ii. Export the user certificate to a file.

${PLUGINS_HOME}/bin/orapki wallet export -wallet
<wallet_Location> -dn 'DN_string' -cert <certificate_file>

For example:

${PLUGINS_HOME}/bin/orapki wallet export -wallet
<wallet_Location> -dn 'CN=localhost,O=FOR TESTING ONLY' -
cert user.crt

iii. View the user certificate.

${PLUGINS_HOME}/bin/orapki cert display -cert <user_cert>

Chapter 4
Using SSL with Proxy Plug-Ins

4-16

For example:

• For a self-signed certificate, the Subject and Issuer names are same, as
given below:

${PLUGINS_HOME}/bin/orapki cert display -cert user.crt

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.

Subject: CN=localhost,O=FOR TESTING ONLY
Issuer: CN=localhost,O=FOR TESTING ONLY
Valid Until: Thu Oct 07 15:15:55 UTC 2117

• For a CA-signed certificate, the Subject and Issuer names are different, as
given below:

${PLUGINS_HOME}/bin/orapki cert display -cert user.crt

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.

Subject: CN=localhost,O=FOR TESTING ONLY
Issuer: CN=im_ca,OU=O,O=FOR TESTING ONLY
Valid Until: Thu Oct 07 15:15:55 UTC 2117

b. Remove the self-signed certificate from the trusted and user certificate lists and also
remove the certificate request associated with the self-signed certificate:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -trusted_cert [-pwd <pwd>] | [-auto_login_only]

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -user_cert [-pwd <pwd>] | [-auto_login_only]

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -cert_req [-pwd <pwd>] | [-auto_login_only]

c. If a user certificate is CA-signed, then remove the user certificate:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet <wallet_location> -
dn 'DN_string' -user_cert [-pwd <pwd>] | [-auto_login_only]

d. Remove the trusted certificate signed using the MD5 algorithm:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -trusted_cert [-pwd < pwd >] | [-auto_login_only]

Chapter 4
Using SSL with Proxy Plug-Ins

4-17

e. Remove the certificate request signed using the MD5 algorithm:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet <
wallet_location > -dn 'DN_string' -cert_req [-pwd <pwd>] | [-
auto_login_only]

2. Create and import the certificates to the wallet:

a. Add a self-signed user certificate signed with the SHA-2 algorithm:

${PLUGINS_HOME}/bin/orapki wallet add -wallet <wallet_Location> -
dn 'DN_String' -keysize 2048 -sign_alg sha256 -self_signed -
validity 9125 [-pwd <pwd>] | [-auto_login_only]

b. Add a CA-signed user certificate signed with the SHA-2 algorithm:

i. Add the certificate request to the Oracle wallet.

orapki wallet add -wallet wallet_location -dn user_dn -
keySize 512|1024|2048 [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
dn "CN=localhost,O=testing_only" -keysize 2048 -
auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Operation is successfully completed

Wallet content after adding certificate request
${PLUGINS_HOME}/bin/orapki wallet display -wallet /scratch/shichoud/
test_wallet
Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:

ii. Export the certificate request from Oracle wallet:

orapki wallet export -wallet wallet_location -dn
certificate_request_dn -request certificate_request_filename

For example:

${PLUGINS_HOME}/bin/orapki wallet export -wallet test_wallet
-dn "CN=localhost,O=testing_only" -request user.csr

Sample output:

Chapter 4
Using SSL with Proxy Plug-Ins

4-18

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.
Operation is successfully completed.

To view the content of the certificate, run the following command:

cat user.csr

Sample output:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICcDCCAVgCAQAwKzEVMBMGA1UECgwMdGVzdGluZ19vbmx5MRIwEAYDVQQDEwls
...
...
WnDd1cweMAH+1/D1C4Gi7Gvhi2Axw18H60lmZcU3JXv2bhu8QxZI9N6sI1DjU2Mg
l6EH2w==

See Exporting Certificates and Certificate Requests from Oracle Wallets with
orapki in Administering Oracle Fusion Middleware.

iii. Use the certificate request exported in Step 3 to create a certificate by using a
certificate authority (CA) or some other mechanism.

iv. Import all trusted certificates in the certificate chain of a user certificate before
adding a user certificate. The certificate chain includes the intermediate
certificate authorities and the root certificate authority.

• Import the root CA certificate as a trusted certificate by using the following
command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
root_certificate_location [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert Root_CA.crt -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Operation is successfully completed.

• Import the intermediate CA certificate as a trusted certificate. If there are
more than one intermediate CA certificate, execute the following command
by changing the location for the -cert option for each intermediate CA.

orapki wallet add -wallet wallet_location -trusted_cert -cert
intermediate_certificate_location [-pwd <pwd>] | [-
auto_login_only]

Chapter 4
Using SSL with Proxy Plug-Ins

4-19

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet
-trusted_cert -cert IM_CA.crt -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All
rights reserved.

Display the wallet after importing the root CA and the intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

v. Import the certificate signed by CA as a user certificate to the Oracle
wallet.

orapki wallet add -wallet wallet_location -user_cert -cert
certificate_location [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
user_cert -cert user_1.crt -auto_login_only

Sample output:

Oracle PKI Tool : Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Operation is successfully completed.

Wallet content after adding the user certificate signed from the
intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Version 12.2.1.4.0
Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights
reserved.
Requested Certificates:

Chapter 4
Using SSL with Proxy Plug-Ins

4-20

User Certificates:
Subject: CN=localhost,O=testing_only
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

The list of parameters used in the orapki commands:

Table 4-3 Command Parameters

Parameter Description

-wallet Specifies the wallet location.

-dn Specifies the distinguished name of the certificate.

-trusted_cert Specifies that it is a trusted certificate.

-user_cert Specifies that it is a user certificate.

-cert_req Specifies that it is a certificate request.

-pwd Specifies the wallet password if the wallet is
password protected.

-auto_login_only Specifies if the wallet is auto_login_only or not.

-request Specifies the location of the certificate request for
the certificate you are creating.

-cert Specifies the directory location of the certificate.

-keysize Specifies the key size for the certificate.

-self_signed Causes the tool to create a root certificate.

-validity Specifies the number of days, starting from the
current date, that the root certificate will be valid.

-sign_alg Specifies the sign algorithm to be used.

Certificates Signed with MD5 Algorithm Not Supported
Certificates signed using MD5 algorithm are not recommended due to compromised security.

These certificates are no longer supported with the Oracle WebLogic Server 14.1.1.0.0 Proxy
Plug-ins. The environment variable - ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES
that enabled the use of certificates with MD5 algorithm is no longer supported. The proxy
plug-ins refuse to start if MD5 certificates are present in the Oracle Wallet.

Using Certificates Signed with RSASSA-PSS Signature Algorithm
Certificates signed with RSASSA-PSS signature algorithm are very secure and are supported
in the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins.

Certificates signed with RSASSA-PSS signature algorithm and private keys generated using
the RSASSA-PSS algorithm can be deployed when using TLSv1.3 for communication
between the web server and the back-end Oracle WebLogic Server. The minimum JDK
version required for this is Oracle JDK 11.0.9 or Oracle JDK 8u261-b12. The SunPKCS11
provider in these versions of JDK has been updated with the support for PKCS#11 v2.40.
This version adds support for RSASSA-PSS signatures when the corresponding PKCS11
mechanisms are supported by the underlying PKCS11 library.

Chapter 4
Using SSL with Proxy Plug-Ins

4-21

With Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins, you can configure an RSA
certificate with a signature algorithm of RSASSA-PSS as a user certificate for the
Apache Web Server. You can then use this certificate to function as a client certificate
when the Oracle WebLogic Server requires one for client authentication.

If you have configured Oracle WebLogic Server to use a certificate with RSASSA-PSS
signature, the Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-ins support such
certificates during an SSL handshake.

Configuring Perimeter Authentication
Use perimeter authentication to secure Oracle WebLogic Server applications that are
accessed by using the proxy plug-in.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems
that access your Oracle WebLogic Server application, including users who access
your Oracle WebLogic Server application through the proxy plug-in. Create an Identity
Assertion Provider that will safely secure your proxy plug-in as follows:

1. Create a custom Identity Assertion Provider on your Oracle WebLogic Server
application. See How to Develop a Custom Identity Assertion Provider in
Developing Security Providers for Oracle WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the Cert token type
and make Cert the active token type. See How to Create New Token Types in
Developing Security Providers for Oracle WebLogic Server.

3. Set clientCertProxy to True in the web.xml deployment descriptor file for the Web
application (or, if using a cluster, optionally set the Client Cert Proxy Enabled
attribute to true for the whole cluster on the Administration Console Cluster then
Configuration then General tab).

The clientCertProxy attribute can be used with a third party proxy server, such
as a load balancer or an SSL accelerator, to enable 2-way SSL authentication. For
more information about the clientCertProxy attribute, see context-param in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure
that Oracle WebLogic Server accepts connections only from the machine on which
the proxy plug-in is running. See Using Network Connection Filters in Developing
Applications with the WebLogic Security Service.

5. The Oracle WebLogic Server Proxy Plug-ins require a trusted Certificate Authority
file to use SSL between the proxy plug-in and Oracle WebLogic Server. See Using
SSL with Proxy Plug-Ins for the steps you need to perform to configure SSL.

See Identity Assertion Providers in Developing Security Providers for Oracle WebLogic
Server.

Chapter 4
Configuring Perimeter Authentication

4-22

5
Parameters for Oracle WebLogic Server
Proxy Plug-Ins

Learn about the parameters that you can use to configure Apache HTTP Server on Linux.

Note:

The parameters for the Oracle WebLogic Server Proxy Proxy Plug-ins should be
specified in special configuration files, which are named and formatted uniquely for
each web server. For information about the configuration files specific to the proxy
plug-ins for Apache HTTP Server, see Configuring the Oracle WebLogic Server
Proxy Plug-In for Apache HTTP Server.

This chapter includes the following topics:

• General Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the general parameters for Oracle WebLogic Server Proxy Plug-ins are
case sensitive.

• SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the SSL parameters for Oracle WebLogic Server Proxy Plug-ins are case
sensitive.

General Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the general parameters for Oracle WebLogic Server Proxy Plug-ins are case
sensitive.

This section includes the following topics:

• ConnectRetrySecs

• ConnectTimeoutSecs

• DebugConfigInfo

• DefaultFileName

• DynamicServerList

• ErrorPage

• FileCaching

• Idempotent

• KeepAliveEnabled

• KeepAliveSecs

• MatchExpression

• MaxPostSize

5-1

• MaxSkipTime

• PathPrepend

• PathTrim

• QueryFromRequest

• WebLogicCluster

• WebLogicHost

• WebLogicPort

• WLCookieName

• WLDNSRefreshInterval

• WLExcludePathOrMimeType

• WLForwardUriUnparsed

• WLIOTimeoutSecs

• WLLocalIP

• WLMaxWebSocketClients

• WLProtocol

• WLProxyPassThrough

• WLProxySSL

• WLProxySSLPassThrough

• WLRetryOnTimeout

• WLRetryAfterDroppedConnection

• WLServerInitiatedFailover

• WLSocketTimeoutSecs

• WLSRequest

• WLTempDir

ConnectRetrySecs
Default: 2

To specify no retries, set ConnectRetrySecs equal to ConnectTimeoutSecs. However,
the proxy plug-in attempts to connect at least twice.

You can customize the error response by using the ErrorPage parameter.

ConnectTimeoutSecs
Default: 10

Maximum time in seconds that the proxy plug-in should attempt to connect to the
Oracle WebLogic Server host. Make the value greater than ConnectRetrySecs. If
ConnectTimeoutSecs expires without a successful connection, even after the
appropriate retries (see ConnectRetrySecs), an HTTP 503/Service Unavailable
response is sent to the client.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-2

You can customize the error response by using the ErrorPage parameter.

DebugConfigInfo
Default: OFF

Enables the special query parameter "__WebLogicBridgeConfig". Use it to get details about
configuration parameters from the proxy plug-in.

For example, if you enable "__WebLogicBridgeConfig" by setting DebugConfigInfo and then
send a request that includes the query string ?__WebLogicBridgeConfig, then the proxy plug-
in gathers the configuration information and run-time statistics and returns the information to
the browser. The proxy plug-in does not connect to Oracle WebLogic Server in this case.

This parameter is strictly for debugging and the format of the output message can change
with releases. For security purposes, keep this parameter turned OFF in production systems.

DefaultFileName
Default: none

If the URI is "/" then the proxy plug-in performs the following steps:

1. Trims the path specified with the PathTrim parameter.

2. Appends the value of DefaultFileName.

3. Prepends the value specified with PathPrepend.

This procedure prevents redirects from Oracle WebLogic Server.

Set the DefaultFileName to the default welcome page of the Web application in Oracle
WebLogic Server to which requests are being proxied. For example, If the DefaultFileName
is set to welcome.html, an HTTP request like "http://somehost/weblogic" becomes "http://
somehost/weblogic/welcome.html". For this parameter to function, the same file must be
specified as a welcome file in all the Web Applications to which requests are directed. See
Configuring Welcome Files in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

Note for Apache users: If you are using Stronghold or Raven versions, define this parameter
inside of a Location block, and not in an IfModule block.

DynamicServerList
Default: ON

When set to OFF, the proxy plug-in ignores the dynamic cluster list used for load balancing
requests proxied from the proxy plug-in and only uses the static list specified with the
WebLogicCluster parameter. Normally this parameter should remain set to ON.

There are some implications for setting this parameter to OFF:

• If one or more servers in the static list fails, the proxy plug-in could waste time trying to
connect to a terminated server, resulting in decreased performance.

• If you add a new server to the cluster, the proxy plug-in cannot proxy requests to the new
server unless you redefine this parameter. Oracle WebLogic Server automatically adds
new servers to the dynamic server list when they become part of the cluster.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-3

ErrorPage
Default: none

You can create your own error page that is displayed when your Web server cannot
forward requests to Oracle WebLogic Server.

The proxy plug-in redirects to an error page when the back-end server returns an
HTTP 503/Service Unavailable response and there are no servers for failover.

FileCaching
Default: ON

When set to ON, and the size of the POST data in a request is greater than 2048 bytes,
the POST data is first read into a temporary file on disk and then forwarded to Oracle
WebLogic Server in chunks of 8192 bytes. This preserves the POST data during
failover, allowing all necessary data to be repeated to the secondary if the primary
goes down.

When FileCaching is ON, any client that tracks the progress of the POST will see that
the transfer has completed even though the data is still being transferred between the
WebServer and WebLogic. So, if you want the progress bar displayed by a browser
during the upload to reflect when the data is actually available on the Oracle WebLogic
Server, you might not want to have FileCaching ON.

When set to OFF and the size of the POST data in a request is greater than 2048
bytes, the reading of the POST data is postponed until an Oracle WebLogic Server
cluster member is identified to serve the request. Then the proxy plug-in reads and
immediately sends the POST data to Oracle WebLogic Server in chunks of 8192
bytes.

Turning FileCaching OFF limits failover. If the Oracle WebLogic Server primary server
goes down while processing the request, the POST data already sent to the primary
cannot be repeated to the secondary.

Finally, regardless of how FileCaching is set, if the size of the POST data is 2048
bytes or less the proxy plug-in will read the data into memory and use it if needed
during failover to repeat to the secondary.

• Location of POST Data Files

Location of POST Data Files
When the FileCaching parameter is set to ON and the size of the POST data in a
request is greater than 2048 bytes, the POST data is first read into a temporary file on
disk, and then forwarded to Oracle WebLogic Server in chunks of 8192 bytes. This
preserves the POST data during failover.
The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows it is
located as follows (if WLTempDir is not specified):

• Environment variable TMP
• Environment variable TEMP
• C:\Temp

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-4

Idempotent
Default: ON

When set to ON and if the servers do not respond within WLIOTimeoutSecs, the proxy plug-
ins fail over if the method is Idempotent.

The proxy plug-ins also fail over if Idempotent is set to ON and the servers respond with an
error such as READ_ERROR_FROM_SERVER.

If Idempotent is set to OFF, the proxy plug-ins do not fail over. If you are using the Apache
HTTP Server, you can set this parameter differently for different URLs or MIME types.

Idempotent only takes effect if the request is successfully sent to Oracle WebLogic Server
and the proxy plug-in is now waiting for a response from the back end server.

POST requests are not retried even if marked as Idempotent.

KeepAliveEnabled
Default: ON
This directive enables pooling of connections between the proxy plug-in and Oracle
WebLogic Server. Valid values are ON and OFF.

While using Apache prefork mpm, Apache web server might fail. Set KeepAliveEnabled to
OFF when using prefork mpm or use worker mpm in Apache.

Note:

If both KeepAliveEnabled and HTTP/2 are configured for a back-end connection,
the following message is generated:
KeepAliveEnabled option will be ignored since HTTP/2 connection is
enabled

KeepAliveSecs
Default: 20
The length of time after which an inactive connection between the proxy plug-in and Oracle
WebLogic Server is closed. You must set KeepAliveEnabled to true (ON when using the
Apache HTTP Server) for this parameter to be effective.

The value of this parameter must be less than or equal to the value of the Duration field set in
the Administration Console on the Server/HTTP tab, or the value set on the server Mbean
with the KeepAliveSecs attribute.

MatchExpression
Default: none

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-5

Use this parameter to modify the values of existing parameters or add a new
parameter for a particular configuration.

The MatchExpression parameter supports only the * and ? regular expressions

• * which matches 0 or more characters

• ? which matches exactly one character

This parameter can be configured for two scenarios.

Proxying by MIME type:

You can use this parameter in the following format to set other parameters for a
particular MIME type.

Syntax:

MatchExpression <file_extension> <param=value>|<param-value>|…

For example, the following configuration proxies *.jsp to myHost:8080:

<IfModule weblogic_module>
MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=8080
</IfModule>

Proxying by path:

You can also use this parameter in the following format to set other parameters for a
particular path.

Syntax:

MatchExpression <path> <param=value>|<param-value>|…

For example, the following configuration proxies the URIs beginning with /weblogic to
myHost:9090:

<IfModule weblogic_module>
MatchExpression /weblogic WebLogicHost=myHost|WebLogicPort=9090
</IfModule>

You can also use MatchExpression to override the parameter values, as shown above.
It can also be used to define new parameters (this is, those that have not been used in
the configuration).

For example, the configuration below proxies all the requests to myHost:8080. The
URIs that match the type jpg will be proxied to myHost:8080/images and others will
be proxied to myHost:8080.

<IfModule weblogic_module>
SetHandler weblogic-handler
WebLogicHost myHost
WebLogicPort 8080
MatchExpression *.jpg PathPrepend=/images
</IfModule>

You can find more examples of how to use MatchExpression in Configuring the Oracle
WebLogic Server Proxy Plug-In for Apache HTTP Server.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-6

MaxPostSize
Default: 0

Maximum allowable size of POST data, in bytes. If the content-length exceeds MaxPostSize,
the proxy plug-in returns an error message. If set to 0, the size of POST data is not checked.
This is useful for preventing denial-of-service attacks that attempt to overload the server with
POST data.

MaxSkipTime
Default: 10

If Oracle WebLogic Server listed in either the WebLogicCluster parameter or a dynamic
cluster list returned from Oracle WebLogic Server fails, the failed server is marked as "bad"
and the proxy plug-in attempts to connect to the next server in the list.

MaxSkipTime sets the amount of time after which the proxy plug-in will retry the server
marked as "bad." The proxy plug-in attempts to connect to a new server in the list each time a
unique request is received (that is, a request without a cookie).

PathPrepend
Default: null

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathPrepend specifies the path that the proxy plug-in prepends to the {PATH} portion of the
original URL, after PathTrim is trimmed and before the request is forwarded to Oracle
WebLogic Server.

If you must append a File Name, use DefaultFileName parameter instead of PathPrepend.

PathTrim
Default: null

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathTrim specifies the string trimmed by the proxy plug-in from the {PATH}/{FILENAME}
portion of the original URL, before the request is forwarded to Oracle WebLogic Server. For
example, if the http://myWeb.server.com/weblogic/foo URL is passed to the proxy plug-in
for parsing and if PathTrim has been set to strip off /weblogic, before handing the URL to
Oracle WebLogic Server, the URL forwarded to Oracle WebLogic Server is http://
myWeb.server.com:7001/foo.

If you are newly converting an existing third-party server to proxy requests to Oracle
WebLogic Server using the proxy plug-in, you will need to change application paths to /foo to
include weblogic/foo. You can use PathTrim and PathPrepend in combination to change this
path.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-7

Configure the PathTrim parameter inside the <Location> tag.

The following configuration is incorrect because the PathTrim parameter is not
configured inside the <Location> tag:

<Location /weblogic>
WLSRequest On
</Location>

<IfModule mod_weblogic.c>
WebLogicHost localhost
WebLogicPort 7001
PathTrim /weblogic
</IfModule>

The following configuration is correct:

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
</Location>

The <Location> directive limits the scope of the enclosed directives by URL. See
Apache Location Directive.

QueryFromRequest
Default: OFF

When set to ON, specifies that the Apache HTTP Server use

(request_rec *)r->the_request

to pass the query string to Oracle WebLogic Server. (For more information, see the
Apache documentation.) This behavior is desirable when a Netscape version 4.x
browser makes requests that contain spaces in the query string

When set to OFF, the Apache HTTP Server uses (request_rec *)r->args to pass the
query string to Oracle WebLogic Server.

WebLogicCluster
Required when proxying to a cluster of Oracle WebLogic Servers, or to multiple non-
clustered servers.

Default: none

The WebLogicCluster parameter is required to proxy a list of back-end servers that
are clustered, or to perform load balancing among non-clustered managed server
instances.

List of Oracle WebLogic Servers that can be used for load balancing. The server or
cluster list is a list of host:port entries. If a mixed set of clusters and single servers is
specified, the dynamic list returned for this parameter will return only the clustered
servers.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-8

https://httpd.apache.org/docs/2.4/mod/core.html#location

For the syntax for specifying the value of this parameter for Apache HTTP Server, see
Configuring the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server.

If you are using SSL between the proxy plug-in and Oracle WebLogic Server, set the port
number to the SSL listen port and set the SecureProxy parameter to ON.

The proxy plug-in does a simple round-robin between all available servers. The server list
specified in this property is a starting point for the dynamic server list that the server and
proxy plug-in maintain. Oracle WebLogic Server and the proxy plug-in work together to
update the server list automatically with new, failed, and recovered cluster members.

You can disable the use of the dynamic cluster list by setting the DynamicServerList
parameter to OFF.

The proxy plug-in directs HTTP requests containing a cookie, URL-encoded session, or a
session stored in the POST data to the server in the cluster that created the cookie.

WebLogicHost
Required when proxying to a single Oracle WebLogic Server.

Default: none

Oracle WebLogic Server host (or virtual host name as defined in Oracle WebLogic Server) to
which HTTP requests should be forwarded. If you are using a Oracle WebLogic cluster, use
the WebLogicCluster parameter instead of WebLogicHost.

WebLogicPort
Required when proxying to a single Oracle WebLogic Server.

Default: none

The port at which Oracle WebLogic Server host is listening for connection requests from the
proxy plug-in (or from other servers). (If you are using SSL between the proxy plug-in and
Oracle WebLogic Server, set this parameter to the SSL listen port and set the SecureProxy
parameter to ON).

If you are using a Oracle WebLogic Cluster, use the WebLogicCluster parameter instead of
WebLogicPort.

WLCookieName
Default: JSESSIONID
If you change the name of the Oracle WebLogic Server session cookie in the Oracle
WebLogic Server Web application, then you must change the WLCookieName parameter in the
proxy plug-in to the same value. The name of the Oracle WebLogic session cookie is set in
the WebLogic-specific deployment descriptor, in the <session-descriptor> element in
weblogic.xml.

WLDNSRefreshInterval
Default: 0 (Lookup once, during startup)

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-9

If defined in the proxy configuration, specifies number of seconds interval at which
Oracle WebLogic Server refreshes DNS name to IP mapping for a server. This can be
used if an Oracle WebLogic Server instance is migrated to a different IP address, but
the DNS name for that server's IP remains the same. In this case, at the specified
refresh interval the DNS<->IP mapping will be updated.

WLExcludePathOrMimeType
Default: none

This parameter allows you to exclude certain requests from proxying.

This parameter can be defined locally at the Location tag level and globally. When the
property is defined locally, it does not override the global property but defines a union
of the two parameters.

WLForwardUriUnparsed
Default: OFF

When set to ON, the Oracle WebLogic Server Proxy Plug-in will forward the original
URI from the client to Oracle WebLogic Server. When set to OFF (default), the URI
sent to Oracle WebLogic Server is subjected to modification by mod_rewrite or other
Web Server Plug-in modules.

WLIOTimeoutSecs
New name for HungServerRecoverSecs.

Default: 120

Defines the amount of time the proxy plug-in waits for a response to a request from
Oracle WebLogic Server. The proxy plug-in waits for WLIOTimeoutSecs for the server
to respond, and then declares that the server is dead, and fails over to the next server.
You must set the value to a large value. If the value is less than the time the servlets
take to process, you might see unexpected results.

Minimum value: 10

Maximum value: 2147483647

WLLocalIP
Default: none

Defines the IP address (on the proxy plug-in's system) to bind to when the proxy plug-
in connects to an Oracle WebLogic Server instance running on a multihomed machine.

If WLLocalIP is not set, the TCP/IP stack will choose the source IP address.

WLMaxWebSocketClients
Default: Windows: Half of ThreadsPerChild, Non-Windows: Half of
MaxRequestWorkers
Limits the number of active WebSocket connections at any instant of time.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-10

Note:

The maximum value you can set for this parameter is 75 percent of
ThreadsPerChild (Windows) or 75 percent of MaxRequestWorkers (non-Windows).
If the value specified for this parameter is greater than the maximum allowed, it will
be automatically lowered to that maximum.

WLProtocol

Default: http/1.1
Scope: Location, Server context

Supported Values:

• http/2 - for HTTP/2 protocol

• http/1.1 - for HTTP/1.1 protocol

This directive specifies the protocol to be used by the Oracle WebLogic Server Proxy Plug-ins
to communicate with the back-end server.

If the WLProtocol directive is not configured, the Oracle WebLogic Server Proxy Plug-ins
send requests to the back-end server over HTTP/1.1. If the back-end server does not support
HTTP/2 protocol, the Oracle WebLogic Server Proxy Plug-in does not fallback to HTTP/1.1
and the 503 error is returned.

WLProxyPassThrough
Default: OFF

If you have a chained proxy setup, where a proxy plug-in is running behind some other proxy
or load balancer, you must explicitly enable the WLProxyPassThrough parameter. This
parameter allows the header to be passed through the chain of proxies.

WLProxySSL
Default: OFF

Set this parameter to ON to maintain SSL communication between the proxy plug-in and
Oracle WebLogic Server when the following conditions exist:

• An HTTP client request specifies the HTTPS protocol.

• The request is passed through one or more proxy servers (including the Oracle
WebLogic Server Proxy Plug-in).

• The connection between the proxy plug-in and Oracle WebLogic Server uses the HTTP
protocol.

When WLProxySSL is set to ON, the location header returned to the client from Oracle
WebLogic Server specifies the HTTPS protocol.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-11

WLProxySSLPassThrough
Default: OFF

If a load balancer or other software deployed in front of the web server and proxy plug-
in is the SSL termination point, and that product sets the WL-Proxy-SSL request header
to true or false based on whether the client connected to it over SSL, set
WLProxySSLPassThrough to ON so that the use of SSL is passed on to the Oracle
WebLogic Server.

If the SSL termination point is in the web server where the proxy plug-in operates, or
the load balancer does not set WL-Proxy-SSL, set WLProxySSLPassThrough to OFF
(default).

WLRetryOnTimeout
Default: None

Tells the Oracle WebLogic Server Proxy Plug-in whether to retry requests (including
POST requests) when a time-out occurs before Oracle WebLogic Server sends the
status line. Valid arguments are:

• ALL: All requests are retried.

• IDEMPOTENT: Only requests that use idempotent methods are retried.

• NONE: No requests are retried.

WLRetryAfterDroppedConnection
Default: ALL

Tells the Oracle WebLogic Server Proxy Plug-ins which requests to retry when a
connection is lost before Oracle WebLogic Server sends the status line. Valid
arguments are:

• ALL: All requests will be retried.

• IDEMPOTENT: Only requests using idempotent methods will be retried.

• NONE: No requests will be retried.

WLServerInitiatedFailover
Default: ON

This controls whether a 503 error response from Oracle WebLogic Server triggers a
failover to another server. Normally, the proxy plug-in will attempt to failover to another
server when a 503 error response is received. When WLServerInitiatedFailover is
set to OFF, the 503 error response will be returned to the client immediately.

WLSocketTimeoutSecs
Default: 2 (must be greater than 0)

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-12

Set the timeout for the socket while connecting, in seconds. See ConnectTimeoutSecs and
ConnectRetrySecs for additional details.

WLSRequest
Default: OFF

This is an alternative to the WLSRequest On mechanism of identifying requests to be
forwarded to Oracle WebLogic Server. For example,

<Location /weblogic>
 WLSRequest ON
 PathTrim /weblogic
</Location>

The use of WLSRequest ON instead of SetHandler weblogic-handler has the following
advantages:

• Lower web server processing overhead in general

• Resolves substantial performance degradation when the web server DocumentRoot is on
a slow filesystem

• Resolves 403 errors for URIs which cannot be mapped to the filesystem due to the
filesystem length restrictions

WLTempDir
Default: /tmp
For Apache HTTP Server, this directive specifies the location of the _wl_proxy directory for
the POST data files.

SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the SSL parameters for Oracle WebLogic Server Proxy Plug-ins are case
sensitive.

Note:

The SCG certificates are not supported for use with Oracle WebLogic Server Proxy
Plug-in. The non-SCG certificates work appropriately and allow SSL communication
between Oracle WebLogic Server and the proxy plug-in.

KeyStore-related initialization parameters are not supported for use with Oracle
WebLogic Server Proxy Plug-in.

This section includes the following topics:

• SecureProxy

• WebLogicSSLCiphers

• WebLogicSSLVersion

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-13

• WLSSLCheckCn

• WLSSLWallet

SecureProxy
Default: OFF

Set this parameter to ON to enable the use of the SSL protocol for all communication
between the proxy plug-in and Oracle WebLogic Server. Remember to configure a port
on the corresponding Oracle WebLogic Server for the SSL protocol before defining this
parameter.

This parameter may be set at two levels: in the configuration for the main server and—
if you have defined any virtual hosts—in the configuration for the virtual host. The
configuration for the virtual host inherits the SSL configuration from the configuration of
the main server if the setting is not overridden in the configuration for the virtual host.

WebLogicSSLCiphers

Ciphers Supported:

• TLSv1.3 ciphers:

– TLS_AES_256_GCM_SHA384
– TLS_AES_128_GCM_SHA256

• TLSv1.2 ciphers:

– ECDHE-RSA-AES256-GCM-SHA384
– ECDHE-RSA-AES128-GCM-SHA256
– ECDHE-ECDSA-AES256-GCM-SHA384
– ECDHE-ECDSA-AES128-GCM-SHA256
Deprecated (yet available) TLSv1.2 ciphers:

– AES128-GCM-SHA256
– AES256-GCM-SHA384
– AES128-SHA256
– AES256-SHA256
– AES256-SHA
– AES128-SHA

Default: All supported ciphers

Scope: Server, VirtualHost

Applies to: Apache HTTP Server

This directive accepts a space separated list of ciphers to be used between Oracle
WebLogic Server Proxy Plug-in and Oracle WebLogic Server.

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-14

Note:

• If WebLogicSSLCiphers is set to TLSv1.3 ciphers and WebLogicSSLVersion is
set to TLSv1.2, or vice versa, the following error message is thrown during the
server startup:

Error: No available SSL version. Possible Mismatch between the
configured protocol(s) and cipher(s)

• If WebLogicSSLCiphers is omitted, then the default list of ciphers is selected
(that is, all supported ciphers).

• If WebLogicSSLVersion is omitted, then the default list of protocols is selected,
which is TLSv1.2 and TLSv1.3.

• If you want to remove a particular cipher, you must explicitly set a list of ciphers
by omitting that cipher. Only the ciphers specified with the WebLogicSSLCiphers
directive will be enabled.

• A web server starts if there is at least one supported cipher in the list of ciphers
configured with the WebLogicSSLCiphers directive. If the list contains any
unsupported cipher, a warning message is displayed and the unsupported
cipher is ignored.

• Both TLSv1.2 (and below) and TLSv1.3 ciphers can be configured using the
WebLogicSSLCiphers directive. For example:

WebLogicSSLCiphers TLS_AES_256_GCM_SHA384 ECDHE-ECDSA-AES128-GCM-
SHA256

WebLogicSSLVersion
Default: TLSv1.2, TLSv1.3

Specifies the SSL protocol version to use for communication between the proxy plug-in and
the Oracle WebLogic Server. This setting need not match that of the web server's ssl.conf
file. The proxy plug-in can have its own SSL version to communicate with Oracle WebLogic
Server.

The following values are accepted:

• TLSv1_1 or TLSv1.1: Uses TLS v1.1

• TLSv1_2 or TLSv1.2: Uses TLS v1.2

• TLSv1_3 or TLSv1.3: Uses TLS v1.3 (Applicable for Apache HTTP Server on Linux only.)

For example:

WebLogicSSLVersion TLSv1_2 TLSv1_3

You can define multiple protocols by using a space-separated list. The SSL protocol version
chosen is used for all the connections from the proxy plug-in to Oracle WebLogic Server.
Hence, define this parameter at the global scope.

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-15

If not configured, the proxy plug-in uses the best protocol supported by both the proxy
plug-in and Oracle WebLogic Server.

Note:

• As of the 14.1.1.0.0 release of the proxy plug-in, the default minimum
version of the Transport Layer Security (TLS) protocol configured is
TLSv1.2. Oracle recommends that you use TLS V1.2 or later in a
production environment. It is still possible to configure TLSv1.1 protocol
for communication between the proxy plug-in and Oracle WebLogic
Server. However, the proxy plug-in throws a WARNING message when
this protocol is configured.

• To configure TLSv1.1, you have to explicitly configure the ciphersuite.
The ciphersuites compatible with TLSv1.1 are AES128-SHA and
AES256-SHA. For more information about configuring ciphersuites, see
WebLogicSSLCiphers.

• If WebLogicSSLCiphers is set to TLSv1.3 ciphers and
WebLogicSSLVersion is set to TLSv1.2, or vice versa, the following error
message is thrown during the server startup:

Error: No available SSL version. Possible Mismatch between
the configured protocol(s) and cipher(s)

WLSSLCheckCn

Default: OFF

Scope: Location, Server context

Set this parameter to ON to enable the host name verification. Before you do that,
ensure that the certificate meets the following requirement:

• The host name configured using the WebLogicHost or WebLogicCluster directive
must match the Common Name attribute of the SSL certificate's Distinguished
Names or the subjectAltName extension.

• The SSL certificate referred to here is the certificate configured for the Oracle
WebLogic Server Managed Server serving the request.

WLSSLWallet
Default: none

Scope: Server context, Virtual Host context

The WLSSLWallet performs one-way or two-way SSL based on how SSL is configured
for Oracle WebLogic Server. The export_wallet program exports the wallet into PEM
formatted files on the file system. For each user-supplied wallet, three files may be
created in the same file system path where the auto-login wallet is present:

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-16

• key.pem: A pass-phrase protected file containing the private key in PEM format, if a
private key is present in the wallet.

• user.crt: User certificate in PEM format, if a user certificate is present in the wallet.

• trusted_certs.crt: Chain of trusted certificates in PEM format.

Set the path of an Oracle Wallet (containing an SSO wallet file) as an argument. For
example:

WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/
instances/${COMPONENT_NAME}/keystores/default"

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-17

6
Troubleshooting Oracle WebLogic Server
Proxy Plug-In Implementations

You might encounter some problems when using the Oracle WebLogic Server Proxy Plug-in.
Descriptions of how to solve these problems are provided.

This chapter includes the following topics:

• Oracle WebLogic Server Session Issues

• CONNECTION_REFUSED Errors
Occasionally, under stress conditions, a few requests might fail with the error logged in
the error log file.

• NO_RESOURCES Errors
Occasionally, under stress conditions, a few requests might fail with the error logged in
the error log file.

• POST Data Files Issues

Oracle WebLogic Server Session Issues
The Oracle WebLogic Server Proxy Plug-in routes the requests to backend Oracle WebLogic
Server or cluster. Oracle WebLogic Server maintains sessions so that subsequent requests
from the same client are routed to the same server. However, due to various reasons, if the
Oracle WebLogic Server Proxy Plug-in cannot communicate with the Oracle WebLogic
Server server, the request is handled in the following ways:

• If the request is routed to a single Oracle WebLogic Server instance, the Oracle
WebLogic Server Proxy Plug-in continues trying to connect to that same Oracle
WebLogic Server instance for the maximum number of retries as specified by the ratio of
ConnectTimeoutSecs and ConnectRetrySecs. If all attempts fail, an HTTP 503 error
message is returned back to the client.

• If the request is routed to the WebLogic cluster, the current Oracle WebLogic Server is
marked as bad, and the request is routed to the next available Oracle Weblogic Server. If
all attempts fail, an HTTP 503 error message is returned back to the client.

In addition to sending a HTTP 503 error message, the following is displayed as a response in
the HTTP client:

Failure of Web Server bridge:
No backend server available for connection: timed out after xx seconds or idempotent
set to OFF or method not idempotent.

CONNECTION_REFUSED Errors
Occasionally, under stress conditions, a few requests might fail with the error logged in the
error log file.

The following error is logged in the log file:

6-1

weblogic: Trying GET /uri at backend host 'xx.xx.xx.xx/port; got exception
'CONNECTION_REFUSED [os error=xxx, line xxxx of URL.cpp]: apr_socket_connect
call failed with error=xxx, host=xx.xx.xx.xx, port=xxxx'

As mentioned in Tips for Reducing CONNECTION_REFUSED Errors, Oracle
WebLogic Server might have reached the maximum allowed backlog connections.

To resolve, follow the steps mentioned in Tips for Reducing
CONNECTION_REFUSED Errors.

NO_RESOURCES Errors
Occasionally, under stress conditions, a few requests might fail with the error logged in
the error log file.

The following error is logged in the log file:

weblogic: *******Exception type [NO_RESOURCES] (apr_socket_connect call failed
with error=70007, host=xx.xx.xx.xx, port=xxxx) raised at line xxxx of URL.cpp

This usually occurs if Oracle WebLogic Server is too busy to respond to the connect
request from the Oracle WebLogic Server Proxy Plug-in. This can be resolved by
setting WLSocketTimeoutSecs to a higher value. This allows the Oracle WebLogic
Server Proxy Plug-in to wait longer for the connect request to be responded to by the
Oracle WebLogic Server.

POST Data Files Issues
The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows it is
located as follows (if WLTempDir is not specified):

• Environment variable TMP
• Environment variable TEMP
• C:\Temp
The /tmp/_wl_proxy is a fixed directory and is owned by the HTTP Server user. When
there are multiple HTTP Servers installed by different users, some HTTP Servers
might not be able to write to this directory. This condition results in an error.

To correct this condition, use the WLTempDir parameter to specify a different location
for the _wl_proxy directory for POST data files.

Chapter 6
NO_RESOURCES Errors

6-2

	Contents
	Preface
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	1 Overview of Oracle WebLogic Server Proxy Plug-Ins
	What are Oracle WebLogic Server Proxy Plug-Ins?
	Availability of Oracle WebLogic Server Proxy Plug-Ins
	Features of the 14.1.1.0.0 Proxy Plug-Ins
	Support for HTTP/2 Protocol
	Server Push Functionality

	Security Improvements

	Features Inherited from Previous 12c Releases

	2 Installing the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server
	Installation Prerequisites
	Obtaining the Proxy Plug-Ins
	Java Requirements
	Apache HTTP Server Installation
	Oracle WebLogic Server Installation
	Setting the Environment Variables for Oracle WebLogic Server Proxy Plug-In

	Installing the Oracle WebLogic Server Proxy Plug-In
	Next Steps After Installing Oracle WebLogic Server 14.1.1.0.0 Proxy Plug-Ins
	Third-Party Software Dependencies
	About HTTP Header Case Handling
	About Federal Information Processing Standards
	Unsupported Use Cases

	Support and Patching

	3 Configuring the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server
	Configuring the Oracle WebLogic Server Proxy Plug-in
	Configuring the httpd.conf File
	Task 1: Configure MIME Requests
	Configuring Proxy Requests by MIME Type
	Configuring Proxy Requests by Path

	Task 2: Define Additional Parameters for Oracle WebLogic Server Proxy Plug-In
	Task 3: Enable HTTP Tunneling (Optional)
	Task 4: Enable Web Services Atomic Transaction (Optional)
	Task 5: Verify and Apply Your Configuration

	Placing the WebLogic Properties Inside the Location or VirtualHost Blocks
	Example: Configuring the Oracle WebLogic Server Proxy Plug-In
	Including a weblogic.conf File in the httpd.conf File
	Rules for Creating the weblogic.conf Files
	Sample weblogic.conf Configuration Files
	Template for the Apache HTTP Server httpd.conf File

	About WebSocket Proxy Configurations
	Verifying the Log File

	Understanding the DMS Metrics for Oracle WebLogic Server Proxy Plug-In
	Configuring the DMS Metrics for the Oracle WebLogic Server Proxy Plug-In
	Viewing the Performance Metrics for the Oracle WebLogic Server Proxy Plug-In
	DMS State Metrics
	DMS Event Metrics
	DMS PhaseEvent Metrics

	Common Configuration Tasks
	Configuring IPv6 with Proxy Plug-Ins
	Understanding Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Tips for Reducing CONNECTION_REFUSED Errors
	Failover with a Single, Non-Clustered Oracle WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions
	Failover Behavior When Using Firewalls and Load Directors

	Tuning Apache HTTP Server for High Throughput for WebSocket Upgrade Requests

	Deprecated Directives for Apache HTTP Server

	4 Configuring Security
	Using SSL with Proxy Plug-Ins
	Configuring Libraries for SSL
	Configuring Environment Variables

	Configuring a Proxy Plug-In for One-Way SSL
	Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle WebLogic Server
	Replacing Certificates Signed Using the MD5 Algorithm
	Checking the Certificate Signing Algorithm
	Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm
	Replacing the Existing Certificates with SHA-2 Signed Certificates

	Certificates Signed with MD5 Algorithm Not Supported
	Using Certificates Signed with RSASSA-PSS Signature Algorithm

	Configuring Perimeter Authentication

	5 Parameters for Oracle WebLogic Server Proxy Plug-Ins
	General Parameters for Oracle WebLogic Server Proxy Plug-Ins
	ConnectRetrySecs
	ConnectTimeoutSecs
	DebugConfigInfo
	DefaultFileName
	DynamicServerList
	ErrorPage
	FileCaching
	Location of POST Data Files

	Idempotent
	KeepAliveEnabled
	KeepAliveSecs
	MatchExpression
	MaxPostSize
	MaxSkipTime
	PathPrepend
	PathTrim
	QueryFromRequest
	WebLogicCluster
	WebLogicHost
	WebLogicPort
	WLCookieName
	WLDNSRefreshInterval
	WLExcludePathOrMimeType
	WLForwardUriUnparsed
	WLIOTimeoutSecs
	WLLocalIP
	WLMaxWebSocketClients
	WLProtocol
	WLProxyPassThrough
	WLProxySSL
	WLProxySSLPassThrough
	WLRetryOnTimeout
	WLRetryAfterDroppedConnection
	WLServerInitiatedFailover
	WLSocketTimeoutSecs
	WLSRequest
	WLTempDir

	SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins
	SecureProxy
	WebLogicSSLCiphers
	WebLogicSSLVersion
	WLSSLCheckCn
	WLSSLWallet

	6 Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations
	Oracle WebLogic Server Session Issues
	CONNECTION_REFUSED Errors
	NO_RESOURCES Errors
	POST Data Files Issues

